
balisage.tex 377 2009-07-15 13:21:16Z vzholudev

TNTBase: a Versioned Storage for XML

Vyacheslav Zholudev, Michael Kohlhase
Jacobs University Bremen

{v.zholudev,m.kohlhase}@jacobs-university.de

July 15, 2009

Abstract

Version control systems like CVS and Subversion have transformed collaboration work-
flows in software engineering and made possible the globally distributed project teams we
know from the Open Source phenomenon. On the other hand, XML is coming of age as a
basis for document formats, and even though XML as a text-based format is amenable to
version control in principle, the fact that version control systems work on files makes diffi-
cult the integration of fragment access techniques like XPath, XQuery that are currently
revolutionizing XML workflows.

In this paper we present the TNTBase system, an open-source versioned XML
database obtained by integrating Berkeley DB XML into the Subversion Server. The
system is intended as a basis for collaborative editing and sharing XML-based docu-
ments. It integrates versioning and fragment access needed for fine-granular document
content management.

1

balisage.tex 377 2009-07-15 13:21:16Z vzholudev

Contents

1 Introduction 3

2 State of the art 4
2.1 Subversion . 4
2.2 Berkeley DB XML . 4

3 The System Design and Interfaces 5

4 xSVN, an XML-enabled Repository 6

5 The DB XML Accessor Library 8
5.1 Querying XML Documents . 8
5.2 File System in an xSVN Container . 9
5.3 Write Access to TNTBase . 10
5.4 Querying Previous Revisions . 10
5.5 Caching Query Results . 11

6 Virtual Files 11
6.1 Creating a Virtual File and Getting Information about Virtual Files 11
6.2 Caching and Querying Virtual Files . 12
6.3 Editing Virtual Files . 13

7 Conclusion and Future Work 14

2

intro.tex 378 2009-07-15 14:53:58Z vzholudev

1 Introduction

With the rapid growth of computers and Internet resources the communication between hu-
mans became much more efficient. The number of electronic documents and the speed of
communication are growing rapidly. We see the development of a deep web (web content
stored in Databases) from which the surface Web (what we see in our browsers) is generated.
With the merging of XML fragment access techniques (most notably URIs [BLFM98] and
XPath [CD99, BBC+07]) and database techniques and the ongoing development of XML-
based document formats, we are seeing the beginnings of a deep web of XML documents,
where surface documents are assembled, aggregated and mashed up from background infor-
mation in XML databases by techniques like XQuery [XQu07], and document (fragment)
collections are managed by XQuery Update [XQU08].

At the same time, the Web is constantly changing — it has been estimated that 20%
of the surface Web changes daily and 30% monthly [CGM00, FMNW03]. While archiving
services like the Wayback Machine try to get a grip on this for the surface level, we really
need an infrastructure for managing changes in the XML-based deep web.

Unfortunately, support for this has been very frugal. Version Control systems like CVS and
Subversion [SVN08] which have transformed collaboration workflows in software engineering
are deeply text-based (wrt. diff/patch/merge) and do not integrate well with XML databases
and XQuery. Some relational databases address temporal aspects [DDL02], but this does
not seem to have counterparts in the XML database or XQuery world. Wikis provide simple
versioning functionalities, but these are largely hand-crafted into each system’s (relational)
database design.

In this paper we present the TNTBase system, an open-source versioned XML database
obtained by integrating Berkeley DB XML [Ber09b] into the Subversion Server [SVN08]. The
system is intended as an enabling technology that provides a basis for future XML-based
document management systems that support collaborative editing and sharing by integrating
the enabling technologies of versioning and fragment access needed for fine-granular document
content management. Our aim is to make possible workflows and globally distributed project
teams as we know them from Open Source projects.

The TNTBase system is developed in the context of the OMDoc project (Open Math-
ematical Documents [OMD, Koh06]), an XML-based representation format for the structure
of mathematical knowledge and communication. Correspondingly, the development require-
ments for the TNTBase come out of OMDoc-based applications and their storage needs.
We are experimenting with a math search engine [KŞ06], a collaborative community-based
reader panta rhei [pan], the semantic wiki SWiM [Lan08], the learning system for mathe-
matics ActiveMath [Act08], and a system for the verification of statements about programs
VeriFun [Ver08].

But TNTBase as described here is independent of all of these and has no specialization
to mathematical content. This will be added at another layer, re-implementing an earlier
system [FK00, KF01, FK06], but other XML-based systems could be supported as well, e.g.
semantic Wikis like IkeWiKi [Sch06], KiWi [SEG+09], eLearning Systems [CNX08, Tea06],
scientific document archives, etc.

In the next section we will review the state of the art in versioning and XML databases,
describing the two systems we combine and extend for TNTBase. In section 3 we an overview
of a TNTBase architecture and interfaces it exposes. To make an every part of the architec-
ture picture clear we will continue with describing the core of TNTBase — the XML-enabled

3

state.tex 378 2009-07-15 14:53:58Z vzholudev

repository in Section 4 and the Java accessory library in Section 5. Section 6 showcases an
advanced feature of TNTBase: Virtual Files. Section 7 concludes the paper.

2 State of the Art

The TNTBase system is based on two widespread open-source systems: Subversion and
Berkeley DB XML. We provide a short description of those aspects of the systems that are
relevant to TNTBase and discuss what is missing for versioned XML-storage.

