
A [insert XML Format] Database for [insert cool application]

Vyacheslav Zholudev, Michael Kohlhase, Florian Rabe
Computer Science

Jacobs University Bremen, Germany

December 21, 2009

Abstract

TNTBase is a versioned XML database; it combines XML fragment access techniques like
XQuery with file system functionality and versioning features a la Subversion. We present
an infrastructure how the generic TNTBase system can be specialized to include document
format-specific services, such as validation, format-specific virtual files and human-oriented
presentation.

1 Introduction and Related Work

In [ZK09] we have presented the TNTBase system, a versioned XML database, which combines
XML fragment access techniques like XQuery [Xqua; Xqub] with the file system functionality and
versioning features of Subversion [PCSF08]. This system is intended as a generic storage solution
for web applications based on collections of XML documents. However, most such applications are
tailored to specific features of their respective document formats. For instance, DocBook [WM08]
manuals rely on format-specific style sheets for web presentation and printing, which only work
if all documents are valid instances of the DocBook format. The situation is similar for other
applications; some even combine multiple document formats and thus need to support multiple
validation schemata and presentation pipelines. Furthermore, even homogeneous collections may
contain documents in various versions of the underlying formats: indeed the versioning capabilities
of the TNTBase system should enable the management of long tails of legacy materials for which
format conversion is not cost-effective.

XML

xSVN

XML-layer

Web Application

XML(F)

xSVN

XML-layer

Web Application

F-specific layer

TNTBase TNTBase (F)

Figure 1: TNTBase(F): A Basis for Web Applications

In our experiments with the
TNTBase system, it has turned out
that many of the format-specific
functionalities of the web applica-
tion layer can be performed by the
TNTBase system if we add format-
specific interfaces for validation, ag-
gregation, and presentation. We will
call this layer TNTBase(F), since
the services are parametric in the
document format F . This extension
leads to a refined information archi-
tecture of TNTBase-supported web
applications; see Figure 1, where the generic TNTBase(F) layer takes over format-specific func-
tionalities and thus decreases the effort for developing web applications.

In this paper we present the TNTBase(F) infrastructure and its APIs for validation (Section 3),
format-specific virtual files (Section 4), and human-oriented presentation (Section 5). We will
present much of the functionality of TNTBase(F) by using our OMDoc format [Koh06] (F =
OMDoc) as a running example, since this drives the particular development and integrates many

1

of the structural prerequisites for virtual documents. The work presented in this paper is based
on the experience of by managing a collection of more than 2000 OMDoc documents (ranging
from formal representations of logics to course materials in a first-year computer science course)
in TNTBase(OMDoc).

This paper is a short version of [ZKR], which should be consulted for details we had to omit
for space reasons.

2 Document-Format-Specific Features for TNTBase

To make this paper self-contained we briefly recap TNTBase (see [ZK09; Tnt] for details). Then we
take a closer look at the document-specific workflows in document-collection-centered applications
that can be generically supported by a versioned XML storage system like TNTBase. This analysis
serves as a motivation and basis for the implemented TNTBase(F) layer, which we will present
in detail in the following sections.

2.1 TNTBase State of the Art

The core of TNTBase consists of the xSVN module, which integrates Berkeley DB XML [Ber]
into a Subversion server. DB XML stores HEAD revisions of XML files; non-XML content like
PDF, images or LATEX source files, differences between revisions, directory entry lists and other
repository information are retained in a usual SVN back-end storage. Keeping XML documents
in DB XML allows us to access those files not only via any SVN client, but also through the
DB XML API that supports efficient querying of XML content via XQuery and modifying that
content via XQuery Update. As many XML-native databases, DB XML also supports indexing,
which improves performance of certain queries.

The TNTBase system is realized as a web-application that provides two different interfaces
to communicate with: an xSVN interface and a RESTful interface for XML-related tasks. The
xSVN interface behaves like the normal SVN interface — the mod dav svn Apache module serves
requests from remote clients — with one exception: If one of the committed XML files is ill-formed,
then xSVN will abort the commit transaction. The RESTful interface provides XML fragment
access to the versioned collection of documents:

Querying: xSVN extends DB XML XQuery by a notion of file system path to address path-based
collections of documents. For instance, a part of a query collection(//papers*/*.xsl)

will address all XSLT stylesheets in the child folders of directories having the papers prefix.

Modifying: It is also possible to modify XML documents via XQuery Update. In contrast to
pure DB XML, modified documents are versioned, i.e., a new revision is committed to xSVN.

Querying of previous revisions: Although xSVN’s DB XML back-end by default holds only
HEAD revisions of XML documents, it is also possible to access and query previous versions
by providing a revision number if they have been cached (by user request). Previous versions
cannot be modified since once a revision is committed to an xSVN repository, it becomes
persistent.

Virtual Files: These are essentially “XML database views” analogous to views in relational
databases; these are tables that are virtual in the sense that they are the results of SQL
queries computed on demand from the explicitly represented database tables. Similarly,
TNTBase virtual files (VF) are the results of XQueries computed on demand from the
XML files explicitly represented in TNTBase, presented to the user as entities (files) in
the TNTBase file system API. Like views in relational databases TNTBase virtual files are
editable, and the TNTBase system transparently patches the differences into the original
files in its underlying versioning system. Again, like relational database views, virtual files
become very useful abstractions in the interaction with versioned XML storage.

2

2.2 Validation and Interface Extraction

One of the salient features of XML as a representation format are its well-established methods for
document validation. Indeed most document management workflows take advantage of this and
check grammatical constraints on documents by schema validation to simplify further document
processing. TNTBase(F) supports this practice by validating documents upon commit by default.
However, sometimes schema validity is too strong a restriction in practice (e.g., during document
authoring or format migration), so the level of validity is configurable. Moreover, many document
format constraints — e.g., inter-document link consistency or the absence of link cycles — cannot
be checked even by modern schema languages; therefore TNTBase(F) provides an API for custom
validation modules that can verify that high-level document (collection) integrity constraints are
met, if later processing steps require them.

