
The TNTBASE System and Validation of XML Documents

Vyacheslav Zholudev
Jacobs University of Bremen
D-28759, Bremen, Germany

v.zholudev@jacobs-university.de

Abstract
TNTBASE is an open-source versioned XML
database obtained by integrating Berkeley DB
XML into the Subversion Server. The system
is intended as a basis for collaborative editing
and sharing XML-based documents. It integrates
versioning and fragment access needed for fine-
granular document content management.
Nowadays well-formedness of electronic docu-
ments plays a giant role in the contemporary doc-
ument workflows and applications have to pro-
vide domain-specific validation mechanisms for
documents they work with. On another hand,
XML is coming of age as a basis for docu-
ment formats, and even though there are a lot
of schema-based validation formats and software
available for XML, domain-specific directions
still remain unfilled.
In this paper we present the TNTBASE system in
general and its validation support for XML doc-
uments.

1 Introduction
With the rapid growth of computers and Internet resources
the communication between humans became much more
efficient. The number of electronic documents and the
speed of communication are growing rapidly. We see
the development of a deep web (web content stored in
Databases) from which the surface Web (what we see in
our browsers) is generated. With the merging of XML
fragment access techniques (most notably URIs [BLFM98]
and XPath [CD99; BBC+07]) and database techniques and
the ongoing development of XML-based document for-
mats, we are seeing the beginnings of a deep web of
XML documents, where surface documents are assem-
bled, aggregated, validated and mashed up from back-
ground information in XML databases by techniques like
XQuery [XQu07] and document (fragment) collections are
managed by XQuery Update [XQU08].

The Web is constantly changing — it has been esti-
mated that 20% of the surface Web changes daily and 30%
monthly [CGM00; FMNW03]. While archiving services
like the Wayback Machine try to get a grip on this for
the surface level, we really need an infrastructure for man-
aging and validating changes in the XML-based deep web.

Unfortunately, support for this has been very fru-
gal. Version Control systems like CVS and Sub-
version [SVN08] which have transformed collabora-
tion workflows in software engineering are deeply text-

based (wrt. diff/patch/merge) and do not integrate
well with XML databases and validators for different
schema languages for XML, like RelaxNG [Rel] or XML
Schema [W3C06]. Some relational databases address
temporal aspects [DDL02], but this does not seem to
have counterparts in the XML database or XQuery world.
Wikis provide simple versioning functionalities, but these
are largely hand-crafted into each system’s (relational)
database design.

In this paper we describe in short the TNTBASE sys-
tem, an open-source versioned XML database obtained by
integrating Berkeley DB XML [Ber09b] into the Subver-
sion Server [SVN08]. The system is intended as an en-
abling technology that provides a basis for future XML-
based document management systems that support collab-
orative editing and sharing by integrating the enabling tech-
nologies of versioning and fragment access needed for fine-
granular document content management. Also we discuss
our vision of how the validation of XML documents should
be done in a way that is conformant to Subversion philoso-
phy and how it fits to the TNTBASE system.

The TNTBASE system is developed in the context of the
OMDOC project (Open Mathematical Documents [OMD;
Koh06]), an XML-based representation format for the
structure of mathematical knowledge and communication.
Correspondingly, the development requirements for the
TNTBASE come out OMDOC-based applications and their
storage needs. We are experimenting with a math search
engine [KŞ06], a collaborative community-based reader
panta rhei [pan], the semantic wiki SWiM [Lan08], the
learning system for mathematics ActiveMath [Act08], and
a system for the verification of statements about programs
VeriFun [Ver08].

In the next section we will summarize what the TNT-
BASE system is and what it does. Then we will be ready
to cover validation mechanisms (see Section 3) offered by
TNTBASE and explain some design decisions. Section 4
will detail ideas for future work regarding validation of
OMDoc documents, and Section 5 concludes the paper.

2 The TNTBASE System
2.1 Overview
In this section we provide an overview of TNTBASE to
allow a better understanding of Section 3. Details can be
found at [ZK09].