2.1 Subversion

Subversion (SVN) is one of the most popular open-source client-server version control sys-
tems. On a server side SVN maintains versions and history of documents and directories in
a repository. Users work with such a repository by checking out to a local working space
the directory tree (a working copy). This maintenance is performed by the SVN client util-
ity. After a working copy is checked out users can perform various actions with it [CSFP04]:
change, update from a repository or propagate changes back to a repository, changing proper-
ties of directories or files, merging different source trees, etc. The update command performs
merging of a local working copy with the latest version in a repository. In case when auto-
mated merging is not solvable, a user has to edit conflicting files manually. Afterwards in
order to propagate local changes back to a repository a user performs a commit. Using above
mentioned commands comprises the typical workflow encountered by SVN users. We have
covered only the basic concepts, but that is enough to get a rough conception of SVN. In
Section 4 we will show that the TNTBase core is a substitution of an SVN server.

SVN is not aware of content inside a repository (apart from distinguishing binary and
text files). For SVN users it does not make a difference whether they store text files, PDFs
or XSLT stylesheets. In particular, SVN does not support native XML processing like XML
databases. By XML-processing we mean possibilities to query XML-documents, index them
in order to improve querying performance, benefit from XQuery Update facilities [XQU08]
or utilize transactional mechanism in order to keep collection of XML documents consistent.
Thus when we are talking about XML storing we should look at the XML-databases which
is a subject of the next subsection.

Another limitation of SVN is that the smallest versioned entity in its repository is a file.
But for some users it might be desirable to abstract away from the notion of files, and work
with XML objects like a section in scientific papers in the DocBook format or theorems or
proofs in mathematical documents. Roughly speaking, a user should be able to get away from
the file metaphor (see [MK08] for further ideas).

2.2 Berkeley DB XML

Berkeley DB XML (DB XML) is an open-source, XML-native embedded database. Em-
beddedness means that it is distributed as a library with a number of API for various pro-
gramming languages like C++, Java, Perl, Ruby and some others. This approach does not
have an overhead by having surrounding environment like servlets or stand-alone servers.
Also the embeddedness eliminates some database administration costs. DB XML is built on
top of Berkeley DB [Ber09a] which is used by such applications as SVN (the consequences
of this are discussed in the section 4), the RPM Package Manager [RPM09], the MySQL

4

system.tex 379 2009-07-15 17:53:40Z vzholudev

database [MyS08] and Postfix [Pos09], to name just a few of the most notable. Berkeley
DB is an open source, embeddable database with zero administration; and DB XML inher-
its its advantages and features (e.g. portability, transactions, replications, easy deployment,
etc.) from it. Naturally DB XML extends this with the typical XML-native database fea-
tures: XQuery-based [XQu07] access to documents (with XQuery Update facilities support),
support of transactions, preparsed queries, content-based indexing, scalability, recovery and
locking mechanisms and the ability to work in multi-threaded and multi-process environments.
Furthermore DB XML has established a reputation of being a scalable and very productive
XML-native database that makes it a good choice to base the TNTBase system on.

But unfortunately DB XML does not support versioning which is becoming more and
more important when managing collections of XML documents. Some of the products [Ipe09,
Mar09, Ora09] on the XML-native databases market actually support versioning in a way, but
this versioning has a bunch of limitations in comparison to ordinary version control systems
like SVN or CVS, and moreover they all have a commercial license. On the other hand there
is no popular version control systems which treat XML in a special way. This should be a
goal of TNTBase as well.

3 The System Design and Interfaces

The TNTBase architecture is presented in Figure 1. We tried to keep it simple and under-
standable for readers by not showing irrelevant parts of the system. The core of TNTBase
is xSVN (see Section 4). It is managed by Apache’s mod dav svn module or accessed by DB
XML Accessor (see Section 5) locally on the same machine. Apache’s mod dav svn module
exposes an HTTP interface exactly like it is done in SVN. Thereby a user of TNTBase
is able to work with TNTBase repository exactly in the same way as with a normal SVN
repository via HTTP protocol including Apache’s SVN authentication via authz and groups
files. The non-XML content can be managed as well in TNTBase, but only via discussed
xSVN’s HTTP interface.

DB XML Accessor is able to work with XML-content in an xSVN repository. Actu-
ally it works directly only with a part of it, namely with an xSVN container by utilizing DB
XML API. All indispensable information needed for XML-specific tasks is incorporated in a
DB XML container using additional documents or metadata fields of documents. SVNKi-
tAdapter comes into play when the revision information needs to be accessed, and acts
as a mediator between an xSVN repository and DB XML Accessor. And in turn when
DB XML Accessor intends to create a new revision in a xSVN repository it also exploits
SVNKitAdapter functionality. In Figure 1 note that SVNKitAdapter does not work di-
rectly with xSVN, but accesses it via HTTP as SVNKit [SVN07] can not access BDB-based
repositories via the local protocol. But because we expose SVN HTTP access, this is not a
problem.

DB XML Accessor realizes a number of useful features but is able to access an xSVN
repository only locally. In order to exhibit all its functionality to the world, RESTful interface
of TNTBase is provided for users. The full specification can be found at https://trac.
mathweb.org/tntbase/wiki/info, but to get a rough idea what a user is able to do with it,
see Sections 5 and 6 devoted to the DB XML Accessor features. We use the Jersey [Jer09]
library to implement a RESTful interface in TNTBase. Jersey is a reference implementations
of JAX-RS (JSR 311), the Java API for RESTful Web Services [JSR09] and has simplified

5

system.tex 379 2009-07-15 17:53:40Z vzholudev

our implementation considerably.