Both high-level validation and further document processing often rely on specific informa-
tion about other parts of the document collection. To support these processes incrementally,
TNTBase(F) supports the extraction and indexing of such information upon commit. This ap-
proach is analogous to the “separate compilation” paradigm in programming, where declared
methods and their types are extracted at compile-time into “signature” files that are used when
compiling other files. A prominent example in the XML arena is the extraction of RDF triples
for the use in query engines from RDFa-annotated documents. As the specific information is
format and application specific, we speak of interface extraction for the purposes of this paper.
TNTBase(F) enables the user to configure interface extraction at commit time; in our experience,
this is a crucial ability to make high-level validation tractable. For details of the realization we
refer to Section 3.

2.3 Compilation, Browsing and Cross-Referencing

Eventually, the purpose of most document collection applications is to enable humans and ma-
chines access to (processed forms) of the document collection. Technically, this usually involves
the transformation into specialized presentation-oriented formats for machine (e.g., programming
languages) or human (e.g., PDF generation) consumption. Depending on locality properties of
the transformation and the rate of change of the document collection, it can be more efficient to
execute the transformations when a document is committed to the collection (then we can employ
a process analogous to interface extraction) or when the document is requested. Both workflows
need to be supported in TNTBase(F), and in both cases these documents are automatically served
in addition to their sources. If a post-processing of documents for human consumption is defined,
TNTBase can provide an enhanced browsing interface. In the future, the TNTBase architec-
ture will make it possible to provide higher-level presentational services such as navigation bar,
cross-referencing, and in-place expansion of links, if it is told, which language features constitute
document fragments and links to documents or document fragments (see Section 4.2). For details
of the realization in TNTBase(F) we refer to Section 5.

2.4 Virtual Documents

TNTBase virtual files as introduced above have one great disadvantage: They are not instances
of one of the XML formats in the application. For instance the example of a virtual file of
section headings of the SVN Book [PCSF08] used in [ZK09] groups the title elements in special
TNTBase elements, giving a mixed-namespace format specific to the TNTBase system. One
generally wants to have virtual files that are “virtual documents”, i.e. valid instances of a given
format F . This makes virtual documents into first-class citizens at the web application level. In
theory, if a document format permits to be split into fragments, it becomes possible to recombine
the same content fragments into multiple (virtual) documents. If virtual documents make their
composition explicit, edited versions can be decomposed into edited fragments, and the changes
can be propagated to the original document and other virtual documents using said fragments.
But achieving this is surprisingly difficult; both in theory and in practice. In Sections 4.2 and 4.3,

3

we discuss the properties the target format F must have to allow this, and the TNTBase(F)
implementation.

2.5 Realizing TNTBase(F)

As described in [ZK09], TNTBase has two major components: xSVN and Java-based Web-
application that is built on top of the Java library for accessing xSVN’s DB XML directly. Most
of the material described in this paper involves both parts and interactions between them. For
instance, when one commits a new version of some XML documents and wants their presenta-
tion to be cached, this involves committing files in xSVN, figuring out what files the presentation
should be generated for, sending the corresponding request to the Java part of TNTBase, gener-
ating presentation and finally saving it into DB XML. We omit the technical details about the
interactions, since they mainly concern the (painful) integration of C++ and Java. For our initial
implementation, we utilize the standard SVN hook mechanisms for pre-commit and post-commit
processing. In a nutshell, we use a pre-commit or post commit hook (depending on the processing
purpose, e.g. validation or generation presentation) for figuring out what subset of committed files
is subject to further processing.

Retrieve and
process content

Pre-commit hook

Commit txn

Post-commit hook

Commit

xSVN Web-application

Validation

Result

Presentation generation

Result

Validation

Presentation

Interface extraction

F-specific module

...

Figure 2: Interactions between xSVN and Web-application

Once this is done, a
script sends requests to the
TNTBase RESTful interface,
where the actual processing is
executed. The return codes
and error stream are used to
notify the committer about
the result (e.g., in case of val-
idation errors). For an exam-
ple see Figure 2. This mech-
anism is surprisingly flexible
and naturally fits into the
xSVN approach since it is in-
herited from SVN. In the fu-
ture, a tighter integration will
add additional scalability and
manageability, but our ap-
proach shows that that the workflows described in this paper naturally work inside the TNTBase
architecture.

3 Validation and Interface Extraction

TNTBase provides a powerful schema and format-specific validation infrastructure. When com-
mitting a set of changes to TNTBase, a validation method is selected for every affected file, that
validation is performed, and the xSVN transaction is rejected if validation fails. That ensures that
only well-formed documents are stored in TNTBase. The validation method is selected per file
via the tntbase:validate property (and thus can easily be switched off temporarily). Successful
validation may also return extracted information about the committed file and its dependencies,
e.g., a document format-specific index, to be stored by TNTBase for later querying.

An important property of TNTBase is that committing a change to a tntbase:validate

property will result in automatic revalidation of all affected files. Thus, TNTBase guarantees that
files with a certain tntbase:validate property are well-formed.

Selecting a Validation Method Every directory or file may have the tntbase:validate

property whose value is a string. If the property is absent, it is assumed to be empty. For

4

a file its value is a string that defines the validation methods to be applied. For a folder the
tntbase:validate property is a whitespace-separated list of strings.

If this list is of the form e1,m1, . . . , en,mn, the every ei is treated as a file name extension
and every mi as a validation method. The semantics is that files with the extension ei are to be
validated using method mi. If the length of the list is odd, the last entry is treated as a default
validation method that applies to any file with an extension that was not met before in the list.

When validating a file, the entry in its tntbase:validate property determines the validation
method (or methods). If there is no matching entry, one is searched in the corresponding property
of the parent directory, and so on until a matching entry is found. If the root directory is reached
without finding an entry, the predefined validation method none is chosen, which does nothing
and always succeeds.

Defining Validation Methods Every TNTBase repository comes with a special top-level di-
rectory called admin. This folder contains all configuration files for that repository so that config-
urations can be easily made via SVN (and are automatically versioned themselves!). The configu-
ration of validation behavior is done in the process subfolder. It may contain a file methods.xml,
which defines validation methods. If it is not present, no methods are defined.