A slightly simplified view of the TNTBASE architec-
ture is presented in Figure 1. The core of TNTBASE is
the XSVN library developed by the author. The main dif-
ference between XSVN and the SVN server it replaces
is that the former stores the youngest revisions of XML



Figure 1: TNTBase architecture

files and also other revisions (on user requests) in Berkeley
DB XML (DB XML) instead of Berkeley DB [Ber09a].
This gives us a possibility to employ the DB XML API
for querying and modifying XML files via XQuery and
XQuery Update facilities. Also such a substitution helps
us to keep XML files well-formed and, optionally, confor-
mant to an XML Schema.

In TNTBASE XSVN is managed by Apache’s
mod dav svn module or accessed by DB XML
ACCESSOR (a Java library which provides a high-level
access to DB XML on top of its API) locally on the same
machine. Apache’s mod dav svn module exposes an
HTTP interface exactly like it is done in SVN. Thereby
a TNTBASE user can work with TNTBASE repository
exactly in the same way as with a normal SVN repository
via HTTP protocol including Apache’s SVN authentica-
tion via authz and groups files. In other words any
SVN client is able to communicate with TNTBASE. The
non-XML content can be managed as well in TNTBASE,
but only via an XSVN’s HTTP interface.

The DB XML ACCESSOR module can work directly
with XML content in an XSVN repository by utilizing the
DB XML API. All indispensable information needed for
XML-specific tasks is incorporated in a DB XML con-
tainer using additional documents or metadata fields of
documents. SVNKITADAPTER (a Java library which em-
ploys SVNKit [SVN07]) comes into play when the revision
information needs to be accessed, and acts as a mediator
between an XSVN repository and DB XML ACCESSOR.
And in turn when DB XML ACCESSOR intends to cre-
ate a new revision in a XSVN repository it also exploits
SVNKITADAPTER functionality.

The DB XML ACCESSOR realizes a number of useful
features, but is able to access an XSVN repository only
locally. To expose all its functionality to the world TNT-
BASE provides a RESTful interface, see [ZK09; TNT09b].
We use the Jersey [Jer09] library to implement a RESTful
interface in TNTBASE. Jersey is a reference implemen-
tation of JAX-RS (JSR 311), the Java API for RESTful
Web Services [JSR09] and has simplified our implemen-
tation considerably.

TNTBASE provides a test web-form that allow users to
play with a subset of the TNTBASE functionality. Also
an XML-content browser is available online which shows
the TNTBASE file system content including virtual files.
United authentication for all interfaces is a subject for a

Figure 2: XSVN repository

future work.1
Currently readers can try out an online TNTBASE test

instance (see [TNT09a]), for additional information refer
to [TNT09b].

2.2 XSVN, an XML-enabled Repository
Since XSVN is a core of TNTBASE and will be referred to
in Section 3, we will cover it here in detail. The architecture
of XSVN and thus TNTBASE is motivated by the follow-
ing observation: Both the SVN server and the DB XML
library are based on Berkeley DB (BDB) [Ber09a]. The
SVN server uses it to store repository information2, and
DB XML for storing raw bytes of XML and for support-
ing consistency, recoverability and transactions. Moreover,
transactions can be shared between BDB and DB XML.
Let us look at the situation in more detail.

The SVN BDB-based file system uses multiple tables
to store different repository information like information
about locks, revisions, transactions, files, and directories,
etc. The two important tables here are representations and
strings. The strings table stores only raw bytes and one
entry of this table could be any of these:

1. a file’s contents or a delta (a difference between two
versions of the same entity (directory entry lists, files,
property lists) in a special format) that reconstructs file
contents

2. a directory entry list in special format called skel or a
delta that reconstructs a directory entry list skel

3. a property list skel or a delta that reconstructs a prop-
erty list skel

From looking at a strings entry alone there is no way to
tell what kind of data it represents; the SVN server uses the
representations table for this. Its entries are links that ad-
dress entries in the strings table together with information
about what kind of strings entry it references, and — if it
is a delta — what it is a delta against. Note that the SVN
server stores only the youngest revision (called the head
revision) explicitly in the strings table. Other revisions of
whatever entity (a file, a directory or a property list) are re-
computed by recursively applying inverse deltas from the
head revision.

To extend SVN to XSVN (an XML-enabled repository),
we have added the DB XML library to SVN and add a new
type of entry in the representations table that points to the
last version of that document in the DB XML container

1see Ticket https://trac.mathweb.org/tntbase/ticket/3
2In fact SVN can also use a file-system based storage back end

(SVN FS), but this does not affect TNTBASE.



