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To Porosusha



When a man Reasoneth, hee does nothing else but conceive a summe totall, from
Addition of parcels.

For as Arithmeticians teach to adde and substract in numbers; so the Geome-
tricians teach the same in lines, figures (solid and superficiall,) angles, proportions,
times, degrees of swiftnesse, force, power, and the like; The Logicians teach the
same in Consequences of words; adding together two Names, to make an Affirma-
tion; and two Affirmations, to make a Syllogisme; and many Syllogismes to make a
Demonstration; and from the summe, or Conclusion of a Syllogisme, they substract
one Proposition, to finde the other.

For REASON, in this sense, is nothing but Reckoning (that is, Adding and Sub-
stracting) of the Consequences of generall names agreed upon, for the marking and
signifying of our thoughts.

And as in Arithmetique, unpractised men must, and Professors themselves may
often erre, and cast up false; so also in any other subject of Reasoning, the ablest,
most attentive, and most practised men, may deceive themselves and inferre false
Conclusions; Not but that Reason it selfe is always Right Reason, as well as Arith-
metique is a certain and infallible Art: But no one mans Reason, nor the Reason of
any one number of men, makes the certaintie; no more than an account is therefore
well cast up, because a great many men have unanimously approved it.

Thomas Hobbes (1588–1697), ‘Leviathan, or The Matter,
Forme, & Power of a Common-Wealth Ecclesiasticall and Civill’.

Printed for ANDREW CROOKE, at the Green Dragon
in St. Pauls Church-yard, 1651.
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5.11 Gröbner bases 400
5.12 Geometric theorem proving 414
5.13 Combining decision procedures 425



Contents ix

6 Interactive theorem proving 464
6.1 Human-oriented methods 464
6.2 Interactive provers and proof checkers 466
6.3 Proof systems for first-order logic 469
6.4 LCF implementation of first-order logic 473
6.5 Propositional derived rules 478
6.6 Proving tautologies by inference 484
6.7 First-order derived rules 489
6.8 First-order proof by inference 494
6.9 Interactive proof styles 506

7 Limitations 526
7.1 Hilbert’s programme 526
7.2 Tarski’s theorem on the undefinability of truth 530
7.3 Incompleteness of axiom systems 541
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Preface

This book is about computer programs that can perform automated rea-
soning. I interpret ‘reasoning’ quite narrowly: the emphasis is on formal
deductive inference rather than, for example, poker playing or medical diag-
nosis. On the other hand I interpret ‘automated’ broadly, to include inter-
active arrangements where a human being and machine reason together,
and I’m always conscious of the applications of deductive reasoning to real-
world problems. Indeed, as well as being inherently fascinating, the subject
is deriving increasing importance from its industrial applications.

This book is intended as a first introduction to the field, and also to logical
reasoning itself. No previous knowledge of mathematical logic is assumed,
although readers will inevitably find some prior experience of mathemat-
ics and of computer programming (especially in a functional language like
OCaml, F#, Standard ML, Haskell or LISP) invaluable. In contrast to the
many specialist texts on the subject, this book aims at a broad and balanced
general introduction, and has two special characteristics.

• Pure logic and automated theorem proving are explained in a closely intertwined
manner. Results in logic are developed with an eye to their role in automated
theorem proving, and wherever possible are developed in an explicitly computa-
tional way.

• Automated theorem proving methods are explained with reference to actual con-
crete implementations, which readers can experiment with if they have convenient
access to a computer. All code is written in the high-level functional language
OCaml.

Although this organization is open to question, I adopted it after care-
ful consideration, and extensive experimentation with alternatives. A more
detailed self-justification follows, but most readers will want to skip straight
to the main content, starting with ‘How to read this book’ on page xvi.

xi
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Ideological orientation

This section explains in more detail the philosophy behind the present text,
and attempts to justify it. I also describe the focus of this book and major
topics that I do not include. To fully appreciate some points made in the
discussion, knowledge of the subject matter is needed. Readers may prefer to
skip or skim this material.

My primary aim has been to present a broad and balanced discussion of
many of the principal results in automated theorem proving. Moreover, read-
ers mainly interested in pure mathematical logic should find that this book
covers most of the traditional results found in mainstream elementary texts
on mathematical logic: compactness, Löwenheim–Skolem, completeness of
proof systems, interpolation, Gödel’s theorems etc. But I consistently strive,
even when it is not directly necessary as part of the code of an automated
prover, to present results in a concrete, explicit and algorithmic fashion, usu-
ally involving real code that can actually be experimented with and used,
at least in principle. For example:

• the proof of the interpolation theorem in Section 5.13 contains an algo-
rithm for constructing interpolants, utilizing earlier theorem proving code;

• decidability based on the finite model property is demonstrated in Section
5.5 by explicitly interleaving proving and refuting code rather than a
general appeal to Theorem 7.13.

I hope that many readers will share my liking for this concrete hands-on
style. Formal logic usually involves a considerable degree of care over tedious
syntactic details. This can be quite painful for the beginner, so teachers
and authors often have to make the unpalatable choice between (i) spelling
everything out in excruciating detail and (ii) waving their hands profusely
to cover over sloppy explanations. While teachers rightly tend to recoil from
(i), my experience of teaching has shown me that many students nevertheless
resent the feeling of never being told the whole story. By implementing things
on a computer, I think we get the best of both worlds: the details are there
in precise formal detail, but we can mostly let the computer worry about
their unpleasant consequences.

It is true that mathematics in the last 150 years has become more
abstractly set-theoretic and less constructive. This is particularly so in con-
temporary model theory, where traditional topics that lie at the historical
root of the subject are being de-emphasized. But I’m not alone in swim-
ming against this tide, for the rise of the computer is helping to restore the
place of explicit algorithmic methods in several areas of mathematics. This is
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particularly notable in algebraic geometry and related areas (Cox, Little and
O’Shea 1992; Schenk 2003) where computer algebra and specifically Gröbner
bases (see Section 5.11) have made considerable impact. But similar ideas
are being explored in other areas, even in category theory (Rydeheard and
Burstall 1988), often seen as the quintessence of abstract nonconstructive
mathematics. I can do no better than quote Knuth (1974) on the merits of
a concretely algorithmic point of view in mathematics generally:

For three years I taught a sophomore course in abstract algebra for mathematics
majors at Caltech, and the most difficult topic was always the study of “Jordan
canonical forms” for matrices. The third year I tried a new approach, by looking
at the subject algorithmically, and suddenly it became quite clear. The same thing
happened with the discussion of finite groups defined by generators and relations,
and in another course with the reduction theory of binary quadratic forms. By
presenting the subject in terms of algorithms, the purpose and meaning of the
mathematical theorems became transparent.

Later, while writing a book on computer arithmetic [Knuth (1969)], I found that
virtually every theorem in elementary number theory arises in a natural, motivated
way in connection with the problem of making computers do high-speed numerical
calculations. Therefore I believe that the traditional courses in number theory might
well be changed to adopt this point of view, adding a practical motivation to the
already beautiful theory.

In the case of logic, this approach seems especially natural. From the
very earliest days, the development of logic was motivated by the desire
to reduce reasoning to calculation: the word logos, the root of ‘logic’, can
mean not just logical thought but also computation or ‘reckoning’. More
recently, it was decidability questions in logic that led Turing and others to
define precisely the notion of a ‘computable function’ and set up the abstract
models that delimit the range of algorithmic methods. This relationship
between logic and computation, which dates from before the Middle Ages,
has continued to the present day. For example, problems in the design and
verification of computer systems are stimulating more research in logic, while
logical principles are playing an increasingly important role in the design of
programming languages. Thus, logical reasoning can be seen not only as
one of the many beneficiaries of the modern computer age, but as its most
important intellectual wellspring.

Another feature of the present text that some readers may find surprising
is its systematically model-theoretic emphasis; by contrast many other texts
such as Goubault-Larrecq and Mackie (1997) place proof theory at the cen-
tre. I introduce traditional proof systems late (Chapter 6), and I hardly men-
tion, and never exploit, structural properties of natural deduction or sequent
calculus proofs. While these topics are fascinating, I believe that all the tra-
ditional computer-based proof methods for classical logic can be presented
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perfectly well without them. Indeed the special refutation-complete calculi
for automated theorem proving (binary resolution, hyperresolution, etc.)
also provide strong results on canonical forms for proofs. In some situations
these are even more convenient for theoretical results than results from
Gentzen-style proof theory (Matiyasevich 1975), as with our proof of the
Nullstellensatz in Section 5.10 à la Lifschitz (1980). In any case, the details
of particular proof systems can be much less significant for automated rea-
soning than the way in which the corresponding search space is examined.
Note, for example, how different tableaux and the inverse method are, even
though they can both be understood as search for cut-free sequent proofs.

I wanted to give full, carefully explained code for all the methods described.
(In my experience it’s easy to underestimate the difficulty in passing from a
straightforward-looking algorithm to a concrete implementation.) In order
to present real executable code that’s almost as readable as the kind of
pseudocode often used to describe algorithms, it seemed necessary to use
a very high-level language where concrete issues of data representation and
memory allocation can be ignored. I selected the functional programming
language Objective CAML (OCaml) for this purpose. OCaml is a descen-
dant of Edinburgh ML, a programming language specifically designed for
writing theorem provers, and several major systems are written in it.

A drawback of using OCaml (rather than say, C or Java) is that it will be
unfamiliar to many readers. However, I only use a simple subset, which is
briefly explained in Appendix 2; the code is functional in style with no assign-
ments or sequencing (except for producing diagnostic output). In a few cases
(e.g. threading the state through code for binary decision diagrams), imper-
ative code might have been simpler, but it seemed worthwhile to stick to the
simplest subset possible. Purely functional programming is particularly con-
venient for the kind of tinkering that I hope to encourage, since one doesn’t
have to worry about accidental side-effects of one computation on others.

I will close with a quotation from McCarthy (1963) that nicely encapsu-
lates the philosophy underlying this text, implying as it does the potential
new role of logic as a truly applied science.

It is reasonable to hope that the relationship between computation and mathemat-
ical logic will be as fruitful in the next century as that between analysis and physics
in the last.

What’s not in this book

Although I aim to cover a broad range of topics, selectivity was essential to
prevent the book from becoming unmanageably huge. I focus on theories in
classical one-sorted first-order logic, since in this coherent setting many of
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the central methods of automated reasoning can be displayed. Not without
regret, I have therefore excluded from serious discussion major areas such
as model checking, inductive theorem proving, many-sorted logic, modal
logic, description logics, intuitionistic logic, lambda calculus, higher-order
logic and type theory. I believe, however, that this book will prepare the
reader quite well to proceed with any of those areas, many of which are
best understood precisely in terms of their contrast with classical first-order
logic.

Another guiding principle has been to present topics only when I felt
competent to do so at a fairly elementary level, without undue technicali-
ties or difficult theory. This has meant the neglect of, for example, ordered
paramodulation, cylindrical algebraic decomposition and Gödel’s second
incompleteness theorem. However, in such cases I have tried to give ample
references so that interested readers can go further on their own.
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How to read this book

The text is designed to be read sequentially from beginning to end. However,
after a study of Chapter 1 and a good part of each of Chapters 2 and 3,
the reader may be in a position to dip into other parts according to taste.
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To support this, I’ve tried to make some important cross-references explicit,
and to avoid over-elaborate or non-standard notation where possible.

Each chapter ends with a number of exercises. These are almost never
intended to be routine, and some are very difficult. This reflects my belief
that it’s more enjoyable and instructive to solve one really challenging prob-
lem than to plod through a large number of trivial drill exercises. The
reader shouldn’t be discouraged if most of them seem too hard. They are all
optional, i.e. the text can be understood without doing any of them.

The mathematics used in this book

Mathematics plays a double role in this book: the subject matter itself is
treated mathematically, and automated reasoning is also applied to some
problems in mathematics. But for the most part, the mathematical knowl-
edge needed is not all that advanced: basic algebra, sets and functions, induc-
tion, and perhaps most fundamentally, an understanding of the notion of a
proof. In a few places, more sophisticated analysis and algebra are used,
though I have tried to explain most things as I go along. Appendix 1 is a
summary of relevant mathematical background that the reader might refer
to as needed, or even skim through at the outset.

The software in this book

An important part of this book is the associated software, which includes
simple implementations, in the OCaml programming language, of the var-
ious theorem-proving techniques described. Although the book can gener-
ally be understood without detailed study of the code, explanations are
often organized around it, and code is used as a proxy for what would
otherwise be a lengthy and formalistic description of a syntactic process.
(For example, the completeness proof for first-order logic in Sections 6.4–6.8
and the proof of Σ1-completeness of Robinson arithmetic in Section 7.6 are
essentially detailed informal arguments that some specific OCaml functions
always work.) So without at least a weak impressionistic idea of how the
code works, you will probably find some parts of the book heavy going.

Since I expect that many readers will have little or no experience of pro-
gramming, at least in a functional language like OCaml, I have summarized
some of the key ideas in Appendix 2. I don’t delude myself into believing
that reading this short appendix will turn a novice into an accomplished
functional programmer, but I hope it will at least provide some orientation,
and it does include references that the reader can pursue if necessary. In fact,
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the whole book can be considered an extended case study in functional pro-
gramming, illustrating many important ideas such as structured data types,
recursion, higher-order functions, continuations and abstract data types.

I hope that many readers will not only look at the code, but actually run
it, apply it to new problems, and even try modifying or extending it. To do
any of these, though, you will need an OCaml interpreter (see Appendix 2
again). The theorem-proving code itself is almost entirely listed in piecemeal
fashion within the text. Since the reader will presumably profit little from
actually typing it in, all the code can be downloaded from the website for
this book (www.cambridge.org/9780521899574) and then just loaded into
the OCaml interpreter with a few keystrokes or cut-and-pasted one phrase
at a time.

In the future, I hope to make updates to the code and perhaps ports
to other languages available at the same URL. More details can be found
there about how to run the code, and hence follow along the explanations
given in the book while trying out the code in parallel, but I’ll just mention
a couple of important points here. Probably the easiest way to proceed
is to load the entire code associated with this book, e.g. by starting the
OCaml interpreter ocaml in the directory (folder) containing the code and
typing:

#use "init.ml";;

The default environment is set up to automatically parse anything in
French-style �quotations� as a first-order formula. To use some code in
Chapter 1 you will need to change this to parse arithmetic expressions:

let default_parser = make_parser parse_expression;;

and to use some code in Chapter 2 on propositional logic, you will need to
change it to parse propositional formulas:

let default_parser = parse_prop_formula;;

Otherwise, you can more or less dip into any parts of the code that interest
you. In a very few cases, a basic version of a function is defined first as part of
the expository flow but later replaced by a more elaborate or efficient version
with the same name. The default environment in such cases will always give
you the latest one, and if you want to follow the exposition conscientiously
you may want to cut-and-paste the earlier version from its source file.

The code is mainly intended to serve a pedagogical purpose, and I have
always given clarity and/or brevity priority over efficiency. Still, it sometimes
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might be genuinely useful for applications. In any case, before using it, please
pay careful attention to the (minimal) legal restrictions listed on the website.
Note also that St̊almarck’s algorithm (Section 2.10) is patented, so the code
in the file stal.ml should not be used for commercial applications.





1

Introduction

In this chapter we introduce logical reasoning and the idea of mechanizing it,
touching briefly on important historical developments. We lay the ground-
work for what follows by discussing some of the most fundamental ideas in
logic as well as illustrating how symbolic methods can be implemented on a
computer.

1.1 What is logical reasoning?

There are many reasons for believing that something is true. It may seem
obvious or at least immediately plausible, we may have been told it by
our parents, or it may be strikingly consistent with the outcome of relevant
scientific experiments. Though often reliable, such methods of judgement are
not infallible, having been used, respectively, to persuade people that the
Earth is flat, that Santa Claus exists, and that atoms cannot be subdivided
into smaller particles.

What distinguishes logical reasoning is that it attempts to avoid any unjus-
tified assumptions and confine itself to inferences that are infallible and
beyond reasonable dispute. To avoid making any unwarranted assumptions,
logical reasoning cannot rely on any special properties of the objects or con-
cepts being reasoned about. This means that logical reasoning must abstract
away from all such special features and be equally valid when applied in other
domains. Arguments are accepted as logical based on their conformance to
a general form rather than because of the specific content they treat. For
instance, compare this traditional example:

All men are mortal
Socrates is a man
Therefore Socrates is mortal

1
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with the following reasoning drawn from mathematics:

All positive integers are the sum of four integer squares
15 is a positive integer
Therefore 15 is the sum of four integer squares

These two arguments are both correct, and both share a common pattern:

All X are Y
a is X
Therefore a is Y

This pattern of inference is logically valid, since its validity does not
depend on the content: the meanings of ‘positive integer’, ‘mortal’ etc. are
irrelevant. We can substitute anything we like for these X, Y and a, pro-
vided we respect grammatical categories, and the statement is still valid. By
contrast, consider the following reasoning:

All Athenians are Greek
Socrates is an Athenian
Therefore Socrates is mortal

Even though the conclusion is perfectly true, this is not logically valid,
because it does depend on the content of the terms involved. Other argu-
ments with the same superficial form may well be false, e.g.

All Athenians are Greek
Socrates is an Athenian
Therefore Socrates is beardless

The first argument can, however, be turned into a logically valid one
by making explicit a hidden assumption ‘all Greeks are mortal’. Now the
argument is an instance of the general logically valid form:

All G are M
All A are G
s is A
Therefore s is M

At first sight, this forensic analysis of reasoning may not seem very impres-
sive. Logically valid reasoning never tells us anything fundamentally new
about the world – as Wittgenstein (1922) says, ‘I know nothing about the
weather when I know that it is either raining or not raining’. In other words,
if we do learn something new about the world from a chain of reasoning,
it must contain a step that is not purely logical. Russell, quoted in Schilpp
(1944) says:
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Hegel, who deduced from pure logic the whole nature of the world, including the
non-existence of asteroids, was only enabled to do so by his logical incompetence.†

But logical analysis can bring out clearly the necessary relationships
between facts about the real world and show just where possibly unwar-
ranted assumptions enter into them. For example, from ‘if it has just rained,
the ground is wet’ it follows logically that ‘if the ground is not wet, it has not
just rained’. This is an instance of a general principle called contraposition:
from ‘if P then Q’ it follows that ‘if not Q then not P ’. However, passing
from ‘if P then Q’ to ‘if Q then P ’ is not valid in general, and we see in this
case that we cannot deduce ‘if the ground is wet, it has just rained’, because
it might have become wet through a burst pipe or device for irrigation.

Such examples may be, as Locke (1689) put it, ‘trifling’, but elementary
logical fallacies of this kind are often encountered. More substantially, deduc-
tions in mathematics are very far from trifling, but have preoccupied and
often defeated some of the greatest intellects in human history. Enormously
lengthy and complex chains of logical deduction can lead from simple and
apparently indubitable assumptions to sophisticated and unintuitive theo-
rems, as Hobbes memorably discovered (Aubrey 1898):

Being in a Gentleman’s Library, Euclid’s Elements lay open, and ’twas the 47 El.
libri 1 [Pythagoras’s Theorem]. He read the proposition. By G—, sayd he (he would
now and then sweare an emphaticall Oath by way of emphasis) this is impossible!
So he reads the Demonstration of it, which referred him back to such a Proposition;
which proposition he read. That referred him back to another, which he also read.
Et sic deinceps [and so on] that at last he was demonstratively convinced of that
trueth. This made him in love with Geometry.

Indeed, Euclid’s seminal work Elements of Geometry established a particu-
lar style of reasoning that, further refined, forms the backbone of present-day
mathematics. This style consists in asserting a small number of axioms, pre-
sumably with mathematical content, and deducing consequences from them
using purely logical reasoning.‡ Euclid himself didn’t quite achieve a com-
plete separation of logical and non-logical, but his work was finally perfected
by Hilbert (1899) and Tarski (1959), who made explicit some assumptions
such as ‘Pasch’s axiom’.

† To be fair to Hegel, the word logic was often used in a broader sense until quite recently, and
what we consider logic would have been called specifically deductive logic, as distinct from
inductive logic, the drawing of conclusions from observed data as in the physical sciences.

‡ Arguably this approach is foreshadowed in the Socratic method, as reported by Plato. Socrates
would win arguments by leading his hapless interlocutors from their views through chains
of apparently inevitable consequences. When absurd consequences were derived, the initial
position was rendered untenable. For this method to have its uncanny force, there must be no
doubt at all over the steps, and no hidden assumptions must be sneaked in.



4 Introduction

1.2 Calculemus!

‘Reasoning is reckoning’. In the epigraph of this book we quoted Hobbes on
the similarity between logical reasoning and numerical calculation. While
Hobbes deserves credit for making this better known, the idea wasn’t new
even in 1651.† Indeed the Greek word logos, used by Plato and Aristotle to
mean reason or logical thought, can also in other contexts mean computation
or reckoning. When the works of the ancient Greek philosophers became
well known in medieval Europe, logos was usually translated into ratio, the
Latin word for reckoning (hence the English words rational, ratiocination,
etc.). Even in current English, one sometimes hears ‘I reckon that . . . ’, where
‘reckon’ refers to some kind of reasoning rather than literally to computation.

However, the connection between reasoning and reckoning remained little
more than a suggestive slogan until the work of Gottfried Wilhelm von Leib-
niz (1646–1716). Leibniz believed that a system for reasoning by calculation
must contain two essential components:

• a universal language (characteristica universalis) in which anything can
be expressed;

• a calculus of reasoning (calculus ratiocinator) for deciding the truth of
assertions expressed in the characteristica.

Leibniz dreamed of a time when disputants unable to agree would not
waste much time in futile argument, but would instead translate their dis-
agreement into the characteristica and say to each other ‘calculemus’ (let us
calculate). He may even have entertained the idea of having a machine do the
calculations. By this time various mechanical calculating devices had been
designed and constructed, and Leibniz himself in 1671 designed a machine
capable of multiplying, remarking:

It is unworthy of excellent men to lose hours like slaves in the labour of calculations
which could safely be relegated to anyone else if machines were used.

So Leibniz foresaw the essential components that make automated reason-
ing possible: a language for expressing ideas precisely, rules of calculation for
manipulating ideas in the language, and the mechanization of such calcula-
tion. Leibniz’s concrete accomplishments in bringing these ideas to fruition
were limited, and remained little-known until recently. But though his work
had limited direct influence on technical developments, his dream still res-
onates today.

† The Epicurian philosopher Philodemus, writing in the first century B.C., introduced the term
logisticos (λoγιστικóς) to describe logic as the science of calculation.

DAVIDE
Evidenziato



1.3 Symbolism 5

1.3 Symbolism

Leibniz was right to draw attention to the essential first step of developing
an appropriate language. But he was far too ambitious in wanting to express
all aspects of human thought. Eventual progress came rather by extending
the scope of the symbolic notations already used in mathematics. As an
example of this notation, we would nowadays write ‘x2 ≤ y + z’ rather than
‘x multiplied by itself is less than or equal to the sum of y and z’. Over time,
more and more of mathematics has come to be expressed in formal symbolic
notation, replacing natural language renderings. Several sound reasons can
be identified.

First, a well-chosen symbolic form is usually shorter, less cluttered with
irrelevancies, and helps to express ideas more briefly and intuitively (at
least to cognoscenti). For example Leibniz’s own notation for differentiation,
dy/dx, nicely captures the idea of a ratio of small differences, and makes
theorems like the chain rule dy/dx = dy/du · du/dx look plausible based on
the analogy with ordinary algebra.

Second, using a more stylized form of expression can avoid some of the
ambiguities of everyday language, and hence communicate meaning with
more precision. Doubts over the exact meanings of words are common in
many areas, particularly law.† Mathematics is not immune from similar basic
disagreements over exactly what a theorem says or what its conditions of
validity are, and the consensus on such points can change over time (Lakatos
1976; Lakatos 1980).

Finally, and perhaps most importantly, a well-chosen symbolic notation
can contribute to making mathematical reasoning itself easier. A simple but
outstanding example is the ‘positional’ representation of numbers, where a
number is represented by a sequence of numerals each implicitly multiplied
by a certain power of a ‘base’. In decimal the base is 10 and we understand
the string of digits ‘179’ to mean:

179 = 1 × 102 + 7 × 101 + 9 × 100.

In binary (currently used by most digital computers) the base is 2 and
the same number is represented by the string 10110011:

10110011 = 1×27 +0×26 +1×25 +1×24 +0×23 +0×22 +1×21 +1×20.

† For example ‘Since the object of ss 423 and 425 of the Insolvency Act 1986 was to remedy the
avoidance of debts, the word ‘and’ between paragraphs (a) and (b) of s 423(2) must be read
conjunctively and not disjunctively.’ (Case Summaries, Independent newspaper, 27th December
1993.)
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These positional systems make it very easy to perform important operations
on numbers like comparing, adding and multiplying; by contrast, the sys-
tem of Roman numerals requires more involved algorithms, though there is
evidence that many Romans were adept at such calculations (Maher and
Makowski 2001). For example, we are normally taught in school to add dec-
imal numbers digit-by-digit from the right, propagating a carry leftwards
by adding one in the next column. Once it becomes second nature to fol-
low the rules, we can, and often do, forget about the underlying meaning
of these sequences of numerals. Similarly, we might transform an equation
x−3 = 5−x into x = 3+5−x and then to 2x = 5+3 without pausing each
time to think about why these rules about moving things from one side of
the equation to the other are valid. As Whitehead (1919) says, symbolism
and formal rules of manipulation:

[. . . ] have invariably been introduced to make things easy. [. . . ] by the aid of sym-
bolism, we can make transitions in reasoning almost mechanically by the eye, which
otherwise would call into play the higher faculties of the brain. [. . . ] Civilisation
advances by extending the number of important operations which can be performed
without thinking about them.

Indeed, such formal rules can be followed reliably by people who do not
understand the underlying justification, or by computers. After all, com-
puters are expressly designed to follow formal rules (programs) quickly and
reliably. They do so without regard to the underlying justification, and will
faithfully follow even erroneous sets of rules (programs with ‘bugs’).

1.4 Boole’s algebra of logic

The word algebra is derived from the Arabic ‘al-jabr’, and was first used in
the ninth century by Mohammed al-Khwarizmi (ca. 780–850), whose name
lies at the root of the word ‘algorithm’. The term ‘al-jabr’ literally means
‘reunion’, but al-Khwarizmi used it to describe in particular his method of
solving equations by collecting together (‘reuniting’) like terms, e.g. passing
from x + 4 = 6 − x to 2x = 6 − 4 and so to the solution x = 1.† Over the
following centuries, through the European renaissance, algebra continued to
mean, essentially, rules of manipulation for solving equations.

During the nineteenth century, algebra in the traditional sense reached its
limits. One of the central preoccupations had been the solving of equations
of higher and higher degree, but Niels Henrik Abel (1802–1829) proved in

† The first use of the phrase in Europe was nothing to do with mathematics, but rather the
appellation ‘algebristas’ for Spanish barbers, who also set (‘reunited’) broken bones as a sideline
to their main business.
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1824 that there is no general way of solving polynomial equations of degree 5
and above using the ‘radical’ expressions that had worked for lower degrees.
Yet at the same time the scope of algebra expanded and it became general-
ized. Traditionally, variables had stood for real numbers, usually unknown
numbers to be determined. However, it soon became standard practice to
apply all the usual rules of algebraic manipulation to the ‘imaginary’ quan-
tity i assuming the formal property i2 = −1. Though this procedure went
for a long time without any rigorous justification, it was effective.

Algebraic methods were even applied to objects that were not numbers
in the usual sense, such as matrices and Hamilton’s ‘quaternions’, even at
the cost of abandoning the usual ‘commutative law’ of multiplication xy =
yx. Gradually, it was understood that the underlying interpretation of the
symbols could be ignored, provided it was established once and for all that
the rules of manipulation used are all valid under that interpretation. The
state of affairs was described clear-sightedly by George Boole (1815–1864).

They who are acquainted with the present state of the theory of Symbolic Algebra,
are aware, that the validity of the processes of analysis does not depend upon
the interpretation of the symbols which are employed, but solely on their laws of
combination. Every system of interpretation which does not affect the truth of the
relations supposed, is equally admissible, and it is true that the same process may,
under one scheme of interpretation, represent the solution of a question on the
properties of numbers, under another, that of a geometrical problem, and under a
third, that of a problem of dynamics or optics. (Boole 1847)

Boole went on to observe that nevertheless, by historical or cultural acci-
dent, all algebra at the time involved objects that were in some sense quanti-
tative. He introduced instead an algebra whose objects were to be interpreted
as ‘truth-values’ of true or false, and where variables represent propositions.†

By a proposition, we mean an assertion that makes a declaration of fact and
so may meaningfully be considered either true or false. For example, ‘1 < 2’,
‘all men are mortal’, ‘the moon is made of cheese’ and ‘there are infinitely
many prime numbers p such that p + 2 is also prime’ are all propositions,
and according to our present state of knowledge, the first two are true, the
third false and the truth-value of the fourth is unknown (this is the ‘twin
primes conjecture’, a famous open problem in mathematics).

We are familiar with applying to numbers various arithmetic operations
like unary ‘minus’ (negation) and binary ‘times’ (multiplication) and ‘plus’
(addition). In an exactly analogous way, we can combine truth-values using

† Actually Boole gave two different but related interpretations: an ‘algebra of classes’ and an
‘algebra of propositions’; we’ll focus on the latter.
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so-called logical connectives, such as unary ‘not’ (logical negation or com-
plement) and binary ‘and’ (conjunction) and ‘or’ (disjunction).† And we
can use letters to stand for arbitrary propositions instead of numbers when
we write down expressions. Boole emphasized the connection with ordinary
arithmetic in the precise formulation of his system and in the use of the
familiar algebraic notation for many logical constants and connectives:

0 false
1 true
pq p and q

p + q p or q

On this interpretation, many of the familiar algebraic laws still hold. For
example, ‘p and q’ always has the same truth-value as ‘q and p’, so we can
assume the commutative law pq = qp. Similarly, since 0 is false, ‘0 and p’ is
false whatever p may be, i.e. 0p = 0. But the Boolean algebra of propositions
satisfies additional laws that have no counterpart in arithmetic, notably the
law p2 = p, where p2 abbreviates pp.

In everyday English, the word ‘or’ is ambiguous. The complex proposition
‘p or q’ may be interpreted either inclusively (p or q or both) or exclusively
(p or q but not both).‡ In everyday usage it is often implicit that the two
cases are mutually exclusive (e.g. ‘I’ll do it tomorrow or the day after’).
Boole’s original system restricted the algebra so that p + q only made sense
if pq = 0, rather as in ordinary algebra x/y only makes sense if y �= 0.
However, following Boole’s successor William Stanley Jevons (1835–1882),
it became customary to allow use of ‘or’ without restriction, and interpret it
in the inclusive sense. We will always understand ‘or’ in this now-standard
sense, ‘p or q’ meaning ‘p or q or both’.

Mechanization

Even before Boole, machines for logical deduction had been developed,
notably the ‘Stanhope demonstrator’ invented by Charles, third Earl of Stan-
hope (1753–1816). Inspired by this, Jevons (1870) subsequently designed and
built his ‘logic machine’, a piano-like device that could perform certain cal-
culations in Boole’s algebra of classes. However, the limits of mechanical

† Arguably disjunction is something of a misnomer, since the two truth-values need not be
disjoint, so some like Quine (1950) prefer alternation. And the word ‘connective’ is a misnomer
in the case of unary operations like ‘not’, since it does not connect two propositions, but merely
negates a single one. However, both usages are well-established.

‡ Latin, on the other hand, has separate phrases ‘p vel q’ and ‘aut p aut q’ for the inclusive and
exclusive readings, respectively.
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engineering and the slow development of logic itself meant that the mecha-
nization of reasoning really started to develop somewhat later, at the start
of the modern computer age. We will cover more of the history later in the
book in parallel with technical developments. Jevons’s original machine can
be seen in the Oxford Museum for the History of Science.†

Logical form

In Section 1.1 we talked about arguments ‘having the same form’, but did
not define this precisely. Indeed, it’s hard to do so for arguments expressed
in English and other natural languages, which often fail to make the logical
structure of sentences apparent: superficial similarities can disguise funda-
mental structural differences, and vice versa. For example, the English word
‘is’ can mean ‘has the property of being’ (‘4 is even’), or it can mean ‘is the
same as’ (‘2 + 2 is 4’). This example and others like it have often generated
philosophical confusion.

Once we have a precise symbolism for logical concepts (such as Boole’s
algebra of logic) we can simply say that two arguments have the same form if
they are both instances of the same formal expression, consistently replacing
variables by other propositions. And we can use the formal language to make
a mathematically precise definition of logically valid arguments. This is not
to imply that the definition of logical form and of purely logical argument is
a philosophically trivial question; quite the contrary. But we are content not
to solve this problem but to finesse it by adopting a precise mathematical
definition, rather as Hertz (1894) evaded the question of what ‘force’ means
in mechanics. After enough concrete experience we will briefly consider (Sec-
tion 7.8) how our demarcation of the logical arguments corresponds to some
traditional philosophical distinctions.

1.5 Syntax and semantics

An unusual feature of logic is the careful separation of symbolic expressions
and what they stand for. This point bears emphasizing, because in every-
day mathematics we often pass unconsciously to the mathematical objects
denoted by the symbols. For example when we read and write ‘12’ we think
of it as a number, a member of the set N, not as a sequence of two numeral
symbols used to represent that number. However, when we want to make
precise our formal manipulations, whether these be adding decimal numbers
† See www.mhs.ox.ac.uk/database/index.htm?fname=brief&invno=18230 for some small pic-

tures.
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digit-by-digit or using algebraic laws to rearrange symbolic expressions, we
need to maintain the distinction. After all, when deriving equations like
x + y = y + x, the whole point is that the mathematical objects denoted
are the same; we cannot directly talk about such manipulations if we only
consider the underlying meaning.

Typically then, we are concerned with (i) some particular set of allow-
able formal expressions, and (ii) their corresponding meanings. The two are
sharply distinguished, but are connected by an interpretation, which maps
expressions to their meanings:

Expression Meaning�
Interpretation

The distinction between formal expressions and their meanings is also
important in linguistics, and we’ll take over some of the jargon from that
subject. Two traditional subfields of linguistics are syntax, which is con-
cerned with the grammatical formation of sentences, and semantics, which
is concerned with their meanings. Similarly in logic we often refer to methods
as ‘syntactic’ if ‘like algebraic manipulations’ they are considered in isolation
from meanings, and ‘semantic’ or ‘semantical’ if meanings play an impor-
tant role. The words ‘syntax’ and ‘semantics’ are also used in linguistics with
more concrete meanings, and these too are adopted in logic.

• The syntax of a language is a system of grammar laying out rules about
how to produce or recognize grammatical phrases and sentences. For
example, we might consider ‘I went to the shop’ grammatical English
but not ‘I shop to the went’ because the noun and verb are swapped. In
logical systems too, we will often have rules telling us how to generate or
recognize well-formed expressions, perhaps for example allowing ‘x + 1’
but not ‘+1×’.

• The semantics of a particular word, symbol, sign or phrase is simply
its meaning. More broadly, the semantics of a language is a systematic
way of ascribing such meanings to all the (grammatical) expressions in
the language. Translated into linguistic jargon, choosing an interpretation
amounts exactly to giving a semantics to the language.
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Object language and metalanguage

It may be confusing that we will be describing formal rules for performing
logical reasoning, and yet will reason about those rules using . . . logic! In this
connection, it’s useful to keep in mind the distinction between the (formal)
logic we are talking about and the (everyday intuitive) logic we are using
to reason about it. In order to emphasize the contrast we will sometimes
deploy the following linguistic jargon. A metalanguage is a language used
to talk about another distinct object language, and likewise a metalogic is
used to reason about an object logic. Thus, we often call the theorems we
derive about formal logic and automated reasoning systems metatheorems
rather than merely theorems. This is not (only) to sound more grandiose,
but to emphasize the distinction from ‘theorems’ expressed inside those for-
mal systems. Likewise, metalogical reasoning applied to formalized math-
ematical proofs is often called metamathematics (see Section 7.1). By the
way, our chosen programming language OCaml is derived from Edinburgh
ML, which was expressly designed for writing theorem proving programs
(Gordon, Milner and Wadsworth 1979) and whose name stands for Meta
Language. This object–meta distinction (Tarski 1936; Carnap 1937) isn’t
limited to logical languages. For instance, in a Russian language lesson given
in English, we can consider Russian to be the object language and English
the metalanguage.

Abstract and concrete syntax

Fine details of syntax are of no fundamental importance. Some mathematics
is typed, some is handwritten, and people make various essentially arbitrary
choices that do not change anything about the structural way symbols are
used together. When mechanizing logic on the computer, we will, for simplic-
ity, restrict ourselves to the usual stock of ASCII characters,† which includes
unaccented Latin letters, numbers and some common punctuation signs and
spaces. For the fancy letters and special symbols that many logicians use,
we will use other letters or words, e.g. ‘forall’ instead of ‘∀’. We will, how-
ever, continue to employ the usual symbols in theoretical discussions. This
continual translation may even be helpful to the reader who hasn’t seen or
understood the symbols before.

Regardless of how the symbolic expressions are read or written, it’s more
convenient to manipulate them in a form better reflecting their structure.
Consider the expression ‘x+y× z−w’ in ordinary algebra. This linear form

† See en.wikipedia.org/wiki/ASCII.
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obscures the meaningful structure. To understand which operators have been
applied to which subexpressions, or even what constitutes a subexpression,
we need to know rules of precedence and associativity, e.g. that ‘×’ ‘binds
tighter’ than ‘+’. For instance, despite their apparent similarity in the linear
form, ‘y × z’ is a subexpression while ‘x + y’ is not. Even if we make the
structure explicit by fully bracketing it as ‘(x + (y × z)) − w’, basic use-
ful operations on expressions like finding subexpressions, or evaluating the
expression for particular values of the variables, become tiresome to describe
precisely; one needs to shuffle back and forth over the formula matching up
brackets.

A ‘tree’ structure is much better: just as a family tree makes relations
among family members clearly apparent, a tree representation of an expres-
sion displays its structure and makes most important manipulations straight-
forward. As in genealogy, it’s customary to draw trees growing downwards
on the printed page, so the same expression might be represented as follows:

�
��

�
��

−

w+

x �
��

�
��

�
��

�
��

×

y z

Generally we refer to the (mainly linear) format used by people as the
concrete syntax, and the structural (typically tree-like) form used for manip-
ulations as the abstract syntax. Trees like the above are often called abstract
syntax trees (ASTs) and are widely used as the internal representation of
formal languages in all kinds of symbolic programs, including the compilers
that translate high-level programming languages into machine instructions.

Despite their making the structure of an expression clearer, most people
prefer not to think or communicate using trees, but to use the less structured
concrete syntax.† Hence in our theorem-proving programs we will need to
translate input from concrete syntax to abstract syntax, and translate out-
put back from abstract syntax to concrete syntax. These two tasks, known to
computer scientists as parsing and prettyprinting, are now well understood
† This is not to say that concrete syntax is necessarily a linear sequence of symbols. Mathemati-

cians often use semi-graphical symbolism (matrix notation, commutative diagrams), and the
pioneering logical notation introduced by Frege (1879) was tree-like.
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and fairly routine. The small overhead of writing parsers and prettyprint-
ers is amply repaid by the greater convenience of the tree form for internal
manipulation. There are enthusiastic advocates of systems of concrete syn-
tax such as ‘Polish notation’, ‘reverse Polish notation (RPN)’ and LISP
‘S-expressions’, where our expression would be denoted, respectively, by

- + x × y z w
x y z × + w -
(- (+ x (× y z)) w)

but we will use more traditional notation, with infix operators like ‘+’ and
rules of precedence and bracketing.†

1.6 Symbolic computation and OCaml

In the early days of modern computing it was commonly believed that com-
puters were essentially devices for numeric calculation (Ceruzzi 1983). Their
input and output devices were certainly biased in that direction: when
Samuels wrote the first checkers (draughts) program at IBM in 1948, he
had to encode the output as a number because that was all that could be
printed.‡ However, it had already been recognized, long before Turing’s theo-
retical construction of a universal machine (see Section 7.5), that the poten-
tial applicability of computers was much wider. For example, Ada Lovelace
observed in 1842 (Huskey and Huskey 1980):§

Many persons who are not conversant with mathematical studies, imagine that
because the business of [Babbage’s analytical] engine is to give its results in numer-
ical notation, the nature of its processes must consequently be arithmetical and
numerical, rather than algebraical and analytical. This is an error. The engine can
arrange and combine its numerical quantities exactly as if they were letters or
any other general symbols; and in fact it might bring out its results in algebraical
notation, were provisions made accordingly.

There are now many programs that perform symbolic computation,
including various quite successful ‘computer algebra systems’ (CASs).
Theorem proving programs bear a strong family resemblance to CASs, and
even overlap in some of the problems they can solve (see Section 5.11, for
example).

† Originally the spartan syntax of LISP ‘S-expressions’ was to be supplemented by a richer and
more conventional syntax of ‘M-expressions’ (meta-expressions), and this is anticipated in some
of the early publications like the LISP 1.5 manual (McCarthy 1962). However, such was the
popularity of S-expressions that M-expressions were seldom implemented and never caught on.

‡ Related in his speech to the 1985 International Joint Conference on Artificial Intelligence.
§ See www.fourmilab.to/babbage/sketch.html.
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The preoccupations of those doing symbolic computation have influenced
their favoured programming languages. Whereas many system programmers
favour C, numerical analysts FORTRAN and so on, symbolic programmers
usually prefer higher-level languages that make typical symbolic operations
more convenient, freeing the programmer from explicit details of memory
representation etc. We’ve chosen to use Objective CAML (OCaml) as the
vehicle for the programming examples in this book. Our code does not use
any of OCaml’s more exotic features, and should be easy to port to related
functional languages such as F�, Standard ML or Haskell.

Our insistence on using explicit OCaml code may be disquieting for those
with no experience of computer programming, or for those who only know
imperative and relatively low-level languages like C or Java. However, we
hope that with the help of Appendix 2 and additional study of some standard
texts recommended at the end of this chapter, the determined reader will
pick up enough OCaml to follow the discussion and play with the code.
As a gentle introduction to symbolic computation in OCaml, we will now
implement some simple manipulations in ordinary algebra, a domain that
will be familiar to many readers.

The first task is to define a datatype to represent the abstract syntax of
algebraic expressions. We will allow expressions to be built from numeric
constants like 0, 1 and 33 and named variables like x and y using the oper-
ations of addition (‘+’) and multiplication (‘*’). Here is the corresponding
recursive datatype declaration:

type expression =
Var of string

| Const of int
| Add of expression * expression
| Mul of expression * expression;;

That is, an expression is either a variable identified by a string, a con-
stant identified by its integer value, or an addition or multiplication oper-
ator applied to two subexpressions. (A ‘*’ indicates that the domain of a
type constructor is a Cartesian product, so it can take two expressions as
arguments. It is nothing to do with the multiplication being defined!) We
can use the syntax constructors introduced by this type definition to create
the symbolic representation for any particular expression, such as 2×x + y:

# Add(Mul(Const 2,Var "x"),Var "y");;
- : expression = Add (Mul (Const 2, Var "x"), Var "y")
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A simple but representative example of symbolic computation is applying
specified transformation rules like 0 + x −→ x and 3 + 5 −→ 8 to ‘simplify’
an expression. Each rule is expressed in OCaml by a starting and finishing
pattern, e.g. Add(Const(0),x) -> x for a transformation 0+x −→ x. (The
special pattern ‘_’ matches anything, so the last line ensures that if none of
the other patterns match, expr is returned unchanged.) When the function
is applied, OCaml will run through the rules in order and apply the first
one whose starting pattern matches the input expression expr, replacing
variables like x by the relevant subexpression.

let simplify1 expr =
match expr with
Add(Const(m),Const(n)) -> Const(m + n)

| Mul(Const(m),Const(n)) -> Const(m * n)
| Add(Const(0),x) -> x
| Add(x,Const(0)) -> x
| Mul(Const(0),x) -> Const(0)
| Mul(x,Const(0)) -> Const(0)
| Mul(Const(1),x) -> x
| Mul(x,Const(1)) -> x
| _ -> expr;;

However, simplifying just once is not necessarily adequate; we would like
instead to simplify repeatedly until no further progress is possible. To do this,
let us apply the above function in a bottom-up sweep through an expres-
sion tree, which will simplify in a cascaded manner. In traditional OCaml
recursive style, we first simplify any immediate subexpressions as much as
possible, then apply simplify1 to the result:†

let rec simplify expr =
match expr with
Add(e1,e2) -> simplify1(Add(simplify e1,simplify e2))

| Mul(e1,e2) -> simplify1(Mul(simplify e1,simplify e2))
| _ -> simplify1 expr;;

Rather than a simple bottom-up sweep, a more sophisticated approach
would be to mix top-down and bottom-up simplification. For example, if E

is very large it would seem more efficient to simplify 0 × E immediately to
0 without any examination of E. However, this needs to be implemented
with care to ensure that all simplifiable subterms are simplified without the
danger of looping indefinitely. Anyway, here is our simplification function in
action on the expression (0 × x + 1) ∗ 3 + 12:

† We could leave simplify1 out of the last line, since no simplification will be applicable to any
expression reaching this case, but it seems more thematic to include it.
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# let e = Add(Mul(Add(Mul(Const(0),Var "x"),Const(1)),Const(3)),
Const(12));;

val e : expression =
Add (Mul (Add (Mul (Const 0, Var "x"), Const 1), Const 3), Const 12)

# simplify e;;
- : expression = Const 15

Getting this far is straightforward using standard OCaml functional pro-
gramming techniques: recursive datatypes to represent tree structures and
the definition of functions via pattern-matching and recursion. We hope
the reader who has not used similar languages before can begin to see why
OCaml is appealing for symbolic computing. But of course, those who are
fond of other programming languages are more than welcome to translate
our code into them.

As planned, we will implement a parser and prettyprinter to translate
between abstract syntax trees and concrete strings (‘x + 0’), setting them
up to be invoked automatically by OCaml for input and output of expres-
sions. We model our concrete syntax on ordinary algebraic notation, except
that in a couple of respects we will follow the example of computer languages
rather than traditional mathematics. We allow arbitrarily long ‘words’ as
variables, whereas mathematicians traditionally use mostly single letters
with superscripts and subscripts; this is especially important given the lim-
ited stock of ASCII characters. And we insist that multiplication is written
with an explicit infix symbol (‘x * y’), rather than simple juxtaposition
(‘x y’), which later on we will use for function application. In everyday
mathematics we usually rely on informal cues like variable names and back-
ground knowledge to see at once that f(x + 1) denotes function application
whereas y(x+1) denotes multiplication, but this kind of context-dependent
parsing is a bit more complicated to implement.

1.7 Parsing

Translating concrete into abstract syntax is a well-understood topic because
of its central importance to programming language compilers, interpreters
and translators. It is now conventional to separate the transformation into
two separate stages:

• lexical analysis (scanning) decomposes the sequences of input characters
into ‘tokens’ (roughly speaking, words);

• parsing converts the linear sequences of tokens into an abstract syntax
tree.
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For example, lexical analysis might split the input ‘v10 + v11’ into three
tokens ‘v10’, ‘+’ and ‘v11’, coalescing adjacent alphanumeric characters into
words and throwing away any number of spaces (and perhaps even line
breaks) between these tokens. Parsing then only has to deal with sequences
of tokens and can ignore lower-level details.

Lexing

We start by classifying characters into broad groups: spaces, punctuation,
symbolic, alphanumeric, etc. We treat the underscore and prime characters
as alphanumeric, in deference to the usual conventions in computing (‘x_1’)
and mathematics (‘f ′’). The following OCaml predicates tell us whether a
character (actually, one-character string) belongs to a certain class:†

let matches s = let chars = explode s in fun c -> mem c chars;;

let space = matches " \t\n\r"
and punctuation = matches "()[]{},"
and symbolic = matches "~‘!@#$%^&*-+=|\\:;<>.?/"
and numeric = matches "0123456789"
and alphanumeric = matches
"abcdefghijklmnopqrstuvwxyz_’ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";;

A token will be either a sequence of adjacent alphanumeric characters (like
‘x’ or ‘size1’), a sequence of adjacent symbolic characters (‘+’, ‘<=’), or a sin-
gle punctuation character (‘(’).‡ Lexical analysis, scanning left-to-right, will
assume that a token is the longest possible, for instance that ‘x1’ is a single
token, not two. We treat punctuation characters differently from other sym-
bols just to avoid some counterintuitive effects of the ‘longest possible token’
rule, such as the detection of a token ‘((’ in the string ‘((x + y) + z)’.

Next we will define an auxiliary function lexwhile that takes a property
prop of characters, such as one of the classifying predicates above, and a list
of input characters, separating off as a string the longest initial sequence of
that list of characters satisfying prop:

let rec lexwhile prop inp =
match inp with
c::cs when prop c -> let tok,rest = lexwhile prop cs in c^tok,rest

| _ -> "",inp;;

† Of course, this is a very inefficient procedure. However, we care even less than usual about
efficiency in these routines since parsing is not usually a critical component in overall runtime.

‡ In the present example, the only meaningful symbolic tokens consist of a single character, like
‘+’. However, by allowing longer symbolic tokens we will be able to re-use this lexical analyzer
unchanged in later work.
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The lexical analyzer itself maps a list of input characters into a list of
token strings. First any initial spaces are separated and thrown away, using
lexwhile space. If the resulting list of characters is nonempty, we classify
the first character and use lexwhile to separate the longest string of char-
acters of the same class; for punctuation (or other unexpected) characters
we give lexwhile an always-false property so it stops at once. Then we add
the first character back on to the token and recursively analyze the rest of
the input.

let rec lex inp =
match snd(lexwhile space inp) with
[] -> []

| c::cs -> let prop = if alphanumeric(c) then alphanumeric
else if symbolic(c) then symbolic
else fun c -> false in

let toktl,rest = lexwhile prop cs in
(c^toktl)::lex rest;;

We can try the lexer on a typical input string, and another example rem-
iniscent of C syntax to illustrate longer symbolic tokens.

# lex(explode "2*((var_1 + x’) + 11)");;
- : string list =
["2"; "*"; "("; "("; "var_1"; "+"; "x’"; ")"; "+"; "11"; ")"]
# lex(explode "if (*p1-- == *p2++) then f() else g()");;
- : string list =
["if"; "("; "*"; "p1"; "--"; "=="; "*"; "p2"; "++"; ")"; "then"; "f";
"("; ")"; "else"; "g"; "("; ")"]

Parsing

Now we want to transform a sequence of tokens into an abstract syntax
tree. We can reflect the higher precedence of multiplication over addition by
considering an expression like 2 ∗ w + 3 ∗ (x + y) + z to be a sequence of
‘product expressions’ (here ‘2 ∗w’, ‘3 ∗ (x + y)’ and ‘z’) separated by ‘+’. In
turn each product expression, say 2∗w, is a sequence of ‘atomic expressions’
(here ‘2’ and ‘w’) separated by ‘∗’. Finally, an atomic expression is either
a constant, a variable, or an arbitrary expression enclosed in brackets; note
that we require parentheses (round brackets), though we could if we chose
allow square brackets and/or braces as well. We can invent names for these
three categories, say ‘expression’, ‘product’ and ‘atom’, and illustrate how
each is built up from the others by a series of rules often called a ‘BNF†

† BNF stands for ‘Backus–Naur form’, honouring two computer scientists who used this technique
to describe the syntax of the programming language ALGOL. Similar grammars are used in
formal language theory.
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grammar’; read ‘−→’ as ‘may be of the form’ and ‘|’ as ‘or’.

expression −→ product + · · · + product

product −→ atom ∗ · · · ∗ atom

atom −→ (expression)

| constant

| variable

Since the grammar is already recursive (‘expression’ is defined in terms
of itself, via the intermediate categories), we might as well use recursion to
replace the repetitions:

expression −→ product

| product + expression

product −→ atom

| atom ∗ product

atom −→ (expression)

| constant

| variable

This gives rise to a very direct way of parsing the input using three mutu-
ally recursive functions for the three different categories of expression, an
approach known as recursive descent parsing. Each parsing function is given
a list of tokens and returns a pair consisting of the parsed expression tree
together with any unparsed input. Note that the pattern of recursion exactly
matches the above grammar and simply examines tokens when necessary to
decide which of several alternatives to take. For example, to parse an expres-
sion, we first parse a product, and then test whether the first unparsed
character is ‘+’; if it is, then we make a recursive call to parse the rest and
compose the results accordingly.

let rec parse_expression i =
match parse_product i with
e1,"+"::i1 -> let e2,i2 = parse_expression i1 in Add(e1,e2),i2

| e1,i1 -> e1,i1

A product works similarly in terms of a parser for atoms:

and parse_product i =
match parse_atom i with
e1,"*"::i1 -> let e2,i2 = parse_product i1 in Mul(e1,e2),i2

| e1,i1 -> e1,i1
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and an atom parser handles the most basic expressions, including an arbi-
trary expression in brackets:

and parse_atom i =
match i with
[] -> failwith "Expected an expression at end of input"

| "("::i1 -> (match parse_expression i1 with
e2,")"::i2 -> e2,i2

| _ -> failwith "Expected closing bracket")
| tok::i1 -> if forall numeric (explode tok)

then Const(int_of_string tok),i1
else Var(tok),i1;;

The ‘right-recursive’ formulation of the grammar means that we interpret
repeated operations that lack disambiguating brackets as right-associative,
e.g. x+y+z as x+(y+z). Had we instead defined a ‘left-recursive’ grammar:

expression −→ product

| expression + product

then x+y + z would have been interpreted as (x+y)+ z. For an associative
operation like ‘+’ it doesn’t matter that much, since at least the meanings
are the same, but for ‘−’ this latter policy is clearly more appropriate.†

Finally, we define the overall parser via a wrapper function that explodes
the input string, lexically analyzes it, parses the sequence of tokens and then
finally checks that no input remains unparsed. We define a generic function
for this, applicable to any core parser pfn, since it will be useful again later:

let make_parser pfn s =
let expr,rest = pfn (lex(explode s)) in
if rest = [] then expr else failwith "Unparsed input";;

We call our parser default_parser, and test it on a simple example:

# let default_parser = make_parser parse_expression;;
val default_parser : string -> expression = <fun>
# default_parser "x + 1";;
- : expression = Add (Var "x", Const 1)

But we don’t even need to invoke the parser explicitly. Our setup exploits
OCaml’s quotation facility so that any French-style �quotation� will auto-
matically have its body passed as a string to the function default_parser:‡

† Translating such a left-recursive grammar naively into recursive parsing functions would cause
an infinite loop since parse expression would just call itself directly right at the beginning
and never get started on useful work. However, a small modification copes with this difficulty –
see the definition of parse left infix in Appendix 3.

‡ OCaml’s treatment of quotations is programmable; our action of feeding the string to
default parser is set up in the file Quotexpander.ml.
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# <<(x1 + x2 + x3) * (1 + 2 + 3 * x + y)>>;;
- : expression =
Mul (Add (Var "x1", Add (Var "x2", Var "x3")),
Add (Const 1, Add (Const 2, Add (Mul (Const 3, Var "x"), Var "y"))))

The process by which parsing functions were constructed from the gram-
mar is almost mechanical, and indeed there are tools to produce parsers
automatically from slightly augmented grammars. However, we thought it
worthwhile to be explicit about this programming task, which is not really
so difficult and provides a good example of programming with recursive
functions.

1.8 Prettyprinting

For presentation to the user we need the reverse transformation, from abstract
to concrete syntax. A crude but adequate solution is the following:

let rec string_of_exp e =
match e with
Var s -> s

| Const n -> string_of_int n
| Add(e1,e2) -> "("^(string_of_exp e1)^" + "^(string_of_exp e2)^")"
| Mul(e1,e2) -> "("^(string_of_exp e1)^" * "^(string_of_exp e2)^")";;

Brackets are necessary in general to reflect the groupings in the abstract
syntax, otherwise we could mistakenly print, say ‘6×(x+y)’ as ‘6×x+y’. Our
function puts brackets uniformly round each instance of a binary operator,
which is perfectly correct but sometimes looks cumbersome to a human:

# string_of_exp <<x + 3 * y>>;;
- : string = "(x + (3 * y))"

We would (probably) prefer to omit the outermost brackets, and oth-
ers that are implicit in rules for precedence or associativity. So let’s give
string_of_exp an additional argument for the ‘precedence level’ of the
operator of which the expression is an immediate subexpression. Now, brack-
ets are only needed if the current expression has a top-level operator with
lower precedence than this ‘outer precedence’ argument.

We arbitrarily allocate precedence 2 to addition, 4 to multiplication, and
use 0 at the outermost level. Moreover, we treat the operators asymmetri-
cally to reflect right-associativity, so the left-hand recursive subcall is given
a slightly higher outer precedence to force brackets if iterated instances of
the same operation are left-associated.
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let rec string_of_exp pr e =
match e with
Var s -> s

| Const n -> string_of_int n
| Add(e1,e2) ->

let s = (string_of_exp 3 e1)^" + "^(string_of_exp 2 e2) in
if 2 < pr then "("^s^")" else s

| Mul(e1,e2) ->
let s = (string_of_exp 5 e1)^" * "^(string_of_exp 4 e2) in
if 4 < pr then "("^s^")" else s;;

Our overall printing function will print with starting precedence level 0
and surround the result with the kind of quotation marks we use for input:

let print_exp e = Format.print_string ("<<"^string_of_exp 0 e^">>");;

As with the parser, we can set up the printer to be invoked automatically
on any result of the appropriate type, using the following magic incantation
(the hash is part of the directive that is entered, not the OCaml prompt):

#install_printer print_exp;;

Now we get output quite close to the concrete syntax we would naturally
type in:

# <<x + 3 * y>>;;
- : expression = <<x + 3 * y>>
# <<(x + 3) * y>>;;
- : expression = <<(x + 3) * y>>
# <<1 + 2 + 3>>;;
- : expression = <<1 + 2 + 3>>
# <<((1 + 2) + 3) + 4>>;;
- : expression = <<((1 + 2) + 3) + 4>>

The main rough edge remaining is that expressions too large to fit on
one line are not split up in an intelligent way to reflect the structure via
the line breaks, as in the following example. The printers we use later (see
Appendix 3) make a somewhat better job of this by employing a special
OCaml library Format.

# <<(x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10) *
(y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10)>>;;

- : expression =
<<(x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10) * (y1 + y2 + y3 +
y4 + y5 + y6 + y7 + y8 + y9 + y10)>>

Having demonstrated the basic programming needed to support symbolic
computation, we will end this chapter and move on to the serious study of
logic and automated reasoning.
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Further reading

We confine ourselves here to general references and those for topics that
we won’t cover ourselves in more depth later. More specific and technical
references will be presented at the end of each later chapter.

Davis (2000) and Devlin (1997) are general accounts of the development of
logic and its mechanization, as well as related topics in computer science and
linguistics. There are many elementary textbooks on logic such as Hodges
(1977), Mates (1972) and Tarski (1941). Two logic books that, like this one,
are accompanied by computer programs are Keisler (1996) and Barwise and
Etchemendy (1991). There are also several books discussing carefully the
role of logical reasoning in mathematics, e.g. Garnier and Taylor (1996).

Bocheński (1961), Dumitriu (1977) and Kneale and Kneale (1962) are
detailed and scholarly accounts of the history of logic. Kneebone (1963) is
a survey of mathematical logic which also contains a lot of historical infor-
mation, while Marciszewski and Murawski (1995) shares our emphasis on
mechanization. For a readable account of Jevons’s logical piano and other
early ‘reasoning machines’, starting with the Spanish mystic Ramon Lull
in the thirteenth century, see Gardner (1958). MacKenzie (2001) is a his-
torical overview of the development of automated theorem proving and its
applications.

There are numerous introductions to philosophical logic that discuss issues
like the notion of logical consequence in more depth; e.g. Engel (1991),
Grayling (1990) and Haack (1978). Philosophically inclined readers may
enjoy considering the claims of Mill (1865) and Mauthner (1901) that logical
consequence is merely a psychological accident, and the polemical replies by
Frege (1879) and Husserl (1900).

For further OCaml and functional programming references, see Appendix
2. The basic parsing techniques we have described are explained in detail
in virtually every book ever written on compiler technology. The ‘dragon
book’ by Aho, Sethi and Ullman (1986) has long been considered a classic,
though its treatment of parsing is probably too extensive for those whose
primary interest is elsewhere. A detailed theoretical analysis of what kind
of parsing tasks are and aren’t decidable leads naturally into the theory of
computation. Davis, Sigal and Weyuker (1994) not only covers this material
thoroughly, but is also a textbook on logic. For more on prettyprinting, see
Oppen (1980b) and Hughes (1995).

Other discussions of theorem proving in the same implementation-oriented
style as ours are given by Huet (1986), Newborn (2001) and Paulson (1992),
while Gordon (1988) also describes, in similar style, the use of theorem
provers within a program verification environment. Other general textbooks
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on automated theorem proving are Chang and Lee (1973), Duffy (1991) and
Fitting (1990), as well as some more specialized texts we will mention later.

Exercises

1.1 Modify the parser and printer to support a concrete syntax where
juxtaposition is an acceptable (or the only) way of denoting multi-
plication.

1.2 Add an infix exponentiation operation ‘^’ to the parser, printer and
simplification functions. You can make it right-associative so that
‘x^y^z’ is interpreted as ‘x^(y^z)’.

1.3 Add a subtraction operation to the parser, printer and simplification
functions. Be careful to make subtraction associate to the left, so that
x − y − z is understood as (x − y) − z not x − (y − z). If you get
stuck, you can see how similar things are done in Appendix 3.

1.4 After adding subtraction as in the previous exercise, add a unary
negation operator using the same ‘−’ symbol. Take care that you
can parse an expression such as x − − − x, correctly distinguishing
instances of subtraction and negation, and simplify it to 0.

1.5 Write a simplifier that uses a more intelligent traversal strategy to
avoid wasteful evaluation of subterms such as E in 0 · E or E − E.
Write a function to generate huge expressions in order to test how
much more efficient it is.

1.6 Write a more sophisticated simplifier that will put terms in a canon-
ical polynomial form, e.g. transform (x+1)3−3·(x+1)2+3·(2·x−x)
into x3−2. We will eventually develop similar functions in Chapter 5.

1.7 Many concrete strings with slightly different bracketing or spacing
correspond to the same abstract syntax tree, so we can’t expect
print(parse(s)) = s in general. But how about parse(print(e)) = e?
If not, how could you change the code to make sure it does hold?
(There is a probably apocryphal story of testing an English/Russian
translation program by translating the English expression ‘the spirit
is willing, but the flesh is weak’ into Russian and back to English,
resulting in ‘the vodka is good and the meat is tender’. Another
version has ‘out of sight, out of mind’ returned as ‘invisible idiot’.)
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Propositional logic

We study propositional logic in detail, defining its formal syntax in OCaml
together with parsing and printing support. We discuss some of the key
propositional algorithms and prove the compactness theorem, as well as indi-
cating the surprisingly rich applications of propositional theorem proving.

2.1 The syntax of propositional logic

Propositional logic is a modern version of Boole’s algebra of propositions as
presented in Section 1.4.† It involves expressions called formulas‡ that are
intended to represent propositions, i.e. assertions that may be considered
true or false. These formulas can be built from constants ‘true’ and ‘false’
and some basic atomic propositions (atoms) using various logical connectives
(‘not’, ‘and’, ‘or’, etc.). The atomic propositions are like variables in ordinary
algebra, and we sometimes refer to them as propositional variables or Boolean
variables. As the word ‘atomic’ suggests, we do not analyze their internal
structure; that will be considered when we treat first-order logic in the next
chapter.

Representation in OCaml

We represent propositional formulas using an OCaml datatype by analogy
with the type of expressions in Section 1.6. We allow the ‘constant’ propo-
sitions False and True and atomic formulas Atom p, and can build up for-
mulas from them using the unary operator Not and the binary connectives
† Indeed, propositional logic is sometimes called ‘Boolean algebra’. But this is apt to be confusing

because mathematicians refer to any algebraic structure satisfying certain axioms, roughly the
usual laws of algebra together with x2 = x, as a Boolean algebra (Halmos 1963).

‡ When consulting the literature, the reader may find the phrase well-formed formula (wff for
short) used instead of just ‘formula’. This is to emphasize that in the concrete syntax, we are
only interested in strings with a syntactically valid form, not arbitrary strings of symbols.

25
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And, Or, Imp (‘implies’) and Iff (‘if and only if’). We defer a discussion
of the exact meanings of these connectives, and deal first with immediate
practicalities.

The underlying set of atomic propositions is largely arbitrary, although
for some purposes it’s important that it be infinite, to avoid a limit on the
complexity of formulas we can consider. In abstract treatments it’s common
just to index the primitive propositions by number. We make the underlying
type ’a of atomic propositions a parameter of the definition of the type of
formulas, so that many basic functions work equally well whatever it may
be. This apparently specious generality will be useful to avoid repeated work
later when we consider the extension to first-order logic. For the same reason
we include two additional formula type constructors Forall and Exists.
These will largely be ignored in the present chapter but their role will become
clear later on.

type (’a)formula = False
| True
| Atom of ’a
| Not of (’a)formula
| And of (’a)formula * (’a)formula
| Or of (’a)formula * (’a)formula
| Imp of (’a)formula * (’a)formula
| Iff of (’a)formula * (’a)formula
| Forall of string * (’a)formula
| Exists of string * (’a)formula;;

Concrete syntax

As we’ve seen, Boole used traditional algebraic signs like ‘+’ for the logical
connectives. This makes many logical truths look beguilingly familiar, e.g.

p(q + r) = pq + pr

But some logical truths then look quite alien, such as the following, result-
ing from systematically exchanging ‘and’ and ‘or’ in the first formula:

p + qr = (p + q)(p + r)

In its logical guise this says that if either p holds or both q and r hold,
then either p or q holds, and also either p or r holds, and vice versa. A
little thought should convince the reader that this is indeed always the case;
recall that ‘p or q’ is inclusive, meaning p or q or both.

To avoid confusion or misleading analogies with ordinary algebra, we will
use special symbols for the connectives that are nowadays fairly standard.
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In each row of the following table we give the English reading of each con-
struct, followed by the standard symbolism we will adopt in discussions,
then the ASCII approximations that we will support in our programs, the
corresponding abstract syntax construct, and finally some other symbolisms
in use. (This last column can be ignored for the purposes of this book, but
may be useful when consulting the literature.)

English Symbolic ASCII OCaml Other symbols
false ⊥ false False 0, F

true � true True 1, T

not p ¬p ~p Not p p, −p, ∼ p

p and q p ∧ q p /\ q And(p,q) pq, p&q, p · q
p or q p ∨ q p \/ q Or(p,q) p + q, p | q, p or q

p implies q p ⇒ q p ==> q Imp(p,q) p → q, p ⊃ q

p iff q p ⇔ q p <=> q Iff(p,q) p ↔ q, p ≡ q, p ∼ q

The symbol ‘∨’ is derived from the first letter of ‘vel’, the Latin word for
inclusive or, � looks like the first letter of ‘true’, while ⊥ and ∧ are just
mirror-images of � and ∨, reflecting a principle of duality to be explained in
Section 2.4.† The sign for negation is close enough to the sign for arithmetical
negation to be easy to remember. Some readers may have seen the symbols
for implication and ‘if and only if’ in informal mathematics.

As with ordinary algebra, we establish rules of precedence for the connec-
tives, overriding it by bracketing if necessary. The (quite standard) prece-
dence order we adopt is indicated in the ordering of the table above, with
‘¬’ the highest and ‘⇔’ the lowest. For example p ⇒ q ∧ ¬r ∨ s means
p ⇒ ((q ∧ (¬r)) ∨ s). Perhaps it would be more appropriate to give ∧ and
∨ equal precedence, but only a few authors do that (Dijkstra and Scholten
1990) and we will follow the herd by giving ∧ higher precedence.

All our binary connectives are parsed in a right-associated fashion, so
p∧q∧r means p∧(q∧r), and so on. In informal practice, iterated implications
of the form p ⇒ q ⇒ r are often used as a shorthand for ‘p ⇒ q and q ⇒ r’,
just as x ≤ y ≤ z is for ‘x ≤ y and y ≤ z’. For us, however, p ⇒ q ⇒ r just
means p ⇒ (q ⇒ r), which is not the same thing.‡

In informal discussions, we will not make the Atom constructor explicit,
but will try to use variable names like p, q and r for general formulas and

† The symbols for ‘and’ and ‘or’ are also just more angular versions of the standard symbols for
set intersection and union. This is no coincidence: x ∈ S ∩ T iff x ∈ S ∧ x ∈ T and x ∈ S ∪ T
iff x ∈ S ∨ x ∈ T .

‡ It is logically equivalent to p∧q ⇒ r, as the reader will be able to confirm when we have defined
the term precisely.
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x, y and z for general atoms. For example, when we talk about a formula
x ⇔ p, we usually mean a formula of the form Iff(Atom(x),p).

Generic parsing and printing

We set up automated parsing and printing support for formulas, just as
we did for ordinary algebraic expressions in Sections 1.7–1.8. Since the
details are not important for present purposes, a detailed description of the
code is deferred to Appendix 3. We do want to emphasize, however, that
since the type of formulas is parametrized by a type of atomic propositions,
the parsing and printing functions are similarly parametrized. The function
parse_formula has type:

# parse_formula;;
- : (string list -> string list -> ’a formula * string list) *

(string list -> string list -> ’a formula * string list) ->
string list -> string list -> ’a formula * string list

= <fun>

This takes as additional arguments a pair of parsers for atoms and a list
of strings. For present purposes the first atom parser in the pair and the
list of strings can essentially be ignored; they will be used when we extend
parsing to first-order formulas in the next chapter, the former to handle
special infix atomic formulas like x < y and the latter to retain a context
of non-propositional variables. Similarly, print_qformula (print a formula
with quotation marks) has type:

# print_qformula;;
- : (int -> ’a -> unit) -> ’a formula -> unit = <fun>

expecting a basic ‘primitive proposition printer’ (which as well as the propo-
sition gets supplied with the current precedence level) and producing a
printer for the overall type of formulas.

Primitive propositions

Although many functions will be generic, it makes experimentation with
some of the operations easier if we fix on a definite type of primitive propo-
sitions. Accordingly we define the following type of primitive propositions
indexed by names (i.e. strings):

type prop = P of string;;

We define the following to get the name of a proposition:

let pname(P s) = s;;
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Now we just need to provide a parser for atomic propositions, which is
quite straightforward. For reasons explained in Appendix 3 we need to check
that the first input character is not a left bracket, but otherwise we just take
the first token in the input stream as the name of a primitive proposition:

let parse_propvar vs inp =
match inp with
p::oinp when p <> "(" -> Atom(P(p)),oinp

| _ -> failwith "parse_propvar";;

Now we feed this to the generic formula parser, with an always-failing func-
tion for the presently unused infix atom parser and an empty list for the
context of non-propositional variables:

let parse_prop_formula = make_parser
(parse_formula ((fun _ _ -> failwith ""),parse_propvar) []);;

and we can set it to automatically apply to anything typed in quotations
by:

let default_parser = parse_prop_formula;;

Now we turn to printing, constructing a (trivial) function to print propo-
sitional variables, ignoring the additional precedence argument:

let print_propvar prec p = print_string(pname p);;

and then setting up and installing the overall printer:

let print_prop_formula = print_qformula print_propvar;;

#install_printer print_prop_formula;;

We are now in an environment where propositional formulas will be auto-
matically parsed and printed, e.g.:

# <<p \/ q ==> r>>;;
- : prop formula = <<p \/ q ==> r>>
# let fm = <<p ==> q <=> r /\ s \/ (t <=> ~ ~u /\ v)>>;;
val fm : prop formula = <<p ==> q <=> r /\ s \/ (t <=> ~(~u) /\ v)>>

(Note that the space between the two negation symbols is necessary
or it would be interpreted as a single token, resulting in a parse error.)
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The printer is designed to split large formulas across lines in a reasonable
fashion:

# And(fm,fm);;
- : prop formula =
<<(p ==> q <=> r /\ s \/ (t <=> ~(~u) /\ v)) /\
(p ==> q <=> r /\ s \/ (t <=> ~(~u) /\ v))>>

# And(Or(fm,fm),fm);;
- : prop formula =
<<((p ==> q <=> r /\ s \/ (t <=> ~(~u) /\ v)) \/

(p ==> q <=> r /\ s \/ (t <=> ~(~u) /\ v))) /\
(p ==> q <=> r /\ s \/ (t <=> ~(~u) /\ v))>>

Syntax operations

It’s convenient to have syntax operations corresponding to the formula con-
structors usable as ordinary OCaml functions:

let mk_and p q = And(p,q) and mk_or p q = Or(p,q)
and mk_imp p q = Imp(p,q) and mk_iff p q = Iff(p,q)
and mk_forall x p = Forall(x,p) and mk_exists x p = Exists(x,p);;

Dually, it’s often convenient to be able to break formulas apart without
explicit pattern-matching. This function breaks apart an equivalence (or bi-
implication or biconditional), i.e. a formula of the form p ⇔ q, into the pair
(p, q):

let dest_iff fm =
match fm with Iff(p,q) -> (p,q) | _ -> failwith "dest_iff";;

Similarly this function breaks apart a formula p∧ q, called a conjunction,
into its two conjuncts p and q:

let dest_and fm =
match fm with And(p,q) -> (p,q) | _ -> failwith "dest_and";;

while the following recursively breaks down a conjunction into a list of con-
juncts:

let rec conjuncts fm =
match fm with And(p,q) -> conjuncts p @ conjuncts q | _ -> [fm];;

The following similar functions break down a formula p ∨ q, called a dis-
junction, into its disjuncts p and q, one at the top level, one recursively:
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let dest_or fm =
match fm with Or(p,q) -> (p,q) | _ -> failwith "dest_or";;

let rec disjuncts fm =
match fm with Or(p,q) -> disjuncts p @ disjuncts q | _ -> [fm];;

This is a top-level destructor for implications:

let dest_imp fm =
match fm with Imp(p,q) -> (p,q) | _ -> failwith "dest_imp";;

The formulas p and q in an implication p ⇒ q are referred to as its
antecedent and consequent respectively, and we define corresponding func-
tions:

let antecedent fm = fst(dest_imp fm);;
let consequent fm = snd(dest_imp fm);;

We’ll often want to define functions by recursion over formulas, just as
we did with simplification in Section 1.6. Two patterns of recursion seem
sufficiently common that it makes sense to define generic functions. The fol-
lowing applies a function to all the atoms in a formula, but otherwise leaves
the structure unchanged. It can be used, for example, to perform systematic
replacement of one particular atomic proposition by another formula:

let rec onatoms f fm =
match fm with
Atom a -> f a

| Not(p) -> Not(onatoms f p)
| And(p,q) -> And(onatoms f p,onatoms f q)
| Or(p,q) -> Or(onatoms f p,onatoms f q)
| Imp(p,q) -> Imp(onatoms f p,onatoms f q)
| Iff(p,q) -> Iff(onatoms f p,onatoms f q)
| Forall(x,p) -> Forall(x,onatoms f p)
| Exists(x,p) -> Exists(x,onatoms f p)
| _ -> fm;;

The following is an analogue of the list iterator itlist for formulas, iter-
ating a binary function over all the atoms of a formula.

let rec overatoms f fm b =
match fm with
Atom(a) -> f a b

| Not(p) -> overatoms f p b
| And(p,q) | Or(p,q) | Imp(p,q) | Iff(p,q) ->

overatoms f p (overatoms f q b)
| Forall(x,p) | Exists(x,p) -> overatoms f p b
| _ -> b;;
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A particularly common application is to collect together some set of
attributes associated with the atoms; in the simplest case just returning
the set of all atoms. We can do this by iterating a function f together with
an ‘append’ over all the atoms, and finally converting the result to a set to
remove duplicates. (We could use union to remove duplicates as we proceed,
but the present implementation can be more efficient where the sets involved
are large.)

let atom_union f fm = setify (overatoms (fun h t -> f(h)@t) fm []);;

We will soon see some illustrations of how these very general functions
can be used in practice.

2.2 The semantics of propositional logic

Since propositional formulas are intended to represent assertions that may
be true or false, the ultimate meaning of a formula is just one of the two
truth-values ‘true’ and ‘false’. However, just as an algebraic expression like
x + y + 1 only has a definite meaning when we know what the variables
x and y stand for, the meaning of a propositional formula depends on the
truth-values assigned to its atomic formulas. This assignment is encoded in
a valuation, which is a function from the set of atoms to the set of truth-
values {false, true}. Given a formula p and a valuation v we then evaluate
the overall truth-value by the following recursively defined function:

let rec eval fm v =
match fm with
False -> false

| True -> true
| Atom(x) -> v(x)
| Not(p) -> not(eval p v)
| And(p,q) -> (eval p v) & (eval q v)
| Or(p,q) -> (eval p v) or (eval q v)
| Imp(p,q) -> not(eval p v) or (eval q v)
| Iff(p,q) -> (eval p v) = (eval q v);;

This is our mathematical definition of the semantics of propositional
logic,† intended to be a natural formalization of our intuitions. (The seman-
tics of implication is unobvious, and we discuss this at length below.) Each
logical connective is interpreted by a corresponding operator on OCaml’s
inbuilt type bool. To be quite explicit about what these operators mean, we
† We may choose to regard the partially evaluated eval p, a function from valuations to values,

as the semantics of the formula p, rather than make the valuation an additional argument. This
is mainly a question of terminology.
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can enumerate all possible combinations of inputs and see the corresponding
output, for example for the & operator:

# false & false;;
- : bool = false
# false & true;;
- : bool = false
# true & false;;
- : bool = false
# true & true;;
- : bool = true

We can lay out this information in a truth-table showing how the truth-
value assigned to a formula is determined by those of its immediate subfor-
mulas:†

p q p ∧ q p ∨ q p ⇒ q p ⇔ q

false false false false true true
false true false true true false
true false false true false false
true true true true true true

Of course, for the sake of completeness we should also include a truth-table
for the unary negation:

p ¬p

false true
true false

Let’s try evaluating a formula p∧ q ⇒ q ∧ r in a valuation where p, q and
r are set to ‘true’, ‘false’ and ‘true’ respectively. (We don’t bother to define
the value on atoms not involved in the formula, and OCaml issues a warning
that we have not done so.)

# eval <<p /\ q ==> q /\ r>>
(function P"p" -> true | P"q" -> false | P"r" -> true);;

...
- : bool = true

In another valuation, however, the formula evaluates to ‘false’; readers
may find it instructive to check these results by hand:

eval <<p /\ q ==> q /\ r>>
(function P"p" -> true | P"q" -> true | P"r" -> false);;

† Truth-tables were popularized by Post (1921) and Wittgenstein (1922), though they had been
used earlier by Peirce in unpublished work.
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Truth-tables mechanized

We would expect the evaluation of a formula to be independent of how
the valuation assigns atoms not occurring in that formula. Let us make
this precise by defining a function to extract the set of atomic propositions
occurring in a formula. In abstract mathematical terms, we would define
atoms as follows by recursion on formulas:

atoms(⊥) = ∅
atoms(�) = ∅
atoms(x) = {x}

atoms(¬p) = atoms(p)

atoms(p ∧ q) = atoms(p) ∪ atoms(q)

atoms(p ∨ q) = atoms(p) ∪ atoms(q)

atoms(p ⇒ q) = atoms(p) ∪ atoms(q)

atoms(p ⇔ q) = atoms(p) ∪ atoms(q)

As a simple example of proof by structural induction (see appendices 1
and 2) on formulas, will show that atoms(p) is always finite, and hence we
do not distort it by interpreting it in terms of ML lists. (Of course, we need
to remember that list equality and set equality are not in general the same.)

Theorem 2.1 For any propositional formula p, the set atoms(p) is finite.

Proof By induction on the structure of the formula.
If p is ⊥ or �, then atoms(p) is the empty set, and if p is an atom, atoms(p)

is a singleton set. In all cases, these are finite.
If p is of the form ¬q, then by the induction hypothesis, atoms(q) is finite

and by definition atoms(¬q) = atoms(q).
If p is of the form q∧r, q∨r, q ⇒ r or q ⇔ r, then atoms(p) = atoms(q)∪

atoms(r). By the inductive hypothesis, both atoms(q) and atoms(r) are
finite, and the union of two finite sets is finite.

Similarly, we can justify formally the intuitively obvious fact mentioned
above.

Theorem 2.2 For any propositional formula p, if two valuations v and v′

agree on the set atoms(p) (i.e. v(x) = v′(x) for all x in atoms(p)), then
eval p v = eval p v′.
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Proof By induction on the structure of p.
If p is of the form ⊥ or �, then it is interpreted as true or false independent

of the valuation.
If p is an atom x, then atoms(x) = {x} and by assumption v(x) = v′(x).

Hence eval p v = v(x) = v′(x) = eval p v′.
If p is of the form q∧r, q∨r, q ⇒ r or q ⇔ r, then atoms(p) = atoms(q)∪

atoms(r). Since the valuations agree on the union of the two sets, they
agree, a fortiori, on each of atoms(q) and atoms(r). We can therefore apply
the inductive hypothesis to conclude that eval q v = eval q v′ and that
eval r v = eval r v′. Since the evaluation of p is a function of these
subevaluations, eval p v = eval p v′.

The definition of atoms above can be translated directly into an OCaml
function, for example using union for ‘∪’ and [x] for ‘{x}’. However, we
prefer to define it in terms of the existing iterator atom union:

let atoms fm = atom_union (fun a -> [a]) fm;;

For example:

# atoms <<p /\ q \/ s ==> ~p \/ (r <=> s)>>;;
- : prop list = [P "p"; P "q"; P "r"; P "s"]

Because the interpretation of a propositional formula p depends only on
the valuation’s action on the finite (say n-element) set atoms(p), and it can
only make two choices for each, the final truth-value is completely deter-
mined by all 2n choices for those atoms. Hence we can naturally extend
the enumeration in truth-table form from the basic operations to arbitrary
formulas. To implement this in OCaml, we start by defining a function that
tests whether a function subfn returns true on all possible valuations of
the atoms ats, using an existing valuation v for all other atoms. The space
of all valuations is explored by successively modifying v to consider setting
each atom p to ‘true’ and ‘false’ and calling recursively:

let rec onallvaluations subfn v ats =
match ats with
[] -> subfn v

| p::ps -> let v’ t q = if q = p then t else v(q) in
onallvaluations subfn (v’ false) ps &
onallvaluations subfn (v’ true) ps;;

We can apply this to a function that draws one row of the truth table and
then returns ‘true’. (The return value is important, because ‘&’ will only
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evaluate its second argument if the first argument is true.) This can then
be used to draw the whole truth table for a formula:

let print_truthtable fm =
let ats = atoms fm in
let width = itlist (max ** String.length ** pname) ats 5 + 1 in
let fixw s = s^String.make(width - String.length s) ’ ’ in
let truthstring p = fixw (if p then "true" else "false") in
let mk_row v =

let lis = map (fun x -> truthstring(v x)) ats
and ans = truthstring(eval fm v) in
print_string(itlist (^) lis ("| "^ans)); print_newline(); true in

let separator = String.make (width * length ats + 9) ’-’ in
print_string(itlist (fun s t -> fixw(pname s) ^ t) ats "| formula");
print_newline(); print_string separator; print_newline();
let _ = onallvaluations mk_row (fun x -> false) ats in
print_string separator; print_newline();;

Note that we print in columns of width width that are wide enough to
hold the names of all the atoms together with true and false, plus a final
space. Then all the items in the table line up nicely. For example:

# print_truthtable <<p /\ q ==> q /\ r>>;;
p q r | formula
---------------------------
false false false | true
false false true | true
false true false | true
false true true | true
true false false | true
true false true | true
true true false | false
true true true | true
---------------------------
- : unit = ()

Formal and natural language

Propositional logic gives us a formal way to express some of the complex
propositions that can be stated in English or other natural languages. It can
be instructive to practice the formalization (translation into formal logic)
of compound propositions in English. As with translation between pairs of
natural languages, one can’t always expect a word-for-word correspondence.
But with some awareness of the structure of an informal proposition, a quite
direct formalization is often possible.

In propositional logic, apart from the rules of precedence given above, we
can group propositions together using the standard mathematical technique
of bracketing, distinguishing for example between ‘p∧(q∨r)’ and ‘(p∧q)∨r’.
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Brackets are used quite differently in English and most other languages
(to make asides like this one). Indicating the precedence in English is a
more ad hoc and awkward affair and is usually done by inserting additional
punctuation and ‘noise words’ to bracket phrases and hence disambiguate.
For example we might distinguish the above two examples as ‘p, and also
either q or r’ and ‘either both p and q, or else r’. This gets unwieldy for
complicated propositions, and indeed this is part of the reason for having a
formal language.

Generally speaking, constructs like ‘and’, ‘or’ and ‘not’ can be translated
quite directly from English to the corresponding logical connectives. The
connective ‘not’ can also be implicit in English prefixes such as ‘dis-’ and
‘un-’, so we might translate ‘You are either honest and kind, or dishonest, or
unkind’ into ‘H ∧K ∨¬H ∨¬K’. However, sometimes English phrases sug-
gest nuances beyond the merely truth-functional. For example ‘and’ often
indicates a causal connection (‘he dropped the plate and it broke’) or a tem-
poral ordering (‘she climbed into bed and turned out the light’). The word
‘but’ arguably has the same truth-functional interpretation as ‘and’, yet it
expresses the idea that the component propositions connect in a surprising
or unfortunate way. Similarly, ‘unless’ can reasonably be translated by ‘or’,
but the consequent symmetry between ‘p unless q’ and ‘q unless p’ seems
surprising.

More problematical is the relationship between the implication or condi-
tional p ⇒ q and the intended English reading ‘p implies q’ or ‘if p then
q’. An apparent dissonance on this point disturbs many newcomers to for-
mal logic, and put at least one off the subject permanently (Waugh 1991).
Indeed, debates about the meaning of implication go back over 2000 years to
the Megarian-Stoic logicians (Bocheński 1961). According to Sextus Empir-
icus, the librarian Callimachus at Alexandria said in the second century BC
that ‘even the crows on the rooftops are cawing about which conditionals
are true’.

First of all, let’s be clear that if we adopt any truth-functional semantics
of p ⇒ q, i.e. define the truth-value of p ⇒ q in terms of the truth-values
of p and q, then the semantics we have chosen is the only reasonable one.
The most fundamental principle of implication as intuitively understood is
that if p and p ⇒ q are true, then so is q; consequently if p is true and q is
false, then p ⇒ q must be false. Moreover it is also plausible that p ∧ q ⇒ p

is always true, and only the chosen semantics makes this true whatever the
truth-values of p and q.

But how do we justify giving implication a truth-functional semantics at
all? In everyday life, when we say ‘p implies q’ or ‘if p then q’ we usually have
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in mind a causal connection between p and q. It doesn’t seem reasonable to
assert ‘p implies q’ just because it happens not to be the case that p is true
while q is false. This definition commits us to accepting ‘p implies q’ as true
whenever q is true, regardless of whether p is true or not, let alone whether it
has any relation to q. Perhaps even more surprising, we also have to accept
that ‘p implies q’ is true whenever p is false, regardless of q. For example,
we would have to accept ‘if Paris is the capital of France then 2 + 2 = 4’
and ‘if the moon is made of cheese then 2 + 2 = 5’ as both true.

However, further reflection reveals that these peculiar cases do have their
parallel in everyday phrases like ‘if Smith wins the election then I’ll eat my
hat’. In mathematician’s jargon we may think of such implications as being
true ‘trivially’, with the consequent irrelevant. Similarly, if a friend plans
definitely to leave town tomorrow, it seems hard to argue that his assertion
‘I will leave town tomorrow or the day after’ is not true, merely that it is a
peculiar and misleading way to express himself. Again, if James is 40 years
old and 2 metres tall, a remark by his mother that ‘he is tall for his age’
might be accepted as literally true while provoking giggles.

One can argue, roughly as the Megarian-Stoic logician Diodorus did, that
the intuitive meaning of ‘if p, then q’ is not simply that we do not have p∧¬q,
but more strongly that we cannot under any circumstances have p ∧ ¬q.
Rather than ‘under any circumstances’, Diodorus said ‘at all times’, being
mainly concerned with propositions denoting states of affairs in the world.
In mathematical assertions, the equivalent might be ‘whatever the value(s)
taken by the component variables’. Indeed, in everyday speech we may tend
to interpret implication in a ‘universalized’ sense, just as we understand
equations like ex+y = exey as implicitly valid for all values of the variables.†

However, in formal logic we need to be much more precise about which
variables are universal, and in the next chapter we will introduce quanti-
fiers that allow us to say ‘for all x . . . ’ and so make the universal status
of variables quite explicit. Once we have this ability, our truth-functional
implication can be used to build up other notions of implication with the
aid of explicit quantifiers, and by then we hope the reader’s qualms will have
eased somewhat in any case.

Readers who are still uncomfortable may choose to regard our material or
truth-functional conditional ‘p ⇒ q’ as something distinct from the various
everyday notions. The use of the same terminology may seem unfortunate,

† Quine (1950) refers to p ⇒ q as a conditional statement and always reads it as ‘if p then
q’, reserving the reading ‘p implies q’ for the universal validity of that conditional. Thus,
implication for Quine not only contains an implicit universal quantification but is also a meta-
level statement about propositional formulas.
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but it’s often the case that superficially equivalent terminologies in everyday
speech and in a precise science differ. It is unlikely, for example, that words
like ‘energy’, ‘power’, ‘force’ and ‘momentum’ as used in everyday speech
correspond to the formal definitions of a physicist, nor ‘glass’ and ‘metal’ to
those of a chemist.

In ordinary usage and our formal definitions, ‘if and only if’ naturally
corresponds to implication in both directions: ‘p if and only if q’ is the same
as ‘p implies q and q implies p’. We’ve already noted that the connective
is frequently called bi-implication, and indeed we often prove mathematical
theorems of the form ‘p if and only if q’ by separately proving ‘if p then
q’ and ‘if q then p’, just as one might prove x = y by separately proving
x ≤ y and y ≤ x. So if the semantics of implication is accepted, that for
bi-implication should be acceptable too.

2.3 Validity, satisfiability and tautology

We say that a valuation v satisfies a formula p if eval p v = true. A formula
is said to be:

• a tautology or logically valid if is satisfied by all valuations, or equivalently,
if its truth-table value is ‘true’ in all rows;

• satisfiable if it is satisfied by some valuation(s) i.e. if its truth-table value
is ‘true’ in at least one row;

• unsatisfiable or a contradiction if no valuation satisfies it, i.e. if its truth-
table value is ‘false’ in all rows.

Note that a tautology is also satisfiable, and as the names suggest, a
formula is unsatisfiable precisely if it is not satisfiable. Moreover, in any
valuation eval (¬p) v is false iff eval p v is true, so p is a tautology if and
only if ¬p is unsatisfiable.

The simplest tautology is just ‘�’; a slightly more interesting example is
p∧ q ⇒ p∨ q (‘if both p and q are true then at least one of p and q is true’),
while one that many people find surprising at first sight is ‘Peirce’s Law’
((p ⇒ q) ⇒ p) ⇒ p:

# print_truthtable <<((p ==> q) ==> p) ==> p>>;;
p q | formula
---------------------
false false | true
false true | true
true false | true
true true | true
---------------------
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The formula p ∧ q ⇒ q ∧ r whose truth-table we first produced in OCaml
is satisfiable, since its truth table has a ‘true’ in the last column, but it’s
not a tautology because it also has one ‘false’. The simplest contradiction is
just ‘⊥’, and another simple one is p ∧ ¬p (‘p is both true and false’):

# print_truthtable <<p /\ ~p>>;;
p | formula
---------------
false | false
true | false
---------------

Intuitively speaking, tautologies are ‘always true’, satisfiable formulas are
‘sometimes (but possibly not always) true’ and contradictions are ‘always
false’. Indeed, the notion of a tautology is intended to capture formally,
insofar as we can in propositional logic, the idea of a logical truth that we
discussed in a non-technical way in the introductory chapter. A tautology is
exactly analogous to an algebraic equation like x2−y2 = (x+y)(x−y) that
is universally true whatever the values of the constituent variables. A satis-
fiable formula is analogous to an equation that has at least one solution but
may not be universally valid, e.g. x2 + 2 = 3x. A contradiction is analogous
to an unsolvable equation like 0 · x = 1.

It’s useful to extend the idea of (un)satisfiability from a single formula
to a set of formulas: a set Γ of formulas is said to be satisfiable if there
is a valuation v that simultaneously satisfies them all. Note the ‘simultane-
ously’: {p∧¬q,¬p∧ q} is unsatisfiable even though each formula by itself is
satisfiable. When the set concerned is finite, Γ = {p1, . . . , pn}, satisfiability
of Γ is equivalent to that of the single formula p1 ∧ · · · ∧ pn, as the reader
will see from the definitions. However, in our later work it will be essen-
tial to consider satisfiability of infinite sets of formulas, where it cannot so
directly be reduced to satisfiability of a single formula. We also use the
notation Γ |= q to mean ‘for all valuations in which all p ∈ Γ are true, q

is true’. Note that in the case of finite Γ = {p1, . . . , pn}, this is equivalent
to the assertion that p1 ∧ · · · ∧ pn ⇒ q is a tautology. In the case Γ = ∅
it’s common just to write |= p rather than ∅ |= p, both meaning that p is a
tautology.

Tautology and satisfiability checking

Although we can decide the status of formulas by examining their truth
tables, it’s simpler to let the computer do all the work. The following function



2.3 Validity, satisfiability and tautology 41

tests whether a formula is a tautology by checking that it evaluates to ‘true’
for all valuations.

let tautology fm =
onallvaluations (eval fm) (fun s -> false) (atoms fm);;

Note that as soon as any evaluation to ‘false’ is encountered this will,
by the way onallvaluations was written, terminate with ‘false’ at once,
rather than plough on through all possible valuations.

# tautology <<p \/ ~p>>;;
- : bool = true
# tautology <<p \/ q ==> p>>;;
- : bool = false
# tautology <<p \/ q ==> q \/ (p <=> q)>>;;
- : bool = false
# tautology <<(p \/ q) /\ ~(p /\ q) ==> (~p <=> q)>>;;
- : bool = true

Using the interrelationships noticed above, we can define satisfiability and
unsatisfiability in terms of tautology:

let unsatisfiable fm = tautology(Not fm);;

let satisfiable fm = not(unsatisfiable fm);;

Substitution

As with algebraic identities, we expect to be able to substitute other for-
mulas consistently for the atomic propositions in a tautology, and still get a
tautology. We can define such substitution of formulas for atoms as follows,
where subfn is a finite partial function (see Appendix 2):

let psubst subfn = onatoms (fun p -> tryapplyd subfn p (Atom p));;

For example, using the substitution function p |⇒ p ∧ q, which maps p to
p ∧ q but is otherwise undefined, we get:

# psubst (P"p" |=> <<p /\ q>>) <<p /\ q /\ p /\ q>>;;
- : prop formula = <<(p /\ q) /\ q /\ (p /\ q) /\ q>>
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We will prove that substituting in tautologies yields a tautology, via a
more general result that can be proved directly by structural induction on
formulas:

Theorem 2.3 For any atomic proposition x and arbitrary formulas p and
q, and any valuation v, we have†

eval (psubst (x |⇒ q) p) v = eval p ((x �→ eval q v) v).

Proof By induction on the structure of p. If p is ⊥ or � then the valuation
plays no role and the equation clearly holds. If p is an atom y, we distinguish
two possibilities. If y = x then using the definitions of substitution and
evaluation we find:

eval (psubst (x |⇒ q) x) v = eval q v

= eval x ((x �→ eval q v) v).

If, on the other hand, y �= x then:

eval (psubst (x |⇒ q) y) v = eval y v

= eval y ((x �→ eval q v) v).

For other kinds of formula, evaluation and substitution follow the struc-
ture of the formula so the result follows easily by the inductive hypothesis.
For example, if p is of the form ¬r then by definition and using the inductive
hypothesis for r:

eval (psubst (x |⇒ q) (¬r)) v = eval (¬(psubst (x |⇒ q) r)) v

= not(eval (psubst (x |⇒ q) r) v)

= not(eval r ((x �→ eval q v) v))

= eval (¬r) ((x �→ eval q v) v).

The binary connectives all follow the same essential pattern but with two
distinct formulas r and s instead of just r.

Corollary 2.4 If p is a tautology, x is any atom and q any other formula,
then psubst (x |⇒ q) p is also a tautology.

† The notation (x 	→ a)v means the function v′ that maps v′(x) = a and v′(y) = v(y) for y �= x,
and x |⇒ a is the function that maps x to a and is undefined elsewhere (see Appendix 1). In
our OCaml implementation there are corresponding operators ‘|->’ and ‘|=>’ for finite partial
functions; see Appendix 2.
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Proof By the previous theorem we have for any valuation v:

eval (psubst (x |⇒ q) p) v = eval p ((x �→ eval q v) v)

But since p is a tautology it evaluates to ‘true’ in all valuations, including
the one on the right of this equation. Hence eval (psubst (x |⇒ q) p) v =
true, and since v is arbitrary, this means the formula is a tautology.

Note that this result only applies to substituting for atoms, not arbitrary
propositions. For example, p ∧ q ⇒ q ∧ p is a tautology, but if we substitute
p ∨ q for p ∧ q it ceases to be so. This again is just as in ordinary algebra,
and the fact that our substitution function is a function from names of
atoms helps to enforce such a restriction. The main results are however
easily generalized to substitution for multiple atoms simultaneously. These
can always be done using individual substitutions repeatedly, but one might
have to use additional substitutions to change variables and avoid spurious
effects of later substitutions on earlier ones. For example, we would expect
to be able to simultaneously substitute x for y and y for x in x ∧ y to get
y ∧ x. Yet if we perform the substitutions sequentially we get:

psubst (x |⇒ y) (psubst (y |⇒ x) (x ∧ y))

= psubst (x |⇒ y) (x ∧ x)

= y ∧ y.

However, by renaming variables appropriately using other substitutions
such problems can always be avoided. For example:

psubst (z |⇒ y) (psubst (y |⇒ x) (psubst (x |⇒ z) (x ∧ y))

= psubst (z |⇒ y) (psubst (y |⇒ x) (z ∧ y))

= psubst (z |⇒ y) (z ∧ x)

= y ∧ x.

It’s useful to get a feel for propositional logic by listing some common
tautologies. Some are simple and plausible such as the law of the excluded
middle ‘p∨¬p’ stating that every proposition is either true or false. A more
surprising tautology, no doubt because of the poor accord between ‘⇒’ and
the intuitive notion of implication, is:

# tautology <<(p ==> q) \/ (q ==> p)>>;;
- : bool = true

If p ⇒ q is a tautology, i.e. any valuation that satisfies p also satisfies
q, we say that q is a logical consequence of p. If p ⇔ q is a tautology, i.e.
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a valuation satisfies p if and only if it satisfies q, we say that p and q are
logically equivalent. Many important tautologies naturally take this latter
form, and trivially if p is a tautology then so is p ⇔ �, as the reader can
confirm. In algebra, given a valid equation such as 2x = x+x, we can replace
2x by x + x in any other expression without changing its value. Similarly, if
a valuation satisfies p ⇔ q, then we can substitute q for p or vice versa in
another formula r (even if p is not just an atom) without affecting whether
the valuation satisfies r. Since we haven’t formally defined substitution for
non-atoms, we imagine identifying the places to substitute using some other
atom x in a ‘pattern’ term.

Theorem 2.5 Given any valuation v and formulas p and q such that
eval p v = eval q v, for any atom x and formula r we have

eval (psubst (x |⇒ p) r) v = eval (psubst (x |⇒ q) r) v.

Proof We have eval (psubst (x |⇒ p) r) v = eval r ((x �→ eval p v) v)
and eval (psubst (x |⇒ q) r) v = eval r ((x �→ eval q v) v) by Theorem
2.3. But since by hypothesis eval p v = eval q v these are the same.

Corollary 2.6 If p and q are logically equivalent, then

eval (psubst (x |⇒ p) r) v = eval (psubst (x |⇒ q) r) v.

In particular psubst (x |⇒ p) r is a tautology iff psubst (x |⇒ q) r is.

Proof Since p and q are logically equivalent, we have eval p v = eval q v

for any valuation v, and the result follows from the previous theorem.

Some important tautologies

Without further ado, here’s a list of tautologies. Many of these correspond to
ordinary algebraic laws if rewritten in the Boolean symbolism, e.g. p∧⊥ ⇔ ⊥
to p · 0 = 0.

¬� ⇔ ⊥
¬⊥ ⇔ �
¬¬p ⇔ p

p ∧ ⊥ ⇔ ⊥
p ∧ � ⇔ p

p ∧ p ⇔ p
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p ∧ ¬p ⇔ ⊥
p ∧ q ⇔ q ∧ p

p ∧ (q ∧ r) ⇔ (p ∧ q) ∧ r

p ∨ ⊥ ⇔ p

p ∨ � ⇔ �
p ∨ p ⇔ p

p ∨ ¬p ⇔ �
p ∨ q ⇔ q ∨ p

p ∨ (q ∨ r) ⇔ (p ∨ q) ∨ r

p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r)

⊥ ⇒ p ⇔ �
p ⇒ � ⇔ �
p ⇒ ⊥ ⇔ ¬p

p ⇒ p ⇔ �
p ⇒ q ⇔ ¬q ⇒ ¬p

p ⇒ q ⇔ (p ⇔ p ∧ q)

p ⇒ q ⇔ (q ⇔ q ∨ p)

p ⇔ q ⇔ q ⇔ p

p ⇔ (q ⇔ r) ⇔ (p ⇔ q) ⇔ r

The last couple are perhaps particularly surprising, since we are not accus-
tomed to ‘equations within equations’ from everyday mathematics. Effec-
tively, they show that ‘⇔’ is a symmetric and associative operator (like
‘+’ in arithmetic), in that the order and association of iterated equivalences
makes no logical difference. Some other tautologies involving equivalence are
given by Dijkstra and Scholten (1990) and can be checked in OCaml; they
refer to the second of these tautologies as the ‘Golden Rule’.

# tautology <<p \/ (q <=> r) <=> (p \/ q <=> p \/ r)>>;;
- : bool = true
# tautology <<p /\ q <=> ((p <=> q) <=> p \/ q)>>;;
- : bool = true

Another tautology in our list corresponds to the principle of contraposi-
tion, the equivalence of p ⇒ q and its contrapositive ¬q ⇒ ¬p, or of p ⇒ ¬q

and q ⇒ ¬p. (For example ‘those who mind don’t matter’ and ‘those who
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matter don’t mind’ are logically equivalent.) By contrast, we can confirm
that p ⇒ q and q ⇒ p are not equivalent, refuting a common fallacy:

# tautology <<(p ==> q) <=> (~q ==> ~p)>>;;
- : bool = true
# tautology <<(p ==> ~q) <=> (q ==> ~p)>>;;
- : bool = true
# tautology <<(p ==> q) <=> (q ==> p)>>;;
- : bool = false

2.4 The De Morgan laws, adequacy and duality

The following important tautologies are called De Morgan’s laws, after Augus-
tus De Morgan, a near-contemporary of Boole who made important contri-
butions to the field of logic.†

¬(p ∨ q) ⇔ ¬p ∧ ¬q

¬(p ∧ q) ⇔ ¬p ∨ ¬q

An everyday example of the first is that ‘I can not speak either Finnish or
Swedish’ means that same as ‘I can not speak Finnish and I can not speak
Swedish’. An example of the second is that ‘I am not a wife and mother’ is
the same as ‘either I am not a wife or I am not a mother (or both)’. Variants
of the De Morgan laws, also easily seen to be tautologies, are:

p ∨ q ⇔ ¬(¬p ∧ ¬q)

p ∧ q ⇔ ¬(¬p ∨ ¬q)

These are interesting because they show how to express either connective
∧ and ∨ in terms of the other. By virtue of the above theorems on substitu-
tion, this means for example that we can ‘rewrite’ any formula to a logically
equivalent formula not involving ‘∨’, simply by systematically replacing each
subformula of the form q∨ r with ¬(¬q∧¬r). There are many other options
for expressing some logical connectives in terms of others. For instance, using
the following equivalences, one can find an equivalent for any formula using
only atomic formulas, ∧ and ¬. In the jargon, {∧,¬} is said to be an adequate
set of connectives.

⊥ ⇔ p ∧ ¬p

� ⇔ ¬(p ∧ ¬p)

p ∨ q ⇔ ¬(¬p ∧ ¬q)
† These were given quite explicitly by John Duns the Scot (1266-1308) in his Universam Logicam

Quaestiones. However, De Morgan was the first to put them in algebraic form.
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p ⇒ q ⇔ ¬(p ∧ ¬q)

p ⇔ q ⇔ ¬(p ∧ ¬q) ∧ ¬(¬p ∧ q)

Similarly the following equivalences, which we check in OCaml, show that
{⇒,⊥} is also adequate:

forall tautology
[<<true <=> false ==> false>>;
<<~p <=> p ==> false>>;
<<p /\ q <=> (p ==> q ==> false) ==> false>>;
<<p \/ q <=> (p ==> false) ==> q>>;
<<(p <=> q) <=> ((p ==> q) ==> (q ==> p) ==> false) ==> false>>];;

- : bool = true

Is any single connective alone enough to express all the others? For the
connectives we have introduced, the answer is no. We need one of the binary
connectives, otherwise we could never introduce formulas that involve, and
hence depend on the valuation of, more than one variable. And in fact not
even the whole set {�,∧,∨,⇒,⇔}, without negation or falsity, forms an
adequate set, so a fortiori, neither does any one binary connective individ-
ually. To see this, note that all these binary connectives with entirely ‘true’
arguments yield the result ‘true’. (In other words, the last row of each of
their truth tables contains ‘true’ in the final column.) Hence any formula
built up from these components must evaluate to ‘true’ in the valuation that
maps all atoms to ‘true’, so negation is not representable.

However, there are 222
= 16 possible truth-tables for a binary truth-

function (there are 22 = 4 rows in the truth table and each can be given
one of two truth-values) and the conventional binary connectives only cover
four of them. Perhaps a connective with one of the other 12 functions for
its truth-table would be adequate? As argued above, any single adequate
connective must have ‘false’ in the last row of its truth table, so that it
can express negation. By a similar argument, we can also see that the first
row of its truth-table must be ‘true’. This only leaves us freedom of choice
for the middle two rows, for which there are four choices. Two of them
are trivial in that they are just the negation of one of the arguments, and
hence cannot be used to build expressions whose evaluation depends on
the value of more than a single atom. However, either of the other two is
adequate alone: the ‘not and’ operation p NAND q = ¬(p∧ q), or the ‘not or’
operation p NOR q = ¬(p ∨ q), both of whose truth tables are written out
below:
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p q p NAND q p NOR q

false false true true
false true true false
true false true false
true true false false

For example, we can express negation by ¬p = p NAND p and then get
p ∧ q = ¬(p NAND q), and we already know that {∧,¬} is adequate; NOR
works similarly. In fact, once we have an adequate set of connectives, we
can find formulas whose semantics corresponds to any of the other 12 truth-
functions as well, as will become clear when we discuss disjunctive normal
form in Section 2.6.

The adequacy of either one of the connectives NAND and NOR is well-
known to electronics designers: corresponding gates are often the basic build-
ing blocks of digital circuits (see Section 2.7). Among pure logicians it’s cus-
tomary to denote one or the other of these connectives by p | q and refer to
‘|’ as the ‘Sheffer stroke’ (Sheffer 1913).†

Duality

In Section 1.4 we noted the choice to be made between the ‘inclusive’ and
‘exclusive’ readings of ‘or’. No doubt a pleasing symmetry between ‘and’
and ‘inclusive or’ was a strong motivation for what might seem an arbitrary
choice of the inclusive reading. Suppose we have a formula involving only the
connectives ⊥, �, ∧ and ∨. By its dual we mean the result of systematically
exchanging ‘∧’s and ‘∨’s and also ‘�’s and ‘⊥’s, thus:

let rec dual fm =
match fm with
False -> True

| True -> False
| Atom(p) -> fm
| Not(p) -> Not(dual p)
| And(p,q) -> Or(dual p,dual q)
| Or(p,q) -> And(dual p,dual q)
| _ -> failwith "Formula involves connectives ==> or <=>";;

† Nowadays people usually interpret the stroke as NAND, but Sheffer originally used his stroke
for NOR, and it was used in a parsimonious presentation of propositional logic by Nicod (1917).
The idea had been well known to Peirce 30 years earlier. Schönfinkel (1924) elaborated it into
a ‘quantifier stroke’, where φ(x) |x ψ(x) means ¬∃x. φ(x)∧ψ(x), and this led on to an interest
in performing the same paring-down for more general mathematical expressions, and hence to
his development of combinators.
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for example:

# dual <<p \/ ~p>>;;
- : prop formula = <<p /\ ~p>>

A little thought shows that dual(dual(p)) = p. The key semantic property
of duality is:

Theorem 2.7 eval (dual p) v = not(eval p (not ◦ v)) for any valuation v.

Proof This can be proved by a formal structural induction on formulas (see
Exercise 2.5), but it’s perhaps easier to see using more direct reasoning based
on the De Morgan laws. Let p∗ be the result of negating all the atoms in a
formula and replacing ⊥ by ¬�, � by ¬⊥. We then have eval p (not ◦ v) =
eval p∗ v. Now using the De Morgan laws we can repeatedly pull the newly
introduced negations up from the atoms in p∗ giving a logically equivalent
form:

¬p ∧ ¬q ⇔ ¬(p ∨ q)

¬p ∨ ¬q ⇔ ¬(p ∧ q).

By doing so, we exchange ‘∧’s and ‘∨’s, and bubble the newly introduced
negation signs upwards, until we just have one additional negation sign at
the top, resulting in exactly ¬(dual p). The result follows.

Corollary 2.8 If p and q are logically equivalent, so are dual p and dual q.
If p is a tautology then so is ¬(dual p).

Proof eval (dual p) v = not(eval p (not ◦ v)) = not(eval q (not ◦ v)) =
eval (dual q) v. If p is a tautology, then p and � are logically equivalent, so
dual p and dual � = ⊥ are logically equivalent and the result follows.

For example, since p ∧ (q ∨ r) and (p ∧ q) ∨ (p ∧ r) are equivalent, so are
p∨(q∧r) and (p∨q)∧(p∨r), and since p∨¬p is a tautology, so is ¬(p∧¬p).

2.5 Simplification and negation normal form

In ordinary algebra it’s common to systematically transform an expression
into an equivalent standard or normal form. One approach involves expand-
ing and cancelling, e.g. obtaining from (x+y)(y−x)+y+x2 the normal form
y2 + y. By putting expressions in normal form, we can sometimes see that
superficially different expressions are equivalent. Moreover, if the normal
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form is chosen appropriately, it can yield valuable information. For exam-
ple, looking at y2+y we can see that the value of x is irrelevant, whereas this
isn’t at all obvious from the initial form. In logic, normal forms for formulas
are of great importance, and just as in algebra the normal form can often
yield important information.

Before proceeding to create the normal forms proper, it’s convenient to
apply routine simplifications to the formula to eliminate the basic proposi-
tional constants ‘⊥’ and ‘�’, precisely by analogy with the algebraic example
in Section 1.6. Whenever ‘⊥’ and ‘�’ occur in combination, there is always a
tautology justifying the equivalence with a simpler formula, e.g. ⊥∧ p ⇔ ⊥,
⊥∨ p ⇔ p, p ⇒ ⊥ ⇔ ¬p. For good measure, we also eliminate double nega-
tion ¬¬p. The code just uses pattern-matching to consider the possibilities
case-by-case:†

let psimplify1 fm =
match fm with
Not False -> True

| Not True -> False
| Not(Not p) -> p
| And(p,False) | And(False,p) -> False
| And(p,True) | And(True,p) -> p
| Or(p,False) | Or(False,p) -> p
| Or(p,True) | Or(True,p) -> True
| Imp(False,p) | Imp(p,True) -> True
| Imp(True,p) -> p
| Imp(p,False) -> Not p
| Iff(p,True) | Iff(True,p) -> p
| Iff(p,False) | Iff(False,p) -> Not p
| _ -> fm;;

and we then apply the simplification in a recursive bottom-up sweep:

let rec psimplify fm =
match fm with
| Not p -> psimplify1 (Not(psimplify p))
| And(p,q) -> psimplify1 (And(psimplify p,psimplify q))
| Or(p,q) -> psimplify1 (Or(psimplify p,psimplify q))
| Imp(p,q) -> psimplify1 (Imp(psimplify p,psimplify q))
| Iff(p,q) -> psimplify1 (Iff(psimplify p,psimplify q))
| _ -> fm;;

For example:

# psimplify <<(true ==> (x <=> false)) ==> ~(y \/ false /\ z)>>;;
- : prop formula = <<~x ==> ~y>>

† Note that the clauses resulting in ¬p given p ⇒ ⊥, p ⇔ ⊥ and ⊥ ⇔ p are placed at the end
of their group so that, for example, ⊥ ⇒ ⊥ gets simplified to � rather than ¬⊥, which would
then need further simplification at the same level.
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If we start by applying this simplification function, we can almost ignore
the propositional constants, which makes things more convenient. However,
we need to remember two trivial exceptions: though in the simplified formula
‘⊥’ and ‘�’, cannot occur in combination, the entire formula may simply be
one of them, e.g.:

# psimplify <<((x ==> y) ==> true) \/ ~false>>;;
- : prop formula = <<true>>

A literal is either an atomic formula or the negation of one. We say that a
literal is negative if it is of the form ¬p and positive otherwise. This is tested
by the following OCaml functions, both of which assume they are indeed
applied to a literal:

let negative = function (Not p) -> true | _ -> false;;

let positive lit = not(negative lit);;

When we speak later of negating a literal l, written −l, we mean applying
negation if the literal is positive, and removing a negation if it is negative
(not double-negating it, since then it would no longer be a literal). Two
literals are said to be complementary if one is the negation of the other:

let negate = function (Not p) -> p | p -> Not p;;

A formula is in negation normal form (NNF) if it is constructed from
literals using only the binary connectives ‘∧’ and ‘∨’, or else is one of the
degenerate cases ‘⊥’ or ‘�’. In other words it does not involve the other
binary connectives ‘⇒’ and ‘⇔’, and ‘¬’ is applied only to atomic formulas.
Examples of formulas in NNF include ⊥, p, p∧¬q and p∨(q∧(¬r)∨s), while
formulas not in NNF include p ⇒ p (involves other binary connectives) as
well as ¬¬p and p ∧ ¬(q ∨ r) (involve negation of non-atomic formulas).

We can transform any formula into a logically equivalent NNF one. As
in the last section, we can eliminate ‘⇒’ and ‘⇔’ in favour of the other
connectives, and then we can repeatedly apply the De Morgan laws and the
law of double negation:

¬(p ∧ q) ⇔ ¬p ∨ ¬q

¬(p ∨ q) ⇔ ¬p ∧ ¬q

¬¬p ⇔ p

to push the negations down to the atomic formulas, exactly the reverse of
the transformation considered in the proof of Theorem 2.7. (The present
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transformation is analogous to the following procedure in ordinary algebra:
replace subtraction by its definition x− y = x+−y and then systematically
push negations down using −(x + y) = −x +−y, −(xy) = (−x)y, −(−x) =
x.) This is rather straightforward to program in OCaml, and in fact we can
eliminate ‘⇒’ and ‘⇔’ as we recursively push down negations rather than
in a separate phase.

let rec nnf fm =
match fm with
| And(p,q) -> And(nnf p,nnf q)
| Or(p,q) -> Or(nnf p,nnf q)
| Imp(p,q) -> Or(nnf(Not p),nnf q)
| Iff(p,q) -> Or(And(nnf p,nnf q),And(nnf(Not p),nnf(Not q)))
| Not(Not p) -> nnf p
| Not(And(p,q)) -> Or(nnf(Not p),nnf(Not q))
| Not(Or(p,q)) -> And(nnf(Not p),nnf(Not q))
| Not(Imp(p,q)) -> And(nnf p,nnf(Not q))
| Not(Iff(p,q)) -> Or(And(nnf p,nnf(Not q)),And(nnf(Not p),nnf q))
| _ -> fm;;

The elimination by this code of ‘⇒’ and ‘⇔’, unnegated and negated
respectively, is justified by the following tautologies:

p ⇒ q ⇔ ¬p ∨ q

¬(p ⇒ q) ⇔ p ∧ ¬q

p ⇔ q ⇔ p ∧ q ∨ ¬p ∧ ¬q

¬(p ⇔ q) ⇔ p ∧ ¬q ∨ ¬p ∧ q.

although for some purposes we might have preferred other variants, e.g.

p ⇔ q ⇔ (p ∨ ¬q) ∧ (¬p ∨ q)

¬(p ⇔ q) ⇔ (p ∨ q) ∧ (¬p ∨ ¬q).

To finish, we redefine nnf to include initial simplification, then call the
main function just defined. (This is not a recursive definition, but rather a
redefinition of nnf using the former one, since there is no rec keyword.)

let nnf fm = nnf(psimplify fm);;

Let’s try this function on an example, and confirm that the resulting
formula is logically equivalent to the original.
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# let fm = <<(p <=> q) <=> ~(r ==> s)>>;;
val fm : prop formula = <<(p <=> q) <=> ~(r ==> s)>>
# let fm’ = nnf fm;;
val fm’ : prop formula =
<<(p /\ q \/ ~p /\ ~q) /\ r /\ ~s \/
(p /\ ~q \/ ~p /\ q) /\ (~r \/ s)>>

# tautology(Iff(fm,fm’));;
- : bool = true

The NNF formula is significantly larger than the original. Indeed, because
each time a formula ‘p ⇔ q’ is expanded the formulas p and q both get
duplicated, in the worst case a formula with n connectives can expand to an
NNF with more than 2n connectives — see Exercise 2.6 below. This sort of
exponential blowup seems unavoidable while preserving logical equivalence,
but we can at least avoid doing an exponential amount of computation by
rewriting the nnf function in a more efficient way (Exercise 2.7). If the
objective were simply to push negations down to the level of atoms, we could
keep ‘⇔’ and avoid the potentially exponential blowup, using a tautology
such as ¬(p ⇔ q) ⇔ (¬p ⇔ q):

let rec nenf fm =
match fm with
Not(Not p) -> nenf p

| Not(And(p,q)) -> Or(nenf(Not p),nenf(Not q))
| Not(Or(p,q)) -> And(nenf(Not p),nenf(Not q))
| Not(Imp(p,q)) -> And(nenf p,nenf(Not q))
| Not(Iff(p,q)) -> Iff(nenf p,nenf(Not q))
| And(p,q) -> And(nenf p,nenf q)
| Or(p,q) -> Or(nenf p,nenf q)
| Imp(p,q) -> Or(nenf(Not p),nenf q)
| Iff(p,q) -> Iff(nenf p,nenf q)
| _ -> fm;;

with simplification once again rolled in:

let nenf fm = nenf(psimplify fm);;

This function will have its uses. However, the special appeal of NNF is
that we can distinguish ‘positive’ and ‘negative’ occurrences of the atomic
formulas. The connectives ‘∧’ and ‘∨’, unlike ‘¬’, ‘⇒’ and ‘⇔’, are
monotonic, meaning that their truth-functions f have the property p ≤
p′ ∧ q ≤ q′ ⇒ f(p, q) ≤ f(p′, q′), where ‘≤’ is the truth-function for implica-
tion. Another way of putting this is that the following are tautologies:
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# tautology <<(p ==> p’) /\ (q ==> q’) ==> (p /\ q ==> p’ /\ q’)>>;;
- : bool = true
# tautology <<(p ==> p’) /\ (q ==> q’) ==> (p \/ q ==> p’ \/ q’)>>;;
- : bool = true

Consequently, if an atom x in a NNF formula p occurs only unnegated, we
can deduce a corresponding monotonicity property for the whole formula:

(x ⇒ x′) ⇒ (p ⇒ psubst (x |⇒ x′) p),

while if it occurs only negated, we have an anti-monotonicity, since (p ⇒
p′) ⇒ (¬p′ ⇒ ¬p) is a tautology:

(x ⇒ x′) ⇒ (psubst (x |⇒ x′) p ⇒ p).

2.6 Disjunctive and conjunctive normal forms

A formula is said to be in disjunctive normal form (DNF) when it is of the
form:

D1 ∨ D2 ∨ · · · ∨ Dn

with each disjunct Di of the form:

li1 ∧ li2 ∧ · · · ∧ limi

and each lij a literal. Thus a formula in DNF is also in NNF but has the
additional restriction that it is a ‘disjunction of conjunctions’ rather than
having ‘∧’ and ‘∨’ intermixed arbitrarily. It is exactly analogous to a fully
expanded ‘sum of products’ expression like x3 + x2y + xy + z in algebra.

Dually, a formula is said to be in conjunctive normal form (CNF) when
it is of the form:

C1 ∧ C2 ∧ · · · ∧ Cn

with each conjunct Ci in turn of the form:

li1 ∨ li2 ∨ · · · ∨ limi

and each lij a literal. Thus a formula in CNF is also in NNF but has the
additional restriction that it is a ‘conjunction of disjunctions’. It is exactly
analogous to a fully factorized ‘product of sums’ form in ordinary algebra
like (x + 1)(y + 2)(z + 3). In ordinary algebra we can always expand into a
sum of products equivalent, but not in general a product of sums (consider
x2+y2−1 for example). This asymmetry does not exist in logic, as one might
expect from the duality of ∧ and ∨. We will first show how to transform
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a formula into a DNF equivalent, and then it will be easy to adapt it to
produce a CNF equivalent.

DNF via truth tables

If a formula involves the atoms {p1, . . . , pn}, each row of the truth table
identifies a particular assignment of truth-values to {p1, . . . , pn}, and thus
a class of valuations that make the same assignments to that set (we don’t
care how they assign other atoms). Now given any valuation v, consider the
formula:

l1 ∧ · · · ∧ ln

where

li =
{

pi if v(pi) = true
¬pi if v(pi) = false.

By construction, a valuation w satisfies l1 ∧ · · · ∧ ln if and only if v and w

agree on all the p1, . . . , pn. Now, the rows of the truth table for the original
formula having ‘true’ in the last column identify precisely those classes of
valuations that satisfy the formula. Accordingly, for each of the k ‘true’ rows,
we can select a corresponding valuation vi (for definiteness, we can map all
variables except {p1, . . . , pn} to ‘false’), and construct the formula as above:

Di = li1 ∧ · · · ∧ lin.

Now the disjunction D1∨· · ·∨Dk is satisfied by exactly the same valuations
as the original formula, and therefore is logically equivalent to it; moreover,
by the way it was constructed, it must be in DNF.

To implement this procedure in OCaml, we start with functions list_conj
and list_disj to map a list of formulas [p1; . . . ; pn] into, respectively, an
iterated conjunction p1 ∧ · · · ∧ pn and an iterated disjunction p1 ∨ · · · ∨ pn.
In the special case where the list is empty we return � and ⊥ respectively.
These choices avoid some special case distinctions later, and in any case are
natural if one thinks of the formulas as saying ‘all of the p1, . . . , pn are true’
(which is vacuously true if there aren’t any pi) and ‘some of the p1, . . . , pn

are true’ (which must be false if there aren’t any pi).

let list_conj l = if l = [] then True else end_itlist mk_and l;;

let list_disj l = if l = [] then False else end_itlist mk_or l;;
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Next we have a function mk_lits, which, given a list of formulas pvs,
makes a conjunction of these formulas and their negations according to
whether each is satisfied by the valuation v.

let mk_lits pvs v =
list_conj (map (fun p -> if eval p v then p else Not p) pvs);;

We now define allsatvaluations, a close analogue of onallvaluations
that now collects the valuations for which subfn holds into a list:

let rec allsatvaluations subfn v pvs =
match pvs with
[] -> if subfn v then [v] else []

| p::ps -> let v’ t q = if q = p then t else v(q) in
allsatvaluations subfn (v’ false) ps @
allsatvaluations subfn (v’ true) ps;;

Using this, we select the list of valuations satisfying the formula, map
mk_lits over it and collect the results into an iterated disjunction. Note
that in the degenerate cases when the formula contains no variables or is
unsatisfiable, the procedure returns ⊥ or � as appropriate.

let dnf fm =
let pvs = atoms fm in
let satvals = allsatvaluations (eval fm) (fun s -> false) pvs in
list_disj (map (mk_lits (map (fun p -> Atom p) pvs)) satvals);;

For example:

# let fm = <<(p \/ q /\ r) /\ (~p \/ ~r)>>;;
val fm : prop formula = <<(p \/ q /\ r) /\ (~p \/ ~r)>>
# dnf fm;;
- : prop formula = <<~p /\ q /\ r \/ p /\ ~q /\ ~r \/ p /\ q /\ ~r>>

As expected, the disjuncts of the formula naturally correspond to the three
classes of valuations yielding the ‘true’ rows of the truth table:

# print_truthtable fm;;
p q r | formula
---------------------------
false false false | false
false false true | false
false true false | false
false true true | true
true false false | true
true false true | false
true true false | true
true true true | false
---------------------------



2.6 Disjunctive and conjunctive normal forms 57

This approach requires no initial simplification or pre-normalization, and
emphasizes the relationship between DNF and truth tables. We can now
confirm the claim made in Section 2.4: given any n-ary truth function, we can
consider it as a truth table with n atoms and 2n rows, and directly construct
a formula (in DNF) that has that truth-function as its interpretation. On
the other hand, the fact that we need to consider all 2n valuations is rather
unattractive when n, the number of atoms in the original formula, is large.
For example, the following formula, that is already in a nice simple DNF,
gets blown up into a much more complicated variant:

# dnf <<p /\ q /\ r /\ s /\ t /\ u \/ u /\ v>>;;
...

DNF via transformation

An alternative approach to creating a DNF equivalent is by analogy with
ordinary algebra. There, in order to arrive at a fully-expanded form, we
can just repeatedly apply the distributive laws x(y + z) = xy + xz and
(x+y)z = xz +yz. Similarly, starting with a propositional formula in NNF,
we can put it into DNF by repeatedly rewriting it based on the tautologies:

p ∧ (q ∨ r) ⇔ p ∧ q ∨ p ∧ r

(p ∨ q) ∧ r ⇔ p ∧ r ∨ q ∧ r.

To encode this as an efficient OCaml function that doesn’t run over the
formula tree too many times requires a little care. We start with a func-
tion to repeatedly apply the distributive laws, assuming that the immediate
subformulas are already in DNF:

let rec distrib fm =
match fm with
And(p,(Or(q,r))) -> Or(distrib(And(p,q)),distrib(And(p,r)))

| And(Or(p,q),r) -> Or(distrib(And(p,r)),distrib(And(q,r)))
| _ -> fm;;

Now, when the input formula is a conjunction or disjunction, we first
recursively transform the immediate subformulas into DNF, then if necessary
‘distribute’ using the previous function:

let rec rawdnf fm =
match fm with
And(p,q) -> distrib(And(rawdnf p,rawdnf q))

| Or(p,q) -> Or(rawdnf p,rawdnf q)
| _ -> fm;;
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For example:

# rawdnf <<(p \/ q /\ r) /\ (~p \/ ~r)>>;;
- : prop formula =
<<(p /\ ~p \/ (q /\ r) /\ ~p) \/ p /\ ~r \/ (q /\ r) /\ ~r>>

Although this is in DNF, it’s quite hard to read because of the mixed asso-
ciations in iterated conjunctions and disjunctions. Moreover, some disjuncts
are completely redundant: both p∧¬p and (q∧r)∧¬r are logically equivalent
to ⊥, and so could be omitted without destroying logical equivalence.

Set-based representation

To render the association question moot, and make simplification easier
using standard list operations, it’s convenient to represent the DNF formula
as a set of sets of literals, e.g. rather than p∧q∨¬p∧r using {{p, q}, {¬p, r}}.
Since the logical structure is always a disjunction of conjunctions, and (the
semantics of) both disjunction and conjunction are associative, commutative
and idempotent, nothing essential is lost in such a translation, and it’s easy
to map back to a formula. We can now write the DNF function like this,
using OCaml lists for sets but taking care to avoid duplicates in the way
they are constructed:

let distrib s1 s2 = setify(allpairs union s1 s2);;

let rec purednf fm =
match fm with
And(p,q) -> distrib (purednf p) (purednf q)

| Or(p,q) -> union (purednf p) (purednf q)
| _ -> [[fm]];;

The essential structure is the same; this time distrib simply takes two
sets of sets and returns the union of all possible pairs of sets taken from
them. If we apply it to the same example, we get the same result, modulo
the new representation:

# purednf <<(p \/ q /\ r) /\ (~p \/ ~r)>>;;
- : prop formula list list =
[[<<p>>; <<~p>>]; [<<p>>; <<~r>>]; [<<q>>; <<r>>; <<~p>>];
[<<q>>; <<r>>; <<~r>>]]

But thanks to the list representation, it’s now rather easy to simplify the
resulting formula. First we define a function trivial to check if there are
complementary literals of the form p and ¬p in the same list. We do this by
partitioning the literals into positive and negative ones, and then seeing if
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the set of positive ones has any common members with the negations of the
negated ones:

let trivial lits =
let pos,neg = partition positive lits in
intersect pos (image negate neg) <> [];;

We can now filter to leave only noncontradictory disjuncts, e.g.

# filter (non trivial) (purednf <<(p \/ q /\ r) /\ (~p \/ ~r)>>);;
- : prop formula list list = [[<<p>>; <<~r>>]; [<<q>>; <<r>>; <<~p>>]]

This already gives a smaller DNF. Another refinement worth applying
in many situations is based on subsumption. Note that if {l′1, . . . , l′m} ⊆
{l1, . . . , ln} every valuation satisfying D = l1 ∧ · · · ∧ ln also satisfies D′ =
l′1 ∧ · · · ∧ l′m. Therefore the disjunction D ∨D′ is logically equivalent to just
D′. In such a case we say that D′ subsumes D, or that D is subsumed by
D′. Here is our overall function to produce a set-of-sets DNF equivalent
for a formula already in NNF, obtaining the initial unsimplified DNF then
filtering out contradictory and subsumed disjuncts:

let simpdnf fm =
if fm = False then [] else if fm = True then [[]] else
let djs = filter (non trivial) (purednf(nnf fm)) in
filter (fun d -> not(exists (fun d’ -> psubset d’ d) djs)) djs;;

Note that we deal specially with ‘⊥’ and ‘�’, returning the empty list
and the singleton list with an empty conjunction respectively. Moreover, in
the main code, stripping out the contradictory disjuncts may also result in
the empty list. If indeed all disjuncts are contradictory, the formula must
be logically equivalent to ‘⊥’, and that is consistent with the stated inter-
pretation of the empty list as implemented by the list_disj function we
defined earlier. To turn everything back into a formula we just do:

let dnf fm = list_disj(map list_conj (simpdnf fm));;

We can check that we have indeed, despite the rather complicated con-
struction, returned a logical equivalent:

# let fm = <<(p \/ q /\ r) /\ (~p \/ ~r)>>;;
val fm : prop formula = <<(p \/ q /\ r) /\ (~p \/ ~r)>>
# dnf fm;;
- : prop formula = <<p /\ ~r \/ q /\ r /\ ~p>>
# tautology(Iff(fm,dnf fm));;
- : bool = true
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Note that a DNF formula is satisfiable precisely if one of the disjuncts is,
just by the semantics of disjunction. In turn, any of these disjuncts, itself a
conjunction of literals, is satisfiable precisely when it does not contain two
complementary literals (and when it does not, we can find a satisfying valu-
ation as when finding DNFs using truth-tables). Thus, having transformed
a formula into a DNF equivalent we can recognize quickly and efficiently
whether it is satisfiable. (Indeed, our latest DNF function eliminated any
such contradictory disjuncts, so a formula is satisfiable iff the simplified DNF
contains any disjuncts at all.) This approach is not necessarily superior to
truth-tables, however, since the DNF equivalent can be exponentially large.

CNF

For CNF, we will similarly use a list-based representation, but this time the
implicit interpretation will be as a conjunction of disjunctions. Note that by
the De Morgan laws, if:

¬p ⇔
m∨

i=1

n∧
j=1

pij

then

p ⇔
m∧

i=1

n∨
j=1

−pij .

In list terms, therefore, we can produce a CNF equivalent by negating the
starting formula (putting it back in NNF), producing its DNF and negating
all the literals in that:†

let purecnf fm = image (image negate) (purednf(nnf(Not fm)));;

In terms of formal list manipulations, the code for eliminating superfluous
and subsumed conjuncts is the same, even though the interpretation is dif-
ferent. For example, trivial conjuncts now represent disjunctions containing
some literal and its negation and are hence equivalent to �; since �∧C ⇔ C

we are equally justified in leaving them out of the final conjunction. Only
the two degenerate cases need to be treated differently:

† Recall that the nnf function expands p ⇔ q into p ∧ q ∨ ¬p ∧ ¬q. This is not so well suited
to CNF since the expanded formula will suffer a further expansion that may complicate the
resulting expression unless the intermediate result is simplified. However, applying nnf to the
negation of the formula, as here, not only saves code but makes this expansion appropriate
since the roles of ‘∧’ and ‘∨’ will subsequently change.
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let simpcnf fm =
if fm = False then [[]] else if fm = True then [] else
let cjs = filter (non trivial) (purecnf fm) in
filter (fun c -> not(exists (fun c’ -> psubset c’ c) cjs)) cjs;;

We now just need to map back to the correct interpretation as a formula:

let cnf fm = list_conj(map list_disj (simpcnf fm));;

for example:

# let fm = <<(p \/ q /\ r) /\ (~p \/ ~r)>>;;
val fm : prop formula = <<(p \/ q /\ r) /\ (~p \/ ~r)>>
# cnf fm;;
- : prop formula = <<(p \/ q) /\ (p \/ r) /\ (~p \/ ~r)>>
# tautology(Iff(fm,cnf fm));;
- : bool = true

Just as we can quickly test a DNF formula for satisfiability, we can quickly
test a CNF formula for validity. Indeed, a conjunction C1 ∧ · · · ∧Cn is valid
precisely if each Ci is valid. And since each Ci is a disjunction of literals, it
is valid precisely if it contains the disjunction of a literal and its negation;
if not, we could produce a valuation not satisfying it. Once again, using
our simplifying CNF, things are even easier: a formula is valid precisely
if its simplified CNF is just �. And once again, this is not necessarily a
good practical algorithm because of the possible exponential blowup when
converting to CNF.

2.7 Applications of propositional logic

We have completed the basic study of propositional logic, identifying the
main concepts to be used later and mechanizing various operations includ-
ing the recognition of tautologies. From a certain point of view, we are
finished. But these methods for identifying tautologies are impractical for
many more complex formulas, and in subsequent sections we will present
more efficient algorithms. It’s quite hard to test such algorithms, or even
justify their necessity, without a stock of non-trivial propositional formu-
las. There are various propositional problems available in collections such as
Pelletier (1986), but we will develop some ways of generating whole classes
of interesting propositional problems from concise descriptions.
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Ramsey’s theorem

We start by considering some special cases of Ramsey’s combinatorial the-
orem (Ramsey 1930; Graham, Rothschild and Spencer 1980).† A simple
Ramsey-type result is that in any party of six people, there must either be a
group of three people all of whom know each other, or a group of three people
none of whom know each other. It’s customary to think of such problems in
terms of a graph, i.e. a collection V of vertices with certain pairs connected
by edges taken from a set E. A generalization of the ‘party of six’ result,
still much less general than Ramsey’s theorem, is:

Theorem 2.9 For each s, t ∈ N there is some n ∈ N such that any graph
with n vertices either has a completely connected subgraph of size s or a
completely disconnected subgraph of size t. Moreover if the ‘Ramsey number’
R(s, t) denotes the minimal such n for a given s and t we have:

R(s, t) ≤ R(s − 1, t) + R(s, t − 1).

Proof By complete induction on s + t. We can assume by the inductive
hypothesis that the result holds for any s′ and t′ with s′ + t′ < s+ t, and we
need to prove it for s and t.

Consider any graph of size n = R(s− 1, t) + R(s, t− 1). Pick an arbitrary
vertex v. Either there are at least R(s−1, t) vertices connected to v, or there
are at least R(s, t−1) vertices not connected to v, for otherwise the total size
of the graph would be at most (R(s−1, t)−1)+(R(s, t−1)−1)+1 = n−1,
contrary to hypothesis. Suppose the former, the argument being symmetrical
in the latter case.

Consider the subgraph based on set of a vertices attached to v, which
has size at least R(s − 1, t). By the inductive hypotheses, this either has a
completely connected subgraph of size s − 1 or a completely disconnected
subgraph of size t. If the former, including v gives a completely connected
subgraph of the main graph of size s, so we are finished. If the latter, then
we already have a disconnected subgraph of size t as required. Consequently
any graph of size n has a completely connected subgraph of size s or a
completely disconnected subgraph of size t, so R(s, t) ≤ n.

For any specific positive integers s, t and n, we can formulate a propo-
sitional formula that is a tautology precisely if R(s, t) ≤ n. We index the
vertices using integers 1 to n, calculate all s-element and t-element subsets,
† See Section 5.5 for the logical problem Ramsey was attacking when he introduced his theorem.

Another connection with logic is that the first ‘natural’ statement independent of first-order
Peano Arithmetic (Paris and Harrington 1991) is essentially a numerical encoding of a Ramsey-
type result.



2.7 Applications of propositional logic 63

and then for each of these s or t-element subsets in turn, all possible 2-
element subsets of them. We want to express the fact that for one of the
s-element sets, each pair of elements is connected, or for one of the t-element
sets, each pair of elements is disconnected. The local definition e[m;n] pro-
duces an atomic formula p_m_n that we think of as ‘m is connected to n’ (or
‘m knows n’, etc.):

let ramsey s t n =
let vertices = 1 -- n in
let yesgrps = map (allsets 2) (allsets s vertices)
and nogrps = map (allsets 2) (allsets t vertices) in
let e[m;n] = Atom(P("p_"^(string_of_int m)^"_"^(string_of_int n))) in
Or(list_disj (map (list_conj ** map e) yesgrps),

list_disj (map (list_conj ** map (fun p -> Not(e p))) nogrps));;

For example:

# ramsey 3 3 4;;
- : prop formula =
<<(p_1_2 /\ p_1_3 /\ p_2_3 \/

p_1_2 /\ p_1_4 /\ p_2_4 \/
p_1_3 /\ p_1_4 /\ p_3_4 \/ p_2_3 /\ p_2_4 /\ p_3_4) \/
~p_1_2 /\ ~p_1_3 /\ ~p_2_3 \/
~p_1_2 /\ ~p_1_4 /\ ~p_2_4 \/
~p_1_3 /\ ~p_1_4 /\ ~p_3_4 \/ ~p_2_3 /\ ~p_2_4 /\ ~p_3_4>>

We can confirm that the number 6 in the initial party example is the best
possible, i.e. that R(3, 3) = 6:

# tautology(ramsey 3 3 5);;
- : bool = false
# tautology(ramsey 3 3 6);;
- : bool = true

However, the latter example already takes an appreciable time, and even
slightly larger input parameters can create propositional problems way
beyond those that can be solved in a reasonable time by the methods we’ve
described so far. In fact, relatively few Ramsey numbers are known exactly,
with even R(5, 5) only known to lie between 43 and 49 at time of writing.

Digital circuits

Digital computers operate with electrical signals that may only occupy one
of a finite number of voltage levels. (By contrast, in an analogue computer,
levels can vary continuously.) Almost all modern computers are binary, i.e.
use just two levels, conventionally called 0 (‘low’) and 1 (‘high’). At any
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particular time, we can regard each internal or external wire in a binary
digital computer as having a Boolean value, ‘false’ for 0 and ‘true’ for 1,
and think of each circuit element as a Boolean function, operating on the
values on its input wire(s) to produce a value at its output wire. (Of course,
in taking such a view we are abstracting away many important physical
aspects, but our interest here is only in the logical structure.)

The key building-blocks of digital circuits, logic gates, correspond closely
to the usual logical connectives. For example an ‘AND gate’ is a circuit
element corresponding to the ‘and’ (∧) connective: it has two inputs and
one output, and the output wire is high (true) precisely if both the input
wires are high. Similarly a ‘NOT gate’, or inverter, has one input wire and
one output wire, and the output is high when the input is low and low when
the input is high, thus corresponding to the ‘not’ connective (¬). So there is
a close correspondence between digital circuits and formulas, which can be
crudely summarized as follows:

Digital design Propositional logic
circuit formula
logic gate propositional connective
input wire atom
internal wire subexpression
voltage level truth value

For example, the following logic circuit corresponds to the propositional
formula ¬s ∧ x ∨ s ∧ y. A compound circuit element with this behaviour is
known as a multiplexer, since the output is either the input x or y, selected
by whether s is low or high respectively.†

NOT
AND

AND

OR

x

s

y

out

One notable difference is that in the circuit we duplicate the input s

simply by splitting the wire into two, whereas in the expression, we need to
write s twice. This becomes more significant for a large subexpression: in
† We draw gates simply as boxes with a word inside indicating their kinds. Circuit designers

often use special symbols for gates.
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the formula we may need to write it several times, whereas in the circuit
we can simply run multiple wires from the corresponding circuit element. In
Section 2.8 we will develop an analogous technique for formulas.

Addition

Given their two-level circuits, it’s natural that the primary representation of
numbers in computers is the binary positional representation, rather than
decimal or some other scheme. A binary digit or bit can be represented
by the value on a single wire. Larger numbers with n binary digits can be
represented by an ordered sequence of n bits, and implemented as an array
of n wires. (Special names are used for arrays of a particular size, e.g. bytes
or octets for sequences of eight bits.) The usual algorithms for arithmetic
on many-digit numbers that we learn in school can be straightforwardly
modified for the binary notation; in fact they often become simpler.

Suppose we want to add two binary numbers, each represented by a group
of n bits. This means that each number is in the range 0 . . . 2n − 1, and so
the sum will be in the range 0 . . . 2n+1 − 2, possibly requiring n + 1 bits for
its storage. We simply add the digits from right to left, as in decimal. When
the sum in one position is ≥ 2, we reduce it by 2 and generate a ‘carry’ of 1
into the next bit position. Here is an example, corresponding to the decimal
179 + 101 = 280:

1 0 1 1 0 0 1 1
+ 0 1 1 0 0 1 0 1
= 1 0 0 0 1 1 0 0 0

In order to implement addition of n-bit numbers as circuits or proposi-
tional formulas, the simplest approach is to exploit the regularity of the
algorithm, and produce an adder by replicating a 1-bit adder n times, prop-
agating the carry between each adjacent pair of elements. The first task is to
produce a 1-bit adder, which isn’t very difficult. We can regard the ‘sum’ (s)
and ‘carry’ (c) produced by adding two digits as separate Boolean functions
with the following truth-tables, which we draw using 0 and 1 rather than
‘false’ and ‘true’ to emphasize the arithmetical link:
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x y c s

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

The truth-table for carry might look familiar: it’s just an ‘and’ operation
x∧y. As for the sum, it is an exclusive version of ‘or’, which we can represent
by ¬(x ⇔ y) or x ⇔ ¬y and abbreviate XOR. We can implement functions
in OCaml corresponding to these operations as follows:

let halfsum x y = Iff(x,Not y);;

let halfcarry x y = And(x,y);;

and now we can assert the appropriate relation between the input and output
wires of a half-adder as follows:

let ha x y s c = And(Iff(s,halfsum x y),Iff(c,halfcarry x y));;

The use of ‘half’ emphasizes that this is only part of what we need. Except
for the rightmost digit position, we need to add three bits, not just two,
because of the incoming carry. A full-adder adds three bits, which since the
answer is ≤ 3 can still be returned as just one sum and one carry bit. The
truth table is:

x y z c s

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

and one possible implementation as gates is the following:

let carry x y z = Or(And(x,y),And(Or(x,y),z));;

let sum x y z = halfsum (halfsum x y) z;;

let fa x y z s c = And(Iff(s,sum x y z),Iff(c,carry x y z));;
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It is now straightforward to put multiple full-adders together into an n-
bit adder, which moreover allows a carry propagation in at the low end
and propagates out bit n + 1 at the high end. The corresponding OCaml
function expects the user to supply functions x, y, out and c that, when
given an index, generate an appropriate new variable. The values x and y
return variables for the various bits of the inputs, out does the same for the
desired output and c is a set of variables to be used internally for carry, and
to carry in c(0) and carry out c(n).

let conjoin f l = list_conj (map f l);;

let ripplecarry x y c out n =
conjoin (fun i -> fa (x i) (y i) (c i) (out i) (c(i + 1)))

(0 -- (n - 1));;

For example, using indexed extensions of stylized names for the inputs
and generating a 3-bit adder:

let mk_index x i = Atom(P(x^"_"^(string_of_int i)))
and mk_index2 x i j =
Atom(P(x^"_"^(string_of_int i)^"_"^(string_of_int j)));;

val mk_index : string -> int -> prop formula = <fun>
val mk_index2 : string -> int -> int -> prop formula = <fun>
# let [x; y; out; c] = map mk_index ["X"; "Y"; "OUT"; "C"];;
...

we get:

# ripplecarry x y c out 2;;
- : prop formula =
<<((OUT_0 <=> (X_0 <=> ~Y_0) <=> ~C_0) /\

(C_1 <=> X_0 /\ Y_0 \/ (X_0 \/ Y_0) /\ C_0)) /\
(OUT_1 <=> (X_1 <=> ~Y_1) <=> ~C_1) /\
(C_2 <=> X_1 /\ Y_1 \/ (X_1 \/ Y_1) /\ C_1)>>

If we are not interested in a carry in at the low end, we can modify the
structure to use only a half-adder in that bit position. A simpler, if crude,
alternative, is simply to feed in False (i.e. 0) and simplify the resulting
formula:

let ripplecarry0 x y c out n =
psimplify
(ripplecarry x y (fun i -> if i = 0 then False else c i) out n);;

The term ‘ripple-carry’ adder is used because the carry flows through the
full-adders from right to left. In practical circuits, there is a propagation
delay between changes in inputs to a gate and the corresponding change in
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output. In extreme cases (e.g. 11111 . . . 111 + 1), the final output bits are
only available after the carry has propagated through n stages, taking about
2n gate delays. When n is quite large, say 64, this delay can be unacceptable,
and a different design needs to be used. For example, in a carry-select adder†

the n-bit inputs are split into several blocks of k, and corresponding k-bit
blocks are added twice, once assuming a carry-in of 0 and once assuming a
carry-in of 1. The correct answer can then be decided by multiplexing using
the actual carry-in from the previous stage as the selector. Then the carries
only need to be propagated through n/k blocks with a few gate delays in
each.‡ To implement such an adder, we need another element to supplement
ripplecarry0, this time forcing a carry-in of 1:

let ripplecarry1 x y c out n =
psimplify
(ripplecarry x y (fun i -> if i = 0 then True else c i) out n);;

and we will be selecting between the two alternatives when we do carry
propagation using a multiplexer:

let mux sel in0 in1 = Or(And(Not sel,in0),And(sel,in1));;

Now the overall function can be implemented recursively, using an auxil-
iary function to offset the indices in an array of bits:

let offset n x i = x(n + i);;

Suppose we are dealing with bits 0, . . . , k − 1 of an overall n bits. We
separately add the block of k bits assuming 0 and 1 carry-in, giving outputs
c0,s0 and c1,s1 respectively. The final output and carry-out bits are selected
by a multiplexer with selector c(0). The remaining n − k bits can be dealt
with by a recursive call, but all the bit-vectors need to be offset by k since
we start at 0 each time. The only additional point to note is that n might
not be an exact multiple of k, so we actually use k′ each time, which is either
k or the total number of bits n, whichever is smaller:

† This is perhaps the oldest technique for speeding up carry propagation, since it was used in
Babbage’s design for the Analytical Engine.

‡ For very large n the process of subdivision into blocks can be continued recursively giving
O(log(n)) delay.
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let rec carryselect x y c0 c1 s0 s1 c s n k =
let k’ = min n k in
let fm =
And(And(ripplecarry0 x y c0 s0 k’,ripplecarry1 x y c1 s1 k’),

And(Iff(c k’,mux (c 0) (c0 k’) (c1 k’)),
conjoin (fun i -> Iff(s i,mux (c 0) (s0 i) (s1 i)))

(0 -- (k’ - 1)))) in
if k’ < k then fm else
And(fm,carryselect

(offset k x) (offset k y) (offset k c0) (offset k c1)
(offset k s0) (offset k s1) (offset k c) (offset k s)
(n - k) k);;

One of the problems of circuit design is to verify that some efficiency
optimization like this has not made any logical change to the function com-
puted. Thus, if the optimization in moving from a ripple-carry to a carry-
select structure is sound, the following should always generate tautologies. It
states that if the same input vectors x and y are added by the two different
methods (using different internal variables) then the all sum outputs and
the carry-out bit should be the same in each case.

let mk_adder_test n k =
let [x; y; c; s; c0; s0; c1; s1; c2; s2] = map mk_index

["x"; "y"; "c"; "s"; "c0"; "s0"; "c1"; "s1"; "c2"; "s2"] in
Imp(And(And(carryselect x y c0 c1 s0 s1 c s n k,Not(c 0)),

ripplecarry0 x y c2 s2 n),
And(Iff(c n,c2 n),

conjoin (fun i -> Iff(s i,s2 i)) (0 -- (n - 1))));;

This is a useful generator of arbitrarily large tautologies. It also shows
how practical questions in computer design can be tackled by propositional
methods.

Multiplication

Now that we can add n-bit numbers, we can multiply them using repeated
addition. Once again, the traditional algorithm can be applied. Consider
multiplying two 4-bit numbers A and B. We will use the notation Ai, Bi for
the ith bit of A or B, with the least significant bit (LSB) numbered zero so
that bit i is implicitly multiplied by 2i. Just as we do by hand in decimal
arithmetic, we can lay out the numbers as follows with the product terms
AiBj with the same i + j in the same column, then add them all up:
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A0B3 A0B2 A0B1 A0B0

+ A1B3 A1B2 A1B1 A1B0

+ A2B3 A2B2 A2B1 A2B0

+ A3B3 A3B2 A3B1 A3B0

= P7 P6 P5 P4 P3 P2 P1 P0

In future we will write Xij for the product term AiBj ; each such product
term can be obtained from the input bits by a single AND gate. The cal-
culation of the overall result can be organized by adding the rows together
from the top. Note that by starting at the top, each time we add a row, we
get the rightmost bit fixed since there is nothing else to add in that row. In
fact, we just need to repeatedly add two n-bit numbers, then at each stage
separate the result into the lowest bit and the other n bits (for in general
the sum has n + 1 bits). The operation we iterate is thus:

Un−1 Un−1 · · · U2 U1 U0

+ Vn−1 Vn−1 · · · V2 V1 V0

= Wn−1 Wn−2 · · · · · · W1 W0

+ Z

The following adaptation of ripplecarry0 does just that:

let rippleshift u v c z w n =
ripplecarry0 u v (fun i -> if i = n then w(n - 1) else c(i + 1))

(fun i -> if i = 0 then z else w(i - 1)) n;;

Now the multiplier can be implemented by repeating this operation. We
assume the input is an n-by-n array of input bits representing the product
terms, and use the other array u to hold the intermediate sums and v to hold
the carries at each stage. (By ‘array’, we mean a function of two arguments.)

let multiplier x u v out n =
if n = 1 then And(Iff(out 0,x 0 0),Not(out 1)) else
psimplify
(And(Iff(out 0,x 0 0),

And(rippleshift
(fun i -> if i = n - 1 then False else x 0 (i + 1))
(x 1) (v 2) (out 1) (u 2) n,

if n = 2 then And(Iff(out 2,u 2 0),Iff(out 3,u 2 1)) else
conjoin (fun k -> rippleshift (u k) (x k) (v(k + 1)) (out k)

(if k = n - 1 then fun i -> out(n + i)
else u(k + 1)) n) (2 -- (n - 1)))));;
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A few special cases need to be checked because the general pattern breaks
down for n ≤ 2. Otherwise, the lowest product term x 0 0 is fed to the
lowest bit of the output, and then rippleshift is used repeatedly. The first
stage is separated because the topmost bit of one argument is guaranteed
to be zero (note the blank space above A1B3 in the first diagram). At each
stage k of the iterated operation, the addition takes a partial sum in u k, a
new row of input x k and the carry within the current row, v(k + 1), and
produces one bit of output in out k and the rest in the next partial sum
u(k + 1), except that in the last stage, when k = n - 1 is true, it is fed
directly to the output.

Primality and factorization

Using these formulas representing arithmetic operations, we can encode some
arithmetical assertions as tautology/satisfiability questions. For example,
consider the question of whether a specific integer p > 1 is prime, i.e. has no
factors besides itself and 1. First, we define functions to tell us how many
bits are needed for p in binary notation, and to extract the nth bit of a
nonnegative integer x:

let rec bitlength x = if x = 0 then 0 else 1 + bitlength (x / 2);;

let rec bit n x = if n = 0 then x mod 2 = 1 else bit (n - 1) (x / 2);;

We can now produce a formula asserting that the atoms x(i) encode the
bits of a value m, at least modulo 2n. We simply form a conjunction of these
variables or their negations depending on whether the corresponding bits
are 1 or 0 respectively:

let congruent_to x m n =
conjoin (fun i -> if bit i m then x i else Not(x i))

(0 -- (n - 1));;

Now, if a number p is composite and requires at most n bits to store, it
must have a factorization with both factors at least 2, hence both ≤ p/2 and
so storable in n − 1 bits. To assert that p is prime, then, we need to state
that for any two (n − 1)-element sequences of bits, their product does not
correspond to the value p. Note that without further restrictions, the product
could take as many as 2n − 2 bits. While we only need to consider those
products less than p, it’s easier not to bother with encoding this property in
propositional terms. Thus the following function applied to a positive integer
p should give a tautology precisely if p is prime.
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let prime p =
let [x; y; out] = map mk_index ["x"; "y"; "out"] in
let m i j = And(x i,y j)
and [u; v] = map mk_index2 ["u"; "v"] in
let n = bitlength p in
Not(And(multiplier m u v out (n - 1),

congruent_to out p (max n (2 * n - 2))));;

For example:

# tautology(prime 7);;
- : bool = true
# tautology(prime 9);;
- : bool = false
# tautology(prime 11);;
- : bool = true

The power of propositional logic

This section has given just a taste of how certain problems can be reduced to
‘SAT’, satisfiability checking of propositional formulas. Cook (1971) famously
showed that a wide class of combinatorial problems, including SAT itself, are
in a precise sense exactly as difficult as each other. (Roughly, an algorithm
for solving any one of them gives rise to an algorithm for solving any of the
others with at most a polynomial increase in runtime.) This class of NP-
complete problems is now known to contain many apparently very difficult
problems of great practical interest (Garey and Johnson 1979).

Our tautology or satisfiable functions can in the worst case take a
time exponential in the size of the input formula, since they may need to
evaluate the formula on all 2n valuations of its n atomic propositions. The
algorithms we will develop later are much more effective in practice, but
nevertheless also have exponential worst-case complexity. A polynomial-time
algorithm for SAT or any other NP-complete problem would give rise to a
polynomial-time algorithm for all NP-complete problems. Since none has
been found to date, there is a widespread belief that it is impossible, but
at time of writing this has not been proved. This is the famous P=NP
problem, perhaps the outstanding open question in discrete mathematics
and computer science.† Baker, Gill and Solovay (1975) give some reasons
why many plausible attacks on the problem are unlikely to work.

Still, the reducibility of many other problems to SAT has positive impli-
cations too. Considerable effort has been devoted to algorithms for SAT and
† A $1000000 prize is offered by the Clay Institute for settling it either way. See www.claymath.
org/millennium/ for more information.
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their efficient implementation. It often turns out that a careful reduction of
a problem to SAT followed by the use of one of these tools works better than
all but the finest specialized algorithms.‡

2.8 Definitional CNF

We have observed that tautology checking for a formula in CNF is easy, as is
satisfiability checking for a formula in DNF (Section 2.6). Unfortunately, the
simple matter of transforming a formula into a logical equivalent in either
of these normal forms can make it blow up exponentially. This is not simply
a defect of our particular implementation but is unavoidable in principle
(Reckhow 1976).

However, if we require a weaker property than logical equivalence, we
can do much better. We will show how any formula p can be transformed
to a CNF formula p′ that is at worst a few times as large as p and is
equisatisfiable, i.e. p′ is satisfiable if and only if p is, even though they are
not in general logically equivalent. We can as usual dualize the procedure
to give a DNF formula that is equivalid with the original, i.e. is a tautology
iff the original formula is. Neither of these then immediately yields a trivial
tautology or satisfiability test, since the CNF and DNF are the wrong way
round. However, at least they make a useful simplified starting point for
more advanced algorithms.

The basic idea, originally due to Tseitin (1968) and subsequently refined
in many ways (Wilson 1990), is to introduce new atoms as abbreviations or
‘definitions’ for subformulas, hence the name ‘definitional CNF’. The method
is probably best understood by looking at a simple paradigmatic example.
Suppose we want to transform the following formula to CNF:

(p ∨ (q ∧ ¬r)) ∧ s.

We introduce a new atom p1, not used elsewhere in the formula, to abbre-
viate q ∧ ¬r, conjoining the abbreviated formula with the ‘definition’ of p1:

(p1 ⇔ q ∧ ¬r) ∧
(p ∨ p1) ∧ s.

‡ This is not the case for primality or factorization as far as we know. There is a polynomial-time
algorithm known for testing primality (Agrawal, Kayal and Saxena 2004), and probabilistic
algorithms are often even faster in practice. However, there is (at the time of writing) no
known polynomial-time algorithm for factoring a composite number.
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We now proceed through additional steps of the same kind, introducing
another variable p2 abbreviating p ∨ p1:

(p1 ⇔ q ∧ ¬r) ∧
(p2 ⇔ p ∨ p1) ∧
p2 ∧ s

and then p3 as an abbreviation for p2 ∧ s:

(p1 ⇔ q ∧ ¬r) ∧
(p2 ⇔ p ∨ p1) ∧
(p3 ⇔ p2 ∧ s) ∧
p3.

Finally, we just put each of the conjuncts into CNF using traditional
methods:

(¬p1 ∨ q) ∧ (¬p1 ∨ ¬r) ∧ (p1 ∨ ¬q ∨ r) ∧
(¬p2 ∨ p ∨ p1) ∧ (p2 ∨ ¬p) ∧ (p2 ∨ ¬p1) ∧
(¬p3 ∨ p2) ∧ (¬p3 ∨ s) ∧ (p3 ∨ ¬p2 ∨ ¬s) ∧
p3.

We can see that the resulting formula can only be a modest constant factor
larger than the original. The number of definitional conjuncts introduced is
bounded by the number of connectives in the original formula. And the
final expansion of each conjunct into CNF only causes a modest expansion
because of their simple form. Even the worst case, p ⇔ (q ⇔ r), only has 11
binary connectives in its CNF equivalent:

# cnf <<p <=> (q <=> r)>>;;
- : prop formula =
<<(p \/ q \/ r) /\
(p \/ ~q \/ ~r) /\ (q \/ ~p \/ ~r) /\ (r \/ ~p \/ ~q)>>

So our claim about the size of the formula is justified. For the equisat-
isfiability, we just need to show that each definitional step is satisfiability-
preserving, for the overall transformation is just a sequence of such steps
followed by a transformation to a logical equivalent.

Theorem 2.10 If x does not occur in q, the formulas psubst (x |⇒ q) p

and (x ⇔ q) ∧ p are equisatisfiable.

Proof If psubst (x |⇒ q) p is satisfiable, say by a valuation v, then by
Theorem 2.3 the modified valuation v′ = (x �→ eval q v) v satisfies p. It
also satisfies x ⇔ q because by construction v′(x) = eval q v and since x
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does not occur in q, this is the same as eval q v′ (Theorem 2.2). Therefore
v′ satisfies (x ⇔ q) ∧ p and so that formula is satisfiable.

Conversely, suppose a valuation v satisfies (x ⇔ q) ∧ p. Since it satisfies
the first conjunct, v(x) = eval q v and therefore (x �→ eval q v) v is just v.
By Theorem 2.3, v therefore satisfies psubst (x |⇒ q) p.

The second part of this proof actually shows that the right-to-left impli-
cation (x ⇔ q) ∧ p ⇒ psubst (x |⇒ q) p is a tautology. However, the impli-
cation in the other direction is not, and hence we do not have logical equiva-
lence. For if a valuation v satisfies psubst (x |⇒ q) p, then since x does not
occur in that formula, so does v′ = (x �→ not(v(x))) v. But one or other of
these must fail to satisfy x ⇔ q.