The content of this file is of the form

1 <methods>M1 . . .Mn</methods>

where every Mi is of one of the following forms:

<schema name=”n” type=”t” location=”l”/>
<java name=”n” class=”c”/>

In the first case, validation is performed by schema validation. l is a URL giving the location
of the schema, and t is its type: Currently, a user can choose between the rnc and rng for the
text and XML syntaxes of RelaxNG schemata correspondingly. Other XML schema language
are planned to be added in the future, e.g. Schematron [Sch]. Also, DTD and XML Schema
validation is supported automatically by DB XML, and the schemas should be provided as XML
files themselves. n is the name of the validation method that occurs in the tntbase:validate

property.
While the first case, already permits simple validation through different XML schemata, the

second case offers full customizability. Here, n is as for schema validation, and c gives the qualified
name of the Java class implementing the validation interface. (See the project website http:

//tntbase.mathweb.org for documentation of the interface.) These implementation classes must
be in the Java classpath provided when starting TNTBase.

Applying Validation and Interface Extraction Every mi in the tntbase:validate prop-
erty is of the form si?(+vi)?, where si is the name of an XML schema validation method and vi
is the name of a Java validation method. The latter may generate any serializable content. The
intuition here is that the validation automatically produces information that is desirable to store
for later use. These can be transformations of the committed file into human- or machine-readable
formats such as XHTML or RDF.

These results are stored as XML documents in TNTBase and every such document is asso-
ciated with a real XML file in TNTBase. They are not shown in the TNTBase file system and
can be queried via a separate TNTBase interface. For that purpose, the method element from
above receives one additional optional attribute output. If the value of this attribute is true
TNTBase will cache the files containing the extracted information and will make them accessible
via dedicated RESTful methods.

In particular, the output of validating the file PATH is available at http://tntbase.your.

host.org/restful/integration/output/METHOD/PATH, and XQuery access to all output files
is possible via http://tntbase.your.host.org/restful/integration/query/METHOD?query=

XQUERY_EXPRESSION. In both cases, METHOD is the name of the validation method.

5

http://tntbase.mathweb.org
http://tntbase.mathweb.org
http://tntbase.your.host.org/restful/integration/output/METHOD/PATH
http://tntbase.your.host.org/restful/integration/output/METHOD/PATH
http://tntbase.your.host.org/restful/integration/query/METHOD?query=XQUERY_EXPRESSION
http://tntbase.your.host.org/restful/integration/query/METHOD?query=XQUERY_EXPRESSION

As an example, we give the current setup of the OMDoc repository used in the Latin project [Lat].
Here the top-level folder of the repository carries the property tntbase:validate=omdoc mmt-rng+mmt.
This means that all files with the omdoc extension are to be validated using first the mmt-rng and
then the mmt method. A subfolder inprogress contains work in progress and carries the property
tntbase:validate=none to avoid validation.

The methods.xml file looks as follows:

<methods>
<schema name=”mmt−rng” type=”rnc” location=”/var/www/tntbase/schemata/mmt.rnc” type=”rnc”/>

3 <java name=”mmt” class=”info.kwarc.jomdoc.frontend.TNTValidate” output=”true”/>
</methods>

Thus, the method mmt-rng+mmt consists of calling first the schema validation using the schema
mmt.rnc, followed by a custom java implementation in the class TNTValidate.

The extraction method of the class TNTValidate returns a set of RDF triples that represent
the omdoc file according to the omdoc ontology. Because the value of the output attribute is
true, the generated RDF theory (ABox) is accessible via the RESTful TNTBase interface. For
example, the RDF triples of the file math/algebra/algebra1.omdoc are accessible as http://

tntbase.your.host.org/restful/integration/output/mmt/math/algebra/algebra1.omdoc.

4 Virtual Documents

In this section, we will take a closer look at virtual documents: As they are surprisingly complex
to understand, we introduce the concept and its realization by an example in Section 4.1 before we
develop a precise terminology to capture all aspects of the concept: Sections 4.2 and 4.3 develop
a set of prerequisites for the document format to make use of virtual documents and show how
they can be achieved generically.

4.1 Virtual Documents by Example

To fortify our intuition about virtual documents let us consider the following situation: We have
a set of exercises with problem statements and solutions in our document collection. Say they are
marked up in the following way:

Listing 1: An Exercise with Solution

1 <exercise>
<problem>P</problem>
<solution>S</solution>

</exercise>

Now we want to make them available in two forms: without solutions to students and with (master)
solutions to the teaching assistants. In this situation, virtual documents are ideal. Generally, for
a virtual document we specify an XML file like the one in Listing 2. It consists of a skeleton and
a list of external queries.

Listing 2: A Virtual Document for Practice Exercises

1 <tnt:virtualdocument xmlns:tnt=”http://tntbase.mathweb.org/ns”>
<tnt:skeleton xml:id=”exercises”>
<omdoc xmlns=”http://omdoc.org/ns” xmlns:dc=”http://purl.org/DublinCore”>
<dc:title>Exercises for GenCS</dc:title>
<dc:creator>Michael Kohlhase</dc:creator>

6 <omdoc>
<dc:title>Acknowledgements</dc:title>
<omtext>The following individuals have contributed material to this document</omtext>
<tnt:xqinclude query=”distinct−values(collection(/gencs/∗/∗.omdoc)//dc:author)”>
<tnt:return><omtext><tnt:result/></omtext></tnt:return>

11 </tnt:xqinclude>
</omdoc>

6

http://tntbase.your.host.org/restful/integration/output/mmt/math/algebra/algebra1.omdoc
http://tntbase.your.host.org/restful/integration/output/mmt/math/algebra/algebra1.omdoc

<omdoc>
<dc:title>SML Exercises</dc:title>
<tnt:xqinclude>

16 <tnt:query name=”xq.SMLex”/>
<tnt:return><exercise><tnt:result/></exercise></tnt:return>

</tnt:xqinclude>
</omdoc>
<omdoc> ...</omdoc>

21 </omdoc>
</tnt:skeleton>
<tnt:query name=”xq.SMLex>

for $i in collection(/gencs/SML/∗.omdoc)//exercise
return $i/∗[local−name() ne ’solution’]

26 </tnt:query>
...