Figure 1: TNTBase architecture

Apart from RESTful interface,
TNTBase provides a test web-form
that allows users to play with a sub-
set of the TNTBase functionality
before using RESTful style of com-
munication. For simple testing of
RESTful interfaces we would suggest
the Firefox plugin which could be
found at https://addons.mozilla.
org/en-US/firefox/addon/9780. Also
an XML-content browser is available
online that shows the TNTBase file
system content including virtual files.
Unfortunately TNTBase now sup-
ports authentication only when ac-
cessing its SVN interface. The united
authentication for all interfaces is a
subject for future work.1

Currently readers can access a test TNTBase system by two URLs: SVN interface at
https://alpha.tntbase.mathweb.org/repos/lectures/ and other interfaces at http://
alpha.tntbase.mathweb.org:8080/lectures/. Additional information about TNTBase
can be found on its TRAC page at https://trac.mathweb.org/tntbase/.

4 xSVN, an XML-enabled Repository

The architecture of xSVN and thus TNTBase is motivated by the following observation:
Both the SVN server and the DB XML library are based on Berkeley DB (BDB). The SVN
server uses it to store repository information2, and DB XML uses for storing raw bytes of
XML and for supporting consistency, recoverability and transactions. Moreover, transactions
can be shared between BDB and DB XML. Let us look at the situation in more detail3.

The SVN BDB-based file system uses multiple tables to store different repository infor-
mation like information about locks, revisions, transactions, files, and directories, etc.. The
two important tables for us are representations and strings. The strings table stores only raw
bytes and one entry of this table could be any of these:

1. a file’s contents or a delta4 that reconstructs file contents

2. a directory entry list in special format called skel or a delta that reconstructs a directory
entry list skel

3. a property list skel or a delta that reconstructs a property list skel

1see Ticket https://trac.mathweb.org/tntbase/ticket/3
2In fact SVN can also use a file-system based storage back end (SVN FS), but this does not affect TNTBase.
3The more comprehensive information could be found at http://svn.collab.net/repos/svn/trunk/

subversion/libsvn_fs_base/notes/structure for the full story
4a difference between two versions of the same entity (directory entry lists, files, property lists) in a special

format

6

system.tex 379 2009-07-15 17:53:40Z vzholudev

Figure 2: xSVN repository

From looking at a strings entry
alone there is no way to tell what
kind of data it represents; the SVN
server uses the representations table
for this. Its entries are links that ad-
dress entries in the strings table to-
gether with information about what
kind of strings entry it references,
and — if it is a delta — what it is
a delta against. Note that the SVN
server stores only the youngest revi-
sion (called the head revision) ex-
plicitly in the strings table. Other
revisions of whatever entity (a file, a
directory or a property list) are re-computed by recursively applying inverse deltas from the
head revision.

To extend SVN to xSVN (an XML-enabled repository), we only need to subjoin the DB
XML library to SVN and add a new type of entry in the representations table that points to
the last version of that document in the DB XML container (see Figure 2). Containers are
entities in DB XML that are used for storing XML documents in. Literally, a container is a
file on disk that contains all the data associated with your documents, including metadata
and indices. For every xSVN repository we use only one container located in the same folder
as BDB tables, and therefore it allows us to share the same BDB environment exploited by
an SVN back end.

From an end-user perspective there is no difference between SVN and xSVN: all the
SVN commands are still available and have the same behavior. But for XML documents the
internals are different. Assume that we commit a newly added XML file5. Its content does
not go to the strings table, but instead a file is added to DB XML container with a name
which is equal to the reference key stored in the also newly created representations entry of
DB XML full-text type. When we commit a number of files and even one of the XML files is
not well-formed then the commit fails and no data are added into an xSVN repository, which
conforms to the notion of a transaction in SVN and DB XML. When we want to checkout or
update a working copy, xSVN knows what files are stored in DB XML, and those files are
read from a DB XML container. Another important thing is the scenario when we commit
another version of an XML file. The older revision is deleted from DB XML, the newer
revision is added to DB XML and a delta between these revisions are stored in the strings
table. This delta has a normal text SVN format, and the SVN deltification algorithms have
not been changed in xSVN (see Section ??). Thus we are still able to receive older revisions
of XML documents. For non-XML files the workflow of xSVN is absolutely the same as in
SVN: data are stored in the same BDB tables, and the code behaves entirely in the same
way. Thereby we are also able to store text or binary data in xSVN which can supplement
the collection of XML files (e.g. licensing information or generated out of XML PDFs). And

5xSVN considers a file as an XML document if its extension is .xml or its svn:mime-type property is set to
either text/xml or application/xml. This behavior can be easily adapted, for instance, by checking if a file starts
with <?xml. Even now an SVN repository administrator can benefit from using automated property setting,
i.e. associate certain file extensions with text/xml svn:mime-type property. For example, *.xslt or *.xsd would
obtain text/xml mime-type on adding to a working copy and therefore will be treated as XML files for xSVN.

7

system.tex 379 2009-07-15 17:53:40Z vzholudev

moreover we can add or commit XML and non-XML files in the same transaction.
As was mentioned above, xSVN deltification algorithms are inherited from normal SVN.