Implementation of definitional CNF

For the new propositional variables we will use stylized names of the form
p_n. The following function returns such an atom as well as the incremented
index ready for next time.

let mkprop n = Atom(P("p_"^(string_of_num n))),n +/ Int 1;;

For simplicity, suppose that the starting formulas has been pre-simplified
by nenf, so that negation is only applied to atoms, and implication has
been eliminated. The main recursive function maincnf takes a triple con-
sisting of the formula to be transformed, a finite partial function giving the
‘definitions’ made so far, and the current variable index counter value. It
returns a similar triple with the transformed formula, the augmented defi-
nitions and a new counter moving past variables used in these definitions.
All it does is decompose the top-level binary connective into the type con-
structor and the immediate subformulas, then pass them as arguments op
and (p,q) to a general function defstep that does the main work. (The
two functions maincnf and defstep are mutually recursive and so we enter
them in one phrase: note that there is no double-semicolon after the code in
the next box.)

let rec maincnf (fm,defs,n as trip) =
match fm with
And(p,q) -> defstep mk_and (p,q) trip

| Or(p,q) -> defstep mk_or (p,q) trip
| Iff(p,q) -> defstep mk_iff (p,q) trip
| _ -> trip
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Inside defstep, a recursive call to maincnf transforms the left-hand sub-
formula p, returning the transformed formula fm1, an augmented list of def-
initions defs1 and a counter n1. The right-hand subformula q together with
the new list of definitions and counter are used in another recursive call,
giving a transformed formula fm2 and further modified definitions defs2
and counter n2. We then construct the appropriate composite formula fm’
by applying the constructor op passed in. Next, we check if there is already
a definition corresponding to this formula, and if so, return the defining
variable. Otherwise we create a new variable and insert a new definition,
afterwards returning this variable as the simplified formula, and of course
the new counter after the call to mkprop.

and defstep op (p,q) (fm,defs,n) =
let fm1,defs1,n1 = maincnf (p,defs,n) in
let fm2,defs2,n2 = maincnf (q,defs1,n1) in
let fm’ = op fm1 fm2 in
try (fst(apply defs2 fm’),defs2,n2) with Failure _ ->
let v,n3 = mkprop n2 in (v,(fm’|->(v,Iff(v,fm’))) defs2,n3);;

We need to make sure that none of our newly introduced atoms already
occur in the starting formula. This tedious business will crop up a few
times in the future, so we implement a more general solution now. The
max_varindex function returns whichever is larger of the argument n and
all possible m such that the string argument s is pfx followed by the string
corresponding to m, if any:

let max_varindex pfx =
let m = String.length pfx in
fun s n ->
let l = String.length s in
if l <= m or String.sub s 0 m <> pfx then n else
let s’ = String.sub s m (l - m) in
if forall numeric (explode s’) then max_num n (num_of_string s’)
else n;;

Now we can implement the overall function. First the formula is simplified
and negations are pushed down, giving fm’, and we use this formula to
choose an appropriate starting variable index, adding 1 to the largest n for
which there is an existing variable ‘p n’. We then call the main function, kept
as a parameter fn to allow future modification, starting with no definitions
and with the variable-name counter set to the starting index. We then return
the resulting CNF in the set-of-sets representation:
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let mk_defcnf fn fm =
let fm’ = nenf fm in
let n = Int 1 +/ overatoms (max_varindex "p_" ** pname) fm’ (Int 0) in
let (fm’’,defs,_) = fn (fm’,undefined,n) in
let deflist = map (snd ** snd) (graph defs) in
unions(simpcnf fm’’ :: map simpcnf deflist);;

Our first definitional CNF function just applies this to maincnf and con-
verts the result back to a formula:

let defcnf fm = list_conj(map list_disj(mk_defcnf maincnf fm));;

Trying it out on the example formula gives the expected result, coinciding
with the result obtained by hand above, except for ordering of conjuncts and
literals within them:

# defcnf <<(p \/ (q /\ ~r)) /\ s>>;;
- : prop formula =
<<(p \/ p_1 \/ ~p_2) /\
(p_1 \/ r \/ ~q) /\
(p_2 \/ ~p) /\
(p_2 \/ ~p_1) /\
(p_2 \/ ~p_3) /\
p_3 /\
(p_3 \/ ~p_2 \/ ~s) /\ (q \/ ~p_1) /\ (s \/ ~p_3) /\ (~p_1 \/ ~r)>>

Instead of transforming each definition into CNF in isolation, we could
have formed the final conjunction first and called the old CNF function
once. This would be slightly simpler to program, and would eliminate more
subsumed conjuncts, such as ¬p2∨¬s∨p3 in that example, which is subsumed
by p3. However, for very large formulas the subsumption testing becomes
extremely slow since (in our simple-minded implementation) it performs
about n2 operations for a formula of size n.

Optimizations

We can optimize the procedure by avoiding some obviously redundant defini-
tions. First, when dealing with an iterated conjunction in the initial formula,
we can just put the conjuncts into CNF separately and conjoin them.† And
if any of those conjuncts in their turn contain disjunctions, we can ignore
atomic formulas within them and only introduce definitions for other sub-
formulas.
† Note that the initial nenf is beneficial here, since it can expose existing CNF structure that

was formerly hidden by nested negations. For example, after this transformation the formula
¬(p ∨ q ∧ r) is already in CNF.
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The coding is fairly simple: we first descend through arbitrarily many
nested conjunctions, and then through arbitrarily many nested disjunctions,
before we begin the definitional work. However, we still need to link the defi-
nitional transformations in the different parts of the formula, so we maintain
the same overall structure with three arguments. The function subcnf has
the same structure as defstep except that it handles the linkage house-
keeping without introducing new definitions, and has the function called
recursively as an additional parameter sfn:

let subcnf sfn op (p,q) (fm,defs,n) =
let fm1,defs1,n1 = sfn(p,defs,n) in
let fm2,defs2,n2 = sfn(q,defs1,n1) in (op fm1 fm2,defs2,n2);;

This is used first to define a function that recursively descends through
disjunctions performing the definitional transformation of the disjuncts:

let rec orcnf (fm,defs,n as trip) =
match fm with
Or(p,q) -> subcnf orcnf mk_or (p,q) trip

| _ -> maincnf trip;;

and in turn a function that recursively descends through conjunctions calling
orcnf on the conjuncts:

let rec andcnf (fm,defs,n as trip) =
match fm with
And(p,q) -> subcnf andcnf mk_and (p,q) trip

| _ -> orcnf trip;;

Now the overall function is the same except that andcnf is used in place
of maincnf. We separate the actual reconstruction of a formula from the set
of sets into a different function, since it will be useful later to intercept the
intermediate result.

let defcnfs fm = mk_defcnf andcnf fm;;

let defcnf fm = list_conj (map list_disj (defcnfs fm));;

This does indeed give a significantly simpler result on our running example:

# defcnf <<(p \/ (q /\ ~r)) /\ s>>;;
- : prop formula =
<<(p \/ p_1) /\ (p_1 \/ r \/ ~q) /\ (q \/ ~p_1) /\ s /\ (~p_1 \/ ~r)>>

With a little more care one can design a definitional CNF procedure so
that it will always at least equal a naive algorithm in the size of the output
(Boy de la Tour 1990). However, the function defcnf that we have now
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arrived at is not bad and will be quite adequate for our purposes. For one
possible optimization, see Exercise 2.11.

3-CNF

Note that after the unoptimized definitional CNF conversion, the resulting
formula is in ‘3-CNF’, meaning that each conjunct contains a disjunction
of at most three literals. The reader can verify this by confirming that at
most three literals result for each conjunct in the CNF translation of every
definition p ⇔ q ⊗ r for all connectives ‘⊗’. However, the final optimization
of leaving alone conjuncts that are already a disjunction of literals spoils
this property. If 3-CNF is considered important, it can be reinstated while
still treating individual conjuncts separately. A crude but adequate method
is simply to omit the intermediate function orcnf:

let rec andcnf3 pos (fm,defs,n as trip) =
match fm with
And(p,q) -> subcnf (andcnf3 pos) (fun (p,q) -> And(p,q)) (p,q) trip

| _ -> maincnf pos trip;;

let defcnf3 fm = list_conj (map list_disj(mk_defcnf andcnf3 fm));;

The results of this section show that we can reduce SAT, testing satisfia-
bility of an arbitrary formula, to testing satisfiability of a formula in CNF
that is only a few times as large. Indeed, by the above we only need to
be able to test ‘3-SAT’, satisfiability of formulas in 3-CNF. For this reason,
many practical algorithms assume a CNF input, and theoretical results often
consider just CNF or 3-CNF formulas.

2.9 The Davis–Putnam procedure

The Davis–Putnam procedure is a method for deciding satisfiability of a
propositional formula in conjunctive normal form.† There are actually two
significantly different algorithms commonly called ‘Davis–Putnam’, but we’ll
consider them separately and try to maintain a terminological distinction.
The original algorithm presented by Davis and Putnam (1960) will be referred
to simply as ‘Davis–Putnam’ (DP), while the later and now more popular
variant developed by Davis, Logemann and Loveland (1962) will be called
‘Davis–Putnam–Loveland–Logemann’ (DPLL). Following the historical line,
we consider DP first.
† As we shall see in section 3.8, the Davis–Putnam procedure for propositional logic was originally

presented as a component of a first-order search procedure. Since this was based on refuting
ever-larger conjunctions of substitution instances, the use of CNF was particularly attractive.
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We found a ‘set of sets’ representation useful in transforming a formula
into CNF, and we’ll use it in the DP and DPLL procedures themselves. An
implicit ‘set of sets’ representation of a CNF formula is often referred to
as clausal form, and each conjunct is called a clause. The earlier auxiliary
function simpcnf already puts a formula in clausal form, and defcnfs does
likewise using definitional CNF. We will just use the latter, avoiding the
final reconstruction of a formula from the set-of-sets representation. In our
discussions, we will write clauses with the implicit logical connectives, but
with the understanding that we are really performing set operations.

The degenerate cases of clausal form should be kept in mind: a list includ-
ing the empty clause corresponds to the formula ‘⊥’, while an empty list of
clauses corresponds to the formula ‘�’; this interpretation is often used in
what follows. The DP procedure successively transforms a formula in clausal
form through a succession of others, maintaining clausal form and equisat-
isfiability with the original formula. It terminates when the clausal form
either contains an empty clause, in which case the original formula must
be unsatisfiable, or is itself empty, in which case the original formula must
be satisfiable. There are three basic satisfiability-preserving transformations
used in the DP procedure:

I the 1-literal rule,
II the affirmative-negative rule,

III the rule for eliminating atomic formulas.

Rules I and II always make the formula simpler, reducing the total number
of literals. Hence they are always applied as much as possible, and the third
rule, which may greatly increase the size of the formula, is used only when
neither of the first two is applicable. However, from a logical point of view
we can regard I as a special case of III, so we will re-use the argument that
III preserves satisfiability to show that I does too.

The 1-literal rule

This rule can be applied whenever one of the clauses is a unit clause, i.e.
simply a single literal rather than the disjunction of more than one. If p is
such a unit clause, we can get a new formula by:

• removing any instances of −p from the other clauses,
• removing any clauses containing p, including the unit clause itself.

We will show later that this transformation preserves satisfiability. The
1-literal rule is also called unit propagation since it propagates the infor-
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mation that p is true into the the other clauses. To implement it in the
list-of-lists representation, we search for a unit clause, i.e. a list of length 1,
and let u be the sole literal in it and u’ its negation. Then we first remove
all clauses containing u and then remove u’ from the remaining clauses.†

let one_literal_rule clauses =
let u = hd (find (fun cl -> length cl = 1) clauses) in
let u’ = negate u in
let clauses1 = filter (fun cl -> not (mem u cl)) clauses in
image (fun cl -> subtract cl [u’]) clauses1;;

If there is no unit clause, the application of find will raise an exception.
This makes it easy to apply one_literal_rule repeatedly to get rid of
multiple unit clauses, until failure indicates there are no more left. Note that
even if there is only one unit clause in the initial formula, an application of
the rule may itself create more unit clauses by deleting other literals.

The affirmative–negative rule

This rule, also sometimes called the pure literal rule, exploits the fact that
if any literal occurs either only positively or only negatively, then we can
delete all clauses containing that literal while preserving satisfiability. For
the implementation, we start by collecting all the literals together and
partitioning them into positive (pos) and negative (neg’). From these we
obtain the literals pure that occur either only positively or only negatively,
then eliminate all clauses that contain any of them. We make it fail if there
are no pure literals, since it then fits more easily into the overall procedure.

let affirmative_negative_rule clauses =
let neg’,pos = partition negative (unions clauses) in
let neg = image negate neg’ in
let pos_only = subtract pos neg and neg_only = subtract neg pos in
let pure = union pos_only (image negate neg_only) in
if pure = [] then failwith "affirmative_negative_rule" else
filter (fun cl -> intersect cl pure = []) clauses;;

If any valuation satisfies the original set of clauses, then it must also satisfy
the new set, which is a subset of it. Conversely, if a valuation v satisfies the
new set, we can modify it to set v′(p) = true for all positive-only literals
p in the original and v′(n) = false for all negative-only literals ¬n, setting
v′(a) = v(a) for all other atoms. By construction this satisfies the deleted

† We use a setifying map image rather than just map because we may otherwise get duplicates,
e.g. removing ¬u from ¬u∨ p∨ q when there is already a clause p∨ q. This is not essential, but
it seems prudent not to have more clauses than necessary.
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clauses, and since it does not change the assignment to any atom occurring
in the final clauses, satisfies them too and hence the original set of clauses.

Rule for eliminating atomic formulas

This rule is the only one that can make the formula increase in size, and
in the worst case the increase can be substantial. However, it completely
eliminates some particular atom from consideration, without any special
requirements on the clauses that contain it. The rule is parametrized by
a literal p that occurs positively in at least one clause and negatively in
at least one clause. (If the pure literal rule has already been applied, any
remaining literal has this property. Indeed, if we’ve also filtered out trivial,
i.e. tautologous, clauses, no literal will occur both positively and negatively
in the same clause, but we won’t rely on that when stating and proving the
next theorem.)

Theorem 2.11 Given a literal p, separate a set of clauses S into those
clauses containing p only positively, those containing it only negatively, and
those for which neither is true:

S = {p ∨ Ci | 1 ≤ i ≤ m} ∪ {−p ∨ Dj | 1 ≤ j ≤ n} ∪ S0,

where none of the Ci or Dj include the literal p or its negation, and if either
p or −p occurs in any clause in S0 then they both do. Then S is satisfiable
iff S′ is, where:

S′ = {Ci ∨ Dj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ S0.

Proof We can assume without loss of generality that p is positive, i.e. an
atomic formula, since otherwise the same reasoning applies to −p.

If a valuation v satisfies S, there are two possibilities. If v(p) = false, then
since each p ∨ Ci is satisfied but p is not, each Ci is satisfied and a fortiori
each Ci ∨ Dj . If v(p) = true, then since each −p ∨ Dj is satisfied but −p is
not, each Dj is satisfied and hence so is each Ci ∨ Dj . The formulas in S0

were already in the original clauses S and hence are still satisfied by v.
Conversely, suppose a valuation v satisfies S′. We claim that v either

satisfies all the Ci or else satisfies all the Dj . Indeed, if it doesn’t satisfy
some particular Ck, the fact that it does nevertheless satisfy all the Ck ∨Dj

for 1 ≤ j ≤ n shows at once that it satisfies all Dj ; similarly if it fails to
satisfy some Dl then it must satisfy all Ci. Now, if v satisfies all Ci, modify
it by setting v′(p) = false and setting v′(a) = v(a) for all other atoms. All
the p ∨ Ci are satisfied by v′ because all the Ci are, and all the −p ∨ Dj
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are because −p is. Since the formulas in S0 either do not involve p or are
tautologies, they are still satisfied by v′. The other case is symmetrical: if v

satisfies all Dj , modify it by setting v(p) = true and reason similarly.

Rule III is also commonly called the resolution rule, and we will study it
in more detail in Chapter 3. Correspondingly, the clause Ci ∨ Dj is said to
be a resolvent of the clauses p∨Ci and −p∨Dj , and to have been obtained
by resolution, or more specifically by resolution on p. In the implementation,
we also filter out trivial (tautologous) clauses at the end:

let resolve_on p clauses =
let p’ = negate p and pos,notpos = partition (mem p) clauses in
let neg,other = partition (mem p’) notpos in
let pos’ = image (filter (fun l -> l <> p)) pos
and neg’ = image (filter (fun l -> l <> p’)) neg in
let res0 = allpairs union pos’ neg’ in
union other (filter (non trivial) res0);;

Theoretically, we can regard the 1-literal rule applied to a unit clause p

as subsumption followed by resolution on p, and hence deduce as promised:

Corollary 2.12 The 1-literal rule preserves satisfiability.

Proof If the original set S contains the unit clause {p}, then, by subsump-
tion, the set of all other formulas involving p positively can be removed
without affecting satisfiability, giving S′, say. Now by the above theorem
the new set resulting from resolution on p is also equisatisfiable, and this
precisely removes the unit clause itself and all instances of −p.

In practice, we will only apply the resolution rule after the 1-literal and
affirmative–negative rules have already been applied. In this case we can
assume that any literal present occurs both positively and negatively, and
are faced with a choice of which literal to resolve on. Given a literal l, we
can predict the change in the number of clauses resulting from resolution
on l:

let resolution_blowup cls l =
let m = length(filter (mem l) cls)
and n = length(filter (mem (negate l)) cls) in
m * n - m - n;;

We will pick the literal that minimizes this blowup. (While this looks
plausible, it is simplistic; much more sophisticated heuristics are possible
and perhaps desirable.)
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let resolution_rule clauses =
let pvs = filter positive (unions clauses) in
let p = minimize (resolution_blowup clauses) pvs in
resolve_on p clauses;;

The DP procedure

The main DP procedure is defined recursively. It terminates if the set of
clauses is empty (returning true since that set is trivially satisfiable) or
contains the empty clause (returning false for unsatisfiability). Otherwise,
it applies the first of the rules I, II and III to succeed and then continues
recursively on the new set of clauses.† This recursion must terminate, for
each rule either decreases the number of distinct atoms (in the case of III,
assuming that tautologies are always removed first) or else leaves the number
of atoms unchanged but reduces the total size of the clauses.

let rec dp clauses =
if clauses = [] then true else if mem [] clauses then false else
try dp (one_literal_rule clauses) with Failure _ ->
try dp (affirmative_negative_rule clauses) with Failure _ ->
dp(resolution_rule clauses);;

The code can be used for satisfiability and tautology checking functions:

let dpsat fm = dp(defcnfs fm);;

let dptaut fm = not(dpsat(Not fm));;

Encouragingly, dptaut proves the formula prime 11 much more quickly
than the tautology function:

# tautology(prime 11);;
- : bool = true
# dptaut(prime 11);;
- : bool = true

The DPLL procedure

For more challenging problems, the number and size of the clauses gener-
ated in the DP procedure can grow enormously, and may exhaust available
memory before a decision is reached. This effect was even more pronounced
on the early computers available when the DP algorithm was developed, and
† The overall procedure will never fail, so any Failure exceptions must be from the rule.
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it motivated Davis, Logemann and Loveland (1962) to replace the resolution
rule III with a splitting rule. If neither of the rules I and II is applicable, then
some literal p is chosen and the satisfiability of a clause set Δ is reduced to
the satisfiability of Δ ∪ {−p} and of Δ ∪ {p}, which are tested separately.
Note that this preserves satisfiability: Δ is satisfiable if and only if one of
Δ ∪ {−p} and Δ ∪ {p} is, since any valuation must satisfy either −p or p.
The new unit clauses will then immediately be used by the 1-literal rule to
simplify the clause set. Since this step reduces the number of atoms, the
termination of the procedure is guaranteed.

A reasonable choice of splitting literal seems to be the one that occurs most
often (either positively or negatively), since the subsequent unit propagation
will then cause the most substantial simplification.† Accordingly we define
the analogue of the DP procedure’s resolution_blowup:

let posneg_count cls l =
let m = length(filter (mem l) cls)
and n = length(filter (mem (negate l)) cls) in
m + n;;

Now the basic algorithm is as before except that the resolution rule is
replaced by a case-split:

let rec dpll clauses =
if clauses = [] then true else if mem [] clauses then false else
try dpll(one_literal_rule clauses) with Failure _ ->
try dpll(affirmative_negative_rule clauses) with Failure _ ->
let pvs = filter positive (unions clauses) in
let p = maximize (posneg_count clauses) pvs in
dpll (insert [p] clauses) or dpll (insert [negate p] clauses);;

Once again, it can be applied to give tautology and satisfiability testing
functions:

let dpllsat fm = dpll(defcnfs fm);;

let dplltaut fm = not(dpllsat(Not fm));;

and the time for the same example is even better than for DP:

# dplltaut(prime 11);;
- : bool = true

† It is in fact, in a precise sense, harder to make the optimal choice of split variable than to solve
the satisfiability question itself (Liberatore 2000).
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Iterative DPLL

For really large problems, the DPLL procedure in the simple recursive
form that we have presented can require an impractical amount of memory,
because of the storage of intermediate states when case-splits are nested.
Most modern implementations are based instead on a tail-recursive (itera-
tive) control structure, using an explicit trail to store information about the
recursive case-splits. We will implement this trail as just a list of pairs, the
first member of each pair being a literal we are assuming, the second a flag
indicating whether it was just assumed as one half of a case-split (Guessed)
or deduced by unit propagation from literals assumed earlier (Deduced). The
trail is stored in reverse order, so that the head of the list is the literal most
recently assumed or deduced, and the flags are taken from this enumerated
type:

type trailmix = Guessed | Deduced;;

In general, we no longer modify the clauses of the input problem as we
explore case-splits, but retain the original formula, recording our further
(and in general temporary) assumptions only in the trail. All literals in the
trail are assumed to hold at the current stage of exploration. In order to find
potential atomic formulas to case-split over, we use the following to indicate
which atomic formulas in the problem have no assignment either way in the
trail, whether that literal was guessed or deduced:

let unassigned =
let litabs p = match p with Not q -> q | _ -> p in
fun cls trail -> subtract (unions(image (image litabs) cls))

(image (litabs ** fst) trail);;

To perform unit propagation, it is convenient internally to modify the
problem clauses cls, and also to process the trail trail into a finite partial
function fn for more efficient lookup. This is all implemented inside the fol-
lowing subfunction, which performs unit propagation until either no further
progress is possible or the empty clause is derived:

let rec unit_subpropagate (cls,fn,trail) =
let cls’ = map (filter ((not) ** defined fn ** negate)) cls in
let uu = function [c] when not(defined fn c) -> [c] | _ -> failwith "" in
let newunits = unions(mapfilter uu cls’) in
if newunits = [] then (cls’,fn,trail) else
let trail’ = itlist (fun p t -> (p,Deduced)::t) newunits trail
and fn’ = itlist (fun u -> (u |-> ())) newunits fn in
unit_subpropagate (cls’,fn’,trail’);;
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This is then used in the overall function, returning both the modified
clauses and the trail, though the former is only used for convenience and
will not be retained around the main loop:

let unit_propagate (cls,trail) =
let fn = itlist (fun (x,_) -> (x |-> ())) trail undefined in
let cls’,fn’,trail’ = unit_subpropagate (cls,fn,trail) in cls’,trail’;;

When we reach a contradiction or conflict, we need to backtrack to try
the other branch of the most recent case-split. This is where the distinction
between the decision literals (those flagged with Guessed) and the others is
used: we remove items from the trail until we reach the most recent decision
literal or there are no items left at all.

let rec backtrack trail =
match trail with
(p,Deduced)::tt -> backtrack tt

| _ -> trail;;

Now we will express the classic DPLL algorithm using this iterative refor-
mulation. The arguments to dpli are the clauses cls of the original problem,
which is unchanged over recursive calls, and the current trail. First of all we
perform exhaustive unit propagation to obtain a new set of clauses cls’ and
trail trail’. (We do not bother with the affirmative–negative rule, though
it could be added without difficulty.) If we have deduced the empty clause,
then we backtrack to the most recent decision literal. If there are none left
then we are done: the formula is unsatisfiable. Otherwise we take the most
recent one and put its negation back in the trail, now flagged as Deduced
to indicate that it follows from the previously assumed literals in the trail.
(Operationally, this means that on the next conflict we will not negate it
again and go into a loop.) If there is no conflict, then as in the recursive
formulation we pick an unassigned literal p and initiate a case-split, while if
there are no unassigned literals the formula is satisfiable.

let rec dpli cls trail =
let cls’,trail’ = unit_propagate (cls,trail) in
if mem [] cls’ then
match backtrack trail with
(p,Guessed)::tt -> dpli cls ((negate p,Deduced)::tt)

| _ -> false
else

match unassigned cls trail’ with
[] -> true

| ps -> let p = maximize (posneg_count cls’) ps in
dpli cls ((p,Guessed)::trail’);;
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As usual we can turn this into satisfiability and tautology tests for an
arbitrary formula:

let dplisat fm = dpli (defcnfs fm) [];;

let dplitaut fm = not(dplisat(Not fm));;

It works just as well as the recursive implementation, though it is often
somewhat slower because our naive data structures don’t support efficient
lookup and unit propagation. But the iterative structure really comes into
its own when we consider some further optimizations.

Backjumping and learning

For an unsatisfiable set of clauses, after recursively case-splitting enough
times, we always get the empty clause showing that some particular com-
bination of literal assignments is inconsistent. However, it may be that not
all of the assignments made in a particular case-split are really necessary to
get the empty clause. For example, suppose we perform nested case-splits
over the atoms p1,. . . ,p10 in that order, first assuming them all to be true. If
we have clauses ¬p1 ∨ ¬p10 ∨ p11 and ¬p1 ∨ ¬p10 ∨ ¬p11, we will then be
able to reach a conflict and initiate backtracking. The next combination to
be tried will be p1,. . . ,p9,¬p10. Since the clauses were assumed to be unsat-
isfiable, we will eventually, perhaps after further nested case-splits, reach
a contradiction and backtrack again. Unfortunately, for each subsequent
assignment of the atoms p2,. . . ,p9, we will waste time once again exploring
the case where p10 holds.

How can we avoid this? When first backtracking, we could instead have
observed that assumptions about p2,. . . ,p9 make no difference to the clauses
from which the conflict was derived. Thus we could have chosen to backtrack
more than one level, going back to just p1 in the trail and adding ¬p10 as a
deduced clause. This is known as (non-chronological) backjumping. A simple
version, just going back through the trail as far as possible while ensuring
that the most recent decision p still leads to a conflict, can be implemented
as follows:

let rec backjump cls p trail =
match backtrack trail with
(q,Guessed)::tt ->

let cls’,trail’ = unit_propagate (cls,(p,Guessed)::tt) in
if mem [] cls’ then backjump cls p tt else trail

| _ -> trail;;
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In the example above, a conflict arose via unit propagation from assum-
ing just p1 and p10 even though there isn’t simply a clause ¬p1 ∨ ¬p10 in
the initial clauses. Still, the fact that the simple combination of p1 and
p10 leads to a conflict is useful information that could be retained in case
it shortcuts later deductions. We can do this by adding a corresponding
conflict clause ¬p1 ∨ ¬p10, negating the conjunction of the decision liter-
als in the trail. Adding such clauses to our problem is known as learn-
ing. For example, in the following version we perform backjumping and
use the backjump trail to construct a conflict clause that is added to the
problem.

let rec dplb cls trail =
let cls’,trail’ = unit_propagate (cls,trail) in
if mem [] cls’ then
match backtrack trail with
(p,Guessed)::tt ->
let trail’ = backjump cls p tt in
let declits = filter (fun (_,d) -> d = Guessed) trail’ in
let conflict = insert (negate p) (image (negate ** fst) declits) in
dplb (conflict::cls) ((negate p,Deduced)::trail’)

| _ -> false
else
match unassigned cls trail’ with
[] -> true

| ps -> let p = maximize (posneg_count cls’) ps in
dplb cls ((p,Guessed)::trail’);;

Note that modifying cls in this way doesn’t break the essentially iterative
structure of the code, since the conflict clause is a consequence of the input
problem regardless of the temporary assignments and we will not need to
reverse the modification. We can turn dplb into satisfiability and tautology
tests as before:

let dplbsat fm = dplb (defcnfs fm) [];;

let dplbtaut fm = not(dplbsat(Not fm));;

For example, on this problem the use of backjumping and learning leads
to about a 4X improvement:

# dplitaut(prime 101);;
# dplbtaut(prime 101);;

Of course, all our implementations were designed for clarity, and by using
more efficient data structures to represent clauses, as well as careful low-
level programming, they can be made substantially more efficient. It is also
probably worth performing at least some selective subsumption to reduce
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the number of redundant clauses; more efficient data structures can make
this practical. Our implementation of backjumping was rather trivial, just
skipping over a contiguous series of guesses in the trail. This can be further
improved using a more sophisticated conflict analysis, working backwards
from the conflict clause and ‘explaining’ how the conflict arose. Some SAT
solvers even perform periodic restarts where the learned clauses are retained
but the current branching abandoned, which can often be surprisingly ben-
eficial. Finally, the heuristics for picking literals in both DP and DPLL can
be modified in various ways, and sometimes the particular choice can spec-
tacularly affect efficiency. For example, in DPLL, rather than pick the literal
occurring most often, one can select one that occurs in the shortest clause, to
maximize the chance of getting an additional unit clause out of the 1-literal
rule and causing a cascade of simplifications without a further case-split.

It is sometimes desirable that a SAT algorithm like DPLL should return
not just a yes/no answer but some additional information. For example,
if a formula is satisfiable, we might like to know a satisfying assignment,
e.g. to support its use within an SMT system (Section 5.13), and it is rea-
sonably straightforward to modify any of our DPLL implementations to do
so (Exercise 2.12). In the case of an unsatisfiable formula, we might want
a complete ‘proof’ in some sense of that unsatisfiability, either to verify it
more rigorously in case of a program bug, or to support other applications
(McMillan 2003). A more modest requirement is for the system to return
an unsat core, a ‘minimal’ subset of the initial clauses that are unsatisfiable.
Some current SAT solvers can do all this, producing an unsat core and also
a proof, as a sequence of resolution steps, of the empty clause starting from
those clauses (see Exercise 2.13).

2.10 St̊almarck’s method

The DPLL procedure and the naive tautology code both perform nested
case-splits to explore the space of all valuations, although DPLL’s simplifi-
cation rules I and II often terminate paths without going through all possi-
ble combinations. By contrast, St̊almarck’s method (St̊almarck and Säflund
1990)† tries to minimize the number of nested case-splits using a dilemma
rule, which applies a case-split and garners common conclusions from the
two branches.

Suppose we have some basic ‘simple’ deduction rules R that generate
certain logical consequences of a set of formulas. (We’ll specify these rules

† Note that St̊almarck’s method is patented for commercial use (St̊almarck 1994b).
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later, but most of the present general discussion is independent of the exact
choice.) The dilemma rule based on R performs a case-split over some literal
p, considering the new sets of formulas Δ ∪ {−p} and Δ ∪ {p}. To each of
these it applies the simple rules R to yield sets of formulas Δ0 and Δ1 in the
respective branches (we at least have −p ∈ Δ0 and p ∈ Δ1). If these have
any common elements, then since they are consequences of both Δ ∪ {−p}
and Δ ∪ {p}, they must be consequences of Δ alone, so we are justified in
augmenting the original set of formulas with Δ0 ∩ Δ1:

Δ

Δ ∪ {–p}

R R

Δ ∪ Δ 0

Δ ∪ ( Δ 0 ∩ Δ1 )

Δ ∪ Δ1

Δ ∪ {p}

The process of applying the simple rules until no further progress is possi-
ble is referred to as 0-saturation and will be written S0. Repeatedly applying
the dilemma rule with simple rules S0 until no further progress is possible is
1-saturation and written S1. Similarly, (n + 1)-saturation, Sn+1, is the pro-
cess of applying the dilemma rule with simple rules Sn. Roughly speaking,
a formula’s satisfiability is decidable by n-saturation if it is decidable by
the primitive rules and at most n-deep nesting of case-splits. (Note that the
dilemma rule may still be applied many times sequentially, but not necessar-
ily in a deeply nested fashion.) A formula decidable by n-saturation is said
to be n-easy, and if it is decidable by n-saturation but not (n−1)-saturation,
it is said to be n-hard. Many practically significant classes of problems turn
out to be n-easy for quite moderate n, often just n = 1. This is quite appeal-
ing because (St̊almarck 1994a) an n-easy formula with p connectives can be
tested for satisfiability in time proportional to O|p|2n+1.

Triplets

We’ll present St̊almarck’s method in its original setting, although the basic
dilemma rule can also be incorporated into the same clausal framework as
DPLL, as considered in Exercise 2.15 below. The formula to be tested for
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satisfiability is first reduced to a conjunction of ‘triplets’ li ⇔ lj ⊗ lk with
the literals li representing subformulas of the original formula. We derive
this as in the 3-CNF procedure from Section 2.8, introducing abbreviations
for all nontrivial subformulas but omitting the final CNF transformation of
the triplets:

let triplicate fm =
let fm’ = nenf fm in
let n = Int 1 +/ overatoms (max_varindex "p_" ** pname) fm’ (Int 0) in
let (p,defs,_) = main (fm’,undefined,n) in
p,map (snd ** snd) (graph defs);;

Simple rules

Rather than deriving clauses, the rules in St̊almarck’s method derive equiv-
alences p ⇔ q where p and q are either literals or the formulas � or ⊥.† The
underlying ‘simple rules’ in St̊almarck’s method enumerate the new equiva-
lences that can be deduced from a triplet given some existing equivalences.
For example, if we assume a triplet p ⇔ q ∧ r then:

• if we know r ⇔ � we can deduce p ⇔ q,
• if we know p ⇔ � we can deduce q ⇔ � and r ⇔ �,
• if we know q ⇔ ⊥ we can deduce p ⇔ ⊥,
• if we know q ⇔ r we can deduce p ⇔ q and p ⇔ r,
• if we know p ⇔ ¬q we can deduce p ⇔ ⊥, q ⇔ � and r ⇔ ⊥.

We’ll try to avoid deducing redundant sets of equivalences. To identify
equivalences that are essentially the same (e.g. p ⇔ ¬q, ¬q ⇔ p and q ⇔ ¬p)
we force alignment of each p ⇔ q such that the atom on the right is no bigger
than the one on the left, and the one on the left is never negated:

let atom lit = if negative lit then negate lit else lit;;

let rec align (p,q) =
if atom p < atom q then align (q,p) else
if negative p then (negate p,negate q) else (p,q);;

Our representation of equivalence classes rests on the union-find data
structure from Appendix 2. The equate function described there merges
two equivalence classes, but we will ensure that whenever p and q are to be
identified, we also identify −p and −q:

† An older variant (St̊almarck and Säflund 1990) just accumulates unit clauses, but the use of
equivalences is more powerful.
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let equate2 (p,q) eqv = equate (negate p,negate q) (equate (p,q) eqv);;

We’ll also ignore redundant equivalences, i.e. those that already follow
from the existing equivalence, including the immediately trivial p ⇔ p:

let rec irredundant rel eqs =
match eqs with
[] -> []

| (p,q)::oth ->
if canonize rel p = canonize rel q then irredundant rel oth
else insert (p,q) (irredundant (equate2 (p,q) rel) oth);;

It would be tedious and error-prone to enumerate by hand all the ways in
which equivalences follow from each other in the presence of a triplet, so we
will deduce this information automatically. The following takes an assumed
equivalence peq and triplet fm, together with a list of putative equivalences
eqs. It returns an irredundant set of those equivalences from eqs that follow
from peq and fm together:

let consequences (p,q as peq) fm eqs =
let follows(r,s) = tautology(Imp(And(Iff(p,q),fm),Iff(r,s))) in
irredundant (equate2 peq unequal) (filter follows eqs);;

To generate the entire list of ‘triggers’ generated by a triplet, i.e. a list of
equivalences with their consequences, we just need to apply this function to
each canonical equivalence:

let triggers fm =
let poslits = insert True (map (fun p -> Atom p) (atoms fm)) in
let lits = union poslits (map negate poslits) in
let pairs = allpairs (fun p q -> p,q) lits lits in
let npairs = filter (fun (p,q) -> atom p <> atom q) pairs in
let eqs = setify(map align npairs) in
let raw = map (fun p -> p,consequences p fm eqs) eqs in
filter (fun (p,c) -> c <> []) raw;;
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For instance, we can confirm and extend the examples noted above:

# triggers <<p <=> (q /\ r)>>;;
- : ((prop formula * prop formula) * (prop formula * prop formula) list)

list
=
[((<<p>>, <<true>>), [(<<q>>, <<true>>); (<<r>>, <<true>>)]);
((<<q>>, <<true>>), [(<<r>>, <<p>>)]);
((<<q>>, <<~true>>), [(<<p>>, <<~true>>)]);
((<<q>>, <<~p>>), [(<<p>>, <<~true>>); (<<r>>, <<p>>)]);
((<<r>>, <<true>>), [(<<q>>, <<p>>)]);
((<<r>>, <<q>>), [(<<q>>, <<p>>)]);
((<<r>>, <<~true>>), [(<<p>>, <<~true>>)]);
((<<r>>, <<~p>>), [(<<p>>, <<~true>>); (<<q>>, <<p>>)]);
((<<r>>, <<~q>>), [(<<p>>, <<~true>>)])]

We could apply this to the actual triplets in the formula (indeed, it is
applicable to any formula fm), but it’s more efficient to precompute it for
the possible forms p ⇔ q ∧ r, p ⇔ q ∨ r, p ⇔ q ⇒ r and p ⇔ (q ⇔ r) and
then instantiate the results for each instance in question. However, after
instantiation, we may need to realign, and also eliminate double negations
if some of p, q and r are replaced by negative literals.

let trigger =
let [trig_and; trig_or; trig_imp; trig_iff] = map triggers

[<<p <=> q /\ r>>; <<p <=> q \/ r>>;
<<p <=> (q ==> r)>>; <<p <=> (q <=> r)>>]

and ddnegate fm = match fm with Not(Not p) -> p | _ -> fm in
let inst_fn [x;y;z] =
let subfn = fpf [P"p"; P"q"; P"r"] [x; y; z] in
ddnegate ** psubst subfn in

let inst2_fn i (p,q) = align(inst_fn i p,inst_fn i q) in
let instn_fn i (a,c) = inst2_fn i a,map (inst2_fn i) c in
let inst_trigger = map ** instn_fn in
function (Iff(x,And(y,z))) -> inst_trigger [x;y;z] trig_and

| (Iff(x,Or(y,z))) -> inst_trigger [x;y;z] trig_or
| (Iff(x,Imp(y,z))) -> inst_trigger [x;y;z] trig_imp
| (Iff(x,Iff(y,z))) -> inst_trigger [x;y;z] trig_iff;;

0-saturation

The core of St̊almarck’s method is 0-saturation, i.e. the exhaustive applica-
tion of the simple rules to derive new equivalences from existing ones. Given
an equivalence, only triggers sharing some atoms with it could yield new
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information from it, so we set up a function mapping literals to relevant
triggers:

let relevance trigs =
let insert_relevant p trg f = (p |-> insert trg (tryapplyl f p)) f in
let insert_relevant2 ((p,q),_ as trg) f =
insert_relevant p trg (insert_relevant q trg f) in

itlist insert_relevant2 trigs undefined;;

The principal 0-saturation function, equatecons, defined below, derives
new information from an equation p0 = q0, and in general modifies both
the equivalence relation eqv between literals and the ‘relevance’ function
rfn.

We maintain the invariant that the relevance function maps a literal l that
is a canonical equivalence class representative to the set of triggers where the
triggering equation contains some l′ equivalent to l under the equivalence
relation. Initially, there are no non-trivial equations, so this collapses to the
special case l′ = l, corresponding to the action of the relevance function.

First of all, we get canonical representatives p and q for the two literals.
If these are already the same then the equation p0 = q0 yields no new
information and we return the original equivalence and relevance. Otherwise,
we similarly canonize the negations of p0 and q0 to get p’ and q’, which
we also need to identify.

The equivalence relation is updated just by using equate2, but updating
the relevance function is a bit more complicated. We get the set of triggers
where the triggering equation involves something (originally) equivalent to
p (sp pos) and p’ (sp neg), and similarly for q and q’. Now, the new
equations we have effectively introduced by identifying p and q are all those
with something equivalent to p on one side and something equivalent to q
on the other side, or equivalent to p’ and q’. These are collected as the set
news.

As for the new relevance function, we just collect the triggers compo-
nentwise from the two equivalence classes. This has to be indexed by the
canonical representatives of the merged equivalence classes corresponding
to p and p’, and we have to re-canonize these as we can’t a priori predict
which of the two representatives that were formerly canonical will actually
get chosen.
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let equatecons (p0,q0) (eqv,rfn as erf) =
let p = canonize eqv p0 and q = canonize eqv q0 in
if p = q then [],erf else
let p’ = canonize eqv (negate p0) and q’ = canonize eqv (negate q0) in
let eqv’ = equate2(p,q) eqv
and sp_pos = tryapplyl rfn p and sp_neg = tryapplyl rfn p’
and sq_pos = tryapplyl rfn q and sq_neg = tryapplyl rfn q’ in
let rfn’ =
(canonize eqv’ p |-> union sp_pos sq_pos)
((canonize eqv’ p’ |-> union sp_neg sq_neg) rfn) in

let nw = union (intersect sp_pos sq_pos) (intersect sp_neg sq_neg) in
itlist (union ** snd) nw [],(eqv’,rfn’);;

Though this function was a bit involved, it’s now easy to perform
0-saturation, taking an existing equivalence-relevance pair and updating it
with new equations assigs and all the consequences:

let rec zero_saturate erf assigs =
match assigs with
[] -> erf

| (p,q)::ts -> let news,erf’ = equatecons (p,q) erf in
zero_saturate erf’ (union ts news);;

At some point, we would like to check whether a contradiction has been
reached, i.e. some literal has become identified with its negation. The follow-
ing function performs 0-saturation, then if a contradiction has been reached
equates ‘true’ and ‘false’:

let zero_saturate_and_check erf trigs =
let (eqv’,rfn’ as erf’) = zero_saturate erf trigs in
let vars = filter positive (equated eqv’) in
if exists (fun x -> canonize eqv’ x = canonize eqv’ (Not x)) vars
then snd(equatecons (True,Not True) erf’) else erf’;;

to allow a simple test later on when needed:

let truefalse pfn = canonize pfn (Not True) = canonize pfn True;;

Higher saturation levels

To implement higher levels of saturation, we need to be able to take the
intersection of equivalence classes derived in two branches. We start with an
auxiliary function to equate a whole set of elements:
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let rec equateset s0 eqfn =
match s0 with
a::(b::s2 as s1) -> equateset s1 (snd(equatecons (a,b) eqfn))

| _ -> eqfn;;

Now to intersect two equivalence classes eqv1 and eqv2, we repeatedly
pick some literal x, find its equivalence classes s1 and s2 w.r.t. each equiva-
lence relation, intersect them to give s, and then identify that set of literals
in the ‘output’ equivalence relation using equateset. Here rev1 and rev2
are reverse mappings from a canonical representative back to the equiva-
lence class, and erf is an equivalence relation to be augmented with the
new equalities resulting.

let rec inter els (eq1,_ as erf1) (eq2,_ as erf2) rev1 rev2 erf =
match els with
[] -> erf

| x::xs ->
let b1 = canonize eq1 x and b2 = canonize eq2 x in
let s1 = apply rev1 b1 and s2 = apply rev2 b2 in
let s = intersect s1 s2 in
inter (subtract xs s) erf1 erf2 rev1 rev2 (equateset s erf);;

We can obtain reversed equivalence class mappings thus:

let reverseq domain eqv =
let al = map (fun x -> x,canonize eqv x) domain in
itlist (fun (y,x) f -> (x |-> insert y (tryapplyl f x)) f)

al undefined;;

The overall intersection function can exploit the fact that if contradiction
is detected in one branch, the other branch can be taken over in its entirety.

let stal_intersect (eq1,_ as erf1) (eq2,_ as erf2) erf =
if truefalse eq1 then erf2 else if truefalse eq2 then erf1 else
let dom1 = equated eq1 and dom2 = equated eq2 in
let comdom = intersect dom1 dom2 in
let rev1 = reverseq dom1 eq1 and rev2 = reverseq dom2 eq2 in
inter comdom erf1 erf2 rev1 rev2 erf;;

In n-saturation, we run through the variables, case-splitting over each in
turn, (n − 1)-saturating the subequivalences and intersecting them. This
is repeated until a contradiction is reached, when we can terminate, or no
more information is derived, in which case the formula is not n-easy and a
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higher saturation level must be tried. The implementation uses two mutually
recursive function: saturate takes new assignments, 0-saturates to derive
new information from them, and repeatedly calls splits:

let rec saturate n erf assigs allvars =
let (eqv’,_ as erf’) = zero_saturate_and_check erf assigs in
if n = 0 or truefalse eqv’ then erf’ else
let (eqv’’,_ as erf’’) = splits n erf’ allvars allvars in
if eqv’’ = eqv’ then erf’’ else saturate n erf’’ [] allvars

which in turn runs splits over each variable in turn, performing (n − 1)-
saturations and intersecting the results:

and splits n (eqv,_ as erf) allvars vars =
match vars with
[] -> erf

| p::ovars ->
if canonize eqv p <> p then splits n erf allvars ovars else
let erf0 = saturate (n - 1) erf [p,Not True] allvars
and erf1 = saturate (n - 1) erf [p,True] allvars in
let (eqv’,_ as erf’) = stal_intersect erf0 erf1 erf in
if truefalse eqv’ then erf’ else splits n erf’ allvars ovars;;

Top-level function

We are now ready to implement a tautology prover based on St̊almarck’s
method. The main loop saturates up to a limit, with progress indications:

let rec saturate_upto vars n m trigs assigs =
if n > m then failwith("Not "^(string_of_int m)^"-easy") else
(print_string("*** Starting "^(string_of_int n)^"-saturation");
print_newline();
let (eqv,_) = saturate n (unequal,relevance trigs) assigs vars in
truefalse eqv or saturate_upto vars (n + 1) m trigs assigs);;

The top-level function transforms the negated input formula into triplets,
sets the entire formula equal to True and saturates. The triggers are collected
together initially in a triggering function, which is then converted to a set:

let stalmarck fm =
let include_trig (e,cqs) f = (e |-> union cqs (tryapplyl f e)) f in
let fm’ = psimplify(Not fm) in
if fm’ = False then true else if fm’ = True then false else
let p,triplets = triplicate fm’ in
let trigfn = itlist (itlist include_trig ** trigger)

triplets undefined
and vars = map (fun p -> Atom p) (unions(map atoms triplets)) in
saturate_upto vars 0 2 (graph trigfn) [p,True];;
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The procedure is quite effective in many cases; in particular for instances
of mk_adder_test it degrades much more gracefully with size than dplltaut

# stalmarck (mk_adder_test 6 3);;
*** Starting 0-saturation
*** Starting 1-saturation
*** Starting 2-saturation
- : bool = true

Since we only saturate up to a limit of 2, we can’t conclude from the
failure of stalmarck that a formula is not a tautology (this is why we make
it fail rather than returning false). It’s not hard to see that a formula with
n atoms is n-easy, so it could easily be made complete. However, for non-
tautologies, DPLL seems more effective, so some kind of combined algorithm
may be appropriate, using saturation as well as DPLL-style splitting.

2.11 Binary decision diagrams

Consider the 2n valuations of atoms p1, . . . , pn as paths through a binary tree
labelled with atomic formulas. Starting at the root, we take the left (solid)
path from a node labelled with p if v(p) = true and the right (dotted) path if
v(p) = false, and proceed similarly for the other atoms. For a given formula,
we can label the leaves of the tree with ‘T’ if the formula holds in that
valuation and ‘F’ otherwise, giving another presentation of its truth table,
or the trace of the calls of onallvaluations hidden inside tautology. For
the formula p ∧ q ⇒ q ∧ r we might get:

TT T TT T T

r r r r

qq

p

F

We can simplify such a binary decision tree in two ways:

• replace any nodes with the same subtree to the left and right by that
subtree;
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• share any common subtrees, creating a directed acyclic graph.

Such a reduced graph representation of a Boolean function is called a
binary decision diagram (Lee 1959; Akers 1978), or if a fixed order of the
atoms is used in all subtrees, a reduced ordered binary decision diagram
(Bryant 1986). The reduced ordered binary decision diagram arising from
the formula p ∧ q ⇒ q ∧ r, using alphabetical ordering of variables, can be
represented as follows, using dotted lines to indicate a ‘false’ branch whether
we show it to the left or right:

p

F

r

q

T

The use of a fixed variable ordering is now usual, and when people talk
about binary decision diagrams (BDDs), they normally mean the reduced
ordered kind. A fixed ordering tends to maximize sharing, and it turns out
that many important Boolean functions, such as those corresponding to
adders and other digital hardware components, have fairly compact ordered
BDD representations. Another appealing feature not shared by unordered
BDDs (even if they are reduced) is that, given a particular variable ordering,
there is a unique BDD representation for any function. This means that
testing equivalence of two Boolean expressions represented as BDDs (with
the same variable order) simply amounts to checking graph isomorphism. In
particular, a formula is a tautology iff its BDD representation is the single
node ‘T’.

Complement edges

Since Bryant’s introduction of the BDD representation, the basic idea has
been refined and extended in many ways. The use of complement edges
(Madre and Billon 1988; Brace, Rudell and Bryant 1990) seems worth incor-
porating into our implementation, since the basic operations can be made
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more efficient and in many ways simpler. The idea is to allow each edge of
the BDD graph to carry a tag, usually denoted by a small black circle in
pictures, indicating the complementation (logical negation) of the subgraph
it points to. With this representation, negating a BDD now takes constant
time: one simply needs to flip its top tag. Furthermore, greater sharing is
achieved because a graph and its complement can be shared; only the edges
pointing into it need differ. In particular we only need one terminal node,
which we choose (arbitrarily) to be ‘true’, with ‘false’ represented by a com-
plement edge into it.

Complement edges do create one small problem: without some extra con-
straints, canonicality is lost. This is illustrated below: each of the four BDDs
at the top is equivalent to the one below it. This ambiguity is (arbitrarily)
resolved by ensuring that whenever we construct a BDD node, we transform
between such equivalent pairs to ensure that the ‘true’ branch is uncomple-
mented, i.e. always replace any node listed on the top row by its correspond-
ing node on the bottom row.

x x x x

x x x x

Implementation

Our OCaml representation of a BDD graph works by associating an integer
index with each node.† Complementation is indicated by negating the node
index, and since −0 = 0 we don’t use 0 as an index. Index 1 is reserved for
the ‘true’ node, and hence −1 for ‘false’; other nodes are allocated indices n

with |n| ≥ 2. A BDD node itself is then just a propositional variable together
with the ‘left’ and ‘right’ node indices:

type bddnode = prop * int * int;;

† All the code in this book is written in a purely functional subset of OCaml. It’s tempting to
implement BDDs imperatively: sharing could be implemented more directly using references as
pointers, and we wouldn’t need the messy threading of global tables through various functions.
However, the purely functional style is more convenient for experimentation so we will stick
with it.
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The BDD graph is essentially just the association between BDD nodes
and their integer indices, implemented as a finite partial function in each
direction. But the data structure also stores the smallest (positive) unused
node index and the ordering on atoms used in the graph:

type bdd = Bdd of ((bddnode,int)func * (int,bddnode)func * int) *
(prop->prop->bool);;

We don’t print the internal structure of a BDD, just a size indication:

let print_bdd (Bdd((unique,uback,n),ord)) =
print_string ("<BDD with "^(string_of_int n)^" nodes>");;

#install_printer print_bdd;;

To pass from an index to the corresponding node, we just apply the ‘expan-
sion’ function in the data structure, negating appropriately to deal with
complementation. For indices without an expansion, e.g. the terminal nodes
1 and −1, a trivial atom and two equivalent children are returned, since this
makes some later code more regular.

let expand_node (Bdd((_,expand,_),_)) n =
if n >= 0 then tryapplyd expand n (P"",1,1)
else let (p,l,r) = tryapplyd expand (-n) (P"",1,1) in (p,-l,-r);;

Before any new node is added to the BDD, we check whether there is
already such a node present, by looking it up using the function from nodes
to indices. (Because its role is to ensure a single occurrence of each node in
the graph, that function is traditionally called the unique table.) Otherwise
a new node is added; in either case the (possibly modified) BDD and the
final node index are returned:

let lookup_unique (Bdd((unique,expand,n),ord) as bdd) node =
try bdd,apply unique node with Failure _ ->
Bdd(((node|->n) unique,(n|->node) expand,n+1),ord),n;;

The core ‘make a new BDD node’ function first checks whether the two
subnodes are identical, and if so returns one them together with an unchanged
BDD. Otherwise it inserts a new node in the table, taking care to maintain
an unnegated left subnode for canonicality.

let mk_node bdd (s,l,r) =
if l = r then bdd,l
else if l >= 0 then lookup_unique bdd (s,l,r)
else let bdd’,n = lookup_unique bdd (s,-l,-r) in bdd’,-n;;
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To get started, we want to be able to create a trivial BDD structure, with
a user-specified ordering of the propositional variables:

let mk_bdd ord = Bdd((undefined,undefined,2),ord);;

The following function extracts the ordering from a BDD, treating the
trivial variable as special so we can sometimes treat terminal nodes uni-
formly:

let order (Bdd(_,ord)) p1 p2 = (p2 = P"" & p1 <> P"") or ord p1 p2;;

The BDD representation of a formula is constructed bottom-up. For exam-
ple, to create a BDD for a formula p∧q, we first create BDDs for p and q and
then combine them appropriately by a function bdd_and. In order to avoid
repeating work, we maintain a second function called the ‘computed table’
that stores previously computed results from bdd_and.† For updating the
various tables, the following is convenient: it’s similar to g(f1 x2,f2 x2)
but with all the functions f1, f2 and g also taking and returning some ‘state’
that we want to successively update through the evaluation:

let thread s g (f1,x1) (f2,x2) =
let s’,y1 = f1 s x1 in let s’’,y2 = f2 s’ x2 in g s’’ (y1,y2);;

To implement conjunction of BDDs, we first consider the trivial cases
where one of the BDDs is ‘false’ or ‘true’, in which case we return ‘false’ and
the other BDD respectively. We also check whether the result has already
been computed; since conjunction is commutative, we can equally well accept
an entry with the arguments either way round. Otherwise, both BDDs are
branches. In general, however, they may not branch on the same variable –
although the order of variables is the same, many choices may be (and we
hope are) omitted because of sharing. If the variables are the same, then
we recursively deal with the left and right pairs, then create a new node.
Otherwise, we pick the variable that comes first in the ordering and consider
its two sides, but the other side is, at this level, not broken down. Note that
at the end, we update the computed table with the new information.

† The unique table is essential for canonicality, but the computed table is purely an efficiency
optimization, and we could do without it, at a sometimes considerable performance cost.
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let rec bdd_and (bdd,comp as bddcomp) (m1,m2) =
if m1 = -1 or m2 = -1 then bddcomp,-1
else if m1 = 1 then bddcomp,m2 else if m2 = 1 then bddcomp,m1 else
try bddcomp,apply comp (m1,m2) with Failure _ ->
try bddcomp,apply comp (m2,m1) with Failure _ ->
let (p1,l1,r1) = expand_node bdd m1
and (p2,l2,r2) = expand_node bdd m2 in
let (p,lpair,rpair) =

if p1 = p2 then p1,(l1,l2),(r1,r2)
else if order bdd p1 p2 then p1,(l1,m2),(r1,m2)
else p2,(m1,l2),(m1,r2) in

let (bdd’,comp’),(lnew,rnew) =
thread bddcomp (fun s z -> s,z) (bdd_and,lpair) (bdd_and,rpair) in

let bdd’’,n = mk_node bdd’ (p,lnew,rnew) in
(bdd’’,((m1,m2) |-> n) comp’),n;;

We can use this to implement all the other binary connectives on BDDs:

let bdd_or bdc (m1,m2) = let bdc1,n = bdd_and bdc (-m1,-m2) in bdc1,-n;;

let bdd_imp bdc (m1,m2) = bdd_or bdc (-m1,m2);;

let bdd_iff bdc (m1,m2) =
thread bdc bdd_or (bdd_and,(m1,m2)) (bdd_and,(-m1,-m2));;

Now to construct a BDD for an arbitrary formula, we recurse over its
structure; for the binary connectives we produce BDDs for the two subfor-
mulas then combine them appropriately:

let rec mkbdd (bdd,comp as bddcomp) fm =
match fm with
False -> bddcomp,-1

| True -> bddcomp,1
| Atom(s) -> let bdd’,n = mk_node bdd (s,1,-1) in (bdd’,comp),n
| Not(p) -> let bddcomp’,n = mkbdd bddcomp p in bddcomp’,-n
| And(p,q) -> thread bddcomp bdd_and (mkbdd,p) (mkbdd,q)
| Or(p,q) -> thread bddcomp bdd_or (mkbdd,p) (mkbdd,q)
| Imp(p,q) -> thread bddcomp bdd_imp (mkbdd,p) (mkbdd,q)
| Iff(p,q) -> thread bddcomp bdd_iff (mkbdd,p) (mkbdd,q);;

This can now be made into a tautology-checker simply by creating a BDD
for a formula and comparing the overall node index against the index for
‘true’. We just use the default OCaml ordering ‘<’ on variables:

let bddtaut fm = snd(mkbdd (mk_bdd (<),undefined) fm) = 1;;
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Exploiting definitions

The tautology checker bddtaut performs quite well on some examples; for
example it works markedly faster than dplltaut here:

# bddtaut (mk_adder_test 4 2);;
- : bool = true

However, it’s relatively inefficient on larger formulas of the same kind,
such as mk_adder_test 9 5. These formulas, as a result of the way they
were created, use ‘definitions’ of the form xi ⇔ Ei occurring positively in
the antecedent of an implication, or the body of a negated formula. We can
break down the overall formula uniformly, regarding ¬p as p ⇒ ⊥:

let dest_nimp fm = match fm with Not(p) -> p,False | _ -> dest_imp fm;;

The ‘defined’ variables are used to express sharing of common
subexpressions within a propositional formula via equivalences x ⇔ E, just
as they were in the construction of definitional CNF. However, since a BDD
structure already shares common subexpressions, we’d rather exclude the
variable x and replace it by the BDD for E wherever it appears elsewhere.
The following breaks down a definition:

let rec dest_iffdef fm =
match fm with
Iff(Atom(x),r) | Iff(r,Atom(x)) -> x,r

| _ -> failwith "not a defining equivalence";;

However, we can’t treat any conjunction of suitable formulas as a sequence
of definitions, because they might be cyclic, e.g. (x ⇔ y∧r)∧ (y ⇔ x∨s). In
order to change our mind and put a definition x ⇔ e back as an antecedent
to the formula, we use:

let restore_iffdef (x,e) fm = Imp(Iff(Atom(x),e),fm);;

We then try to organize the definitions into an acyclic dependency order
by repeatedly picking out one x ⇔ e that is suitable, meaning that no other
atom potentially ‘defined’ later occurs in e:

let suitable_iffdef defs (x,q) =
let fvs = atoms q in not (exists (fun (x’,_) -> mem x’ fvs) defs);;

The main code for sorting definitions is recursive. The list acc holds the
definitions already processed into a suitable order, defs is the unprocessed
definitions and fm is the main formula. The code looks for a definition x ⇔ e
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that is suitable, adds it to acc and moves any other definitions x ⇔ e′

from defs back into the formula. Should no suitable definition be found, all
remaining definitions are put back into the formula and the processed list is
reversed so that the earliest items in the dependency order occur first:

let rec sort_defs acc defs fm =
try let (x,e) = find (suitable_iffdef defs) defs in

let ps,nonps = partition (fun (x’,_) -> x’ = x) defs in
let ps’ = subtract ps [x,e] in
sort_defs ((x,e)::acc) nonps (itlist restore_iffdef ps’ fm)

with Failure _ -> rev acc,itlist restore_iffdef defs fm;;

The BDD for a formula will be constructed as before, but each atom will
first be looked up using a ‘subfunction’ sfn to see if it is already considered
just a shorthand for another BDD:

let rec mkbdde sfn (bdd,comp as bddcomp) fm =
match fm with
False -> bddcomp,-1

| True -> bddcomp,1
| Atom(s) -> (try bddcomp,apply sfn s with Failure _ ->

let bdd’,n = mk_node bdd (s,1,-1) in (bdd’,comp),n)
| Not(p) -> let bddcomp’,n = mkbdde sfn bddcomp p in bddcomp’,-n
| And(p,q) -> thread bddcomp bdd_and (mkbdde sfn,p) (mkbdde sfn,q)
| Or(p,q) -> thread bddcomp bdd_or (mkbdde sfn,p) (mkbdde sfn,q)
| Imp(p,q) -> thread bddcomp bdd_imp (mkbdde sfn,p) (mkbdde sfn,q)
| Iff(p,q) -> thread bddcomp bdd_iff (mkbdde sfn,p) (mkbdde sfn,q);;

We now create the BDD for a series of definitions and final formula by
successively forming BDDs for the definitions, including those into the sub-
function sfn and recursing, forming the BDD for the formula when all def-
initions have been used:

let rec mkbdds sfn bdd defs fm =
match defs with
[] -> mkbdde sfn bdd fm

| (p,e)::odefs -> let bdd’,b = mkbdde sfn bdd e in
mkbdds ((p |-> b) sfn) bdd’ odefs fm;;

For the overall tautology checker, we break the formula into definitions
and a main formula, sort the definitions into dependency order, and then
call mkbdds before testing at the end:

let ebddtaut fm =
let l,r = try dest_nimp fm with Failure _ -> True,fm in
let eqs,noneqs = partition (can dest_iffdef) (conjuncts l) in
let defs,fm’ = sort_defs [] (map dest_iffdef eqs)

(itlist mk_imp noneqs r) in
snd(mkbdds undefined (mk_bdd (<),undefined) defs fm’) = 1;;
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This is substantially more efficient on many of the examples that were
barely feasible before:

# ebddtaut (prime 101);;
- : bool = true
# ebddtaut (mk_adder_test 9 5);;
- : bool = true

However, there are many other optimizations worthy of note. In particu-
lar, our naive choice of the default alphabetical variable order has little to
recommend it. For circuit examples, variable orders reflecting the topology
are often effective (Malik, Wang, Brayton and Sangiovanni-Vincentelli 1988).
However, there is no feasible algorithm for arriving at the best variable order-
ing, and in fact many available BDD packages automatically try reordering
variables partway through the BDD construction. Indeed, for certain classes
of formulas, the BDD representation has exponential size whatever variable
ordering is used, e.g. those involving multipliers (Bryant 1986) or the ‘hidden
weighted bit’ function (Bryant 1991).

We should emphasize that BDDs are not simply a path to tautology or
satisfiability checking, but an alternative representation for propositional
formulas. This gives them a useful role in various methods for formal verifi-
cation such as symbolic simulation (Bryant 1985), symbolic trajectory eval-
uation (Seger and Bryant 1995) and temporal logic model checking (Burch,
Clarke, McMillan, Dill and Hwang 1992), where their canonical nature is
particularly appropriate.

2.12 Compactness

We now establish a key theoretical property of propositional logic, used
essentially in the next chapter, concerning the satisfiability of an infinite
set of formulas. Recall that a set Γ of propositional formulas is said to be
satisfiable if there is a valuation that simultaneously satisfies them all. The
compactness theorem† states:

† The name comes from a link with point-set topology (Engelking 1989; Kelley 1975). Give the

set of all valuations B
N, where B = {false, true}, the product topology based on the discrete

topology for B. (This is sometimes called Cantor space.) For any formula p, the set Vp of
valuations satisfying it is closed (in fact open too) in this topology because each formula only

involves finitely many propositional variables. Since B is compact, so is B
N by Tychonoff’s

theorem. By hypothesis, all finite intersections from the set {Vp | p ∈ Γ} are nonempty, and so
by definition of compactness, the intersection of all of them is nonempty, as required. Assuming
the Axiom of Choice, Tychonoff’s theorem holds if N is replaced by any set of atoms, giving a
proof of the compactness theorem in the general case.
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Theorem 2.13 For any set Γ of propositional formulas, if each finite subset
Δ ⊆ Γ is satisfiable, then Γ itself is satisfiable.

Proof We will assume that the set of atoms is countable, and enumerate
them in some way p1, p2, . . . This is sufficient for all the applications to auto-
mated reasoning, and requires less mathematical machinery. The method of
proof is to produce a valuation v that satisfies Γ by considering the atoms
in sequence and choosing appropriate v(p1), v(p2), . . . one at a time.

First we will show that if there are truth values t1, t2, . . . , tn such that
every finite Δ ⊆ Γ is satisfiable by a valuation v with v(p1) = t1, . . . ,
v(pn) = tn then there is a truth-value tn+1 such that every finite Δ ⊆ Γ
is satisfiable by a valuation v with v(p1) = t1, . . . , v(pn+1) = tn+1. For
suppose not. Then setting tn+1 = false doesn’t work, so there’s some finite
Δ0 ⊆ Γ not satisfiable by any valuation v with v(p1) = t1, . . . , v(pn) =
tn, v(pn+1) = false. Similarly, setting tn+1 = true doesn’t work so there’s
some finite Δ1 ⊆ Γ not satisfiable by any valuation v with v(p1) = t1, . . . ,
v(pn) = tn, v(pn+1) = true. Therefore the set Δ0 ∪ Δ1 is not satisfiable by
any valuation v with v(p1) = t1, . . . , v(pn) = tn since any such valuation
must either set v(pn+1) = false, in which case it fails to satisfy Δ0, or
v(pn+1) = true in which case it fails to satisfy Δ1. However since Δ0 ∪ Δ1

is the union of two finite sets, it is also finite, contradicting the assumption.
Therefore we can define an infinite sequence of truth values (ti) by recur-

sion with the property that for any n ∈ N, any finite Δ ⊆ Γ is satisfiable by
a valuation v with v(p1) = t1, . . . , v(pn) = tn, and this defines a valuation by
v(pn) = tn. We claim v satisfies Γ, i.e. satisfies every formula p ∈ Γ. For any
such p, since the number of atoms in p is finite, we can find some N so that
each pn occurring in p has n ≤ N . But by construction all finite subsets of Γ,
in particular {p}, are satisfiable by a valuation w where w(pn) = tn = v(pn)
for n ≤ N . Since assignments to variables not in p are irrelevant, this shows
that p is indeed satisfied by v as required.

Corollary 2.14 If an arbitrary set Γ of propositional formulas is unsatisfi-
able, then some finite subset Δ ⊆ Γ is unsatisfiable.

Proof Suppose instead that every finite subset Δ ⊆ Γ were satisfiable. By
the compactness theorem, Γ is satisfiable, contradicting the hypothesis.

Corollary 2.15 If a set Γ of formulas is such that for any valuation v there
is some p ∈ Γ that is satisfied by v, then there is a finite disjunction of
pi ∈ Γ, say p1 ∨ · · · ∨ pn, that is a tautology.
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Proof Let Γ = {¬p | p ∈ Γ}. Since every valuation satisfies some p ∈ Γ
it must fail to satisfy the corresponding ¬p ∈ Γ. Hence Γ is unsatisfiable.
By the previous corollary, some finite subset {¬p1, . . . ,¬pn} is unsatisfiable.
However by definition, a valuation satisfies this set precisely if it satisfies
the conjunction ¬p1 ∧ · · · ∧ ¬pn, and so this formula is unsatisfiable. Hence
its negation ¬(¬p1 ∧ · · · ∧ ¬pn) is a tautology, and by the De Morgan laws
this is logically equivalent to p1 ∨ · · · ∨ pn.

In the next chapter, we will apply the Compactness Theorem to auto-
mated theorem proving. However, perhaps it’s interesting to see a direct
mathematical application. Readers may skip the remainder of this section
without impairing their understanding of the rest of the book.

Colouring infinite graphs

How many different colours are needed to colour the regions on a map so that
no two regions sharing a border have the same colour? (These ‘regions’ might
be countries, states, counties, etc. depending on the map.) The following map
needs at least four:

a

bc

d

Remarkably, four colours are enough for any map. (We assume no region
is split into two disconnected pieces, and ignore common borders consist-
ing of just a point.) This was first conjectured by the map-maker Francis
Guthrie who had been colouring the counties on a map of England. De
Morgan (of the De Morgan laws) communicated the problem to other lead-
ing mathematicians. The first ‘proof’ was published by Kempe (1879), but
rather later Heawood (1890) showed that it was flawed, and only proves that
five colours suffice. The conjecture remained open for almost a century until
it was proved by Appel and Haken (1976) using a refinement of Kempe’s
original argument supported by extensive computer checking of particular
configurations. The fact that important parts of the proof were delegated
to a computer has caused controversy ever since (Lam 1990), though recent
work by Gonthier (2005) on a thoroughgoing formalization may have helped
to dispel some worries.
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First, let us formulate the result in a more mathematical way, ignoring
inessential details like the shapes of regions and making clear that we are
considering maps drawn on a plane rather than, say, the surface of a torus
(where as many as seven colours may be needed). We consider the map as a
graph where the regions are represented by vertices V and those sharing a
common border are connected by an edge. We will consider the edges as
binary relations, with E(a, b) meaning ‘there is an edge between a and b’.
E is irreflexive, i.e. it is never the case that E(a, a), and symmetric, i.e.
E(a, b) iff E(b, a). A graph is said to be planar if there is a mapping f :
V → R

2 of vertices to points in the Euclidean plane so that paths can
be drawn between each pair (f(a), f(b)) where E(a, b) such that no two
distinct paths touch except at the vertices, i.e. it can be drawn on a plane
without edges crossing. By a k-colouring of a graph, we mean a mapping
C : V → {1, . . . , k} assigning to each vertex one of k distinct ‘colours’. We
say that a graph is k-colourable if an assignment C of k colours can be made
such that whenever E(x, y) then C(x) �= C(y), i.e. no connected vertices
have the same colour. In this guise, the 4-colour theorem can be stated as
follows:

Theorem 2.16 Every planar graph with a finite number of vertices is 4-
colourable.

Proof Too complex to be given. See Appel and Haken (1976) for a brief
account of the original proof, and Robertson, Sanders, Seymour and Thomas
(1996) for a simpler proof.

Given any particular graph, we can formulate 4-colourability as a propo-
sitional satisfiability problem on a set of atoms {pi

v | v ∈ V ∧ i ∈ {1, 2, 3, 4}}
representing the assignment of colour i to vertex v. To encode the assertion
that the assignment of colours is indeed a valid colouring, we need three
things.

• Every vertex has some colour. This can be represented by the formulas
{p1

v ∨ p2
v ∨ p3

v ∨ p4
v | v ∈ V }.

• No vertex has more than one colour. This can be represented by the
formulas {¬(p1

v ∧ p2
v) ∧ ¬(p1

v ∧ p3
v) ∧ ¬(p1

v ∧ p4
v) ∧ ¬(p2

v ∧ p3
v) ∧ ¬(p2

v ∧ p4
v) ∧

¬(p3
v ∧ p4

v) | v ∈ V }.
• Two vertices connected by an edge do not have the same colour. This can

be represented by the formulas {¬(p1
a ∧ p1

b) ∧ ¬(p2
a ∧ p2

b) ∧ ¬(p3
a ∧ p3

b) ∧
¬(p4

a ∧ p4
b) | E(a, b)}.
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We claim that the graph is 4-colourable precisely if the set of all these
formulas together, say Γ, is satisfiable. In fact, given a colouring C : V →
{1, . . . , 4}, create a corresponding valuation v where v(pi

v) = true precisely
when C(v) = i. Note that C is a valid colouring precisely when the set of
formulas is satisfied by v.

We can now apply the compactness theorem to deduce that the 4-colour
theorem remains true even for infinite graphs. Consider any finite subset
Δ of Γ. This finite collection of formulas can only involve finitely many
propositional variables pi

v and hence only finitely many v, say some finite
subset V ′ ⊆ V . Consider the subgraph based on the vertex set V ′, i.e.
restrict the edges to E′(x, y) meaning E(x, y) and x ∈ V ′, y ∈ V ′. Create
the corresponding finite set of formulas Γ′. By the 4-colour theorem this is
satisfiable, and clearly includes Δ. Therefore by the compactness theorem,
the whole set Γ is satisfiable and so the entire graph, even if infinite, is
4-colourable.

Thanks to the formulation of colourability in terms of propositional sat-
isfiability, the proof based on compactness was relatively simple. It easily
generalizes to prove that if every finite subset of a graph is k-colourable, so
is the whole graph, as was originally proved by de Bruijn (1951) using a more
direct argument. Dually, by formulating certain properties as propositional
tautologies, we can sometimes deduce a finite version of a theorem from an
infinite one – see Exercise 2.22.

Further reading

For the general theory of Boolean algebra, which includes propositional,
set-theoretic and other interpretations of Boole’s original system, see for
example Abian (1976), Davey and Priestley (1990) and Halmos (1963).
There are discussions of Boolean algebras in many logic textbooks such
as Bell and Slomson (1969), some of which we will recommend later for
other technical topics. Finally, Halmos and Givant (1998) treats logic in the
modern way but adopts a more explicitly algebraic style.

Propositional logic is covered in many standard logic texts, e.g. Church
(1956), van Dalen (1994), Enderton (1972), Goodstein (1971), Hilbert and
Ackermann (1950), Hodges (1977), Johnstone (1987), Kreisel and Krivine
(1971), Mates (1972), Quine (1950) and Tarski (1941); many of these also
prove the compactness theorem. Most books on automated theorem proving
also discuss propositional logic and classical decision methods such as Davis–
Putnam, though often spend little time on propositional logic before moving
on to first-order logic (our next chapter). Davis, Sigal and Weyuker (1994)
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is a combination of theoretical logic with automated theorem proving, as
well as being a textbook on computability and complexity. More focused
on automated theorem proving are Bibel (1987), Chang and Lee (1973),
Duffy (1991), Fitting (1990), Loveland (1978), Newborn (2001) and Wos,
Overbeek, Lusk and Boyle (1992).

Backjumping and learning were first used in DPLL in the SAT solvers
GRASP (Marques-Silva and Sakallah 1996) and rel sat (Bayardo and Schrag
1997). Some more recent DPLL-based systems, in approximately
chronological order of development, are SATO (Zhang 1997), Chaff
(Moskewicz, Madigan, Zhao, Zhang and Malik 2001), BerkMin (Goldberg
and Novikov 2002) and MiniSat (Een and Sörensson 2003). The papers
describing these systems are a valuable source of information about both
the fundamental DPLL algorithm versions and the clever implementation
tricks. Nieuwenhuis, Oliveras and Tinelli (2006) and Krstić and Goel (2007)
describe iterative DPLL by a nondeterministic sequence of abstract rules, so
that particular implementations can be seen as ways of deploying these rules.
Kroening and Strichman (2008) also discuss the architectures of ‘industrial-
strength’ SAT solvers, as well as discussing numerous extensions of propo-
sitional logic and how they are used in applications. Some of these topics
will be discussed later in this book, but some will not, notably quantified
Boolean formulas (QBF), where formulas may be quantified over the atoms.
(This is different from first-order logic described in the next chapter where
quantification is over elements of the domain, not propositions.)

Some of the topics we have discussed are not (yet) widely covered in gen-
eral textbooks and the reader must consult more specialist monographs or
research papers. This is notably the case for St̊almarck’s algorithm, though
a survey of the theory and its successful practical applications is given by
Sheeran and St̊almarck (2000). The idea of recursive learning (Kunz and
Pradhan 1994) shares important ideas with St̊almarck’s method.

The survey article by Bryant (1992) and the textbook by Kropf (1999) dis-
cuss BDDs and their role in automated methods for formal hardware verifi-
cation. Most strikingly, temporal logic model checking (Clarke and Emerson
1981; Queille and Sifakis 1982) underwent a minor revolution when McMil-
lan and others (Coudert, Berthet and Madre 1989; Burch, Clarke, McMillan,
Dill and Hwang 1992; Pixley 1990) married them with a BDD representa-
tion.† For a detailed introduction to model checking, see Clarke, Grumberg

† However, there has recently been interest in approaches using other, non-canonical, representa-
tions (Bjesse 1999; Abdulla, Bjesse and Eén 2000) as well as pure SAT solving (Biere, Cimatti,
Clarke and Zhu 1999; McMillan 2003).
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and Peled (1999), as well as some books on logic in computer science like
Huth and Ryan (1999).

Propositional satisfiability can be reduced to linear integer arithmetic,
interpreting 0 as false and 1 as true and mapping each propositional atom p

to a variable vp with a constraint 0 ≤ vp ≤ 1. Now, for example, p ∨ ¬q ∨ r

holds if vp + (1 − vq) + vr ≥ 1. Thus we can convert satisfiability for a
propositional formula in clausal form into an integer arithmetic problem
consisting of a conjunction of such inequalities. See Hooker (1988) for more
on this kind of technique, which is radically different from those algorithms
we have considered.

Exercises

2.1 Implement a function to generate all propositional formulas with a
given number of symbols (measuring either the number of nodes in
the abstract syntax tree or some standard linear form). Plot the
proportion of such formulas that are tautologies or contradictions
against the size. Can you generate results for large enough lengths
to see a trend? Is the trend as expected?

2.2 Prove the following nice result in equivalential logic due to Leśniewski
(1929). We remarked that features of logical equivalence ‘⇔’ such as
associativity often seem peculiar because we are not accustomed to
thinking of propositional functions. Show in fact that a propositional
formula involving only atoms, ‘�’ and ‘⇔’ is a tautology iff each atom
occurs an even number of times. Show that if ‘¬’ is also allowed, a
formula is a tautology iff each atom occurs an even number of times
and the negation operator appears an even number of times.

2.3 Prove this elegant result from Post (1941); see Goodstein (1971) for
an easier proof and further generalizations. We showed earlier that all
truth-functions can be generated from the binary operations ‘NAND’
and ‘NOR’, i.e. either variant of the ‘Sheffer stroke’. More generally,
call an n-ary truth-function f : {0, 1}n → {0, 1} a Sheffer function
if all truth-functions can be generated from it alone. Show that f is
a Sheffer function iff (i) for all p we have f(p, p, . . . , p) = ¬p and (ii)
for some p1, . . . , pn we have f(¬p1, . . . ,¬pn) �= ¬f(p1, . . . , pn).

2.4 Implement an algorithm to generate all n-ary Sheffer functions for
a given n. Implement another algorithm that takes a basic proposi-
tional function, perhaps specified by a formula, and a second formula
p, and expresses p in terms of the basic function if possible, or fails
if not.
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2.5 Prove the key duality result eval (dual p) v = not(eval p (not ◦ v))
by a formal induction on formulas.

2.6 Show that applying our nnf function to a right-associated chain of
equivalences p1 ⇔ p2 ⇔ · · · ⇔ pn results in a formula with An

atoms (and therefore An − 1 binary connectives) where A1 = 1 and
for n ≥ 1 we have An+1 = 2(An + 1). Show that this is the worst
possible result for any starting formula with n atoms.

2.7 We can avoid the potentially exponential duplication of work when
transforming a formula to NNF by the trick of returning for a formula
p two NNF formulas, one equivalent to p and the other equivalent
to ¬p. Write a direct recursive OCaml implementation of such a
function, nnfp, whose runtime is linear in the size of the formula.
For example, the clause for an equivalence Iff(p,q) might be:

let p’,p’’ = nnfp p and q’,q’’ = nnfp q in
Or(And(p’,q’),And(p’’,q’’)),Or(And(p’,q’’),And(p’’,q’))

Test the function on heavily nested instances of ‘⇔’. Note that
the resulting formulas will still be exponentially large when printed
out, but internally will share common subexpressions. Thus, when
testing the efficiency you will want to avoid looking at the result,
e.g. by

let fm’ = time nnfp (simplify fm) in ();;

2.8 Look at some alternative digital circuits for multiplication, e.g. Wal-
lace trees, in standard computer arithmetic texts such as Koren
(1992). Realize them as propositional formulas and verify equiva-
lence to the implementations we have given by tautology checking.

2.9 Show how to construct a digital circuit with three inputs a, b and c

and three outputs that are the respective negations ¬a, ¬b and ¬c,
using an arbitrary number of ‘AND’ and ‘OR’ gates but at most two
‘NOT’ gates (inverters). This surprisingly difficult puzzle in logic
circuit design (Wos 1998) was suggested by E. Snow from Intel.
Can you prove a more general result about how many wires can be
inverted using any number of ‘AND’ and ‘OR’ gates together with n

inverters?
2.10 Show that if an atomic proposition x occurs only positively in a

formula p, then psubst (x |⇒ q) p is satisfiable precisely if (x ⇒ q)∧p

is (Plaisted and Greenbaum 1986). Use this to create an variant of
defcnf using implication rather than equivalence for the definitions
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wherever possible. How does this affect subsequent performance of
algorithms like DPLL, on both satisfiable and unsatisfiable formulas?

2.11 The comparison between tautology and dplltaut is rather unfair in
that we don’t test the particular CNF form and Davis–Putnam rules
against other ways of simplifying the formula. Implement a version
of tautology that simplifies the formula (perhaps using psimplify)
between case-splits and uses similar variable-picking heuristics to
dplltaut. How does this compare?

2.12 Modify one of our DPLL implementations so that when a formula
is satisfiable, it returns a satisfying assignment in some form (e.g.
a finite partial function into booleans, or the set of atoms to be
assigned ‘true’).

2.13 Modify one of our DPLL implementations so that when given an
unsatisfiable set of clauses, it provides a proof of that unsatisfiability
as a sequence of resolution steps. Can you make this work both when
doing backjumping/learning and when doing purely the traditional
DPLL splitting?

2.14 In an early presentation (St̊almarck and Säflund 1990) of St̊almarck’s
method, negations were eliminated by pulling them up the formula,
leaving just implication and conjunction. Define a function nunf to
do this. Show that if the final formula is unnegated, the whole for-
mula is automatically satisfiable.

2.15 Implement a variant of St̊almarck’s method based on 3-CNF along
the lines described by Groote (2000), accumulating unit and 2-clauses
(which can be considered as implications). How does performance
compare with the usual version? Suppose that instead of splitting
over variables, one uses the clauses themselves and splits over the
various disjuncts (in general a three-way split). How does that com-
pare? Does it help if when splitting over p∨ q ∨ r one assumes sepa-
rately p, ¬p ∧ q, and ¬p ∧ ¬q ∧ r?

2.16 ‘Urquhart formulas’ are tautologies of the form p1 ⇔ p2 ⇔ · · · ⇔
pn ⇔ p1 ⇔ p2 ⇔ · · · ⇔ pn for some n. Show that they are all
2-easy for St̊almarck’s method. Implement an OCaml function to
return an Urquhart formula for a given parameter n, and compare
the performance of our implementations of DPLL and St̊almarck on
them.

2.17 Try modifying the BDD construction functions to choose variable
orderings reflecting the characteristics of the problem, perhaps derived
from the sequence of ‘definitions’ in ebddtaut. Can you find some
simple approaches that work well on a wide class of examples?
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2.18 Implement a function to generate (pseudo-)random formulas in 3-
CNF, based on input parameters giving the desired number of clauses
(C) and the number of distinct atoms (V ). A naive statistical anal-
ysis would suggest that, since each clause excludes

(
1
2

)3 = 1
8 of the

possible valuations, the number of satisfying valuations would be
of the order of 2V

(
7
8

)C . Regardless of the method used, satisfia-
bility of problems where 2V

(
7
8

)C ≈ 1, i.e. C ≈ 5.2V , might be
expected to be the most difficult to resolve, since they are on the
borderline between satisfiability and unsatisfiability. Empirical stud-
ies of algorithms such as DPLL often suggest a difficulty peak closer
to C ≈ 4.3V (Kirkpatrick and Selman 1994; Crawford and Auton
1996). But the difficulty peak, and the onset of other qualitative
changes, is quite subtle and apparently algorithm-dependent (Coarfa,
Demopoulos, Alfonso, Subramanian and Vardi 2000). Experiment
with the performance of various tautology-checking or
satisfiability-checking methods on your random formulas as the C/V

ratio is varied. Are your results in line with theoretical expecta-
tions? Can you refine the analysis, e.g. using techniques presented
by Kirousis, Kranakis, Krizanc and Stamatiou (1998), so that they
are? How does the difficulty peak vary if one considers 4-CNF, 5-
CNF etc.? Is this again in line with expectations?

2.19 A set of formulas Γ is said to be independent if whenever φ ∈ Γ,
Γ − {φ} �|= φ, i.e. no formula in Γ follows from all the others. Two
sets Γ and Δ are said to be equivalent if for any formula φ, Γ |= φ iff
Δ |= φ. Prove that:

• any finite set Γ has an equivalent independent subset;
• not every countable set of formulas has an equivalent independent

subset;
• every countable set of formulas does have an equivalent indepen-

dent set, not necessarily a subset of the original set.

Does the last result extend to uncountable sets?
2.20 Let B be an infinite set of boys, each of whom has at most a finite

number of girlfriends. If for each integer k, any k of the boys have
between them at least k girlfriends, prove that it is possible for each
boy to marry one of his girlfriends without any of them committing
bigamy (Bell and Slomson 1969).

2.21 Gardner (1975) gave a planar map which he claimed (as an April
Fool’s joke) not to be 4-colourable. Construct the corresponding
propositional formula and refute the claim by proving it satisfiable.
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2.22 An infinite variant of Ramsey’s Theorem 2.9 states that any graph
on vertices N has either an infinite connected subgraph or an infinite
completely disconnected subgraph. (You might want to try and prove
that.) Use the compactness theorem to deduce our finite Ramsey
Theorem 2.9 from that infinite variant.

2.23 Prove the following combinatorial theorems taken from Bonet, Buss
and Pitassi (1995). (i) If a town has n citizens and there is a set of
clubs such that each club has an odd number of citizens and any
two distinct clubs have an even number of citizens in common, then
there are at most n clubs. (ii) If F1, . . . , Fm is a system of distinct
nonempty subsets of {1, . . . , n} such that for each i �= j, |Fi∩Fj | = k,
for some fixed k, then m ≤ n. Write programs to encode particular
instances of these assertions as propositional satisfiability problems
and test some of the methods we have covered in this chapter.

2.24 A group (not necessarily abelian) is said to be ordered by ≤ iff ≤ is a
total order such that a ≤ b ⇒ ac ≤ bc ∧ ca ≤ cb. Show that a group
can be ordered iff each finitely generated subgroup can be ordered.
Deduce that an abelian group can be ordered iff it is torsion-free, i.e.
there is no n ≥ 1 such that xn = 1 for x �= 1 (Kreisel and Krivine
1971).

2.25 Although no polynomial-time algorithm for SAT is known at the time
of writing, show that you could implement a function polysat that
accepts propositional formulas and always correctly tests them for
satisfiability, and is such that if P = NP then there is a polynomial
p(n) so that the runtime of polysat on satisfiable formulas of size
n is ≤ p(n). (The author learned of this result from Carl Witty,
and Martin Hofmann pointed out that it is a special case of Levin’s
search theorem in recursion theory.)
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First-order logic

We now move from propositional logic to richer first-order logic, where
propositions can involve non-propositional variables that may be univer-
sally or existentially quantified. We show how proof in first-order logic can
be mechanized naively via Herbrand’s theorem. We then introduce various
refinements, notably unification, that help make automated proof more
efficient.

3.1 First-order logic and its implementation

Propositional logic only allows us to build formulas from primitive proposi-
tions that may independently be true or false. However, this is too restrictive
to capture patterns of reasoning where the truth or falsity of propositions
depends on the values of non-propositional variables. For example, a typical
proposition about numbers is ‘m < n’, and its truth depends on the values
of m and n. If we simply introduce a distinct propositional variable for each
such proposition, we lose the ability to interrelate different instances accord-
ing to the variables they contain, e.g. to assert that ¬(m < n∧n < m). First-
order (predicate) logic extends propositional logic in two ways to accommo-
date this need:

• the atomic propositions can be built up from non-propositional variables
and constants using functions and predicates;

• the non-propositional variables can be bound with quantifiers.

We make a syntactic distinction between formulas, which are intuitively
intended to be true or false, and terms, which are intended to denote ‘objects’
in the domain being reasoned about (numbers, people, sets or whatever).
Terms are built up from (object-denoting) variables using functions. In dis-
cussions we use f(s, t, u) for a term built from subterms s, t and u using

118
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the function f , or sometimes infix notation like s + t rather than +(s, t)
where it seems more natural or familiar. All of these are merely understood
as presentations of the underlying abstract syntax of terms where a term is
either a variable or a function applied to any number of other ‘argument’
terms:

type term = Var of string
| Fn of string * term list;;

Functions can have any number of arguments, this number being known
as the arity of the function (from a pun on the words unary, binary, ternary,
quaternary, etc.) In particular we can accommodate constants like 1 or π

as nullary functions, i.e. functions with zero arguments. Most mathematical
expressions can be quite directly formalized as terms, e.g.

√
1 − cos2(x + y)

as:

Fn("sqrt",[Fn("-",[Fn("1",[]);
Fn("cos",[Fn("power",[Fn("+",[Var "x"; Var "y"]);

Fn("2",[])])])])]);;

All the logical connectives of propositional logic carry over into first-order
logic. However, each atomic proposition is now analyzed into a named pred-
icate or relation applied to any finite number of terms. Once again we write
P (s, t) for a predicate P applied to arguments s and t, but use infix notation
like s < t where it seems natural instead of < (s, t). We create a new type
fol of first-order atomic propositions, so we get a natural fol formula type
for the type of first-order formulas:

type fol = R of string * term list;;

For example, x + y < z can be formalized as the atomic formula:

Atom(R("<",[Fn("+",[Var "x"; Var "y"]); Var "z"]))

A predicate may have zero arguments, corresponding to a simple propo-
sitional variable. We call functions and predicates with one argument unary
or monadic, those with two arguments binary or dyadic, and those with n

arguments n-ary.
In certain contexts, we will consider terms and/or formulas in a restricted

language. Formally, we define a signature as a pair of sets, one a list of
functions and one a list of predicates, both as name–arity pairs, and the
corresponding language as the sets of terms and formulas that can be built
using only functions and predicates appearing in that signature (but any
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variables). For example the language of arithmetic that we use in Chapter 7
has the following signature:

({("0", 0), ("S", 1), ("+", 2), ("*", 2)}, {("=", 2), ("<", 2), ("<=", 2)}),
so terms like x+S(0) and formulas like S(S(0)) < x+ y are in the language
but 1+x and P (0, x) are not. The exact formal definitions of ‘language’ and
‘signature’ are unimportant (these vary in the literature, and some authors
identify the two), provided the concept of a term or formula being in a
restricted language is clear.

Quantifiers

Now we come to the other main change compared with propositional logic:
the introduction of quantifiers.

• The formula ∀x. p, or Forall("x",p) in our OCaml formulation, where
x is a variable and p any formula, means intuitively ‘for all values of x,
p is true’. For this reason ∀ is referred to as the universal quantifier; the
symbol is derived from the first letter of ‘all’.

• The analogous formula ∃x. p, or Exists("x",p) in OCaml, means intu-
itively ‘there exists an x such that p is true’, i.e. ‘p is true for some value(s)
of x’. For this reason ∃ is referred to as the existential quantifier; the sym-
bol is derived from the first letter of ‘exists’.

In the formulas ∀x.P [x] and ∃x.P [x], the subformula P [x] is referred to as
the scope of the corresponding quantifier. (In informal discussions we often
write expressions like P [x] for ‘some arbitrary formula possibly involving
x’.) The quantifier is said to bind instances of x within its scope, and these
variables are said to be bound. Instances of variables not within the scope
of a quantifier are called free. Note that the same variable can occur both
free and bound in the same formula, e.g. in R(x, a)∧ ∀x. R(y, x), where the
variable x has one free occurrence and one bound occurrence.

Intuitively speaking, a bound variable is just a placeholder referring back
to the corresponding binding operation, rather than an independent variable
in the usual sense. Bound variables can be compared with English pronouns
referring back to some particular noun established at the start: ‘Although
the money was missing, John denied that he stole it’. Binding operations are
quite common in mathematical notation, e.g. the variable n in

∑∞
n=1 1/n2,

the variable x in
∫ ∞
−∞ e−x2

dx and the variable k in {k2 | k ∈ N}. They
also occur in programming languages, e.g. for OCaml the x in the definition
let f(x) = 2 * x and the a in the expression let a = 2 in a * a * a.
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As in logic, variables in mathematics sometimes occur both free and bound
in the same expression, e.g. in

∫ x
0 2x dx, where the variable x has both a

free occurrence (as the upper limit of the integral) and a bound occurrence
(inside the body of the integral). Similarly, x really occurs both free and
bound in d(x2)/dx, though the conventional notation obscures the fact. We
can analyze it as the derivative of x �→ x2 (in which x is bound) evaluated
at point x (where x is a free variable).

In our concrete syntax, the scope of a quantifier extends as far to the right
as possible, e.g. ∀x.P (x) ⇒ Q(x) means ∀x.(P (x) ⇒ Q(x)) not (∀x.P (x)) ⇒
Q(x). (Many, especially older, texts use exactly the opposite convention,
making quantifiers bind tighter than propositional connectives. The reader
should keep this in mind when consulting the literature.) If we apply the
universal or existential quantifier to several variables in succession, then we
usually only write one quantifier symbol, e.g. ∀x y z.x+(y+z) = (x+y)+z

rather than ∀x.∀y.∀z.x+(y+z) = (x+y)+z. Moreover, it is sometimes useful
to assert that there exists exactly one x such that p is true. We write this
∃!x. p and consider ∃!x. P [x] as a shorthand for ∃x. P [x]∧∀y. P [y] ⇒ y = x.

Intuitively, the ordering of a sequence of quantifiers of the same kind
(all universal or all existential) shouldn’t matter: ‘for all x, for all y, . . . ’
means the same as ‘for all y, for all x, . . . ’, and so on. When we define
logical equivalence precisely below, the reader will be able to confirm this
intuition. However, where quantifiers of different kinds are nested inside each
other, or where the derived quantifier ∃! is involved (see Exercise 3.1), the
order is often important. For example, if we think of loves(x, y) as ‘x loves
y’, the formula ∀x. ∃y. loves(x, y) asserts that everybody loves somebody,
whereas ∃y.∀x. loves(x, y) asserts that somebody is loved by everybody. For
a more mathematical example, consider the ε − δ definitions of continuity
and uniform continuity of a function f : R → R. Continuity asserts that
given ε > 0, for each x there is a δ > 0 such that whenever |x′ − x| < δ, we
also have |f(x′) − f(x)| < ε:

∀ε. ε > 0 ⇒ ∀x. ∃δ. δ > 0 ∧ ∀x′. |x′ − x| < δ ⇒ |f(x′) − f(x)| < ε.

Uniform continuity, on the other hand asserts that given ε > 0 there is a
δ > 0 independent of x such that for any x and x′, whenever |x′ − x| < δ,
we also have |f(x′) − f(x)| < ε:

∀ε. ε > 0 ⇒ ∃δ. δ > 0 ∧ ∀x. ∀x′. |x′ − x| < δ ⇒ |f(x′) − f(x)| < ε.

Note how the changed order of quantification radically changes the asserted
property. (For example, f(x) = x2 is continuous on the real line, but not
uniformly continuous there.) The notion of uniform continuity was only
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articulated relatively late in the arithmetization of analysis, and several
early ‘proofs’ supposedly requiring only continuity in fact require uniform
continuity. Perhaps the use of a formal language would have cleared up many
conceptual difficulties sooner.†

The name ‘first-order logic’ arises because quantifiers can be applied only
to object-denoting variables, not to functions or predicates. Logics where
quantification over functions and predicates is permitted (e.g. ∃f. ∀x. P [x,

f(x)]) are said to be second-order or higher-order. But we restrict ourselves
to first-order quantifiers: the parser defined next will treat such a string as
if the first f were just an ordinary object variable and the second a unary
function that just happens to have the same name.

3.2 Parsing and printing

Parsing and printing of terms and formulas in concrete syntax is imple-
mented using a mostly familiar pattern, described in detail in Appendix 3.
Any quotation <<...>> is automatically passed to the formula parser parse,
except that surrounding bars <<|...|>> force parsing as a term using the
term parser parset. Printers for terms and formulas are installed in the
toplevel so no explicit invocation is needed.

As well as the general concrete syntax f(x), g(x,y) etc. for terms, we
allow infix use of the customary binary function symbols ‘+’, ‘-’, ‘*’, ‘/’
and ‘^’ (exponentiation), all with conventional precedences, as well as an
infix list constructor :: with the lowest precedence. Unary negation may be
written with or without the brackets required by the general unary function
notation, as -(x) or -x. Remember in the latter case that all unary functions
have higher precedence than binary ones, so -x^2 is interpreted as (-x)^2,
not -(x^2) as one might expect.

Users can always force a name c to be recognized as a constant by explic-
itly writing a nullary function application c(). However, this is apt to look
a bit peculiar, so we adopt some additional conventions. All alphanumeric
identifiers apparently within the scope of a quantifier over a variable with
the same name will be treated as variables; otherwise they will be treated as
constants if and only if the OCaml predicate is_const_name returns true
when applied to them. We have set this up to recognizes only strings of digits

† Even with a formal language, it is often hard to grasp the meaning of repeated alternations of
‘∀’ and ‘∃’ quantifiers. As we will see in Chapter 7, the number of quantifier alternations is a
significant metric of the ‘mathematical complexity’ of a formula. It has even been suggested that
the whole array of mathematical concepts and structures like complex numbers and topological
spaces are mainly a means of hiding larger numbers of quantifier alternations and so making
them more accessible to our intuition.
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and the special name nil (the empty list) as constants, but the reader can
change this behaviour. For example, one might borrow the conventions from
the Prolog programming language (see Section 3.14), where names begin-
ning with uppercase letters (like ‘X’ or ‘First’) are taken to be variables and
those beginning with lowercase letters or numbers (like ‘12’ or ‘const A’)
are taken to be constants.

Our concrete syntax for ‘∀x. P [x]’ is ‘forall x. P[x]’, and for ‘∃x. P [x]’
we use ‘exists x. P[x]’. There seemed no single symbols sufficiently like
the backward letters to be recognizable, though the HOL theorem prover
(Gordon and Melham 1993) uses ‘!x. P[x]’ and ‘?x. P[x]’. For example:

# <<forall x y. exists z. x < z /\ y < z>>;;
- : fol formula = <<forall x y. exists z. x < z /\ y < z>>
# <<~(forall x. P(x)) <=> exists y. ~P(y)>>;;
- : fol formula = <<~(forall x. P(x)) <=> (exists y. ~P(y))>>

Note that the printer includes brackets around quantified statements even
though they can sometimes be omitted without ambiguity based on the fact
that both we humans and the OCaml parser read expressions from left to
right.

3.3 The semantics of first-order logic

As with a propositional formula, the meaning of a first-order formula is
defined recursively and depends on the basic meanings given to the compo-
nents. In propositional logic the only components are propositional variables,
but in first-order logic the variables, function symbols and predicate sym-
bols all need to be interpreted. It’s customary to separate these concerns,
and define the meaning of a term or formula with respect to both an inter-
pretation, which specifies the interpretation of the function and predicate
symbols, and a valuation which specifies the meanings of variables. Mathe-
matically, an interpretation M consists of three parts.

• A nonempty set D called the domain of the interpretation. The intention
is that all terms have values in D.†

• A mapping of each n-ary function symbol f to a function fM : Dn → D.
• A mapping of each n-ary predicate symbol P to a Boolean function PM :

Dn → {false, true}. Equivalently we can think of the interpretation as a
subset PM ⊆ Dn.

† Some authors such as Johnstone (1987) allow empty domains, giving free or inclusive logic. This
seems quite natural since one does sometimes consider empty structures (partial orders, graphs
etc.) in mathematics. However, several results such as the validity of (∀x.P [x]) ⇒ P [x] and the
existence of prenex normal forms (see Section 3.5) fail when empty domains are allowed.
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We define the value of a term in a particular interpretation M and valu-
ation v by recursion, simply taking note of how all variables are interpreted
by v and function symbols by M :

termval M v x = v(x),

termval M v (f(t1, . . . , tn)) = fM (termval M v t1, . . . , termval M v tn).

Whether a formula holds (i.e. has value ‘true’) in a particular interpre-
tation M and valuation v is similarly defined by recursion (Tarski 1936)
and mostly follows the pattern established for propositional logic. The main
added complexity is specifying the meaning of the quantifiers. We intend
that ∀x. P [x] should hold in a particular interpretation M and valuation v

precisely if the body P [x] is true for any interpretation of the variable x,
in other words, if we modify the effect of the valuation v on x in any way
at all.

holds M v ⊥ = false

holds M v � = true

holds M v (R(t1, . . . , tn)) = RM (termval M v t1, . . . , termval M v tn)

holds M v (¬p) = not(holds M v p)

holds M v (p ∧ q) = (holds M v p) and (holds M v q)

holds M v (p ∨ q) = (holds M v p) or (holds M v q)

holds M v (p ⇒ q) = not(holds M v p) or (holds M v q)

holds M v (p ⇔ q) = (holds M v p = holds M v q)

holds M v (∀x. p) = for all a ∈ D, holds M ((x �→ a)v) p

holds M v (∃x. p) = for some a ∈ D, holds M ((x �→ a)v) p

The domain D in an interpretation is assumed nonempty, but otherwise
may have arbitrary finite or infinite cardinality (e.g. the set {0, 1} or the set
of real numbers R), and the functions and predicates may be interpreted by
arbitrary (possibly uncomputable) mathematical functions. For infinite D

we cannot directly realize the holds function in OCaml, since interpreting
a quantifier involves running a test on all elements of D. However, we will
implement a cut-down version that works for a finite domain.

An interpretation is represented by a triple of the domain, the interpreta-
tion of functions, and the interpretation of predicates. (To be a meaningful
interpretation, the domain D should be nonempty, and each n-ary function f

should be interpreted by an fM that maps n-tuples of elements of D back into
D. The OCaml functions below just assume that the argument m is mean-
ingful in this sense.) The valuation is represented as a finite partial function
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(see Appendix 2). Then the semantics of terms can be defined following very
closely the abstract description we gave above:

let rec termval (domain,func,pred as m) v tm =
match tm with
Var(x) -> apply v x

| Fn(f,args) -> func f (map (termval m v) args);;

and the semantics of a formula as:

let rec holds (domain,func,pred as m) v fm =
match fm with
False -> false

| True -> true
| Atom(R(r,args)) -> pred r (map (termval m v) args)
| Not(p) -> not(holds m v p)
| And(p,q) -> (holds m v p) & (holds m v q)
| Or(p,q) -> (holds m v p) or (holds m v q)
| Imp(p,q) -> not(holds m v p) or (holds m v q)
| Iff(p,q) -> (holds m v p = holds m v q)
| Forall(x,p) -> forall (fun a -> holds m ((x |-> a) v) p) domain
| Exists(x,p) -> exists (fun a -> holds m ((x |-> a) v) p) domain;;

To clarify the concepts, let’s try a few examples of interpreting formulas
involving the nullary function symbols ‘0’, ‘1’, the binary function symbols
‘+’ and ‘·’ and the binary predicate symbol ‘=’. We can consider an inter-
pretation à la Boole, with ‘+’ as exclusive ‘or’:

let bool_interp =
let func f args =
match (f,args) with
("0",[]) -> false

| ("1",[]) -> true
| ("+",[x;y]) -> not(x = y)
| ("*",[x;y]) -> x & y
| _ -> failwith "uninterpreted function"

and pred p args =
match (p,args) with
("=",[x;y]) -> x = y

| _ -> failwith "uninterpreted predicate" in
([false; true],func,pred);;

An alternative interpretation is as arithmetic modulo n for some arbitrary
positive integer n:
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let mod_interp n =
let func f args =
match (f,args) with
("0",[]) -> 0

| ("1",[]) -> 1 mod n
| ("+",[x;y]) -> (x + y) mod n
| ("*",[x;y]) -> (x * y) mod n
| _ -> failwith "uninterpreted function"

and pred p args =
match (p,args) with
("=",[x;y]) -> x = y

| _ -> failwith "uninterpreted predicate" in
(0--(n-1),func,pred);;

If all variables are bound by quantifiers, the valuation plays no role in
whether a formula holds or not. (We will state and prove this more precisely
shortly.) In such cases, we can just use undefined to experiment. For exam-
ple, ∀x. x = 0 ∨ x = 1 holds in bool interp and mod interp 2, but not in
mod interp 3:

# holds bool_interp undefined <<forall x. (x = 0) \/ (x = 1)>>;;
- : bool = true
# holds (mod_interp 2) undefined <<forall x. (x = 0) \/ (x = 1)>>;;
- : bool = true
# holds (mod_interp 3) undefined <<forall x. (x = 0) \/ (x = 1)>>;;
- : bool = false

Consider now the assertion that every nonzero object of the domain has
a multiplicative inverse.

# let fm = <<forall x. ~(x = 0) ==> exists y. x * y = 1>>;;

As the reader who knows some number theory may be able to anticipate,
this holds in mod interp n precisely when n is prime, or trivially 1:

# filter (fun n -> holds (mod_interp n) undefined fm) (1--45);;
- : int list = [1; 2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43]

This formula holds in bool_interp too, as the reader can confirm. (In
fact, even though they are based on different domains, mod_interp 2 and
bool_interp are isomorphic, i.e. essentially the same, a concept explained
in Section 4.2.)
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The set of free variables

We write FVT(t) for the set of all the variables involved in a term t, e.g.
FVT(f(x + y, y + z)) = {x, y, z}, implemented recursively in OCaml as
follows:

let rec fvt tm =
match tm with
Var x -> [x]

| Fn(f,args) -> unions (map fvt args);;

A term t is said to be ground when it contains no variables, i.e. FVT(t) =
∅. As might be expected, the semantics of a term depends only on the action
of the valuation on variables that actually occur in it, so in particular, the
valuation is irrelevant for a ground term.

Theorem 3.1 If two valuations v and v′ agree on all variables in a term
t, i.e. for all x ∈ FVT(t) we have v(x) = v′(x), then termval M v t =
termval M v′ t.

Proof By induction on the structure of t. If t is just a variable x then
FVT(t) = {x} so termval M v x = v(x) = v′(x) = termval M v′ x by
hypothesis.

If t is of the form f(t1, . . . , tn) then by hypothesis v and v′ agree on
the set FVT(f(t1, . . . , tn)) and hence on each FVT(ti). By the inductive
hypothesis, termval M v ti = termval M v′ ti for each ti, so as required
we have termval M v (f(t1, . . . , tn)) = termval M v′ (f(t1, . . . , tn)).

The following function returns the set of all variables occurring in a formula.

let rec var fm =
match fm with
False | True -> []

| Atom(R(p,args)) -> unions (map fvt args)
| Not(p) -> var p
| And(p,q) | Or(p,q) | Imp(p,q) | Iff(p,q) -> union (var p) (var q)
| Forall(x,p) | Exists(x,p) -> insert x (var p);;

As with terms, a formula p is said to be ground when it contains no
variables, i.e var p = ∅. However, we’re usually more interested in the set
of free variables FV(p) in a formula, ignoring those that only occur bound.
In this case, when passing through a quantifier we need to subtract the
quantified variable from the free variables of its body rather than add it:
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let rec fv fm =
match fm with
False | True -> []

| Atom(R(p,args)) -> unions (map fvt args)
| Not(p) -> fv p
| And(p,q) | Or(p,q) | Imp(p,q) | Iff(p,q) -> union (fv p) (fv q)
| Forall(x,p) | Exists(x,p) -> subtract (fv p) [x];;

Indeed, it is the set of free variables that is significant in extending the
above theorem from terms to formulas:

Theorem 3.2 If two valuations v and v′ agree on all free variables in a
formula p, i.e. for all x ∈ FV(p) we have v(x) = v′(x), then holds M v p =
holds M v′ p.

Proof By induction on the structure of p. If p is ⊥ or � the theorem is
trivially true. If p is of the form R(t1, . . . , tn) then since v and v′ agree
on FV(R(t1, . . . , tn)) and hence on each FVT(ti), Theorem 3.1 shows that
for each ti we have termval M v ti = termval M v′ ti, and therefore
holds M v (R(t1, . . . , tn)) = holds M v′ (R(t1, . . . , tn)).

If p is of the form ¬q then since by definition FV(p) = FV(q) the inductive
hypothesis gives holds M v p = not(holds M v p) = not(holds M v′ q) =
holds M v′ p. Similarly, if p is of the form q ∧ r then since FV(q ∧ r) =
FV(q) ∪ FV(r) the inductive hypothesis ensures that holds M v q =
holds M v′ q and holds M v r = holds M v′ r and so holds M v (q ∧
r) = holds M v′ (q ∧ r). The other binary connectives are almost the
same.

If p is of the form ∀x. q then by hypothesis v(y) = v′(y) for all y ∈ FV(p),
which since FV(∀x. q) = FV(q) − {x}, means that v(y) = v′(y) for all
y ∈ FV(q) except possibly y = x. But this ensures that for any a in the
domain of M we have ((x �→ a)v)(y) = ((x �→ a)v′)(y) for all y ∈ FV(q).
So, by the inductive hypothesis, for all such a we have holds M ((x �→
a)v) q = holds M ((x �→ a)v′) q. By definition this means holds M v p =
holds M v′ p. The case of the existential quantifier is similar.

A formula p is said to be a sentence if it has no free variables, i.e. FV(p) =
∅. A ground formula is also a sentence, but a sentence may contain variables
so long as all instances are bound, e.g. ∀x. ∃y. P (x, y).

Corollary 3.3 If p is a sentence, i.e. FV(p) = ∅, then for any interpretation
M and any valuations v and v′ we have holds M v p = holds M v′ p.
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Proof If FV(p) = ∅ then whatever the valuations are they agree on
FV(p).

Validity and satisfiability

By analogy with propositional logic, a first-order formula is said to be logi-
cally valid if it holds in all interpretations and all valuations. And again,
if p ⇔ q is logically valid we say that p and q are logically equivalent.
Valid formulas are the first-order analogues of propositional tautologies, and
the word ‘tautology’ is sometimes used for the first-order case too. Indeed,
all propositional tautologies give rise to corresponding valid first-order for-
mulas (see Corollary 3.13 below). A valid formula involving quantifiers is
(∀x.P [x]) ⇒ P [a], which asserts that if P is true for all x, then it is true for
any particular constant a. The presence and scope of the quantifier are cru-
cial, though; neither P [x] ⇒ P [a] nor ∀x.P [x] ⇒ P [a] is valid. For instance,
the latter holds in some interpretations but fails in others:

# holds (mod_interp 3) undefined <<(forall x. x = 0) ==> 1 = 0>>;;
- : bool = true
# holds (mod_interp 3) undefined <<forall x. x = 0 ==> 1 = 0>>;;
- : bool = false

A rather more surprising logically valid formula is ∃x. ∀y. P (x) ⇒ P (y).
Intuitively speaking, either P is true of everything, in which case the con-
sequent P (y) is always true, or there is some x so that the antecedent P (x)
is false. Either way, the whole implication is true. (This is often called ‘the
drinker’s principle’ since it can be thought of as asserting the existence of
someone x such that if x drinks, everybody does.)

We say that an interpretation M satisfies a first-order formula p, or simply
that p holds in M , if for all valuations v we have holds M v p = true.
Similarly, we say that M satisfies a set of formulas, or that S holds in M ,
if it satisfies each formula in the set. We say that a first-order formula or
set of first-order formulas is satisfiable if there is some interpretation that
satisfies it. Note the asymmetry between the interpretation and valuation in
the definition of satisfiability: there is some interpretation M such that for
all valuations v we have holds M v p; this looks surprising but makes later
material technically easier.† In any case, the asymmetry disappears when we
consider sentences, since then the valuation plays no role. It is easily seen
† Indeed, many logic texts use a definition with ‘some valuation’, while others carefully avoid

defining the notion of satisfiability for formulas with free variables. When consulting other
sources, the reader should keep this lack of unanimity in mind. Our definition is particularly
convenient for considering satisfiability of quantifier-free formulas after Skolemization. With
another definition, we would repeatedly need to keep in mind implicit universal quantification.
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that a sentence p is valid iff ¬p is unsatisfiable, just as in the propositional
case. For formulas with free variables, however, this is no longer true. For
example, P (x) ∨ ¬P (y) is not valid, yet the negated form ¬P (x) ∧ P (y) is
unsatisfiable because it would have to be satisfied by all valuations, including
those assigning the same object to x and y.

An interpretation that satisfies a set of formulas Γ is said to be a model of
Γ. The notation Γ |= p means ‘p holds in all models of Γ’, and we usually just
|= p instead of ∅ |= p. In particular, Γ is unsatisfiable iff Γ |= ⊥ (since ⊥ never
holds, there must be no models of Γ). However, in contrast to propositional
logic, even when Γ = {p1, . . . , pn} is finite, it is not necessarily the case that
{p1, . . . , pn} |= p is equivalent to |= p1 ∧ · · · ∧ pn ⇒ p. The reason is that the
quantification over valuations is happening at a different place. For example
{P (x)} |= P (y) is true, but |= P (x) ⇒ P (y) is not. However, if each pi is
a sentence (no free variables) then the two are equivalent. We occasionally
use Γ |=M p to indicate that p holds in a specific model M whenever all the
Γ do, so |=M p just means that M satisfies p.

As we have noted, we cannot possibly implement a test for validity or
satisfiability based directly on the semantics. We have no way at all of eval-
uating whether a formula holds in an interpretation with an infinite domain.
And while we can test whether it holds in a finite interpretation, we can’t
test whether it holds in all such interpretations, because there are infinitely
many. Note the contrast with propositional logic, where the propositional
variables range over a finite (2-element) set which can therefore be enumer-
ated exhaustively, and there is no separate notion of interpretations.

This, however, does not a priori destroy all hope of testing first-order valid-
ity in subtler ways. Indeed, we will attack the problem of validity testing
more indirectly, first transforming a first-order formula into a set of propo-
sitional formulas that are satisfiable if and only if the original formula is.
Thus, we will first consider how to transform a formula to put the quantifiers
at the outside, and then eliminate them altogether. However, before we set
about the task, we need to deal precisely with some rather tedious syntactic
issues.

3.4 Syntax operations

We often want to take a first-order formula and universally quantify it over
all its free variables, e.g. pass from ∃y. x < y + z to ∀x. ∃y. x < y + z.
Note that this ‘generalization’ or ‘universal closure’ is valid iff the original
formula is, since either way we demand that the core formula holds under
arbitrary assignments of domain elements to that variable. (More formally,
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use Theorem 3.2 to show that for all valuations v and a ∈ D we have
holds M ((x �→ a)v) p iff simply for all v we have holds M v p.) And it’s
often more convenient to work with sentences; for example if all formulas
involved are sentences, {p1, . . . , pn} |= q iff |= p1 ∧ · · · ∧ pn ⇒ q, and validity
of p is the same as unsatisfiability of ¬p, both as in propositional logic. Here
is an OCaml implementation of universal generalization:

let generalize fm = itlist mk_forall (fv fm) fm;;

Substitution in terms

The other key operation we need to define is substitution of terms for vari-
ables in another term or formula, e.g. substituting 1 for the variable x in
x < 2 ⇒ x ≤ y to obtain 1 < 2 ⇒ 1 ≤ y. We will specify the desired variable
assignment or instantiation as a finite partial function from variable names
to terms, which can either be undefined or simply map x to Var(x) for vari-
ables we don’t want changed. Given such an assignment sfn, substitution
on terms can be defined by recursion:

let rec tsubst sfn tm =
match tm with
Var x -> tryapplyd sfn x tm

| Fn(f,args) -> Fn(f,map (tsubst sfn) args);;

We will observe some important properties of this notion. First of all, the
variables in a substituted term are as expected:

Lemma 3.4 For any term t and instantiation i, the free variables in the
substituted term are precisely those free in the terms substituted for the free
variables of t, i.e.

FVT(tsubst i t) =
⋃

y∈FVT(t)

FVT(i(y)).

Proof By induction on the structure of the term. If t is a variable z, then
FVT(tsubst i t) = FVT(i(z)) =

⋃
y∈{z} FVT(i(y)) and since FVT(z) = {z}

the result follows.
If t is of the form f(t1, . . . , tn) then by the inductive hypothesis we have

for each k = 1, . . . , n:

FVT(tsubst i tk) =
⋃

y∈FVT(tk)

FVT(i(y)).
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Consequently:

FVT(tsubst i (f(t1, . . . , tn))

= FVT(f(tsubst i t1, . . . , tsubst i tn)

=
n⋃

k=1

FVT(tsubst i tk)

=
n⋃

k=1

⋃

y∈FVT(tk)

FVT(i(y))

=
⋃

y∈⋃n
k=1 FVT(tk)

FVT(i(y))

=
⋃

y∈FVT(f(t1,...,tn))

FVT(i(y)).

The following result gives a simple property, which on reflection would be
expected, for the interpretation of a substituted term.

Lemma 3.5 For any term t and instantiation i, then in any interpretation
M and valuation v, the substituted term has the same value as the original
formula in the modified valuation termval M v ◦ i, i.e.

termval M v (tsubst i t) = termval M (termval M v ◦ i) t.

Proof If t is a variable x then

termval M v (tsubst i x) = termval M v (i(x)) = (termval M v ◦ i)(x)

as required. If t is of the form f(t1, . . . , tn) then by the inductive hypothesis
we have for each k = 1, . . . , n:

termval M v (tsubst i tk) = termval M (termval M v ◦ i) tk

and so:

termval M v (tsubst i (f(t1, . . . , tn))

= termval M v (f(tsubst i t1, . . . , tsubst i tn))

= fM (termval M v (tsubst i t1), . . . , termval M v (tsubst i tn))

= fM ( termval M (termval M v ◦ i) t1, . . . ,

termval M (termval M v ◦ i) tn)
= termval M (termval M v ◦ i) (f(t1, . . . , tn)).
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Substitution in formulas

It might seem at first sight that we could define substitution in formulas
by a similar structural recursion. However, the presence of bound variables
makes matters considerably more complicated.

We have already observed that bound variables are just placeholders indi-
cating a correspondence between bound variables and the binding instance,
and for this reason they should not be substituted for. For example, substi-
tutions for x should have no effect on the formula ∀x. x = x because each
instance of x is bound by the quantifier. Moreover, even avoiding substitu-
tion of the bound variables themselves, we still run the risk of having free
variables in the substituted terms ‘captured’ by an outer variable-binding
operation. For example if we straightforwardly replace y by x in the formula
∃x. x + 1 = y, the resulting formula ∃x. x + 1 = x is not what we want,
since the substituted variable x has become bound. What we’d like to do
is alpha-convert,† i.e. rename the bound variable, e.g. to z. We can then
safely substitute to get ∃z. z + 1 = x, replacing the free variable as required
while maintaining the correct binding correspondence. To implement this,
we start with a function to invent a ‘variant’ of a variable name by adding
prime characters to it until it is distinct from some given list of variables to
avoid; this will be used to rename bound variables when necessary:

let rec variant x vars =
if mem x vars then variant (x^"’") vars else x;;

For example:

# variant "x" ["y"; "z"];;
- : string = "x"
# variant "x" ["x"; "y"];;
- : string = "x’"
# variant "x" ["x"; "x’"];;
- : string = "x’’"

Now, the definition of substitution starts with a series of straightforward
structural recursions. However, the two tricky cases of quantified formulas
∀x. p and ∃x. p are handled by a mutually recursive function substq:

† The terminology originates with lambda-calculus (Church 1941; Barendregt 1984).
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let rec subst subfn fm =
match fm with
False -> False

| True -> True
| Atom(R(p,args)) -> Atom(R(p,map (tsubst subfn) args))
| Not(p) -> Not(subst subfn p)
| And(p,q) -> And(subst subfn p,subst subfn q)
| Or(p,q) -> Or(subst subfn p,subst subfn q)
| Imp(p,q) -> Imp(subst subfn p,subst subfn q)
| Iff(p,q) -> Iff(subst subfn p,subst subfn q)
| Forall(x,p) -> substq subfn mk_forall x p
| Exists(x,p) -> substq subfn mk_exists x p

This substq function checks whether there would be variable capture if
the bound variable x is not renamed. It does this by testing if there is a
y �= x in FV(p) such that applying the substitution to y gives a term with x

free. If so, it picks a new bound variable x′ that will not clash with any of the
results of substituting in p; otherwise, it just sets x′ = x. The overall result
is then deduced by applying substitution to the body p with an additional
mapping x �→ x′. Note that in the case where no renaming is needed, this
still inhibits the (non-trivial) replacement of x, as required.

and substq subfn quant x p =
let x’ = if exists (fun y -> mem x (fvt(tryapplyd subfn y (Var y))))

(subtract (fv p) [x])
then variant x (fv(subst (undefine x subfn) p)) else x in

quant x’ (subst ((x |-> Var x’) subfn) p);;

For example:

# subst ("y" |=> Var "x") <<forall x. x = y>>;;
- : fol formula = <<forall x’. x’ = x>>
# subst ("y" |=> Var "x") <<forall x x’. x = y ==> x = x’>>;;
- : fol formula = <<forall x’ x’’. x’ = x ==> x’ = x’’>>

We hope that this renaming trickery looks at least vaguely plausible. But
the ultimate vindication of our definition is really that subst satisfies anal-
ogous properties to Lemmas 3.4 and 3.5 for tsubst, though we have to work
much harder to establish them.

Lemma 3.6 For any formula p and instantiation i, the free variables in the
substituted formula are precisely those free in the terms substituted for the
free variables of p, i.e.

FV(subst i p) =
⋃

y∈FV(p)

FVT(i(y)).
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Proof We will prove by induction on the structure of p that for all i the above
holds. This allows us to use the inductive hypothesis even when renaming
occurs and we have to consider a different instantiation for a subformula.

If p is ⊥ or � the theorem holds trivially. If p is an atomic formula
R(t1, . . . , tn) then, by Lemma 3.4, for each k = 1, . . . , n:

FVT(tsubst i tk) =
⋃

y∈FVT(tk)

FVT(i(y)).

Consequently:

FV(subst i (R(t1, . . . , tn))

= FV(R(tsubst i t1, . . . , tsubst i tn)

=
n⋃

k=1

FVT(tsubst i tk)

=
n⋃

k=1

⋃

y∈FVT(tk)

FVT(i(y))

=
⋃

y∈⋃n
k=1 FVT(tk)

FVT(i(y))

=
⋃

y∈FV(R(t1,...,tn))

FVT(i(y)).

If p is of the form ¬q then by the inductive hypothesis FV(subst i q) =⋃
y∈FV(q) FVT(i(y)) and so

FV(subst i (¬q)

= FV(¬(subst i q))

= FV(subst i q)

=
⋃

y∈FV(q)

FVT(i(y))

=
⋃

y∈FV(¬q)

FVT(i(y)).

If p is of the form q∧ r then by the inductive hypothesis FV(subst i q) =⋃
y∈FV(q) FVT(i(y)) and FV(subst i r) =

⋃
y∈FV(r) FVT(i(y)) and so:

FV(subst i (q ∧ r))

= FV((subst i q) ∧ (subst i r))

= FV(subst i q) ∪ FV(subst i r)
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=
⋃

y∈FV(q)

FVT(i(y)) ∪
⋃

y∈FV(r)

FVT(i(y))

=
⋃

y∈FV(q)∪FV(r)

FVT(i(y))

=
⋃

y∈FV(q∧r)

FVT(i(y)).

The other binary connectives are similar. Now suppose p is of the form
∀x. q. With the possibly-renamed variable x′ from the definition of substi-
tution, we have:

FV(subst i (∀x. q))

= FV(∀x′. (subst ((x �→ x′)i) q)

= FV(subst ((x �→ x′)i) q) − {x′}
=

⋃

y∈FV(q)

FVT(((x �→ x′)i)(y)) − {x′}.

We can remove the case y = x from the union, because in that case we
have FVT(((x �→ x′)i)(y)) = FVT(((x �→ x′)i)(x)) = FVT(x′) = {x′}, and
this set is removed again on the outside. Hence this is equal to:

⋃

y∈FV(q)−{x}
FVT(((x �→ x′)i)(y)) − {x′}

=
⋃

y∈FV(q)−{x}
FVT(i(y)) − {x′}.

Now we distinguish two cases according to the test in the substq function.
• If x �∈ ⋃

y∈FV(q)−{x} FVT(i(y)) then x′ = x.
• If x ∈ ⋃

y∈FV(q)−{x} FVT(i(y)) then x′ �∈ FV(subst ((x �→ x)i) q) by
construction. That set is equal to

⋃
y∈FV(q) FVT(((x �→ x)i)(y)) by

the inductive hypothesis, and so it includes the set
⋃

y∈FV(q)−{x}
FVT(((x �→ x)i)(y)) =

⋃

y∈FV(q)−{x}
FVT(i(y)).

In either case, x′ �∈ ⋃
y∈FV(q)−{x} FVT(i(y)) and so we always have

⋃

y∈FV(q)−{x}
FVT(i(y)) − {x′} =

⋃

y∈FV(q)−{x}
FVT(i(y)),

which is exactly
⋃

y∈FV(∀x. q) FVT(i(y)) as required. The case of the exis-
tential quantifier is exactly analogous.
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Theorem 3.7 For any formula p, instantiation i, interpretation M and
valuation v, we have holds M v (subst i p) = holds M (termval M

v ◦ i) p.

Proof We will fix M at the outset, but as with the previous theorem,
will prove by induction on the structure of p that for all valuations v and
instantiations i the result holds. This will allow us to deploy the inductive
hypothesis with modified valuation and/or substitution.

If p is ⊥ or � the result holds trivially. If p is an atomic formula R(t1, . . . , tn)
then by Lemma 3.5 for each k = 1, . . . , n:

termval M v (tsubst i tk) = termval M (termval M v ◦ i) tk

and so:

holds M v (subst i (R(t1, . . . , tn))

= holds M v (R(tsubst i t1, . . . , tsubst i tn))

= RM (termval M v (tsubst i t1), . . . , termval M v (tsubst i tn))

= RM ( termval M (termval M v ◦ i) t1, . . . ,

termval M (termval M v ◦ i) tn)
= holds M (termval M v ◦ i) (R(t1, . . . , tn)).

If p is of the form ¬q, then using the inductive hypothesis we know that
holds M v (subst i q) = holds M (termval M v ◦ i) q and so:

holds M v (subst i (¬q))

= holds M v (¬(subst i q))

= not(holds M v (subst i q))

= not(holds M (termval M v ◦ i) q)

= holds M (termval M v ◦ i) (¬q).

Similarly, if p is of the form q ∧ r then by the inductive hypothesis we
have holds M v (subst i q) = holds M (termval M v ◦ i) q and also
holds M v (subst i r) = holds M (termval M v ◦ i) r, so:

holds M v (subst i (q ∧ r))

= holds M v ((subst i q) ∧ (subst i r))

= (holds M v (subst i q)) and (holds M v (subst i r))

= (holds M (termval M v ◦ i) q) and (holds M (termval M v ◦ i) r)

= holds M (termval M v ◦ i) (q ∧ r).
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The other binary connectives follow the same pattern. For the case where
p is of the form ∀x. q, we again need a bit more care because of variable
renaming. Using the inductive hypothesis we have, with x′ the possibly-
renamed variable:

holds M v (subst i (∀x. q))

= holds M v (∀x′. (subst ((x �→ x′)i) q))

= for all a ∈ D, holds M ((x′ �→ a)v) (subst ((x �→ x′)i) q)

= for all a ∈ D, holds M (termval M ((x′ �→ a)v) ◦ ((x �→ x′)i))q.

We want to show that this is equivalent to

holds M (termval M v ◦ i) (∀x. q)

= for all a ∈ D, holds M ((x �→ a)(termval M v ◦ i)) q.

By Theorem 3.2, it’s enough to show that for arbitrary a ∈ D, the valu-
ations termval M ((x′ �→ a)v) ◦ ((x �→ x′)i) and (x �→ a)(termval M v ◦ i)
agree on each variable z ∈ FV(q). There are two cases to distinguish. If
z = x then

(termval M ((x′ �→ a)v) ◦ ((x �→ x′)i))(x)

= termval M ((x′ �→ a)v) (((x �→ x′)i)(x))

= termval M ((x′ �→ a)v) (x′)
= ((x′ �→ a)v)(x′)
= a

= ((x �→ a)(termval M v ◦ i))(x)

as required, and if z �= x then:

(termval M ((x′ �→ a)v) ◦ ((x �→ x′)i))(z)

= termval M ((x′ �→ a)v) (((x �→ x′)i)(z))

= termval M ((x′ �→ a)v) (i(z)).

By hypothesis, z ∈ FV(q), and since z �= x we have z ∈ FV(q)−{x}. How-
ever, as noted in the proof of Theorem 3.6, x′ �∈ ⋃

y∈FV(q)−{x} FVT(i(y))
and so in particular x′ �∈ FV(i(z)). Thus we can continue the chain of equiv-
alences:

= termval M v (i(z))

= (termval M v ◦ i)(z)

= ((x �→ a)(termval M v ◦ i))(z)

as required.
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One straightforward consequence, unsurprising if we think of free variables
as implicitly universally quantified, is the following:

Corollary 3.8 If a formula is valid, so is any substitution instance.

Proof Let p be a logically valid formula. For any instantiation i we have
holds M v (subst i p) = holds M (termval M v ◦ i) p = true, since
holds M v p = true for any valuation v, in particular termval M v ◦ i.

The definition of substitution and the proofs of its key properties were
rather tedious. An alternative is to separate free and bound variables into
different syntactic categories so that capture is impossible. A particularly
popular scheme, using numerical indices indicating nesting degree for bound
variables, is given by de Bruijn (1972). However, this has some drawbacks
of its own.

3.5 Prenex normal form

A first-order formula is said to be in prenex normal form (PNF) if all quanti-
fiers occur on the outside with a body (or ‘matrix’) where only propositional
connectives are used. For example, ∀x.∃y.∀z.P (x)∧P (y) ⇒ P (z) is in PNF
but (∃x. P (x)) ⇒ ∃y. P (y)∧∀z. P (z) is not, because quantified subformulas
are combined using propositional connectives. We will show in this section
how to transform an arbitrary first-order formula into a logically equivalent
one in PNF.

When implementing DNF in propositional logic (Section 2.6) we consid-
ered two approaches, one based on truth tables and the other repeatedly
applying tautological transformations like p ∧ (q ∨ r) −→ (p ∧ q) ∨ (p ∧ r).
In first-order logic there is no analogue of truth tables, but we can similarly
transform a formula to PNF by repeatedly transforming subformulas into
logical equivalents that move the quantifiers further out. There is no conve-
nient way of pulling quantifiers out of logical equivalences, so it’s useful to
eliminate them as we did in propositional NNF. In fact, it simplifies matters
if we follow a similar pattern to the earlier DNF transformation:

• simplify away False, True, vacuous quantification, etc.;
• eliminate implication and equivalence, push down negations;
• pull out quantifiers.

The simplification stage proceeds as before for eliminating False and
True from formulas. But we also eliminate vacuous quantifiers, where the
quantified variable does not occur free in the body.
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Theorem 3.9 If x �∈ FV(p) then ∀x. p is logically equivalent to p.

Proof The formula ∀x. p holds in a model M and valuation v if and only
if for each a in the domain of M , p holds in M under valuation (x �→ a)v.
However, since x is not free in p, this is the case precisely if p holds in M

and v, given that the domain is nonempty.

Similarly, if x �∈ FV(p) then ∃x. p is logically equivalent to p. Thus we
can see that the following simplification function always returns a logical
equivalent:

let simplify1 fm =
match fm with
Forall(x,p) -> if mem x (fv p) then fm else p

| Exists(x,p) -> if mem x (fv p) then fm else p
| _ -> psimplify1 fm;;

and hence we can apply it repeatedly at depth:

let rec simplify fm =
match fm with
Not p -> simplify1 (Not(simplify p))

| And(p,q) -> simplify1 (And(simplify p,simplify q))
| Or(p,q) -> simplify1 (Or(simplify p,simplify q))
| Imp(p,q) -> simplify1 (Imp(simplify p,simplify q))
| Iff(p,q) -> simplify1 (Iff(simplify p,simplify q))
| Forall(x,p) -> simplify1(Forall(x,simplify p))
| Exists(x,p) -> simplify1(Exists(x,simplify p))
| _ -> fm;;

For example:

# simplify <<true ==> (p <=> (p <=> false))>>;;
- : fol formula = <<p <=> ~p>>
# simplify <<exists x y z. P(x) ==> Q(z) ==> false>>;;
- : fol formula = <<exists x z. P(x) ==> ~Q(z)>>
# simplify <<(forall x y. P(x) \/ (P(y) /\ false)) ==> exists z. Q>>;;
- : fol formula = <<(forall x. P(x)) ==> Q>>

Next, we transform into NNF by eliminating implication and equivalence
and pushing down negations. Recall the De Morgan laws, which can be used
repeatedly to obtain the equivalences:

¬(p1 ∧ p2 ∧ · · · ∧ pn) ⇔ ¬p1 ∨ ¬p2 ∨ · · · ∨ ¬pn,

¬(p1 ∨ p2 ∨ · · · ∨ pn) ⇔ ¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pn.

By analogy, we have the following ‘infinite De Morgan laws’ for quantifiers.
The logical equivalence should be similarly clear; for example if it is not the
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case that P (x) holds for all x, there must exist some x for which P (x) does
not hold, and vice versa:

¬(∀x. p) ⇔ ∃x. ¬p,

¬(∃x. p) ⇔ ∀x. ¬p.

These justify additional transformations to push negation down through
quantifiers, to supplement the transformations already used in the proposi-
tional case. Thus we define:

let rec nnf fm =
match fm with
And(p,q) -> And(nnf p,nnf q)

| Or(p,q) -> Or(nnf p,nnf q)
| Imp(p,q) -> Or(nnf(Not p),nnf q)
| Iff(p,q) -> Or(And(nnf p,nnf q),And(nnf(Not p),nnf(Not q)))
| Not(Not p) -> nnf p
| Not(And(p,q)) -> Or(nnf(Not p),nnf(Not q))
| Not(Or(p,q)) -> And(nnf(Not p),nnf(Not q))
| Not(Imp(p,q)) -> And(nnf p,nnf(Not q))
| Not(Iff(p,q)) -> Or(And(nnf p,nnf(Not q)),And(nnf(Not p),nnf q))
| Forall(x,p) -> Forall(x,nnf p)
| Exists(x,p) -> Exists(x,nnf p)
| Not(Forall(x,p)) -> Exists(x,nnf(Not p))
| Not(Exists(x,p)) -> Forall(x,nnf(Not p))
| _ -> fm;;

For example:

# nnf <<(forall x. P(x))
==> ((exists y. Q(y)) <=> exists z. P(z) /\ Q(z))>>;;

- : fol formula =
<<(exists x. ~P(x)) \/
(exists y. Q(y)) /\ (exists z. P(z) /\ Q(z)) \/
(forall y. ~Q(y)) /\ (forall z. ~P(z) \/ ~Q(z))>>

Now we come to the really distinctive part of PNF, pulling out the quanti-
fiers. By the time we have simplified and made the NNF transformation, any
quantifiers not already at the outside must be connected by ‘∧’ or ‘∨’, since
negations have been pushed down past them to the atomic formulas while
other propositional connectives have been eliminated. Thus, the crux is to
pull quantifiers upward in formulas like p ∧ (∃x. q). Once again by infinite
analogy with the DNF distribution rule:

p ∧ (q1 ∨ · · · ∨ qn) ⇔ p ∧ q1 ∨ · · · ∨ p ∧ qn

it would seem that the following should be logically valid:

p ∧ (∃x. q) ⇔ ∃x. p ∧ q.
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This is almost true, but we have to watch out for variable capture if x is
free in p. For example, the following isn’t logically valid:

P (x) ∧ (∃x. Q(x)) ⇔ ∃x. P (x) ∧ Q(x).

We can always avoid such problems by renaming the bound variable, if
necessary, to some y that is not free in either p or q:

p ∧ (∃x. q) ⇔ ∃y. p ∧ (subst (x |⇒ y) q).

This equivalence can be justified rigorously using the theorems from the
previous section. By definition, in a model M (with domain D) and valuation
v, the formula p∧ (∃x. q) holds if holds M v p and there exists some a ∈ D

such that holds M ((x �→ a)v) q. The formula ∃y. p ∧ (subst (x |⇒ y) q)
holds if there is an a ∈ D such that both holds M ((y �→ a)v) p and
holds M ((y �→ a)v) (subst (x |⇒ y) q). However, since by construction
y is not free in the whole formula and hence not free in p, Theorem 3.2
shows that holds M ((y �→ a)v) p is equivalent to holds M v p. As for
holds M ((y �→ a)v) (subst (x |⇒ y) q), this is by Theorem 3.7 equivalent
to holds M (termval M ((y �→ a)v) ◦ subst (x |⇒ y)) q and hence to
holds M ((x �→ a)v) q as required. Exactly analogous results allow us to
pull either universal or existential quantifiers past conjunction or disjunc-
tion. If any of them seem doubtful, they can be rigorously justified in a
similar way:

(∀x. p) ∧ q ⇔ ∀y. (subst (x |⇒ y) p) ∧ q

p ∧ (∀x. q) ⇔ ∀y. p ∧ (subst (x |⇒ y) q)

(∀x. p) ∨ q ⇔ ∀y. (subst (x |⇒ y) p) ∨ q

p ∨ (∀x. q) ⇔ ∀y. p ∨ (subst (x |⇒ y) q)

(∃x. p) ∧ q ⇔ ∃y. (subst (x |⇒ y) p) ∧ q

p ∧ (∃x. q) ⇔ ∃y. p ∧ (subst (x |⇒ y) q)

(∃x. p) ∨ q ⇔ ∃y. (subst (x |⇒ y) p) ∨ q

p ∨ (∃x. q) ⇔ ∃y. p ∨ (subst (x |⇒ y) q)

In the special cases that both immediate subformulas are quantified, we
can sometimes produce a result with fewer quantifiers using these equiva-
lences, where z is chosen not to be free in the original formula.

(∀x. p) ∧ (∀y. q) ⇔ ∀z. (subst (x |⇒ z) p) ∧ (subst (y |⇒ z) q),

(∃x. p) ∨ (∃y. q) ⇔ ∃z. (subst (x |⇒ z) p) ∨ (subst (y |⇒ z) q).
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However, the following are not logically valid:

(∀x. p) ∨ (∀y. q) �⇔ ∀z. (subst (x |⇒ z) p) ∨ (subst (y |⇒ z) q),

(∃x. p) ∧ (∃y. q) �⇔ ∃z. (subst (x |⇒ z) p) ∧ (subst (y |⇒ z) q).

For example, the first implies that (∀n.Even(n))∨ (∀n.Odd(n))) is equiv-
alent to ∀n.Even(n)∨Odd(n), yet the former is false in the obvious interpre-
tation in terms of evenness and oddity of integers, while the latter is true.
Similarly, the second implies that (∃n.Even(n))∧ (∃n.Odd(n)) is equivalent
to ∃n.Even(n)∧Odd(n), yet in the obvious interpretation the former is true
and the latter false.

Now, to pull out all quantifiers that occur as immediate subformulas of
either conjunction or disjunction, we implement these transformations in
OCaml:

let rec pullquants fm =
match fm with
And(Forall(x,p),Forall(y,q)) ->

pullq(true,true) fm mk_forall mk_and x y p q
| Or(Exists(x,p),Exists(y,q)) ->

pullq(true,true) fm mk_exists mk_or x y p q
| And(Forall(x,p),q) -> pullq(true,false) fm mk_forall mk_and x x p q
| And(p,Forall(y,q)) -> pullq(false,true) fm mk_forall mk_and y y p q
| Or(Forall(x,p),q) -> pullq(true,false) fm mk_forall mk_or x x p q
| Or(p,Forall(y,q)) -> pullq(false,true) fm mk_forall mk_or y y p q
| And(Exists(x,p),q) -> pullq(true,false) fm mk_exists mk_and x x p q
| And(p,Exists(y,q)) -> pullq(false,true) fm mk_exists mk_and y y p q
| Or(Exists(x,p),q) -> pullq(true,false) fm mk_exists mk_or x x p q
| Or(p,Exists(y,q)) -> pullq(false,true) fm mk_exists mk_or y y p q
| _ -> fm

where for economy various similar subcases are dealt with by the mutually
recursive function pullq, which calls the main pullquants functions again
on the body to pull up further quantifiers:

and pullq(l,r) fm quant op x y p q =
let z = variant x (fv fm) in
let p’ = if l then subst (x |=> Var z) p else p
and q’ = if r then subst (y |=> Var z) q else q in
quant z (pullquants(op p’ q’));;

The overall prenexing function leaves quantified formulas alone, and for
conjunctions and disjunctions recursively prenexes the immediate subformu-
las and then uses pullquants:
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let rec prenex fm =
match fm with
Forall(x,p) -> Forall(x,prenex p)

| Exists(x,p) -> Exists(x,prenex p)
| And(p,q) -> pullquants(And(prenex p,prenex q))
| Or(p,q) -> pullquants(Or(prenex p,prenex q))
| _ -> fm;;

Combining this with the NNF and simplification stages we get:

let pnf fm = prenex(nnf(simplify fm));;

for example:

# pnf <<(forall x. P(x) \/ R(y))
==> exists y z. Q(y) \/ ~(exists z. P(z) /\ Q(z))>>;;

- : fol formula =
<<exists x. forall z. ~P(x) /\ ~R(y) \/ Q(x) \/ ~P(z) \/ ~Q(z)>>

3.6 Skolemization

Prenex normal form separates out the quantifiers from the propositional
part or ‘matrix’, but the quantifier prefix may still contain an arbitrarily
complicated nesting of universal and existential quantifiers. We can go fur-
ther, eliminating existential quantifiers and leaving only universal ones using
a technique called Skolemization after Thoraf Skolem (1928). Note that the
following are generally considered to be mathematically equivalent:

(1) for all x ∈ D, there exists a y ∈ D such that P [x, y];
(2) there exists an f : D → D such that for all x ∈ D, P [x, f(x)].

One direction is relatively easy: if (2) holds then by taking y = f(x) we
see that (1) does too. The other direction is subtler: even if for each x there
is at least one y such that P [x, y], there might be many such, and to get
a function f we need to restrict ourselves to one specific y for each x. In
general, the assertion that there always exists such a selection of exactly one
y per x, even if we can’t write down a recipe for choosing it, is the famous
Axiom of Choice, AC (Moore 1982; Jech 1973). In accordance with usual
mathematical practice, we will simply assume this axiom, though this is only
a convenience and we could avoid it if necessary.†

† The Axiom of Choice is unproblematically derivable when the domain D is wellordered, in par-
ticular countable, because we can define f(x) as the least y such that P [x, y]. It is a consequence
of the downward Löwenheim–Skolem Theorem 3.49 that for our countable languages we may
essentially restrict our attention to countable models. Although our proof of that result uses
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Even accepting the equivalence of (1) and (2), the latter doesn’t corre-
spond to the semantics of a first-order formula. If we were allowed to exis-
tentially quantify the function symbols, extending the notion of semantics
in an intuitively plausible way, this equivalence means that the following
should be logically valid:

(∀x. ∃y. P [x, y]) ⇔ (∃f. ∀x. P [x, f(x)]),

and more generally:

(∀x1, . . . , xn. ∃y. P [x1, . . . , xn, y]) ⇔
(∃f. ∀x1, . . . , xn. P [x1, . . . , xn, f(x1, . . . , xn)]).

In a suitable system of second-order logic, these are indeed logical equiv-
alences, and we can use them to transform the quantifier prefix of a prenex
formula so that all the existential quantifiers come before all the universal
ones, e.g.

(∀x. ∃y. ∀u. ∃v. P [u, v, x, y])

⇔ (∃f. ∀x u. ∃v. P [u, v, x, f(x)])

⇔ (∃f g. ∀x u. P [u, g(x, u), x, f(x)]).

As noted, neither the transforming equivalences nor even the eventual
results are expressible as first-order formulas, so we can’t follow this pro-
cedure exactly. However, we can get roughly the same effect if we accept a
transformed formula that is not logically equivalent but merely equisatisfi-
able (see Section 2.8). The point is that an existential quantification over
functions is already implicit in an assertion of satisfiability: a formula is sat-
isfiable if there exists some domain and interpretation of the function and
predicate symbols that satisfies it. Thus we are justified in simply Skolemiz-
ing, i.e. making the same transformation without the explicit quantification
over functions, e.g. transforming the formula

∀x. ∃y. ∀u. ∃v. P [u, v, x, y]

to:

∀x u. P [u, g(x, u), x, f(x)],

where f and g are distinct function symbols not present in the original
formula. Indeed, since universal quantification over free variables is implicit
in the definition of satisfaction, we can equally well pass to

Skolemization, a more elaborate method due to Henkin (1949) avoids this, instead expanding
the language with new constants in a countable set of stages. Several texts such as Enderton
(1972) prove completeness in this way.
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P [u, g(x, u), x, f(x)].

Although no two of these formulas are logically equivalent, they are all
equisatisfiable. Hence, if we want to decide if the first formula is satisfiable,
we need only consider the last one, which has no explicit quantifiers at
all. We will see in the next section that the satisfiability problem for such
quantifier-free formulas can be tackled using techniques from propositional
logic. But let us first give a more careful and rigorous justification of the
main Skolemizing transformation, defining as we go some of the auxiliary
notions used in the actual implementation.

It is necessary to introduce new function symbols called Skolem functions
(or Skolem constants in the nullary case), and these must not occur in the
original formula. So, first of all, we define a procedure to get the functions
already present in a term and in a formula, so that we can avoid clashes with
them. This is straightforward to implement; note that we identify functions
by name–arity pairs since functions of the same name but different arities
are treated as distinct.

let rec funcs tm =
match tm with
Var x -> []

| Fn(f,args) -> itlist (union ** funcs) args [f,length args];;

let functions fm =
atom_union (fun (R(p,a)) -> itlist (union ** funcs) a []) fm;;

Just as holds M v p only depends on the values of v(x) for x ∈ FV(p)
(Theorem 3.2), it only depends on the interpretation M gives to functions
that actually appear in p. (The proof of Theorem 3.2 is routinely adapted;
indeed things are somewhat simpler since binding of variables plays no role.)
When we say from now on ‘p does not involve the n-ary function symbol f ’,
we mean formally that (f, n) �∈ functions p.

Theorem 3.10 If p is a formula not involving the n-ary function symbol
f , with FV(∃y. p) = {x1, . . . , xn} (distinct xi in an arbitrary order), then
given any interpretation M there is another interpretation M ′ that differs
from M only in the interpretation of f , such that in all valuations v:

holds M v (∃y. p) = holds M ′ v (subst (y |⇒ f(x1, . . . , xn)) p).

and also holds M v (∃y. p) = holds M ′ v (∃y. p) as p does not involve f .
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Proof We define M ′ to be M with the interpretation fM ′ of f changed as
follows. Given a1, . . . , an ∈ D, if there is some b ∈ D such that

holds M (x1 |⇒ a1, . . . , xn |⇒ an, y |⇒ b) p

then fM ′(a1, . . . , an) is some such b, otherwise it is any arbitrary b. The
point of this definition is that for an arbitrary assignment v the assertions

holds M ′ ((y �→ fM ′(v(x1), . . . , v(xn))) v) p

and

for some b ∈ D, holds M ((y �→ b) v) p

are equivalent, since if there is such a b, fM ′ will pick one. Using Theorem
3.7 and that equivalence we deduce

holds M ′ v (subst (y |⇒ f(x1, . . . , xn)) p)

= holds M ′ (termval M ′ v ◦ (y |⇒ f(x1, . . . , xn))) p

= holds M ′ ((y �→ termval M ′ v (f(x1, . . . , xn))) v) p

= holds M ′ ((y �→ fM ′(v(x1), . . . , v(xn))) v) p

= for some b ∈ D, holds M ((y �→ b) v) p

= holds M v (∃y. p)

as required.

Since this equivalence holds for all valuations, it propagates up through a
formula when a subformula is replaced, since in the recursive definitions of
termval and holds only the valuation changes. Thus the theorem establishes
the following: if we take some arbitrary interpretation M and a formula p

with some subformula ∃y. q, then provided f does not occur in the whole
formula p, we can Skolemize the subformula with f and get a new formula
p′, and a new model M ′ differing from M only in the interpretation of f ,
such that for all valuations v:

holds M v p = holds M ′ v p′.

This can then be done repeatedly, replacing all existentially quantified
subformulas, at each stage choosing some function not present in the for-
mula as processed so far. Starting with the initial formula p and some inter-
pretation M , we get a sequence of formulas p1, . . . , pm and interpretations
M1, . . . , Mm such that each Mk+1 modifies Mk’s interpretation of a new
Skolem function only, and

holds Mk v pk = holds Mk+1 v pk+1.
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By induction, we have for all valuations v and all M :

holds M v p = holds Mm v pm,

where pm contains no existential quantifiers. Thus, if the original formula p

is satisfiable, by some model M , then the Skolemized formula pm is satisfied
by Mm.

None of this depends on any kind of initial normal form transformation; we
are free to apply Skolemization to any existentially quantified subformula,
and if the original formula is satisfiable, so is its Skolemization. Conversely,
the Skolemized form of an existential formula implies the original, so provided
all Skolemized subformulas occur positively (in the sense of Section 2.5), the
overall Skolemized formula logically implies the original, so is equisatisfiable.
Without this condition, we cannot expect it; for example if we Skolemize
the second existential subformula in the unsatisfiable formula (∃y. P (y)) ∧
¬(∃x. P (x)) we get the satisfiable (∃y. P (y)) ∧ ¬P (c).

Thus, it makes sense to first transform the formula into NNF so we can
identify positive and negative subformulas, and then Skolemize away the
existential quantifiers, which all occur positively. We could go further and
put the formula into PNF, but it’s often advantageous to apply Skolemiza-
tion first, since the PNF transformation can introduce more free variables
into the scope of an existential quantifier, necessitating more arguments
on the Skolem functions. For example ∀x z. x = z ∨ ∃y. x · y = 1 can
be Skolemized directly to give ∀x z. x = z ∨ x · f(x) = 1, whereas if we
first prenex to ∀x z. ∃y. x = z ∨ x · y = 1, subsequent Skolemization gives
∀x z.x = z∨x ·f(x, z) = 1. For the same reason, it seems sensible to Skolem-
ize outer quantifiers before inner ones, since this also reduces the number of
free variables, e.g.

∃x y. x · y = 1 −→ ∃y. c · y = 1 −→ c · d = 1

rather than

∃x y. x · y = 1 −→ ∃x. x · f(x) = 1 −→ c · f(c) = 1.

So, for the overall Skolemization function, we simply recursively descend
the formula, Skolemizing any existential formulas and then proceeding to
subformulas. We retain a list of the functions fns already in the formula,
so we can avoid using them as Skolem functions. (We conservatively avoid
even functions with the same name and different arity, which is not logically
necessary but may sometimes give less confusing results. A refinement in the
other direction would be to re-use the same Skolem function for identical
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Skolem formulas; a little reflection on the main Skolemization theorem shows
that this is permissible.)

let rec skolem fm fns =
match fm with
Exists(y,p) ->

let xs = fv(fm) in
let f = variant (if xs = [] then "c_"^y else "f_"^y) fns in
let fx = Fn(f,map (fun x -> Var x) xs) in
skolem (subst (y |=> fx) p) (f::fns)

| Forall(x,p) -> let p’,fns’ = skolem p fns in Forall(x,p’),fns’
| And(p,q) -> skolem2 (fun (p,q) -> And(p,q)) (p,q) fns
| Or(p,q) -> skolem2 (fun (p,q) -> Or(p,q)) (p,q) fns
| _ -> fm,fns

When dealing with binary connectives, the set of functions to avoid needs
to be updated with new Skolem functions introduced into one formula before
tackling the other, hence the auxiliary function skolem2:

and skolem2 cons (p,q) fns =
let p’,fns’ = skolem p fns in
let q’,fns’’ = skolem q fns’ in
cons(p’,q’),fns’’;;

The skolem function is specifically intended to be applied after NNF
transformation, and hence returns unchanged any formulas involving nega-
tion, implication or equivalence, as well as simply atomic formulas. For the
overall Skolemization function we simplify, transform into NNF then apply
skolem with an appropriate initial set of function symbols to avoid:

let askolemize fm =
fst(skolem (nnf(simplify fm)) (map fst (functions fm)));;

Frequently we just want to transform the result into PNF and omit the
universal quantifiers, giving an equisatisfiable formula with no explicit quan-
tifiers. The last step needs a new function, albeit a fairly simple one:

let rec specialize fm =
match fm with
Forall(x,p) -> specialize p

| _ -> fm;;

and then we just put all the pieces together:

let skolemize fm = specialize(pnf(askolemize fm));;
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For example:

# skolemize <<exists y. x < y ==> forall u. exists v. x * u < y * v>>;;
- : fol formula = <<~x < f_y(x) \/ x * u < f_y(x) * f_v(u,x)>>
# skolemize
<<forall x. P(x)

==> (exists y z. Q(y) \/ ~(exists z. P(z) /\ Q(z)))>>;;
- : fol formula = <<~P(x) \/ Q(c_y) \/ ~P(z) \/ ~Q(z)>>

Although in practice we will usually be interested in Skolemizing away all
existential quantifiers in a formula or set of formulas, it’s worth pointing out
that we don’t need to do so. If we Skolemize a formula p to get p∗, not only
are the two formulas equisatisfiable, but provided none of the new Skolem
functions appear in some other formula q, so are p∧q and p∗∧q, just applying
the same reasoning to p∧q but leaving existential quantifiers in q alone. This
further implies that for sentences p and q, we have |= p ⇒ q iff |= p∗ ⇒ q

provided q does not involve any of the Skolem functions, since |= p ⇒ q

iff p ∧ ¬q is unsatisfiable. We express this by saying that Skolemization is
conservative: if q follows from a Skolemized formula, it must follow from
the un-Skolemized one, provided q does not itself involve any of the Skolem
functions.

In a different direction we can immediately deduce the following theorem,
though the direct proof is not hard either:

Theorem 3.11 A formula p is valid iff p′ is, where p′ is the result of replac-
ing all free variables in p with distinct constants not present in p.

Proof Generalize over all free variables, negate, and apply Skolemization to
those outer quantified variables.

Skolem functions may seem purely an artifact of formal logic, but the use
of functions instead of quantifier nesting to indicate dependencies is common
in mathematics, even if it is sometimes unconscious and only semi-formal.
For example, analysis textbooks like Burkill and Burkill (1970) sometimes
write for a typical ε − δ logical assertion of the form ‘∀ε. ε > 0 ⇒ ∃δ. . . .’
something like ‘for all ε > 0 there is a δ(ε) > 0 such that . . . ’, emphasizing
the (possible) dependence of δ on ε by the notation ‘δ(ε)’. As the discussions
in this section show, such functional notation can be taken at face value
by regarding δ as a Skolem function arising from Skolemizing ∀ε. ∃δ. P [ε, δ]
into ∃δ. ∀ε. P [ε, δ(ε)]. In fact, Skolem functions can express more refined
dependencies than first-order quantifiers can, suggesting the study of more
general ‘branching’ quantifiers (Hintikka 1996).
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3.7 Canonical models

A quantifier-free formula can be considered as a formula of propositional
logic. Instead of prop as the primitive set of propositional variables, we
have relations applied to terms, corresponding to our OCaml type fol, but
this makes no essential difference, since the theoretical results depended very
little on the nature of the underlying set. In particular, a given first-order
formula can only involve finitely many variables, functions and predicates,
so the set of atomic propositions is countable, and our proof of proposition-
ally compactness (Theorem 2.13) can be carried over. We will use a slight
variant of the notion of propositional evaluation eval where for convenience
a propositional valuation d maps atomic formulas themselves to truth val-
ues. The function pholds determines whether a formula holds in the sense
of propositional logic for this notion of valuation. (This function will fail if
applied to a formula containing quantifiers.)

let pholds d fm = eval fm (fun p -> d(Atom p));;

The modified notion of valuation is purely cosmetic, to avoid the repeated
appearance of the Atom mapping in our theorems, but composition with Atom
defines a natural bijection with the original notion of propositional valuation,
so a quantifier-free formula p is valid (respectively satisfiable) in the sense
of propositional logic iff pholds d p for all (resp. some) valuations d. We
now prove also that a quantifier-free formula is valid in the first-order sense
if and only if it is valid in the propositional sense, by setting up a correspon-
dence between first-order interpretations and valuations and corresponding
propositional valuations. One direction is fairly straightforward. Every inter-
pretation M and valuation v defines a corresponding propositional valuation
of the atomic formulas in a natural way, namely holds M v. We then have:

Theorem 3.12 If p is a quantifier-free formula, then for all interpretations
M and valuations v we have pholds (holds M v) p = holds M v p.

Proof A straightforward structural induction on the structure of p, since for
quantifier-free formulas the definitions of holds and pholds have the same
recursive pattern, while for atomic formulas the result holds by definition.

Corollary 3.13 If a quantifier-free first-order formula is a propositional
tautology, it is also first-order valid.
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Proof In any interpretation M and valuation v, we have shown in the
previous theorem that holds M v p = pholds (holds M v) p. However, if p

is a propositional tautology, the right-hand side is just ‘true’.

Now we turn to the opposite direction: given a propositional valuation
d on the atomic formulas, constructing an interpretation M and valuation
v such that holds M v p = pholds d p. Again, it’s enough to make sure
this is true for atomic formulas, since as noted in the proof of Theorem 3.12
the recursions of holds and pholds are exactly the same for quantifier-
free formulas. All atomic formulas are of the form R(t1, . . . , tn), and by
definition

holds M v (R(t1, . . . , tn)) = RM (termval M v t1, . . . , termval M v tn).

We want to concoct an interpretation M and valuation v such that this
is the same as pholds d (R(t1, . . . , tn)). It suffices to construct the inter-
pretation of functions and the valuation such that distinct tuples of terms
(t1, . . . , tn) map to distinct tuples (termval M v t1, . . . , termval M v tn)
of domain elements, for then we can choose the interpretations of predicate
symbols RM as required to match the propositional valuation d. (This would
not be possible if d(R(s1, . . . , sn)) �= d(R(t1, . . . , tn)) yet the tuples of terms
had the same interpretation.)

This condition can be achieved in various ways, but perhaps the most
straightforward is to take for the domain of the model some subset of the
set of terms itself. A canonical interpretation for a formula p is one whose
domain is some subset of the set of terms and in which each n-ary function f

occurring in p is interpreted in the natural way as a syntax constructor, i.e.
fM (t1, . . . , tn) = f(t1, . . . , tn), or properly speaking in terms of our OCaml
implementation, Fn(f, [t1; · · · ; tn]). Since interpretations of function symbols
need to map Dn → D, we require that the domain is closed under applica-
tion of functions occurring in p, i.e. if t1, . . . , tn ∈ D then f(t1, . . . , tn) ∈ D,
and in particular c ∈ D for each constant (nullary function) in p; one possi-
bility is just to take for D the set of all terms. Now, given a propositional
valuation d, we can construct a corresponding canonical interpretation Md

by interpreting the functions as we must:

fMd
(t1, . . . , tn) = f(t1, . . . , tn)

and predicates as follows:

RMd
(t1, . . . , tn) = d(R(t1, . . . , tn)).
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Now we have the required correspondence, at least for the identity valua-
tion Var that maps a variable ‘to itself’. This has the unsurprising property
that termval Md Var is the identity:

Lemma 3.14 For all terms t, termval Md Var t = t.

Proof By induction on the structure of t. If t is a variable Var(x) then
termval Md Var (Var(x)) = Var(x) by definition. Otherwise, if t is of the
form f(t1, . . . , tn), we have termval Md Var tk = tk for each k = 1, . . . , n
by the inductive hypothesis, and so

termval Md Var (f(t1, . . . , tn))

= fMd
(termval Md Var t1, . . . , termval Md Var tn)

= fMd
(t1, . . . , tn)

= f(t1, . . . , tn)

= t

as required.

Theorem 3.15 If d is a propositional valuation of atomic formulas, then
for any quantifier-free formula p we have:

holds Md Var p = pholds d p.

Proof By induction on the structure of p. For atomic formulas:

holds Md Var (R(t1, . . . , tn))

= RMd
(termval Md Var t1, . . . , termval Md Var tn)

= RMd
(t1, . . . , tn)

= d(R(t1, . . . , tn))

= pholds d (R(t1, . . . , tn)).

The other cases are straightforward since for quantifier-free formulas the
definitions of holds and pholds have the same recursive pattern.

This allows us to prove that first-order and propositional validity coincide.

Corollary 3.16 A quantifier-free first-order formula is a propositional tau-
tology if and only if it is first-order valid.

Proof The left-to-right direction was proved in Corollary 3.13. Conversely,
suppose p is first-order valid. Then for any propositional valuation d we have
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by the above theorem pholds d p = holds Md Var p. However, since p is
first-order valid, it holds in all interpretations and valuations so the right-
hand side is ‘true’.

This is an interesting result, but for our overall project we’re more inter-
ested in analogous results for satisfiability, since Skolemization (our means of
reaching a quantifier-free formula) is satisfiability-preserving but not validity-
preserving. For ground formulas, everything is easy:

Corollary 3.17 A ground formula is propositionally valid iff it is first-order
valid, and propositionally satisfiable iff it is first-order satisfiable.

Proof The first part is a special case of Corollary 3.16, and the second
part follows because validity of p is the same as unsatisfiability of ¬p for
propositional logic and for ground formulas in first-order logic.

Thus we are justified in switching freely between propositional and first-
order validity or satisfiability for ground formulas. What about quantifier-
free formulas in general? Again, one way is straightforward:

Corollary 3.18 If a quantifier-free first-order formula is first-order satisfi-
able, it is also (propositionally) satisfiable.

Proof If p were not propositionally satisfiable, then ¬p would be proposi-
tionally valid and hence, by Corollary 3.16, first-order valid, so p cannot also
be first-order satisfiable.

However, a little reflection shows that the converse relationship is not so
simple. For example, P (x)∧¬P (y) is satisfiable as a propositional formula,
since the atomic subformulas P (x) and P (y) are distinct and can be inter-
preted as ‘true’ and ‘false’ respectively. However, it is not satisfiable as a
first-order formula, since a model for it would have to be found where it
holds in all valuations, in particular those that assign x and y the same
domain value.

We proceed by first generalizing Theorem 3.15. Note that a valuation in
a canonical model is a mapping from variable names to terms, and so can
be considered as an instantiation.

Lemma 3.19 If M is any canonical interpretation and v any valuation then
for any term t we have termval M v t = tsubst v t.
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Proof The definitions of termval M and tsubst are the same in any canonical
model because each fM is just f as a syntax constructor.

We first note a simple consequence, though it is also relatively easy to
prove directly.

Corollary 3.20 If i and j are two instantiations and t any term, then

tsubst i (tsubst j t) = tsubst (tsubst i ◦ j) t.

Proof Pick an arbitrary canonical interpretation M (e.g. interpret all rela-
tions as identically false). By Lemma 3.19 the claim is the same as

termval M i (tsubst j t) = termval M (termval M i ◦ j) t,

which is exactly Theorem 3.5.

Our main goal, however, is the following.

Theorem 3.21 If p is a quantifier-free formula, d is a propositional valua-
tion of atomic formulas and M is some canonical interpretation for p with
RM (t1, . . . , tn) = d(R(t1, . . . , tn)), then for any valuation v we have:

holds M v p = pholds d (subst v p).

Proof By induction on the structure of p. For atomic formulas:

holds M v (R(t1, . . . , tn))

= RM (termval M v t1, . . . , termval M v tn)

= RM (tsubst v t1, . . . , tsubst v tn)

= d(R(tsubst v t1, . . . , tsubst v tn)

= d(subst v (R(t1, . . . , tn)))

= pholds d (subst v (R(t1, . . . , tn))),

while for the other classes of formulas, the recursions match up as before.

For practical purposes, it can be convenient to make the domain of a
canonical model as small as possible. The Herbrand universe or Herbrand
domain for a particular first-order language is the set of all ground terms of
that language, i.e. all terms that can be built from constants and function
symbols of the language without using variables, except that if the language
has no constants, a constant c is added to make the Herbrand universe
nonempty. Usually in what follows we are interested in the language of a
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single formula p, and we will refer simply to the Herbrand universe for p,
meaning for the language of p. We can get the set of the functions in a term,
separated into nullary and non-nullary and including the tweak for the case
where we want to add a constant to the language, as follows:

let herbfuns fm =
let cns,fns = partition (fun (_,ar) -> ar = 0) (functions fm) in
if cns = [] then ["c",0],fns else cns,fns;;

Note that the Herbrand universe for p is infinite precisely if p involves a
non-nullary function; for example, with just a constant c and a unary func-
tion f , the Herbrand universe is {c, f(c), f(f(c)), f(f(f(c))), . . .}.
A Herbrand interpretation is a canonical interpretation whose domain is the
Herbrand universe for some suitable language (usually the symbols occur-
ring in the formula(s) of interest) and a Herbrand model of a set of formulas
is a model of those formulas that is a Herbrand interpretation. We will refer
to some subst i p where i maps into the Herbrand universe as a ground
instance of p.