</tnt:virtualdocument>

Conceptually, the skeleton consists of the top-level parts of the intended exercises document,
where some document fragments have been replaced by embedded XQueries that generate them.
In general, queries have the form

Listing 3: A XQuery Fragment Reference

<tnt:xqinclude>
2 <tnt:query>q</tnt:query>

<tnt:return>R</tnt:result>
</tnt:xqinlcude>

where q is an XQuery and R consists of a result expression where the tnt:result element will
be replaced with the results of q. In line 7-9 we have such a query in a syntactic variant where
<tnt:xqinclude query=”q”>R</tnt:xqinclude> was used to abbreviate the primary query form above
for queries that do not contain embedded elements. The result of this particular query would
be a list of author names wrapped in an omtext element. The query in lines 15-18 uses another
useful syntactic feature: it refers to the query by reference to enable reuse and sharing for virtual
documents (see below). 1 The result of this query would be a list of exercises of the form

<exercise>
<problem>P</problem>

</exercise>

Note that the default and the dc namespace within the query are inherited from the dominating
omdoc node.

If we want to edit a virtual document, then we should tell TNTBase to send it to us in a special
editing mode. Then the relevant parts of our virtual document will be of the form

<exercise>
2 <problem tnt:srcfile=”/gencs/SML/prob1.omdoc” tnt:xpath=”(omdoc/exercise/problem)[2]”>P</problem>

</exercise>

Note that the result fragments have been decorated with tnt:srcfile and tnt:xpath attributes
that specify the origin of the text fragments. These attributes are syntactical variants of the source
references in virtual files (see [ZK09]) and enable editability and transparent commit in the same
way.

Thus, the virtual document in Listing 2 indeed expands to the desired exercises document
after XQuery processing. In TNTBase(F), virtual documents are created simply by committing a
virtual document specification (the XML file in Listing 2) to the xSVN repository and executing an
additional method of TNTBase that takes as an input the path of a virtual document specification
and a path of a new virtual document itself. Thus, we can create multiple virtual documents based
on a single virtual document specification. For instance, the above virtual document specification’s

1In the future, we intend to integrate the XQuery module system into virtual documents so that individual
XQuery function and variable declarations can be shared between queries.

7

XQueries can be changed so that they select problems in the directory where virtual document re-
sides. This is done by for $i in collection(./∗.omdoc)//exercise return $i/∗[local−name() ne ’solution’], where
the first “.” in the query stands for the current directory. Thus we write a specification once, and
may use it for creating virtual documents without solutions in different folders separated by topic.

The reference-based setup caters for a wide variety of reuse scenarios. For instance the doc-
ument for the GenCS teaching assistants could be specified by the following virtual document
specification, which reuses the skeleton from Listing 2:

<tnt:virtualfile xmlns:tnt=”http://tntbase.mathweb.org/ns”>
<tnt:skeleton href=”../exercises.vf#exercises”/>
<tnt:query name=”xq.SMLex>

for $i in collection(/gencs/SML/∗.omdoc)//exercise return $i
5 </tnt:query>

...
</tnt:virtualfile>

Note that the new query does not remove the solutions. It is lexically captured by the named
reference in the skeleton. One may think of method overloading in Java or C++. It is also
possible to have an empty tnt:query element is the specification. Then it becomes an abstract
specification, and can be compared to abstract methods in Java or pure virtual functions in C++.

4.2 Document Formats and Document Fragments

In the example above we have very informal; to fully understand the concept of virtual documents
we have to work a little harder and pin down the relevant concepts. We will provide the relevant
definitions and explain them by examples that show the problems we have glossed over above.

Definition 1 (Document Format). A document format consists of
1. a formal language, whose words we call documents,
2. a formal language of fragments over the same alphabet,
3. for every document D a set of pairs (p, F), where F is a fragment occurring as a sub-word

of D and p is some expression, called the position of F in D.
We write D(p) = F to retrieve the fragment at position p.

The intuition of fragments is that fragments occur as components of documents. Document
formats are typically given as a context-free grammar that subsumes the language with some non-
terminal symbols designated as the fragment-producing ones. For example, we define the format
XML/XPath as follows: The documents are the XML documents, and the fragments of an XML
document D are the element nodes occurring in D; the fragment positions are given by XPath
expressions [Ber+07]. Another XML-based document format is XML/id: Here, only the nodes
with xml:id attributes [MVW05] are fragments, they are addressed by the values of of xml:id

attributes which serve as positions. For text documents, we can use substrings as fragments
together with line and column numbers as positions (or paragraphs and paragraph numbers if we
use empty lines as paragraph separators). Furthermore, any formal language trivially becomes a
document format if every document has itself as the only fragment.

Any particular XML language becomes a document format in the sense of Definition 1 by
treating it as a special case of XML/XPath. However, it is often useful to define fragments
differently, in particular to restrict the fragments to ones that carry self-contained meaning in
the document format. After all, documents are composed of fragments that represent logical
structuring units.

The OMDoc1.6 2 format has been designed around the notion of “semantic fragment”. These
are represented by tags such as omdoc (used both for documents and document sections), theory,
symbol, axiom, notation. Other element nodes, such as the ones representing individual mathe-
matical expressions, are not considered fragments. In the OMDoc1.6 design the fragment nodes all

2The OMDoc1.6 format is the radically redesigned successor of OMDoc1.2 [Koh06] which is the first draft of the
OMDoc2 format. It is based on the semantic data and referencing model of [RK09], which makes it an interesting
case study for our purposes here

8

have name attributes: Any element with a name yields a fragment, and any tag that is worthy of be-
ing extracted as a semantic fragment gets a name. Contrary to xml:ids, the name attributes have
to be unique only within the scope given by their parent fragment, which gives rise to a hierarchical
naming scheme that is more adequate for mathematical practice. For example, the relative URI
algebra.omdoc/groupoids?Monoid?comp 3 refers to the declaration of the composition operation
in the theory of monoids occurring in the section on groupoids in the document algebra1.omdoc.
The general form of an OMDoc fragment position is sec1/ . . . /secm?mod1/ . . . /modm?sym, where
the seci are section names, the modi are the names of nested modules in the OMDoc module sys-
tem [RK09], and sym is a symbol name. Clearly, the set of fragments of an OMDoc document can
be naturally included into the set of fragments of the same document considered as an XML/XPath
document.