(see Figure 2). Containers are entities in DB XML which
are used for storing XML documents. Literally, a container
is a file on disk that contains all the data associated with
your documents, including metadata and indices. For ev-
ery XSVN repository we use only one container located in
the same folder as BDB tables, and therefore it allows us
to share the same BDB environment exploited by an SVN
back end.

From an end-user perspective there is no difference be-
tween SVN and XSVN: all the SVN commands are still
available and have the same behavior. But for XML doc-
uments the internals are different. Assume that we com-
mit a newly added XML file3. Now its content does not
go to the strings table, but instead a file is added to DB
XML container with a name which is equal to the refer-
ence key stored in the also newly created representations
entry of DB XML full-text type. Note when we commit a
set of files, and even one of XML files is not well-formed
then the commit fails and no data are added into an XSVN
repository, which conforms to the notion of a transaction
in SVN and DB XML. When we want to checkout or up-
date a working copy, XSVN knows what files are stored in
DB XML and those files are read from a DB XML con-
tainer. Another important thing is the scenario when we
commit another version of an XML file. The older revision
is deleted from DB XML, the newer revision is added to
DB XML and a delta between these revisions are stored in
the strings table. This delta has the normal SVN format and
the SVN deltification algorithms have not been changed in
XSVN. Thus we are still able to retrieve older revisions of
XML documents. Concerning non-XML files the workflow
of XSVN is absolutely the same as in SVN: data are stored
in the same BDB tables, and the code behaves entirely in
the same way. Thereby we are also able to store text or bi-
nary data in XSVN which can supplement the collection of
XML files (e.g. licensing information or PDFs generated
from XML). And moreover we can add or commit XML
and non-XML files in the same transaction.

In conclusion: XSVN already offers a versioned XML
storage, but without additional modules it is useless as the
only difference to SVN is that it refuses to commit ill-
formed XML documents. The detailed description of ad-
ditional services built on top of XSVN is out of scope of
this paper (refer to [ZK09] for such information).

3 XML Validation

In this section we will discuss only the XSVN part of
TNTBASE and will explain how validation is realized in
an SVN-compatible way. Although addition of content is
also allowed via RESTful interface of TNTBASE, the most
convenient and manageable way of doing this is utilizing
an SVN client, and therefore validation should be imple-
mented on the XSVN server and should be managed by
any SVN client.

3By default, XSVN considers a file as an XML document if
its extension is .xml or its svn:mime-type property is set to either
text/xml or application/xml. This behavior can be easily adapted,
for instance, by checking if a file starts with <?xml. Even now
an SVN user can benefit from using automated property setting in
SVN, i.e. associate certain file extensions with text/xml svn:mime-
type property. For example, *.xslt or *.xsd would obtain text/xml
mime-type on adding to a working copy and therefore will be
treated as XML files for xSVN.

3.1 Why Relax NG?
As we mentioned above, integrating DB XML to the SVN
server automatically gives us inspection of XML for well-
formedness and conformance to W3C XML Schema as-
sociated with a particular XML document. While XML
Schema successfully tackled problems with DTDs, it also
exposed better opportunities for defining XML languages.
But using XML Schema for validation of documents is
not always convenient or enough. For instance, an offi-
cial schemata for OMDOC and MathML [ABC+09] for-
mats are in the Relax NG syntax. Other XML languages
may also have no official XML Schema, or a developer of
a new XML language may prefer Relax NG. There are a lot
of supporters of XML Schema as well as of Relax NG, and
there are plenty of disputes about which format is better,
but one fact is unquestionable: TNTBASE should support
Relax NG validation as well since the language our system
focuses on is OMDOC.

There could be two ways of avoiding Relax NG valida-
tion in TNTBASE:

1. Make XML Schema as a primary format for describ-
ing OMDOC language. Thus the necessity of having
Relax NG validation disappears.

2. Use Relax NG as a primary format for OMDOC, but
every time OMDOC Relax NG schema is changed, re-
generate XML Schema out of it and use the latter in
TNTBASE.