Theorem 3.22 A Herbrand interpretation H satisfies a quantifier-free for-
mula p iff it satisfies the set of all ground instances subst i p.

Proof If H satisfies p, it also satisfies all ground instances, since by Theorem
3.7, holds H v (subst i p) = holds H (termval H v ◦ i) p = true.
Conversely, suppose H satisfies all ground instances. Any valuation v for H

is a mapping into ground terms, so using Lemma 3.19 we have termval H v ◦
v = tsubst v ◦ v = v. But then by Theorem 3.7 we have holds H v p =
holds H (termval H v ◦ v) p = holds H v (tsubst v p) = true.

Indeed, the same kind of result holds not just for satisfaction in a partic-
ular Herbrand model, but for satisfiability as a whole.

Theorem 3.23 A quantifier-free formula p is first-order satisfiable iff the
set of all its ground instances is (propositionally) satisfiable.

Proof If p is satisfiable, then it holds in some model M under all valua-
tions. Let i be any ground instantiation, i.e. mapping from the variables to
members of the Herbrand universe. Using Theorem 3.7 and Theorem 3.12
we deduce that, for any valuation v:

pholds (holds M v) (subst i p)

= holds M v (subst i p)
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= holds M (termval M v ◦ i) p

= true,

so the propositional valuation holds M v simultaneously satisfies all ground
instances of p.

Conversely, if some propositional valuation d satisfies all ground instances,
define a Herbrand interpretation H by RH(t1, . . . , tn) = d(R(t1, . . . , tn)). By
Theorem 3.21 we have for any valuation/ground instantiation i that

holds H i p = pholds d (subst i p) = true

and so H satisfies p.

This crucial result is usually known as Herbrand’s theorem, though this is
a misnomer.† By essentially the same proof, we can also deduce the following
important equivalence, bypassing the propositional step.

Theorem 3.24 A quantifier-free formula has a model (i.e. is satisfiable) iff
it has a Herbrand model.

Proof The right-to-left direction is immediate since a Herbrand model is
indeed a model. In the other direction, we just re-use both parts of the
proof of Theorem 3.23, noting that the model constructed is indeed a Her-
brand model. That is, if p has a model, then all its ground instances are
propositionally satisfiable, and therefore it has a Herbrand model.

Note that this reasoning only covers quantifier-free or universal formulas.
For example, P (c) ∧ ∃x. ¬P (x) is satisfiable (e.g. set P to ‘is even’ and
c to zero on the natural numbers), but has no Herbrand model, since the
Herbrand universe is just {c} and the formula fails in a 1-element model. For
the same reason, analogous results to Theorems 3.23 and 3.24 fail for validity:
P (c) ⇒ P (x) is not logically valid, but its only ground instance P (c) ⇒ P (c)
is a propositional tautology and the formula holds in the Herbrand model
with domain {c}. On the other hand, by similarly re-examining the proof
of Theorem 3.16, one can deduce that a quantifier-free formula is valid iff it
holds in all canonical models (not just those whose domain is the Herbrand
universe).

† The theorem here was present with varying degrees of explicitness in earlier work of Skolem and
Gödel and so is sometimes referred to as the Skolem–Gödel–Herbrand theorem. The theorem
given by Herbrand (1930) has a similar flavour but talks about proof rather than semantic
validity, and in fact Herbrand’s original demonstration was not entirely correct (Andrews 2003).
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3.8 Mechanizing Herbrand’s theorem

After a lot of work, we have finally succeeded in reducing first-order sat-
isfiability to propositional satisfiability. But our triumph is marred by the
fact that we need to test propositional satisfiability of the set of all ground
instances, of which there are usually infinitely many. However, the compact-
ness Theorem 2.13 for propositional logic comes to our rescue.

Theorem 3.25 A quantifier-free formula is first-order satisfiable iff all finite
sets of ground instances are (propositionally) satisfiable.

Proof Immediate from Herbrand’s Theorem 3.23 and compactness for propo-
sitional logic (Theorem 2.13).

Corollary 3.26 A quantifier-free formula p is first-order unsatisfiable iff
some finite set of ground instances is (propositionally) unsatisfiable.

Proof The contraposition of the previous theorem.

This gives rise to a procedure whereby we can verify that a formula p is
unsatisfiable. We simply enumerate larger and larger sets of ground instances
and test them for propositional satisfiability. Provided that every ground
instance appears eventually in the enumeration, we are sure that if p is
unsatisfiable we will eventually reach a finite unsatisfiable set of proposi-
tional formulas. If p is in fact satisfiable, this process may never terminate,
so this is only a semi-decision procedure, but, as we’ll see in Section 7.6, this
is the best we can hope for in general.

In the late 1950s, perhaps inspired by a suggestion from A. Robinson
(1957) at the 1954 Summer Institute for Symbolic Logic at Cornell Univer-
sity, there were several implementations of theorem-proving systems along
these lines, one of the earliest being due to Gilmore (1960). Gilmore enu-
merated larger and larger sets of ground instances, at each stage checking
for contradiction by putting them into disjunctive normal form and checking
each disjunct for complementary literals. Let’s follow this approach to get
an idea of how well it works.

We need to set up an appropriate enumeration of the ground instances,
or more precisely, of m-tuples of ground terms where m is the number of
free variables in the formula. If we want to ensure that every unsatisfiable
formula will eventually be proved unsatisfiable, then the enumeration must
eventually include every possible ground instance. One reasonable approach
is to first generate all m-tuples involving no functions (i.e. just combinations
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of constant terms), then all those involving one function, then two, three,
etc. Every tuple will appear eventually, and the ‘simpler’ possibilities will
be tried first. We can set up this enumeration via two mutually recursive
functions, both taking among their arguments the set of constant terms
cntms and the set of functions with their arities, funcs.

The function groundterms enumerates all ground terms involving n func-
tions. If n = 0 the constant terms are returned. Otherwise all possible func-
tions are tried, and since we then need to fill the argument places of each
m-ary function with terms involving in total n - 1 functions, one already
having been used, we recursively call groundtuples:

let rec groundterms cntms funcs n =
if n = 0 then cntms else
itlist (fun (f,m) l -> map (fun args -> Fn(f,args))

(groundtuples cntms funcs (n - 1) m) @ l)
funcs []

while the mutually recursive function groundtuples generates all m-tuples of
ground terms involving (in total) n functions.† For all k up to n, this in turn
tries all ways of occupying the first argument place with a k-function term
and then recursively produces all (m - 1)-tuples involving all the remaining
n - k functions.

and groundtuples cntms funcs n m =
if m = 0 then if n = 0 then [[]] else [] else
itlist (fun k l -> allpairs (fun h t -> h::t)

(groundterms cntms funcs k)
(groundtuples cntms funcs (n - k) (m - 1)) @ l)

(0 -- n) [];;

Gilmore’s method can be considered just one member of a family of
‘Herbrand procedures’ that somehow test larger and larger conjunctions of
ground instances until unsatisfiability is verified. We can generalize over the
way the satisfiability test is done (tfn) and the modification function (mfn)
that augments the ground instances with a new instance, whatever form
they may be stored in. This generalization, which not only saves code but
emphasizes that the key ideas are independent of the particular propositional
satisfiability test at the core, is carried through in the following loop:

† Note that this can involve repeated recomputation of the same instances; a more efficient
approach would be to compute lower levels once and recall them when needed. But in our
simple experiments this won’t be the time-critical aspect.
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let rec herbloop mfn tfn fl0 cntms funcs fvs n fl tried tuples =
print_string(string_of_int(length tried)^" ground instances tried; "^

string_of_int(length fl)^" items in list");
print_newline();
match tuples with
[] -> let newtups = groundtuples cntms funcs n (length fvs) in

herbloop mfn tfn fl0 cntms funcs fvs (n + 1) fl tried newtups
| tup::tups ->

let fl’ = mfn fl0 (subst(fpf fvs tup)) fl in
if not(tfn fl’) then tup::tried else
herbloop mfn tfn fl0 cntms funcs fvs n fl’ (tup::tried) tups;;

Several parameters are carried around unchanged: the modification and
testing function parameters, the initial formula in some transformed list
representation (fl0), then constant terms cntms and functions funcs and
the free variables fvs of the formula. The other arguments are n, the next
level of the enumeration to generate, fl, the set of ground instances so far,
tried, the instances tried, and tuples, the remaining ground instances in
the current level. When tuples is empty, we simply generate the next level
and step n up to n + 1. In the other case, we use the modification function
to update fl with another instance. If this is unsatisfiable, then we return
the successful set of instances tried; otherwise, we continue. In the particular
case of the Gilmore procedure, formulas are maintained in fl0 and fl in a
DNF representation, and the modification function applies the instantiation
to the starting formula fl0 and combines the DNFs by distribution:

let gilmore_loop =
let mfn djs0 ifn djs =
filter (non trivial) (distrib (image (image ifn) djs0) djs) in

herbloop mfn (fun djs -> djs <> []);;

We’re more usually interested in proving validity rather than unsatisfia-
bility. For this, we generalize, negate and Skolemize the initial formula and
set up the appropriate sets of free variables, functions and constants. Then
we simply start the main loop, and report if it terminates how many ground
instances were tried:

let gilmore fm =
let sfm = skolemize(Not(generalize fm)) in
let fvs = fv sfm and consts,funcs = herbfuns sfm in
let cntms = image (fun (c,_) -> Fn(c,[])) consts in
length(gilmore_loop (simpdnf sfm) cntms funcs fvs 0 [[]] [] []);;
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Let’s try out our new first-order prover on some examples. We’ll start
small:

# gilmore <<exists x. forall y. P(x) ==> P(y)>>;;
...
1 ground instances tried; 1 items in list
- : int = 2

So far, so good. This should be an easy problem. However, to clarify
what’s going on inside, it’s worth tracing through this example. The negated
formula, after Skolemization, is:

# let sfm = skolemize(Not <<exists x. forall y. P(x) ==> P(y)>>);;
val sfm : fol formula = <<P(x) /\ ~P(f_y(x))>>

The reader can confirm by running through the other steps inside gilmore
that the set of constant terms consists purely of one ‘invented’ constant c†

and there is a single unary Skolem function f y. The first ground instance
to be generated is

P(c) /\ ~P(f_y(c))

Since this is still propositionally satisfiable, a second instance is generated:

P(f_y(c)) /\ ~P(f_y(f_y(c)))

Since the conjunction of these two instances is propositionally unsatisfiable
(the conjunction includes both P(f y(c)) and its negation), the procedure
terminates, indicating that two ground instances were used and that the
formula is valid as claimed. The reader may find it very instructive to step
through more of the examples that follow in a similar way. In this chapter,
we will take many of our examples from a suite given by Pelletier (1986), in
an attempt to get some idea of the merits of different approaches. Some are
very easily handled by the present program:

# let p24 = gilmore
<<~(exists x. U(x) /\ Q(x)) /\
(forall x. P(x) ==> Q(x) \/ R(x)) /\
~(exists x. P(x) ==> (exists x. Q(x))) /\
(forall x. Q(x) /\ R(x) ==> U(x))
==> (exists x. P(x) /\ R(x))>>;;

0 ground instances tried; 1 items in list
0 ground instances tried; 1 items in list
val p24 : int = 1

† That this case is called for shows that if we were to allow interpretations with an empty domain,
the formula would in fact be invalid.
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Some take a little more time and require quite a few ground instances to
be tried, like:

# let p45 = gilmore
<<(forall x. P(x) /\ (forall y. G(y) /\ H(x,y) ==> J(x,y))

==> (forall y. G(y) /\ H(x,y) ==> R(y))) /\
~(exists y. L(y) /\ R(y)) /\
(exists x. P(x) /\ (forall y. H(x,y) ==> L(y)) /\

(forall y. G(y) /\ H(x,y) ==> J(x,y)))
==> (exists x. P(x) /\ ~(exists y. G(y) /\ H(x,y)))>>;;

4 ground instances tried; 2511 items in list
val p45 : int = 5

Still others appear quite intractable, running for a long time and eventu-
ally causing the machine to run out of memory, so large is the number of
disjuncts generated.

let p20 = gilmore
<<(forall x y. exists z. forall w. P(x) /\ Q(y) ==> R(z) /\ U(w))
==> (exists x y. P(x) /\ Q(y)) ==> (exists z. R(z))>>;;

All in all, although the Gilmore procedure is a promising start to first-
order theorem proving, there is plenty of room for improvement. Since the
main limitation seems to be the explosion in the number of disjuncts in
the DNF, a natural approach is to maintain the same kind of enumeration
procedure but check the propositional satisfiability of the conjunction of
ground instances generated so far by a more efficient propositional algorithm.

In fact, it was for exactly this purpose that Davis and Putnam (1960)
developed their procedure for propositional satisfiability testing (see Section
2.9). In this context, clausal form has the particular advantage that there
is no analogue of the multiplicative explosion of disjuncts. One simply puts
the (negated, Skolemized) formula into clausal form, with say k conjuncts,
and each new ground instance generated just adds another k clauses to the
accumulated pile. Against this, of course, one needs a real satisfiability test
algorithm to be run, whereas in the Gilmore procedure this is simply a mat-
ter of looking for complementary literals. Slightly anachronistically, we will
use the DPLL rather than the DP procedure, since our earlier experiments
suggested it is usually better, and it certainly has better space behaviour.
The structure of the Davis–Putnam program is very similar to the Gilmore
one. This time the stored formulas are all in CNF rather than DNF, and
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each time we incorporate a new instance, we check for unsatisfiability using
dpll:

let dp_mfn cjs0 ifn cjs = union (image (image ifn) cjs0) cjs;;

let dp_loop = herbloop dp_mfn dpll;;

The outer wrapper is unchanged except that the formula is put into CNF
rather than DNF:

let davisputnam fm =
let sfm = skolemize(Not(generalize fm)) in
let fvs = fv sfm and consts,funcs = herbfuns sfm in
let cntms = image (fun (c,_) -> Fn(c,[])) consts in
length(dp_loop (simpcnf sfm) cntms funcs fvs 0 [] [] []);;

This code turns out to be much more effective in most cases. For example,
the formerly problematic p20 is solved rapidly, using 19 ground instances:

# let p20 = davisputnam
<<(forall x y. exists z. forall w. P(x) /\ Q(y) ==> R(z) /\ U(w))
==> (exists x y. P(x) /\ Q(y)) ==> (exists z. R(z))>>;;

0 ground instances tried; 0 items in list
...
18 ground instances tried; 37 items in list
val p20 : int = 19

Although the Davis–Putnam procedure avoids the catastrophic explosion
in memory usage that was the bane of the Gilmore procedure, it still often
generates a very large number of ground instances and becomes quite slow
at each propositional step. Typically, most of these instances make no con-
tribution to the final refutation, and a much smaller set would be adequate.
The overall runtime (and ultimately feasibility) depends on how quickly an
adequate set turns up in the enumeration, which is quite unpredictable.
Suppose we define a function that runs through the list of possibly-needed
instances (dunno), putting them onto the list of needed ones need only if
the other instances are satisfiable:

let rec dp_refine cjs0 fvs dunno need =
match dunno with
[] -> need

| cl::dknow ->
let mfn = dp_mfn cjs0 ** subst ** fpf fvs in
let need’ =
if dpll(itlist mfn (need @ dknow) []) then cl::need else need in
dp_refine cjs0 fvs dknow need’;;
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We can use this refinement process after the main loop has succeeded:

let dp_refine_loop cjs0 cntms funcs fvs n cjs tried tuples =
let tups = dp_loop cjs0 cntms funcs fvs n cjs tried tuples in
dp_refine cjs0 fvs tups [];;

As the reader can confirm, replacing dp_loop by dp_refine_loop in the
Davis–Putnam procedure massively reduces the number of final instances,
e.g. from 40 to just 3 in the case of p36, and from 181 to 5 for p29. However,
while cutting down the number like this may be beneficial if we want to
use the set of ground instances for something (as we will in Section 5.13),
it doesn’t help to improve the efficiency of the procedure itself, which still
needs to examine the whole set of instances so far at each iteration. As Davis
(1983) admits in retrospect:

. . . effectively eliminating the truth-functional satisfiability obstacle only uncovered
the deeper problem of the combinatorial explosion inherent in unstructured search
through the Herbrand universe . . .

The next major step forward in theorem proving was a more intelligent
means of choosing instances, to pick out the small set of relevant ones instead
of blindly trying all possibilities.

3.9 Unification

The gilmore and davisputnam procedures follow essentially the same pat-
tern. Decision methods for propositional logic, respectively disjunctive nor-
mal forms and the Davis–Putnam method, are used together with a sys-
tematic enumeration of ground instances. A more sophisticated idea, first
used by Prawitz, Prawitz and Voghera (1960), is to perform propositional
operations on the uninstantiated formulas, or at least instantiate them intel-
ligently just as much as is necessary to make progress with propositional rea-
soning. Prawitz’s work was extended by J. A. Robinson (1965b), who gave an
effective syntactic procedure called unification for deciding on appropriate
instantiations to make terms match up correctly. Suppose for example that
we have the following uninstantiated clauses in the Davis–Putnam method:

P (x, f(y)) ∨ Q(x, y),
¬P (g(u), v).

Instead of enumerating blindly, we can choose instantiations for the vari-
ables in the two clauses so that P (x, f(y)) and ¬P (g(u), v) become
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complementary, e.g. setting x = g(u) and v = f(y). After instantiation,
we have the clauses:

P (g(u), f(y)) ∨ Q(g(u), y),
¬P (g(u), f(y)).

and so we are able to derive a new clause using the resolution rule:

Q(g(u), y).

By contrast, in the enumeration-based approach, we would have to wait
until instances allowing the same kind of resolution step were generated, by
which time we may have become overwhelmed by other (often irrelevant)
instances.

Definition 3.27 Given a set of pairs of terms

S = {(s1, t1), . . . , (sn, tn)},

a unifier of the set S is an instantiation σ such that

tsubst σ si = tsubst σ ti

for each i = 1, . . . , n. In the special case of a single pair of terms, we often
talk about a ‘unifier of s and t’, meaning a unifier of {(s, t)}.

Unifying a set of pairs of terms is analogous to solving a system of simul-
taneous equations such as 2x + y = 3 and x − y = 6 in ordinary algebra,
and we will emphasize this parallel in the following discussion. Just as a set
of equations may be unsolvable, so may a unification problem. First of all,
there is no unifier of f(x) and g(y) where f and g are different function
symbols, for whatever terms replace the variables x and y, the instantiated
terms will have different functions at the top level. Slightly more subtly,
there is no unifier of x and f(x), or more generally of x and any term
involving x as a proper subterm, for whatever the instantiation of x, one
term will remain a proper subterm of the other, and hence unequal. This is
exactly analogous to trying to solve x = x + 1 in ordinary algebra. A more
complicated example of this kind of circularity is the unification problem
{(x, f(y)), (y, g(x))}, analogous to the unsolvable simultaneous equations
x = y + 1 and y = x + 2.
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On the other hand, if a unification problem has a solution, it always has
infinitely many, because if σ is a unifier of the si and ti, then so is tsubst τ◦σ
for any other instantiation τ , using Corollary 3.20:

tsubst (tsubst τ ◦ σ) si

= tsubst τ (tsubst σ si)

= tsubst τ (tsubst σ ti)

= tsubst (tsubst τ ◦ σ) ti.

For example, instead of unifying P (x, f(y)) and P (g(u), v) by setting x =
g(u) and v = f(y), we could have used other variables or even arbitrarily
complicated terms like x = g(f(g(y)), u = f(g(y)) and v = f(y). But it
will turn out that we can always find a ‘most general’ unifier that keeps the
instantiating terms as ‘simple’ as possible.

We say that an instantiation σ is more general than another one τ , and
write σ ≤ τ , if there is some instantiation δ such that

tsubst τ = tsubst δ ◦ tsubst σ.

We say σ is a most general unifier (MGU) of S if (i) it is a unifier of S,
and (ii) for every other unifier τ of S, we have σ ≤ τ . Most general unifiers
are not necessarily unique. For example, the set {(x, y)} has two different
MGUs, one that maps x |⇒ y and one that maps y |⇒ x. However, one can
quite easily show that two MGUs of a given set S can, like these two, differ
only up to a permutation of variable names. (Assuming that we restrict
unifiers to instantiations that affect a finite number of variables.)

A unification algorithm

Let us now turn to a general method for solving a unification problem or
deciding that it has no solution. Our main function unify is recursive, with
two arguments: env, which is a finite partial function from variables to terms,
and eqs, which is a list of term–term pairs to be unified. The unification
function essentially applies some transformations to eqs and incorporates
the resulting variable–term mappings into env. This env is not quite the final
unifying mapping itself, because it may map a variable to a term containing
variables that are themselves assigned, e.g. x �→ y and y �→ z instead of just
x �→ z directly. But we will require env to be free of cycles. Write x −→ y

to indicate that there is an assignment x �→ t in env with y ∈ FVT(t). By
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a cycle, we mean a nonempty finite sequence leading back to the starting
point:

x0 −→ x1 −→ · · · −→ xp −→ x0.

Our main unification algorithm will only incorporate new entries x �→ t

into env that preserve the property of being cycle-free. It is sufficient to
ensure the following:

(1) there is no existing assignment x �→ s in env;
(2) there is no variable y ∈ FVT(t) such that y −→∗ x, i.e. there is a

sequence of zero or more −→-steps leading from y to x; in particular
x �∈ FVT(t).

To see that if env is cycle-free and these properties hold then (x �→ t)env
is also cycle-free, note that if there were now a cycle for the new relation
−→′:

z −→′ x1 −→′ · · · −→′ xp −→′ z

then there must be one of the following form:

z −→ x1 −→ x −→′ y −→ · · · −→ xp −→ z

for some y ∈ FVT(t). For there must be at least one case where the new
assignment x �→ t plays a role, since env was originally cycle-free, while if
there is more than one instance of x, we can cut out any intermediate steps
between the first and the last. However, a cycle of the above form also gives
us the following, contradicting assumption (2):

y −→ · · · −→ xp −→ z −→ x1 −→ x.

The following function will return ‘false’ if condition (2) above holds for
a new assignment x �→ t. If condition (2) does not hold then it fails, except
in the case t = x when it returns ‘true’, indicating that the assignment is
‘trivial’.

let rec istriv env x t =
match t with
Var y -> y = x or defined env y & istriv env x (apply env y)

| Fn(f,args) -> exists (istriv env x) args & failwith "cyclic";;

This is effectively calculating a reflexive-transitive closure of −→, which
could be done much more efficiently. However, this simple recursive imple-
mentation is usually fast enough, and is certainly guaranteed to terminate,
precisely because the existing env is cycle-free.
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Now we come to the main unification function. This just transforms the
list of pairs eqs from the front using various transformations until the front
pair is of the form (x, t). If there is already a definition x �→ s in env, then
the pair is expanded into (s, t) and the recursion proceeds. Otherwise we
know that condition (1) holds, so x �→ t is a candidate for incorporation into
env. If there is a benign cycle istriv env x t is true and env is unchanged.
Any other kind of cycle will cause failure, which will propagate out. Oth-
erwise condition (2) holds, and x �→ t is incorporated into env for the next
recursive call.

let rec unify env eqs =
match eqs with
[] -> env

| (Fn(f,fargs),Fn(g,gargs))::oth ->
if f = g & length fargs = length gargs
then unify env (zip fargs gargs @ oth)
else failwith "impossible unification"

| (Var x,t)::oth ->
if defined env x then unify env ((apply env x,t)::oth)
else unify (if istriv env x t then env else (x|->t) env) oth

| (t,Var x)::oth -> unify env ((Var x,t)::oth);;

Let us regard the assignments xi �→ ti in env and the pairs (sj , s
′
j) in eqs

as a collective set of pairs S = {. . . , (xi, ti), . . . , (sj , s
′
j), . . .}. The unify func-

tion is tail-recursive and the key observation is that the successive recursive
calls have arguments env and eqs satisfying two properties:

• the finite partial function env is cycle-free;
• the set S combining env and eqs has exactly the same set of unifiers as

the original problem.

The first claim follows because a new assignment x �→ t is only added
to the environment when there is no existing assignment x �→ s, hence
confirming condition (1), and when defined env x returns false, hence
confirming condition (2). To verify the other claim, we consider the clauses
that can lead to recursive calls. The second clause will lead to a recursive call
only when the front pair in eqs is of the form (f(s1, . . . , sn), f(t1, . . . , tn)),
and the claim then follows since

{(f(s1, . . . , sn), f(t1, . . . , tn))} ∪ E
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has exactly the same unifiers as

{(s1, t1), . . . , (sn, tn)} ∪ E

because any instantiation unifies f(s1, . . . , sn) and f(t1, . . . , tn) iff it unifies
each corresponding pair si and ti. When the front pair is (x, t) and there is
already an assignment x �→ s, we get a recursive call with (x, t) replaced by
(s, t), which also preserves the claimed property since {(x, t), (x, s)}∪E has
exactly the same unifiers as {(s, t), (x, s)}∪E. The final clause just reverses
the front pair, and this order is immaterial to the unifiers. Thus the claim
is verified.

Any failure indicates that one of the intermediate problems is unsolv-
able, because it involves either incompatible toplevel functions like a pair
(f(s), g(t)), or a circularity where a unifier would unify (x, t) where x ∈
FVT(t) and x �= t. Since this intermediate problem has exactly the same set
of unifiers as the original problem, failure therefore indicates the unsolvabil-
ity of the original problem.

We will next show that successful termination of unify indicates that
there is a unifier of the initial set of pairs, and in fact that a most general
unifier can be obtained from the resulting env by applying the following
function to reach a ‘fully solved’ form:

let rec solve env =
let env’ = mapf (tsubst env) env in
if env’ = env then env else solve env’;;

Once again, this transforms env in a way that preserves the set of unifiers
of the corresponding pairs across recursive calls, because the set

{(x1, t1), . . . , (xn, tn)}

has exactly the same set of unifiers as

{(x1, tsubst (x1 |⇒ t1) t1), . . . , (xn, tsubst (x1 |⇒ t1) tn)}.

Moreover, because the initial env was free of cycles, the function termi-
nates and the result is an instantiation σ whose assignments xi �→ ti satisfy
xi �∈ FVT(tj) for all i and j. It is immediate that σ unifies each pair (xi, ti)
in its own assignment, since xi is instantiated to ti by this very assignment
while ti is unchanged as it contains none of the variables xj . In fact, σ is
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actually a most general unifier of the set of pairs (xi, ti), because for any
other unifier τ of these pairs we have:

tsubst τ xi

= tsubst τ ti

= tsubst τ (tsubst σ xi)

= (tsubst τ ◦ tsubst σ) xi

for each variable xi involved in σ. For all other variables x, we have tsubst σ

x = tsubst τ x = Var(x) so the same is trivially true. Hence

tsubst τ = tsubst τ ◦ tsubst σ

and so σ ≤ τ by definition. (And even stronger, the δ we need to exist
for this to hold can be taken to be τ itself.) Moreover, since by the basic
preservation property the set of pairs (xi, ti) has exactly the same unifiers as
the original problem, we conclude that if unify undefined eqs terminates
successfully with result env, then σ = solve env is an MGU of the original
pairs eqs.

Finally, we will prove that unify env eqs does always terminate if env is
cycle-free, in particular for the starting value undefined. Let n be the ‘size’
of eqs, which we define as the total number of Var and Fn constructors in the
instantiated terms t′ = tsubst (solve env) t for all t on either side of a pair
in eqs. Now note that across recursive calls, either the number of variables
in eqs that have no assignment in env decreases (when a new assignment
is added to env), or else this count stays the same and n decreases (when a
function is split apart or a trivial pair (x, x) is discarded), or both those stay
the same but the front pair is either reversed (which cannot happen twice in
a row) or has one member instantiated using env (which can only happen
finitely often since env is cycle-free). Thus termination is guaranteed.

In summary, we have proved that (i) failure indicates unsolvability, (ii)
successful termination results in an MGU, and (iii) termination, either with
success or failure, is guaranteed. Therefore the function terminates with
success if and only if the unification problem is solvable, and in such cases
returns an MGU.

We can now finally package up everything as a function that solves the
unification problem completely and creates an instantiation.

let fullunify eqs = solve (unify undefined eqs);;

For example, we can use this to find a unifier for a pair of terms, then
apply it, to check that the terms are indeed unified:
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# let unify_and_apply eqs =
let i = fullunify eqs in
let apply (t1,t2) = tsubst i t1,tsubst i t2 in
map apply eqs;;

val unify_and_apply : (term * term) list -> (term * term) list = <fun>
# unify_and_apply [<<|f(x,g(y))|>>,<<|f(f(z),w)|>>];;
- : (term * term) list = [(<<|f(f(z),g(y))|>>, <<|f(f(z),g(y))|>>)]
# unify_and_apply [<<|f(x,y)|>>,<<|f(y,x)|>>];;
- : (term * term) list = [(<<|f(y,y)|>>, <<|f(y,y)|>>)]
# unify_and_apply [<<|f(x,g(y))|>>,<<|f(y,x)|>>];;
Exception: Failure "cyclic".

Note that unification problems can generate exponentially large
unifiers, e.g.

# unify_and_apply [<<|x_0|>>,<<|f(x_1,x_1)|>>;
<<|x_1|>>,<<|f(x_2,x_2)|>>;
<<|x_2|>>,<<|f(x_3,x_3)|>>];;

- : (term * term) list =
[(<<|f(f(f(x_3,x_3),f(x_3,x_3)),f(f(x_3,x_3),f(x_3,x_3)))|>>,
<<|f(f(f(x_3,x_3),f(x_3,x_3)),f(f(x_3,x_3),f(x_3,x_3)))|>>);
(<<|f(f(x_3,x_3),f(x_3,x_3))|>>, <<|f(f(x_3,x_3),f(x_3,x_3))|>>);
(<<|f(x_3,x_3)|>>, <<|f(x_3,x_3)|>>)]

The core function unify avoids creating these large unifiers, but can still
take exponential time because of its descent through the list of assignments,
which can cause exponential branching in cases like the one above. It is
possible to implement more efficient unification algorithms like those given
by Martelli and Montanari (1982), but we will not usually find the time or
space usage of unification a serious problem in our applications. For a good
discussion of several unification algorithms, see Baader and Nipkow (1998).

Using unification

We will explore several ways of incorporating unification into first-order
theorem proving, combining it with different methods for propositional logic.
Before getting involved in the details, however, we want to emphasize a useful
distinction.

In the Davis–Putnam example at the beginning of this section we started
with some clauses, which are implicitly conjoined and universally quanti-
fied over all their variables. Consequently, the variables in the new clause
Q(g(u), y) derived can be regarded as universal and may freely be instanti-
ated differently each time it is used later. Suppose, on the other hand, we had
decided to use the DPLL procedure, and used the first clause as the basis
for a case-split, assuming separately P (x, f(y)) and Q(x, y) and trying to
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derive a contradiction separately from each of these together with the other
clauses. In this case, if the variables x and y later need to be instantiated,
they must be instantiated in the same way. We can only assume

∀x y. P (x, f(y)) ∨ Q(x, y),

which does not imply

(∀x y. P (x, f(y))) ∨ (∀x, y. Q(x, y)).

Consequently, when we perform operations like case-splitting, we need to
maintain a correlation between certain variables, and make sure they are
instantiated consistently.

Methods like the first, where no case-splits are performed and all variables
may be treated as universally quantified and independently instantiated, are
called local, because the variable instantiations in the immediate steps do not
affect other parts of the overall proof; they are also referred to as bottom-up
because they can build up independent lemmas without regard to the overall
problem. Unification-based methods that do involve case-splits, on the other
hand, are called global or top-down because certain variable instantiations
need to be propagated throughout the proof, and often the instantiations
end up being driven by the overall problem.

There are characteristic differences between local and global methods that
correlate strongly with the kinds of problems where they perform well or
badly. In local methods, all intermediate results are absolute, independent of
context, and can be re-used at will with different variable instantiations later
in the proof. They can be used just like lemmas in ordinary mathematical
proofs, which are often used several times in different contexts. By contrast,
using lemmas in global methods is more difficult, because they depend on the
ambient environment of variable assignments and may, at one extreme, have
to be proved separately each time they are used. Nevertheless, the tendency
of global methods to use variable instantiations relevant to the overall result
can be a strength, giving a measure of goal-direction.

The best-known local method is resolution, and it was in the context
of resolution that J. A. Robinson (1965b) introduced unification in its full
generality to automated theorem proving. Another important local method
quite close to resolution and developed independently at about the same time
is the inverse method (Maslov 1964; Lifschitz 1986). As for global methods,
two of the best-known are tableaux, which were implicitly used in an imple-
mentation by Prawitz, Prawitz and Voghera (1960), and model elimination
(Loveland 1968; Loveland 1978). Crudely speaking:
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• tableaux = Gilmore procedure + unification;
• resolution = Davis–Putnam procedure (DP, not DPLL) + unification.

We will consider these important techniques in the next sections. Note
that resolution is a unification-based extension of the original DP proce-
dure, not DPLL. Adding unification to DPLL naturally yields a global rather
than a local method, since literals used in case-splits must be instantiated
consistently in both branches; one such approach is model evolution (Baum-
gartner and Tinelli 2003). An interesting intermediate case is the first-order
extension (Björk 2005) of St̊almarck’s method from Section 2.10. Here the
variables in the two branches of the dilemma rule need to be correlated, but
the common results in merged branches can have those variables promoted
to universal status so they can later be instantiated freely.

3.10 Tableaux

By Herbrand and compactness, if a first-order formula P [x1, . . . , xn] is unsat-
isfiable, there are finitely many ground instances (say k of them) such that
the following conjunction is propositionally unsatisfiable:

P [t11, . . . , t
1
n] ∧ · · · ∧ P [tk1, . . . , t

k
n].

In Gilmore’s method, this propositional unsatisfiability is verified by expand-
ing the conjunction into DNF and checking that each disjunct contains a
conjoined pair of complementary literals. Suppose that instead of creating
ground instances, we replace the variables x1, . . . , xn with tuples of distinct
variables:

P [z1
1 , . . . , z

1
n] ∧ · · · ∧ P [zk

1 , . . . , zk
n].

This formula can similarly be expanded out into DNF. If we now apply
the instantiation θ that maps each new variable zj

i to the corresponding
ground term tji , we obtain a DNF equivalent of the original conjunction of
substitution instances. (This is not necessarily exactly the same as the one
that would have been obtained by instantiating first and then making the
DNF transformation, because the instantiation might have caused distinct
terms to become identified, but that doesn’t matter.) Since this conjunction
of ground instances is unsatisfiable, and ground, it is itself propositionally
unsatisfiable, and hence when the instantiation θ is applied, each disjunct in
the DNF must have (at least) two complementary literals. This means that
each disjunct in the uninstantiated DNF must contain two literals:

· · · ∧ R(s1, . . . , sm) ∧ · · · ∧ ¬R(s′1, . . . , s
′
m) ∧ · · ·
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such that θ unifies the set of terms S = {(si, s
′
i) | i = 1, . . . , m}. However,

since S has some unifier, it also has a most general unifier σ, which we can
find using the algorithm of the previous section. By the MGU property, we
have σ ≤ θ, and so θ can be obtained by applying σ first and then some
other instantiation. Now, applying σ to the original DNF makes one (or
maybe more) of the disjuncts contradictory, and the original instantiation θ

can still be obtained by further instantiation.
Thus, we can now proceed to the next disjunct, and so on, until all pos-

sibilities are exhausted. In this way, we never have to generate the ground
terms, but rather let the necessary instantiations emerge gradually by need.
In the terminology of the last section, this is a global, free-variable method,
because the same variable instantiation needs to be applied (or further spe-
cialized) when performing the same kind of matching up in other disjuncts.
We will maintain the environment of variable assignments globally, repre-
sented as a cycle-free finite partial function just as in unify itself. To unify
atomic formulas, we treat the predicates as if they were functions, then use
the existing unification code, and we also deal with negation by recursion,
and handle the degenerate case of ⊥ since we will use this later:

let rec unify_literals env tmp =
match tmp with
Atom(R(p1,a1)),Atom(R(p2,a2)) -> unify env [Fn(p1,a1),Fn(p2,a2)]

| Not(p),Not(q) -> unify_literals env (p,q)
| False,False -> env
| _ -> failwith "Can’t unify literals";;

To unify complementary literals, we just first negate one of them:

let unify_complements env (p,q) = unify_literals env (p,negate q);;

Next we define a function that iteratively runs down a list (represent-
ing a disjunction), trying all possible complementary pairs in each member,
unifying them and trying to finish the remaining items with the instantia-
tion so derived. Each disjunct d is itself an implicitly conjoined list, so we
separate it into positive and negative literals, and for each possible positive–
negative pair, attempt to unify them as complementary literals and solve
the remaining problem with the resulting instantiation.

let rec unify_refute djs env =
match djs with
[] -> env

| d::odjs -> let pos,neg = partition positive d in
tryfind (unify_refute odjs ** unify_complements env)

(allpairs (fun p q -> (p,q)) pos neg);;
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Now, for the main loop, we maintain the original DNF of the uninstan-
tiated formula djs0, the set fvs of its free variables, and a counter n used
to generate the fresh variable names as needed. The main loop creates a
new substitution instance using fresh variables newvars, and incorporates
this into the previous DNF djs to give djs1. The refutation of this DNF
is attempted, and if it succeeds, the final instantiation is returned together
with the number of instances tried (the counter divided by the number of
free variables). Otherwise, the counter is increased and a larger conjunction
tried. Because this approach is quite close to the pioneering work by Prawitz,
Prawitz and Voghera (1960), we name the procedure accordingly.

let rec prawitz_loop djs0 fvs djs n =
let l = length fvs in
let newvars = map (fun k -> "_"^string_of_int (n * l + k)) (1--l) in
let inst = fpf fvs (map (fun x -> Var x) newvars) in
let djs1 = distrib (image (image (subst inst)) djs0) djs in
try unify_refute djs1 undefined,(n + 1)
with Failure _ -> prawitz_loop djs0 fvs djs1 (n + 1);;

Now, for the overall proof procedure, we just need to start by negating
and Skolemizing the formula to be proved. We throw away the instantiation
information and just return the number of instances tried, though it might
sometimes be interesting to reconstruct the set of ground instances from the
instantiation, and the reader may care to try a few examples.

let prawitz fm =
let fm0 = skolemize(Not(generalize fm)) in
snd(prawitz_loop (simpdnf fm0) (fv fm0) [[]] 0);;

Generally speaking, this is a substantial improvement on the Gilmore
procedure. For example, one problem that previously seemed infeasible is
solved almost instantly:

# let p20 = prawitz
<<(forall x y. exists z. forall w. P(x) /\ Q(y) ==> R(z) /\ U(w))
==> (exists x y. P(x) /\ Q(y)) ==> (exists z. R(z))>>;;

val p20 : int = 2

Although the original Davis–Putnam procedure also solved this problem
quickly, it only did so after trying 19 ground instances, whereas here we
only needed two. In some cases, unification saves us from searching through
a much larger number of substitution instances. On the other hand, there
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are a few cases where the original enumeration-based Gilmore procedure is
actually faster, including Pelletier (1986) problem 45.

Tableaux

Although the prawitz procedure is usually far more efficient than gilmore,
some further improvements are worthwhile. In prawitz we prenexed the
formula and replaced formerly universally quantified variables with fresh
ones at once, then expanded the DNF completely. Instead, we can do all
these things incrementally. Suppose we have a set of assumptions to refute.
If it contains two complementary literals p and −p, we are already done.
Otherwise we pick a non-atomic assumption and deal with it as follows:

• for p ∧ q, separately assume p and q;
• for p ∨ q, perform two refutations, one assuming p and one assuming q;
• for ∀x. P [x], introduce a new variable y and assume P [y], but also keep

the original ∀x. P [x] in case multiple instances are needed.

This is essentially the method of analytic tableaux. (Analytic because the
new formulas assumed are subformulas of the current formula, and tableaux
because they systematically lay out the assumptions and case distinctions
to be considered.) When used on paper, it’s traditional to write the current
assumptions along a branch of a tree, extending the branch with the new
assumptions and splitting it into two sub-branches when handling disjunc-
tions. In our implementation, we maintain a ‘current’ disjunct, which we
separate into its literals (lits) and other conjuncts not yet broken down to
literals (fms), together with the remaining disjuncts that we need to refute.
Rather than maintain an explicit list for the last item, we use a continuation
(cont). A continuation (Reynolds 1993) merely encapsulates the remaining
computation as a function, in this case one that is intended to try and refute
all remaining disjuncts under the given instantiation. Initially this contin-
uation is just the identity function, and as we proceed, it is augmented to
‘remember’ what more remains to be done.

Rather than bounding the number of instances, we bound the number of
universal variables that have been replaced with fresh variables by a limit
n. The other variable k is a counter used to invent new variables when
eliminating a universal quantifier. This must be passed together with the
current environment to the continuation, since it must avoid re-using the
same variable in later refutations.
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let rec tableau (fms,lits,n) cont (env,k) =
if n < 0 then failwith "no proof at this level" else
match fms with
[] -> failwith "tableau: no proof"

| And(p,q)::unexp ->
tableau (p::q::unexp,lits,n) cont (env,k)

| Or(p,q)::unexp ->
tableau (p::unexp,lits,n) (tableau (q::unexp,lits,n) cont) (env,k)

| Forall(x,p)::unexp ->
let y = Var("_" ^ string_of_int k) in
let p’ = subst (x |=> y) p in
tableau (p’::unexp@[Forall(x,p)],lits,n-1) cont (env,k+1)

| fm::unexp ->
try tryfind (fun l -> cont(unify_complements env (fm,l),k)) lits
with Failure _ -> tableau (unexp,fm::lits,n) cont (env,k);;

For the overall procedure, we simply recursively increase the ‘depth’
(bound on the number of fresh variables) until the core function succeeds.
Since we’ll be using such iterative deepening with other proof procedures,
it’s worth defining a generic function to handle this, which also outputs
information to the user to give an idea what’s happening:†

let rec deepen f n =
try print_string "Searching with depth limit ";

print_int n; print_newline(); f n
with Failure _ -> deepen f (n + 1);;

Now everything can be packaged up as a refutation procedure for a list of
formulas:

let tabrefute fms =
deepen (fun n -> tableau (fms,[],n) (fun x -> x) (undefined,0); n) 0;;

The top-level function to verify a formula uses askolemize rather than
skolemize to retain the universal quantifiers explicitly. We also handle the
degenerate case of refuting ⊥ specially so the main logic doesn’t have to deal
with it:

let tab fm =
let sfm = askolemize(Not(generalize fm)) in
if sfm = False then 0 else tabrefute [sfm];;

This turns out to be generally much more effective than our earlier pro-
cedures, any of which would find the following problem difficult:

† A more detailed discussion of the merits of iterative deepening is deferred until our discussion
of Prolog in Section 3.14.
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# let p38 = tab
<<(forall x.

P(a) /\ (P(x) ==> (exists y. P(y) /\ R(x,y))) ==>
(exists z w. P(z) /\ R(x,w) /\ R(w,z))) <=>

(forall x.
(~P(a) \/ P(x) \/ (exists z w. P(z) /\ R(x,w) /\ R(w,z))) /\
(~P(a) \/ ~(exists y. P(y) /\ R(x,y)) \/
(exists z w. P(z) /\ R(x,w) /\ R(w,z))))>>;;

Searching with depth limit 0
Searching with depth limit 1
Searching with depth limit 2
Searching with depth limit 3
Searching with depth limit 4
val p38 : int = 4

In fact, most of the Pelletier problems dealing with pure first-order logic,
are solved quite easily with tab. We can add a further tweak that helps
with problems like p46, and particularly p34 (‘Andrews’s challenge’) which
involves many instances of logical equivalence. After the initial normaliza-
tion, we can try transforming the formula into DNF, and deal with each
of the disjuncts separately. Of course, we can only split up a disjunction if
it contains no free variables, but this is quite often the case. The existing
DNF function treats quantified formulas as atomic, so provided the initial
formula is closed, any disjunctions created at the top level are also closed.
Now, applying the tableau procedure to each one independently is often
beneficial, since variables are not instantiated together when they cannot
possibly affect each other, and so the necessary variable limit is kept low,
cutting down the search space.

let splittab fm =
map tabrefute (simpdnf(askolemize(Not(generalize fm))));;

With this, we can solve all the pure first-order logic Pelletier problems
in a reasonable time, except p47, ‘Schubert’s Steamroller’ (Stickel 1986).
Note that Andrews’s challenge p34 splits into no fewer than 32 independent
subproblems:

# let p34 = splittab
<<((exists x. forall y. P(x) <=> P(y)) <=>

((exists x. Q(x)) <=> (forall y. Q(y)))) <=>
((exists x. forall y. Q(x) <=> Q(y)) <=>
((exists x. P(x)) <=> (forall y. P(y))))>>;;

...
val p34 : int list =
[5; 4; 5; 3; 3; 3; 2; 4; 6; 2; 3; 3; 4; 3; 3; 3; 3; 2; 2; 3; 6; 3; 2;
4; 3; 3; 3; 3; 3; 4; 4; 4]



3.11 Resolution 179

Thus, at least measured by the somewhat arbitrary metric of success on
the Pelletier problems, the successive refinement from gilmore to splittab
represents continuous progress. We can now easily solve some quite interest-
ing problems that were barely feasible before, e.g. the following, attributed
by Dijkstra (1989) to Hoare:

# let ewd1062 = splittab
<<(forall x. x <= x) /\
(forall x y z. x <= y /\ y <= z ==> x <= z) /\
(forall x y. f(x) <= y <=> x <= g(y))
==> (forall x y. x <= y ==> f(x) <= f(y)) /\

(forall x y. x <= y ==> g(x) <= g(y))>>;;
...
val ewd1062 : int list = [9; 9]

Tableaux were developed and named by logicians (Beth 1955; Hintikka
1955) some time before computer implementations. Nevertheless, Beth (1958)
at least clearly had mechanization in mind. Indeed, tableaux are very appeal-
ing from this point of view, because the decision as to what to do next is
largely driven by the structure of the formula. The later addition of unifi-
cation, apparently first done by Cohen, Trilling and Wegner (1974) to show
off the facilities of ALGOL 68, further improves their structure-directedness.
The particularly straightforward code we have presented is very similar to
leanTAP (Beckert and Posegga 1995). Although quite powerful, it is still fairly
simplistic. For example, the formulas are broken down left-to-right and uni-
versal formulas instantiated in an undirected round-robin fashion. One can
often improve performance by a more intelligent and directed approach, and
in Section 3.15 we will see a more goal-directed variation on the tableau
theme.

3.11 Resolution

The centrepiece of the propositional Davis–Putnam procedure is the resolu-
tion rule, deducing from the two clauses p ∨C1 and −p ∨C2 the conclusion
C1∨C2. In fact, given a set of propositional clauses, if we form all resolvents
on any literal p and then discard all formulas involving p or −p, the result-
ing set is equisatisfiable with the original: this follows from Theorem 2.11
and the fact that discarding tautologies makes no difference to satisfiability
of a set. Moreover, assuming p does occur in the initial clauses, the result
involves fewer distinct propositional variables since p has been eliminated.
Thus, just exhaustively applying the resolution rule to an unsatisfiable set
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of clauses, resolving on each literal in turn, one can derive the empty clause.
Of course, preferential use of the 1-literal rule and affirmative–negative rule
are useful for efficiency, but not logically essential.

Just as the Prawitz procedure improved on the Gilmore procedure by
working with the most general instances possible, the first-order resolution
principle (J. A. Robinson 1965b) employs unification so that the most gen-
eral forms of the clauses possible are resolved directly. By Herbrand’s the-
orem, if a set of clauses is unsatisfiable, then a finite conjunction of propo-
sitional instances of them is propositionally unsatisfiable. As we noted, this
propositional unsatisfiability can be detected by repeatedly applying the
propositional resolution rule. Suppose that two clauses C[x1, . . . , xn] and
D[y1, . . . , ym] have instances to which propositional resolution is applicable,
say:

C[x1, . . . , xn] = · · · ∨ P (s1, . . . , sm) ∨ · · ·
and

D[y1, . . . , yn] = · · · ∨ ¬P (s′1, . . . , s
′
m) ∨ · · ·

such that when the appropriate ground instantiation θ is applied, it unifies
the set S = {(si, s

′
i) | i = 1, . . . , m} and allows us to apply resolution.

Suppose now that we use an MGU of S instead of θ. (We will first rename
variables to ensure the two clauses have no variables in common.) Are we
guaranteed that if we now perform resolution on the instantiated clauses,
the original result can be obtained by a further instantiation? At first sight
the answer seems to be ‘yes’. For example, if we have the two input clauses

{¬P (x) ∨ P (f(x)), ¬P (f(f(y))) ∨ Q(y)}
we may decide first to instantiate them to

{¬P (f(g(c))) ∨ P (f(f(g(c)))), ¬P (f(f(g(c)))) ∨ Q(g(c))},
then perform a resolution step to get ¬P (f(g(c))) ∨ Q(g(c)), but we could
just as well use an MGU x = f(y) and get the clause ¬P (f(y)) ∨ Q(y), of
which ¬P (f(g(c)))∨Q(g(c)) is just an instance. Yet things aren’t always so
simple. The MGU may be too general to cause certain literals in one of the
input clauses to become identified, and this identification may be essential
for the propostional proof, where clauses were sets. This phenomenon is
illustrated by the following example, a variant of Russell’s paradox proving
that in a given village, there cannot be a barber who shaves exactly those
people who do not shave themselves. The formula to be proved is:

let barb = <<~(exists b. forall x. shaves(b,x) <=> ~shaves(x,x))>>;;
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The reader can confirm by trying any of the earlier proof procedures that
it is valid. But if we simply negate the formula and reduce it to clausal form:

# simpcnf(skolemize(Not barb));;
- : fol formula list list =
[[<<~shaves(x,x)>>; <<~shaves(c_b,x)>>];
[<<shaves(x,x)>>; <<shaves(c_b,x)>>]]

it turns out that we cannot refute this using naive resolution based on most
general unifiers. There are four possible pairs of potentially complementary
literals, but, as the reader can confirm, whichever pair we choose to unify, we
just get a tautology that is of no further help in proof
search.

So as well as merely unifying complementary literals, we need to consider
unifying some subset of the literals in the same clause to allow the possibility
that the notional ground instance may identify them. If we start by doing
this, we get the simpler clauses shaves(c_b,c_b) and ~shaves(c_b,c_b),
trivially contradictory. The following result, often called the ‘lifting lemma’,
states the key result precisely. Given a set C of literals, we write C− as a
shorthand for {−p | p ∈ C}, and we will often write subst θ C for the
application of an instantiation θ to a set C, where we should more properly
write image (subst θ) C.

Lemma 3.28 Suppose A and B are first-order clauses with no variables in
common, and A′ and B′ are instances (not necessarily ground) of A and
B respectively, such that A′ and B′ have a propositional resolvent C ′. Then
there are nonempty subsets A1 ⊆ A and B1 ⊆ B such that S = A1 ∪
B−

1 is unifiable, and for any σ that is an MGU of S, C ′ is an instance of
subst σ ((A − A1) ∪ (B − B1)).

Proof Since A and B have no variables in common, there is a single instantia-
tion θ such that A′ = subst θ A and B′ = subst θ B. Since C ′ is a resolvent
of A′ and B′, there must be some literal p such that p ∈ A′, −p ∈ B′ and
C ′ = (A′ − {p}) ∪ (B′ − {−p}). Let A1 = {q ∈ A | subst θ q = p} and
B1 = {q ∈ B | subst θ q = −p}, and abbreviate S = A1 ∪B−

1 . By definition
of A1 and A2, θ is a unifier of S. Let σ be any MGU of S. Then we have
subst θ = subst τ ◦ subst σ for some τ . So:

C ′ = (A′ − {p}) ∪ (B′ − {−p})
= (subst θ (A − A1)) ∪ (subst θ (B − B1))
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= subst θ ((A − A1) ∪ (B − B1))

= (subst τ ◦ subst σ )((A − A1) ∪ (B − B1))

= subst τ (subst σ ((A − A1) ∪ (B − B1)))

showing that C ′ is an instance of subst σ ((A−A1)∪ (B−B1))) as claimed.

Accordingly, given some fixed scheme for producing renamed versions of
clauses and for arriving at MGUs, we define a (first-order) resolvent of two
clauses A and B to be subst σ ((A0 − A1) ∪ (B0 − B1)), where A0 and B0

are renamed versions of A and B with no variables in common, and A1 and
B1 are arbitrary nonempty subsets of A0 and B0 respectively with σ the
selected MGU of A1 ∪ B−

1 . A clause is said to be derivable by resolution
from an initial set S if it can be obtained by repeatedly deriving resolvents
of clauses from S and other resolvents.

Consequently, we can deduce the fundamental result that resolution is
refutation complete, i.e. if a set of clauses is unsatisfiable, resolution can, by
deriving the empty clause, verify that unsatisfiability. Resolution is in fact
not complete in the stronger sense that if a clause C is a logical consequence
of a set of clauses Γ then C can be derived from Γ by resolution. For exam-
ple, from the singleton clause set {P} there is no resolution derivation of the
logical consequence P ∨Q, or indeed of anything else. But since we typically
start by transforming the initial problem into an equivalent refutation, the
distinction is not too important here and we sometimes loosely talk about
just ‘completeness’ of proof procedures when we really mean refutation com-
pleteness.

Corollary 3.29 If a set S of first-order clauses is unsatisfiable, the empty
clause is derivable using resolution.

Proof By Herbrand’s theorem and compactness, some finite set of ground
instances of clauses in S is unsatisfiable, and so by the refutation complete-
ness of propositional resolution there is a resolution derivation of the empty
clause. By induction on the structure or size of this proof, we can apply the
lifting Lemma 3.28 to show that for each subproof of a clause C ′ there is
a corresponding proof by first-order resolution of a clause C of which C ′ is
an instance. In particular, for the final empty clause conclusion, the empty
clause must be derivable by first-order resolution, since the empty clause
cannot be an instance of a nonempty one.
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The reader should bear in mind when consulting the literature that,
despite the important role of resolution in automated reasoning, there are
several subtle differences between the notions of resolution presented in dif-
ferent texts (Leitsch 1997). In particular, while we have followed the original
treatment of resolution (J. A. Robinson 1965b) in common with some other
standard texts (Chang and Lee 1973), it is quite common to restrict the
notion of resolvent to insist that A1 and B1 have exactly one member, and
separately define a factor of a clause A to be subst σ A for σ an MGU
of some subset A1 ⊆ A (Loveland 1978). The corresponding completeness
result is that repeatedly applying the resolution rule and the separate fac-
toring rule is a refutation-complete proof method. Indeed, if a clause can
be obtained by (our) resolution, it can separately be obtained by possible
factorings of the two input clauses followed by a restricted resolution, since
an MGU of S1 ∪ S2 can always be decomposed though an MGU of S1.

From a practical point of view, combining resolution and factoring in a sin-
gle rule is simpler to implement and restricts the formation of factors to those
necessary to ‘lift’ a particular propositional resolution step. On the other
hand, generating all factors separately often avoids recomputation of factors
for numerous different resolutions. The reader might like to experiment with
separate resolution and factoring rules, but we will stick to a single combined
rule in what follows. Exercise 3.19 describes a simple further refinement of
this combined rule with factoring only applied to one of the input clauses.

Implementation

In contrast with the top-down method of tableaux, all variable assignments
are local, so we actually want to translate the results of unification into an
instantiation for immediate application. Moreover, it’s convenient to directly
unify a set of literals rather than a list of equations between them:

let rec mgu l env =
match l with
a::b::rest -> mgu (b::rest) (unify_literals env (a,b))

| _ -> solve env;;

On the other hand, we’ll also use a simple test for unifiability, and there’s
no point here in fully expanding the unifier:

let unifiable p q = can (unify_literals undefined) (p,q);;

We’ll need to apply renaming to the hypothesis clauses. This is done via
the following function, which adds a prefix to each variable name in a clause:
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let rename pfx cls =
let fvs = fv(list_disj cls) in
let vvs = map (fun s -> Var(pfx^s)) fvs in
map (subst(fpf fvs vvs)) cls;;

We find all resolvents of two clauses cl1 and cl2 via an auxiliary function
that takes a particular literal p in cl1 and an accumulator acc of results
so far. First, all literals ps2 in cl2 that could possibly be unified with -p
are selected, and if there are none no resolvents are added. Otherwise we
filter out the literals ps1 in cl1 that are unifiable with p, other than p itself.
Then we form all possible pairs of nonempty subsets of ps1 and ps2, always
including p in the former. We then pick those pairs where ps1 ∪ ps2− are
unifiable (just because each member of this set is in itself unifiable with p
doesn’t mean the whole set is). For each such pair we form the resolvent and
add it into the accumulator:

let resolvents cl1 cl2 p acc =
let ps2 = filter (unifiable(negate p)) cl2 in
if ps2 = [] then acc else
let ps1 = filter (fun q -> q <> p & unifiable p q) cl1 in
let pairs = allpairs (fun s1 s2 -> s1,s2)

(map (fun pl -> p::pl) (allsubsets ps1))
(allnonemptysubsets ps2) in

itlist (fun (s1,s2) sof ->
try image (subst (mgu (s1 @ map negate s2) undefined))

(union (subtract cl1 s1) (subtract cl2 s2)) :: sof
with Failure _ -> sof) pairs acc;;

The overall function to generate all possible resolvents of a set of clauses
now proceeds by renaming the input clauses and mapping the previous func-
tion over all literals in the first clause:

let resolve_clauses cls1 cls2 =
let cls1’ = rename "x" cls1 and cls2’ = rename "y" cls2 in
itlist (resolvents cls1’ cls2’) cls1’ [];;

For the main loop of the resolution procedure, we simply keep generat-
ing resolvents of existing clauses until the empty clause is derived. To avoid
repeating work, we split the clauses into two lists, used and unused. The
main loop consists of taking one given clause cls from unused, moving it
to used and generating all possible resolvents of the new clause with clauses
from used (including itself), appending the new clauses to the end of unused.
The idea is that, provided used is initially empty, every pair of clauses is
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tried once: if clause 1 comes before clause 2 in unused, then clause 1 will
be moved to used and later clause 2 will be the given clause and have the
opportunity to participate in an inference. On the other hand, once they
have participated, both clauses are moved to used and will never be used
together again. (This organization, used in various resolution implementa-
tions at the Argonne National Lab, is often referred to as the given clause
algorithm.)

let rec resloop (used,unused) =
match unused with
[] -> failwith "No proof found"

| cl::ros ->
print_string(string_of_int(length used) ^ " used; "^

string_of_int(length unused) ^ " unused.");
print_newline();
let used’ = insert cl used in
let news = itlist(@) (mapfilter (resolve_clauses cl) used’) [] in
if mem [] news then true else resloop (used’,ros@news);;

Overall, we split up the formula, put it into clausal form and start the
main loop.

let pure_resolution fm = resloop([],simpcnf(specialize(pnf fm)));;

let resolution fm =
let fm1 = askolemize(Not(generalize fm)) in
map (pure_resolution ** list_conj) (simpdnf fm1);;

This procedure can solve many simple problems in a reasonable time, e.g.
this from Davis and Putnam (1960):

# let davis_putnam_example = resolution
<<exists x. exists y. forall z.

(F(x,y) ==> (F(y,z) /\ F(z,z))) /\
((F(x,y) /\ G(x,y)) ==> (G(x,z) /\ G(z,z)))>>;;

...
val davis_putnam_example : bool list = [true]

3.12 Subsumption and replacement

Some problems solved easily by tableaux, such as Pelletier’s (1986) p26, are
very difficult for our basic resolution procedure, and result in the generation
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of tens of thousands of clauses without leading to a solution. Often, many
apparently pointless clauses such as tautologous ones

. . . ∨ P ∨ . . . ∨ ¬P ∨ . . .

get generated, particularly through factoring; for example, a clause ¬R(x, y)∨
¬R(y, z) ∨ R(x, z) asserting that a binary relation is transitive gives rise to
the tautologous factor ¬R(x, x) ∨ R(x, x). We might expect tautologies to
make no useful contribution to the search for a refutation. Logically, after
all, a set of formulas Δ is satisfiable if the set of its non-tautological members
Δ′ is. This doesn’t however immediately justify deleting tautologies at arbi-
trary intermediate steps of the resolution process, and we defer a rigorous
proof till after we have considered the related question of subsumption.

In the propositional case, we said that a clause C subsumes a clause D

if C logically implies D, which is equivalent to the syntactic condition that
C is a subset of D. In the first-order case, validity of implication between
clauses is actually undecidable in general (Schmidt-Schauss 1988). We adopt
a more manageable definition: a first-order clause C subsumes another D,
written C ≤ss D, if there is some instantiation θ such that subst θ C (a set
operation collapsing identical literals) is a subset of D. If this is the case,
then C does logically imply D, but the converse does not hold, as can be
seen by noting that the clause ¬P (x) ∨ P (f(x)) logically implies ¬P (x) ∨
P (f(f(x))), remembering that the variables in each clause are implicitly
universally quantified, yet does not subsume it.†

In order to implement a subsumption test, we first want a procedure for
matching, which is a cut-down version of unification allowing instantiation
of variables in only the first of each pair of terms. Note that in contrast to
unification we treat the variables in the two terms of a pair as distinct even
if their names coincide, and maintain the left–right distinction in recursive
calls. This means that we won’t need to rename variables first, and won’t
need to check for cycles. On the other hand, we must remember that appar-
ently ‘trivial’ mappings x �→ x are in general necessary, so if x does not have
a mapping already and we need to match it to t, we always add x �→ t to
the function even if t = x. But, stylistically, the definition is very close to
that of unify.

† Many resolution refinements are justified at the first-order level by ‘lifting’ from the proposi-
tional level. When doing this, the standard notion of subsumption has the merit that it interacts
well with lifting: if D′ is a ground instance of D and C ≤ss D then there is a ground instance
C′ of C that subsumes D′ propositionally. So even if logical entailment were decidable, it might
be undesirable to use it as a subsumption test.
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let rec term_match env eqs =
match eqs with
[] -> env

| (Fn(f,fa),Fn(g,ga))::oth when f = g & length fa = length ga ->
term_match env (zip fa ga @ oth)

| (Var x,t)::oth ->
if not (defined env x) then term_match ((x |-> t) env) oth
else if apply env x = t then term_match env oth
else failwith "term_match"

| _ -> failwith "term_match";;

We can straightforwardly modify this to attempt to match a pair of literals
instead of a list of pairs of terms:

let rec match_literals env tmp =
match tmp with
Atom(R(p,a1)),Atom(R(q,a2)) | Not(Atom(R(p,a1))),Not(Atom(R(q,a2))) ->

term_match env [Fn(p,a1),Fn(q,a2)]
| _ -> failwith "match_literals";;

Now our subsumption test proceeds along the first clause cls1, system-
atically considering all ways of instantiating the first literal to match one in
the second clause cls2, then, given the necessary instantiations, trying to
do likewise for the others.

let subsumes_clause cls1 cls2 =
let rec subsume env cls =
match cls with
[] -> env

| l1::clt ->
tryfind (fun l2 -> subsume (match_literals env (l1,l2)) clt)

cls2 in
can (subsume undefined) cls1;;

Note that when we successfully instantiate a literal in the first clause to
match one in the second, we do not then eliminate that literal in the second,
because it may be matchable by another literal in the first clause. This has
the rather counterintuitive consequence that, for example, P (1, x) ∨ P (y, 2)
subsumes P (1, 2), even though it is longer. Logically, this is irreproachable
since the latter is indeed a logical consequence of the former and not vice
versa, but it can be pragmatically unappealing since unit clauses tend to be
more useful.

Note that subsumption is reflexive (C ≤ss C), by considering the iden-
tity instantiation. It is also transitive: if C ≤ss D and D ≤ss E then
C ≤ss E, since if subst θC C ⊆ D and subst θD D ⊆ E we also have
(subst θD ◦ subst θC) C ⊆ E. But why is discarding subsumed clauses
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permissible without destroying refutation completeness? The key property
is that subsumption is ‘preserved’ by resolution:

Theorem 3.30 If C ≤ss C ′, then any resolvent of C ′ and D is subsumed
either by a resolvent of C and D or by C itself.

Proof Suppose E′ = subst σ ((C ′ − C1) ∪ (D − D1)) is a resolvent of C ′

and D, σ being an MGU of the nonempty set C1 ∪D−
1 , where C1 ⊆ C ′ and

D1 ⊆ D.
Since C ≤ss C ′ we have subst θ C ⊆ C ′ for some θ. Because of the

renaming of D that occurs in resolution, we can assume without loss of
generality that θ has no effect on D. There are now two cases to consider.
If C1 ∩ subst θ C = ∅ then subst θ C ⊆ (C ′ − C1) ∪ (D − D1), so we have
(subst σ ◦ subst θ )C ⊆ E′ and therefore C ≤ss E′. The more interesting
case is where C1∩subst θ C �= ∅, i.e. the set C0 = {p ∈ C | subst θ p ∈ C1}
is nonempty. We will derive a resolvent E of C and D that subsumes E′.

Since subst θ C0 ⊆ C1 and we assumed that θ does not affect D, we
have subst θ (C0 ∪ D−

1 ) ⊆ C1 ∪ D−
1 and so the set C0 ∪ D−

1 is unified by
subst σ ◦ subst θ . Thus it also has an MGU τ where subst σ ◦ subst θ =
subst δ ◦ subst τ for some δ. Let

E = subst τ ((C − C0) ∪ (D − D1)).

Then, remembering that C0 = {p ∈ C | subst θ p ∈ C1} and that θ does
not affect D, we have:

subst δ E = (subst δ ◦ subst τ )((C − C0) ∪ (D − D1))

= (subst σ ◦ subst θ )((C − C0) ∪ (D − D1))

= subst σ (subst θ ((C − C0) ∪ (D − D1)))

= subst σ (subst θ (C − C0) ∪ subst θ (D − D1))

= subst σ (subst θ (C − C0) ∪ (D − D1))

= subst σ ((subst θ C − C1) ∪ (D − D1))

⊆ subst σ ((C ′ − C1) ∪ (D − D1))

= E′

and so E ≤ss E′ as required.

Corollary 3.31 If D ≤ss D′, then any resolvent of C and D′ is subsumed
either by a resolvent of C and D or by D itself.
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Proof One can routinely adapt the previous proof. Alternatively, note that
although it is not strictly true to say that the result of resolving C and D

on literal set S is the same as the result of resolving D and C on literals
S−, it is nevertheless the case that each subsumes the other, so resolution
is ‘essentially’ symmetrical. So one can deduce this directly as a corollary of
the previous theorem.

Corollary 3.32 If C ≤ss C ′ and D ≤ss D′, then any resolvent of C ′ and D′

is subsumed either by a resolvent of C and D or by C or D itself.

Proof By Theorem 3.30, any resolvent of C ′ and D′ is subsumed either by
a resolvent of C and D′ or by C itself. In the latter case we are done. In the
former case, use Corollary 3.31 and observe that a resolvent of C and D′ is
subsumed either by a resolvent of C and D or by D itself. By transitivity of
subsumption, the result follows.

Using this result, we can at least show that we can restrict ourselves,
without losing refutation completeness, to derivations where no clause C is
subsumed by any of its ancestors, i.e. the clauses C is derived from, including
the initial clauses and intermediate results in C’s derivation.

Corollary 3.33 If C is derivable by resolution from hypotheses S, then
there is a resolution derivation of some C ′ with C ′ ≤ss C from S in which
no clause is subsumed by any of its ancestors.

Proof By induction on the structure of the proof. If C ∈ S then the result
holds trivially with C ′ = C, S′ = S. Otherwise, suppose C is derived by
resolving on C1 and C2. By the inductive hypothesis, there are C ′

1 ≤ss C1

and C ′
2 ≤ss C2 derivable without subsumption by an ancestor. By the lemma,

C is subsumed by either C ′
1, or C ′

2, or a resolvent of C ′
1 and C ′

2. In the case
of a resolvent, unless the result C ′ is subsumed by an ancestor of C ′

1 or C ′
2

we are finished. And if it is, simply take the subproof of that ancestor.

In particular, if the empty clause is derivable, it is derivable without ever
deriving an intermediate clause subsumed by one of its ancestors. Moreover:

Lemma 3.34 If a resolution proof of a non-tautologous conclusion involves
a tautology, it also involves subsumption by an (immediate) ancestor.

Proof Suppose a proof of a non-tautology involves a tautology. Since the
conclusion is not tautologous, there must be at least one ‘maximal’ tautology,
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where a clause C contains complementary literals p and −p and is resolved
with another clause D to give a non-tautologous resolvent. This must be of
the form

E = subst σ ((C − C1) ∪ (D − D1))

for nonempty C1 ⊆ C and D1 ⊆ D with σ an MGU of C1∪D−
1 . We must have

either p ∈ C1 or −p ∈ C1, otherwise subst σ p ∈ E and −(subst σ p) ∈ E,
making it tautologous. Clearly, however, we cannot have both, or C1 would
not have a unifier. So, without loss of generality, we can suppose p ∈ C1 and
−p ∈ C −C1. But now, since subst σ C1 = {subst σ p} and subst σ D1 =
{subst σ (−p)} we have:

subst σ D

⊆ {subst σ (−p)} ∪ subst σ (D − D1)

⊆ subst σ (C − C1) ∪ subst σ (D − D1)

= E

so subsumption by an immediate ancestor occurs, as claimed.

This justifies our immediately discarding tautologies, since a proof can
always be found without using them at all. As for discarding subsumed
clauses, we still need to take care, because the relationship between the way
in which clauses are generated and used in the proof search algorithm and
the ancestral relation in any eventual proof is not trivial. We can envisage
using subsumption as part of the search procedure in at least three different
ways:

• forward deletion – if a newly generated clause is subsumed by one already
present, discard the newly generated clause;

• backward deletion – if a newly generated clause subsumes one already
present, discard the one already present;

• backward replacement – if a newly generated clause subsumes one already
present, replace the one already present by the newly generated one.

Intuitively, forward deletion should be safe since anything one could gen-
erate from the newly generated clause will (earlier) be generated from exist-
ing clauses. However, if the subsuming clause is in used, this is not quite
so clear, since the newly generated clause would be put on unused and
so eventually have the opportunity to be resolved with another clause from
used, whereas because of the way the enumeration is structured, two clauses
from used are never resolved together. It looks plausible that this doesn’t
matter, since by the time they get to used clauses have already ‘had their
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chance’ to be resolved. However, the argument is a little more complicated,
especially in conjunction with additional refinements considered in the next
section. Accordingly, we will only discard newly generated clauses if they
are subsumed by a clause in unused.

Backward deletion is also fraught with problems. If one too readily dis-
cards existing clauses when subsumed by a newly generated one, there are
pathological situations where the desired clause recedes indefinitely: before
it can reach the front of the unused list, it is discarded in favour of a subsum-
ing clause further back in the list, and before that can reach the front it is
subsumed by another, and so on. It’s not too hard to concoct real examples
of this phenomenon (Kowalski 1970b). But, provided the newly generated
clause C ′ properly subsumes the original clause C, that is, C ′ ≤ss C but
C �≤ss C ′, this cannot happen indefinitely, since the ‘properly subsumes’
relation is wellfounded (see Exercise 3.13). Proper subsumption will auto-
matically be enforced if we check for forward subsumption before back sub-
sumption. Nevertheless, even though recession can’t continue indefinitely, it
can happen enough times to substantially delay the drawing of important
conclusions. Thus, it seems that the policy of replacement, where the sub-
sumed clause is replaced by the subsuming one at the original point in the
unused list, is probably better, and this is what we will do. The following
replace function puts cl in place of the first clause in lis that it subsumes,
or at the end if it doesn’t subsume any of them.

let rec replace cl lis =
match lis with
[] -> [cl]

| c::cls -> if subsumes_clause cl c then cl::cls
else c::(replace cl cls);;

Now, the procedure for inserting a newly generated clause cl, generated
from given clause gcl, into an unused list is as follows. First we check if cl is
a tautology (using trivial) or subsumed by either gcl or something already
in unused, and if so we discard it. Otherwise we perform the replacement,
which if no back-subsumption is found will simply put the new clause at the
back of the list.

let incorporate gcl cl unused =
if trivial cl or

exists (fun c -> subsumes_clause c cl) (gcl::unused)
then unused else replace cl unused;;

With the subsumption handling buried inside this auxiliary function, the
main loop is almost the same as before, with incorporate used iteratively
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on all the newly generated clauses, rather than their simply being appended
at the end.

let rec resloop (used,unused) =
match unused with
[] -> failwith "No proof found"

| cls::ros ->
print_string(string_of_int(length used) ^ " used; "^

string_of_int(length unused) ^ " unused.");
print_newline();
let used’ = insert cls used in
let news =
itlist (@) (mapfilter (resolve_clauses cls) used’) [] in

if mem [] news then true else
resloop(used’,itlist (incorporate cls) news ros);;

We then redefine pure_resolution and resolution exactly as before.
The addition of subsumption and tautology deletion already results in dra-
matic efficiency improvements. All the problems solved by tableaux, and
more besides, are now quickly solved by resolution. All those solved with
difficulty by the naive resolution procedure are solved very quickly and with
far fewer redundant clauses generated, e.g. for the Davis–Putnam example:

...
6 used; 3 unused.
7 used; 2 unused.
val davis_putnam_example : bool list = [true]

Before proceeding, we will prove more precisely that the given resolu-
tion procedure, with forward subsumption and back replacement, is refuta-
tion complete. To do this, it’s helpful to denote by Used(n) and Unused(n)
the state of the ‘used’ and ‘unused’ lists after n iterations of the inner
loop. (In our resolution variants so far, Used(0) = ∅ and Unused(0) is the
set of input clauses, but we will later consider the ‘set of support’ restric-
tion where some input clauses go straight into used.) Because of replace-
ment, the invariants satisfied by these sets are a bit involved, so it’s also
convenient to introduce Sub(n) to denote the set of ‘given clauses’ pro-
cessed so far. In order to state the invariants simply, we will also extend the
notion of subsumption from pairs of clauses to pairs of sets of clauses. We
abbreviate

S ≤SS S′ = def∀C ′ ∈ S′. ∃C ∈ S. C ≤ss C ′.

It is easy to see that, like subsumption on pairs of clauses, this notion is
reflexive and transitive. Now, the first and simplest invariant of the algorithm
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simply records the fact that after being resolved with, all the given clauses
are simply inserted into the ‘used’ list:

Used(n) = Used(0) ∪ Sub(n).

Moreover, if Res(S, T ) denotes all non-tautologous resolvents of pairs of
clauses from S and T , we note that all resolvents generated are subsumed by
clauses that are retained, at first in the unused list and later as subsequent
given clauses:

Sub(n) ∪ Unused(n) ≤SS Res(Sub(n),Used(n)).

This is trivially true at the beginning, since Sub(0) is empty and there are
no resolvents. And to show that this invariant is preserved in passing from
stage n to stage n + 1, note that if G is the next given clause then

Res(Sub(n + 1), Used(n + 1)) = Res(Sub(n) ∪ {G}, Used(n) ∪ {G})
and this is subsumed, using the symmetry of resolution up to subsumption
and the fact that Sub(n) ⊆ Used(n), by

Res(Sub(n),Used(n)) ∪ Res({G}, Used(n) ∪ {G}).
The first set in this union, by hypothesis, is already subsumed by Sub(n)∪

Unused(n). The others are precisely the newly generated resolvents in our
implementation, which are subsequently incorporated into Unused(n + 1)
and hence subsumed by it. Finally, since clauses already in Unused(n) are
either maintained, replaced by those subsuming them, or in the case of the
given clause moved into Sub(n+1), we have Sub(n+1)∪Unused(n+1) ≤SS

Unused(n). Hence the invariant is maintained.
Now note that, starting at stage n, if we make a further |Unused(n)|

iteration, all clauses from Unused(n), or others subsuming them that are
introduced later, are moved into Sub(n + |Unused(n)|). This allows us to
define a particular sequence of values of n where we get a stratification into
levels. Define:

brk(0) = |Unused(0)|
brk(n + 1) = brk(n) + |Unused(brk(n))|

and write level(n) = Sub(brk(n)). Then we have level(0) ≤SS Unused(0) and
our main invariant yields

level(n + 1) ≤SS level(n) ∪ Res(level(n),Used(0) ∪ level(n)).
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In our algorithms so far putting all input clauses in unused, all the input
clauses are contained in Unused(0) and hence subsumed by level(0), while
since Used(0) = ∅, level(n + 1) subsumes level(n) and all non-tautologous
resolvents of pairs of clauses taken from level(n). Consequently, if a resolu-
tion refutation of those clauses exists, the empty clause will be derived in
some level. Moreover, assuming that the empty clause was not in Unused(0),
it can only have got into a level by being one of the newly generated resol-
vents, and hence will be detected. That it does not occur in the initial input
clauses is assured by the use of simpdnf, which filters out such trivially
unsatisfiable disjuncts.

3.13 Refinements of resolution

Unfortunately, it often happens that resolution can arrive at the same inter-
mediate clause in many different ways. For example, the two pictures below
show two different ways in which the conclusion X∨Y ∨Z at the root of the
tree can be derived by resolution steps from the input clauses at the leaves.

P ∨ X

¬P ∨ Q ∨ Y ¬Q ∨ Z

¬P ∨ Y ∨ Z

X ∨ Y ∨ Z

�
�

�

�
�

�

�
�

�

�
�

�

P ∨ X ¬P ∨ Q ∨ Y

Q ∨ X ∨ Y ¬Q ∨ Z

X ∨ Y ∨ Z

�
�

�

�
�

�

�
�

�

�
�

�

Although many duplicates are eventually removed by subsumption check-
ing, there is still an unfortunate blowup in the search space being explored,
for the duplication may occur over much longer ranges than in this simple
example. It would be much better if we could cut down on this redundancy
in the search space, for example by systematically preferring one kind of
proof tree whenever there are many alternatives.

Linear resolution

In fact, we can regard the duplication above as indicating a possible proof
transformation. Given a resolution proof where some right branch is itself
a branch rather than one of the input clauses (for example ¬P ∨ Y ∨ Z

in the earlier figure), we can ‘rotate’ the proof tree to eliminate it. This
transformation can apparently be applied repeatedly until the proof ‘tree’ is
maximally lopsided, consisting of a single linear ‘trunk’ with input clauses
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suspended from it. Thus, we seem to be justified in searching only for such
a linear input proof, avoiding a great deal of redundancy. Such a conclusion
is too hasty, however, as the reader can see by attempting to linearize a
resolution refutation of the clauses {P ∨Q, P ∨¬Q,¬P ∨Q,¬P ∨¬Q}. The
problem with treating the first figure as a paradigm is that the clauses X,
Y and Z might be, or might contain, P or Q or their negations. Considering
this, it turns out that we can always apply such a rotation, but we may need
an additional step where one of the earlier clauses on the trunk is re-used.
With this extension, the above set of clauses can be refuted thus:

P ∨ Q ¬P ∨ Q

Q P ∨ ¬Q

P ¬P ∨ ¬Q

¬Q

⊥

�
�

�

�
�

�

�
�

�

�
�

�

�
�
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�
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�
�
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One can show that in this fashion, any resolution proof of a clause C

can, by such ‘rotations’, be transformed into a linear one of some C ′ ≤ss C,
allowing at each stage resolution of the previously deduced clause either
with an input clause or an earlier one in the linear sequence. In particular,
if a set of clauses has a refutation, it has a linear refutation. The idea of
searching just for linear refutations gives linear resolution (Loveland 1970;
Luckham 1970; Zamov and Sharanov 1969). Although this greatly reduces
redundancy, compatibility with subsumption and elimination of tautologies
becomes more complicated. For example (Loveland 1970), the set of clauses
{p∨q, p, q,¬p∨¬q} has a linear resolution refutation with root p∨q. However
it is clear that such a proof must necessarily involve a tautology, since the
only resolvents of other clauses with p ∨ q are p ∨ ¬p or q ∨ ¬q; thus it is
no longer the case if tautologies are forbidden that an arbitrary clause can
be chosen as the ‘root’. We will not go into more detail, since we will not
actually implement linear resolution. However it is useful to understand the
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concept of linear resolution since it is related to material covered in the
following two sections on Prolog and Model elimination.

Positive resolution

Another way of imposing restrictions on resolution proofs was introduced
by Robinson (1965a) very soon after his original paper on resolution. He
showed that refutation completeness is retained if each resolution operation
is restricted so that one of the two hypothesis clauses is all-positive, i.e.
contains no negative literals. This often cuts down the search space quite
dramatically. Robinson referred to resolution subject to this restriction as
P1-resolution, though it is more often nowadays referred to simply as positive
resolution.

We will now demonstrate the refutation completeness of this restriction,
following Robinson. As usual, we need only establish the result for ground
clauses at the propositional level and can then lift it to general clauses, since
instantiation or factoring has no effect on the positivity of a clause. We start
with the following.

Lemma 3.35 If S is a finite unsatisfiable set of propositional clauses not
containing the empty clause, then there is a positive resolution step with two
clauses from S resulting in a clause not already in S.

Proof Partition the set S into two disjoint sets, the all-positive clauses P

and the clauses with at least one negative literal N . Thus S = P ∪N . Note
that neither P nor N can be empty, otherwise S would be satisfiable in
either the propositional valuation mapping all atomic propositions to ‘false’
or the one mapping them all to ‘true’.

In fact, since P is satisfied by any valuation that maps the finitely many
atoms A appearing in S to true, it follows that there is a ‘minimal’ valuation
v : A → bool satisfying P , i.e. one such that there is no valuation satisfying
P that assigns ‘true’ to fewer propositional variables.

Now, since S as a whole is unsatisfiable and v satisfies P , there must be
at least one clause in N that is false under v. Let K be some clause from N

that is false in v and has the minimal number of negative literals among such
clauses; i.e. no other K ′ ∈ N that is false in v has fewer negative literals.

K must contain at least one negative literal, say ¬p, since it belongs to
N . Note that v(p) = �, since otherwise K would hold in v, contrary to our
assumption. Now the positive literal p must occur in some clause J ∈ P

such that J −{p} is not satisfied by v, for otherwise the valuation v′ setting
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v′(p) = ⊥ and treating other propositional variables in the same way as
v would satisfy P , contrary to the minimality assumption on v. Now J is
all-positive and so

R = (J − {p}) ∪ (K − {¬p})

is derivable by a positive resolution step. This contains fewer negative literals
than K, since J is all-positive. Since K was false in v, all the literals in
K − {¬p} must be false in v, and by hypothesis so are all the literals in
J − {p}. Thus R has fewer negative literals than K and is false in v. This
contradicts the minimality of K unless R is actually empty and therefore
belongs to P . However by hypothesis the empty clause was not in S and so
the result is proved.

Theorem 3.36 If S is a finite unsatisfiable set of propositional clauses then
there is a positive resolution derivation of the empty clause from S.

Proof Since S is finite there can only be a finite set of propositional variables
involved in S and therefore the set of all resolvents (positive or not) derivable
from S is finite. (Remember that we work at the propositional level and
treat clauses as sets of literals, so repetitions of a literal do not give distinct
clauses). By the above lemma, given any set Sn of resolvents of S, if Sn does
not contain the empty clause we can find another positive resolvent Cn of
clauses in Sn and set Sn+1 = Sn∪{Cn}. Starting with S0 = S we can repeat
this procedure; since the number of possible resolvents is finite, we cannot
do so indefinitely and therefore must eventually reach the empty clause.

Corollary 3.37 If S is an unsatisfiable set of first-order clauses there is a
deduction by positive resolution of the empty clause.

Proof The usual lifting argument. By compactness and Herbrand’s theorem
there is a finite set of ground instances of clauses in S that is unsatisfiable. By
the previous theorem, there is a derivation of the empty clause by positive
resolution. Now we simply repeatedly apply the lifting Lemma 3.28 and
derive a proof by first-order positive resolution; note that instantiation does
not affect positivity of clauses.

It is easy to see using the same argument as above that positive reso-
lution is compatible with our subsumption and replacement policies. The
key property of resolution used to justify these refinements was Corollary
3.32, asserting that if C ≤ss C ′ and D ≤ss D′, then any resolvent of C ′ and
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D′ is subsumed either by a resolvent of C and D or by C or D itself. This
remains true if we change ‘resolvent’ to ‘positive resolvent’ since if C1 ≤ss C2

and C2 is positive, so is C1. Thus we will modify the resolution prover with
subsumption to perform positive resolution. The modification is simplicity
itself: we restrict the core function resolve clauses so that it returns the
empty set unless one of the two input clauses is all-positive:

let presolve_clauses cls1 cls2 =
if forall positive cls1 or forall positive cls2
then resolve_clauses cls1 cls2 else [];;

Now we simply re-enter the definition of resloop, this time calling it
presloop and replacing resolve clauses with presolve clauses, and then
define the positive variant of pure resolution in the same way:

let pure_presolution fm = presloop([],simpcnf(specialize(pnf fm)));;

followed by the same function with a different name:

let presolution fm =
let fm1 = askolemize(Not(generalize fm)) in
map (pure_presolution ** list_conj) (simpdnf fm1);;

It turns out, in fact, that positive resolution is often much more efficient
than unrestricted resolution. For example, the following interesting first-
order formula due to �Loś:†

# let los = time presolution
<<(forall x y z. P(x,y) /\ P(y,z) ==> P(x,z)) /\
(forall x y z. Q(x,y) /\ Q(y,z) ==> Q(x,z)) /\
(forall x y. Q(x,y) ==> Q(y,x)) /\
(forall x y. P(x,y) \/ Q(x,y))
==> (forall x y. P(x,y)) \/ (forall x y. Q(x,y))>>;;

...
val los : bool list = [true]

is solvable reasonably quickly, whereas it is hopelessly slow with either
tableaux or unrestricted resolution.

Semantic resolution

The special role of positivity isn’t essential; we could equally well have con-
sidered negative resolution where at least one of the input clauses must
be all-negative, or more generally for each propositional variable given it a
† Most people find it less than obvious (Rudnicki 1987) and the reader may enjoy understanding

it intuitively.
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particular ‘positive’ or ‘negative’ status. Essentially the same argument can
be used to establish refutation completeness in each case. All these can be
seen as special cases of a more general technique of semantic resolution
(Slagle 1967).

Theorem 3.38 If S is an unsatisfiable set of propositional clauses and v

an arbitrary propositional valuation, then there is a resolution derivation of
S restricting resolution steps to those where at least one of the hypothesis
clauses is not satisfied by v (i.e. all literals in that clause are false in v).

Proof Essentially the same as the completeness proof for positive resolu-
tion, replacing ‘positive’ with ‘does not hold in v’ and ‘negative’ with ‘holds
in v’.

Theorem 3.39 If S is an unsatisfiable set of clauses and I an arbitrary
interpretation of the symbols used in those clauses, there is a resolution
derivation of S restricting resolution steps to those where at least one of the
hypothesis clauses does not hold in I. (That is, for some valuation does not
hold, because we regard the clauses as implicitly universally quantified.)

Proof As usual, we will perform lifting. By compactness and Herbrand’s
theorem there is a finite set of ground instances of clauses in S that is
unsatisfiable. Given the interpretation I, pick an arbitrary valuation w and
hence define a propositional valuation on atoms by

v(P (a1, . . . , an)) = holds I w (P (a1, . . . , an)).

By the previous theorem, there is a refutation of the set of ground instances
by resolution where at least one hypothesis is false in v. But in the lifting
argument, we simply need to note that if a ground instance C ′ of C does
not hold propositionally in v, then C cannot hold in I, since otherwise all
instances would hold in all valuations, in particular w.

Positive resolution, for example, is the special case where the interpreta-
tion sets RI(a1, . . . , an) = ⊥ for all predicate letters R and elements ai in
the domain of I.

The set of support strategy

The flexibility of semantic resolution is appealing, since we may be able
to use semantic concerns to pick an appropriate interpretation. However, it
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might be easier if we did not need to spell out an appropriate interpretation,
but only kept it implicitly at the background.

In the main resolution setup above, we started with the used list empty,
ensuring that all pairs of clauses had the opportunity to be resolved. How-
ever, it may be that we would do better to forbid resolutions entirely among
some particular subset of the initial clauses. The idea is that by this means,
resolution can be focused away from deducing valid but irrelevant conclu-
sions, and towards deducing those that contribute to the problem at hand.
This is the basic principle of the set of support strategy (Wos, Robinson and
Carson 1965).

We start by separating the set of input clauses into two disjoint sub-
sets, the set of support S and the ‘unsupported’ clauses U . Now we simply
impose the requirement on resolution refutations that no two clauses of U

are resolved together. A linear refutation can be seen as one where the set
of support is the singleton set {C0}, where C0 is the start clause. However,
a set-of-support refutation from {C0} may have multiple separate branches
that join higher up the proof tree, provided that each one starts from C0,
whereas in a linear refutation there is only one.

Theorem 3.40 If a subset S of a set T of input clauses has the property
that T is unsatisfiable, but T − S is satisfiable, then there is a resolution
refutation of T with set of support S.

Proof Since by hypothesis, T − S is satisfiable, there is an interpretation I

that satisfies it. By the refutation completeness of semantic resolution, there
is therefore a resolution refutation in which at least one of the clauses that
is resolved does not hold in I. In particular, this implies that no two clauses
of T − S are resolved together.

The condition in the theorem that T − S should be satisfiable cannot in
general be relaxed. For example, the clauses:

{¬P ∨ R, P, Q,¬P ∨ ¬Q}

are clearly unsatisfiable. However, if we choose {¬P ∨ R} as the set of sup-
port, then no refutation is possible; we can deduce the clause R but make
no further progress.

To implement the set-of-support restriction, we need no major changes
to the given clause algorithm: simply set the initial used to be the unsup-
ported clauses rather than the empty set. This precisely ensures that two
unsupported clauses are never resolved together. Recall that
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level(n + 1) ≤SS level(n) ∪ Res(level(n),Used(0) ∪ level(n)),

so the successive levels enumerate precisely the desired sets of resolvents.
One satisfactory choice for the set of support is the collection of all-

negative input clauses. This is because any set of clauses in which each
clause contains a positive literal is satisfiable (just interpret all predicates
as true everywhere), so the basic theoretical condition is satisfied. Thus we
make the following modification:

let pure_resolution fm =
resloop(partition (exists positive) (simpcnf(specialize(pnf fm))));;

and re-enter the definition of resolution. Although this may not be optimal,
it often works quite well. The �Loś problem is solved much faster than with
unrestricted resolution, though not as quickly as with positive resolution.

However, resolution experts usually like to make a particular choice of
set of support themselves rather than using the simple syntactically-based
default we have adopted. Suppose, for example, one is trying to use a stan-
dard set of mathematical axioms A together with special additional hypoth-
esis B to prove a conclusion C. In a refutational framework, this amounts to
deriving the empty clause from A ∧ B ∧ ¬C. Reasonable choices for the set
of support are B∧¬C or just ¬C, since they will inhibit general exploration
of axioms A.

Indeed, ¬C will often be the choice of our default in such situations,
because it may well be the only all-negative clause. Note that simply impos-
ing negative resolution would be more restrictive than set-of-support proofs
starting with all-negative clauses as the set of support, but in many cases
the set-of-support restriction allows shorter proofs that compensate for the
larger search space.

Hyperresolution

Robinson’s introduction of positive resolution was just a prelude to an addi-
tional refinement called positive hyperresolution, which is based on the fol-
lowing observation. Every step in a positive resolution refutation involves
one all-positive clause, and in order for resolution to be possible, there must
be at least one negative literal in the other clause. Consider a clause partic-
ipating in a positive resolution refutation that contains some number n ≥ 1
of negative literals:

¬L1 ∨ ¬L2 ∨ · · · ∨ ¬Ln ∨ P.
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Since it contains negative literals, the other hypothesis in any resolution
where it is used must be all-positive, and hence must resolve with one of
the literals ¬Li; say L1 for simplicity. If we ignore instantiation and the
possibility of factoring, the result is of the form

¬L2 ∨ · · · ∨ ¬Ln ∨ P ∨ Q

for all-positive P and Q. If n ≥ 2 then any subsequent resolution step
using that clause must in its turn be with another all-positive clause, and
so on. In general, a clause containing n negative literals, if it participates
in a positive resolution derivation, must be repeatedly resolved with pos-
itive clauses until all the negative literals have disappeared. (This might,
because factoring merges some of the Li together, take fewer than n resolu-
tion steps.) We can imagine combining all these successive resolutions into
a single hyperresolution step. That is, although we might still implement it
as a succession of resolution steps, we don’t need to keep the intermediate
results, since we know that if they participate at all in a refutation, it will
be via more resolutions with all-positive clauses and give one of the results
of the hyperresolution step.

By performing hyperresolution as a single step, we avoid repeatedly deriv-
ing the same result by resolving with the same clauses in a slightly different
order, and hence cut down on redundancy. Of course, a single hyperreso-
lution step still has to enumerate all the essentially different possibilities,
which makes it in general a much more productive rule than binary reso-
lution. However it is sometimes efficient for dealing with certain kinds of
problems. We will not actually implement hyperresolution, but later (Sec-
tion 4.9) we will exploit for theoretical purposes the restriction on the form
of refutations implied by positive hyperresolution.

We have only scratched the surface of the huge literature on resolution
refinements. For more detail on these and many other refinements, including
some relatively modern methods using orderings and selection functions, the
reader can refer, for example, to Loveland (1978), Leitsch (1997), Bachmair
and Ganzinger (2001) and de Nivelle (1995).

3.14 Horn clauses and Prolog

With respect to any Herbrand interpretation H, a valuation v is a mapping
into the set of ground terms of the language, and using Lemma 3.19 we see
that for any atomic formula P (t1, . . . , tn):

holds H v (P (t1, . . . , tn)) = PH(tsubst v t1, . . . , tsubst v tn).
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In the special case that all ti are ground, this is simply PH(t1, . . . , tn).
The set of all atomic ground formulas in a language is often called the Her-
brand base. Our observation sets up a natural bijection between Herbrand
interpretations and subsets of the Herbrand base, viz. the set of elements of
the Herbrand base that hold in the interpretation.

Let S be a set of clauses. We construct a Herbrand interpretation M

interpreting each n-ary predicate P by

PM (t1, . . . , tn) = true

if and only if PH(t1, . . . , tn) = true for every Herbrand model H of S. From
the above remarks, it is clear that a ground atom holds in M iff it holds
in every Herbrand model of H. In fact, since any Herbrand interpretation
satisfies a quantifier-free formula iff it satisfies all its ground instances, it
follows that any atomic formula is satisfied by M iff it is satisfied by all
Herbrand models of S. Accordingly, if M so constructed is in fact a model
of S, we say that it is the least or minimal Herbrand model of S. But under
what circumstances is it indeed a model of S?

To see what can go wrong, consider S = {P (0) ∨ Q(0)}. There are three
different Herbrand models of S, one of which makes P (0) true and Q(0)
false, one that makes P (0) false and Q(0) true, and one that makes both
of them true. Since neither P (0) nor Q(0) holds in all Herbrand models, M

makes neither of them hold, and so is not a model of S.
However, in a precise sense, a disjunction of more than one positive literal

in S is the only case where things go wrong. We define a Horn clause to be
a clause containing at most one positive literal, and a definite clause to be
one containing exactly one positive literal. (Thus, a definite clause is also a
Horn clause.) The significance of this classification becomes a little clearer
if we write clauses in a slightly different style using implication instead of
negation:

• P1 ∧ · · · ∧ Pn ⇒ Q for the definite clause ¬P1 ∨ · · · ∨ ¬Pn ∨ Q with n ≥ 1
negative literals, or just Q if there are no negative literals;

• P1 ∧ · · · ∧ Pn ⇒ ⊥ for a non-definite Horn clause ¬P1 ∨ · · · ∨ ¬Pn;
• P1 ∧ · · · ∧ Pn ⇒ Q1 ∨ · · · ∨ Qm for a non-Horn clause ¬P1 ∨ · · · ∨ ¬Pn ∨

Q1 ∨ · · · ∨ Qm containing m ≥ 2 positive literals.

It is clear that any set of definite clauses is satisfiable by any model M that
sets PM (a1, . . . , an) = true without restriction, since each clause contains a
positive literal. More interestingly, the construction above does indeed yield
a least model of it:†
† The reasoning justifying the existence of a least Herbrand model for a set of definite clauses is
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Lemma 3.41 Any set S of definite clauses has a least Herbrand model
M , which satisifes an atomic formula p iff every Herbrand model of S

satisfies p.

Proof Consider a definite clause in S, perhaps meaning just Q(s1, . . . , sp)
in the case n = 0:

P 1(t11, . . . , t
1
m1

) ∧ · · · ∧ Pn(tn1 , . . . , tnmn
) ⇒ Q(s1, . . . , sp).

We want to show that this holds in M for any valuation v. Consistently
abbreviating t′ = tsubst v t, this amounts to showing that if for each
1 ≤ k ≤ n we have P k

M (tk1
′
, . . . , tkmk

′) = true, then also QM (s′1, . . . , s′p) =
true. But if each P k

M (tk1
′
, . . . , tkmk

′) is true, it means by definition that for
every Herbrand model H of S, we have P k

H(tk1
′
, . . . , tkmk

′) = true. But since
each such H is a model of S, it follows that QH(s′1, . . . , s′p) = true. Thus
QM (s′1, . . . , s′p) = true as required.

By contrast, a set of general Horn clauses may not be satisfiable at all,
e.g. the set S = {P,¬P}. But if it is satisfiable, we have the same least
model property.

Theorem 3.42 If a set S of Horn clauses is satisfiable, it has a least Her-
brand model M , which satisifes an atomic formula p iff every Herbrand
model of S satisfies p.

Proof Separate S = D ∪N into disjoint sets of definite clauses D and non-
definite Horn clauses N . Let M be the least Herbrand model of D, whose
existence is guaranteed by the previous lemma. We claim that it is in fact a
model of N as well. For if a clause P 1(t11, . . . , t

1
m1

)∧· · ·∧Pn(tn1 , . . . , tnmn
) ⇒ ⊥

in S fails to hold in M , there is some valuation v such that, consistently
abbreviating t′ = tsubst v t, for each 1 ≤ k ≤ n we have P k

M (tk1
′
, . . . , tkmk

′) =
true. But this means that each P k

H(tk1
′
, . . . , tkmk

′) = true for every Herbrand
model of D, implying that the clause holds in no Herbrand model of D.
Thus D ∪ N has no Herbrand model and so by Theorem 3.24 no model at
all, contradicting the assumption that S was satisfiable.

Several interesting consequences flow from the existence of least models,
in particular the following convexity property.

strongly reminiscent of monotone inductive definitions (see Appendix 1), and in fact we could
consider the subset of the Herbrand base corresponding to the least model as being defined
inductively by treating the set of ground instances of clauses as rules.



3.14 Horn clauses and Prolog 205

Theorem 3.43 If S is a set of Horn clauses and the Ai are atomic formulas,
then S |= A1 ∨ · · · ∨ An iff S |= Ai for some 1 ≤ i ≤ n.

Proof The right-to-left definition is immediate, so we need only consider left-
to-right. By expanding the language if necessary, we can assume that all the
Ai are ground (cf. Theorem 3.11). If S is unsatisfiable, then the result follows
trivially. Otherwise S has a least model M , and since S |= A1 ∨ · · · ∨ An

and all the Ai are ground, it follows that some Ai holds in M . It therefore,
by definition, holds in all Herbrand models of S and therefore by Theorem
3.24 in all models of S, as required.

Although, as is traditional, we have mainly focused on refutation of an
unsatisfiable formula as the core of our proof procedures, we could dualize
and present it in terms of validity. In this case, a more natural version of
Herbrand’s theorem is the following (cf. also corollary 2.15):

Theorem 3.44 If P [x1, . . . , xn] and all formulas in the set S are quantifier-
free, then S |= ∃x1, . . . , xn. P [x1, . . . , xn] iff there is a finite disjunction of
ground instances such that S |= P [t11, . . . , t

1
n] ∨ · · · ∨ P [tm1 , . . . , tmn ]

Proof The right-to-left direction is straightforward. Conversely if we have
S |= ∃x1, . . . , xn.P [x1, . . . , xn] then the set of formulas S∪{¬P [x1, . . . , xn]},
where as usual the variables xi are implicitly universally quantified, is unsat-
isfiable. By Theorem 3.25 there is a finite set of ground instances such that

S′ ∪ {¬P [t11, . . . , t
1
n], . . . ,¬P [tm1 , . . . , tmn ]}

is unsatisfiable, so S′ |= P [t11, . . . , t
1
n] ∨ · · · ∨ P [tm1 , . . . , tmn ] and therefore

S |= P [t11, . . . , t
1
n] ∨ · · · ∨ P [tm1 , . . . , tmn ] as required.

In the case of Horn clauses, we can sharpen this to a kind of infinitary
analogue of convexity.

Theorem 3.45 If P [x1, . . . , xn] is quantifier-free and S is a set of Horn
clauses, then S |= ∃x1, . . . , xn.P [x1, . . . , xn] iff there is some ground instance
such that S |= P [t1, . . . , tn].

Proof Combine Theorems 3.43 and 3.44.

Given a set of definite clauses S, consider the set of finite trees T whose
nodes are labelled by ground atoms and such that whenever a node Q has
children P1, . . . , Pn, there is a ground instance P1 ∧ · · · ∧Pn ⇒ Q of a clause
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in S. We claim that the set B of ground atoms that can form the root
of such a tree is exactly the subset of the Herbrand base corresponding to
the least model. In one direction, the model corresponding to this set B

satisfies all ground instances P1 ∧ · · · ∧ Pn ⇒ Q of the clauses in S, because
if each Pi forms the root of such a tree, we can construct a tree with root
Q and children Pi forming the roots of corresponding subtrees. Conversely,
it is clear that any model of the ground instances of the clauses in S must
include B, since if each Pi holds in a model, so does Q. By Theorem 3.22,
being a Herbrand model of S and being a Herbrand model of the set of its
ground instances coincide, so the result follows.

This gives a nice goal-directed way of verifying that some atomic ground
formula holds in all models of a set of definite clauses S. It does if there is
a finite set of ground instances of formulas in S by which it can be deduced
via a kind of tree search. Given an initial goal P , we know that if it holds
in the least model there is some clause that when instantiated, say to Q1 ∧
· · · ∧ Qn ⇒ P , has P as its conclusion. Thus it suffices to show that all the
‘subgoals’ Qi hold in the least model, by further search of the same kind. As
with tableaux, the appropriate instantiations can be discovered gradually
by unification of the goal with the heads of clauses. Indeed, if we start with
an initial goal containing variables that we regard as implicitly existentially
quantified, Theorem 3.45 implies that there is a specific ground instance that
is a consequence of the clauses, and the process of unification will not only
prove the goal but even provide witnesses, i.e. specific terms that can replace
the existentially quantified variables. We will exploit this feature when we
consider Prolog below.

Satisfiability of a set of Horn clauses can be reduced to definite clause
theorem proving, and hence tested in the same goal-directed way. To see
this, take a set S of Horn clauses, and introduce a new nullary predicate
symbol F that does not occur in S. Intuitively we think of F as standing
for ⊥, so we replace every all-negative clause in S of the form:

¬P1 ∨ · · · ∨ ¬Pn

by

¬P1 ∨ · · · ∨ ¬Pn ∨ F,

hence turning the set S of Horn clauses into a set S′ of definite clauses.
Note that S is satisfiable if and only if S′ ∪ {¬F} is. Modulo propositional
equivalence, we are replacing each clause ¬C by C ⇒ F . Now any model of
S′ ∪{¬F} must be a model of S, since if both C ⇒ F and ¬F hold, so does
¬C. Conversely, we claim that any model of S can be extended to a model
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of S′ ∪ {¬F} by also interpreting F as false. This trivially satisfies ¬F , and
it also still satisfies S since the interpretation within the language of S has
not changed. But if a clause ¬C in S holds then certainly the corresponding
clause C ⇒ F of S′ does too.

Implementation

The implementation of this backchaining search with unification is quite sim-
ilar to the tableau implementation from Section 3.10. Variable instantiations
are kept globally, and backtracking is initiated when a given instantiation
does not lead to a complete solution. Since the rules are considered univer-
sally quantified, we can introduce fresh variable names each time we use one,
so that different instances of the same rule can be used without restriction.
The following takes an integer k and a rule’s assumptions asm and conclu-
sion c, and renames the variables schematically starting with ‘ k’, returning
both the modified formula and a new index that can be used next time.

let renamerule k (asm,c) =
let fvs = fv(list_conj(c::asm)) in
let n = length fvs in
let vvs = map (fun i -> "_" ^ string_of_int i) (k -- (k+n-1)) in
let inst = subst(fpf fvs (map (fun x -> Var x) vvs)) in
(map inst asm,inst c),k+n;;

The core function backchain organizes the backward chaining with uni-
fication and backtracking search. If the list of goals is empty, it simply
succeeds and returns the current instantiation env, unpacked into a list of
pairs for later manipulation, while if n, which is a limit on the maximum
number of rule applications, is zero, it fails. Otherwise it searches through
the rules for one whose consequent c can be unified with the current goal
g and such that the new subgoals a together with the original subgoals gs
can be solved under that instantiation.

let rec backchain rules n k env goals =
match goals with
[] -> env

| g::gs ->
if n = 0 then failwith "Too deep" else
tryfind (fun rule ->

let (a,c),k’ = renamerule k rule in
backchain rules (n - 1) k’ (unify_literals env (c,g)) (a @ gs))

rules;;



208 First-order logic

In order to apply this to validity checking, we need to convert a raw Horn
clause into a rule. Note that we do not literally introduce a new symbol F

to turn a Horn clause into a definite clause, but just use ⊥ directly:

let hornify cls =
let pos,neg = partition positive cls in
if length pos > 1 then failwith "non-Horn clause"
else (map negate neg,if pos = [] then False else hd pos);;

As with the tableau provers, we now simply need to iteratively increase
the proof size bound n until a proof is found. As well as the instantiations,
the necessary size bound is returned.

let hornprove fm =
let rules = map hornify (simpcnf(skolemize(Not(generalize fm)))) in
deepen (fun n -> backchain rules n 0 undefined [False],n) 0;;

Where it is applicable, it is quite effective, e.g.

# let p32 = hornprove
<<(forall x. P(x) /\ (G(x) \/ H(x)) ==> Q(x)) /\
(forall x. Q(x) /\ H(x) ==> J(x)) /\
(forall x. R(x) ==> H(x))
==> (forall x. P(x) /\ R(x) ==> J(x))>>;;

...
val p32 : (string, term) func * int = (<func>, 8)

However, it is limited to problems that give rise to a set of Horn clauses,
and so is inapplicable to some quite trivial problems, even on the proposi-
tional level:

# hornprove <<(p \/ q) /\ (~p \/ q) /\ (p \/ ~q) ==> ~(~q \/ ~q)>>;;
Exception: Failure "non-Horn clause".

In the next section we will see how to retain some of the attractive features
of this backchaining style of proof search, while at the same time dealing
with arbitrary first-order formulas. First, however, it is worth noting another
interesting feature of the present setup. Even though it is limited as a the-
orem prover, it can actually be used as a programming language.

Prolog

To ensure completeness, we performed iterative deepening over the total
number of rule applications. Other approaches are possible, e.g. bounding
on the maximum depth of the ‘proof tree’, and we’ll examine a more refined
approach in more detail in the next section. We could also store the possible
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‘tree fringes’ at a given limit, and then instead of recalculating them when
the limit is increased, consider all ways of extending them with one more rule
application. The drawback is that doing so requires a large amount of stor-
age, whereas with the recalculation-based approach, storage requirements
are not significant. Besides, as pointed out by Korf (1985), the additional
load of recalculation is usually relatively small because the number of pos-
sibilities tends to expand exponentially with depth, making the latest level
dominate the runtimes anyway.

A radical alternative is simply to abandon any kind of bound. The practi-
cal effect of this is that the goal tree will be expanded in a depth-first fashion,
with the first possible rule applied to the current goal tree, backtracking only
when no more unifications are possible.

At first sight, this looks a dubious idea, since looping can occur and com-
pleteness is lost. For example, if the two rules are P (f(x)) ⇒ P (x) and
P (0), in that order, then attempting to solve the goal P (0), the first rule
will be applied ad infinitum, generating increasingly complicated subgoals
P (0), P (f(0)), P (f(f(0))),. . . . Only by placing a limit on the number of
rule applications did backtracking force hornprove to consider the second
rule.

However, when it does succeed, the unlimited search is often quicker,
because it avoids the wasteful duplication and excessive search space explo-
ration that can result from iterative deepening. This style of search is the
basis of the popular ‘logic programming’ language Prolog (Colmerauer, Kanoi,
Roussel and Pasero 1973). Although it is not a complete proof procedure
even for the Horn subset of first-order logic, it can be used as an effective
programming language.

As noted by Kowalski (1974), a set of definite clauses can be given a
procedural interpretation. It is customary in Prolog to write a definite clause
P1 ∧ · · · ∧ Pn ⇒ Q as Q :- P1, · · ·, Pn to emphasize this interpretation.
We can think of this clause as defining a procedure Q in terms of other
procedures Pi. Application of this rule amounts to calling Q which in its turn
will call the sub-procedures Pi. Unification of variables handles the passing
of parameters to and from procedures in a uniform way. This is perhaps best
understood by implementing it and demonstrating a few simple examples.
First, we will write a parser for rules in their Prolog syntax:†

† In actual Prolog syntax, all rules should be terminated by ‘.’. Moreover, upper-case identifiers
are variables and lower-case identifiers are constants, and for conformance we use upper-case
variable names below.
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let parserule s =
let c,rest = parse_formula parse_atom [] (lex(explode s)) in
let asm,rest1 =
if rest <> [] & hd rest = ":-"
then parse_list "," (parse_formula parse_atom []) (tl rest)
else [],rest in

if rest1 = [] then (asm,c) else failwith "Extra material after rule";;

The core of our Prolog interpreter will be the backchain function without
taking into account the bounding size n. We could modify the code to remove
it, but the path of least resistance, albeit a slightly sleazy one, is simply to
start it off with a negative number, since we test for its becoming exactly
zero, and this will never happen (at least, not until integer wraparound
occurs).

let simpleprolog rules gl =
backchain (map parserule rules) (-1) 0 undefined [parse gl];;

To illustrate how it may be used, consider a zero-successor representation
of numerals, with 1 = S(0), 2 = S(S(0)) etc. We can define the ‘≤’ relation
by a pair of definite clauses:

let lerules = ["0 <= X"; "S(X) <= S(Y) :- X <= Y"];;

for example:

# simpleprolog lerules "S(S(0)) <= S(S(S(0)))";;
- : (string, term) func = <func>
# simpleprolog lerules "S(S(0)) <= S(0)";;
Exception: Failure "tryfind".

At first sight, Prolog is more limited than a functional language like
OCaml because we can only define predicates, not functions with non-
Boolean values. However, because of unification, Prolog can actually return
values by binding one of the variables in the goal.

Before demonstrating this idea, we’ll set up code to output these variable
bindings clearly. Although we can’t predict whether a free variable in the goal
clause will occur on the left or right of the lists returned, we know, because
no variables are repeated on the left and no composite terms are there, that
any interesting instantiations (i.e. other than temporary variables, which
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are equally general) will be derivable by reading the equations left-to-right.
Thus we can modify the interpreter:

let prolog rules gl =
let i = solve(simpleprolog rules gl) in
mapfilter (fun x -> Atom(R("=",[Var x; apply i x]))) (fv(parse gl));;

Now we see at once that S(S(0)) ≤ X is true for any X of the form S(S(Y )):

# prolog lerules "S(S(0)) <= X";;
- : fol formula list = [<<X = S(S(_3))>>]

So where in OCaml we would define a function f of n arguments, in Pro-
log we can define a corresponding predicate P of n + 1 arguments, where
P (x1, . . . , xn, y) is true precisely if f(x1, . . . , xn) = y. In fact, this mech-
anism is very general, since it allows P to have multiple possible values,
giving a natural vehicle for nondeterministic programming. Moreover, Pro-
log treats inputs and outputs more symmetrically. Consider the following
Prolog analogue of the standard OCaml list append operation:

let appendrules =
["append(nil,L,L)"; "append(H::T,L,H::A) :- append(T,L,A)"];;

We can exploit this in the usual way:

# prolog appendrules "append(1::2::nil,3::4::nil,Z)";;
- : fol formula list = [<<Z = 1::2::3::4::nil>>]

but we can also use it backwards, to discover what list would give a certain
result:

# prolog appendrules "append(1::2::nil,Y,1::2::3::4::nil)";;
- : fol formula list = [<<Y = 3::4::nil>>]
# prolog appendrules "append(X,3::4::nil,1::2::3::4::nil)";;
- : fol formula list = [<<X = 1::2::nil>>]
# prolog appendrules "append(X,Y,1::2::3::4::nil)";;
- : fol formula list = [<<X = nil>>; <<Y = 1::2::3::4::nil>>]

In the last case, we just get the first of many possible answers returned,
and real Prolog implementations allow one to obtain multiple answers if
desired. In such cases, Prolog seems to be showing an impressive degree of
intelligence. However, under the surface it is just using a simple search strat-
egy, and this can be thwarted. For example, the following loops indefinitely
rather than failing:

prolog appendrules "append(X,3::4::nil,X)";;
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Logic programming in a general sense, giving procedural interpretations
to logical formulas, aspires to an ideal of ‘declarative’ (or ‘assertional’) pro-
gramming where the programmer merely specifies what is to be done, rather
than how to do it. In practice, languages like Prolog impose particular search
strategies that give quite different behaviour, or at least efficiency, on prob-
lem descriptions that are logically equivalent. For example, the following
rules (Lloyd 1984) specify declaratively what it means for a list of 0-successor
integers to be a sorted permutation of another:

let sortrules =
["sort(X,Y) :- perm(X,Y),sorted(Y)";
"sorted(nil)";
"sorted(X::nil)";
"sorted(X::Y::Z) :- X <= Y, sorted(Y::Z)";
"perm(nil,nil)";
"perm(X::Y,U::V) :- delete(U,X::Y,Z), perm(Z,V)";
"delete(X,X::Y,Y)";
"delete(X,Y::Z,Y::W) :- delete(X,Z,W)";
"0 <= X";
"S(X) <= S(Y) :- X <= Y"];;

This is a good example of Prolog’s power as a declarative programming
language, since the standard strategy of unification and backtracking auto-
matically turns this description into a sorting algorithm, albeit not a very
efficient one.

# prolog sortrules
"sort(S(S(S(S(0))))::S(0)::0::S(S(0))::S(0)::nil,X)";;

- : fol formula list =
[<<X = 0::S(0)::S(0)::S(S(0))::S(S(S(S(0))))::nil>>]

But note that the logically insignificant change of swapping the hypotheses
in the first rule causes this example to loop indefinitely. In practice, Pro-
log programmers pay close attention to non-declarative aspects such as the
ordering of rules, and sometimes use logically impure features such as ‘cut’
to control backtracking more explicitly. It’s also notable that many Prolog
implementations omit the occurs check for circular unification problems like
X = f(X), taking them further from the logical ideal.

SLD resolution

Prolog-style backchaining can be recast as a restricted form of resolution,† by
identifying the current goals list [p1; . . . ; pn], giving the ‘fringe’ of unsolved
† We can also consider the final Prolog-style proof tree as a bottom-up refutation of the initial

clauses by positive hyperresolution. However, this turns upside down the way the proof is
actually found.
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goals, with the clause −p1 ∨ · · · ∨ −pn. Now an extension step on the first
subgoal with a rule q1∧· · ·∧qm ⇒ p′1, based on an MGU σ of p1 and p′1, can
be considered simply as a resolution step with the clause ¬q1∨· · ·∨−qm∨p′1
giving a new fringe of subgoals subst σ (−q1 ∨ · · · ∨−qm ∨−p2 ∨ · · · ∨−pn).
Note that if we started with a clause r1 ∧ · · · ∧ rk ⇒ ⊥ the first nontrivial
set of subgoals corresponds to the input clause −r1 ∨ · · · ∨ −rk from which
the top rule was derived.

Thus, the entire Prolog backchaining proof can be considered as a refuta-
tion by linear resolution. But it places some additional restrictions on linear
refutations, and hence shows that these preserve refutation completeness in
the special case of Horn clauses: no ancestor resolution is performed, fac-
toring is never implicitly applied, and we always resolve on the leftmost
literal of the main branch at each stage. The corresponding restriction on
linear resolution is often called SLD-resolution (linear resolution with selec-
tion function for definite clauses), or LUSH resolution (linear resolution with
unrestricted selection for Horn clauses). It is very close to being a restric-
tion of a more general procedure of SL-resolution developed by Kowalski and
Kuehner (1971), which is itself a variant of the model elimination calculus
that we consider next.

3.15 Model elimination

Can Prolog-style backward chaining be extended to cover non-Horn clauses?
One trick that sometimes works is to transform a set of clauses into Horn
form by appropriately ‘renaming’ predicate symbols. Consider for example
the following unsatisfiable set of clauses:

{P ∨ Q, ¬P, ¬Q}.
Although P ∨Q is not Horn, one can introduce two new predicate symbols

P ′ and Q′ intended to denote the negations of P and Q. It is not too hard
to see that the original clause set is equisatisfiable with:

{¬P ′ ∨ ¬Q′, P ′, Q′}
which is Horn. However, this approach is quite limited in its scope (see
Exercise 3.18). For example, the following set of clauses is also unsatisfiable:

{P ∨ Q, P ∨ ¬Q, ¬P ∨ Q, ¬P ∨ ¬Q},
yet, as one can see by symmetry, one of the clauses will remain non-Horn
however the predicate symbols are renamed. A slight variant of this idea
is to create Prolog-style rules by treating positive and negative literals
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symmetrically, and turning a clause with n literals into n different rules,
picking each literal in turn to act as the head clause, regardless of which
literals are positive and negative, e.g. converting

P ∨ Q ∨ ¬R

into the rules

¬Q ∧ R ⇒ P,

¬P ∧ R ⇒ Q,

¬P ∧ ¬Q ⇒ ¬R,

together, perhaps, with the additional rule:

¬P ∧ ¬Q ∧ R ⇒ ⊥.

These rules are often said to be contrapositives of the original clause;
note that they are all logically equivalent to the original clause and to each
other. However, even treating all the contrapositives as Prolog-like rules,
the set of clauses {P ∨ Q, P ∨ ¬Q, ¬P ∨ Q, ¬P ∨ ¬Q} will not be
refuted, because there are no unit clauses to terminate branches of the proof
tree. Thus, even a very liberalized notion of Prolog rule is insufficient as a
proof procedure for non-Horn clauses. However, it turns out that just one
small further extension is needed to give a complete proof procedure, and
to understand what it might be we turn to the connection with tableaux.

Model elimination and connection tableaux

The model elimination method was invented by Loveland (1968), who later
recast it (Loveland 1978) in a format similar to Prolog-like backchaining
through subgoals. Loveland called the modified format MESON (model elim-
ination, subgoal oriented), and it is mainly this that we’ll be concerned with
rather than model elimination in its original form. The Prolog connection
was effectively exploited by Stickel (1988) in his influential ‘Prolog technol-
ogy theorem prover’ (PTTP). Stickel not only presented MESON as a small
perturbation of standard Prolog, but even compiled the input clauses to
Prolog to take advantage of the advanced optimizations of existing Prolog
compilers.

From a theoretical point of view, model elimination including MESON
was originally analyzed via its relationship with linear resolution.† Since
† Donald Loveland has told the author that he developed model elimination before he had heard

of resolution at all, and his later invention of linear resolution was in fact quite separate, even
though in retrospect there are obvious parallels.
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Prolog-style search corresponds to linear resolution without ancestor steps,
it’s natural to attempt to extend it to cover all of first-order logic by restoring
a kind of ancestor resolution. This is just what MESON does, but it doesn’t
correspond exactly to any variant of resolution, since it is with individual
literals on a branch of a Prolog-style search tree, rather than with clauses
representing the whole fringe of the tree, that MESON allows ancestor uni-
fication. In fact full SL-resolution that we mentioned above was specifically
designed as an adaptation of model elimination into a standard resolution
format. However, it differs in non-trivial details, such as permitting factor-
ing. Instead, it seems more natural to understand MESON as a refinement
of tableaux, giving connection tableaux (Letz, Mayr and Goller 1994). This
also emphasizes the fact that, unlike the usual refinements of resolution,
MESON is a global method.

MESON works on formulas in clausal form, and we now consider the
behaviour of the tableau prover from Section 3.10 on a conjunction of uni-
versally quantified clauses. It will simply proceed left-to-right across the
conjunction, repeatedly instantiating each clause with fresh variables, then
splitting the disjunctions to give multiple paths that will, subject to the
variable limit, be expanded in a depth-first fashion. After a clause is used, it
is put at the back of the list and will eventually be re-used unless a contra-
diction is reached on all paths. A major weakness of the tableau method is
that clauses are split over in a round-robin fashion, expanding the number
of paths, even if doing so makes no contribution. The following example, for
instance:

# tab <<forall a. ~(P(a) /\ (forall y z. Q(y) \/ R(z)) /\ ~P(a))>>;;
...
- : int = 2

requires a variable limit of 2 and involves a pointless case-split over
the instantiated second clause, even though if the order of the conjuncts
is modified:

# tab <<forall a. ~(P(a) /\ ~P(a) /\ (forall y z. Q(y) \/ R(z)))>>;;
...
- : int = 0

no variable instantiation is needed, and the non-unit clause is never exam-
ined. This observation suggests that we might be able to make tableaux
much more efficient if we could avoid using unnecessary clauses. Recogniz-
ing which clauses are unnecessary, however, requires some care if we want
to retain completeness.
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Let us first consider the refutation of a finite unsatisfiable set of purely
propositional clauses. In the tableau prover from Section 3.10, at any point
in the execution of some branch we have a list lits of literals and a list fms
of other formulas, and the combined lists lits and fms are unsatisfiable. All
the processing steps retain this invariant, implying that we must eventually
terminate each branch by the time the list fms becomes empty. (In the
full first-order case, things are more complicated, of course.) In connection
tableaux we will retain a stronger invariant:

There exists a minimal unsatisfiable subset of the combined lists lits and fms that
includes the most recently added literal in lits if any. (In the actual implementa-
tion, this literal is the head of lits if that list is nonempty.)

By a minimal unsatisfiable set of a set of formulas, we mean a subset that
is unsatisfiable and such that each proper subset of it is satisfiable. Note
that if a finite set S of formulas is unsatisfiable, then there must exist at
least one minimal unsatisfiable subset S0 ⊆ S. In the propositional case we
could in principle find one by successively removing elements from S until
the resulting set is satisfiable, then putting back the most recently removed
element and trying to remove others until no further progress is possible.

At the beginning, lits is empty and the set fms is by hypothesis unsat-
isfiable, and so the combination of the lists is unsatisfiable and therefore
contains a minimal unsatisfiable subset. The invariant thus holds initially.
The steps of the connection tableau procedure are as follows.

(1) If lits is empty, pick an all-negative clause C from fms, say of the
form ¬P1 ∨ · · · ∨ ¬Pn, and generate, for each 1 ≤ i ≤ n, the new
branches lits′ = {¬Pi} and fms′ = fms− {C}.

(2) Otherwise, if lits is nonempty with P the most recently added lit-
eral, try to find a complementary literal −P in lits and terminate
the branch if there is one.

(3) Otherwise, with lits nonempty and P the most recently added lit-
eral, pick a clause C from fms that includes a literal −P , say of the
form −P ∨ P1 ∨ · · · ∨ Pn, and generate, for each 1 ≤ i ≤ n, the new
branches lits′ = {Pi} ∪ lits and fms′ = fms− {C}.

Note that each step transforms a refutation problem into an equisatisfiable
set of refutation problems, and either closes a branch or reduces the number
of formulas in fms. Therefore, the propositional version of this procedure
must terminate whatever choices are made at each stage, closing all branches
if the original problem is unsatisfiable and otherwise running out of possible
choices of clauses from fms, indicating satisfiability, just as for traditional
tableaux.
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Even at the propositional level, this involves some nondeterministic choices.
We will prove that there is always some choice to be made that preserves
the invariant, and in the actual implementation we will have to explore all
the available possibilities in a backtracking search. Note that it is the fact
that in (3) we require a ‘connection’ between the latest literal P and the
chosen clause that explains the name ‘connection tableaux’.

Trivially (2) preserves the invariant, since it terminates a branch. To prove
that (3) preserves the invariant, we can assume not only that the invari-
ant holds initially, but that lits alone is satisfiable, since (2) is always
applied in preference to (3). We know by the invariant that the combined
lists lits and fms have a minimal unsatisfiable subset S0 that contains P .
Since S0 − {P} is satisfiable, this set must contain a clause with the lit-
eral −P , otherwise modifying a satisfying assignment to map the literal P

to ‘true’ would still satisfy S0 − {P}, and therefore S0 itself. This clause
cannot be another unit clause in lits because that was assumed satisfi-
able. Thus S0 ∩ fms contains a clause C of the form −P ∨ P1 ∨ · · · ∨ Pn

for some n ≥ 0. Now we claim that for any 1 ≤ i ≤ n the new values
lits′ = {Pi} ∪ lits and fms′ = fms − {C} satisfy the invariant. The
combination of lits′ and fms′ is a superset of Si = {Pi} ∪ (S0 − {C}),
so it suffices to show that there is a minimal unsatisfiable subset of this
Si containing Pi. Since Pi implies C, this set is certainly unsatisfiable, so
there is a minimal unsatisfiable subset T ⊆ {Pi} ∪ (S0 − {C}). But we
must have Pi ∈ T , otherwise S0 −{C} would be unsatisfiable, contradicting
minimality.

The step (1) is a minor variation of (3), imagining P to be �, and the
previous argument is routinely adapted. The list lits is empty, and by the
invariant fms has a minimal unsatisfiable subset S0. This must contain an
all-negative literal C, say ¬P1 ∨ · · · ∨¬Pn for some n ≥ 1, or the assignment
to ‘true’ of all atoms would satisfy it. Now we show exactly as before that
for any 1 ≤ i ≤ n the new values lits′ = {Pi} and fms′ = fms−{C} satisfy
the invariant.

At the first-order level, all we have to change, given a latest literal P ,
is to search not only for a clause exactly involving −P but for one unifi-
able with −P . By Herbrand’s theorem, if the set of clauses is unsatisfiable,
so is a finite set of ground instances. These propositional clauses can be
refuted by propositional connection tableaux, and unification will discover
the necessary instances by a straightforward lifting argument.

Instead of actually implementing things in the tableaux setting, we will
work in the context of Prolog-style backtracking search with an initial goal
of ⊥ and using contrapositives of the clauses as rules, giving exactly the
PTTP-style presentation of MESON. In Prolog terms, we imagine reducing
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the initial goal ⊥ to a collection of subgoals G1, . . . , Gs on the fringe of the
current tree, so that if we solve each goal we can conclude ⊥. The connection
tableau view is the contrapositive: we are performing nested case splits and
concluding that at least some −Gi holds, so if we can rule out all these
possibilities, we will reach a contradiction. Not only that, but as well as each
−Gi we may assume the negations of all ancestors along the path leading
from the root to −Gi, for in the tableau setting the current subgoal Gi is
the negation of the most recent literal added to lits and the other literals
on the path to Gi are the negations of the other literals in lits. Thus, the
step (2) of connection tableaux, in our context, means to solve a goal Gi by
finding a complementary literal −Gi in its own ancestor list, which is the
key addition compared with Prolog.

Let us also check that Prolog-style backchaining with contrapositives of
rules corresponds to steps (1) and (3) of connection tableaux. We will only
create contrapositives of the form P1 ∧ · · · ∧Pn ⇒ ⊥ for all-negative clauses
¬P1 ∨¬ · · · ∨¬Pn. Thus, the starting step must be to reduce the initial goal
⊥ to the set of subgoals P1, . . . , Pn corresponding to some such clause, which
in the tableau context means exactly to generate n paths each with a single
literal ¬Pi in the literals list. We create all contrapositives with literals as
conclusions, so for each clause of the form P ∨P1 . . .∨Pn we obtain rules of
the form −P1 ∧ · · · ∧ −Pn ⇒ P . Then the usual Prolog step, using this rule
to reduce a goal P to subgoals −P1, . . . , −Pn, corresponds in the tableau
setting to picking a clause P ∨P1 . . .∨Pn connected to the current literal −P

and generating the new paths with each Pi as the latest literal, i.e. step (3).
The restriction to such connection tableaux almost always leads to more

efficient and directed proof search than with raw tableaux. However, in some
cases, the initial transformation into CNF can complicate the formula suf-
ficiently that it overwhelms this advantage. Actually, even if we start with
a formula in CNF, there are rare cases where a connection tableau proof is
longer than a naive one. For example, the following formula yields a very
efficient tableau proof:

tab <<~p /\ (p \/ q) /\ (r \/ s) /\ (~q \/ t \/ u) /\
(~r \/ ~t) /\ (~r \/ ~u) /\ (~q \/ v \/ w) /\
(~s \/ ~v) /\ (~s \/ ~w) ==> false>>;;

However, in a MESON proof that starts by reducing the initial goal ⊥ to
p using the rule p ⇒ ⊥, we need to solve each of the subgoals r and s more
than once. This requires duplication of a non-trivial sub-proof, whereas had
the unconnected clause r ∨ s been used earlier, one of these would exist
as a complementary ancestor. Connection proofs not starting with p (even
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using clauses that are not all-negative) also turn out longer since they must
duplicate the generation of a subgoal ¬p from q.

Even when a MESON proof and a naive tableau counterpart have a similar
size, their structures are often very different. This applies in particular to
theorems naturally proved by case-splits, like x �= 0 ⇒ 0 < x2 by considering
the cases 0 < x and 0 < −x separately. For example, if we have MESON-
style chains of implications P ⇒ · · · ⇒ R and Q ⇒ · · · ⇒ R, a refutation
of R and P ∨ Q is typically the rather strange ‘back-to-back’ proof ¬R ⇒
· · · ⇒ ¬Q ⇒ P ⇒ · · · ⇒ R, with a final ancestor resolution solving ¬R by
unification with the complement of the starting goal.†

It is not just MESON that can be seen as a specialized variant of tableaux.
Most top-down proof procedures can be understood starting with the naive
prawitz procedure, as a way of arriving at a contradictory DNF but limiting
the search space as much as possible by enforcing further requirements.
One interesting top-down method that we do not discuss at length in this
book was developed independently as the ‘connection method’ (Kowalski
1975; Bibel and Schreiber 1975; Bibel 1987) and the ‘method of matings’
(Andrews 1976; Andrews 1981). This is similar in principle to tableaux and
model elimination, but avoids some of the inefficiency caused by the initial
transformation into canonical forms.

Implementation

We start with a function to map a clause into all its contrapositives. In line
with the discussion above, we only create an additional rule with ⊥ as the
conclusion if the original clause is all-negative:

let contrapositives cls =
let base = map (fun c -> map negate (subtract cls [c]),c) cls in
if forall negative cls then (map negate cls,False)::base else base;;

The main implementation is not far from Prolog, but to make later exten-
sions easier we use the current goal g and a continuation function cont to
solve remaining subgoals, rather than simply a list of subgoals. A triple con-
sisting of the current instantiation env, the maximum number n of additional
nodes in the proof tree permitted, and a counter k for variable renaming are
passed through the chain of continuations. Each goal g also has associated
with it the list of ancestor goals.

The actions required are simple. If the current size bound has been
exceeded, we fail. Otherwise, we first try to unify the current goal with the

† This tendency towards long chains is a reason we prefer bounding proof size rather than depth
below.
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negation of one of its ancestors (not renaming variables of course since this
is a global method) and call cont to solve the remaining goals under the new
instantiation. If this fails, we try a normal Prolog-style extension with one
of the rules, first unifying with a renamed rule and then iterating the same
goal-solving operation over the list of subgoals, modifying the environment
according to the results of unification, decreasing the permissible number
of new nodes by the number of new subgoals created, and appropriately
increasing the variable renaming counter.

let rec mexpand rules ancestors g cont (env,n,k) =
if n < 0 then failwith "Too deep" else
try tryfind (fun a -> cont (unify_literals env (g,negate a),n,k))

ancestors
with Failure _ -> tryfind
(fun rule -> let (asm,c),k’ = renamerule k rule in

itlist (mexpand rules (g::ancestors)) asm cont
(unify_literals env (g,c),n-length asm,k’))

rules;;

This can now be packaged up into the overall function with the usual
iterative deepening. As with tableaux, we split the input problem into sub-
problems as much as possible. This is particularly worthwhile here when
we reduce the problem to clausal form, since otherwise the translated form
often becomes significantly more complicated.

let puremeson fm =
let cls = simpcnf(specialize(pnf fm)) in
let rules = itlist ((@) ** contrapositives) cls [] in
deepen (fun n ->

mexpand rules [] False (fun x -> x) (undefined,n,0); n) 0;;

The overall function starts with the usual generalization, negation and
Skolemization, then attempts to refute the clauses using MESON:

let meson fm =
let fm1 = askolemize(Not(generalize fm)) in
map (puremeson ** list_conj) (simpdnf fm1);;

This simple procedure often compares quite favourably with tableaux. For
example, the following is solved far faster than with tableaux:

# let davis_putnam_example = meson
<<exists x. exists y. forall z.

(F(x,y) ==> (F(y,z) /\ F(z,z))) /\
((F(x,y) /\ G(x,y)) ==> (G(x,z) /\ G(z,z)))>>;;

...
val davis_putnam_example : int list = [8]
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Note also that for Horn clause problems, all atomic formulas considered
will be positive, so MESON will never perform ancestor resolution and
retains the attractive features of Prolog-style search. However, compared
with general tableaux, MESON does have the handicap of requiring an ini-
tial transformation into clausal form, and on some formulas this can cause
such an increase in complexity that MESON’s superior goal-directedness
cannot compensate. For example, Pelletier’s (1986) problem p38, solved in
a fraction of a second with tableaux above, takes longer with MESON.

Search optimization

Effective though it usually is, there are several ways in which the MESON
implementation above can be improved. One simple observation is that we
need never repeat a subgoal on a branch, so that if a current goal has an
identical ancestor, we can always fail; any expansion done from the current
goal could more efficiently be done starting from the identical ancestor. It
is not difficult to test whether two literals are identical under an existing
set of assignments. Rather than code it explicitly, we can simply call the
unification function and see that no additional assignments are returned.†

let rec equal env fm1 fm2 =
try unify_literals env (fm1,fm2) == env with Failure _ -> false;;

As well as incorporating this test, we can make some more substantial
changes to the search strategy. One quite simple and effective alternative
(Harrison 1996b) is to distribute the available size bound over subgoals more
efficiently. Note that given a current size bound of n to solve two subgoals
g1 and g2, one subgoal or the other must be solvable with size ≤ n/2 (where
division truncates downwards if n is odd). Thus, rather than immediately
making the full bound of n available for g1 then solving g2 with what’s left,
we can try solving g1 with size limit n/2 and then g2 with what’s left of the
overall n, and if that fails (or the rest of the goals cannot be solved under
any of the resulting instantiations), reverse the roles of g1 and g2 and try
it that way round. This applies equally well if any number of subgoals are
divided approximately equally into two lists of subgoals.

Since the search space typically grows exponentially, this optimization is
likely to result in an overall saving even though solutions where both g1

and g2 are solvable with size ≤ n/2 will be found twice. We just want to
ensure that this duplication doesn’t cause all the other goals to be attempted
† Recall that ‘==’ is a pointer equality test; conventional equality could also be used, but we

exploit our knowledge of the implementation of unify.
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twice with the same instantiations, otherwise there could be an exponential
explosion of duplicated work. Thus, the continuation must sometimes be
ignored if a solution is found with too few steps. The following function is
intended to take a basic expansion function expfn for lists of subgoals and
apply it to goals1 with size limit n1, then attempt goals2 with whatever
is left over from goals1 plus an additional n2, yet force the continuation to
fail unless the second takes more than n3.

let expand2 expfn goals1 n1 goals2 n2 n3 cont env k =
expfn goals1 (fun (e1,r1,k1) ->

expfn goals2 (fun (e2,r2,k2) ->
if n2 + r1 <= n3 + r2 then failwith "pair"
else cont(e2,r2,k2))

(e1,n2+r1,k1))
(env,n1,k);;

First, goals1 is attempted with limit n1 and the unused size r1 is captured
before proceeding to goals2. They are solved with limit n2+r1, leaving r2
of this limit. Now, we want to ensure that more than n3 steps were used
for goals2, so we only call the continuation if (n2 + r1) − r2 > n3 and
fail otherwise. The overall MESON expansion is now done via two mutually
recursive procedures, mexpand dealing with a single subgoal and mexpands
with a list of subgoals. The mexpand function starts as before with a check
for exceeding the size bound and an attempt at ancestor unification, though
it also makes a repetition check using equal. However, when expanding
using a rule, control is then passed to mexpands to deal with the multiple
subgoals.

let rec mexpand rules ancestors g cont (env,n,k) =
if n < 0 then failwith "Too deep"
else if exists (equal env g) ancestors then failwith "repetition" else
try tryfind (fun a -> cont (unify_literals env (g,negate a),n,k))

ancestors
with Failure _ -> tryfind
(fun r -> let (asm,c),k’ = renamerule k r in

mexpands rules (g::ancestors) asm cont
(unify_literals env (g,c),n-length asm,k’))

rules

In mexpands, if there are too many new subgoals for the current size
limit, we fail at once, and if there is at most one new subgoal, we deal with
it in the same way as before. Only if there are at least two do we initiate the
optimization. The total available limit n is split into two roughly equal parts
n1 and n2, and the list of subgoals is itself chopped in two, giving goals1
and goals2. We try solving goals1 first with size n1 and then goals2 with
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the remainder plus n2, with no lower limit (hence the -1), and if that fails,
try it the other way round, this time imposing a lower limit n1 to avoid
running the continuation twice.

and mexpands rules ancestors gs cont (env,n,k) =
if n < 0 then failwith "Too deep" else
let m = length gs in
if m <= 1 then itlist (mexpand rules ancestors) gs cont (env,n,k) else
let n1 = n / 2 in
let n2 = n - n1 in
let goals1,goals2 = chop_list (m / 2) gs in
let expfn = expand2 (mexpands rules ancestors) in
try expfn goals1 n1 goals2 n2 (-1) cont env k
with Failure _ -> expfn goals2 n1 goals1 n2 n1 cont env k;;

Generally, the improved version of MESON (redefining puremeson and
meson to use the rewritten mexpand) performs much better. For example,
we are finally able to solve the Schubert Steamroller (Stickel 1986) in a
reasonable amount of time:

# let steamroller = meson
<<((forall x. P1(x) ==> P0(x)) /\ (exists x. P1(x))) /\
((forall x. P2(x) ==> P0(x)) /\ (exists x. P2(x))) /\
((forall x. P3(x) ==> P0(x)) /\ (exists x. P3(x))) /\
((forall x. P4(x) ==> P0(x)) /\ (exists x. P4(x))) /\
((forall x. P5(x) ==> P0(x)) /\ (exists x. P5(x))) /\
((exists x. Q1(x)) /\ (forall x. Q1(x) ==> Q0(x))) /\
(forall x. P0(x)

==> (forall y. Q0(y) ==> R(x,y)) \/
((forall y. P0(y) /\ S0(y,x) /\

(exists z. Q0(z) /\ R(y,z))
==> R(x,y)))) /\

(forall x y. P3(y) /\ (P5(x) \/ P4(x)) ==> S0(x,y)) /\
(forall x y. P3(x) /\ P2(y) ==> S0(x,y)) /\
(forall x y. P2(x) /\ P1(y) ==> S0(x,y)) /\
(forall x y. P1(x) /\ (P2(y) \/ Q1(y)) ==> ~(R(x,y))) /\
(forall x y. P3(x) /\ P4(y) ==> R(x,y)) /\
(forall x y. P3(x) /\ P5(y) ==> ~(R(x,y))) /\
(forall x. (P4(x) \/ P5(x)) ==> exists y. Q0(y) /\ R(x,y))
==> exists x y. P0(x) /\ P0(y) /\

exists z. Q1(z) /\ R(y,z) /\ R(x,y)>>;;
...
steamroller : int list = [53]

There is still plenty of scope for further improvements, which can often
cut runtimes dramatically. As Stickel (1988) emphasized, one can sometimes
exploit the extensive body of experience with optimizing Prolog implemen-
tations. For example, it’s often the case that various ways of solving some
initial set of the subgoals give rise to the same instantiation. If the remain-
ing goals have already failed once under this instantiation, there is no need
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to explore them again, unless a larger size bound is available. Inserting
checks for this into the continuation functions is often very effective (Har-
rison 1996b). Other reasonable changes involve further restricting the proof
procedure to cut down the search space (Plaisted 1990) or modifying it to
avoid contrapositives (Baumgartner and Furbach 1993).

Retrospective: top-down vs. bottom-up

We have now developed two quite powerful first-order proof procedures that
work on problems in clausal form, resolution and model elimination. At the
level of the proofs that are eventually found, these are quite similar, and in
fact MESON can almost be considered as a very restricted form of resolution.
Nevertheless, the actual procedures are very different, with resolution being
a local, bottom-up method and model elimination being a global top-down
method. As hinted earlier, this affects the problems they can solve most
effectively.

The fact that resolution accumulates a set (often very large) of derived
clauses more or less forces one to use redundancy control and additional
strategies to direct the proof in order to get satisfactory performance and
avoid filling up memory. Note that even if virtually unlimited memory is
available, the time taken to perform subsumption checking (even with less
naive algorithms) can also grow with the number of derived clauses. By
contrast, MESON works quite well without any special measures and uses
minimal memory. The calculus also has a degree of goal-direction that con-
trasts with resolution, even if the latter is given a good set of support.

However, for tackling truly difficult problems, the very fact that redun-
dancy control and strategy is possible is a strength of resolution-like systems.
In MESON, it is difficult to take into account the large-scale structure of
the proof, since the current goalstate only exists ephemerally. A particu-
larly fundamental problem with all top-down procedures is that identical
subgoals, or instances of a more general subgoal, are often solved more than
once at different parts of the proof tree. Resolution, for example, dealt with
the �Loś problem much more effectively, and this can be traced to the fact
that MESON proves two almost identical subgoals that in resolution are just
particular instances of a lemma.

At present, bottom-up provers seem to have been more effective at solving
very hard problems. In particular, a research group at Argonne National
Labs has enjoyed remarkable success in answering non-trivial open questions
in various fields of mathematics or logic, using a line of highly engineered
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resolution-based theorem provers culminating in McCune’s Prover9.† Of
course, it is difficult to decide how much is owed to the talent and focus
of the researchers, and how much to the bottom-up approach. However, it
seems that the ability to direct the proof with individually tailored strategies
depending on the problem domain is important to their success.

Despite the better record of bottom-up provers, research continues on
retaining the strengths of top-down systems while ameliorating some of their
weaknesses. One promising way to retain MESON’s goal-directness while
coming closer to resolution in the ability to re-use general results is to some-
how remember lemmas encountered earlier in proof search (Astrachan and
Stickel 1992; Letz, Mayr and Goller 1994). A particularly well-engineered
system that incorporates techniques of this kind is SETHEO (Letz, Schu-
mann, Bayerl and Bibel 1992). Some researchers have also examined judi-
cious combinations of top-down and bottom-up theorem proving, with some
success (Fuchs 1988; Schumann 1994).

3.16 More first-order metatheorems

We can extend Skolemization, at least as a theoretical device, to infinite sets
of formulas. However, making sure that the Skolem functions for different
formulas do not clash, either with each other or with existing function sym-
bols, causes a few tiresome technical complications. We will assume that the
function symbols are indexed by a string of characters, as in our OCaml
implementation, but similar methods work for any infinite indexing set. The
idea is to avoid clashes by first consistently renaming all the function sym-
bols in the original set of formulas so that they start with ‘old ’, thus making
symbols starting with ‘f ’ and ‘c ’ available for Skolem functions without
fear of clashing with existing function symbols. (An infinite set of formulas
might already use every possible name.) Here is an OCaml implementation:

let rec rename_term tm =
match tm with
Fn(f,args) -> Fn("old_"^f,map rename_term args)

| _ -> tm;;

let rename_form fm =
onatoms (fun (R(p,args)) -> Atom(R(p,map rename_term args))) fm;;

After that, we can enumerate the renamed formulas in some order, Skolem-
izing each in turn avoiding Skolem functions that have been previously used.
We will show the coding for a finite list of formulas, but, from a theoretical

† www.cs.unm.edu/~mccune/prover9/
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point of view, this can be iterated to map a countable set (enumerated in
some order) to another countable set.

let rec skolems fms corr =
match fms with
[] -> [],corr

| (p::ofms) ->
let p’,corr’ = skolem (rename_form p) corr in
let ps’,corr’’ = skolems ofms corr’ in
p’::ps’,corr’’;;

let skolemizes fms = fst(skolems fms []);;

For example:

# skolemizes [<<exists x y. x + y = 2>>;
<<forall x. exists y. x + 1 = y>>];;

- : fol formula list =
[old_+(c_x,c_y) = old_2; forall x. old_+(x,old_1) = f_y(x)]

Theorem 3.46 A countably infinite set Σ of formulas is satisfiable in
domain D iff skolemizes(Σ) is also satisfiable in domain D.

Proof One way is easy, since each model of skolemizes(Σ) gives rise to
a model of Σ with the same domain. Conversely, suppose Σ is satisfiable.
Then the set of formulas Σ′ resulting from renaming the function symbols is
also satisfiable in the same domain, for a model of Σ gives rise immediately
to a corresponding model of Σ′. Call some such model M0. Enumerate the
formulas of Σ′ in some order, as p1, p2, p3, . . . Using Theorem 3.10, if we
have a model Mn that satisfies skolemizes{p1, . . . , pn}, we can derive a
new model Mn+1 of skolemizes{p1, . . . , pn, pn+1} differing from Mn only in
the interpretation of function symbols that do not occur in pm for m ≤ n.
Thus we can form the interpretation M by taking the ‘union’ of all the Mn.
This is a model of skolemizes(Σ).

Recall from the discussion after Theorem 3.24 that only in general for a
quantifier-free formula is satisfiability equivalent to satisfiability in a Her-
brand model. On the other hand, the consequent equivalence with satisfia-
bility in a countable domain can be extended.

Theorem 3.47 If every finite subset of a countable set Σ of formulas has a
model, then Σ as a whole has a model whose domain is countable.

Proof If every finite subset of Σ has a model, then so does every finite subset
of skolemizes(Σ), because any such subset is contained in skolemizes(Δ)
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for some finite Δ ⊆ Σ. Consequently, any finite subset of the set of ground
instances of formulas in skolemizes(Σ) is propositionally satisfiable. By
propositional compactness, the set of all ground instances is proposition-
ally satisfiable, so skolemizes(Σ) has a Herbrand model, just adapting the
proof of Theorem 3.23 to an infinite set of formulas. The domain of the
Herbrand model is countable, because a countable set of formulas can only
use a countable language and hence has a countable Herbrand universe. But
then by the previous theorem, Σ itself has a model with the same domain,
which is therefore also countable.

It’s customary to split this up into two theorems, the compactness theorem
for first-order logic:

Corollary 3.48 If every finite subset of a countable set Σ of formulas has
a model, then Σ as a whole has a model;

and the downward Löwenheim–Skolem theorem:

Corollary 3.49 If a countable set Σ of formulas has a model, it has a
countable model.

This latter result has some rather intriguing consequences. For example,
one might try to write down a set of formulas characterizing the set of real
numbers, e.g. various basic algebraic properties involving addition, multipli-
cation and ordering, and perhaps some special functions like sin. Neverthe-
less, the downward Löwenheim–Skolem theorem assures us that if this holds
in the usual system of real numbers (which is uncountable), it also holds in
some countable model. Even more surprisingly, since the theorem still holds
for an infinite set of formulas however it is defined, we can actually take
the set of all formulas in our (countable) language that are true in the spe-
cific model R with the usual operations. Yet even that set has a countable
model. This gives an indication that many characteristics of a model cannot
be specified by first-order means, and we will consider this in more depth in
Section 4.2.

Finally, it is worth pointing out explicitly that we also have an upward
variant of the Löwenheim–Skolem theorem, but in the present context, with-
out special treatment of the equality relation as in Chapter 4, it is rather
trivial.

Theorem 3.50 If a countable set Σ of formulas has a model, it has a model
of arbitrarily larger cardinality.
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Proof Take any model M with domain D. Given any cardinal κ ≥ D we
can find a set S such that |S ∪ D| = κ. Extend the model from D to S ∪ D

by picking an arbitrary element a ∈ D and defining the interpretations of
functions and predicates to treat every b ∈ S − D the same as a.

Further reading

The basic theoretical results here can be found in most introductory logic
texts, e.g. Enderton (1972), Mendelson (1987), Boolos and Jeffrey (1989),
Goodstein (1971), Kreisel and Krivine (1971) and Andrews (1986), and are
taken much further in advanced texts on model theory such as Bell and Slom-
son (1969), Chang and Keisler (1992), Hodges (1993b), Marcja and Toffalori
(2003) and Poizat (2000). Davis, Sigal and Weyuker (1994) cover the mate-
rial with more of a bias towards mechanization. Books giving more historical
and philosophical background concerning the development of mathematical
logic include Bocheński (1961), Dumitriu (1977) and Kneale and Kneale
(1962), while Kneebone (1963) gives a blend of philosophy and technical
results. Van Heijenoort (1967) is a selection of classic papers in the field
including the seminal work of Löwenstein, Skolem, Gödel and Herbrand
underlying most of the methods in this chapter. For a detailed study of
Skolemization and reduction to clause normal form, with an emphasis on
efficiency aspects that are relevant to automated proof, see Nonnengart and
Weidenbach (2001).

First-order logic admits several generalizations, which we do not consider
in any depth. The most radical is higher-order logic (HOL), where quantifica-
tion over functions and predicates is permitted; of the above texts Andrews
(1986) is the only one to cover higher-order logic extensively, but it is also
mentioned in Boolos and Jeffrey (1989) and Enderton (1972). A more mod-
est generalization allows branching scope of quantifiers; this can be seen as
a more restricted form of higher-order logic. Hintikka (1996) argues that in
some sense such an ‘independence friendly’ logic is more fundamental than
normal first-order logic, but the validity problem for IF logic or HOL is no
longer even semidecidable.†

† For HOL, this follows from the corresponding result for first-order arithmetic truth proved
in Chapter 7, because the second-order Peano axioms PA (in sharp contrast to first-order
approximations thereof) characterize N up to isomorphism and hence truth of p is equivalent
to second-order validity of PA ⇒ p.
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A less dramatic generalization is to many-sorted first-order logic, where
terms are divided into distinct ‘sorts’. This generalization is often natural,
e.g. for formalizing geometry with separate classes of ‘points’ and ‘lines’. We
might state that any two distinct points determine a line as follows, where
x : T indicates ‘a variable x of sort T ’:

∀x : P, y : P. ¬(x = y) ⇒ ∃!l : L. On(x, l) ∧ On(y, l),

whereas in one-sorted logic we would need to add explicit predicates ‘is a
point’ and ‘is a line’:

∀x, y. P (x) ∧ P (y) ∧ ¬(x = y) ⇒ ∃!l. L(l) ∧ On(x, l) ∧ On(y, l).

All the main results of one-sorted logic extend to the many-sorted case,
and indeed can often be stated in a sharper form (Feferman 1968; Feferman
1974; Kreisel and Krivine 1971). Moreover, sorts have significant benefits
for automated theorem proving since the type discipline can avoid explicit
inferences (Cohn 1985; Walther 1985) or cut the search space (Jereslow 1988)
even from infinite to finite (Pnueli, Ruah and Zuck 2001; Fontaine 2004).
However, we have avoided many-sortedness here because the machinery is
more technical; interpretations need a separate domain Dσ for each sort σ,
and functions and predicates acquire type annotations that restrict term
formation. For more information see Manzano (1993) and also Kreisel and
Krivine (1971).

The basic methods of automated theorem proving we have considered,
namely tableaux, resolution and model elimination, are covered in various
standard texts. Bundy (1983) is a basic survey of relevant material, while
Robinson and Voronkov (2001) is a collection of more recent survey articles
covering most of the main topics in this chapter in more depth. Siekmann
and Wrightson (1983a) and Siekmann and Wrightson (1983b) are collections
of some of the most significant papers in the field in the period 1957-1970.
The classic text by Chang and Lee (1973) is still to be recommended as
a general introduction to the field, focusing mainly on resolution but also
mentioning some other approaches. Fitting (1990) is also a more modern
text covering resolution and tableaux, and Bibel (1987) gives a distinctive
treatment emphasizing the connection method. Newborn (2001) covers some
automated theorem proving methods with more on implementation details.
Duffy (1991) is a survey that, while it also gives few proofs, goes some way
beyond our material in this chapter in the range of topics it considers. More
technical books on resolution include Loveland (1978), which also covers
model elimination in some depth, and Leitsch (1997), while Wos, Overbeek,
Lusk and Boyle (1992) and several other books by the Argonne group are
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recommended for further guidance on actually solving non-trivial problems
using (mainly resolution-based) automated reasoning. A thorough discussion
of unification is given by Baader and Nipkow (1998), which is also the main
text recommended in the next chapter.

Although unification-based methods similar to tableaux or resolution have
generally supplanted naive Herbrand procedures, there are still some
competitive ‘instantiation-based’ methods for first-order logic that work by
generating ground instances, albeit in a more intelligent way, e.g. ordered
semantic hyperlinking (Plaisted and Zhu 1997). Jacobs and Waldmann (2005)
give a survey of several such techniques.

An introduction to tableaux and their historical development is given by
Fitting (1999). Other papers in the same volume give extensive informa-
tion about all aspects of the subject, from theoretical complexity results to
implementation details. A presentation of model elimination in terms of con-
nection tableaux, discussing many refinements and implementation details,
is given by Letz and Stenz (2001).

Horn clauses were first isolated by McKinsey (1943), who noted several of
their key properties; see Hodges (1993a) for a detailed study of their logical
features. The use of theorem-provers for question-answering and problem-
solving goes back to Green (1969). Languages like Absys (Elcock 1991) and
the first version of Prolog (Colmerauer, Kanoi, Roussel and Pasero 1973),
which we now think of as logic programming languages, were developed
before the idea of logic programming in its general sense was thoroughly
articulated, e.g. by Hayes (1973) and Kowalski (1974). There are numerous
books on Prolog programming, e.g. Clocksin and Mellish (1987), while Lloyd
(1984) discusses the theory behind Prolog. Two more recent and arguably
purer logic programming languages in the Prolog tradition are Gödel (Hill
and Lloyd 1994) and Mercury (Somogyi, Henderson and Conway 1994).

We have used a variety of examples in this chapter, including those from
Pelletier (1986). A large and growing selection of problems, some very hard
or even unsolved, can be found in the TPTP (‘Thousands of Problems for
Theorem Provers’) problem library (Sutcliffe and Suttner 1998). This is the
basis for the annual CASC competition between automated theorem provers,
which in recent years has usually been dominated by the Vampire system.

Exercises

3.1 Show that the ‘exists unique’ quantifier ∃! does not ‘commute with’
any other kind of quantifier, nor even with itself. For example,
∃!x.∃!y.P [x, y] is not in general logically equivalent to ∃!y.∃!x.P [x, y].

3.2 Modify the parser for first-order terms so that -x^n parses as -(x^n).
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3.3 Modify the basic syntax of first-order formulas to include a new quan-
tifier ‘existsunique’ (traditional logic syntax ∃! for ‘there exists a
unique...’). Modify the canonical form operations so that it is elimi-
nated using an equivalent such as (∃!x.P [x]) = (∃x.P [x]∧∀y.P [y] ⇒
y = x).

3.4 Show how to construct, for every first-order formula p, another for-
mula p∗ in prenex normal form with all the universal formulas pre-
ceding the existential ones (i.e. of the form ∀x1, . . . , xn.∃y1, . . . , ym.q

with q quantifier-free) such that p∗ is satisfiable iff p is. You may find
it helpful to consider introducing new predicate symbols to denote
quantified subformulas by analogy with definitional CNF in proposi-
tional logic, e.g. ∀x y.R(x, y) ⇔ ∃w.P [w, x, y] or ∀x y z.R(x, y, z) ⇔
∀w. P [w, x, y, z]. Show also that one may make p∗ free of function
symbols by replacing each function with a new predicate symbol with
an additional hypothesis ∀x.∃!y.R(x, y). This is often called Skolem
normal form (Skolem 1920). Implement a function to perform the
translation into Skolem NF, and test it on some examples.

3.5 We noted that the original Davis–Putnam procedure often examines
many useless instances of the formula before arriving at a refutation,
and that we could filter out many redundant ones using dp refine.
Is the result guaranteed to be minimal in the sense that no smaller
number of ground instances gives a propositional contradiction? Are
unification-based methods guaranteed to be minimal in this sense?
Find a proof or counterexample.

3.6 Show that if two instantiations σ and τ each only affect finitely
many variables, then σ ≤ τ and τ ≤ σ together imply that there
is an instantiation δ with τ = δ ◦ σ that maps distinct variables to
distinct variables. Deduce that most general unifiers are unique up
to renaming. Show, however, that this fails if we allow instantiations
to affect infinitely many variables.

3.7 Show that the ‘≤’ ordering on instantiations defines a lattice struc-
ture where unification can be used to find least upper bounds. Imple-
ment an algorithm for ‘anti-unification’, i.e. finding greatest lower
bounds. What is the intuitive significance of these GLBs?

3.8 The tableau prover attempted to close each branch in various ways,
effectively enumerating them by backtracking. An alternative to back-
tracking would be for each branch to return the set of all possi-
ble unifiers closing that branch, and at each branch-point, perform
an appropriate ‘intersection’ operation on the sets of unifiers. Of
course, it is still necessary to consider multiple instances of universal
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formulas. Fill in the details of this idea and implement it; it may
help to consult Giese (2001). How does performance compare with
backtracking tableaux?

3.9 In the tableau prover, instead of Skolemizing at the start, we could
introduce a new tableau rule to deal with existential formulas by
transforming a formula ∃x. P [x] on the current branch into P [c],
where c is a new constant symbol. Work out such an approach that
maintains soundness and refutation completeness and implement it.
How does performance compare with the pre-Skolemizing version?
This exercise is non-trivial since one needs to keep track of variable
dependencies in a way that Skolemization does automatically; see
Section 6.8.

3.10 In the ‘given clause algorithm’ (the main loop of resolution), we
added the given clause cls to the used list before forming all resol-
vents of the used list with the given clause. This implies that each
given clause is resolved with itself. Can you prove whether this is
actually necessary? Does avoiding self-resolution significantly affect
efficiency on any interesting problems?

3.11 Implement (a) linear resolution and (b) hyperresolution, and test
them on some problems.

3.12 A unit clause P can be used to simplify any clause of the form
¬P ′ ∨ Q, with P ′ an instance of P , to Q (this can be seen as a
first-order generalization of the Davis–Putnam 1-literal rule). The
unit deletion feature of Otter can perform this kind of simplification.
Incorporate this into the main resolution loop and test its effective-
ness on some problems. Can you guarantee that this feature will not
destroy refutation completeness?

3.13 Recall that a clause C properly subsumes a clause C ′ if C ≤ss C ′ and
C ′ �≤ss C. Show that the ‘properly subsumes’ relation is wellfounded.

3.14 Horn clauses also have special features from the point of view of effi-
ciency of deduction. Implement an algorithm to decide propositional
satisfiability of a set of Horn clauses in linear time in the size of the
input.

3.15 The ‘Towers of Hanoi’ puzzle (invented by Edouard Lucas in 1883
writing under the pen-name N. Lucas de Siam) consists of n discs
all of different sizes and three pegs. Initially all discs are on the
leftmost peg with the discs arranged in order of size, the largest at
the bottom and the smallest at the top. One is permitted at each
stage to move the topmost disc on any peg onto the top of another
peg, subject to the restriction that a disc may never be placed on top
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of a smaller one. The objective is to finish a sequence of moves with
all the n discs on the right-hand peg. Express these constraints as a
set of Horn clauses and use Prolog to find a solution for particular
n. You might like to start with n = 3. Arrange your Prolog program
so that it finds the shortest solution. How does the number of moves
necessary change with n? Could you predict this theoretically?

3.16 We argued in Section 3.13 that the set of all the all-negative clauses
as the initial set of support retains refutation completeness. Is it true
that at least one of the all-negative clauses must be a refutation-
complete set of support in itself?

3.17 A clause is said to be provable by input resolution if it has a resolution
proof in which at least one hypothesis in each resolution step is an
input clause. (This is close to linear resolution but without ancestor
steps.) A clause is said to be provable by unit resolution if it has a
resolution proof in which at least one hypothesis in each resolution
step is (possibly after factoring) a unit clause. Give counterexamples
to show that neither input nor unit resolution is refutation complete.
Prove in fact that the two are refutation equivalent, in the sense that
there is an input refutation of a set of clauses S iff there is a unit
refutation (Chang 1970). Is it true more generally that an arbitrary
clause C is derivable by input resolution iff it is derivable by unit
resolution?

3.18 Given the equivalent power of unit and input resolution
(Exercise 3.17), show that both are refutation complete for Horn
clauses. Show moreover that a partial converse holds: if a set of
ground clauses has a unit or input refutation, then it has an unsat-
isfiable subset that can be made Horn by renaming as discussed
at the start of Section 3.15, but this is not in general the case for
non-ground clauses (Henschen and Wos 1974). For a more efficient
algorithm for testing Horn renamability of clauses, see Lewis (1978).

3.19 In our resolution rule, with factoring included, possible factorings of
both clauses were examined. Show, however, that it is only necessary
to apply factoring to one of the input clauses to retain refutation
completeness (Noll 1980). Does this affect efficiency on examples?
Does it extend to all the refinements we have considered?

3.20 Modify meson so that it avoids repeated attempts to solve the same
set of subgoals with the same set of instantiations that has already
failed before, unless there is a larger size limit available. Show that
this optimization greatly increases efficiency on many problems, in
particular the Steamroller (Pelletier 1986 p47).
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3.21 Modify meson so that it performs iterative deepening based on the
maximum height of the proof tree. How does efficiency compare with
the total size bound over a range of problems?

3.22 Prove that refutation completeness of meson is retained if only posi-
tive (or equally, only negative) ancestors are checked for unifiability
with the complement of the current goal (Plaisted 1990). Imple-
ment this ‘positive restriction’ and compare its efficiency on some
problems.

3.23 Our proof procedures usually start by first splitting up the input
formula when it can be expressed as a disjunction of closed formulas.
Show that, more generally, it is valid to refute a disjunction p∨ q by
separately refuting p and q provided p and q have no free variables
in common. Implement this and see if there are interesting examples
where it substantially improves performance. (This more powerful
splitting rule is implemented in the Vampire theorem prover.)