We use names instead of xml:ids as fragment positions because the latter have to be document-
unique, whereas in virtual documents, we want to be able to flexibly recombine existing fragments
into new documents. Already the next definition could lead to name clashes if we used xml:ids
to identify fragments.

Definition 2. We say that a document format F supports reference expansion if it provides
1. for every document D in F , a distinguished set of fragments called fragment references,
2. for every fragment reference R in F , a list (di, pi)|ni=1, called results, where di is a document

URI and pi is a fragment position in the document referenced by di,
3. an operation exp(d, p) that given a URI d of an F document and a position p in it returns

a document fragment in F ,
such that D is semantically equivalent to the document that arises from replacing a fragment
reference R with the concatenation exp(di, pi)|ni=1. A document is called fully expanded if it
contains no fragment references.

Technically, the precise definition of semantic equivalence must be given by the document for-
mat as an equivalence relation between documents. The right choice of the semantic equivalence
relation can be quite difficult, and often different notions of equivalence must be employed in dif-
ferent contexts. For example, replacing relative URIs in an XHTML document with appropriately
resolved absolute ones will usually not change the semantics of the document. However, in certain
situations, it is still desirable to forbid such a transformation, e.g., when a directory of inter-linked
documents is often moved to different locations. For simplicity, we will not go into details and
simply assume such an equivalence relation to be present.

The intuition behind reference expansion becomes clear if we define it for the document format
XML/XPath from above: It becomes a document format XML/XPath/XInclude with reference
expansion by using XML inclusions via XInclude [MOV06], i.e., the fragment references are the
xi:include elements. XInclude (essentially) requires that processors obtain the document frag-
ment(s) referenced by the href and xpointer attributes of the xi:include element and replace
the xi:include element with them, which we take as semantic equivalence. Thus, we can define
that for every xi:include element, the result list is (d, p1), . . . , (d, pn) where d is given by the
href attribute, p1, . . . , pn are the normalized XPath expressions identifying the nodes matched by
the xpointer attribute.

At first it might seem that one should always put exp(d, p) := D′(p) where D′ is the document
at URI d. However, it is useful to permit the document format to perform an arbitrary operation
instead – typically this operation consists of computing D′(p) and then applying some post-
processing to it. For example, xi:include computes exp(d, p) by adding an attribute xml:base

to D′(p) because D′(p) might inherit its xml:base from an ancestor node within D′. Similarly,
XML namespace attributes inherited from an ancestor may have to be added to D′(p).4

OMDoc1.6 integrates a custom syntax for reference expansion. Every tag designating a frag-
ment may alternatively occur as an empty element node with an href attribute instead of a name

3The use of an additional ? in the query is unusual but legal. It leads to a very compact notation, which is
important in OMDoc.

4The latter is usually not necessary for XInclude, which technically acts on info sets rather than documents.

9

attribute. The value of this attribute is of the form d/p where d is a URI without query or frag-
ment and p is an OMDoc fragment position. The list of results always has length 1 and is given
by (d, p). (Note that since both d and p may contain slashes, the computation of (d, p) has to be
carried out by a server providing the resource d.) To define reference expansion, let D′ be the
document at d. Then exp(d, p) returns D′(p) with an added attribute base whose value references
the parent fragment of D′(p) in D′. For example, assume the following OMDoc document D′ at
URI d:

<omdoc>
<omdoc name=”div 1”>

3 <theory name=”th 1”><constant name=”c 1”/></theory>
</omdoc>

</omdoc>

A document D may contain a fragment reference to the theory th 1 in the section div 1 of the
form <omdoc href=”d/div 1?th 1”/>. Then exp(d, div1?th1) yields

<theory name=”th 1” base=”d/div 1”><constant name=”c 1”/></theory>

The added base attribute serves two purposes. Firstly, it functions as a base address relative to
which all semantic references occurring inside th 1 are resolved. (There are none in this example,
but practical theories contain large numbers of mathematical expressions containing semantic
references to theories and constants.) Secondly, it remembers the origin of the theory th 1 so
that a link between the theory defined in D′ and its copy in the fully expanded version of D is
maintained. This link is important for several applications, and below we will use it in particular
to propagate changes made to th 1 from D to D′.

Definition 3 (Document Contraction). In a document format that supports reference expansion,
we speak of document contraction if a document D is transformed into a semantically equivalent
document D′ by replacing a fragment of D with a fragment reference.

A fragment that is not simply a fragment reference is called fully contracted if no further
contraction is possible. A fully contracted fragment is called atomic if it is also fully expanded. S is
called the skeleton of a document D if S arises from D by contracting exactly the atomic fragments.
Finally, we say that a document format supports document contraction if every document has a
skeleton.

Both XML/XPath/XInclude and OMDoc support document contraction. However, for XM-
L/XPath/XInclude, the atomic fragments are the empty elements, and thus the skeleton is not
interesting because it is isomorphic to the original XML document. But for document formats with
custom definitions of fragments such as OMDoc, the skeleton yields an interesting decomposition
into medium-sized chunks.

A good example of a skeleton is the table of contents with every node representing one entry.
This can also serve as a guiding intuition to define document formats: An XML node should count
as a fragment if it could occur in a table of contents. This motivated our choice of fragments for a
document format for DocBook: The skeleton of a DocBook document is just its table of contents.
More precisely, we can say the following.

Theorem 1. Let F be a document format arising from XML/XPath/XInclude by restricting the
documents to a sub-language of XML and by restricting the fragments of a document to element
nodes with certain tags. Further assume that the F-documents may contain xi:include fragments
and that the specification of F imposes semantic equivalence under reference expansion as defined
above for XML/XPath/XInclude. Then F supports reference expansion and document contraction.