The natural course of things for XML storage would be to substitute or extend these algo-
rithms by XML-diff algorithms. We currently decided against this because SVN is a very
complex system with differencing algorithms being an evidence of it. The more parts are
subject for replacement or modification, the more efforts it requires and the less stable sys-
tem becomes in comparison with the original well-tested one. Moreover, the text-based diff-
algorithms are efficient, fast and reliable, nicely fit in with SVN architecture (to be precise,
they are a part of it). Finally, it is not clear that there is any advantage to changing the
deltification on the server . It is however clear that XML differencing brings great advan-
tages in the client both in terms of smaller and less invasive deltas, and more informative
conflict resolution strategies. But for transport in the server these “semantic differences” can
be transformed into text-based diffs. If future research turns up advantages for supporting
“semantic differences” in the server, we will integrate this into the xSVN server, otherwise we
leave semantic differencing to the client layer integrated into TNTBase.

In conclusion: xSVN, as we presented it so far, offers a versioned XML storage, but
without additional modules it is useless as the only difference from SVN is that it refuses to
commit ill-formed XML documents.

5 The DB XML Accessor Library

So far we have introduced xSVN, an enhanced in our sense SVN, which stores the last
revisions of XML files in DB XML instead of BDB. The next decision was to implement a
Java library (DB XML Accessor) for internal usage which will serve as another brick to
build the TNTBase system. So we have a DB XML container that contains all of the newest
revisions of XML files, and we have a Java API for accessing this container. How do we
proceed?

5.1 Querying XML Documents

We will start with a short description how querying is done in DB XML and in DB XML Ac-
cessor. As in nearly every XML-native database, the query language in DB XML is XQuery.
To address the whole container in DB XML we use collection(’dbxml:/<container name>’).
To access a particular document in a container DB XML uses doc(’dbxml:/<container name>/<doc name>’)
syntax.

DB XML Accessor utilizes slightly extended and simplified syntax of accessing doc-
uments in a DB XML container. Since we have only one container in xSVN, to access
all documents in a container just use collection(), to access a particular document use
doc(<path to doc>).

Here we should say something about how the latter query is transformed to DB XML
syntax. As we mentioned in section 4, we use reference keys from the representations table as
documents names in DB XML. There is another way to preserve a path and a document name
in DB XML. To accomplish this DB XML document metadata are used. Each document in
a container can have an arbitrary set of metadata fields of different types. This metadata
could be also indexed by DB XML, which might improve performance of particular queries.
So when xSVN adds a new XML document into a container, it also sets a document location
in a repository, a document name and a full path of a document. For instance, if we have

8

system.tex 379 2009-07-15 17:53:40Z vzholudev

a document paper.xml in the /Balisage folder, then the location in a repository would be
/Balisage, the document name — paper.xml, and the full path — /Balisage/paper.xml. At
first glance this information might seem redundant, especially taking into account that xSVN
stores all of these in BDB tables. But by this approach we do not lose much except some
storage space and writing performance when index of metadata should be updated. But we
gain much more, now we are independent in DB XML Accessor from BDB tables, and
each of the metadata fields can improve performance on particular queries which deal with
documents paths.

Thanks to the mentioned above metadata fields, it is possible to access a subset of docu-
ments in a container. For this one should use collection(<arbitrary path>) in DB XML
Accessor. For example collection(/doc*//test//paper??.xml) would address all doc-
uments which names corresponds to the pattern paper??.xml (a ’?’ is just a wildcard) and
they contain test directory in the path and the first directory of which starts with doc.

Also DB XML Accessor exposes methods for retrieving contents and paths of docu-
ments which are located at some arbitrary paths. Wildcards or ’//’, which stands for an
arbitrary number of subfolders in a path, could also be used. All these queries would not be
so efficient if we did not introduce a file system concept in xSVN container. Why did we have
to introduce a file system? The answer is simple: DB XML does not have any hierarchical
structure inside its containers. The next sections explains how we have introduced it.

5.2 File System in an xSVN Container

We already introduced the file path metadata fields in Section 5.1. Using them it is possible
to reproduce the file system tree, but unfortunately it is not always efficiently. Assume
that we want to find out what directories and files are located in a particular folder. For
this we would have to execute a substring query on our file path metadata field. If a DB
XML container contains a huge collection of documents then we could have a big delay while
performing a seemingly simple task. The solution was to introduce ad-hoc XML documents
in an xSVN container, one for each directory. We call such XML documents as file system
documents (FSDs). FSDs have a special name format: tnt:<directory path>. Each of
these FSDs contains a list of directory entries in XML format. For example for directory
/Balisage/papers we might have the following FSD inside an xSVN container (its name is
tnt:/Balisage/papers/):

Listing 1: A FSD in an xSVN container
1 <entries xmlns=”http://tntbase.mathweb.org/ns”>

<dir name=”sources”/>
<dir name=”references”/>
<file name=”paper zholudev.xml”/>
<file name=”paper kohlhase.xml”/>

6 <vfile name=”notations.vf” id=”dbxml 54”/> <!−− will be explained later −−>
</entries>

Now we can easily and efficiently find out about entries in the particular directory using
XQuery. Here we should mention that such FSDs exist only for a folder which contain XML
files or folders which contain XML files. Thereby we do not interfere with other content of an
xSVN repository like text files or images. xSVN takes care about consistency in such FSDs,
e.g. if a folder becomes empty after deletion of XML files, then the corresponding FSD is
removed from a DB XML container and the folder is removed from the parent’s folder entries

9

system.tex 379 2009-07-15 17:53:40Z vzholudev

and so on recursively. Also if we add some XML files to a newly created folder, then the file
system structure is created recursively.