3.24 The Davis–Putnam affirmative–negative rule can be extended to an
analogous ‘purity principle’ for first-order logic. Show that if a set S

of clauses contains a clause C that itself contains a literal P , then if
there is no other literal N occurring in S that is unifiable with −P ,
the set S is satisfiable iff S − {C} is. Does filtering out redundant
clauses in this way have much practical impact on the difficulty of
later proof using resolution or MESON? (This purity principle was
already exploited in Robinson’s original paper on resolution.)

3.25 Consider the ‘2-inverter’ puzzle from the previous chapter (Exer-
cise 2.9). Can you use one of our first-order provers to find the solu-
tion to the problem, rather than leaving the creativity to a human
and merely confirming the correctness of the solution?
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Equality

So far, equality has been treated as just another binary predicate that may be
interpreted arbitrarily. However, the role of equality is so central that often
we only want to consider interpretations where ‘equality means equality’. The
previous logical theory and programmed proof procedures are easily modified
for the new circumstances, but there are also more efficient and specialized
ways of handling equality.

4.1 Equality axioms

In many applications of logic, particularly to mathematical reasoning, equa-
tions play a central role. We’ve partly recognized this by supporting the
usual infix notion ‘s = t’ instead of ‘= (s, t)’. Moreover, we can define vari-
ous handy syntax operations for testing if a formula is an equation and for
creating and breaking apart equations, e.g.

let is_eq = function (Atom(R("=",_))) -> true | _ -> false;;

let mk_eq s t = Atom(R("=",[s;t]));;

let dest_eq fm =
match fm with
Atom(R("=",[s;t])) -> s,t

| _ -> failwith "dest_eq: not an equation";;

let lhs eq = fst(dest_eq eq) and rhs eq = snd(dest_eq eq);;

But, logically speaking, equality has just been dealt with as an arbitrary
binary predicate; the interpretations we consider when deciding questions
of logical validity include those where ‘=’ is interpreted quite differently
from equality. In view of the claimed central role of equality, it’s natural to
investigate restricting the class of models to those where ‘equality means

235
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equality’, since it is those that we normally have in mind in, say, abstract
algebra. We call an interpretation (or model of a particular set of sentences)
normal if the equality predicate ‘=’ is interpreted as equality on its domain.

Any normal interpretation must satisfy the formulas asserting that equal-
ity is an equivalence relation, i.e. is reflexive, symmetric and transitive:

∀x. x = x,

∀x y. x = y ⇔ y = x,

∀x y z. x = y ∧ y = z ⇒ x = z,

as well as formulas asserting congruence for each n-ary function f in the
language under consideration:

∀x1 · · ·xny1 · · · yn. x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn),

and similarly for each n-ary predicate R:

∀x1 · · ·xny1 · · · yn. x1 = y1 ∧ · · · ∧ xn = yn ⇒ R(x1, . . . , xn) ⇒ R(y1, . . . , yn).

For a given set of first-order formulas Δ, we write eqaxioms(Δ) (‘the
equality axioms for Δ’) to mean the equivalence relation formulas together
with the congruence formulas for all functions f and predicates R appearing
in the formulas of Δ.

We have observed that any normal interpretation satisfies eqaxioms(Δ),
but it’s not the case that any interpretation satisfying eqaxioms(Δ) must be
normal. Consider, for example, a language with just the two binary function
symbols ‘+’ and ‘·’ and the constants 0 and 1. Interpreting all these in the
usual way in Z but equality by the relation x ≡ y (mod 2), the equality
axioms are still satisfied even though the interpretation is not normal. In
fact, no set of formulas can constrain its models to be normal, because given
any normal model, we can create a non-normal one by picking some a in the
domain, adding arbitrarily many additional elements bi ∈ B and interpreting
all the bi in the same way as a. Despite this, we do have the following key
result.

Theorem 4.1 Any set Δ of first-order formulas has a normal model if and
only if the set Δ ∪ eqaxioms(Δ) has a model.

Proof One direction is easy: if M is a normal interpretation, it is clear
that eqaxioms(Δ) holds in it; thus in any normal model of Δ, so does
Δ ∪ eqaxioms(Δ).



4.1 Equality axioms 237

Conversely, suppose that Δ ∪ eqaxioms(Δ) has a model M . Define a
relation ‘∼’ on the domain D of M by setting a ∼ b precisely when =M (a, b),
i.e. when a and b are ‘equal’ according to the interpretation =M . Because
the equivalence axioms hold in M , this is an equivalence relation, so we
can partition D into equivalence classes where each a ∈ D belongs to the
equivalence class:

[a] = {b | b ∼ a}
and [a] = [b] iff a ∼ b. We will use the set D′ = {[a] | a ∈ D} of equivalence
classes as the domain of a new model M ′, and interpret each n-ary function
symbol f as follows:

fM ′([a1], . . . , [an]) = [fM (a1, . . . , an)].

Note that this is well-defined, i.e. independent of the particular repre-
sentative of each equivalence class, because if a′i ∼ ai for i = 1, . . . , n, we
also have fM (a′1, . . . , a′n) ∼ fM (a1, . . . , an) precisely because the functional
congruence axiom holds in M . Similarly, we interpret each n-ary predicate
symbol R by RM ′([a1], . . . , [an]) = RM (a1, . . . , an). Once again, this is inde-
pendent of the particular choice of equivalence class representatives because
the predicate congruence holds in M .

In particular we have =M ′ ([a], [b]) precisely when a ∼ b and so when
[a] = [b]. Thus M ′ is a normal interpretation. To see that it satisfies all the
formulas in Δ, we essentially need to show that we can ‘pull’ the equivalence-
class forming operation up the semantics of a formula. Note first that:

termval M ′ δ′ t = [termval M δ t],

where δ′(x) = [δ(x)] for all variables x. To prove this, simply proceed by
structural induction on t. If t is the variable x then we have

termval M ′ δ′ x

= δ′ x

= [δ(x)]

= [termval M δ x],

while if t = f(s1, . . . , sn), then using the inductive hypothesis and the defi-
nition of fM ′ we have:

termval M ′ δ′ f(s1, . . . , sn)

= fM ′(termval M ′ δ′ s1, . . . , termval M ′ δ′ sn)

= fM ′([termval M δ s1], . . . , [termval M δ sn])
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= [fM (termval M δ s1, . . . , termval M δ sn)]

= [termval M δ f(s1, . . . , sn)].

Now we claim that for any formula p we have holds M ′ δ′ p = holds M δ

p. Once again, the proof is by structural induction. This is trivial if p is ⊥
or �, while it holds by definition of RM ′ when p is an atomic formula. The
propositional operations obviously preserve this property, which leaves the
quantified formulas as the interesting case. Note that:

holds M ′ δ′ (∀x. p)

= for all A ∈ D′, holds M ′ ((x �→ A)δ′) p

= for all a ∈ D, holds M ′ ((x �→ [a])δ′) p

= for all a ∈ D, holds M ′ ((x �→ a)δ)′ p

= for all a ∈ D, holds M ((x �→ a)δ) p

= holds M δ (∀x. p),

and similarly for the existential quantifier. Thus, since each p ∈ Δ holds
in M in all valuations δ, it also holds in M ′ for all valuations ε, since ε is
necessarily of the form δ′ for some valuation δ in M (just let δ(x) be any
member of ε(x)).

In our practical applications, we will be concerned with a single formula.
Define eqaxiom(p) to be the conjunction of the (necessarily finitely many)
equality axioms eqaxioms({p}). Then:

Corollary 4.2 Any formula p is satisfiable in a normal model iff p ∧
eqaxiom(p) is satisfiable.

Proof By definition of the semantics of conjunction, an interpretation sat-
isfies p ∧ eqaxiom(p) iff it satisfies p and eqaxiom({p}).
We have the following dual result for validity.

Corollary 4.3 A formula p holds in all normal models iff eqaxiom(p) ⇒ p

holds in all models.

Proof Since p holds in a model iff its universal closure does, we can assume
without loss of generality that p is closed. Thus it holds in all normal models
iff ¬p has no normal model, and so if ¬p ∧ eqaxiom(¬p) has no model. But
eqaxiom(¬p) = eqaxiom(p) and so ¬p∧ eqaxiom(¬p) is logically equivalent
to ¬(p∨¬(eqaxiom(p))) and so to ¬(eqaxiom(p) ⇒ p). This is unsatisfiable
iff eqaxiom(p) ⇒ p is valid.
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In the abstract treatment above, the equality axioms included a predicate
congruence property for equality itself:

∀x1 x2 y1 y2. x1 = y1 ∧ x2 = y2 ⇒ x1 = x2 ⇒ y1 = y2.

But we can afford to omit it, because it’s a logical consequence of the
equivalence axioms. We can economize further by using only two equivalence
axioms, reflexivity and a variant of transitivity ∀x y z.x = y∧x = z ⇒ y = z.
(Symmetry follows by instantiating that axiom so that x and z are the same,
then using reflexivity.)

OCaml implementation

In Skolemization we used functions to find all the functions in a term;
similarly the following finds all predicates, again as name–arity pairs:

let rec predicates fm = atom_union (fun (R(p,a)) -> [p,length a]) fm;;

We can manufacture a congruence axiom for each function symbol by
producing the appropriate number of arguments x1, . . . , xn and y1, . . . , yn

and constructing the formula

∀x1 . . . xn y1 . . . yn.x1 = y1 ∧ · · ·xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn).

We return a list that normally has one member but is empty in the case
of a nullary function (i.e. individual constant):

let function_congruence (f,n) =
if n = 0 then [] else
let argnames_x = map (fun n -> "x"^(string_of_int n)) (1 -- n)
and argnames_y = map (fun n -> "y"^(string_of_int n)) (1 -- n) in
let args_x = map (fun x -> Var x) argnames_x
and args_y = map (fun x -> Var x) argnames_y in
let ant = end_itlist mk_and (map2 mk_eq args_x args_y)
and con = mk_eq (Fn(f,args_x)) (Fn(f,args_y)) in
[itlist mk_forall (argnames_x @ argnames_y) (Imp(ant,con))];;

for example:

# function_congruence ("f",3);;
- : fol formula list =
[<<forall x1 x2 x3 y1 y2 y3.

x1 = y1 /\ x2 = y2 /\ x3 = y3 ==> f(x1,x2,x3) = f(y1,y2,y3)>>]
# function_congruence ("+",2);;
- : fol formula list =
[<<forall x1 x2 y1 y2. x1 = y1 /\ x2 = y2 ==> x1 + x2 = y1 + y2>>]
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An analogous function for predicates is almost the same, except that we
use implication of formulas rather than equality of terms in the consequent:

let predicate_congruence (p,n) =
if n = 0 then [] else
let argnames_x = map (fun n -> "x"^(string_of_int n)) (1 -- n)
and argnames_y = map (fun n -> "y"^(string_of_int n)) (1 -- n) in
let args_x = map (fun x -> Var x) argnames_x
and args_y = map (fun x -> Var x) argnames_y in
let ant = end_itlist mk_and (map2 mk_eq args_x args_y)
and con = Imp(Atom(R(p,args_x)),Atom(R(p,args_y))) in
[itlist mk_forall (argnames_x @ argnames_y) (Imp(ant,con))];;

As planned, we use this variant of the equivalence properties:

let equivalence_axioms =
[<<forall x. x = x>>; <<forall x y z. x = y /\ x = z ==> y = z>>];;

Now we define a function that returns eqaxiom(p) ⇒ p for an input for-
mula p. It leaves p alone if it doesn’t involve equality at all, since there is
then no distinction between its normal and non-normal models.

let equalitize fm =
let allpreds = predicates fm in
if not (mem ("=",2) allpreds) then fm else
let preds = subtract allpreds ["=",2] and funcs = functions fm in
let axioms = itlist (union ** function_congruence) funcs

(itlist (union ** predicate_congruence) preds
equivalence_axioms) in

Imp(end_itlist mk_and axioms,fm);;

The upshot of Corollary 4.3 is that we can test the validity of p in first-
order logic with equality by testing the validity of equalitize(p) in ordinary
first-order logic. Thus, we can just apply equalitize as a preprocessing
step for any of our existing proof procedures. Note, by the way, that we
will avoid creating congruence axioms for the Skolem functions, which only
appear later in the underlying proof procedure. It’s hard to predict whether
it would be more efficient to add congruences for Skolem functions: it means
more hypotheses, but perhaps allows shortcuts in proofs. Observe also that
the equality axioms are Horn clauses (Section 3.14), so whenever Δ is a set
of Horn clauses, so is Δ∪eqaxioms(Δ). Thus, we can also extend the Prolog-
like proof procedure hornprove from Section 3.14 to a complete prover for
Horn problems in logic with equality just by adding the equality axioms in a
preprocessing step in the same way. And since meson reduces to Prolog-type
search on Horn problems, it will continue to do so when combined with the
preprocessing step.
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For a first example, consider the following formula given by Dijkstra
(1997), who shows how its validity underlies a proof of Morley’s theorem
in geometry.

# let ewd = equalitize
<<(forall x. f(x) ==> g(x)) /\
(exists x. f(x)) /\
(forall x y. g(x) /\ g(y) ==> x = y)
==> forall y. g(y) ==> f(y)>>;;

...

We can prove it by any of the main methods developed earlier, including
model elimination, resolution and even tableaux with splitting, e.g.

# meson ewd;;
...
- : int list = [6]

We thus conclude that the original formula is valid in first-order logic with
equality, i.e. holds in all normal models. Another example, which the author
learned from Wishnu Prasetya,† is that for any two functions f : A → B

and g : B → A there is a unique x such that x = f(g(x)) iff there is a unique
y such that y = g(f(y)).

let wishnu = equalitize
<<(exists x. x = f(g(x)) /\ forall x’. x’ = f(g(x’)) ==> x = x’) <=>
(exists y. y = g(f(y)) /\ forall y’. y’ = g(f(y’)) ==> y = y’)>>;;

The resulting formula is solvable by MESON, but already it takes a sig-
nificant amount of time. So, although just adding equality axioms allows us
to re-use existing procedures, one might wonder if there are more effective
ways of dealing with equality. This is a matter to which we will return before
too long.

4.2 Categoricity and elementary equivalence

Thanks to Theorem 4.1, the theoretical results in Chapter 3 can also be
adapted quite easily to consider only normal models. Arguably, they are
more interesting in this context, since it is usually normal models we have
in mind when thinking about mathematical structures. In fact, many of the
structures studied in abstract algebra are precisely the normal models of
some first-order formula or set of first-order formulas. For example, a group

† See his message to the info-hol mailing list on 18 October 1993, available on the Web as
ftp://ftp.cl.cam.ac.uk/.aftp/hvg/info-hol-archive/15xx/1574.
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is essentially just a normal model of the following formula:

(∀x y z. m(x, m(y, z)) = m(m(x, y), z)) ∧
(∀x. m(x, 1) = x ∧ m(1, x) = x) ∧
(∀x. m(x, i(x)) = 1 ∧ m(i(x), x) = 1).

It’s not difficult to come up with similar axiomatizations for many other
structures such as partial orders and rings. Thus, in the model theory of
first-order logic, we have a suitable mathematical generalization taking in
various specific mathematical structures. This enables us to define notions
like ‘substructure’ and ‘homomorphism’, such that for example ‘subgroup’
and ‘ring homomorphism’ are special cases of the general concept. We give
the general definition of ‘isomorphism’ shortly,† and starting in Section 5.6
we will take a closer look at various algebraic systems.

Metatheorems

First, we can easily adapt the compactness theorem to logic with equality.

Theorem 4.4 If every finite subset Δ of a set Σ of formulas has a normal
model, then Σ itself has a normal model.

Proof If each finite Δ ⊆ Σ has a normal model, then each Δ∪eqaxioms(Δ)
for finite Δ has a model. However, every finite Δ′ ⊆ Σ ∪ eqaxioms(Σ) is a
subset of some such Δ ∪ eqaxioms(Δ) for finite Δ, and consequently each
finite Δ′ ⊆ Σ ∪ eqaxioms(Σ) has a model. By the compactness theorem for
arbitrary models, Σ∪ eqaxioms(Σ) has a model and therefore, by Theorem
4.1, Σ has a normal model.

The equalitarian version of the downward Löwenheim–Skolem theorem
can be derived similarly.

Theorem 4.5 If a countable set of formulas Σ has a normal model M , then
it has a countable (either finite or countably infinite) normal model.

Proof If Σ has a normal model, Σ ∪ eqaxioms(Σ) has a model, and so by
the original downward LS Theorem 3.49, it has a model with a countable
domain D. The corresponding normal model of Σ that we constructed in the
† There is actually some divergence in general definitions of homomorphism, with two standard

texts by Enderton (1972) and Mendelson (1987) differing over whether just implication or full
equivalence is demanded between interpreted predicates. Also, note that in general these con-
cepts can depend on whether the axioms contain operation symbols or just existence assertions
(Hodges 1993b).
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proof of Theorem 4.1 has as its domain equivalence classes of elements of D.
The cardinality of this set of equivalence classes is at most the cardinality
of D (since each equivalence class contains at least one element of D) and
so is countable too.

Constructing larger models than a given model is no longer trivial, because
we can’t just add new domain elements and retain normality. However, by
cleverly exploiting compactness, we can still find a way to grow models. For
example:

Theorem 4.6 If a set of sentences S has normal models of arbitrarily large
finite cardinality, then it has an infinite normal model.

Proof Consider the following sentences Bi, which intuitively mean ‘there
are at least i distinct elements’.

B2 = ∃x y. x �= y,

B3 = ∃x y z. x �= y ∧ x �= z ∧ y �= z,

B4 = ∃w x y z. w �= x ∧ w �= y ∧ w �= z ∧ x �= y ∧ x �= z ∧ y �= z,

B5 = . . .

Write B =
⋃

i∈N Bi. Since, by hypothesis, S has models of arbitrarily
large finite cardinality, all finite subsets of S ∪ B are satisfiable. Therefore
by compactness so is S ∪ B, but clearly any model of these sentences must
be infinite.

Using a closely related technique, one can prove the upward Löwenheim–
Skolem theorem (actually due to Tarski), analogous to Theorem 3.50 but
much more interesting: if a set of formulas Σ has a normal model with infinite
domain D, then it has a model of any infinite cardinality ≥ |D|. The proof
is simply to add enough new constants ci that do not already occur in Σ,
and apply compactness to the set Σ ∪ {ci �= cj | i, j ∈ S, i �= j}. However,
we will not present this in detail since we have not proved compactness
for uncountable languages. Indeed, the upward Löwenheim–Skolem theorem
requires the machinery of the Axiom of Choice.†

We will, however, give an example of how to construct ‘nonstandard’
models using compactness. Consider some language for the real numbers,
maybe including addition, multiplication, negation, inversion, the constants
† The formula ∀x y x′ y′. p(x, y) = p(x′, y′) ⇒ x = x′ ∧ y = y′ has a model with domain N,

e.g. interpreting p as the pairing function 〈x, y〉 in Section 7.2. The upward LS theorem then
implies that this has models of arbitrary infinite cardinality, and hence that κ2 ≤ κ for any
infinite κ. This is known to be equivalent to AC (Jech 1973).
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0 and 1, and special functions like sin. Let Σ be the set of all formulas in
this language that are true in R with the intended interpretation, a.k.a. the
‘standard model’, Consider the set:

Σ′ = Σ ∪ {1 < c, 1 + 1 < c, 1 + 1 + 1 < c, . . .},
where c is a constant symbol not appearing in Σ. Any finite set of these has
a model, for the reals are a model of Σ and we can then interpret c by some
suitably large number. Thus by compactness there is a ‘nonstandard model’
of Σ in which c behaves like an infinite number, with n < c for each natural
number n. Indeed, this gives rise to other larger infinite numbers like c + c

and infinitesimal numbers like 1/c (despite the fact that we can also, by the
Downward Löwenheim–Skolem theorem, assume it to be countable). Yet this
strange menagerie of numbers obeys all the first-order properties that the
‘real reals’ do. This observation is a possible starting point for non-standard
analysis (A. Robinson 1966) which exploits nonstandard models to prove
standard results using infinite and infinitesimal elements. For more on this,
see Cutland (1988), Davis (1977) or Hurd and Loeb (1985).

Consequences

In the axiomatic approach to mathematics, one starts from a set of axioms
and derives conclusions without making any additional assumptions. If we
are concerned with properties expressible in first-order logic, we might for-
malize this idea by allowing from axioms Σ the deduction of any first-
order consequence of the axioms Σ. We will sometimes abbreviate the set
{p | Σ |= p} of first-order consequences of a set of first-order ‘axioms’ Σ by
Cn(Σ).

Part of the appeal of the axiomatic method is that it isolates the assump-
tions that are actually necessary, so that the full generality of the results is
seen. For this to be significant, we actually want Σ to have several interesting
models. For example, the group axioms are satisfied by addition of integers
or reals, multiplication of nonzero reals, composition of permutations on a
set and so on. Sometimes, however, we want to use a set of axioms almost
as a definition of a particular structure, such that all structures obeying the
axioms are essentially the same. In fact, this use of axioms predated the
general idea of the axiomatic method. For example, it used to be believed
that the traditional axioms for geometry (without the axioms of parallels)
had this property, but it later turned out that there were unexpected non-
Euclidean models.

Given two interpretations M and M ′ of a first-order language with
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respective domains D and D′, we say that M and M ′ are isomorphic if
there are mappings i : D → D′ and j : D′ → D such that for all x ∈ D,
j(i(x)) = x, for all x′ ∈ D′, i(j(x′)) = x′, for each n-ary function symbol f

in the language:

i(fM (a1, . . . , an)) = fM ′(i(a1), . . . , i(an))

and for each n-ary predicate symbol

RM (a1, . . . , an) = RM ′(i(a1), . . . , i(an))

for any a1, . . . , an ∈ D. The functions i and j are said to set up an isomor-
phism, or sometimes themselves to be isomorphisms. Intuitively, isomorphic
interpretations are ‘essentially the same’ but for using a different underlying
set, and indeed the word literally means something like ‘equal shape’. A
set of formulas (or ‘axioms’) Σ is said to be categorical if any two models
are isomorphic. (One usually assumes also that it has at least one model.)
The Löwenheim–Skolem theorems imply that if a set of first-order formulas
has some infinite model, it has models of a different cardinality, which are
therefore certainly not isomorphic (since an isomorphism is also a bijection).
Thus, for first-order formulas, categoricity only arises for sets of formulas
with just finite models, which are often the less interesting ones.

However there are at least two natural ways in which we can weaken the
idea of categoricity. First, we might say that even though the cardinality
of models of Σ may not be fixed, at least all models of some particular
cardinality κ are determined up to isomorphism. In this case Σ is said to
be κ-categorical. A number of interesting instances of this phenomenon are
known, many predating the formal articulation of the concept using first-
order logic. For example, Steinitz (1910) proved that any two algebraically
closed fields of a given characteristic with the same uncountable cardinality
are isomorphic. However, we will not dwell on the theory of κ-categoricity
here.

Another idea is to say that since Σ consists only of first-order statements,
it’s unreasonable to expect to be able to prove that all its models are iso-
morphic. It’s much more reasonable just to demand that all models satisfy
the same first-order sentences, i.e. are all elementarily equivalent. (It’s not
too hard to show that isomorphic models are also elementarily equivalent,
though the example of nonstandard models shows that the converse is false
in general.) This is essentially the notion of completeness of a theory, which
we study in detail in Section 5.6.
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4.3 Equational logic and completeness theorems

Consider purely equational logic, where we start from a set Δ of (implicitly
universally quantified) equations and ask whether another equation s = t

holds in all normal models of Δ, i.e. whether Δ |= s = t in first-order logic
with equality. A famous theorem due to Birkhoff (1935) relates this to a set
of proof rules or inference rules for generating equational conclusions. Given
a set of equations Δ we define ‘s = t is provable from Δ’, written Δ � s = t,
inductively (see Appendix 1) by the following rules:

(s = t) ∈ Δ
Δ � s = t

AXIOM

Δ � s = t

Δ � subst i(s = t)
INST

Δ � t = t
REFL

Δ � s = t

Δ � t = s
SYM

Δ � s = t Δ � t = u

Δ � s = u
TRANS

Δ � s1 = t1 ... Δ � sn = tn
Δ � f(s1, ..., sn) = f(t1, ..., tn)

CONG

Theorem 4.7 Δ |= s = t, i.e. an equation s = t holds in all normal models
of a set Δ of equations, if and only if Δ � s = t, i.e. the equation s = t is
derivable from Δ by repeated use of Birkhoff’s rules.

Proof We first consider the right-to-left direction. Note that each proof
rule applied to logically valid hypotheses gives logically valid conclusions;
for example for transitivity we just need to observe that if Δ |= s = t and
Δ |= t = u then also Δ |= s = u. So by induction, whenever Δ � s = t we
also have Δ |= s = t in first-order logic with equality.

Conversely, if Δ |= s = t, then Δ′ = Δ ∪ ¬(s = t) has no normal model,
and therefore Δ′ ∪ eqaxioms(Δ′) is unsatisfiable. As noted earlier, all these
formulas are Horn clauses, so there is a Prolog-style proof of ⊥ from them,
as explained in Section 3.14. This must start with the formula s = t ⇒ ⊥
to get the subgoal s = t, and thereafter divide into subgoals ending either
in instances of reflexivity or (possibly instantiation of) formulas in Δ. The
internal nodes simply apply transitivity, symmetry and congruence. They
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therefore correspond exactly to Birkhoff’s rules; all we have done is consider
instances of the equality axioms as inference rules in themselves.

This vindicates a naive expectation that if one equational formula is a
logical consequence of others, one can get it by rewriting forwards, back-
wards and at depth, the kind of manipulative techniques we learn at school.
Birkhoff originally approached the problem more directly, and later Maltsev
(1936) and others realized that many of the nice properties of equational
logic discovered by Birkhoff still hold in the more general setting of Horn
clauses.

Soundness and completeness

Birkhoff’s theorem is an important case where a semantic notion Δ |= s = t

is shown equivalent to a syntactic notion Δ � s = t of ‘provability’. In
general, we say that such a provability relation ‘�’ is:

• sound if whenever Δ � p we also have Δ |= p;
• complete if whenever Δ |= p we also have Δ � p.

Birkhoff’s theorem asserts that the rules above are both sound and com-
plete provided we restrict ourselves just to equations. They are definitely
incomplete if we consider first-order formulas in general, however, since they
can only deduce equational conclusions. We can also consider the resolution
rule from Section 3.11 as defining a proof system. However, the reader should
register an important mathematical distinction and another, purely psycho-
logical, one.

Completeness and refutation completeness Birkhoff’s theorem
assures us that any equation that holds semantically can be derived syn-
tactically. This is in contrast with, say, the resolution calculus, where we
merely showed that if a set of clauses is unsatisfiable, we can derive the
empty clause from it. This implies Δ |= p iff Δ � p only for the special case
p = ⊥, a property we called refutation completeness. As noted in Section
3.11, the example of P |= P ∨ Q shows that resolution is not complete in
the stronger sense.

Naturalness As mentioned earlier, Birkhoff’s theorem confirms our natu-
ral intuition and the Birkhoff rules formalize steps that a human attempting
to prove the same theorem might make. By contrast, the resolution calculus,
which J.A. Robinson (1965b) explicitly categorized as a machine-oriented
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principle, is remote from the methods people typically use when proving
theorems, with its Skolemizing steps and insistence on clausal form.†

We will describe a more human-oriented proof system that is complete for
full first-order logic in Section 6.3.

The difficulty of equational proofs

Although in some respects equational logic has turned out to be ‘tamer’
than full first-order logic, there is a precise sense in which it is just as dif-
ficult, by virtue of an embedding of full first-order logic in equational logic
due to McKenzie (1975).‡ Indeed, the reader with any experience of finding
equational proofs in relatively simple axiom systems will know that it can
be astonishingly difficult (Kapur and Zhang 1991). For example, the follow-
ing problem is often set as an exercise in courses on group theory. We are
given ‘1-sided’ versions of the identity and inverse axioms, and are required
to deduce that left inverses are also right inverses. Our existing setup for
equality handling can solve this problem, but it takes many hours; a more
efficient approach is discussed in Section 4.8.

(meson ** equalitize)
<<(forall x y z. x * (y * z) = (x * y) * z) /\
(forall x. 1 * x = x) /\
(forall x. i(x) * x = 1)
==> forall x. x * i(x) = 1>>;;

The reader may like to try competing against the machine! Here is a
reasonably human-oriented proof:

x · i(x) = 1 · (x · i(x))

= (i(i(x)) · i(x)) · (x · i(x))

= i(i(x)) · (i(x) · (x · i(x)))

= i(i(x)) · ((i(x) · x) · i(x))

= i(i(x)) · (1 · i(x))

= i(i(x)) · i(x)

= 1.

We found this by tracing the proof MESON found, and rearranging the
order of some of the Birkhoff rules to turn it into a simple transitivity chain
for easier presentation in a linear format. In fact, Birkhoff proofs in some
† Note, however, the suggestion of A. Robinson (1957) that Skolem functions have their analogue

in construction lines used in traditional geometrical proofs.
‡ On the other hand, an embedding of first-order logic in the theory of Boolean rings was actually

suggested by Hsiang (1985) as a workable approach to first-order proof.
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stronger canonical form can be easier to find, just as, say, linear resolu-
tion can cut down the search space compared to unrestricted resolution
(Section 3.13). And some of the results we present next can be proved using
canonical transformations of Birkhoff proofs (Exercise 4.2).

4.4 Congruence closure

Consider equational logic in the special case of ground terms, i.e. deciding
E |= s = t where s = t and all members of E are equations not containing
variables. In the light of Birkhoff’s Theorem 4.7, this is equivalent to E �
s = t. But since no variables are involved, the Birkhoff instantiation rule is
clearly not necessary. The highlight of this section is the observation that we
can further restrict the Birkhoff proofs to those where all terms appearing
in intermediate equations are subterms of the terms in the original problem,
which implies that the problem is decidable.

In what follows, we assume some set G of terms that is closed under
subterms, i.e. if t ∈ G and s is a subterm of t then s ∈ G. The following can
serve as the implementation and the formal definition of the set of subterms
of a term:

let rec subterms tm =
match tm with
Fn(f,args) -> itlist (union ** subterms) args [tm]

| _ -> [tm];;

We say that a binary relation ∼ on G is a congruence if it is reflexive,
symmetric and transitive (i.e. an equivalence relation) and satisfies the con-
gruence property: for each n-ary function symbol f , if s1 ∼ t1, . . . , sn ∼ tn
then also f(s1, . . . , sn) ∼ f(t1, . . . , tn), whenever all those terms are in G.
Note that given any binary relation R ⊆ G × G there is a unique smallest
congruence extending R, and this is known as the congruence closure of R. It
can be defined inductively (see Appendix 1) by starting with R and adding
rules for closure under the equivalence and congruence properties.

Theorem 4.8 Suppose all si, ti, s and t are ground terms, and G consists
of those terms and all their subterms. Let ‘∼’ be the congruence closure on
G of {(s1, t1), . . . , (sn, tn)}. Then the following are equivalent:

(i) {s1 = t1, . . . , sn = tn} |= s = t;
(ii) s ∼ t;
(iii) there is a Birkhoff proof of s = t from s1 = t1, . . . , sn = tn whose

intermediate steps involve only terms in G;
(iv) {s1 = t1, . . . , sn = tn} � s = t.
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Proof By Birkhoff’s Theorem 4.7, (i) and (iv) are equivalent. If (iii) then
(iv), since it is just a more restricted case of the same thing. If (ii) then
(iii), since the set of pairs (s, t) that have a restricted Birkhoff proof from
s1 = t1, . . . , sn = tn contains {(s1, t1), . . . , (sn, tn)} and is closed under
equivalence and congruence because of the Birkhoff rules, and therefore must
include the smallest such relation ‘∼’. To complete the circle of equivalents,
we need to show that (ii) follows from (i).

In fact we show the contrapositive, assuming s �∼ t and exhibiting an inter-
pretation M where each si = ti holds but s = t does not. The domain of M

is the set of equivalence classes of G under ‘∼’. Each constant c is interpreted
by itself. An n-ary function f for n ≥ 1 is interpreted as fM (C1, . . . , Cn) = C,
where C is the equivalence class containing f(u1, . . . , un) for some represen-
tatives ui ∈ Ci if such a class exists, and some fixed but arbitrary equiva-
lence class otherwise. (There may indeed be no such C containing a suitable
f(u1, . . . , un), because we are restricted to terms in G, but if there is one, it
is uniquely defined independent of the representatives ui, precisely because
∼ is a congruence.) This is indeed a (normal) interpretation, and by induc-
tion on terms termval M σ u ∼ u for all u ∈ G. Therefore for all u, v ∈ G,
holds M σ (u = v) is equivalent to u ∼ v. Consequently each si = ti holds
in M but not s = t, so {s1 = t1, . . . , sn = tn} �|= s = t as required.

Implementation of congruence closure

Our implementation of congruence closure will take an existing congruence
relation and extend it to a new one including a given equivalence s ∼ t.
This can then be iterated starting with the empty congruence to find the
congruence closure of {(s1, t1), . . . , (sn, tn)} as required. We will use a stan-
dard union-find data structure described in Appendix 2 to represent equiv-
alences, so closure under the equivalence properties will be automatic and
we’ll just have to pay attention to closure under congruences. So suppose
we have an existing congruence ∼ and we want to extend it to a new one
∼′ such that s ∼′ t. We need to merge the corresponding equivalence classes
[s] and [t], and may also need to merge others such as [f(s, t, f(s, s))] and
[f(t, t, f(s, t))] to maintain the congruence property. We can test whether
two terms ‘should be’ equated by a 1-step congruence by checking if all their
immediate subterms are already equivalent:

let congruent eqv (s,t) =
match (s,t) with
Fn(f,a1),Fn(g,a2) -> f = g & forall2 (equivalent eqv) a1 a2

| _ -> false;;
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For the main algorithm, as well as the equivalence relation itself, eqv, we
maintain a ‘predecessor function’ pfn mapping each canonical representative
s of an equivalence class C to the set of terms of which some s′ ∈ C is an
immediate subterm. We can then direct our attention at the appropriate
terms each time equivalence classes are merged. It is this (eqv,pfn) pair
that is updated by the following emerge operation for a new equivalence
s ∼ t.

First we normalize s → s′ and t → t′ based on the current equivalence
relation, and if they are already equated, we need do no more. Otherwise
we obtain the sets of predecessors, sp and tp, of the two terms. We update
the equivalence relation to eqv’ to take account of the new equation, and
combine the predecessor sets to update the predecessor function to pfn’
(mapped from the new canonical representative st’ in the new equivalence
relation). Then we run over all pairs from sp and tp, recursively performing
an emerge operation on terms that should become equated as a result of a
single congruence step.

let rec emerge (s,t) (eqv,pfn) =
let s’ = canonize eqv s and t’ = canonize eqv t in
if s’ = t’ then (eqv,pfn) else
let sp = tryapplyl pfn s’ and tp = tryapplyl pfn t’ in
let eqv’ = equate (s,t) eqv in
let st’ = canonize eqv’ s’ in
let pfn’ = (st’ |-> union sp tp) pfn in
itlist (fun (u,v) (eqv,pfn) ->

if congruent eqv (u,v) then emerge (u,v) (eqv,pfn)
else eqv,pfn)

(allpairs (fun u v -> (u,v)) sp tp) (eqv’,pfn’);;

At least this algorithm must terminate, because each time it gets past the
initial s′ = t′ test it reduces the total number of equivalence classes, of which
there can only be a finite number. We need to show that if the initial eqv
is a congruence and pfn maps canonical representatives to the predecessor
sets, the resulting equivalence relation is the congruence closure of eqv and
the new equivalence s ∼ t, and pfn is correspondingly updated.

The last part is easy, since pfn is always modified in step with direct
changes in the equivalence relation from equate. As for congruence closure,
we can see that the new equivalence relation certainly includes the original
eqv, since all we do is add to it, and it also contains (s, t) because unless
these terms were already equated, the very first equate call equates them.
Moreover, because of the representation of equivalence classes, it is auto-
matically closed under equivalence properties. We only need to show that
it is also closed under congruences. Supposing otherwise, there must be two
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terms of the form f(s1, . . . , sn) and f(t1, . . . , tn) that are not equivalent,
yet each pair (si, ti) for 1 ≤ i ≤ n is. Since, by hypothesis, the initial eqv
was congruence closed, at least one of these equivalences si = ti must have
resulted from a call to equate from within emerge, and there must have been
some such equate call at which all the pairs (si, ti) became equated for the
first time. However, by construction, this would be followed by a congruence
check that would equate f(s1, . . . , sn) and f(t1, . . . , tn), a contradiction.

Equality decision procedure

We can use congruence closure to give a complete decision procedure for
validity of universal formulas ∀x1, . . . , xn. P [x1, . . . , xn] where P [x1, . . . , xn]
involves no predicates besides equality, but may involve arbitrary function
symbols. Such a formula is valid iff its negation ∃x1, . . . , xn. ¬P [x1, . . . , xn]
is unsatisfiable, and so, by Skolemization as usual, if ¬P [c1, . . . , cn] is unsat-
isfiable for new constants c1, . . . , cn. If we put ¬P [c1, . . . , cn] into DNF:

Q1[c1, . . . , cn] ∨ · · · ∨ Qk[c1, . . . , cn],

then, since no variables are involved, the whole formula is satisfiable precisely
if one of the Qi[c1, . . . , cn] is. Each such formula is just a conjunction of
equations and inequations:

s1 = t1 ∧ · · · ∧ sn = tn ∧ u1 �= v1 ∧ · · · ∧ um �= vm.

Returning to validity by negation, we need to test validity of

s1 = t1 ∧ · · · ∧ sn = tn ⇒ u1 = v1 ∨ · · · ∨ um = vm.

If m = 1, we know from Theorem 4.8 that this can be tested by forming
the congruence closure of ∼ of {(s1, t1), . . . , (sn, tn)} and testing if u1 ∼ v1.
We now observe that for general m, the formula is valid precisely if for
some 1 ≤ i ≤ m the formula s1 = t1 ∧ · · · ∧ sn = tn ⇒ ui = vi is valid,
by the convexity property for Horn clauses (Theorem 3.43), since we can
consider the problem as deduction in first-order logic without equality from
the (Horn) equality axioms and the hypotheses sk = tk. Alternatively, the
proof of Theorem 4.8 extends easily to cover this generalization.

To set up the initial ‘predecessor’ function we use the following, which
updates an existing function pfn with a new mapping for each immediate
subterm s of a term t:
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let predecessors t pfn =
match t with
Fn(f,a) -> itlist (fun s f -> (s |-> insert t (tryapplyl f s)) f)

(setify a) pfn
| _ -> pfn;;

Hence, the following tests if a list fms of ground equations and inequations
is satisfiable. This list is partitioned into equations (pos) and inequations
(neg), which are mapped into lists of pairs of terms eqps and eqns for
easier manipulation. All the left-hand and right-hand sides are collected in
lrs, and the predecessor function pfn is constructed to handle all their sub-
terms. (Note that it is only pfn that determines the overall term set.) Then
congruence closure is performed starting with the trivial equivalence rela-
tion unequal, and iteratively calling emerge over all the positive equations.
Then it is tested whether all the lefts and rights of all the negated equations
are inequivalent.

let ccsatisfiable fms =
let pos,neg = partition positive fms in
let eqps = map dest_eq pos and eqns = map (dest_eq ** negate) neg in
let lrs = map fst eqps @ map snd eqps @ map fst eqns @ map snd eqns in
let pfn = itlist predecessors (unions(map subterms lrs)) undefined in
let eqv,_ = itlist emerge eqps (unequal,pfn) in
forall (fun (l,r) -> not(equivalent eqv l r)) eqns;;

The overall decision procedure now becomes the following:

let ccvalid fm =
let fms = simpdnf(askolemize(Not(generalize fm))) in
not (exists ccsatisfiable fms);;

Let us try a few examples. In this one, the first disjunct always holds,
but we include another disjunct to show that we can deal with arbitrary
formulas.

# ccvalid <<f(f(f(f(f(c))))) = c /\ f(f(f(c))) = c
==> f(c) = c \/ f(g(c)) = g(f(c))>>;;

- : bool = true

On the other hand, the following is not valid:

# ccvalid <<f(f(f(f(c)))) = c /\ f(f(c)) = c ==> f(c) = c>>;;
- : bool = false

The congruence closure algorithm and its proof that we have presented
essentially follows Nelson and Oppen (1980). There are asymptotically faster
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algorithms for congruence closure (Downey, Sethi and Tarjan 1980), but the
Nelson–Oppen algorithm seems adequate for most typical examples. One
drawback is that we need to decide the term universe once and for all based
on the hypotheses and the goal. For some applications, it’s preferable to be
able to maintain the equivalence relation incrementally so that the relation
can be augmented with new equalities and the term universe expanded as
new goals are encountered, in which case another algorithm due to Shostak
(1978) may be preferable.

The earliest decision procedure for this problem was given by Ackermann
(1954) using a slightly different technique. He observed that matters can
be reduced to the theory of equality without functions by introducing new
variables for all subterms and adding new constraints to reflect congruence
properties. For example, given the problem f(f(f(c))) = c ∧ f(f(c)) = c ⇒
f(c) = c, we could introduce variables xk = fk(c) for 0 ≤ k ≤ 3 and consider
the problem:

(x0 = x1 ⇒ x1 = x2) ∧
(x0 = x2 ⇒ x1 = x3) ∧
(x1 = x2 ⇒ x2 = x3) ∧
⇒ x3 = x0 ∧ x2 = x0 ⇒ x1 = x0.

This Ackermann reduction can be taken still further by replacing the equa-
tions s = t between variables by propositional atoms Ps,t and adding further
constraints to reflect equivalence properties like Ps,t ∧Pt,u ⇒ Ps,u, so reduc-
ing the problem simply to propositional tautology checking (Exercise 4.4).

4.5 Rewriting

In the more general case of nonground equations, matters are no longer so
simple. In order to find a Birkhoff proof of s = t from hypotheses E, we
may have to use arbitrarily large and complex intermediate terms. However,
a lot of everyday equational reasoning is very straightforward, mostly using
equations in a predictable direction. For example, we would normally think
of using the group axiom i(x)·x = 1 left-to-right in order to make expressions
‘simpler’. It’s precisely when we have to use it backwards to make a larger
intermediate term that proofs tend to become much harder. (See the group
theory puzzle in Section 4.3 for an example.) Admittedly the definition of
what is ‘simpler’ can be subtle. For instance, in algebra we often regard
using distributive laws to transform:

(u + v)(x + y) → · · · → ux + uy + vx + vy
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as a simplification. This makes the term larger, but it does makes it easier
to perform subsequent cancellation operations. Using equations in a direc-
tional fashion like this is called rewriting, because equations are used to
‘rewrite’ one term into another.† More precisely, if t is a term, and l = r

an equation, we say that t′ results from rewriting t with l = r if t′ is t with
a subterm that is an instance of l replaced by a corresponding instance of
r. Note that a single rewriting step only transforms a single subterm. For
instance, the equation x + x = 2x can rewrite the term (a + a) + (b + b)
into either 2a + (b + b) or to (a + a) + 2b, but not (in a single step) to
2a + 2b.

Given a set R of equations to be considered as left-to-right rewrite rules,
we write t →R t′ iff there is some equation (l = r) ∈ R which rewrites t to
t′. When the set of rewrites R is clear from the context, we may just write
t → t′. Note that rewriting is logically sound, in the sense that t = t′ holds
in any model of the equations R, and we could if we wish decompose each
rewriting step into a series of Birkhoff rule applications.

If we’re trying to prove that E ⇒ s = t where E is closed (a conjunction of
universally quantified equations in the present situation), then by Theorem
3.11 we’re justified in replacing all free variables in s and t by new constants.
So we can if we wish always assume that the terms we’re rewriting are
ground. In principle, rewrite rules might have variables on the RHS that do
not occur in the LHS (e.g. y · 0 = 0 · x), and this could make intermediate
terms non-ground. However, as the reader might expect, these tend to spoil
the nice properties of rewriting, and we will never use rewriting with such
terms. In fact, many authors define a rewrite rule to be an equation l = r

where FV(r) ⊆ FV(l) and l is not a variable. (A term with a variable LHS
could be applied to any term, and is hence not likely to be controllable.)

Nevertheless, it’s quite convenient to be able to rewrite arbitrary terms,
first so that we don’t have to transform the initial problem, and also because
we sometimes want to rewrite some of the rewrite rules themselves with
others. On the other hand, even if it does involve variables, we don’t want
to permit instantiation of the term being rewritten, since that would spoil
the idea that we are simplifying a fixed term. The extension of rewriting to
allow instantiation of the term being rewritten is known as narrowing (Fay
1979; Hullot 1980); it is a special case of paramodulation which we consider
later.

† The first explicit use of rewriting seems to have been described by Wos, Robinson, Carson and
Shalla (1967), and the original term ‘demodulation’ from that paper is still used instead of
‘rewriting’ in some parts of the resolution theorem proving community; see Section 4.9.
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Canonical rewrite systems

Sometimes, a simplification procedure has the property that all ‘equivalent’
expressions reduce to the same simplified form. In such cases we can decide
whether s and t are equivalent by reducing both s and t to their simplified
forms s′ and t′ and then comparing s′ and t′ syntactically (Evans 1951).
In equational reasoning with hypotheses E, it is natural to call s and t

equivalent iff E |= s = t. We call E a canonical or convergent rewrite system
when it can be decided whether E |= s = t by treating E as a set of rewrite
rules, repeatedly rewriting s and t as much as possible to give s′ and t′

respectively, and comparing the results. That is, we can rewrite each term
to a ‘canonical’ or ‘normal’ form, so that all terms s and s′ with E |= s = s′

have the same normal form. For example, the following set of rewrite rules
can be thought of as embodying evaluation rules for addition of numbers
written in terms of 0 and a successor operation S, though they have other
models:

{m + 0 = m, 0 + n = n, m + S(n) = S(m + n), S(m) + n = S(m + n)}.
No intelligence or creativity is required: even where there are several pos-

sible ways of reducing a term, we cannot make an irrevocable wrong decision
that will lead us away from the canonical form, e.g. reducing S(0)+S(S(0))
in this way:

S(0) + S(S(0)) → S(0 + S(S(0)))
→ S(S(S(0))),

or another:

S(0) + S(S(0)) → S(S(0) + S(0))
→ S(S(S(0) + 0))
→ S(S(S(0 + 0)))
→ S(S(S(0))).

Of course, from the point of view of efficiency, it may matter which rewrite
we choose (e.g. if we have a rule 0 · x = 0, it makes sense to apply it to a
term 0 ·E without performing reductions on E). And there are surprisingly
simple rewrite systems that, although terminating in principle, can lead to
infeasibly lengthy reduction sequences, e.g. (Hofbauer and Lautemann 1989):

{ f(x) + (y + z) = x + (f(f(y)) + z),
f(u) + (v + (w + x)) = u + (w + (v + x))}.

Let us neglect efficiency for now, and ask how canonicality can fail com-
pletely. Using the singleton set {x + y = y + x} any subterm a + b can be
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rewritten indefinitely, and for this reason that set is not canonical:

a + b → b + a → a + b → b + a → a + b → · · ·
Rewriting with the following rewrite set:

{ x · (y + z) = x · y + x · z, (x + y) · z = x · z + y · z}
can never be continued indefinitely (we will prove this later), but we may
not get a well-defined result in that even the same term can sometimes be
rewritten to different irreducible forms, e.g.

(a + b) · (c + d) → a · (c + d) + b · (c + d)
→ (a · c + a · d) + b · (c + d)
→ (a · c + a · d) + (b · c + b · d)

or

(a + b) · (c + d) → (a + b) · c + (a + b) · d
→ (a · c + b · d) + (a + b) · d
→ (a · c + b · d) + (a · d + b · d).

Abstract reduction relations

The examples above hint at two critical properties we need, roughly
speaking:

• termination – starting from any term, we must eventually reach a form
that can no longer be further reduced;

• confluence – starting from any term, if we apply the simplification rules in
different orders to get different intermediate results, we can subsequently
‘rejoin’ them by further reductions.

We will now define these more precisely and show that together they
give us the results we need. However, it’s convenient to work in the more
general context of an arbitrary binary relation on a set, rather than merely
rewrite relations over terms. This helps to clarify the essential theoretical
features without introducing technical complications, and also allows us to
re-use some of the key results in a different context later on.† Our view is
fairly pragmatic and we only scratch the surface of the subject; for a more
thorough treatment see, for example, Klop (1992).

† See Section 5.11 on Gröbner bases. Many of these concepts were first articulated in contexts
other than rewriting, e.g. reductions in untyped lambda calculus (Barendregt 1984; Hindley
and Seldin 1986).
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An abstract reduction relation is simply a binary relation R on a set X,
though we jog our intuition by writing x → y instead of R(x, y), and the
reader may like to keep in mind the special case of rewrite relations. In
the following, we denote by →+ the transitive closure of → and by →∗ its
reflexive transitive closure (see Appendix 1). That is, x →+ y if there is a
possibly-empty sequence of elements xi ∈ X with x → x1 → · · · → xn → y,
and x →∗ y if x →+ y or x = y.

An x ∈ X is said to be in normal form iff there is no y ∈ X with x → y. In
the context of rewriting, a term is in normal form w.r.t. →R precisely when
no rewrites from R can be applied to it. A reduction relation is said to be
terminating, strongly normalizing (SN) or noetherian iff there is no infinite
reduction sequence x0 → · · · → xn → · · ·.†

Considering the reverse relation defined by x < y =def y → x, we see that
x is in normal form iff it is minimal with respect to <, and → is terminating
precisely if < is wellfounded. Thus, the two concepts just defined are familiar
in another guise, and we can take over corresponding theorems with trivial
changes. For example, the transitive closure of a terminating relation is also
terminating, and we can perform induction over a terminating relation: if
→ is terminating and we can establish that P (x) holds whenever P (y) holds
for all y such that x → y, then we may conclude P (x) for all x ∈ X. We’ll
apply this principle shortly. (Note that this includes the degenerate case of
establishing P (x) for all x in normal form.)

An abstract reduction relation is said to have the diamond property iff
whenever x → y and x → y′, there is a z such that y → z and y′ → z. It is
said to be confluent if →∗ has the diamond property. It is said to be weakly
confluent if whenever x → y and x → y′, there is a z such that y →∗ z and
y′ →∗ z. We say for short that x and y are joinable, and write x ↓ y, to mean
that there is a z with x →∗ z and y →∗ z, so we can express confluence as
‘if x →∗ y1 and x →∗ y2 then y1 ↓ y2’ and weak confluence as ‘if x → y1 and
x → y2 then y1 ↓ y2’.

The name ‘diamond property’ comes from the convenient diagrammatic
representation of reductions as descending diagonal lines moving from the
first element to the second. Thus the forms of confluence all assert that given
reductions from x to both y and y′, there is a z with reductions from both
y and y′ to z; the forms only differ in whether we have → or →∗ at the top
or bottom.

† Weak normalization (WN) means that for each x there is a y in normal form such that x →∗ y.
We won’t use this concept but it seems worth noting the distinction in case the reader wants
to delve deeper into such material.
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All the variations on a theme of confluence are closely interrelated. If
→ has the diamond property, it is weakly confluent, since y → z trivially
implies y →∗ z. For similar reasons, confluence implies weak confluence. It
is not much harder to see that the diamond property implies confluence, by
double induction on the lengths of the initial reduction sequences x →∗ y

and x →∗ y′. For example, if we have a 2-step reduction x → y1 → y2 and
a 3-step reduction x → y3 → y4 → y5 we can show that there is a z with
y2 →∗ z and y5 →∗ z by repeatedly using the diamond property to fill in
the internal lines in this diagram, starting at the top and ending with some
suitable z:
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On the other hand, weak confluence does not in general imply confluence;
the following is a particularly simple counterexample due to Hindley. (One
can think of this as specifying a term rewriting system where a, b, c and
d are all constants, or simply as an exhaustive enumeration of an abstract
binary relation.)

b → a

b → c

c → b

c → d
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Still, for a terminating reduction relation, weak confluence does imply
confluence. This key result is known as Newman’s lemma. The original
proof (Newman 1942) was rather complicated, and it was only much later
that Huet (1980) pointed out the following relatively straightforward proof,
exploiting the fact that when → is terminating we can perform wellfounded
induction.

Theorem 4.9 If → is terminating and weakly confluent, then it is confluent.

Proof Since → is terminating, all reduction sequences terminate, so we just
need to prove that if x →∗ y and x →∗ y′ with y and y′ in normal form,
then y = y′. We will prove this by wellfounded induction: suppose x is the
minimal element such that for some y and y′ this fails.

The assertion is vacuous if x = y or x = y′, so we can assume the existence
of w and w′ such that x → w →∗ y and x → w′ →∗ y′. Weak confluence tells
us that there’s a z with w →∗ z and w′ →∗ z; by continuing the reduction
as much as possible we can assume z to be in normal form. But by the fact
that y and y′ are successors of x and x was the minimal case where the key
property fails, we have y = z and y′ = z, and so y′ = y as required.

Let us write ↔∗ for the reflexive symmetric transitive closure of →. We
say that → is Church–Rosser if whenever x ↔∗ y then x ↓ y.† We will prove
in fact that the Church–Rosser property is equivalent to confluence, so the
two terms may be, and sometimes are, used synonymously. In one direction
this is easy, since confluence is a special case of the Church–Rosser property:
if x →∗ y1 and x →∗ y2 then y1 ↔∗ y2. In the other direction, if x ↔∗ y

then we can get from x to y by a series of steps that we can separate into
alternating ‘forward’ and ‘backward’ segments,

x · · · →∗ xi ←∗ xi+1 →∗ xi+2 ←∗ · · · y.

Because of confluence, we can at each stage find a suitable zi such that
xi →∗ zi and xi+2 →∗ zi and hence successively reduce the number of
segments, filling in the internal sides in the diagram until we eventually
reach a final z with x →∗ z and y →∗ z.

† The peculiar name ‘Church–Rosser’ arises from the fact that the first significant instance was
proved for the case of β-reduction in lambda calculus by Church and Rosser (1936).
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In what follows, we recast this argument as a formal induction. Note that
we do not need to assume termination to show that interconvertible elements
are joinable.

Theorem 4.10 Confluence is equivalent to the Church–Rosser property, i.e.
→ is confluent if and only if for any x and y we have x ↔∗ y iff x ↓ y.

Proof Since x ↓ y is a special case of x ↔∗ y, we just need to prove
that confluence is equivalent to ‘if x ↔∗ y then x ↓ y’. As noted above,
the right-to-left direction is easy because confluence is a special case of the
Church–Rosser property. For the other direction, we proceed by induction
on the definition x ↔∗ y. If we actually have x → y then trivially x ↓ y

because x →∗ y and y →∗ y. Even more trivially, if x and y are identical,
they are joinable. If x ↔∗ y is obtained by symmetry from y ↔∗ x, then by
the inductive hypothesis y ↓ x, and since joinability is symmetric between
x and y we have x ↓ y. Finally, if x ↔∗ y arises by transitivity from x ↔∗ z

and z ↔∗ y, we have by the inductive hypothesis some u and v with x →∗ u,
z →∗ u and z →∗ v, y →∗ v. Using confluence, there is a z such that u →∗ z

and v →∗ z. By transitivity of →∗, we therefore have x →∗ z and y →∗ z as
required.

Another useful lemma about joinability is the following.

Lemma 4.11 A reduction relation → is confluent iff the corresponding
joinability relation is transitive, i.e. for all x, y and z such that x ↓ y and
y ↓ z we have x ↓ z.

Proof If → is confluent, the previous result shows that x ↓ y coincides with
x ↔∗ y, and the latter is clearly transitive. (It’s also easy to reason more
directly.)
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Conversely, suppose joinability is transitive. If p →∗ q1 and p →∗ q2 then
p ↓ q1 and p ↓ q2. Using the obvious symmetry and assumed transitivity of
↓, we see that q1 ↓ q2 so the relation is confluent.

We say that a reduction relation is canonical when it is both terminating
and confluent. Note that if → is canonical, then whenever x →∗ x′ and
y →∗ y′ with x′ and y′ in normal form, we have x ↔∗ y iff x′ = y′. In the
special case of a rewrite relation, this justifies exactly the kind of process for
testing E |= s = t that we outlined at the start of this section, by virtue of
the following theorem.

Theorem 4.12 For a rewrite relation →R generated by a set of rewrites R,
for all terms s and t we have s ↔∗

R t iff R |= s = t.

Proof One way is relatively easy: if s →R t then R |= s = t because t

results from replacing s according to an equation in R. By induction, the
same applies when s ↔∗

R t.
Conversely, if R |= s = t then by Theorem 4.7 we have R � s = t.

We will show by induction on the Birkhoff rules that if R � s = t then
also s ↔∗

R t. Closure of ↔∗
R under reflexivity, symmetry and transitivity

is immediate, and if (s = t) ∈ R then by a trivial rewrite step s ↔∗
R t.

We will be finished if we can establish that ↔∗
R is closed under congruence

and instantiation. Both of these follow (formally, by another induction) by
systematically applying the congruence or instantiation to all elements in
the transitivity chain, since the core rewrite relation →R is closed in this
way.

Implementing rewriting

To rewrite a term t at the top level with an equation l = r we just attempt
to match l to t and apply the corresponding instantiation to r; the following
does this with the first in a list of equations to succeed:

let rec rewrite1 eqs t =
match eqs with
Atom(R("=",[l;r]))::oeqs ->
(try tsubst (term_match undefined [l,t]) r
with Failure _ -> rewrite1 oeqs t)

| _ -> failwith "rewrite1";;

Our interest is in rewriting at all subterms, and repeatedly, to normalize a
term w.r.t. a set of equations. Although, for theoretical reasons, in particular
for applying Newman’s Lemma, it’s important to single out the ‘one-step’
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(though at depth) rewrite relation →R, from an implementation point of
view we needn’t bother isolating it. The following function simply applies
rewrites at all possible subterms and repeatedly until no further rewrites are
possible. The user is responsible for ensuring that the rewrites terminate,
and if this is not the case this function may loop indefinitely. Where several
rewrites could be applied, the leftmost outermost subterm in the term being
rewritten is always preferred, and thereafter the first applicable equation in
the list of rewrites. Alternative strategies such as choosing the innermost
rewritable subterm would work equally well in our applications.

let rec rewrite eqs tm =
try rewrite eqs (rewrite1 eqs tm) with Failure _ ->
match tm with
Var x -> tm

| Fn(f,args) -> let tm’ = Fn(f,map (rewrite eqs) args) in
if tm’ = tm then tm else rewrite eqs tm’;;

Here’s a simple example, evaluating 3 ∗ 2 + 4 in the zero-successor repre-
sentation of numerals:

rewrite [<<0 + x = x>>; <<S(x) + y = S(x + y)>>;
<<0 * x = 0>>; <<S(x) * y = y + x * y>>]

<<|S(S(S(0))) * S(S(0)) + S(S(S(S(0))))|>>;;
- : term = <<|S(S(S(S(S(S(S(S(S(S(0))))))))))|>>

It is in general undecidable whether a particular set of equations, used
as a rewrite system, is terminating, either for some particular reduction
strategy or for all strategies. Indeed, one can express arbitrary algorithms
as rewrite systems in a manner not unlike the clausal pattern-matching
that is typical in functional programming languages.† The analogy is not
exact, since functional languages tend to have many additional constructs
and a particular evaluation strategy. On the other hand, in one respect the
standard clausal function definitions are simpler than general rewrite rules
because they are linear, meaning that each variable occurs at most once
on the left-hand side. (For example, OCaml will reject a function defini-
tion ‘function (x,x) -> 0’ because the variable x is bound twice in the
pattern.) There is a substantial literature on the theory of linear rewrite
rules; they turn out to be in certain respects ‘better behaved’ than gen-
eral rewrite rules. In particular, it is more straightforward to analyze their

† To see that any algorithm can be suitably encoded, one can observe that SK combinator
reduction is just a pair of rewrite rules, and it is known that SK combinators can encode all
computable functions (Hindley and Seldin 1986). In practice one can often use more direct
encodings (see Exercise 4.7).
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confluence without assuming termination. The connection with functional
programming is examined in detail by Huet and Lévy (1991).

4.6 Termination orderings

One way of showing that a reduction → is terminating is to show that it
is included in another relation > (i.e. whenever s → t we also have s > t)
that is itself terminating. For a suitable >, this can be more tractable than
a direct attack on →. In particular, for a rewrite relation, things are much
more straightforward when it suffices to consider l > r for the equations
(l = r) ∈ R themselves, rather than the induced rewrite relationship, which
may involve instantiations and substitution at an arbitrary (single) subterm.
This motivates the following definition.

Definition 4.13 A binary relation > on terms is said to be a rewrite
order if it is transitive and irreflexive and is closed under instantiation
and simple congruences (within a fixed set of function symbols understood
implicitly), i.e.

• it is never the case that t > t,
• if s > t and t > u then s > u,
• if s > t then tsubst i s > tsubst i t,
• if s > t then

f(u1, . . . , ui−1, s, ui+1, . . . , un) > f(u1, . . . , ui−1, t, ui+1, . . . , un).

A rewrite order that is terminating is said to be a reduction order. Note
that in this case the irreflexivity clause is redundant since a wellfounded
relation is automatically irreflexive (if t > t then t > t > t > · · · would be
an infinite descending chain).

Lemma 4.14 If > is a reduction order and l > r for each equation (l =
r) ∈ R, then the rewrite relation →R is terminating.

Proof By definition s →R t if there is some instantiation l′ = r′ of an
equation (l = r) ∈ R such that t results from s by replacing a single instance
of l′ with r′. By hypothesis, l > r, and since > is closed under instantiation
l′ > r′. Repeatedly using the fact that > is closed under simple congruences,
we see that s > t. Therefore, the rewrite relation →R is included in the
relation > and is consequently also terminating.
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Measure-based orders

How do we find a suitable reduction order for a given rewrite set? One
of the standard techniques for generating wellfounded relations is to use a
measure function to map into a familiar wellfounded set such as N, using the
fact that if < is wellfounded then so is the relation defined by x ≺ y =def

m(x) < m(y). In our context, a natural idea is to consider the ‘size’ of terms.
Denote by |t| the number of variables and function symbols in t, which we
can compute like this:

let rec termsize tm =
match tm with
Var x -> 1

| Fn(f,args) -> itlist (fun t n -> termsize t + n) args 1;;

We might hope to define a reduction order s > t by |s| > |t|. Since the
size is always a positive integer, this is wellfounded and is also transitive and
obeys the congruence property. However, it fails the instantiation property;
for example f(x, x, x) > g(x, y) but if we instantiate y to f(x, x, x) we have
f(x, x, x) �> g(x, f(x, x, x)). A little thought will convince the reader that
it’s the presence of variables that occur more often in the smaller term than
the larger term that is the source of the problem. One can fix this by defining
s > t if both |s| > |t| and |s|x ≥ |t|x for each x ∈ FVT(t), where |t|x denotes
the number of occurrences of x in t. However, although this does yield a
reduction order (as the reader can confirm), it’s poorly suited to the kinds
of equations we often encounter in algebraic theories. Two typical examples
are associative and distributive laws:

• (x · y) · z = x · (y · z),
• x · (y + z) = x · y + x · z.

Both sides of the associative law have equal measure, so we can’t use
the size-based ordering whichever way round it’s written. And for the dis-
tributive law things are even worse: the right-hand side is larger than the
left, despite the fact that we might want to consider expanding using it
left-to-right.

Lexicographic path orders

These problems with simple measure-based orders suggest that to deal with
typical algebraic examples, we need first to be able to:

• treat the arguments to functions asymmetrically, so that applying the
associative law in one preferred direction is possible;
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• treat the function symbols asymmetrically so that we can say, for example,
that replacing the top-level function symbol f by g represents ‘progress’,
even if the term grows in size.

It is possible to do both of these things with more elaborate measure-based
orderings. However, the most direct method is simply to define an ordering
on terms by recursion, explicitly designed to ‘force’ the required properties.
To deal with the associative law, for example, we can say that:

• f(s1, . . . , sm) > f(t1, . . . , tm) if the sequence s1, . . . , sm is lexicographi-
cally greater than t1, . . . , tm, i.e. if si = ti for all i < k ≤ m and sk > tk
under the same ordering.

This ensures that (x · y) · z > x · (y · z) provided x · y > x. It’s natural
to also arrange more generally that s > t whenever t is a proper subterm
of s. It’s more in keeping with the structurally recursive nature of the other
clauses if we just specify it for immediate subterms; the general result then
follows by induction. Note that this includes the special case that if t is a
variable x we have s > x whenever x ∈ FVT(s), excluding the reflexive case
when s = x.

• f(s1, . . . , sn) > t whenever si ≥ t.

Finally, in order to impose a precedence on function symbols, allowing us
to deal with the distributive law by ‘preferring’ ‘·’ to ‘+’ or vice versa, we
can stipulate:

• f(s1, · · · , sm) > g(t1, . . . , tn) if f > g according to some specified prece-
dence ordering of the function symbols, without further analysis of the si

and ti.

These desiderata are almost enough to allow us to define the ordering
directly by recursion. However, as it stands the requirements are stated too
bluntly and are not enough to ensure termination. For example, instead of
the correct distributive law, consider x·(y+z) = x·(z+y)+z. The LHS is still
greater than the RHS according to the ordering as specified so far, but it is
nonterminating. We therefore refine things slightly to ensure that the proper
subterms of the RHS must also be less than the starting term on the left, i.e.
that f(s1, . . . , sm) > g(t1, . . . , tn) (whether or not f = g) only if in addition
f(s1, . . . , sm) > ti for each 1 ≤ i ≤ n. It isn’t immediately obvious that this
fix is enough to ensure termination, but we will prove it below. The resulting
order is called the lexicographic path order (LPO). More properly, it specifies
a whole class of LPOs parametrized by the particular ‘weighting’ of function
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symbols chosen. We can render the definition in OCaml quite directly. First
we define the general lexicographic extension of an arbitrary relation ord. It
always returns falsity when applied to lists of different lengths; this feature
is exploited below.

let rec lexord ord l1 l2 =
match (l1,l2) with
(h1::t1,h2::t2) -> if ord h1 h2 then length t1 = length t2

else h1 = h2 & lexord ord t1 t2
| _ -> false;;

Now we define the irreflexive and reflexive versions of the LPO, both
of which are parametrized by a ‘weighting’ w on function symbols, where
w (f, n) (g, m) decides whether the n-ary function f is ‘bigger’ than the m-
ary function symbol g. We will sloppily write f > g for this below, but note
from a formal point of view that we treat as distinct function symbols with
the same name but different arity.†

let rec lpo_gt w s t =
match (s,t) with
(_,Var x) ->

not(s = t) & mem x (fvt s)
| (Fn(f,fargs),Fn(g,gargs)) ->

exists (fun si -> lpo_ge w si t) fargs or
forall (lpo_gt w s) gargs &
(f = g & lexord (lpo_gt w) fargs gargs or
w (f,length fargs) (g,length gargs))

| _ -> false

and lpo_ge w s t = (s = t) or lpo_gt w s t;;

Specifying the ordering on function symbols, arities and all, is quite a
tedious business. We define the following function to generate a weight func-
tion from a more convenient starting point: a list of function symbols in
increasing order of precedence. In the (unexpected) case when functions are
identical but arities different, we disambiguate by treating functions with
larger arity as ‘greater’:

let weight lis (f,n) (g,m) = if f = g then n > m else earlier lis g f;;

† This is just for theoretical reasons; we will never actually work with terms containing identically-
named function symbols with different arities. In fact we could ignore arities for our present
purposes. But for some applications, it is important that the LPO be total on ground terms,
and f(c, c) and f(c) would be incomparable if we ignored arities. A common alternative is to
use a more general notion of lexicographic extension.
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Properties of the LPO

Although the LPO is a more or less natural embodiment of the desiderata
we outlined, with fixes to counter the obvious failures of termination, it
isn’t at all obvious that the final result is terminating, or indeed satisfies
other reduction order properties such as transitivity. In fact, if there are
infinitely many function symbols with a nonterminating sequence of weights
w(f1) > w(f2) > · · ·, then the LPO is not terminating, but we usually
implicitly assume a finite set of function symbols, those that occur in the
finitely many formulas we are dealing with. In this case, we will establish
that the LPO is a reduction order. Most of the proofs that follow are by
induction on the (total) sizes of the terms involved followed by an analysis
of the cases in the LPO definition.

Lemma 4.15 If s > t then FVT(t) ⊆ FVT(s).

Proof By induction on |s| + |t|. If t is a variable x then s > x means that
x ∈ FVT(s) and therefore FVT(x) = {x} ⊆ FVT(s), so the result holds. If
s is a variable then s > t is false and the result holds trivially. Otherwise we
can assume s is of the form f(s1, . . . , sn) and t of the form g(t1, . . . , tm). One
way that s > t can arise is if some si ≥ t. But then FVT(t) ⊆ FVT(si) by
the inductive hypothesis and since FVT(si) ⊆ FVT(s) we have FVT(t) ⊆
FVT(s) as required. Otherwise, whatever the relation between f and g we
always have s > ti for 1 ≤ i ≤ m. Consequently, by the inductive hypothesis
each FVT(ti) ⊆ FVT(s) and therefore FVT(t) =

⋃
1≤i≤n FVT(ti) ⊆ FVT(s)

as required.

Theorem 4.16 The LPO is transitive.

Proof By induction on the total term size |s| + |t| + |u|, we show that if
s > t and t > u then s > u. We sometime use variants of the inductive
hypothesis such as the inference that if s > t ≥ u then s > u. This is an
easy consequence since if t ≥ u either t = u or t > u.

Suppose first that u is a variable x. In this case we have x ∈ FVT(t) and
x �= t by definition. But by Lemma 4.15 we also have FVT(t) ⊆ FVT(s) and
so x ∈ FVT(s). We can also rule out x = s because x > t could not then
hold. Consequently s > u in this case.

Now assume u is of the form h(u1, . . . , up). Since we never have x > u it
must be the case that t is also of the form g(t1, . . . , tn) and similarly s of the
form f(s1, . . . , sm). We now consider the various ways in which s > t and
t > u could arise.
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First, suppose f(s1, . . . , sm) > g(t1, . . . , tn) arises because for some 1 ≤
i ≤ m we have si ≥ g(t1, . . . , tn) = t. By the inductive hypothesis, si ≥ t > u

implies si > u, so a fortiori si ≥ u and therefore also s > u by the definition
of the LPO. There now just remains the case where, whatever the relation
between f and g, we have s > ti for each 1 ≤ i ≤ n.

Now suppose g(t1, . . . , tn) > h(u1, . . . , up) arises because for some 1 ≤ i ≤
n we have ti ≥ h(u1, . . . , up) = u. Since s > ti the inductive hypothesis
yields s > u as required.

Otherwise, we may now assume t > ui for each 1 ≤ i ≤ p, and also that
f ≥ g ≥ h. By the inductive hypothesis we have s > ui for each 1 ≤ i ≤ p,
so the additional condition on s > u is satisfied. If f > h, therefore, we have
s > u immediately. Otherwise we have f = g = h, m = n = p and the
lexicographic relations:

(s1, . . . , sp) >LEX (t1, . . . , tp) >LEX (u1, . . . , up).

By the inductive hypothesis, si > tj and tj > uk implies si > uk for any
such triple from these subterms. Therefore we also have transitivity of the
lexicographic extension and (s1, . . . , sp) >LEX (u1, . . . , up), yielding s > u as
required.

Theorem 4.17 The LPO has the subterm property, i.e. if t is a proper
subterm of s then s > t.

Proof Now that we know > is transitive, the result follows by induction on
the size of s if we can prove the special case f(s1, . . . , si−1, t, si+1, . . . , sn) > t.
If t is a variable this holds by definition. Otherwise it is also immediate from
the definition since t ≥ t.

Theorem 4.18 The LPO is closed under substitutions, i.e. if s > t then for
any instantiation σ we have tsubst σ s > tsubst σ t.

Proof Fix an instantiation σ; for any term u we will consistently abbreviate
u′ = tsubst σ u. We proceed by induction on |s| + |t|. If t is a variable x

we have x ∈ FVT(s) so x′ is a subterm of s′; since we also have x �= s it is
a proper subterm and the result follows from the subterm property.

Otherwise, neither s nor t can be a variable, so we can suppose that s

is of the form f(s1, . . . , sm) and t is also of the form g(t1, . . . , tn). Consider
the ways in which s > t can arise. If si > t for 1 ≤ i ≤ m we have by
the inductive hypothesis that s′i > t′. Since s′i is a proper subterm of s′, it
follows by transitivity that s′ > t′. Otherwise the auxiliary condition s > ti
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for 1 ≤ i ≤ n implies by the inductive hypothesis that the corresponding
condition s′ > t′i holds. If f > g then the required result is immediate. If
f = g, m = n then we have (s1, . . . , sm) >LEX (t1, . . . , tn). This means that
there is some 1 ≤ i ≤ n such that sj = tj for j < i and si > ti. Trivially,
then s′j = t′j for j < i and by the inductive hypothesis s′i > t′i, thus showing
(s′1, . . . , s′m) >LEX (t′1, . . . , t′n) and hence s′ > t′ as required.

Theorem 4.19 The LPO is a congruence w.r.t. the function symbols, i.e.
if t > u then f(s1, . . . , si−1, t, si+1, . . . , sn) > f(s1, . . . , si−1, u, si+1, . . . , sn)

Proof (s1, . . . , si−1, t, si+1, . . . , sn) >LEX (s1, . . . , si−1, u, si+1, . . . , sn) since
t > u and all preceding terms are identical. Moreover, most of the auxiliary
condition follows from the fact that f(s1, . . . , si−1, t, si+1, . . . , sn) > sj for
j ∈ {1, . . . , i − 1, i + 1, . . . , n}, while f(s1, . . . , si−1, t, si+1, . . . , sn) > u is
immediate from transitivity given the hypothesis t > u and the subterm
property f(s1, . . . , si−1, t, si+1, . . . , sn) > t proved previously.

Theorem 4.20 The LPO is irreflexive, i.e. t > t never holds.

Proof By induction on the size of t. If t is a variable then t > t is false by
definition because of the x �= t clause in the definition. If on the other hand
we have t = f(t1, . . . , tn), then t > t can only arise because of lexicographic
extension (t1, . . . , tn) >LEX (t1, . . . , tn). But by the inductive hypothesis we
never have ti > ti for 1 ≤ i ≤ n and there could be no ‘first’ i such that this
holds.

Tedious as those proofs were, they were mostly a question of following
one’s nose. Termination, however, is a bit more subtle, though not much
more difficult if approached in the right way, using a minimality trick. Our
proof here is inspired by Ferreira and Zantema (1995); for another relatively
short proof see Buchholz (1995).

Theorem 4.21 The LPO, restricted to terms based on a finite set of func-
tion symbols, is terminating.

Proof If there exists an infinite descending chain at all, there exists one
t0 > t1 > t2 > · · · that is minimal in the sense that each term has minimal
size among those that could possibly appear at that point in an infinite
descending chain. More precisely, let us say that a term t is nonwellfounded
if there is an infinite descending chain starting with t. We will show that if
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there is a descending chain, then there is one t0 > t1 > t2 > · · · with the
following properties:

• |t0| ≤ |s| for all nonwellfounded terms s,
• |ti+1| ≤ |s| for all nonwellfounded terms s with ti > s.

To show that such a chain exists, proceed by recursion on i. If there is an
infinite descending chain, then there is some nonwellfounded element. Let t0
be one of minimal size (this is not in general unique). Now, having defined
a sequence t0 > t1 > · · · > ti with ti nonwellfounded, there must be some
nonwellfounded s with ti > s (otherwise ti would be wellfounded). Again,
we can simply pick the minimal one as ti+1.

Now, we never have t > x for a variable x, and so no variable is nonwell-
founded and so none of the ti can be a variable. And since the number of
function symbols is by hypothesis finite, there must be at least one function
symbol (with particular arity n) that occurs infinitely often as the top-level
function in the ti. We can define a subsequence, i.e. an increasing function
k : N → N, such that each tki is of the form f(ui

1, . . . , u
i
n). Now, by the mini-

mality hypothesis, none of the ui
j can be nonwellfounded, and by transitivity

we have f(ui
1, . . . , u

i
n) > f(ui+1

1 , . . . , ui+1
n ) for each i.

Consider the ways in which this can happen according to the definition of
the LPO. We cannot have any ui

j > f(ui+1
1 , . . . , ui+1

n ), for that would con-
tradict minimality of tki . Since the function symbols are the same, we must
have (ui

1, . . . , u
i
n) > (ui+1

1 , . . . , ui+1
n ) lexicographically for each i. However

the LPO restricted to all the terms ui
j is wellfounded, and therefore so is its

lexicographic extension. We thus arrive at a contradiction.

A rewrite order with the subterm property (s > t whenever t is a proper
subterm of s) is said to be a simplification order. Surprisingly, a simplifica-
tion order turns out to be automatically terminating and hence a reduction
order (Dershowitz 1979); by appealing to this result, we could have avoided
the direct proof that the LPO is terminating.Typically, one proves relations
wellfounded by means of mappings into a wellfounded set like N. But pro-
vided the properties of a simplification order hold, mappings into other sets
like R can be useful.

4.7 Knuth–Bendix completion

Suppose we know, perhaps via a suitable ordering as in the previous section,
that a rewrite system R is terminating. This is a great help in deciding
confluence, because of Newman’s lemma (Theorem 4.9): →R is confluent,
and hence canonical, iff it is locally confluent. Analyzing local confluence
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can be much more tractable than a direct attack on full confluence, because
we only need to consider two individual rewrite steps s →R t1 and s →R t2
and decide whether t1 ↓R t2. Consider, for example, the following axioms for
groups, which can be seen to constitute a terminating rewrite set R using a
suitable LPO:

(x · y) · z = x · (y · z),

1 · x = x,

i(x) · x = 1.

We can rewrite the term (1 ·x) · y in two different ways, either by the first
equation to:

(1 · x) · y →R 1 · (x · y)

or by the second equation to:

(1 · x) · y →R x · y.

However, these are joinable, because we can make an additional rewrite
to the first result by the second equation and get 1 · (x · y) →R x · y. On the
other hand, if we start from the term (i(x) · x) · y, we can rewrite with the
first equation to get

(i(x) · x) · y →R i(x) · (x · y)

or by the third to get

(i(x) · x) · y →R 1 · y.

The first term is already in R-normal form, and the only further reduct
of the second term is 1 · y → y, which is not the same. Consequently, the
terms are not joinable so R is not (even locally) confluent.

This example suggests how, given any terminating rewrite set (with a
finite number of equations) we can decide its local confluence. We need to
discover whether any starting terms s give rise via s →R t1 and s →R t2
to non-joinable reducts t1 and t2. Because R is terminating, joinability of
any given t1 and t2 can be shown to be decidable, since there are
only finitely many possible terms to which each can be rewritten.† In
fact, with confluence as the overall aim, the situation is even simpler: we
need only reduce t1 and t2 in some arbitrary way to normal forms t′1 and
t′2 and compare them. If they are the same, this particular pair of terms is
† This follows at once from König’s lemma, which states that a finitely-branching tree without an

infinite path has only finitely many nodes. This can be proved simply by wellfounded induction.
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joinable, while if they are different we can conclude at once that the whole
rewrite set is non-confluent (and hence not locally confluent either) without
examining any other possibilities.

Critical pairs

At first sight, this still doesn’t help much because we need to consider an
arbitrary starting term s, of which there are infinitely many. However it
turns out that we can decide local confluence by examining a finite number
of critical situations where rewrites can interfere with each other and lead to
the failure of local confluence. When s →R t1 and s →R t2 we can distinguish
three possibilities.

• The two rewrites apply to disjoint subterms, for example (1 · x) · (i(y) · y)
to x · (i(y) · y) and to (1 · x) · 1,

• One rewrite applies to a term that is a (not necessarily proper) subterm of
a term to which a variable is instantiated in the other rewrite. For example
((1 ·x) ·y) ·z can be rewritten either to (1 ·x) · (y ·z) or to (x ·y) ·z, but the
subterm 1 ·x to which the second rewrite is applied is exactly the subterm
to which x is instantiated in the first rewrite (x · y) · z → x · (y · z).

• One rewrite applies to a term that is inside the term to which the other
rewrite applies, but is not at or below a variable position. Examples
include the two rewrites to (1 · x) · y given near the start of this
section.

It is only the third situation, when the rewritten subterms are said to
‘overlap’,† that non-confluence can occur, because in the first two cases the
subterm to which the other rewrite is applicable is not structurally changed
by the chosen rewrite, though in the second case it may be removed or
duplicated. Let us analyze this more precisely. Consider the application of
two rewrite rules l1 = r1 and l2 = r2 to subterms l′1 and l′2 of a term s,
replacing them with r′1 and r′2 respectively. Note that in general we need to
consider the case where the two rewrites are identical or are applied to the
same subterm. However, if the rewrites and the subterm are both identical,
we evidently get the same results immediately so confluence is not an issue.

First, if the rewrites are applied to disjoint subterms of s = s[l′1, . . . , l′2]
to give t1 = s[r′1, . . . , l′2] and t2 = s[l′1, . . . , r′2], we may rejoin t1 and t2 by
applying the other rewrite to the undisturbed subterm. Thus, in the first
case t1 and t2 are always joinable.
† The terminology is perhaps unfortunate. Despite the misleading impression the concrete syntax

might give, two subterms are either disjoint or one is a subterm of the other.
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Second, consider the case where one rewrite is applied below the variable
position in another. Without loss of generality we will consider the case
where l2 = r2 occurs inside l1 = r1, the other being symmetric. That is,
there is some variable x occurring in l1[. . . , x, . . . , x, . . .] that is instantiated
in l′1 to some term u[l′2]:

l′1[. . . , u[l′2], . . . , u[l′2], . . .],

and the other rewrite is applied to one of the subterms (indeed, there may
be several of them) u[l′2]. The result of applying l2 = r2 to one of these
subterms, say the first, is:

l′1[. . . , u[r′2], . . . , u[l′2], . . .].

On the other hand, if we apply l1 = r1, at the top level we get the following
term, where the number of instances of u[l′2] depends on how many times x

occurs in r1; we choose three as a paradigmatic example:

r′1[. . . , u[l′2], . . . , u[l′2], . . . , u[l′2], . . .].

These two terms are always joinable. To the first we can apply l2 = r2

repeatedly until all the terms u[l′2] substituted for x are modified to u[r′2],
then apply l1 = r1 to the whole term. To the second, we can apply l2 = r2

to all the subterms u[l′2] and the end result is the same, namely:

r′1[. . . , u[r′2], . . . , u[r′2], . . . , u[r′2], . . .].

We see here the advantages of only needing to prove local confluence: we
just make a single rewrite step from s to t1 and t2, but are allowed arbitrarily
many subsequent steps to rejoin them.

Therefore, in order to decide confluence, we only need to consider non-
variable ‘critical overlaps’, which as the initial examples showed may or may
not turn out to be joinable. This is much more appealing, because there are
only finitely many essentially different ways that one left-hand side can be
overlapped with another: one LHS cannot go below the variable position of
the other. The points of overlap may depend on the instantiation, but we
can always find the most general instantiation that allows overlap at a given
position, if any, via most general unifiers (MGUs), as we will now show.

Definition 4.22 Suppose l1 = r1 and l2 = r2 are two rewrite rules (we
assume the variables of the LHSs are disjoint, i.e. FVT(l1)∩FVT(l2) = ∅). If
l′2 occurs at least once as a non-variable subterm of l1 = l1[l′2, . . . , l′2, . . . , l′2],
and σ is a most general unifier of l2 and l′2, then the pair of terms:

(tsubst σ r1, tsubst σ l1[l′2, . . . , r2, . . . , l
′
2])
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is said to be a critical pair of l1 = r1 and l2 = r2.

Critical pairs are intended to be ‘most general’ representatives of the
ways in which two rewrites can overlap. Indeed, we have the following key
properties.

Lemma 4.23 Let l1 = r1 and l2 = r2 be two equations with no common
variables. If s →l1=r1 t1 and s →l2=r2 t2 with t1 and t2 not joinable, then
t1 and t2 differ only in two subterms u1 and u2 (i.e. t1 = u[. . . , u1, . . .] and
t2 = u[. . . , u2, . . .]) such that either (u1, u2) or (u2, u1) is an instance of a
critical pair.

Proof The above discussion makes clear that the two rewrites cannot be
applied at disjoint positions, nor one at or below a variable subterm of
another, for otherwise t1 and t2 would be joinable, contrary to hypothesis.
Thus there is a nontrivial overlap in the rewrites; without loss of generality
we will suppose that l2 = r2 rewrites inside l1. Since the two equations have
no variables in common, we can assume the same instantiation θ for both
l1 and l2 in the rewrites. Thus, l1 has a subterm l′2 that is unifiable with
l2, say l1 = l1 = l1[. . . , l′2, . . .], with tsubst θ l′2 = tsubst θ l2. The two
rewrites on the term tsubst θ l1[. . . , l′2, . . .] result in u1 = tsubst θ r1 and
u2 = tsubst θ l1[. . . , r2, . . .]. Since l2 and l′2 are unifiable, they have a most
general unifier σ, and so (tsubst σ r1, tsubst σ l1[. . . , r2, . . .]) is a critical
pair. By the MGU property, (u1, u2) is an instance of this critical pair.

Theorem 4.24 A term rewriting system is locally confluent iff all its critical
pairs are joinable.

Proof If a system is locally confluent, then since critical pairs (t1, t2) all
arise by applying two 1-step rewrites to some starting term s, i.e. s → t1
and s → t2, it follows at once that t1 and t2 are joinable.

Conversely, suppose all critical pairs are joinable. Now, given any term
s, suppose s → u1 and s → u2; we will show that u1 and u2 are join-
able. There are two equations (possibly the same) with s →l1=r1 u1 and
s →l2=r2 u2. Now, by the previous lemma, either u1 and u2 are joinable, or
u1 and u2 differ only in corresponding subterms v1 and v2 where (v1, v2) is
an instance of a critical pair (t1, t2). By hypothesis t1 and t2 are joinable.
Since reduction is closed under substitution (whenever s → t we also have
tsubst θ s → tsubst θ t), v1 and v2 are joinable. Since rewriting allows
arbitrary subterms, so are u1 and u2.
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Corollary 4.25 A terminating term rewriting system is confluent iff all its
critical pairs are joinable.

Proof Since the system is terminating, Newman’s lemma shows that con-
fluence and local confluence are equivalent, so the result is immediate from
the previous theorem.

We now turn to implementation. As with resolution, we start with the
tedious business of preparing for unification by renaming variables. For sim-
plicity, we replace the variables in two given formulas by schematic variables
of the form x_n:

let renamepair (fm1,fm2) =
let fvs1 = fv fm1 and fvs2 = fv fm2 in
let nms1,nms2 = chop_list(length fvs1)

(map (fun n -> Var("x"^string_of_int n))
(0--(length fvs1 + length fvs2 - 1))) in

subst (fpf fvs1 nms1) fm1,subst (fpf fvs2 nms2) fm2;;

Now we come to finding all possible overlaps. This is a little bit trickier
than it looks, because we want to ensure that the MGU discovered at depth
eventually gets applied to the whole term. The following function defines
all ways of overlapping an equation l = r with another term tm, where the
additional argument rfn is used to create each overall critical pair from an
instantiation i.

The function simply recursively traverses the term, trying to unify l with
each non-variable subterm and applying rfn to any resulting instantiations
to give the critical pair arising from that overlap. During recursive descent,
the function rfn is itself modified correspondingly. For updating rfn across
the list of arguments we define the auxiliary function listcases, which we
will re-use later in a different situation:

let rec listcases fn rfn lis acc =
match lis with
[] -> acc

| h::t -> fn h (fun i h’ -> rfn i (h’::t)) @
listcases fn (fun i t’ -> rfn i (h::t’)) t acc;;

let rec overlaps (l,r) tm rfn =
match tm with
Fn(f,args) ->

listcases (overlaps (l,r)) (fun i a -> rfn i (Fn(f,a))) args
(try [rfn (fullunify [l,tm]) r] with Failure _ -> [])

| Var x -> [];;
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In order to present a nicer interface, we accept equational formulas rather
than pairs of terms, and return critical pairs in the same way, by appropri-
ately setting up the initial rfn:

let crit1 (Atom(R("=",[l1;r1]))) (Atom(R("=",[l2;r2]))) =
overlaps (l1,r1) l2 (fun i t -> subst i (mk_eq t r2));;

For the overall function, we need to rename the variables in the initial
formula then find all overlaps of the first on the second and vice versa,
unless the two input equations are identical, in which case only one needs
to be done:

let critical_pairs fma fmb =
let fm1,fm2 = renamepair (fma,fmb) in
if fma = fmb then crit1 fm1 fm2
else union (crit1 fm1 fm2) (crit1 fm2 fm1);;

As a simple example, which also illustrates how an equation can have
non-trivial overlaps with itself, consider the following:

# let eq = <<f(f(x)) = g(x)>> in critical_pairs eq eq;;
- : fol formula list = [<<f(g(x0)) = g(f(x0))>>; <<g(x1) = g(x1)>>]

Because of the fairly naive implementation, which doesn’t check the trivial
case of overlapping identical equations on the same subterm, we get reflexive
results. But the other critical pair (f(g(x0)), g(f(x0))), arising from two
rewrites to f(f(f(x0))), is non-trivial. Since both terms are in normal form,
it shows that the initial 1-element rewrite set is not confluent.

Completion

We could now code up a function to decide if a terminating rewrite system is
confluent by finding all the critical pairs {(si, ti) | 1 ≤ i ≤ n} between pairs
of equations, and for each such (si, ti) reducing the terms to some normal
forms s′i and t′i. The resulting system is confluent iff all corresponding pairs
of terms s′i and t′i are syntactically equal. However, rather than merely doing
this, we can be more ambitious.

If (s′i, t
′
i) is a normalized critical pair, then it is a logical consequence

of the initial equations, since it results from repeated rewriting with those
equations of a common starting term. Thus, we could add s′i = t′i or t′i = s′i as
a new equation, retaining logical equivalence with the old axiom set. It may
turn out that with this addition, the set will become confluent. If not, we
can repeat the process with remaining critical pairs and any arising from the
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new equation. This idea is known as completion, and was first systematically
investigated by Knuth and Bendix (1970), who demonstrated that it can
be a remarkably effective technique for arriving at a canonical rewrite set
for many interesting algebraic theories such as groups. It should be noted,
however, that success of the procedure is not guaranteed; two things can go
wrong.

First, adding s′i = t′i or t′i = s′i may cause the resulting rewrite set to
become nonterminating. To try and avoid this, we will keep a fixed term
ordering in mind, and try to orient the equation so that it respects the
ordering, but it may turn out that neither direction respects the ordering.

Second, although the new equation s′i = t′i or t′i = s′i trivially means that
the originating critical pair (si, ti) is now joinable in the new system, the new
equation will in general create new critical pairs, with the existing equations
and perhaps even with itself. It’s entirely possible that the creation of new
critical pairs will ‘outrun’ their processing into new rules, so that the overall
process never terminates.

Despite these provisos, let us implement completion and see it in action.
The central component is a procedure that takes an equation s = t, normal-
izes both s and t to give s′ and t′, and attempts to orient these terms into
an equation respecting the given ordering ord, failing if this is impossible.
We assume ord is the reflexive form of ordering, so failure will not occur in
the case where s′ and t′ are identical.

let normalize_and_orient ord eqs (Atom(R("=",[s;t]))) =
let s’ = rewrite eqs s and t’ = rewrite eqs t in
if ord s’ t’ then (s’,t’) else if ord t’ s’ then (t’,s’)
else failwith "Can’t orient equation";;

The central completion procedure maintains a set of equations eqs and
a set of pending critical pairs crits, and successively examines critical
pairs, normalizing and orienting resulting equations and adding them to eqs.
However, since the order in which we examine critical pairs is arbitrary, we
try to avoid failing too hastily by storing equations that cannot as yet be
oriented on a separate ‘deferred’ list def.

Only at the end, by which time these troublesome equations may nor-
malize to the point of joinability, or at least orientability, do we reconsider
them, putting the first orientable one back in the main list of critical pairs.
The following auxiliary function is used to conditionally emit a report on
current status, so that the user gets an idea what’s going on.
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let status(eqs,def,crs) eqs0 =
if eqs = eqs0 & (length crs) mod 1000 <> 0 then () else
(print_string(string_of_int(length eqs)^" equations and "^

string_of_int(length crs)^" pending critical pairs + "^
string_of_int(length def)^" deferred");

print_newline());;

In the main completion loop, if there is a critical pair left to be examined,
we attempt to normalize and orient it; if it is nontrivial (i.e. not of the form
t = t) we add it to the equations, and augment the critical pairs (at the
tail end) with new critical pairs from this new equation and itself plus those
already present. If the orientation fails, then we just add the critical pair
to the ‘deferred’ list. Finally, if there are no critical pairs left, we attempt
to orient and deal with the deferred critical pairs, starting with any found
to be orientable. If we are ultimately left with some that are non-orientable,
we fail. Otherwise we terminate with success and return the new equations.

let rec complete ord (eqs,def,crits) =
match crits with
(eq::ocrits) ->

let trip =
try let (s’,t’) = normalize_and_orient ord eqs eq in

if s’ = t’ then (eqs,def,ocrits) else
let eq’ = Atom(R("=",[s’;t’])) in
let eqs’ = eq’::eqs in
eqs’,def,
ocrits @ itlist ((@) ** critical_pairs eq’) eqs’ []

with Failure _ -> (eqs,eq::def,ocrits) in
status trip eqs; complete ord trip

| _ -> if def = [] then eqs else
let e = find (can (normalize_and_orient ord eqs)) def in
complete ord (eqs,subtract def [e],[e]);;

The main loop maintains the invariant that all critical pairs from pairs of
equations in eqs that are not joinable by eqs are contained in crits and
def together, so when successful termination occurs, since crits and def are
both empty, there are no non-joinable critical pairs, and so by Corollary 4.25
successful the system is confluent. Moreover, since the original equations are
included in the final set and we have only added equational consequences
of the original equations, they give a logically equivalent set. In order to
get started, we just have to set crits to the critical pairs for the original
equations and also def = [], so the invariant is true to start with.

Before considering refinements, let’s try a simple example: the axioms for
groups. For the ordering we choose the lexicographic path ordering, with
1 having smallest precedence and the inverse operation the largest. The
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intuitive reason for giving the inverse the highest precedence is that it will
tend to cause the expansion (x · y)−1 = y−1 · x−1 to be applied (when
it is eventually derived), leading to more opportunities for cancellation of
multiple inverse operations. Indeed, if we try this out:

# let eqs =
[<<1 * x = x>>; <<i(x) * x = 1>>; <<(x * y) * z = x * y * z>>];;

...
# let ord = lpo_ge (weight ["1"; "*"; "i"]);;
...
# let eqs’ = complete ord

(eqs,[],unions(allpairs critical_pairs eqs eqs));;

the completion algorithm terminates successfully after a little computation,
and the inverse property is one of the equations deduced as part of the final
complete set (first in the list that follows):

val eqs’ : fol formula list =
[<<i(x4 * x5) = i(x5) * i(x4)>>; <<x1 * i(x5 * x1) = i(x5)>>;
<<i(x4) * x1 * i(x3 * x1) = i(x4) * i(x3)>>;
<<x1 * i(i(x4) * i(x3) * x1) = x3 * x4>>;
<<i(x3 * x5) * x0 = i(x5) * i(x3) * x0>>;
<<i(x4 * x5 * x6 * x3) * x0 = i(x3) * i(x4 * x5 * x6) * x0>>;
<<i(x0 * i(x1)) = x1 * i(x0)>>; <<i(i(x2 * x1) * x2) = x1>>;
<<i(i(x4) * x2) * x0 = i(x2) * x4 * x0>>;
<<x1 * i(x2 * x1) * x2 = 1>>;
<<x1 * i(i(x4 * x5) * x1) * x3 = x4 * x5 * x3>>;
<<i(x3 * i(x1 * x2)) = x1 * x2 * i(x3)>>;
<<i(i(x3 * i(x1 * x2)) * i(x5 * x6)) * x1 * x2 * x0 = x5 * x6 * x3 *
x0>>;

<<x1 * x2 * i(x1 * x2) = 1>>; <<x2 * x3 * i(x2 * x3) * x1 = x1>>;
<<i(x3 * x4) * x3 * x1 = i(x4) * x1>>;
<<i(x1 * x3 * x4) * x1 * x3 * x4 * x0 = x0>>;
<<i(x1 * i(x3)) * x1 * x4 = x3 * x4>>;
<<i(i(x5 * x2) * x5) * x0 = x2 * x0>>;
<<i(x4 * i(x1 * x2)) * x4 * x0 = x1 * x2 * x0>>; <<i(i(x1)) = x1>>;
<<i(1) = 1>>; <<x0 * i(x0) = 1>>; <<x0 * i(x0) * x3 = x3>>;
<<i(x2 * x3) * x2 * x3 * x1 = x1>>; <<x1 * 1 = x1>>;
<<i(1) * x1 = x1>>; <<i(i(x0)) * x1 = x0 * x1>>;
<<i(x1) * x1 * x2 = x2>>; <<1 * x = x>>; <<i(x) * x = 1>>;
<<(x * y) * z = x * y * z>>]

And, indeed, this complete set gives an effective canonical simplifier for
groups based on rewriting, e.g.

# rewrite eqs’ <<|i(x * i(x)) * (i(i((y * z) * u) * y) * i(u))|>>;;
- : term = <<|z|>>
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Interreduction

Although eqs’ does form a canonical rewrite set, it seems to be an unneces-
sarily large and redundant one. For example, the two sides of i(x3 ·x5) ·x0 =
i(x5) · i(x3) ·x0 are joinable from the simple inverse law noted above and the
associative law. The fact that one equation is joinable by others may mean
that the critical pair giving rise to it was processed before the equations that
allow it to be joined were derived. Or, since we just blindly normalized them
using an essentially arbitrary choice of rewrites at a time when the rewrite
set was not confluent, we may just have been unlucky and taken the wrong
path even when there was a way to join them.

Whatever their genesis, it’s natural to filter out afterwards equations
whose two sides are joinable by others. We might even go further by simpli-
fying both sides of each equation using all the others. Plausible as this looks,
we need first to satisfy ourselves that the result remains canonical. Indeed,
reducing the LHS of an equation may cause it to become mis-oriented, or
even non-orientable. Fortunately, however, it turns out that if the LHS of
an equation in a canonical term rewriting system is reducible by the other
equations, then both sides are automatically joinable by the other equations
and it may be discarded. Thus (Métivier 1983) we can simply:

• discard any equation whose LHS is reducible by any of the others (exclud-
ing itself);

• reduce the RHS of any equation with all the equations (including itself).

Both these facts follow quite easily from the following general theorem
about arbitrary reduction relations.

Theorem 4.26 Let →R be a canonical (terminating and confluent) reduc-
tion relation on a set X (this can be any relation, though the reader may
care to think of it as a rewrite relation generated by R). Suppose another
reduction relation →S has the following two properties:

• for any x, y ∈ X, if x →S y then x →+
R y;

• for any x, y ∈ X, if x →R y then there is a y′ ∈ X with x →S y′.

Then →S is also canonical and defines the same equivalence, i.e. two
objects are joinable by →R iff they are joinable by →S.

Proof First we will prove the lemma that if y is in normal form w.r.t. →R,
then for any x with x →∗

R y we also have x →∗
S y. Since →R is terminating,

we can prove this by wellfounded induction on x, keeping y fixed. Suppose
x →∗

R y. If x = y the result follows at once; otherwise there is a u ∈ X
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with x →R u →∗
R y. Using the hypotheses relating →R and →S , we deduce

that there is some v ∈ X with x →S v, and that x →+
R v and so a fortiori

x →∗
R v. Since →R is confluent, there is therefore a z ∈ X with y →∗

R z and
v →∗

R z. Since y is in normal form w.r.t. →R we must in fact have z = y.
Therefore we have v →∗

R y. By the inductive hypothesis, v →∗
S y and by

definition of reflexive transitive closure we have x →∗
S y as required.

Because →S is a subrelation of the transitive closure →+
R, which is itself

terminating because →R is, →S is terminating. To show that it is also con-
fluent, then, we need only prove local confluence and appeal to Newman’s
lemma. So suppose x →S y1 and x →S y2. Then by hypothesis x →+

R y1

and x →+
R y2. Since →R is confluent, we have some z, which we can by

termination assume to be in normal form, such that y1 →∗
R z and y2 →∗

R z.
But by the lemma established at the beginning of this proof, y1 →∗

S z and
y2 →∗

S z, establishing local and hence full confluence of →S .
Finally, we need to show that for any x, y ∈ X, x ↓R y iff x ↓S y. The

right-to-left implication is almost immediate, because →S is contained in
→+

R and therefore →∗
S is contained in →∗

R. For the other direction, if x ↓R y

we can assume by termination that there is a z in normal form w.r.t. →R

such that x →∗
R z and y →∗

R z. But now by the lemma at the start of the
proof, we also have x →∗

S z and y →∗
S z.

Corollary 4.27 If R is a canonical term rewriting system and (l = r) ∈ R,
then if l is reducible by the other equations, the system R − {l = r} is also
canonical and is logically equivalent.

Proof We simply need to check that the conditions of Theorem 4.26 are
satisfied, with →R generated by R and →S by S = R − {l = r}. It is
immediate that if s →S t then s →R t, and hence s →+

R t, since S is a subset
of R. Moreover, if s →R t then since l is reducible by →S , so is s.

Corollary 4.28 If R is a canonical term rewriting system and (l = r) ∈ R,
let S be the result of replacing the equation l = r in R with l = r′ where r′

is the R-normal form of r. Then S is also canonical and logically equiva-
lent to R.

Proof Again, we just need to check the conditions of Theorem 4.26. Suppose
first that s →S t. If this reduction uses the new rule l = r′, then there is
a transition s →R u →∗

R t, where the first step corresponds to the original
rewrite l = r and the remaining steps to the normalization of r, with the
appropriate subterm and instantiation. This exactly means that s →+

R t. On
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the other hand, if the reduction does not use the new rule, then trivially
s →R t and so s →+

R t. Now suppose s →R t. Either this reduction involves
l = r, in which case it can also be reduced by l = r′ and hence by →S , or it
does not, in which case s →S t anyway.

To implement this, we just transfer equations from the input list eqs
to the output list dun as needed, reversing at the end to maintain the
order:

let rec interreduce dun eqs =
match eqs with
(Atom(R("=",[l;r])))::oeqs ->

let dun’ = if rewrite (dun @ oeqs) l <> l then dun
else mk_eq l (rewrite (dun @ eqs) r)::dun in

interreduce dun’ oeqs
| [] -> rev dun;;

Applying this to the complete set obtained above, we get a much more
elegant and manageable result. In fact, it can be shown (Métivier 1983)
that the interreduced set is essentially unique once the reduction ordering is
fixed.

# interreduce [] eqs’;;
- : fol formula list =
[<<i(x4 * x5) = i(x5) * i(x4)>>; <<i(i(x1)) = x1>>; <<i(1) = 1>>;
<<x0 * i(x0) = 1>>; <<x0 * i(x0) * x3 = x3>>; <<x1 * 1 = x1>>;
<<i(x1) * x1 * x2 = x2>>; <<1 * x = x>>; <<i(x) * x = 1>>;
<<(x * y) * z = x * y * z>>]

Let us now set up a slightly more convenient interface to completion,
so that input equations are oriented, the initial critical pairs are generated
automatically, and interreduction is applied afterwards.

let complete_and_simplify wts eqs =
let ord = lpo_ge (weight wts) in
let eqs’ = map (fun e -> let l,r = normalize_and_orient ord [] e in

mk_eq l r) eqs in
(interreduce [] ** complete ord)
(eqs’,[],unions(allpairs critical_pairs eqs’ eqs’));;
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Instead of waiting till the end of the completion process to perform interre-
duction, it’s usually significantly more efficient to simplify and perhaps
delete or reorient equations during the completion process. Nevertheless,
justifying such optimizations is significantly more complicated, particularly
in connection with simplification of existing equations on the left (Huet 1981;
Baader and Nipkow 1998). And our simple algorithm is already enough to
handle most of the examples from the original paper by Knuth and Bendix
(1970). One of the more surprising is the following single-axiom system. If
one asserts i(x) · (x · y) = y, it also follows that x · (i(x) · y) = y, and
vice versa, without any other assumptions such as associativity. Knuth and
Bendix remark that ‘this fact can be used to simplify several proofs which
appear in the literature, for example in the algebraic structures associated
with projective geometry’.

# complete_and_simplify ["1"; "*"; "i"]
[<<i(a) * (a * b) = b>>];;

2 equations and 4 pending critical pairs + 0 deferred
3 equations and 9 pending critical pairs + 0 deferred
3 equations and 0 pending critical pairs + 0 deferred
- : fol formula list =
[<<x0 * i(x0) * x3 = x3>>; <<i(i(x0)) * x1 = x0 * x1>>;
<<i(a) * a * b = b>>]

Knuth and Bendix also demonstrate in their paper some techniques for
extending the approach to non-equational axioms. Consider the quite typical
‘cancellation’ property ∀x y z. x · y = x · z ⇒ y = z. Although this isn’t an
equation, it is logically equivalent to ∀x z. ∃w. ∀y. z = x · y ⇒ w = y, as we
can confirm automatically:

# (meson ** equalitize)
<<(forall x y z. x * y = x * z ==> y = z) <=>
(forall x z. exists w. forall y. z = x * y ==> w = y)>>;;

...
- : int list = [5; 4]

If we Skolemize this equivalent form we get ∀x y z. z = x · y ⇒ f(x, z) =
y, which is logically equivalent to ∀x y. f(x, x · y) = y, a purely equa-
tional property. Thus we can introduce a new operator f and an axiom
∀x y. f(x, x · y) = y, and by the conservativity property of Skolemization
(see Section 3.6) anything we can prove that does not involve f must still
be true in the original system. Similarly, the language can sometimes be
expanded to accommodate otherwise non-orientable rules. For example, if
an equation g(w, x, y) = g(w, x, z) is derived, this is an indication that the
third argument is irrelevant and we can replace g with a binary function.
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Dealing with commutativity

Despite tricks for extending the scope of completion, certain standard alge-
braic axioms give rise to difficult problems. In particular the commutativity
law x · y = y ·x cannot be oriented according to any rewrite order, since any
such order has to be closed under the instantiation x �→ y, y �→ x. There
are several approaches to dealing with commutativity, either on its own or
in conjunction with other properties such as associativity.

The most sophisticated is to change the notions of matching and uni-
fication to treat as equal all associative and commutative rearrangements
of the same term. This process is usually called associative–commutative
(AC) unification or matching. There are algorithms for these operations,
but they are a bit more complicated than regular unification; indeed the
first full AC-unification algorithm (Stickel 1981) was only proved to ter-
minate some years after it was first introduced (Fages 1984). Moreover, in
contrast to simple unification, single MGUs may not exist, though there
are always finitely many; even in matching, for example, 1 · (x · y) can
be matched to (2 · 1) · 3 either by x �→ 2, y �→ 3 or x �→ 3, y �→ 2,
neither of which is an instance of the other. The idea of AC-unification
can be generalized from unification modulo associative and commutative
laws to unification modulo any set of equational axioms (regular unification
being the special case of the empty set), and this was actually discussed by
Plotkin (1972) some years before algorithms for specific cases like AC were
developed. In the general case, however, unification may be undecidable
and there may not even be an infinite set of most general unifiers (Fages
and Huet 1986). Nevertheless, this is an important technique, playing a
role in some of the most impressive achievements in automated equational
reasoning such as the solution by McCune (1997) of the Robbins conjec-
ture.

A simpler alternative is to re-examine a key idea motivating the definition
of rewrite orderings, that we just need to orient an equation l = r once and
for all rather than separately considering each individual instance l′ = r′.
Appealing as this is, we can consider dropping it and constraining rewriting
by an ordering on the instances. This idea seems to have first been used by
Boyer and Moore (1977), who used a system like the following to implement
associative–commutative normalization for an operator ‘+’:

x + y = y + x,

x + (y + z) = y + (x + z),

(x + y) + z = x + (y + z).
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Applying these rewrites subject to a suitable ordering constraint on the
instances will normalize terms to be right-associated, and also ordered via
a kind of ‘bubblesort’, e.g.

(1 + 4) + (3 + 2) → 1 + (4 + (3 + 2)) → 1 + (3 + (4 + 2))
→ 1 + (3 + (2 + 4)) → 1 + (2 + (3 + 4)).

Assuming that the ordering we use is wellfounded, termination is assured,
so to show confluence we just need to demonstrate local confluence. For
many common orderings such as LPO, testing local confluence with order-
ing constraints on instances is decidable (Comon, Narendran, Nieuwenhuis
and Rusinowitch 1998). In general it can still be difficult, though in typical
cases a fairly straightforward approach based on analyzing all the possi-
ble orderings of the subterms in the instances works well; see Exercise 4.15
for the automation of such case analysis and checking. Martin and Nipkow
(1990) demonstrate confluence of ordered rewrite systems for many impor-
tant systems of algebraic axioms using such techniques.

Unfailing completion

Ordered rewriting can also be used to generalize completion to unfailing
completion (Bachmair, Dershowitz and Plaisted 1989), which will never fail
owing to non-orientable equations, but rather will use them with ordered
rewriting based on some term ordering, typically an LPO.

Moreover, if implemented appropriately, one can show that even if it never
finds a canonical rewrite system, it will eventually find a rewrite system capa-
ble of proving s = t by rewriting whenever s = t follows from the starting
axioms. Thus, it can form a complete proof procedure for equational logic.
This shift in emphasis from finding canonical systems to proving equations
is quite natural. After all, if we try to complete the axioms for groups where
x2 = 1, then we do not meet with success:

complete_and_simplify ["1"; "*"; "i"]
[<<(x * y) * z = x * (y * z)>>;
<<1 * x = x>>; <<x * 1 = x>>; <<x * x = 1>>];;

If we trace through successive loops of the completion procedure (using
#trace complete;; before execution), we find that the critical pair x2 ·x0 =
x0 ·x2 is generated, and subsequently put in the deferred list since it is non-
orientable. This immediately dooms the standard completion procedure to
failure or nontermination, since this equation will never be oriented or rewrit-
ten away. Yet from the point of view of first-order theorem proving, we have
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rapidly drawn an interesting conclusion (such a group must be commutative)
and so this should be considered a success rather than a failure.

4.8 Equality elimination

Many of the ideas from equational logic, such as orienting rewrites into a
favoured direction and considering only proper overlaps, can be generalized
to full first-order logic. However, the theoretical justification becomes signif-
icantly more difficult, and we will not dwell on it. However, we will consider
a few approaches to equality handling other than just adding the equality
axioms in a preprocessing step. In this section, we briefly consider avoiding
equality altogether, then examine a more sophisticated way of preprocessing
the input formulas to incorporate the necessary equality properties.

Predicate formulations

One technique that was popular for encoding group theory etc. in the early
days of automated reasoning was to use, rather than a 2-argument function
symbol, a 3-argument predicate symbol, the idea being that P (x, y, z) stands
for x · y = z. Now we can render the axioms of identity and inverse as
∀x. P (1, x, x) and ∀x. P (i(x), x, 1). By introducing auxiliary variables for
subexpressions, we can express the associative law, e.g. as

∀u, v, w, x, y, z. P (x, y, u) ∧ P (y, z, w) ⇒ (P (x, w, v) ⇔ P (u, z, v)).

Admittedly, there are several important properties of the group operation
that aren’t captured by the three axioms for P so far, e.g. ∀x y.∃!z.P (x, y, z).
Nevertheless, it turns out that some properties of groups can still be derived
just from these properties. The problem of proving that a group where x2 = 1
is abelian (x · y = y · x) works particularly nicely, because we don’t need to
postulate an inverse operation, each element being its own inverse:

# meson
<<(forall x. P(1,x,x)) /\
(forall x. P(x,x,1)) /\
(forall u v w x y z. P(x,y,u) /\ P(y,z,w)

==> (P(x,w,v) <=> P(u,z,v)))
==> forall a b c. P(a,b,c) ==> P(b,a,c)>>;;

...
- : int list = [13]
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Effective though this method can be, and interesting as it is to see how
weaker axioms suffice for many purposes, it has a rather ad hoc flavour, and
obliges us to code up the natural notions in a rather peculiar fashion. Indeed,
it was mainly popular before more effective equality reasoning methods had
been developed. Nevertheless, the idea of breaking down terms like (x · y) · z
by the introduction of auxiliary variables will reappear in a slightly different
form below.

Equivalence elimination

Our main interest is in the equality relation, but we’ll consider equality-like
properties of an arbitrary binary relation R in what follows. Besides giving
greater generality, it might actually be clearer since the notation won’t tempt
the reader to make special assumptions about equality. Note that in contrast
to most of this chapter, we’re concerned with arbitrary interpretations here,
not necessarily normal ones.

Consider the axiom ‘Equiv’ asserting that a binary relation R is an equiv-
alence relation, i.e. is reflexive, symmetric and transitive.

(∀x. R(x, x)) ∧
(∀x y. R(x, y) ⇒ R(y, x)) ∧
(∀x y z. R(x, y) ∧ R(y, z) ⇒ R(x, z)).

This is equivalent to simply ∀x y. R(x, y) ⇔ (∀z. R(x, z) ⇔ R(y, z)); the
reader can verify this, or we can leave it to the machine:

# meson
<<(forall x. R(x,x)) /\
(forall x y. R(x,y) ==> R(y,x)) /\
(forall x y z. R(x,y) /\ R(y,z) ==> R(x,z))
<=> (forall x y. R(x,y) <=> (forall z. R(x,z) <=> R(y,z)))>>;;

...
- : int list = [4; 3; 9; 3; 2; 7]

Similarly, an assertion of reflexivity and transitivity (without symmetry)
is equivalent to ∀x y. R(x, y) ⇔ (∀z. R(y, z) ⇒ R(x, z)), while symmetry of
R alone is equivalent to ∀x y.R(x, y) ⇔ R(x, y)∧R(y, x). These equivalences
are all of the form

∀x y. R(x, y) ⇔ R∗[x, y],

so we can think of them as rules for replacing each instance of R(s, t) in a
formula by R∗[s, t]. After making such replacements, we will prove shortly
that the corresponding axioms about R are no longer needed. Consider the
case of full equivalence; the reflexivity–transitivity and symmetry cases work
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similarly. Given an atomic formula R(s, t), write R∗[s, t] for ∀w. R(s, w) ⇔
R(t, w) where w �∈ FV(s) ∪ FV(t).

Theorem 4.29 P ∧Equiv is satisfiable iff the formula P ∗ that results from
replacing each subformula R(s, t) in P with R∗[s, t] is satisfiable.

Proof We noted above that Equiv ⇔ (∀x y. R(x, y) ⇔ R∗[x, y]) and so for
any terms s and t we have Equiv ⇒ (R(s, t) ⇔ R∗[s, t]). Hence Equiv∧P ⇔
Equiv∧P ∗. This means that if Equiv∧P is satisfiable, so is Equiv∧P ∗ and
a fortiori P ∗. Note that this works equally well if we choose only to replace
some formulas R(s, t) in P with R∗[s, t], not necessarily all of them.

Now suppose that P ∗ is satisfiable, say in an interpretation M with
domain D where R is interpreted by RM . Define a new interpretation N that
is the same except that RN (a, b) is defined to hold precisely when RM (a, c)
and RM (b, c) are equivalent for all c ∈ D. By design, holds N v (R(s, t)) =
holds M v (R∗[s, t]), so since P ∗ holds in M , P holds in N . By construction
RN is an equivalence relation, so Equiv also holds in N .

This approach is generalized by Ohlbach, Gabbay and Plaisted (1994)
to a large class of ‘killer transformations’, so called because they ‘kill’ cer-
tain axioms. The proofs here of the key equisatisfiability properties were
suggested by Rob Arthan.

Brand’s S- and T-modifications

An earlier equality elimination method (Brand 1975) similarly eliminates
symmetry and transitivity, but keeps the reflexivity axiom ∀x. R(x, x). The
advantage of doing this is that one may then perform the expansive trans-
formation only on positive occurrences of R(s, t), while negative occurrences
¬R(u, v) can be left alone. We can adapt the proof of Theorem 4.29 as
follows. Assume the formula P [. . . , R(s, t), . . . ,¬R(u, v), . . .] whose satisfi-
ability is at issue is in NNF, so we can distinguish positive and negative
occurrences simply by whether they are directly covered by a negation oper-
ation. All are treated in the way indicated for the paradigmatic examples
R(s, t) and ¬R(u, v). Write as before

P ∗ = P [. . . , R∗[s, t], . . . ,¬R∗[u, v], . . .]

but also

P ′ = P [. . . , R∗[s, t], . . . ,¬R(u, v), . . .].
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The first part of the proof works equally well to show that if Equiv ∧ P

is satisfiable, so is Equiv ∧ P ′ and therefore (∀x. R(x, x)) ∧ P ′. Conversely,
(∀x.R(x, x)) ⇒ R∗[u, v] ⇒ R(u, v), so (∀x.R(x, x)) ⇒ ¬R(u, v) ⇒ ¬R∗[u, v]
and therefore (∀x.R(x, x))∧P ′ ⇒ (∀x.R(x, x))∧P ∗. Thus if (∀x.R(x, x))∧P ′

is satisfiable, so is P ∗ and, by the same proof as before, so is P .
Restricted to the special case of a formula in clausal form with R being

the equality relation, these ways of eliminating symmetry and transitivity
give exactly Brand’s S-modification and T -modification respectively. Doing
these successively works out the same as doing equivalence-elimination once
and for all, but we’ll keep them separate both to emphasize the correspon-
dence with Brand’s work and to modularize the implementation. In the
clausal context we can also recognize positivity or negativity trivially. If we
keep the same predicate symbol, namely =, then we can just leave neg-
ative literals untouched in each case, and only modify positive equations.
The S-transformation on a clause with n positive equations (written at the
beginning for simplicity):

s1 = t1 ∨ · · · ∨ sn = tn ∨ C

leads to

(s1 = t1 ∧ t1 = s1) ∨ · · · ∨ (sn = tn ∧ tn = sn) ∨ C.

This is no longer in clausal form, but we can redistribute and arrive at 2n

resulting clauses:

s1 = t1 ∨ · · · ∨ sn−1 = tn−1 ∨ sn = tn ∨ C,

s1 = t1 ∨ · · · ∨ sn−1 = tn−1 ∨ tn = sn ∨ C,

s1 = t1 ∨ · · · ∨ tn−1 = sn−1 ∨ sn = tn ∨ C,

s1 = t1 ∨ · · · ∨ tn−1 = sn−1 ∨ tn = sn ∨ C,

· · ·
t1 = s1 ∨ · · · ∨ tn−1 = sn−1 ∨ tn = sn ∨ C,

which essentially cover all possible combinations of forward and backward
equations in the original clause. Admittedly, if n is large, this exponential
blowup in the number of clauses is not very appealing, but it can be made
manageable using a few extra tricks (see Exercise 4.4). Here is the imple-
mentation on a clause represented as a list of literals:



4.8 Equality elimination 291

let rec modify_S cl =
try let (s,t) = tryfind dest_eq cl in

let eq1 = mk_eq s t and eq2 = mk_eq t s in
let sub = modify_S (subtract cl [eq1]) in
map (insert eq1) sub @ map (insert eq2) sub

with Failure _ -> [cl];;

For the T -modification, we need to replace each equation si = ti in a
clause:

s1 = t1 ∨ · · · ∨ sn = tn ∨ C

as follows:

(∀w. t1 = w ⇒ s1 = w) ∨ · · · ∨ (∀w. tn = w ⇒ sn = w) ∨ C.

We can pull out the universal quantifiers to retain clausal form, but we
then need to use distinct variable names wi instead of a single w in each
equation. We also transform t1 = w ⇒ s1 = w into ¬(ti = w) ∨ si = w to
return to clausal form, resulting in:

¬(t1 = w1) ∨ s1 = w1 ∨ · · · ∨ ¬(tn = wn) ∨ sn = wn ∨ C.

We can implement this directly, just running through the literals succes-
sively, recursively transforming the tail and picking a new variable w that is
neither in the transformed tail nor the unmodified literal being considered:

let rec modify_T cl =
match cl with
(Atom(R("=",[s;t])) as eq)::ps ->

let ps’ = modify_T ps in
let w = Var(variant "w" (itlist (union ** fv) ps’ (fv eq))) in
Not(mk_eq t w)::(mk_eq s w)::ps’

| p::ps -> p::(modify_T ps)
| [] -> [];;

Brand’s E-modification

We have shown how the equivalence axioms can be eliminated by incorpo-
rating new structure into the other formulas. We now proceed to do the
same with the congruence axioms

∀x1 · · ·xny1 · · · yn. x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

and

∀x1 · · ·xny1 · · · yn. x1 = y1 ∧ · · · ∧ xn = yn ⇒ P (x1, . . . , xn) ⇒ P (y1, . . . , yn)
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for the function symbols f and predicates P appearing in the initial formu-
las. We will actually perform this transformation first, and so we can assume
the equivalence axioms. The basic idea is to repeatedly pull out non-variable
immediate subterms t of function and predicate symbols (other than equal-
ity) using the following, which are clearly equivalences in the presence of the
congruence and reflexivity axioms:

f(. . . , t, . . .) = s ⇔ ∀w. t = w ⇒ f(. . . , w, . . .) = s,

s = f(. . . , t, . . .) ⇔ ∀w. t = w ⇒ s = f(. . . , w, . . .),

P (. . . , t, . . .) ⇔ ∀w. t = w ⇒ P (. . . , w, . . .).

We can repeat this transformation until function symbols (including con-
stants) only appear as arguments to the equality predicate, not other predi-
cates nor other functions. A formula with this property is said to be flat and
we will describe the transformation as flattening. For example, we might
transform the associative law as follows, assuming all free variables to be
implicitly universally quantified:

(x · y) · z = x · (y · z),
x · y = w1 ⇒ w1 · z = x · (y · z),
x · y = w1 ∧ y · z = w2 ⇒ w1 · z = x · w2.

It turns out that for flat quantifier-free formulas, the congruence axioms
are not necessary, in the following precise sense.

Theorem 4.30 Suppose a quantifier-free formula P is flat, E asserts the
equivalence properties of equality and C is the collection of congruences for
the functions and predicates appearing in P . Then P ∧ E ∧ C is satisfiable
iff P ∧ E is.

Proof One way is immediate. So suppose P ∧ E is satisfiable; we will show
that P ∧E∧C is too. If M is a model of P ∧E with domain D, then since it
is a fortiori a model of E, the interpretation =M of equality is an equivalence
relation. For any a ∈ D, let a be some fixed canonical representative of the
equivalence class [a]=M . Thus, for any a, b ∈ D we have =M (a, b) iff a = b.
We now define a new model M ′ with the same domain D interpreting the
function symbols as follows:

fM ′(a1, . . . , an) = fM (a1, . . . , an),



4.8 Equality elimination 293

equality in the same way, =M , and the other predicate symbols like this:

PM ′(a1, . . . , an) = PM (a1, . . . , an).

We claim that M ′ is a model of P ∧ E ∧ C. It is a model of E since we
have not changed the interpretation of the equality symbol nor the domain,
and no function symbols or other predicates appear in E. To see that it is
also a model of C, note that the function congruence axiom

x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

holds in M ′ under a valuation mapping each xi �→ ai and yi �→ bi precisely
if whenever ai =M bi for 1 ≤ i ≤ n, then fM ′(a1, . . . , an) = fM ′(b1, . . . , bn).
But ai = bi implies, as noted above, that ai = bi, and since by definition
fM ′(a1, . . . , an) = fM (a1, . . . , an) and similarly for bi, the result follows. The
predicate congruences hold for similar reasons.

All that remains is to show that M ′ is a model of P as well, and this is
where the flatness of P is critical. Let v be any valuation, and define v(x) =
v(x). We claim that for any flat atomic formula p we have holds M ′ v p =
holds M v p. Note first that for each term consisting of a function applied
to (not necessarily distinct) variables we have

termval M ′ v (f(x1, . . . , xn))

= fM ′(termval M ′ v x1, . . . , termval M ′ v xn)

= fM ′(v(x1), . . . , v(xn))

= fM (v(x1), . . . , v(xn))

= fM (v(x1), . . . , v(xn))

= fM (termval M v x1, . . . , termval M v xn)

= termval M v (f(x1, . . . , xn)).

The same result does not hold for variables alone, but at least the two
values termval M ′ v x = v(x) and termval M v x = v(x) = v(x) are
equivalent under =M by definition. Thus if t is a ‘flat term’, either a variable
or function applied to variables, we have

=M (termval M ′ v t, termval M v t).
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Consequently, since =M is an equivalence relation we can see that for an
equation between two such terms:

holds M ′ v (s = t)

= =M (termval M ′ v s, termval M ′ v t)

= =M (termval M v s, termval M v t)

= holds M v (s = t).

For other predicate symbols applied to variables, we similarly have:

holds M ′ v (P (x1, . . . , xn))

= P ′
M (termval M ′ v x1, . . . , termval M ′ v xn))

= P ′
M (v(x1), . . . , v(xn))

= PM (v(x1), . . . , v(xn))

= PM (v(x1), . . . , v(xn))

= PM (termval M v x1, . . . , termval M v xn)

= holds M v (P (x1, . . . , xn)).

It now follows by induction on the structure of P that we can extend the
basic result to the whole formula (which is quantifier-free by hypothesis):

holds M ′ v P = holds M v P

However, since M is a model of P , the RHS is simply ‘true’, and therefore
so is the left. But v was arbitrary, and therefore the theorem is proved.

Brand’s ‘E-modification’ applies the flattening transformation to clauses,
adding new negative literals ¬(t = wi) for the extra variable definitions
included. It follows that if we perform E-modification and then S- and T -
modifications, the resulting set of clauses plus the reflexive law x = x has a
model iff the original formula has a normal model. We have thus succeeded
in transforming the input clauses to eliminate the need for any equality
axioms besides reflexivity.

Implementation

First we define functions to identify non-variables:

let is_nonvar = function (Var x) -> false | _ -> true;;

and hence find a nested non-variable subterm where possible:
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let find_nestnonvar tm =
match tm with
Var x -> failwith "findnvsubt"

| Fn(f,args) -> find is_nonvar args;;

Now we can identify a non-variable subterm that we want to pull out in
flattening; in the case of equality this is a nested non-variable subterm, while
for the other predicate symbols it is any non-variable subterm:

let rec find_nvsubterm fm =
match fm with
Atom(R("=",[s;t])) -> tryfind find_nestnonvar [s;t]

| Atom(R(p,args)) -> find is_nonvar args
| Not p -> find_nvsubterm p;;

Having found such a non-variable subterm, we want to replace it with a
new variable. We don’t have a general function to replace subterms (tsubst
and subst only replace variables), so we define one, first for terms:

let rec replacet rfn tm =
try apply rfn tm with Failure _ ->
match tm with
Fn(f,args) -> Fn(f,map (replacet rfn) args)

| _ -> tm;;

and then for other formulas (here we only care about literals, and can treat
quantified formulas without regard to variable capture):

let replace rfn = onformula (replacet rfn);;

To E-modify a clause, we try to find a nested non-variable subterm; if we
fail we are already done, and otherwise we replace that term with a fresh
variable w, add the new disjunct ¬(t = w) and call recursively:

let rec emodify fvs cls =
try let t = tryfind find_nvsubterm cls in

let w = variant "w" fvs in
let cls’ = map (replace (t |=> Var w)) cls in
emodify (w::fvs) (Not(mk_eq t (Var w))::cls’)

with Failure _ -> cls;;

The fvs parameter tracks the free variables in the clause so far, so we just
need to set its initial value:

let modify_E cls = emodify (itlist (union ** fv) cls []) cls;;
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The overall Brand transformation now applies E-modification, then S-
modification and T -modification, then finally includes the reflexive clause
x = x:

let brand cls =
let cls1 = map modify_E cls in
let cls2 = itlist (union ** modify_S) cls1 [] in
[mk_eq (Var "x") (Var "x")]::(map modify_T cls2);;

We insert Brand’s transformation into MESON’s clausal framework to
give bmeson:

let bpuremeson fm =
let cls = brand(simpcnf(specialize(pnf fm))) in
let rules = itlist ((@) ** contrapositives) cls [] in
deepen (fun n ->

mexpand rules [] False (fun x -> x) (undefined,n,0); n) 0;;

let bmeson fm =
let fm1 = askolemize(Not(generalize fm)) in
map (bpuremeson ** list_conj) (simpdnf fm1);;

For easy comparison, we’ll define a similar version of MESON that just
uses the equality axioms.

let emeson fm = meson (equalitize fm);;

The relative performance of these two methods depends on the appli-
cation. For example, on the wishnu problem from the end of Section 4.1,
Brand’s transformation is substantially slower than just adding the equality
axioms. But on our group theory examples, Brand’s transformation is much
better, e.g. only a few minutes here while emeson takes far longer:

# bmeson
<<(forall x y z. x * (y * z) = (x * y) * z) /\
(forall x. e * x = x) /\
(forall x. i(x) * x = e)
==> forall x. x * i(x) = e>>;;

- : int list = [19]

Since Brand’s original work, several variant methods have been proposed
that are often more efficient. Moser and Steinbach (1997) suggest a version
that avoids equations with variables on their left-hand sides, which tends
to reduce the number of possible unifications. However, this comes at the
cost of needing to split negative equations as well as positive ones in the
analogue of the T -modification. A further refinement based on imposing
term ordering constraints was proved complete by Bachmair, Ganzinger and
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Voronkov (1997) and shown to be substantially more efficient on a number
of examples.

4.9 Paramodulation

So far we have handled equality by using standard first-order proof methods
on modified formulas, resulting either from adding equality axioms or using
the more sophisticated modification methods in the previous section. Pre-
processing has several advantages: we can re-use proof procedures intended
for pure first-order logic without internal modification, and can also transfer
results like compactness to the equality case without new theoretical difficul-
ties. However, it is also possible to augment one of the standard first-order
theorem proving techniques with additional rules for equality, rather than
modifying the input formulas themselves. It seems more straightforward to
add new inference rules in the context of bottom-up procedures like reso-
lution, though some authors have also introduced special equality-handling
methods for top-down methods such as tableaux (Fitting 1990), model elim-
ination (Moser, Lynch and Steinbach 1995), model evolution (Baumgartner
and Tinelli 2005) and others.

The first equality-based inference rule to be introduced was demodulation
(Wos, Robinson, Carson and Shalla 1967), which uses unit equality clauses
like x + 0 = x as rewrite rules to simplify other clauses. The name arises
because it is typically used to remove ‘modulations’ of essentially the same
fact, e.g. P (x), P (0 + x), P (x − 0) etc. Although useful in practice, it is
not complete. However, the more general rule of paramodulation introduced
a little later (G. Robinson and Wos 1969) gives, when used together with
the standard resolution rule, a theoretically complete method of handling
equality. Even in its unrestricted initial form it was often found to be far
more effective than adding equality axioms, and it has subsequently been
extensively refined, in particular by introducing ordering notions from term
rewriting. Paramodulation is the following inference rule, where s

.= t may
be either s = t or t = s:

C ∨ s
.= t D ∨ P [s′]

subst σ (C ∨ D ∨ P [t])
Paramodulation,

where σ is a MGU of s and the indicated term instance s′. Paramodulation
generalizes rewriting in several respects that make it look more like the res-
olution rule itself: we can use equations that occur disjoined with additional
literals C to rewrite with, the rewrite may be applied in either direction,
and the identification of the terms s and s′ is done by full unification, not
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just matching. It’s relatively easy to see that the rule is sound, i.e that the
conclusion holds in any normal model in which the hypotheses do. The issue
of its refutation completeness as a method of equality handling is subtler.

Refutation completeness of paramodulation

It is not the case that if a set of clauses has no normal model then it can be
refuted by resolution plus paramodulation, as the example of {¬(x = x)}
shows. This suggests that, as with Brand’s method, we may not need all
the equality axioms but we do at least need to add reflexivity to the input
clauses. In fact, we will demonstrate refutation completeness on the stronger
assumption that we also add all the functional reflexive axioms of the form:

f(x1, . . . , xn) = f(x1, . . . , xn),

one for each function symbol f appearing in the input clauses. (This looks
strange, but the reason will become clearer below.) Our proof of refuta-
tion completeness rests on the fact that a hyperresolution proof assuming
equality axioms can be simulated by resolution and paramodulation with
the functional reflexive axioms. In order to simplify the proof, we will adopt
instead of the usual congruence rules the 1-instance variants:

¬(x = x′)∨f(x1, . . . , xi−1, x, xi+1, . . . , xn) = f(x1, . . . , xi−1, x
′, xi+1, . . . , xn)

for each n-ary function f in the clauses S and for each 1 ≤ i ≤ n, and
similarly:

¬(x = x′)∨¬P (x1, . . . , xi−1, x, xi+1, . . . , xn)∨P (x1, . . . , xi−1, x
′, xi+1, . . . , xn)

for each n-ary predicate P in the clauses S and for each 1 ≤ i ≤ n, together
with the usual combined symmetry–transitivity rule:

¬(x = y) ∨ ¬(x = z) ∨ (y = z)

and simple reflexivity

x = x.

We refer to these collectively as eqaxioms′(S). They are logically equiva-
lent to eqaxioms(S), since we can derive the multiple-instance congruence
rules by repeated use of the one-instance rule put together by transitiv-
ity, while the converse follows by reflexivity. We let R be simple reflexivity
together with the functional reflexive axioms, one for each function symbol
in S:

f(x1, . . . , xn) = f(x1, . . . , xn).
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Theorem 4.31 If S has no normal model, then S ∪ R has a refutation by
resolution and paramodulation.

Proof Since S has no normal model, S ∪ eqaxioms′(S) is unsatisfiable (by
the above remarks and Theorem 4.1). It therefore has a refutation by pos-
itive hyperresolution (see Section 3.13). We will show that all conclusions
obtainable by positive hyperresolution from S ∪ eqaxioms′(S) can also be
obtained by resolution and paramodulation from S ∪ R.

We will establish this by induction on the steps of a hyperresolution proof.
We need only consider hyperresolution steps where at least one input clause
is taken from the set R′ = eqaxioms′(S)−R, since otherwise the conclusion
holds at once. And since there are no all-positive clauses in R′, we must by
the definition of positive hyperresolution have exactly one input clause from
R′. If this input clause is a function-congruence axiom, then the resolution
must be of the following form. (In such cases, we can assume that only the
left-hand hypothesis is instantiated, in this case with a unifier x �→ s and
x′ �→ t, because x and x′ are just variables.)

¬(x = x′) ∨ f(. . . , x, . . .) = f(. . . , x′, . . .) C ∨ s = t

C ∨ f(. . . , s, . . .) = f(. . . , t, . . .)

This can be simulated by a paramodulation inference using the functional
reflexive axiom:

f(. . . , x, . . .) = f(. . . , x, . . .)C ∨ s = t

C ∨ f(. . . , s, . . .) = f(. . . , t, . . .)
.

Now, if the input is a predicate-congruence axiom, then any hyperresolution
consisting of two successive positive resolution steps (in the order shown
here or vice versa):

¬(x = x′) ∨ ¬P (. . . , x, . . .) ∨ P (. . . , x′, . . .) C ∨ s = t

C ∨ ¬P (. . . , s, . . .) ∨ P (. . . , t, . . .) D ∨ P (. . . , s′, . . .)
subst σ (C ∨ D ∨ P (. . . , t, . . .))

,

where σ is an MGU of s and s′, can be simulated directly by a single
paramodulation:

C ∨ s = t D ∨ P (. . . , s′, . . .))
subst σ(C ∨ D ∨ P (. . . , t, . . .))

,
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Finally, a hyperresolution with the symmetry–transitivity axiom, again
either in the order shown here or vice versa:

¬(x = y) ∨ ¬(x = z) ∨ (y = z) C ∨ s = t

C ∨ ¬(s = z) ∨ (t = z) D ∨ s′ = t′

subst σ (C ∨ D ∨ t = t′)
,

with σ a MGU of s and s′, can be simulated by a single paramodulation as
follows:

C ∨ s = t D ∨ s′ = t′
subst σ (C ∨ D ∨ t = t′)

.

This proof exploits the fact that many conclusions can be derived by
paramodulation with the functional reflexive axioms. But for exactly the
same reason, it’s not clear that this combination in practice is actually
any better controlled than direct hyperresolution with the equality axioms
(Kowalski 1970a). Moreover, the apparent need for the functional reflexive
axioms, all of which are just instances of x = x, shows that the kind of ‘lift-
ing’ arguments underlying resolution do not generalize, and suggests that
subsumption for paramodulation may be subtle.

For a long time it was an open question whether simple reflexivity x = x

is enough to ensure refutation completeness of resolution with paramodula-
tion.† Eventually Brand (1975) presented an analogous simulation argument
based on his equality transformation (Section 4.8), showing not only that
simple reflexivity suffices but also that paramodulation can be restricted
in other ways without losing refutation completeness. In particular, there
is almost no need to paramodulate into variables, i.e. unify the left of
the paramodulating equation with a variable subterm of the literal being
paramodulated. However, when using many of the most effective refinements
of resolution like set-of-support, the functional reflexive axioms are necessary
once again for refutation completeness. Consider, for example, the following
set of clauses, including simple reflexivity:

{¬(x < x), f(a) < f(b), a = b, x = x}.
The entire set is unsatisfiable, but the set with ¬(x < x) removed is satis-

fiable. However, if we attempt to find a proof by resolution and paramodula-
tion with set of support ¬(x < x), no proof can be found. On the other hand,

† A footnote in G.G. Robinson and Wos (1969) remarks: ‘In the two years that paramodulation
has been under study, no counterexample has been found to the R-refutation completeness of
paramodulation and resolution for simply-reflexive systems’.
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if we add the functional reflexive axiom f(x) = f(x), we can paramodulate
with ¬(x < x) to yield ¬(f(x) < f(x)) and quickly arrive at a refuta-
tion. Despite such examples, it is common to leave the functional reflexive
axioms out when attempting theorem proving in the hope that their the-
oretical necessity will not arise in the particular case under consideration.
In our implementation, we will just use simple reflexivity and also disallow
paramodulation into variables, in line with Brand’s result.

Implementation

The key operation in paramodulation is not unlike that of finding a critical
pair in Knuth–Bendix completion (Section 4.7), except that we need to con-
sider overlaps inside an arbitrary literal, not just another term. It’s similar
enough that we can re-use some of the code such as the overlaps function.
(To allow paramodulation into variables the last line ‘Var x -> []’ could be
replaced by ‘Var x -> [rfn (fullunify [l,tm]) r]’.) We then define an anal-
ogous function to find overlaps within literals. The code is very similar, the
main change being that we don’t attempt overlaps at the top level (which
is a formula, not a term) and include a separate clause for negations.

let rec overlapl (l,r) fm rfn =
match fm with
Atom(R(f,args)) -> listcases (overlaps (l,r))

(fun i a -> rfn i (Atom(R(f,a)))) args []
| Not(p) -> overlapl (l,r) p (fun i p -> rfn i (Not(p)))
| _ -> failwith "overlapl: not a literal";;

We lift this to an operation on a whole clause, i.e. a list of literals:

let overlapc (l,r) cl rfn acc = listcases (overlapl (l,r)) rfn cl acc;;

Now to apply paramodulation to a clause ocl using all the positive equa-
tions in a paramodulating clause pcl, we treat each positive equation eq in
turn, considering it as both l = r and r = l. In each case we apply overlapc,
with the reconstruction function set up to disjoin the other clauses and apply
the final instantiation to each.

let paramodulate pcl ocl =
itlist (fun eq -> let pcl’ = subtract pcl [eq] in

let (l,r) = dest_eq eq
and rfn i ocl’ = image (subst i) (pcl’ @ ocl’) in
overlapc (l,r) ocl rfn ** overlapc (r,l) ocl rfn)

(filter is_eq pcl) [];;
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Now to generate all paramodulants between clauses, we just rename the
clauses to avoid variable clashes in unification, as usual, and then perform
paramodulation of each clause within the other.

let para_clauses cls1 cls2 =
let cls1’ = rename "x" cls1 and cls2’ = rename "y" cls2 in
paramodulate cls1’ cls2’ @ paramodulate cls2’ cls1’;;

Now we modify the main resolution loop from Section 3.11 to incorporate
both resolution and paramodulation:

let rec paraloop (used,unused) =
match unused with
[] -> failwith "No proof found"

| cls::ros ->
print_string(string_of_int(length used) ^ " used; "^

string_of_int(length unused) ^ " unused.");
print_newline();
let used’ = insert cls used in
let news =
itlist (@) (mapfilter (resolve_clauses cls) used’)
(itlist (@) (mapfilter (para_clauses cls) used’) []) in

if mem [] news then true else
paraloop(used’,itlist (incorporate cls) news ros);;

and then set up the top-level function as before, remembering to add simple
reflexivity to the clause set:

let pure_paramodulation fm =
paraloop([],[mk_eq (Var "x") (Var "x")]::

simpcnf(specialize(pnf fm)));;

let paramodulation fm =
let fm1 = askolemize(Not(generalize fm)) in
map (pure_paramodulation ** list_conj) (simpdnf fm1);;

This implementation is at least enough to deal with some simple equality
problems we’ve already encountered, as well as some others like the following
(Dijkstra 1996):

# paramodulation
<<(forall x. f(f(x)) = f(x)) /\ (forall x. exists y. f(y) = x)
==> forall x. f(x) = x>>;;

...
- : bool list = [true]

However, our rather simple-minded implementation cannot really demon-
strate the full power of paramodulation. It works best in conjunction with
strong restrictions on applicability, e.g. applying equations in a preferred
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direction based on orderings in the style of term rewriting. Moreover, resolu-
tion itself, and paramodulation even more so, work best with more intelligent
strategies for choosing the next application rather than the naive round-
robin approach that we have implemented. In fact, by encoding atomic for-
mulas P (t1, . . . , tn) as equations fP (t1, . . . , tn) = T (where ‘T’ is thought of
as ‘true’; see Exercise 4.3), one can essentially perform all logical inference
via equational techniques like paramodulation, obviating the need for res-
olution or similar principles. This idea underlies the superposition method
(Bachmair and Ganzinger 1994), implemented efficiently in the E theorem
prover (Schulz 1999).

Further reading

The branch of model theory focusing on equational logic is also known as
universal algebra, and there are several texts on the subject such as Cohn
(1965) and Burris and Sankappanavar (1981). Almost all books on model
theory cited in the last chapter also contain something about the theoretical
material described here. More information, historical and otherwise, on the
concept of categoricity is given by Corcoran (1980). Two more difficult theo-
rems about κ-categoricity are Morley’s theorem, which asserts that a theory
categorical in one uncountable cardinal is categorical in them all, and the
Ryll–Nardzewski theorem, which gives an attractive algebraic characteriza-
tion of ℵ0-categorical theories. Both these theorems can be found in Hodges
(1993b).

For pure equational reasoning based on rewriting techniques, see the
book by Baader and Nipkow (1998) and the survey articles by Huet and
Oppen (1980), Klop (1992) and Plaisted (1993). Dershowitz’s result that a
simplification order is terminating is usually deduced from (a simple case
of) Kruskal’s theorem (Kruskal 1960; Nash-Williams 1963); an accessible
account can be found in Baader and Nipkow (1998). In implementing the
LPO we paid no attention to efficiency, but this question is carefully ana-
lyzed by Löchner (2006).

Methods for deciding validity of universal formulas in logic with equality
have significant applications in verification (Burch and Dill 1994). This has
led to the exploration of various alternative algorithms to congruence clo-
sure. For further refinements of the approach based on Ackermann reduction,
see Goel, Sajid, Zhou, Aziz and Singhal (1998), Velev and Bryant (1999) and
Lahiri, Bryant, Goel and Talupur (2004).

Paramodulation is discussed in some of the automated theorem proving
texts already mentioned, including Chang and Lee (1973) and Loveland
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(1978). Again, books such as Wos, Overbeek, Lusk and Boyle (1992) by
the Argonne group cover the use of paramodulation to solve non-trivial
problems. Bachmair and Ganzinger (1994) is a survey of paramodulation
and related ideas, and Degtyarev and Voronkov (2001) of equality reasoning
in top-down free-variable calculi like tableaux.

The TPTP problem library (Sutcliffe and Suttner 1998) includes many
equational problems, and provides tools to add equality axioms for provers
that do not handle equality directly. Some of the most impressive appli-
cations of automated reasoning to hard problems are in the general area of
equational logic. The most famous example is the Robbins conjecture, which
resisted proof attempts by many notable mathematicians including Tarski,
yet was solved automatically by McCune (1997) using the EQP prover.
This is just one particularly well-known case where automated reasoning
programs have answered open questions. Some more can be found in the
monographs by McCune and Padmanabhan (1996) and Wos and Pieper
(2003), and on the Web.†

Exercises

4.1 Recall that a set of formulas is said to be κ-categorical if (it has
a model and) all its models of cardinality κ are isomorphic. Prove
a version of the �Loś–Vaught test: if a countable set of formulas is
κ-categorical for some infinite κ then all models are elementarily
equivalent. (You may find it useful to use the upward Löwenheim-
Skolem theorem.)

4.2 Show that a Birkhoff proof can be rearranged so that all instantiation
and symmetry is applied immediately above the leaves, then congru-
ence rules where necessary and at the top level a right-associated
transitivity chain such that no two adjacent equations in a transi-
tivity chain are derived by a congruence. Hence deduce in another
way that congruence closure of the subterms in the input problem
is a complete approach to the equational theory of a set of ground
equations.

4.3 We can reduce validity of arbitrary formulas in first-order logic with
equality to a language with equality as the only predicate by the
device of turning each P (t1, . . . , tn) to a term fP (t1, . . . , tn) = T for
some new n-ary function symbol fP and a new constant T for ‘true’.
For example, this allows us to decide the full universal theory of first-
order logic with equality using standard congruence closure. Under

† See http://www-unix.mcs.anl.gov/AR/new_results/
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what circumstances does this transformation preserve validity? (Take
care over 1-element interpretations!)

4.4 Rigorously justify the Ackermann reduction from universal formulas
in logic with equality to the corresponding problem without func-
tions, and so all the way to propositional logic. Implement this idea,
using some method such as DPLL to solve the resulting formulas,
and test it against congruence closure on examples.

4.5 We say that two abstract reduction relations →α and →β on a set
X commute if whenever a →∗

α b and a →∗
β b′ there is a c with

b →∗
β c and b′ →∗

α c. Thus, in particular, a reduction relation is
confluent iff it commutes with itself. Prove that if a set of reduction
relations {→α| α ∈ A} on a set X has the property that any two (not
necessarily distinct) →α and →β commute, then the union relation
→, defined by a → b iff there is an α ∈ A with a →α b, is confluent
(Hindley 1964).

4.6 Prove that if two abstract reduction relations →α and →β on a set
X are such that the union relation →, i.e. a → b iff either a →α b or
a →β b, is transitive, then → is terminating iff both →α and →β are
(Geser 1990). You may find Ramsey’s theorem useful. Extend this to
the case of n different component relations. For an application to ter-
mination analysis of programs see Cook, Podelski and Rybalchenko
(2006).

4.7 The Collatz conjecture (Lagarias 1985) is that the following recur-
sive function (assuming unlimited range for the integer n) always
terminates. Encode this definition as a rewrite system:

let rec collatz n =
if n <= 1 then n
else if n mod 2 = 0 then collatz (n / 2) else collatz(3 * n + 1);;

4.8 Show that the singleton set of rewrite rules {f(f(x)) = f(g(f(x)))}
is terminating, but this cannot be shown via any simplification order.

4.9 Complete the following rewrite sets taken from Baader and Nipkow
(1998): (a) {f(g(f(x))) = g(x)} and (b) {f(f(x)) = f(x), g(g(x)) =
f(x), f(g(x)) = g(x), g(f(x)) = f(x)}. Can you characterize the
normal forms? You may like to analyze the examples by hand before
running completion.

4.10 Suppose E1 and E2 are two separate sets of equations, considered as
rewrite rules, that have disjoint signatures, i.e. such that the function
(including constant) symbols in E1 do not occur in E2 and vice
versa. Show that if E1 and E2 both have the weak normalization
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property (every term has a normal form), then so does the combined
set E1 ∪ E2. However, give a counterexample to show that even if
E1 and E2 are terminating (strongly normalizing) E1 ∪ E2 may fail
to be (Toyama 1987a). Also prove (more difficult) that if E1 and E2

are confluent, so is E1 ∪ E2 (Toyama 1987b).
4.11 You will probably find that our present implementation cannot com-

plete the following axioms for ‘near rings’ in a reasonable time:

0 + x = x,

−x + x = 0,

(x + y) + z = x + (y + z),

(x · y) · z = x · (y · z),

(x + y) · z = x · z + y · z.

Nevertheless, finding a completion is quite feasible (Aichinger 1994).
Try optimizing our completion algorithm so that left-reducible rules
are put back into the critical pair list, and see if you can then solve
it. Can you justify the completeness of this refinement?

4.12 Instead of running completion with a simple queue of critical pairs,
an alternative (Lescanne 1984) would be to run the procedure for a
while, select the most ‘interesting’ equations derived – perhaps those
with the simplest structure, e.g. i(i(x)) = x above i(i(x · i(y))) =
i(y · i(x)) – and restart the procedure with the original equations
and the interesting ones selected. Implement this idea and see how
it works on typical examples. This idea is not restricted to equa-
tional reasoning, but could be used for any bottom-up procedure.
Try implementing a similar approach to resolution theorem proving
and test its effectiveness.

4.13 Although we’ve exclusively used versions of the LPO as the ordering
in rewriting and completion, Knuth and Bendix (1970) originally
used somewhat different orderings, now known as Knuth–Bendix
orderings. Try these out following Knuth and Bendix’s original paper,
and try to convince yourselves theoretically that they have the
required properties for a simplification order. Take care over the
restrictions on the ‘weights’.

4.14 Prove that the LPO is total on ground terms (or terms where weights
are assigned to the variables as if they were constants).

4.15 Implement basic automated confluence analysis for ordered rewrite
systems as follows. Generate all the possible orderings for the (terms
substituted for) the variables on the left of a rewrite rule, e.g. for
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(x + y) + z = x + (y + z) the orders include x = y = z, x = y < z,
y < x = z and y < z < z. Implement a variant of lpo_gt that uses
these orderings as hypotheses and deduces the ordering of terms built
up from them. For each case, analyze critical pairs, exclude those that
are ruled out by orderings and try to verify that the feasible critical
pairs are joinable subject to the same constraints. Try your code out
on the examples from Martin and Nipkow (1990).

4.16 Paramodulation was based on the idea of a special rule for equal-
ity, rather than modification of the input formula. We might also
consider modifying top-down methods such as tableaux with special
equality-handling methods. Study the methods presented by Fitting
(1990) and implement and test them on some equality problems. Can
you use similar techniques with model elimination?



5

Decidable problems

We’ve considered various algorithms (tableaux, resolution, etc.) for verifying
that a first-order formula is logically valid, if indeed it is. But these will not
in general tell us when a formula is not valid. We’ll see in Chapter 7 that
there is no systematic procedure for doing so. However, there are procedures
that work for certain special classes of formulas, or for validity in certain
special (classes of) models, and we discuss some of the more important ones
in this chapter. Often these naturally generalize common decision problems
in mathematics and universal algebra such as equation-solving or the ‘word
problem’.

5.1 The decision problem

There are three natural and closely connected problems for first-order logic
for which we might want an algorithmic solution. By negating the formula,
we can according to taste present them in terms of validity or unsatisfiability.

(1) Confirm that a logically valid (or unsatisfiable) formula is indeed valid
(resp. unsatisfiable), and never confirm an invalid (satisfiable) one.

(2) Confirm that a logically invalid (or satisfiable) formula is indeed
invalid (resp. satisfiable), and never confirm a valid (unsatisfiable)
one.

(3) Test whether a formula is valid or invalid (or whether it is satisfiable
or unsatisfiable).

Evidently (3) encompasses both (1) and (2). Conversely, solutions to both
(1) and (2) could be used together to solve (3): just run the verification
procedures for validity and invalidity (or satisfiability and unsatisfiability)

308
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in parallel. Now, we have presented explicit solutions to (1), such as tableaux
or resolution. But these do not solve (3). Given a satisfiable formula, these
algorithms, while at least not incorrectly claiming they are unsatisfiable,
will not always terminate. For example, these attempts to prove an invalid
formula just keep fruitlessly searching:

# tab <<forall x. p(x)>>;;
# meson <<forall x. p(x)>>;;

Trying resolution instead we do get a termination with failure. But one
can concoct slightly more complicated examples where that too will loop
indefinitely. In fact, a key limitative result due to Church (1936) and Turing
(1936), which we will prove in Chapter 7, shows that no general solution to
(2) or (3) is possible.

However, we can frequently find a full decision procedure for limited or
modified forms of the same problem. First, we can restrict in some way the
nature of the formula considered, e.g. the arrangement of nested quantifiers
when it is placed in prenex normal form. Secondly, we can consider, instead
of validity in all interpretations, validity in a more limited class of interpre-
tations. Often this means all models of some standard set of axioms Δ, so
instead of a decision procedure for |= p we seek one for Δ |= p.

5.2 The AE fragment

All the proof procedures for first-order logic that we’ve mechanized are ulti-
mately justified by Herbrand’s theorem: the Skolemized, quantifier-free form
of a formula is unsatisfiable iff some finite conjunction of ground instances is
propositionally unsatisfiable. In general, the set of possible ground instances
is infinite, and the use of unification to guide our search through it does not
alter that fundamental fact. However, in the special case when the Skolem-
ized form contains no functions except nullary ones (i.e. constants), the
number of ground instances is bounded. For example, recall the �Loś formula:

let los =
<<(forall x y z. P(x,y) /\ P(y,z) ==> P(x,z)) /\
(forall x y z. Q(x,y) /\ Q(y,z) ==> Q(x,z)) /\
(forall x y. P(x,y) ==> P(y,x)) /\
(forall x y. P(x,y) \/ Q(x,y))
==> (forall x y. P(x,y)) \/ (forall x y. Q(x,y))>>;;
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If we Skolemize its negation as a prelude to refutation, the result contains
four constant symbols and three variables, but no non-nullary functions:

# skolemize(Not los);;
- : fol formula =
<<(((~P(x,y) \/ ~P(y,z)) \/ P(x,z)) /\

((~Q(x,y) \/ ~Q(y,z)) \/ Q(x,z)) /\
(~P(x,y) \/ P(y,x)) /\ (P(x,y) \/ Q(x,y))) /\
~P(c_x,c_y) /\ ~Q(c_x’,c_y’)>>

Each of the three variables can be replaced only by one of the four con-
stants, so there are just 43 = 64 ground instances. Thus the unsatisfiability of
the Skolemized form is equivalent to propositional unsatisfiability of the con-
junction of these 64 ground instances. Our earlier procedure davisputnam
proves it reasonably quickly by trying only 45 of these possibilities:

# davisputnam los;;
0 ground instances tried; 0 items in list
...
44 ground instances tried; 109 items in list
- : int = 45

However, we now know that we could have just conjoined all ground
instances and tested for propositional satisfiability once and for all. This
general approach can be implemented as follows:

let aedecide fm =
let sfm = skolemize(Not fm) in
let fvs = fv sfm
and cnsts,funcs = partition (fun (_,ar) -> ar = 0) (functions sfm) in
if funcs <> [] then failwith "Not decidable" else
let consts = if cnsts = [] then ["c",0] else cnsts in
let cntms = map (fun (c,_) -> Fn(c,[])) consts in
let alltuples = groundtuples cntms [] 0 (length fvs) in
let cjs = simpcnf sfm in
let grounds = map
(fun tup -> image (image (subst (fpf fvs tup))) cjs) alltuples in
not(dpll(unions grounds));;

For our implementations, tested on the �Loś formula, aedecide happens
to be significantly faster than davisputnam. But we’re not really interested
in this, or indeed the relative performance of intermediate possibilities like
testing on every tenth ground instance (considered in Davis and Putnam’s
original paper). Rather, the crucial point is that by placing a bound on
the number of ground instances, aedecide always gives a yes/no answer; if
the original formula is not valid, it tells us, rather than simply carrying on
forever.
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We could quite easily ensure termination in such cases for many general
theorem–proving procedures too. For instance, we could modify the inner
loop of our Davis-Putnam procedure so that it returns ‘true’ if the formula
is valid (instead of the number of ground instances) and ‘false’ if the set
of ground instances is exhausted. Even some unification-based procedures
are guaranteed to terminate for problems with no function symbols in the
Skolemized negated input formula. The same can be true, by accident or
design, for formulas in other significant subsets (Fermueller, Leitsch, Tam-
met and Zamov 1993; de Nivelle 1995).

How can we anticipate, based on the original problem, that the Skolemized
form will have only nullary function symbols? For simplicity, suppose that
the formula, to be tested for satisfiability, is in NNF. First of all, the initial
formula must have no non-nullary functions, since Skolemization isn’t going
to remove any. Secondly, we must have no subformulas of the form ∃y.P [x, y]
with another free or universally quantified variable x in its scope, since this
will result in a Skolem function with (at least) x as an argument. For a
sentence, a simple sufficient condition for this not to happen is that all the
existential quantifiers occur before the universal quantifiers in any path to
a subformula:

∃x1. · · · ∃xn. · · · ∀y1. · · · ∀ym.

It’s rather hard to state this precisely because of the complicated ways
quantifiers and propositional connectives can be nested inside each other. It
becomes easier to describe if we put the formula into prenex normal form
first, since then we can say that a formula is in the required subset iff it has
the form:

∃x1, . . . , xn. ∀y1, . . . , ym. P [x1, . . . , xn, y1, . . . , ym]

(where n or m may be zero). Since all the ‘∃’s come before the ‘∀’s, such a
formula is said to be in the ‘EA subset’. However, we are speaking here of
the satisfiability problem, which is applied to the negation of the formula we
want to prove. We need the original formula that we are testing for validity
to be of the form:

∀x1, . . . , xn. ∃y1, . . . , ym. P [x1, . . . , xn, y1, . . . , ym],

that is, in the ‘AE subset’ or just ‘AE’. The remarks above indicate that
validity for AE formulas is decidable, or equivalently, that satisfiability for
EA formulas is decidable.

While the systematic use of prenex normal form simplifies categoriza-
tion of formulas, it’s preferable in the actual implementation to Skolemize
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directly. If one does make a PNF transformation first, some finesse can be
needed in the order of transformations. For example, if the original formula
when put in NNF is of the form:

(∀x. P (x)) ∨ (∃y. Q(y))

we must first pull out the universal quantifier, then the existential:

(∀x. P (x)) ∨ (∃y. Q(y)) −→ ∀x. P (x) ∨ ∃y. Q(y) −→ ∀x. ∃y. P (x) ∨ Q(y)

rather than vice versa:

(∀x. P (x)) ∨ (∃y. Q(y)) −→ ∃y. (∀x. P (x)) ∨ Q(y) −→ ∃y. ∀x. P (x) ∨ Q(y)

even though both are logically valid transitions on the way to PNF. Luckily,
we ordered the subcases of pullquants with the universal quantifier matches
first, so we’ll get the desired effect. But this must be applied to the formula
before it is negated for refutation, or the opposite will happen.

# let fm = <<(forall x. p(x)) \/ (exists y. p(y))>>;;
val fm : fol formula = <<(forall x. p(x)) \/ (exists y. p(y))>>
# pnf fm;;
- : fol formula = <<forall x. exists y. p(x) \/ p(y)>>

The earlier group theory problem (a group where x2 = 1 is abelian), in
its predicate formulation, also lies in the AE subset, because we didn’t use
the inverse axiom:

# aedecide
<<(forall x. P(1,x,x)) /\ (forall x. P(x,x,1)) /\
(forall u v w x y z.

P(x,y,u) /\ P(y,z,w) ==> (P(x,w,v) <=> P(u,z,v)))
==> forall a b c. P(a,b,c) ==> P(b,a,c)>>;;

- : bool = true

Admittedly, MESON solves it more rapidly, because the large number
of variables in the associativity axiom gives rise to many ground instances
(46 = 4096). But a decision procedure allows us, at least in principle, to
confirm that certain similar assertions are not valid. For example, in case we
were in doubt we can confirm that the identity axiom is necessary:

# aedecide
<<(forall x. P(x,x,1)) /\
(forall u v w x y z.

P(x,y,u) /\ P(y,z,w) ==> (P(x,w,v) <=> P(u,z,v)))
==> forall a b c. P(a,b,c) ==> P(b,a,c)>>;;

- : bool = false
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5.3 Miniscoping and the monadic fragment

We have noted that Skolemizing first usually avoids the problem of intro-
ducing quantifier nesting of an undesirable kind. For example, aedecide can
easily settle the validity of the following, Pelletier problem 29:

# aedecide
<<(exists x. P(x)) /\ (exists x. G(x))
==> ((forall x. P(x) ==> H(x)) /\ (forall x. G(x) ==> J(x)) <=>

(forall x y. P(x) /\ G(y) ==> H(x) /\ J(y)))>>;;
- : bool = true

However, the wrong kind of quantifier nesting present from the start pre-
cludes the use of aedecide, even on examples that davisputnam can prove
very easily, like Pelletier problem 18:

# aedecide <<exists y. forall x. P(y) ==> P(x)>>;;
Exception: Failure "Not decidable".

Nevertheless, we can massage the formula into AE form by applying some
of the PNF transformations in reverse order, to push quantifiers in rather
than pulling them out.

∃y. ∀x. P (y) ⇒ P (x)

−→ ∃y. ∀x. ¬P (y) ∨ P (x)

−→ ∃y. ¬P (y) ∨ (∀x. P (x))

−→ (∃y. ¬P (y)) ∨ (∀x. P (x))

−→ ¬(∀y. P (y)) ∨ (∀x. P (x))

The modified formula is AE, and if it is now prenexed the order of the
quantifiers will have been reversed. In fact, the formula as it stands is, if we
ignore bound variable names, a propositional tautology.