As an example, consider the left OMDoc document in Figure 3 with URI d. It can be contracted
to the one on the right: Here all fragment references are relative to the base URI d, which receives
a trailing slash so that, e.g., div 1/div 1?theory 1 resolves to d/div 1/div 1?theory 1. Note how the
contraction status is different between the fragments at position div 1/div 1 and div 1/div 2: The
former is skeletal, the latter is fully contracted. Such an OMDoc document typically arises after

10

<omdoc base=”d/”>
<omdoc name=”div 1”>
<omdoc name=”div 1>
<theory name=”th 1”>
<constant name=”c 1”>
<type>T</type>
<definition>D</definition>
</constant>

</theory>
</omdoc>
<omdoc name=”div 2”>
<theory name=”th 1”>
. . .
</theory>
<theory name=”th 2”>
. . .
</theory>
</omdoc>
</omdoc>
</omdoc>

<omdoc base=”d/”>
<omdoc name=”div 1”>
<omdoc name=”div 1>
<theory name=”th 1”>
<constant

href=”div 1/div 1?th 1?c 1”/>

</theory>
</omdoc>
<omdoc name=”div 2”>
<theory href=”div 1/div 2?th 1”/>

<theory href=”div 1/div 2?th 2”/>

</omdoc>
</omdoc>
</omdoc>

Figure 3: Contracting Documents

a fully contracted document has been served and the user has interactively expanded some of the
fragment references.

4.3 Virtual Documents

Contraction permits to decompose a document into its fragments, and by expanding fragment
references this process can be inverted. This is useful in itself, but it also opens the door to a
powerful application: New documents can be composed partially or completely out of fragments
from existing documents. If we follow this idea systematically, we can conceptually consider all
documents to be skeletons that pick fragments from a shared reservoir. In particular, there is
no conceptual distinction needed between the document in which a fragment is created and the
documents, from which that fragments is referenced.

Virtual documents are simple as long as they are created or read but not changed. But assume
a document D′ that contains a reference to a fragment F of D, and assume that the reference has
been expanded. Further assume, we changed F to F ′ within this expanded version of D′. When
these changes are committed, we have two options:

A The changes to F are propagated to D. D′ is contracted to its original form, which means
D′ did not change at all.

B D′ is stored in its expanded form, which means that a new atomic fragment is stored for F ′,
and a new revision of D′ is stored where the fragment reference now points to F ′.

Clearly, both options are desirable under different circumstances. The following definition is strong
enough to handle both cases.

Definition 4 (Virtual Documents). Assume a document format F such that 1. all documents are
XML documents, 2. all fragments are XML element nodes, 3. reference expansion and document
contraction are supported. We say that the format supports virtual documents if it provides a
partial function contr(F ′) that takes a document fragment F ′ and (if defined) returns (d, p, F)
such that contr(exp(d, p)) = (d, p,D(p)) where D is the document at URI d.

The intuition is that contr(F ′) = (d, p, F) holds iff F ′ arose from a reference expansion where
(d, p) is the URI-position pair used to identify the referenced fragment. In that case, F arises by
inverting whatever modification exp(d, p) made to D(p). Then F represents a new version of F ′

that can be propagated to the document at URI d.
To see more clearly how this works, we give a document format VXML for virtual XML

documents. We define it as follows:
• The documents are XML documents.

11

• The fragments are the XML element nodes with XPath expressions as their positions.
• The fragment references are of the form of Listing 3. where Q is an XQuery returning

a list (di, pi)|ni=1 of results, and R is arbitrary XML in particular using an element node
<tnt:result/>. The namespaces of the query Q are inherited from the tnt:query node.

• For every result, the node exp(di, pi) is defined as follows:
1. Take the node list R and add to all top-level nodes an attribute tnt:virtual=”q” where q

is the XPath expression of the tnt:xqinclude element. Let this yield L.
2. Let Ni be the node list arising from replacing the node <tnt:result/> in L with: the node

Di(pi) (including its in-scope namespace attributes) where Di is the document at URI
di with the following additional attributes:

– an attribute xml:base as in the XInclude specification,
– an attribute tnt:added=”xml:base” if an xml:base attribute was added,
– the attributes tnt:srcfile=”di” and tnt:xpath=”pi”.

3. Return the concatenation N1 . . . Nn.
• For every fragment F ′ the function contr(F ′) is defined whenever F ′ has exactly one de-

scendant node N with an attribute of the form tnt:origin=”d#xpointer(p)”; and in that case it
returns (d, p, F) where F arises from N by removing tnt:origin attribute and if applicable the
xml:base attribute.

After retrieving VXML documents from TNTBase they can be dynamically expanded – e.g.,
by using an interactive browser or a TNTBase-supporting editor – in which case they will have
tnt:virtual=”q” attributes. When committing the document, TNTBase (i) replaces all elements with
such attributes with the original fragment reference, which can be retrieved from the database
using the XPath expression q, and (ii) propagates the respective changes to the origin document
using the contr(−) operation. This corresponds to option A above. The user can choose option
B by removing the tnt:virtual attribute.

The above definition of VXML assumes that all results of the XQuery correspond to physical
nodes in some documents rather than being constructed during the XQuery. This is a necessary
prerequisite for the propagation of changes. In general, this may only hold for some result nodes,
in which case only changes to those nodes can be propagated. TNTBase is able to handle that
situation as well, but we avoid the description here for simplicity. Note that in our example
above, the OMDoc format supports virtual documents because the base attribute mentioned in
the definition of the OMDoc reference expansion determines the origin of a fragment.

5 Presentation: Compilation and Browsing

The presentation support of TNTBase is targeted at providing document format-specific browsing
interfaces. We use the term rendering for the process of transforming documents into human-
oriented presentation formats such as XHTML.

Rendering can be done at commit or at view time. Commit-time rendering is generally prefer-
able because it makes viewing faster. However, it is not suitable for interactive editing of docu-
ments and for browsing virtual documents which are created on the fly using dynamically executed
XQueries. Furthermore, the presentation of a document can be affected by changes in other doc-
uments, e.g., if a document contains fragment references that are expanded before rendering.
Therefore, TNTBase supports both commit- and view-time rendering.