5.3 Write Access to TNTBase

So far we discussed only how to retrieve content and query an xSVN container by DB XML
Accessor. But is it possible to write to xSVN using DB XML Accessor, or perform
an XQUpdate query? The answer is positive. Then the next question arises, what would
happen with revisions of XML files inside an xSVN repository? Shortly the answer is that
the updated XML files will get a new revision in xSVN, then will be deltified, and a delta
will be stored in BDB. Thus all history of modifications will be preserved. Let us discuss how
we have accomplished that.

In DB XML Accessor we use the SVNKitAdapter library, which is based on the
SVNKit — a Java library that re-implements the SVN client functionality. This allows us
to work directly with an xSVN repository without a need to have a local working copy.
In particular, SVNKit follows the SVN protocol to makes sure that no changes are lost on
a commit; it forces an in-memory update and construct a delta between the local and the
(updated) head revision. Only this delta is sent to a repository by SVNKit. But things
get more complicated if we intend to modify an XML document by XQUpdate facilities.
Then DB XML Accessor substitutes the original XQUpdate with a transform function
(see [XQU08] for more details), which returns a modified document but does not modify a
document internally in DB XML. Then this modified part is sent via SVNKitAdapter to
xSVN in the usual way: SVNKit creates a new revision of a file and stores a delta against the
previous version. Thus we can again retrieve a version of a file before executing XQUpdate.
The xSVN log message would tell users how this change has occurred.

5.4 Querying Previous Revisions

Even though the xSVN container only stores the head revision of XML files we can query
previous revisions of XML files: DB XML Accessor can cache XML files in the same xSVN
container for the respective revision. Then we are able to query XML files exactly like we
describe it in Section 5.1 but additionally providing a revision of interest. Note that only
those files that have been cached before will be queried. Analogously we can remove a set
of documents from a cache. Then they will not be queried. The advantage of this approach
is that we choose manually the interesting subset of a revision thereby avoiding redundant
filling of an xSVN container and eliminating unnecessary results. Also we are able to cache
the single file unlike SVN when we are able to checkout or export only folders. Note that
we can even cache the head revision, even though the head xSVN container already contains
it. This can be useful when we intend to query against the documents of an exact revision:
documents of the head revision can evolve, but cached documents remain the same.

All caching is mediated by SVNKitAdapter, which retrieves the necessary revisions from
an xSVN repository. Then these revisions are added to a DB XML container with a special
metadata field that denotes a revision number. This metadata field is also indexed, which
improves performance on querying. All XML documents of the latest revision have a revision
meta field equal to ’-1’. This field allows us to distinguish different revisions when querying
without loosing performance. In order to cache the latest revision, one should provide the
exact number of it.

10

system.tex 379 2009-07-15 17:53:40Z vzholudev

5.5 Caching Query Results

DB XML Accessor can cache query results in situations where a query incurs a large
processing load, but the files that contribute to a query result change rarely. The user must
simply pass a corresponding option to a query engine and receive a unique access handle with
the computed result. Of course it is also possible to clean an xSVN container from cached
results if they are not needed any longer or became obsolete. Internally, DB XML Accessor
stores query results as separate documents. To distinguish them from e.g. FSDs introduced
in Section 5.2, we introduce a type metadata field which is also applied for virtual files (see
section 6).

6 Virtual Files

In this section we introduce a powerful concept — a Virtual File (VF). A VF is a TNTBase
file system entity which is a result of a particular XQuery expression, i.e. a VF is characterized
by XQuery expression and a revision number this expression operates on. For instance if we
create a VF with XQuery that returns the list of references from all scientific papers in a
repository, then the content of a VF would be the list of references.

6.1 Creating a Virtual File and Getting Information about Virtual Files

A VF is a file system entity that records the following information:

1. an XQuery expression together with a list of namespace declarations which are used by
it. The VF contents are determined by this XQUery expression. If XQuery provided is
not valid, then TNTBase notifies the user and does not create the VF.

2. a revision number that a VF operates on. Note that if we did not cache any documents
for that revision, then the content of a VF will be empty.

3. a description of what a VF does. This will simplify understanding for other users of VF
intention. This field can be blank of course.

4. a VF path in a repository. It will be not allowed to create a VF if a file system entity
already exists in the specified path. Even though it is possible to create a VF in folders
which do not exist yet. In this case a directory structure will be created automatically.

For instance, if somebody is interested in all definitions from mathematical documents in
a folder where a VF is being created, then (s)he can provide the following information to DB
XML Accessor:

• XQuery: collection(./*.omdoc)//ns:definitions. together with the namespaces:
(ns, http://www.mathweb.org/omdoc). Note that the first ‘.’ in the XQuery means
the folder where a VF is being created.