Thus, by performing some initial transformations, we can decide a broader
class of formulas than those ostensibly in AE. It’s hard to give any definite
limit to the class of formulas that can be reduced to AE form, since after
all any valid formula has an AE equivalent (‘�’), as does every unsatisfi-
able one (‘⊥’). We will present an algorithm that follows the pattern of the
above example by trying, fairly straightforwardly, to push quantifiers as far
inwards as possible. This converse to the PNF procedure is usually known as
miniscoping because it minimizes the scope of the quantifier. First we define
a function separate intended to transform a formula ∃x. p1 ∧ · · · ∧ pn into
(∃x. pi ∧ · · · pj) ∧ (pk ∧ · · · ∧ pl) where the pi, . . . , pj are the formulas with
x free and the pk, . . . , pl are the others. The conjuncts in the input formula
are presented as a set cjs.
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let separate x cjs =
let yes,no = partition (mem x ** fv) cjs in
if yes = [] then list_conj no
else if no = [] then Exists(x,list_conj yes)
else And(Exists(x,list_conj yes),list_conj no);;

Now we define a function pushquant, which given a variable x and formula
p transforms the formula ∃x. p into an equivalent with the scope of the
quantifier reduced. First of all, if x is not free in p, the answer is just p.
Otherwise the formula p is put into disjunctive normal form so the formula
is:

∃x. C1 ∨ · · · ∨ Cn,

where each Ci is a conjunction of literals. We then transform this to:

(∃x. C1) ∨ · · · ∨ (∃x. Cn)

and then each disjunct is dealt with by separate and the results disjoined:

let rec pushquant x p =
if not (mem x (fv p)) then p else
let djs = purednf(nnf p) in
list_disj (map (separate x) djs);;

Now the overall function is a straightforward recursion. To avoid coding
an essentially dual function for the universal quantifier, we transform ∀x. p

into ¬(∃x.¬p). Note that we assume the initial formula is in NNF and hence
avoid dealing with some cases:

let rec miniscope fm =
match fm with
Not p -> Not(miniscope p)

| And(p,q) -> And(miniscope p,miniscope q)
| Or(p,q) -> Or(miniscope p,miniscope q)
| Forall(x,p) -> Not(pushquant x (Not(miniscope p)))
| Exists(x,p) -> pushquant x (miniscope p)
| _ -> fm;;

This handles the simple example we used above:

# miniscope(nnf <<exists y. forall x. P(y) ==> P(x)>>);;
- : fol formula = <<(exists y. ~P(y)) \/ (forall x. P(x))>>

as well as various more complicated examples such as Pelletier problem 20.
Here the miniscoping restricts the scope of the quantifiers very successfully,
right down to the level of the literals:
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# let fm = miniscope(nnf
<<(forall x y. exists z. forall w. P(x) /\ Q(y) ==> R(z) /\ U(w))
==> (exists x y. P(x) /\ Q(y)) ==> (exists z. R(z))>>);;

val fm : fol formula =
<<((exists x. P(x)) /\

(forall z. ~R(z)) /\ (exists w. ~U(w)) /\ (exists y. Q(y)) \/
(exists x. P(x)) /\ (forall z. ~R(z)) /\ (exists y. Q(y)) \/
(exists x. P(x)) /\ (exists w. ~U(w)) /\ (exists y. Q(y))) \/
~((exists x. P(x)) /\ (exists y. Q(y))) \/ (exists z. R(z))>>

and then the original prenexing procedure will give an AE result:

# pnf(nnf fm);;
# pnf(nnf fm);;
- : fol formula =
<<forall z z’ x y.

exists x’ w y’.
(P(x’) /\ ~R(z) /\ ~U(w) /\ Q(y’) \/
P(x’) /\ ~R(z’) /\ Q(w) \/ P(x’) /\ ~U(w) /\ Q(y’)) \/
(~P(x) \/ ~Q(y)) \/ R(x’)>>

It’s hard to give an immediately graspable description of the class of prob-
lems where this miniscoping procedure, followed by prenexing, will give an
AE formula. However, it does include a class of formulas that is very easy to
describe, namely the monadic formulas. These are formulas (like the above
example) that may have arbitrary quantifier nesting but involve no function
symbols and just monadic (unary) predicate symbols, that is, those with
only one argument. (The �Loś formula is not in this class because the pred-
icate R it involves takes two arguments.) Even for a monadic formula, the
miniscoping procedure may not always push quantifiers down to the level
of literals; consider as a counterexample ∃x. P (x) ∧ Q(x). Nevertheless, we
claim that miniscope applied to a monadic formula yields a result that has
the following property:

The body of each quantifier ‘∀x. · · ·’ or ‘∃x. · · ·’ has (i) no other quantifiers, and
(ii) no free variables other than x.

We can prove this by induction on the size of the input formula, consider-
ing the cases in the definition of miniscope. The property above is preserved
by propositional combinations, and the universal quantifier is transformed
away. So the interesting case is the existential quantifier, and by the induc-
tive hypothesis, it suffices to prove the following lemma: if p has this prop-
erty so does pushquant x p. (In this application p is the result from the
nested call to miniscope.) If we hit the trivial case where x is not free in p

and the returned formula is p, the result is immediate. Otherwise, the DNF
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transformation of p yields a formula C1 ∨ · · · ∨Cn (maybe just one disjunct)
over which we distribute the existential quantifier. Every Ci is a conjunction
of terms:

p1 ∧ · · · ∧ pn

and the formulas pi are separated into two groups, those with x free and
those not. Only the former group are in the scope of the final quantifier, and
so the other formulas retain the assumed property. But those with x free
must be literals, not quantified formulas, since by the inductive hypothesis
quantified subformulas have no free variables (this is not changed by the
propositional operations used in generating the DNF). And since all predi-
cates are monadic, they can have no variable other than x free, and so the
final quantified formula will have no free variables and no quantifier nesting.

Hence, by incorporating miniscoping we extend the scope of the aedecide
function to a broader class of problems that includes at least all monadic
formulas. We call the procedure wang, in honour of Hao Wang, who first
implemented a theorem prover for this subset (Wang 1960).†

let wang fm = aedecide(miniscope(nnf(simplify fm)));;

This will, in principle, solve all monadic formulas, such as the following,
Pelletier problem 20:

# wang
<<(forall x y. exists z. forall w. P(x) /\ Q(y) ==> R(z) /\ U(w))
==> (exists x y. P(x) /\ Q(y)) ==> (exists z. R(z))>>;;

- : bool = true

In practice, however, our simple miniscoping transformations can cause
an explosion in the size of the formula, because in the case of alternating
quantifiers, the body is alternately transformed into DNF and CNF. Thus
there is no guarantee that the method is acceptably efficient in practice.
A particularly bad example is ‘Andrews’s challenge’, which already blows
up quite a lot just when transformed to NNF, even though the nesting of
quantifiers is modest.

# pnf(nnf(miniscope(nnf
<<((exists x. forall y. P(x) <=> P(y)) <=>

((exists x. Q(x)) <=> (forall y. Q(y)))) <=>
((exists x. forall y. Q(x) <=> Q(y)) <=>
((exists x. P(x)) <=> (forall y. P(y))))>>)));;

† Wang also discussed a general first-order proof procedure based on sequent calculus at much
the same time as the other pioneers such as Gilmore and Prawitz. However, he did not actually
implement this fuller procedure.
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The resulting formula is AE, but it has 19 universal quantifiers followed
by 10 existentials. There are thus no fewer than 1019 ground instances, of
quite a large body. It is simply not feasible to test them all.

5.4 Syllogisms

One of the earliest and most influential works of logic was the analysis
of syllogisms introduced by Aristotle in his Prior Analytics. Aristotelian
syllogisms are constructed from three ‘premisses’, each of one of the following
forms (the letters A, E, I and O are now standard but were not introduced
by Aristotle):

• A – all S are P (universal affirmative),
• E – no S are P (universal negative),
• I – some S are P (particular affirmative),
• O – some S are not P (particular negative).

Examples of premisses include ‘all men are mortal’ (A) and ‘some philoso-
phers are not Greek’ (O). The constructs S and P inside premisses are tra-
ditionally called terms, but they are nothing like terms in first-order logic,
and in fact we will shortly formalize them using first-order predicates. Aris-
totelian syllogisms are certain logical implications of the form ‘if A and B

then C’ where A, B and C are premisses. They are restricted to involve
just three terms, the subject S and predicate P , which occur in that order
in the consequent, and a middle term M which occurs in both antecedents
together with either S or P . A concrete example given by Aristotle in the
Posterior Analytics is:†

If all broad-leafed plants are deciduous, and all vines are broad-leafed plants, then
all vines are deciduous.

There are four different ‘figures’ of the syllogism, depending on how the
two antecedents are arranged. Actually, Aristotle only laid out the first three
figures, but he gave several examples belonging to the fourth figure and
it was therefore natural to add it later – for more information about the
development of Aristotelian syllogisms, see �Lukasiewicz (1951).

† Aristotle only used variables to denote terms used as general predicates, not to identify specific
individuals, so the popular example ‘Socrates is mortal’ is not a premiss, strictly speaking,
though one may interpret ‘Socrates’ as a predicate applying to those individuals identical
with Socrates. Note also that syllogisms are implications with hypothetical antecedents, not
deductions from premisses assumed to be true, so should not be read ‘A and B, therefore C’.
Thus, the example right at the beginning of section 1.1 was not properly speaking a syllogism.
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I II III IV
if MP PM MP PM
and SM SM MS MS
then SP SP SP SP

Now, we have four different figures, and each of the three premisses can
be of one of the forms A, E, I and O; thus we can form 4×43 = 256 different
assertions of the syllogistic form. However, only some of these are valid,
and we will use our theorem proving apparatus to decide which. First we
express the basic premisses in first-order logic, with first-order predicates
for the terms and quantified sentences that appear to capture the intended
meaning of the premisses:

• A (all S are P ): ∀x. S(x) ⇒ P (x),
• E (no S are P ): ∀x. S(x) ⇒ ¬P (x),
• I (some S are P ): ∃x. S(x) ∧ P (x),
• O (some S are not P ): ∃x. S(x) ∧ ¬P (x).

The following syntax functions construct these formulas for given terms
p and q:

let atom p x = Atom(R(p,[Var x]));;

let premiss_A (p,q) = Forall("x",Imp(atom p "x",atom q "x"))
and premiss_E (p,q) = Forall("x",Imp(atom p "x",Not(atom q "x")))
and premiss_I (p,q) = Exists("x",And(atom p "x",atom q "x"))
and premiss_O (p,q) = Exists("x",And(atom p "x",Not(atom q "x")));;

while the following decomposes such a premiss and produces the correspond-
ing English reading:

let anglicize_premiss fm =
match fm with
Forall(_,Imp(Atom(R(p,_)),Atom(R(q,_)))) -> "all "^p^" are "^q

| Forall(_,Imp(Atom(R(p,_)),Not(Atom(R(q,_))))) -> "no "^p^" are "^q
| Exists(_,And(Atom(R(p,_)),Atom(R(q,_)))) -> "some "^p^" are "^q
| Exists(_,And(Atom(R(p,_)),Not(Atom(R(q,_))))) ->

"some "^p^" are not "^q;;

Regarding a syllogism itself as simply a formula P1 ∧ P2 ⇒ P3 where the
Pi are premisses, we can describe them in English using the following:

let anglicize_syllogism (Imp(And(t1,t2),t3)) =
"If " ^ anglicize_premiss t1 ^ " and " ^ anglicize_premiss t2 ^
", then " ^ anglicize_premiss t3;;

Now let us generate all 256 possible syllogisms:
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let all_possible_syllogisms =
let sylltypes = [premiss_A; premiss_E; premiss_I; premiss_O] in
let prems1 = allpairs (fun x -> x) sylltypes ["M","P"; "P","M"]
and prems2 = allpairs (fun x -> x) sylltypes ["S","M"; "M","S"]
and prems3 = allpairs (fun x -> x) sylltypes ["S","P"] in
allpairs mk_imp (allpairs mk_and prems1 prems2) prems3;;

Note that these are all in the monadic fragment, hence decidable. In fact
the quantifiers already have the minimum possible scope, so the formulas
can be tested for validity with aedecide. Let us filter out all the logically
valid syllogisms:

# let all_valid_syllogisms = filter aedecide all_possible_syllogisms;;
...
# length all_valid_syllogisms;;
- : int = 15

We get 15, which is perhaps a little surprising given that in the traditional
Aristotelian syllogistic, 24 have been regarded as valid. (Sometimes only 19
are listed, but others are regarded as implicitly following by ‘subalterna-
tion’.)

# map anglicize_syllogism all_valid_syllogisms;;
- : string list =
["If all M are P and all S are M, then all S are P";
"If all M are P and some S are M, then some S are P";
"If all M are P and some M are S, then some S are P";
"If all P are M and no S are M, then no S are P";
"If all P are M and no M are S, then no S are P";
"If all P are M and some S are not M, then some S are not P";
"If no M are P and all S are M, then no S are P";
"If no M are P and some S are M, then some S are not P";
"If no M are P and some M are S, then some S are not P";
"If no P are M and all S are M, then no S are P";
"If no P are M and some S are M, then some S are not P";
"If no P are M and some M are S, then some S are not P";
"If some M are P and all M are S, then some S are P";
"If some P are M and all M are S, then some S are P";
"If some M are not P and all M are S, then some S are not P"]

Comparison of this list with the traditional ones shows that we have rec-
ognized a proper subset of the traditional syllogisms, excluding several such
as Darapti:† ‘if all M are P and all M are S, then some S are P’. In our
formulation this is clearly invalid: we can easily derive bogus instances such

† Syllogisms are traditionally allocated mnemonic names, with vowels that indicate the kinds of
the three premisses (A, E, I or O), and consonants that show in a rather complicated way how
to convert the syllogism to those of the first figure.
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as ‘if all immortals will live forever and all immortals are people then some
people will live forever’.

So the correspondence between Aristotle’s logic and the first-order read-
ings is not quite as straightforward as it first appeared. The problems seem
to arise in cases where one or more of the predicates involved is identically
false – i.e. there is nothing that satisfies it. One interpretation of the tra-
ditional list is that all terms are implicitly supposed to be applicable to
something. If we add this hypothesis, then we do recover the classic list:

# let all_possible_syllogisms’ =
let p =
<<(exists x. P(x)) /\ (exists x. M(x)) /\ (exists x. S(x))>> in

map (fun t -> Imp(p,t)) all_possible_syllogisms;;
...
# let all_valid_syllogisms’ = filter aedecide all_possible_syllogisms’;;
...
# length all_valid_syllogisms’;;
- : int = 24
# map (anglicize_syllogism ** consequent) all_valid_syllogisms’;;
...

Still, it’s not clear that this is really a faithful exegesis of how Aristotle
and/or the medieval logicians really thought about syllogistic reasoning. To
be at all confident about that, we need to consider not only the validity of
the syllogisms themselves, but also of the various conversion rules that were
used to manipulate them. For a more detailed examination of the relation-
ship between Aristotle’s logic and various first-order readings, see Strawson
(1952).

In any case, since there are only finitely many possible syllogisms, Aris-
totle’s logic is decidable, if only by fiat. And the other major logical system
handed down from the Ancient Greeks, the Megarian–Stoic logic, can be
regarded as a subset of propositional logic and so is also decidable. Per-
haps this fact was unduly influential in forming Leibniz’s expectations that
a general calculus ratiocinator could be found.

5.5 The finite model property

For another perspective on first-order decidability, it’s fruitful to consider
the possible sizes of (the domains of) models of a formula. This can naturally
explain the decidability of various fragments of first-order logic, and give rise
to alternative decision procedures.

Note first that whether a formula p has a model M with domain D can
depend only on the size (cardinality) of D. For given a model M with domain
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D, and another set D′ with the same cardinality, we know there are mutually
inverse bijections i : D → D′ and j : D′ → D (see Appendix 1). We can
then construct a model M ′ of p with domain D′ by interpreting functions
and predicates so that i and j determine an isomorphism (see Section 4.2)
by construction: fM ′(y1, y2) = i(fM (j(y1), j(y2))), PM ′(y) = PM (j(y)) etc.

Now the Löwenheim–Skolem theorems tell us that if a first-order for-
mula has a model of any cardinality (any infinite cardinality, for logic with
equality), it has a model of any other infinite cardinality. But formulas
can place strong constraints on the sizes of finite models, even if we con-
sider logic without equality. For example, ∃x y. P (x) ∧ ¬P (y) is satisfiable,
but any model must have size ≥ 2. If we consider logic with equality, i.e.
restrict ourselves to normal models, we can get specific size constraints; for
example ∃x y. ¬(x = y) ∧ ∀z. z = x ∨ z = y is only satisfiable in models of
size exactly 2.

More generally, for syntactically restricted classes of formulas, it often
turns out that satisfiability, i.e. having a model at all, is equivalent to hav-
ing a finite model. (Or dually, validity is equivalent to holding in all finite
models.)

Definition 5.1 A formula is said to have the finite model property for
validity precisely when it is valid in all models iff it is valid in all finite
models. Similarly, it is said to have the finite model property for satisfiability
precisely when it is satisfiable iff it is satisfiable in a finite model.

As well as coining the phrase ‘finite model property’, Harrop (1958) made
the following observation, in a somewhat more general context.

Theorem 5.2 There is a systematic procedure for deciding the validity (sat-
isfiability) of all formulas with the finite model property for validity (resp.
satisfiability)

Proof We will prove the ‘validity’ version, the ‘satisfiability’ one being essen-
tially the same. We already have procedures that will verify the validity of a
formula if it is indeed valid – any of the major methods like resolution will
do. Moreover, because of the finite model property, we have a systematic
procedure for verifying if it is not valid: just enumerate larger and larger
finite interpretations till we find one in which it doesn’t hold. To get a deci-
sion procedure we simply need to interleave these procedures, and one or
the other will terminate successfully and make the decision.
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The proof can be considered just a special case of a general result in
computability theory (see Theorem 7.13 later on). But to make the reasoning
quite concrete and explicit we will really implement the interleaving posited
in the previous proof. First, we implement functions to create the set of all
interpretations with a domain {1, . . . , n}, in a series of steps. The following
constructs all tuples of size n with members chosen from the list l:

let rec alltuples n l =
if n = 0 then [[]] else
let tups = alltuples (n - 1) l in
allpairs (fun h t -> h::t) l tups;;

The following produces all possible functions out of a finite domain dom
and into a finite range ran, making it undefined outside dom:

let allmappings dom ran =
itlist (fun p -> allpairs (valmod p) ran) dom [undef];;

To construct all interpretations, we need to enumerate all ways of inter-
preting function symbols. The intended domain depends on the arity of the
function symbol, so we define a ‘dependent domain’ variant of the above:

let alldepmappings dom ran =
itlist (fun (p,n) -> allpairs (valmod p) (ran n)) dom [undef];;

We can create all possible interpretations of n-ary functions and predicates
over a domain dom:

let allfunctions dom n = allmappings (alltuples n dom) dom;;

let allpredicates dom n = allmappings (alltuples n dom) [false;true];;

Finally, we can now decide whether a formula holds in all interpretations
of size n. First, we set the domain to be the set {1, . . . , n} and construct all
possible interpretations of the functions and predicate symbols involved in
the formula. Then we generalize the formula over all free variables (simpler
than constructing all possible valuations of them) and test whether the gen-
eralized formula holds in all the interpretations constructed (the valuation
is irrelevant for a closed formula so we make it undefined).

let decide_finite n fm =
let funcs = functions fm and preds = predicates fm and dom = 1--n in
let fints = alldepmappings funcs (allfunctions dom)
and pints = alldepmappings preds (allpredicates dom) in
let interps = allpairs (fun f p -> dom,f,p) fints pints in
let fm’ = generalize fm in
forall (fun md -> holds md undefined fm’) interps;;
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Now, for a decision procedure we can interleave calls to this function for
larger and larger n with the search process in some validity-proving pro-
cedure for the formula. This is quite straightforward using methods like
tab and MESON where we already use iterative deepening to separate
search into stages, each of which is itself certain to terminate. We just adapt
MESON slightly to place a fixed proof size bound n on the search, essentially
just removing the use of deepen:

let limmeson n fm =
let cls = simpcnf(specialize(pnf fm)) in
let rules = itlist ((@) ** contrapositives) cls [] in
mexpand rules [] False (fun x -> x) (undefined,n,0);;

and construct a theorem-proving function from it as before:

let limited_meson n fm =
let fm1 = askolemize(Not(generalize fm)) in
map (limmeson n ** list_conj) (simpdnf fm1);;

The decision procedure works as follows. Try to prove the formula using
MESON with a size limit n. If that succeeds, it is valid so we return ‘true’.
If not, we test whether the formula holds in all interpretations of size n. If
it does not, it’s not valid so we return ‘false’. Otherwise we increase n by 1
and repeat:

let decide_fmp fm =
let rec test n =
try limited_meson n fm; true with Failure _ ->
if decide_finite n fm then test (n + 1) else false in

test 1;;

This can indeed be used to prove formulas either valid or invalid, and its
results are always correct when it terminates.

# decide_fmp
<<(forall x y. R(x,y) \/ R(y,x)) ==> forall x. R(x,x)>>;;

- : bool = true
# decide_fmp

<<(forall x y z. R(x,y) /\ R(y,z) ==> R(x,z)) ==> forall x. R(x,x)>>;;
- : bool = false

Termination is guaranteed for formulas with the finite model property,
but not if the formula has a countermodel (i.e. an interpretation that does
not satisfy it) but no finite countermodel, as here (this example is discussed
in more detail below):
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decide_fmp
<<~((forall x. ~R(x,x)) /\

(forall x. exists z. R(x,z)) /\
(forall x y z. R(x,y) /\ R(y,z) ==> R(x,z)))>>;;

Moreover, even when termination is guaranteed in principle, in practice
the number of possible interpretations explodes dramatically as n increases,
so this is hardly a feasible approach. Still, some such procedure is not a bad
thing to try when faced with a reasonably simple formula whose validity is
open. A generally more efficient alternative algorithm that avoids explicit
enumeration of all interpretations by using propositional validity checking as
a subroutine is suggested in Exercise 5.1 below. There are a number of more
heavyweight tools that are designed to find (counter)models for first-order
formulas, e.g. Mace4 and Paradox.†

Instances of the finite model property

For certain classes of formulas, one can not only demonstrate the finite model
property abstractly, but exhibit some definite finite size that is all we need
to check. In this case we say that the class of formulas has the small model
property. Monadic formulas are a relatively easy example.

Theorem 5.3 If a formula p involves k distinct monadic predicates (pred-
icates of arity 1) and none of higher arity (in particular, not equality) and
also involves no function symbols, then p has a model iff it has a model of
size 2k.

Proof (sketch) The basic idea is that in any interpretation, the k predicates
can distinguish at most 2k distinct subsets, so all the information in such a
model can be conveyed by a model of at most size 2k, collapsing each such
subset to a single element. The formal details are left to the reader.

The small model property yields a decision algorithm with a definite
bound on its runtime, albeit sometimes not a very practical one, rather than
merely an abstract assurance that it will eventually terminate. For example,
to decide a monadic formula, we just need to test it in all interpretations of
size 2k, where k is the number of monadic predicate symbols involved.

† See www.cs.unm.edu/~mccune/mace4/ and www.cs.chalmers.se/~koen/folkung/.
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let decide_monadic fm =
let funcs = functions fm and preds = predicates fm in
let monadic,other = partition (fun (_,ar) -> ar = 1) preds in
if funcs <> [] or exists (fun (_,ar) -> ar > 1) other
then failwith "Not in the monadic subset" else
let n = funpow (length monadic) (( * ) 2) 1 in
decide_finite n fm;;

This disposes of the Andrews Challenge very quickly:

# decide_monadic
<<((exists x. forall y. P(x) <=> P(y)) <=>

((exists x. Q(x)) <=> (forall y. Q(y)))) <=>
((exists x. forall y. Q(x) <=> Q(y)) <=>
((exists x. P(x)) <=> (forall y. P(y))))>>;;

- : bool = true

On the other hand, the new procedure is inefficient when there are many
predicates, so different methods are often preferable in other situations. For
example, Pelletier problem 20, which is trivial for the wang procedure, is not
feasible, since it involves constructing all 264 possible interpretations of four
predicates with a domain of size 16:

decide_monadic
<<(forall x y. exists z. forall w. P(x) /\ Q(y) ==> R(z) /\ U(w))
==> (exists x y. P(x) /\ Q(y)) ==> (exists z. R(z))>>;;

Decidable and undecidable prefix classes

There are also straightforward small model bounds for the AE fragment
that we have already considered, as first shown by Bernays and Schönfinkel
(1928); see Exercise 5.4. Besides being independently interesting and proving
decidability, such a theorem can be used to show definitively that certain
formulas have no AE equivalent, by showing that they do not have the
corresponding instances of the finite model property. Ackermann (1928) also
showed that formulas of the form:

∀x1, . . . , xn. ∃y. ∀z1, . . . , zm. P [x1, . . . , xn, y, z1, . . . , zm]

have the finite model property for validity. A still further generalization to
formulas of the form:

∀x1, . . . , xn. ∃y1, y2. ∀z1, . . . , zm. P [x1, . . . , xn, y1, y2, z1, . . . , zm]

was proved by Gödel (1932). This set of prefixes exhausts the cases where
the decision problem can be solved by use of the finite model property. For
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consider these two formulas, having the simplest quantifier prefixes that fail
to fit in the subsets with the finite model property discussed so far:

• ∃x y z. ∀u. R(x, x) ∨ ¬R(x, u) ∨ (R(x, y) ∧ R(y, z) ∧ ¬R(x, z)),
• ∃x. ∀y. ∃z. R(x, x) ∨ ¬R(x, y) ∨ (R(y, z) ∧ ¬R(x, z)).

We put them in prenex form to display the quantifier prefix, but they are
perhaps more perspicuous in the following logically equivalent forms, which
the reader may verify using, say, meson:

• ¬((∀x.¬R(x, x))∧(∀x.∃z.R(x, z))∧(∀x y z.R(x, y)∧R(y, z) ⇒ R(x, z))),
• ¬((∀x. ¬R(x, x)) ∧ (∀x. ∃y. R(x, y) ∧ ∀z. R(y, z) ⇒ R(x, z))).

Interpreting R(x, y) as the strict inequality relation x < y over the real
numbers makes both formulas false. (This is not hard to see, and in the next
section we will develop tools that can verify it automatically.) Thus neither
is logically valid. On the other hand, we will show that they do both hold in
all finite interpretations, and hence the finite model property fails. It suffices
to establish this for the second formula because that implies the first:

meson
<<~((forall x. ~R(x,x)) /\

(forall x. exists y. R(x,y) /\ forall z. R(y,z) ==> R(x,z)))
==> ~((forall x. ~R(x,x)) /\

(forall x. exists z. R(x,z)) /\
(forall x y z. R(x,y) /\ R(y,z) ==> R(x,z)))>>;;

...
- : int list = [1; 5]

Suppose the second formula is false in some finite interpretation M ; being
closed this means that its negation holds in M :

(∀x. ¬R(x, x)) ∧ (∀x. ∃y. R(x, y) ∧ ∀z. R(y, z) ⇒ R(x, z)).

Pick an arbitrary a0 ∈ M . The second conjunct shows that there is an
a1 ∈ M with RM (a0, a1) and also RM (a0, z) for any other z with RM (a1, z).
Using the second conjunct again, we deduce that there is some a2 with
R(a1, a2), and by the auxiliary property we also have R(a0, a2). Continuing
in this way we can generate a sequence of elements (ai) with RM (ai, aj) for
all i < j. Since the model is finite, we must eventually get a repetition, say
ak = al for some k < l. But then RM (ak, al) means RM (ak, ak), violating
the first, irreflexivity, conjunct.

The failure of the finite model property for these prefix classes doesn’t
a priori rule out some other kind of solution to the decision problem, but
in fact it was shown by, respectively, Surányi (1950) and Kahr, Moore and
Wang (1962) that the decision problems for these prefixes are not solvable.
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Hence, the quantifier prefix ∀n∃∃∀m represents the most complex class that
is decidable in general. We will discuss the undecidability results in a little
more detail in Chapter 7.

Adding equality

We have assumed above that we are dealing with first-order logic without
equality, i.e. allowing non-normal interpretations. If we pass to first-order
logic with equality, the boundary between the decidable and undecidable
prefix classes is slightly different. We can deduce that the AE subset is still
decidable even with equality, simply because if a formula p is AE, i.e. of the
form:

∀x1 . . . xn. ∃y1 . . . ym. q

with q quantifier-free, we have |= p in first-order logic with equality iff |=
eqaxiom(p) ⇒ p in pure first-order logic. But eqaxiom(p) is always, after
prenexing in any reasonable way, purely universal, say ∀z1, . . . , zp. e, and
consequently: |= eqaxiom(p) ⇒ p is equivalent to

∀x1 . . . xn. ∃y1 . . . ym z1 . . . zp. e ⇒ q

and this is still AE, hence decidable. It’s worth noting that the solvability of
this class with equality was the main result of the paper in which Ramsey
(1930) introduced his famous combinatorial theorem.†

Gödel (1932) asserted that his class ∀n∃∃∀m with equality could be decided
using the same method he introduced for the non-equality case. However it
seems that this was one of Gödel’s rare mistakes, for the claim was never
subsequently backed up and eventually Goldfarb (1984) proved that the
class is in fact undecidable. However, it was proved by Ackermann (1954)
that the class with prefix ∀n∃∀m with equality is decidable. The class with
prefix ∃∀∃ is undecidable even without equality, so a fortiori, with equality.
Once again this gives a complete classification of decidability according to
quantifier prefix.

Formulas involving only two variables (and no functions) also have the
finite model property. We do not insist on prenex form here, so the two
variables can be ‘re-used’ quite extensively and the fragment is surprisingly
expressive. Decidability was first demonstrated by Scott (1962), who reduced
the problem to the Gödel prefix class ∀n∃∃∀m. This reduction doesn’t help

† Ramsey’s proof of the decidability result appears laborious compared with the simple one we
have given, but he proves a stronger result that the spectrum (set of possible cardinalities of
models) is either finite or cofinite.
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for the class with equality, but Mortimer (1975) showed that it also has the
finite model property, and a much sharper bound was proved by Grädel,
Kolaitis and Vardi (1997).

5.6 Quantifier elimination

In search of further interesting cases where a decision method is possible,
we turn our attention away from pure logical validity in all interpretations
and towards a couple of related questions (still for logic with equality):

• validity in a particular class of interpretations, i.e. whether |=M p for all
interpretations M in a class K;

• logical consequence from a set of axioms Σ, i.e. whether Σ |= p.

For the examples we treat below (but not in general – see Exercises 5.5
and 5.6) which of these formulation is preferred is inconsequential because
the class K is anyway defined to be exactly the collection of models of a set
of axioms Σ:

Mod(Σ) = {M | for all ψ ∈ Σ, |=M ψ}.
For example, K might be the class of all groups, which is exactly† the

class of models of:

(∀x y z. x · (y · z) = (x · y) · z) ∧ (∀x. 1 · x = x) ∧ (∀x. i(x) · x = 1).

We can define a kind of converse to Mod, by defining the theory of a class of
interpretations K to be the set of all sentences holding in all interpretations
in the class K:

Th(K) = {ψ | for all I ∈ K, |=I ψ}.
When we want to talk about the theory of a specific structure (i.e. a

1-element class of interpretations), we will use the same terminology. For
example the ‘theory of real numbers’, which with a slight abuse of notation
we may write Th(R), is defined to be exactly the set of first-order sentences
that hold in the specific structure R. When we want to be precise about the
language, as we often do, it’s common to further abuse notation by bundling
the list of functions and predicates in to boot, e.g. Th(R, 0, 1,−, +, <) for
a purely additive theory of reals with ‘<’ as the only predicate besides
equality. Moreover, we sometimes emphasize that we are using first-order
† We neglect subtleties over the choice of language, e.g. whether we actually have constants like

1 or just existential axioms. Although this doesn’t matter much in the case of groups, where
identities and inverses are unique, the choice of language can in general significantly affect
whether algebraic notions are instantiations of their model-theoretic generalizations (Hodges
1993b).
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logic instead of some richer language by stressing ‘the first-order theory
of . . . ’ or ‘the elementary theory of . . . ’.

We have Σ ⊆ Th(Mod(Σ)), with equality holding precisely when Σ is
closed under logical consequence. A set of formulas with this property has a
special name, one we use so routinely below that the reader may forget that
it has a precise technical meaning:

Definition 5.4 A theory is a set of formulas T closed under logical conse-
quence, i.e. such that for any formula p we have T |= p iff p ∈ T .

As we might expect, Th(K) is always a theory. So also is the set of logical
consequences Cn(Σ) = {p | Σ |= p} of any set of formulas Σ. In the latter
case we say that the theory T is axiomatized by Σ and say that the theory
is axiomatizable.† If there is a finite set of axioms, we say that the theory
is finitely axiomatizable. Some other important characteristics a theory may
have are listed below. (We phrase them in terms of T |= p rather than the
equivalent p ∈ T so that we can forgive loosely applying them to a set of
axioms for a theory rather than the theory itself.)

• Consistent – we never have both T |= p and T |= ¬p. (Equivalently, we
do not have T |= ⊥, or some formula is not a logical consequence of T .)

• Complete – for any sentence p, either T |= p or T |= ¬p. (Note that p is
a sentence: with free variables this property could hardly be expected.)

• Decidable – there is an algorithm that takes as input a formula p and
decides whether T |= p.

Note that ‘consistent’ is synonymous with ‘satisfiable’ when applied to a
theory, but it’s more common to use the former in this case.‡ The reader
should also take particular care over the use of the word ‘complete’ as applied
to a theory, since it is used with a significantly different meaning when
applied to a proof system as in Section 4.3 and Chapter 6; see also Section 7.3.
Another characterization of completeness is that the first-order consequences
are completely determined.

Theorem 5.5 A theory is complete iff all its models are elementarily
equivalent.

† Take care: some authors require the set of axioms to be recursively enumerable.
‡ Some authors use satisfiable for the semantic notion T �|= ⊥ and consistent for a corresponding

syntactic notion T �� ⊥ for a suitable proof system. But still, for first-order logic and a complete
proof system of the kind we consider in chapter 6 they coincide anyway.
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Proof Both properties hold trivially if the theory is unsatisfiable, since then
there are no models and the theory contains ⊥ and all other formulas. So
we can restrict ourselves to theories T with at least one model, say M .

If theory T is complete, take any formula p that holds in M and consider
its universal closure p∗ = generalize(p). Since T is complete, we either
have p∗ ∈ T or ¬p∗ ∈ T . The latter is impossible because M is a model of
T in which ¬p∗ does not hold, so p∗ ∈ T and hence T |= p, so p holds in all
models.

Suppose now that all models of T are elementarily equivalent, and let p

be any sentence. Either p or ¬p holds in M (in all valuations, since p is a
sentence) and so by elementary equivalence in all models, i.e. either T |= p

or T |= ¬p.

It’s useful to remember that a complete theory with a finite set of axioms,
which we can collect by conjunction into a single axiom A, is automatically
decidable. This is simply because for any sentence p we can search in parallel
for verifications of A ⇒ p and A ⇒ ¬p, knowing by completeness that one or
the other will terminate (perhaps both if the theory is inconsistent). With a
little more care, this argument generalizes, using the compactness theorem,
to cases where the axiom set is recursively enumerable. On the other hand,
this is usually not a very practical approach, so we will focus on more direct
methods of proving decidability.

Quantifier elimination

A theory T in a first-order language L admits quantifier elimination if for
each formula p of L, there is a quantifier-free formula q with FV(q) ⊆ FV(p)
such that T |= p ⇔ q (or as we sometimes say, p and q are T -equivalent).†

As usual, we are interested in constructing quantifier-free equivalents by an
algorithmic process, rather than merely showing that they exist in principle.

Quantifier elimination in the case of arithmetical theories is a natural and
far-reaching generalization of testing the solvability of equations, which is
quantifier elimination for formulas of the particular form ∃x. E[x] = 0. If a
theory admits quantifier elimination, we can reduce many logical questions
that seem difficult to the special case of quantifier-free formulas, where they
can be much easier. We are particularly interested in (completeness and)
decidability. If we start with a sentence, its quantifier-free T -equivalent must
be ground, i.e. contain no variables at all. For many, though not all, theories
† When the language contains at least one constant, the condition on free variables is no real

additional restriction since we could always instantiate any new variables while retaining the
validity of T |= p ⇔ q.
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of practical interest, the ground formulas have the same truth-values in all
models and can be evaluated to ‘true’ or ‘false’ algorithmically; for example,
in arithmetic theories they are just concrete arithmetic assertions like 2+2 =
5 ⇒ 7 < 3. Any such theory that admits a quantifier elimination algorithm
is therefore complete and decidable, and an effective decision procedure is
to reduce a formula to a quantifier-free equivalent and evaluate the latter.

Quite generally, to establish quantifier elimination for arbitrary first-order
formulas, it suffices to demonstrate it for formulas with the following rather
special form:

∃x. α1 ∧ · · · ∧ αn

with each αi a literal (either an atomic formula or the negation of an atomic
formula) containing x. The basic idea is that we can apply this elimination
successively from the innermost quantifier to the outermost, transforming
∀x.P [x] into ¬(∃x.¬P [x]) and always putting the body in disjunctive normal
form and distributing the existential quantifier over it.

We will now expand this terse explanation into an OCaml function tak-
ing a quantifier elimination procedure for formulas of this special form and
returning a general quantifier elimination procedure.

The first function accepts the core quantifier elimination procedure bfn
and generalizes it slightly to work for ∃x. p where p is any conjunction of
literals, some perhaps not involving x. The method is simply to partition
the literals into those containing x (ycjs) and those not (ncjs) and separate
off the latter before calling bfn on the rest, implicitly using the equivalence
(∃x. p ∧ q[x]) ⇔ p ∧ ∃x. q[x]:

let qelim bfn x p =
let cjs = conjuncts p in
let ycjs,ncjs = partition (mem x ** fv) cjs in
if ycjs = [] then p else
let q = bfn (Exists(x,list_conj ycjs)) in
itlist mk_and ncjs q;;

Now we define the main function, with a somewhat intricate parametriza-
tion. For the moment, assume afn vars fm simply returns its second argu-
ment fm unchanged, while nfn performs a transformation into disjunctive
normal form. The core quantifier elimination is qfn, which takes as an addi-
tional parameter the list of quantifiers passed through so far; this information
is sometimes useful. Before anything else we miniscope the formula, to make
the core quantifier elimination apply to as small a formula as possible.
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let lift_qelim afn nfn qfn =
let rec qelift vars fm =
match fm with
| Atom(R(_,_)) -> afn vars fm
| Not(p) -> Not(qelift vars p)
| And(p,q) -> And(qelift vars p,qelift vars q)
| Or(p,q) -> Or(qelift vars p,qelift vars q)
| Imp(p,q) -> Imp(qelift vars p,qelift vars q)
| Iff(p,q) -> Iff(qelift vars p,qelift vars q)
| Forall(x,p) -> Not(qelift vars (Exists(x,Not p)))
| Exists(x,p) ->

let djs = disjuncts(nfn(qelift (x::vars) p)) in
list_disj(map (qelim (qfn vars) x) djs)

| _ -> fm in
fun fm -> simplify(qelift (fv fm) (miniscope fm));;

For the propositional connectives, the same procedure is recursively applied
at depth. A universally quantified formula is mapped into an existential one
using the infinite De Morgan law. Thus, the interesting case is when the
formula is existentially quantified. In this case, we recursively apply the
overall quantifier elimination procedure to the body, with an augmented
list of variables, which should result in a quantifier-free equivalent for the
body. We transform this into DNF by a call to nfn, then split the result
into its disjuncts and deal with each of them by qelim, implicitly using the
equivalence:

(∃x. D1[x] ∨ · · · ∨ Dn[x]) ⇔ (∃x. D1[x]) ∨ · · · ∨ (∃x. Dn[x]).

It is sometimes convenient to pass as nfn an enhanced version of the usual
DNF conversion, performing the initial NNF transformation with a couple
of tweaks.

First, we may wish to apply a function to modify literals, for example to
transform negated inequalities into other forms, say ¬(s < t) to t ≤ s.

Second, our quantifier elimination functions will often perform case-splits
according to some property p of the other variables, yielding a formula of
the form p ∧ q0 ∨ ¬p ∧ q1. If we subsequently negate this and perform DNF
transformation, we tend to get an explosion in size. However, we can exploit
the fact that ¬(p∧ q0 ∨¬p∧ q1) ⇔ p∧¬q0 ∨¬p∧¬q1. This wrinkle, together
with an extra parameter for a ‘literal modification’ function lfn, is incor-
porated into a ‘clever NNF’ function cnnf. We incorporate simplification at
the beginning, and at the end too in case the literal modification function
lfn creates additional opportunities.
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let cnnf lfn =
let rec cnnf fm =
match fm with
And(p,q) -> And(cnnf p,cnnf q)

| Or(p,q) -> Or(cnnf p,cnnf q)
| Imp(p,q) -> Or(cnnf(Not p),cnnf q)
| Iff(p,q) -> Or(And(cnnf p,cnnf q),And(cnnf(Not p),cnnf(Not q)))
| Not(Not p) -> cnnf p
| Not(And(p,q)) -> Or(cnnf(Not p),cnnf(Not q))
| Not(Or(And(p,q),And(p’,r))) when p’ = negate p ->

Or(cnnf (And(p,Not q)),cnnf (And(p’,Not r)))
| Not(Or(p,q)) -> And(cnnf(Not p),cnnf(Not q))
| Not(Imp(p,q)) -> And(cnnf p,cnnf(Not q))
| Not(Iff(p,q)) -> Or(And(cnnf p,cnnf(Not q)),

And(cnnf(Not p),cnnf q))
| _ -> lfn fm in

simplify ** cnnf ** simplify;;

Example: dense linear orders

The theory of ‘dense linear orders without end points’ (DLOs) is based
on a language containing the binary predicate ‘<’ as well as equality, but
no function symbols. It can be axiomatized by the following finite set of
sentences:

∀x y. x = y ∨ x < y ∨ y < x,

∀x y z. x < y ∧ y < z ⇒ x < z,

∀x. ¬(x < x),
∀x y. x < y ⇒ ∃z. x < z ∧ z < y,

∀x. ∃y. x < y,

∀x. ∃y. y < x.

The first three are fairly usual axioms for an irreflexive total (linear) order.
The next one asserts ‘denseness’, i.e. that between each pair of elements there
is another, while the last two assert that there is no greatest or least element.
Two natural and significantly different models of these axioms are R and Q

with the predicate ‘<’ interpreted in the usual way. (Z, by contrast, does
not satisfy the denseness axiom and so is not a model of the DLO axioms.)

As shown by Langford (1927), this theory admits quantifier elimination,
and we will demonstrate an explicit algorithm for it. By the above reduction
result, it suffices to consider a formula ∃x. l1[x] ∧ · · · ∧ ln[x] where each
li[x] is a literal containing x. In fact, by giving the following negated literal
modifier to the cnnf function, we can eliminate negated literals based on
the equivalences ¬(s < t) ⇔ s = t ∨ t < s and ¬(s = t) ⇔ s < t ∨ t < s:
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let lfn_dlo fm =
match fm with
Not(Atom(R("<",[s;t]))) -> Or(Atom(R("=",[s;t])),Atom(R("<",[t;s])))

| Not(Atom(R("=",[s;t]))) -> Or(Atom(R("<",[s;t])),Atom(R("<",[t;s])))
| _ -> fm;;

Thus the core function may assume that all the literals are atoms, which
since there are no function symbols must simply be of the form x < y or
x = y for variables x and y. Any atom of the form x = x is trivially true
and can be ignored; other atoms are collected into a list cjs. If any of
these is an equation, then it must (because all literals contain the quantified
variable) be of the form x = y or y = x where x is the existentially quantified
variable to be eliminated and y is another variable. In this case we can get
a logically equivalent formula by removing the quantifier and substituting y

for x throughout the other conjuncts – this just reflects logical equivalences
such as (∃x. x = y ∧ P [x, y]) ⇔ P [y, y].

If this step is not applicable, then all atoms must be inequalities. If one is
of the form x < x, it and hence the whole formula is trivially false. Otherwise
we collect together as ls the set of terms si appearing in inequalities si < x

and as rs those tj appearing in inequalities x < tj . Now, note that in the
theory the existential formula

∃x. (
∧
i

si < x) ∧ (
∧
j

x < tj)

has the quantifier-free equivalent

∧
i,j

si < tj

and so the algorithm forms this conjunction. For the justification of this
step, note that si < x ∧ x < tj implies that si < tj , while, conversely, if∧

i,j si < tj , then in the model the largest si and the smallest tj – and since
the ordering is total there must be such – are in the relation si < tj and so
by denseness there is an x between them and hence by transitivity between
all other pairs. In cases where there are no inequalities of one kind or another
(ls or rs is empty), the formula is equivalent to ‘true’ since the DLO axioms
assert that there are no endpoints. Note that list conj returns ‘�’ for the
empty list, so these degenerate cases work without special-case logic:



5.6 Quantifier elimination 335

let dlobasic fm =
match fm with
Exists(x,p) ->
let cjs = subtract (conjuncts p) [Atom(R("=",[Var x;Var x]))] in
try let eqn = find is_eq cjs in

let s,t = dest_eq eqn in
let y = if s = Var x then t else s in
list_conj(map (subst (x |=> y)) (subtract cjs [eqn]))

with Failure _ ->
if mem (Atom(R("<",[Var x;Var x]))) cjs then False else
let lefts,rights =
partition (fun (Atom(R("<",[s;t]))) -> t = Var x) cjs in

let ls = map (fun (Atom(R("<",[l;_]))) -> l) lefts
and rs = map (fun (Atom(R("<",[_;r]))) -> r) rights in
list_conj(allpairs (fun l r -> Atom(R("<",[l;r]))) ls rs)

| _ -> failwith "dlobasic";;

Now the overall quantifier elimination procedure is simple. We add an
initial conversion to allow us to use other inequality relations and translate
them into the core language (s ≤ t ⇔ ¬(t < s) etc.):

let afn_dlo vars fm =
match fm with
Atom(R("<=",[s;t])) -> Not(Atom(R("<",[t;s])))

| Atom(R(">=",[s;t])) -> Not(Atom(R("<",[s;t])))
| Atom(R(">",[s;t])) -> Atom(R("<",[t;s]))
| _ -> fm;;

and then exploit the usual lifting function:

let quelim_dlo =
lift_qelim afn_dlo (dnf ** cnnf lfn_dlo) (fun v -> dlobasic);;

For example:

# quelim_dlo <<forall x y. exists z. z < x /\ z < y>>;;
- : fol formula = <<true>>

We can also apply quantifier elimination to formulas with free variables.
Sometimes these still simplify to a Boolean constant:

# quelim_dlo <<exists z. z < x /\ z < y>>;;
- : fol formula = <<true>>

while others give non-trivial formulas, sometimes in their simplest form,
sometimes not:
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# quelim_dlo <<exists z. x < z /\ z < y>>;;
- : fol formula = <<x < y>>
# quelim_dlo <<(forall x. x < a ==> x < b)>>;;
- : fol formula = <<~(b < a \/ b < a)>>

We can always prove equivalence to a simpler form we have thought up
for ourselves by eliminating all quantifiers from the claimed equivalence:

# quelim_dlo <<forall a b. (forall x. x < a ==> x < b) <=> a <= b>>;;
- : fol formula = <<true>>
# quelim_dlo <<forall a b. (forall x. x < a <=> x < b) <=> a = b>>;;
- : fol formula = <<true>>

The following less obvious example confirms that the two formulas we
gave in connection with the finite model property (Section 5.5) do indeed
fail over a dense linear order. (We only check one because the other one
implies it, but both work equally well.)

# quelim_dlo <<exists x y z. forall u.
x < x \/ ~x < u \/ (x < y /\ y < z /\ ~x < z)>>;;

- : fol formula = <<false>>

Since the only ground formulas in the language are � and ⊥ (there being
no constants), this implies that the theory of DLOs is complete and decid-
able. By Theorem 5.5 we also see that all models of the DLO axioms are
elementarily equivalent, and so no sentence in the first-order language con-
sidered here can distinguish two models of the theory, such as R and Q. Of
course, by using a language with a multiplication operator we can make such
distinctions, e.g. via the formula ∃x. x · x = 2.

5.7 Presburger arithmetic

We now consider the theory of linear integer arithmetic, which is roughly the
set of formulas true in Z that are expressible without using multiplication.
(In this context linear signifies the lack of multiplication, not the presence
of a total/linear order.) For example, ∀x.∃q r.x = q +q +r∧0 ≤ r∧r < 2 is
in this theory; it asserts that every integer x has a quotient and nonnegative
remainder when divided by 2. But ∀x. x ≤ x · x is not included because it
involves multiplication, even though it does hold in Z.

In the most obvious formulation, with the language including just numeric
constants, addition and subtraction functions and inequality predicates, the
theory does not admit quantifier elimination; for example ∃x. x + x = y

has no quantifier-free equivalent. However, if we include in the language
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divisibility predicates Dk for all integers k ≥ 2, we will see that quanti-
fier elimination does hold, even if the original formula itself involves these
divisibility predicates. Note that ground instances of divisibility predicates
are always decidable – for example D5(7) is false and D5(15) is true – so
a quantifier elimination algorithm will still give us a decision procedure for
sentences. In principle, then, we are fixing the following first-order language,
which has infinitely many predicate symbols:

• constants 0 and 1;
• functions of unary negation (‘−’), addition (‘+’) and subtraction (‘−’);
• equality (‘=’) and all the usual inequality predicates (≤, <, ≥ and >) as

well as unary predicates Dk (‘is divisible by k’) for all integers k ≥ 2.

We will not bother to spell out an explicit set of axioms for the theory, but
will work directly with properties that clearly hold true in the usual model Z.
This theory is usually called ‘Presburger arithmetic’, in honour of Presburger
(1930), who first demonstrated quantifier elimination and decidability for it.
In the actual implementation, we are a bit more liberal with the language;
our procedure will simply fail if this liberality is exploited to express things
that could not be expressed in the ‘pure’ language like x · x.

• We allow arbitrary positive and negative integer constants. This makes no
difference in principle because we could always write −3 as −(1 + 1 + 1),
etc.

• We allow the multiplication function provided that it is only used to
express multiplication by constants. Again, this is a convenience and we
could avoid 4 · x by writing x + x + x + x, etc.

• We use a single binary divisibility predicate divides, but we only allow
the left-hand argument to be a (positive) integer constant. In discussions
we sometimes use the conventional notation d|x for ‘d divides x’.

We have a special abbreviation zero for the integer constant term 0, since
we use it quite often.

let zero = Fn("0",[]);;

The following functions convert between terms that are integer constants
and OCaml unlimited-precision numbers, and test whether a term is indeed
an integer constant.



338 Decidable problems

let mk_numeral n = Fn(string_of_num n,[]);;

let dest_numeral t =
match t with
Fn(ns,[]) -> num_of_string ns

| _ -> failwith "dest_numeral";;

let is_numeral = can dest_numeral;;

Using these functions we can take an arbitrary unary or binary operation
on OCaml numbers, such as negation or addition, and lift it to an operation
on numeral constants:

let numeral1 fn n = mk_numeral(fn(dest_numeral n));;

let numeral2 fn m n = mk_numeral(fn (dest_numeral m) (dest_numeral n));;

Canonical forms

As noted, we allow multiplication by numeral constants. Indeed, it makes
the transformations involved in quantifier elimination easier to implement if
we always keep terms in a canonical form:

c1 · x1 + · · · + cn · xn + k,

where n ≥ 0, ci and k are integer constants, and the xi are distinct variables,
with a fixed order. We insist that ci are present even if they are 1, but that
they are never 0, and that k is present even if it is 0. Thus, a canonical term
is a constant precisely if the top-level operator is not addition.

We need two main operations on terms in canonical form: multiplication
by an integer constant, and addition. The former just amounts to multiplying
up all the coefficients:

n · (c1 · x1 + · · · + cn · xn + k) = (n · c1) · x1 + · · · + (n · cn) · xn + (n · k)

unless n = 0, in which case we should just return 0. This can be implemented
as a simple recursion:

let rec linear_cmul n tm =
if n =/ Int 0 then zero else
match tm with
Fn("+",[Fn("*",[c; x]); r]) ->

Fn("+",[Fn("*",[numeral1(( */ ) n) c; x]); linear_cmul n r])
| k -> numeral1(( */ ) n) k;;
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For addition, we need to merge together the sequences of variables, main-
taining the fixed order. We assume that this order is defined by a list of
variable names, and use earlier to tell us whether element x comes earlier
than element y in such a list. The first clause corresponds to a term addition
(c1 ·x1 + r1)+(c2 ·x2 + r2) and the action taken depends on the relationship
of the variables x1 and x2. If they are equal, then the coefficients are added
and the remainders dealt with recursively. (Note that if the coefficients can-
cel, we do not include that term in the result, since we wanted all the ci to
be nonzero.) Otherwise, whichever variable takes precedence is put at the
head of the output term and recursion proceeds; this is also the action on
the other clauses where one term or the other is a constant term. Finally, if
both terms are constants they are just added as numerals.

let rec linear_add vars tm1 tm2 =
match (tm1,tm2) with
(Fn("+",[Fn("*",[c1; Var x1]); r1]),
Fn("+",[Fn("*",[c2; Var x2]); r2])) ->

if x1 = x2 then
let c = numeral2 (+/) c1 c2 in
if c = zero then linear_add vars r1 r2
else Fn("+",[Fn("*",[c; Var x1]); linear_add vars r1 r2])

else if earlier vars x1 x2 then
Fn("+",[Fn("*",[c1; Var x1]); linear_add vars r1 tm2])

else
Fn("+",[Fn("*",[c2; Var x2]); linear_add vars tm1 r2])

| (Fn("+",[Fn("*",[c1; Var x1]); r1]),k2) ->
Fn("+",[Fn("*",[c1; Var x1]); linear_add vars r1 k2])

| (k1,Fn("+",[Fn("*",[c2; Var x2]); r2])) ->
Fn("+",[Fn("*",[c2; Var x2]); linear_add vars k1 r2])

| _ -> numeral2(+/) tm1 tm2;;

Using these basic functions, it’s easy to define negation and subtraction
on canonical forms:

let linear_neg tm = linear_cmul (Int(-1)) tm;;

let linear_sub vars tm1 tm2 = linear_add vars tm1 (linear_neg tm2);;

and we can even define multiplication of any two canonical terms, though it
will fail unless at least one is just a constant:

let linear_mul tm1 tm2 =
if is_numeral tm1 then linear_cmul (dest_numeral tm1) tm2
else if is_numeral tm2 then linear_cmul (dest_numeral tm2) tm1
else failwith "linear_mul: nonlinearity";;

In order to convert any permissible term into canonical form, we proceed
by recursion, applying one of the arithmetic operations just defined to the
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translated subexpressions (allowing multiplication only if one side is simply
a numeral), leaving numeral constants unchanged and converting variables
from x into their canonical form 1 · x + 0:

let rec lint vars tm =
match tm with
Var(_) -> Fn("+",[Fn("*",[Fn("1",[]); tm]); zero])

| Fn("-",[t]) -> linear_neg (lint vars t)
| Fn("+",[s;t]) -> linear_add vars (lint vars s) (lint vars t)
| Fn("-",[s;t]) -> linear_sub vars (lint vars s) (lint vars t)
| Fn("*",[s;t]) -> linear_mul (lint vars s) (lint vars t)
| _ -> if is_numeral tm then tm else failwith "lint: unknown term";;

We next extend this linearization to atomic formulas; this will eventually
be plugged into lift qelim as the parameter afn. We force both equations
and inequalities to have zero on the LHS, e.g. transforming s = t to 0 = s−t

and s < t to 0 < t− s; this makes some later code more regular since in the
case of d|t the ‘interesting’ term is also the right-hand argument. Because
the integers are a discrete structure, we take the chance to rewrite all the
atomic inequality formulas in terms of <, e.g. s ≤ t as 0 < (t + 1) − s. And
finally, we also force the left-hand constants in divisibility assertions to be
positive. We start with a simple helper function mkatom to linearize a term
and create an atom with that as the left-hand argument and zero as the
other:

let mkatom vars p t = Atom(R(p,[zero; lint vars t]));;

Now the main function is straightforward case-by-case modification of the
input formula.

let linform vars fm =
match fm with
Atom(R("divides",[c;t])) ->

Atom(R("divides",[numeral1 abs_num c; lint vars t]))
| Atom(R("=",[s;t])) -> mkatom vars "=" (Fn("-",[t;s]))
| Atom(R("<",[s;t])) -> mkatom vars "<" (Fn("-",[t;s]))
| Atom(R(">",[s;t])) -> mkatom vars "<" (Fn("-",[s;t]))
| Atom(R("<=",[s;t])) ->

mkatom vars "<" (Fn("-",[Fn("+",[t;Fn("1",[])]);s]))
| Atom(R(">=",[s;t])) ->

mkatom vars "<" (Fn("-",[Fn("+",[s;Fn("1",[])]);t]))
| _ -> fm;;

In the main body of the procedure, we’ll now be able to assume that
the only inequality predicate is ‘<’. It may still occur negated, but if so
we transform it into an unnegated equivalent using the code below. In the
DLO procedure the analogous transformation involves a case-split such as
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¬(s < t) ⇔ s = t ∨ t < s, but, because of the discreteness of the integers,
we can just use ¬(0 < t) ⇔ 0 < 1 − t:

let rec posineq fm =
match fm with
| Not(Atom(R("<",[Fn("0",[]); t]))) ->

Atom(R("<",[Fn("0",[]); linear_sub [] (Fn("1",[])) t]))
| _ -> fm;;

Cooper’s algorithm

Presburger’s original algorithm is fairly straightforward, and follows the clas-
sic quantifier elimination pattern of dealing with the special case of an exis-
tentially quantified conjunction of literals. However, we will present a clever
optimized version due to Cooper (1972), which is hardly more complicated
and allows us to eliminate an existential quantifier whose body is an arbi-
trary quantifier-free NNF formula. This can be much more efficient since it
avoids the blowup often caused by the transformation to DNF, especially
in the presence of many quantifier alternations. For an in-depth discussion
of Presburger’s original procedure, the reader can consult Enderton (1972)
and Smoryński (1980), or indeed the original article, which is quite readable
– Stansifer (1984) gives an annotated English translation. Presburger’s algo-
rithm has additional historical significance for us, since the implementation
by Davis (1957) was arguably the first logical decision procedure actually to
be implemented on a computer.

Consider the task of eliminating the existential quantifier from ∃x.p where
p is quantifier-free. We will assume that all the atoms have been maintained
in the standard form with 0 on the left and a linearized term on the right,
and only strict inequalities using ‘<’ present. Using cnnf with the param-
eter posineq to eliminate negated inequalities, we may assume in the core
procedure that p is in NNF, i.e. built up from conjunction and disjunction
from literals of the forms 0 = t, ¬(0 = t), 0 < t, d | t or ¬(d | t), with
each term t normalized so that if x occurs in it, it is of the form c · x + s.
(Note that lift qelim produces the vars parameter in such a way that the
innermost quantified variable, the one we want to eliminate first, is at the
head of the list, and hence will appear first in the canonical form of any
term involving it.) In order to correlate the various instances of x multiplied
by different coefficients, we find the (positive) least common multiple of all
the coefficients of x, returning 1 if there are no instances of x:
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let rec formlcm x fm =
match fm with
Atom(R(p,[_;Fn("+",[Fn("*",[c;y]);z])])) when y = x ->

abs_num(dest_numeral c)
| Not(p) -> formlcm x p
| And(p,q) | Or(p,q) -> lcm_num (formlcm x p) (formlcm x q)
| _ -> Int 1;;

(Note that the atom clause works uniformly for divisibility and other pred-
icates, because the ‘interesting’ term is always the right-hand argument.)
Now, having computed the LCM, say l, by this method, we can make the
coefficient of x equal to ±l everywhere by taking each atomic formula whose
right-hand argument is of the form c · x + z, and consistently multiplying it
through by an appropriate m. For all but inequalities this is m = l/c and
so the resulting coefficient of x will be l; for inequalities we use m = |l/c|,
since we cannot multiply by negative numbers without changing their sense.
Actually, as part of this transformation we force the coefficients of x from
±l · x to ±1 · x, in anticipation of the next stage:

let rec adjustcoeff x l fm =
match fm with
Atom(R(p,[d; Fn("+",[Fn("*",[c;y]);z])])) when y = x ->

let m = l // dest_numeral c in
let n = if p = "<" then abs_num(m) else m in
let xtm = Fn("*",[mk_numeral(m // n); x]) in
Atom(R(p,[linear_cmul (abs_num m) d;

Fn("+",[xtm; linear_cmul n z])]))
| Not(p) -> Not(adjustcoeff x l p)
| And(p,q) -> And(adjustcoeff x l p,adjustcoeff x l q)
| Or(p,q) -> Or(adjustcoeff x l p,adjustcoeff x l q)
| _ -> fm;;

The next stage, which we have partly folded in above, is to replace l · x
with just x and add a new divisibility clause, justified by the following
equivalence:

(∃x. P [l · x]) ⇔ (∃x. l | x ∧ P [x]).

The following code implements the entire transformation, reducing the
coefficient of x to be ±1 using the above functions, then adding the addi-
tional conjunct l | x, or actually, to retain canonicality, l | 1 ·x+0. We make
the slight optimization of not including the trivially true divisibility formula
if l = 1, but we still call adjustcoeff since it might be needed to transform,
say, 0 = −1 · x + 3 into 0 = 1 · x +−3 which is the form we expect later on.
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let unitycoeff x fm =
let l = formlcm x fm in
let fm’ = adjustcoeff x l fm in
if l =/ Int 1 then fm’ else
let xp = Fn("+",[Fn("*",[Fn("1",[]);x]); zero]) in
And(Atom(R("divides",[mk_numeral l; xp])),adjustcoeff x l fm);;

Now we come to the main quantifier elimination step for the transformed
formula ∃x. P [x]. Note that since the integers are discrete and any set of
integers bounded below has a minimal element, ∃x. P [x] holds iff either (i)
there are arbitrarily large and negative x such that P [x], or (ii) there is a
minimal x such that P [x]. So we’ll separately consider how to find quantifier-
free equivalents for the two cases on the right of this equivalence:

(∃x. P [x]) ⇔ (∀y. ∃x. x < y ∧ P [x]) ∨ (∃x. P [x] ∧ ∀y. y < x ⇒ ¬P [y]).

Arbitrarily large and negative x

Consider first the case where there are arbitrarily large and negative x such
that P [x]. For sufficiently large and negative x, we claim that P [x] must be
equivalent to P−∞[x], the formula that results from replacing the atoms in
P [x] as follows:

In P [x] In P−∞[x]
0 = x + a ⊥
0 < x + a ⊥

0 < −x + a �

and leaving other atoms, i.e. divisibility assertions and those not involving
x, unchanged.

Lemma 5.6 For sufficiently large and negative x, P [x] and P−∞[x] are
equivalent, i.e. ∃y. ∀x. x < y ⇒ (P [x] ⇔ P−∞[x]) holds.

Proof Consider the possible atomic formulas first, starting with P [x] of the
form 0 = x + a or 0 < x + a. In these cases P−∞[x] is ⊥ and we have
∀x. x < −a ⇒ (P [x] ⇔ ⊥). The required result follows, with −a the witness
for the existentially quantified variable y. The 0 < −x + a case is similar:
P−∞[x] is � and indeed ∀x.x < a ⇒ (P [x] ⇔ �). For other atomic formulas,
P−∞[x] is the same as P [x] and so the result holds trivially.

Intuitively, we can now take the minimum of all the y values for the atoms
contained in the formula. More formally, we can proceed by induction on
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its structure. If P [x] is of the form ¬Q[x], then by the inductive hypothesis
∃y.∀x.x < y ⇒ (Q[x] ⇔ Q−∞[x]), so ∃y.∀x.x < y ⇒ (¬Q[x] ⇔ ¬Q−∞[x]) as
required. If P [x] is of the form Q[x]∧R[x], then by the inductive hypothesis
∃y. ∀x. x < y ⇒ (Q[x] ⇔ Q−∞[x]) and ∃z. ∀x. x < z ⇒ (R[x] ⇔ R−∞[x])
hold, so ∃w. ∀x. x < w ⇒ (P [x] ⇔ P−∞[x]) (given y and z we can choose
w to be their minimum). The case where P [x] is of the form Q[x] ∨ R[x] is
very similar.

Here is the ‘minus infinity’ transformation coded in OCaml, assuming that
we have already used the canonical form conversions:

let rec minusinf x fm =
match fm with
Atom(R("=",[Fn("0",[]); Fn("+",[Fn("*",[Fn("1",[]);y]);a])]))

when y = x -> False
| Atom(R("<",[Fn("0",[]); Fn("+",[Fn("*",[pm1;y]);a])])) when y = x ->

if pm1 = Fn("1",[]) then False else True
| Not(p) -> Not(minusinf x p)
| And(p,q) -> And(minusinf x p,minusinf x q)
| Or(p,q) -> Or(minusinf x p,minusinf x q)
| _ -> fm;;

The next key point is that all divisibility terms d | ±x + a are unchanged
if x is altered by an integer multiple of d. Let us find the (positive) least
common multiple D of all ds occurring in formulas of the form d | c · x + a

(we know in fact that c = ±1 at this stage) using the following code:

let rec divlcm x fm =
match fm with
Atom(R("divides",[d;Fn("+",[Fn("*",[c;y]);a])])) when y = x ->

dest_numeral d
| Not(p) -> divlcm x p
| And(p,q) | Or(p,q) -> lcm_num (divlcm x p) (divlcm x q)
| _ -> Int 1;;

Then all divisibility atoms in the formula are invariant if x is changed to
x±kD. Indeed, in the case of P−∞[x], divisibility atoms and other atoms not
involving x are all that’s left, so P−∞[x±kD] ⇔ P−∞[x] always holds. Thus
we can find a simpler equivalent for our current target formula ∀y. ∃x. x <

y ∧ P [x].

Theorem 5.7 For any P [x] quantifier-free and in NNF we have

(∀y. ∃x. x < y ∧ P [x]) ⇔
D∨

i=1

P−∞[i].
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Proof By Lemma 5.6, P [x] and P−∞[x] are equivalent for sufficiently
negative x, so the left-hand side of this formula is equivalent to ∀y. ∃x. x <

y∧P−∞[x]. Since, by the above remarks, P−∞[x] is invariant when x changes
by any multiple of D, this is equivalent simply to ∃x.P−∞[x], for given any x

with P−∞[x] we can find an arbitrarily large and negative one by subtracting
a multiple of D. Finally, again by the invariance of P−∞[x] under multiples
of D, this is equivalent to

∨D
i=1 P−∞[i], since any x is congruent to one of

those values modulo D. (The use of 1, . . . , D is inessential; we could have
used 0, . . . , D − 1 or any other D numbers that are pairwise incongruent
modulo D.)

A minimal x

We now turn to the other possibility, of a minimal x satisfying P [x]. In this
case P [x] holds but P [x − D] does not. Since divisibility formulas do not
change under translation by D, this implies that the change from true to
false must have arisen from one of the other literals changing from true to
false in the step from x to a smaller value. For such a literal, we can always
identify a ‘boundary point’ b such that the literal is false for x = b but true
for x = b + 1. For example, for 0 < x + a, the boundary point is b = −a

since 0 < x + a is false for x = −a but true for x = 1 − a. Here are all the
boundary points for literals that can change from true to false as x decreases
by D, where applicable.

Literal Boundary point
0 = x + a −(a + 1)

¬(0 = x + a) −a

0 < x + a −a

0 < −x + a none
d | x + a none

¬(d | x + a) none
literals without x none

The collection of such boundary points for the relevant literals is called
the B-set for the formula in question.† In OCaml:

† There is no reason to suppose that Cooper meant the ‘B’ to stand for boundary, since he used
‘A’ for the dual notion. But it is perhaps a good way of thinking of it.
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let rec bset x fm =
match fm with
Not(Atom(R("=",[Fn("0",[]); Fn("+",[Fn("*",[Fn("1",[]);y]);a])])))
when y = x -> [linear_neg a]

| Atom(R("=",[Fn("0",[]); Fn("+",[Fn("*",[Fn("1",[]);y]);a])]))
when y = x -> [linear_neg(linear_add [] a (Fn("1",[])))]

| Atom(R("<",[Fn("0",[]); Fn("+",[Fn("*",[Fn("1",[]);y]);a])]))
when y = x -> [linear_neg a]

| Not(p) -> bset x p
| And(p,q) -> union (bset x p) (bset x q)
| Or(p,q) -> union (bset x p) (bset x q)
| _ -> [];;

This is the crucial property of the B-set.

Theorem 5.8 If D is the LCM of all relevant divisors in a quantifier-free
NNF formula P [x] with no logically negated inequality literals and a B-set
B, and P [x] holds while P [x − D] does not, then x = b + j for some b ∈ B

and 1 ≤ j ≤ D.

Proof First consider the literals for which the B-set is nonempty. If P [x]
is a literal 0 = x + a, then P [x] holding means x = −a. Since the B-set
is {−(a + 1)} and x = −a = −(a + 1) + j for j = 1, the result follows. If
P [x] is ¬(0 = x + a) then ¬P [x − D] means x = −a + D. Since the B-set
is {−a} and −a + D = −a + j for j = D, the result follows. Finally, if
P [x] is a literal 0 < x + a then since P [x] holds but not P [x − D], we must
have (x − D) + a ≤ 0 < x + a, or in other words −a + 1 ≤ x ≤ −a + D.
Since the B-set is {−a} this implies x = −a + j for some 1 ≤ j ≤ D as
required.

No other literals can satisfy the precondition of the theorem, that P [x]
holds but P [x − D] does not. Divisibility relations are invariant modulo
D, literals 0 < −x + a cannot possibly satisfy the assumed property since
0 < −x + a ⇒ 0 < −(x − D) + a, and by hypothesis we have no logically
negated inequality literals.

Having established the result for literals, we can proceed by induction on
the structure of the NNF formula. Suppose P [x] is of the form Q[x] ∧ R[x]
or Q[x]∨R[x], and that P [x] holds while P [x−D] does not. Whichever form
P [x] has, this means either that Q[x] holds and Q[x − D] does not, or that
R[x] holds and R[x − D] does not. Then the inductive hypothesis, together
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with the fact that the B-set of P [x] contains those of both Q[x] and R[x],
implies that the result holds.

At last we arrive at the main theorem justifying quantifier elimination.

Corollary 5.9 If P [x] is a formula in the subset being discussed with B-set
B, and D is the positive lowest common multiple of all the relevant divisors,
then the following equivalence holds:

(∃x. P [x]) ⇔
D∨

j=1

(P−∞[j] ∨
∨

b∈B

P [b + j]).

Proof Redistributing the disjunction on the right a bit, we need to show
that:

(∃x. P [x]) ⇔ (
D∨

j=1

P−∞[j]) ∨ (
D∨

j=1

∨

b∈B

P [b + j]).

Suppose first that ∃x. P [x] holds. Then, as noted above, we either have
∀y.∃x. x < y∧P [x] (there are arbitrarily large and negative x with P [x]) or
∃x.P [x]∧∀y. y < x ⇒ ¬P [y] (there is a minimal x with P [x]). In the former
case, we immediately have

∨D
j=1 P−∞[j] by Theorem 5.7, while in the latter

case there is an x with P [x] but ¬P [x−D], and therefore by Theorem 5.8 we
have x = b+j for some b ∈ B and 1 ≤ j ≤ D, from which

∨D
j=1

∨
b∈B P [b+j]

follows immediately.
Conversely, suppose that the disjunction on the right holds. If

∨D
j=1 P−∞[j],

then by Theorem 5.7 we have arbitrarily large and negative x with P [x] and
so a fortiori ∃x. P [x] holds. And trivially if

∨D
j=1

∨
b∈B P [b + j] holds then

so does ∃x. P [x].

In order to apply the main theorem, we need to be able to form the
substitution instances like P [b + j] while retaining canonical form. Thus we
implement a function that replaces the top variable x in atoms by another
term t (assumed not to involve x), restoring canonicality:

let rec linrep vars x t fm =
match fm with
Atom(R(p,[d; Fn("+",[Fn("*",[c;y]);a])])) when y = x ->

let ct = linear_cmul (dest_numeral c) t in
Atom(R(p,[d; linear_add vars ct a]))

| Not(p) -> Not(linrep vars x t p)
| And(p,q) -> And(linrep vars x t p,linrep vars x t q)
| Or(p,q) -> Or(linrep vars x t p,linrep vars x t q)
| _ -> fm;;
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Now for the overall inner quantifier elimination step, we just perform the
transformation corresponding to the equivalence in Corollary 5.9:

let cooper vars fm =
match fm with
Exists(x0,p0) ->

let x = Var x0 in
let p = unitycoeff x p0 in
let p_inf = simplify(minusinf x p) and bs = bset x p
and js = Int 1 --- divlcm x p in
let p_element j b =
linrep vars x (linear_add vars b (mk_numeral j)) p in

let stage j = list_disj
(linrep vars x (mk_numeral j) p_inf ::
map (p_element j) bs) in

list_disj (map stage js)
| _ -> failwith "cooper: not an existential formula";;

If we eventually eliminate all quantifiers from an initially closed formula,
the result will contain no variables at all and each atom can be evaluated
to true (e.g. 0 < 5, 2|4) or false (e.g. 0 = 7). It’s convenient to define
the function to perform such evaluation now, since we can also apply it
at intermediate stages as a useful simplification; for example, if we have a
subformula of the form 0 < −4 ∧ P , we can simplify it to ⊥ and never need
to worry about P . The following auxiliary function just associates atoms
with corresponding operations on rational numbers (we will use this later in
other contexts, hence the incorporation of other inequalities):

let operations =
["=",(=/); "<",(</); ">",(>/); "<=",(<=/); ">=",(>=/);
"divides",(fun x y -> mod_num y x =/ Int 0)];;

Now the main evaluation function is straightforward. Note that unless an
atom has numerals as both of its two arguments, the inner dest numeral
calls will fail and the atom will be returned unchanged by the error trap.

let evalc = onatoms
(fun (R(p,[s;t]) as at) ->

(try if assoc p operations (dest_numeral s) (dest_numeral t)
then True else False

with Failure _ -> Atom at));;

The overall quantifier elimination procedure is built in the usual way,
inserting evalc into the intermediate normalization steps and at the end.
We use an NNF rather than DNF transformation, since Cooper’s algorithm
can cope with any NNF formula.
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let integer_qelim =
simplify ** evalc **
lift_qelim linform (cnnf posineq ** evalc) cooper;;

For example, we can confirm or refute closed formulas:

# integer_qelim <<forall x y. ~(2 * x + 1 = 2 * y)>>;;
- : fol formula = <<true>>
# integer_qelim <<forall x. exists y. 2 * y <= x /\ x < 2 * (y + 1)>>;;
- : fol formula = <<true>>
# integer_qelim <<exists x y. 4 * x - 6 * y = 1>>;;
- : fol formula = <<false>>
# integer_qelim <<forall x. ~divides(2,x) /\ divides(3,x-1) <=>

divides(12,x-1) \/ divides(12,x-7)>>;;
- : fol formula = <<true>>

and eliminate quantifiers from formulas with free variables:

# integer_qelim <<forall x. b < x ==> a <= x>>;;
- : fol formula = <<~0 < 1 * a + -1 * b + -1>>

Optimizations

There are many ways in which the efficiency of Cooper’s algorithm can be
improved. One already considered in Cooper’s original paper is to sometimes
use a dual expansion based on a ‘plus infinity’ variant of the formula and
corresponding ‘A-sets’ instead of B-sets (Exercise 5.13). A subtly improved
treatment of the coefficient homogenization part of Cooper’s algorithm due
to Reddy and Loveland (1978) is also worth considering.

It has long been known that the arithmetical problems arising in pro-
gram verification applications mostly fall within a small fragment of Pres-
burger arithmetic. Typically, they are entirely universally quantified and do
not depend on subtle divisibility properties. Indeed, Pratt (1977) observed
that most involve just inequalities of the form x ≤ y + c. For this frag-
ment, often called difference logic or separation logic,† a very efficient deci-
sion method is possible using the Bellman–Ford graph algorithm. Efficient
algorithms for the slightly more general ‘unit two variable per inequality’
(UTVPI) case allowing ax ≤ by + c for a, b ∈ {−1, 0, 1} are given by Jaffar,
Maher, Stuckey and Yap (1994), Harvey and Stuckey (1997) and Lahiri and
Musuvathi (2005), while Ball, Cook, Lahriri and Rajamani (2004) give some
statistics on how well it handles the demands of applications.
† The phrase ‘separation logic’ is now also used for something completely different (Reynolds

2002), so ‘difference logic’ is probably less ambiguous.



350 Decidable problems

Natural numbers

This quantifier elimination procedure for the integers can easily be used
to yield one for the natural numbers too. We can make the identification
N = {x ∈ Z | 0 ≤ x}, or if we prefer to leave out zero, N = {x ∈ Z | 0 < x}.
Therefore, given a formula to be interpreted in N, we can obtain a corre-
sponding one whose meaning in Z is the same by systematically relativizing
all the quantifiers:

∀x. P [x] −→ ∀x. 0 ≤ x ⇒ P [x],

∃x. P [x] −→ ∃x. 0 ≤ x ∧ P [x].

This relativization, for an arbitrary constraint formula, can be implemented
as:

let rec relativize r fm =
match fm with
Not(p) -> Not(relativize r p)

| And(p,q) -> And(relativize r p,relativize r q)
| Or(p,q) -> Or(relativize r p,relativize r q)
| Imp(p,q) -> Imp(relativize r p,relativize r q)
| Iff(p,q) -> Iff(relativize r p,relativize r q)
| Forall(x,p) -> Forall(x,Imp(r x,relativize r p))
| Exists(x,p) -> Exists(x,And(r x,relativize r p))
| _ -> fm;;

and we can apply it to the special case 0 ≤ x as an initial step before integer
quantifier elimination to yield a natural number version:

let natural_qelim =
integer_qelim ** relativize(fun x -> Atom(R("<=",[zero; Var x])));;

The difference is exemplified by an instance of Bezout’s theorem; we can
think of the natural number version as claiming that we can make any value
from 3-cent and 5-cent stamps. This is false:

# natural_qelim <<forall d. exists x y. 3 * x + 5 * y = d>>;;
- : fol formula = <<false>>
# integer_qelim <<forall d. exists x y. 3 * x + 5 * y = d>>;;
- : fol formula = <<true>>

but we do have:

# natural_qelim <<forall d. d >= 8 ==> exists x y. 3 * x + 5 * y = d>>;;
- : fol formula = <<true>>
# natural_qelim <<forall d. exists x y. 3 * x - 5 * y = d>>;;
- : fol formula = <<true>>
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Skolem arithmetic and other variants

Quantifier elimination for essentially the same integer theory was arrived at
independently by Skolem (1931), who also sketched a proof of decidability
(not full quantifier elimination) for an analogous theory of nonzero natural
numbers with multiplication (and no addition), often called ‘Skolem arith-
metic’. There’s a natural correspondence between models of Skolem arith-
metic and certain ‘weak direct products’ of models of Presburger arithmetic
via the prime factorization n �→ 2n13n25n3 · · ·, multiplication corresponding
to pointwise addition and divisibility to pointwise ordering. Using general
theorems about decidability of such products, Mostowski (1952) gave a clear
proof of decidability for Skolem arithmetic. A generalization of Mostowski’s
result due to Feferman and Vaught (1959) was later applied by Cegielski
(1981) to give full quantifier elimination for Skolem arithmetic.

As we shall see in Section 7.2, things change dramatically when one has
both addition and multiplication together: the theory does not admit quan-
tifier elimination, is not complete and, in a precise sense, is far from being
decidable. And the extension of Presburger arithmetic to allow a general
divisibility relation, not just divisibility by constants, is equally difficult
because one can define (see Section 7.2) multiplication in terms of divisibil-
ity as follows (Tarski, Mostowski and Robinson 1953):

• define the relation ‘l is a least common multiple of m and n’ by m|l∧n|l∧
(∀l′. m|l′ ∧ n|l′ ⇒ l|l′)

• define the relation m = n2 by ‘m + n is a least common multiple of n and
n + 1 and m − n is a least common multiple of n and n − 1’; (This is for
Z; over N just the fact that m + n is a least common multiple of n and
n + 1 suffices.)

• define the relation m = n · p by (n + p)2 = n2 + p2 + 2m.

Indeed, with a little more ingenuity multiplication can be defined in terms
of divisibility, successor and 1 only (J. Robinson 1949), so even that theory
is undecidable. On the other hand, the validity of purely universal formulas
is decidable for Presburger arithmetic with divisibility (Beltyokov 1974; Lip-
shitz 1978). A surprising positive result in another direction is that adding
exponentiation, i.e. a function E(x) = 2x, to Presburger arithmetic gives a
decidable theory: Semënov (1984) proves this based on a variant of quantifier
elimination. By contrast, a general binary exponentiation function immedi-
ately leads to undecidability since we can define the multiplication relation
mn = p by (xm)n = xp and then addition m + n = p by xmxn = xp, for any
x > 1.

Even though basic Presburger arithmetic is decidable, the worst-case
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complexity of any algorithm is known to be at least doubly exponential
in the size of the formula (Fischer and Rabin 1974). However, the more
restricted case of deciding formulas without quantifier alternations is ‘only’
NP-complete (Papadimitriou 1981), and the still more special case of satis-
fiability of conjunctions of linear equations over the integers can be solved
in polynomial time, e.g. via Hermite normal form (Nemhauser and Wolsey
1999).

5.8 The complex numbers

The complex numbers C include the imaginary unit i with i2 = −1, a solution
of the polynomial equation x2 +1 = 0. Indeed, the Fundamental Theorem of
Algebra tells us that C is ‘algebraically closed’, meaning that any polynomial
equation anxn + · · · + a1x + a0 = 0 has a solution over C, except for the
degenerate case of a nonzero constant (n = 0 and a0 �= 0).† Using this
property, we will demonstrate full quantifier elimination for C with both
addition and multiplication.

Polynomial manipulation

Just as with Cooper’s algorithm, it’s convenient to maintain terms in a
canonical form. All terms built up using constants, negation, subtraction
and multiplication can be considered as multivariate polynomials, and we
will choose a particular canonical form for them.‡ We consider a multivariate
polynomial as a polynomial in one variable whose coefficients are themselves
polynomials in the other variables. Our canonical form will be equivalent to
anxn+ · · ·+a0, but expressed slightly differently in what is known as Horner
form:

a0 + x · (a1 + x · (a2 + x · · · · (an−1 + x · an))

with each coefficient ai a canonical polynomial in the remaining variables.
We will maintain a list with the innermost variable at the head, and this will
determine the arrangement of variables in the canonical form. For example,
if the variables from the inside out are x, y and z, we consider the polynomial

† For a clear proof of the Fundamental Theorem of Algebra see Ebbinghaus et al. (1990); this
is an inductive refinement (Littlewood 1941; Estermann 1956) of Argand’s classic ‘minimum
modulus’ proof.

‡ Formally, polynomials can be defined as terms in this normal form, though we will later adopt
a different definition closer to the usual one in algebra. For the present, readers may if they
wish think of polynomials as functions; since we will be concerned only with infinite base rings,
two polynomials have the same canonical form iff they determine the same function.
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3xy2 + 2x2yz + zx + 3yz as:

[0 + y · (0 + z · 3)] + x · ([(0 + z · 1) + y · (0 + y · 3)] + x · [0 + y · (0 + z · 2)]),

where the items in square brackets are considered as coefficients when elim-
inating x. Although not very nice for human reading, this representation
suits the organization of the algorithm with variables eliminated from the
inside out.

First we define arithmetic operations on canonical polynomials, subject
to a list vars defining the variable ordering. For addition, the main case is
adding c + x · p and d + y · q. If x and y are different, one or other is added
to the constant coefficient of the other, via the mutually recursive function
poly_ladd. Otherwise we just compute (c+x·p)+(d+x·q) = (c+d)+x·(p+q),
taking care to handle the case p + q = 0 by just returning c + d.

let rec poly_add vars pol1 pol2 =
match (pol1,pol2) with
(Fn("+",[c; Fn("*",[Var x; p])]),Fn("+",[d; Fn("*",[Var y; q])])) ->

if earlier vars x y then poly_ladd vars pol2 pol1
else if earlier vars y x then poly_ladd vars pol1 pol2 else
let e = poly_add vars c d and r = poly_add vars p q in
if r = zero then e else Fn("+",[e; Fn("*",[Var x; r])])

| (_,Fn("+",_)) -> poly_ladd vars pol1 pol2
| (Fn("+",_),pol2) -> poly_ladd vars pol2 pol1
| _ -> numeral2 (+/) pol1 pol2

and poly_ladd vars =
fun pol1 (Fn("+",[d; Fn("*",[Var y; q])])) ->

Fn("+",[poly_add vars pol1 d; Fn("*",[Var y; q])]);;

For negation, we don’t need the variable order, but can just recursively
negate the coefficients

let rec poly_neg =
function (Fn("+",[c; Fn("*",[Var x; p])])) ->

Fn("+",[poly_neg c; Fn("*",[Var x; poly_neg p])])
| n -> numeral1 minus_num n;;

and subtraction is an easy combination of addition and negation:

let poly_sub vars p q = poly_add vars p (poly_neg q);;

We can base a recursive definition of polynomial multiplication on the
following equation, solving the simpler sub-problems p · d and p · q in the
same way:

p · (d + y · q) = (p · d) + (0 + y · (p · q)).
However, for 0+y·(p·q) to be in canonical form we need y to be the topmost
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variable overall, with p including no variables strictly earlier in the list. Hence
we check which polynomial has the earlier topmost variable, and call the
mutually recursive function poly_lmul to apply the main transformation
with the arguments switched as necessary:

let rec poly_mul vars pol1 pol2 =
match (pol1,pol2) with
(Fn("+",[c; Fn("*",[Var x; p])]),Fn("+",[d; Fn("*",[Var y; q])])) ->

if earlier vars x y then poly_lmul vars pol2 pol1
else poly_lmul vars pol1 pol2

| (Fn("0",[]),_) | (_,Fn("0",[])) -> zero
| (_,Fn("+",_)) -> poly_lmul vars pol1 pol2
| (Fn("+",_),_) -> poly_lmul vars pol2 pol1
| _ -> numeral2 ( */ ) pol1 pol2

and poly_lmul vars =
fun pol1 (Fn("+",[d; Fn("*",[Var y; q])])) ->

poly_add vars (poly_mul vars pol1 d)
(Fn("+",[zero;

Fn("*",[Var y; poly_mul vars pol1 q])]));;

Powers pn (for fixed n) are just repeated multiplication:

let poly_pow vars p n = funpow n (poly_mul vars p) (Fn("1",[]));;

We can even do division when the quotient polynomial is just a constant:

let poly_div vars p q = poly_mul vars p (numeral1((//) (Int 1)) q);;

and it is also handy to have a base case to put a variable x into canonical
form 0 + 1 · x:

let poly_var x = Fn("+",[zero; Fn("*",[Var x; Fn("1",[])])]);;

Any term can now be translated into canonical form by transforming
constants and variables then recursively applying the appropriate canonical
form operations:

let rec polynate vars tm =
match tm with
Var x -> poly_var x

| Fn("-",[t]) -> poly_neg (polynate vars t)
| Fn("+",[s;t]) -> poly_add vars (polynate vars s) (polynate vars t)
| Fn("-",[s;t]) -> poly_sub vars (polynate vars s) (polynate vars t)
| Fn("*",[s;t]) -> poly_mul vars (polynate vars s) (polynate vars t)
| Fn("/",[s;t]) -> poly_div vars (polynate vars s) (polynate vars t)
| Fn("^",[p;Fn(n,[])]) ->

poly_pow vars (polynate vars p) (int_of_string n)
| _ -> if is_numeral tm then tm else failwith "lint: unknown term";;

and we can apply this to put each equation into an equivalent form t = 0
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with t a canonical polynomial. We ignore the predicate, which will always
be equality, so this function can be re-used for inequalities in other contexts.

let polyatom vars fm =
match fm with
Atom(R(a,[s;t])) -> Atom(R(a,[polynate vars (Fn("-",[s;t]));zero]))

| _ -> failwith "polyatom: not an atom";;

We are already in a position to check simple polynomial identities:†

# polyatom ["w"; "x"; "y"; "z"]
<<((w + x)^4 + (w + y)^4 + (w + z)^4 +

(x + y)^4 + (x + z)^4 + (y + z)^4 +
(w - x)^4 + (w - y)^4 + (w - z)^4 +
(x - y)^4 + (x - z)^4 + (y - z)^4) / 6 =
(w^2 + x^2 + y^2 + z^2)^2>>;;

- : fol formula = <<0 = 0>>

Properties of univariate polynomials

When we assert some arithmetical or relational property of polynomials, we
mean it in terms of the operations defined above. For example, to say that
a polynomial s is divisible by another polynomial t means that there is a
third polynomial q so that qt = s. By that equation, we mean that applying
poly_mul to q and t will give s, or equivalently that both sides of the equa-
tion have the same canonical form under polynate. Occasionally, however,
multivariate polynomials will be thought of as univariate polynomials with
parameters. For example, it is not the case that x2y−zx is divisible by x−1
as a multivariate polynomial, but considered as a univariate polynomial in
x, it is divisible for some values of the other parameters (e.g. when y = z)
and not for others.

For a univariate polynomial p, the largest n for which the polynomial
involves a term axn with a �= 0 is called its degree, sometimes written ∂(p).
With slight abuse of notation, we write p(a) for the result of ‘evaluating’
the polynomial p(x) by plugging a in place of its variable; for example if
p(x) = x2 − 2x + 1 we have p(2) = 1. We also identify values with constant
polynomials like p(x) = 2. An elementary fact that will be central in what
follows is the following, which applies to polynomials over various number
systems, not just C.

† This identity is connected with Waring’s problem in number theory (Nathanson 1996).



356 Decidable problems

Theorem 5.10 For any polynomial p(x) and value a, the polynomial p(x)−
p(a) is divisible by x − a, and the quotient polynomial has a degree one less
than the degree of p(x).

Proof Just observe that x0 − a0 = 1− 1 = (x− a) · 0 while for any k ≥ 1 we
have xk − ak = (x − a) · (xk−1 + axk−2 + · · · + ak−2x + ak−1). Since we can
write any polynomial as p(x) = anxn + · · · + a0 the result follows.

A root or zero of a univariate polynomial p(x) is a value a such that
p(a) = 0. We deduce from the above theorem that:

Corollary 5.11 If p(a) = 0 then p(x) is divisible by x − a.

An immediate corollary is:

Corollary 5.12 A univariate polynomial p(x) of degree n can have at most
n roots.

Proof By induction over the degree. If p(x) has no roots, the result is
trivially true. Otherwise, taking any root a we know p(x) = (x − a)q(x)
for some quotient polynomial q(x) of degree n − 1. The roots of p(x) are
therefore those of q(x) plus x = a if it is not already a root of q(x). Since
by the inductive hypothesis q(x) has at most n− 1 roots, the result follows.

In the special case of the complex numbers, algebraic closure gives us some-
thing more.

Corollary 5.13 A univariate polynomial p(x) of degree n over C has a
decomposition into linear factors: for some a1, . . . , an, not necessarily dis-
tinct, p(x) = k·(x−a1) · · · (x−an). In other words, a polynomial over C splits.

Proof By induction on the degree of p(x). If p(x) is a constant, the result
holds trivially. Otherwise, algebraic closure tells us that there is a root a,
and we then know there is a q(x) of lower degree with p(x) = (x− a) · q(x).
By the inductive hypothesis, q(x) splits into linear factors.

Quantifier elimination method

We’ll now describe a fairly simple quantifier elimination algorithm for the
complex numbers, originally due to Tarski and apparently first mentioned in
print by Seidenberg (1954). Imagine for the moment that all polynomials are
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univariate. By applying the polynomial normalization conversions, we may
assume that all atomic formulas are of the form p(x) = 0, and as usual (see
Section 5.6), it suffices to be able to eliminate a single existential quantifier
from a conjunction of literals:

∃x. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ∧ q1(x) �= 0 ∧ · · · qm(x) �= 0.

The first step is to reduce this to a similar case where m ≤ 1 and n ≤ 1.
We may assume that none of the pi(x) or qj(x) is the zero polynomial, since
in the former case we can just delete the equation pi(x) = 0, and in the latter
case the entire formula reduces to ⊥ and we are finished. Now, to reduce n

we can use one equation of minimal degree to substitute for higher powers
appearing in the others, iterating the process until at most one equation is
left, e.g.

2x2 + 5x + 3 = 0 ∧ x2 − 1 = 0 ⇔ 5x + 5 = 0 ∧ x2 − 1 = 0

⇔ 5x + 5 = 0 ∧ 0 = 0

⇔ 5x + 5 = 0.

To reduce m, we may simply multiply all the qi(x) together since qi(x) �=
0 ∧ qi+1(x) �= 0 ⇔ qi(x) · qi+1(x) �= 0. Now, if we just have a single equa-
tion left, ∃x. p(x) = 0, there is by the Fundamental Theorem of Algebra a
quantifier-free equivalent, namely ⊥ or �, depending on whether p(x) is a
nonzero constant polynomial. If we have just one inequation, ∃x. q(x) �= 0,
this is definitely equivalent to � since there are infinitely many complex
numbers and a polynomial can only have finitely many roots. The more
interesting case is where we have both equations and inequations for some
non-trivial p(x) and q(x):

∃x. p(x) = 0 ∧ q(x) �= 0,

or equivalently ¬(∀x. p(x) = 0 ⇒ q(x) = 0). Consider the core formula:

∀x. p(x) = 0 ⇒ q(x) = 0.

Since C is algebraically closed, we know that the polynomials p(x) and
q(x) split into linear factors, whatever they may be (we can assume k �= 0
and l �= 0 because both polynomials were supposed not to be identically
zero):

p(x) = k · (x − a1) · (x − a2) · · · (x − an),

q(x) = l · (x − b1) · (x − b2) · · · (x − bm).
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Now p(x) = 0 is equivalent to
∨

1≤i≤n x = ai and q(x) = 0 is equivalent
to

∨
1≤j≤m x = bj . Thus, the formula ∀x. p(x) = 0 ⇒ q(x) = 0 says precisely

that

∀x.
∨

1≤i≤n

x = ai ⇒
∨

1≤j≤m

x = bj ,

or in other words, all the ai appear among the bj . However, since there are
just n linear factors in the antecedent, a given factor (x − ai) cannot occur
more than n times and thus the polynomial divisibility relation p(x)|q(x)n

holds. Conversely, if this divisibility relation holds for n > 0, then clearly
∀x. p(x) = 0 ⇒ q(x) = 0 holds. Thus, the key quantified formula can be
reduced to a polynomial divisibility relation, and as we will soon see in
more detail, it’s not difficult to express this as a quantifier-free formula in
the coefficients, thus eliminating the quantification over x. In what follows,
we present this sketch-proof in more detail and implement it.

Polynomial utilities

Before proceeding further, it’s useful to have some additional utility func-
tions on canonical polynomials. The coefficients function converts a poly-
nomial c0 +c1x+c2x

2 + · · ·+cnxn into a list of coefficients [c0; c1; c2; . . . ; cn].
Note that we need to be explicit about the variable x, otherwise we couldn’t
tell whether, say, 1+2·y is a degree 1 polynomial in y or a degree 0 (constant)
polynomial in x.

let rec coefficients vars =
function Fn("+",[c; Fn("*",[Var x; q])]) when x = hd vars ->

c::(coefficients vars q)
| p -> [p];;

We define several other functions in terms of coefficients, though a
direct implementation would be slightly more efficient. The degree function
tells us the degree deg(p) of a polynomial p:

let degree vars p = length(coefficients vars p) - 1;;

is_constant tells us if the polynomial is constant in the top variable:

let is_constant vars p = degree vars p = 0;;

and head returns the head coefficient, i.e. the coefficient of the highest power
of the top variable:

let head vars p = last(coefficients vars p);;
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We might have used the terminology formal degree, to emphasize that the
head coefficient could still be zero for certain values of the other variables.
In situations where it is known to be zero, we often want to just remove
that term, and this is done by the behead function. We must take care to
maintain the canonical form, not, say, transforming 1 + x · a into 1 + x · 0:

let rec behead vars =
function Fn("+",[c; Fn("*",[Var x; p])]) when x = hd vars ->

let p’ = behead vars p in
if p’ = zero then c else Fn("+",[c; Fn("*",[Var x; p’])])

| _ -> zero;;

To avoid redundant calculations later, we’d like to eliminate constant
multiples of the same polynomial, e.g. 2x2 − 4y and 6y − 3x2. To multiply a
polynomial through by a (nonzero) constant k we use a special function:

let rec poly_cmul k p =
match p with
Fn("+",[c; Fn("*",[Var x; q])]) ->

Fn("+",[poly_cmul k c; Fn("*",[Var x; poly_cmul k q])])
| _ -> numeral1 (fun m -> k */ m) p;;

For definiteness, we pick the coefficient of the ‘maximal’ term:

let rec headconst p =
match p with
Fn("+",[c; Fn("*",[Var x; q])]) -> headconst q

| Fn(n,[]) -> dest_numeral p;;

and multiply through by its inverse to put the polynomial in what we might
call ‘monic’ form, with head coefficient 1. This monic function also returns
a Boolean value indicating whether the multiplying constant was negative,
and hence whether the normalization process has made a sign change:

let monic p =
let h = headconst p in
if h =/ Int 0 then p,false else poly_cmul (Int 1 // h) p,h </ Int 0;;

Pseudo-division

In the earlier sketch, we used one polynomial equation p(x) = 0 with degree
n to substitute in other polynomials s(x) of degree ≥ n. By doing so repeat-
edly as necessary we are able to reduce s(x) to an equivalent r(x) with
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deg(r) < deg(p). The general process underlying this operation is pseudo-
division of a polynomial s(x) by a polynomial p(x), resulting in quotient and
remainder polynomials q(x) and r(x) and a ‘constant’ c (i.e. polynomial not
involving x) such that:

cs(x) = p(x)q(x) + r(x)

and deg(r) < deg(p). If we are considering univariate polynomials with ratio-
nal coefficients, we may ensure c = 1, giving true division. Our ‘coefficients’
will in general be polynomials in other variables, so we can’t do that. How-
ever, as will become clear from the algorithm that follows, we may always
assume that c is a power of the leading coefficient of p(x).

Suppose we isolate the leading terms of the polynomials to give p(x) =
axn + p0(x) and s(x) = bxm + s0(x). If m < n already, then we can just set
c = 1, q(x) = 0 and r(s) = s(x) and the conditions for pseudo-division are
trivially satisfied. Otherwise, if n ≤ m we have:

as(x) = bxm−np(x) + (as0(x) − bxm−np0(x)).

Note that s′(x) = as0(x)−bxm−np0(x) has lower degree than s(x) because
the leading terms cancel. We can proceed recursively to pseudo-divide it by
p, giving, say:

aks′(x) = q′(x)p(x) + r′(x)

and then we have a quotient and remainder as required:

ak+1s(x) = ak(bxm−np(x) + s′(x))

= akbxm−np(x) + aks′(x)

= akbxm−np(x) + q′(x)p(x) + r′(x)

= (akbxm−n + q′(x))p(x) + r′(x).

Thus we have a recursive pseudo-division algorithm, where the multiply-
ing constant that results is always a power of a, the leading coefficient of
p(x). Actually, if it happens that the two leading coefficients a and b of the
polynomials are the same, we can make their leading terms match without
the multiplications by a and b, which seems a worthwhile optimization. (For
more sophisticated enhancements, see Exercise 5.17 below.)
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let pdivide =
let shift1 x p = Fn("+",[zero; Fn("*",[Var x; p])]) in
let rec pdivide_aux vars a n p k s =
if s = zero then (k,s) else
let b = head vars s and m = degree vars s in
if m < n then (k,s) else
let p’ = funpow (m - n) (shift1 (hd vars)) p in
if a = b then pdivide_aux vars a n p k (poly_sub vars s p’)
else pdivide_aux vars a n p (k+1)

(poly_sub vars (poly_mul vars a s) (poly_mul vars b p’)) in
fun vars s p -> pdivide_aux vars (head vars p) (degree vars p) p 0 s;;

The auxiliary function shift1 is used to multiply a polynomial by x, and
pdivide aux implements the main recursion sketched above, with a and n
the head coefficient and degree of p, respectively. We return a pair giving
the power of the leading coefficient used and the remainder. We don’t even
bother to compute the quotient explicitly, because we don’t need it for our
applications. For example, to use this function to simplify p(x) = 0∧s(x) = 0
where deg(p) ≤ deg(s), we will pseudo-divide s(x) by p(x) to get:

aks(x) = q(x)p(x) + s′(x),

where a is the leading coefficient of p(x). From this we have aks(x) = s′(x)
whenever p(x) = 0 and so, provided a �= 0, we have

p(x) = 0 ∧ s(x) = 0 ⇔ p(x) = 0 ∧ s′(x) = 0.

The same approach works when we have many other polynomials:

p(x) = 0 ∧
∧
i

si(x) = 0 ⇔ p(x) = 0 ∧
∧
i

s′i(x) = 0.

Now we can repeat the process, pseudo-dividing by whichever polynomial
in the new conjunction has the lowest degree, and so on, until at most one
polynomial is non-constant (with respect to x).

Sign determination

However, as we noted, we can only perform this sort of cancellation if the
leading coefficient of the cancelling polynomial is nonzero; note that without
a �= 0 the main equivalence above breaks down. In general, whether a coef-
ficient is nonzero depends on values of the other variables, so we often have
to perform a case-split, considering the a = 0 and a �= 0 cases separately. In
the a = 0 case, we can at least delete the leading term and so we’ve made
the degree of one of the polynomials smaller, while in the a �= 0 case we
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can use it for cancellation to reduce the degree of others. Starting with a
formula P , if under the assumption a = 0 we can reduce it to P0, i.e.

a = 0 ⇒ (P ⇔ P0),

while in the case a �= 0 we can reduce it to P1:

a �= 0 ⇒ (P ⇔ P1),

then we have overall:

P ⇔ a = 0 ∧ P0 ∨ a �= 0 ∧ P1.

To make explicit such ‘local assumptions’, we use a data structure asso-
ciating coefficients with signs, represented via the following datatype.

type sign = Zero | Nonzero | Positive | Negative;;

At present we will only use Zero and Nonzero, but Positive and Negative
will be useful for the reals later. For the same reason, we define a function
to optionally swap a sign. Given a sign for a, it returns one for −a if swf is
true and otherwise returns the original sign unchanged.

let swap swf s =
if not swf then s else
match s with
Positive -> Negative

| Negative -> Positive
| _ -> s;;

We store the assumptions about signs for monic polynomials, so that we
don’t, for example, have separate entries for a and 3a. Thus the context is
implemented as an association list of monic polynomials with their signs,
and signs are tested by converting to monic form, with a sign flip afterwards
if necessary:

let findsign sgns p =
try let p’,swf = monic p in swap swf (assoc p’ sgns)
with Failure _ -> failwith "findsign";;

Adding a new sign assumption to an existing context works similarly,
but is a little more involved because it is permissible to refine an existing
assumption of Nonzero to one of Positive or Negative (again, this will be
useful for the reals):
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let assertsign sgns (p,s) =
if p = zero then if s = Zero then sgns else failwith "assertsign" else
let p’,swf = monic p in
let s’ = swap swf s in
let s0 = try assoc p’ sgns with Failure _ -> s’ in
if s’ = s0 or s0 = Nonzero & (s’ = Positive or s’ = Negative)
then (p’,s’)::(subtract sgns [p’,s0]) else failwith "assertsign";;

Case-splits are organized by a higher-order function split_zero taking a
sign context sgns, a polynomial pol, and two functions returning formulas,
cont_z for the zero case and cont_n for the nonzero case. If the zero or
nonzero status of pol can be determined immediately from the context,
then the appropriate continuation is just called directly. Otherwise, the two
continuations are both called on appropriately expanded sign contexts. The
call of cont_z with the extra assumption that pol is zero returns some
formula P0, and similarly cont_n with the extra assumption that it’s nonzero
returns P1. The splitting function then returns the final formula which will
be pol = 0 ∧ P0 ∨ pol �= 0 ∧ P1.

let split_zero sgns pol cont_z cont_n =
try let z = findsign sgns pol in

(if z = Zero then cont_z else cont_n) sgns
with Failure "findsign" ->

let eq = Atom(R("=",[pol; zero])) in
Or(And(eq,cont_z (assertsign sgns (pol,Zero))),

And(Not eq,cont_n (assertsign sgns (pol,Nonzero))));;

Main algorithm

We start with a few supporting functions, the first of which produces a for-
mula asserting that a polynomial is not the zero polynomial with respect
to the current top variable, i.e. that at least one coefficient is nonzero. We
could just create a disjunction ¬(c1 = 0) ∨ · · · ∨ ¬(cl = 0) for all the coeffi-
cients ci, but we optimize things a bit by exploiting the sign context. First,
we partition the coefficients cs into those that are immediately decidable
(dcs) and undecidable (ucs) from the context. If any decidable coefficient
is nonzero, we can just return the formula �, while otherwise if there are
no undecidable ones they must all be zero and so we can return ⊥. Other-
wise we take the undecidable coefficients c1, . . . , ck and create the formula
¬(c1 = 0) ∨ · · · ∨ ¬(ck = 0) asserting that one of them is nonzero.
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let poly_nonzero vars sgns pol =
let cs = coefficients vars pol in
let dcs,ucs = partition (can (findsign sgns)) cs in
if exists (fun p -> findsign sgns p <> Zero) dcs then True
else if ucs = [] then False
else end_itlist mk_or (map (fun p -> Not(mk_eq p zero)) ucs);;

The next function tests if one polynomial s(x) is non-divisible by another
one p(x), treating both as univariate with the coefficients parametrized by
other variables. We will assume that the leading coefficient a of p(x) is
nonzero when this function is used. We simply pseudo-divide to obtain a
remainder r such that aks(x) = p(x)q(x) + r(x) and ∂(r) < ∂(p). Since a

is a nonzero constant, p(x)|s(x) is equivalent to p(x)|r(x), and the latter,
since r(x) has lower degree than p(x), holds precisely if r(x) is the zero
polynomial.

let rec poly_nondiv vars sgns p s =
let _,r = pdivide vars s p in poly_nonzero vars sgns r;;

Now we are ready for the main quantifier elimination from

∃x. p1(x) = 0 ∧ · · · ∧ pk(x) = 0 ∧ q1(x) �= 0 ∧ · · · ∧ ql(x) �= 0,

assuming some initial processing so that eqs holds the list [p1; . . . ; pk] and
neqs the list [q1; . . . ; ql], while sgns is the sign context. The first step is to
check if there are any constant polynomials (with respect to the top variable)
in the list eqs. If so, we can pull them outside, since ∃x. c = 0 ∧ p[x] is
equivalent to c = 0 ∧ (∃x. P [x]). We’re free to add c = 0 to the context for
the sub-problem ∃x. P [x], but when doing so we check for failure, meaning
that c �= 0 already follows from the context. In this case we can just return
⊥ for the entire problem.

Otherwise, if there are no equations the problem is just ∃x. q1(x) �= 0 ∧
· · · ∧ ql(x) �= 0. Since any univariate polynomial has only finitely many
roots, this will be true precisely if none of the qi is the zero polynomial,
so we generate the appropriate formula by applying poly_nonzero to each
and conjoining the results. Otherwise, we have at least one equation, and
we pick one p(x) = 0 where p(x) has minimal degree n. We want to use this
equation for elimination, but first we need to ensure that its head coefficient
a is nonzero. Hence we case-split, and in the case where a = 0 just proceed
recursively with that coefficient removed.

Once we know a �= 0 together with p(x) = 0, it is legitimate to pseudo-
divide any polynomial by p(x) without changing its zero/nonzero status,



5.8 The complex numbers 365

because then if aks(x) = p(x)q(x) + r(x) we have s(x) = 0 ⇔ r(x) = 0; this
pseudo-division is implemented by cfn. If there are equations besides p(x) =
0, we just pseudo-divide all of them by p(x) and recurse: now some other
equation will have smaller degree. Otherwise, if there are no inequations,
the problem is simply ∃x.p(x) = 0. Since we know p(x) is nonconstant (that
was checked first), this is trivially true by the Fundamental Theorem of
Algebra. Otherwise we multiply all the inequations together to get q(x) =
q1(x) . . . ql(x), and we need to solve the problem ∃x. p(x) = 0∧ q(x) �= 0. As
noted in the initial sketch, this is equivalent to ¬(∀x. p(x) = 0 ⇒ q(x) = 0)
and so to the non-divisibility of q(x)∂(p) by p(x), so we create that formula:

let rec cqelim vars (eqs,neqs) sgns =
try let c = find (is_constant vars) eqs in

(try let sgns’ = assertsign sgns (c,Zero)
and eqs’ = subtract eqs [c] in
And(mk_eq c zero,cqelim vars (eqs’,neqs) sgns’)

with Failure "assertsign" -> False)
with Failure _ ->

if eqs = [] then list_conj(map (poly_nonzero vars sgns) neqs) else
let n = end_itlist min (map (degree vars) eqs) in
let p = find (fun p -> degree vars p = n) eqs in
let oeqs = subtract eqs [p] in
split_zero sgns (head vars p)
(cqelim vars (behead vars p::oeqs,neqs))
(fun sgns’ ->

let cfn s = snd(pdivide vars s p) in
if oeqs <> [] then cqelim vars (p::(map cfn oeqs),neqs) sgns’
else if neqs = [] then True else
let q = end_itlist (poly_mul vars) neqs in
poly_nondiv vars sgns’ p (poly_pow vars q (degree vars p)));;

Our initial sign hypothesis will assert that 1 is positive and 0 is zero; by
handling the constants like this we avoid a separate path in findsign.

let init_sgns = [Fn("1",[]),Positive; Fn("0",[]),Zero];;

The core quantifier elimination function now breaks up the existential
formula into the appropriate list of zero and nonzero assertions, and calls
cqelim appropriately:

let basic_complex_qelim vars (Exists(x,p)) =
let eqs,neqs = partition (non negative) (conjuncts p) in
cqelim (x::vars) (map lhs eqs,map (lhs ** negate) neqs) init_sgns;;
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We package this core algorithm using a full DNF transformation:

let complex_qelim =
simplify ** evalc **
lift_qelim polyatom (dnf ** cnnf (fun x -> x) ** evalc)

basic_complex_qelim;;

Examples

Here is a simple example of quantifier elimination in action; one can under-
stand why this formula holds by observing that x4+1 = (x2+

√
2x+1)(x2−√

2x + 1):

# complex_qelim
<<forall a x. a^2 = 2 /\ x^2 + a * x + 1 = 0 ==> x^4 + 1 = 0>>;;

- : fol formula = <<true>>

The procedure works equally well in the context of parameters:

# complex_qelim
<<forall a x. a^2 = 2 /\ x^2 + a * x + 1 = 0 ==> x^4 + c = 0>>;;

- : fol formula = <<~(~1 + c * (-4 + c * (6 + c * (-4 + c * 1))) = 0)>>

and we can check any simplified form of the equivalence by more quantifier
elimination:

complex_qelim
<<forall c.

(forall a x. a^2 = 2 /\ x^2 + a * x + 1 = 0 ==> x^4 + c = 0)
<=> c = 1>>;;

The following proves the formulas for the sum and product of distinct
roots of a quadratic equation:

# complex_qelim
<<forall a b c x y.

a * x^2 + b * x + c = 0 /\ a * y^2 + b * y + c = 0 /\ ~(x = y)
==> a * x * y = c /\ a * (x + y) + b = 0>>;;

- : fol formula = <<true>>

5.9 The real numbers

We now consider a similar theory of real arithmetic with addition and
multiplication. A decision procedure for this theory, based on quantifier
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elimination, was first demonstrated by Tarski (1951).† However, Tarski’s
procedure, a generalization of the classical technique due to Sturm (1835)
for finding the number of real roots of a univariate polynomial, was both
difficult to understand and highly inefficient in practice. Seidenberg (1954)
gave a simpler algorithm; indeed the possibility of quantifier elimination for
this theory is often dually attributed as ‘Tarski–Seidenberg’. Other relatively
simple algorithms were given by Cohen (1969) and by Kreisel and Krivine
(1971). Perhaps the most efficient general algorithm currently known, and
the first actually to be implemented on a computer, is the Cylindrical Alge-
braic Decomposition (CAD) method. This was introduced by Collins (1976)
and has subsequently been refined and improved, e.g. by the introduction
of partial CAD (Hong 1990).‡ The rather simple algorithm we describe here
is from Hörmander (1983) based on an unpublished manuscript by Paul
Cohen.

In our language we will allow both equations s = t and inequalities s < t,
s ≤ t, s > t and s ≥ t. Our algorithm necessarily has a somewhat different
flavour from the complex number procedure, not just because of the pres-
ence of inequalities, but because the reals are not algebraically closed. For
example, since the quadratic equation x2 +1 = 0 has no solution over R, the
following are both valid, yet there is no simple divisibility relation between
powers of the antecedent and consequent polynomials:

∀x. x2 + 1 = 0 ⇒ x + 2 = 0,
∀x. x3 + 2x2 + x + 2 = 0 ⇒ x2 + 4x + 4 = 0.

The algorithm will essentially use ordering properties, and we will freely
exploit basic facts about polynomials over the reals.§ Some of our reason-
ing will involve derivatives, so we start with a function to differentiate
a polynomial with respect to the top variable. The derivative of p(x) =
c0 + c1x + c2x

2 + · · · + cnxn is just p′(x) = c1 + 2c2 + · · · + ncnxn−1, but
we need to operate on the canonical form. This auxiliary function takes as

† Tarski actually discovered the procedure in 1930, but it remained unpublished for many years
afterwards. Tarski’s procedure, and the one we will describe, work not only for the reals but
for any ‘real closed field’.

‡ A technique related to CAD was earlier proposed by �Lojasiewicz (1964). Another relatively
efficient method was developed at much the same time as CAD by Monk (1975), working with
Solovay; for a brief description see Rabin (1991).

§ Most of these are familiar from elementary calculus. With more work, the properties we need
can be deduced just from the real-closed field axioms, proving that they are complete for
formulas in this language.
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additional parameters the top variable x (as a term) and the implicit power
of x by which the polynomial is multiplied; this determines the multiplier
for the first coefficient:

let rec poly_diffn x n p =
match p with
Fn("+",[c; Fn("*",[y; q])]) when y = x ->

Fn("+",[poly_cmul(Int n) c; Fn("*",[x; poly_diffn x (n+1) q])])
| _ -> poly_cmul(Int n) p;;

Now to differentiate a polynomial p(x) = c + x · q(x), we just apply the
auxiliary function to q(x) with n = 1; if p(x) is constant we just return zero.

let poly_diff vars p =
match p with
Fn("+",[c; Fn("*",[Var x; q])]) when x = hd vars ->

poly_diffn (Var x) 1 q
| _ -> zero;;

The key component of the quantifier elimination algorithm is a procedure
to obtain a ‘sign matrix’ for a set of univariate polynomials p1(x), . . . , pn(x).
Such a matrix is based on a division of the real line into a (possibly empty)
ordered sequence of m points x1 < x2 < · · · < xm representing precisely
the roots of the polynomials, with the rows of the matrix representing, in
alternating fashion, the points themselves and the intervals between adjacent
pairs and the two intervals at the ends:

(−∞, x1), x1, (x1, x2), x2, . . . , xm−1, (xm−1, xm), xm, (xm, +∞)

using the common shorthand for intervals (a, b) = {x | a < x ∧ x < b},
and columns representing the polynomials p1(x), . . . , pn(x), with the matrix
entries giving the signs, either positive (+), negative (−) or zero (0), of
each polynomial pi at the points and on the intervals. For example, for the
collection of polynomials:

p1(x) = x2 − 3x + 2,

p2(x) = 2x − 3,
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the sign matrix looks like this:

Point/interval p1 p2

(−∞, x1) + −
x1 0 −

(x1, x2) − −
x2 − 0

(x2, x3) − +
x3 0 +

(x3, +∞) + +

Here x1 and x3 represent the roots 1 and 2 of p1(x) while x2 represents
3/2, the root of p2(x). However, the sign matrix contains no numerical infor-
mation about the location of the points xi, merely specifying their order
and what signs the various polynomials take on each point and each inter-
mediate interval. Crucially, the sign matrix for a set of univariate poly-
nomials p1(x), . . . , pn(x) is sufficient to answer any question of the form
∃x. P [x] where the body P [x] is quantifier-free and all atoms are of the
form pi(x) ��i 0 for any of the relations =, <, >, ≤, ≥. Each relation �� is
associated with a set of signs for p for which p �� 0 holds:

let rel_signs =
["=",[Zero]; "<=",[Zero;Negative]; ">=",[Zero;Positive];
"<",[Negative]; ">",[Positive]];;

Now, given an association list pmat of polynomials with their signs, we
can evaluate a formula by just:

let testform pmat fm =
eval fm (fun (R(a,[p;z])) -> mem (assoc p pmat) (assoc a rel_signs));;

As we will see, the generalization to multivariate polynomials is straight-
forward, so being able to find the sign matrix is the core of our enterprise.
And a fairly simple recursive algorithm to find sign matrices can be based
on the following observation. We can construct the sign matrix for the poly-
nomials:

p, p1, . . . , pn

given a sign matrix for the following polynomials, where p′ is the derivative
of p, and each qi is the remainder on dividing p by pi (with p0 meaning p′):

p′, p1, . . . , pn, q0, q1, . . . , qn.
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The procedure for deriving the sign matrix for the first set, given one for
the second, is as follows. First, we split the sign matrix into two equally-
sized parts, one for the p′, p1, . . . , pn and one for the q0, q1, . . . , qn, but for
the moment keeping all the points, even if no polynomial in one set has a
root at some of them. We can now infer the sign of p(xi) for each point
xi that is a root of one of the polynomials pk, as follows. Since qk is the
remainder on dividing p by pk, we have p(x) = sk(x)pk(x) + qk(x) for some
sk(x). Therefore, if pk(xi) = 0 we have p(xi) = qk(xi) and so we can derive
the sign of p at xi from that of the corresponding qk. If the point xi is not
a root of one of the p′, p1, . . . , pn, or we are dealing with an interval, we just
assign Nonzero; these will be eliminated in the next step. The following code
implements this process for two corresponding rows pd and qd of the sign
matrices for p′, p1, . . . , pn and q0, . . . , qn respectively.

let inferpsign (pd,qd) =
try let i = index Zero pd in el i qd :: pd
with Failure _ -> Nonzero :: pd;;

Having applied this to all rows, we throw away the second sign matrix, giv-
ing signs for the q0, . . . , qn, and retain the (partial) matrix for p, p′, p1, . . . , pn,
which we ‘condense’ to remove points that are not roots of one of the
p′, p1, . . . , pn. The signs of the p′, p1, . . . , pn in an interval from which some
other points have been removed can be read off from any of the subintervals
in the original subdivision – they cannot change because there are no roots
for the relevant polynomials there.

let rec condense ps =
match ps with
int::pt::other -> let rest = condense other in

if mem Zero pt then int::pt::rest else rest
| _ -> ps;;

Now we have a sign matrix for p, p′, p1, . . . , pn with correct signs at all
the points, but undetermined signs for p on the intervals, and the possibility
that there may be additional roots of p inside these intervals. However, note
that there can be at most one root of p in each interval, even including its
endpoint(s). For if there were two roots, then p would reach a maximum
or minimum somewhere in between them, contradicting the fact that p′ is
nonzero on the interior of the interval.

Consider first an internal interval (xi, xi+1). By the observation above, if
p(xi) = 0 or p(xi+1) = 0 we know that there can be no other root in the
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interval. If both p(xi) and p(xi+1) are nonzero and their signs are different
then there is a root of p in the interval, by the intermediate value property.
Finally, if the signs are both nonzero but are the same, there is no root in
the interval, because in that case p would reach a maximum or minimum
there (whether it crosses or just touches the x-axis), and this is impossible
since p′ �= 0. To summarize, there is one root of p inside the interval if the
signs of p(xi) and p(xi+1) are both nonzero and different, and there is no
root otherwise.

What about the two semi-infinite intervals? For sufficiently large |x|, a
polynomial is dominated by the term of highest degree, and if p(x) ∼ anxn

we have p′(x) ∼ nanxn−1, so the ratio between the two eventually has pos-
itive sign as x → +∞ and negative sign as x → −∞. Let us temporar-
ily introduce pseudo-endpoints −∞ and +∞ to denote ‘points at infinity’.
Based on the above observation, we define the sign of p(−∞) by flipping the
sign of p′ on the lowest interval (−∞, x1) and the sign of p(+∞) by copying
the sign of p′ on the highest interval (xn, +∞). Now exactly the same deci-
sion method works for this case too, which makes the implementation more
regular.

The following function implements these observations to complete the
sign matrix, assuming that the ‘points at infinity’ have been added first.
When this is called, the first three elements of ps are the lists of polynomial
signs for respectively the leftmost point, the interval following it, and the
next point to its right. We pick out the signs of p (the head of each list)
at the left (l) and right (r) endpoints of the interval. It should actually
be impossible for both signs to be zero, since that would imply a point
of zero derivative between. And we hope never to encounter just Nonzero;
by design we will always have a more precise sign whenever inferisign
function is used. Otherwise, if just one sign is zero, we infer the sign on
the interval from the sign at the nonzero end. If both are negative or both
positive, we infer the sign from l (we could equally well use r). The more
complex case is where l and r are opposites, and we insert a new point and
its surrounding intervals. The signs of p on the new subintervals are taken
from the corresponding endpoints, and it is zero at the new point. Nothing
changes for the other polynomials throughout the original interval, so we
just duplicate ints for them. In each case we recursively call inferisign
to deal with the remaining points and intervals. And finally, when there
are fewer than three elements, we assume we have reached the rightmost
endpoint, so there are no intervals to infer the sign of p on, and we return
the original sign matrix unchanged.
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let rec inferisign ps =
match ps with
((l::ls) as x)::(_::ints)::((r::rs)::xs as pts) ->

(match (l,r) with
(Zero,Zero) -> failwith "inferisign: inconsistent"

| (Nonzero,_)
| (_,Nonzero) -> failwith "inferisign: indeterminate"
| (Zero,_) -> x::(r::ints)::inferisign pts
| (_,Zero) -> x::(l::ints)::inferisign pts
| (Negative,Negative)
| (Positive,Positive) -> x::(l::ints)::inferisign pts
| _ -> x::(l::ints)::(Zero::ints)::(r::ints)::inferisign pts)

| _ -> ps;;

Now we’re ready for the overall function to convert a sign matrix mat for
p′, p1, . . . , pn, q0, q1, . . . , qn into one for p, p1, . . . , pn. Rather than returning
the result, it applies the given continuation function cont to it, since this
fits in with the later code structure. Otherwise it’s just a question of putting
together the earlier pieces. We set l = n + 1, and apply inferpsign to
all rows of the matrix, first splitting them into the pieces for p′, p1, . . . , pn

and for q0, q1, . . . , qn. After condensation to remove extraneous points, we
get a partial sign matrix mat1 for p, p′, p1, . . . , pn. The points at infinity are
added, just for p since nothing else will be looked at, to give mat2. We then
infer the signs on the intervals and remove the points at infinity again to
give mat3. Finally, we remove p′ from this matrix, condense again to remove
points that were just roots of p′, and apply the continuation to the result.

let dedmatrix cont mat =
let l = length (hd mat) / 2 in
let mat1 = condense(map (inferpsign ** chop_list l) mat) in
let mat2 = [swap true (el 1 (hd mat1))]::mat1@[[el 1 (last mat1)]] in
let mat3 = butlast(tl(inferisign mat2)) in
cont(condense(map (fun l -> hd l :: tl(tl l)) mat3));;

The reasoning underlying dedmatrix is based on fairly straightforward
observations of real analysis. Essentially the same procedure can be used
even for multivariate polynomials, treating other variables as parameters
while eliminating one variable. The only complication is that instead of
literally dividing one polynomial s by another one p:

s(x) = p(x)q(x) + r(x)

we may instead have only a pseudo-division

aks(x) = p(x)q(x) + r(x),
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where a is the leading coefficient of p, in general a polynomial in the other
variables. As with the complex numbers, we will need to perform case-splits
over polynomials in other variables to make sure a �= 0. Even then, to infer
the sign of r from that of s, we need to know the sign of ak. Our solution
is an enhanced pseudo-division function ensuring that r has the same sign as
s. We obtain the head coefficient a of p(x) and perform pseudo-division as
usual, say aks(x) = p(x)q(x) + r(x). We then examine what we know from
the context about the sign of a. If it is zero, we fail, and if the context does
not determine it, findsign will fail. Otherwise if we know either that a > 0
or that k is even, we have ak > 0 and can safely return r(x). Otherwise,
k must be odd. If we know a < 0, then also ak < 0 so we need to return
−r(x). Otherwise, all we know is a �= 0, so we implicitly multiply through
again by a and return ar(x); note that ak+1s(x) = ap(x)q(x) + ar(x), and
since k is odd, k + 1 is even.

let pdivide_pos vars sgns s p =
let a = head vars p and (k,r) = pdivide vars s p in
let sgn = findsign sgns a in
if sgn = Zero then failwith "pdivide_pos: zero head coefficient"
else if sgn = Positive or k mod 2 = 0 then r
else if sgn = Negative then poly_neg r else poly_mul vars a r;;

We will also need to case-split over positive/negative status of coefficients,
and the following function is analogous to the function split_zero that we
wrote for the complex numbers and will shortly use again. It is assumed
that by the time we use this function, we already know from the context at
least that the polynomial concerned is nonzero.

let split_sign sgns pol cont =
match findsign sgns pol with
Nonzero -> let fm = Atom(R(">",[pol; zero])) in

Or(And(fm,cont(assertsign sgns (pol,Positive))),
And(Not fm,cont(assertsign sgns (pol,Negative))))

| _ -> cont sgns;;

In the later algorithm, the most convenient thing is to perform a three-
way case-split over the zero, positive or negative cases, but call the same
continuation on the positive and negative cases:

let split_trichotomy sgns pol cont_z cont_pn =
split_zero sgns pol cont_z (fun s’ -> split_sign s’ pol cont_pn);;

Sign matrix determination is now implemented by a set of three mutually
recursive functions. The first function casesplit takes two lists of poly-
nomials: dun (so named because ‘done’ is a reserved word in OCaml) is
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the list whose head coefficients have known sign, and pols is the list to be
checked. As soon as we have determined all the head coefficient signs, we
call matrix. For each polynomial p in the list pols we perform appropri-
ate case-splits. In the zero case we chop off its head coefficient and recurse,
and in the other cases we just add it to the ‘done’ list. But if any of the
polynomials is a constant with respect to the top variable, we recurse to a
delconst function to remove it.

let rec casesplit vars dun pols cont sgns =
match pols with
[] -> matrix vars dun cont sgns

| p::ops -> split_trichotomy sgns (head vars p)
(if is_constant vars p then delconst vars dun p ops cont
else casesplit vars dun (behead vars p :: ops) cont)
(if is_constant vars p then delconst vars dun p ops cont
else casesplit vars (dun@[p]) ops cont)

The delconst function just removes the polynomial from the list and
returns to case-splitting, except that it also modifies the continuation appro-
priately to put the sign back in the matrix before calling the original con-
tinuation:

and delconst vars dun p ops cont sgns =
let cont’ m = cont(map (insertat (length dun) (findsign sgns p)) m) in
casesplit vars dun ops cont’ sgns

Finally, we come to the main function matrix, where we assume that all
the polynomials in the list pols are non-constant and have a head coefficient
of known nonzero sign. If the list of polynomials is empty, then trivially the
empty sign matrix is the right answer, so we call the continuation on that.
Note the exception trap, though! Because of our rather naive case-splitting,
we may reach situations where an inconsistent set of sign assumptions is
made – for example a < 0 and a3 > 0 or just a2 < 0. This can in fact
lead to the ‘impossible’ situation that the sign matrix has two roots of some
p(x) with no root of p′(x) in between them – in which case inferisign
will generate an exception. We don’t actually want to fail here, but we’re at
liberty to return whatever formula we like, such as ⊥.

Otherwise, we pick a polynomial p of maximal degree, so that we make
definite progress in the recursive step: we remove at least one polynomial of
maximal degree and replace it only with polynomials of lower degree. One
can show that the recursion is therefore terminating, via the wellfoundedness
of the multiset order (Appendix 1) or using a more direct argument. We
reshuffle the polynomials slightly to move p from position i to the head of
the list, and add its derivative in front of that, giving qs. Then we form all
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the remainders gs from pseudo-division of p by each member of the qs, and
recurse again on the new list of polynomials, starting with the case-splits.
The continuation is modified to apply dedmatrix and also to compensate
for the shuffling of p to the head of the list:

and matrix vars pols cont sgns =
if pols = [] then try cont [[]] with Failure _ -> False else
let p = hd(sort(decreasing (degree vars)) pols) in
let p’ = poly_diff vars p and i = index p pols in
let qs = let p1,p2 = chop_list i pols in p’::p1 @ tl p2 in
let gs = map (pdivide_pos vars sgns p) qs in
let cont’ m = cont(map (fun l -> insertat i (hd l) (tl l)) m) in
casesplit vars [] (qs@gs) (dedmatrix cont’) sgns;;

To perform quantifier elimination from an existential formula, we first pick
out all the polynomials (we assume atoms have already been normalized),
set up the continuation to test the body on the resulting sign matrix, and
call casesplit with the initial sign context.

let basic_real_qelim vars (Exists(x,p)) =
let pols = atom_union
(function (R(a,[t;Fn("0",[])])) -> [t] | _ -> []) p in

let cont mat = if exists (fun m -> testform (zip pols m) p) mat
then True else False in

casesplit (x::vars) [] pols cont init_sgns;;

Note that we can test any quantifier-free formula using the matrix, not just
a conjunction of literals. So we may elect to do no logical normalization of
the formula at all, certainly not a full DNF transformation. We will however
evaluate and simplify all the time:

let real_qelim =
simplify ** evalc **
lift_qelim polyatom (simplify ** evalc) basic_real_qelim;;

Examples

We can try out the algorithm by testing if univariate polynomials have
solutions:

# real_qelim <<exists x. x^4 + x^2 + 1 = 0>>;;
- : fol formula = <<false>>
# real_qelim <<exists x. x^3 - x^2 + x - 1 = 0>>;;
- : fol formula = <<true>>
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and even, though not very efficiently, count them:

# real_qelim <<exists x y. x^3 - x^2 + x - 1 = 0 /\
y^3 - y^2 + y - 1 = 0 /\ ~(x = y)>>;;

- : fol formula = <<false>>

If the reader is still a bit puzzled by all the continuation-based code, it
might be instructive to see the sign matrix that gets passed to testform.
One way is to switch on tracing; e.g. compare the output here with the
example of a sign matrix we gave at the beginning:

# #trace testform;;
# real_qelim <<exists x. x^2 - 3 * x + 2 = 0 /\ 2 * x - 3 = 0>>;;
# #untrace testform;;

We can eliminate quantifiers however they are nested, e.g.

# real_qelim
<<forall a f k. (forall e. k < e ==> f < a * e) ==> f <= a * k>>;;

- : fol formula = <<true>>

and we can obtain parametrized solutions to root existence questions, albeit
not very compact ones:

# real_qelim <<exists x. a * x^2 + b * x + c = 0>>;;
- : fol formula =
<<0 + a * 1 = 0 /\
(0 + b * 1 = 0 /\ 0 + c * 1 = 0 \/
~0 + b * 1 = 0 /\ (0 + b * 1 > 0 \/ ~0 + b * 1 > 0)) \/
~0 + a * 1 = 0 /\
(0 + a * 1 > 0 /\
(0 + a * ((0 + b * (0 + b * -1)) + a * (0 + c * 4)) = 0 \/
~0 + a * ((0 + b * (0 + b * -1)) + a * (0 + c * 4)) = 0 /\
~0 + a * ((0 + b * (0 + b * -1)) + a * (0 + c * 4)) > 0) \/
~0 + a * 1 > 0 /\
(0 + a * ((0 + b * (0 + b * -1)) + a * (0 + c * 4)) = 0 \/
~0 + a * ((0 + b * (0 + b * -1)) + a * (0 + c * 4)) = 0 /\ 0 + a *
((0 + b * (0 + b * -1)) + a * (0 + c * 4)) > 0))>>

Moreover, we can check our own simplified condition by eliminating all
quantifiers from a claimed equivalence, perhaps first guessing:

# real_qelim <<forall a b c. (exists x. a * x^2 + b * x + c = 0) <=>
b^2 >= 4 * a * c>>;;

- : fol formula = <<false>>

and then realizing we need to consider the degenerate case a = 0:
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# real_qelim <<forall a b c. (exists x. a * x^2 + b * x + c = 0) <=>
a = 0 /\ (b = 0 ==> c = 0) \/
~(a = 0) /\ b^2 >= 4 * a * c>>;;

- : fol formula = <<true>>

In Section 4.7 we derived a canonical term rewriting system for groups, and
we can prove that it is terminating using the following polynomial interpre-
tation (Huet and Oppen 1980). With each term t in the language of groups
we associate an integer value v(t) > 1, by assigning some arbitrary integer
> 1 to each variable and then calculating the value of a composite term
according to the following rules:

v(s · t) = v(s)(1 + 2v(t)),

v(i(t)) = v(t)2,

v(1) = 2.

We should first verify that this is indeed ‘closed’, i.e. that if v(s) and v(t)
are both > 1, so are v(s · t), v(i(t)) and v(1). (The other required property,
being an integer, is preserved by addition and multiplication.) We can do
this pretty quickly:

# real_qelim <<1 < 2 /\ (forall x. 1 < x ==> 1 < x^2) /\
(forall x y. 1 < x /\ 1 < y ==> 1 < x * (1 + 2 * y))>>;;

- : fol formula = <<true>>

To avoid tedious manual transcription, we automatically translate terms
to their corresponding ‘valuations’, where the variables in a term are simply
mapped to similarly-named variables in the value polynomial.

let rec grpterm tm =
match tm with
Fn("*",[s;t]) -> let t2 = Fn("*",[Fn("2",[]); grpterm t]) in

Fn("*",[grpterm s; Fn("+",[Fn("1",[]); t2])])
| Fn("i",[t]) -> Fn("^",[grpterm t; Fn("2",[])])
| Fn("1",[]) -> Fn("2",[])
| Var x -> tm;;

Now to show that a set of equations {si = ti | 1 ≤ i ≤ n} terminates, it
suffices to show that v(si) > v(ti) for each one. So let us map an equation
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s = t to a new formula v(s) > v(t), then generalize over all variables,
relativized to reflect the assumption that they are all > 1:

let grpform (Atom(R("=",[s;t]))) =
let fm = generalize(Atom(R(">",[grpterm s; grpterm t]))) in
relativize(fun x -> Atom(R(">",[Var x;Fn("1",[])]))) fm;;

After running completion to regenerate the set of equations:

let eqs = complete_and_simplify ["1"; "*"; "i"]
[<<1 * x = x>>; <<i(x) * x = 1>>; <<(x * y) * z = x * y * z>>];;

we can create the critical formula and test it:

# let fm = list_conj (map grpform eqs);;
val fm : fol formula =
<<(forall x4.

x4 > 1 ==>
(forall x5.

x5 > 1 ==> (x4 * (1 + 2 * x5))^2 > x5^2 * (1 + 2 * x4^2))) /\
(forall x1. x1 > 1 ==> x1^2^2 > x1) /\
...
>>;;

# real_qelim fm;;
- : fol formula = true

Improvements

The decidability of the theory of reals is a remarkable and theoretically useful
result. In principle, we could use real_qelim to settle unsolved problems
such as finding kissing numbers for spheres in various dimensions (Conway
and Sloane 1993). In practice, such a course is completely hopeless. The
natural algorithms based on CAD are doubly exponential in the size of
the formula, and Davenport and Heintz (1988) have shown that this is a
lower bound in general, though an algorithm due to Grigor’ev (1988) that is
‘only’ doubly exponential in the number of alternations of quantifiers may
be advantageous for formulas with a limited quantifier structure. These bad
theoretical complexity bounds are matched by real practical difficulties, even
on such simple-looking examples as ∀x.x4 +px2 + qx+ r ≥ 0 (Lazard 1988).
Motivated by the ‘feeling that a single algorithm for the full elementary
theory of R can hardly be practical’ (van den Dries 1988), many authors have
investigated special heuristic mixtures of algorithms for restricted subcases.

One particularly notable failing of our algorithm is that it does not exploit
equations in the initial problem to perform cancellation by pseudo-division,
yet in many cases this would be a dramatic improvement – see Exercise 5.20
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below. Indeed, even Collins’s original CAD algorithm, according to Loos and
Weispfenning (1993), performed badly on the following:

∃c. ∀b. ∀a. (a = d ∧ b = c) ∨ (a = c ∧ b = 1) ⇒ a2 = b.

We do poorly here too, but if we first split the formula up into DNF:

let real_qelim’ =
simplify ** evalc **
lift_qelim polyatom (dnf ** cnnf (fun x -> x) ** evalc)

basic_real_qelim;;

the situation is much better:

# real_qelim’
<<forall d.

(exists c. forall a b. (a = d /\ b = c) \/ (a = c /\ b = 1)
==> a^2 = b)

<=> d^4 = 1>>;;
- : fol formula = <<true>>

A refinement of this idea of elimination using equations, developed and
successfully applied by Weispfenning (1997), is to perform ‘virtual term
substitution’ to replace other instances of x constrained by a polynomial
p(x) = 0 by expressions for the roots of that polynomial. In the purely
linear case, where the language does not include multiplication except by
constants, things are better still: we can slightly elaborate the DLO pro-
cedure from Section 5.6 to rearrange equations or inequalities using arith-
metic normalization. We just put the variable to be eliminated alone on one
side of each equation or inequality (e.g. transforming 0 < 3x + 2y − 6z into
−2/3y+2z < x when eliminating x) then proceed with the same elimination
step:

(∃x. (
∧
i

si < x) ∧ (
∧
j

x < tj)) ⇔
∧
i,j

si < tj .

This gives essentially the classic ‘Fourier–Motzkin’ elimination method, first
described by Fourier (1826) but then largely forgotten until being rediscov-
ered much later by Dines (1919) and Motzkin (1936); Ferrante and Rackoff
(1975) give a refinement inspired by Cooper’s algorithm avoiding the need
for DNF conversion. Note that each such variable elimination can roughly
square the number of inequalities, leading to exponential complexity even
for a prenex existential formula with a conjunctive body, and this cost is
known to be unavoidable in general for full quantifier elimination (Fischer
and Rabin 1974). But the special case of deciding a closed existentially quan-
tified conjunction of linear constraints is essentially linear programming. For
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this, the classic simplex method (Dantzig 1963) often works well in practice,
and more recent interior-point algorithms following Karmarkar (1984) even
have provable polynomial-time bounds.†

5.10 Rings, ideals and word problems

The algorithm for complex quantifier elimination in Section 5.8 is often inef-
ficient because eliminating one quantifier tends to make the formula substan-
tially larger and blow up the degrees of the other variables. If we restrict
ourselves to a more limited goal of testing validity over C of purely universal
formulas:

∀x1 . . . xn. P [x1, . . . , xn]

we can use a quite different approach that deals with all the variables at
once. We first generalize such problems from C to broader classes of inter-
pretations.

Word problems

Suppose K is a class of algebraic structures, e.g. all groups. The word prob-
lem for K asks whether a set E of ground equations in some agreed language
implies another such equation s = t in all structures of class K. More pre-
cisely, we may wish to distinguish:

• the uniform word problem for K: deciding given any E and s = t whether
E |=M s = t for all models M in K;

• the word problem for K, E: with E fixed, deciding given any s = t whether
E |=M s = t for all models M in K;

• the free word problem for K: deciding given any s = t whether |=M s = t

for all models M in K.

We’ve already developed an algorithm to solve the free word problem
for groups: rewrite both sides of the equation s = t with the canonical term
rewriting system for groups produced by Knuth–Bendix completion (Section
4.7) and see if the results are the same. Yet it turns out that there are finite
E such that the word problem for groups and E is undecidable (Novikov
1955; Boone 1959). Somewhat more obscurely, there are classes K for which

† The linear programming problem was famously proved to be solvable in polynomial time by
Khachian (1979), using a reduction to approximate convex optimization, solvable in polynomial
time using the ellipsoid algorithm. However, the implicit algorithm was seldom competitive with
simplex in practice. See Grotschel, Lovsz and Schrijver (1993) for a detailed discussion of the
ellipsoid algorithm and its remarkable generality.
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there is no uniform decision algorithm with E and s = t as inputs, even
though for any specific finite E there is a decision algorithm taking s = t as
input (Mekler, Nelson and Shelah 1993).

Assuming that the class K can be axiomatized by Σ, the word problem
asks whether Σ ∪ E |= s = t. If we further assume that E is finite, and
replace constants not appearing in the axioms by variables, we can express
the word problem as deciding whether the following holds, where all terms
involve only constants and function symbols that occur in the axioms Σ:

Σ |= ∀x1 . . . xn.
∧
i

si = ti ⇒ s = t.

Rings

Rings are algebraic structures that have both an addition and a multipli-
cation operation, with respective identities 0 and 1, satisfying the following
axioms:

x + y = y + x,

x + (y + z) = (x + y) + z,

x + 0 = x,

x + (−x) = 0,

x · y = y · x,

x · (y · z) = (x · y) · z,

x · 1 = x,

x · (y + z) = x · y + x · z.

We will consider deductions in first-order logic without equality. For this
reason, we denote by Ring the above axioms together with the following
equivalence and congruence properties:

x = x,

x = y ⇒ y = x,

x = y ∧ y = z ⇒ x = z,

x = x′ ⇒ −x = −x′,
x = x′ ∧ y = y′ ⇒ x + y = x′ + y′,
x = x′ ∧ y = y′ ⇒ x · y = x′ · y′.

so that p holds in all rings exactly if Ring |= p. Many familiar structures are
rings, e.g. the integers, rationals, real numbers and complex numbers with
the symbols interpreted in the obvious way. Also, for any n > 0 we can define
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a finite ring Z/nZ with domain {0, . . . , n − 1} interpreting the operations
modulo n, e.g. −5 = 1, 3 + 5 = 2 and 3 · 5 = 3 in Z/6Z. Another interesting
example can be defined on ℘(A), the set of all subsets of an arbitrary set A,
with 0 = ∅, 1 = A, −S = A − S, S + T = (S − T ) ∪ (T − S) (‘symmetric
difference’) and S · T = S ∩ T .

Various other equations follow just from the ring axioms, notably 0 · x =
x · 0 = 0:

0 · x = x · 0 = x · 0 + 0 = x · 0 + (x · 0 + −(x · 0)) =
(x · 0 + x · 0) + −(x · 0) = x · (0 + 0) + −(x · 0) = x · 0 + −(x · 0) = 0.

Similarly, one can show that (−1) ·x = −x. We use the binary subtraction
notation s− t to abbreviate s+−t. Note that the ring axioms imply s = t ⇔
s− t = 0. (If s = t then s− t = s + −t = t +−t = 0, while if s− t = 0 then
s = s+0 = s+(t+−t) = s+(−t+ t) = (s+−t)+ t = (s− t)+ t = 0+ t = t.)
This allows us to state many results just for equations of the form t = 0
without real loss of generality. Just as we use the conventional symbols 1
and 0 for arbitrary rings, we abuse notation a little and write n to mean the
ring element:

n times︷ ︸︸ ︷
1 + · · · + 1 .

However, it is important to realize that these values may not all be
distinct. The smallest positive n such that n = 0 is called the character-
istic of the ring, while if there is is no such n we say that the ring has
characteristic zero. For example Z/6Z has characteristic 6, ℘(A) has char-
acteristic 2 (even if A and hence ℘(A) is infinite) and R has characteristic
0. Note that k = 0 in a ring R exactly if k is divisible by the ring’s charac-
teristic char(R). If char(R) = 0 this is immediate since only 0 is divisible by
0, while for positive characteristic we can write k = q · char(R) + r where
0 ≤ r < char(R), and q · char(R) = q · 0 = 0 so k = 0 iff r = 0. When we
wish to restrict ourselves to rings of some specific characteristic n for n > 0
we can add a suitable set of axioms Cn:

¬(1 = 0),
¬(2 = 0),
· · ·
¬(n − 1 = 0),
n = 0.
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or specify that it has characteristic 0 by the infinite set of axioms C0 =
{¬(n = 0) | n ∈ N ∧ n ≥ 1}. At the very least we may freely choose to add
the axiom C1 = {¬(1 = 0)} to indicate that the ring is non-trivial, since it
makes little difference to the decision problem.

Theorem 5.14 Ring ∪ Γ |= ∀x1, . . . , xn.
∧

i si = ti ⇒ s = t iff Ring ∪ Γ ∪
C1 |= ∀x1, . . . , xn.

∧
i si = ti ⇒ s = t.

Proof The left-to-right direction is immediate. In the other direction, note
that any equation s = t follows from the ring axioms and 1 = 0.

The ring of polynomials

Given a ring R, we want to define a set R[x1, . . . , xn] of polynomials in
n variables with coefficients in R. The appropriate definition in abstract
algebra is neither of the following.

• The set of expressions generating the polynomials. This fails to identify
expressions like x+1 and 1+x that we want to think of as the same. (One
can, however, define the polynomials as an appropriate quotient structure
on the set of expressions, as Theorem 5.16 below indicates.)

• The functions resulting from evaluating a polynomial. This may identify
too many polynomials, such as x2 + x and 0 over a 2-element base ring.

Rather, we will define a polynomial formally as a mapping p : N
n → R

such that {i ∈ N
n | p(i) �= 0} is finite. Intuitively we think of (i1, . . . , in) ∈

N
n as representing a monomial xi1

1 · · · · ·xin
n and the function p as giving the

coefficient of that monomial. For example, the polynomial normally written
x2

1x2 + 3x1x2 is the function that maps (2, 1) �→ 1, (1, 1) �→ 3 and all other
pairs (i, j) �→ 0.

We define operations on R[x1, . . . , xn] in terms of those in the base ring
R. Intuitively, the arithmetic operations correspond to expanding out and
collecting like terms, e.g. (x+1)·(x−1) = x2−1. It is a little tedious but not
fundamentally difficult to verify that these operations make the polynomials
themselves into a ring; for a more detailed discussion of all this construction
and other aspects of ring theory that we treat somewhat cursorily below,
see Weispfenning and Becker (1993).

• 0 is the constant function with value 0;
• 1 is the function mapping (0, . . . , 0) �→ 1 and all other tuples to 0;
• −p is defined by (−p)(m) = −p(m);
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• p + q is defined by (p + q)(m) = p(m) + q(m);
• (p · q) is defined by (p · q)(m) =

∑
{(m1,m2)|m1·m2=m} p(m1) · q(m2), where

monomial multiplication is defined by (i1, . . . , in) · (j1, . . . , jn) = (i1 +
j1, . . . , in + jn).

We will implement the ring Q[x1, . . . , xn] of polynomials with rational
coefficients in OCaml, where for convenience we adopt a list-based rep-
resentation of the graph of the function p, containing exactly the pairs
(c, [i1; . . . ; in]) such that p(i1, . . . , in) = c with c �= 0. (The zero polyno-
mial is represented by the empty list.) From now on we will sometimes use
the word ‘monomial’ in a more general sense for a pair (c, m) including a
constant multiplier.† We can multiply monomials in accordance with the
definition as follows:

let mmul (c1,m1) (c2,m2) = (c1*/c2,map2 (+) m1 m2);;

Indeed, we can divide one monomial by another in some circumstances:

let mdiv =
let index_sub n1 n2 = if n1 < n2 then failwith "mdiv" else n1-n2 in
fun (c1,m1) (c2,m2) -> (c1//c2,map2 index_sub m1 m2);;

and even find a ‘least common multiple’ of two monomials:

let mlcm (c1,m1) (c2,m2) = (Int 1,map2 max m1 m2);;

To avoid multiple list representations of the same function p : N
n → Q,

we ensure that the monomials are sorted according to a fixed total order
�, with the largest elements under this ordering appearing first in the list.
We adopt the following order, which compares monomials first according to
their multidegree (the sum of the degrees of all the variables), breaking ties
by ordering them reverse lexicographically.

let morder_lt m1 m2 =
let n1 = itlist (+) m1 0 and n2 = itlist (+) m2 0 in
n1 < n2 or n1 = n2 & lexord(>) m1 m2;;

For example, x2
2 � x2

1x2 because the multidegrees are 2 and 3, while
x2

1x2 � x3
2 because powers of x1 are considered first in the lexicographic

ordering. The attractions of this ordering are considered below; here we just
note that it is compatible with monomial multiplication: if m1 � m2 then
also m · m1 � m · m2. This means that we can multiply a polynomial by

† Sometimes ‘term’ is used, but in our context that might be more confusing.
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a monomial without reordering the list, which is both simpler and more
efficient:

let mpoly_mmul cm pol = map (mmul cm) pol;;

Similarly, a polynomial can be negated by a mapping operation:

let mpoly_neg = map (fun (c,m) -> (minus_num c,m));;

Note that the formal definition of the ring of polynomials renders ‘vari-
ables’ anonymous, but if we have some particular list of variables x1, . . . , xn

in mind, we can regard xi as a shorthand for (0, . . . , 0, 1, 0, . . . , 0) where only
the ith entry is nonzero:

let mpoly_var vars x =
[Int 1,map (fun y -> if y = x then 1 else 0) vars];;

To create a constant polynomial, we use vars too, but only to determine
how many variables we’re dealing with. If the constant is zero, we give the
empty list, otherwise a list mapping the constant monomial to an appropri-
ate value:

let mpoly_const vars c =
if c =/ Int 0 then [] else [c,map (fun k -> 0) vars];;

To add two polynomials, we can run along them recursively, putting the
‘larger’ of the two head monomials first in the output list, or when two head
monomials have the same degree, merging them by adding coefficients and
if the resulting coefficient is zero, removing it.

let rec mpoly_add l1 l2 =
match (l1,l2) with
([],l2) -> l2

| (l1,[]) -> l1
| ((c1,m1)::o1,(c2,m2)::o2) ->

if m1 = m2 then
let c = c1+/c2 and rest = mpoly_add o1 o2 in
if c =/ Int 0 then rest else (c,m1)::rest

else if morder_lt m2 m1 then (c1,m1)::(mpoly_add o1 l2)
else (c2,m2)::(mpoly_add l1 o2);;

Addition and negation together give subtraction:

let mpoly_sub l1 l2 = mpoly_add l1 (mpoly_neg l2);;
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For multiplication, we just multiply the second polynomial by the various
monomials in the first one, adding the results together:

let rec mpoly_mul l1 l2 =
match l1 with
[] -> []

| (h1::t1) -> mpoly_add (mpoly_mmul h1 l2) (mpoly_mul t1 l2);;

and we can get powers by iterated multiplication:

let mpoly_pow vars l n =
funpow n (mpoly_mul l) (mpoly_const vars (Int 1));;

We can also permit inversion of constant polynomials:

let mpoly_inv p =
match p with
[(c,m)] when forall (fun i -> i = 0) m -> [(Int 1 // c),m]

| _ -> failwith "mpoly_inv: non-constant polynomial";;

and hence also perform division subject to the same constraint:

let mpoly_div p q = mpoly_mul p (mpoly_inv q);;

We can convert any suitable term in the language of rings into a polyno-
mial by the usual process of recursion:

let rec mpolynate vars tm =
match tm with
Var x -> mpoly_var vars x

| Fn("-",[t]) -> mpoly_neg (mpolynate vars t)
| Fn("+",[s;t]) -> mpoly_add (mpolynate vars s) (mpolynate vars t)
| Fn("-",[s;t]) -> mpoly_sub (mpolynate vars s) (mpolynate vars t)
| Fn("*",[s;t]) -> mpoly_mul (mpolynate vars s) (mpolynate vars t)
| Fn("/",[s;t]) -> mpoly_div (mpolynate vars s) (mpolynate vars t)
| Fn("^",[t;Fn(n,[])]) ->

mpoly_pow vars (mpolynate vars t) (int_of_string n)
| _ -> mpoly_const vars (dest_numeral tm);;

Then we can convert any suitable equational formula s = t, which we
think of as s − t = 0, into a corresponding polynomial:

let mpolyatom vars fm =
match fm with
Atom(R("=",[s;t])) -> mpolynate vars (Fn("-",[s;t]))

| _ -> failwith "mpolyatom: not an equation";;

In later discussions, we will write ‘norm’ to abbreviate mpolynate vars
where vars contains all the variables in any of the polynomials under
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consideration. We also write s ≈ t to mean norm(s) = norm(t), i.e. that
the terms s and t in the language of rings define the same polynomial.

The word problem for rings

To state the next result, it’s helpful to introduce the concept of an ideal in
a polynomial ring.† If p1, . . . , pn are polynomials in R[x1, . . . , xk] (we often
abbreviate such a finite sequence of variables xi as x) we write IdR 〈p1, . . . , pn〉
(read ‘the ideal generated by p1, . . . , pn’) for the set of polynomials that can
be expressed as follows:

p1 · q1 + · · · + pn · qn,

where qi (sometimes referred to as cofactors) are arbitrary polynomials
with coefficients in R, allowing the empty sum 0. With slight abuse of lan-
guage, we will also use the ideal expression p ∈ IdR 〈p1, . . . , pn〉 for terms
in the language of rings, when we should more properly write norm(p) ∈
IdR 〈norm(p1), . . . ,norm(pn)〉. Let us note the following closure properties.

(i) 0 ∈ IdR 〈p1, . . . , pn〉, because we can take each qi = 0.
(ii) Each pi ∈ IdR 〈p1, . . . , pn〉, because we can take qi = 1 and all other

qj = 0.
(iii) If p ∈ IdR 〈p1, . . . , pn〉 and q ∈ IdR 〈p1, . . . , pn〉 then also (p + q) ∈

IdR 〈p1, . . . , pn〉, because if
∑

i pi · qi = p and
∑

i pi · q′i = q we have∑
i pi · (qi + q′i) = p + q.

(iv) If p ∈ IdR 〈p1, . . . , pn〉 and q is any other polynomial with coefficients
in R, then (pq) ∈ IdR 〈p1, . . . , pn〉, because if

∑
i pi · qi = p then∑

i pi · (q · qi) = p · q.
(v) If p ∈ IdR 〈p1, . . . , pn〉 then (−p) ∈ IdR 〈p1, . . . , pn〉. This follows from

(iv) since −p = p · (−1).
(vi) If p ∈ IdR 〈p1, . . . , pn〉 and q ∈ IdR 〈p1, . . . , pn〉 then also (p − q) ∈

IdR 〈p1, . . . , pn〉. This follows from (iii) and (v) since since p − q =
p + (−q).

Using the Horn nature of the ring axioms, we can find a reduction to
ideal membership of the uniform word problem for rings (Scarpellini 1969;
Simmons 1970).‡

† Ideals were originally introduced by Kummer as a way of restoring unique factorization in
algebraic number fields. Note that for a principal ideal, i.e. one generated by a single element,
we have x ∈ Id 〈y〉 precisely if x is divisible by y. Ideals can be considered as a way of augmenting
the ‘real’ divisors with additional ‘ideal’ ones, hence the name.

‡ The proof works slightly more directly using the Birkhoff rules from Section 4.3, in which case
we don’t need to consider the equality axioms as separate hypotheses. However, we emphasize a
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Theorem 5.15 Ring |= ∀x. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ⇒ q(x) = 0 iff
q ∈ IdZ 〈p1, . . . , pn〉, i.e. there exist terms q1,. . . ,qn in the language of rings
with p1 · q1 + · · · + pn · qn ≈ q.

Proof We will replace Ring |= ∀x. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ⇒ q(x) = 0
by the logically equivalent Ring∪ {p1 = 0, . . . , pn = 0} |= q = 0, considering
the x as Skolem constants.

The right-to-left direction is the easier one: if there are qi with Ring |=
p1 · q1 + · · · + pn · qn = q, then using hypotheses pi = 0 and ring properties
0 · qi and 0 + 0 = 0 repeatedly, we can derive q = 0.

For the other direction, note that all the formulas Ring and pi = 0 are
Horn clauses. By the results of Section 3.14, this means that if Ring∪{p1 =
0, . . . , pn = 0} |= q = 0 there is a Prolog-style deduction of q = 0 from
the hypotheses Ring ∪ {p1 = 0, . . . , pn = 0}. We will show by induction on
this proof that for each equation s = t in the proof tree, we have (s − t) ∈
IdZ 〈p1, . . . , pn〉.

Each leaf s = t is either a ring axiom or reflexivity of equality, in which
case s − t ≈ 0 ∈ IdZ 〈p1, . . . , pn〉, or one of the pi, and we know pi ∈
IdZ 〈p1, . . . , pn〉. For the inner nodes, we need to verify that the property
is preserved when using equality and congruence rules, and all those follow
immediately from the closure properties of ideals noted above. For example,
if an internal node s = u uses transitivity of equality from subnodes s = t

and t = u, we know by the inductive hypothesis that (s−t) ∈ IdZ 〈p1, . . . , pn〉
and (t − u) ∈ IdZ 〈p1, . . . , pn〉. By closure of ideals under addition we have
(s − u) = ((s − t) + (t − u)) ∈ IdZ 〈p1, . . . , pn〉.

In the special case of the free word problem we have:

Theorem 5.16 Ring |= s = t iff s ≈ t, i.e. s and t define the same polyno-
mial.

Proof Apply the previous theorem in the degenerate case n = 0 to p = s− t.

In a more general direction, the Horn nature of the ring axioms allows
us to relate the validity of an arbitrary universal formula in the language
of rings to the special case of the word problem. We can put the body
of the formula into CNF, distributing the universal quantifiers over the

general first-order deduction and the Horn nature of the ring axioms here to clarify the contrast
with the word problem for integral domains considered below.
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conjuncts and splitting the problem up, then write each resulting clause
in the form

∀x1, . . . , xn.
∧
i

pi(x) = 0 ⇒
∨
j

qj(x) = 0.

If there are no qj(x) then the formula is equivalent to ⊥, since all the
ring axioms and pi(x) = 0 are definite clauses and therefore cannot be
unsatisfiable. If there is exactly one qj(x) then we have the word problem.
If there are several qj(x), we can use the fact that theories defined by Horn
clauses are convex (Theorem 3.39) and therefore the above is equivalent to
the disjunction of word problems

∨
j

(∀x1, . . . , xn.
∧
i

pi(x) = 0 ⇒ qj(x) = 0).

Thus, we can solve the entire universal theory of rings if we can solve the
word problem, and we can solve that if we can solve ideal membership.

The word problem for torsion-free rings

We say that a ring is torsion-free if it satisfies the infinite set of axioms:

T = {∀x. nx = 0 ⇒ x = 0 | n ≥ 1}.

We can arrive at a satisfying ideal membership equivalence for the word
problem in torsion-free rings (Simmons 1970).

Theorem 5.17 Ring ∪ T |= ∀x. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ⇒ q(x) = 0 iff
q ∈ IdQ 〈p1, . . . , pn〉.

Proof A minor adaptation of the proof of Theorem 5.15. Note that q ∈
IdQ 〈p1, . . . , pn〉 iff there is a nonzero integer c such that cq ∈ IdZ 〈p1, . . . , pn〉.
Now, the right-to-left direction follows as before, also using the non-torsion
axiom cq = 0 ⇒ q = 0. In the other direction, note that the axioms T are
still Horn, and in the same way we can prove the result by induction on a
Prolog-style proof.

Note that a non-trivial torsion-free ring must have characteristic zero
because n = 0 for n ≥ 2 implies n · 1 = 0 and so 1 = 0. The converse
is not true in general, though it is true in integral domains, considered next.
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The word problem for integral domains

A ring is called an integral domain if it is non-trivial (1 �= 0) and satisfies
the following axiom I:

x · y = 0 ⇒ x = 0 ∨ y = 0.

If R is an integral domain, then either char(R) = 0 or char(R) = p for
some prime number p, because if p = m · n = 0 the axiom I implies that
either m = 0 or n = 0.

We will show that Ring∪{I} |= ∀x.p1(x) = 0∧· · ·∧pn(x) = 0 ⇒ q(x) = 0
iff there is some nonnegative integer k such that qk ∈ IdZ 〈p1, . . . , pn〉; it is
only in the power k that the result differs from the one for general rings. In
fact we consider the more general assertion, where we keep variables x for
familiarity but assume they are really Skolem constants:

Ring ∪ {I} ∪ {p1(x) = 0, . . . , pn(x) = 0} ∪ {q1(x) �= 0, . . . , qm(x) �= 0} |= ⊥.

As with rings, we will consider a proof of such a statement, and show by
recursion on proofs that it implies a corresponding ideal membership prop-
erty. But this time we have a non-Horn axiom I, so we need a more general
proof format than Prolog-style trees; roughly following Lifschitz (1980), we
use binary resolution. This is refutation complete, so if the assertion above
holds there is a proof of it by resolution. We may assume that all hypotheses
are instantiated and consider a refutation of the instantiations by propo-
sitional resolution. Each clause in the refutation is a set of negated and
unnegated literals that is implicitly a disjunction of the form:

r∨
i=1

(ei �= e′i) ∨
s∨

j=1

fj = f ′
j .

For simplicity, we implicitly regard an equation s = t as s−t = 0 when we
consider ideal membership assertions, so we often just consider the special
case

r∨
i=1

(ei �= 0) ∨
s∨

j=1

fj = 0.

We will show by induction on the proof that for all such clauses in such a
refutation, there is a nonnegative integer k such that

((
m∏

i=1

qi)(
s∏

j=1

fj))k ∈ IdZ 〈e1, . . . , er, p1, . . . , pn〉 .
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For the purely equational ring axioms l = r, including reflexivity of equal-
ity, we always have l − r ≈ 0 so trivially (l − r) ∈ IdZ 〈p1, . . . , pn〉. Equally
trivially, for each unit clause pi = 0 we have pi ∈ IdZ 〈p1, . . . , pn〉. In both
cases it was sufficient to take k = 1. The same is true of the equivalence and
congruence properties of equality, as we can check systematically.

• For x = y ⇒ y = x we need to show (y − x) ∈ IdZ 〈x − y, p1, . . . , pn〉,
which is true since (y − x) ≈ −1 · (x − y).

• For x = y∧y = z ⇒ x = z we need (x−z) ∈ IdZ 〈x − y, y − z, p1, . . . , pn〉,
which is true since (x − z) ≈ 1 · (x − y) + 1 · (y − z).

• For x = x′ ⇒ −x = −x′ we need (−x − −x′) ∈ IdZ 〈x − x′, p1, . . . , pn〉,
which is true since (−x −−x′) ≈ −1 · (x − x′).

• For x = x′∧y = y′ ⇒ x+y = x′+y′ we need to show ((x+y)−(x′+y′)) ∈
IdZ 〈x − x′, y − y′, p1, . . . , pn〉, which is true since ((x + y) − (x′ + y′)) ≈
1 · (x − x′) + 1 · (y − y′).

• For x = x′ ∧ y = y′ ⇒ x · y = x′ · y′ we need to show (x · y − x′ · y′) ∈
IdZ 〈x − x′, y − y′, p1, . . . , pn〉, which is true since x · y − x′ · y′ ≈ y · (x −
x′) + x′ · (y − y′).