The first item does not suit us since XML Schema for-
mat has problems that are not presented in Relax NG. Let
us enumerate the most significant of them (for more infor-
mation refer to [XSD09]):

1. XML Schema is hard to read and may be interpreted
incorrectly by users not experienced enough.

2. XML Schema provides very weak support for un-
ordered content.

3. XML Schema’s support for attributes provides no ad-
vance over DTDs.

4. The XML Schema Recommendation is hard to read
and understand.

The generation XML Schema out of OMDOC’s Relax
NG Schema does not work, since even the best converter
which the author explored so far — Trang [Tra09] — is not
able to convert it. The reason for this is that Trang does not
support nested grammars, but they are used in OMDOC’s
Relax NG.

Thus, the decision was to implement Relax NG valida-
tion in TNTBASE.

3.2 Relax NG Validation in XSVN
As was mentioned in the beginning of this section, the val-
idation should be realized in XSVN which is implemented
in C/C++ programming languages. The latter fact compli-
cates the integration of many Relax NG validator engines
since most of them are written in Java. Most notable of
them are: Jing [Jin09] and MSV [MSV09]. The only de-
cent Relax NG validator for C/C++ which the author man-
aged to find so far is Libxml2 [Vei] library. But the serious
disadvantage of Libxml2 is its ambiguous and not well-
designed error message system. Therefore the decision was
to refuse Libxml2 library and make use of one of Java Re-
lax NG validators, namely Jing. For integration between
C++ and Java The Java Native Interface (JNI) [JNI09] has



been employed. Due to awkwardness of JNI and, in par-
ticular, Java’s method invocation from C/C++, the Jing li-
brary has been changed in a way that it simplifies Relax
NG validation inside XSVN and returns nice-looking error
messages back (if any occured). Thus the combination of
a modified Jing library and a part of C++ code which in-
vokes methods of this library comprises the XSVN module
responsible for Relax NG validation.

3.3 How to Tell XSVN What to Validate?
When we were trying to answer on the question ”How
to tell XSVN what to validate”, we wanted to keep an
SVN client unchanged and modify only the server side
of XSVN. The ultimate solution has two aspects: client
and server. On the client side a user has to provide the
tntbase:validate property for a file he intends to
expose for validation. Also this property can be set on a
folder recursively, then all files in that folder (and its sub-
folders) will be validated by XSVN. The value of this prop-
erty should be a name of a schema. The names of all user-
available schemata are stored on a server side in an ad-hoc
schema configuration file (SCF) schemata.xml which
is situated in db folder of your repository. The template file
is generated automatically during creation of a new reposi-
tory. An SCF may look like this:

Listing 1: Schemata configuration file
1 <?xml version=”1.0” encoding=”UTF−8”?>

<schemata xmlns=”http://tntbase .mathweb.org/ns”>
<schema name=”omdoc1.2”

path=”/home/OMDoc/omdoc−1.2/omdoc.rnc” type=”rnc”/>
<schema name=”omdoc1.6”

6 path=”/home/OMDoc/omdoc.rng”/>
<schema name=”docbook1.5”

path=”/vzholudev/Papers / Balisage / balisage−1−1.rng”/>
</schemata>

So as we can see for each name we have a file sys-
tem path which represents a schema. An XSVN admin-
istrator is responsible for setting this up. If a user sets
a schema name that is not in an SCF, then the files to be
validated against this schema are considered to be invalid
and the whole XSVN transaction is aborted. Also if dur-
ing a commit even one file turned out to be invalid then
the whole XSVN transaction is aborted as well, i.e. no
files get committed. This perfectly reflects the notion of
an SVN transaction. Furthermore, it is not necessary to
set up the tntbase:validate property right after ad-
dition of a file (files). A user can do it at any point of time,
e.g. after the revision 21 has been committed. Then af-
ter any commit of that file, it will be validated until the
tntnase:validate property is removed. On Listing
1.1 we can see the use of the attribute type that denotes
the type of a schema. Currently it could be either rnc or
rng that represents Compact or XML syntaxes of Relax
NG respectively. If the type attribute is omitted, then the
type of Relax NG is calculated depending on the extension
of a file in the path attribute. If this calculation failed to
be done, then validation fails with the corresponding error.