• Revision number: -1. Stands for the head revision

• Description: This VF returns all definitions from the current folder

• Path: /omdoc/theories/defs.vf. A VF defs.vf will be created in the folder /omdoc/theories

11

system.tex 379 2009-07-15 17:53:40Z vzholudev

After a VF has been created, one can easily retrieve its ’content’, i.e. in our example all
definitions in OMDoc documents in the /omdoc/theories folder. For the sake of example,
a reader might also find useful Figure 3.

Figure 3: Definitions virtual file

That is a typical creation procedure that is
supported by DB XML Accessor. When a VF
is created a new entity is added to a correspond-
ing FSD. This entity is called vfile and also con-
tains a name of a newly created DB XML docu-
ment that encapsulates information about a VF.
We call such a document as a VF encapsulated
document (VFED). To retrieve the content of
a VF the corresponding FSD is checked for the
VF. If a VF exists, then a name of a VFED is
read. When we know the name of a VFED, then
we are able to receive an XQuery expression from
that document. As soon as we have an XQuery
expression we can execute it and deliver results
to a user. Namespace declarations which have
been provided during a creation of a VF are used
during XQuery execution and are stored in a VFED.

VFEDs are tagged with the metadata field type discussed in Section 5.5. Therefore we
can easily pick out only VFs and retrieve information about them in an xSVN container like
their descriptions, revisions they operate on, their names, etc. Thus we are not get lost in
the variety of VFs that users might have created.

6.2 Caching and Querying Virtual Files

To make VFs more like VIEWS in relational data bases, DB XML Accessor also allows
them to be queried, but only if their content has been cached. This allows the user to specify
which VFs participate in querying. Note that if XML files which form the content of a VF
have been changed, the cache of a VF is not changed. This is a target for a future work6.
Caching also might be useful when a user intends to receive a content of a VF quickly and is
sure that the cache contains up-to-date data. This is especially worthwhile when an XQuery
expression of a VF is computationally expensive.

When DB XML Accessor receives a command to cache a content of a VF (during
creation of a VF, receiving VF’s content or just via simple re-cache command), then the VF’s
content is stored in an xSVN container in the corresponding VFED. Results are wrapped in
the special XML elements that are indexed. When querying VFs a user should use the same
query syntax as (s)he uses for usual XML documents. That is possible because each VFED
contains metadata fields for a VF path and its name. So for DB XML Accessor it does
not make too much difference what is being queried: XML documents of the latest revision,
cached documents of former revisions or VFs.

6see Ticket https://trac.mathweb.org/tntbase/ticket/50

12

system.tex 379 2009-07-15 17:53:40Z vzholudev

6.3 Editing Virtual Files

We complete this section by introducing another operation that could be performed on VFs.
We are talking about editing VFs, i.e. in some cases (which we will explain a bit later) it is
possible to retrieve a VF for editing, modify it and submit changes back. Then the files from
which a VF was formed will be modified in xSVN and will receive a new revision. Returning
back to our example with a VF that contains definitions of mathematical objects, if we modify
all definitions in this file, then all OMDoc files in the folder /omdoc/theories that contain
definitions will be modified accordingly and committed to xSVN.

This approach has a number of limitations, some of them are quite obvious and straight-
forward:

• A VF we intend to modify should operate on the latest revision, since we can not change
a particular revision in xSVN, because once committed a revision becomes persistent
in a repository.

• We can edit only those VFs whose results are elements of some XML documents in
DB XML, to be precise attributes or XML nodes. We rely on DB XML query engine
to figure that out. If a result type is an XML node or attribute from DB XML point
of view then we allow to edit such elements and show them in a list of results to be
modified. But we can not edit pure text values which come from XML elements since
text elements could be mixed with other XML elements, and when we retrieve such a
text we lose the information before/after which nested element this text element has
come from.

• The VF content is a set of results. Every result should be wrapped in a special XML
element that contains the special information to allow DB XML Accessor to propa-
gate changes back to original files. A user is only allowed to edit inside such elements,
otherwise important information could be lost.

This allow us to get rid of a notion of files in a way and operate on the level of objects
and version them, although internally in xSVN the minimal versioned entity is still a file.
Let us provide an example of the VF that contains a list of creators in OMDoc files.

Listing 2: VFile with a list of creators
<?xml version=”1.0” encoding=”UTF−8”?>
<tnt:vfile name=”defs.vf” mode=”edit” xmlns:tnt=”http://tntbase.mathweb.org/ns”

3 xmlns=”http://www.mathweb.org/omdoc” xmlns:dc=”http://purl.org/dc/elements/1.1/”>
<tnt:note>

WARNING: do not edit ’results’ elements, edit only within them!
Otherwise TNTBase will not be able to version the corresponding original files !
Appending additional result elements may harm your TNTBase content.

8 Additional elements under ’ tnt:vfile ’ other than ’ tnt:result ’ will be ignored
</tnt:note>
<tnt:result file path=”/ecc.omdoc” element path=”/omdoc/metadata”

element name=”dc:creator” element type=”element” id=”1”>
<dc:creator role=”trl”>Michael Kohlhase</dc:creator>

13 </tnt:result>
<tnt:result file path=”/ecc.omdoc” element path=”/omdoc/metadata”

element name=”dc:creator” element type=”element” id=”2”>
<dc:creator role=”ant”>The OpenMath Society</dc:creator>

</tnt:result>
18 <tnt:result file path=”/omstd/arithmetics1.omdoc” element path=”/omdoc/symbol/metadata”

element name=”dc:creator” element type=”element” id=”3”>
<dc:creator role=”ant”>The TNTBase Society</dc:creator>

13

concl.tex 377 2009-07-15 13:21:16Z vzholudev

</tnt:result>
</tnt:vfile>

This file is obtained for editing and as was discussed above contain wrappers with a set of
attributes. Elements with the same name and path in the same documents are distinguished
by the id attribute.