For a unit clause qi �= 0, we have trivially qi ∈ IdZ 〈qi, p1, . . . , pn〉, so by
closure of ideals under multiplication we have

∏m
i=1 qi ∈ IdZ 〈qi, p1, . . . , pn〉,

where again we can take k = 1. The axiom I, which when put in clause form
is xy �= 0 ∨ x = 0 ∨ y = 0 is slightly subtler. In the simple case we have
xy ∈ IdZ 〈xy, p1, . . . , pn〉 and therefore we can take k = 1:

(
m∏

i=1

qi) xy ∈ IdZ 〈xy, p1, . . . , pn〉 ,

but we need to distinguish the special case where x and y receive the same
instantiation: since we think of clauses as sets, this is technically a 2-element
clause x2 �= 0 ∨ x = 0 and we need k = 2:

((
m∏

i=1

qi) x)2 ∈ IdZ

〈
x2, p1, . . . , pn

〉
.

Now we just need to show that the claimed property is preserved by res-
olution steps. We decompose each resolution step into a pseudo-resolution
step, producing a ‘clause’ with possible duplicates, followed by a series of fac-
toring steps. Let’s look at the factoring steps first. If we factor two instances
of a negated equation

e �= 0 ∨ e �= 0 ∨ Γ
e �= 0 ∨ Γ

,
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the result follows because IdZ 〈e, e, . . .〉 is the same as IdZ 〈e, . . .〉. If we factor
two instances of a positive equation

f = 0 ∨ f = 0 ∨ Γ
f = 0 ∨ Γ

,

then we have by hypothesis an ideal membership of the form:

(p · f · f)k ∈ I

which implies (because ideals are closed under multiplication by other terms):

(p · f)2k ∈ I

as required. The most complicated case is a pseudo-resolution step on e = 0:

e �= 0 ∨ ∨r
i=1 ei �= 0 ∨ ∨s

j=1 fj = 0 e = 0 ∨ ∨t
i=1 gi �= 0 ∨ ∨u

j=1 hj = 0
∨r

i=1 ei �= 0 ∨ ∨t
i=1 gi �= 0 ∨ ∨s

j=1 fj = 0 ∨ ∨u
j=1 hj = 0

.

By the inductive hypothesis applied to the two input clauses we have ideal
memberships

(QF )k ∈ IdZ 〈e, e1, . . . , er, p1, . . . , pn〉 ,

(QeH)l ∈ IdZ 〈g1, . . . , gt, p1, . . . , pn〉 ,

where we write Q =
∏m

i=1 qi, F =
∏s

j=1 fj and H =
∏u

j=1 hj . We can
separate the cofactor r of e in the first ideal membership:

(QF )k − re ∈ IdZ 〈e1, . . . , er, p1, . . . , pn〉
and therefore (since xl − yl is always divisible by x − y):

(QF )kl − rlel ∈ IdZ 〈e1, . . . , er, p1, . . . , pn〉 .

Using closure under multiplication again, we have

(QF )kl(QH)l − rl(QeH)l ∈ IdZ 〈e1, . . . , er, p1, . . . , pn〉
and therefore using the second ideal membership assertion

(QF )kl(QH)l ∈ IdZ 〈e1, . . . , er, g1, . . . , gt, p1, . . . , pn〉
and using closure under multiplication we can reach a common exponent as
required:

(QFH)kl+l ∈ IdZ 〈e1, . . . , er, g1, . . . , gt, p1, . . . , pn〉 .

We are finally ready to conclude:
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Theorem 5.18

Ring ∪ {I} |= ∀x. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ⇒ q1(x) = 0 ∨ · · · ∨ qm(x) = 0

if and only if there is a nonnegative integer k such that

(
m∏

i=1

qi)k ∈ IdZ 〈p1, . . . , pn〉 .

Proof If the logical assertion holds, then since resolution is refutation com-
plete, there is a derivation of ⊥ from the axioms

Ring ∪ {I} ∪ {p1(x) = 0, . . . , pn(x) = 0} ∪ {q1(x) �= 0, . . . , qm(x) �= 0}.
Applying the property deduced above to the empty clause yields the result.

Conversely, if the ideal membership holds, then whenever all the pi(x) = 0 we
have (

∏m
i=1 qi)k = 0. If k is nonzero, it follows from axiom I that

∏m
i=1 qi = 0

and then that some qi(x) = 0, contradicting one of the hypotheses. If all ki

are zero we have deduced 1 = 0 and therefore any qi(x) = 0 at once.

Several results on word problems are corollaries, most straightforwardly:

Theorem 5.19 ∀x. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ⇒ q(x) = 0 holds in all
integral domains, i.e. Ring ∪ {I} ∪ C1 |= ∀x. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ⇒
q(x) = 0, iff there is a nonnegative integer k such that qk ∈ IdZ〈p1, . . . ,pn〉.

Proof Combine Theorem 5.14 and the m = 1 case of the previous theorem.

More specifically, we might ask about the word problem for integral domains
of a particular characteristic p.

Theorem 5.20 ∀x. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ⇒ q(x) = 0 holds in all
integral domains of characteristic p, i.e. Ring ∪ {I} ∪ Cp |= ∀x. p1(x) =
0 ∧ · · · ∧ pn(x) = 0 ⇒ q(x) = 0, iff there is a nonnegative integer k and
an integer c not divisible by p such that such that cqk ∈ IdZ〈p, p1, . . . ,pn〉,
where p is the constant polynomial corresponding to the integer p.

Proof As usual, the right-to-left direction is straightforward. Conversely, if
the logical assertion holds then we have

Ring ∪ {I} ∪ C1 ∪ {c1 �= 0, . . . , cm �= 0, p = 0}
|= ∀x. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ⇒ q(x) = 0
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for a finite set of integers c1, . . . , cm, none divisible by p. (In the case of
nonzero characteristic, p = 0 and the various ci �= 0 make up exactly the
axiom Cp. In the case of zero characteristic, p = 0 is trivially derivable
anyway, and by compactness only finitely many instances of c �= 0 are used.)
This is equivalent to:

Ring ∪ {I} ∪ C1 |= p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ∧ p = 0 ⇒ c1 · · · cmq(x) = 0

By the main theorem we have (c1 · · · cm · q)k ∈ IdZ 〈p, p1, . . . , pn〉, and the
result follows by writing c = (c1 · · · cm)k. The characteristic p is zero or a
prime, so if it doesn’t divide any ci, and thus neither does it divide this c.

As we will see later, this is equivalent to a famous theorem in alge-
braic geometry, the (strong) Hilbert Nullstellensatz. We will use the term
‘Nullstellensatz’ to refer to all the variants above, for integral domains in
general or those of specified characteristic. In the special case of
characteristic zero:

Theorem 5.21 ∀x. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ⇒ q(x) = 0 holds in all
integral domains of characteristic 0 iff there is a nonnegative integer k such
that such that qk ∈ IdQ〈p1, . . . , pn〉.

Proof As with torsion-free rings, note that qk ∈ IdQ 〈p1, . . . , pn〉 iff there is a
nonzero integer c such that cqk ∈ IdZ 〈p1, . . . , pn〉. As usual, the right-to-left
direction is straightforward: if all the pi = 0 are zero, so is cqk = 0 and hence
q = 0, trivially if k = 0 so we get an immediate contradiction. Conversely,
apply the previous theorem in the case p = 0; we don’t need to include p in
the ideal since 0 is already a member of every ideal.

Fields

A field is a non-trivial ring where each nonzero element x has a multiplicative
inverse x−1 such that x−1 · x = 1. Logically, the axioms for fields are just
those for non-trivial rings together with

¬(x = 0) ⇒ x−1x = 1,

where x−1 is syntactic sugar for the application of a new unary function
symbol. Note that a field is automatically an integral domain, because if
x · y = 0 yet x �= 0 then

y = 1 · y = (x−1 · x) · y = x−1 · (x · y) = x−1 · 0 = 0.
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The converse is not true; Q, R and C are fields but Z is not (there is no
element such that 2 · x = 1). The ring Z/nZ is a field iff it is an integral
domain iff n is a prime number (Section 3.3). However, every integral domain
R can be extended to a field (R’s ‘field of fractions’), whose elements are
equivalence classes of pairs (p, q) of elements of R such that q �= 0, under the
equivalence relation (p1, q1) ∼ (p2, q2) ⇔ p1q2 = q1p2. Intuitively, we think
of a pair (p, q) as representing the ‘fraction’ p/q, and the equivalence classes
as taking into account the multiple pairs corresponding to the same fraction
(e.g. 1/2 = 2/4 = 3/6). The operations are defined in accordance with that
intuition:

0 = (0, 1),

1 = (1, 1),

−(p, q) = (−p, q),

(p, q)−1 = (q, p),

(p1, q1) + (p2, q2) = (p1 · q2 + p2 · q1, q1 · q2),

(p1, q1) · (p2, q2) = (p1 · p2, q1 · q2);

but, independent of any intuition, one can show directly that these oper-
ations are well-defined with respect to the equivalence relation and satisfy
the field axioms; this is worked out in detail in many textbooks on abstract
algebra (Cohn 1974; Jacobson 1989; Lang 1994). From the embeddability of
integral domains in fields, we can conclude that integral domains and fields
are equivalent w.r.t. universal formulas.

Theorem 5.22 A universal formula in the language of rings holds in all
fields [of characteristic p] iff it holds in all integral domains [of characteristic
p].

Proof If a formula holds in all integral domains, then it also holds in all
fields, because a field is a kind of integral domain. Conversely, if a property
holds in all fields, then given an integral domain R, it holds in the field
of fractions of R and hence, since it is a universal formula, in the subset
corresponding to R.

The Rabinowitsch trick

If we can solve the word problem for fields or integral domains, we can solve
the whole universal theory. To decide:
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∀x. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ⇒ q1(x) = 0 ∨ · · · qm(x) = 0

we can’t rely on convexity as we did for rings (the axiom I is non-Horn).
But the integral domain axiom justifies our condensing the disjunction of
equations into one:

∀x. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ⇒ q1(x) · · · · · qm(x) = 0.

In fact, in a field we can reduce matters to a degenerate case of the word
problem. Because all nonzero field elements have multiplicative inverses, and
0 · y = 0 in any ring, we have:

¬(x = 0) ⇔ ∃y. xy = 1.

This means that we can replace negated equations by unnegated ones, at
the cost of adding new variables. For example, we can rewrite the standard
word problem

∀x. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ⇒ q(x) = 0

as

∀x z. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ∧ 1 − q(x)z = 0 ⇒ ⊥.

For the general universal case, we can condense the conclusion to one
equation as noted above, or if we prefer introduce separate variables for
every negated equation:

∀x z1 . . . zm. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ∧
1 − q1(x)z1 = 0 ∧ · · · ∧ 1 − qm(x)zm = 0
⇒ ⊥.

This method of replacing negated equations by unnegated ones is known
as the Rabinowitsch trick. Since ⊥ is equivalent to 1 = 0 in any field, we can
reduce such an assertion to membership of 1 in an ideal. (Note that if an ideal
contains 1 then it is in fact a ‘trivial’ ideal consisting of the entire ring of
polynomials, since ideals are closed under multiplication.) A Nullstellensatz
in this special case of triviality is referred to as a weak Nullstellensatz. For
example:
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Theorem 5.23 ∀x. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ⇒ ⊥ holds in all integral
domains / fields, i.e. Ring ∪{I}∪C1 |= ∀x.p1(x) = 0∧· · ·∧pn(x) = 0 ⇒ ⊥,
iff 1 ∈ IdZ 〈p1, . . . , pn〉.

Proof Apply the strong Nullstellensatz with q(x) = 1, noting that qk = 1.

Similarly:

Theorem 5.24 ∀x. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ⇒ ⊥ holds in all integral
domains / fields of characteristic 0 iff 1 ∈ IdQ 〈p1, . . . , pn〉.

Proof Apply the strong Nullstellensatz with q(x) = 1, noting that qk = 1.

Using the Rabinowitsch trick plus a weak Nullstellensatz (Kapur 1988)
is more attractive for automated theorem proving than a strong Nullstel-
lensatz because we don’t have to search through all possible powers of the
conclusion polynomial. However, the trick was first used as a theoretical
device to show that one can deduce a strong Nullstellensatz from the cor-
responding weak one. Indeed, given explicit cofactors for an ideal member-
ship 1 ∈ IdZ 〈p1, . . . , pn, 1 − qz〉 one can explicitly construct an l such that
ql ∈ IdZ 〈p1, . . . , pn〉 (see Exercise 5.23). This also shows that one can treat
the Rabinowitsch trick as a purely formal transformation without reference
to inverses. (Since we have noted that fields and integral domains are equiv-
alent w.r.t. universal formulas in the language of rings, this observation is
perhaps supererogatory.)

Algebraically closed fields

The existence of multiplicative inverses in fields implies that a linear equa-
tion a · x + b = 0 in a field has a solution unless a = 0 and b �= 0; if a �= 0
the solution is simply x = −b ·a−1. However, polynomial equations of higher
degree such as quadratics may not have a solution; for instance x2 + 1 = 0
has no solution in the field of real numbers. Recall that a field is said to be
algebraically closed when every polynomial other than a nonzero constant
has a root.

A fundamental result in algebra states that any field can be extended to
an algebraically closed field. (As it is an extension, it necessarily has the
same characteristic.) The proof is not too hard but uses a certain amount of
algebraic machinery (Lang 1994); for a sketch of an alternative proof using
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results of logic see Exercise 5.25. So just as we related universal formulas for
integral domains and fields, we can conclude:

a universal formula in the language of rings holds in all algebraically closed fields
[of characteristic p] iff it holds in all fields [of characteristic p].

The Fundamental Theorem of Algebra, which we exploited to justify quan-
tifier elimination in Section 5.8, states exactly that the field of complex
numbers is algebraically closed. In fact, re-examining how the quantifier
elimination procedure was justified, the reader can observe that we use no
properties beyond the fact that C is an algebraically closed field of charac-
teristic zero (see Exercise 5.18). Thus we conclude that any sentence has the
same truth-value in all algebraically closed fields of characteristic zero. This
means that the theory of algebraically closed fields of characteristic zero is
complete, and in particular that:

a closed formula holds in C iff it holds in all algebraically closed fields of character-
istic zero.

Combining all our results we see that all the following are equivalent for a
universal formula in the language of rings.

• it holds in all integral domains of characteristic 0,
• it holds in all fields of characteristic 0,
• it holds in all algebraically closed fields of characteristic 0,
• it holds in any given algebraically closed field of characteristic 0,
• it holds in C.

(The Nullstellensatz, for example, is most commonly stated for a fixed but
arbitrary algebraically closed field.) Thus, despite the lengthy detour into
general algebraic structures, we have arrived back at the complex numbers.
Modifying the quantifier elimination procedure from Section 5.8 to take into
account the characteristic (see Exercise 5.18), we can likewise see that it
works identically for any algebraically closed field of characteristic p. Thus,
the theory of algebraically closed fields of a particular characteristic p is also
complete.

Abelian monoids and groups

We started with the word problem for general rings, then considered rings
with additional axioms and/or operations (integral domains, fields, alge-
braically closed fields). We can proceed towards structures with fewer axioms
as well. A monoid is an algebraic structure with a distinguished element 1
and a binary operator · satisfying the axioms of associativity and identity
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(so a group is a monoid with an inverse operation). An abelian monoid also
satisfies commutativity of the operation, i.e:

x · (y · z) = (x · y) · z,

x · y = y · x,

1 · x = x.

Recall that universal formulas hold in all integral domains iff they hold
in all fields, because every field is an integral domain, while every integral
domain can be extended to a field. Similarly we have:

Theorem 5.25 A universal formula in the multiplicative language of
monoids holds in all abelian monoids iff it holds in all rings.

Proof Every ring is in particular an abelian monoid with respect to its
multiplication operation, since the ring axioms include the abelian monoid
axioms. So if any formula holds in all abelian monoids it holds in all rings.
Conversely, every abelian monoid M can be extended, given any starting
ring R such as Z, to a ring R(M) called the monoid ring. This is based on
the set of functions f : M → R such that {x|f(x) �= 0} is finite. The opera-
tors are defined just as for the polynomial ring R[X], using elements of the
monoid rather than monomials, and monoid operations in place of mono-
mial operations. We leave it to the reader to check that all details of the
construction generalize straightforwardly. (Indeed, we could have regarded
the polynomial ring as a special case of a monoid ring, based on the monoid
of monomials.) Thus if a universal formula holds in all rings, it holds in all
monoid rings and hence in the substructure of monoid elements (‘polynomi-
als with at most one monomial’).

Corollary 5.26 ∀x. s1 = t1 ∧ · · · ∧ sn = tn ⇒ s = t holds in all monoids iff
s − t ∈ IdZ 〈s1 − t1, . . . , sn − tn〉.

Proof Combine the previous theorem and Theorem 5.15.

We can do something similar for abelian groups, but this time piggyback-
ing off the additive structure of the ring. (The ‘abelian’ is crucial: as we have
already remarked the word problem for groups in general is undecidable.)
We’ll therefore consider abelian groups additively, with the axioms:

x + (y + z) = (x + y) + z,

x + y = y + x,



400 Decidable problems

0 + x = x,

−x + x = 0.

We will once again argue that the word problems for abelian groups and
rings (in the common additive language) are equivalent. One can prove this
similarly based on the fact that every abelian group can be embedded in
the additive structure of a ring (Exercise 5.26), but the following proof is
perhaps more illuminating.

Theorem 5.27 The following are equivalent for a word problem in the addi-
tive language of abelian groups:

(i) ∀x. s1 = t1 ∧ · · · ∧ sn = tn ⇒ s = t holds in all abelian groups;
(ii) ∀x. s1 = t1 ∧ · · · ∧ sn = tn ⇒ s = t holds in all rings;
(iii) s − t ∈ IdZ 〈s1 − t1, . . . , sn − tn〉;
(iv) there are integers c1,. . . ,cn such that s− t = c1 · (s1 − t1) + · · ·+ cn ·

(sn − tn).

Proof (i) ⇒ (ii) because every ring is an additive abelian group. (ii) ⇒
(iii) is Theorem 5.15. It is easy to see that (iv) ⇒ (i) because the linear
combination of terms gives rise to a proof in group theory just as it does
(with more general cofactors) in ring theory. It just remains to prove (iii)
⇒ (iv). If the ideal membership holds, separate the cofactors into constant
terms ci and those of higher degree qi:

s − t = (c1 + q1) · (s1 − t1) + · · · + (cn + qn) · (sn − tn).

Since all monomials in the polynomials s−t and all si−ti have multidegree
1, comparing coefficients of the terms of multidegree 1 shows that s − t =
c1 · (s1 − t1) + · · · + c1 · (sn − tn) as required.

5.11 Gröbner bases

The previous section showed that we can reduce several logical decision
problems to questions of ideal membership, even the triviality of ideals, over
polynomial rings. To recap, a formula ∀x.p1(x) = 0∧· · ·∧pn(x) ⇒ q(x) = 0
in the language of rings:

• holds in all rings (or in all non-trivial rings) iff q ∈ IdZ 〈p1, . . . , pn〉;
• holds in all torsion-free rings (or in all non-trivial torsion-free rings) iff

q ∈ IdQ 〈p1, . . . , pn〉;
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• holds in all integral domains (or in all fields, or in all algebraically closed
fields) iff qk ∈ IdZ 〈p1, . . . , pn〉 for some k ≥ 0, or iff for some variable z

not among the x we have 1 ∈ IdZ 〈p1, . . . , pn, 1 − qz〉;
• holds in all integral domains of characteristic 0 (or in all fields of charac-

teristic 0, or in all algebraically closed fields of characteristic 0, or in C) iff
qk ∈ IdQ 〈p1, . . . , pn〉 for some k ≥ 0, or iff for some variable z not among
the x we have 1 ∈ IdQ 〈p1, . . . , pn, 1 − qz〉.
But how do we solve such ideal membership questions? To be explicit,

given multivariate polynomials q(x), p1(x), . . . pn(x) we want to test whether
there exist ‘cofactor’ polynomials q1(x), . . . qn(x) such that:

p1(x)q1(x) + · · · + pn(x)qn(x) = q(x).

If we know that we only need to consider a limited class of monomials
in the cofactors, a workable approach is to parametrize general polynomials
of that form and test solvability of the linear constraints that arise from
comparing coefficients. For example, to show that x4 + 1 is in the ideal
generated by x2 + xy + 1 and y2 − 2 we might postulate that we only need
terms of multidegree ≤ 2 in the cofactors:

(x2 + xy + 1) · (a1x
2 + a2y

2 + a3xy + a4x + a5y + a6)
+(y2 − 2) · (b1x

2 + b2y
2 + b3xy + b4x + b5y + b6)

= x4 + 1.

If we expand out and compare coefficients w.r.t. the original variables, we
get the following linear constraints (for example, b6−2b2 +a2 by considering
the coefficient of y2):

a1 − 1 = 0 b2 = 0 b3 + a2 = 0
b1 + a2 + a3 = 0 a3 + a1 = 0 a4 = 0

b5 = 0 b4 + a5 = 0 a5 + a4 = 0
−2b1 + a6 + a1 = 0 b6 − 2b2 + a2 = 0 −2b3 + a6 + a3 = 0

−2b4 + a4 = 0 −2b5 + a5 = 0 −2b6 + a6 − 1 = 0

These equations are solvable, so the polynomial is indeed in the ideal.
Moreover, from the solutions to the equations, which can be expressed in
terms of a parameter t:

a1 = 1, a2 = t, a3 = −1, a4 = 0, a5 = 0, a6 = 1 − 2t,

b1 = 1 − t, b2 = 0, b3 = −t, b4 = 0, b5 = 0, b6 = −t

we can explicitly obtain suitable cofactors:

(x2+xy+1) ·(x2+ty2−xy+(1−2t))+(y2−2) ·((1−t)x2−txy−t) = x4+1,
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such as the instance with t = 0:

(x2 + xy + 1) · (x2 − xy + 1) + (y2 − 2) · (x2) = x4 + 1.

Despite a certain crudity, this approach can work well, since solving sys-
tems of linear equations is a well-studied topic for which polynomial-time
and practically efficient algorithms exist, not only over Q but also over Z

(Nemhauser and Wolsey 1999). But a serious defect is the need to place
a bound on the monomials considered in the cofactors. (One special case
where this is unproblematical is solving the word problem for abelian groups:
as noted we only need to consider constant cofactors.) We can perform
iterative deepening, searching for increasingly ‘complicated’ cofactors. But
this is only a semi-decision procedure like first-order proof search: if the
polynomial is in the ideal we will prove it, but if not we may search for-
ever. In fact there are theoretical bounds on the multidegrees we need to
consider, and this formed the basis of early decision procedures for the
problem (Hermann 1926). However, this approach is rather pessimistic since
even over Q the bounds are doubly exponential (‘only’ singly exponential for
triviality of an ideal) and over Z the situation is worse; see Aschenbrenner
(2004) for a detailed discussion.

We will present instead a completely different method of Gröbner bases,
giving algorithmic solutions not only for ideal membership but for several
related problems. This approach was originally developed by Buchberger
(1965) in his PhD thesis – see also Buchberger (1970) – and in retrospect
it has much in common with Knuth–Bendix completion, which it predated
by some years. We will present it emphasizing this connection and re-using
some of the general theoretical results about abstract reduction relations
from Section 4.5. Our focus will be on ideal membership in Q[x], which by
the previous section allows us to decide universal formulas over C, or over all
fields of characteristic 0. With a little care, Gröbner bases can be generalized
to Z[x] and other polynomial rings (Kandri-Rody and Kapur 1984).

Polynomial reduction

A polynomial equation m1 +m2 + · · ·+mp = 0, where m1 is the head mono-
mial (the maximal one according to the ordering morder_lt from Section
5.10) can be rewritten as

m1 = −m2 + · · · + −mp.

The idea in what follows is to use this as a ‘rewrite rule’ to simplify other
polynomials: any polynomial multiple p = qm1 of m1 can be replaced by
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−qm2 + · · · + −qmp. For technical simplicity, we define one-step reduction
as applying this replacement to a single monomial in the target polynomial.
Explicitly, we write p →S p′ if p contains a monomial m such that for some
polynomial h+q in S with head monomial h we have p′ = p−m′(h+q) = (p−
m)−m′q, where m = h·m′. For example, if S = {x2−xy+y} and our variable
order makes x2 the head monomial, we can repeatedly apply x2 = xy − y

to reduce x4 + 1 as follows. (We show the actual reductions followed by a
restoration of the canonical polynomial representation with like monomials
collected together, to make it easier to grasp what is happening. Abstractly,
though, we consider these folded together in the reduction relation.)

x4 + 1 → x2(xy − y) + 1

= x3y − x2y + 1

→ xy(xy − y) − x2y + 1

= x2y2 − x2y − xy2 + 1

→ y2(xy − y) − x2y − xy2 + 1

= −x2y + xy3 − xy2 − y3 + 1

→ −y(xy − y) + xy3 − xy2 − y3 + 1

= xy3 − 2xy2 − y3 + y2 + 1.

We have thus shown x4+1 →∗ xy3−2xy2−y3+y2+1. Moreover, x appears
only linearly in the result, so no further reductions are possible. Indeed, we
will show that polynomial reduction is always terminating, whatever the
set S and the initial polynomial. A reduction step with h + q removes a
monomial m′h, replacing it by the various monomials m′(−q). Since h is
the head monomial, all monomials in q are below h in the ordering, so by
compatibility of the ordering with multiplication, all monomials in m′q are
below m′h = m. We have thus replaced one monomial by a finite number of
monomials that are smaller according to �. Moreover, the monomial order
is wellfounded; indeed, given a monomial m there are only finitely many m′

with m′ � m, since we only need to consider those with at most the same
multidegree. It follows at once from the wellfoundedness of the multiset
ordering (see Appendix 1) that the reduction process is terminating.

There may in general be several different p′ such that p →S p′, either
because more than one polynomial in S is applicable, or because several
monomials in p could be reduced. This means that confluence is a non-trivial
question, and we will return to it before long. But first we will implement
polynomial reduction as a function, making natural but arbitrary choices
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where nondeterminism arises. The following code attempts to apply pol as
a reduction rule to a monomial cm:

let reduce1 cm pol =
match pol with
[] -> failwith "reduce1"

| hm::cms -> let c,m = mdiv cm hm in mpoly_mmul (minus_num c,m) cms;;

and the following generalizes this to an entire set pols:

let reduceb cm pols = tryfind (reduce1 cm) pols;;

We use this to reduce a target polynomial repeatedly until no further
reductions are possible; by the above remark, we know that this will always
terminate.

let rec reduce pols pol =
match pol with
[] -> []

| cm::ptl -> try reduce pols (mpoly_add (reduceb cm pols) ptl)
with Failure _ -> cm::(reduce pols ptl);;

Confluence

Since polynomial reduction is terminating, confluence is equivalent, by New-
man’s lemma (Theorem 4.9), to just local confluence. As with rewriting, we
can reduce local confluence to the consideration of a finite number of critical
situations. Suppose that a polynomial p can be reduced in one step either
to q1 or to q2. Rather as with rewriting, we can distinguish two distinct
possibilities.

• The reductions result from rewriting different monomials, i.e. p = m1 +
m2+p0 such that one rewrite maps m1 → r1 and the other maps m2 → r2.
Thus, q1 = r1 + m2 + p0 and q2 = m1 + r2 + p0.

• The reductions result from rewriting the same monomial, i.e. p = m + p0

and one reduction rewrites m → r1 and the other maps m → r2.

In the first case, it looks clear that we can join q1 and q2 just by applying
m2 → r1 to q1 and m1 → r2 to q2, giving a common result r1 + r2 + p0. It’s
not quite that simple, because one of the reducts ri may contain a rational
multiple of the other monomial mj , changing the coefficient of mj in pi.
However, since the monomial order is wellfounded, we cannot have both
m1 � m2 and m2 � m1, so either r2 does not involve m1 or r1 does not
involve m2. By symmetry, it suffices to consider one of these possibilities. So
suppose that r2 does not involve m1, while r1 = am2 + s2 for some constant
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a (possibly 0) and another polynomial s2 not involving the monomial m2.
We have:

q1 = r1 + m2 + p0

= (am2 + s2) + m2 + p0

= (a + 1)m2 + s2 + p0

→∗ (a + 1)r2 + s2 + p0,

while

q2 = m1 + r2 + p0

→ r1 + r2 + p0

= (am2 + s2) + r2 + p0

= am2 + s2 + r2 + p0

→∗ ar2 + s2 + r2 + p0

= (a + 1)r2 + s2 + p0.

Thus q1 and q2 are joinable. (We use →∗ rather than → in some steps to
take in the possibility that a = 0 or a + 1 = 0.)

This shows that non-confluence can only occur in the second situation,
with rewrites to the same monomial m. Just as with Knuth–Bendix com-
pletion, where we were able to cover all such situations with a finite number
of critical pairs based on most general unifiers, for Gröbner bases we can
cover all situations by considering a ‘most general’ monomial to which both
rewrites are applicable, namely the lowest common multiple (LCM) of m1

and m2. This is indeed ‘most general’ because reduction is closed under
monomial multiplication:

Lemma 5.28 If p → q and m is a nonzero monomial, then also mp → mq.

Proof By definition, if p → q, the reduction arises from some equation m′ = r

such that p = m′m′′ + p′ and q = rm′′ + p′. But then mp = m(m′m′′ + p′) =
m′(mm′′)+mp′ and so a reduction to r(mm′′)+mp′ is possible; this however
is exactly m(rm′′ + p′) = mq.

Corollary 5.29 If p →∗ q and m is a monomial or zero, then also mp →∗

mq.

Proof By rule induction on the reduction sequence p →∗ q, applying the
lemma repeatedly. The case m = 0 is trivial since we are permitted an empty
reduction sequence in mp →∗ mq.
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We might be tempted to conclude that it suffices to analyze confluence
of the two rewrites to a single monomial LCM(m1, m2). Such a conclusion
would be too hasty, however, because although the previous corollary shows
that ‘→∗’, and hence joinability, is closed under monomial multiplication,
the same is not true of addition. For example, consider the rewrite rules:

F = {w = x + y, w = x + z, x = z, x = y}.
We have x + y ↓F x + z, since both terms are immediately reducible to

y+z, yet we do not have y ↓F z. So although the two possible rewrites to the
monomial w give joinable results, they lead to non-confluence when applied
to w within a polynomial w − x.

So instead of focusing on p ↓ q (Exercise 5.29 pursues this idea) it is
simpler to consider the relation p− q →∗ 0. This is also closed under mono-
mial multiplication since if p − q →∗ 0 we have by Corollary 5.29 that
m(p − q) →∗ 0 and hence mp − mq →∗ 0. Moreover, its closure under addi-
tion of another polynomial is a triviality, since (p + r) − (q + r) and p − q

are the very same polynomial. Although this new relation does not coincide
with joinability, it does imply it.

Theorem 5.30 If p − q →∗ 0 then also p ↓ q.

Proof By induction on the length of the reduction sequence in p − q →∗ 0.
If p− q = 0 then p = q and the result is trivial. Otherwise, suppose p− q →
r →∗ 0. The rewrite p− q → r must arise from some multiple of a monomial
m in the polynomial p − q, say to s. Let a and b be the coefficients of this
monomial in p and q respectively. Thus we have:

p = am + p1,

q = bm + q1,

p − q = (a − b)m + (p1 − q1),

r = (a − b)s + (p1 − q1).

Note that a− b �= 0 because we assumed m actually occurs in p− q. Now
we have p →∗ p′ = as + p1 and q →∗ q′ = bs + p1, using either zero or
one instances of the same rewrite, depending on whether a = 0 and b = 0
respectively. But now p′−q′ = (a−b)s+(p1−p2) = r →∗ 0. By the inductive
hypothesis, therefore, p′ ↓ q′ and this shows that p ↓ q.

The converse is not true in general, as the example F above shows. There
we have x + y ↓F x + z yet (x + y) − (x + z) = y − z is irreducible and
nonzero. However, if the rewrites F define a confluent relation, many more
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nice properties hold, including this converse. We lead up to this via a few
lemmas.

Lemma 5.31 If p → q then p + r ↓ q + r.

Proof Suppose the reduction p → q arises from reducing a monomial m in
p = m+p′ to s, so q = s+p′. Note that the monomial m does not occur in p′

by construction and does not occur in s because of the ordering restriction
in polynomial rewrites. Let a be the coefficient of the monomial m in r, i.e.
r = am + r′ (this a may be zero). We have:

p + r = (a + 1)m + p′ + r′,
q + r = am + s + p′ + r′.

Thus we have the following rewrites, possibly zero-step if a = 0 or a+1 =
0: first p+ r →∗ (a+1)s+p′ + r′ and also q + r → as+ s+p′ + r′. But these
results are equal, so p + r ↓ q + r as required.

Lemma 5.32 If → is confluent and p →∗ q then p + r ↓ q + r.

Proof By induction on the reduction sequence p →∗ q. If p = q then p + r

and q + r are the same polynomial, so trivially p + r ↓ q + r. Otherwise we
have p → p′ →∗ q for some p′. By Lemma 5.31 we have p + r ↓ p′ + r, while
the inductive hypothesis tells us that p′ + r ↓ q + r. But by Lemma 4.11,
the confluence of → implies the transitivity of ↓, and thus p + r ↓ q + r as
required.

Theorem 5.33 If → is confluent and p ↓ q then also p + r ↓ q + r for any
other polynomial r.

Proof We will prove by induction on a reduction sequence p →∗ s that for
any q →∗ s we have p + r ↓ q + r. If the reduction sequence p →∗ s is
empty, we have q →∗ p and the result is immediate by the previous lemma.
Otherwise we have p → p′ →∗ s. By Lemma 5.31, p + r ↓ p′ + r, while the
inductive hypothesis yields p′ + r ↓ q + r. Again appealing to Lemma 4.11
for the transitivity of joinability, we have p + r ↓ q + r.

Corollary 5.34 If → is a confluent polynomial reduction and p ↓ q then
also p − q →∗ 0.
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Proof Since p ↓ q the previous theorem yields p − q ↓ q − q, i.e. p − q ↓ 0.
Since 0 is in normal form w.r.t. →, this shows that p − q →∗ 0.

Now we can arrive at an analogous theorem to Theorem 4.24 for rewriting.
Given two polynomials p and q, defining reduction rules m1 = p1 and m2 =
p2 according to the chosen ordering, define their S-polynomial † as follows:

S(p, q) = p1m
′
1 − p2m

′
2,

where LCM(m1, m2) = m1m
′
1 = m2m

′
2. In OCaml this becomes:

let spoly pol1 pol2 =
match (pol1,pol2) with
([],p) -> []

| (p,[]) -> []
| (m1::ptl1,m2::ptl2) ->

let m = mlcm m1 m2 in
mpoly_sub (mpoly_mmul (mdiv m m1) ptl1)

(mpoly_mmul (mdiv m m2) ptl2);;

We have:

Theorem 5.35 A set of polynomial reductions F defines a confluent reduc-
tion relation →F iff for any two polynomials p, q ∈ F we have S(p, q) →∗

F 0.

Proof If →F is confluent, then since both LCM(m1, m2) → p1m
′
1 and

LCM(m1, m2) → p2m
′
2 are permissible reductions, we have p1m

′
1 ↓ p2m

′
2.

But this and confluence again, by Corollary 5.34, yields S(p, q) = p1m
′
1 −

p2m
′
2 →∗ 0.

Conversely, suppose all S-polynomials reduce to zero; we will show that
the reduction relation is confluent. We have shown that the only possibility
for non-confluence is when two rewrites apply to the same monomial m

in a polynomial p = m + p′. Since this monomial m is a multiple both
of m1 and m2, it must be a multiple of LCM(m1, m2). So we can write
p = m′LCM(m1, m2) + p′ and see that the two reductions give m′p1m

′
1 + p′

and m′p2m
′
2 + p′. But since by hypothesis p1m

′
1 − p2m

′
2 →∗ 0, we have

m′p1m
′
1−m′p2m

′
2 →∗ 0 and so (m′p1m

′
1+p′)−(m′p2m

′
2+p′) →∗ 0. However,

by Theorem 5.30, this implies that m′p1m
′
1 + p′ ↓ m′p2m

′
2 + p′ as required.

† The S stands for syzygy, a concept that is explained in many books on commutative algebra
and algebraic geometry such as Weispfenning and Becker (1993).
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Gröbner bases

We’ve produced a decidable criterion for confluence of a set of polynomial
rewrites, but haven’t yet explained the relevance to the ideal membership
problem. We say that a set of polynomials F is a Gröbner basis for an ideal J

if J = IdQ 〈F 〉 (i.e. J is the ideal generated by F ) and F defines a confluent
reduction system. (The basic theory of Gröbner bases was developed by
Buchberger, who was at the time a Ph.D. student supervised by Gröbner.) To
see the significance of the concept, we first note a few more simple lemmas.

Lemma 5.36 If → is a confluent polynomial rewrite system, then if p ↓ q

and r ↓ s, we also have p + r ↓ q + s.

Proof Using Theorem 5.33 twice we see that p + r ↓ q + r and q + r ↓ q + s.
Using transitivity of ‘↓’ (Lemma 4.11) we have p+ r ↓ q + s as required.

Lemma 5.37 If → is a confluent polynomial rewrite system, then if p ↓ q

then also rp ↓ rq for any polynomial r.

Proof We can write r as a sum of monomials m1 + · · · + mk. By Lemma
5.29 we have mip ↓ miq for 1 ≤ i ≤ k and so by using the previous result
repeatedly m1p + · · ·+ mkp ↓ m1q + · · ·+ mkq, i.e. rp ↓ rq as required.

Now we are ready to see how Gröbner bases allow us to decide ideal
membership.

Theorem 5.38 The following are equivalent:

(i) F is a Gröbner basis for IdQ 〈F 〉, i.e. →F is confluent;
(ii) for any polynomial p, we have p →∗

F 0 iff p ∈ IdQ 〈F 〉;
(iii) for any polynomials p and q, we have p ↓F q iff p − q ∈ IdQ 〈F 〉.

Proof First note the triviality that if p →∗
F q then p − q ∈ IdQ 〈F 〉. Since

ideals contain zero and are closed under addition, it suffices to prove that
if p →F q then p − q ∈ IdQ 〈F 〉. But this is clear since if if p →F q then
by definition, q arises from subtracting a multiple of a polynomial in q.
Similarly, if p ↓F q then there is an r with p →∗

F r and q →∗
F r. By the

remarks at the beginning, p− r ∈ IdQ 〈F 〉 and q − r ∈ IdQ 〈F 〉, but then by
the closure properties of ideals, p−q = (p−r)−(q−r) ∈ IdQ 〈F 〉. This shows
that the ‘only if’ parts of (ii) and (iii) are immediate regardless of whether
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F is a Gröbner basis. And since p − q →∗ 0 implies p ↓ q by Theorem 5.30,
we have (ii) ⇒ (iii) at once. Now we will prove the other implications.

(i) ⇒ (ii). Suppose that F is a Gröbner basis. As noted above, if p →∗
F 0

then p = p − 0 ∈ IdQ 〈F 〉. Conversely, if p ∈ IdQ 〈F 〉 then we can write
p =

∑k
i=1 qipi where each pi ∈ F . Since trivially each pi →F 0 (rewrite

its head monomial), we see by the lemmas above that p →∗
F 0. (Note that

p →∗ 0 and p ↓ 0 are always equivalent since 0 is irreducible.)
(iii) ⇒ (i). Now suppose p ↓F q iff p− q ∈ IdQ 〈F 〉. Note that the relation

on the right is trivially transitive, by the closure of ideals under addition.
Consequently, the joinability relation ↓F is also transitive, but by Lemma
4.11 this is equivalent to confluence.

This result shows that a Gröbner basis allows us to decide the ideal mem-
bership problem just by rewriting a given polynomial p to a normal form
and comparing the normal form with zero. In particular, we can test if 1 is
in the ideal by checking if 1 →∗

F 0. Evidently this can only happen if there
is a constant polynomial in the Gröbner basis.

Buchberger’s algorithm

The above result shows the value of Gröbner bases in solving (among others)
our original problem, membership of 1 in a polynomial ideal. Moreover,
Theorem 5.35 allows us to implement a decidable test whether a given set
of polynomials constitutes a Gröbner basis. As we shall see, Buchberger’s
algorithm allows us to go further and create a Gröbner basis for (the ideal
generated by) any finite set of polynomials.

Suppose that given a set F of polynomials, some f, g ∈ F are such
that S(f, g) →∗

F h where h is in normal form but nonzero. Just as with
Knuth–Bendix completion, we can add the new polynomial h to the set
to obtain F ′ = F ∪ {h}. Trivially, we have h →F ′ 0, but to test F ′ for
confluence we need also to consider the new S-polynomials of the form
{S(h, k) | k ∈ F}. (Note that we only need to consider one of S(h, k) and
S(k, h) since one reduces to zero iff the other does.) Thus, the following algo-
rithm maintains the invariant that all S-polynomials of pairs of polynomials
from basis are joinable by the reduction relation induced by basis except
possibly those in pairs. Moreover, since each S(f, g) is of the form hf +kg,
the set basis always defines exactly the same ideal as the original set of
polynomials:
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let rec grobner basis pairs =
print_string(string_of_int(length basis)^" basis elements and "^

string_of_int(length pairs)^" pairs");
print_newline();
match pairs with
[] -> basis

| (p1,p2)::opairs ->
let sp = reduce basis (spoly p1 p2) in
if sp = [] then grobner basis opairs
else if forall (forall ((=) 0) ** snd) sp then [sp] else
let newcps = map (fun p -> p,sp) basis in
grobner (sp::basis) (opairs @ newcps);;

So, if this process eventually terminates with no unjoinable S-polynomials,
we know that the resulting set is confluent and defines the same ideal, i.e.
is a Gröbner basis for the ideal defined by the initial polynomials. And in
fact, we are in the happy situation, in contrast to completion, that termina-
tion is guaranteed. Note that each S-polynomial is reduced with the existing
basis before it is added to that basis. Consequently, each polynomial added
to basis has no monomial divisible by the head monomial of any exist-
ing polynomial in basis. So nontermination of the algorithm would imply
the existence of an infinite sequence of monomials (mi) such that mj is
never divisible by mi for i < j. However, we will show that such an infinite
sequence is impossible.† Since the divisibility of dxn1

1 · · ·xnk
k by cxm1

1 · · ·xmk
k

is equivalent to mi ≤ ni for all 1 ≤ i ≤ k, this is an immediate consequence
of the following result known as Dickson’s lemma (Dickson 1913).

Lemma 5.39 Define the ordering ≤n on N
n by (x1, . . . , xn) ≤n (y1, . . . , yn)

iff xi ≤ yi for all 1 ≤ i ≤ n. Then there is no infinite sequence (ti) of
elements of N

n such that ti �≤n tj for all i < j.

Proof By induction on n. The result is trivial for n = 0, or an immediate
consequence of wellfoundedness of N for n = 1. So it suffices to assume the
result established for n, and prove it for n + 1. We use the same kind of
‘minimal bad sequence’ argument used in the proof that the lexicographic
path order is terminating (Theorem 4.21).

Suppose we have a sequence (ti) of elements of N
n+1 that is ‘bad’, i.e.

such that ti �≤n+1 tj for any i < j. We will show that there is also a mini-

† The reader who knows some commutative algebra can prove this more directly by observing that
the sequence of ideals Ik = Id 〈m1, . . . , mk〉 would form a strictly increasing chain, contradicting
Hilbert’s Basis Theorem in the form of the ascending chain condition. A fairly simple proof
of the Hilbert Basis Theorem due to Sarges (1976) can be found in Weispfenning and Becker
(1993).
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mal bad sequence. Since N is wellfounded, there must be a minimal a ∈ N

that can occur as the left component of the start (a, s) of a bad sequence
(where s ∈ N

n). Let a0 be such a number. Similarly, for later elements, let
ak+1 be the smallest number a ∈ N such that there is a bad sequence begin-
ning (a0, s0), . . . , (ak+1, sk+1) for some s0, . . . , sk+1. This is the minimal bad
sequence.

However, the existence of a minimal bad sequence ((ai, si)) is contradic-
tory. By the inductive hypothesis, there are no bad sequences in ≤n, so we
must have some i < j such that si ≤n sj . Since ((ai, si)) is assumed bad,
we cannot have (ai, si) ≤n+1 (aj , sj), and therefore we cannot have ai ≤ aj .
But then aj < ai, and so there is a bad sequence (a0, s0), . . . , (ai−1, si−1),
(aj , sj), . . ., but this contradicts the minimality of ai.

In order to start Buchberger’s algorithm off, we just collect the initial
set of S-polynomials, exploiting symmetry to avoid considering both S(f, g)
and S(g, f) for each pair f and g:

let groebner basis = grobner basis (distinctpairs basis);;

Universal decision procedure

Although we could create some polynomials at once and start experimenting,
it’s better to fulfil our original purpose of producing a decision procedure
for universal formulas over the complex numbers (or over all fields of char-
acteristic 0) based on Gröbner bases, since that provides a more flexible
input format. In the core quantifier elimination step, we need to eliminate
some block of existential quantifiers from a conjunction of literals. For the
negative equations, we will use the Rabinowitsch trick. The following maps
a variable v and a polynomial p to 1 − vp as required:

let rabinowitsch vars v p =
mpoly_sub (mpoly_const vars (Int 1))

(mpoly_mul (mpoly_var vars v) p);;

The following takes a set of formulas (equations or inequations) and
returns true if they have no common solution. We first separate the input
formulas into positive and negative equations. New variables rvs are cre-
ated for the Rabinowitsch transformation of the negated equations, and the
negated polynomials are appropriately transformed. We then find a Gröbner
basis for the resulting set of polynomials and test whether 1 is in the ideal
(i.e. reduces to 0).
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let grobner_trivial fms =
let vars0 = itlist (union ** fv) fms []
and eqs,neqs = partition positive fms in
let rvs = map (fun n -> variant ("_"^string_of_int n) vars0)

(1--length neqs) in
let vars = vars0 @ rvs in
let poleqs = map (mpolyatom vars) eqs
and polneqs = map (mpolyatom vars ** negate) neqs in
let pols = poleqs @ map2 (rabinowitsch vars) rvs polneqs in
reduce (groebner pols) (mpoly_const vars (Int 1)) = [];;

For an overall decision procedure for universal formulas, we first perform
some simplification and prenexing, in case some effectively universal quan-
tifiers are internal. Then we negate, break the formula into DNF and apply
grobner trivial to each disjunct:

let grobner_decide fm =
let fm1 = specialize(prenex(nnf(simplify fm))) in
forall grobner_trivial (simpdnf(nnf(Not fm1)));;

We can try one of our earlier examples:

# grobner_decide
<<a^2 = 2 /\ x^2 + a*x + 1 = 0 ==> x^4 + 1 = 0>>;;

3 basis elements and 3 pairs
3 basis elements and 2 pairs
- : bool = true

On the other hand, if we change x4+1 to x4+2 we get false, as expected.
Moreover, on universal formulas, the Gröbner basis algorithm is generally
significantly faster than the earlier quantifier elimination procedure, espe-
cially when many variables are involved. Even the following simple example
is solved in a fraction of the time taken by the earlier procedure:

# grobner_decide
<<(a * x^2 + b * x + c = 0) /\
(a * y^2 + b * y + c = 0) /\
~(x = y)
==> (a * x * y = c) /\ (a * (x + y) + b = 0)>>;;

...
21 basis elements and 190 pairs
- : bool = true

There are numerous refinements to the basic Gröbner basis algorithm,
which can be found in the standard texts listed near the end of this chapter.
For example, the guaranteed termination of Buchberger’s algorithm means
we don’t need to have the same kind of worries about fairness that beset
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us when we considered completion. Thus, one can employ heuristics for
which S-polynomial to consider next, rather than just processing them in
round-robin fashion, without affecting incompleteness. There are also various
criteria that justify ignoring many S-polynomials, e.g. Buchberger’s first and
second criteria (see Exercise 5.30 for the former) and methods of Faugère
(2002).

5.12 Geometric theorem proving

A seminal event in the development of modern mathematics was the intro-
duction of coordinates into geometry, mainly by Fermat and Descartes (hence
Cartesian coordinates). For each point p in the original assertion we consider
its coordinates, two real numbers px and py (for two-dimensional geometry).
Geometrical assertions about the points can then be translated into equa-
tions in the coordinates. For example, three points a, b and c are collinear
(on some common line) iff:

(ax − bx)(by − cy) = (ay − by)(bx − cx),

while a is the midpoint of the line joining b and c iff:

2ax = bx + cx ∧ 2ay = by + cy.

Here’s a list of correspondences between assertions about points (num-
bered 1, 2, . . . ) and the corresponding equations, which we will use to auto-
mate such translation. Note that we don’t define ‘length’ or ‘angle’, since
the translations would involve square roots and arctangents. However, we
do define equality of lengths as equality of their squares, and we could like-
wise express most relationships among angles algebraically via the addition
formula for tangents (see Exercise 5.37). It has even been suggested (Wild-
berger 2005) that geometry should be phrased in terms of quadrance and
spread instead of length and angle, precisely to stick with algebraic functions
of the coordinates.†

† In terms of the more familiar concepts, quadrance is the square of distance and spread is the
square of the sine of an angle.
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let coordinations =
["collinear", (** Points 1, 2 and 3 lie on a common line **)
<<(1_x - 2_x) * (2_y - 3_y) = (1_y - 2_y) * (2_x - 3_x)>>;
"parallel", (** Lines (1,2) and (3,4) are parallel **)
<<(1_x - 2_x) * (3_y - 4_y) = (1_y - 2_y) * (3_x - 4_x)>>;
"perpendicular", (** Lines (1,2) and (3,4) are perpendicular **)
<<(1_x - 2_x) * (3_x - 4_x) + (1_y - 2_y) * (3_y - 4_y) = 0>>;
"lengths_eq", (** Lines (1,2) and (3,4) have the same length **)
<<(1_x - 2_x)^2 + (1_y - 2_y)^2 = (3_x - 4_x)^2 + (3_y - 4_y)^2>>;
"is_midpoint", (** Point 1 is the midpoint of line (2,3) **)
<<2 * 1_x = 2_x + 3_x /\ 2 * 1_y = 2_y + 3_y>>;
"is_intersection", (** Lines (2,3) and (4,5) meet at point 1 **)
<<(1_x - 2_x) * (2_y - 3_y) = (1_y - 2_y) * (2_x - 3_x) /\
(1_x - 4_x) * (4_y - 5_y) = (1_y - 4_y) * (4_x - 5_x)>>;

"=", (** Points 1 and 2 are the same **)
<<(1_x = 2_x) /\ (1_y = 2_y)>>];;

To translate a quantifier-free formula we just use these templates as a
pattern to modify atomic formulas. (To be applicable to general first-order
formulas, we should also expand each quantifier over points into two quan-
tifiers over coordinates.)

let coordinate fm = onatoms
(fun (R(a,args)) ->
let xtms,ytms = unzip
(map (fun (Var v) -> Var(v^"_x"),Var(v^"_y")) args) in
let xs = map (fun n -> string_of_int n^"_x") (1--length args)
and ys = map (fun n -> string_of_int n^"_y") (1--length args) in
subst (fpf (xs @ ys) (xtms @ ytms)) (assoc a coordinations));;

For example:

# coordinate <<collinear(a,b,c) ==> collinear(b,a,c)>>;;
- : fol formula =
<<(a_x - b_x) * (b_y - c_y) = (a_y - b_y) * (b_x - c_x) ==>
(b_x - a_x) * (a_y - c_y) = (b_y - a_y) * (a_x - c_x)>>

We can optimize the translation process somewhat by exploiting the invari-
ance of geometric properties under certain kinds of spatial transformation.
The following generates an assertion that one of our geometric properties is
unchanged if we systematically map each x �→ x′ and y �→ y′:

let invariant (x’,y’) ((s:string),z) =
let m n f =
let x = string_of_int n^"_x" and y = string_of_int n^"_y" in
let i = fpf ["x";"y"] [Var x;Var y] in
(x |-> tsubst i x’) ((y |-> tsubst i y’) f) in

Iff(z,subst(itlist m (1--5) undefined) z);;
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We will check the invariance of our properties under various transforma-
tions of this sort. (We check them over the complex numbers for efficiency;
if a universal formula holds over C it also holds over R.) Under a spatial
translation x �→ x + X, y �→ y + Y :

let invariant_under_translation = invariant (<<|x + X|>>,<<|y + Y|>>);;

all geometric properties above are invariant, as one would expect from the
intended geometric meaning:

# forall (grobner_decide ** invariant_under_translation) coordinations;;
...
- : bool = true

Thus we may without loss of generality assume that one of the points, say
the first in the free variable list of the initial formula, is (0, 0). Moreover, the
geometric properties are also unchanged under rotation about the origin. We
can describe this algebraically by a transformation x �→ cx−sy, y �→ sx+cy

with s2 + c2 = 1. (Intuitively we think of s and c as the sine and cosine of
the angle of rotation, but we treat it purely algebraically.)

let invariant_under_rotation fm =
Imp(<<s^2 + c^2 = 1>>,

invariant (<<|c * x - s * y|>>,<<|s * x + c * y|>>) fm);;

and confirm:

# forall (grobner_decide ** invariant_under_rotation) coordinations;;
...
- : bool = true

Given any point (x, y), we can choose s and c subject to s2 + c2 = 1 to make
sx + cy = 0. (The application of our real quantifier elimination algorithm
shown here works, but takes a little time.)

# real_qelim
<<forall x y. exists s c. s^2 + c^2 = 1 /\ s * x + c * y = 0>>;;

- : fol formula = true

Thus, given two points A and B in the original problem, we may take
them to be (0, 0) and (x, 0) respectively:

let originate fm =
let a::b::ovs = fv fm in
subst (fpf [a^"_x"; a^"_y"; b^"_y"] [zero; zero; zero])

(coordinate fm);;
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Two other important transformations are scaling and shearing. Any
combination of translation, rotation, scaling and shearing is called an affine
transformation.

let invariant_under_scaling fm =
Imp(<<~(A = 0)>>,invariant(<<|A * x|>>,<<|A * y|>>) fm);;

let invariant_under_shearing = invariant(<<|x + B * y|>>,<<|y|>>);;

Because all our geometric properties are invariant under scaling:

# forall (grobner_decide ** invariant_under_scaling) coordinations;;
- : bool = true

we might be tempted to go further and use (1, 0) for the point B, but we can
only do this if we are happy to rule out the possibility that A = B. Similarly,
we might want to use shearing invariance to justify taking three of the points
as (0, 0), (x, 0) and (0, y), but this is problematic if the three points may be
collinear. In any case, while some properties are invariant under shearing,
perpendicularity and equality of lengths are not, as the reader can confirm
thus:

# partition (grobner_decide ** invariant_under_shearing) coordinations;;

Thus, the special choice of coordinates based on invariance under scaling
and shearing seems best left to the user setting up the problem.

Complex coordinates

Once we’ve translated the assertion into its algebraic form, we just need to
decide whether that statement is true for all real numbers. In principle, as
Tarski (1951) already noted, we could use a quantifier elimination procedure
for the reals. In practice it’s hard to prove nontrivial geometric properties in
this fashion, because even sophisticated algorithms for real quantifier elim-
ination, let alone the simple one from Section 5.9, are relatively inefficient.
Indeed, the best-known early work on automated theorem proving in geom-
etry (Gelerntner 1959) wasn’t based on algebraic reduction, but attempted
to mimic traditional Euclidean proofs. For some time after this, the sub-
ject of automated geometry theorem proving received little attention. Then
Wu Wen-tsün (1978) demonstrated an algebraic method capable of proving
automatically a wide class of geometrical theorems, as its implementation
by Chou (1988) convincingly demonstrated. Wu’s first basic insight was
simply this.
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Remarkably many geometrical theorems, when formulated as universal algebraic
statements in terms of coordinates, are also true for all complex values of the ‘coor-
dinates’.

This means that instead of using the highly inefficient methods for decid-
ing real algebra, we can try the much more practical methods for the complex
numbers. Provided the statement is universal, we can use Gröbner bases,
knowing that validity over C implies validity over R. The converse is false
(consider ∀x. x2 + 1 �= 0), so even if a statement is false in C it might still
be true in the intended domain. Nevertheless, it turns out in practice that
most geometrical statements remain valid in the extended interpretation;
see Exercise 5.38 for some rare exceptions. Another drawback is that we
cannot express ordering of points using the complex numbers, which places
some restrictions on the geometric problems we can formulate. Even so,
with a few tricks in formulation, the approach using complex numbers is
remarkably flexible.

Degenerate cases

We can successfully prove a few simple geometry theorems based on this
idea. For example, if the line joining the midpoint of a side of a triangle to
the opposite vertex is actually perpendicular to the line, the triangle must
be isosceles:

# (grobner_decide ** originate)
<<is_midpoint(m,a,c) /\ perpendicular(a,c,m,b)
==> lengths_eq(a,b,b,c)>>;;

...
- : bool = true

However, we can immediately see some difficulties with this approach if
we try to prove the parallelogram theorem, which asserts that the diagonals
of an arbitrary parallelogram intersect at their midpoints:

# (grobner_decide ** originate)
<<parallel(a,b,d,c) /\ parallel(a,d,b,c) /\
is_intersection(e,a,c,b,d)
==> lengths_eq(a,e,e,c)>>;;

...
- : bool = false

One might guess that this failure results from the use of complex coordi-
nates. However, this is not the case; rather the failure results from neglecting
the possibility that what we have called a ‘parallelogram’ might be trivial,
for example all the points a, b, c and d being collinear:
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# (grobner_decide ** originate)
<<parallel(a,b,d,c) /\ parallel(a,d,b,c) /\
is_intersection(e,a,c,b,d) /\ ~collinear(a,b,c)
==> lengths_eq(a,e,e,c)>>;;

...
- : bool = true

This hints at a general problem: the formulation of geometric theorems
is usually based on some unstated assumptions about non-degeneracy that
may be vital to their truth. Sometimes this doesn’t matter – the isosceles
triangle theorem above remains true if the ‘triangle’ is is flat or even a single
point. However, in general some non-degeneracy conditions are necessary,
and they may be difficult to anticipate when looking at the ‘naive’ form of
a complicated theorem. Wu’s second major achievement was to realize that
these non-degenerate conditions are usually necessary, and to develop a way
of producing them automatically as part of the proof of a theorem.

Wu’s method

Many geometry theorems are of the ‘constructive type’: one starts with
an initial set of arbitrary points P1, . . . , Pk and successively ‘constructs’
new points Pk+1, . . . , Pn based on geometric constraints involving previously
defined points (including initial points). The conclusion of the theorem is
then some assertion about this configuration of points. The crucial point
is the presence of a particular order of construction, with each point Pi

satisfying constraints involving only the set of points {Pj | j < i}. Exploiting
this ‘natural’ ordering of points appropriately – for example when choosing
the variable ordering for Gröbner bases – can make the theorem-proving
process much more efficient.

Instead of pursing this, we will explain a somewhat different approach
developed by Wu, which exploits the initial constructive order and sharpens
it to put the set of equations in triangular form, i.e.

pm(x1, . . . , xk, xk+1, xk+2, . . . , xk+m) = 0,

· · ·
p2(x1, . . . , xk, xk+1, xk+2) = 0,

p1(x1, . . . , xk, xk+1) = 0,

p0(x1, . . . , xk) = 0.

where the polynomial pm involves a variable xk+m that does not appear in
any of the successive polynomials, and then if we exclude that one, the next
polynomial in sequence contains a variable that does not appear in the rest,
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and so on. The appeal of a triangular set is that it can be used to successively
‘eliminate’ variables in another polynomial, though not in such a simple way
as with simultaneous linear equations.

Suppose we assume the equations in such a triangular set as hypotheses.
Given another polynomial p(x1, . . . , xk+m), we will use the triangular set
to obtain a conjunction of conditions that are a sufficient (though not in
general necessary) condition for p(x1, . . . , xk+m) = 0 to follow from the
equations in the triangular set. First we pseudo-divide p(x1, . . . , xk+m) by
pm(x1, . . . , xk+m), considering both as polynomials in xk+m with the other
variables as parameters:

am(x1, . . . , xk+m−1)kp(x1, . . . , xk+m)
= pm(x1, . . . , xk+m)sm(x1, . . . , xk+m) + p′(x1, . . . , xk+m).

Given pm(x1, . . . , xk+m) = 0, a sufficient condition for p(x1, . . . , xk+m) = 0
is am(x1, . . . , xk+m−1) �= 0∧ p′(x1, . . . , xk+m) = 0. (If k = 0 we can omit the
first conjunct.) Writing p′(x1, . . . , xk+m) in terms of powers of xk+m with
‘coefficients’ in other variables:

c0(x1, . . . , xk+m−1)+c1(x1, . . . , xk+m−1)xk+m+· · ·+cr(x1, . . . , xk+m−1)xr
k+m

we get a further sufficient condition that does not involve xk+m:

am(x1, . . . , xk+m−1) �= 0 ∧
c0(x1, . . . , xk+m−1) = 0 ∧ · · · ∧ cr(x1, . . . , xk+m−1) = 0.

We can then proceed to replace each ci(x1, . . . , xk+m−1) = 0 in turn by
its sufficient conditions using pm−1(x1, . . . , xk+m−1) = 0, and so on. The
following function implements this idea: it takes a triangular set triang
and a starting polynomial p, augmenting an initial set of conditions degens
with a new set that together are sufficient for p to be zero whenever all the
triang are. We assume that the list of variables vars defines the order of
elimination, and the polynomials in triang are arranged in the appropriate
order.
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let rec pprove vars triang p degens =
if p = zero then degens else
match triang with
[] -> (mk_eq p zero)::degens

| (Fn("+",[c;Fn("*",[Var x;_])]) as q)::qs ->
if x <> hd vars then

if mem (hd vars) (fvt p)
then itlist (pprove vars triang) (coefficients vars p) degens
else pprove (tl vars) triang p degens

else
let k,p’ = pdivide vars p q in
if k = 0 then pprove vars qs p’ degens else
let degens’ = Not(mk_eq (head vars q) zero)::degens in
itlist (pprove vars qs) (coefficients vars p’) degens’;;

Any set of polynomials can be transformed into a triangular set of polyno-
mials that are all zero whenever all the initial polynomials are. If the desired
‘top’ variable xk+m occurs in at most one polynomial, we set that one aside
and triangulate the rest with respect to the remaining variables. Otherwise,
we can pick the polynomial p with the lowest degree in xk+m and pseudo-
divide all the other polynomials by p, then repeat. We must reach a stage
where xk+m is confined to one polynomial, since each time we run pseudo-
division we reduce the aggregate degree of xk+m. This is implemented in the
following function, where we assume that polynomials in the list consts do
not involve the head variable in vars, but those in pols may do:

let rec triangulate vars consts pols =
if vars = [] then pols else
let cns,tpols = partition (is_constant vars) pols in
if cns <> [] then triangulate vars (cns @ consts) tpols else
if length pols <= 1 then pols @ triangulate (tl vars) [] consts else
let n = end_itlist min (map (degree vars) pols) in
let p = find (fun p -> degree vars p = n) pols in
let ps = subtract pols [p] in
triangulate vars consts (p::map (fun q -> snd(pdivide vars q p)) ps);;

Because geometry statements tend to be of the constructive type, they
are already in ‘almost triangular’ form and the triangulation tends to be
quick and efficient. Constructions like ‘M is the midpoint of the line AB’
or ‘P is the intersection of lines AB and CD’ define points by one or two
constraints on their coordinates. Assuming all coordinates introduced later
have been triangulated, we now only need to triangulate the two equations
defining these constraints by pseudo-division within this pair, and need not
modify other equations. Thus, forming a triangular set tends to be much
more efficient than forming a Gröbner basis. However, when it comes to
actually reducing with the set, a Gröbner basis is often much more efficient.



422 Decidable problems

Now we will implement the overall procedure that returns a set of sufficient
conditions for one conjunction of polynomial equations to imply another.
The user is expected to list the variables in elimination order in vars, and
specify which coordinates are to be set to zero in zeros. We could attempt
to infer an order automatically, and rely on originate for the choice of
zeros, but since both these parameters can affect efficiency dramatically, a
finer degree of control is useful.

let wu fm vars zeros =
let gfm0 = coordinate fm in
let gfm = subst(itlist (fun v -> v |-> zero) zeros undefined) gfm0 in
if not (set_eq vars (fv gfm)) then failwith "wu: bad parameters" else
let ant,con = dest_imp gfm in
let pols = map (lhs ** polyatom vars) (conjuncts ant)
and ps = map (lhs ** polyatom vars) (conjuncts con) in
let tri = triangulate vars [] pols in
itlist (fun p -> union(pprove vars tri p [])) ps [];;

Examples

Let us try the procedure out on Simson’s theorem, which asserts that given
four points A, B, C and D on a circle with centre O, the points where the
perpendiculars from D meet the (possibly produced) sides of the triangle
ABC are all collinear.

G
A

B

CD

E

F

We can express this as follows:

let simson =
<<lengths_eq(o,a,o,b) /\ lengths_eq(o,a,o,c) /\ lengths_eq(o,a,o,d) /\
collinear(e,b,c) /\ collinear(f,a,c) /\ collinear(g,a,b) /\
perpendicular(b,c,d,e) /\ perpendicular(a,c,d,f) /\
perpendicular(a,b,d,g)
==> collinear(e,f,g)>>;;
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We choose a coordinate system with A as the origin and O on the x-
axis, ordering the remaining variables according to one possible construction
sequence:

let vars =
["g_y"; "g_x"; "f_y"; "f_x"; "e_y"; "e_x"; "d_y"; "d_x"; "c_y"; "c_x";
"b_y"; "b_x"; "o_x"]

and zeros = ["a_x"; "a_y"; "o_y"];;

Wu’s algorithm produces a result quite rapidly:

# wu simson vars zeros;;
- : fol formula list =
[<<~(((0 + b_x * (0 + b_x * 1)) + b_y * (0 + b_y * 1)) + c_x *

((0 + b_x * -2) + c_x * 1)) +
c_y * ((0 + b_y * -2) + c_y * 1) = 0>>;

<<~(0 + b_x * (0 + b_x * 1)) + b_y * (0 + b_y * 1) = 0>>;
<<~(0 + b_x * -1) + c_x * 1 = 0>>;
<<~(0 + c_x * (0 + c_x * 1)) + c_y * (0 + c_y * 1) = 0>>;
<<~0 + b_x * 1 = 0>>; <<~0 + c_x * 1 = 0>>; <<~-1 = 0>>]

Our expectation is that these correspond to non-degeneracy conditions.
We can rewrite them more tidily as:

(bx − cx)2 + (by − cy)2 �= 0,

b2
x + c2

x �= 0,

bx − cx �= 0,

c2
x + c2

y �= 0,

bx �= 0,

cx �= 0,

−1 �= 0.

The last is trivially true. The others do indeed express various non-
degeneracy conditions: the points B and C are distinct, the points B and
A are distinct, and the points C and A are distinct. (Remember that A is
the origin in this coordinate system.) In the intended interpretation as real
numbers, there is some redundancy, since bx−cx �= 0 implies (bx−cx)2+(by−
cy)2 �= 0. However, this is not in general the case over the complex numbers,
and indeed there are non-Euclidean geometries (e.g. Minkowski geometry)
in which non-trivial isotropic lines (lines perpendicular to themselves) may
exist.

To see how significant the choice of coordinates can be for the efficiency of
the method, it’s worth trying the same example without the special choice
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of coordinates. It takes much longer, though the output is the same, after
allowing for the different coordinate systems:

# wu simson (vars @ zeros) [];;

An even trickier choice of coordinate system can be used for Pappus’s
theorem, which asserts that given three collinear points A1, A2 and A3 and
three other collinear points B1, B2 and B3, the points of intersection of the
pairs of lines joining the Ai and Bj are collinear. Exploiting the invariance of
incidence properties under arbitrary affine transformations, we can choose
the two lines to be the axes, and hence set the x-coordinates of all the Bi

and the y-coordinates of all the Ai to zero:

A
3

A
2

B
1

B
2

B
3

D

E

F

A
1

let pappus =
<<collinear(a1,b2,d) /\ collinear(a2,b1,d) /\ collinear(a2,b3,e) /\
collinear(a3,b2,e) /\ collinear(a1,b3,f) /\ collinear(a3,b1,f)
==> collinear(d,e,f)>>;;

let vars = ["f_y"; "f_x"; "e_y"; "e_x"; "d_y"; "d_x";
"b3_y"; "b2_y"; "b1_y"; "a3_x"; "a2_x"; "a1_x"]

and zeros = ["a1_y"; "a2_y"; "a3_y"; "b1_x"; "b2_x"; "b3_x"];;

We get a quick solution:

# wu pappus vars zeros;;
- : fol formula list =
[<<~(0 + b1_y * (0 + a1_x * 1)) + b2_y * (0 + a2_x * -1) = 0>>;
<<~(0 + b1_y * (0 + a1_x * 1)) + b3_y * (0 + a3_x * -1) = 0>>;
<<~(0 + b2_y * (0 + a2_x * 1)) + b3_y * (0 + a3_x * -1) = 0>>;
<<~0 + a1_x * -1 = 0>>; <<~0 + a2_x * -1 = 0>>]



5.13 Combining decision procedures 425

The first three degenerate conditions express precisely the conditions that
the pairs of lines whose intersections we are considering are not in fact
parallel. The others assert that the points A1 and A2 are not in fact the
origin of the clever coordinate system we chose, i.e. the intersection of the
two lines considered.

Our examples above closely follow Chou (1984), and numerous other
examples can be found in Chou (1988). Theoretically, Wu’s method is related
to the characteristic set method (Ritt 1938) in the field of differential algebra
(Ritt 1950). For comparative surveys of various approaches to geometric the-
orem proving, including Wu’s method, Gröbner bases and Dixon resultants,
see Kapur (1998) and Robu (2002).

5.13 Combining decision procedures

In many applications, such as program verification, we want decision proce-
dures that work even in the presence of ‘alien’ terms. For example, instead of
proving over N that n < 1 ⇒ n = 0, one might want to prove el(a, i) < 1 ⇒
el(a, i) = 0, where el(a, i) denotes a[i], the ith element of some array a.
This problem involves a function symbol el that is not part of the language
of Presburger arithmetic. In this case, the solution is straightforward. Since
∀n ∈ N. n < 1 ⇒ n = 0 holds, we can specialize n to any term whatsoever,
including el(a, i), and so derive the desired theorem. Thus, when faced with
a problem involving functions or predicates not considered by a given deci-
sion procedure, we can simply try to generalize the problem by replacing
them with fresh variables, solve the generalized problem and specialize it
again to obtain the desired result. However, sometimes this process of gen-
eralization leads from a valid initial claim to a false generalization, even if
the additional symbols are completely uninterpreted (i.e. if we assume no
axioms for them). For example, the validity of the following (interpreting
the arithmetic symbols in the usual way)

m ≤ n ∧ n ≤ m ⇒ f(m − n) = f(0)

only depends on basic substitutivity properties of f that will be valid for any
normal interpretation of f . Yet the naive generalization replacing instances
of f(· · ·) by new variables,

m ≤ n ∧ n ≤ m ⇒ x = y,

is clearly not valid. Thus, there arises the problem of finding an efficient
complete generalization of decision procedures for such situations.
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Limitations

Unfortunately, the freedom to generalize existing decision procedures by
introducing new symbols is quite limited. For example, consider the theory of
reals with addition and multiplication, which we know is decidable (Section
5.9). If we add just one new monadic predicate symbol P , we can consider
the following hypothesis H:

(∀n. P (n + 1) ⇔ P (n)) ∧ (∀n. 0 ≤ n ∧ n < 1 ⇒ (P (n) ⇔ n = 0)).

Over R, this constrains P to define exactly the class of integers. Thus
given any problem over the integers involving addition and multiplication,
we can reduce it to an equivalent statement over R by adding the hypothesis
H and systematically relativizing all quantifiers using P . As we will see in
Section 7.2, the theory of integers with addition and multiplication is highly
undecidable, and hence so is the theory of R with one additional monadic
predicate symbol. In fact, the theory is even more spectacularly undecidable
than this reasoning implies (see Exercise 5.40).

Presburger (linear integer) arithmetic with one new monadic predicate
symbol is also undecidable (Downey 1972), and so is Presburger arithmetic
with one new unary function symbol f . For the latter, consider a hypothesis:

(∀n.f(−n) = f(n))∧ (f(0) = 0)∧ (∀n.0 ≤ n ⇒ f(n+1) = f(n)+n+n+1).

This constrains f to be the squaring function, so we can define multipli-
cation as noted in Section 5.7:

m = n · p ⇔ (n + p)2 = n2 + p2 + 2m

and again get into the realm of the undecidable theory of integer addition
and multiplication. Halpern (1991) gives a detailed analysis of just how
extremely undecidable the various extensions of Presburger arithmetic with
new symbols are.

All this might suggest that the idea of extending decision procedures to
accommodate new symbols is a hopeless cause. However, provided we stick
to validity of quantifier-free or explicitly universally quantified statements,
several standard decision procedures can be extended to allow uninterpreted
function and predicate symbols of arbitrary arities, and we can even combine
multiple decision procedures for various sets of symbols. The limitation to
universal formulas may seem a severe restriction, but it still covers a large
proportion of the problems that arise in many applications.

We will present a general method for combining decision procedures due
to Nelson and Oppen (1979). It is applicable in most situations when we
have separate decision procedures for (universal formulas in) several theories
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T1, . . . , Tn whose axioms involve disjoint languages, i.e. such that no two
distinct Ti and Tj have axioms involving the same function or predicate
symbol, except for equality.

Craig’s interpolation theorem

Underlying the completeness of the Nelson–Oppen combination method is a
classic result in pure logic due to Craig (1957), known as Craig’s interpola-
tion theorem. This holds for logic with equality and logic without equality,
and we will prove both forms below. The traditional formulation is:

If |= φ1 ⇒ φ2 then there is an ‘interpolant’ ψ, whose free variables and function and
predicate symbols occur in both φ1 and φ2, such that |= φ1 ⇒ ψ and |= ψ ⇒ φ2.

We will find it more convenient to prove the following equivalent, which
treats the two starting formulas symmetrically and fits more smoothly into
our refutational approach.†

If |= φ1∧φ2 ⇒ ⊥ then there is an ‘interpolant’ ψ whose only variables and function
and predicate symbols occur in both φ1 and φ2, such that |= φ1 ⇒ ψ and |= φ2 ⇒
¬ψ.

The starting-point is the analogous result for propositional formulas, which
is relatively easy to prove.

Theorem 5.40 If |= A∧B ⇒ ⊥, where A and B are propositional formulas,
then there is an interpolant C with atoms(C) ⊆ atoms(A)∩ atoms(B), such
that |= A ⇒ C and |= B ⇒ ¬C.

Proof By induction on the number of elements in atoms(A)− atoms(B). If
this set is empty, we can just take the interpolant to be A; this satisfies the
atom set requirement since |= A ⇒ A holds trivially, and since |= A∧B ⇒ ⊥
we have |= B ⇒ ¬A. Otherwise, consider any atom p in A but not B and
let A′ = psubst (p |⇒ ⊥) A∨ psubst (p |⇒ �) A. Since A′ has fewer atoms
not in B than A does, the inductive hypothesis means that there is an
interpolant C such that |= A′ ⇒ C and |= B ⇒ ¬C. But note that |= A ⇒ A′

and so |= A ⇒ C too. Moreover, since atoms(C) ⊆ atoms(A′) ∩ atoms(B)
and atoms(A′) = atoms(A) − {p} ⊆ atoms(A), this has the atom inclusion
property as required.

† This is often referred to as the Craig–Robinson theorem, since as well as Craig’s theorem it
is equivalent to a result in pure logic known as Robinson’s consistency theorem (A. Robinson
1956).
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This proof can easily be converted into an algorithm; we add simplifi-
cation at the end, to get rid of the new ‘true’ and ‘false’ atoms:

let pinterpolate p q =
let orify a r = Or(psubst(a|=>False) r,psubst(a|=>True) r) in
psimplify(itlist orify (subtract (atoms p) (atoms q)) p);;

We will proceed to full first-order logic with equality in a number of steps
of increasing generality. First:

Lemma 5.41 Let ∀x1 . . . xn. P [x1, . . . , xn] and ∀y1 . . . ym. Q[y1, . . . , ym]
be two closed universal formulas such that:

|= (∀x1 · · ·xn. P [x1, . . . , xn]) ∧ (∀y1 · · · ym. Q[y1, . . . , ym]) ⇒ ⊥.

Then there is a quantifier-free ground formula C such that:

|= (∀x1 · · ·xn. P [x1, . . . , xn]) ⇒ C

and

|= (∀y1 · · · ym. Q[x1, . . . , xn]) ⇒ ¬C

such that the only predicate symbols appearing in C are those that appear in
both the starting formulas.

Proof By Herbrand’s theorem, there are sets of ground terms (possibly after
adding a new nullary constant to the language if there are none already) such
that:

|= (P [t11, . . . , t
1
n]∧· · ·∧P [tk1, . . . , t

k
n])∧(Q[s1

1, . . . , s
1
m]∧· · ·∧Q[sk

1, . . . , s
k
m]) ⇒ ⊥.

Consider now the propositional interpolant C, containing only atomic
formulas that occur in both the original propositional expansions, and such
that:

|= P [t11, . . . , t
1
n] ∧ · · · ∧ P [tk1, . . . , t

k
n] ⇒ C

and

|= Q[s1
1, . . . , s

1
m] ∧ · · · ∧ Q[sk

1, . . . , s
k
m] ⇒ ¬C

By straightforward first-order logic, we therefore have:

|= (∀x1 . . . xn. P [x1, . . . , xn]) ⇒ C

and

|= (∀y1 . . . ym. Q[y1, . . . , ym]) ⇒ ¬C.
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Moreover, if R(t1, . . . , tl) appears in C, this atom must appear in the
propositional expansions of both starting formulas, and therefore R must
appear in both starting formulas.

Again we can express the proof as an algorithm, for simplicity using
the Davis–Putnam procedure from Section 3.8 to find the set of ground
instances. (This will usually loop indefinitely unless the user does indeed
supply formulas p and q such that |= p ∧ q ⇒ ⊥.)

let urinterpolate p q =
let fm = specialize(prenex(And(p,q))) in
let fvs = fv fm and consts,funcs = herbfuns fm in
let cntms = map (fun (c,_) -> Fn(c,[])) consts in
let tups0 = dp_loop (simpcnf fm) cntms funcs fvs 0 [] [] [] in
let tups = dp_refine_loop (simpcnf fm) cntms funcs fvs 0 [] [] [] in
let fmis = map (fun tup -> subst (fpf fvs tup) fm) tups in
let ps,qs = unzip (map (fun (And(p,q)) -> p,q) fmis) in
pinterpolate (list_conj(setify ps)) (list_conj(setify qs));;

For example:

# let p = prenex
<<(forall x. R(x,f(x))) /\ (forall x y. S(x,y) <=> R(x,y) \/ R(y,x))>>
and q = prenex
<<(forall x y z. S(x,y) /\ S(y,z) ==> T(x,z)) /\ ~T(0,0)>>;;

...
# let c = urinterpolate p q;;
...
val c : fol formula =
<<S(0,f(0)) /\ S(f(0),0) \/ S(0,f(0)) /\ S(f(0),0)>>

Note that, as expected, c involves only the common predicate symbol S,
not the unshared ones R and T , and we can confirm by running, say, meson
that |= p ⇒ c and |= q ⇒ ¬c. However, c contains the unshared function
symbols 0 and f , and indeed combinations of the two, so is not yet a full
interpolant. (We could also simplify it to just S(0, f(0))∧S(f(0), 0), but we
won’t worry about that.) To show how we can always eliminate unshared
function symbols from our partial interpolants, we note a few lemmas.

Lemma 5.42 Consider the formula ∀x1 · · ·xn.C[x1, . . . , xn, z] with free vari-
able z. Suppose that t = h(t1, . . . , tm) is a ground term such that for all terms
h(u1, . . . , um) in C[x1, . . . , xn, z], the ui are ground (in other words, there
are no terms built by h from formulas involving variables). Then if:

|= (∀x1 · · ·xn. C[x1, . . . , xn, t]) ⇒ ⊥
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we also have:

|= (∃z. ∀x1 · · ·xn. C[x1, . . . , xn, z]) ⇒ ⊥.

Proof From the main hypothesis, Herbrand’s theorem asserts that there are
substitution instances sj

i such that the following is a propositional tautology:

|= C[s1
1, . . . , s

1
n, t] ∧ · · · ∧ C[sk

1, . . . , s
k
n, t] ⇒ ⊥.

Since this is a propositional tautology, it remains so if we consistently
replace t by a new variable z, a mapping of terms and formulas we schemat-
ically denote by s �→ s′, to obtain:

|= C[s1
1, . . . , s

1
n, t]′ ∧ · · · ∧ C[sk

1, . . . , s
k
n, t]′ ⇒ ⊥

for appropriately replaced instances. But note that since there are no terms
in C[x1, . . . , xn, z] with topmost function symbol h involving variables, replace-
ment within the formula is equivalent to replacement of each substituting
term, where of course t′ = z:

|= C[s1
1
′
, . . . , s1

n
′
, z] ∧ · · · ∧ C[sk

1
′
, . . . , sk

n
′
, z] ⇒ ⊥.

By simple first-order logic, therefore:

|= (∀x1 · · ·xn. C[x1, . . . , xn, z]) ⇒ ⊥
and so:

|= (∃z. ∀x1 · · ·xn. C[x1, . . . , xn, z]) ⇒ ⊥
as required.

We lift this to general formulas using Skolemization.

Lemma 5.43 Consider any formula P [z] with free variable z only. Suppose
t = h(t1, . . . , tm) is a ground term such that for all terms h(u1, . . . , um) in
P [z], the ui are ground. Then if |= P [t] ⇒ ⊥ we also have |= (∃z.P [z]) ⇒ ⊥.

Proof We may suppose that P [z] is in prenex normal form, since the trans-
formation to PNF does not affect the function symbols or free variables. We
will now prove the result by induction on the number of existential quan-
tifiers in this formula. If there are none, then the result follows from the
previous lemma. Otherwise, we can write:

P [z] =def ∀x1 · · ·xm. ∃y. Q[x1, . . . , xm, y, z].
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Let us Skolemize this using a function symbol f that does not occur in
P [z]:

P ∗[z] =def ∀x1 · · ·xm. Q[x1, . . . , xm, f(x1, . . . , xm), z].

Since by hypothesis |= P [t] ⇒ ⊥ we also have |= P ∗[t] ⇒ ⊥. The induc-
tive hypothesis now tells us that |= (∃z. P ∗[z]) ⇒ ⊥, and so |= P ∗[c] ⇒ ⊥,
where c is a constant symbol not appearing in P ∗[z]. But by the basic equi-
satisfiability property of Skolemization, this means |= P [c] ⇒ ⊥, and so
|= (∃z. P [z]) ⇒ ⊥.

We can use this repeatedly to refine a partial interpolant so that it contains
only shared function symbols. Consider a partial interpolant C with:

|= (∀x1 . . . xn. P [x1, . . . , xn]) ⇒ C

and

|= (∀y1 . . . ym. Q[y1, . . . , ym]) ⇒ ¬C.

Suppose it is not yet an interpolant, i.e. it contains at least one term built
from a function symbol h that occurs in only one of the starting formulas. In
order to apply replacement repeatedly, we need to be careful over the order
in which we eliminate terms. Let t = h(t1, . . . , tm) be a maximal term in C

starting with an unshared function symbol h, i.e. one that does not appear
as a proper subterm of any other such term in C. Let D[z] result from C

by replacing all instances of t with some variable z not occurring in C, so
C = D[t]. Now, since h is non-shared, there are two cases. If h occurs in
P [x1, . . . , xn] but not Q[y1, . . . , ym], then since

|= (∀y1 . . . ym. Q[y1, . . . , ym]) ⇒ ¬C

we also have

|= (∀y1 . . . ym. Q[y1, . . . , ym]) ∧ D[t] ⇒ ⊥,

and so by the previous lemma

|= (∃z. (∀y1 . . . ym. Q[y1, . . . , ym]) ∧ D[z]) ⇒ ⊥,

i.e.

|= (∀y1 . . . ym. Q[y1, . . . , ym]) ⇒ ¬∃z. D[z].

On the other hand, since

|= (∀x1 . . . xn. P [x1, . . . , xn]) ⇒ D[t]
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we trivially have

|= (∀x1 . . . xn. P [x1, . . . , xn]) ⇒ ∃z. D[z].

Thus, we have succeeded in eliminating one term involving an unshared
function symbol by replacing it with an existentially quantified variable.
Dually, if h occurs in Q[y1, . . . , ym] but not P [x1, . . . , xn], then we have

|= (∀x1 . . . xn. P [x1, . . . , xn]) ∧ ¬D[t] ⇒ ⊥,

and so by the lemma

|= (∃z. (∀x1 . . . xn. P [x1, . . . , xn]) ∧ ¬D[z]) ⇒ ⊥,

i.e.

|= (∀x1 . . . xn. P [x1, . . . , xn]) ⇒ ∀z. D[z],

while again the counterpart is straightforward:

|= (∀y1 . . . ym. Q[y1, . . . , ym]) ⇒ ¬(∀z. D[z]).

This time, we have eliminated one term involving an unshared function
symbol by replacing it with a universally quantified variable. We can now
iterate this step over all terms involving unshared function symbols, existen-
tially or universally quantifying over the new variable depending on which of
the starting terms the top function appears in. Eventually we will eliminate
all such terms and arrive at an interpolant. To turn this into an algorithm we
first define a function to obtain all the topmost terms whose head function
is in the list fns, first for terms:

let rec toptermt fns tm =
match tm with
Var x -> []

| Fn(f,args) -> if mem (f,length args) fns then [tm]
else itlist (union ** toptermt fns) args [];;

and then for formulas:

let topterms fns = atom_union
(fun (R(p,args)) -> itlist (union ** toptermt fns) args []);;

For the main algorithm, we find the pre-interpolant using urinterpolate,
find the top terms in it starting with non-shared function symbols, sort them
in decreasing order of size (so no earlier one is a subterm of a later one),
then iteratively replace them by quantified variables.
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let uinterpolate p q =
let fp = functions p and fq = functions q in
let rec simpinter tms n c =
match tms with
[] -> c

| (Fn(f,args) as tm)::otms ->
let v = "v_"^(string_of_int n) in
let c’ = replace (tm |=> Var v) c in
let c’’ = if mem (f,length args) fp

then Exists(v,c’) else Forall(v,c’) in
simpinter otms (n+1) c’’ in

let c = urinterpolate p q in
let tts = topterms (union (subtract fp fq) (subtract fq fp)) c in
let tms = sort (decreasing termsize) tts in
simpinter tms 1 c;;

Note that while an individual step of the generalization procedure is valid
regardless of whether we choose a maximal subterm, we do need to observe
the ordering restriction to allow repeated application, otherwise we might
end up with a term involving an unshared function h where one of the
subterms is non-ground, when the lemma is not applicable. If we try this
on our current example, we now get a true interpolant as expected. It uses
only the common language of p and q:

# let c = uinterpolate p q;;
...
val c : fol formula =
<<forall v_2.

exists v_1. S(v_2,v_1) /\ S(v_1,v_2) \/ S(v_2,v_1) /\ S(v_1,v_2)>>

and has the logical properties:

meson(Imp(p,c));;
meson(Imp(q,Not c));;

Now we need to lift interpolation to arbitrary formulas. Once again we use
Skolemization. Let us suppose first that the two formulas p and q have no
common free variables. Since |= p∧q ⇒ ⊥ we also have |= (∃u1 · · ·un.p∧q) ⇒
⊥ where the ui are the free variables. If we Skolemize ∃u1 · · ·un. p∧ q we get
a closed universal formula of the form p∗ ∧ q∗, with |= p∗ ∧ q∗ ⇒ ⊥. Thus
we can apply uinterpolate to obtain an interpolant. Recall that different
Skolem functions are used for the different existential quantifiers in p and q,†

while there are no common free variables that would make any of the Skolem
constants for the ui common. Thus, none of the newly introduced Skolem
† This is an instance where the logically sound optimization of using the same Skolem function

for the same formula would spoil the implementation.
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functions are common to p∗ and q∗ and will not appear in the interpolant
c. And since |= p∗ ⇒ c and |= q∗ ⇒ ¬c with c containing none of the
Skolem functions, the basic conservativity result (Section 3.6) assures us
that |= p ⇒ c and |= q ⇒ ¬c, and it is also an interpolant for the original
formulas. This is realized in the following algorithm:

let cinterpolate p q =
let fm = nnf(And(p,q)) in
let efm = itlist mk_exists (fv fm) fm
and fns = map fst (functions fm) in
let And(p’,q’),_ = skolem efm fns in
uinterpolate p’ q’;;

To deal with shared variables we could introduce Skolem constants by
existential quantification before the core operation. The only difference is
that we need to replace them by variables again in the final result to respect
the conditions for an interpolant. We elect to ‘manually’ replace the common
variables by new constants c i and then restore them afterwards.

let interpolate p q =
let vs = map (fun v -> Var v) (intersect (fv p) (fv q))
and fns = functions (And(p,q)) in
let n = itlist (max_varindex "c_" ** fst) fns (Int 0) +/ Int 1 in
let cs = map (fun i -> Fn("c_"^(string_of_num i),[]))

(n---(n+/Int(length vs-1))) in
let fn_vc = fpf vs cs and fn_cv = fpf cs vs in
let p’ = replace fn_vc p and q’ = replace fn_vc q in
replace fn_cv (cinterpolate p’ q’);;

We can test this on a somewhat elaborated version of the same example
using a common free variable and existential quantifiers.

# let p =
<<(forall x. exists y. R(x,y)) /\
(forall x y. S(v,x,y) <=> R(x,y) \/ R(y,x))>>

and q =
<<(forall x y z. S(v,x,y) /\ S(v,y,z) ==> T(x,z)) /\
(exists u. ~T(u,u))>>;;

Indeed, the procedure works, and we leave it to the reader to confirm that
the result is indeed an interpolant:

# let c = interpolate p q;;
...
val c : fol formula =
<<forall v_2.

exists v_1.
S(v,v_2,v_1) /\ S(v,v_1,v_2) \/ S(v,v_2,v_1) /\ S(v,v_1,v_2)>>
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There are yet two further generalizations to be made. First, note that
interpolation applies equally to logic with equality, where now the inter-
polant may contain the equality symbol (even if only one of the formulas
p and q does). We simply note that |= p ∧ q ⇒ ⊥ in logic with equality iff
|= (p ∧ eqaxiom(p)) ∧ (q ∧ eqaxiom(q)) ⇒ ⊥ in standard first-order logic.
Since the augmentations a ∧ eqaxiom(a) have the same language as a plus
equality, the interpolant will involve only shared symbols in the original for-
mulas and possibly the equality sign. To implement this, we can extract the
equality axioms from equalitize (which is designed for validity-proving
and hence adjoins them as hypotheses):

let einterpolate p q =
let p’ = equalitize p and q’ = equalitize q in
let p’’ = if p’ = p then p else And(fst(dest_imp p’),p)
and q’’ = if q’ = q then q else And(fst(dest_imp q’),q) in
interpolate p’’ q’’;;

By using compactness, we reach the most general form of the Craig–
Robinson theorem for logic with equality, where it is generalized to infinite
sets of sentences.

Theorem 5.44 If T1 ∪ T2 |= ⊥ for two sets of formulas T1 and T2, there
is a formula C in the common language plus the equality symbol, and with
only free variables appearing in T1 ∩ T2, such that T1 |= C and T2 |= ¬C.

Proof If T1∪T2 |= ⊥, then, by compactness, there are finite subsets T ′
1 ⊆ T1

and T ′
2 ⊆ T2 such that T ′

1∪T ′
2 |= ⊥. Form the conjunctions of their universal

closures p and q and apply the basic result for logic with equality.

The Nelson–Oppen method

To combine decision procedures for theories T1, . . . , Tn (with axiomati-
zations using pairwise disjoint sets of function and predicate symbols), the
Nelson–Oppen method doesn’t need any special knowledge about the imple-
mentation of those procedures, but just the procedures themselves and some
characterization of their languages. In order to permit languages with an
infinite signature (e.g. all numerals n), we will characterize the language
by discriminator functions on functions and predicates, rather than lists of
them. All the information is packaged up into a triple. For example, the
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following is the information needed by the Nelson–Oppen for the theory of
reals with multiplication:

let real_lang =
let fn = ["-",1; "+",2; "-",2; "*",2; "^",2]
and pr = ["<=",2; "<",2; ">=",2; ">",2] in
(fun (s,n) -> n = 0 & is_numeral(Fn(s,[])) or mem (s,n) fn),
(fun sn -> mem sn pr),
(fun fm -> real_qelim(generalize fm) = True);;

Almost identical is the corresponding information for the linear theory of
integers, decided by Cooper’s method. Note that we still include multipli-
cation (though not exponentiation) in the language though its application
is strictly limited; this can be considered just the acceptance of syntactic
sugar rather than an expansion of the language.

let int_lang =
let fn = ["-",1; "+",2; "-",2; "*",2]
and pr = ["<=",2; "<",2; ">=",2; ">",2] in
(fun (s,n) -> n = 0 & is_numeral(Fn(s,[])) or mem (s,n) fn),
(fun sn -> mem sn pr),
(fun fm -> integer_qelim(generalize fm) = True);;

We might also want to use congruence closure or some other decision
procedure for functions and predicates that are not interpreted by any
of the specified theories. The following takes an explicit list of languages
langs and adds on another one that treats all other functions as uninter-
preted and handles equality as the only predicate using congruence closure.
This could be extended to treat other predicates as uninterpreted, either by
direct extension of congruence closure to the level of formulas or by using
Exercise 4.3.

let add_default langs =
langs @ [(fun sn -> not (exists (fun (f,p,d) -> f sn) langs)),

(fun sn -> sn = ("=",2)),ccvalid];;

A special procedure for universal Presburger arithmetic plus uninterpreted
functions and predicates was once given by Shostak (1979), before his own
work on general combination methods to be discussed later. We will use as
a running example the following formula valid in this combined theory:

u + 1 = v ∧ f(u) + 1 = u − 1 ∧ f(v − 1) − 1 = v + 1 ⇒ ⊥.

Homogenization

The Nelson–Oppen method starts by assuming the negation of the formula
to be proved, reducing it to DNF, and attempting to refute each disjunct.
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We will simply retain the original free variables in the formula in the negated
form, for convenience of implementation, but note that logically all the ‘vari-
ables’ below should be considered as Skolem constants. In the running exam-
ple, we have just one disjunct that we need to refute:

u + 1 = v ∧ f(u) + 1 = u − 1 ∧ f(v − 1) − 1 = v + 1.

The next step is to introduce new variables for subformulas in such a way
that we arrive at an equisatisfiable conjunction of literals, each of which
except for equality uses symbols from only a single theory, a procedure
known as homogenization or purification. For our example we might get:

u+1 = v∧v1+1 = u−1∧v2−1 = v+1∧v2 = f(v3)∧v1 = f(u)∧v3 = v−1.

This introduction of fresh ‘variables’ is satisfiability-preserving, since they
are really constants. To implement the transformation, we wish to choose
given each atom a language for it based on a ‘topmost’ predicate or function
symbol. Note that in the case of an equation there may be a choice of which
topmost function symbol to choose, e.g. for f(x) = y + 1. Note also that in
the case of an equation between variables we need a language including the
equality symbol in our list (e.g. the one incorporated by add_default).

let chooselang langs fm =
match fm with
Atom(R("=",[Fn(f,args);_])) | Atom(R("=",[_;Fn(f,args)])) ->

find (fun (fn,pr,dp) -> fn(f,length args)) langs
| Atom(R(p,args)) ->

find (fun (fn,pr,dp) -> pr(p,length args)) langs;;

Once we have fixed on a language for a literal, the topmost subterms not in
that language are replaced by new variables, with their ‘definitions’ adjoined
as new equations, which may themselves be homogenized later. To handle
the recursion replacing non-homogeneous subterms, we use a continuation-
passing style where the continuation handles the replacement within the
current context and accumulates the new definitions. The following general
function maps a continuation-based operator over a list, modifying the list
elements successively:

let rec listify f l cont =
match l with
[] -> cont []

| h::t -> f h (fun h’ -> listify f t (fun t’ -> cont(h’::t’)));;

The continuations take as arguments the new term, the current variable
index and the list of new definitions. The following homogenizes a term,
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given a language with its function and predicate discriminators fn and pr.
In the case of a variable, we apply the continuation to the current state. In
the case of a function in the language, we keep it but recursively modify the
arguments, while for a function not in the language, we replace it with a
new variable vn, with n picked at the outset to avoid existing variables:

let rec homot (fn,pr,dp) tm cont n defs =
match tm with
Var x -> cont tm n defs

| Fn(f,args) ->
if fn(f,length args) then
listify (homot (fn,pr,dp)) args (fun a -> cont (Fn(f,a))) n defs
else cont (Var("v_"^(string_of_num n))) (n +/ Int 1)

(mk_eq (Var("v_"^(string_of_num n))) tm :: defs);;

Homogenizing a literal is similar, using homot to deal with the arguments
of predicates.

let rec homol langs fm cont n defs =
match fm with
Not(f) -> homol langs f (fun p -> cont(Not(p))) n defs

| Atom(R(p,args)) ->
let lang = chooselang langs fm in
listify (homot lang) args (fun a -> cont (Atom(R(p,a)))) n defs

| _ -> failwith "homol: not a literal";;

This only covers a single pass of homogenization, and the new definitional
equations may also have non-homogeneous subterms on their right-hand
sides, so we need to pass those along for another iteration as long as there
are any pending definitions:

let rec homo langs fms cont =
listify (homol langs) fms

(fun dun n defs ->
if defs = [] then cont dun n defs
else homo langs defs (fun res -> cont (dun@res)) n []);;

The overall procedure just picks the appropriate variable index to start
with:

let homogenize langs fms =
let fvs = unions(map fv fms) in
let n = Int 1 +/ itlist (max_varindex "v_") fvs (Int 0) in
homo langs fms (fun res n defs -> res) n [];;
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Partitioning

The next step is to partition the homogenized literals into those in the
various languages. The following tells us whether a formula belongs to a
given language, allowing equality in all languages:

let belongs (fn,pr,dp) fm =
forall fn (functions fm) &
forall pr (subtract (predicates fm) ["=",2]);;

and using that, the following partitions up literals according to a list of
languages:

let rec langpartition langs fms =
match langs with
[] -> if fms = [] then [] else failwith "langpartition"

| l::ls -> let fms1,fms2 = partition (belongs l) fms in
fms1::langpartition ls fms2;;

In our example, we will separate the literals into two groups, which we
can consider as a conjunction:

(u + 1 = v ∧ v1 + 1 = u − 1 ∧ v2 − 1 = v + 1 ∧ v3 = v − 1) ∧
(v2 = f(v3) ∧ v1 = f(u))

Interpolants and stable infiniteness

Once those preliminary steps are done with, we enter the interesting phase of
the algorithm. In general, the problem is to decide whether a conjunction of
literals, partitioned into groups φk of homogeneous literals in the language
of Tk, is unsatisfiable:

T1, . . . , Tn |= φ1 ∧ · · · ∧ φn ⇒ ⊥.

It will in general not be the case that any individual Ti |= φi ⇒ ⊥, just
as in the example at the beginning of this section where naive generaliza-
tion failed. The key idea underlying the Nelson–Oppen method is to use
the kinds of interpolants guaranteed by Craig’s theorem as the only means
of communication between the various decision procedures. In our example,
where we have two theories (Presburger arithmetic and uninterpreted func-
tions), a suitable interpolant is u = v3 ∧¬(v1 = v2). Once we know that, we
can just use the constituent decision procedures in their respective domains:
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# (integer_qelim ** generalize)
<<(u + 1 = v /\ v_1 + 1 = u - 1 /\ v_2 - 1 = v + 1 /\ v_3 = v - 1)
==> u = v_3 /\ ~(v_1 = v_2)>>;;

- : fol formula = <<true>>
# ccvalid

<<(v_2 = f(v_3) /\ v_1 = f(u)) ==> ~(u = v_3 /\ ~(v_1 = v_2))>>;;
- : bool = true

and conclude that the original conjunction is unsatisfiable. (If we have more
than two theories, we need an iterated version of the same procedure.) How-
ever, there remains the problem of finding an interpolant. The interpolation
theorem assures us that an interpolant exists, and that it is built from vari-
ables using the equality relation. However, it may in general contain quan-
tifiers, and this presents two problems: there are infinitely many logically
inequivalent possibilities, and we may not even be able to test prospective
interpolants for suitability. (We would prefer to assume only component
decision procedures for universal formulas, and indeed this is all we have for
the theory of uninterpreted functions and equality.)

Things would be much better if we could guarantee the existence of
quantifier-free interpolants involving just variables and equality. And indeed
we almost have quantifier elimination for the theory of equality, using a vari-
ant of the DLO decision procedure of Section 5.6. As usual we only need to
eliminate one existential quantifier from a conjunction of literals involving
it. If there is any positive equation then we have (∃x. x = y ∧P [x]) ⇔ P [y],
so the only difficulty is a formula of the form

∃x. x �= y1 ∧ · · · ∧ x �= yk.

In an interpretation with an infinite domain (or one with more than k

elements), this is trivially equivalent to �, but unfortunately it has no
quantifier-free equivalent in general. If we assume that all models of the
component theories are infinite, we will have no problems. But while this is
certainly valid for arithmetic theories, it isn’t for some others, such as the
theory of uninterpreted functions. Instead, a weaker condition suffices.†

Definition 5.45 A theory T is said to be stably infinite iff any quantifier-
free formula holds in all models of T iff it holds in all infinite models of
T .

† Stable infiniteness is often defined in the dual satisfiability form. However, one needs to interpret
satisfiability with an implicit existential quantification over valuations, the opposite of the
convention we have chosen.
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Let us write Γ |=∞ φ to mean that φ holds in all models of Γ with an
infinite domain. Stable-infiniteness of a theory T is therefore assertion that
T |=∞ φ iff T |= φ whenever φ is quantifier-free.

Let C be any equality formula and C ′ be the quantifier-free form resulting
from applying the quantifier elimination procedure sketched above. This is
equivalent in all infinite models, i.e. |=∞ C ⇔ C ′. Therefore, if we can deduce

T |= φ[C1, . . . , Cn],

where φ is quantifier-free except for the equality formulas C1, . . . ,Cn, then
a fortiori

T |=∞ φ[C1, . . . , Cn],

and so

T |=∞ φ[C ′
1, . . . , C

′
n],

Therefore, by stable infiniteness of T ,

T |= φ[C ′
1, . . . , C

′
n].

Consequently, when dealing with validity in a stably infinite theory, we
can replace equality formulas in an otherwise propositional formula with
quantifier-free forms. We will use this below. Our arithmetic theories, for
example, are trivially stably infinite, since they have only infinite models.
The theory of uninterpreted functions is also stably infinite. For if a formula
p fails to hold in some finite model, there is a finite model of its Skolem-
ized negation. Since this is a ground formula, we can extend the domain of
the model arbitrarily without affecting its validity, since it is ground and
therefore that validity does not involve any quantification over the domain.

Naive combination algorithm

We’ll follow Oppen (1980a) in first considering a naive way in which we could
decide combinations of stably infinite theories, and only then consider more
efficient implementations along the lines originally suggested by Nelson and
Oppen. Recall that our general problem is to decide whether

T1, . . . , Tn |= φ1 ∧ · · · ∧ φn ⇒ ⊥.

Suppose that the formulas φ1, . . . , φn involve k variables (properly Skolem
constants) x1, . . . , xk. Let us consider all possible ways in which an inter-
pretation can set them equal or unequal to each other, i.e. can partition
the interpretations into equivalence classes. For each partitioning P of the
x1, . . . , xk, we define the arrangement ar(P ) to be the conjunction of (i) all
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equations xi = xj such that xi and xj are in the same class, and (ii) all
negated equations ¬(xi = xj) such that xi and xj are not in the same class.
For example, if the partition P identifies x1, x2 and x3 but x4 is different:

ar(P ) = x1 = x2 ∧ x2 = x1 ∧ x1 = x3 ∧ x3 = x1 ∧ x2 = x3 ∧ x3 = x2 ∧
¬(x1 = x4) ∧ ¬(x4 = x1) ∧ ¬(x2 = x4) ∧
¬(x4 = x2) ∧ ¬(x3 = x4) ∧ ¬(x4 = x3).

Although this is our abstract characterization of ar(P ), for the actual
implementation we can be a bit more economical, provided the formula we
produce is equivalent in first-order logic with equality. For every equivalence
class {x1, . . . , xk} within a partition we include

x1 = x2 ∧ x2 = x3 ∧ · · · ∧ xk−1 = xk,

which is done by the following code:

let rec arreq l =
match l with
v1::v2::rest -> mk_eq (Var v1) (Var v2) :: (arreq (v2::rest))

| _ -> [];;

and then for each pair of equivalence class representatives (chosen as the
head of the list) xi and xj , we include ¬(xi = xj) in one direction:

let arrangement part =
itlist (union ** arreq) part

(map (fun (v,w) -> Not(mk_eq (Var v) (Var w)))
(distinctpairs (map hd part)));;

Note that any ar(P ) implies either the truth or falsity of any equation
between the k variables. And since the disjunction of all the possible arrange-
ments is valid in first-order logic with equality, the original assertion is equiv-
alent to the validity, for all the possible partitions P , of

T1, . . . , Tn |= φ1 ∧ · · · ∧ φn ∧ ar(P ) ⇒ ⊥.

Now, we claim that if the above holds, then subject to stable infiniteness,
we actually have

Ti |= φi ∧ ar(P ) ⇒ ⊥
for some 1 ≤ i ≤ n. This gives us, in principle, a decision method. Set up all
the possible ar(P ) and for each one try to find an i so Ti |= φi ∧ ar(P ) ⇒ ⊥,
using the various component decision procedures. Now let us justify the
claim.
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Since T1 and T2∪· · ·∪Tn have no symbols in common, the Craig Interpo-
lation Theorem 5.44 implies the existence of an interpolant C, which we can
assume thanks to stable infiniteness to be a quantifier-free Boolean combi-
nation of equations, such that

T1 |= φ1 ∧ ar(P ) ⇒ C,

T2, . . . , Tn |= φ2 ∧ · · · ∧ φn ∧ ar(P ) ⇒ ¬C.

Since ar(P ) includes all equations either positively or negatively, either
|= ar(P ) ⇒ ¬C or |= ar(P ) ⇒ C. In the former case, we actually have
T1 |= φ1 ∧ ar(P ) ⇒ ⊥ as required. Otherwise we have

T2, . . . , Tn |= φ2 ∧ · · · ∧ φn ∧ ar(P ) ⇒ ⊥
and by using the same argument repeatedly, we see that eventually we do
indeed reach a stage where some Ti |= φi ∧ ar(P ) ⇒ ⊥, so validity can be
decided by one of the component decision procedures.

It’s not hard to implement this, but one initial optimization seems worth-
while. Most of our component decision procedures are notably poor at deal-
ing with equations x = t, but the Nelson–Oppen procedure naturally gener-
ates many such equations, both by the initial homogenization process and
the positive equations generated by the arrangements. It’s useful to provide
a wrapper that repeatedly uses such equations (with x �∈ FVT(t) of course)
to eliminate the variable by substituting it into the other equations.†

let dest_def fm =
match fm with
Atom(R("=",[Var x;t])) when not(mem x (fvt t)) -> x,t

| Atom(R("=",[t; Var x])) when not(mem x (fvt t)) -> x,t
| _ -> failwith "dest_def";;

let rec redeqs eqs =
try let eq = find (can dest_def) eqs in

let x,t = dest_def eq in
redeqs (map (subst (x |=> t)) (subtract eqs [eq]))

with Failure _ -> eqs;;

Now, we start with a procedure that, given a set of theory triples and
list of assumptions fms0, checks if they are consistent with a new set of
assumptions fms:

let trydps ldseps fms =
exists (fun ((_,_,dp),fms0) -> dp(Not(list_conj(redeqs(fms0 @ fms)))))

ldseps;;

† Another way of avoiding the set of equations arising from homogenization is not to actually
perform homogenization, but regard alien subterms as variables only implicitly (Barrett 2002).
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The following auxiliary function generates all partitions of a set of objects:

let allpartitions =
let allinsertions x l acc =
itlist (fun p acc -> ((x::p)::(subtract l [p])) :: acc) l

(([x]::l)::acc) in
fun l -> itlist (fun h y -> itlist (allinsertions h) y []) l [[]];;

Now we can decide whether every arrangement leads to inconsistency
within at least one component theory:

let nelop_refute vars ldseps =
forall (trydps ldseps ** arrangement) (allpartitions vars);;

The overall procedure for one branch of the DNF merely involves homoge-
nization followed by separation and this process of refutation. Note that since
the arrangements only need to be able to decide the nominal interpolants
considered above, we may restrict ourselves to considering variables that
appear in at least two of the homogenized conjuncts (Tinelli and Harandi
1996).

let nelop1 langs fms0 =
let fms = homogenize langs fms0 in
let seps = langpartition langs fms in
let fvlist = map (unions ** map fv) seps in
let vars = filter (fun x -> length (filter (mem x) fvlist) >= 2)

(unions fvlist) in
nelop_refute vars (zip langs seps);;

The obvious refutation wrapper turns it into a general validity procedure:

let nelop langs fm = forall (nelop1 langs) (simpdnf(simplify(Not fm)));;

Indeed, our running example works:

# nelop (add_default [int_lang])
<<f(v - 1) - 1 = v + 1 /\ f(u) + 1 = u - 1 /\ u + 1 = v ==> false>>;;

- : bool = true

However, for larger examples, enumerating all arrangements can be slow.
The number of ways B(k) of partitioning k objects into equivalence classes
is known as the Bell number (Bell 1934), and it grows exponentially with k:

# let bell n = length(allpartitions (1--n)) in map bell (1--10);;
- : int list = [1; 2; 5; 15; 52; 203; 877; 4140; 21147; 115975]
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The Nelson–Oppen procedure

The original Nelson–Oppen method is a reformulation of the above proce-
dure that can be much more efficient. After homogenization, we repeatedly
try the following.

• Try to deduce Ti |= φi ⇒ ⊥ in one of the component theories. If this
succeeds, the formula is unsatisfiable.

• Otherwise, try to deduce a new disjunction of equations between variables
in one of the component theories, i.e. Ti |= φi ⇒ x1 = y1 ∨ · · · ∨ xn = yn

where none of the equations xj = yj already occurs in φi.
• If no such disjunction is deducible, conclude that the original formula is

satisfiable. Otherwise, for each 1 ≤ j ≤ n, case-split over the disjuncts,
adding xj = yj to every φi and repeating.

Since there are only finitely many disjunctions of equations, this process
must eventually terminate, since we cannot perform the final case-split and
augmentation indefinitely. We can justify concluding satisfiability in much
the same way as before. If we reach a stage where no further disjunctions of
equations are deducible, then we must retain consistency by adding xj �= yj

for every pair of variables not already assumed equal in the φi. But now,
as with the arrangements in the previous algorithm, we have assumptions
that decide all quantifier-free equality formulas, so by the same argument,
the original formula must be satisfiable.

To generate the disjunctions, we could simply enumerate all subsets of
the set of equations. But in case this set is infeasibly large, we use a more
refined approach. We start with a function to consider subsets of l of size m
and return the result of applying p to the first one possible:

let rec findasubset p m l =
if m = 0 then p [] else
match l with
[] -> failwith "findasubset"

| h::t -> try findasubset (fun s -> p(h::s)) (m - 1) t
with Failure _ -> findasubset p m t;;

We can then use this to return the first subset, enumerated in order of
size, on which a predicate p holds:

let findsubset p l =
tryfind (fun n ->
findasubset (fun x -> if p x then x else failwith "") n l)

(0--length l);;
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Now the overall Nelson–Oppen refutation procedure uses the method of
deduction and case-splits spelled out above. Because subsets are enumerated
in order of size, and include the empty subset, we check satisfiability within
each existing theory first without any separate code.

let rec nelop_refute eqs ldseps =
try let dj = findsubset (trydps ldseps ** map negate) eqs in

forall (fun eq ->
nelop_refute (subtract eqs [eq])

(map (fun (dps,es) -> (dps,eq::es)) ldseps)) dj
with Failure _ -> false;;

Now nelop1 is very similar to the version before, except that it first
constructs the set of equations to pass to nelop_refute:

let nelop1 langs fms0 =
let fms = homogenize langs fms0 in
let seps = langpartition langs fms in
let fvlist = map (unions ** map fv) seps in
let vars = filter (fun x -> length (filter (mem x) fvlist) >= 2)

(unions fvlist) in
let eqs = map (fun (a,b) -> mk_eq (Var a) (Var b))

(distinctpairs vars) in
nelop_refute eqs (zip langs seps);;

and nelop is defined in exactly the same way. We find this is much faster
on many examples than the naive procedure, e.g.

# nelop (add_default [int_lang])
<<y <= x /\ y >= x + z /\ z >= 0 ==> f(f(x) - f(y)) = f(z)>>;;

- : bool = true
# nelop (add_default [int_lang])

<<x = y /\ y >= z /\ z >= x ==> f(z) = f(x)>>;;
- : bool = true
# nelop (add_default [int_lang])

<<a <= b /\ b <= f(a) /\ f(a) <= 1
==> a + b <= 1 \/ b + f(b) <= 1 \/ f(f(b)) <= f(a)>>;;

- : bool = true

Convexity

It’s not immediately clear that the Nelson–Oppen method is faster in gen-
eral than the straightforward case split over all variable arrangements. How-
ever, if we trace through the previous examples, we find that in fact we
never performed a non-trivial case-split, but actually deduced an equation
(a disjunction of size 1) at each stage. Thus, it’s not so surprising that the
procedure worked relatively quickly. This wasn’t just a lucky fluke. One can
prove that in certain situations no case-splits are ever needed.
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A theory T is said to be convex if whenever T |= L1 ∧ · · · ∧ Ln ⇒ A1 ∨
· · · ∨Am for literals Li and atomic formulas Ai, then there is a particular k

with 1 ≤ k ≤ m such that T |= L1 ∧ · · · ∧ Ln ⇒ Ak. We will consider here
just the special case where all the Ai are equations between variables. Even
then, none of the arithmetic theories we have considered so far is convex.
The theory of reals with multiplication is not:

# map (real_qelim ** generalize)
[<<x * y = 0 /\ z = 0 ==> x = z \/ y = z>>;
<<x * y = 0 /\ z = 0 ==> x = z>>;
<<x * y = 0 /\ z = 0 ==> y = z>>];;

- : fol formula list = [<<true>>; <<false>>; <<false>>]

and neither is the linear theory of integers:

# map (integer_qelim ** generalize)
[<<0 <= x /\ x < 2 /\ y = 0 /\ z = 1 ==> x = y \/ x = z>>;
<<0 <= x /\ x < 2 /\ y = 0 /\ z = 1 ==> x = y>>;
<<0 <= x /\ x < 2 /\ y = 0 /\ z = 1 ==> x = z>>];;

- : fol formula list = [<<true>>; <<false>>; <<false>>]

This might seem a bit discouraging. However the linear theory of reals is
convex for equations between variables (see Exercise 5.42), so it’s only in
the cases where discreteness is used essentially that non-convexity arises for
the linear theory of integers. And the theory of uninterpreted functions is
also convex, as more generally is any theory axiomatizable by Horn clauses
(Theorem 3.39). Of course, since we enumerated disjunctions of equations in
order of size anyway, there’s not much advantage in restricting ourselves to
only single equations when proving unsatisfiability. However, if we know all
our theories are convex, we can conclude satisfiability (and hence invalidity of
the universally quantified starting formula before negation) without running
through the potentially huge numbers of disjunctions of equations, which can
be a dramatic improvement.

Shostak’s method

The Nelson–Oppen approach is quite general, and has an appealing modu-
larity, in that we can combine component decision procedures without any
knowledge of their internal working. On the other hand, using decision proce-
dures speculatively on all the possible equations or disjunctions of equations
between variables is crude. It would be beneficial to tweak individual decision
procedures where possible so that they can produce the implied equations
by a more intelligent approach than trial-and-error. Another popular way
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of combining decision procedures is derived from a method developed by
Shostak (1984b). Shostak’s method is less generally applicable, in that it
requires each component theory to have a canonizer and a solver. Roughly
speaking:

• A canonizer ‘can’ for a theory T maps each term t to a T -equivalent
canonical (normal) form. This canonizer must satisfy some fairly natural
technical restrictions, in particular the fact that if can(t) = f(s1, . . . , sn)
then the si are themselves canonical, i.e. can(si) = si for 1 ≤ i ≤ n.

• A solver σ for a theory T maps equations s = t to a set S of equations of
the form xi = ti whose conjunction is T -equivalent to the original, again
with some technical restrictions like non-circularity (xi �∈ FVT(tj) for
any of the i and j). A simple example is linear arithmetic over R where
an equation like x + 3y + z = 2x can be reduced to {x = 3y + z}, or
{y = 1

3x + −1
3 z}.

Shostak’s procedure then uses the canonizers and solvers for the compo-
nent theories and ties them into a central algorithm that is a generalization of
congruence closure using the component solvers and canonizers. Experience
indicates that this tighter integration can result in significantly improved
efficiency on many examples, as one might expect. On the other hand, it
has a narrower range of applicability. The Nelson–Oppen method can apply
to any decidable theories, and even in its simple form (only communicat-
ing equations not disjunctions of equations) applies to any convex theory.
Shostak’s method, on the other hand, is complete iff the theory is both con-
vex and solvable; the presence of a canonizer is not actually theoretically
necessary (Ganzinger 2002).

Despite its practical popularity over the years since Shostak’s original
publication, the algorithm has until recently steadfastly resisted a clearly
correct proof of completeness, despite numerous attempts to explicate the
theory. Shostak’s original paper has a number of significant errors. For exam-
ple, it was first noticed by Levitt (1999) that in general, multiple solvers for
the constituent theories cannot be combined as Shostak claimed. Reuß and
Shankar (2001) subsequently showed that Shostak’s original algorithm and
all the known later refinements were in fact incomplete and potentially non-
terminating. Concretely, they fail to prove our first running example:

# nelop (add_default [int_lang])
<<f(v - 1) - 1 = v + 1 /\ f(u) + 1 = u - 1 /\ u + 1 = v ==> false>>;;

- : bool = true

and go into an infinite loop on:
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# nelop (add_default [int_lang])
<<f(v) = v /\ f(u) = u - 1 /\ u = v ==> false>>;;

- : bool = true

The authors go on to present what is claimed to be a fully corrected version
of Shostak’s method, a version of which has even been subjected to machine
checking (Ford and Shankar 2002). The corrected method has been used as
the basis for a real implementation of the combined procedure called Yices.†

Note that there is an important difference between (i) combining one Shostak
theory with non-trivial axioms and the theory of uninterpreted functions and
(ii) combining multiple Shostak theories with non-trivial axioms. In the lat-
ter case, it is essentially never the case that solvers can be combined (Krstić
and Conchon 2003), and the recent complete methods in Shostak style can
be considered merely as optimizations of a Nelson–Oppen combination using
canonizers.

Modern SMT systems

At the time of writing, there is intense interest in decision procedures for
combinations of (mainly, but not entirely quantifier-free) theories. The topic
has become widely known as satisfiability modulo theories (SMT), emphasiz-
ing the perspective that it is a generalization of the standard propositional
SAT problem. Indeed, most of the latest SMT systems use methods strongly
influenced by the leading SAT solvers, and are usually organized around a
SAT-solving core.

The idea of basing other decision procedures around SAT appeared in
several places and in several slightly different contexts, going back at least
to Armando, Castellini and Giunchiglia (1999). The simplest approach is
to use the SAT checker as a ‘black box’ subcomponent. Given a formula
to be tested for satisfiability, just treat each atomic formula as a propo-
sitional atom and feed the formula to the SAT checker. If the formula is
propositionally unsatisfiable, then it is trivially unsatisfiable as a first-order
formula and we are finished. If on the other hand the SAT solver returns a
satisfying assignment for the propositional formula, test whether the implicit
conjunction of literals is also satisfiable within our theory or theories. If it is
satisfiable, then we can conclude that so is the whole formula and terminate.
However, if the putative satisfying valuation is not satisfiable in our theories,
we conjoin its negation with the input formula, just like a conflict clause in

† yices.csl.sri.com.
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a modern SAT solver (see Section 2.9) and repeat the procedure. Since all
propositional assignments only involve atoms in the original formula, and in
each iteration we eliminate at least one satisfying assignment, this process
must terminate.

In this framework, we still need to test satisfiability within our theory
of various conjunctions of literals. In some sense, all this approach does is
replace the immediate explosion of cases caused by an expansion into DNF
with the possibly more efficient and intelligent enumeration of satisfying
assignments given by the SAT solver. Flanagan, Joshi, Ou and Saxe (2003)
contrast this offline approach with the online alternative where the theory
solvers are integrated with the SAT solver in a more sophisticated way, so
that the SAT solver can retain most of its context (e.g. conflict clauses or
other useful state information) instead of starting afresh each time.

Most modern SMT systems use a form of this online approach, with
numerous additional refinements. For example, it is probably worthwhile
to standardize atomic formulas as much as possible w.r.t. the theories,
e.g. putting terms in normal form, to give more information to the SAT
solver. And although we have presented the theory solver as a separate
entity that may itself use a Nelson–Oppen combinations scheme, it may
be preferable to reimplement the theory combination scheme itself in the
same SAT-based framework, e.g. via delayed theory combination (Bozzano,
Bruttomesso, Cimatti, Junttila, Ranise, van Rossum and Sebastiani 2005).

These general approaches to SMT are often called lazy, because the under-
lying theory decision procedures are only called upon when matters cannot
be resolved by propositional reasoning. A contrasting eager approach is to
reduce the various theories directly to propositional logic in a preprocessing
step and then call the SAT checker just once (Bryant, Lahiri and Seshia
2002). It is also possible to combine lazy and eager techniques, e.g. by
eliminating the need for congruence closure using the Ackermann reduction
(Section 4.4) at the outset, but otherwise proceeding lazily.

Further reading

Many logic texts discuss the decision problem. For solvable and unsolvable
cases of the decision problem for logical validity, see Börger, Grädel and
Gurevich (2001), Ackermann (1954) and Dreben and Goldfarb (1979), plus
the brief treatment is given by Hilbert and Ackermann (1950). Note that the
decision problem is often treated from the dual point of view of satisfiability
rather than validity, so one needs to swap the role of ∀ and ∃ in the quantifier
prefixes to correlate such writings with our discussion. A survey of decidable
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theories is given by Rabin (1991), some of which we have considered in this
chapter.

Syllogisms are discussed extensively in texts on the history of logic such as
Bocheński (1961), Dumitriu (1977), Kneale and Kneale (1962) and Kneebone
(1963).

There are a number of other quantifier elimination results for mathe-
matical theories known from the literature. Two fairly difficult examples
are the theories of abelian groups (Szmielew 1955) and Boolean algebras
(Tarski 1949). A chapter of Kreisel and Krivine (1971) is devoted to quanti-
fier elimination, and includes the theory of separable Boolean algebras (and
so atomic Boolean algebras as a special case). Other standard textbooks on
model theory such as Chang and Keisler (1992), Hodges (1993b) and Mar-
cja and Toffalori (2003) also discuss quantifier elimination as well as related
ideas like model completeness and o-minimality; one formulation of model
completeness (A. Robinson 1963; MacIntyre 1991) for a theory T is that
every formula is T -equivalent to a purely universal (or equivalently, purely
existential) one. A survey of theories to which quantifier elimination has
been successfully applied is towards the end of Ershov, Lavrov, Taimanov
and Taitslin (1965). Soloray (private communication) has also described to
the present author a quantifier elimination procedure for various kinds of
real and complex vector space.

A treatment of Presburger arithmetic and some other related theories is
given by Enderton (1972), and a detailed treatment of the different quanti-
fier elimination procedures of Presburger and Skolem by Smoryński (1980).
This book contains a lot of information about related topics, including a
discussion of the corresponding theory of multiplication. A nice application
of quantifier elimination for Presburger arithmetic is given by Smoryński
(1981). Yap (2000) goes further into related decidability questions and has
much other relevant material. Other approaches to Presburger arithmetic
include the Omega test (Pugh 1992) and the method of Williams (1976). A
quantifier elimination procedure for linear arithmetic with a mixture of reals
and integers is given by Weispfenning (1999).

Basu, Pollack and Roy (2006) is a standard reference for quantifier elim-
ination and related questions for the reals, including CAD. Caviness and
Johnson (1998) is a collection of important papers in the area including
Tarski’s original article (which is otherwise quite hard to find). The clas-
sical Sturm theory is treated in numerous practically-oriented books on
algorithmic algebra such as Mignotte (1991) and Mishra (1993) as well as
books specializing in real algebraic geometry such as Benedetti and Risler
(1990) and Bochnak, Coste and Roy (1998). The Artin–Schreier theory of
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real closed fields is also discussed in many classic algebra texts like van der
Waerden (1991) and Jacobson (1989). Discussion of the full quantifier elim-
ination results (or their equivalent in other formulations) can also be found
in many of these texts, and as already noted our decision procedure follows
Hörmander (1983) based on an unpublished manuscript by Paul Cohen.†

Bochnak, Coste and Roy (1998) and G̊arding (1997) give other presenta-
tions, while Schoutens (2001) and Michaux and Ozturk (2002) describe a
very similar algorithm due to Muchnik. For more leisurely presentations
of the Seidenberg and Kreisel–Krivine algorithms, see Jacobson (1989) and
Engeler (1993) respectively. Two of the most powerful implementations of
real quantifier elimination available are QEPCAD‡ and REDLOG§; the lat-
ter needs the REDUCE computer algebra system.

In his original article, Tarski raised the question of whether the theory
of reals remains complete and decidable when one adds to the language the
exponential function x �→ ex. This is still unknown, and analysis of related
questions is still a hot research topic at the time of writing. One certainly
needs to further expand the signature (rather as divisibility was needed to
give quantifier elimination for Presburger arithmetic) since the unexpanded
language does not admit quantifier elimination: in fact the following formula
(Osgood 1916) has no quantifier-free equivalent even in a language expanded
with arbitrarily many total analytic functions:

y > 0 ∧ ∃w. x = yw ∧ z = yew.

What is known (Wilkie 1996) is that this theory and various similar ones
are all model complete (see above). Moreover, Macintyre and Wilkie (1996)
have shown decidability of the real exponential field assuming the truth of
Schanuel’s conjecture, a generalization of the Lindemann–Weierstrass the-
orem in transcendental number theory. In addition there are extensions of
the linear theory of reals with transcendental functions that are known to
be decidable (Weispfenning 2000).

Another extension of the reals that is known to be decidable is with a
unary predicate for the algebraic numbers (A. Robinson 1959). But adding
periodic functions such as sin to the reals immediately leads to undecidabil-
ity, because one can constrain variables to be integers, e.g. by sin(n ·p) = 0∧
sin(p) = 0∧3 < p∧p < 4. It follows easily from the undecidability of Hilbert’s
tenth problem (Matiyasevich 1970), which we shall see in Chapter 7, that

† ‘A simple proof of Tarski’s theorem on elementary algebra’, mimeographed manuscript, Stan-
ford University 1967.

‡ See www.cs.usna.edu/~qepcad/B/QEPCAD.html.
§ See www.fmi.uni-passau.de/~redlog/.
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even the universal fragment of this theory is undecidable, though this was
actually proved earlier using a more direct argument (Richardson 1968).
Since sin(z) = (eiz − e−iz)/2, adding an exponential function to the complex
numbers leads at once to undecidability.

Considering geometrically the subsets of R
n or C

n defined by formulas (see
Section 7.2 for a precise definition of definability by a formula) yields some
connections with algebraic geometry. Note that existential quantification
over x corresponds to projection onto a hyperplane x = constant, and so,
for example, (van den Dries 1988) Chevalley’s constructibility theorem ‘the
projection of a constructible set is constructible’, is essentially just quan-
tifier elimination in another guise; this even applies to the generalization
by Grothendieck (1964). And ‘Lefschetz’s principle’ in algebraic geometry,
pithily but imprecisely stated by Weil (1946) as ‘There is but one algebraic
geometry of characteristic p’ has a formal counterpart in the fact that the
first-order theory of algebraically closed fields of given characteristic is com-
plete, and this formal version can be further generalized (Eklof 1973). These
and other examples of applications of mathematical logic to pure mathemat-
ics are surveyed by Kreisel (1956), A. Robinson (1963), Kreisel and Krivine
(1971) and Cherlin (1976).

The phrase ‘word problem’ arises because terms in algebra are sometimes
called ‘words’; it is quite unrelated to its use in elementary algebra for a
problem formulated in everyday language where part of the challenge is to
translate it into mathematical terms; see Watterson (1988), p.116. For more
relationships between word problems and ideal membership, see Kandri-
Rody, Kapur and Narendran (1985). There are several books on Gröbner
bases including Adams and Loustaunau (1994) and Weispfenning and Becker
(1993), as well as other treatments of algebraic geometry that cover the topic
extensively, e.g. Cox, Little and O’Shea (1992), while a short treatment of the
basic theory and its applications is given by Buchberger (1998). The text on
rewriting methods by Baader and Nipkow (1998) also has a brief treatment
of the subject, which like ours re-uses some of the results developed for
rewriting.

There is an approach to the universal theory of R analogous to the use of
Gröbner bases for C. The starting-point is an analogue of the Nullstellensatz
for the reals, which likewise can be considered as a result about properties
true in all ordered fields or in the particular structure R. (The Artin–Schreier
theorem asserts that all ordered fields have a real closure, and one can show
that all real-closed fields are elementarily equivalent.) Sums of squares of
polynomials feature heavily in the various versions of the real Nullstellensatz;
for example, the simplest version says that a conjunction p1(x) = 0 ∧ · · · ∧
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pn(x) = 0 has no solution over R iff there are polynomials such that s1(x)2+
· · ·+sm(x)2+1 ∈ Id 〈p1, . . . , pn〉. In order to find the appropriate polynomials
in practice, the most effective approach seems to be based on semidefinite
programming (Parrilo 2003). For interesting related material about sums of
squares and Hilbert’s 17th problem see Reznick (2000) and Roy (2000).

For logical or ‘metamathematical’ approaches to geometry in general, see
Tarski (1959) and Schwabhäuser, Szmielev and Tarski (1983). Important
aspects of Wu’s method are anticipated in a more limited mechanization
theorem given by Hilbert (1899), while extensive practical applications of
Wu’s method are reported by Chou (1988). A modern survey of Wu’s method
and many other approaches to geometry theorem proving is given by Chou
and Gao (2001). For a general perspective on the theory behind triangular
sets see Hubert (2001). Narboux (2007) describes a graphical system that
among other things can be used as an interface to the the code in this book.

The proof of Craig’s theorem here is taken from Kreisel and Krivine
(1971). Extending combination methods to theories that are not stably infi-
nite is problematical (Tinelli and Zarba 2005). In practice, most theories
of interest that are not stably infinite have natural domains with a spe-
cific finite size (e.g. machine words, with 232 elements). It’s arguably better
to formulate theory combination in many-sorted logic, where we can still
assume quantifier elimination for equality formulas owing to the fixed size
for each domain (Ranise, Ringeissen and Zarba 2005). Even better, perhaps,
is a parametric sort system (Krstic, Goel, Grundy and Tinelli 2007). More-
over, sort distinctions can even justify some extensions with richer quantifier
structure (Fontaine 2004). On the other hand, there are situations where
a 1-sorted approach is needed, e.g. the ingenious combination of additive
and multiplicative theories of arithmetic suggested by Avigad and Friedman
(2006). There are some known cases of decidable combined theories that do
not fit into the Nelson–Oppen framework. A notable example is ‘BAPA’,
the combination of the Boolean algebra of sets of uninterpreted elements
with Presburger arithmetic, allowing any quantifier structure and includ-
ing a cardinality operator from sets to numbers. The decidability of this
theory is arguably a direct consequence of results of Feferman and Vaught
(1959), but was made explicit by Revesz (2004) and, in a more general form,
Kuncak, Nguyen and Rinard (2005).

For more on modern SMT systems see the survey by Barrett, Sebas-
tiani, Seshia and Tinelli (2008), and rule-based presentations by Nieuwen-
huis, Oliveras and Tinelli (2006) and Krstić and Goel (2007). The practical
applications in the computer industry that have driven the current inter-
est in SMT have also suggested other ‘computer-oriented’ theories whose
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decidability is of interest. For example, to verify hardware or low-level pro-
grams using machine integers, one may want to reason about operations on
fixed-size groups of bits such as bytes and words. One approach is via ‘bit-
blasting’, using a propositional variable for each bit and encoding arithmetic
operations bitwise. Primitive as this seems, it is very flexible and, thanks to
the power of modern SAT solvers, often effective.† Other approaches, e.g.
the Shostak-like approach of Cyrluk, Möller and Reuß (1997) or the use of
modular arithmetic by Babić and Musuvathi (2005) are more elegant and
can be more efficient for large word sizes, but are also less general. Other
interesting theories for programming include arrays (Stump, Dill, Barrett
and Levitt 2001; Bradley, Manna and Sipma 2006) and recursive data types
(Barrett, Shikanian and Tinelli 2007). Kroening and Strichman (2008) give
a systematic overview of many of these topics, their integration into modern
SMT systems and some of their practical applications. Bradley and Manna
(2007) describe the key ideas of program verification and how decision
procedures can be applied to it, and they also provide a discussion of some
important decision procedures and other logical material.

Although it lies somewhat outside the topics we have considered, there
are several quite effective algorithms for automated summation of hyperge-
ometric functions, which can automatically prove impressive-looking identi-
ties such as

∑n
k=0

(
n
k

)2 =
(
2n
n

)
. Indeed, computer implementations of these

algorithms are usually much more effective than people. See Petkovšek, Wilf
and Zeilberger (1996) for an introduction. Another slightly peripheral but
interesting topic is deciding whether an equation in a language with addi-
tion, multiplication and exponentiation holds for the natural numbers (i.e.
the free word problem for the structure N). This is known to be decidable
(Macintyre 1981; Gurevič 1985), but contrary to a well-known conjecture
(Doner and Tarski 1969) it does not coincide with the equational theory of
a basic set of ‘high school algebra’ identities (Wilkie 2000) and in fact the
equational theory is not finitely axiomatizable (Gurevič 1990; Di Cosmo and
Dufour 2004).

Exercises

5.1 Roughly speaking, in a model of size k, we can think of ∀x. P [x] as
equivalent to P [a1]∧ · · · ∧P [ak] for some constants ai interpreted by
elements of the model. Likewise we can think of existential quantifiers

† For example, most of the collection of bit-level hacker tricks à la Warren (2002) listed in
the page graphics.stanford.edu/~seander/bithacks.html have been verified for 32-bit words
using this technique.
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as disjunctions. Make precise the observation that we can implement
first-order validity in finite models by expanding quantifiers in this
way and using propositional logic – effectively, we bypass part of
the enumeration of possible models by relying on non-enumerative
methods available for propositional logic. Implement it and com-
pare its performance with the earlier function decide finite. Now
experiment with reducing the nesting of quantifiers, and hence the
possible blowup, by first transforming into Skolem normal form (see
Exercise 3.4) using definitions for subformulas. Does this improve
performance? Prove that this is a sound approach.

5.2 As we noted, some standard methods for first-order proof turn out
to be decision procedures for restricted subsets. Prove in particular
that hyperresolution is complete for the AE fragment (Leitsch 1997).

5.3 Show how to deduce the decidability of the prefix class ∀n∃∃∀m from
that for ∃∃∀m.

5.4 Consider a formula that is in the EA subset we defined, i.e. is of
the form ∃x1, . . . , xn. ∀y1, . . . , ym. P [x1, . . . , xn, y1, . . . , ym] with P

quantifier-free and without function symbols. (We even exclude
constants, though we can just reconsider them as additional
variables xi). Show that it has a model iff it has a model of size
n (or 1 in the case n = 0), for logic without equality. What about
logic with equality?

5.5 The Friendship theorem asserts that in a set of people in which any
two distinct people have exactly one common friend, there is one
person who is everybody else’s friend. For a proof that it holds for
any finite set of friends, see Aigner and Ziegler (2001). Show that
the finiteness is essential, and hence that the following formula does
not have the finite model property:

<<(forall x. ~friend(x,x)) /\
(forall x y. friend(x,y) ==> friend(y,x)) /\
(forall x y. ~(x = y)

==> exists z. friend(x,z) /\ friend(y,z) /\
forall w. friend(x,w) /\ friend(y,w)
==> w = z)

==> exists u. forall v. ~(v = u) ==> friend(u,v)>>;;

5.6 A class of models that can be expressed as Mod(Σ) (the set of all
models of Σ) for some set of first-order axioms Σ is said to be ‘Δ-
elementary’, and if there is some such finite set Σ, simply ‘elemen-
tary’. Show that a class K is elementary precisely if both K and its
complement K are Δ-elementary. Show that the class of models with
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infinite domain is elementary, but the class of models with a finite
domain is not.

5.7 Use the definitions of ‘Δ-elementary’ and ‘elementary’ from the pre-
vious exercise. Show that the class of fields of characteristic zero is
Δ-elementary but not elementary, while the class of Archimedean
fields is not even Δ-elementary.

5.8 Show that if a theory is finitely axiomatizable, any axiomatization
of it has a finite subset that axiomatizes the same theory. That is,
if Cn(Γ) = Cn(Δ) with Δ finite, then there’s a finite Γ′ ⊆ Γ with
Cn(Γ′) = Cn(Γ).

5.9 Show that if a theory is κ-categorical and finitely axiomatizable, then
it is decidable. Hint: suppose the conjunction of the axioms is A. Add
axioms Bi asserting that there are at least i distinct objects. Now
apply the �Loś–Vaught test (Exercise 4.1) to A ∪ {Bi}.

5.10 The theories of dense linear order with endpoints also admits quanti-
fier elimination. Implement such a quantifier elimination procedure.

5.11 Show that the theory of dense linear orders without endpoints is ℵ0-
categorical. (If you get stuck, look for the classic ‘back and forth’
proof of this due to Cantor.) Hence show by the �Loś–Vaught test
(Exercise 4.1) that the theory is complete, without any use of a
concrete quantifier elimination procedure.

5.12 Give a quantifier elimination procedure for the theory of arithmetic
truths in a language including the successor function S and the
ordering predicate < but not addition. Show that, by contrast to
the version without <, this theory is finitely axiomatizable, and not
κ-categorical for any infinite κ. Show that while the same subsets
of N are definable as without <, there are more subsets of N × N,
including {(m, n) | m < n}. Show that {(m, n, p) | m+n = p} is still
not definable.

5.13 Instead of basing Cooper’s algorithm on the existence of minimal or
arbitrarily negative solutions, we could have based it on maximal or
arbitrarily large and positive ones. Define a notion of ‘A-set’ dual to
the ‘B-set’ in our presentation and implement Cooper’s algorithm
based on that. Now implement an ‘adaptive’ version that uses either
the A-set or the B-set depending on which one yields a simpler result.

5.14 Implement an optimization suggested by Cooper: instead of actu-
ally expanding out the formulas of the form

∨d
j=1 · · ·, introduce j

as a new parameter while dealing with the remaining quantifiers.
You will then need to deal with them at the end, but this is rela-
tively straightforward. See whether this dramatically improves per-



458 Decidable problems

formance on problems, especially those with many quantifiers of the
same kind.

5.15 A set D ⊆ Z is said to be ‘eventually periodic’ iff there are positive
numbers n and p such that for all x ≥ n, we have x+p ∈ D ⇔ x ∈ D.
Show that all sets of integers definable in the language of Presburger
arithmetic are eventually periodic. Use this result to show that the
set of squares {x2 | x ∈ Z} is not definable, and hence neither is the
graph of the multiplication relation {(m, n, p) | mn = p}.

5.16 Implement one of the algorithms from Harvey and Stuckey (1997)
or Lahiri and Musuvathi (2005) for the UTVPI subset of Presburger
arithmetic.

5.17 A central component of the complex and real decision procedures was
pseudo-division by repeated cancellation of polynomials, i.e. given
p(x) = axn + p1(x) and q(x) = bxm + q1(x), forming bxm−np(x) −
aq(x) in order to cancel the leading terms. However, it would be
more economical to avoid multiplying by common factors of a and b.
For example, in the common operation of cancelling p(x) = axn + · · ·
and p′(x) = naxn−1 + · · · it’s clearly unnecessary to multiply both
p(x) and p′(x) by a in order to cancel them. Modify the complex
and real decision procedures so that they use a′ = a/ gcd(a, b) and
b′ = b/ gcd(a, b) instead. Algorithms for multivariate GCDs based on
repeated pseudo-division would give a nice simple implementation
based on interlocking recursion – see, for example, Section 4.6.1 of
Knuth (1969). Test the improvement on some examples. Take care
that you do not violate sign constraints in the case of the reals – if
a = bc then a �= 0 implies b �= 0 and c �= 0, but a > 0 does not imply
either b > 0 or c > 0. Can you similarly improve sign determination
so it takes into account sign information for factors or multiples of
the requested polynomial?

5.18 Modify the complex quantifier elimination procedure to work over
algebraically closed fields of arbitrary characteristic p. The main
place where we implicitly relied on characteristic zero is that we
start with the hypothesis that 1 is nonzero (actually positive), and
deduce that any multiple of a nonzero number is nonzero. In a field
of characteristic p, we need to check divisibility by p. Generalize it
to work in unspecified characteristic, case-splitting over c = 0 even
for constants as need be. How does efficiency change?

5.19 Show that if for arbitrarily large p, a given set of sentences holds
in some algebraically closed field of characteristic p, then it holds in
some algebraically closed field of characteristic 0. Hence show that
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every injective polynomial map f : C
n → C

n is also surjective. This
requires quite a bit of algebra; for a proof see Weiss and D’Mello
(1997), p23.

5.20 The algorithm we presented for reals does not exploit the possibility
of using an equation as part of a conjunction to simplify other con-
juncts. Implement this feature and test the resulting algorithm on
some otherwise difficult examples.

5.21 Augment the DLO procedure from Section 5.6 so that it performs
Fourier–Motzkin elimination for the linear theory of reals, as sketched
near the end of Section 5.9. Optimize it so that both strict (<) and
non-strict (≤) inequalities are handled directly instead of transform-
ing s ≤ t ⇔ s < t∨ s = t as we did with the DLO procedure. Imple-
ment the further non-DNF optimization from Ferrante and Rackoff
(1975) and compare the two procedures on some examples.

5.22 Enhance the Hörmander implementation so that it attempts to find
simple factorizations when constructing the sign matrix, e.g. infer-
ring the sign of x5y4 from the sign of x and y. Try the result out on
examples. Also consider reducing the number of polynomials consid-
ered in the complex and real quantifier elimination by maintaining
them in monic form to avoid rational multiples.

5.23 Show how to take explicit cofactors for an ideal membership of the
form 1 ∈ Id 〈p1, . . . , pn, 1 − qz〉 and explicitly find an l and cofactor
expansion showing ql ∈ Id 〈p1, . . . , pn〉. Hint: intuitively we have z =
1/q, so consider multiplying the first equation by ql where l is the
largest power of z in the cofactors.

5.24 A ring is said to be reduced when it has no nilpotent elements, i.e.
satisfies the axioms ∀x.xn = 0 ⇒ x = 0 for all n ≥ 1. A ring is called
a Boolean ring when it satisfies the axiom ∀x. x2 = x. (Note that
a Boolean ring is automatically reduced, even though it may have
zero-divisors.) Show how to reduce the word problems for reduced
rings, non-trivial reduced rings (also satisfying 1 �= 0), and Boolean
rings to equivalent ideal membership assertions.

5.25 This exercise is intended for readers who know a bit of algebra; it
shows that the usual ‘Zornication’ in the proof that every field has
an algebraic closure can be replaced by the compactness theorem
(Kreisel and Krivine 1971). Note that given any field F and polyno-
mial p with coefficients in F , one can construct a field extension F ′

of F such that p has a root in F ′, by forming the quotient of F [x]
by a maximal ideal containing p. Thus, we can form an extension
where any finite set of polynomials all have a root, and hence by
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compactness where all polynomials in F have a root. We can then
take a minimal subfield of elements algebraic over F and this is an
algebraically closed extension of F .

5.26 Show that if G is any abelian group, then it can be embedded in
the ring on Z × G with the operations defined as (m, a) + (n, b) =
(m + n, a + b) and (m, a) · (n, b) = (m ·n, m · b + n · a), where m · x is
just x+ · · ·+x repeated m times (Cohn 1974). In fact, many additive
abelian groups can be given a ring structure without increasing the
domain. Show however that the additive group of rational numbers
p/q where q is squarefree (not divisible by n2 for n > 1) cannot be
turned into a ring based on the existing domain.

5.27 Show that the word problem for abelian groups can be reduced to
that for abelian monoids by pushing down inversion to the variables
using (xy)−1 = x−1y−1, introducing a new variable zi for each term
y−1

i and testing the monoid word problem with the additional equa-
tions ziyi = 1.

5.28 Implement code to solve ideal membership goals using the approach
set out at the beginning of Section 5.11, parametrizing general cofac-
tors polynomials and comparing coefficients. How does performance
compare with our Gröbner basis approach?

5.29 By considering the rewrite set F = {w = x+y, w = x+z, x = z, x =
y} we pointed out that joinability of the ‘critical pair’ (x + y, x + z)
arising from w was not in itself enough to imply confluence of rewrites
to w in the polynomial w − x. However, there is another unjoinable
critical pair in this rewrite set, namely (y, z), so this does not provide
a counterexample to the global assertion ‘joinability of all critical
pairs under →F is a necessary and sufficient condition for F to be
a Gröbner basis’. Can you find such a counterexample, or else prove
that the assertion is in fact true?

5.30 Show that if p =
∑k

i=1 pi and q =
∑l

j=1 qi are two polynomials,
with the monomials pi arranged in decreasing order (pi � pi+1) in
the monomial ordering, and likewise for the qj , then if LCM(p1q1) =
p1q1 up to a constant multiple, S(f, g) →{p,q} 0. This obser-
vation, known as Buchberger’s first criterion, justifies a change to
spoly so that if two rewrites to a monomial are ‘orthogonal’
(snd(m) = snd(mmul m1 m2)) it just returns the zero polynomial
[]. How does that optimization improve performance?

5.31 Show that a polynomial P [sin(θ), cos(θ)] is identically zero iff x2 +
y2 = 1 ⇒ P [x, y] = 0 is valid over the complex numbers.
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5.32 Enhance the Cooper and Hörmander algorithms in a uniform way
so that they handle a unary absolute value function abs(x) = |x|
by performing suitable case-splits, e.g. expanding abs(x + y) ≤ a to
x + y ≤ a ∧−(x + y) ≤ a. Test this function on simple properties of
absolute values, e.g. ||x| − |y|| ≤ |x − y|, then see whether you can
handle the following. Consider a sequence of integers (or indeed reals)
with the property that xi + xi+2 = |xi+1| for all i ≥ 0 (the values of
x0 and x1 can be chosen arbitrarily). Such a sequence has the at first
sight surprising property that it is periodic with period 9.† Can you
find an attractive argument to show this? Are any of our algorithms
capable of verifying it by brute force, showing

∧8
i=0 xi + xi+2 =

|xi+1| ⇒ x0 = x9∧x1 = x10? Do any of the optimizations considered
in other exercises help?

5.33 Complex quantifier elimination for universal formulas (e.g. Gröbner
bases) can be used to solve combinatorial problems, as the following
graph-colouring example due to Bayer (1982) indicates. Let z be a
primitive cube root of unity, i.e. z3 = 1 but zk �= 1 for 0 < k < 3.
Represent colours by 1, z and z2. Each vertex, represented by vari-
ables xi, has one of these colours, so we assert x3

i − 1 = 0. Now
if two vertices represented by xi, xj have an edge between them,
we want to constrain them to have different colours. We can do
this by forcing one of the other roots, i.e. asserting x2

i + xixj +
x2

j = 0. Show that a graph is 3-colourable iff these equations are
all satisfiable; try some concrete examples. Can you extend this to
4-colourability?

5.34 Show that the subsets of C definable using addition, multiplication
and equations, with arbitrary propositional and quantifier structure,
are either finite or cofinite, and hence that the set of reals is not
definable.

5.35 We mentioned the two possibilities of introducing a separate Rabi-
nowitsch variable for each negated equation, or combining them all
into one negated equation by multiplication then using a single Rabi-
nowitsch variable. We adopted the former; try the latter and see how
performance compares on examples.

5.36 Implement a combination of complex_qelim and the generally faster
method for universal formulas using Gröbner bases, so that outer
universal quantifiers are handled by the latter but general quantifier

† See M. Brown in ‘Problems and solutions’, American Mathematical Monthly 90, p.569, 1983.
Colmerauer (1990) gives a solution using Prolog III.
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elimination is used internally as necessary. A typical example you
might want to try is the following:
<<forall a b c x y.

~(a = 0) /\
(forall z. a * z^2 + b * z + c = 0 <=> z = x \/ z = y)
==> a * x * y = c /\ a * (x + y) + b = 0>>;;

5.37 Show how to encode equality of angles in algebraic terms using the
coordinates. Implement an OCaml function that generates an asser-
tion, using algebraic functions of the coordinates only, that one angle
is the sum of two others, and that one angle is n times another one,
for an arbitrary positive integer n.

5.38 If three distinct points in the plane all lie on a circle with centre O,
and also all lie on a circle with centre O′, then O = O′. Show by
an explicit counterexample that when formulated in terms of coor-
dinates, this fails when the coordinates are allowed to be complex.
Look up the ‘83 theorem’ of Mac Lane (1936) and show that it also
fails for complex ‘coordinates’. Show also that the Steiner–Lehmus
theorem fails over the complex numbers.†

5.39 One can imagine a more ambitious project of not merely verifying
geometric theorems, but discovering new ones, perhaps by guessing
and testing via some specific numerical instances, then attempting
to prove the ones that pass the first test (Davis and Cerutti 1976).
Implement a program to do this.

5.40 The system of second-order arithmetic extends the usual first-order
arithmetic of natural numbers by having a separate class of unary
predicate (or set) variables over which quantification is permitted.
For example, one can state the principle of mathematical induction
by ∀P.P (0)∧(∀n.P (n) ⇒ P (n+1)) ⇒ ∀n.P (n), whereas in first-order
arithmetic the quantification over P is not possible. Show that in
the first-order theory of reals with a predicate for the integers, one
can interpret second-order arithmetic. That is, there is an (injective)
function I from formulas in the language of second-order arithmetic
to those in the language of the first-order theory of reals with an
integer predicate, such that each φ is true in arithmetic iff the cor-
responding I(φ) is true over the reals. The author does not know
a precise reference for this ‘folklore’ result, which he learned from
Robert Solovay, though see Exercises 8B.2 and 8B.3 of Moschovakis
(1980) for a related result. Hint: you might map the predicate (set)

† See groups.google.com/group/geometry.college/msg/323a597e9348ba50 for a note on this by
Conway.
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P to the digits in a real number’s positional expansion, e.g. the set
{1, 3, 5, . . .} of odd numbers to the real number 0.1010101 . . . .

5.41 Prove a refinement of Craig’s interpolation theorem due to Lyn-
don (1959), which asserts that if |= A ⇒ B we can choose the
interpolant C such that |= A ⇒ C and |= C ⇒ B with all the
usual conditions and the fact that predicate symbols appear only
with a particular sign if they appear with that sign in both A and
B.

5.42 Prove that the linear theory of reals is convex for equations between
variables.

5.43 Prove that for theories with no 1-element models, convexity implies
stable infiniteness (Barrett, Dill and Levitt 1996).

5.44 Show that the SAT problem can be reduced with only linear blowup
to deciding satisfiability of a conjunction of literals in the combi-
nation of (i) the UTVPI fragment of linear integer arithmetic and
(ii) uninterpreted function symbols. (Hint: consider transforming a
clause p ∨ ¬q ∨ r into a literal f(p, q, r) �= f(0, 1, 0).) This shows
that even if two theories have an efficient decision procedure, their
combination may not (unless the theories are convex).



6

Interactive theorem proving

Our efforts so far have been aimed at making the computer prove theorems
completely automatically. But the scope of fully automatic methods, subject
to any remotely realistic limitations on computing power, covers only a very
small part of present-day mathematics. Here we develop an alternative: an
interactive proof assistant that can help to precisely state and formalize a
proof, while still dealing with some boring details automatically. Moreover,
to ensure its reliability, we design the proof assistant based on a very simple
logical kernel.

6.1 Human-oriented methods

We’ve devoted quite a lot of energy to making computers prove statements
completely automatically. The methods we’ve implemented are fairly pow-
erful and can do some kinds of proofs better than (most) people. Still, the
enormously complicated chains of logical reasoning in many fields of mathe-
matics are seldom likely to be discovered in a reasonable amount of time by
systematic algorithms like those we’ve presented. In practice, human mathe-
maticians find these chains of reasoning using a mixture of intuition, experi-
mentation with specific instances, analogy with or extrapolation from related
results, dramatic generalization of the context (e.g. the use of complex-
analytic methods in number theory) and of course pure luck – see Lakatos
(1976), Polya (1954) and Schoenfeld (1985) for varied attempts to subject
the process of mathematical discovery to methodological analysis. It’s prob-
ably true to say that very few human mathematicians approach the task of
proving theorems with methods like those we have developed.

One natural reaction to the limitations of systematic algorithmic methods
is to try to design computer programs that reason in a more human-like style.
Even before the methods we’ve discussed so far were properly developed,

464
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some researchers instinctively felt that systematic methods would be of little
practical use and embarked on more human-oriented approaches. For exam-
ple, Newell and Simon (1956) designed a program that could prove many
of the simple logic theorems in Principia Mathematica (see Section 6.4).
At about the same time Gelerntner (1959) designed a prover that could
prove facts in Euclidean geometry using human-style diagrams to direct or
restrict the proofs. However, it turned out that their rationale, in particular
their pessimism about systematic methods, was not entirely vindicated. For
example, the systematic approaches to geometry theorem proving starting
with Wu (see Section 5.12) have been remarkably effective and certainly
go beyond anything achieved by Gelerntner or others using human-oriented
approaches. As Wang (1960) remarked when presenting his simple system-
atic program for the AE fragment of first-order logic (Section 5.2) that was
dramatically more effective than Newell and Simon’s:

The writer [...] cannot help feeling, all the same, that the comparison reveals a
fundamental inadequacy in their approach. There is no need to kill a chicken with
a butcher’s knife. Yet the net impression is that Newell–Shore–Simon failed even
to kill the chicken with their butcher’s knife.

In fairness to those pursuing the human-oriented approach, however, their
primary objective was often not to make an effective theorem prover, inci-
dentally appealing though that might be. Rather it was to understand, by
formally reconstructing it, the human thought process. Mediocrity may indi-
cate success rather than failure in pursuit of that goal, since people are
generally not very good at solving logic puzzles!

After these initial explorations in the 1950s with both ‘systematic’ and
‘human-oriented’ approaches to theorem proving, the former won out almost
completely. Only a few researchers pursued human-oriented approaches,
notably Bledsoe, who, for example, attempted to formalize methods often
used by humans for proving theorems about limits in analysis (Bledsoe
1984). Bledsoe’s student Boyer together with Moore developed the remark-
able NQTHM prover (Boyer and Moore 1979) which can often perform auto-
matic generalization of suggested theorems and prove the generalizations by
induction. The success of NQTHM, and the contrasting difficulty of fitting
its methods into a simple conceptual framework, has led Bundy (1991) to
reconstruct its methods in a general science of reasoning based on proof
planning.

A more hawkish reaction to the limited success of human-oriented meth-
ods when computerized is to observe that in some situations, systematic
methods are better even for people. For instance, Knuth and Bendix (1970)
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suggest that completion (Section 4.7) is a useful systematization of the ways
mathematicians experiment with equational axioms. Dislike of anthropo-
morphism in computing generally (Dijkstra 1982b) has perhaps spurred a
drive in some quarters towards making human proof more systematically
organized and syntax-driven – in short more machine-like (Dijkstra and
Scholten 1990). And Wos attributes his considerable success in applying
automated reasoning to the fact that he plays to a computer’s strengths
instead of attempting to make it emulate human thought:

Simply put, differences abound between the way a person reasons and the way a pro-
gram of the type featured here reasons. Those differences may in part explain why
OTTER has succeeded in answering questions that were unanswered for decades,
and also explain why its use has produced proofs far more elegant than those pre-
viously known. (Even if I knew what was needed, I would not redesign OTTER to
function as a mathematician, logician, or any other person does, and not because
of a lack of respect for people’s reasoning.) (Wos and Pieper 1999)

6.2 Interactive provers and proof checkers

Experience suggests that neither approach, systematically algorithmic or
heuristic and human-oriented, is capable of proving a wide range of difficult
mathematical theorems automatically. Moreover, there is no indication that
incremental improvements in such methods together with advances in tech-
nology will change this fact. Some might even argue that it is hardly desirable
to automate proofs that humans are incapable of developing themselves.

[...] I consider mathematical proofs as a reflection of my understanding and ‘under-
standing’ is something we cannot delegate, either to another person or to a machine.
(Dijkstra 1976b)

A more modest goal is to create a system that can verify a proof found
by a human, or assist in a limited capacity under human guidance. At the
very least the computer should act as a humble clerical assistant checking
the correctness of the proof, guarding against typical human errors such
as implicit assumptions and forgotten special cases. At best the computer
might help the process substantially by automating certain parts of the
proof; after all, proofs often contain parts that are just routine verifications
or are amenable to automation, such as algebraic identities. This idea of
a machine and human working together to prove theorems from sketches
was already envisaged by Wang (1960), whose work on automated theorem
proving was merely intended to lay the groundwork for such a system:

The original aim of the writer was to take mathematical textbooks such as Landau
on the number system, Hardy–Wright on number theory, Hardy on the calculus,
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Veblen–Young on projective geometry, the volumes by Bourbaki, as outlines and
make the machine formalize all the proofs (fill in the gaps).

Early proof assistants

Early computers only supported batch working with a long turnaround time.
But by the 1960s, a more interactive style was becoming widespread. Thanks
to this, and perhaps motivated by a feeling that the abilities of fully auto-
mated systems were starting to plateau, there was increasing interest in
the idea of a proof assistant. The first effective realization was the SAM
(semi-automated mathematics) family of provers:

Semi-automated mathematics is an approach to theorem-proving which seeks to
combine automatic logic routines with ordinary proof procedures in such a manner
that the resulting procedure is both efficient and subject to human intervention in
the form of control and guidance. Because it makes the mathematician an essential
factor in the quest to establish theorems, this approach is a departure from the
usual theorem-proving attempts in which the computer unaided seeks to establish
proofs. (Guard, Oglesby, Bennett and Settle 1969)

In 1966, the fifth in the series of systems, SAM V, was used to construct
a proof of a hitherto unproven conjecture in lattice theory (Bumcrot 1965).
This was indubitably a success for the semi-automated approach because
the computer automatically proved a result now called ‘SAM’s lemma’ and
the mathematician recognized that it easily yielded a proof of Bumcrot’s
conjecture.

Not long after the SAM project, two other important proof-checking sys-
tems appeared: AUTOMATH (de Bruijn 1970; de Bruijn 1980; Nederpelt,
Geuvers and Vrijer 1994) and Mizar (Trybulec 1978; Trybulec and Blair
1985). Both of these have been highly influential in different ways, and both
have been used to check non-trivial pieces of mathematics. Although we
will refer to these systems too as ‘interactive’, we use this term loosely as an
antonym of ‘automatic’. Both AUTOMATH and Mizar were oriented around
batch usage. However, the files that they process consist of a proof, or a proof
sketch, which they check the correctness of, rather than a statement that
they attempt to prove automatically.

LCF

Many successful proof checkers, including Mizar, have relatively weak auto-
mation, and oblige the user to describe the proof in a rather detailed man-
ner with only small gaps for the machine to fill in. For example, Mizar’s
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automated abilities are quite restricted, to steps that are ‘obvious’ in a
precise logical sense (Davis 1981; Rudnicki 1987). To some extent this weak-
ness is a conscious design choice. If the gaps in a proof sketch are too large,
that sketch is difficult to understand for a human reader working without
machine assistance – and now that the emphasis is on helping a human
mathematician rather than automated tours de force, that seems an unde-
sirable feature. This restriction also sharply circumscribes the search needed
to fill a gap in the proof or decide that the inference implicit in that gap
is non-obvious, so the proof-checking process can be made quite efficient.
Since Mizar is designed for batch usage, where a potentially large proof text
is checked in a single interaction, this is especially important.

However, the Mizar definition of an obvious inference often fails to coin-
cide with the human definition of what is obvious, and some such dissonance
seems inevitable. A particular difficulty is that what a person considers obvi-
ous may include domain-specific knowledge about the branch of mathemat-
ics being formalized. For example, algebraic identities are often obvious or
routine, yet decomposing them to steps that Mizar will accept as obvious
can be tedious. Moreover, there seems no end in sight to the new facts that
may come to be considered obvious once a certain result has been formal-
ized (Zammit 1999b). For example, one might establish that a certain binary
operator ‘⊗’ arising in an abstract branch of mathematics is associative and
commutative. From that point on it might be considered obvious that, say,
w ⊗ (x ⊗ (y ⊗ z)) = (x ⊗ z) ⊗ (w ⊗ y), and one wouldn’t interrupt the flow
of a more interesting proof to belabour this point. However, a purely logical
deduction of this from the associative and commutative law requires several
instances of these laws, and so it turns out not to be obvious in the Mizar
sense.

The initial designer(s) of a proof checker can hardly be expected to antic-
ipate all its future applications and the new facts that may come to be
regarded as ‘obvious’ in consequence. This suggests that the ideal proof
checker should be programmable, i.e. that ordinary users should be able to
extend the built-in automation as much as desired. Provided the basic mech-
anisms of the theorem prover are straightforward and well-documented and
the source code is made available, there’s no reason why a user shouldn’t
extend or modify it – we hope that many readers will do something similar
with the code discussed in this book. However, difficulties arise if we want
to restrict the user to extensions that are logically sound, since unsoundness
renders questionable the whole idea of machine-checking supposedly more
fallible human proofs. Even the isolated automated theorem proving pro-
grams we’ve implemented in this book are often subtler than they appear,
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and we wouldn’t be surprised to find that they contain occasional bugs
rendering them incorrect. The difficulty of integrating a large body of spe-
cial proof methods into a powerful interactive system without compromising
soundness is considerably greater.

One influential solution to this difficulty was introduced in the Edinburgh
LCF project led by Robin Milner (Gordon, Milner and Wadsworth 1979).
The original Edinburgh LCF system was designed to support proofs in a logic
PPλ based on the ‘Logic of Computable Functions’ (Scott 1993) – hence
the name LCF. But the key idea, as Gordon (1982) emphasizes, is equally
applicable to more orthodox logics supporting conventional mathematics,
and subsequently many ‘LCF-style’ proof checkers were designed using the
same principles (Gordon 2000). Two key ideas underlie the LCF approach,
one of which permits flexible programmability and one of which enforces
logical soundness.