3.4 Versioned Schemata
Often development of documents is accompanied by devel-
opment of a corresponding schema. Sometimes new types
or elements are added or old ones are being evolved in an
XML language, and such changes should be reflected in a
schema as well. Thus we want to keep a schema in a repos-
itory and validate documents against its last version (head

revision). In the approach considered in the previous sec-
tion schemata are meant to be in a file system but not in a
repository. It would be relatively easy to change or enhance
the format of the schemata.xml file in such a way that
a schema name points to the path in a repository, and when
documents are about to be validated, retrieve the appropri-
ate schema file from a repository. However, things are get-
ting more complicated when the main schema file contains
links to secondary schemata. In this case the schema val-
idator — in our case Jing — will not be able to resolve
references to other schemata since it does not know where
to search for them. There validation will fail even though
an arbitrary document is well-formed. One of the solutions
would be to implement special entity resolver in Jing which
would know how to retrieve schemata by path from a repos-
itory.

However, the faster and more elegant solution exists.
Assume that we store our schemata in a repository un-
der the path /main/schemata. On a server side we
checkout this path to a working copy to some place, e.g.
/var/www/schemata, and update this working copy
from a post-commit hook. So our schemata folder is al-
ways up-to-date and we can easily link this folder from
the schemata.xml. The only overhead of this approach
is that our data are duplicated: in a repository and in a
local file system. The next step would be to place the
schemata.xml file into repository and allow clients to
manage this file remotely, but this is a subject for a future
work4.

3.5 Managing Validation Properties
Let us go back to our XSVN working copies. Setting up a
validation property (tntbase:validate) for every sin-
gle file we added might be somewhat cumbersome. Setting
a property recursively for the whole directory may reduce
our efforts. However, when we add a file later to the direc-
tory that has been exposed to the validation property, we do
not get such a property for the newly added file. Probably,
this behaviour is not what we want to achieve. We want
the validation property to adhere to every added file whose
parent directory has this property. In general we saw three
ways of attaining this that differ in complexity and flexibil-
ity:

SVN client approach On the client side leverage the au-
tomated property setting which is offered by any SVN
client. This method is quite straightforward and has
nothing to do with the XSVN server. That is we
can associate different validation properties with file
extensions. For example, *.omdoc files will auto-
matically get omdoc1.6 validation property on ad-
dition to a working copy. For this in the per-user or
system-wide configuration area (see Chapter ”Run-
time Configuration Area” in SVN Book [CSFP04])
one should modify config file by setting property
enable-auto-props to yes and add the follow-
ing line to the auto-props section: *.omdoc =
tntbase:validate omdoc1.6.
The serious limitation of this method is that we can not
set up different validation properties for the files with
the same extensions, but which are located in differ-
ent folders. For instance, if we have two folders for
OMDOC documents, one is for version 1.2 and one is

4See Ticket https://trac.mathweb.org/tntbase/
ticket/54



for version 1.6, then we can not associate schemata
for different versions of OMDOC for these folders.
Moreover, the administration of such a feature is done
on the system or user level. That means that auto-
mated property setting will be applied for all reposito-
ries and all working copies. That might be not desir-
able in cases when a user works with multiple XSVN
repositories that contain documents in different XML
languages, but with the same extension, like *.xml.

SVN server approach This approach consists in imple-
menting the pre-commit hook which checks the val-
idation property of a parent folder of the committed
item, and if the former owns one, then the same val-
idation property is set to the committed item as well.
This approach is more flexible than the previous one,
but needs additional repository administration efforts
(creating and managing hooks). Also it would be im-
possible to protect a single file in a folder against vali-
dation if a validation property has been set on a parent
directory.

Combined approach The most scalable solution de-
scribed here takes advantage of the first two
methods. Each file may or may not have a
tntbase:validate property. If it is pre-
sented, then it contains the name of a schema (like we
discussed before). If it is not presented, then parent
folders are taken into consideration. Each folder also
may have a tntbase:validate property, but
in a different format given by the following BNF:
tntbase:validate ::= (FILE EXTENSION
SCHEMA NAME)* DEFAULT SCHEMA NAME, i.e.
every validation property, if presented, should have
the value ext1 s1 ext2 s2 ... extn sn sdef . Thus the
files with the extension exti are validated against the
schema si, all other files are validated against schema
sdef . There is a special reserved schema name none,
which tells that this file should not be validated. To
sum up, when the file f with the extension ext is
committed, it is validated against the schema s, where
s is determined in the following order:

• If f has a tntbase:validate property, then
s is extracted from it. Schema name might also
be none.