A couple of words how it is realized in DB XML Accessor. As we can see out of
the example, every result of a VF is wrapped in a special XML element that contains the
information about an original document, a path in the original document, a name of an
element, a type of an element (an attribute or a node) and a unique id. All these items allow us
to construct a unified XQUpdate expression for an every modified original document. So in our
example, if we modify each element, then it means that we should propagate changes to two
documents: /ecc.omdoc and /omstd/arithmetics1.omdoc. For the former one XQUpdate
will contain two replacement statements, for the latter one — only one replacement statement.
Then the technique described in Section 5.3 is applied.

7 Conclusion and Future Work

We have presented the TNTBase system, a versioned XML database system that can act as a
storage solution for an XML-based deep web. The implementation effort has reached a state,
where the system has enough features to be used in experimental applications. TNTBase
may significantly ease implementation and experimentation of XML-based applications, as
it allows us to offload the storage layer to a separate system. Moreover users which require
only versioning functionality may use TNTBase as a version control system whereas more
exigent users can experiment with additional features of the system.

Figure 4: Distributed Scientific Publishing

The next development goals will
be to stabilize the system further,
to improve performance and extend
it with special infrastructure for
the OMDoc language. As an ex-
tended case study we want to de-
velop TNTBase into an archive and
content management system for sci-
entific publications and semi-formal
theories. A practical limitation that
needs to be overcome on the way to this is the lack of a unified authentication and rights
management subsystem.

In the near future, we want to study how the difference-based architecture inherent in
version control systems can be extended to a distribution model. Consider for instance the
situation in Figure 4: Michael started to work on his paper with future intentions to propagate
it to Jacobs University. During the creation Normen wants to have a cache copy of a Michael’s
paper on his computer and look after the changes. From time to time Michael pushes his
work to Jacobs University and the corresponding people at Jacobs checks the correctness of
the paper. Then assume Figure 4b. When everything is done from Michael’s side he wants
to pass the rights for primary editing to university and only receive updates from it. Notice
that Normen still depends on the Michael’s updates. Now Jacobs University propagates its
changes of the paper to some Journal and its stuff validates the correctness. Here is the same

14

concl.tex 377 2009-07-15 13:21:16Z vzholudev

scenario as with Michael and Jacobs University in Figure 4a. Finally (see Figure 4c) Jacobs
University passes the rights for original editing of the paper to a Journal (like Michael did with
Jacobs) and Normen decides to switch the source of cached copy to Jacobs since he thinks that
Jacobs contains more actual information. We assume that all the individuals and institutions
in our examples are running TNTBase installations that store the relevant documents. Some
instance of these are “originals”, others are working copies that are updated from them and
that commit to them. Crucially the TNTBase take over all the necessary caching and
communication of differences to make the process transparent and effortless to the users.
The preliminary idea is to implement a client library inside a TNTBase web application
that will be taught to speak to other instances of TNTBase and receive information from
them. This library would exploit the SVNKitAdapter module, which will be in charge of
checking compatibility of documents versions and commit or update necessary paths in an
xSVN repository.

Also our plans include the further work regarding virtual files. Some efficiency improve-
ments should be done as well as more intelligent caching should be implemented. By “more
intelligent” here we mean that the cache of virtual files should be updated automatically when
the original files in a repository which form a VF content are changed. That would also mean
the gain of performance since every time when we receive a content of a VF or query it, we
can be sure that the cache is up-to-date and we do not need to regenerate it.

Finally, we plan to extend the XQuery family of languages with primitives for versioning
to develop the full potential of the TNTBase system. The main operations here will be the
propagation of changes, conflicts and non-interference judgments along semantic dependency
relation; see [MK08] for first ideas. Currently much of the necessary content relations are
language-dependent, but we will try to distill query and propagation primitives that can be
implemented in the TNTBase system level.

References

[Act08] ActiveMath, seen September 2008. web page at http://www.activemath.
org/.

[BBC+07] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernandez, Michael Kay,
Jonathan Robie, and Jerome Simeon. XML Path Language (XPath) Version 2.0.
W3C recommendation, The World Wide Web Consortium, January 2007.

[Ber09a] Berkeley DB, seen January 2009. available at http://www.oracle.com/
technology/products/berkeley-db/index.html.

[Ber09b] Berkeley DB XML, seen January 2009. available at http://www.oracle.com/
database/berkeley-db/xml/index.html.

[BLFM98] Tim Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers
(URI), Generic Syntax. RFC 2717, Internet Engineering Task Force, 1998.

[CD99] James Clark and Steve DeRose. XML Path Language (XPath) Version 1.0. W3C
recommendation, The World Wide Web Consortium, November 1999.

15

concl.tex 377 2009-07-15 13:21:16Z vzholudev

[CGM00] J. Cho and H. Garcia-Molina. The evolution of the web and implications for an
incremental crawler. In Proc. of the 26th International Conference on Very Large
Databases, pages 200–209, 2000.

[CNX08] Connexions. web page at http://cnx.org, seen June 2008.