• The system is implemented within an interactive programming language,
and the user interacts via the top-level loop of that programming lan-
guage. Consequently, the user has the full power of a general-purpose
programming language available to implement new proof procedures.

• A special type (say thm) of proven theorems is distinguished, such that
anything of type thm must by construction have been proved rather than
merely asserted. This is enforced by making thm an abstract type whose
only constructors correspond to approved methods of inference.

The original LCF project introduced a completely new programming lan-
guage called ML (meta language) specifically designed for implementing
LCF-style provers – our own implementation language, Objective CAML,
is a direct descendant of it. We will implement in OCaml a prover for first-
order logic using the LCF approach, but first we need to fix a suitable set
of approved inference rules.

6.3 Proof systems for first-order logic

A formal language like first-order logic is intended to be a precise version of
informal mathematical notation. Given such a language, a formal proof sys-
tem should formalize and systematize the permissible steps in a mathemat-
ical proof. (These are exactly the characteristica and calculus that Leibniz
dreamed of.) Abstractly, we can consider a proof system as simply a relation
of ‘provability’, defined inductively via a set of rules that we think of as per-
missible proof steps. We will always write Γ � p to mean ‘p is provable from
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assumptions Γ’, occasionally attaching a subscript to the ‘turnstile’ symbol
� when we want to make the particular proof system explicit.

For purely equational reasoning, a natural proof system is the one defined
by Birkhoff’s rules (see Section 4.3). These nicely formalize the way one typi-
cally reasons with equations, and even though using them to prove theorems
may require great subtlety, the individual rules themselves are all fairly sim-
ple. In addition, the rules are complete: Δ � s = t (‘s = t is provable from
Δ’) if and only if Δ |= s = t (‘s = t is a logical consequence of Δ’). We
would naturally wish for all these properties in a proof system for first-order
logic in general.

The first proof system adequate for first-order logic was developed by
Frege (1879). While this work is now regarded as crucial in the modern
evolution of logic, it was little appreciated in Frege’s lifetime, and similar
ideas were developed partly independently by others such as Peano, Peirce
and Russell. Frege’s proof system actually went far beyond first-order logic,
and was used to support his ‘logicist’ thesis that all mathematics is reducible
to logic. On studying Frege’s work, it became apparent to Russell how much
of his philosophical analysis had already been anticipated, often in more
refined form, by Frege’s own formal development of arithmetic (Frege 1893).
But Russell noticed that Frege’s work had a serious flaw: the logical system
was inconsistent, and could actually be used to prove any fact, true or false,
by exploiting a logical antinomy now commonly known as Russell’s paradox
(see Section 7.1). Despite Peano’s limited articulation of a formal system,
Zermelo (1908), who independently discovered Russell’s paradox, claimed
that Peano’s approach was also subject to it.

It was really Hilbert and Ackermann (1950) in the original 1928 edition
of their short textbook who isolated first-order logic, presented a precise
system of formal rules for it and raised the question of the completeness
of those rules. Arguably, completeness was implicit in an earlier paper by
Skolem (1922), but it was first proved explicitly by Gödel (1930). Subse-
quently, many different kinds of formal proof system for first-order logic
were introduced and proved complete. We can roughly distinguish three
kinds:

• Hilbert or Frege systems (Frege 1879; Hilbert and Ackermann 1950),
• natural deduction (Gentzen 1935; Prawitz 1965),
• sequent calculus (Gentzen 1935).

We will see in more detail later how Hilbert systems work, since we are
going to make one the foundation of our LCF implementation. But let us
now devote a few words to the other two approaches, presenting both of
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them in terms of sequents. A sequent Γ → p, where p is a formula and Γ a
set of formulas, is thought of intuitively as meaning ‘if all the Γ hold then p

holds’, synonymous in the finite case Γ = {p1, . . . , pn} with p1∧· · ·∧pn ⇒ p.†

In the modern literature, one usually sees Γ � p rather than Gentzen’s
original notation Γ → p. However, we will avoid that, since we want to
emphasize the equivalence between the notion of provability � defined below
and semantic entailment |=. The latter has the feature that quantification
over valuations is done per formula, not once over the whole assertion. For
example, just as it’s not the case that P (x) ⇒ P (y) is valid, the sequent
P (x) → P (y) will not be derivable, yet P (x) |= P (y); see the discussion
in Section 3.3. In fact, we will for simplicity focus on deducibility without
hypotheses � p, but since in Section 6.8 we consider the general case, it
seems better to avoid any risk of confusion.

As the word ‘natural’ suggests, natural deduction systems are supposed
to be closer than Hilbert systems to intuitive reasoning, in particular when
reasoning from assumptions. They are based on a set of ‘introduction’ and
‘elimination’ rules for each logical connective, which introduce or eliminate
the top-level connective in the conclusion. For example, the implication-
introduction rule is

Γ ∪ {p} → q

Γ → p ⇒ q
,

while the implication-elimination rule is:‡

Γ → p ⇒ q Γ → p

Γ → q
.

The or-introduction rule has both a left and a right variant:

Γ → p

Γ → p ∨ q

Γ → q

Γ → p ∨ q
.

The or-elimination rule is a little more complicated:

Γ → p ∨ q Γ ∪ {p} → r Γ ∪ {q} → r

Γ → r
.

† In (classical) sequent calculus, sequents are further generalized so that the right-hand side
may be a set of formulas, and Γ → Δ means ‘if all the Γ hold then at least one of the
Δ holds’. However, using single-conclusion sequents is enough to show the essential flavour of
natural deduction and sequent calculus. Natural deduction systems are often presented with the
hypotheses Γ implicit, but the ‘trivial reformulation’ (Prawitz 1971) in terms of sequents makes
it easier to give a precise statement of the rules and stresses the similarities and differences
with sequent calculus.

‡ For simplicity we always assume that there is a fixed set of assumptions. In many formulations,
the two theorems above the line may have different sets of assumptions Γ and Δ and the final
theorem inherits Γ ∪ Δ.
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Natural deduction systems are indeed relatively good for formalizing typ-
ical human proofs. However, the formulation of some rules such as or-
elimination is rather messy. Instead of both introduction and elimination
rules for the conclusion, Gentzen’s sequent calculus systems have only intro-
duction rules, but both left (assumption) and right (conclusion) versions.
For example, the right or-introduction rules are as in natural deduction, but
there is a left-introduction rule:

Γ ∪ {p} → r Γ ∪ {q} → r

Γ ∪ {p ∨ q} → r
.

Similarly, the implication-introduction rule is as in natural deduction,†

but instead of a right-elimination rule we have a left-introduction rule

Γ → p Γ ∪ {q} → r

Γ ∪ {p ⇒ q} → r
.

In order to perform proofs in practice, it’s convenient to use the cut rule:

Γ ∪ {p} → q Γ ∪ {q} → r

Γ ∪ {p} → r
.

However, the Hauptsatz (major theorem) in Gentzen (1935) shows that
the cut rule is inessential: any proof involving cut can be transformed into
a cut-free one, albeit possibly at the cost of unfeasibly large blowup.

The particular appeal of cut-free sequent calculus proofs is that all the
other rules build up the formula without introducing any logical connec-
tives not involved in the result. This allows proofs to be found in a syntax-
directed way, just as with semantic tableaux. In fact, although the original
motivations of Beth and Hintikka were semantic, tableaux can be considered
a reformulation of sequent calculus. The approaches of several pioneers of
automated theorem proving like Prawitz, Prawitz and Voghera (1960) and
Wang (1960) were founded on Gentzen’s proof methods, rather than seman-
tic considerations. And the inverse method, developed by Maslov (1964),
while closely related to resolution, was motivated by searching for proofs in
sequent calculus using not the obvious top-down syntax-directed approach,
but working from the bottom upwards – hence the name.‡

Pioneers like Frege, Peano and Russell clearly used their formal proof sys-
tems. But while proof in natural deduction systems does tend to be more
† For simplicity, we are ignoring here the possibility of multiple formulas on the right of the

sequent.
‡ Note that variables in the inverse method are essentially metavariables, so it is not restricted

to finding cut-free proofs. Therefore, the inverse method is quite dissimilar to tableaux despite
their common roots in sequent calculus.
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natural than in Hilbert systems, proof theorists like Gentzen were more
intent on bringing out structure and symmetry in logic than with devel-
oping practical tools. Indeed, most mathematicians do not even formalize
statements in logic, let alone prove them using formal rules because it is ‘too
complicated in practice’ (Rasiowa and Sikorski 1970). Dijkstra (1985) has
remarked that ‘as far as the mathematical community is concerned George
Boole has lived in vain’.

6.4 LCF implementation of first-order logic

Like Frege, Russell was interested in establishing a ‘logicist’ thesis that all
mathematics could in principle be reduced to pure logic. To this end, he
derived in Principia Mathematica (Whitehead and Russell 1910) a body
of elementary mathematical theorems by explicit formal proofs. This was
an extraordinarily painstaking task, and Russell (1968) remarks that his
intellect ‘never quite recovered from the strain’. However, with computer
assistance, the length and tedium of formal proofs need no longer be such a
serious obstacle.† Our first priority is that the basic inference rules should
be simple, so we can really feel confident in our logical foundations and
their computer implementation. If this comes at the cost of lengthier formal
proofs, we are undismayed, since most of the low-level proof generation will
be hidden by additional layers of programming.

Usually, first-order proof systems have at least one rule or axiom scheme
involving substitution, e.g. a rule allowing us to pass from a universal theo-
rem � ∀x.P [x] to any substitution instance � P [t]. But, as we saw in Section
3.4, a correct implementation of substitution is not entirely trivial. We will
avoid building any such intricate code into our logical core by setting up sim-
pler rules from which substitution is derivable (Tarski 1965; Monk 1976).‡

We have two ‘proper’ rules that take theorems and produce new theorems.
One is modus ponens :

� p ⇒ q � p

� q

† Russell reacted enthusiastically to some early experiments in automated theorem proving,
remarking ‘I am delighted to know that Principia Mathematica can now be done by machinery’
(O’Leary 1991).

‡ In other respects our setup is not unlike the system P1 given by Church (1956), but with
elimination axioms for connectives that Church uses as metalogical abbreviations.
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and the other is generalization, allowing us to universally quantify a theorem
over any variable:

� p

� ∀x. p
.

Each ‘axiom’ is really a schema of axioms, stated for arbitrary formulas
p, q and r, terms s, si, t, ti and variable x. For each one, there are infinitely
many specific instances:

� p ⇒ (q ⇒ p),

� (p ⇒ q ⇒ r) ⇒ (p ⇒ q) ⇒ (p ⇒ r),

� ((p ⇒ ⊥) ⇒ ⊥) ⇒ p,

� (∀x. p ⇒ q) ⇒ (∀x. p) ⇒ (∀x. q),

� p ⇒ ∀x. p [provided x �∈ FV(p)],

� (∃x. x = t) [provided x �∈ FVT(t)],

� t = t,

� s1 = t1 ⇒ · · · ⇒ sn = tn ⇒ f(s1, ..., sn) = f(t1, ..., tn),

� s1 = t1 ⇒ · · · ⇒ sn = tn ⇒ P (s1, ..., sn) ⇒ P (t1, ..., tn).

Those would in fact suffice if we were content to express all theorems just
using ‘⊥’, ‘⇒’ and ‘∀’. However, this is rather unnatural, so we add additional
axiom schemas that amount to ‘definitions’ of the other connectives. Since
these are stated as equivalences, we also need to add some properties of
equivalence in order to make use of those definitions:

� (p ⇔ q) ⇒ p ⇒ q,

� (p ⇔ q) ⇒ q ⇒ p,

� (p ⇒ q) ⇒ (q ⇒ p) ⇒ (p ⇔ q),

� � ⇔ (⊥ ⇒ ⊥),

� ¬p ⇔ (p ⇒ ⊥),

� p ∧ q ⇔ (p ⇒ q ⇒ ⊥) ⇒ ⊥,

� p ∨ q ⇔ ¬(¬p ∧ ¬q),

� (∃x. p) ⇔ ¬(∀x. ¬p).

At least one property of this proof system is relatively easy to check.
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Theorem 6.1 If � p then |= p, i.e. anything provable using these rules is
logically valid in first-order logic with equality. In other words, the inference
rules are sound.

Proof One simply needs to check that each instance of the axiom schemas
is logically valid, and that the two proper inference rules when applied to
logically valid formulas also produce logically valid formulas. The overall
result follows by rule induction.

In the LCF approach, abstract logical inference rules are implemented as
ML functions manipulating objects of the special type thm. We declare a
suitable OCaml signature to enforce the type discipline, giving names to the
primitive rules and fixing them as the only basic operations on type thm:

module type Proofsystem =
sig type thm

val modusponens : thm -> thm -> thm
val gen : string -> thm -> thm
val axiom_addimp : fol formula -> fol formula -> thm
val axiom_distribimp :

fol formula -> fol formula -> fol formula -> thm
val axiom_doubleneg : fol formula -> thm
val axiom_allimp : string -> fol formula -> fol formula -> thm
val axiom_impall : string -> fol formula -> thm
val axiom_existseq : string -> term -> thm
val axiom_eqrefl : term -> thm
val axiom_funcong : string -> term list -> term list -> thm
val axiom_predcong : string -> term list -> term list -> thm
val axiom_iffimp1 : fol formula -> fol formula -> thm
val axiom_iffimp2 : fol formula -> fol formula -> thm
val axiom_impiff : fol formula -> fol formula -> thm
val axiom_true : thm
val axiom_not : fol formula -> thm
val axiom_and : fol formula -> fol formula -> thm
val axiom_or : fol formula -> fol formula -> thm
val axiom_exists : string -> fol formula -> thm
val concl : thm -> fol formula

end;;

The functions modusponens and gen implement proper inference rules,
so they take theorems as arguments and produce new theorems. The func-
tions implementing axiom schemas also mostly take arguments, but only to
indicate the desired instance of the schema. Finally, the concl (‘conclusion’)
function maps a theorem back to the formula it proves. This has no logical
role, but we often want to ‘look inside’ a theorem, for example to decide on
what kind of inference rules to apply to it. Of course, we don’t allow the
reverse operation mapping any formula to a corresponding theorem, since
that would defeat the whole purpose of using a limited set of rules.
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A guiding principle in the choice of primitive rules is that they should
admit a simple and transparent implementation. The only non-trivial part
involves checking the side-conditions x �∈ FV(p) and x �∈ FVT(t). Although
these are hardly difficult, the most straightforward implementations presup-
pose some set operations, which we choose to sidestep by coding the tests
directly. The following function decides whether a term s occurs as a sub-
term of another term t; we allow any term s, not just a variable, though
this generality is not exploited:

let rec occurs_in s t =
s = t or
match t with
Var y -> false

| Fn(f,args) -> exists (occurs_in s) args;;

Now we define a similar function for deciding whether a term t occurs
free in a formula fm. When t is a variable Var x, this means the same as
x ∈ FV(fm), but it is expressed more directly. The free in function actually
allows an arbitrary term t, not just a variable, extending the concept in a
natural way to say that there is a subterm t of fm none of whose variables
are in the scope of a quantifier. As it happens, we will only use this when t
is a variable, but the extra generality does not make the code any longer.

let rec free_in t fm =
match fm with
False| True -> false

| Atom(R(p,args)) -> exists (occurs_in t) args
| Not(p) -> free_in t p
| And(p,q)|Or(p,q)|Imp(p,q)|Iff(p,q) -> free_in t p or free_in t q
| Forall(y,p)|Exists(y,p) -> not(occurs_in (Var y) t) & free_in t p;;

Besides being more direct and more general, this function can be signif-
icantly more efficient in some cases than first computing the free-variable
set then testing membership. For example, if we ask whether x is free in
P (x)∧Q or in ∀x.Q, we never need to examine Q but can return ‘true’ and
‘false’ respectively by looking at the other part of the formula.

Using these ingredients, we can now implement the proof system itself.
While this chunk of code might not look particularly beautiful, a side-by-
side examination shows that it is a direct transliteration of the logical rules.
These few dozen lines, together with occurs in and free in and a few
auxiliary functions like exists and itlist2, constitute the entire logical
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core of our theorem prover. Provided we got this right, we can be confident
that anything of type thm we derive later really has been proved.†

module Proven : Proofsystem =
struct
type thm = fol formula
let modusponens pq p =
match pq with
Imp(p’,q) when p = p’ -> q

| _ -> failwith "modusponens"
let gen x p = Forall(x,p)
let axiom_addimp p q = Imp(p,Imp(q,p))
let axiom_distribimp p q r =
Imp(Imp(p,Imp(q,r)),Imp(Imp(p,q),Imp(p,r)))

let axiom_doubleneg p = Imp(Imp(Imp(p,False),False),p)
let axiom_allimp x p q =
Imp(Forall(x,Imp(p,q)),Imp(Forall(x,p),Forall(x,q)))

let axiom_impall x p =
if not (free_in (Var x) p) then Imp(p,Forall(x,p))
else failwith "axiom_impall: variable free in formula"

let axiom_existseq x t =
if not (occurs_in (Var x) t) then Exists(x,mk_eq (Var x) t)
else failwith "axiom_existseq: variable free in term"

let axiom_eqrefl t = mk_eq t t
let axiom_funcong f lefts rights =

itlist2 (fun s t p -> Imp(mk_eq s t,p)) lefts rights
(mk_eq (Fn(f,lefts)) (Fn(f,rights)))

let axiom_predcong p lefts rights =
itlist2 (fun s t p -> Imp(mk_eq s t,p)) lefts rights

(Imp(Atom(R(p,lefts)),Atom(R(p,rights))))
let axiom_iffimp1 p q = Imp(Iff(p,q),Imp(p,q))
let axiom_iffimp2 p q = Imp(Iff(p,q),Imp(q,p))
let axiom_impiff p q = Imp(Imp(p,q),Imp(Imp(q,p),Iff(p,q)))
let axiom_true = Iff(True,Imp(False,False))
let axiom_not p = Iff(Not p,Imp(p,False))
let axiom_and p q = Iff(And(p,q),Imp(Imp(p,Imp(q,False)),False))
let axiom_or p q = Iff(Or(p,q),Not(And(Not(p),Not(q))))
let axiom_exists x p = Iff(Exists(x,p),Not(Forall(x,Not p)))
let concl c = c

end;;

To proceed further, we’ll open the module and set up a printer as usual:

† Bugs in derived rules may indeed lead to the deduction of the wrong theorem, i.e. not the one
that was intended. But they cannot lead to an invalid one. And, needless to say, we are tacitly
assuming the correctness of the OCaml type system, OCaml implementation, operating system,
and underlying hardware! In fact, by subverting the OCaml type system or using mutability of
strings, it is possible to derive false results even in our LCF prover, but we restrict ourselves
to ‘normal’ functional programming.
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include Proven;;

let print_thm th =
open_box 0;
print_string "|-"; print_space();
open_box 0; print_formula print_atom 0 (concl th); close_box();
close_box();;

#install_printer print_thm;;

6.5 Propositional derived rules

Our proof system with its strange-looking menagerie of axioms will turn
out to be complete for first-order logic, while being technically simple (the
code implementing it is short). But, in stark contrast to natural deduction,
explicit proofs in the system tend to be very un-natural. For example, con-
sider proving the apparent triviality � p ⇒ p for some arbitrary p. Readers
who haven’t seen something similar before will probably find it a bit of a
puzzle. Either by a flash of inspiration or with computer assistance (see
Exercise 6.5) one can arrive at the following:

1 � (p ⇒ (p ⇒ p) ⇒ p) ⇒ (p ⇒ (p ⇒ p)) ⇒ (p ⇒ p) [second axiom],
2 � p ⇒ (p ⇒ p) ⇒ p [first axiom],
3 � (p ⇒ (p ⇒ p)) ⇒ (p ⇒ p) [modus ponens, 1 and 2],
4 � p ⇒ (p ⇒ p) [first axiom],
5 � p ⇒ p [modus ponens, 3 and 4].

The above sequence of steps can be considered a proof of the following
metatheorem about our deductive system: for any formula p we have � p ⇒ p,
each instance of which for a particular p is a formal theorem in the system.
We give the proof a computational twist in our LCF implementation, by
implementing an OCaml function taking a formula p as its argument and
proving the corresponding � p ⇒ p:

let imp_refl p =
modusponens (modusponens (axiom_distribimp p (Imp(p,p)) p)

(axiom_addimp p (Imp(p,p))))
(axiom_addimp p p);;
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We can thereafter use imp_refl as another inference rule. It is a derived
one, not a primitive one like modusponens, but works equally well:

# imp_refl <<r>>;;
- : thm = |- r ==> r
# imp_refl <<exists x y. ~(x = y)>>;;
- : thm = |- (exists x y. ~x = y) ==> (exists x y. ~x = y)

As in standard logic texts – Mendelson (1987) and Andrews (1986) are
typical – we will build up a sequence of more interesting metatheorems,
using earlier metatheorems as lemmas. But we’ll always have an explicitly
computational implementation of the metatheorems, using earlier ones as
subcomponents. For example, consider the metatheorem that if p ⇒ p ⇒ q

is provable then so is p ⇒ q. We can represent this as an inference rule:

� p ⇒ p ⇒ q

� p ⇒ q

and prove it appealing to � p ⇒ p as a lemma:

1 � (p ⇒ p ⇒ q) ⇒ (p ⇒ p) ⇒ (p ⇒ q) [second axiom],
2 � p ⇒ p ⇒ q [assumed],
3 � (p ⇒ p) ⇒ (p ⇒ q) [modus ponens, 1 and 2],
4 � p ⇒ p [from the lemma],
5 � p ⇒ q [modus ponens, 3 and 4].

This proof can be expressed as a derived inference rule in OCaml, using
imp_refl as a subcomponent:

let imp_unduplicate th =
let p,pq = dest_imp(concl th) in
let q = consequent pq in
modusponens (modusponens (axiom_distribimp p p q) th) (imp_refl p);;

Elementary derived rules

The first three axioms and the modus ponens inference rule suffice for all
propositional reasoning, provided one is prepared to express all formulas in
terms of {⇒,⊥}. We will often prove formulas by mapping them into this
subset and dealing with them there. So instead of negation ¬p we will often
use the logically equivalent p ⇒ ⊥, and the following variants of the usual
syntax functions handle this form:
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let negatef fm =
match fm with
Imp(p,False) -> p

| p -> Imp(p,False);;

let negativef fm = match fm with Imp(p,False) -> true | _ -> false;;

Our next derived rule is a rather simple one: given a theorem � q and
a formula p, it produces the theorem � p ⇒ q, i.e. adds an additional
antecedent to something already proved. This might not appear enormously
useful, but it comes in handy later on. The rule works by forming the axiom
instance � q ⇒ p ⇒ q and then performing modus ponens with that and
the input theorem � q to obtain � p ⇒ q.

let add_assum p th = modusponens (axiom_addimp (concl th) p) th;;

This is used as a component in a slightly more interesting rule which,
given a theorem � q ⇒ r and a formula p returns the theorem � (p ⇒ q) ⇒
(p ⇒ r). It does it by using add assum to add a new hypothesis p to the
input theorem to give � p ⇒ q ⇒ r. Modus ponens is then performed with
this and the axiom instance � (p ⇒ q ⇒ r) ⇒ (p ⇒ q) ⇒ (p ⇒ r) to obtain
the desired theorem.

let imp_add_assum p th =
let (q,r) = dest_imp(concl th) in
modusponens (axiom_distribimp p q r) (add_assum p th);;

We will leave the reader to understand the proofs underlying many of the
rules that follow, letting the code speak for itself.† One way is to run through
the code line-by-line in an OCaml session picking some arbitrary formulas
as inputs.‡ Alternatively, one can simply sketch out the steps on paper. The
next rule, much used in what follows, is for transitivity of implication: from
� p ⇒ q and � q ⇒ r obtain � p ⇒ r.

let imp_trans th1 th2 =
let p = antecedent(concl th1) in
modusponens (imp_add_assum p th2) th1;;

We can use this to define other simple rules for implication, such as passing
from � p ⇒ r to � p ⇒ q ⇒ r:
† Not much will be lost by ignoring the details; the proofs are mainly technical puzzles without

any deeper significance.
‡ This is trickier for rules that take theorems as inputs, since we can’t create any desired theo-

rem, by design. One could temporarily add an axiom function to the primitive basis to create
arbitrary theorems.
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let imp_insert q th =
let (p,r) = dest_imp(concl th) in
imp_trans th (axiom_addimp r q);;

and from � p ⇒ q ⇒ r to � q ⇒ p ⇒ r:

let imp_swap th =
let p,qr = dest_imp(concl th) in
let q,r = dest_imp qr in
imp_trans (axiom_addimp q p)

(modusponens (axiom_distribimp p q r) th);;

The following is a derived axiom schema (derived rule with no theorem
arguments) producing � (q ⇒ r) ⇒ (p ⇒ q) ⇒ (p ⇒ r):

let imp_trans_th p q r =
imp_trans (axiom_addimp (Imp(q,r)) p)

(axiom_distribimp p q r);;

If � p ⇒ q then � (q ⇒ r) ⇒ (p ⇒ r):

let imp_add_concl r th =
let (p,q) = dest_imp(concl th) in
modusponens (imp_swap(imp_trans_th p q r)) th;;

� (p ⇒ q ⇒ r) ⇒ (q ⇒ p ⇒ r):

let imp_swap_th p q r =
imp_trans (axiom_distribimp p q r)

(imp_add_concl (Imp(p,r)) (axiom_addimp q p));;

and if � (p ⇒ q ⇒ r) ⇒ (s ⇒ t ⇒ u) then � (q ⇒ p ⇒ r) ⇒ (t ⇒ s ⇒ u):

let imp_swap2 th =
match concl th with
Imp(Imp(p,Imp(q,r)),Imp(s,Imp(t,u))) ->

imp_trans (imp_swap_th q p r) (imp_trans th (imp_swap_th s t u))
| _ -> failwith "imp_swap2";;

We can also easily derive a ‘right’ version of modus ponens, passing from
� p ⇒ q ⇒ r and � p ⇒ q to � p ⇒ r. (This could be obtained more
efficiently using axiom_distribimp, but the code is slightly longer.)

let right_mp ith th =
imp_unduplicate(imp_trans th (imp_swap ith));;

That gives us enough basic properties of implication to make further
progress. However, since we need to use the axioms of the form p ⊗ q ⇔ · · ·
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for expressing propositional connectives ⊗ in terms of others, it’s convenient
to define operations that map � p ⇔ q to � p ⇒ q and to � q ⇒ p:

let iff_imp1 th =
let (p,q) = dest_iff(concl th) in
modusponens (axiom_iffimp1 p q) th;;

let iff_imp2 th =
let (p,q) = dest_iff(concl th) in
modusponens (axiom_iffimp2 p q) th;;

and conversely to map � p ⇒ q and � q ⇒ p together to � p ⇔ q:

let imp_antisym th1 th2 =
let (p,q) = dest_imp(concl th1) in
modusponens (modusponens (axiom_impiff p q) th1) th2;;

Now we consider some rules for dealing with falsity and ‘negation’ (in the
sense of p ⇒ ⊥). We often want to eliminate double ‘negation’ from the
consequent of an implication, passing from � p ⇒ (q ⇒ ⊥) ⇒ ⊥ to � p ⇒ q:

let right_doubleneg th =
match concl th with
Imp(_,Imp(Imp(p,False),False)) -> imp_trans th (axiom_doubleneg p)

| _ -> failwith "right_doubleneg";;

An immediate application is the classic rule � ⊥ ⇒ p, traditionally called
ex falso quodlibet (‘from falsity, anything goes’):

let ex_falso p = right_doubleneg(axiom_addimp False (Imp(p,False)));;

Also useful is a variant of imp_trans that copes with an extra level of
implication in the first theorem, from � p ⇒ q ⇒ r and � r ⇒ s to � p ⇒
q ⇒ s:

let imp_trans2 th1 th2 =
let Imp(p,Imp(q,r)) = concl th1 and Imp(r’,s) = concl th2 in
let th = imp_add_assum p (modusponens (imp_trans_th q r s) th2) in
modusponens th th1;;

A generalization in a different direction allows us to map a list of theorems
� p ⇒ qi for 1 ≤ i ≤ n and another theorem � q1 ⇒ · · · ⇒ qn ⇒ r to a
result � p ⇒ r:

let imp_trans_chain ths th =
itlist (fun a b -> imp_unduplicate (imp_trans a (imp_swap b)))

(rev(tl ths)) (imp_trans (hd ths) th);;
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Finally, a couple more rules for implication will be useful later for technical
reasons, one for deriving � (q ⇒ ⊥) ⇒ p ⇒ (p ⇒ q) ⇒ ⊥:

let imp_truefalse p q =
imp_trans (imp_trans_th p q False) (imp_swap_th (Imp(p,q)) p False);;

and the other producing a kind of monotonicity theorem for implication of
the form � (p′ ⇒ p) ⇒ (q ⇒ q′) ⇒ (p ⇒ q) ⇒ p′ ⇒ q′:

let imp_mono_th p p’ q q’ =
let th1 = imp_trans_th (Imp(p,q)) (Imp(p’,q)) (Imp(p’,q’))
and th2 = imp_trans_th p’ q q’
and th3 = imp_swap(imp_trans_th p’ p q) in
imp_trans th3 (imp_swap(imp_trans th2 th1));;

Derived connectives

Most derived inference rules so far have involved the ‘primitive’ logical con-
stants implication and falsity. But we can equally well define derived rules
to encapsulate properties of other connectives. The simplest example is the
theorem � �:

let truth = modusponens (iff_imp2 axiom_true) (imp_refl False);;

For negation, contraposition passes from � p ⇒ q to � ¬q ⇒ ¬p:

let contrapos th =
let p,q = dest_imp(concl th) in
imp_trans (imp_trans (iff_imp1(axiom_not q)) (imp_add_concl False th))

(iff_imp2(axiom_not p));;

Some rules for conjunction will also be useful later. There are several
important features of this connective, for instance that � p ∧ q ⇒ p:

let and_left p q =
let th1 = imp_add_assum p (axiom_addimp False q) in
let th2 = right_doubleneg(imp_add_concl False th1) in
imp_trans (iff_imp1(axiom_and p q)) th2;;

and that symmetrically � p ∧ q ⇒ q:

let and_right p q =
let th1 = axiom_addimp (Imp(q,False)) p in
let th2 = right_doubleneg(imp_add_concl False th1) in
imp_trans (iff_imp1(axiom_and p q)) th2;;

More generally, we can get the list of theorems p1 ∧ · · · ∧ pn ⇒ pi for
1 ≤ i ≤ n:
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let rec conjths fm =
try let p,q = dest_and fm in

(and_left p q)::map (imp_trans (and_right p q)) (conjths q)
with Failure _ -> [imp_refl fm];;

Conversely, p and q together imply p ∧ q, i.e. � p ⇒ q ⇒ p ∧ q:

let and_pair p q =
let th1 = iff_imp2(axiom_and p q)
and th2 = imp_swap_th (Imp(p,Imp(q,False))) q False in
let th3 = imp_add_assum p (imp_trans2 th2 th1) in
modusponens th3 (imp_swap (imp_refl (Imp(p,Imp(q,False)))));;

Also useful are two rules to ‘shunt’ between conjunctive antecedents and
iterated implication, passing from � p ∧ q ⇒ r to � p ⇒ q ⇒ r:

let shunt th =
let p,q = dest_and(antecedent(concl th)) in
modusponens (itlist imp_add_assum [p;q] th) (and_pair p q);;

and from � p ⇒ q ⇒ r to � p ∧ q ⇒ r:

let unshunt th =
let p,qr = dest_imp(concl th) in
let q,r = dest_imp qr in
imp_trans_chain [and_left p q; and_right p q] th;;

6.6 Proving tautologies by inference

The derived rules defined so far can make certain propositional steps easier
to perform by inference. Now we will define a more ambitious rule that can
automatically prove any propositional tautology. Unlike the previous derived
rules, this will require non-trivial control flow. Our plan is to implement a
version of the tableau procedure considered in Section 3.10, systematically
modified to use inference instead of ad hoc formula manipulation. That is,
rather than simply asserting that lists of formulas p1, . . . , pn and literals
l1, . . . , lm lead to a contradiction, the main function will actually prove the
following theorem:

� p1 ⇒ · · · ⇒ pn ⇒ l1 ⇒ · · · ⇒ lm ⇒ ⊥.

The pattern of recursion, breaking apart the first formula p1 and mak-
ing recursive calls for the new problem(s), is very close to the implemen-
tation of tableau, and it is instructive to look at their code side-by-side.
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The principal difference is that we need to justify all steps in terms of infer-
ence rules. Other notable differences are:

• the core inference steps are presented in terms of implication and falsity,
with other propositional connectives immediately eliminated;

• we do not handle quantifiers and unification, only propositional structure.

Eliminating defined connectives

Our first order of business is the elimination of connectives other than falsity
and implication. Most of the other connectives are defined by axioms of
the form � p ⊗ q ⇔ · · ·. The exception is ‘⇔’ itself, so for uniformity we
implement a derived rule for � (p ⇔ q) ⇔ (p ⇒ q) ∧ (q ⇒ p):

let iff_def p q =
let th = and_pair (Imp(p,q)) (Imp(q,p))
and thl = [axiom_iffimp1 p q; axiom_iffimp2 p q] in
imp_antisym (imp_trans_chain thl th) (unshunt (axiom_impiff p q));;

Now we can produce an equivalent for any formula built with a ‘defined’
connective at the top level:

let expand_connective fm =
match fm with
True -> axiom_true

| Not p -> axiom_not p
| And(p,q) -> axiom_and p q
| Or(p,q) -> axiom_or p q
| Iff(p,q) -> iff_def p q
| Exists(x,p) -> axiom_exists x p
| _ -> failwith "expand_connective";;

The formula we are considering will always be a hypothesis in a refutation,
so we want to prove that it implies its expanded form. On the other hand,
the formula may be positive, in which case we want to produce � p⊗q ⇒ · · ·,
or negative, in which case we want � (p ⊗ q ⇒ ⊥) ⇒ (· · ·) ⇒ ⊥:

let eliminate_connective fm =
if not(negativef fm) then iff_imp1(expand_connective fm)
else imp_add_concl False (iff_imp2(expand_connective(negatef fm)));;

Simulating tableau steps

So now we just need to implement the key steps underlying tableaux as
inference rules. The first one corresponds to conjunctive splitting: we can
obtain a contradiction from p ∧ q, or in our context (p ⇒ −q) ⇒ ⊥, by
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obtaining one from p and q separately. The following inference rule gives a
list containing the two theorems � ((p ⇒ q) ⇒ ⊥) ⇒ p and � ((p ⇒ q) ⇒
⊥) ⇒ (q ⇒ ⊥):

let imp_false_conseqs p q =
[right_doubleneg(imp_add_concl False (imp_add_assum p (ex_falso q)));
imp_add_concl False (imp_insert p (imp_refl q))];;

which we can use to pass from � p ⇒ (q ⇒ ⊥) ⇒ r to � ((p ⇒ q) ⇒ ⊥) ⇒ r:

let imp_false_rule th =
let p,r = dest_imp (concl th) in
imp_trans_chain (imp_false_conseqs p (funpow 2 antecedent r)) th;;

The dual step is disjunctive splitting: if we can obtain a contradiction
from p separately and also from q separately, then we can obtain one from
p ∨ q, in our context −p ⇒ q. So we need to pass from � (p ⇒ ⊥) ⇒ r and
� q ⇒ r to � (p ⇒ q) ⇒ r:

let imp_true_rule th1 th2 =
let p = funpow 2 antecedent (concl th1) and q = antecedent(concl th2)
and th3 = right_doubleneg(imp_add_concl False th1)
and th4 = imp_add_concl False th2 in
let th5 = imp_swap(imp_truefalse p q) in
let th6 = imp_add_concl False (imp_trans_chain [th3; th4] th5)
and th7 = imp_swap(imp_refl(Imp(Imp(p,q),False))) in
right_doubleneg(imp_trans th7 th6);;

Ultimately, we will need to obtain a contradiction from two complemen-
tary literals; in fact the following will allow us to deduce � p ⇒ −p ⇒ q for
any q:

let imp_contr p q =
if negativef p then imp_add_assum (negatef p) (ex_falso q)
else imp_swap (imp_add_assum p (ex_falso q));;

In the original tableau procedure, we add a literal to the lits list when
there is currently no complementary literal. To maintain the correspondence
between those lists and the iterated implications in the present version, we
need to be able to justify the same step by inference: if we can derive a
contradiction from a ‘shuffled’ implication, we can also derive one from the
unshuffled version. To get a smoother recursion, we first implement a rule
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producing the implicational theorem � (p0 ⇒ p1 ⇒ · · · ⇒ pn−1 ⇒ pn ⇒
q) ⇒ (pn ⇒ p0 ⇒ p1 ⇒ · · · ⇒ pn−1 ⇒ q), where q may itself be an iterated
implication:

let rec imp_front_th n fm =
if n = 0 then imp_refl fm else
let p,qr = dest_imp fm in
let th1 = imp_add_assum p (imp_front_th (n - 1) qr) in
let q’,r’ = dest_imp(funpow 2 consequent(concl th1)) in
imp_trans th1 (imp_swap_th p q’ r’);;

Now to pull the nth component of an iterated implication to the front:

let imp_front n th = modusponens (imp_front_th n (concl th)) th;;

Tableaux by inference

All the pieces are now in place for an inferential version of tableaux. The
basic pattern of recursion is the same as in the plain version, with lists of
formulas (fms) and literals (lits), but the function returns the canonical
theorem rather than just quietly succeeding. So we usually need to perform
inference rules to get us back to a solution of the initial problem from the
solutions to modified problem(s) resulting from recursive calls. We will go
through the cases in the following code one at a time.

let rec lcfptab fms lits =
match fms with
False::fl ->

ex_falso (itlist mk_imp (fl @ lits) False)
| (Imp(p,q) as fm)::fl when p = q ->

add_assum fm (lcfptab fl lits)
| Imp(Imp(p,q),False)::fl ->

imp_false_rule(lcfptab (p::Imp(q,False)::fl) lits)
| Imp(p,q)::fl when q <> False ->

imp_true_rule (lcfptab (Imp(p,False)::fl) lits)
(lcfptab (q::fl) lits)

| (Atom(_)|Forall(_,_)|Imp((Atom(_)|Forall(_,_)),False) as p)::fl ->
if mem (negatef p) lits then

let l1,l2 = chop_list (index (negatef p) lits) lits in
let th = imp_contr p (itlist mk_imp (tl l2) False) in
itlist imp_insert (fl @ l1) th

else imp_front (length fl) (lcfptab fl (p::lits))
| fm::fl ->

let th = eliminate_connective fm in
imp_trans th (lcfptab (consequent(concl th)::fl) lits)

| _ -> failwith "lcfptab: no contradiction";;

The first two cases are needed because using the minimalist set of con-
nectives {⊥,⇒} we can end up with either ⊥ or ⊥ ⇒ ⊥ as an assumption.
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In the former case, we can obtain a contradiction directly, but we must
remember to add all the assumptions to maintain the pattern. The latter
assumption is thrown away in the recursive call and put back into the final
theorem afterwards. Actually we ignore all implications p ⇒ p since no such
implication can contribute to finding a contradiction.

The next couple of cases implement conjunctive and disjunctive splitting.
Thanks to the work we did above embodying these steps in special inference
procedures, the implementation is straightforward. We just need a guard to
make sure that disjunctive splitting of p ⇒ q doesn’t break up implications
p ⇒ ⊥ into subgoals p ⇒ ⊥ and ⊥, since then we’d get into an infinite loop;
these are always dealt with by other cases.

The fifth case applies to literals, and first attempts to find a complemen-
tary literal in the list. If it succeeds, it uses imp_contr to construct an
implication, remembering to add all the additional assumptions to maintain
the pattern using imp_insert etc. Otherwise the literal is shuffled back in
the list and a recursive call made; afterwards imp_front is used to bring it
back to the front if the whole function terminates successfully.

The sixth case deals with non-primitive logical connectives, and makes a
recursive call after expanding them, and the last case applies when nothing
else works and therefore no refutation will be achieved.

Proving tautologies

Now to prove that p is a tautology, we apply the above procedure to p ⇒
⊥ to obtain a theorem � (p ⇒ ⊥) ⇒ ⊥ and then apply double-negation
elimination to get � p:

let lcftaut p =
modusponens (axiom_doubleneg p) (lcfptab [negatef p] []);;

for example:

# lcftaut <<(p ==> q) \/ (q ==> p)>>;;
- : thm = |- (p ==> q) \/ (q ==> p)
# lcftaut <<p /\ q <=> ((p <=> q) <=> p \/ q)>>;;
- : thm = |- p /\ q <=> (p <=> q) <=> p \/ q
# lcftaut <<((p <=> q) <=> r) <=> (p <=> (q <=> r))>>;;
- : thm = |- ((p <=> q) <=> r) <=> p <=> q <=> r

Performing inference certainly makes things complicated and markedly
slower – the last example above takes an appreciable fraction of a second.
However, it is reassuring to reflect that we can be more confident in any
results we get from this procedure.
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6.7 First-order derived rules

One of the most fundamentally useful inference steps in first-order logic is
‘specialization’, passing from � ∀x. P [x] to � P [t]. In most presentations of
first-order logic, it’s taken as a primitive inference rule; we must derive it.
The key idea (due to Tarski) underlying our axiomatization is that we can
deduce � x = t ⇒ P [x] ⇒ P [t] using congruence rules, and so proceed in a
few more basic steps to

� (∀x. P [x]) ⇒ (∀x. x = t ⇒ P [t])

and hence to

� (∀x. P [x]) ⇒ (∃x. x = t) ⇒ P [t].

Now using the basic axiom � ∃x. x = t we get the required result:

� (∀x. P [x]) ⇒ P [t].

We will see shortly that this is something of an oversimplification, but
it shows the basic idea. It also makes clear that the rules for manipulating
equality are very important, and we now turn to these.

Basic equality properties

We already have an axiom axiom eqrefl for reflexivity of equality. In combi-
nation with that, others properties of equality follow from axiom predcong,
which is applicable to equality as well as other predicates. Symmetry is
implemented as a rule eq sym that, given terms s and t, yields a theorem
� s = t ⇒ t = s:

let eq_sym s t =
let rth = axiom_eqrefl s in
funpow 2 (fun th -> modusponens (imp_swap th) rth)

(axiom_predcong "=" [s; s] [t; s]);;

and the following implements transitivity, returning � s = t ⇒ t = u ⇒ s =
u given terms s, t and u:

let eq_trans s t u =
let th1 = axiom_predcong "=" [t; u] [s; u] in
let th2 = modusponens (imp_swap th1) (axiom_eqrefl u) in
imp_trans (eq_sym s t) th2;;

We also want to be able to derive theorems of the form � s = t ⇒
u[s] = u[t]. Such theorems can be built up recursively by composing the
basic congruence rules. The following function takes the terms s and t as
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well as the two terms stm and ttm to be proven equal by replacing s by t
inside stm as necessary.

let rec icongruence s t stm ttm =
if stm = ttm then add_assum (mk_eq s t) (axiom_eqrefl stm)
else if stm = s & ttm = t then imp_refl (mk_eq s t) else
match (stm,ttm) with
(Fn(fs,sa),Fn(ft,ta)) when fs = ft & length sa = length ta ->

let ths = map2 (icongruence s t) sa ta in
let ts = map (consequent ** concl) ths in
imp_trans_chain ths (axiom_funcong fs (map lhs ts) (map rhs ts))

| _ -> failwith "icongruence: not congruent";;

Our formulation allows replacement to be applied only to some of the
possible instances of s, for example:

# icongruence <<|s|>> <<|t|>> <<|f(s,g(s,t,s),u,h(h(s)))|>>
<<|f(s,g(t,t,s),u,h(h(t)))|>>;;

- : thm =
|- s = t ==> f(s,g(s,t,s),u,h(h(s))) = f(s,g(t,t,s),u,h(h(t)))

More quantifier rules

In order to realize the implementation of specialization sketched above,
we need some more rules for the quantifiers. The following is a variant of
axiom_allimp for the case when x does not appear free in the antecedent
p, giving � (∀x. p ⇒ Q[x]) ⇒ p ⇒ (∀x. Q[x]):

let gen_right_th x p q =
imp_swap(imp_trans (axiom_impall x p) (imp_swap(axiom_allimp x p q)));;

Now axiom_allimp is used to map � P [x] ⇒ Q[x] to � (∀x. P [x]) ⇒
(∀x. Q[x]):

let genimp x th =
let p,q = dest_imp(concl th) in
modusponens (axiom_allimp x p q) (gen x th);;

and similarly using the variant gen_right_th we obtain a version applicable
only when x is not free in p, mapping � p ⇒ Q[x] to � p ⇒ (∀x. Q[x]):

let gen_right x th =
let p,q = dest_imp(concl th) in
modusponens (gen_right_th x p q) (gen x th);;

The following derivation of � (∀x. P [x] ⇒ q) ⇒ (∃x. P [x]) ⇒ q is a
bit more complicated, but is obtained from gen_right_th by systematic
contraposition and expansion of the definition of the existential quantifier:
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let exists_left_th x p q =
let p’ = Imp(p,False) and q’ = Imp(q,False) in
let th1 = genimp x (imp_swap(imp_trans_th p q False)) in
let th2 = imp_trans th1 (gen_right_th x q’ p’) in
let th3 = imp_swap(imp_trans_th q’ (Forall(x,p’)) False) in
let th4 = imp_trans2 (imp_trans th2 th3) (axiom_doubleneg q) in
let th5 = imp_add_concl False (genimp x (iff_imp2 (axiom_not p))) in
let th6 = imp_trans (iff_imp1 (axiom_not (Forall(x,Not p)))) th5 in
let th7 = imp_trans (iff_imp1(axiom_exists x p)) th6 in
imp_swap(imp_trans th7 (imp_swap th4));;

and the ‘rule’ form maps � P [x] ⇒ q where x �∈ FV(q) to � (∃x. P [x]) ⇒ q

let exists_left x th =
let p,q = dest_imp(concl th) in
modusponens (exists_left_th x p q) (gen x th);;

Congruence rules for formulas

We can now realize our plan for specialization: given a theorem � x = t ⇒
P [x] ⇒ P [t] with x �∈ FVT(t) we can derive � (∀x.P [x]) ⇒ P [t]. In fact, the
following inference rule is slightly more general, taking � x = t ⇒ P [x] ⇒ q

for x �∈ FVT(t) and x �∈ FV(q) and yielding � (∀x. P [x]) ⇒ q:

let subspec th =
match concl th with
Imp(Atom(R("=",[Var x;t])) as e,Imp(p,q)) ->

let th1 = imp_trans (genimp x (imp_swap th))
(exists_left_th x e q) in

modusponens (imp_swap th1) (axiom_existseq x t)
| _ -> failwith "subspec: wrong sort of theorem";;

However, we still need to obtain that theorem � x = t ⇒ P [x] ⇒ P [t] in
the first place, by extending the substitution rule from terms (icongruence)
to formulas. This is a bit trickier than it seems, because to substitute in a
formula containing quantifiers, we may need to alpha-convert (change the
names of bound variables), e.g. to obtain:

� x = y ⇒ (∀y. P [y] ⇒ y = x) ⇒ (∀y′. P [y′] ⇒ y′ = y).

The key to alpha-conversion is passing from � x = x′ ⇒ P [x] ⇒ P [x′] to
� (∀x. P [x]) ⇒ (∀x′. P [x′]). This just needs a slight elaboration of subspec,
following it up with gen_right. Once again, the scope of the inference rule
is somewhat wider, passing from � x = y ⇒ P [x] ⇒ Q[y] to � (∀x. P [x]) ⇒
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(∀y.Q[y]) whenever x �∈ FV(Q[y]) and y �∈ FV(P [x]). Moreover, we also deal
with the special case where x and y are the same variable:

let subalpha th =
match concl th with
Imp(Atom(R("=",[Var x;Var y])),Imp(p,q)) ->

if x = y then genimp x (modusponens th (axiom_eqrefl(Var x)))
else gen_right y (subspec th)

| _ -> failwith "subalpha: wrong sort of theorem";;

Since we still need a congruence theorem as a starting-point, this may
look circular, but the congruence instance we need is for a simpler formula
than the one we are trying to construct, with a quantifier removed. We can
therefore implement a recursive procedure to produce � s = t ⇒ P [s] ⇒ P [t]
as follows.

let rec isubst s t sfm tfm =
if sfm = tfm then add_assum (mk_eq s t) (imp_refl tfm) else
match (sfm,tfm) with
Atom(R(p,sa)),Atom(R(p’,ta)) when p = p’ & length sa = length ta ->

let ths = map2 (icongruence s t) sa ta in
let ls,rs = unzip (map (dest_eq ** consequent ** concl) ths) in
imp_trans_chain ths (axiom_predcong p ls rs)

| Imp(sp,sq),Imp(tp,tq) ->
let th1 = imp_trans (eq_sym s t) (isubst t s tp sp)
and th2 = isubst s t sq tq in
imp_trans_chain [th1; th2] (imp_mono_th sp tp sq tq)

| Forall(x,p),Forall(y,q) ->
if x = y then
imp_trans (gen_right x (isubst s t p q)) (axiom_allimp x p q)

else
let z = Var(variant x (unions [fv p; fv q; fvt s; fvt t])) in
let th1 = isubst (Var x) z p (subst (x |=> z) p)
and th2 = isubst z (Var y) (subst (y |=> z) q) q in
let th3 = subalpha th1 and th4 = subalpha th2 in
let th5 = isubst s t (consequent(concl th3))

(antecedent(concl th4)) in
imp_swap (imp_trans2 (imp_trans th3 (imp_swap th5)) th4)

| _ ->
let sth = iff_imp1(expand_connective sfm)
and tth = iff_imp2(expand_connective tfm) in
let th1 = isubst s t (consequent(concl sth))

(antecedent(concl tth)) in
imp_swap(imp_trans sth (imp_swap(imp_trans2 th1 tth)));;

Most of the cases are straightforward. If the two formulas are the same, we
simply use imp_refl, but add the antecedent s = t to maintain the pattern.
For atomic formulas, we string together congruence theorems obtained by
icongruence much as in that function’s own recursive call. For implications,
we use the fact that implication is respectively antimonotonic and monotonic
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in its arguments, i.e. � (p′ ⇒ p) ⇒ (q ⇒ q′) ⇒ ((p ⇒ q) ⇒ (p′ ⇒ q′)),
and hence construct the result from appropriately oriented subcalls on the
antecedent and consequent. We deal with all ‘defined’ connectives as usual,
by writing them away in terms of their definitions and making a recursive
call on the translated call.

The complicated case is the universal quantifier, where we want to deduce
� s = t ⇒ (∀x. P [x, s]) ⇒ (∀y. P [y, t]). In the case where x and y are the
same, it’s quite easy: a recursive call yields � s = t ⇒ P [x, s] ⇒ P [x, t] and
we then universally quantify antecedent and consequent. When the bound
variables are different, we pick yet a third variable z chosen not to cause any
clashes, and using recursive calls and subalpha produce

th3 = � (∀x. P [x, s]) ⇒ (∀z. P [z, s]),

th4 = � (∀z. P [z, t]) ⇒ (∀y. P [y, t]),

th5 = � s = t ⇒ (∀z. P [z, s]) ⇒ (∀z. P [z, t]).

Although th5 requires a recursive call on a formula with the same size,
we know that this time it will be dealt with in the ‘easy’ path where both
variables are the same; hence the overall recursion is terminating. To get the
final result, we just need to string together these theorems by transitivity of
implication.

The hard work is done. We can set up a standalone alpha-conversion
routine that given a term ∀x. P [x] and a desired new variable name z �∈
FV(P [x]) will produce � (∀x. P [x]) ⇒ (∀z. P [z]), simply by appropriate
instances of earlier functions:

let alpha z fm =
match fm with
Forall(x,p) -> let p’ = subst (x |=> Var z) p in

subalpha(isubst (Var x) (Var z) p p’)
| _ -> failwith "alpha: not a universal formula";;

Now we can finally achieve our original goal of a specification rule, which
given a term ∀x.P [x] and a term t produces � (∀x.P [x]) ⇒ P [t]. Once again
it’s mostly a matter of instantiating earlier functions correctly. But note
that our entire infrastructure for specialization developed so far required
x �∈ FVT(t). We certainly don’t want to restrict the specialization rule in
this way, so if x ∈ FVT(t) we use a two-step process, first alpha-converting
to get ∀z. P [z] for some suitable z and then using specialization.†

† Note that we use var rather than fvt to ensure that z does not even clash with bound variables.
Although logically inessential, this makes sure that the alpha-conversion does not cause any
‘knock-on’ renaming deeper in the term, for example when specializing ∀x x′. x + x′ = x′ + x
with 2 · x.
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let rec ispec t fm =
match fm with
Forall(x,p) ->
if mem x (fvt t) then
let th = alpha (variant x (union (fvt t) (var p))) fm in
imp_trans th (ispec t (consequent(concl th)))

else subspec(isubst (Var x) t p (subst (x |=> t) p))
| _ -> failwith "ispec: non-universal formula";;

Here is this rather involved derived rule in action. Note how it correctly
renames bound variables as necessary. Since this is implemented as a derived
rule, we aren’t likely to be perturbed by doubts that this is done in a sound
way.

# ispec <<|y|>> <<forall x y z. x + y + z = z + y + x>>;;
- : thm =
|-
(forall x y z. x + y + z = z + y + x) ==>
(forall y’ z. y + y’ + z = z + y’ + y)

As usual, we also set up a ‘rule’ version that from a theorem � ∀x. P [x]
yields P [t]:

let spec t th = modusponens (ispec t (concl th)) th;;

6.8 First-order proof by inference

We’ve now produced a reasonable stock of derived rules, which among other
things can prove all propositional tautologies. But we haven’t established
that our rules are complete for all of first-order logic with equality, i.e. that
if p is logically valid then we can derive it in our system. We know that we
can derive all the equational axioms (by eq_trans, icongruence, etc.), so it
would suffice to show that we can simulate by inference any method that is
complete for first-order logic. We plan to recast the full first-order tableaux
in Section 3.10 using the methodology of proof generation from Section 6.6.
As there, we will reduce other propositional connectives to implication and
falsity, so complementary literals are now those of the form p and p ⇒
⊥ (rather than p and ¬p). We tweak the core literal unification function
correspondingly:

let unify_complementsf env =
function (Atom(R(p1,a1)),Imp(Atom(R(p2,a2)),False))

| (Imp(Atom(R(p1,a1)),False),Atom(R(p2,a2)))
-> unify env [Fn(p1,a1),Fn(p2,a2)]

| _ -> failwith "unify_complementsf";;
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Main tableau code

We will now encounter universally quantified formulas, replace them with
fresh variables, and later try to find instantiations of those variables to reach
a contradiction. So we use the same backtracking method as in Section 3.10,
passing an environment of instantiations to a continuation function. But the
end result passed to the top-level continuation in the event of overall success
should somehow yield a theorem as in Section 6.6, showing that the collection
of formulas p1, . . . , pn and literals l1, . . . , lm lead to a contradiction:

� p1 ⇒ · · · ⇒ pn ⇒ l1 ⇒ · · · ⇒ lm ⇒ ⊥.

The most straightforward approach would be to produce that theorem and
pass it to the continuation function. However, this creates some difficulties.
Suppose we are faced with a universally quantified formula at the head of
the list, so we want to prove:

� (∀x. P [x]) ⇒ p2 ⇒ · · · ⇒ pn ⇒ l1 ⇒ · · · ⇒ lm ⇒ ⊥.

The inference-free code in Section 3.10 first replaces x by a fresh variable y,
and at some later time discovers an instantiation t to reach a contradiction.
If we successfully produce the corresponding theorem:

� P [t] ⇒ p2 ⇒ · · · ⇒ pn ⇒ l1 ⇒ · · · ⇒ lm ⇒ ⊥,

then using ispec we can get the theorem we originally wanted. The difficulty
is that we don’t in general know what t is at the time we break down the
quantified formula. In an inference context, we can’t just replace it with a
fresh variable, since the following doesn’t hold in general:

� P [y] ⇒ p2 ⇒ · · · ⇒ pn ⇒ l1 ⇒ · · · ⇒ lm ⇒ ⊥.

So rather than having our main function pass a theorem to the continua-
tion function, we make it pass an OCaml function that returns a theorem;
the arguments to this function include a representation of the final instanti-
ation. An advantage of this approach is that we do essentially no inference
until right at the end when success is achieved and we get the final instanti-
ation, so we don’t waste time simulating fruitless search paths by inference.

We also need to consider existentially quantified formulas, which in our
reduced set of connectives will be those of the form (∀y. P [y]) ⇒ ⊥. In
the original tableau procedure, these were removed by an initial Skolemiza-
tion step. Our plan is to do essentially the same Skolemization dynamically,
replacing (∀y. P [x1, . . . , xn, y]) ⇒ ⊥ by P [x1, . . . , xn, f(x1, . . . , xn)] ⇒ ⊥,
for the appropriately determined Skolem function f , whenever we deal with
the formula in proof search. But whether Skolemization is done statically
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or dynamically, it presents serious problems for proof reconstruction. Even
given

� (P [x1, . . . , xn, f(x1, . . . , xn)] ⇒ ⊥)
⇒ p2 ⇒ · · · ⇒ pn ⇒ l1 ⇒ · · · ⇒ lm ⇒ ⊥

there’s no straightforward way of applying inference rules to get the ‘un-
Skolemized’ counterpart to that theorem, which is what we eventually want:

� ((∀y. P [x1, . . . , xn, y]) ⇒ ⊥)
⇒ p2 ⇒ · · · ⇒ pn ⇒ l1 ⇒ · · · ⇒ lm ⇒ ⊥.

The problem is that while the Skolemized and un-Skolemized formulas are
equisatisfiable (one is satisfiable iff the other one is), there is only a logical
implication between them in one direction, and not the direction we really
want:

�� P [x1, . . . , xn, f(x1, . . . , xn)] ⇒ (∀y. P [x1, . . . , xn, y]).

We will evade this difficulty in a way that may seem reckless, but will turn
out to be adequate: we just add to the final theorem the hypotheses that all
those implications do hold. More precisely, the final theorem will not be

� p1 ⇒ · · · ⇒ pn ⇒ l1 ⇒ · · · ⇒ lm ⇒ ⊥

but rather

� p1 ⇒ · · · ⇒ pn ⇒ l1 ⇒ · · · ⇒ lm ⇒ s,

where s is of the form s1 ⇒ · · · ⇒ sk ⇒ ⊥, each sk being a (ground-
instantiated, as usual) implication between Skolemized and un-Skolemized
formulas we encountered during proof search:

P [t1, . . . , tn, f(t1, . . . , tn)] ⇒ (∀y. P [t1, . . . , tn, y]).

The proof reconstruction needs to be able to ‘use’ an implication that
occurs later in the chain like this. The following inference rule passes from
� (q ⇒ f) ⇒ · · · ⇒ (q ⇒ p) ⇒ r to � (p ⇒ f) ⇒ · · · ⇒ (q ⇒ p) ⇒ r, where
the first argument i identifies the later implication q ⇒ p in the chain to use,
since there might be more than one with antecedent q. (In our application,
we will always have f = ⊥, but the rule works whatever it may be.)
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let rec use_laterimp i fm =
match fm with
Imp(Imp(q’,s),Imp(Imp(q,p) as i’,r)) when i’ = i ->

let th1 = axiom_distribimp i (Imp(Imp(q,s),r)) (Imp(Imp(p,s),r))
and th2 = imp_swap(imp_trans_th q p s)
and th3 = imp_swap(imp_trans_th (Imp(p,s)) (Imp(q,s)) r) in
imp_swap2(modusponens th1 (imp_trans th2 th3))

| Imp(qs,Imp(a,b)) ->
imp_swap2(imp_add_assum a (use_laterimp i (Imp(qs,b))));;

Since the final Skolemization formula s will also not be known until the
proof is completed, we make that an argument to the theorem-producing
functions, as well as the instantiation. More precisely, each of our theorem-
producing functions has the OCaml type (term -> term) * term -> thm, where
the first component represents the instantiation† and the second is the
Skolemization formula s.

The fact that we’re always manipulating functions that return theorems,
rather than simply theorems, makes things more involved and confusing, of
course. It helps a bit if we define ‘lifted’ variants of the relevant inference
rules. Some of these just feed their arguments through to the input theorem-
producers, then apply the usual inference rule to the result, for inference
rules with one theorem argument:

let imp_false_rule’ th es = imp_false_rule(th es);;

or two theorem arguments:

let imp_true_rule’ th1 th2 es = imp_true_rule (th1 es) (th2 es);;

or one non-theorem and one theorem argument:

let imp_front’ n thp es = imp_front n (thp es);;

In other cases we actually need to apply the instantiation to the terms
used in inference rules. For example, when adding a new assumption to
a theorem, we need to instantiate, using onformula to convert it from a
mapping on terms to a mapping on formulas:

let add_assum’ fm thp (e,s as es) =
add_assum (onformula e fm) (thp es);;

† We make it a general term mapping rather than just a mapping on variables since replacement
of non-variable subterms will later be necessary to get rid of the Skolemization assumptions.
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We make some of our lifted inference rules richer than the primitives on
which they are based, to reflect the use they will be put to in the tableau pro-
cedure. For example, we fold into eliminate_connective’ the transitivity
step in proof reconstruction:

let eliminate_connective’ fm thp (e,s as es) =
imp_trans (eliminate_connective (onformula e fm)) (thp es);;

and make spec’ handle the way a universally quantified formula is copied
to the back of the list as well as instantiated at the front, so it passes from
� P [t] ⇒ p2 ⇒ · · · ⇒ pn ⇒ (∀x. P [x]) ⇒ r to � (∀x. P [x]) ⇒ p2 ⇒ · · · ⇒
pn ⇒ r:

let spec’ y fm n thp (e,s) =
let th = imp_swap(imp_front n (thp(e,s))) in
imp_unduplicate(imp_trans (ispec (e y) (onformula e fm)) th);;

The two terminal steps that produce a theorem rather than modifying
another one need to create a theorem with all the appropriate instantiated
assumptions in the chain of implications, and with s as the conclusion. For
immediate contradiction where we have a head formula ⊥ we just do the
following; we assume that the instantiation e has already been applied to s

and we don’t do it again:

let ex_falso’ fms (e,s) =
ex_falso (itlist (mk_imp ** onformula e) fms s);;

For complementary literals, we need the full lists of formulas and literals,
plus the index i in the literals list for the complement p′ of the head formula p:

let complits’ (p::fl,lits) i (e,s) =
let l1,p’::l2 = chop_list i lits in
itlist (imp_insert ** onformula e) (fl @ l1)

(imp_contr (onformula e p)
(itlist (mk_imp ** onformula e) l2 s));;

Finally, handling Skolemization is simple because all we do is use the later
hypothesis to eliminate it:

let deskol’ (skh:fol formula) thp (e,s) =
let th = thp (e,s) in
modusponens (use_laterimp (onformula e skh) (concl th)) th;;

We are now ready for the main refutation recursion lcftab. The first
argument skofun determines what Skolem term f(x1, . . . , xn) to use on
a given formula (∀y. P [x1, . . . , xn, y]) ⇒ ⊥. The formulas (fms), literals
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(lits) and depth limit (n) come next, just as in Section 3.10. Then we have
the continuation (cont) and finally the current instantiation environment
(env), list of Skolem hypotheses needed so far (sks) and the counter for
fresh variable naming (k). As before, the last triple of arguments is the
one that is passed ‘horizontally’ across the sequence of continuations. With
reference to Sections 3.10 and 6.6 the structure of the code should now be
understandable.

let rec lcftab skofun (fms,lits,n) cont (env,sks,k as esk) =
if n < 0 then failwith "lcftab: no proof" else
match fms with
False::fl -> cont (ex_falso’ (fl @ lits)) esk

| (Imp(p,q) as fm)::fl when p = q ->
lcftab skofun (fl,lits,n) (cont ** add_assum’ fm) esk

| Imp(Imp(p,q),False)::fl ->
lcftab skofun (p::Imp(q,False)::fl,lits,n)

(cont ** imp_false_rule’) esk
| Imp(p,q)::fl when q <> False ->

lcftab skofun (Imp(p,False)::fl,lits,n)
(fun th -> lcftab skofun (q::fl,lits,n)

(cont ** imp_true_rule’ th)) esk
| ((Atom(_)|Imp(Atom(_),False)) as p)::fl ->

(try tryfind (fun p’ ->
let env’ = unify_complementsf env (p,p’) in
cont(complits’ (fms,lits) (index p’ lits)) (env’,sks,k)) lits

with Failure _ ->
lcftab skofun (fl,p::lits,n)

(cont ** imp_front’ (length fl)) esk)
| (Forall(x,p) as fm)::fl ->

let y = Var("X_"^string_of_int k) in
lcftab skofun ((subst (x |=> y) p)::fl@[fm],lits,n-1)

(cont ** spec’ y fm (length fms)) (env,sks,k+1)
| (Imp(Forall(y,p) as yp,False))::fl ->

let fx = skofun yp in
let p’ = subst(y |=> fx) p in
let skh = Imp(p’,Forall(y,p)) in
let sks’ = (Forall(y,p),fx)::sks in
lcftab skofun (Imp(p’,False)::fl,lits,n)

(cont ** deskol’ skh) (env,sks’,k)
| fm::fl ->

let fm’ = consequent(concl(eliminate_connective fm)) in
lcftab skofun (fm’::fl,lits,n)

(cont ** eliminate_connective’ fm) esk
| [] -> failwith "lcftab: No contradiction";;

Assigning Skolem functions

The previous function relied on the argument skofun to determine the
Skolem term to use for a given subformula. (We are implicitly using the
same Skolem function for any instances of the same formula, which we noted
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is permissible in Section 3.6.) We need to set up some such function based
on the initial formula. The following function returns the set of appropri-
ately quantified subformulas of a formula fm, existentially quantified if e
is true and universally quantified if e is false. This determination respects
the implicit parity of the subformula, had we done an initial NNF conver-
sion; for example when looking for existentially quantified subformulas of
p ⇒ q we search for existentially quantified subformulas of q and universally
quantified subformulas of p.

let rec quantforms e fm =
match fm with
Not(p) -> quantforms (not e) p

| And(p,q) | Or(p,q) -> union (quantforms e p) (quantforms e q)
| Imp(p,q) -> quantforms e (Or(Not p,q))
| Iff(p,q) -> quantforms e (Or(And(p,q),And(Not p,Not q)))
| Exists(x,p) -> if e then fm::(quantforms e p) else quantforms e p
| Forall(x,p) -> if e then quantforms e p else fm::(quantforms e p)
| _ -> [];;

Hence we can identify all the ‘existential’ subformulas of fm of the form
(∀y. P [x1, . . . , xn, y]) ⇒ ⊥ that we may encounter during proof search and
need to ‘Skolemize’. We create a Skolem function for each one, and return
an association list with pairs consisting of the formula ∀y. P [x1, . . . , xn, y]
and the corresponding term f(x1, . . . , xn):

let skolemfuns fm =
let fns = map fst (functions fm)
and skts = map (function Exists(x,p) -> Forall(x,Not p) | p -> p)

(quantforms true fm) in
let skofun i (Forall(y,p) as ap) =
let vars = map (fun v -> Var v) (fv ap) in
ap,Fn(variant("f"^"_"^string_of_int i) fns,vars) in

map2 skofun (1--length skts) skts;;

However, during proof search, we will not normally encounter these subfor-
mulas themselves, but rather instantiations of them (quite possibly several
different ones) with fresh variables. To deduce these instantiations we use
an extension of term_match from terms to formulas; note that we require
corresponding bound variables to be the same in both terms:



6.8 First-order proof by inference 501

let rec form_match (f1,f2 as fp) env =
match fp with
False,False | True,True -> env

| Atom(R(p,pa)),Atom(R(q,qa)) -> term_match env [Fn(p,pa),Fn(q,qa)]
| Not(p1),Not(p2) -> form_match (p1,p2) env
| And(p1,q1),And(p2,q2)| Or(p1,q1),Or(p2,q2) | Imp(p1,q1),Imp(p2,q2)
| Iff(p1,q1),Iff(p2,q2) -> form_match (p1,p2) (form_match (q1,q2) env)
| (Forall(x1,p1),Forall(x2,p2) |

Exists(x1,p1),Exists(x2,p2)) when x1 = x2 ->
let z = variant x1 (union (fv p1) (fv p2)) in
let inst_fn = subst (x1 |=> Var z) in
undefine z (form_match (inst_fn p1,inst_fn p2) env)

| _ -> failwith "form_match";;

We can now incorporate this Skolem-finder into lcftab and further spe-
cialize it: lcfrefute will attempt to refute a formula fm using a variable limit
of n, and pass the overall theorem-producing function, as well as the final
triple (env,sks,k) containing the instantiation, list of Skolem hypotheses
and number of variables used, to the continuation cont:

let lcfrefute fm n cont =
let sl = skolemfuns fm in
let find_skolem fm =
tryfind(fun (f,t) -> tsubst(form_match (f,fm) undefined) t) sl in

lcftab find_skolem ([fm],[],n) cont (undefined,[],0);;

All we need to make the prover work is a continuation that derives the
appropriate replacement function and Skolem term from the second argu-
ment and passes them to the theorem-producer. To construct each Skolem
hypothesis P [t] ⇒ ∀y. P [y] from the corresponding pair of (∀y. P [y]) and t

and add it as an antecedent to another formula q we use:

let mk_skol (Forall(y,p),fx) q =
Imp(Imp(subst (y |=> fx) p,Forall(y,p)),q);;

and then our continuation is:

let simpcont thp (env,sks,k) =
let ifn = tsubst(solve env) in
thp(ifn,onformula ifn (itlist mk_skol sks False));;

Let’s test it on a couple of very simple first-order refutation problems:

# lcfrefute <<p(1) /\ ~q(1) /\ (forall x. p(x) ==> q(x))>> 1 simpcont;;
- : thm = |- p(1) /\ ~q(1) /\ (forall x. p(x) ==> q(x)) ==> false
# lcfrefute <<(exists x. ~p(x)) /\ (forall x. p(x))>> 1 simpcont;;
- : thm =
|-
(exists x. ~p(x)) /\ (forall x. p(x)) ==>
(~(~p(f_1)) ==> (forall x. ~(~p(x)))) ==> false
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In each case it works fine. But since the second problem required Skolem-
ization, we don’t get the direct refutation, but rather a refutation assuming
the given property of Skolem functions.

Eliminating Skolem functions

To finish the job, we need to get rid of those Skolem hypotheses. At first
sight, it’s not at all clear how to do that post hoc, because none of them are
logically valid! However, note that they are all the final ground instances,
and inside proof generation they are used ‘as is’ without any breakdown or
instantiation. So the entire proof would work equally well if we systematically
replaced all the Skolem terms f(t1, . . . , tn) with variables. Since the theorem-
producing function takes any term mapping as an argument, we can easily
modify the continuation to make it perform such a replacement. How does
this help? Suppose that without replacement we would end up with a Skolem
assumption P [f(t1, . . . , tn)] ⇒ ∀y. P [y] in the final theorem:

� φ ⇒ (P [f(t1, . . . , tn)] ⇒ ∀y. P [y]) ⇒ · · · ⇒ ⊥.

If we replace the Skolem term with a variable v then we get:

� φ ⇒ (P [v] ⇒ ∀y. P [y]) ⇒ · · · ⇒ ⊥

and so one application of imp_swap gives:

� (P [v] ⇒ ∀y. P [y]) ⇒ φ ⇒ · · · ⇒ ⊥.

Provided v does not occur free in any other part of the theorem (φ or
any of the other terms in the chain of implications), we can eliminate this
assumption using the ‘drinker’s principle’ (Section 3.3): there is always a v

such that if P [v] holds then ∀y. P [y] holds. The derivation is fairly straight-
forward; note that we infer v from the formula but take care to pick a default
in the case where the formula P [v] does not actually have v free:

let elim_skolemvar th =
match concl th with
Imp(Imp(pv,(Forall(x,px) as apx)),q) ->

let [th1;th2] = map (imp_trans(imp_add_concl False th))
(imp_false_conseqs pv apx) in

let v = hd(subtract (fv pv) (fv apx) @ [x]) in
let th3 = gen_right v th1 in
let th4 = imp_trans th3 (alpha x (consequent(concl th3))) in
modusponens (axiom_doubleneg q) (right_mp th2 th4)

| _ -> failwith "elim_skolemvar";;
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By using this repeatedly, we can eliminate all the variable-replaced Skolem
hypotheses. We need a bit of care, because when eliminating v from �
(P [v] ⇒ ∀y. P [y]) ⇒ q using elim_skolemvar, we need v �∈ FV(q). We
can easily ensure that v doesn’t occur in the initial formula by starting off
with its universal closure. And although it’s perfectly possible for a Skolem
variable to appear in Skolem hypotheses other than its own ‘defining’ one,
we can find an order to list the Skolem hypotheses so that no Skolem vari-
able occurs in a hypothesis later than its own defining one, which is enough
for the iterated elimination to work. We simply need to sort according to the
sizes of the Skolem terms that we’re replacing by variables. For each Skolem
hypothesis for a Skolem term f(t1, . . . , tn)

P [t1, . . . , tn, f(t1, . . . , tn)] ⇒ ∀y. P [t1, . . . , tn, y]

arises from instantiating (by matching) a formula that characterizes the
Skolem function f and involves no others:

P [x1, . . . , xn, f(x1, . . . , xn)] ⇒ ∀y. P [x1, . . . , xn, y].

Therefore, if the Skolem hypothesis above involves any other Skolem term
g(s1, . . . , sm), that term must occur in one of the terms to which some xi

is instantiated, and hence must also occur inside f(t1, . . . , tn) as a (proper)
subterm and so be smaller in size.

The plan for a de-Skolemizing continuation is now clear. We start as before
by creating an instantiation function ifn for the basic variable instantiation.
We then apply this to all the data for the Skolem hypotheses and sort them
in decreasing order (after eliminating any duplicates) to give ssk. We then
construct a further instantiation vfn to replace all the Skolem terms with
variables, apply the theorem-creator to the composed replacement and the
appropriate Skolem term, then finally remove all the Skolem hypotheses
from the resulting theorem:

let deskolcont thp (env,sks,k) =
let ifn = tsubst(solve env) in
let isk = setify(map (fun (p,t) -> onformula ifn p,ifn t) sks) in
let ssk = sort (decreasing (termsize ** snd)) isk in
let vs = map (fun i -> Var("Y_"^string_of_int i)) (1--length ssk) in
let vfn =
replacet(itlist2 (fun (p,t) v -> t |-> v) ssk vs undefined) in

let th = thp(vfn ** ifn,onformula vfn (itlist mk_skol ssk False)) in
repeat (elim_skolemvar ** imp_swap) th;;

Now for a first-order prover with similar power to tab, we just need to
wrap this up appropriately on the negated universal closure of the starting
formula:
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let lcffol fm =
let fvs = fv fm in
let fm’ = Imp(itlist mk_forall fvs fm,False) in
let th1 = deepen (fun n -> lcfrefute fm’ n deskolcont) 0 in
let th2 = modusponens (axiom_doubleneg (negatef fm’)) th1 in
itlist (fun v -> spec(Var v)) (rev fvs) th2;;

For example, here is a first-order problem with a fairly rich quantifier
structure:

# let p58 = lcffol
<<forall x. exists v. exists w. forall y. forall z.

((P(x) /\ Q(y)) ==> ((P(v) \/ R(w)) /\ (R(z) ==> Q(v))))>>;;
Searching with depth limit 0
Searching with depth limit 1
Searching with depth limit 2
Searching with depth limit 3
Searching with depth limit 4
val p58 : thm =
|-
forall x.
exists v w.
forall y z. P(x) /\ Q(y) ==> (P(v) \/ R(w)) /\ (R(z) ==> Q(v))

and here is another old favourite:

# let ewd1062_1 = lcffol
<<(forall x. x <= x) /\
(forall x y z. x <= y /\ y <= z ==> x <= z) /\
(forall x y. f(x) <= y <=> x <= g(y))
==> (forall x y. x <= y ==> f(x) <= f(y))>>;;

...
val ewd1062_1 : thm =
|-
(forall x. x <= x) /\
(forall x y z. x <= y /\ y <= z ==> x <= z) /\
(forall x y. f(x) <= y <=> x <= g(y)) ==>
(forall x y. x <= y ==> f(x) <= f(y))

Completeness of first-order logic

The automated prover using the primitive logical steps is a useful tool. More-
over, the supporting arguments we have given yield a crucial completeness
theorem for our first-order deductive system, complementing the soundness
Theorem 6.1.

Theorem 6.2 If p is valid in first-order logic (without equality), then it is
provable using the primitive rules set out in Section 6.4 and can be (in
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principle without time or space limitations) proved automatically by the
prover lcffol.

Proof Note first that although our derived rules use equality internally,
none of the actual proof search treats the equality relation specially, so we
can assume without loss of generality that p does not involve the equality
relation.

If p is logically valid, the discussion in Section 3.10 shows that negation,
Skolemization and tableaux will prove it. The arguments set out in this
section imply that this process will be accurately simulated by lcffol using
only the primitive rules.

Sometimes, it is useful to generalize the idea of provability to cover reason-
ing from a (possibly infinite) set of assumptions Γ. We simply define Γ � p

by the same set of inference rules plus:
p ∈ Γ
Γ � p

,

It is straightforward to prove by rule induction that if Γ � p and Γ ⊆ Δ
then also Δ � p. We can extend soundness and completeness to the new
notion.

Theorem 6.3
Γ � p iff Γ |= p.

Proof As before, the left-to-right direction is straightforward. Each p ∈ Γ
satisfies Γ |= p by definition, all the logical axioms also hold in all inter-
pretations, in particular models of Γ, while the two proper inference rules
preserve validity. The result follows by rule induction.

Conversely, suppose Γ |= p. By the compactness theorem, there is a finite
subset {p1, . . . , pn} ⊆ Γ with {p1, . . . , pn} |= p. By definition, this is equiv-
alent to {∀(p1), . . . ,∀(pn)} |= p where ∀(pi) is the generalization of pi over
its free variables. This in turn is equivalent to |= ∀(p1) ⇒ · · · ⇒ ∀(pn) ⇒ p.
By completeness, we have � ∀(p1) ⇒ · · · ⇒ ∀(pn) ⇒ p. Clearly this also
implies Γ � ∀(p1) ⇒ · · · ⇒ ∀(pn) ⇒ p, since all the old inference rules are
still present. But since Γ � ∀(pi) for 1 ≤ i ≤ n, we obtain after n more
instances of modus ponens the theorem Γ � p.

As a corollary we obtain the deduction theorem:

Corollary 6.4
Γ � ∀(p) ⇒ q if and only if Γ ∪ {p} � q.
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Proof The same property holds by definition for ‘|=’, and by completeness
this coincides with ‘�’. (For a more algorithmic way of establishing this
result, see Exercise 6.6 below.)

Sometimes we only want to consider provability of formulas in a partic-
ular language L. In this case it’s important to note that we may similarly
restrict the function and predicate symbols that appear in all the axioms,
including logical axioms like p ⇒ (q ⇒ p), while retaining completeness.
This isn’t immediately obvious just looking at the inference rules, since in
modus ponens we could imagine that it might be necessary to use some p not
in the language in order to conclude � q for q in the language from � p and
� p ⇒ q. To see that such excursions, while quite possible, are not necessary,
simply observe that all instantiations of axioms and inference rules in lcffol
involve terms in the original language. Although the Skolem functions were
used as an auxiliary device, they played no role in any inference steps.

6.9 Interactive proof styles

We seem to have the key components needed to realize the dream of inter-
active theorem proving set out at the beginning of this chapter. We can
compose and modify theorems interactively using the inference rules, and
can fill in simple steps automatically using something like lcffol. However,
this is still a bit painful because Hilbert-style proof systems aren’t very con-
venient for reasoning with assumptions. A natural deduction system is much
better, since we can locally use p as an assumption to help us to derive q,
then apply the rule of implication-introduction (see Section 6.3) to deduce
p ⇒ q.† Moreover, it’s sometimes more convenient to work backwards (top-
down), breaking down the goal into simpler subgoals, rather than starting
with the assumptions and working forwards.

Tactics

Both the use of a different deductive system and the mixing of forward
and backward proof can be supported very elegantly in LCF-style theo-
rem provers using the idea of a tactic, due to Milner (Gordon, Milner and
Wadsworth 1979). Although different implementations of the idea are possi-
ble, we will present something close to the original LCF approach. We first
define a notion of goal, which is a desired ‘conclusion’ formula q together
with a set of hypotheses p1, . . . , pn, each of which may be assigned a name
for ease of reference.
† Also interesting is structured calculational proof (Back, Grundy and Wright 1996), which has

even more refined notions of local scope.
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Intuitively, a goal corresponds to a theorem p1 ∧ · · · ∧ pn ⇒ q, or if n = 0
just � ⇒ q, logically equivalent to q. In fact, to solve such a goal is precisely
to produce a theorem � p1 ∧ · · · ∧ pn ⇒ q. We now define a type goals to
be a set (actually list) of such goals together with a justification function,
which, given theorems solving each subgoal, produces the theorem solving
the original starting goal.

type goals =
Goals of ((string * fol formula) list * fol formula)list *

(thm list -> thm);;

Most of the time, we will operate on the first goal in the list, and we set
up the printer so that it only prints this goal:

let print_goal =
let print_hyp (l,fm) =
open_hbox(); print_string(l^":"); print_space();
print_formula print_atom fm; print_newline(); close_box() in

fun (Goals(gls,jfn)) ->
match gls with
(asl,w)::ogls ->

print_newline();
(if ogls = [] then print_string "1 subgoal:" else
(print_int (length gls);
print_string " subgoals starting with"));

print_newline();
do_list print_hyp (rev asl);
print_string "---> ";
open_hvbox 0; print_formula print_atom w; close_box();
print_newline()

| [] -> print_string "No subgoals";;

#install_printer print_goal;;

Now, a tactic is simply a function of type :goals->goals.† It modifies the
list of goals in some way, (e.g. replacing a single goal whose conclusion is
a∧ b by two goals with conclusions a and b) and appropriately modifies the
justification function to work from the modified goals. The idea is that one
sets up an initial goal, refines it using tactics until the list of subgoals is
empty, and then applies the final justification function to the empty list of
theorems in order to obtain the final theorem.

To start the process with an initial formula p to be proved, we set up
a singleton list of goals with just p as conclusion and no antecedent. By

† This differs slightly from the original LCF notion where a tactic maps a single goal to a list
of goals and corresponding justification function. However, the present notion is slightly more
regular to describe.
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the organizational plan set out above, the justification function is expected
to return a theorem � ⇒ p, and so at the end we just want to perform
modus ponens with � � to get the final theorem. However, since there is no
guarantee that the justification function did its job properly,† we confirm
that the conclusion is as expected.

let set_goal p =
let chk th = if concl th = p then th else failwith "wrong theorem" in
Goals([[],p],fun [th] -> chk(modusponens th truth));;

At the other end, once we have the empty list of subgoals, we can terminate
the proof and (we hope) get the intended theorem by:

let extract_thm gls =
match gls with
Goals([],jfn) -> jfn []

| _ -> failwith "extract_thm: unsolved goals";;

We can solve goals g by applying tactics in the list prf in sequence:

let tac_proof g prf = extract_thm(itlist (fun f -> f) (rev prf) g);;

and in particular prove p using a sequence of tactics:

let prove p prf = tac_proof (set_goal p) prf;;

So much for the overall setup: what of the actual tactics? We can view a
goal as a ‘desired sequent’, and design our tactics to apply natural deduction
rules ‘in reverse’. For example, the natural deduction rule of conjunction
introduction can be written:

Γ → p Γ → q

Γ → p ∧ q
.

We can turn it into a tactic that breaks down a goal with conclusion p∧ q

into two subgoals with conclusions p and q. We need to modify the justifi-
cation function correspondingly; the original justification function expects a
list of theorems starting with � a ⇒ p ∧ q, whereas we need one where the
list starts with two theorems � a ⇒ p and � a ⇒ q:

let conj_intro_tac (Goals((asl,And(p,q))::gls,jfn)) =
let jfn’ (thp::thq::ths) =
jfn(imp_trans_chain [thp; thq] (and_pair p q)::ths) in

Goals((asl,p)::(asl,q)::gls,jfn’);;

† In customary LCF jargon, a tactic may be ‘invalid’.
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Many tactics just take the first of the goals and modify it, without chang-
ing the total number. In this case the following idiom often occurs when
constructing the modified justification function:

let jmodify jfn tfn (th::oths) = jfn(tfn th :: oths);;

A tactic corresponding to the natural deduction rule of ‘∀-introduction’
is similar to the generalization rule in our axiomatization:

Γ → P [x]
Γ → ∀x. P [x]

.

In fact, with our encoding of a sequent a1, . . . , an → P [x] as � a1 ∧ · · · ∧
an ⇒ P [x], it is exactly the gen_right rule. The rule is only sound when x

does not occur free in any of the ai, which matches the circumstances under
which gen_right works. We can consider a slight generalization to include
an implicit bound variable change:

Γ → P [y]
Γ → ∀x. P [x]

,

where again we assume that y does not occur in any of the assumptions Γ,
nor indeed in ∀x. P [x]. This can be implemented as:

let gen_right_alpha y x th =
let th1 = gen_right y th in
imp_trans th1 (alpha x (consequent(concl th1)));;

Now we can implement a corresponding tactic that reverses this process:
given a first goal with conclusion ∀x.P [x], we replace it by a similar subgoal
with conclusion P [y].

let forall_intro_tac y (Goals((asl,(Forall(x,p) as fm))::gls,jfn)) =
if mem y (fv fm) or exists (mem y ** fv ** snd) asl
then failwith "fix: variable already free in goal" else
Goals((asl,subst(x |=> Var y) p)::gls,

jmodify jfn (gen_right_alpha y x));;

Similarly there is a natural deduction rule of ‘∃-introduction’:

Γ → P [t]
Γ → ∃x. P [x]

.

The core of such an inference rule, taking a variable x, a term t and a
formula P [x] and yielding a theorem � P [t] ⇒ ∃x. P [x], can be derived by
contraposing the result from ispec:
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let right_exists x t p =
let th = contrapos(ispec t (Forall(x,Not p))) in
let Not(Not p’) = antecedent(concl th) in
end_itlist imp_trans
[imp_contr p’ False; imp_add_concl False (iff_imp1 (axiom_not p’));
iff_imp2(axiom_not (Not p’)); th; iff_imp2(axiom_exists x p)];;

and then we can implement the corresponding tactic that reduces a goal
with conclusion ∃x. P [x] to a new goal P [t] with user-specified t:

let exists_intro_tac t (Goals((asl,Exists(x,p))::gls,jfn)) =
Goals((asl,subst(x |=> t) p)::gls,

jmodify jfn (fun th -> imp_trans th (right_exists x t p)));;

Another characteristic natural deduction rule is ‘⇒-introduction’. Indeed,
the ability to use an assumption p to help establish q and then use this rule
to obtain p ⇒ q is one of the strengths of natural deduction compared with
Hilbert-style systems:

Γ → q

Γ − {p} → p ⇒ q
.

Assuming we have p as the head of the list of assumptions Γ, this just
amounts to passing from � p ∧ a ⇒ q to � a ⇒ p ⇒ q, or just from
� p ⇒ q to � � ⇒ p ⇒ q in the degenerate case of no other assumptions.
So a corresponding tactic to break a goal with conclusion p ⇒ q down to
a similar goal with q as the conclusion and p added as a new assumption
(with a chosen label) is:

let imp_intro_tac s (Goals((asl,Imp(p,q))::gls,jfn)) =
let jmod = if asl = [] then add_assum True else imp_swap ** shunt in
Goals(((s,p)::asl,q)::gls,jmodify jfn jmod);;

Justifications

In some cases, facts are justified by a previously proved theorem that does
not depend on the current context of assumptions. It’s often convenient to
turn such a theorem � p into � a1 ∧ · · · ∧ an ⇒ p, where the ai are the
current assumptions; even though this weakens the theorem it makes it fit
better into a framework where most theorems have that hypothesis.

let assumptate (Goals((asl,w)::gls,jfn)) th =
add_assum (list_conj (map snd asl)) th;;
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Hence we can ‘import’ (the universal closures of) a list of theorems, giving
them the right assumptions for the current goal. (The reason for the redun-
dant argument p will become clear later.)

let using ths p g =
let ths’ = map (fun th -> itlist gen (fv(concl th)) th) ths in
map (assumptate g) ths’;;

Similarly, we often want to turn the assumptions into theorems of that
form, i.e. produce � a1 ∧ · · · ∧ an ⇒ ai for all 1 ≤ i ≤ n. Note that we can’t
just create a big conjunction and call conjths because some of the ai may
themselves be conjunctions, so we need something more elaborate.

let rec assumps asl =
match asl with
[] -> []

| [l,p] -> [l,imp_refl p]
| (l,p)::lps ->

let ths = assumps lps in
let q = antecedent(concl(snd(hd ths))) in
let rth = and_right p q in
(l,and_left p q)::map (fun (l,th) -> l,imp_trans rth th) ths;;

Sometimes we only need the first assumption, in which case the following
is much more efficient than using assumps then taking the head:

let firstassum asl =
let p = snd(hd asl) and q = list_conj(map snd (tl asl)) in
if tl asl = [] then imp_refl p else and_left p q;;

To get the standardized theorems corresponding to a list of assumption
labels we use the following:

let by hyps p (Goals((asl,w)::gls,jfn)) =
let ths = assumps asl in map (fun s -> assoc s ths) hyps;;

It’s also convenient to be able to produce, in the same standardized form,
more or less trivial consequences of some other theorems. In this justify
function it is assumed that byfn applied to the arguments hyps, p and g,
returns a list of canonical theorems. Then p is deduced from those theorems
using first-order automation (with special treatment of the case where the
only theorem matches the desired conclusion), and the final result put in
standard form too:
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let justify byfn hyps p g =
match byfn hyps p g with
[th] when consequent(concl th) = p -> th

| ths ->
let th = lcffol(itlist (mk_imp ** consequent ** concl) ths p) in
if ths = [] then assumptate g th else imp_trans_chain ths th;;

We can define other ways of justifying a result that fit into the same
framework. For example we can prove it by a nested subproof (this is why
we carried through the argument p):

let proof tacs p (Goals((asl,w)::gls,jfn)) =
[tac_proof (Goals([asl,p],fun [th] -> th)) tacs];;

The degenerate case is justifying the empty list of theorems, using a little
hack so we can write ‘at once’:

let at once p gl = [] and once = [];;

Thus we are able to write any of the following in justification of a claim:

• ‘justify by ["lab1"; ...; "labn"]’ (deduce from assumptions);
• ‘justify using [th1; ...; thm]’ (deduce from external theorems);
• ‘justify proof [tac1; ...; tacp]’ (deduce by applying sequence of

tactics using current assumptions);
• ‘justify at once’ (deduce by pure first-order reasoning).

The most basic use of this automated justification is to solve the entire
first goal:

let auto_tac byfn hyps (Goals((asl,w)::gls,jfn) as g) =
let th = justify byfn hyps w g in
Goals(gls,fun ths -> jfn(th::ths));;

We can also use it to justify adding a new, appropriately labelled, assump-
tion that we can regard as a lemma on the way to the main result:

let lemma_tac s p byfn hyps (Goals((asl,w)::gls,jfn) as g) =
let tr = imp_trans(justify byfn hyps p g) in
let mfn = if asl = [] then tr else imp_unduplicate ** tr ** shunt in
Goals(((s,p)::asl,w)::gls,jmodify jfn mfn);;

We can also naturally implement some of the elimination rules of natural
deduction. We have already implemented a rule for existential introduction
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(exists_intro_tac); one simple formulation of the existential elimination
rule is:

Γ � ∃x. P [x] Γ ∪ {P [x]} → Q

Γ → Q
,

where we assume that x does not appear free in Q nor in any formula in Γ.
A corresponding tactic to reduce Γ → Q to Γ∪ {P [x]} → Q, with the proof
of Γ � ∃x. P [x] being performed by the given justification function, is:

let exists_elim_tac l fm byfn hyps (Goals((asl,w)::gls,jfn) as g) =
let Exists(x,p) = fm in
if exists (mem x ** fv) (w::map snd asl)
then failwith "exists_elim_tac: variable free in assumptions" else
let th = justify byfn hyps (Exists(x,p)) g in
let jfn’ pth =
imp_unduplicate(imp_trans th (exists_left x (shunt pth))) in

Goals(((l,p)::asl,w)::gls,jmodify jfn jfn’);;

Similarly, for the natural deduction disjunction elimination rule:

Γ → p ∨ q Γ ∪ {p} → r Γ ∪ {q} → r

Γ → r

we first implement the basic inference rule getting us from � p ⇒ r and
� q ⇒ r to � p ∨ q ⇒ r:

let ante_disj th1 th2 =
let p,r = dest_imp(concl th1) and q,s = dest_imp(concl th2) in
let ths = map contrapos [th1; th2] in
let th3 = imp_trans_chain ths (and_pair (Not p) (Not q)) in
let th4 = contrapos(imp_trans (iff_imp2(axiom_not r)) th3) in
let th5 = imp_trans (iff_imp1(axiom_or p q)) th4 in
right_doubleneg(imp_trans th5 (iff_imp1(axiom_not(Imp(r,False)))));;

and hence derive a tactic that, given a formula fm of the form p∨q, proves it
using the justification provided and then requires us to prove two subgoals
resulting from adding p and q respectively as new assumptions:

let disj_elim_tac l fm byfn hyps (Goals((asl,w)::gls,jfn) as g) =
let th = justify byfn hyps fm g and Or(p,q) = fm in
let jfn’ (pth::qth::ths) =
let th1 = imp_trans th (ante_disj (shunt pth) (shunt qth)) in
jfn(imp_unduplicate th1::ths) in

Goals(((l,p)::asl,w)::((l,q)::asl,w)::gls,jfn’);;

We can illustrate the framework we have set up with a simple example.
Let us set up a goal:
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let g0 = set_goal
<<(forall x. x <= x) /\
(forall x y z. x <= y /\ y <= z ==> x <= z) /\
(forall x y. f(x) <= y <=> x <= g(y))
==> (forall x y. x <= y ==> f(x) <= f(y)) /\

(forall x y. x <= y ==> g(x) <= g(y))>>;;

We might start the proof by making the antecedent a new hypothesis:

# let g1 = imp_intro_tac "ant" g0;;
val g1 : goals =
1 subgoal:
ant: (forall x. x <= x) /\

(forall x y z. x <= y /\ y <= z ==> x <= z) /\
(forall x y. f(x) <= y <=> x <= g(y))

---> (forall x y. x <= y ==> f(x) <= f(y)) /\
(forall x y. x <= y ==> g(x) <= g(y))

Now, we could in principle just solve the goal by pure first-order automa-
tion, i.e. auto_tac by ["ant"] g1. In practice, our rather limited first-
order prover takes too much time. But we can break the goal down into two
subgoals:

# let g2 = conj_intro_tac g1;;
val g2 : goals =
2 subgoals starting with
ant: (forall x. x <= x) /\

(forall x y z. x <= y /\ y <= z ==> x <= z) /\
(forall x y. f(x) <= y <=> x <= g(y))

---> forall x y. x <= y ==> f(x) <= f(y)

and now we can solve the two subgoals separately using automation:

# let g3 = funpow 2 (auto_tac by ["ant"]) g2;;
...
val g3 : goals = No subgoals

and then we can recover the theorem with extract_thm g3. We can also
put together the whole proof:

prove <<(forall x. x <= x) /\
(forall x y z. x <= y /\ y <= z ==> x <= z) /\
(forall x y. f(x) <= y <=> x <= g(y))
==> (forall x y. x <= y ==> f(x) <= f(y)) /\

(forall x y. x <= y ==> g(x) <= g(y))>>
[imp_intro_tac "ant";
conj_intro_tac;
auto_tac by ["ant"];
auto_tac by ["ant"]];;

Admittedly this was a somewhat trivial proof, but it illustrates the phi-
losophy of the tactic setup: we can systematically break down the goals until
they become accessible to efficient automation.
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Declarative proof

A tactic proof like the one above is reminiscent of an imperative program: it
is a sequence of instructions (tactics) specifying how to change the state
(goals). Indeed, many LCF systems provide operations on tactics, often
called tacticals, analogous to typical imperative programming constructs,
such as ‘repeat a tactic until it is no longer applicable’. We will therefore call
such proofs procedural: they emphasize how to perform proof steps. Although
this approach to proof can be quite efficient, it has some drawbacks, most
notably inscrutability. Without replaying the steps interactively at the com-
puter, it’s hard to visualize the intermediate goalstates, just as it’s hard
when given the moves of a chess game to visualize the position on the board
at various points.

We could try to make tactic proofs more readable by annotating them with
comments showing the intermediate goalstates at various critical junctures,
just as a sequence of chess moves is often supplemented with diagrams.
Helpful as this can be, there’s a danger that the comments and the proof
may fail to correspond, as they sometimes do for programs in general. But
we can do better by making the additional annotation an integral part of
the proof, checked for correctness when the proof is run.

First we’ll enhance imp_intro_tac so that the user needs to state the
facts being added to the assumption list. When run, the tactic will check
that these do indeed correspond to the antecedent p of the conclusion p ⇒ q

of the goal. While we’re about it, we’ll allow the enhanced tactic, given a goal
p1∧· · ·∧pk ⇒ q, to split the conjunctive antecedent into separately labelled
assumptions p1, . . . , pk. The following inference rule is necessary to support
this: it maps � p1∧· · ·∧pn ⇒ q to � pi+1∧· · ·∧pn ⇒ p1∧· · ·∧pi ⇒ q, hence
allowing us to modify the justification function to compensate for multiple
new assumptions:

let multishunt i th =
let th1 = imp_swap(funpow i (imp_swap ** shunt) th) in
imp_swap(funpow (i-1) (unshunt ** imp_front 2) th1);;

Now our tactic, which we give the friendlier name assume, just takes a list
of label–term pairs for the conjuncts of the assumption:

let assume lps (Goals((asl,Imp(p,q))::gls,jfn)) =
if end_itlist mk_and (map snd lps) <> p then failwith "assume" else
let jfn’ th = if asl = [] then add_assum True th

else multishunt (length lps) th in
Goals((lps@asl,q)::gls,jmodify jfn jfn’);;
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This is our first step in pursuit of a more declarative† approach to proof,
where the emphasis is on stating at each stage what is being proved rather
than how. In its simplest form, a declarative proof might simply be a sequence
of intermediate assertions, acting as stepping-stones between the assump-
tions and conclusion. This is the approach taken by the NQTHM prover
(Boyer and Moore 1979), which attempts to bridge the gaps between steps
using powerful automation. Our notion of declarative proof, inspired by
Mizar (Trybulec 1978; Trybulec and Blair 1985; Rudnicki 1992),‡ is a little
different in two respects:

• the step-bridging automation is guided/constrained by an indication of
which assumptions to use;

• proofs can be structured using local introduction of variables and assump-
tions.

We will, moreover, implement these declarative proof constructs within
our existing tactic framework. To prove an intermediate assertion p and add
it to the assumptions with label lab, we use note("lab",p) byfn hyps,
with a justification function byfn and arguments hyps as used in several
tactics above.

let note (l,p) = lemma_tac l p;;

When the trivial label suffices, we use have p as an abbreviation:

let have p = note("",p);;

Very often we will want to automatically include the previously deduced
assumption, labelled or not, in the list of theorems produced by a justi-
fication. The so function modifies a tactic to add the head of the list of
assumptions to the theorems produced by its justification:

let so tac arg byfn =
tac arg (fun hyps p (Goals((asl,w)::_,_) as gl) ->

firstassum asl :: byfn hyps p gl);;

Although the core of a declarative proof will be a series of such intermedi-
ate assertions, we will also impose some block structure so that variables and
assumptions can be introduced and a series of steps can take place locally

† This terminology (Harrison 1996c) was suggested by Mike Gordon based on the analogy with
programming languages.

‡ Mizar in turn was inspired by natural deduction in the particular style of Jaskowski (1934) and
Fitch (1952), as well as the block structure in the Pascal programming language (Jensen and
Wirth 1974).
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in that context. For introducing assumptions we use assume, defined above.
For introducing new variables, we use either:

• fix "v" to reduce a goal ∀x. P [x] to P [v], introducing the variable v, or
• consider("v",<<P[v]>>) (‘consider a v such that P [v]’) to introduce

a new variable v and an assumption P [v], given some justification for
∃x. P [x].

The implementations are little more than friendlier names for existing
tactics:

let fix = forall_intro_tac;;

let consider (x,p) = exists_elim_tac "" (Exists(x,p));;

A couple of other handy constructs respectively provide a witness for an
existential quantifier and perform a case-split over a disjunctive theorem:

let take = exists_intro_tac;;

let cases = disj_elim_tac "";;

We also need some way of indicating that we’re finished: conclude p,
with appropriate justification, will try to deduce p, and if that matches
the conclusion of the goal will reduce it to the trivial �. More generally
(following Mizar), if the goal has conclusion p ∧ q then it is reduced to q,
allowing us to nibble away at a conjunctive goal one conjunct at a time:

let conclude p byfn hyps (Goals((asl,w)::gls,jfn) as gl) =
let th = justify byfn hyps p gl in
if p = w then Goals((asl,True)::gls,jmodify jfn (fun _ -> th)) else
let p’,q = dest_and w in
if p’ <> p then failwith "conclude: bad conclusion" else
let mfn th’ = imp_trans_chain [th; th’] (and_pair p q) in
Goals((asl,q)::gls,jmodify jfn mfn);;

Although it arguably compromises our ideal of forcing explicit quotation
of all facts, it’s convenient to be able to conclude the entire goal by writing
our thesis:

let our thesis byfn hyps (Goals((asl,w)::gls,jfn) as gl) =
conclude w byfn hyps gl

and thesis = "";;

We choose to have conclude leave a trivial goal � rather than just solving
it so that we need an explicit end-marker qed:
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let qed (Goals((asl,w)::gls,jfn) as gl) =
if w = True then Goals(gls,fun ths -> jfn(assumptate gl truth :: ths))
else failwith "qed: non-trivial goal";;

Here is a simple example taken from Dijkstra’s EWD954,† where we define
a ‘less than or equal’ operation in terms of ‘multiplication’ (as is done in
Boolean rings) and prove that a function f that has a homomorphism prop-
erty for multiplication is therefore monotonic with respect to the ordering.

let ewd954 = prove
<<(forall x y. x <= y <=> x * y = x) /\
(forall x y. f(x * y) = f(x) * f(y))
==> forall x y. x <= y ==> f(x) <= f(y)>>

[note("eq_sym",<<forall x y. x = y ==> y = x>>)
using [eq_sym <<|x|>> <<|y|>>];

note("eq_trans",<<forall x y z. x = y /\ y = z ==> x = z>>)
using [eq_trans <<|x|>> <<|y|>> <<|z|>>];

note("eq_cong",<<forall x y. x = y ==> f(x) = f(y)>>)
using [axiom_funcong "f" [<<|x|>>] [<<|y|>>]];

assume ["le",<<forall x y. x <= y <=> x * y = x>>;
"hom",<<forall x y. f(x * y) = f(x) * f(y)>>];

fix "x"; fix "y";
assume ["xy",<<x <= y>>];
so have <<x * y = x>> by ["le"];
so have <<f(x * y) = f(x)>> by ["eq_cong"];
so have <<f(x) = f(x * y)>> by ["eq_sym"];
so have <<f(x) = f(x) * f(y)>> by ["eq_trans"; "hom"];
so have <<f(x) * f(y) = f(x)>> by ["eq_sym"];
so conclude <<f(x) <= f(y)>> by ["le"];
qed];;

The proof is not very deep, but it requires the deployment of some equal-
ity properties and is not feasible with our tableau procedure directly. The
proof starts by assembling the general properties of equality we need, then
makes the appropriate assumptions and systematically proceeds through a
sequence of lemmas until the goal is reached. We will see a more extended
application of declarative proofs in the next chapter. The reader may like
to step through these proofs one or two tactics at a time as we did with our
first example (‘let g2 = conj_intro_tac g1;;’ etc.)

LCF and efficiency

Proving theorems in the LCF style can be quite slow, even on a fast modern
computer, because everything has to proceed under the surface using the
very simple primitive rules. This can be much less efficient than a direct

† http://www.cs.utexas.edu/users/EWD/ewd09xx/EWD954.PDF
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implementation by term manipulations. Even if the performance only dif-
fers by a constant factor, a constant factor of 500 (see Exercise 6.12) may
be important for large problems. In general, is it possible to implement a
wide variety of traditional theorem proving algorithms so that they pro-
duce theorems by inference in a traditional logical system, with acceptable
efficiency? There are essentially two approaches one can consider:

• directly rephrasing the existing algorithms to work by inference and pro-
duce theorems at each stage;

• modifying the existing algorithms so that they produce some kind of trace
of their activity from which a proof using inference rules can be created.

Our propositional prover lcfptab uses the first approach: the steps of a
conventional tableau prover are directly mimicked by inference steps. The
first-order extension lcftab looks similar but is arguably closer to the sec-
ond approach: almost all inference is delayed until a successful path to a
refutation is found, avoiding inference steps for the blind alleys in proof
search. We could make the separation more obvious by producing a real
‘proof’ or certificate data structure from the search phase, and processing
it separately. If this certificate is substantially more efficient just to verify
than to find in the first place, the additional overhead of performing inference
in the verification phase may not change things much overall. For example,
in first-order proof search, the search space is often very large but the even-
tual proof found is usually relatively short and simple. The same can apply
to a number of other algorithms such as Knuth–Bendix completion (Section
4.7) and refutation of systems of real or complex equations and inequalities
using the real or complex Nullstellensatz (Section 5.11).

Where there is no easily exploited finding–checking separation, one must
seek other optimizations. Sometimes the central transformations of proof
procedures can be expressed as very general theorems that can later be
instantiated quickly to the case in hand. Our inference system hardly lends
itself to this kind of approach – for example we cannot ‘instantiate’ atomic
subformulas as an atomic operation, going say from P ⇒ P to Q[x] ⇒ Q[x],
but rather must ‘replay’ a modified version of the original proof. However,
in suitable logical systems this method is very effective and has been used
extensively in practice – see Melham (1989) for an early example.

If one finds that certain inference rules cannot feasibly be implemented
in the LCF style, but one is still wary of trusting complex code, what can
be done? One popular idea (Davis and Schwartz 1979; Weyhrauch 1980) is
to use metatheoretic extensibility or ‘reflection principles’, starting with a
trusted core system and only extending it with new code when (some formal
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version of) that code has been proven correct using the existing system.
Although this is an enticing idea, it requires rigorous correctness proofs,
which are often significantly harder than a direct LCF-style implementation.

Further reading

Interactive theorem proving, and human-oriented proving too for that mat-
ter, are hardly covered at all in textbooks. Doubtless the main reason is
that they do not so easily lend themselves to discussion in terms of some
standard collection of theorems and methods; perhaps to some extent they
are considered less intellectually exciting. However, there is a discussion of
interactive theorem proving in the ‘logic for computer science’ text by Reeves
and Clarke (1990), and an extended example in the book on SML program-
ming by Paulson (1991). MacKenzie (2001) gives an account of the history
of interactive theorem proving and its applications, while Wiedijk (2006) is
a survey of some of the main interactive theorem provers showing proofs of
the irrationality of

√
2 in each.

There are, however, numerous books about particular interactive systems,
many in the LCF family. The first book on Edinburgh LCF (Gordon, Milner
and Wadsworth 1979) describes the original innovative ideas, and Paulson
(1987) describes Cambridge LCF, a version with greatly rationalized orga-
nization. Constable (1986), Gordon and Melham (1993) and Paulson (1994)
describe the LCF-descended provers Nuprl, HOL and Isabelle respectively.
Boyer and Moore (1979) discuss NQTHM, the Boyer–Moore prover, which
can, despite its powerful automation, be considered as an interactive system
in the way it’s normally used. ACL2 is a more modern system based on
similar principles (Kaufmann, Manolios and Moore 2000).

The study of formal calculi for deduction is a large part of contemporary
logic. Many logic texts (Enderton 1972; Mendelson 1987) present and prove
completeness for Hilbert systems, whereas others such as van Dalen (1994)
use natural deduction. Proof theory is the study of proof systems in them-
selves; Troelstra and Schwichtenberg (1996), Prawitz (1965) and Girard,
Lafont and Taylor (1989) are introductions to the field in somewhat differ-
ent styles. Girard (1987) is an introduction to more advanced topics, while
Goubault-Larrecq and Mackie (1997) discuss automated theorem proving in
more proof-theoretic style.

The original LCF publication (Gordon, Milner and Wadsworth 1979) is
still worth reading for more information on tactics. Others have generalized
tactics in various directions; for example Soko�lowski (1983) enhanced tactics
to maintain a list of instantiable ‘metavariables’ that can be instantiated
gradually. This allows the instantiation of existential terms to be done more
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freely at various points in the proof. A similar mechanism is supported, via a
more direct implementation in terms of theorems, by Isabelle (Paulson 1994),
which also supports nondeterministic tactics with an unlimited number of
possible successor goalstates. Boulton (1992) extends the idea of delaying
inference to the whole of an LCF-style prover. Mizar-style declarative proofs
within LCF-style systems are described by Harrison (1996a), Syme (1997),
Wenzel (1999), Zammit (1999a), Wiedijk (2001) and Corbineau (2008), while
Harrison (1996c) is a more detailed comparison of declarative and procedural
proving.

For a more detailed analysis of efficiency in LCF-style provers, see Boulton
(1993) and Harrison (1995). The latter also contains a more detailed explana-
tion of reflection in theorem proving and related fields of logic and computer
science, though its survey of work in the field is now out of date. Many useful
high-level derived rules have been written in the LCF style. For example,
LCF implementation of arithmetical decision procedures goes back at least
to Boulton (1993), and recent LCF-style implementations of Hörmander’s
algorithm for the reals are described by Mahboubi and Pottier (2002) and
McLaughlin and Harrison (2005). Complex LCF-style derived rules for mak-
ing inductive or recursive definitions are described by Melham (1991) and
Slind (1996). Chaieb (2008) describes the implementation of several decision
procedures, both in the LCF style and using reflection.

The alternatives of verifying code once and for all and checking correct-
ness of particular results (step-by-step as the program runs or from a log or
a more compact certificate that it creates) can be generalized beyond theo-
rem proving. Blum (1993) suggests that, in many situations, checking results
may be more practical and effective than verifying code – Mehlhorn et al.
(1996) is a concrete example of incorporating result checking into a library
for computational geometry. Harrison and Théry (1998) describe checking
‘answers’ from a computer algebra system, and Hurd (1999) describes check-
ing ‘proofs’ from first-order provers by LCF inference.

There are at present two main application areas for interactive theorem
proving: (i) formalizing pure mathematics, and (ii) verifying the correctness
of computer programs, hardware, protocols, etc. Formalization of mathe-
matics may be undertaken purely for its intellectual interest (Shankar 1994;
Fleuriot 2001), or to support applications in verification (Harrison 1998;
Hurd 2001), or because there is genuine doubt or scepticism about an infor-
mal proof (Gonthier 2005). The largest single corpus of formalized mathe-
matics at present is the Mizar Mathematical Library,† and Wiedijk (2006)

† mizar.org/library/
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gives a good short survey of other recent activity in the area. The Fly-
speck project (Hales 2006), which aims for a complete formal proof of the
Kepler sphere-packing conjecture, is perhaps the most ambitious formal-
ization project to date, and is making good progress at the time of writ-
ing. As for verification, it is impossible in a reasonable space to summarize
the many impressive applications of interactive theorem proving. To give a
rough sample, a non-exhaustive list of verifications of real industrial hard-
ware, software or microcode just in the particular domain of floating-point
arithmetic would include Moore, Lynch and Kaufmann (1998), Russinoff
(1998), O’Leary, Zhao, Gerth and Seger (1999), Harrison (2000), Kaivola
and Aagaard (2000), Kaivola and Kohatsu (2001) and Slobodová (2007).

Exercises

6.1 Try out our earlier methods on the logical problems considered by
Newell and Simon (1956). Are they all easy for our methods? How
about the geometry theorems given by Gelerntner (1959)? Can we
solve them easily via Gröbner bases or Wu’s method?

6.2 Implement a version of tableaux with a Mizar-style restriction to
obvious inferences, with at most one instantiation of each universal
variable. How many of our usual stock of test problems, e.g. the
Pelletier problems, turn out to be obvious in this sense? How does
this match your intuitive feelings about what is obvious?

6.3 Implement a simple LCF-style prover with the Birkhoff rules for
equational reasoning (see Section 4.3) as the primitive inferences.
Re-implement Knuth–Bendix completion so that all theorems are
derived using this system. For a similar project, see Slind (1991).

6.4 Enderton (1972) presents a somewhat different proof system for first-
order logic. The inference rule gen that allows us to pass from � p to
� ∀x.p is absent, and only modus ponens gives new theorems for old.
But any of the axioms may be generalized over an arbitrary (possibly
empty) subset of its free variables. Formulate a proof system close
to ours with this restriction, and build up an LCF-style system from
this foundation. Prove that p is deducible or first-order valid iff Γ |= p

in the sense of propositional logic, where Γ is the set of all (perhaps
partially generalized) axioms.

6.5 Finding proofs of even fairly trivial facts in our Hilbert-style proof
system, without the kinds of systematic principles embodied in taut,
is often challenging. However, it is possible to use automated theorem
provers on the ‘meta’ level to search for ways of proving them. For
example here’s a proof that � p ⇒ p is derivable:
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meson <<(forall p q. Pr(Imp(p,q)) /\ Pr(p) ==> Pr(q)) /\
(forall p q. Pr(Imp(p,Imp(q,p)))) /\
(forall p q r. Pr(Imp(Imp(p,Imp(q,r)),

Imp(Imp(p,q),Imp(p,r)))))
==> forall p. Pr(Imp(p,p))>>;;

Set up some appropriate proof-tracing for some procedure such as
meson so you can figure out the proof it found. See if you can thus
find nicer proofs than ours of some of the simpler logical results.
To avoid difficulties over free variable side-conditions, you may pre-
fer to restrict yourself to propositional logic. Note that Otter has
been applied to this sort of problem with great success, often finding
proofs substantially shorter and more elegant than those in standard
textbooks; see Wos (1994) for a detailed case study using powerful
strategies. Try experimenting with other axiomatizations, using the
machine to help you decide whether certain arrangements are com-
plete.

6.6 Prove by induction on the inference steps in the proof that if Γ � q

then also Γ − {p} � ∀(p) ⇒ q where ∀(p) is the universal closure of
p. This gives a more ‘algorithmic’ way of converting a proof of Γ � q

into one of Γ − {p} � ∀(p) ⇒ q. However, it still does not give any
nice algorithmic way of implementing it as a derived inference rule
since as input we need the proof of Γ � q.

6.7 Another popular proof of the completeness of a proof system for
propositional logic, due to Kalmár (1935) and presented by Mendel-
son (1987), is an adaptation of the usual truth-table method. Instead
of considering a valuation as a model-theoretic concept, we encode
the same information in a formula l1∧· · ·∧ ln, where each li is either
pi or pi ⇒ ⊥ (i.e. ¬pi) for each propositional variable pi in the for-
mula. For example, if the propositional letters are p, q and r we
represent the valuation v with v(p) = true, v(q) = false, v(r) = true
as p ∧ (q ⇒ ⊥) ∧ r. We can prove a formula valid by showing that
it holds for all valuations in this sense. Implement this and compare
performance with lcftaut.

6.8 Implement an LCF core for a formulation of natural deduction, tak-
ing the rules from some standard text such as van Dalen (1994)
or Troelstra and Schwichtenberg (1996). Write derived rules corre-
sponding to the primitive rules of our Hilbert system, hence showing
completeness.
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6.9 Modify lcffol to perform initial splitting of the formula as done
by splittab. Make sure that it also introduces Skolem constants
(though not non-nullary Skolem functions). How much of the code
can be re-used unchanged or easily adapted?

6.10 Although lcftab mostly avoids inference until a path to a refutation
is found, the expansion of derived connectives still uses inference
rules. Change the code so that this is no longer the case. Would you
expect the efficiency to improve significantly, and does it seem to?

6.11 The case-splitting process in Mizar itself is somewhat different from
ours. The user initiates a case-split by per cases justification and
then begins various blocks with suppose pi. Only when the case
block is terminated is the proof of p1 ∨ · · · ∨ pn attempted using
justification. Can you support this kind of case-splitting within our
tactic framework?

6.12 Extend the LCF prover to add a primitive rule equivalent to spec
that operates by directly using subst on the conclusion of the the-
orem. Compare its performance against the existing derived rule on
increasingly large examples, and see how they compare. One might
expect, at least in cases where complex renaming is not needed, that
the runtime of either implementation would grow linearly with the
size of the input theorem, but that one would be much faster than
the other. Do your experiments bear this out?

6.13 Extend the LCF primitive inference system so that each inference
rule maintains a ‘counter’ incremented on each call. Use this to see
how many inference rules get used in some interesting proofs.

6.14 Extend the type of theorems to keep a tree structure recording the
proof. Note that because of the LCF encapsulation, only the primi-
tive inferences should need changing (Wong 1993). This opens up the
possibility of taking proofs in an LCF system and feeding them to
an independent proof-checker (Gordon, Hale, Herbert, Wright and
Wong 1994) or using them in another prover (Obua and Skalberg
2006; McLaughlin 2006). You might even try translating the proofs
and feeding them to an LCF prover using a different deductive sys-
tem, of the kind suggested in Exercise 6.8.

6.15 For usefulness of lcfptab in higher-level derived rules, it would be
desirable if we could constrain inference by a ‘pattern’. For example,
we would want � p ⇒ p to be provable in essentially the same way
whatever the formula p might be, yet as things stand, a large formula
p with a complex logical structure will generate a much larger proof.
Generalize lcfptab so that it takes two arguments, the first a pattern
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term, and the second an instance of that term, and uses the pattern
to constrain inferences. One way of doing this might be inspired by
the way lcftaut takes a mapping to modify terms; you could do
likewise for formulas.

6.16 Set up a more convenient interactive environment for developing
tactic proofs (declarative or otherwise) step-by-step. For example,
you might maintain a reference variable with the current goalstate
and set up commands to apply a tactic to it. Even better, you might
make a script to process a proof in the batch style of Mizar: take a
proof script in a file, and either run it or report any errors.

6.17 Create some ‘tacticals’ to operate on tactics corresponding to typi-
cal programming constructs such as ‘then’ (perform one tactic then
another), ‘orelse’ (try one tactic, and if it failed use another) and
‘repeat’ (apply a tactic repeatedly till it fails).



7

Limitations

Most of this book is about positive results: certain logical problems can in
principle be automated. Here we consider the limits of automation, showing
that algorithms in the usual sense cannot exist for certain logical problems.
In particular we show that pure first-order logic is not decidable, and that the
theory of natural numbers with addition and multiplication is, in a precise
sense, nowhere near decidable. In making our way to these results, we prove
Gödel’s famous first incompleteness theorem.

7.1 Hilbert’s programme

The idea of mechanizing reasoning fascinated people long before computers.
Specific questions about the scope and limits of mechanization were inves-
tigated systematically in the early part of the twentieth century, largely
due to the influence of Hilbert’s programme to place mathematics on firm
foundations. To appreciate the full cultural significance of the results that
follow, it’s worth examining the intellectual ferment over the foundations of
mathematics that made these questions so significant at the time.

At various points in history, mathematicians have become concerned over
apparent problems in the accepted foundations of their subject. For exam-
ple, the Pythagoreans tried to base mathematics just on the rational num-
bers, and so were disturbed by the discovery that

√
2 must be irrational.

Subsequently, the apparently self-contradictory treatment of infinitesimals
in Newton and Leibniz’s calculus disturbed many (Berkeley 1734), as later
did the use of complex numbers and the discovery of non-Euclidean geome-
tries. Later still, when the theory of infinite sets began to be pursued for its
own sake and generalized, mainly by Cantor, renewed foundational worries
appeared.

526
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Many mathematicians, while accepting the idea of a ‘potential infinity’
(for example that every natural number has a successor), felt that mathe-
matics must nevertheless remain rooted in concrete calculation. For example,
Kronecker was happy to work with algebraic numbers, i.e. those like

√
2+

√
3

that are roots of polynomial equations with integer coefficients (x4−10x2+1
in this case), but he rejected transcendental (non-algebraic) numbers because
they did not seem amenable to explicit computation with finite representa-
tions. Reputedly, he said that the proof by Lindemann (1882) that π is tran-
scendental was ‘interesting, except that π does not exist’.† Mathematicians
with this point of view tended to reject most of the Cantorian apparatus,
as well as nonconstructive existence proofs: Gordan greeted Hilbert’s solu-
tion of a key problem in invariant theory via what is now called the Hilbert
basis theorem with the remark ‘That is not mathematics, it is theology!’.‡

To understand what is meant by ‘constructive’ and ‘nonconstructive’ in this
context, consider the following.

Theorem 7.1 There are algebraic irrational numbers x and y such that xy

is rational.

Proof If
√

2
√

2
is rational, then x =

√
2 and y =

√
2 works. If it’s irrational

then x =
√

2
√

2
and y =

√
2 works.

This proof is said to be nonconstructive because although it justifies the
claim by apparently unimpeachable (and indeed rather slick) logical reason-
ing, it doesn’t allow us to exhibit specific x and y. A similar remark applies
to the following proof.

Theorem 7.2 Either e + π or e − π is irrational, where e = 2.71828 . . . is
the base of natural logarithms.

Proof If e + π and e− π are both rational, then so is their sum 2e. But this
is a contradiction since e is known to be irrational.

Careful analysis of such proofs shows that constructivity tends to be lost
because of a few specific principles of reasoning. In the proof of Theorem 7.1
it is the ‘law of the excluded middle’ p∨¬p, while for Theorem 7.2 it is the
‘principle of contradiction’ (¬p ⇒ ⊥) ⇒ p or ‘double negation elimination’

† Kronecker might have been satisfied with a representation of computable reals by approximating
programs, though equality even of primitive recursive reals is undecidable.

‡ This theorem was shown by Simpson (1988a) to be equivalent, in a precise sense, to the assump-

tion that N
N can be wellordered, and hence to be highly nonconstructive.
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¬¬p ⇒ p. A constructivist would counsel against the careless use of such
principles, making sure that they do not affect the constructivity of the
overall result.

Brouwer, known as one of the founders of modern topology, went much
further, starting a radical constructivist movement known as intuitionism.
He claimed that nonconstructive proofs are not just in bad taste but are not
even valid proofs at all. In particular, he asserted that both the law of the
excluded middle and the principle of contradiction, in their full generality,
are invalid. His student Heyting developed an intuitionistic logic to formalize
intuitionistically acceptable reasoning, and traditional logic is now known
as ‘classical logic’ in contradistinction.

At first sight it looks astonishing to question such elementary principles of
reasoning. But Brouwer argued that the everyday laws of logic are unjusti-
fied extrapolations from simple reasoning about finite objects. For example,
intuitionism accepts p∨¬p in cases where the truth or falsity of p could, at
least in principle, be determined – for example, whether a particular number
is prime. But to claim p ∨ ¬p for every mathematical proposition p, even
one that is currently unsolved and perhaps never will be solved, assumes
a particular view of mathematical truth that Brouwer found objectionable:
‘arithmetic as the natural history (mineralogy) of numbers’ in the words
of Wittgenstein (1956). It’s clear that Hilbert (1922) accepted a consider-
able part of this critique, but he found Brouwer’s mutilation of traditional
mathematics unacceptable and suggested that it might be justified based on
careful analysis of proofs:

But if we thoughtlessly apply to infinite totalities a procedure which is permissible
in the finite case, then we open gate and door to errors. It is the same source of
error that we see in analysis; in the latter field the carrying over, to infinite sums
and products, of theorems which are valid for the corresponding finite sums and
products is permissible only if special convergence conditions, etc., are satisfied.
Similarly we cannot treat the infinite logical sums and products [existentially and
universally quantified assertions, in our terminology] in the same manner as the
finite, unless our proof theory reveals such treatment to be justified.

The similarities and contrasts with earlier foundational controversies is
instructive, for example over the complex numbers, which were used in for-
mulas for solving cubic and quartic equations as early as the sixteenth cen-
tury. For many years afterwards the ‘imaginary unit’ i was frequently used
in algebraic calculations, following the usual rules for real numbers together
with i2 = −1. Such uses of i often considerably streamlined calculations,
but there was no convincing justification for it. Nevertheless, when a con-
clusion not involving complex numbers was reached, it did always seem to
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be correct, and after a while mathematicians began to take it for granted.
In the same way, Hilbert wanted to regard infinite sets and the other non-
constructive paraphernalia as ‘ideal’ elements, and prove that any concrete
results (say, elementary facts of number theory) reached with the help of
infinite sets were still valid.

In the case of complex numbers, by Hilbert’s time their validity had
already been established by creating a model of the complex numbers using
pairs of real numbers. Similarly, one can create a model for Euclidean, and
non-Euclidean, geometries using real numbers as coordinates. There are
slightly more complicated schemes due to Klein and Cayley for giving a
model of non-Euclidean geometries in terms of Euclidean, interpreting the
plane as the interior of a circle and lines as chords. This technique of using
models to prove one theory sound using another accepted theory was well-
known. However, it seems impossible to justify Cantorian set theory in the
same way – how can we create a model for infinite sets out of finite sets or
natural numbers?

Hilbert’s ingenious idea was to base the justification not on models but on
proofs. Thanks to the work of Whitehead and Russell (1910) and others, it
was possible to express axioms and deductions completely formally. These
deductions could be identified with concrete objects like sequences of char-
acters, or even (large) numbers. They could themselves become the object of
mathematical study (often called metamathematics),† and this study could
aim at proving properties of deductions in such systems – for example, that
concrete results proved using infinite sets were nevertheless true, or even that
they could also be proved without using infinite sets. Since proofs are finite
objects, it seems plausible that only the barest, least doubtful, mathematical
apparatus should be needed to prove interesting things about them. Proof
theory, it seemed, might be the way to pass from simpler to more advanced
and powerful mathematics without any danger of unsoundness. In computer
jargon, Hilbert hoped to ‘bootstrap’ mathematics, starting with a weak sys-
tem, acceptable even to a thoroughgoing sceptic and certainly to Brouwer,
and justifying, at least in some sense, the rest of higher mathematics.‡

After a flurry of activity stimulated by Hilbert’s ambitious programme,
several positive results were achieved, but perhaps more strikingly, many

† It seems that Hilbert conceived of metamathematics much earlier (Hilbert 1905). However, it
was only later that he started to see it as a possible answer to Brouwer’s critique.

‡ Tait (1981) has argued quite convincingly that the system of so-called primitive recursive
arithmetic (PRA) provides a concrete formal system that accords well with Hilbert’s own
description of an acceptable starting point. This is often presented as a special quantifier-free
logic (Goodstein 1957), but can also be formulated using a set of first-order axioms that have
the same Π1 consequences. Ironically, this is exactly the kind of reductionism that Hilbert’s
programme envisaged!
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inherent limitations of formal proof systems were found. The first and best-
known are doubtless Gödel’s famous incompleteness theorems. However,
there are numerous other related results, and in the following presentation
we will distort the historical order somewhat, both for ease of exposition and
to place emphasis on results directly showing the limitations of automated
theorem proving.

7.2 Tarski’s theorem on the undefinability of truth

We have seen that the theory of linear integer and natural number arithmetic
is decidable (Cooper’s algorithm, Section 5.7) and that over the reals, an
analogous theory with addition and multiplication is decidable (Hörmander’s
algorithm, Section 5.9). By contrast, the theory of integers or natural num-
bers with addition and multiplication is, in a precise sense, very far from
being decidable. In what follows we will prove this and some other key unde-
cidability results, starting with a theorem on the ‘undefinability of truth’ due
to Tarski (1936).†

Before describing this result, we will fix a first-order language to be used
consistently for most of this chapter. We include a constant 0, a unary suc-
cessor function written S, binary functions ‘+’ and ‘·’, and binary relations
=, < and ≤. There are no other constant symbols, though in discussions we
often use n to abbreviate a zero-successor representation of the numeral n,
for example 4 for S(S(S(S(0)))). The following OCaml function can be used
to generate numerals in this form:

let rec numeral n =
if n =/ Int 0 then Fn("0",[])
else Fn("S",[numeral(n -/ Int 1)]);;

The intended interpretation of this language is over N with the usual
assignments of functions and relations: ‘+’ to addition and so on. When we
say in what follows that a formula is true we mean that it is true in the
ordinary sense: it holds in this ‘intended interpretation’ or ‘standard model’
over N, not necessarily in all interpretations. For example, ∀x. x + 0 = x is
true because it holds in the standard model, even though we can find other
interpretations in which it fails (just change the standard model to interpret
0 as the number 1, for example).

So now we know what ‘truth’ means in Tarski’s theorem: the property of
being a true formula (in the standard model). What about definability?

† Though Gödel (1931) had earlier arrived at something very similar on the way to his incom-
pleteness theorems.
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Definable relations, sets and functions

An n-ary relation R on a set D, which we can think of as a subset of
Dn or a function Dn → bool, is said to be definable in a language L and
interpretation M with domain D if there is a formula p based on the language
L, with n free variables x1, . . . , xn, such that

R = {(a1, . . . , an) ∈ Dn | holds M (xi 
→ ai) p},

where xi 
→ ai denotes the valuation that maps each xi to the corresponding
ai. We will in the following be interested in definability in the set D = N

based on the language specified earlier – for brevity we will just say ‘definable
in arithmetic’. The above model-theoretic definition makes our usual fussy
distinctions between variables and their interpretation, but a few simple
examples should make the concept of definability in arithmetic clear: either
of the formulas ∃n. m = 2 · n and ∀n. ¬(m = 2 · n + 1) defines the unary
relation of evenness (divisibility by 2), and n < m∨m < n defines the binary
relation of inequality ‘�=’.

As we have noted, we will treat sets and relations interchangeably, so
we can equally well say that ∃n. m = 2 · n defines the set of even num-
bers. We will also extend definability to functions by considering them as
relations. An n-ary function f : N

n → N is said to be definable iff its
graph {(a1, . . . , an, an+1) | f(a1, . . . , an) = an+1} is definable as a relation.
Note that this does not mean that there is a corresponding term defining
it directly as a function – this is a much weaker notion. For example, it’s
easy to see that there is no term in our language directly representing the
truncating halving function n 
→ n/2�, yet its graph is defined by the for-
mula n = 2 · q ∨ n = 2 · q + 1. Even if we want to use a definable function in
an intricately nested way inside term, we can always reduce it to the simple
relational form by flattening, e.g. x + f(y, z) + f(f(a, b), c) > k to the exis-
tential formula ∃r s t. F (y, z, r)∧F (a, b, s)∧F (s, c, t)∧ x + r + t > k or the
universal formula ∀r s t. F (y, z, r) ∧ F (a, b, s) ∧ F (s, c, t) ⇒ x + r + t > k.

Arithmetization of syntax

As we have defined it, truth is a property of formulas, rather than numbers, so
it doesn’t immediately make sense to talk of its being definable in arithmetic.
But we can fix this by choosing some appropriate mapping g from formulas
to natural numbers, and consider definability of the image of a set of formulas
under g. The numbering function g is known as a Gödel numbering, since the
idea was first used by Gödel, and we often write �p� for g(p). These corner
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quotes, due to Quine, are intended to reflect the similarity with quotation
marks in ordinary language, indicating that we are referring to the sentence
itself as a syntactic object rather than its underlying meaning.†

We will explicitly define our Gödel numbering in OCaml for concreteness,
mapping into the type num of unlimited integers to avoid the danger of
overflow. It is crucial in what follows that it should be injective, i.e. that
�p� = �q� only if p and q are the same formula. We will not, however, bother
to make it bijective; there will be natural numbers that are not the Gödel
number of any formula.

First we need to map strings to natural numbers. An OCaml string can
be considered a finite (possibly empty) list of characters c0, . . . , cn−1, each ci

having a value in the range 0–255. We will map such a string to the number∑n−1
i=0 256i(ci+1). Note that this value uniquely determines the length, since

the code s of a string of length n lies in the range 1 + 256 + · · · + 256n−1 ≤
s ≤ 256 · (1 + 256 + · · · + 256n−1) < 1 + 256 + · · · + 256n. Thus, if two
strings have the same code, they have the same length, so the injectivity
of the mapping follows from the usual uniqueness of a (base 256) positional
representation. In fact, since the range identified above for n-element strings
contains exactly 256n numbers, it also follows that this mapping, at least,
is surjective. So we won’t have to worry later about whether a particular
number could correspond to a string.

let number s =
itlist (fun i g -> Int(1 + Char.code(String.get s i)) +/ Int 256 */ g)

(0--(String.length s - 1)) (Int 0);;

Next we introduce a pairing function N × N → N, which we abbreviate
〈x, y〉 and define as (x + y)2 + x + 1:

let pair x y = (x +/ y) */ (x +/ y) +/ x +/ Int 1;;

We should prove that this function is injective. First note that if 〈x′, y′〉 =
〈x, y〉 we must also have x′+y′ = x+y. For if, say x′+y′ > x+y, then since
the natural numbers are discrete we have x′ + y′ ≥ x + y + 1 and therefore
we can derive a contradiction:

〈x′, y′〉 = (x′ + y′)2 + x′ + 1

≥ (x′ + y′)2 + 1

≥ (x + y + 1)2 + 1

= (x + y)2 + 2(x + y) + 2

† Indeed, Quine introduced them as a formal version of quotation, not for Gödel numbers.
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≥ (x + y)2 + x + 2

> (x + y)2 + x + 1 = 〈x, y〉.

So if 〈x′, y′〉 = 〈x, y〉 we must have x′ + y′ = x + y. But then we also
have x′ = x by cancelling (x + y)2 + 1 from both sides, and then y′ = y by
subtraction.

The additional ‘+1’ in the pairing function is not necessary for injectivity.
However, it’s convenient to be able to assume that 〈x, y〉 > 0 for all x, y ∈ N.
Then we get a natural and unambiguous encoding of a finite list of numbers
as a single number, using 0 as the empty list:

[x1; x2; x2; · · · ; xn] = 〈x1, 〈x2, 〈· · · , 〈xn, 0〉〉〉〉.

Now we define Gödel numberings injecting into N the terms:

let rec gterm tm =
match tm with
Var x -> pair (Int 0) (number x)

| Fn("0",[]) -> pair (Int 1) (Int 0)
| Fn("S",[t]) -> pair (Int 2) (gterm t)
| Fn("+",[s;t]) -> pair (Int 3) (pair (gterm s) (gterm t))
| Fn("*",[s;t]) -> pair (Int 4) (pair (gterm s) (gterm t))
| _ -> failwith "gterm: not in the language";;

and hence the formulas:

let rec gform fm =
match fm with
False -> pair (Int 0) (Int 0)

| True -> pair (Int 0) (Int 1)
| Atom(R("=",[s;t])) -> pair (Int 1) (pair (gterm s) (gterm t))
| Atom(R("<",[s;t])) -> pair (Int 2) (pair (gterm s) (gterm t))
| Atom(R("<=",[s;t])) -> pair (Int 3) (pair (gterm s) (gterm t))
| Not(p) -> pair (Int 4) (gform p)
| And(p,q) -> pair (Int 5) (pair (gform p) (gform q))
| Or(p,q) -> pair (Int 6) (pair (gform p) (gform q))
| Imp(p,q) -> pair (Int 7) (pair (gform p) (gform q))
| Iff(p,q) -> pair (Int 8) (pair (gform p) (gform q))
| Forall(x,p) -> pair (Int 9) (pair (number x) (gform p))
| Exists(x,p) -> pair (Int 10) (pair (number x) (gform p))
| _ -> failwith "gform: not in the language";;

(In discussions we use the same corner quotes for the Gödel numbering
of both terms �t� and formulas �p�.) Since the number and pair functions
are injective, so are these mappings. Our Gödel numbering is designed for
simplicity rather than compactness, and the numbers produced tend to be
on the large side for interesting formulas.
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# gform <<~(x = 0)>>;;
- : num = 2116574771128325487937994357299494

Outline of Tarski’s theorem

Consider the set T of codes of true formulas in the language of arithmetic:†

T = {�p� | p is true in N}.
For example, T contains the following number:

# gform <<x = x>>;;
- : num = 735421674029290002

because x = x is true in N (and indeed in any interpretation) but it does
not contain the number 〈11, 0〉 = 133, which is not the Gödel number of any
formula, and nor does it contain �0 < 0� = 1767 since 0 < 0 is false in N

(though not all interpretations).
Tarski’s theorem states that the set T is not definable in arithmetic. This

might appear a mere technical curiosity. But it will emerge that many other
sets of codes of ‘provable’ formulas P are definable. For example, in the next
section we will show that the set of formulas provable from, or equivalently
(by the completeness Theorem 6.3) logical consequences of, the first-order
axioms PA for so-called Peano arithmetic:

P = {�p� | PA � p} = {�p� | PA |= p}
is definable, and later we will sketch a proof that the set of codes of formulas
enumerable (in a sense to be made precise) using any particular computer
program is definable. Since the set of codes of provable formulas is definable
but the set of codes of true formulas is not, it follows that the sets of true
and provable formulas must themselves be different (assuming we used a
fixed coding throughout). Thus at least one of the following must hold:

• some true formula is not provable (‘semantical incompleteness’),
• some provable formula is not true (‘unsoundness’).

Later we will present much more refined forms of this basic observation,
but it’s useful to keep that motivation in mind through the technical details
to follow.
† Later, we will find it useful to restrict ourselves to the set of true sentences, but that is not

necessary for the argument presented here.
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Many things are definable

We will establish Tarski’s theorem by assuming the existence of a defini-
tion of truth and building from it another clearly impossible definition. To
support that step we first need several positive results that various sets of
natural numbers, and relations over natural numbers, are definable in arith-
metic. The divisibility relation ‘m divides n’ is definable as follows:†

m|n =def ∃x. x ≤ n ∧ n = m · x.

When we give such a ‘definition’, the claim is that the corresponding
equivalence (replacing ‘=def ’ by ‘⇔’) holds in N. This means that we can
replace any instance of the left-hand side (here s|t) by an appropriate substi-
tution instance of the right-hand side, without changing the interpretation
of the formula in N. Using divisibility, we can easily express primality:

prime(p) =def 2 ≤ p ∧ ∀n. n < p ⇒ n|p ⇒ n = 1.

We write primepow(p, x) to indicate that p is a prime number and x is
some power of it, possibly x = p0 = 1. We don’t have the exponential
function in our language, so we can’t make the natural definition prime(p)∧
∃n. x = pn. However, a little thought shows that the following also works:‡

primepow(p, x) =def prime(p) ∧ ¬(x = 0) ∧ ∀z. z ≤ x ⇒ z|x ⇒ z = 1 ∨ p|z.

Now we will show that whenever a binary relation R is definable, so is
its reflexive transitive closure R∗.§ Recall (See Appendix 1) that R∗(x, y)
iff there is a sequence x = x0, x1, . . . , xn = y such that R(xi, xi+1) for each
0 ≤ i ≤ n − 1. This is in its turn equivalent to the existence of a prime p

greater than all the xi and a number of the form

m = x0 + x1p + x2p
2 + · · · + xnpn

for some such sequence (xi). But the various xi can be extracted from such an
m by division and remainder operations, all of which are straightforwardly
definable. There must exist some Q = pn such that x = x0 is the remainder
of m modulo p, y is the truncated quotient of m by Q, and for all smaller q

that are powers of p we have R(a, b) whenever m = r + q · (a + p · (b + p · s))
for some r < q, a < p and b < p (since a and b are then adjacent elements

† The ‘x ≤ n’ isn’t necessary, but makes evident a technical property called Δ0-definability, to
be considered later. In what follows, simply observe that the formulas given do correctly define
the concepts, even if not in the most immediately obvious or natural way.

‡ The idea of defining powers of primes in this way is due to John Myhill.
§ This is a further simplification of a clever encoding given by Smullyan (1992).
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of the encoded sequence). Thus we can define

R∗(x, y) =def

∃m p Q. primepow(p, Q) ∧ x < p ∧ y < p ∧
(∃s. m = x + p · s) ∧
(∃r. r < Q ∧ m = r + Q · y) ∧
∀q. q < Q

⇒ primepow(p, q)
⇒ ∃r a b s. m = r + q · (a + p · (b + p · s)) ∧

r < q ∧ a < p ∧ b < p ∧ R(a, b).

This result opens the way to defining the graphs of primitive recursive
functions. Roughly speaking, a primitive recursive function f is one where
f(n+1) can be defined in terms of just f(n) and n using other functions that
are very basic or themselves primitive recursive. For example, the factorial
function is primitive recursive because (n + 1)! = (n + 1) · n!, as is the
exponential function because xn+1 = x · xn. On the other hand, the usual
recurrence f(n + 2) = f(n + 1) + f(n) for the Fibonacci numbers does not
have this simple pattern of recursion, so some reformulation is needed to
show that it can also be defined primitive recursively. And some functions
with slightly more involved recursive definitions have no primitive recursive
equivalent.†

We will now prove that if f : N → N is defined by the following primitive
recursive schema for some constant a and definable g : N × N → N, then f

is itself definable:

f(0) = a,

f(S(n)) = g(n, f(n)).

Suppose g, that is the relation g(x, y) = z, is defined by a formula
G(x, y, z). Then the following defines the relation between 〈n, z〉 and the
‘next’ term 〈S(n), g(n, z)〉:

R(u, v) = ∃x y z. G(x, y, z) ∧ u = 〈x, y〉 ∧ v = 〈S(x), z〉.

By the previous result, we know that since R is definable, so is its reflexive
transitive closure R∗. Now if the term t defines the constant a, the following

† In 1928 Ackermann showed that the function defined by these clauses has no primitive recursive
equivalent: A(0, n, m) = n + m, A(1, n, m) = nm, A(2, n, m) = nm and thereafter A(k +
1, n, 0) = n and A(k + 1, n, m + 1) = A(k, n, A(k + 1, n, m)). Simplified 2-argument versions
were later introduced by Rosza Peter and Raphael Robinson and are often called ‘Ackermann’s
function’ without discrimination (Calude, Marcus and Tevy 1979).
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binary relation defines exactly the graph of the required primitive recursive
function f :

S(n, p) =def R∗(〈0, t〉, 〈n, p〉).
As instances of this general result, we can see that various common numer-

ical functions such as the factorial n! and exponential mn are definable. But
we won’t need any of those in what follows, only a more obscure function
we will call gnumeral, taking a natural number n to the Gödel number of
the zero-successor numeral n:

gnumeral(n) = �
n times︷ ︸︸ ︷

S(S(· · ·S(0) · · ·))�
and which we can implement in OCaml as:

let gnumeral n = gterm(numeral n);;

We have �0� = 〈1, 0〉 = 3 and �S(n)� = 〈2, �n�〉. Plugging these into
the general definition schema for primitive recursion, and simplifying a bit
because the appropriate g(n, y) = 〈2, y〉 is actually definable by a term, we
get the following 1-step relation:

GNUMERAL1(a, b) =def ∃x y. a = 〈x, y〉 ∧ b = 〈S(x), 〈2, y〉〉.
We extend this to its reflexive transitive closure GNUMERAL∗

1 using the
general schema and so to a definition for GNUMERAL, the graph of the
gnumeral function:

GNUMERAL(n, p) =def GNUMERAL∗
1(〈0, 3〉, 〈n, p〉).

Self-referential sentences

The proof of Tarski’s theorem is a formalization of the classic Liar paradox
‘this sentence is false’. However, there’s no obvious way in logic for a sentence
to refer back to itself as the English phrase ‘this sentence’ apparently does.
The trick we will use to encode this self-reference is perhaps best appreciated
by considering the analogous method in natural language. Define the diago-
nalization of a string to be the result of replacing all (unquoted) instances of
the letter ‘x’ in that string by the entire string in quotes. Here’s an OCaml
implementation; to keep track of nested quotes, we will use distinct ‘open’
and ‘close’ quotation marks, but one can mentally identify them with ordi-
nary string quotes.
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let diag s =
let rec replacex n l =
match l with
[] -> if n = 0 then "" else failwith "unmatched quotes"

| "x"::t when n = 0 -> "‘"^s^"’"^replacex n t
| "‘"::t -> "‘"^replacex (n + 1) t
| "’"::t -> "’"^replacex (n - 1) t
| h::t -> h^replacex n t in

replacex 0 (explode s);;

For example:

# diag("p(x)");;
- : string = "p(‘p(x)’)"
# diag("This string is diag(x)");;
- : string = "This string is diag(‘This string is diag(x)’)"

The second example already shows a form of self-reference: the string is
in a strong sense what it says it is: ‘diag("This string is diag(x)")’.
It’s not syntactically identical – evidently no string can be the same as a
proper segment of itself. But it’s equivalent when the meaning of diag is
understood; indeed it is identical to the OCaml invocation that produced it.
We will use essentially the same technique to find, given any unary predicate
P , a ‘fixpoint’ φ such that P (φ) means exactly the same thing as φ:

# let phi = diag("P(diag(x))");;
val phi : string = "P(diag(‘P(diag(x))’))"

We can express this in ‘natural’, though convoluted, language, by spelling
out the intended meaning of diag explicitly (Franzén 2005):

# diag("The result of substituting the quotation of x for ‘x’ in x \
has property P");;

- : string =
"The result of substituting the quotation of ‘The result of
substituting the quotation of x for ‘x’ in x has property P’ for ‘x’
in ‘The result of substituting the quotation of x for ‘x’ in x has
property P’ has property P"

This phrase ‘the result of substituting . . . ’ expresses substitution with-
out actually doing it, just as the OCaml construct ‘let x = 2 in x + x’
does. We can use likewise use this ‘quasi-substitution’ to perform ‘quasi-
diagonalization’.

# let qdiag s = "let ‘x’ be ‘"^s^"’ in "^s;;
val qdiag : string -> string = <fun>



7.2 Tarski’s theorem on the undefinability of truth 539

Because we don’t have to substitute, the implementation is simpler, and
we can get a fixpoint for a predicate in exactly the same way, albeit one that
needs a little more unravelling:

# let phi = qdiag("P(qdiag(x))");;
val phi : string = "let ‘x’ be ‘P(qdiag(x))’ in P(qdiag(x))"

For a more detailed study of various logical aspects of self-reference, see
Smullyan (1994).†

The fixpoint lemma

We will now render this construction in logical form and so prove the key
fixed point theorem (Carnap 1937).‡ Suppose P [x] is any arithmetical for-
mula with exactly one free variable x. We will show how to construct a sen-
tence φ such that φ ⇔ P [�φ�] is true in arithmetic. The construction follows
the plan in the previous subsection with numeral representations of Gödel
numbers taking the place of string quotation. Diagonalization of a formula p

with respect to a variable x can be defined by diagx(p) = subst (x |⇒ �p�) p,
and can be implemented as:

let diag x p = subst (x |=> numeral(gform p)) p;;

However, later work is easier using quasi-substitution qsubst(x, t, p) =
∃x. x = t∧ p, which is logically equivalent to subst (x |⇒ t) p whenever x �∈
FVT(t). In particular, we can define quasi-diagonalization by qdiagx(p) =
qsubst(x, �p�, p) = ∃x. x = �p� ∧ p:

let qdiag x p = Exists(x,And(mk_eq (Var x) (numeral(gform p)),p));;

A natural counterpart of our fixpoint construction diag("P(diag(x))")
would be something like the following:

φ = qdiagx(P [�qdiagx(#x)�]),

where # is some left inverse of the Gödel numbering satisfying #�p� = p for
all formulas p. (Since the Gödel numbering is injective, there must exist such
an inverse.) We can’t literally write down a formula containing the inverse
#, but note that:

† Similar tricks can be used to create programs, often called quines, that produce exactly their
own text as output (Bratley and Millo 1972). See martin.jambon.free.fr/quine.ml.html for
a short quine in OCaml.

‡ Gödel had already applied it in a special case that we consider in the next section.
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�qdiagx(p)�
= �∃x. x = �p� ∧ p�
=

〈
10,

〈
number(x), �x = �p� ∧ p�

〉〉

=
〈
10,

〈
number(x),

〈
5,

〈
�x = �p��, �p�

〉〉〉〉

=
〈
10,

〈
number(x),

〈
5,

〈〈
1,

〈
�x�, ��p��

〉〉
, �p�

〉〉〉〉

= 〈10, 〈number(x), 〈5, 〈〈1, 〈〈0, number(x)〉, gnumeral(�p�)〉〉, �p�〉〉〉〉.

This means that the following binary predicate:

QDIAGx(n, y) ⇔ ∃k. GNUMERAL(n, k) ∧
〈10, 〈number(x), 〈5, 〈〈1, 〈〈0, number(x)〉, k〉〉, n〉〉〉〉 = y

has the property that QDIAGx(�p�, y) holds in N precisely if y = �qdiagx(p)�
does. So we can deduce Carnap’s fixpoint (or diagonal) lemma.

Lemma 7.3 Let P [x] be a formula in the language of arithmetic with just
the free variable x, and define φ =def qdiagx(∃y.QDIAGx(x, y)∧P [y]). Then
φ ⇔ P [�φ�] holds in N.

Proof Note the following chain of equivalences in N:

φ = qdiagx(∃y. QDIAGx(x, y) ∧ P [y])

⇔ diagx(∃y. QDIAGx(x, y) ∧ P [y])

= ∃y. QDIAGx(�∃y. QDIAGx(x, y) ∧ P [y]�, y) ∧ P [y]

⇔ ∃y. y = �qdiagx(∃y. QDIAGx(x, y) ∧ P [y])� ∧ P [y]

⇔ P [�qdiagx(∃y. QDIAGx(x, y) ∧ P [y])�]

⇔ P [�φ�]

as required.

Tarski’s theorem

We now have all the ingredients we need to prove Tarski’s theorem on the
undefinability of truth.

Theorem 7.4 There is no formula in the language of arithmetic that defines
the set of Gödel numbers of true formulas, i.e. the set {�p� | p is true in N}.
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Proof Suppose that Tr[x] were such a formula, with free variable x. By the
fixpoint Lemma 7.3 applied to the formula ¬Tr[x], there is a sentence φ such
that φ ⇔ ¬Tr[�φ�] is true in N. But by hypothesis, Tr[�φ�] holds in N iff φ is
true in N, and therefore ¬Tr[�φ�] holds in N iff φ is not true in N. Therefore
φ ⇔ ¬Tr[�φ�] cannot hold in N, and we have reached a contradiction.

7.3 Incompleteness of axiom systems

Now we’ll show that, by contrast with the set of true sentences, the set of
provable sentences in the first-order proof system from Chapter 6 is definable.
In fact we will prove more generally that whenever (the set of Gödel numbers
of) A is definable, so is (the set of Gödel numbers of) Cn(A) = {p | A �
p} = {p | A |= p}; these sets are the same by Theorem 6.3.

For a start, it’s convenient to be able to check that a certain Gödel number
does indeed correspond to a term, or a formula. Consider the definable binary
relation TERM1:

TERM1(x, y) =def (∃l u. x = l ∧ y = 〈〈0, u〉, l〉) ∨
(∃l. x = l ∧ y = 〈〈1, 0〉, l〉) ∨
(∃t l. x = 〈t, l〉 ∧ y = 〈〈2, t〉, l〉) ∨
(∃n s t l. (n = 3 ∨ n = 4) ∧

x = 〈s, 〈t, l〉〉 ∧ y = 〈〈n, 〈s, t〉〉, l〉).

By design, this is true exactly for pairs of the following form. (Note that
we use here the surjectivity of the number mapping from strings to numbers,
ensuring that any number corresponds to a variable.)

l , 〈�x�, l〉
l , 〈�0�, l〉

〈�t�, l〉 , 〈�S(t)�, l〉
〈�s�, 〈�t�, l〉〉 , 〈�s + t�, l〉
〈�s�, 〈�t�, l〉〉 , 〈�s · t�, l〉

By earlier results, the reflexive-transitive closure TERM∗
1 is also definable.

The underlying idea is that if we think of both parameters as lists, encoded
with repeated pairing, then TERM1(l1, l2) holds if l1 results from one step of
‘deconstruction’ of the first element of l2, either breaking a composite term
into two subterms or removing it if it is a variable or constant; TERM∗

1(l1, l2)
then holds if we can pass from l2 to l1 by repeated ‘destruction’ steps.
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To make this precise, note that if m = 〈a1, . . . , 〈ak, 0〉 . . .〉 is a list of Gödel
numbers of terms and TERM1(m, n), then n is also a list of Gödel numbers
of terms, and by induction, the same applies when TERM∗

1(m, n). Since
trivially all the elements of the list 0 (of which there are none) are Gödel
numbers of terms, so is n whenever TERM∗

1(0, [n]). Conversely, by induction
on terms t, for any a we have TERM∗

1(a, 〈�t�, a〉). Putting these together,
we see that TERM∗

1(0, 〈n, 0〉) iff n is the Gödel number of a term in the
language, so we define

TERM(n) =def TERM∗
1(0, 〈n, 0〉).

We will use the same technique four more times to define other syntactic
properties and the notion of provability. First, we define the set of Gödel
numbers of valid formulas of the language via

FORM1(x, y) = (∃l. x = l ∧ y = 〈〈0, 0〉, l〉) ∨
(∃l. x = l ∧ y = 〈〈0, 1〉, l〉) ∨
(∃n s t l. (n = 1 ∨ n = 2 ∨ n = 3) ∧

TERM(s) ∧ TERM(t) ∧
x = l ∧ y = 〈〈n, 〈s, t〉〉, l〉)∨

(∃p l. x = 〈p, l〉 ∧ y = 〈〈4, p〉, l〉) ∨
(∃n p q l. (n = 5 ∨ n = 6 ∨ n = 7 ∨ n = 8) ∧

x = 〈p, 〈q, l〉〉 ∧ y = 〈〈n, 〈p, q〉〉, l〉)∨
(∃n u p l. (n = 9 ∨ n = 10)∧

x = 〈p, l〉 ∧ y = 〈〈n, 〈u, p〉〉, l〉)
and

FORM(n) =def FORM∗
1(0, 〈n, 0〉).

In order to state the two side-conditions that arise with axioms, x �∈
FVT(t) and x �∈ FV(p), we define corresponding binary relations. The for-
mula FREETERM(m, n) means ‘n is the Gödel number of a term t in which
the variable x with number(x) = m does not appear’. We can simply modify
the relation TERM1 to have the extra parameter m indicating the variable
number, disallowing terms built from it by using the additional condition
u �= m:

FREETERM1(m, x, y) =def

(∃l u. ¬(u = m) ∧ x = l ∧ y = 〈〈0, u〉, l〉) ∨
(∃l. x = l ∧ y = 〈〈1, 0〉, l〉) ∨
(∃t l. x = 〈t, l〉 ∧ y = 〈〈2, t〉, l〉) ∨
(∃n s t l. (n = 3 ∨ n = 4)∧

x = 〈s, 〈t, l〉〉 ∧ y = 〈〈n, 〈s, t〉〉, l〉),
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then produce FREETERM as its reflexive transitive closure, considering it
as a binary relation between x and y, with the additional variable m simply
carried through as an additional parameter:

FREETERM(m, n) =def FREETERM∗
1(m, 0, 〈n, 0〉).

Similarly we define FREEFORM(m, n) meaning ‘n is the Gödel number
of a formula p in which the variable x with number(x) = m does not appear
free’. Again, we can introduce the additional parameter m and replace each
TERM(t) by FREETERM(m, t). However, since x is not free in ∀x. p or
∃x. p, we add a clause for that at the end:

FREEFORM1(m, x, y) =def

(∃l. x = l ∧ y = 〈〈0, 0〉, l〉) ∨
(∃l. x = l ∧ y = 〈〈0, 1〉, l〉) ∨
(∃n s t l. (n = 1 ∨ n = 2 ∨ n = 3) ∧

FREETERM(m, s) ∧ FREETERM(m, t) ∧
x = l ∧ y = 〈〈n, 〈p, q〉〉, l〉)∨

(∃p l. x = 〈p, l〉 ∧ y = 〈〈4, p〉, l〉) ∨
(∃n p q l. (n = 5 ∨ n = 6 ∨ n = 7 ∨ n = 8) ∧

x = 〈p, 〈q, l〉〉 ∧ y = 〈〈n, 〈p, q〉〉, l〉)∨
(∃n u p l. (n = 9 ∨ n = 10)∧

x = 〈p, l〉 ∧ y = 〈〈n, 〈u, p〉〉, l〉)∨
(∃n p l. (n = 9 ∨ n = 10)∧

x = l ∧ FORM(p) ∧ y = 〈〈n, 〈m, p〉〉, l〉).

As with FREETERM, we set FREEFORM to be the reflexive transitive
closure of FREEFORM1, regarded as a binary relation between x and y

with the additional variable m as a parameter:

FREEFORM(m, n) =def FREEFORM∗
1(m, 0, 〈n, 0〉).

For reasons of modularity, we first produce a formula defining the set
of axiom schemas (i.e. the inference rules other than modus ponens and
generalization) and then incorporate it into an arithmetization of the whole
inference system. These axiom schemas can be defined by a straightforward
disjunction. The relation AXIOM(n) defined next means ‘n is the Gödel
number of a formula that is an axiom’. Note that we only include congruence
axioms for functions and predicates in the language of arithmetic, i.e. S, ‘+’,
‘·’, ‘<’ and ‘≤’.
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AXIOM(a) =def

(∃p q. FORM(p) ∧ FORM(q) ∧ a = 〈7, 〈p, 〈7, 〈q, p〉〉〉〉) ∨
(∃p q r. FORM(p) ∧ FORM(q) ∧ FORM(r) ∧

a = 〈7, 〈〈7, 〈p, 〈7, 〈q, r〉〉〉〉, 〈7, 〈〈7, 〈p, q〉〉, 〈7, 〈p, r〉〉〉〉〉〉) ∨
(∃p. FORM(p) ∧

a = 〈7, 〈〈7, 〈〈7, 〈p, 〈0, 0〉〉〉, 〈0, 0〉〉〉, p〉〉) ∨
(∃x p q. FORM(p) ∧ FORM(q) ∧

a = 〈7, 〈〈9, 〈x, 〈7, 〈p, q〉〉〉〉, 〈7, 〈〈9, 〈x, p〉〉, 〈9, 〈x, q〉〉〉〉〉〉) ∨
(∃x p. FREEFORM(x, p) ∧ a = 〈7, 〈p, 〈9, 〈x, p〉〉〉〉) ∨
(∃x t. FREETERM(x, t) ∧ a = 〈10, 〈x, 〈1, 〈〈0, x〉, t〉〉〉〉) ∨
(∃t. TERM(t) ∧ a = 〈1, 〈t, t〉〉) ∨
(∃s t. TERM(s) ∧ TERM(t) ∧

a = 〈7, 〈〈1, 〈s, t〉〉, 〈1, 〈〈2, s〉, 〈2, t〉〉〉〉〉) ∨
(∃s t u v. TERM(s) ∧ TERM(t) ∧ TERM(u) ∧ TERM(v) ∧

a = 〈7, 〈〈1, 〈s, t〉〉, 〈7, 〈〈1, 〈u, v〉〉, 〈1, 〈〈3, 〈s, u〉〉, 〈3, 〈t, v〉〉〉〉〉〉〉〉) ∨
(∃s t u v. TERM(s) ∧ TERM(t) ∧ TERM(u) ∧ TERM(v) ∧

a = 〈7, 〈〈1, 〈s, t〉〉, 〈7, 〈〈1, 〈u, v〉〉, 〈1, 〈〈4, 〈s, u〉〉, 〈4, 〈t, v〉〉〉〉〉〉〉〉) ∨
(∃s t u v. TERM(s) ∧ TERM(t) ∧ TERM(u) ∧ TERM(v) ∧

a = 〈7, 〈〈1, 〈s, t〉〉, 〈7, 〈〈1, 〈u, v〉〉, 〈7, 〈〈1, 〈s, u〉〉, 〈1, 〈t, v〉〉〉〉〉〉〉〉) ∨
(∃s t u v. TERM(s) ∧ TERM(t) ∧ TERM(u) ∧ TERM(v) ∧

a = 〈7, 〈〈1, 〈s, t〉〉, 〈7, 〈〈1, 〈u, v〉〉, 〈7, 〈〈2, 〈s, u〉〉, 〈2, 〈t, v〉〉〉〉〉〉〉〉) ∨
(∃s t u v. TERM(s) ∧ TERM(t) ∧ TERM(u) ∧ TERM(v) ∧

a = 〈7, 〈〈1, 〈s, t〉〉, 〈7, 〈〈1, 〈u, v〉〉, 〈7, 〈〈3, 〈s, u〉〉, 〈3, 〈t, v〉〉〉〉〉〉〉〉) ∨
(∃p q. FORM(p) ∧ FORM(q) ∧

a = 〈7, 〈〈8, 〈p, q〉〉, 〈7, 〈p, q〉〉〉〉) ∨
(∃p q. FORM(p) ∧ FORM(q) ∧

a = 〈7, 〈〈8, 〈p, q〉〉, 〈7, 〈q, p〉〉〉〉) ∨
(∃p q. FORM(p) ∧ FORM(q) ∧

a = 〈7, 〈〈7, 〈p, q〉〉, 〈7, 〈〈7, 〈q, p〉〉, 〈8, 〈p, q〉〉〉〉〉〉) ∨
(a = 〈8, 〈〈0, 1〉, 〈7, 〈〈0, 0〉, 〈0, 0〉〉〉〉〉) ∨
(∃p. FORM(p) ∧

a = 〈8, 〈〈4, p〉, 〈7, 〈p, 〈0, 0〉〉〉〉〉) ∨
(∃p q. FORM(p) ∧ FORM(q) ∧

a = 〈8, 〈〈5, 〈p, q〉〉, 〈7, 〈〈7, 〈p, 〈7, 〈q, 〈0, 0〉〉〉〉〉, 〈0, 0〉〉〉〉〉) ∨
(∃p q. FORM(p) ∧ FORM(q) ∧

a = 〈8, 〈〈6, 〈p, q〉〉, 〈4, 〈5, 〈〈4, p〉, 〈4, q〉〉〉〉〉〉) ∨
(∃x p. FORM(p) ∧

a = 〈8, 〈〈10, 〈x, p〉〉, 〈4, 〈9, 〈x, 〈4, p〉〉〉〉〉〉).
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To define the set of all provable formulas, we can repeat the same approach
yet again using reflexive transitive closure, this time of the following relation:

Pr1(x, y) =def (∃a. AXIOM(a) ∧ y = 〈a, x〉) ∨
(∃p q l. x = 〈〈7, 〈p, q〉〉, 〈p, l〉〉 ∧ y = 〈q, l〉) ∨
(∃p u l. x = 〈p, l〉 ∧ y = 〈〈9, 〈u, p〉〉, l〉)

Now we can define the set of Gödel numbers of provable formulas in the
language by Pr(n) =def Pr∗1(0, 〈n, 0〉). More generally, given any definable set
A of additional axioms, let Ax(a) be a formula defining it, and define PrA(n)
replacing the formula AXIOM(a) by AXIOM(a)∨Ax(a) in the definition of
Pr1. Then PrA(n) represents exactly the set of Gödel numbers of Cn(A) =
{p | A � p}. We are now ready to prove a weak form of Gödel’s First
Incompleteness Theorem:

Theorem 7.5 Let A be any set of formulas such that the set {�p� | p ∈ A} is
definable. Then Cn(A) does not coincide with the formulas true in N; either
some of the axioms A are false in N or there is a formula p that is true in
N but not a logical consequence of A.