• If f does not own a validation property, then the
f ’s extension ext is being searched in the parent
folder’s validation property. If there is no entry
ext s in there, then s is sdef . If there is also no
default schema name sdef , then we repeat this
step for the parent folder of the f ’s parent folder.

• If we achieved the root of a repository and still
did not find a schema name for f , then s becomes
none.

This mechanism is fairly simple and gives an extreme
flexibility and scalability. Moreover it does not require
further repository administration — everything (apart
from defining an SCF) is managed on the client side.

The third method has been implemented in TNT-
BASE as the most sophisticated mechanism for managing
tntbase:validate properties and defining indepen-
dent islands of validation.

4 Towards High-Level Format-Specific
Validation

We can distinguish tree stages of document validation
(most languages exhibit the same problems, but we will
use OMDOC language as an example):

1. XML validation. Implies well-formedness checking
and validity according to a schema (if presented).

2. Structural validation. For example, all theorems
have proofs, all used symbols are defined and are in
scope.

3. Semantic validation. On this stage we should check
that, for instance, all expressions are well-typed, all
proofs are correct, examples contain material about
entities they are linked to, etc.

Each stage is stricter than the previous one, and even-
tually all three should be performed in context of a single
system like TNTBASE that utilizes auxiliary libraries to
achieve a validation goal.

The first stage is already implemented in TNTBASE (see
Section 3), just expansion of supported schema languages
would be a possible task to do in this direction.

Sometimes we need even deeper validation then that is
allowable by Relax NG schema (or any other schema lan-
guage for XML). For example we might be willing to check
whether all symbols are visible in an OMDOC document,
i.e. each symbol has been defined locally (i.e. in the same
file) or has been defined in those documents that are im-
ported in the initial document (and so on recursively). Also
we might want to check for redundant or cyclic imports.
Consider the following parts of OMDOC documents:

Listing 2: arith1.omdoc
1 <?xml version=”1.0” encoding=”utf−8”?>

<omdoc xml:id=”arith1−omdoc” version=”1.6”
modules=”CD”
xmlns:dc=”http: // purl .org/dc/elements /1.1/ ”
xmlns:cc=” http: // creativecommons.org/ns”

6 xmlns=”http: // omdoc.org/ns”>
...
<theory xml:id=”arith1 ”>

<symbol name=”plus” xml:id=”plus”>
<metadata>

11 ...
</metadata>
<type system=”sts.omdoc#sts”>

...
<!−− definition goes here −−>

16 ...
</type>

</symbol>
...

</theory>
21 </omdoc>

Listing 3: alg1.omdoc
<?xml version=”1.0” encoding=”utf−8”?>
<omdoc xml:id=”arith1−omdoc” version=”1.6”

modules=”CD”
4 xmlns:dc=”http: // purl .org/dc/elements /1.1/ ”

xmlns:cc=” http: // creativecommons.org/ns”
xmlns=”http: // omdoc.org/ns”>

...
<theory xml:id=”alg1” cdbase=” http: // www.openmath.org/cd”>

9 ...
<imports xml:id=”alg1−imports−arith1” from=”arith1.omdoc#arith1”/>
...
<assertion xml:id=”zero−prop−1” type=”lemma”>

...
14 <FMP>

<OMOBJ xmlns=”http://www.openmath.org/OpenMath”>
...
<OMS cd=”arith1” name=”plus”/>

...



19 </OMOBJ>
</FMP>

</ assertion>
...

</theory>
24 </omdoc>

On Listing 1.3 we can see the use of the symbol plus
in the document alg1.omdoc. So sticking to our exam-
ple, we must check that the symbol plus is defined in the
scope. For this we must check the imports statement and
then see whether the theory arith1 of arith1.omdoc
contains the definition of the plus, and it indeed does (see
Listing 1.2). Thus if we are able to successfully check all
the symbols in alg1.omdoc, then we say that this docu-
ment is structurally valid (in our example). To be precise,
we also have to check the absence of cyclic and redundant
imports.