Both types of rendering are controlled by a configuration file browsers.xml in the folder
admin/viewing. Its content is of the form

<browsers>B1 . . . Bn</browsers>

where every Bi is of one of the following forms:

<xslt name=”n” location=”l”/>
<java name=”n” class=”c”/>

12

The semantics is very similar to the one of the corresponding entries of the methods.xml file.
The main difference is that n is not referenced in a subversion property but directly in a URI.

For view-time rendering, if PATH is a path in a repository with the URL REPOS, then the URL
REPOS/restful/presentation/render/n/PATH yields the version of that file rendered using the method
n. In particular, PATH need not refer to a file but can also contain queries that generate virtual
documents on the fly. Currently two types of rendering methods are supported: XSLT transfor-
mations and custom Java rendering. In the latter case, a user has to provide an implementation
of certain TNTBase interfaces that return rendered documents.

For commit-time rendering, the situation is very similar. The main difference is that a user has
to generate (via an ad-hoc TNTBase script) the post-commit hook that internally will invoke the
necessary presentational caching method via the RESTful interface. When creating such a hook,
the user has to provide the name of a browser, say n, that is declared in browsers.xml. Once
this is set up and rendered documents have been generated at commit time, one uses the URL
REPOS/restful/presentation/view/n/PATH to view the cached presentation. In this case not every
PATH will yield a document because the commit could have occurred before the commit-time
rendering was configured. Furthermore, it is possible to force a refresh of the cached presentation
by retrieving the URL REPOS/restful/presentation/cache/n/PATH. (In fact, this is what the above-
mentioned post-commit hook does.)

6 Conclusion and Future Work

We have presented TNTBase(F), a format-specific extension of the TNTBase system that allows
the (web) application developer to simply configure common format-specific workflows like val-
idation, compilation, and presentation within the TNTBase system. This considerably reduces
the application logic of (web) applications that manage large, changing XML-based document
collections. The TNTBase(F) framework is implemented as an extension of TNTBase and can be
obtained from the project website http://trac.mathweb.org/tntbase. TNTBase(F) is under
active development and the project website should be consulted for details and the evolving state
of implementation.

To get a better intuition for the power of the TNTBase(F) framework, let us look at the pre-
sentation of an ontology in Figure 4. This example from [Lan10] shows a heavily cross-referenced
XHTML+MathML rendering of the underlying OMDoc sources, where much of the structural
relations have been annotated in RDFa. The rendering and RDFa annotation process made use of
the extracted interface information (see Section 3), which is then picked up by JOBAD [GLR09],
a JavaScript library that instruments the XHTML for interactivity. For instance, JOBAD can
use CSS properties to collapse a proof or embedded MathML maction elements or pick a dif-
ferent (pre-generated) notation variant. But JOBAD can also use AJAX-style callbacks to the
TNTBase(OMDoc) system for definition lookup: For any symbol a right-click menu item will
query TNTBase for the definition of the corresponding constant, which will then be served by
TNTBase(OMDoc) and displayed in a popup by JOBAD. This example uses only the techniques
from Sections 3 and 5: Pre-existing validation, annotation, rendering, and interaction functionali-
ties were integrated into TNTBase(F), which also serves as a web application platform [Koh+09].
The work reported here was influenced by discussions of how to integrate TNTBase into the
systems of the KWARC research group, in particular the SWiM system. The latter is an OMDoc-
based semantic Wiki for scientific/technical documents [Lan08; Lan10], in which workflows similar
to the ones described in this paper had to be established for the integration of the OMDoc format
into the underlying IkeWiki platform.

We are using TNTBase(OMDoc) in daily practice exploring the possibilities of TNTBase(F)
for a semantic document format that is designed to support document aggregation and to stretch
the limits of document modularization. The newly implemented virtual documents allow to aggre-
gate fragments of the existing document base and access, edit, and commit them, much like regular
documents, if the XML format supports document aggregation in the sense we have defined in
this paper. We are also looking into the use of TNTBase(OWL) for ontologies, which is seman-

13

PATH
http://trac.mathweb.org/tntbase

Figure 4: A complex presentation of a documented Ontology

tically structured document format, but does not (directly) support document aggregation with
the intention of developing a suitable generic XML extension that generalizes XInclude [MOV06]
to queries.

Even in our limited experience with virtual files, they have turned out to be an enabling
technology. Take for instance the example in Section 4.1. There we can use the virtual document
in Listing 2 to give students access to fragments of the original XML documents (the problems)
while hiding others (the solutions5). Here, virtual documents promise to enable (some) fine-grained
access control in TNTBase; we plan to study the consequences of this idea in the near future.

The next larger step in the development of TNTBase will be the introduction of distribution
facilities for versioned XML document storage supporting both push and pull-based workflows. We
hope to gain not only distributed document management functionalities for TNTBase, but also to
offer offline capabilities for web applications, which can then simply integrate the TNTBase library
for transparent caching. In such applications, the TNTBase content would take the function of a
subversion working copy with the additional ability of offline commits.

References

[Ber] Berkeley DB XML. url: http://www.oracle.com/database/berkeley-db/xml/
(visited on 10/22/2009).

[Ber+07] Anders Berglund et al. XML Path Language (XPath) 2.0. W3C Recommendation.
World Wide Web Consortium (W3C), 2007. url: http://www.w3.org/TR/2007/REC-
xpath20-20070123/.

[GLR09] Jana Giceva, Christoph Lange, and Florian Rabe. “Integrating Web Services into
Active Mathematical Documents”. In: MKM/Calculemus 2009 Proceedings. Ed. by
Jacques Carette et al. LNAI 5625. Springer Verlag, 2009, pp. 279–293. url: https:
//svn.omdoc.org/repos/jomdoc/doc/pubs/mkm09/jobad/jobad-server.pdf.

5Assuming of course that we have configured TNTBase’s file-level authentication and authorization to restrict
access to the course materials to instructors.