[CSFP04] Ben Collins-Sussman, Brian W. Fitzpatrick, and Michael Pilato. Version Control
With Subversion. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2004.

[DDL02] C.J. Date, Hugh Darwen, and Nikos Lorentzos. Temporal Data & the Relational
Model. The Morgan Kaufmann Series in Data Management Systems. Morgan
Kaufmann, 2002.

[FK00] Andreas Franke and Michael Kohlhase. System description: MBase, an open
mathematical knowledge base. In David McAllester, editor, Automated Deduction
– CADE-17, number 1831 in LNAI, pages 455–459. Springer Verlag, 2000.

[FK06] Andreas Franke and Michael Kohlhase. MBase, an open mathematical knowledge
base. In OMDoc – An open markup format for mathematical documents [Version
1.2] [Koh06], chapter 26.4.

[FMNW03] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet Wiener. A large-scale
study of the evolution of web pages. In WWW2003. ACM Press, 2003.

[Ipe09] Ipedo XML Database, seen March 2009. available at http://www.ipedo.com/
html/ipedo_xml_db.html.

[Jer09] Reference Implementation for building RESTful Web services, seen April 2009.
available at https://jersey.dev.java.net/.

[JSR09] JSR 311: JAX-RS: The Java API for RESTful Web Services, seen April
2009. available at https://jsr311.dev.java.net/nonav/releases/1.0/
index.html.

[KF01] Michael Kohlhase and Andreas Franke. MBase: Representing knowledge and
context for the integration of mathematical software systems. Journal of Sym-
bolic Computation; Special Issue on the Integration of Computer Algebra and
Deduction Systems, 32(4):365–402, 2001.

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathematical docu-
ments [Version 1.2]. Number 4180 in LNAI. Springer Verlag, 2006.

[KŞ06] Michael Kohlhase and Ioan Şucan. A search engine for mathematical formulae.
In Tetsuo Ida, Jacques Calmet, and Dongming Wang, editors, Proceedings of
Artificial Intelligence and Symbolic Computation, AISC’2006, number 4120 in
LNAI, pages 241–253. Springer Verlag, 2006.

[Lan08] Christoph Lange. SWiM: A semantic wiki for mathematical knowledge manage-
ment. web page at http://kwarc.info/projects/swim/, seen October 2008.

[Mar09] MarkLogic Server, seen March 2009. available at http://www.marklogic.com/
product/marklogic-server.html.

16

concl.tex 377 2009-07-15 13:21:16Z vzholudev

[MK08] Normen Müller and Michael Kohlhase. Fine-Granular Version Control & Re-
dundancy Resolution. In Joachim Baumeister and Martin Atzmüller, editors,
Wissens- und Erfahrungsmanagement LWA (Lernen, Wissensentdeckung und
Adaptivität) Conference Proceedings, volume 448, 2008.

[MyS08] Mysql, seen June 2008. homepage at http://www.mysql.com/.

[OMD] OMDoc. web page at http://omdoc.org.

[Ora09] Oracle XML DB, seen April 2009. available at http://www.oracle.com/
technology/tech/xml/xmldb/index.html.

[pan] The panta rhei Project. seen March 2009.

[Pos09] Postfix, seen May 2009. homepage at http://www.postfix.org/.

[RPM09] The rpm package manager, seen May 2009. homepage at http://www.rpm.org/.

[Sch06] Sebastian Schaffert. IkeWiki: A semantic wiki for collaborative knowledge man-
agement. In 1st International Workshop on Semantic Technologies in Collabora-
tive Applications STICA 06, Manchester, UK, June 2006.

[SEG+09] Sebastian Schaffert, Julia Eder, Szaby Grünwald, Thomas Kurz, Mihai Rad-
ulescu, Rolf Sint, and Stephanie Stroka. KiWi – a platform for semantic social
software. In Christoph Lange, Sebastian Schaffert, Hala Skaf-Molli, and Max
Völkel, editors, Proceedings of the 4th Workshop on Semantic Wikis, European
Semantic Web Conference 2009, Hersonissos, Greece, June 2009. in press.

[SVN07] SVNKit - The only pure Java Subversion library in the world!, seen September
2007. available at http://svnkit.com/.

[SVN08] Subversion, seen June 2008. available at http://subversion.tigris.org/.

[Tea06] Connexions Team. Connexions: Sharing knowledge and building com-
munities. White paper at http://cnx.org/aboutus/publications/
ConnexionsWhitePaper.pdf, 2006.

[Ver08] VeriFun: A verifier for functional programs, seen February 2008. system home-
page at http://www.verifun.de/.

[XQu07] XQuery: An XML Query Language, seen December 2007. available at http:
//www.w3.org/TR/xquery/.

[XQU08] XQUpdate: XQuery Update Facility 1.0, seen February 2008. available at http:
//www.w3.org/TR/xquery-update-10/.

17

	Introduction
	State of the art
	Subversion
	Berkeley DB XML

	The System Design and Interfaces
	xSVN, an XML-enabled Repository
	The DB XML Accessor Library
	Querying XML Documents
	File System in an xSVN Container
	Write Access to TNTBase
	Querying Previous Revisions
	Caching Query Results

	Virtual Files
	Creating a Virtual File and Getting Information about Virtual Files
	Caching and Querying Virtual Files
	Editing Virtual Files

	Conclusion and Future Work