Such kind of validation is already available in JOM-
Doc [JOM] library and is referred to the second stage of
document validation (see above). This type of validation
provided by JOMDoc should be integrated into TNTBASE
as the latter is positioned as an intelligent storage for OM-
DOC. Currently there is a stub in the XSVN validation
engine which allows to have a different values of the type
attribute in an SCF. So in the future if a schema name is
associated with jomdoc type of validation then the more
intelligent validity check will be performed. This valida-
tion usually involves multiple documents to be explored,
and therefore the links between those documents should be
resolved inside an XML container of XSVN. The special
imports resolver should be implemented in JOMDoc in or-
der to be able to find entities inside an XSVN’s container
(but not only in a file system or on Internet) that are refer-
enced via import statements of OMDOC language. When
this task is completed, we can start integrating the JOMDoc
validation mechanism into the XSVN’s validation engine.
Other types of second stage validation are planned to be
incorporated into JOMDoc library (see [Rab08] for more
details).

Finally, the third stage is the most complicated one.
For more details about this validation could be found
at [Rab08]. Currently this is a subject for a future work,
and ideas how to accomplish that are not formed clearly
enough.

5 Conclusion

We have presented an overview of the TNTBASE system,
a versioned XML database system that can act as a storage
solution for an XML-based deep web, and discussed the
validation mechanisms it exposes or will expose in the fu-
ture. The implementation effort has reached a state, where
the system has enough features to be used in experimental
applications. TNTBASE may significantly ease implemen-
tation and experimentation of XML-based applications, as
it allows to offload the storage layer to a separate system.
Moreover users that require only versioning functionality
may use TNTBASE as a version control system whereas
more exigent users can experiment with additional features
of the system. Even those users that need only version-
ing, can benefit from validating XML documents stored in
the repository. That may help to keep a collection of doc-
uments more consistent and valid from different perspec-
tives.

Acknowledgments
I would like to thank my supervisor Michael Kohlhase and
my colleague Florian Rabe for providing use cases for the
system and shooting at me their ideas. Their desire to have
a system that totally satisfies their needs caused the con-
siderable evolution of ideas devoted to the management of
validation properties.

References
[ABC+09] Ron Ausbrooks, Bert Bos, Olga Caprotti,

David Carlisle, Giorgi Chavchanidze, Ananth
Coorg, Stéphane Dalmas, Stan Devitt, Sam
Dooley, Margaret Hinchcliffe, Patrick Ion,
Michael Kohlhase, Azzeddine Lazrek, Den-
nis Leas, Paul Libbrecht, Manolis Mavrikis,
Bruce Miller, Robert Miner, Murray Sar-
gent, Kyle Siegrist, Neil Soiffer, Stephen
Watt, and Mohamed Zergaoui. Mathemati-
cal Markup Language (MathML) version 3.0.
W3C Working Draft of 4. June 2009, World
Wide Web Consortium, 2009.

[Act08] ACTIVEMATH, seen September 2008. web
page at http://www.activemath.
org/.

[BBC+07] Anders Berglund, Scott Boag, Don Cham-
berlin, Mary F. Fernandez, Michael Kay,
Jonathan Robie, and Jerome Simeon. XML
Path Language (XPath) Version 2.0. W3C
recommendation, The World Wide Web Con-
sortium, January 2007.

[Ber09a] Berkeley DB, seen January 2009. avail-
able at http://www.oracle.
com/technology/products/
berkeley-db/index.html.

[Ber09b] Berkeley DB XML, seen January 2009.
available at http://www.oracle.
com/database/berkeley-db/xml/
index.html.

[BLFM98] Tim Berners-Lee, Roy T. Fielding, and Larry.
Masinter. Uniform Resource Identifiers
(URI), Generic Syntax. RFC 2717, Internet
Engineering Task Force, 1998.

[CD99] James Clark and Steve DeRose. XML Path
Language (XPath) Version 1.0. W3C rec-
ommendation, The World Wide Web Consor-
tium, November 1999.

[CGM00] J. Cho and H. Garcia-Molina. The evolution
of the web and implications for an incremen-
tal crawler. In Proc. of the 26th International
Conference on Very Large Databases, pages
200–209, 2000.