14

http://www.oracle.com/database/berkeley-db/xml/
http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://www.w3.org/TR/2007/REC-xpath20-20070123/
https://svn.omdoc.org/repos/jomdoc/doc/pubs/mkm09/jobad/jobad-server.pdf
https://svn.omdoc.org/repos/jomdoc/doc/pubs/mkm09/jobad/jobad-server.pdf

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathematical documents
[Version 1.2]. LNAI 4180. Springer Verlag, 2006. url: http://omdoc.org/omdoc1.
2.pdf.

[Koh+09] Michael Kohlhase et al. “JOBAD – Interactive Mathematical Documents”. In: AI
Mashup Challenge 2009, KI Conference. Ed. by Brigitte Endres-Niggemeyer, Valentin
Zacharias, and Pascal Hitzler. 2009. url: https://svn.omdoc.org/repos/jomdoc/
doc/pubs/ai-mashup09/jobad.pdf.

[Lan08] Christoph Lange. “SWiM – A semantic wiki for mathematical knowledge manage-
ment”. In: ESWC. Ed. by Sean Bechhofer et al. Vol. 5021. Lecture Notes in Computer
Science. Springer, 2008, pp. 832–837.

[Lan10] Christoph Lange. “Semantic Web Collaboration on Semiformal Mathematical Knowl-
edge”. submission expected in January 2010. PhD thesis. Jacobs University Bremen,
2010.

[Lat] LATIN: Logic Atlas and Integrator. url: https://trac.omdoc.org/latin/ (visited
on 12/02/2009).

[MOV06] Jonathan Marsh, David Orchard, and Daniel Veillard. XML Inclusions (XInclude)
Version 1.0 (Second Edition). W3C Recommendation. World Wide Web Consortium
(W3C), 2006. url: http://www.w3.org/TR/2006/REC-xinclude-20061115/.

[MVW05] Jonathan Marsh, Daniel Veillard, and Norman Walsh. xml:id Version 1.0. W3C Rec-
ommendation. World Wide Web Consortium (W3C), 2005. url: http://www.w3.
org/TR/2005/REC-xml-id-20050909/.

[PCSF08] C. Michael Pilato, Ben Collins-Sussman, and Brian W. Fitzpatrick. Version Control
With Subversion. 2nd ed. Sebastopol, CA, USA: O’Reilly & Associates, Inc., 2008.
isbn: 978-0-596-51033-6. url: http://svnbook.red-bean.com.

[RK09] Florian Rabe and Michael Kohlhase. “A Web-Scalable Module System for Mathe-
matical Theories”. Manuscript, to be submitted to the Journal of Symbolic Compu-
tation. 2009. url: https://svn.kwarc.info/repos/kwarc/rabe/Papers/omdoc-
spec/paper.pdf.

[Sch] schematron. url: http://schematron.com (visited on 12/22/2009).

[Tnt] TNTBase TRAC. url: http://trac.mathweb.org/tntbase (visited on 12/16/2009).

[WM08] Norman Walsh and Leonard Muellner. DocBook 5.0: The Definitive Guide. O’Reilly,
2008.

[Xqua] XQuery: An XML Query Language. url: http://www.w3.org/TR/xquery/ (visited
on 12/14/2009).

[Xqub] XQUpdate: XQuery Update Facility 1.0. url: http://www.w3.org/TR/xquery-

update-10/ (visited on 12/14/2009).

[ZK09] Vyacheslav Zholudev and Michael Kohlhase. “TNTBase: a Versioned Storage for
XML”. In: Proceedings of Balisage: The Markup Conference 2009. Vol. 3. Balisage
Series on Markup Technologies. Mulberry Technologies, Inc., 2009. doi: 10.4242/

BalisageVol3.Zholudev01. url: http://www.balisage.net/Proceedings/vol3/
html/Zholudev01/BalisageVol3-Zholudev01.html.

[ZKR] Vyacheslav Zholudev, Michael Kohlhase, and Florian Rabe. A [insert XML Format]
Database for [insert cool application] (extended version). url: http://kwarc.info/
vzholudev/pubs/XMLPrague_long.pdf (visited on 12/21/2009).

15

http://omdoc.org/omdoc1.2.pdf
http://omdoc.org/omdoc1.2.pdf
https://svn.omdoc.org/repos/jomdoc/doc/pubs/ai-mashup09/jobad.pdf
https://svn.omdoc.org/repos/jomdoc/doc/pubs/ai-mashup09/jobad.pdf
https://trac.omdoc.org/latin/
http://www.w3.org/TR/2006/REC-xinclude-20061115/
http://www.w3.org/TR/2005/REC-xml-id-20050909/
http://www.w3.org/TR/2005/REC-xml-id-20050909/
http://svnbook.red-bean.com
https://svn.kwarc.info/repos/kwarc/rabe/Papers/omdoc-spec/paper.pdf
https://svn.kwarc.info/repos/kwarc/rabe/Papers/omdoc-spec/paper.pdf
http://schematron.com
http://trac.mathweb.org/tntbase
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery-update-10/
http://dx.doi.org/10.4242/BalisageVol3.Zholudev01
http://dx.doi.org/10.4242/BalisageVol3.Zholudev01
http://www.balisage.net/Proceedings/vol3/html/Zholudev01/BalisageVol3-Zholudev01.html
http://www.balisage.net/Proceedings/vol3/html/Zholudev01/BalisageVol3-Zholudev01.html
http://kwarc.info/vzholudev/pubs/XMLPrague_long.pdf
http://kwarc.info/vzholudev/pubs/XMLPrague_long.pdf

	1 Introduction and Related Work
	2 Document-Format-Specific Features for TNTBase
	2.1 TNTBase State of the Art
	2.2 Validation and Interface Extraction
	2.3 Compilation, Browsing and Cross-Referencing
	2.4 Virtual Documents
	2.5 Realizing TNTBase(F)

	3 Validation and Interface Extraction
	4 Virtual Documents
	4.1 Virtual Documents by Example
	4.2 Document Formats and Document Fragments
	4.3 Virtual Documents

	5 Presentation: Compilation and Browsing
	6 Conclusion and Future Work