[CSFP04] Ben Collins-Sussman, Brian W. Fitzpatrick,
and Michael Pilato. Version Control With
Subversion. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA, 2004.

[DDL02] C.J. Date, Hugh Darwen, and Nikos Lorent-
zos. Temporal Data & the Relational Model.
The Morgan Kaufmann Series in Data Man-
agement Systems. Morgan Kaufmann, 2002.

[FMNW03] Dennis Fetterly, Mark Manasse, Marc Najork,
and Janet Wiener. A large-scale study of the



evolution of web pages. In WWW2003. ACM
Press, 2003.

[Jer09] Reference Implementation for build-
ing RESTful Web services, seen
April 2009. available at https:
//jersey.dev.java.net/.

[Jin09] Jing — Relax NG Validator in
Java, seen May 2009. available at
http://www.thaiopensource.
com/relaxng/jing.html.

[JNI09] The Java Native Interface, seen May 2009.
available at http://java.sun.com/
docs/books/jni/.

[JOM] JOMDoc Project — Java Library for OMDoc
documents.

[JSR09] JSR 311: JAX-RS: The Java API for REST-
ful Web Services, seen April 2009. available
at https://jsr311.dev.java.net/
nonav/releases/1.0/index.html.

[Koh06] Michael Kohlhase. OMDOC – An open
markup format for mathematical documents
[Version 1.2]. Number 4180 in LNAI.
Springer Verlag, 2006.

[KŞ06] Michael Kohlhase and Ioan Şucan. A
search engine for mathematical formulae.
In Tetsuo Ida, Jacques Calmet, and Dong-
ming Wang, editors, Proceedings of Artifi-
cial Intelligence and Symbolic Computation,
AISC’2006, number 4120 in LNAI, pages
241–253. Springer Verlag, 2006.

[Lan08] Christoph Lange. SWIM: A semantic
wiki for mathematical knowledge manage-
ment. web page at http://kwarc.info/
projects/swim/, seen October 2008.

[MSV09] The Sun Multi-Schema XML Validator, seen
May 2009. available at https://msv.
dev.java.net/.

[OMD] OMDoc. web page at http://omdoc.
org.

[pan] The panta rhei Project. seen March 2009.
[Rab08] Florian Rabe. Representing Logics and Logic

Translations. PhD thesis, Jacobs University
Bremen, 2008.

[Rel] A Schema Language for XML. available at
http://www.relaxng.org/.

[SVN07] SVNKit - The only pure Java Subversion li-
brary in the world!, seen September 2007.
available at http://svnkit.com/.

[SVN08] Subversion, seen June 2008. available at
http://subversion.tigris.org/.

[TNT09a] TNTBase Demo, seen June 2009. Available at
http://alpha.tntbase.mathweb.
org:8080/tntbase/lectures/.

[TNT09b] TNTBase Home Page, seen June 2009. Avail-
able at https://trac.mathweb.org/
tntbase/.

[Tra09] Trang — Multi-format schema con-
verter based on RELAX NG, seen
May 2009. available at http:

//www.thaiopensource.com/
relaxng/trang.html.

[Vei] Daniel Veillard. The XML c parser and toolkit
of gnome; libxml. System Home page at
http://xmlsoft.org.

[Ver08] VeriFun: A verifier for functional programs,
seen February 2008. system homepage at
http://www.verifun.de/.

[W3C06] XML Schema. http://www.w3.org/
XML/Schema, 2006. Seen July 2006.

[XQu07] XQuery: An XML Query Language, seen De-
cember 2007. available at http://www.
w3.org/TR/xquery/.

[XQU08] XQUpdate: XQuery Update Facility 1.0, seen
February 2008. available at http://www.
w3.org/TR/xquery-update-10/.

[XSD09] XML Schema vs. RELAX NG, seen
May 2009. available at http:
//www.webreference.com/xml/
column59/index.html.

[ZK09] Vyacheslav Zholudev and Michael Kohlhase.
TNTBase: a versioned storage for XML.
accepted at BALISAGE 2009, available
at http://kwarc.info/vzholudev/
pubs/balisage.pdf, 2009.