Proof We have seen that Cn(A) is definable, whereas the set of true formulas
is not, by Tarski’s theorem. Thus, either there are truths of N that are
not in Cn(A), or there are false assertions in Cn(A). Since all the logical
inference rules preserve truth, the latter implies that there must have been
false assertions in A.

Assuming that the axioms A are all true in N, we have concluded what
we might term semantical incompleteness: some true formula is unprovable.
This sense of ‘incompleteness’ is analogous to incompleteness of a proof
system as discussed in Section 4.3, but with the crucial difference that it
involves truth in the standard model rather than logical validity in general.
(Our first-order proof system is complete in that A |= p iff A � p, but for
definable A neither of those equivalent notions is the same as truth of p in
N.) It immediately implies incompleteness in the sense of Section 5.6:

Corollary 7.6 Let A be any set of formulas true in N such that the set
{�p� | p ∈ A} is definable. Then there is a sentence p such that neither
A � p nor A � ¬p, i.e. the theory Cn(A) is incomplete.

Proof By the previous theorem, there is a formula q that is true in N

yet unprovable from A. Let p be its universal closure generalize(q). Since
� p ⇒ q, it follows that A �� p. On the other hand, all formulas in A, and
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hence all logical consequences of A, are true in N, so since ¬p is false we
must have A �� ¬p.

Note carefully that the definability of A was assumed in these results
– some restriction on A is certainly necessary, since the conclusion trivially
fails if we choose for A the set of all true formulas. Contrast the Löwenheim–
Skolem theorems (Section 3.16), which imply that any first-order axiom set
with an infinite model has ‘unintended’ models. Yet it may still happen that
all these models agree on their first-order consequences, as we can see from
the existence of complete theories such as algebraically closed fields of char-
acteristic zero (Section 5.8), or the theory of a specific model (i.e. the set all
formulas that hold in that model). Gödel’s theorem tells us something differ-
ent, that sound and definable axiom systems for arithmetic are incomplete
even in their first-order consequences.

The assumption of definability is met by all conventional mathematical
axiom systems. In particular, any finite set of formulas {p1, . . . , pn} is triv-
ially definable by Ax(n) = n = �p1� ∨ · · · ∨ n = �pn�. The same applies to
axioms defined by a finite set of schemas. For example, one popular axiom
system, called PA (Peano arithmetic) consists of the basic axioms

∀n. ¬(S(n) = 0),
∀m n. S(m) = S(n) ⇒ m = n,

(∀n. 0 + n = n) ∧ (∀m n. S(m) + n = S(m + n)),
(∀n. 0 · n = 0) ∧ (∀m n. S(m) · n = m · n + n),

together with the infinite set of instances of the induction principle, where
P [n] is any formula in the language with at least one free variable n:

P [0] ∧ (∀n. P [n] ⇒ P [S(n)]) ⇒ ∀n. P [n].

It’s easy to see that this axiom scheme is definable. As usual it’s simpler
to avoid arithmetizing substitution by considering all formulas of the form

(∃x. x = 0 ∧ P ) ∧ (∀n. (∃x. x = n ∧ P ) ⇒ (∃x. x = S(n) ∧ P )) ⇒ ∀x. P

for n �∈ FV(P ), which is easily seen to be equivalent.

7.4 Gödel’s incompleteness theorem

Gödel indeed seems to have discovered his first incompleteness theorem by
noting that provability is arithmetically definable whereas arithmetic truth
is not. However, the final published form of the theorem (Gödel 1931) was
sharper, and we turn to this now.
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Having demonstrated that provability from a definable axiom set A is
definable by a formula PrA we no longer need to talk about a putative
definition of truth at all. Instead of considering a sentence that ‘asserts its
own falsity’, we can consider one that ‘asserts its own unprovability’ from
axioms A in the sense that the following holds in N:

G ⇔ ¬PrA(�G�),

or one that ‘asserts the provability of its own negation’, meaning that the
following holds:

H ⇔ PrA(�¬H�),

The fixpoint Lemma 7.3 assures us that there are indeed sentences with
such properties.† If fact, if we define a formula H such that H ⇔ PrA(�¬H�)
is true in N and define G =def ¬H, then G ⇔ ¬PrA(�G�) holds in N, and
vice versa. What can we conclude about such sentences? Let us first assume
that the axioms A are sound, so all formulas p with A � p are true in N.

• Suppose A � G. This means exactly that the corresponding arithmetiza-
tion PrA(�G�) is true in N. But since G ⇔ ¬PrA(�G�) in N we conclude
that G is false in N. Since the axioms are sound, this is impossible.

• Suppose A � ¬G. Then by soundness, ¬G is true in N, and from G ⇔
¬PrA(�G�) we conclude that PrA(�G�) is true and therefore A � G.
However, we then have both A � G and A � ¬G, so A � ⊥, and since ⊥
is certainly not true in N (or any other interpretation), this is impossible.

We conclude that A �� G and A �� ¬G, i.e. once again that Cn(A) is
an incomplete theory. The basic conclusion matches Theorem 7.5 and its
corollary, but the proof here is constructive: given a particular sound axiom
system A we can, at least in principle, exhibit a specific sentence G that is
neither provable nor refutable based on axioms A (see Exercise 7.4).

This proof is also interesting because it only appeals to soundness for three
specific sentences: G (to prove A �� G) and ¬G and ⊥ (to prove A �� ¬G).
At first sight, this might appear uninteresting, because G is a large and
complicated formula featuring many more or less arbitrary encoding details,
and moreover is dependent on A itself. However, we will see that G and ¬G

belong to some important general classes.

Δ0 formulas

Definition 7.7 A formula in the language of arithmetic is said to be Δ0 if
all its quantifiers are bounded, i.e. each quantified subformula is of the form
† More precisely, for H we can apply the fixpoint lemma with H ⇔ PrA(

〈
4, �H�〉

), which is
equivalent in N to the fixpoint stated with the number expressed as a canonical numeral.
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∀x. x ≤ t ⇒ P [x], ∀x. x < t ⇒ P [x], ∃x. x ≤ t ∧ P [x] or ∃x. x < t ∧ P [x]
with x �∈ FVT(t).

The special interest of this class is that there is a straightforward algorithm
for deciding whether any given Δ0-sentence, i.e. Δ0 formula with no free
variables, is true in N. (One can think of Δ as the first letter of ‘decidable’
for this reason.) First of all, evaluation of a term tm in a valuation v can be
considered just a special case of termval:

let rec dtermval v tm =
match tm with
Var x -> apply v x

| Fn("0",[]) -> Int 0
| Fn("S",[t]) -> dtermval v t +/ Int 1
| Fn("+",[s;t]) -> dtermval v s +/ dtermval v t
| Fn("*",[s;t]) -> dtermval v s */ dtermval v t
| _ -> failwith "dtermval: not a ground term of the language";;

The key point of Δ0 formulas arises when we consider whether a quan-
tified formula holds. Generally, in order to decide this, we need to exam-
ine infinitely many possibilities, so our implementation of holds (Section
3.3) only considered the special case of finite interpretations. However, if all
quantifiers are bounded, we can effectively determine truth or falsity. For
propositional connectives, we proceed in the obvious way, but defer handling
of quantifiers to a mutually recursive function dhquant:

let rec dholds v fm =
match fm with
False -> false

| True -> true
| Atom(R("=",[s;t])) -> dtermval v s = dtermval v t
| Atom(R("<",[s;t])) -> dtermval v s </ dtermval v t
| Atom(R("<=",[s;t])) -> dtermval v s <=/ dtermval v t
| Not(p) -> not(dholds v p)
| And(p,q) -> dholds v p & dholds v q
| Or(p,q) -> dholds v p or dholds v q
| Imp(p,q) -> not(dholds v p) or dholds v q
| Iff(p,q) -> dholds v p = dholds v q
| Forall(x,Imp(Atom(R(a,[Var y;t])),p)) -> dhquant forall v x y a t p
| Exists(x,And(Atom(R(a,[Var y;t])),p)) -> dhquant exists v x y a t p
| _ -> failwith "dholds: not an arithmetical delta-formula"

The dhquant function first checks that the quantifier is indeed bounded
as required, and evaluates the bound. (The restriction that the quantified
variable does not occur in the bound itself is important here, since it ensures
that all variables in the bound have been assigned values by this stage of the
recursion.) If the bound evaluates to n, we can decide the quantified formula
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by checking the body only for values 0, 1, . . . , n− 1 or 0, 1, . . . , n depending
on whether the bounding inequality is < or ≤:

and dhquant pred v x y a t p =
if x <> y or mem x (fvt t) then failwith "dholds: not delta" else
let m = if a = "<" then dtermval v t -/ Int 1 else dtermval v t in
pred (fun n -> dholds ((x |-> n) v) p) (Int 0 --- m);;

Many of the formulas from Section 7.2 defining arithmetical predicates
are in fact Δ0, often by design. For example, we expressed divisibility as
m|n =def ∃x. x ≤ n ∧ n = m · x with a bounded quantifier precisely to
make it Δ0, even though the ‘simpler’ formula m|n =def ∃x. n = m · x is
equivalent. Likewise our formulas for ‘prime’ and ‘primepow’ are Δ0. The
following function generates a formula asserting that the integer p is prime
using our arithmetic encoding:

let prime_form p = subst("p" |=> numeral(Int p))
<<S(S(0)) <= p /\
forall n. n < p ==> (exists x. x <= p /\ p = n * x) ==> n = S(0)>>;;

and we can indeed evaluate specific instances with the decider:

# dholds undefined (prime_form 100);;
- : bool = false
# dholds undefined (prime_form 101);;
- : bool = true

Of course, for non-trivial formulas, this is not really feasible in practice,
but the decidability in principle of Δ0-formulas is an important theme.

Σ1 and Π1 formulas

Our construction for reflexive transitive closure does not (indeed could not,
as we shall see eventually) preserve the property of Δ0-ness: even if R(x, y)
itself is Δ0, R∗(x, y) is not. However, at least the unbounded quantifiers are
all existential, and this is highly significant.

Suppose P [x] is such that the truth of P [n] is decidable for any particular
numeral n, e.g. if P [x] is a Δ0-formula. Then although there may be no
algorithm to decide ∃x.P [x], there is at least a naive algorithm that can verify
that ∃x. P [x] is true if indeed it is: try all possible n = 0, 1, 2, . . . in order
until P [n] is found to be true. (If the algorithm is applied to a false formula,
it will run forever, so this is only a semi-decision procedure.) Conversely,
there is a straightforward algorithm that can confirm that ∀x. P [x] is false
when it is: try all n in order until some P [n] is found to be false.
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Roughly speaking, we say that a formula in prenex form is Σ1 if all
unbounded quantifiers are existential, and Π1 if all unbounded quantifiers
are universal. (The choice of letters corresponds to ‘sum’ and ‘product’,
a traditional terminology for existential and universal quantifiers respec-
tively.) More generally, we say that it is Σn (respectively Πn) if it contains
n alternating blocks of like quantifiers with the outer one existential (resp.
universal). However, we will define this notion more precisely to allow it to
apply to non-prenex formulas and take into account logical signs. For exam-
ple (∀x. P [x]) ⇒ (∃y. Q[y]) counts as Σ1 because the universal quantifier is
effectively negated and hence ‘really’ an existential one. To make our def-
inition in OCaml, we start by setting up a type to denote three classes of
formulas, Σ, Π and Δ:

type formulaclass = Sigma | Pi | Delta;;

and reflect symmetries between them by an ‘opposite’ map.

let opp = function Sigma -> Pi | Pi -> Sigma | Delta -> Delta;;

Now we define the classification function taking a formula class c, a non-
negative integer n and a formula fm, and telling us whether the formula
belongs to the corresponding class, which we call cn. (Arguably we should
also check that the formula is in the language of arithmetic, but we regard
that as a separate question since the classification of formulas may be of
interest for other languages.)

let rec classify c n fm =
match fm with
False | True | Atom(_) -> true

| Not p -> classify (opp c) n p
| And(p,q) | Or(p,q) -> classify c n p & classify c n q
| Imp(p,q) -> classify (opp c) n p & classify c n q
| Iff(p,q) -> classify Delta n p & classify Delta n q
| Exists(x,p) when n <> 0 & c = Sigma -> classify c n p
| Forall(x,p) when n <> 0 & c = Pi -> classify c n p
| (Exists(x,And(Atom(R(("<"|"<="),[Var y;t])),p))|

Forall(x,Imp(Atom(R(("<"|"<="),[Var y;t])),p)))
when x = y & not(mem x (fvt t)) -> classify c n p

| Exists(x,p) | Forall(x,p) -> n <> 0 & classify (opp c) (n - 1) fm;;

In what follows, we will be exclusively concerned with the cases Σ1, Π1

and Δ0 = Σ0 = Π0. Note that bounded quantifiers can still be intermixed
arbitrarily in Σn and Πn formulas without affecting their classification, and
arbitrarily many quantifiers of the same kind can occur in blocks, e.g.
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# classify Sigma 1
<<forall x. x < 2

==> exists y z. forall w. w < x + 2
==> w + x + y + z = 42>>;;

- : bool = true

This means that to verify a general Σ1-formula, we can’t just recursively
‘try all n in order’ when confronted with ∃x. P [x]. Consider for example
∃m n. m = n + 1. This is true, but if we first try to set m = 0 we get the
false sentence ∃n.0 = n+1 and so the recursive attempt to verify this would
loop indefinitely.

However, if a Σ1-formula is true, there is some m that is an adequate
bound for all the existential quantifiers. One can prove this inductively on
the structure of the formula. For example, suppose ∃x y.P [x, y] is true. Then
there is some n such that ∃y.P [n, y] is true. Now if k is a suitable bound for
the existentials in ∃y. P [n, y], then m = max(n, k) is a suitable bound for
the formula as a whole. Similarly, if ∀x. x ≤ n ⇒ P [x] is true, each P [k] for
k = 0, . . . , n is true, and for each there is a corresponding bound mk, and
then max(m0, . . . , mn) is a suitable bound for ∀x. x ≤ n ⇒ P [x] as a whole.

The following function can be used either to verify a true Σ1-formula (if
the argument sign is the identity mapping) or refute a false Π1-formula (if
the argument sign is Boolean negation), assuming in both cases that m

is an adequate bound of this kind for all the unbounded quantifiers of the
appropriate sign:

let rec veref sign m v fm =
match fm with
False -> sign false

| True -> sign true
| Atom(R("=",[s;t])) -> sign(dtermval v s = dtermval v t)
| Atom(R("<",[s;t])) -> sign(dtermval v s </ dtermval v t)
| Atom(R("<=",[s;t])) -> sign(dtermval v s <=/ dtermval v t)
| Not(p) -> veref (not ** sign) m v p
| And(p,q) -> sign(sign(veref sign m v p) & sign(veref sign m v q))
| Or(p,q) -> sign(sign(veref sign m v p) or sign(veref sign m v q))
| Imp(p,q) -> veref sign m v (Or(Not p,q))
| Iff(p,q) -> veref sign m v (And(Imp(p,q),Imp(q,p)))
| Exists(x,p) when sign true

-> exists (fun n -> veref sign m ((x |-> n) v) p) (Int 0---m)
| Forall(x,p) when sign false

-> exists (fun n -> veref sign m ((x |-> n) v) p) (Int 0---m)
| Forall(x,Imp(Atom(R(a,[Var y;t])),p)) when sign true

-> verefboundquant m v x y a t sign p
| Exists(x,And(Atom(R(a,[Var y;t])),p)) when sign false

-> verefboundquant m v x y a t sign p
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where the mutually recursive verefboundquant handles bounded quanti-
fiers, first checking the appropriate syntactic conditions and then performing
a case analysis:

and verefboundquant m v x y a t sign p =
if x <> y or mem x (fvt t) then failwith "veref" else
let m = if a = "<" then dtermval v t -/ Int 1 else dtermval v t in
forall (fun n -> veref sign m ((x |-> n) v) p) (Int 0 --- m);;

We defined these dual functions purely to get a smooth recursion, and we
will only be interested in verifying true Σ1-formulas:

let sholds = veref (fun b -> b);;

Although this function depends on having a suitable bound m, we can, if
the formula is indeed true, find the first m for which the formula is true:

let sigma_bound fm = first (Int 0) (fun n -> sholds n undefined fm);;

For example, here we verify that ∃p x. p < x∧primepow(p, x); a sufficient
bound is m = 4, since we can set p = 2, x = 4:

# sigma_bound
<<exists p x.

p < x /\
(S(S(0)) <= p /\
forall n. n < p

==> (exists x. x <= p /\ p = n * x) ==> n = S(0)) /\
~(x = 0) /\
forall z. z <= x

==> (exists w. w <= x /\ x = z * w)
==> z = S(0) \/ exists x. x <= z /\ z = p * x>>;;

- : num = 4

Gödel’s first incompleteness theorem

We now sharpen our earlier results by specializing various relevant concepts
to the classes of Σ1 and Π1 formulas. First we establish some terminology:

• a relation R is Σ1-definable [Π1-definable] if it is definable by a Σ1-formula
[a Π1-formula];

• a set of axioms A is Σ1-sound [Π1-sound] if whenever p is a Σ1-sentence
[Π1-sentence] and A � p, then p is true in N;

• a set of axioms A is Σ1-complete [Π1-complete] if whenever p is a Σ1-
sentence [Π1-sentence] that is true in N then A � p.
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Let us now look back systematically at our arithmetic definitions. As
noted above, ‘divides’, ‘prime’ and ‘primepow’ are all Δ0. Moreover, pro-
vided R(x, y) is a Σ1-formula, so is the reflexive-transitive closure construc-
tion R∗(x, y), since ‘primepow’, which occurs both positively and negatively,
is Δ0 and all other unbounded quantifiers introduced are existential. All the
formulas from Section 7.3 up to and including ‘Pr’ are Σ1-formulas, since
they only use positive existential quantifiers, with the proviso that the sub-
sidiary relation ‘Ax’ defining the set of non-logical axioms A should itself be
Σ1.

In the fixpoint Lemma 7.3, provided P [x] is a Σ1-formula, so is the fixpoint
φ such that φ ⇔ P [�φ�], since the pseudo-substitution concept just uses
an existential quantifier. So, given the fixpoint with H ⇔ PrA(�¬H�), we
find that H is a Σ1-sentence, and therefore its negation G, which satisfies
G ⇔ ¬PrA(�G�), is a Π1-sentence. Let us emphasize:

If the set of axioms A is Σ1-definable then there is a Π1-sentence G such that
G ⇔ ¬PrA(�G�) is true in N, where PrA(�p�) holds in N iff A � p.

We can now obtain quite a sharp and pleasingly symmetric variant of
Gödel’s theorem; the proof is essentially as before, but taking care to observe
the classes to which the formulas belong.

Theorem 7.8 Let A be a Σ1-definable set of axioms and G the corresponding
Π1-sentence such that G ⇔ ¬PrA(�G�) holds in N (where PrA(�p�) holds
in N iff A � p). If A is Π1-sound, A �� G yet G is true; if A is Σ1-sound,
A �� ¬G.

Proof Suppose A is Π1-sound. If A � G, then its arithmetization PrA(�G�)
is true in N. But since G ⇔ ¬PrA(�G�) in N we conclude that G is false in
N. This is impossible by Π1-soundness, so we have reached a contradiction
and must conclude A �� G. But then ¬PrA(�G�) is true and therefore so is
G.

Suppose A is Σ1-sound. If A � ¬G, then (remember that G is a Π1-
formula so ¬G is a Σ1-formula) ¬G is true in N, and from G ⇔ ¬PrA(�G�)
we conclude that PrA(�G�) is true and therefore A � G. Since both A � G

and A � ¬G, we have A � ⊥, and as ⊥ is false and trivially a Σ1-formula,
this contradicts Σ1-soundness. We therefore conclude A �� ¬G.

We can conclude without reference to the particular sentence G.

Corollary 7.9 If a Σ1-definable set of axioms A is Π1-sound, it is not
Π1-complete, and if it is both Π1-sound and Σ1-sound, it is incomplete.
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Proof If A is Π1-sound, then A �� G yet G is true, so A is not Π1-complete.
If it is also Σ1-sound, then A �� ¬G, so neither G nor its negation is provable
from A, i.e. A is incomplete.

If A is consistent (A �� ⊥) and Σ1-complete, then it must be Π1-sound. For
if p is a Π1-formula that is false in N, its negation ¬p is a true Σ1-formula,
so by Σ1-completeness we have A � ¬p. It is therefore impossible that A � p

since then A � ⊥, contradicting consistency. The dual result can be obtained
similarly, so:

• consistency and Σ1-completeness imply Π1-soundness,
• consistency and Π1-completeness imply Σ1-soundness.

We will later exhibit a specific axiom system Q and prove in detail that it
is Σ1-complete. But, for the present, let us just observe that any ‘realistic’ set
of axioms for arithmetic is likely to be Σ1-complete, because it just needs to
be able to prove the various simple arithmetical facts implicitly underlying
our algorithm sholds above. For this reason, it’s usual to state Gödel’s first
incompleteness theorem assuming as a matter of course the hypothesis of Σ1-
completeness, so throwing into sharp relief the more interesting hypothesis
of consistency.

Corollary 7.10 Let A be a Σ1-definable set of axioms A that is Σ1-complete.
If A is consistent, then it is not Π1-complete; if it is both consistent and Σ1-
sound, it is incomplete.

Note that this is a significantly stronger result than the one we reached
at the beginning of this section, where we assumed that the axioms A were
sound, i.e. all consequences were true in N. Here, we only need consistency
of the axioms to ensure that G is true yet unprovable, and even to show
that ¬G is unprovable we do not need full soundness, only Σ1-soundness,
also called 1-consistency.†

This might be regarded as an insignificant technicality, since presumably
we will use axioms we believe are sound. Nevertheless, Gödel’s result itself
shows that there is a real distinction between consistency and (even Σ1)
soundness. Given a consistent and Σ1-complete axiom set A, there is a Π1-
sentence G that is true in N yet such that A �� G. This means that the
augmented set of axioms A′ = A∪{¬G} is still consistent, for if A∪{¬G} � ⊥
† Gödel’s theorem is sometimes stated assuming not Σ1-soundness but ‘ω-consistency’, meaning

that if A � ¬P [n] for all n ∈ N, then A 	� ∃x. P [x]. These two concepts are closely related, but
ω-consistency is a bit stronger than needed because it applies to an arbitrary P [x]. We can in
fact assume that P [x] is itself a Σ1-formula, or even a Δ0-formula.
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we would also have A � G. However, A′ is not Σ1-sound, because it proves
the false Σ1-formula ¬G.

7.5 Definability and decidability

Even before the articulation of his consistency programme, Hilbert was
deeply interested in questions of decidability. For instance, his tenth prob-
lem asked whether there exists a general algorithm for deciding whether a
Diophantine equation has a solution. Later, Hilbert posed the question of
whether a systematic decision method for first-order validity exists – the
Entscheidungsproblem (decision problem). After Hilbert himself and many
others failed to find such a method, attention increasingly turned to the
possibility of proving mathematically the nonexistence of such a method.

Mathematical impossibility results of this kind were not unknown at the
time, e.g. the impossibility of trisecting an angle using ruler-and-compass
constructions, or of solving all quintic equations by radicals. But here the
class of methods considered is relatively easily formalized, whereas the gen-
eral notion of ‘decision method’ had apparently never been analyzed when
Hilbert presented his Entscheidungsproblem. The question of delimiting the
effectively calculable (in modern terms, computable) functions caused much
discussion in the 1930s. One difficulty is the possibility of ‘diagonalizing
out’ of any set of functions. Presumably the computable functions must be
capable of being enumerated, perhaps with duplications, e.g. by putting all
possible descriptions (‘programs’) in alphabetical order. If the effectively
calculable functions N → N are enumerated ψ0, ψ1, ψ2, . . ., then the ‘diago-
nal’ function d(n) = ψn(n) + 1 cannot occur as any ψk since then ψk(k) =
ψk(k)+1. Yet intuitively it should be considered effectively calculable, since
there is an easily describable routine for calculating it: find the nth string
in alphabetical order, execute that as a program on argument n and add 1.

However, diagonalizing out is no counterargument provided we allow par-
tial computable functions that may be undefined for certain arguments, and
this turned out to be the key to several successful definitions. Church (1936)
proposed ‘a definition of effective calculability which is thought to corre-
spond satisfactorily to the somewhat vague intuitive notion’. The identifi-
cation of ‘effectively calculable’ with Church’s formal definition is usually
known as Church’s thesis. However, the independent yet mathematically
equivalent definition by Turing (1936) was widely regarded as more satisfy-
ing, so the phrase Church–Turing thesis is often used. In what follows, we
will present Turing’s definition of computability in terms of what are now
known as Turing machines.



556 Limitations

From our present perspective and given the aims of this book, we can
hardly resist the identification of ‘property P is decidable’ with ‘there is a
fixed computer program that given any n, tells us whether P (n) holds’. How-
ever it’s important to remember that in Hilbert’s time electronic computers
and modern programming languages had not been developed. The analy-
sis undertaken by the pioneers such as Turing was of human computational
activity: a person accurately following a definite procedure fixed in advance
without individual creativity. In the words of Wittgenstein (1980) ‘Turing’s
‘Machines’ [. . . ] are humans who calculate’, and to emphasize the distinc-
tion, Gandy (1988) maintains a useful spelling distinction between a human
‘computor’ and a mechanical ‘computer’. Turing’s analysis was regarded as
the most successful not because of the particular detail of Turing machines
but because his model was based on entirely plausible finiteness limitations
on human computation (Sieg 1994). It may indeed be that the same limits
apply to all human mental activity and to all physical systems, but this is
not obvious (Gandy 1980; Pour-El and Richards 1980).

Turing machines

We imagine a Turing machine as a discretely operating finite device, equipped
with a tape that is unbounded in both directions and divided into discrete
squares, each of which can hold one of a fixed finite number of characters.
The machine is equipped with a ‘head’ that can move left and right along
the tape (or equivalently, move the tape right or left past itself) and at any
time is ‘scanning’ some particular square. Although we will work with a
purely mathematical formalization of this conception, the following tradi-
tional picture will surely be helpful:

�� ��

· · · 0 1 1 0 1 · · ·

The machine is at any time in one of a finite number of ‘states’, and the
action at each time step is entirely determined by the current state and the
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character scanned. This action may be to write a new symbol on the scanned
square and/or move one square to the left or right. The finiteness of the set
of states corresponds to the assumption that a human computor can only be
in one of a finite number of ‘states of mind’. One may indeed doubt that this
restriction applies to human thought in general, but it seems clear that it
must apply when calculating in discrete steps without error. For if one were
to admit an infinite number of states of mind, there would be arbitrarily
‘similar’ states of mind for which different actions would be taken. It is hard
to believe that accurate discrimination between infinitely many states of
mind is possible.

Similarly, when performing a long calculation one cannot instantly refer
to any point in a huge pile of paper containing previous results. Unless it
was something in the last few pages, one would need to search through
the pile, perhaps using numbers previously added to help one locate the
data required. That is, looking beyond some range r must be decomposed
into a sequence of more primitive operations and should not belong to the
repertoire of basic operations. Turing’s original paper allowed the machine
to look at any square within a fixed range r, but the further restriction to a
single square can be shown to make no difference.

People do not usually work by writing characters in discrete squares. How-
ever, in order to perform a computation without error, people do need some-
how to organize their work in a way that helps them to refer to previously
written material without ambiguity, and it seems entirely plausible that any
such discipline could be adapted to a regime of discrete squares. Indeed,
children learning arithmetic are often encouraged to work in exercise books
ruled into squares, and one can show that the 2-dimensional nature of the
paper is not essential.

The characters people write when doing calculations are usually drawn
from a finite set of symbols. Although in principle the use of subscripts and
superscripts etc. gives a potentially infinite variety of mathematical sym-
bols, in practice people usually make do with a limited set. Besides, one can
always analyze composite symbols down into combinations of a fixed finite
set, even of two symbols. (Indeed, in order to make the symbol ‘Π0

1’ appear in
this book, the author enters the characters ‘\Pi^0_1’ on his keyboard, and
this is decomposed inside the computer to a sequence of binary digits.) Sim-
ilar remarks apply to huge numbers written as strings of decimals. Indeed,
as Turing noted, in general it is necessary to analyze long symbols down to
simple components, since one cannot see at a glance whether two similar-
looking strings of numbers are actually the same, but must decompose this
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recognition into a sequence of simpler tasks. Of course, there are infinite
variations in how characters are actually drawn on paper, but to perform a
calculation without error one must always be able to recognize a previously
written symbol without ambiguity, and it seems hard to believe that any
human is capable of distinguishing infinitely many symbols without error.
Indeed, it’s unexceptional to make mistakes in calculations precisely by mis-
reading a symbol previously written without due care.

We will not further consider Turing’s conceptual analysis of computation,
but refer the reader to the original paper by Turing (1936) and various
expositions (Kleene 1952; Minsky 1967; Gandy 1988; Sieg 1994). Instead,
we turn to the precise mathematical formulation of the Turing machine
concept and its realization in OCaml. The symbols on the tape could be
drawn from any type, but we will set up a special enumerated type, whose
members we think of as 0 and 1:

type symbol = Blank | One;;

The action of the machine at any time will be to (possibly) write a new
symbol on the tape and possibly move one square left or right. In order to
have a concrete representation of Turing machine ‘programs’, we also define
an enumerated type of directions:

type direction = Left | Right | Stay;;

The Turing machine tape can be considered simply as a function from
integers to symbols. At any point in a computation (even a nonterminating
one), only finitely many squares will be explicitly read or written by the
machine, so a finite partial function suffices, and having a concrete repre-
sentation is often useful. As part of the ‘tape’ data we include the current
position r of the head. (Of course we could adopt a view that the head is
always at 0 and the tape moves rather than the machine.) Thus:

type tape = Tape of int * (int,symbol)func;;

By convention we will assume that the tape starts blank except for the
input data – see later for more details about the input and output of data.
We don’t know a priori how many squares will be used, so we simply regard
undefined squares as Blank (i.e. 0). The following looks at the current char-
acter, with this default in mind:

let look (Tape(r,f)) = tryapplyd f r Blank;;
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Conversely, the following writes a character on the tape, by updating the
value of the tape at r to hold symbol s:

let write s (Tape(r,f)) = Tape (r,(r |-> s) f);;

and the following moves the tape head in a specified direction:

let move dir (Tape(r,f)) =
let d = if dir = Left then -1 else if dir = Right then 1 else 0 in
Tape(r+d,f);;

According to the definition, the action of a machine is determined entirely
by the current state and the scanned character; that action may be to write
a new character and/or move left or right. Using numbers to denote states,
the ‘configuration’ of the machine is the current state together with the
contents of the tape:

type config = Config of int * tape;;

A program can simply be considered a mapping, taking a pair of a state
and a symbol and giving a new character, a direction of movement, and
a new state, hence allowing us to interpret a program step-by-step by the
appropriate changes in configuration. The following function runs a program
until a configuration is reached with no action defined, at which point it
terminates. By convention, we will use only nonnegative integers for states,
with state 1 being the starting state and state 0 the final state, but a run
will treat any ‘undefined’ situation as entering state 0. This is reflected in
the code below.

let rec run prog (Config(state,tape) as config) =
let stt = (state,look tape) in
if defined prog stt then
let char,dir,state’ = apply prog stt in
run prog (Config(state’,move dir (write char tape)))

else config;;

We now define what it means for a Turing machine to compute a numer-
ical function f : N

n → N. All numbers will be expressed in unary, as a
(possibly empty) sequence of 1s followed by a terminating 0. Of course, this
is a grossly inefficient convention, making even trivial arithmetic operations
barely feasible, but using a better encoding is slightly more complicated and
we are not really interested in practical feasibility in this whole analysis.
A Turing machine program expects its head to be at a position scanning a
blank square, with the input arguments a1, . . . , an laid out immediately to
the right in order. If it terminates, it does so with the head scanning a blank
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square, immediately to the right of which is the output f(a1, . . . , an), again
in unary. We can set up the initial tape for a list of arguments a1, . . . , an as
follows:

let input_tape =
let writen n =
funpow n (move Left ** write One) ** move Left ** write Blank in

fun args -> itlist writen args (Tape(0,undefined));;

and extract the final result thus:

let rec output_tape tape =
let tape’ = move Right tape in
if look tape’ = Blank then 0
else 1 + output_tape tape’;;

Overall program execution now consists of setting up the inputs, running
the program, and returning the value on the output tape:

let exec prog args =
let c = Config(1,input_tape args) in
let Config(_,t) = run prog c in
output_tape t;;

Definition 7.11 A total function f : N
n → N is (Turing machine) com-

putable if there is a fixed program p that computes it for all arguments, i.e.
such that for all a1, . . . , an ∈ N, program p terminates on inputs a1, . . . , an

and we have:

exec p [a1; · · · ; an] = f(a1, . . . , an).

More generally, a partial function f : N
n → N is computable if there

is a fixed program p such that on each set of arguments a1, . . . , an ∈ N,
the program terminates if and only if f(a1, . . . , an) is defined, and when it
terminates satisfies the equation above.

For example, here is a simple program to compute the successor function
S(a) = a + 1. In state 1, the machine skips right over the expected 0 and
enters state 2. In state 2, it keeps moving right over 1s, and when a zero is
encountered, writes a 1 instead (to perform the successor operation), moves
right and enters state 3. In state 3, regardless of the current character, it
writes a terminating 0 and then moves left and enters state 4. In this state
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it keeps scanning left over 1s till the head returns to its starting position, at
which point it enters state 0 to terminate.

let prog_suc = itlist (fun m -> m)
[(1,Blank) |-> (Blank,Right,2);
(2,One) |-> (One,Right,2);
(2,Blank) |-> (One,Right,3);
(3,Blank) |-> (Blank,Left,4);
(3,One) |-> (Blank,Left,4);
(4,One) |-> (One,Left,4);
(4,Blank) |-> (Blank,Stay,0)]
undefined;;

This program shows that the successor function is computable. We can
try it out on some examples to reassure ourselves that we didn’t make a
mistake:

# exec prog_suc [0];;
- : int = 1
# exec prog_suc [1];;
- : int = 2
# exec prog_suc [19];;
- : int = 20

Of course, the successor function is somewhat trivial, and it may seem
far from obvious that more interesting functions are computable according
to our definition. However, with careful organization, it’s quite easy to cre-
ate Turing machine programs for complicated computable functions. One
systematic approach is to consider writing programs in a simple structured
imperative programming language. By sensibly organizing variables on the
tape (perhaps using the left part of the tape as a ‘stack’ for local variables),
one can quite easily ‘compile’ such programs down to Turing machine pro-
grams. We will not dwell further on this here, since the Turing machine
model of computation is well-accepted and we are concerned with its limi-
tations rather than its generality.

Σ1 formulas and computability

Just as we arithmetized formulas and proofs, we can similarly arithmetize
Turing machine configurations and the action of Turing machine programs.
Note that, by definition, only finitely many squares of a Turing machine
tape are ever non-blank, so we can code the contents of the tape up as a
number. Perhaps the most convenient way is as a triple 〈c, 〈l, r〉〉 where:
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• c is the contents of the currently scanned square (0 for Blank and 1 for
One);

• l is the contents of the tape to the left, considered as a binary number
with the least significant bit immediately to the left of the head;

• r is the contents of the tape to the right, considered as a ‘backward’ binary
number with the least significant bit immediately to the right of the head.

For example, the tape shown in the earlier illustration, assuming that
all other squares are blank, would have the code 〈1, 〈1, 2〉〉. Now the basic
actions of the Turing machine can be represented as simple transformations
on such triples. If the currently scanned square is blank, the transformation
arising from writing a One is

〈0, 〈l, r〉〉 
→ 〈1, 〈l, r〉〉,
while the appropriate transformation for moving left one square is

〈c, 〈l, r〉〉 
→ 〈l mod 2, 〈l div 2, 2r + c〉〉.
It’s not hard to express these as Σ1-formulas; in fact since we always have

x < 〈x, y〉 and y < 〈x, y〉, we can easily bound the variables and write them
as Δ0-formulas. If we add one more component s to our tuple to specify
the state, we can represent the whole configuration of a Turing machine
by 〈s, 〈c, 〈l, r〉〉〉 and so write each transition specified by the program as a
Δ0-formula defining a binary ‘1-step transition’ relation on encoded config-
urations. Explicitly, the instruction

(s0, c0) 
→ (c, d, s),

indicating that when in state s0 scanning symbol c0 one should write symbol
c, move in direction d and enter state s, can be defined as a binary relation
R(m, n) as follows

• (s0, c0) 
→ (c, Stay, s) gives the formula

∃l r. l < m ∧ r < m ∧
m = 〈s0, 〈c0, 〈l, r〉〉〉 ∧
n = 〈s, 〈c, 〈l, r〉〉〉;

• (s0, c0) 
→ (c, Left, s) gives the formula

∃l r c1. c1 < 2 ∧ l < n ∧ r < m ∧
m = 〈s0, 〈c0, 〈2 · l + c1, r〉〉〉 ∧
n = 〈s, 〈c1, 〈l, 2 · r + c〉〉〉;
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• (s0, c0) 
→ (c, Right, s) gives the formula

∃l r c1. c1 < 2 ∧ l < m ∧ r < n ∧
m = 〈s0, 〈c0, 〈l, 2 · r + c1〉〉〉 ∧
n = 〈s, 〈c1, 〈2 · l + c, r〉〉〉.

Thus, given any Turing machine program prog, we can create a Δ0-
formula defining the corresponding 1-step transition relation simply by con-
structing a formula like the above for each instruction, and then creating
a big disjunction of them all, say TMprog. Now suppose prog computes
a function f : N

n → N. Then the graph of f is defined by the following
formula F (a1, . . . , an, a):

∃m n c0 c1 l0 l1 r0 r1.

c0 < 2 ∧ c1 < 2 ∧
TM∗

prog(m, n) ∧
m = 〈1, 〈c0, 〈l0, r0〉〉〉 ∧
n = 〈0, 〈c1, 〈l1, r1〉〉〉 ∧
c0 + 2 · r0 = (2a1 − 1) + 2a1+1((2a2 − 1) + 2a2+1(· · · + 2an+1r′0)) ∧
c1 + 2 · r1 = (2a − 1) + 2a+1 · r′1.

(The expressions of the form 2a−1 simply represent a successive One char-
acters on the tape, and those of the form 2a+1 · r imply a following Blank.)
Since the exponential function, being primitive recursive, is definable by a
Σ1-formula (see Section 7.2), we can write this too as a Σ1-formula. We
thus conclude that the graph of a computable function is definable by a
Σ1-formula. In fact, we can go further than merely computable functions.
Intuitively we think of a set S as semicomputable if there is a computable
search procedure that for x ∈ S will eventually confirm this fact by termi-
nating, but will otherwise fail to terminate. More formally:

Definition 7.12 A set S ⊆ N
n is said to be recursively enumerable (r.e.), or

semicomputable or semidecidable, if it is the domain of a partial computable
function, i.e. of the form S = {a ∈ N

n | f(a) is defined} for a computable
f : N

n → N.

If R(x, y) defines the graph of a partial recursive f : N
n → N, then

∃y.R(x, y) defines its domain, so we conclude that any r.e. set is Σ1-definable.
Conversely, any Σ1-definable set is r.e., since it is the domain of the com-
putable function sigma_bound. (To be completely rigorous we should imple-
ment this function as a Turing machine program, but we will not delve into
such detail here.) Thus we conclude:
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A set is recursively enumerable if and only if it is Σ1-definable.

This provides the critical link we want between computability and Σ1-
formulas. If we can prove some set is not definable by a Σ1-formula, it will
follow that not only is it not computable, but it is not even r.e., so there
is no hope even of enumerating it using a computer program. For example,
Tarski’s theorem on the undefinability of truth shows that arithmetic truth is
not definable at all, let alone Σ1-definable. It follows that arithmetic truth
is not even semicomputable. This contrasts with first-order consequence:
given that we have complete proof procedures such as tableaux, this is at
least semicomputable. Before we show in the next section that it is not
computable, we note the following

Theorem 7.13 The characteristic function χS : N
n → N of a set S ⊆ N

n

(defined as χS(x) = 1 for x ∈ S and χS(x) = 0 for x �∈ S) is computable if
and only if both S and its complement N

n − S are recursively enumerable.

Proof If f is computable, then one can easily define a function g that
terminates on x precisely if χS(x) = 0, or precisely if χS(x) = 1. In OCaml
one might define let rec g(x) = if chi_S(x) = 0 then 1 else g(x),
and the corresponding construction for Turing machines is similar. Thus
both S and its complement are r.e. Conversely, if both S and its complement
are r.e., we have search procedures for both and can run them interleaved
in parallel and see which terminates first, returning 1 or 0 accordingly (see
Theorem 5.2). Again, translating this into the Turing machine formalism is
technical but not difficult.

This can be formulated in terms of definability: a set is decidable if it is
definable by a Σ1-formula and definable by a Π1-formula, or as we will say,
is Δ1. (Note carefully that this is more general than being defined by a Δ1

formula, i.e. one that is itself both Σ1 and Π1, which is actually the same as
being Δ0.) In much of the literature, one sees the overloaded word recursive
used instead of decidable or computable. This historical accident helps to
explain the expression ‘recursively enumerable’.

7.6 Church’s theorem

We will now show very explicitly that a particular set of axioms Q is Σ1-
complete. Because this set is finite, we will be able to deduce other important
results including the undecidability of first-order validity.
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Robinson arithmetic

We will use the following axioms, collected into a single conjunction. We call
them robinson since similar axioms were first introduced by R. M. Robinson
(1950); in discussions we use the traditional symbol Q:

let robinson =
<<(forall m n. S(m) = S(n) ==> m = n) /\
(forall n. ~(n = 0) <=> exists m. n = S(m)) /\
(forall n. 0 + n = n) /\
(forall m n. S(m) + n = S(m + n)) /\
(forall n. 0 * n = 0) /\
(forall m n. S(m) * n = n + m * n) /\
(forall m n. m <= n <=> exists d. m + d = n) /\
(forall m n. m < n <=> S(m) <= n)>>;;

A little reflection will show that these axioms are all true in the intended
interpretation N, and consequently, whenever � Q ⇒ p, p is also true in N.
It bears emphasizing that this is an extremely weak system of axioms that
cannot even prove, for example, ∀n.n+0 = n; this means that minor differ-
ences in formulation can be highly significant (see Exercise 7.6). Although
we collected the axioms into a conjunction, it’s convenient to separate them
into individual axioms, each one an implication with antecedent Q:

let [suc_inj; num_cases; add_0; add_suc; mul_0;
mul_suc; le_def; lt_def] = conjths robinson;;

The derived inference rules we develop below will consistently return
implicational theorems with an antecedent Q. For this reason, it’s convenient
to have some ‘right’ variants of inference rules to use a fixed antecedent A

(this will normally be Q, but this is inessential). The following respectively
perform specialization (from � A ⇒ ∀x. p[x] to � A ⇒ p[t]), modus ponens
(from � A ⇒ p ⇒ q and � A ⇒ p to � A ⇒ q) and transitivity of implication
(from � A ⇒ p ⇒ q and � A ⇒ q ⇒ r to � A ⇒ p ⇒ r):

let right_spec t th = imp_trans th (ispec t (consequent(concl th)));;

let right_mp ith th =
imp_unduplicate(imp_trans th (imp_swap ith));;

let right_imp_trans th1 th2 =
imp_unduplicate(imp_front 2 (imp_trans2 th1 (imp_swap th2)));;

and the following perform symmetry of equality (from � A ⇒ s = t to
� A ⇒ t = s) and transitivity of equality (� A ⇒ s = t and � A ⇒ t = u to
� A ⇒ s = u):
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let right_sym th =
let s,t = dest_eq(consequent(concl th)) in imp_trans th (eq_sym s t);;

let right_trans th1 th2 =
let s,t = dest_eq(consequent(concl th1))
and t’,u = dest_eq(consequent(concl th2)) in
imp_trans_chain [th1; th2] (eq_trans s t u);;

Evaluation of terms

The first step towards Σ1-completeness is evaluation of ground terms to
numerals by proof, e.g. deriving � Q ⇒ S(S(0)∗0+S(0)) = S(S(0)). We do
this using two mutually recursive functions. The first, robop, just unfolds a
step of the ‘recursive definition’ of addition or multiplication, while robeval
evaluates a ground term by evaluating subterms and then calling robop:

let rec robop tm =
match tm with
Fn(op,[Fn("0",[]);t]) ->

if op = "*" then right_spec t mul_0
else right_trans (right_spec t add_0) (robeval t)

| Fn(op,[Fn("S",[u]);t]) ->
let th1 = if op = "+" then add_suc else mul_suc in
let th2 = itlist right_spec [t;u] th1 in
right_trans th2 (robeval (rhs(consequent(concl th2))))

and robeval tm =
match tm with
Fn("S",[t]) ->

let th = robeval t in
let t’ = rhs(consequent(concl th)) in
imp_trans th (axiom_funcong "S" [t] [t’])

| Fn(op,[s;t]) ->
let th1 = robeval s in
let s’ = rhs(consequent(concl th1)) in
let th2 = robop (Fn(op,[s’;t])) in
let th3 = axiom_funcong op [s;t] [s’;t] in
let th4 = modusponens (imp_swap th3) (axiom_eqrefl t) in
right_trans (imp_trans th1 th4) th2

| _ -> add_assum robinson (axiom_eqrefl tm);;

For example:

# robeval <<|S(0) + (S(S(0)) * ((S(0) + S(S(0)) + S(0))))|>>;;
- : thm =
|- ... ==> S(0) + S(S(0)) * (S(0) + S(S(0)) + S(0)) =

S(S(S(S(S(S(S(S(S(0)))))))))
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Additional consequences of the Robinson axioms

The algorithm to prove all true Σ1-formulas from Q depends on various
auxiliary properties. It makes the derived rule code more efficient and less
cluttered if we prove the most directly applicable theorems once and for all,
so they can merely be instantiated later. The following lists consequences
we will need:

let robinson_consequences =
<<(forall n. S(n) = 0 ==> false) /\
(forall n. 0 = S(n) ==> false) /\
(forall m n. (m = n ==> false) ==> (S(m) = S(n) ==> false)) /\
(forall m n. (exists d. m + d = n) ==> m <= n) /\
(forall m n. S(m) <= n ==> m < n) /\
(forall m n. (forall d. d <= n ==> d = m ==> false)

==> m <= n ==> false) /\
(forall m n. (forall d. d < n ==> d = m ==> false)

==> m < n ==> false) /\
(forall n. n <= 0 \/ exists m. S(m) = n) /\
(forall n. n <= 0 ==> n = 0) /\
(forall m n. S(m) <= S(n) ==> m <= n) /\
(forall m n. m < S(n) ==> m <= n) /\
(forall n. n < 0 ==> false)>>;;

We we will see in due course how each of these is applied in the algorithm;
let us turn to the proof, using our interactive prover from Chapter 6. We start
by adding equality properties, since the LCF-style prover we have developed
does not deal with equality automatically.

let robinson_thm =
prove (Imp(robinson,robinson_consequences))
[note("eq_refl",<<forall x. x = x>>) using [axiom_eqrefl (Var "x")];
note("eq_trans",<<forall x y z. x = y ==> y = z ==> x = z>>)

using [eq_trans (Var "x") (Var "y") (Var "z")];
note("eq_sym",<<forall x y. x = y ==> y = x>>)

using [eq_sym (Var "x") (Var "y")];
note("suc_cong",<<forall a b. a = b ==> S(a) = S(b)>>)

using [axiom_funcong "S" [Var "a"] [Var "b"]];
note("add_cong",

<<forall a b c d. a = b /\ c = d ==> a + c = b + d>>)
using [axiom_funcong "+" [Var "a"; Var "c"] [Var "b"; Var "d"]];

note("le_cong",
<<forall a b c d. a = b /\ c = d ==> a <= c ==> b <= d>>)

using [axiom_predcong "<=" [Var "a"; Var "c"] [Var "b"; Var "d"]];
note("lt_cong",

<<forall a b c d. a = b /\ c = d ==> a < c ==> b < d>>)
using [axiom_predcong "<" [Var "a"; Var "c"] [Var "b"; Var "d"]];

Next, we assume the axioms and give each one a useful label for later
reference:
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assume ["suc_inj",<<forall m n. S(m) = S(n) ==> m = n>>;
"num_nz",<<forall n. ~(n = 0) <=> exists m. n = S(m)>>;
"add_0",<<forall n. 0 + n = n>>;
"add_suc",<<forall m n. S(m) + n = S(m + n)>>;
"mul_0",<<forall n. 0 * n = 0>>;
"mul_suc",<<forall m n. S(m) * n = n + m * n>>;
"le_def",<<forall m n. m <= n <=> exists d. m + d = n>>;
"lt_def",<<forall m n. m < n <=> S(m) <= n>>];

We can deduce some natural consequences of the axioms, only one of
which needs a non-trivial proof:

note("not_suc_0",<<forall n. ~(S(n) = 0)>>) by ["num_nz"; "eq_refl"];
so conclude <<forall n. S(n) = 0 ==> false>> at once;
so conclude <<forall n. 0 = S(n) ==> false>> by ["eq_sym"];
note("num_cases",<<forall n. (n = 0) \/ exists m. n = S(m)>>)

by ["num_nz"];
note("suc_inj_eq",<<forall m n. S(m) = S(n) <=> m = n>>)
by ["suc_inj"; "suc_cong"];

so conclude
<<forall m n. (m = n ==> false) ==> (S(m) = S(n) ==> false)>>
at once;

conclude <<forall m n. (exists d. m + d = n) ==> m <= n>>
by ["le_def"];

conclude <<forall m n. S(m) <= n ==> m < n>> by ["lt_def"];
conclude <<forall m n. (forall d. d <= n ==> d = m ==> false)

==> m <= n ==> false>>
by ["eq_refl"; "le_cong"];

conclude <<forall m n. (forall d. d < n ==> d = m ==> false)
==> m < n ==> false>>

by ["eq_refl"; "lt_cong"];
have <<0 <= 0>> by ["le_def"; "add_0"];
so have <<forall x. x = 0 ==> x <= 0>>
by ["le_cong"; "eq_refl"; "eq_sym"];

so conclude <<forall n. n <= 0 \/ (exists m. S(m) = n)>>
by ["num_nz"; "eq_sym"];

note("add_eq_0",<<forall m n. m + n = 0 ==> m = 0 /\ n = 0>>) proof
[fix "m"; fix "n";
assume ["A",<<m + n = 0>>];
cases <<m = 0 \/ exists p. m = S(p)>> by ["num_cases"];
so conclude <<m = 0>> at once;
so have <<m + n = 0 + n>> by ["add_cong"; "eq_refl"];
so our thesis by ["A"; "add_0"; "eq_sym"; "eq_trans"];

qed;
so consider ("p",<<m = S(p)>>) at once;
so have <<m + n = S(p) + n>> by ["add_cong"; "eq_refl"];
so have <<m + n = S(p + n)>> by ["eq_trans"; "add_suc"];
so have <<S(p + n) = 0>> by ["A"; "eq_sym"; "eq_trans"];
so our thesis by ["not_suc_0"];

qed];
so conclude <<forall n. n <= 0 ==> n = 0>> by ["le_def"];
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Next come some monotonicity properties of ‘≤’:

have <<forall m n. S(m) <= S(n) ==> m <= n>> proof
[fix "m"; fix "n";
assume ["lesuc",<<S(m) <= S(n)>>];
so consider("d",<<S(m) + d = S(n)>>) by ["le_def"];
so have <<S(m + d) = S(n)>> by ["add_suc"; "eq_sym"; "eq_trans"];
so have <<m + d = n>> by ["suc_inj"];
so conclude <<m <= n>> by ["le_def"];
qed];

so conclude <<forall m n. S(m) <= S(n) ==> m <= n>> at once;

and finally some relations between ‘<’ and ‘≤’:

so conclude <<forall m n. m < S(n) ==> m <= n>> by ["lt_def"];
fix "n";
assume ["hyp",<<n < 0>>];
so have <<S(n) <= 0>> by ["lt_def"];
so consider("d",<<S(n) + d = 0>>) by ["le_def"];
so have <<S(n + d) = 0>> by ["add_suc"; "eq_trans"; "eq_sym"];
so our thesis by ["not_suc_0"];
qed];;

We now bind the conjuncts of the consequences to mnemonic names:

let [suc_0_l; suc_0_r; suc_inj_false;
expand_le; expand_lt; expand_nle; expand_nlt;
num_lecases; le_0; le_suc; lt_suc; lt_0] =
map (imp_trans robinson_thm) (conjths robinson_consequences);;

The Σ1-prover

Our next requirements are to prove a true equation between ground terms,
i.e. return � Q ⇒ s = t when s and t are ground terms with the same value:

let rob_eq s t =
let sth = robeval s and tth = robeval t in
right_trans sth (right_sym tth);;

and refute false ones, i.e. return � Q ⇒ s = t ⇒ ⊥ when s and t are
ground terms with different values. First we define a corresponding function
on numerals, which refutes S(s) = S(t) by recursively refuting s = t:

let rec rob_nen(s,t) =
match (s,t) with

(Fn("S",[s’]),Fn("0",[])) -> right_spec s’ suc_0_l
| (Fn("0",[]),Fn("S",[t’])) -> right_spec t’ suc_0_r
| (Fn("S",[u]),Fn("S",[v])) ->

right_mp (itlist right_spec [v;u] suc_inj_false) (rob_nen(u,v))
| _ -> failwith "rob_ne: true equation or unexpected term";;
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and then combine this with evaluation of the ground terms:

let rob_ne s t =
let sth = robeval s and tth = robeval t in
let s’ = rhs(consequent(concl sth))
and t’ = rhs(consequent(concl tth)) in
let th = rob_nen(s’,t’) in
let xth = axiom_predcong "=" [s; t] [s’; t’] in
right_imp_trans (right_mp (imp_trans sth xth) tth) th;;
right_imp_trans (right_mp (imp_trans sth xth) tth) th;;

We’re going to deal with many constructs by eliminating them in terms of
others. This includes all logical connectives besides ⊥, ⇒ and ∀. In tableaux
(Section 6.6) we were trying to refute a formula, and here we’re trying to
prove one, so we need to derive the implication in the other direction from
eliminate_connective:

let introduce_connective fm =
if not(negativef fm) then iff_imp2(expand_connective fm)
else imp_add_concl False (iff_imp1(expand_connective(negatef fm)));;

In one case a little more refinement is needed. The following function,
given a term ¬(∃x. x < t ∧ P [x]), returns � (∀x. x < t ⇒ P [x] ⇒ ⊥) ⇒
¬(∃x. x < t∧P [x]), to preserve the canonical forms for bounded quantifiers
when passing from a negated existential quantifier to a universal one:

let elim_bex fm =
match fm with
Imp(Exists(x,And(p,q)),False) ->

let pq = And(p,q) and pqf = Imp(p,Imp(q,False)) in
let th1 = imp_swap(imp_refl(Imp(pqf,False))) in
let th2 = imp_trans th1 (introduce_connective(Imp(pq,False))) in
imp_trans (genimp x th2) (exists_left_th x pq False)

| _ -> failwith "elim_bex";;

We’ll even eliminate atomic formulas other than equations by replacing
them with other Σ1-formulas, e.g. s ≤ t by ∃d. s + d = t and s �≤ t (really
s ≤ t ⇒ ⊥) by ∀d. d ≤ t ⇒ d = s ⇒ ⊥. From an efficiency standpoint this is
silly, but it means we don’t need similar evaluation functions to rob_eq and
rob_ne for the other atoms. Thus, our procedure to eliminate constructs is:

let sigma_elim fm =
match fm with
Atom(R("<=",[s;t])) -> itlist right_spec [t;s] expand_le

| Atom(R("<",[s;t])) -> itlist right_spec [t;s] expand_lt
| Imp(Atom(R("<=",[s;t])),False) -> itlist right_spec [t;s] expand_nle
| Imp(Atom(R("<",[s;t])),False) -> itlist right_spec [t;s] expand_nlt
| Imp(Exists(x,And(p,q)),False) -> add_assum robinson (elim_bex fm)
| _ -> add_assum robinson (introduce_connective fm);;
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The most substantial task in proving true Σ1-formulas is verifying bounded
universally quantified formulas ∀x. x ≤ t ⇒ P [x]. After evaluating t to
a numeral, perhaps the most natural approach would be to exploit the
fact that x ≤ S(n) ⇔ x ≤ n ∨ x = S(n) to decompose the problem
∀x. x ≤ S(n) ⇒ P [x] into P [S(n)] and ∀x. x ≤ n ⇒ P [x]. Unfortunately,
a peculiarity of the Robinson axioms in our form is that the equivalence
x ≤ S(n) ⇔ x ≤ n ∨ x = S(n) is not provable (see Exercise 7.6). Instead
we take a slightly different tack, reducing ∀x. x ≤ S(n) ⇒ P [x] to P [0]
and ∀x. x ≤ n ⇒ P [S(n)], which we can justify directly on the basis of the
axioms.

The following function takes two theorems of the form � Q ⇒ ∀x. x ≤
0 ⇒ P [x] (it’s technically simpler to use this instead of � Q ⇒ P [0]) and
� Q ⇒ ∀x. x ≤ n ⇒ P [S(x)] and returns � Q ⇒ ∀x. x ≤ S(n) ⇒ P [x]. The
inference process takes us from the second input theorem � Q ⇒ ∀x. x ≤
n ⇒ P [S(x)], using the monotonicity theorem le_suc, to � Q ⇒ S(x) ≤
S(n) ⇒ P [S(x)], and so to � y = S(x) ⇒ Q ⇒ y ≤ S(n) ⇒ P [y] and finally
to � (∃x. y = S(x)) ⇒ Q ⇒ y ≤ S(n) ⇒ P [y]. We easily derive � y = 0 ⇒
Q ⇒ y ≤ S(n) ⇒ P [y] from the other input theorem, and hence using the
case-splitting property num_lecases we get simply � Q ⇒ y ≤ S(n) ⇒ P [y].
From this we get the required theorem � Q ⇒ ∀x. x ≤ S(n) ⇒ P [x]. Note
that we need to take care over bound variable names: we pick a y that does
not occur, even bound, in the formula of interest, so that replacing x by
y does not cause variable renaming; then at the end (tha) we do a trivial
equality substitution with 0 = 0 to ensure that the bound variable name
matches up with the arbitrary name m in the axiom num_lecases.

let boundquant_step th0 th1 =
match concl th0,concl th1 with
Imp(_,Forall(x,Imp(_,p))),

Imp(_,Forall(_,Imp(Atom(R("<=",[_;t])),_))) ->
let th2 = itlist right_spec [t;Var x] le_suc in
let th3 = right_imp_trans th2 (right_spec (Var x) th1) in
let y = variant "y" (var(concl th1)) in
let q = Imp(Atom(R("<=",[Var x; Fn("S",[t])])),p) in
let qx = consequent(concl th3) and qy = subst (x |=> Var y) q in
let th4 = imp_swap(isubst (Fn("S",[Var x])) (Var y) qx qy) in
let th5 = exists_left x (imp_swap (imp_trans th3 th4)) in
let th6 = spec (Var x) (gen y th5) in
let th7 = imp_insert (antecedent q) (right_spec (Var x) th0) in
let th8 = ante_disj (imp_front 2 th7) th6 in
let th9 = right_spec (Var x) num_lecases in
let a1 = consequent(concl th9) and a2 = antecedent(concl th8) in
let tha = modusponens (isubst zero zero a1 a2)

(axiom_eqrefl zero) in
gen_right x (imp_unduplicate(imp_trans (imp_trans th9 tha) th8));;
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We are now ready for the main function to prove true Σ1 formulas:

let rec sigma_prove fm =
match fm with
False -> failwith "sigma_prove"

| Atom(R("=",[s;t])) -> rob_eq s t
| Imp(Atom(R("=",[s;t])),False) -> rob_ne s t
| Imp(p,q) when p = q -> add_assum robinson (imp_refl p)
| Imp(Imp(p,q),False) ->

let pth = sigma_prove p and qth = sigma_prove (Imp(q,False)) in
right_mp (imp_trans qth (imp_truefalse p q)) pth

| Imp(p,q) when q <> False ->
let m = sigma_bound fm in
if sholds m undefined q then imp_insert p (sigma_prove q)
else imp_trans2 (sigma_prove (Imp(p,False))) (ex_falso q)

| Imp(Forall(x,p),False) ->
let m = sigma_bound (Exists(x,Not p)) in
let n = first (Int 0) (fun n ->
sholds m undefined (subst (x |=> numeral n) (Not p))) in

let ith = ispec (numeral n) (Forall(x,p)) in
let th = sigma_prove (Imp(consequent(concl ith),False)) in
imp_swap(imp_trans ith (imp_swap th))

| Forall(x,Imp(Atom(R(("<="|"<" as a),[Var x’;t])),q))
when x’ = x & not(occurs_in (Var x) t) -> bounded_prove(a,x,t,q)

| _ -> let th = sigma_elim fm in
right_mp th (sigma_prove (antecedent(consequent(concl th))))

This handles easy cases first such as p ⇒ p and equational literals. Formu-
las of the form (p ⇒ q) ⇒ ⊥, effectively conjunctions, are proved by recur-
sively proving p and q ⇒ ⊥ and composing the results with imp_truefalse.
For those of the form p ⇒ q we prove whichever of q and p ⇒ ⊥ is prov-
able with the smaller bound m on the existential quantifiers. For existential
formulas (∀x. P [x]) ⇒ ⊥ we find the first n such that ¬P [n] holds and
then prove that recursively and deduce what we want. Universally quanti-
fied formulas pass to another mutually recursive function bounded_prove
described next, and all other constructs are eliminated. For any bounded
universal quantifier, the first order of business is to evaluate the bound to
a numeral; the main work is done by another mutually recursive function
boundednum_prove:

and bounded_prove(a,x,t,q) =
let tth = robeval t in
let u = rhs(consequent(concl tth)) in
let th1 = boundednum_prove(a,x,u,q)
and th2 = axiom_predcong a [Var x;t] [Var x;u] in
let th3 = imp_trans tth (modusponens th2 (axiom_eqrefl (Var x))) in
let a,b = dest_imp(consequent(concl th3)) in
let th4 = imp_swap(imp_trans_th a b q) in
gen_right x (right_mp (imp_trans th3 th4) (right_spec (Var x) th1))
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That function deals with the case of strict bounds ∀x.x < n ⇒ P [x] using
the fact that � Q ⇒ x < 0 ⇒ ⊥ or exploiting the implication � Q ⇒ x <

S(n) ⇒ x ≤ n to reduce matters to the non-strict case. These are dealt with
by a routine inference leading from x ≤ 0 to x = 0 and by the main stepping
function boundquant_step:

and boundednum_prove(a,x,t,q) =
match a,t with
"<",Fn("0",[]) ->

gen_right x (imp_trans2 (right_spec (Var x) lt_0) (ex_falso q))
| "<",Fn("S",[u]) ->

let th1 = itlist right_spec [u;Var x] lt_suc in
let th2 = boundednum_prove("<=",x,u,q) in
let th3 = imp_trans2 th1 (imp_swap(right_spec (Var x) th2)) in
gen_right x (imp_unduplicate(imp_front 2 th3))

| "<=",Fn("0",[]) ->
let q’ = subst (x |=> zero) q in
let th1 = imp_trans (eq_sym (Var x) zero)

(isubst zero (Var x) q’ q) in
let th2 = imp_trans2 (right_spec (Var x) le_0) th1 in
let th3 = imp_swap(imp_front 2 th2) in
gen_right x (right_mp th3 (sigma_prove q’))

| "<=",Fn("S",[u]) ->
let fm’ = Forall(x,Imp(Atom(R("<=",[Var x;zero])),q))
and fm’’ = Forall(x,Imp(Atom(R("<=",[Var x;u])),

subst (x |=> Fn("S",[Var x])) q)) in
boundquant_step (sigma_prove fm’) (sigma_prove fm’’);;

For example, here we prove just from the Robinson axioms that there exists
a prime number:

|- sigma_prove
<<exists p.

S(S(0)) <= p /\
forall n. n < p

==> (exists x. x <= p /\ p = n * x) ==> n = S(0)>>;;
- : thm =
|-
... ==>
(exists p.

S(S(0)) <= p /\
(forall n. n < p ==> (exists x. x <= p /\ p = n * x) ==> n = S(0)))

Church’s theorem

Without any of the careful encoding of PrA as a Σ1-formula, we can see quite
directly using the fixpoint Lemma 7.3 that unprovability from Σ1-sound and
Σ1-complete axioms A is not Σ1-definable. Combined with the fact that all
r.e. sets are Σ1-definable (Section 7.5), we conclude that unprovability from
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such an A is not r.e., and therefore that provability from A is undecidable.
For the proof, suppose there were a Σ1-formula U(n) representing the set
{�p� | A �� p} of formulas not provable from A. By the fixpoint lemma, we
can find a φ such that

φ ⇔ U(�φ�)

is true in N. Moreover, U(�φ�) is a Σ1-sentence by hypothesis, and therefore,
by the construction of the fixpoint in the proof of Lemma 7.3, so is φ itself.
If axioms A are both Σ1-sound and Σ1-complete, then φ is provable iff it is
true. On the other hand, because the fixpoint property holds in N, φ is true
iff U(�φ�) is true, i.e. iff φ is not provable, a contradiction.

We next prove the simple but important observation that removing finitely
many axioms from an undecidable theory yields another undecidable theory.
Note that we are considering decidability of sentences in a fixed language,
even if we remove all the axioms involving some symbols. (For example,
Presburger arithmetic can be considered a subtheory of the highly undecid-
able theory of Z, but it is not decidable if we retain multiplication in the
language even without axioms for it. Indeed, it’s fairly obvious that with-
out any such axioms we can’t expect to decide anything non-trivial about
multiplication.)

Theorem 7.14 If B is finite and Cn(A) is undecidable, then Cn(A−B) is
undecidable (for formulas in the same language).

Proof Let b be the conjunction of the universal closures of all the formulas
in B. We have A � p iff A−B � b ⇒ p. Thus, if we could decide Cn(A−B)
we could also decide Cn(A).

We have shown in great detail that Q is Σ1-complete, and we will take
for granted that it is sound (in particular Σ1-sound) since the axioms are
‘obviously true’ in N. (One could insist on a rigorous proof of Σ1-soundness,
but if one doubts such an elementary observation, much else in this book
would need to be re-examined first.) So we can deduce the undecidability of
first-order validity, a theorem originally due to Church (1936):

Theorem 7.15 The set of logical truths (even in the language of arithmetic)
is not recursive.

Proof Since Q is undecidable, Theorem 7.14 tells us that any theory
axiomatized by a subset of Q arrived at by removing finitely many axioms
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is also undecidable. Since Q is finite, this applies to the smallest theory in
the language, i.e. the logically valid formulas in that language.

This finally allows us to conclude that a semi-decision procedure for
first-order logic is the best we could hope for. We will sketch several sharper
forms of this result in the next section.

7.7 Further limitative results

There are plenty of other interesting limitative results, which, however, are
not quite so directly relevant to the theme of this book and/or require (even)
more formidable technicalities. We content ourselves here with giving brief
overviews of a few related topics.

Consistency and Hilbert’s programme

Recall that Hilbert’s clever idea was to establish in an elementary way, by
analyzing proofs themselves, that concrete results proved using more con-
troversial parts of abstract mathematics (e.g. infinite sets) were nevertheless
true. More explicitly, suppose we identify ‘concrete results’ with ‘results
clearly expressible as Π1-formulas’, and assume that our axioms are at least
Σ1-complete. Then it would suffice to establish, in a suitably elementary
way, just the consistency of the axioms, because we know (see Section 7.4)
that Σ1-completeness and consistency together imply Π1-soundness.† This
identification of ‘concrete result’ and ‘Π1 sentence’ may seem questionable,
but many important results of mathematics are expressible as Π1-formulas.
The still-unresolved Goldbach conjecture that every even number ≥ 4 is the
sum of two primes can be written quite directly in that form:

∀n. n ≥ 2 ⇒ ∃p. p ≤ 2 ·n∧∃q. q ≤ 2 · n∧ prime(p)∧ prime(q)∧ 2 ·n = p + q.

With a bit more work, Fermat’s last theorem can be written as a Π1-
sentence (by expressing exponentiation as a Σ1-formula in the antecedent of
an implication), and so can even the Riemann hypothesis about the location
of complex zeros of the ζ-function (Kreisel 1958b). Proving any of these
results from a consistent Σ1-complete axiom system would establish their
truth even if not all the axioms are true. A similar observation is that if a
Π1 sentence p is not refutable from a Σ1-complete axiom system, it must be

† It’s not clear that Hilbert perceived this immediately. The emphasis he placed on consistency
may have just been because it was at least a necessary condition, regardless of the search for
stronger conservation results.
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true. For instance, showing that the weak axioms Q are unable to refute the
Goldbach conjecture would amount to proving it!

Gödel’s second incompleteness theorem

Most of the technical difficulty of Gödel’s first incompleteness theorem was
concentrated in establishing the surprising ‘this sentence is unprovable’ fix-
point property. Once we have that, the essence of the proof is quite simple,
so much so that if we set it up carefully, our automated procedures can han-
dle it. The following formulation assumes the fixpoint property for G, the
fact that G is a Π1-formula, soundness and completeness for Σ1 formulas
and a couple of lemmas about truth and formula classifications. From this
it follows that � G iff � ¬G, and so we can see that if either of these holds,
the system is inconsistent.

meson
<<(True(G) <=> ~(|--(G))) /\ Pi(G) /\
(forall p. Sigma(p) ==> (|--(p) <=> True(p))) /\
(forall p. True(Not(p)) <=> ~True(p)) /\
(forall p. Pi(p) ==> Sigma(Not(p)))
==> (|--(Not(G)) <=> |--(G))>>;;

...
- : int list = [5; 5]

This hints at another noteworthy aspect of Gödel’s proof: it can itself
be subjected to an additional level of formalization and proved inside the
arithmetic theory being considered. Gödel argued on this basis that a suf-
ficiently strong theory is unable to prove its own consistency – his second
incompleteness theorem. More explicitly, assuming PrA defines provability
from a set of axioms A (after Gödel numbering), it is clear that:

Con(A) =def ¬PrA(�⊥�)

expresses the consistency of A. Now Gödel’s second theorem asserts that
for a wide class of axiom systems A, this is not itself provable in A, i.e.
A �� Con(A), unless A is in fact inconsistent, in which case it proves anything.

The technicalities arising from a further level of formalization are quite
forbidding. The paper in which Gödel presented his first incompleteness
theorem was explicitly numbered ‘I’, the intention being that a sequel would
provide a completely rigorous proof of the second incompleteness theorem.
However, this paper never appeared, and Hilbert and Bernays (1939) may
have been the first to give a rigorous demonstration. They tried to isolate
the technical complexities in a number of key properties of provability that
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suffice for the second theorem. There were later greatly simplified by Löb
(1955) to the following derivability conditions:

1 if A � p then A � PrA(�p�),
2 A � PrA(�p ⇒ q�) ⇒ PrA(�p�) ⇒ PrA(�q�),
3 A � PrA(�p�) ⇒ PrA(�PrA(�p�)�).

Condition (1) follows from the fact that PrA is a correct arithmetiza-
tion together with Σ1-completeness, and (2) just arithmetizes the closure of
provability under modus ponens. Condition (3), which is essentially a fur-
ther arithmetization of (1), is much harder to establish. Indeed, the axioms
A need to be somewhat stronger than Q for (3) to be provable at all. Boolos
(1995) gives a reasonably detailed sketch for Peano arithmetic of formalized
Σ1-completeness (if p is a Σ1-formula then PA � p ⇒ PrPA(�p�)), of which
(3) is a special case.

Anyway, once we have the derivability conditions and a formalized version
A � G ⇔ ¬PrA(G) of the fixpoint property, the proof is quite easy, even to
formalize assuming a few object-logic inference rules. We use F to denote
⊥, writing ¬p as p ⇒ F , and deduce that a system that can prove its own
consistency (A � PrA(F ) ⇒ F ) is in fact inconsistent (A � F ):

let godel_2 = prove
<<(forall p. |--(p) ==> |--(Pr(p))) /\
(forall p q. |--(imp(Pr(imp(p,q)),imp(Pr(p),Pr(q))))) /\
(forall p. |--(imp(Pr(p),Pr(Pr(p)))))
==> (forall p q. |--(imp(p,q)) /\ |--(p) ==> |--(q)) /\

(forall p q. |--(imp(q,imp(p,q)))) /\
(forall p q r. |--(imp(imp(p,imp(q,r)),imp(imp(p,q),imp(p,r)))))
==> |--(imp(G,imp(Pr(G),F))) /\ |--(imp(imp(Pr(G),F),G))

==> |--(imp(Pr(F),F)) ==> |--(F)>>
[assume["lob1",<<forall p. |--(p) ==> |--(Pr(p))>>;

"lob2",<<forall p q. |--(imp(Pr(imp(p,q)),imp(Pr(p),Pr(q))))>>;
"lob3",<<forall p. |--(imp(Pr(p),Pr(Pr(p))))>>];

assume["logic",<<(forall p q. |--(imp(p,q)) /\ |--(p) ==> |--(q)) /\
(forall p q. |--(imp(q,imp(p,q)))) /\
(forall p q r. |--(imp(imp(p,imp(q,r)),

imp(imp(p,q),imp(p,r)))))>>];
assume ["fix1",<<|--(imp(G,imp(Pr(G),F)))>>;

"fix2",<<|--(imp(imp(Pr(G),F),G))>>];
assume["consistency",<<|--(imp(Pr(F),F))>>];
have <<|--(Pr(imp(G,imp(Pr(G),F))))>> by ["lob1"; "fix1"];
so have <<|--(imp(Pr(G),Pr(imp(Pr(G),F))))>> by ["lob2"; "logic"];
so have <<|--(imp(Pr(G),imp(Pr(Pr(G)),Pr(F))))>> by ["lob2"; "logic"];
so have <<|--(imp(Pr(G),Pr(F)))>> by ["lob3"; "logic"];
so note("L",<<|--(imp(Pr(G),F))>>) by ["consistency"; "logic"];
so have <<|--(G)>> by ["fix2"; "logic"];
so have <<|--(Pr(G))>> by ["lob1"; "logic"];
so conclude <<|--(F)>> by ["L"; "logic"];
qed];;
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Nothing in this proof actually depends on the fact that F denotes falsity;
if we take some other sentence S and construct a fixpoint such that A �
G ⇔ (PrA(�G�) ⇒ S), we can conclude from A � PrA(�S�) ⇒ S simply
that A � S (Löb 1955). Since Gödel’s theorem is derived from a fixpoint such
that G ⇔ ¬PrA(�G�), it’s natural to wonder what properties a fixpoint S ⇔
PrA(�S�) would have (Henkin 1952). Löb’s theorem provides an answer: if
� S ⇔ PrA(�S�) then in fact � S, even if we just assume implication in one
direction.

Gödel’s second theorem was widely accepted as destroying Hilbert’s pro-
gramme as originally set out. For if one cannot prove T � Con(T ) for a rea-
sonable system T , then a fortiori one cannot prove S � Con(T ) where S is a
weaker system than T . However, note that it’s not true that if S � Con(T )
then S must be stronger than T ; it could be stronger in some ways and
weaker in others.† For example, given that PA is sound and therefore con-
sistent, Gödel’s second theorem implies that PA′ = PA ∪ {¬Con(PA)} is
also consistent, i.e. that Con(PA′) is true. And one can quite easily prove
PA � Con(PA′) ⇒ Con(PA) since � AxPA ⇒ AxPA′ for the corresponding
arithmetizations of the axiom sets. Now PA′′ = PA∪{Con(PA′)} can triv-
ially prove the consistency of PA′. Yet it is not properly stronger than PA′

(indeed it is actually inconsistent with it) because PA′′ �� ¬Con(PA), since
PA′′ is true and ¬Con(PA) is false.

Gödel’s second theorem does not rule out the possibility of a more lim-
ited Hilbert-style bootstrapping of mathematics. Even though one might not
be able to prove in a suitably restricted way the consistency of all mathe-
matics, one might be able to prove the consistency of a reasonable subset,
enough for many applications. For example, ‘WKL0’ (Friedmann 1976) a
fragment of second order arithmetic including restricted induction and the
‘weak König lemma’ as axioms, is strong enough to prove, albeit via some
coding, many of the traditional results in analysis. This raises the possibil-
ity of a quite significant partial realization of Hilbert’s programme (Simpson
1988b), and motivates the exploration of still more powerful systems with
similar conservation properties (Simpson 1998).

Another possibility is that one might be able to prove a relative consistency
result A � Con(S) ⇒ Con(T ) for some accepted system of axioms A. Again,
there are several genuine examples, such as the proof by Gödel (1938) himself
of the consistency of the Generalized Continuum Hypothesis (GCH) and
Axiom of Choice relative to the axioms of Zermelo–Fraenkel (ZF) set theory.
This result A � Con(ZF ) ⇒ Con(ZFC + GCH) can be proved using a
† It is at least true that it must be properly stronger in its Π1 consequences, assuming Σ1-

completeness.
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weak set of axioms A, and so arguably does provide genuine reassurance
that ZFC plus GCH is consistent provided ZF is. However, Gödel’s second
incompleteness theorem still reminds us of the limitations of this approach:
if T � Con(S) then it is impossible even that T � Con(S) ⇒ Con(T ), let
alone A � Con(S) ⇒ Con(T ) for a reassuringly weak A, since that would
immediately imply the impossible T � Con(T ). This means, for example,
that there is no hope of an elementary relative consistency proof for ZF

relative to Z (essentially ZF without the Axiom of Replacement), or Z

relative to elementary number theory. This does allow us to draw interesting
conclusions in the other direction, though, for example that the formula I

asserting the existence of an inaccessible cardinal is not provable in ZF set
theory, precisely because ZF + I � Con(ZF ).

Reflection principles

Gödel’s first theorem essentially just asserts the unprovability of some true
Π1-formula: note that the statement of Corollary 7.10 doesn’t mention the
particular formula G used in our proof, and we could have proved it using
other formulas or even completely nonconstructively. The second theorem,
however, refers essentially to a specific unprovable sentence Con(A). This
sentence depends not only on the axioms A themselves but on the partic-
ular formula Ax(p) used to define them. By choosing a suitable formula
Ax′(p), still equivalent in N to Ax(p), one can sometimes arrive at a corre-
sponding consistency statement Con′(A) such that A � Con′(A). A trivial
example would be Ax′(p) =def Ax(p) ∧ Con(A) for some reasonably strong
A. Feferman (1960) shows that for certain axiomatic systems like PA there
are more subtle and troubling instances of this phenomenon. So one needs to
distinguish carefully between ‘natural’ and ‘pathological’ representations of
the same axiom set; in the philosophical jargon, intensional aspects become
important. Resnik (1974) discusses the philosophical significance of this fact.

Now, while Gödel’s incompleteness theorems point to the weakness of
formal systems, they also suggest systematic procedures for making a given
system stronger. For example, given some axiom system S0, a natural way
of strengthening it is the addition of a new axiom amounting to a statement
of S0’s consistency:

S1 = S0 ∪ {Con(S0)}.
This gives a new system, and a corresponding new provability predicate

and assertion of consistency. Now the procedure can be iterated, giving S2,
S3 and so on, even infinitely; this idea was first investigated by Turing (1939)
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and further developed by Feferman (1962). Franzén (2002) gives a detailed
treatment, emphasizing the important role ‘nonstandard’ characterizations
of axioms mentioned above play in the apparent power of such iterated
extensions.

Feferman coined the term ‘reflection principle’ for an assertion, like a
statement of consistency, that amounts to an expression of trust in a system
of axioms, which is not directly provable from those axioms but is believed
to be true by ‘reflecting upon’ those axioms from outside (Kreisel and Lévy
1968). It is possible for a consistent theory to become inconsistent on the
addition of a reflection principle, even a simple statement of consistency.
For example, Gödel’s theorems show that if S is consistent, so is T = S ∪
{¬Con(S)}, but Con(T ) implies Con(S), so the further addition of Con(T )
to T yields an inconsistent system. However, it follows from Feferman’s work
that a Σ1-sound system remains so even on transfinitely many additions of
various strong reflection principles, such as a Löb schema � PrA(�p�) ⇒ p.
A related but much ‘safer’ idea is to extend the logic with a reflection rule:

A � PrA(�φ�)
A � φ

.

The addition of this may be inconsistent (again, consider the system T

above that is not Σ1-sound). However Σ1-soundness of A guarantees not only
that the new system is Σ1-sound, but actually has the same theorems, since
every Σ1-formula, such as an assertion of provability, is provable iff true.
Nevertheless, by adding this as a new rule of inference, it may be possible
to produce proofs of feasible length that would not have been feasible, even
while possible in principle, without it (see Exercise 7.10). Such rules have
often been suggested in connection with using reflection to verify derived
inference rules (Knoblock and Constable 1986; Allen, Constable, Howe and
Aitken 1990).

Hilbert’s tenth problem

We showed earlier that a relation over N is recursively enumerable iff it is
definable by a Σ1-formula. In fact, a much sharper result holds: we need no
inequalities, propositional connectives or quantifier alternations. A relation
R(a1, . . . , an) is r.e. iff it is Diophantine, i.e. definable over N by a formula
that is simply an existentially quantified equation:

∃x1, . . . , xk. s = t,
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where s and t are terms of the usual language of arithmetic whose variables
are among {a1, . . . , an, x1, . . . , xk}. And since the language consists of con-
stants and the addition and multiplication operators, all terms are effectively
polynomials (with positive coefficients), so we can think of these as being
put in some standard form and regard the relation as

∃x1, . . . , xk. p(a1, . . . , an, x1, . . . , xk) = q(a1, . . . , an, x1, . . . , xk).

The same result holds if we consider definability over Z, in which case we
can consider the even simpler canonical form

∃x1, . . . , xk. p(a1, . . . , an, x1, . . . , xk) = 0.

The fact that every r.e. relation is Diophantine settles Hilbert’s tenth
problem: there can be no algorithm to decide whether a polynomial has
integer solutions. For any such algorithm could be used, via the Diophantine
representation of r.e. sets, to solve some undecidable problem such as first-
order validity or the halting problem.

Davis first conjectured that every r.e. set is Diophantine, perhaps based
on the observation that Diophantine sets satisfy many of the same clo-
sure properties that r.e. sets do. For example, the intersection and union
of Diophantine sets are Diophantine because p = 0 ∧ q = 0 ⇔ p2 + q2 = 0
and p = 0 ∨ q = 0 ⇔ pq = 0. But it is far from easy to show that one
can define r.e. sets without using bounded universal quantification, and
Davis’s conjecture resisted proof for some time. Building on a normal form
result for Σ1-formulas due to Davis (1950), an important step was taken
by J. Robinson (1952), who proved that a sufficient condition that every r.e.
set be Diophantine is that there should exist some Diophantine function of
exponential growth. The first such function was exhibited by Matiyasevich
(1970), who finally proved that all r.e. sets are Diophantine by finding a
Diophantine representation for the predicate

φ(u, v) =def v = fib2u,

where fibn is the nth Fibonacci number:

fib0 = 0,

fib1 = 1,

fibn+2 = fibn+1 + fibn.

Although fairly long and technical, the proof uses only elementary tech-
niques, and an accessible treatment can be found in the textbook by Mati-
jasevich (1993), while an alternative based on solutions to the Pell equation
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is presented in some other logic books such as Smoryński (1980). Rather
than appeal to Robinson’s early results, there is a striking way of using
a Diophantine representation for binomial coefficients to simulate Turing
machines or register machines directly (Jones and Matiyasevich 1984); see
Exercise 7.20.

The theory of rationals

We have shown that the theory of reals with addition and multiplication is
decidable (Section 5.9), whereas the theory of integers based on the same
language is not even recursively enumerable (Section 7.2). Given this huge
gulf, it’s natural to wonder about the status of a corresponding theory of
rationals, which in some sense lies ‘in between’. In fact, this theory is as
undecidable as the integer theory, because the set of integers is definable by
a formula in the theory of rationals, as first shown by J. Robinson (1949).
Using some results about quadratic forms, she proves that a rational number
n is an integer iff it satisfies the following formula:

Z(n) =def ∀a b. φ(a, b, 0) ∧ (∀m. φ(a, b, m) ⇒ φ(a, b, m + 1)) ⇒ φ(a, b, n),

where

φ(a, b, k) =def ∃x y z. 2 + abk2 + bz2 = x2 + ay2.

Consequently, any formula over Z can be mapped into a corresponding
formula over Q by relativizing the quantifiers using Z(n), and so undecid-
ability follows from undecidability of the theory of integers. However, if we
consider the special case of deciding formulas:

∃x1, . . . , xn. p(x1, . . . , xn) = 0,

the rational analogue of Hilbert’s tenth problem, the undecidability cannot
similarly be read off from the result for the integers because Z(n) is not a
purely existential formula, while even the sharpest such definition known at
present (Poonen 2007) contains one quantifier alternation. Of course, we can
map every such formula into an equivalent assertion over Z just by clearing
denominators, but the resulting polynomial is of a rather special character –
the result of clearing denominators will always be homogeneous, i.e. all
monomials will have the same multidegree; see. Exercise 7.15 below. The
nonexistence of a general decision procedure does not exclude the possibility
of one for this restricted class. In fact, the status of Hilbert’s tenth problems
for the rationals, and for homogeneous polynomials over the integers, are to
the best of the author’s knowledge at time of writing, still unsolved problems.
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A related problem that definitely is decidable (Ax 1967) is whether, given
an integer polynomial equation q(x1, . . . , xn) = 0, for all primes p there is a
solution modulo p, i.e. ∀p. ∃x1, . . . , xn. q(x1, . . . , xn) ≡ 0 (mod p).

Sharper forms of Church’s theorem

Full first-order validity may be undecidable, but we’ve seen that it is decid-
able for some classes of formulas, such as those with certain quantifier pre-
fixes. In order to prove that validity for formulas in a certain class K is not
decidable, a common technique is to prove that K represents a ‘reduction
class’, i.e. that there is a computable function f mapping each formula p to
some f(p) ∈ K such that validity of p is equivalent to validity of f(p). If K

is indeed a reduction class, no algorithm can exist for validity in K, for then
we could obtain one for all of first-order logic by just applying f and then
the algorithm.

For example, the class K of formulas with a quantifier prefix of the form
∃n∀n is a reduction class (note that this is dual to the decidable AE frag-
ment). This follows from Skolem normal form: given any first order formula,
one can find an equisatisfiable one by performing the first order analogue of
definition CNF, introducing new predicate symbols to stand for all subfor-
mulas – see Exercise 3.4. Let us assume we first transform the formula to
NNF and therefore only need implications for the definitions. The resulting
formula is a conjunction with each conjunct of the form

∀x1 . . . xn. R(x1, . . . , xn) ⇒ P [x1, . . . , xn].

These are all universally quantified at the outside, and the only ones with
quantifiers inside are of the form

∀x1 . . . xn. R(x1, . . . , xn) ⇒ ∀y. [x1, . . . , xn, y]

and

∀x1 . . . xn. R(x1, . . . , xn) ⇒ ∃y. [x1, . . . , xn, y].

When prenexed, the most complicated quantifier structure is therefore
∀n∃. However, we have a conjunction of such clauses so when prenexed the
result is of the form ∀n∃m. Dually, for validity, the resulting formula is of
the form ∃n∀m. Consequently, there can be no decision procedure for such
formulas.

The decidability of the monadic fragment of logic is also a sharp result
in the sense that first-order validity in a language with no functions and
just one binary predicate is undecidable (Kalmár 1936). This isn’t entirely
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surprising: although we have proved Church’s theorem using a language
with several function and predicate symbols for arithmetic, it is known that
arithmetic can be formalized in a set theory finitely axiomatized by a single
binary membership relation. This result was further sharpened by Rabin
(1965) to show that the theory of a single irreflexive and symmetric binary
relation (a ‘graph’) is undecidable. By contrast, the theory of a binary total
order relation is decidable; Rabin (1969) gives a relatively simple proof of
an even stronger result.

Another somewhat different direction in which the unsolvability of first-
order logic with equality can be sharpened is the following. Our proof meth-
ods were almost all justified via Herbrand’s theorem, asserting that a formula
∀x1 . . . xn. P [x1, . . . , xn] is unsatisfiable iff there is a finite set of m ground
instances such that

P [t11, . . . , t
1
n] ∧ · · · ∧ P [tm1 , . . . , tmn ]

is propositionally unsatisfiable. We can imagine separating the semi-decision
procedures based on Herbrand’s theorem into two parts: first finding the
minimum necessary multiplicity m, and then, given m, finding the appro-
priate instances – the latter is often referred to as the Herbrand skeleton
problem. It’s quite easy to see that, for pure first-order logic, we can always,
given m, test whether there are any suitable instances giving an unsatisfi-
able formula, by a unification-based enumeration of possibilities as in the
crude initial forms of tableaux. In some sense therefore, all the undecidabil-
ity resides in finding m. However, one can deduce from the unsolvability of
‘simultaneous rigid E-unification’ (Degtyarev and Voronkov 1995) that the
Herbrand skeleton problem for first-order logic with equality is unsolvable;
Voda and Komara (1995) prove a strong form of this result.

The Rosser construction

In the proof of the usual form of Gödel’s first incompleteness theorem for
a Σ1-complete set of axioms A, we required only simple consistency of A

to ensure that the Gödel sentence G is unprovable, A �� G. But to show
that A �� ¬G, we used the stronger hypothesis of Σ1-soundness, aka 1-
consistency. In fact, by considering the Gödel sentence for the axiom system
A′ = A∪ {¬G} we can see that some stronger assumption than simple con-
sistency is definitely necessary – see Exercise 7.16. However, Rosser (1936)
later strengthened Gödel’s theorem by showing, given a suitable axiom sys-
tem A, how to exhibit a different sentence R such that, assuming only that
A is consistent, neither A � R nor A � ¬R.
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We have seen that provability (from a Σ1-definable set of axioms A) is
definable by a Σ1-formula PrA(n). Using the trick of relativizing all but
the outermost quantifier (Exercise 7.5) we can assume it to be of the form
∃p. Proof(p, n) for a Δ0-formula Proof(p, n), which we think of as meaning
‘p encodes a proof of the formula with Gödel number n’. Thinking of p as
a ‘proof’ may be a little artificial given that our encoding of provability did
not explicitly consider any distinct notion of ‘proof’, but it is technically
inconsequential and seems to be a useful psychological crutch. Now consider
the following variant:

Proof(p, �φ�) =def Proof(p, �φ�) ∧ ∀q. q ≤ p ⇒ ¬Proof(q, �¬φ�).

In other words, we think of Proof(p, �φ�) as ‘p encodes a proof of φ and
no smaller number encodes a proof of ¬φ’. Now, assuming that the system
is consistent, Proof(p, n) and Proof(p, n) actually define the same relation
over N, because if Proof(p, �φ�) then for no q, and a fortiori for no q ≤ p,
does Proof(q, �¬φ�) hold. We proceed to diagonalize and obtain an analogue
R of the Gödel sentence:

A � R ⇔ ¬PrA(�R�).

One can show from this that either A � R or A � ¬R leads to a contradic-
tion, though one needs an additional property of A beyond Σ1-completeness:
that A � ∀x. x ≤ n ∨ n ≤ x for any particular numeral n. (This is the case
for our axioms Q, and probably for any realistic set of arithmetic axioms.)

Essential undecidability

A theory is said to be essentially undecidable if every consistent extension of
it is undecidable. (By an extension of a theory T we mean any T ′ such that
T ′ � p for each p ∈ T .) In the proof of Church’s theorem we argued that
any theory T that is both sound and complete for Σ1-sentences is undecid-
able. One can sharpen this to assume just Σ1-completeness and consistency,
not necessarily Σ1-soundness, by showing that the equivalence in the fix-
point Lemma 7.3 is not just true in N but actually provable. Since Q is
Σ1-complete, so is any extension of it, and we can conclude that Q (more
properly the theory Cn(Q)) is essentially undecidable.

We say that two theories T and T ′ are compatible if T ∪T ′ is consistent. A
theory is said to be strongly undecidable if any other theory compatible with
it is undecidable. Note that a finitely axiomatized essentially undecidable
theory is also strongly undecidable by Theorem 7.14: if T is such a theory
with finite axiomatization A, Cn(A∪T ′) is undecidable, since T ⊆ Cn(A∪T ′)
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and T is essentially undecidable, and hence so is T ′, using finiteness of A.
In particular we conclude that any theory compatible with Q is undecidable.
Since Q holds in N, we also see that every subtheory of N is undecidable.

Besides being a strong result in itself, one can use this to deduce undecid-
ability of various related theories via interpretation of one theory in another,
an approach systematically worked out in Tarski, Mostowski and Robinson
(1953). For example, because an integer is nonnegative iff it is a sum of
four squares, Q can be interpreted inside a suitable theory of integers by
relativizing quantifiers; by a similar argument involving strong undecidabil-
ity, we can deduce that any subtheory of the ring of integers (in the same
language) is undecidable. In particular, the theory of rings is undecidable,
though as we saw in Section 5.10 the universal fragment is decidable. Using
Julia Robinson’s definition of Z in Q, one can similarly show that the theory
of fields is undecidable. In a surprising contrast, the theory of finite fields
is decidable (Ax 1968), though the theory of finite rings is also undecidable
(Rabin 1965).

7.8 Retrospective: the nature of logic

If we ask ourselves what makes the material in this book distinctively logical
rather than traditionally mathematical we can answer in two different ways.
In one sense our reasoning has been more general: the use of an expressive
formal language with explicit quantifiers has led us to generalizations of
classic decision problems in mathematics, e.g. Tarski’s method as a gener-
alization of Sturm’s algorithm. Even though many results could have been
reached without explicit use of logical language, in practice this was not
done.† On the other hand, we may consider our reasoning more limited in
that we’ve restricted ourselves to analyzing strictly logical truths. Admit-
tedly, we sometimes considered deduction from powerful sets of axioms, but
the notion of logical truth has always been central.

As noted in the introduction, however, we haven’t defined the concept of
logical consequence very precisely. We ended up identifying logical reasoning
with reasoning valid in first-order logic. Is this a valid formal counterpart
of any of the traditional (and arguably vague) distinctions such as nec-
essary/contingent, analytic/synthetic, a priori/a posteriori? This is not so
clear, though some have certainly made such claims (Carnap 1935). But
perhaps even more fundamental than the detail of first-order logic is the
† There are some exceptions. For example, the logical investigation of the analytic hierarchy

was paralleled in descriptive set theory, using projection of multidimensional sets instead of a
syntactic notion of quantification. Indeed, it was only later that the deep interrelations with
recursion theory were pointed out.
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question of formal checkability of proofs. Intuitively, a chain of logical deduc-
tions should not leave one suspecting that hidden assumptions or knowledge
have been smuggled in. Verifying the validity of a logical proof spelled out in
enough detail should require from the reader no real intelligence or knowl-
edge of the subject matter – this is exactly why it is so persuasive. In prin-
ciple, a sufficiently detailed proof could be verified by a clerk, or even a
machine. While this seems to understate the intellectual difficulty of proof,
it accurately reflects the view many mathematicians have of the axiomatic
method.

For first-order logic, there are indeed formal counterparts of the notion of
a chain of logical inferences that can be decidably checked by machine, as
we’ve seen. For first-order logic augmented with the arithmetic of positive
integers, though, we’ve seen on the contrary that by Tarski’s theorem no such
methods can exist even in principle; this also applies to still more powerful
formal systems such as higher-order logic or set theory. In all such systems,
whatever specific way of exhibiting and checking proofs is chosen, there will
always be truths that cannot be verified mechanically.

So we might regard checkability by machine as the fundamental property
that makes a proof truly logical. Thus, one can argue that the possibility of
automated theorem proving and proof checking has profound philosophical
significance. But we hardly need to indulge in self-justification given that
it’s all just so much fun.

Further reading

There are many books about the foundations of mathematics and the philo-
sophical background to Hilbert’s programme, e.g. Kneebone (1963) and
Wilder (1965). Van Stigt (1990) is an account of Brouwer’s life and work,
including an exegesis of his intuitionistic philosophy, while Edwards (1989)
analyzes the philosophical views of Kronecker. For more on intuitionistic
logic and constructive mathematics see Mints (2000), Troelstra and van
Dalen (1988) and Beeson (1984). Kreisel (1958a) discusses Hilbert’s pro-
gramme; numerous papers in vol. 53 (1988) of the Journal of Symbolic Logic
discuss this programme in a modern context. There are several books con-
taining collections of papers on the foundations of mathematics, e.g. Benac-
erraf and Putnam (1983) and Hintikka (1969) as well as the predominantly
technical collection of Van Heijenoort (1967).

Many logic texts such as Enderton (1972) and Mendelson (1987) discuss
Gödel’s incompleteness theorems. The monograph by Smullyan (1992) has
strongly influenced our presentation here, e.g. in beginning with Tarski’s
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theorem. Gödel’s theorems have a fame that reaches beyond the confines of
formal logic. The temptation to assimilate Gödel’s results into some broader
intellectual or cultural trends seems hard to resist. Franzén (2005) is not
only a general overview of Gödel’s theorems but a systematic debunking
of various misapprehensions about them. For more on reflection principles
and transfinite progressions of theories, see Feferman (1991), while Franzén
(2002) discusses the whole incompleteness phenomenon with a particular
focus on progressions of theories.

The reader may have noticed that the nested quotations like Pr(�Pr(�p�)�)
get messy and difficult to read. It’s convenient to use �p as an abbreviation
for Pr(�p�), with ��p for Pr(�Pr(�p�)�) etc. In fact, this can be more than
a handy notion: one can consider a special kind of ‘modal’ logic where a
provability predicate is added as a new formula constructor, and Solovay
(1976) has shown that all modally expressible properties that Pr satisfies
can be proved directly by modal reasoning. Accounts of this are given by
Boolos (1995) and by Smoryński (1985). For more on modal logic in general,
see Mints (1992) and Hughes and Cresswell (1996).

Many standard logic texts include some material on computability, e.g.
Boolos and Jeffrey (1989), while there are numerous other texts designed for
the computer scientist such as Minsky (1967). We have barely scratched the
surface of the subject of computable functions and recursively enumerable
sets; see Davis, Sigal and Weyuker (1994) for an introduction. One extension
of the concept (Turing 1939) is to relative computability, where one considers
whether a function f would be computable given an ‘oracle’ computing
some other computable function g – see Odifreddi (1989) for an account
of the resulting hierarchies, as well as much other material. One can also
consider the field of computable real numbers and computable functions of
a real variable (Aberth 1980) – Goodstein (1960) uses a even more limited
primitive recursive arithmetic. Hodges (1983) gives an account of Turing’s
eventful life, discussing his theoretical work in mathematical logic as well as
his practical role in code-breaking and the development of modern digital
computers.

Gödel’s results can be proved using formalizations of other informal para-
doxes such as Berry’s ‘the smallest integer that cannot be named in fewer
than thirteen words’ (Chaitin 1970; Boolos 1989). Subsequently Chaitin
(1974) proved a different incompleteness theorem based on his own notion
of algorithmic complexity (aka Kolmogorov complexity), giving a perspec-
tive on the incompleteness phenomenon that has led to much philosophical
discussion (Raatikainen 1998).
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Exercises

7.1 We deliberately chose a pairing with 〈x, y〉 �= 0, to simplify encoding
of lists. Show that the Cantor pairing function 〈x, y〉 = (x+y)2+3x+y

2

is actually bijective, i.e. for all z ∈ N there are unique x and y with
〈x, y〉 = z. A much more difficult result, due to Fueter and Polya,
is that the Cantor pairing and the variant obtained by swapping x

and y are the only quadratic polynomials with real coefficients that
induce a bijection N

2 → N. Still more difficult is the conjecture that
there are no other polynomials of any degree with real coefficients
that induce a bijection N

2 → N – this and several related generaliza-
tions are still open problems at time of writing (Smoryński 1980).

7.2 We remarked that as an easy consequence of the closure of Σ1 rela-
tions under reflexive–transitive closure, the (graph of the) exponen-
tial function is Σ1. Prove that in fact it is Δ0, i.e. definable by a
formula with all quantifiers bounded (Bennet 1962). You may find
it useful to observe that one can compute the exponential by binary
recursion x2y = (xy)2 and x2y+1 = x·(xy)2, and the successive values
in the recursion decrease geometrically, making it possible to bound
a representation of the construction sequence in terms of the final
value xy = z. For a particularly clean and elegant realization of this
idea for the special case x = 2, see Voda (2001). Can you generalize
his construction to xy = z for arbitrary x?

7.3 We showed that if R(x, y) is Σ1, so is its reflexive transitive closure
R∗(x, y). Suppose R(x, y) implies that x ≤ y. Show that the com-
plement of the reflexive transitive closure is also Σ1. (Hint: consider
bounds for the unbounded quantifiers in the existing expressions.)

7.4 Write a program to take a formula defining a set of axioms A,
assumed sound, and explicitly produce a sentence p that is true
in N but not first-order provable from A. Roughly, you just need
to automate the constructions from the first sections of this chapter.
However, you will need to make the encodings significantly more eco-
nomical for this to be practical. In particular, Gödel numbers in our
scheme tend to blow up too quickly, and the zero-successor numerals
are not practical. Can you circumvent all these problems?

7.5 Show that every Σ1-formula is equivalent in N to one of the special
form ∃m.D[m] where D[m] is a Δ0-formula. (This can be considered
a form of the Kleene normal form theorem.) Is it always the case
that this equivalence can be proved using only our weak axioms of
arithmetic Q?
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7.6 Suppose we modify the Robinson axioms Q by asserting m ≤ n ⇔
∃d. d + m = n instead of m ≤ n ⇔ ∃d. m + d = n. Show that, in the
resulting system Q′, we cannot derive ∀x.0 ≤ x whereas we can in Q,
but conversely Q′ � ∀x. x ≤ x whereas this cannot be derived in Q.
(Show unprovability rigorously – i.e. exhibit a countermodel rather
than observing that the obvious attempts to prove it don’t seem
to work.) Show however that Q′ is still Σ1-complete and implement
an algorithm to prove true Σ1-sentences from Q′. Observe that it is
actually slightly simpler to use Q′ because Q′ � ∀x y. x ≤ S(y) ⇔
x = S(y) ∨ x ≤ y. However, show that it is impossible to use Q′ to
perform the Rosser construction.

7.7 Instead of generalizing the proof of Gödel’s second theorem to give
Löb’s theorem, prove Löb’s theorem directly from Gödel’s second
theorem using the following idea due to Kripke: suppose that we have
A � PrA(�S�) ⇒ S and apply Gödel’s second theorem to A ∪ {¬S}.

7.8 We prove Löb’s theorem using a fixpoint L with L ⇔ (PrA(�L�) ⇒
S). Instead, prove it using the fixpoint L ⇔ PrA(�L ⇒ S�) (this is
due to Kreisel). Use the same idea to obtain the formalized version
of Löb’s theorem, i.e. A � PrA(�PrA(�S�) ⇒ S�) ⇒ PrA(�S�).

7.9 Let S be a set of arithmetic axioms that is Σ1-complete and satisfies
the Löb derivability conditions, and T be an extension of S (meaning
T � p for all p ∈ S). Show that for any Π1-formula φ, if T � φ

then S ∪ {Con(T )} � φ. Hence prove that for any Π1-formula φ,
T ∪ {¬Con(T )} � φ if and only if T � φ. (This is attributed by
Smoryński (1991) to Kreisel.)

7.10 Given any total recursive function f , use the (provable) fixpoint
lemma to produce a formula φ that states ‘all proofs of φ are longer
than f(�φ�)’. (a) Deduce that φ is in fact provable, but not in
≤ f(�φ�) steps, and hence that a formula may require a proof that is
arbitrarily long compared with its own size. (b) Take f to be a suit-
ably large constant function and consider in detail how to formalize
the reasoning in (a) within the system (assume an underlying axiom
system like PA with provable Σ1-completeness). Hence show that
one can find formulas φ where any proof of φ is arbitrarily longer
than some proof of Pr(�φ�), and hence a reflection rule would make
a significant practical difference.

7.11 Show that if a theory has a r.e. axiomatization, then it has a recursive
axiomatization, i.e. one where it’s decidable whether a formula is an
axiom (Craig 1952). Hint: a ∧ a ∧ a ∧ a ⇔ a.

7.12 We have already defined Σ1-soundness (1-consistency) as soundness
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for Σ1 sentences. More generally, define n-consistency as soundness
for Σn sentences. Show that we can define n-consistency by a Πn+1

formula. Hence, or otherwise, show that a theory can be n-consistent
without being (n + 1)-consistent.

7.13 Show that the univariate case of Hilbert’s tenth problem, over either
N or Q, is decidable. (Hint: if a polynomial with integer coefficients
has a root s/t in its lowest terms, then t must divide the leading
coefficient and s the constant coefficient.)

7.14 Show that for each of the structures Z, Q and R, the validity of
any purely existentially quantified formula can be reduced to an
equivalent problem asking whether a single equation has solutions.
Thus, the decidability of the analogue of Hilbert’s tenth problem
is exactly equivalent in each case to the decidability of the entire
existential/universal theory. (You might find it useful to use the fact
that every nonnegative integer or rational is the sum of four squares,
and keep in mind the Rabinowitsch trick.)

7.15 We observed that the statement ∃x1, . . . , xn. p(x1, . . . , xn) = 0 over
the rationals is equivalent to ∃a1, . . . , an, b1, . . . , bn. b1 �= 0 ∧ · · · ∧
nn �= 0 ∧ p(a1/b1, . . . , an/bn) = 0 over the integers, and after clear-
ing denominators, the equation p(a1/b1, . . . , an/bn) is homogeneous.
Show in fact that one can formulate the integer problem and the
nontriviality conditions bi �= 0 as a homogeneous problem, and hence
that the analogue of Hilbert’s tenth problem for rationals is precisely
equivalent to the problem for integers and homogeneous polynomials.

7.16 If A is consistent, we know from Gödel’s theorem that A �� G and
hence A∪ {¬G} �� ⊥; that is, A′ = A∪ {¬G} is also consistent. Now
considering the corresponding Gödel sentence G′ for the new axiom
system A′, show that nonetheless A′ � ¬G′, and hence that simple
consistency does not ensure that the negation of the Gödel sentence
is unprovable.

7.17 Show, assuming the Löb derivability conditions and the provable
fixpoint A � G ⇔ ¬PrA(�G�), that in fact A � G ⇔ Con(A), i.e.
G is provably equivalent to the standard statement of consistency
Con(A) = ¬PrA(�⊥�).

7.18 Just as Tarski’s theorem can be considered a formalization of the liar
paradox ‘this sentence is false’, observe that Löb’s theorem can be
considered as a formalization of a paradox: ‘if this sentence is true,
then Santa Claus exists’. (This point was made by one of the referees
of Löb’s original paper, probably Henkin.) Deduce (informally) from
the truth of this sentence that Santa Claus exists.
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7.19 Assume the existence of a recursively enumerable set S whose com-
plement is not r.e. (From Church’s theorem we know the set of Gödel
numbers of formulas provable from Q is such a set, but we might
choose to obtain it by other means, e.g. the undecidability of the
halting problem.) Show how to deduce Gödel’s first incompleteness
theorem directly from this without any use of the fixpoint lemma.

7.20 Prove Lucas’s theorem about binomial coefficients: for any a and b

one has
( 2a
2b+1

) ≡ 0 (mod 2) while
(
2a
2b

) ≡ (
2a+1

2b

) ≡ (
2a+1
2b+1

) ≡ (
a
b

)

(mod 2). Hence show that the relation
(
n
k

) ≡ 1 (mod 2) defines the
‘subset’ relation, considering the numbers k and n as encodings of
sets via their bits (e.g. 37 = 20+22+25 representing the set {0, 2, 5}).
Show also that with this encoding one has (m ∩ n = ∅) ⇔ n ⊆ m +
n. Hence, assuming a Diophantine representation for the binomial
coefficient function, find one for set unions.
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Mathematical background

In this appendix we collect together some useful mathematical background.
Readers may prefer to read the main text and refer to this appendix only
if they get stuck. We do not give much in the way of proofs and the style
is terse and rather dull, so this is not a substitute for standard texts. For
example, Forster (2003) discusses in detail almost all the topics here, as
well as much relevant material in logic and computability and some more
advanced topics in set theory.

Mathematical notation and terminology

We use ‘iff’ as a shorthand for ‘if and only if’ and ‘w.r.t.’ for ‘with respect to’.
We write x | y , read ‘x divides y’, to mean that y is an integer multiple of x,
e.g. 3 | 6, 1 | x and x | 0. We use the usual arithmetic operations (‘+’ etc.)
on numbers; we generally write xy for the product of x and y, but sometimes
write x · y to emphasize that there is an operation involved and make the
syntax more regular. An operation such as addition for which the order
of the two arguments is irrelevant (x + y = y + x) is called commutative,
and an operation where the association does not matter (x + (y + z) =
(x + y) + z) is said to be associative. We also use the conventional equality
and inequality relations (‘=’, ‘≤’ etc.) on numbers, and sometimes emphasize
that an equation is the definition of a concept by decorating the equality
sign with def, e.g. tan(x) =def sin(x)/ cos(x). We indicate that a relation
does not hold by striking a diagonal line through its symbol, e.g. x �= y (x is
not equal to y) or 3 � 7 (7 is not divisible by 3). We sometimes refer to x �= y

as a inequation, to be distinguished from an inequality like x ≤ y and x > y.
(In the literature, disequation is sometimes used instead of inequation.) The
greatest common divisor (GCD) of two integers m and n is the largest integer
d such that d | m and d | n, while their lowest common multiple (LCM) is
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the smallest integer e > 0 such that m | e and n | e. If n | (x − y) we
say that x and y are congruent modulo n and write x ≡ y (mod n). Given
an expression like x + y · x, to instantiate the expression is to produce an
‘instance’ of it by setting the variables consistently to some expressions, e.g.
12 + x2 · 12, and the process of doing so is called instantiation.

Sets

A set is a collection of objects viewed as a single entity. We write x ∈ S to
indicate that x is a member of a set S. Particular finite sets may be given by
enumerating their elements within braces, e.g. {1, 2, 3}; the empty set may
be written as {} or with the special symbol ∅. The singleton set {a} has
exactly one element a, and is not the same as a itself. (For example, {∅} has
one element while ∅ has none.) We use the following symbols for particular
infinite sets: N for the set of natural numbers (nonnegative whole numbers
{0, 1, 2, . . .}), Z for the integers (whole numbers), Q for the rational numbers,
R for the real numbers and C for the complex numbers. We will also use the
notation {f [x] | P [x]}, where E[x] symbolizes a generic expression using a
variable x, to denote ‘the set of all f [x] such that P [x]’, where P [x] is some
property. For example, {n2 | n ∈ Z} is the set of squares of whole numbers,
{0, 1, 4, 9, 16, . . .}. Two sets are defined to be equal if and only if they have
the same elements (the ‘principle of extensionality’), i.e. S = T iff for all x

we have x ∈ S iff x ∈ T . We write S ⊆ T to indicate that S is a subset of T ,
i.e. that for all x such that x ∈ S we also have x ∈ T . Note that S = T iff
both S ⊆ T and T ⊆ S, while we always have ∅ ⊆ S. When S ⊆ T but not
T ⊆ S, we say that S is a proper subset of T and write S ⊂ T . (Take care:
some, mainly older, books use ⊂ for the ordinary subset relation.)

We write S∩T for the intersection of S and T , i.e. the set of elements that
are in both S and T . Similarly, S∪T denotes the union of S and T , the set of
elements that are in either S or T or both. Finally, S \T or just S −T is the
set of elements that are in S but not T . Just as addition of two numbers is
generalized to a summation over a finite range of numbers, e.g. Σn

k=0k
2, we

sometimes take intersections or unions of a finite or infinite family of sets, e.g.⋂
i∈N Ti. The Cartesian product S×T is the set of pairs whose first member

is in S and whose second member is in T , i.e. {(x, y) | x ∈ S and x ∈ T}.
(We take ‘pair’ to be a basic construct, but the thoroughgoing set theory
enthusiast can regard (x, y) as a shorthand for {{x}, {x, y}}; note that by
extensionality this has the key properties that (x, y) = (x′, y′) iff x = x′ and
y = y′.) The n-fold Cartesian product S × · · · × S is written Sn.
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Relations

An n-ary relation on a set S is regarded as a subset of Sn. The most impor-
tant case is a binary relation, i.e. a subset of S×S. If R is a binary relation,
we often write R(x, y) as a natural shorthand for (x, y) ∈ R. Some common
relations are traditionally written infix, e.g. x ≤ y rather than ≤ (x, y) or
(x, y) ∈≤. A binary relation R is said to be

• reflexive when for all x ∈ S we have R(x, x);
• irreflexive when for no x ∈ S do we have R(x, x);
• symmetric when for all x, y ∈ S we have R(x, y) iff R(y, x);
• transitive when for all x, y, z ∈ S, if R(x, y) and R(y, z) then also R(x, z);
• antisymmetric when for all x, y ∈ S, if R(x, y) and R(y, x) then x = y;
• connected when for all x, y ∈ S, either R(x, y) or R(y, x) (or both).

For example, the usual ordering ≤ on numbers is reflexive, transitive,
antisymmetric and connected, but not symmetric nor irreflexive; the equality
relation = has all properties other than irreflexivity; the subset relation ⊆
is reflexive, transitive and antisymmetric, but not irreflexive, symmetric nor
connected. We use some special phrases to denote combinations of these
basic properties, saying that a relation is:

• a preorder when it is reflexive and transitive;
• a (partial) order when it is reflexive, transitive and antisymmetric;
• a total order or linear order when it is reflexive, transitive, antisymmetric

and connected;
• an equivalence relation when it is reflexive, symmetric and transitive.

For example, the divisibility relation | on integers is a preorder (it is not
antisymmetric since 1 | −1 and −1 | 1), the subset relation ⊆ is a partial
order, ≤ on integers is a total order and = is an equivalence relation.

Every equivalence relation ≡ can be used to partition a set into equivalence
classes, sets of elements that are mutually equivalent. We write [a] for the
equivalence class containing a, i.e. {b | b ≡ a}. Note that [a] = [b] iff a ≡ b

while [a] ∩ [b] = ∅ iff a �≡ b.

Functions

A function f : A → B is commonly regarded as a rule mapping elements of
A to elements of B, such as the function f : Z → Z defined by f(x) = x2,
which we can write without giving it the name f simply as x �→ x2. The
crucial property of a function is not that it is defined via a rule, but just
that the value of f(x) is completely determined by the value of x: this
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justifies the usual practice of substitution in expressions, that is, reasoning
that if x = y then f(x) = f(y). Otherwise a function is just a kind of
relation between two sets, one that with each x ∈ A, associates exactly one
element y ∈ B (a partial function associates at most one, so a function is
a special kind of partial function). This associated relation is known as the
graph of the function. For a function f : A → B we describe A as the
domain of the function and B as its codomain, written dom(f) and cod(f)
respectively. The range of f , written ran(f), is the set of elements of B that
are actually of the form f(a) for some a ∈ A. For the squaring function
f(x) = x2, we have given the codomain as Z but the range is just the set of
integer squares {0, 1, 4, 9, 16, . . .} and we could have chosen any set including
these elements as the codomain. The image of a set S under a function f ,
sometimes written f [S], is just {f(x) | x ∈ S}, so in particular we have have
ran(f) = f [dom(f)].

As well as using x �→ e[x] as a general anonymous function definition
defining the result in terms of an expression e[x] involving the argument x,
we will sometimes write x |⇒ y for the function that maps the specific argu-
ment value x to the result y and is otherwise undefined, or more generally
x1 |⇒ y1, . . . , xn |⇒ yn for the function mapping each xi to the correspond-
ing yi and otherwise undefined. Moreover, we sometimes write (x �→ y)f to
mean the modification of the function f to return value y on the specific
argument value x, i.e. the function f ′ that maps f ′(x) = y and f ′(x′) = f(x′)
for x′ �= x. These two usages have counterparts in our OCaml operations on
finite partial functions (see Appendix 2).

We say that f : A → B is injective (or one–one or an injection) iff when-
ever f(a) = f(a′) then a = a′, i.e. at most one element of A is mapped
to any element of B. For example, the squaring function on Z is not injec-
tive because f(−1) = f(1) but −1 �= 1, whereas the squaring function on
N is injective. Dually, a function f : A → B is said to be surjective if each
element of B is of the form f(a) for some a ∈ A, i.e. at least one element of
A is mapped to each element of B. If a function is both injective and surjec-
tive it is called bijective (or a one-to-one correspondence or a bijection). This
means that for each y ∈ B there is exactly one x ∈ A such that f(x) = y.
Note that if f : A → B is injective, then considered as a function into its
range, f : A → f [A], it is bijective.

Given two functions g : A → B and f : B → C, we can form their
composition f ◦g : A → C, which applies both functions in turn: (f ◦g)(a) =
f(g(a)). If a function f : A → B is bijective, then there is a well-defined
inverse function f−1 : B → A, such that f−1 ◦ f = 1A, and f ◦ f−1 = 1B,
where 1A and 1B are the identity functions on A and B respectively, i.e.
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1A(x) = x for all x ∈ A. Indeed, considering f ’s graph, we simply replace
each pair (x, y) by (y, x). Injectivity of f ensures that this yields a function,
and surjectivity of f ensures that it is total on B. Even if f is not bijective, we
will sometimes use the inverse image notation f−1[C] = {x ∈ A | f(x) ∈ C}.
This is not to assert the existence of an inverse to f , though the reader
may readily confirm that if f is bijective the two readings coincide. Given
f : A → B and g : B → C, if g ◦ f is injective, so is f , and if g ◦ f is
surjective, so is g. So if f : A → B and g : B → A are such that both g ◦ f

and f ◦ g are bijective (in particular if g ◦ f = 1A and f ◦ g = 1B), then f

and g are both bijective.
A set S ⊆ T may be identified with its characteristic function or indicator

function χS : T → {0, 1} defined by f(x) = 1 for x ∈ S and f(x) = 0 for
x �∈ S. We can naturally generalize from sets to multisets or bags by allowing
finitely many repetitions, i.e. considering a multiset of elements of T as a
function T → N.

Cardinals

The cardinality |S| of a set S is essentially its size (number of elements),
e.g. |{1, 7, 9}| = 3. However, we will sometimes want to talk about the
cardinality of infinite sets, which we can’t directly measure using ordinary
numbers. It is possible to set up a more general theory of infinite ‘cardinal
numbers’, but this requires some set-theoretic machinery, and for the simple
uses we will make of cardinality, another approach suffices. Arguably even
more fundamental than measuring sets against numbers is just comparing
the sizes of two sets by trying to pair up elements from each and seeing
whether we end up with a bijection or run out of elements in one of the sets.
(Just as, for example, one can determine which body is hotter by seeing
which way heat flows, without the need for a specific scale of temperature.)
This process naturally generalizes to infinite sets, so we define:

|A| = |B|, there is a bijection f : A → B,
|A| ≤ |B|, there is an injection i : A → B,
|A| < |B|, there is an injection i : A → B but none j : B → A.

Note that we are not ascribing any independent meaning to the notation
|A|, but only interpreting it in equations or inequalities as a shorthand for
a statement about the existence of functions. But this has all the properties
we might expect, such as transitivity of the inequality relation: if |A| ≤ |B|
and |B| ≤ |C| then |A| ≤ |C| (to prove this, consider function composition).
The Schröder–Bernstein theorem asserts that it is also antisymmetric, i.e.
if |A| ≤ |B| and |B| ≤ |A| then |A| = |B|. On the assumption of the Axiom
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of Choice (see Section 3.6) the relation is also connected, i.e. for any sets A

and B, either |A| ≤ |B| or |B| ≤ |A|.
Cardinality of infinite sets has some counterintuitive properties. It is easy

to see that |N| ≤ |N × N|, since i(n) = (0, n) is injective. More surprising is
that p(m, n) = (m + n)2 + m + 1 is injective (see Section 7.2 for a proof), so
|N×N| ≤ |N| and by the Schröder–Bernstein theorem |N×N| = |N| (one can
also exhibit a bijection explicitly, e.g. by enumerating pairs via diagonals).
On the other hand, not all infinite sets have the same cardinality. Cantor,
using a famous ‘diagonal’ argument, proved that |N| < |R| and for any set
A, |A| < |℘(A)|, where ℘(A), the power set of A, is the set of all subsets
of A, e.g. ℘({0, 1}) = {∅, {0}, {1}, {0, 1}}. If |A| ≤ |N| then A is said to be
countable or denumerable, so |N| < |R| implies that the real numbers are
uncountable. We assume that the antonyms finite and infinite are already
familiar, though we can define them rigorously in various ways, depending
on the set-theoretic presuppositions we want to make. For example, the
‘Dedekind’ definition is that S is infinite if there is a function f : S → S

that is injective but not surjective, and finite otherwise. We say that a set is
cofinite if its complement in some larger set understood implicitly is finite.
For instance, a set S ⊆ N may be said to be cofinite if N \ S is finite.

Inductive definitions

In mathematical logic, we often use inductive definitions to define syntactic
notions, e.g. well-formed formulas or provable formulas. That is, we define a
set S by means of a set of rules of the form ‘if . . . then . . .∈ S’, where the ‘if’
part may itself involve membership of some object(s) in S. For example, a
rule might say that if both p ⇒ q and p are members of the set P of provable
formulas, so is q (see Section 6.4). But in what sense does a set of such rules
‘define’ a set?

To take a down-to-earth example, we may define the set E of even numbers
by saying ‘0 ∈ E’ and ‘if n ∈ E then (n + 2) ∈ E’. Conventionally, such
definitions are presented by writing all the rules as follows, the lines being
used to separate assumptions (if any) and conclusion.

0 ∈ E

n ∈ E
(n + 2) ∈ E

(Sometimes assumptions that do not assert membership of the set being
defined are written to the right-hand side of the line instead, and called ‘side
conditions’ – this is largely a matter of taste.) An inductive definition states
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that the set being defined is closed under the rules, and crucially that it is
the least set closed under the rules, i.e. one that is a subset of any other set
closed under the rules. (In general there may be many sets closed under the
rules; for instance the rules above for E are satisfied by the set of all natural
numbers as well as by the set of even numbers.)

But how do we know that there is a least set closed under the rules? A
good try is to consider the set of all sets closed under the rules, and take
their intersection. If only we knew this intersection to be closed under the
rules, then it would certainly be the least such set. But in general we don’t
know that; for example there are no sets at all closed under the following
rule:

n �∈ E

n ∈ E
.

Since we will be relying on inductive definitions a lot, we want to clarify
exactly when they work. Crudely speaking, we need the hypotheses of the
rules to make only ‘positive’ assertions about membership in the set being
defined. We will now make this precise and put it in a slightly more general
context (Andersen and Petersen 1991) using the notion of monotonicity of a
function w.r.t. the subset relation. Observe that any inductive definition can
be written in an equivalent form as a single rule with conclusion x ∈ S where
x is just a variable and S is the set being defined. The following paradigm
for the ‘even numbers’ example should illustrate how:

n = 0 or there exists m such that n = m + 2 and m ∈ E
n ∈ E

.

Abstracting away from the details of this example, we have, for some prop-
erty P [S, n] the rule ‘if P [S, n] then n ∈ S’, and if we abbreviate f(S) =
{n | P [S, n]}, this is equivalent to simply f(S) ⊆ S. Our earlier plan in this
context was to define:

T =
⋂

{S | f(S) ⊆ S}

and hope that f(T ) ⊆ T . The Knaster–Tarski fixpoint theorem (Knaster
1928; Tarski 1955) asserts that in fact f(T ) = T , provided that the function
f is monotone (monotonically increasing), i.e. if S ⊆ S′ then f(S) ⊆ f(S′).
It is easy to see that rules with hypotheses making only ‘positive’ instances
of membership in the set being defined yield such a monotone set function.
Thus when making an inductive definition in such cases we can immediately
conclude:
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• The inductively defined set is closed under the rules, i.e. f(T ) ⊆ T . In
the even number example, this means that indeed 0 ∈ E and whenever
n ∈ E, also (n + 2) ∈ E.

• The inductively defined set is the least set closed under the rules, i.e. if
f(T ′) ⊆ T ′ then T ⊆ T ′. For the even number example, given any set E′

such that 0 ∈ E′ and for all n ∈ E′ we have (n+2) ∈ E′, we can conclude
that E ⊆ E′. If we apply this to the set of elements satisfying a property
P , it is known as rule induction, because to show that all elements in
the inductively defined set have property P we merely need to show that
the rules ‘preserve’ P , e.g. for the even number example that P (0) and
whenever P (n) we also have P (n + 2).

• Since we actually have a fixpoint f(T ) = T , we get a cases theorem
showing that each element of T arises from others via the rules. For the
even number example, we can conclude that each n ∈ E is either 0 or of
the form m + 2 for some m ∈ E.

The set of natural numbers itself can be regarded as inductively generated
as a subset of some set T given an element 0 ∈ T and a ‘successor’ function
S : T → T by the rules (i) 0 ∈ N and (ii) whenever n ∈ N then also S(n) ∈ N.
Rule induction in this case is nothing but the usual principle of mathematical
induction. Note that this induction principle is valid regardless of whether
the elements 0, S(0), S(S(0)) etc. are distinct, though we do need those
properties for N to have other properties of the natural numbers (like being
infinite).

Further examples we use extensively in this book are the various ‘closures’
of a binary relation R. The transitive closure of R, written TC(R) or R+,
is the smallest transitive relation extending R. Likewise we sometimes use
the reflexive transitive closure RTC(R) or R∗, and the reflexive symmetric
transitive closure. All of these can be regarded as inductively defined, for
example the RTC by:

R∗(x, x)

R(x, y)
R∗(x, y)

R∗(x, y) R∗(y, z)
R∗(x, z)

We could instead have made an equivalent definition more explicitly, e.g.
that R∗(x, y) if either x = y or there is a possibly-empty finite sequence
of values x1, . . . , xn such that each two adjacent elements in the sequence
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x, x1, . . . , xn, y are related by R. However, using the inductive formulation,
we can often use rule induction to establish properties in a more elegant
way.

Wellfoundedness

The usual principle of mathematical induction allows us to establish that
P (n) holds for all n ∈ N by showing (i) that P (0) and (ii) that whenever
P (n) then also P (n+1). We can strengthen this to the principle of complete
induction where in part (ii) we may establish P (n+1) assuming not merely
P (n) but P (m) for all m ≤ n, i.e. for all m < n+1. (To prove this, just apply
the usual principle of induction to the stronger property P ′(n) that for all
m ≤ n we have P (m).) We can reformulate this to speak only of the ordering,
not the arithmetic operations, and this hints at a broad generalization to
an arbitrary set X and any binary relation on it. We symbolize this binary
relation ≺, but we are not assuming transitivity, totality, or the fact that it
is the irreflexive form of an ordering. Any of the following, as well as some
other statements (Rudnicki and Trybulec 1999), are equivalent and may be
taken as the definition of ‘≺ is wellfounded ’:

• the principle of wellfounded induction: to show that P (x) for all x, it
suffices to establish P (x) for all x such that P (x′) for each x′ ≺ x;

• the minimal element principle: every nonempty subset S of X contains a
minimal element, i.e. an m ∈ S such that there is no x ∈ S with x ≺ m;

• the absence of infinite descending chains: there is no infinite sequence
x0, x1, x2, . . . of elements (not necessarily distinct) in X such that for all
i ∈ N we have xi+1 ≺ xi.

Complete induction states exactly that the natural numbers are well-
founded, in the form of wellfounded induction. (Note that the case P (0)
is automatically included since there are no m < 0 and so the hypothesis
holds trivially.) On the other hand, we can see that the set of integers is not,
since for example there are subsets with no minimal element (e.g. all of Z),
and there are infinite descending chains such as 0,−1,−2,−3, . . .

Note that a wellfounded relation must be irreflexive, for if x ≺ x the
set {x} would have no minimal element, and indeed the relation must be
strongly antisymmetric because if x ≺ y and y ≺ x the set {x, y} would
likewise have no minimal element. If � is a total order such that the cor-
responding irreflexive order ≺ (where x ≺ y means x � y and y �� x) is
wellfounded, then � is said to be a wellorder and the set X is said to be
wellordered by �. For a relation derived from a total order in this way, a
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minimal element m a set S ⊆ X is the same thing as a least element, i.e. for
all x ∈ S we have m � x.

If � is a subrelation of ≺ (i.e. whenever x � y we have x ≺ y) and ≺ is
wellfounded, then so is �; this is almost immediate from the ‘least element’
form. Moreover, if ≺ is a wellfounded relation on X and we define another
relation on a set A by a � a′ =def f(a) ≺ f(a′), then � is wellfounded
regardless of the function f . In the case where ≺ is the usual order on N,
we refer to f as a measure function. If each ≺i is a binary relation on Xi,
we define the lexicographic relation on the Cartesian product X1 × · · · ×Xn

by (x1, . . . , xn) � (x′
1, . . . , x

′
n) iff for some 1 ≤ i ≤ n we have xi ≺i x′

i while
for all 1 ≤ j < i we have xj = x′

j . This is called lexicographic because
it corresponds to the way words are sorted in a dictionary, first on the
initial letter and if those are equal, the next letter, and so on. If each ≺i

is wellfounded then so is the lexicographic relation �. (To prove this, note
that for any nonempty S ⊆ X1 ×· · ·×Xn there must be a minimal m1 such
that there is an element (m1, x2, . . . , xn) in S, and so on.) For example, the
relation on pairs of natural numbers (m, n) � (m′, n′) that holds if either
m < m′ or m = m′ and n < n′ is wellfounded. Thus, a relation may be
wellfounded even if there is an element, like (1, 0) here, with infinitely many
predecessors, here all numbers (0, n).

Some ways of building relations from others preserve wellfoundedness. In
particular, if ≺ is wellfounded, so is its transitive closure ≺+, as one can
prove by induction. If ≺ is a relation on T , we define the multiset order on
the multisets T → N by setting m � m′ iff m results from m′ by removing
at least one instance of some element x and perhaps changing arbitrarily
the multiplicities of elements y ≺ x, or more formally if there is an element
x ∈ T with m(x) < m′(x) and m(y) = m′(y) for y �= x unless y ≺ x. (For
example, if ≺ is the usual ordering on N, removing a ‘7’ but adding ninety
‘6’s and a billion ‘1’s.) If ≺ is wellfounded, then so is the corresponding
multiset ordering � (Dershowitz and Manna 1979; Nipkow 1998).



Appendix 2

OCaml made light of

This appendix summarizes the main things a reader needs to know about
the programming environment we use. I hope it will provide a useful quick
overview, but this appendix is no substitute for a textbook on functional
programming like Cousineau and Mauny (1998) or Paulson (1991).† There
are numerous other texts on OCaml and CAML Light available online, e.g.
a fairly comprehensive OCaml book‡ and some old lecture notes on CAML
Light by the present author.§

Functional programming

OCaml supports several styles of programming, but its roots lie in functional
programming, and almost all of our code is written in a purely functional
style. In brief, the idea of functional programming is that a program is simply
an expression, and execution means evaluation of the expression. Although
this point of view may seem outlandish to those with experience of more
traditional imperative programming, supported by common languages like C
and Java, an expression-centric view is already familiar from other contexts
such as spreadsheet programming.

The centrepiece of imperative programming is the successive modifica-
tion, via assignment statements x = e or x := e, of a number of program
variables, known collectively as the state. These assignment statements are
invoked in a particular order using sequential execution (sometimes indi-
cated by ‘;’) and built into more complex constructs using if tests, while
loops and so on.

Functional programming represents a radical departure from this model.
† These books are based respectively on CAML Light (which is very close indeed to OCaml) and

SML (which is fundamentally similar but looks rather different).
‡ caml.inria.fr/pub/docs/oreilly-book/
§ www.cl.cam.ac.uk/teaching/Lectures/funprog-jrh-1996/index.html
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Functional programs do not use program variables, i.e. there is no explicit
notion of state. Consequently, they do not use assignments, since there is
nothing to assign to. Furthermore the idea of executing multiple commands
in sequence is meaningless, since the first command can make no difference to
the second, there being no state to mediate between them. However, on the
positive side, functional programs can use functions in far more sophisticated
ways. Functions can be treated in much the same way as simpler objects like
integers: they can be passed to other functions as arguments and returned
as results, and in general calculated with. Instead of sequencing and looping,
functional programs make extensive use of recursive functions, i.e. functions
that are defined in terms of themselves.

The OCaml toplevel

We will be using the OCaml toplevel, an interpreter for OCaml programs.†

This is already installed by default on many Linux and Cygwin distributions,
and in any case it is freely available and quite easy to install on almost any
modern computing platform, either using your favourite software package
manager (e.g. apt-get) or directly via the following URL:

caml.inria.fr/ocaml/index.en.html.

Once OCaml is installed, you can start the toplevel, either by selecting it
from an appropriate menu or simply by typing ocaml into a shell (command
prompt). You should see something like the following, where the first line
shows the command prompt $ followed by the user’s ocaml command, and
the rest is the response of the OCaml interpreter:

$ ocaml
Objective Caml version 3.10.0

#

The interpreter prints an introductory banner, and then a hash symbol ‘#’,
which is OCaml’s prompt for the user to enter something. To submit input
for processing, the user should type it followed by two successive terminating
semicolons and ‘enter’. For example, here we evaluate the expression 2 + 2:

# 2 + 2;;
- : int = 4
#

† OCaml can also be compiled using ocamlopt to object code, but the interpreter is much more
convenient for experimentation. The code package for this book contains an example of how to
compile the code; see the Makefile entry compiled.
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OCaml replies, not only printing the result of the expression but also
indicating its type, which is int (‘integer’). It then prints its prompt once
again ready for the user’s next input. Until the user explicitly terminates
the process, e.g. by typing control/d† into the toplevel, it will keep doing
this indefinitely, accepting input, evaluating it, and printing the result. For
this reason the toplevel is often called a read-eval-print loop.

Expressions and definitions

Roughly speaking, you can do three things in the OCaml toplevel: issue
directives, evaluate expressions and make definitions. The most useful direc-
tive for now is probably the following:

# #use "filename";;

which reads OCaml source from a file called filename just as if it had been
typed into the toplevel. For example, the packaged code for this book can
be loaded in this way from a file called "init.ml". And if you want to write
non-trivial OCaml code of your own, you should save it in a file and then
you can just load it instead of re-typing it.

We have already seen an example of evaluating an expression 2 + 2 in the
toplevel. If you simply type in the expression (followed by ;; and enter) it
will get evaluated and the result printed, but nothing else will change. How-
ever, you can instead give (or bind, in the customary jargon) a name to the
result of evaluating an expression using a definition of the form ‘let x = e’.
Thereafter the name x can be used to recall that result and make further
use of it. For example:

# let x = 2 + 2;;
val x : int = 4
# 6 * x;;
- : int = 24

You can also make multiple bindings in the same definition using the
syntax ‘let binding and · · · and binding’, e.g.

# let x = 7 and y = 6;;
val x : int = 7
val y : int = 6
# x * y;;
- : int = 42

† That is, pressing and holding the Ctrl key and pressing d, which is a traditional Unix end-of-file
indication corresponding to ASCII ‘EOT’ (end of text).
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Any names bound in a definition will remain bound in perpetuity for the
rest of that toplevel session, unless overridden by later definitions of the
same name. However, you can also write an expression involving a purely
local definition using ‘definition in expression’, in which case any bind-
ings made in the definition are used only in the body of the expression and
do not persist outside its evaluation. For example, here the binding of z is
used inside the expression but is then ‘forgotten’:

# let z = 11 in z * z;;
- : int = 121
# z;;
Unbound value z

Definitions and expressions can be nested in arbitrary ways, e.g.

# let x =
let y = 6 and z = 7 in
3 * y + z;;

val x : int = 25

Note that binding is static: variables are just an abbreviation for the
results of earlier evaluations, and later re-binding does not affect the results
of expressions that used them, e.g.

# let x = 2;;
val x : int = 2
# let y = x + 3;;
val y : int = 5
# let x = 3;;
val x : int = 3
# y;;
- : int = 5

All OCaml expressions have a type, which can be thought of as a set in
which the values reside. So far we have just used expressions of type int
(integer). OCaml has several other basic built-in types. For example bool is
a type of truth-values with two values true and false and various built-in
operators such as the logical ‘and’ written &:

# let x = true;;
val x : bool = true
# x & false;;
- : bool = false

while string is a type of sequences of ASCII characters with operators such
as concatenation ^:
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# let x = "some" and y = "body" in x^y;;
- : string = "somebody"

We have not worried much about the types so far, but behind the scenes
OCaml has not only been figuring out the types for itself (we never wrote
down a type), but also checking we do not violate the typing discipline by,
for example, adding a boolean value and an integer:

# true + 2;;
This expression has type bool but is here used with type int

OCaml uses static typing, meaning that when given an expression it first
checks conformance to the type discipline before it even tries to actually
evaluate it.

Functions

Given any two types α and β, OCaml has a type of functions from α to β,
written as α -> β based on the usual mathematical notation for functions
from a set α to a set β. One way to write down an expression with a function
type is by analogy with the mathematical notation x �→ e[x] (‘the function
mapping x to e[x]’) which is written in OCaml as ‘fun x -> e[x]’, e.g. the
successor function:

# fun x -> x + 1;;
- : int -> int = <fun>

Perhaps the most fundamental operation in functional programming is
the application of a function to an argument. To apply a function f to an
argument x in OCaml, simply juxtapose them as f x. In typical mathe-
matical notation, application of a function f to an argument x is written
f(x), but OCaml does not require brackets unless they are needed to enforce
grouping, e.g.

# (fun x -> x + 1) 1 * 2;;
- : int = 4
# (fun x -> x + 1) (1 * 2);;
- : int = 3
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One can bind a function value to a name just as with any other expression:

# let suc = fun x -> x + 1;;
val suc : int -> int = <fun>
# suc 9;;
- : int = 10

though OCaml allows an alternative that may be more readable and means
the same thing:

# let suc x = x + 1;;
val suc : int -> int = <fun>

As with the built-in operators, OCaml will complain if we violate the
expected types, e.g. trying to apply our newly defined successor operation
to a string instead of an integer:

# suc "1";;
This expression has type string but is here used with type int

OCaml allows functions with multiple arguments, written one after the
other both in the argument list and when the function is applied:

# (fun x y -> x + y) 1 2;;
- : int = 3

However, if we look at the type of such a function, keeping in mind that
an iterated function type α → β → γ should be interpreted as α → (β → γ):

# let add x y = x + y;;
val add : int -> int -> int = <fun>

we may argue that it is not a function of two arguments as such. Rather
it is a function of one argument that returns another function (which then
accepts the second argument). We could indeed have written the following,
with exactly the same meaning:

# let add = fun x -> (fun y -> x + y);;
val add : int -> int -> int = <fun>

Implementing functions of multiple arguments in this way is known as
currying after the logician Haskell Curry, and to support it juxtaposition
of multiple expressions like ‘f x y’ is treated as left-associated: ‘(f x) y’.
The curried form affords some flexibility: we can choose only to apply the
function to its first argument, e.g. giving another definition of the successor
operator:
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# let suc’ = add 1;;
val suc’ : int -> int = <fun>
# suc’ 1;;
- : int = 2

This kind of partial evaluation is actually quite often used in functional
programming. At least it hints at the very general ways in which functional
languages allow one to use functions: they can be given as arguments to,
and returned as values from, other functions. The only important thing we
can’t do with functions is test them for equality as we can with members of
basic types like int. Desirable as such comparisons might be from the point
of view of mathematical regularity, equality of (even computable) functions
is not itself computable in general.

# 1 = 2;;
- : bool = false
# suc = suc’;;
Exception: Invalid_argument "equal: functional value".

Recursive functions

The OCaml expression ‘if e0 then e1 else e2’ first evaluates e0, and then
evaluates either e1 or e2 according to whether e0 is true or false, respectively.
Note that the expression not chosen isn’t evaluated at all, e.g. the 1/0 in
the first expression here, which on its own fails when evaluated:

# if 1 = 0 then 1/0 else 0/1;;
- : int = 0
# 1/0;;
Exception: Division_by_zero.
# (if false then 1 else 2) + (if true then 1 else 2);;
- : int = 3

Although readers accustomed to imperative languages may feel relief to see
a familiar-looking construct, we should emphasize that this is an expression,
and that both ‘then’ and ‘else’ branches are compulsory.†

A recursive function is one that is ‘defined in terms of itself’, i.e. where at
least one value f(x) is defined in terms of some other values f(y) of the same
function. A well-known example is the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, . . .

in which each element is the sum of the two preceding elements, that is,

† It is like C’s conditional expression ‘e0?e1:e2’, rather than its if construct. Actually, OCaml
does allow the else clause to be omitted provided the expression e1 has type unit, but we will
not exploit this feature.
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Fn = Fn−2 + Fn−1. In order to make such a recursive function definition in
OCaml, one introduces the definition with ‘let rec’ instead of plain ‘let’:

# let rec fib n = if n <= 1 then 1 else fib(n - 2) + fib(n - 1);;
val fib : int -> int = <fun>
# fib 5;;
- : int = 8
# fib 6;;
- : int = 13

Many functions can be defined recursively, even if doing so looks artificial
and execution is inefficient:

# let rec mul x y = if x = 0 then 0 else y + mul (x - 1) y;;
val mul : int -> int -> int = <fun>
# mul 6 7;;
- : int = 42

One can also define, using and, several functions that are mutually recur-
sive, i.e. are defined in terms of each other in some way. For example, here
we define (inefficient) tests for whether a nonnegative integer is even or odd:

# let rec even n = if n = 0 then true else odd(n - 1)
and odd n = if n = 1 then true else even(n - 1);;

val even : int -> bool = <fun>
val odd : int -> bool = <fun>
# even 42;;
- : bool = true

To see the contrast and parallels between recursion and imperative imple-
mentations using while loops, consider a simple version of Euclid’s algo-
rithm for computing the greatest common divisor of m and n. We might
implement it recursively as follows, based on the observation that the GCD
of m and n is the same as that of m and n − m:

# let rec gcd m n =
if m = 0 then n
else if n = 0 then m
else if m < n then gcd m (n - m)
else gcd (m - n) n;;

val gcd : int -> int -> int = <fun>
# gcd 12 15;;
- : int = 3

In an imperative language we might go through a loop, using assignments
to modify the two starting values m and n until one of them becomes zero. In
the underlying implementation, the execution is similar in the two cases. But
by making the definition as a recursive function, all the ‘intermediate’ values
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are explicitly referred to as values of gcd for other arguments, rather than
being the anonymous and ephemeral intermediate values of a variable. In this
way the same fundamental concepts are expressed in a more static way that
is closer to mathematics. For this reason it is often more straightforward to
reason analytically about functional programs, whereas imperative programs
need special methods to reason about how properties of the state evolve
(Floyd 1967; Hoare 1969; Dijkstra 1976a).

A recursive function definition where the result of each recursive call is
used immediately to give the overall result, rather than being further mod-
ified, is called tail recursive. For example, the gcd definition above is tail
recursive, because both gcd m (n - m) and gcd (m - n) n directly give
the overall result gcd m n rather than being further modified. By contrast,
the following definition of the factorial function

# let rec fact n = if n = 0 then 1 else n * fact(n - 1);;

is not tail recursive because the result of the recursive call is then multiplied
by n. The OCaml interpreter specially optimizes the execution of tail recur-
sive functions so that the recursion is replaced by a simple loop updating a
fixed stock of variables. Since this can be more memory-efficient, functional
programmers sometimes strive to make some key functions tail recursive.
For example, the factorial function can be recoded in a tail-recursive style
by adding an extra parameter called an accumulator to the main recursion:

# let fact =
let rec fact2 n a = if n = 0 then a else fact2 (n - 1) (n * a) in
fun n -> fact2 n 1;;

val fact : int -> int = <fun>
# fact 5;;
- : int = 120

Polymorphism and type inference

OCaml is strongly typed, meaning that in any expression the subcomponents
need to have compatible types, and the interpreter will not even attempt
to coerce them to make things work, as happens in some languages. On the
other hand, it is possible for the same expression to have multiple possible
types, in a controlled way. For example, the identity function just returns
its argument:

# let identity x = x;;
val identity : ’a -> ’a = <fun>
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Note that the type returned is (an ASCII symbolization of) α → α where
α is a type variable. This indicates that the function is polymorphic, i.e. can
be used with arguments of various types, even in the same expression:

# identity 1;;
- : int = 1
# identity "yes";;
- : string = "yes"
# (identity identity) (identity 1);;
- : int = 1

When the user enters a definition, OCaml automatically computes the
types of all the components and assigns a most general type (Milner 1978).
Note that a polymorphic function might not admit arguments of any type
as identity did, but just only those with types of a certain form. The most
general type uses type variables to indicate that form schematically. For
example, let us define an ‘iteration’ function to evaluate the n-fold function
application f(f(· · · f(x) · · ·)):
# let rec funpow n f x = if n < 1 then x else funpow (n-1) f (f x);;
val funpow : int -> (’a -> ’a) -> ’a -> ’a = <fun>
# funpow 10 (fun x -> x + x) 1;;
- : int = 1024

Although funpow is polymorphic, the first argument needs to be an integer
and the second a function with the same domain and range, i.e. a value with
some type σ → σ, and the third argument needs to have the same type σ.

This style of polymorphism is often known as parametric polymorphism
(Strachey 2000).† The key idea of parametric polymorphism is that all the
instances ‘do the same thing’ structurally, in contrast to overloading or
ad hoc polymorphism (which OCaml does not have) where a function may
behave completely differently on different types. We will not make the notion
of ‘doing the same thing’ precise, but another typical example of a paramet-
rically polymorphic function is a list reversal function that works regardless
of the nature of the list’s elements.

Recursive types and pattern-matching

While it already has a few built-in types, OCaml allows the user to define
new ones via the type keyword. The simplest case is an enumerated type
where the implicit set has a particular finite size and the user gives a name
to each member. These names are called constructors since they construct
† In some languages like Java, parametrically polymorphic functions are said to be generic.
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members of the new type, and OCaml requires that they start with an
uppercase letter to distinguish them from ordinary values:

# type ternary = Zero | One | Unknown;;
type ternary = Zero | One | Unknown

You can then define functions over the new type as usual, e.g.

# let andgate a b =
if a = Zero or b = Zero then Zero
else if a = Unknown or b = Unknown then Unknown
else One;;

val andgate : ternary -> ternary -> ternary = <fun>
# andgate Zero Unknown;;
- : ternary = Zero

Types can also be defined that contain a copy of one or more existing
types, e.g. a ‘sum’ type where each element is a suitably tagged element
either of type α or type β:

# type (’a,’b)sum = Inl of ’a | Inr of ’b;;
type (’a, ’b) sum = Inl of ’a | Inr of ’b

This is like a disjoint union of two sets in mathematics: it contains a
‘copy’ of each set, but in contrast to an ordinary set union, they are tagged
or modified to make sure they are disjoint and that given an element of the
union we can decide which set it comes from; one way of representing this
mathematically is {(0, x)|x ∈ S}∪{(1, y)|y ∈ T}. In the OCaml type defini-
tion, sum is not merely a type but rather a type constructor like the function
arrow -> that builds a new type out of existing types. An even simpler such
type constructor is the built-in OCaml product type. The Cartesian product
of types σ and τ is written σ * τ , and the constructor that maps two ele-
ments x and y into a member of this type is written as an infix comma, i.e.
x, y.† These are close to the usual mathematical notation σ × τ and (x, y),
though, as with function application, the brackets round pairs are optional
unless needed to establish precedence. There are two built-in functions fst
and snd to return the first and second member of a pair, e.g.

# let p = 1,2;;
val p : int * int = (1, 2)
# fst p;;
- : int = 1

† Strictly speaking, and despite the misleadingly identical concrete syntax, constructors them-
selves do not take paired arguments, and one can consider the pair as just another recursive
type with some syntactic sugar. Also, if tuples are written without brackets as x,y,z etc. they
are treated as primitive tuples, not as iterated pairing.
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Instead of currying, one can define a function of multiple arguments as a
function with a single argument that is itself a Cartesian product. OCaml’s
built-in operators can be treated directly as functions by enclosing them in
brackets, and they are then always considered curried. Thus, the first two
definitions here are equivalent, and the third is an ‘uncurried’ variant using
a paired argument:

# let f x y = x + y;;
val f : int -> int -> int = <fun>
# let f = (+);;
val f : int -> int -> int = <fun>
# let f(x,y) = x + y;;
val f : int * int -> int = <fun>

New types can also be defined in terms of themselves, giving so-called
recursive types. For example, here we define a type where each member is
either (i) a leaf node parametrized by a member of some existing type α or
(ii) an internal node with two subnodes, each of which is itself a member
of the type being defined. The net effect is that this is a type of finite but
arbitrarily large binary trees with leaves labelled by members of type α:

# type (’a)btree =
Leaf of ’a

| Branch of (’a)btree * (’a)btree;;
type ’a btree = Leaf of ’a | Branch of ’a btree * ’a btree

To construct members of the new type, just apply the constructors to
arguments, e.g.

# Branch(Leaf "a",Leaf "b");;
- : string btree = Branch (Leaf "a", Leaf "b")
# Branch(Branch(Leaf 1,Leaf 2),Leaf 3);;
- : int btree = Branch (Branch (Leaf 1, Leaf 2), Leaf 3)

In order to do the opposite, i.e. get the subcomponents out of an object
of the new type, one can use the ‘match expression with p1| · · · |pn’ con-
struct, where each pi is of the form ‘pattern->expression’ and each pattern
indicates a schematic form of expression. The meaning is that the patterns
are examined one at a time, the first one that the expression matches is
selected and the variables in the pattern instantiated accordingly, e.g.

# match Leaf "a" with
Leaf x -> "leaf_"^x

| Branch(a, b) -> "branch";;
- : string = "leaf_a"
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It is common to combine pattern-matching and recursion, e.g. in the fol-
lowing function that adds up all the leaf values in a binary tree of integers:

# let rec leafsum t =
match t with
Leaf n -> n

| Branch(t1,t2) -> leafsum t1 + leafsum t2;;
val leafsum : int btree -> int = <fun>
# leafsum(Branch(Branch(Leaf 1,Leaf 2),Leaf 3));;
- : int = 6

Pattern-matching isn’t limited to members of recursive types, but it’s
most valuable there because one can always determine how each element of
a type is constructed. For example, we might write a zero test this way:

# let iszero n = match n with 0 -> true | x -> false;;
val iszero : int -> bool = <fun>

but we can’t use a term like ‘m + n’ as a pattern because a value doesn’t have
a unique decomposition in such a form. A useful generalization of patterns
that OCaml supports is a when guard, which restricts matches to those
satisfying a certain condition, e.g.

# match Leaf "a" with Leaf x when x <> "b" -> "a" | _ -> "b";;
- : string = "a"

One can consider recursive types as being defined inductively (see Appendix
1) as a subset of some suitably large starting set, in a way that all con-
structors are distinct and injective. And we will sometimes prove properties
using a rule induction principle of the kind arising from inductive definitions,
which in this context is usually known as structural induction. For example,
to show that some property holds for all our binary trees, it suffices to show
that (i) it holds for all leaves ‘Leaf x’, and (ii) if it holds for two subtrees
s and t, then it holds for the composite term Branch(s,t). In such a case
we are said to proceed by induction on the structure of our type of trees.

Exceptions

OCaml expressions, even well-typed ones, may fail, e.g. the example of 1/0.
In such cases they are said to raise (or throw) an exception. By default, if
any subexpression raises an exception, that exception propagates out and
causes the whole expression to raise the same exception.

# (100 + 1 / 0) + 99;;
Exception: Division_by_zero.
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However, it’s possible to catch or handle an exception using the construct
‘try expression with epattern -> alternative’, where the epattern is a
pattern-matching clause for a special type of exceptions. For example, we
might define our own version of division where n/0 = 0 as follows:

# let mydiv m n = try m / n with Division_by_zero -> 0;;
val mydiv : int -> int -> int = <fun>
# mydiv 7 0;;
- : int = 0

All the code we develop later is designed to raise exceptions of the form
Failure s where s is a string. We will sometimes catch all exceptions of that
form without discrimination. Catching absolutely all exceptions by using
just a variable as a pattern might be problematic since a keyboard interrupt
(control/c or whatever) also generates an exception, one that we probably
wouldn’t want to catch for fear of making the entire program uninterruptible.

Lists

OCaml has a built-in recursive type of lists, which can be considered as finite
sequences, or ‘one-sided’ binary trees. In effect, lists are defined as follows:

type (’a)list = Nil | Cons of ’a * ’a list;;

except that the infix notation h::t is used instead of Cons(h,t), and the
syntactic sugar [a;b;c] may be used in place of a::(b::(c::Nil)) and so
on, including the special case [] for what we called Nil. For example, the
following recursive function appends (joins together) two lists:

# let rec append l l’ =
match l with
[] -> l’

| h::t -> h::(append t l’);;
val append : ’a list -> ’a list -> ’a list = <fun>
# append [1;2;3] [4;5];;
- : int list = [1; 2; 3; 4; 5]

though the same function is built into OCaml and instead of append l l’
can be written l @ l’. Note carefully the distinction between [h;t], which
is a 2-element list with elements h and t, and h::t which is a list with head
h and tail t and so one element longer than the list t.
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Our common OCaml functions

Our theorem-proving code is based on a number of common utility functions
collected in the file lib.ml. In this section we will give a short summary,
mostly describing what they do, but in a few cases actually discussing the
implementation. First of all, we will very occasionally use printing expres-
sions like the following:

# print_int (6 + 7);;
13- : unit = ()
# print_string "Hello\n";;
Hello
- : unit = ()

These are both just expressions returning the only member, written (),
of a 1-element type unit. However, evaluating these expressions has the
side-effect of printing something to the output device. When using such
expressions with a side-effect, we sometimes want to execute them one after
another, and we will use the traditional-looking sequencing operation ‘e1;e2’.
However, this is used only when we are printing out information for the
user, and we never use imperative code or sequencing in the innards of
our theorem-proving programs. We also sometimes use time f x, which
evaluates f x but also tells us how long that evaluation took in seconds,
useful for testing the efficiency of various functions.

OCaml’s built-in integer type int is sometimes inadequate because it has
a limited size, so instead we will often use a different type num of arbitrary-
precision rational numbers supported by a special library. In order to load
this library, the following directive is sufficient on many platforms:

#load "nums.cma";;

However, on some platforms (including at the time of writing Cygwin
under Windows), dynamic loading is not supported and it is necessary to
first build a new OCaml toplevel with the num library preloaded.† Anyway,
once the library is loaded it’s easy enough to use: create a small integer
of type num using the Int constructor or a larger one from a string using
int_of_string, and use the usual arithmetic operators with an extra ‘/’
character, even for equality and inequality tests (the built-in polymorphic
comparisons are not useful) e.g.

† For example, do ‘ocamlmktop -o ocamlnum nums.cma’ to create the new toplevel ocamlnum and
then invoke that instead of the usual one.
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# Int 3 +/ Int 1 // Int 7;;
- : num = 22/7
# Int 3 // Int 4 </ num_of_string "12345";;
- : bool = true

We also define gcd_num and lcm_num to compute GCDs and LCMs of
integers of type num. To create a list of integers from m to n, of type int or
num, use m--n or m---n respectively.

The following rather general functions all have one-line definitions so we
leave the reader to see what they do. The most important is the infix func-
tion composition **, corresponding to (f ◦ g)(x) = f(g(x)). Note also the
undefined function undef and the function modifier valmod x y f, the lat-
ter corresponding to the mathematical notation (x �→ y)f ; the same things
in the context of finite partial functions (see below) are undefined and
(x |-> y) f.

let ( ** ) = fun f g x -> f(g x);;

let can f x = try f x; true with Failure _ -> false;;

let rec first n p = if p(n) then n else first (n +/ Int 1) p;;

let non p x = not(p x);;

let rec repeat f x = try repeat f (f x) with Failure _ -> x;;

let undef x = failwith "undefined function";;

let valmod a y f x = if x = a then y else f(x);;

We use numerous utility functions for list manipulations. Rather than
exhaustively explain each one, we give a paradigmatic example and leave it to
the reader who wants more detail to examine their (short) definitions. Note
in particular the usefulness of the list iteration functions such as itlist for
expressing various repeated operations over lists without requiring another
recursive function. The distinction between map and mapfilter is that the
latter removes elements of the list for which the function fails (i.e. raises a
Failure exception) whereas map will propagate out any exception.



OCaml made light of 619

butlast [1;2;3;4] = [1;2;3]
chop_list 3 [1;2;3;4;5] = ([1;2;3],[4;5])
do_list f [1;2;3] = (f 1; f 2; f 3)
el 2 [0;1;2;3] = 2
end_itlist f [1;2;3;4] = f 1 (f 2 (f 3 4))
exists p [1;2;3] = (p 1) or (p 2) or (p 3)
explode "hello" = ["h";"e";"l";"l";"o"]
forall p [1;2;3] = (p 1) & (p 2) & (p 3)
forall2 p [1;2;3] [a;b;c] = (p 1 a) & (p 2 b) & (p 3 c)
hd [1;2;3] = 1
implode ["w";"x";"y";"z"] = "wxyz"
insertat 3 9 [0;1;2;3;4;5] = [0;1;2;9;3;4;5]
itlist f [1;2;3] x = f 1 (f 2 (f 3 x))
itlist2 f [a;b;c] [1;2;3] x = f a 1 (f b 2 (f c 3 x))
last [1;2;3;4] = 4
length [1;2;3] = 3
map f [1;2;3] = [f 1; f 2; f 3]
map2 f [a;b;c] [1;2;3] = [f a 1; f b 2; f c 3]
mapfilter f [1;2;3] = [f 1; f 2; f 3]
replicate 4 9 = [9;9;9;9]
rev [1;2;3;4] = [4;3;2;1]
tl [1;2;3;4] = [2;3;4]
unzip [(1,a);(2,b);(3,c)] = ([1;2;3],[a;b;c])
zip [1;2;3] [a;b;c] = [(1,a); (2,b); (3,c)]

The expression filter p l returns the sublist of elements of l for which
p holds, while partition p l separates l into a pair of sublists for which p
does and does not hold. The expression find p l finds the first element of l
that satisfies p, while tryfind f l applies f to the first element of l where
it does not fail, and index x l returns the position of the first instance of
x in the list l, the head of the list being zero. In similar style, earlier l x
y tests if the first instance of x occurs in l before the first instance of y.

To sort a list l w.r.t. a simple ordering relation ord use sort ord l, and
in order to remove adjacent duplicated elements from a list, use uniq l, e.g.

# sort (<) [3;1;4;1;5;9;2;6;5;3;5];;
- : int list = [1; 1; 2; 3; 3; 4; 5; 5; 5; 6; 9]
# uniq(sort (<) [3;1;4;1;5;9;2;6;5;3;5]);;
- : int list = [1; 2; 3; 4; 5; 6; 9]

You can create an ordering relation that applies a measure function and
compares the results over the integers using increasing and decreasing,
e.g.

# sort (increasing length) [[1]; [1;2;3]; []; [3; 4]];;
- : int list list = [[]; [1]; [3; 4]; [1; 2; 3]]
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To find the element of a list l that maximizes or minimizes a function f,
use maximize f l or minimize f l respectively.

In all our code, we represent (finite) sets simply as lists, in a standard
order and with no duplicates. All the following ‘set’ operations work for
arbitrary input lists, but always return the ordered duplicate-free kind and
will be more efficient when their arguments are also in that standard form.
The expression setify l converts a list to this form while union s t,
intersect s t and subtract s t implement set union, intersection and
difference of the sets s and t. The relations subset s t and psubset s t
test, respectively, whether s is a subset of t, or a proper subset, and
set_eq s t tests if the two lists are equal as sets. The call insert x s
inserts one new element into a set s, while mem x s tests if x is in the set
s. The expression unions l takes the iterated union of a set of sets, while
image f s takes the image of a set under a function f, just like map f s
but maintaining standard form, e.g.

# unions [[1;2;3]; [4; 8; 12]; [3;6;9;12]; [1]];;
- : int list = [1; 2; 3; 4; 6; 8; 9; 12]
# image (fun x -> x mod 2) [1;2;3;4;5];;
- : int list = [0; 1]

For enumerative algorithms we often want to create all sets satisfying some
constraints: allsets n l produces all n-element subsets of l, allsubsets l
produces all subsets of l and allnonemptysubsets l produces all nonempty
subsets of l, e.g.

# allsubsets [1;2;3];;
- : int list list =
[[]; [1]; [1; 2]; [1; 2; 3]; [1; 3]; [2]; [2; 3]; [3]]
# allnonemptysubsets [1;2;3];;
- : int list list = [[1]; [1; 2]; [1; 2; 3]; [1; 3]; [2]; [2; 3]; [3]]
# allsets 2 [1;2;3];;
- : int list list = [[1; 2]; [1; 3]; [2; 3]]

The function allpairs applies a function of two arguments over all pairs
from the input lists, and alldistinctpairs just produces all pairs of dis-
tinct elements from a single list, e.g.

# allpairs (fun x y -> x * y) [2;3;5] [7;11];;
- : int list = [14; 22; 21; 33; 35; 55]
# distinctpairs [1;2;3;4];;
- : (int * int) list = [(1, 2); (1, 3); (1, 4); (2, 3); (2, 4); (3, 4)]

Although OCaml lets us treat functions in many ways that other pro-
gramming languages disallow, general functions can still be unsuitable for
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some applications. We often want to consider only functions with a finite
domain that are undefined outside that domain, and may want to compare
functions for equality or in general treat them as more concrete and less
inscrutable objects. A traditional data structure in such cases is an associa-
tion list, which is essentially the graph of a function as a list of pairs. Then
the call assoc x l applies such a function, i.e. finds the first pair in the list
l with first element x and returns the corresponding second element:

# assoc 3 [1,2; 2,4; 3,9; 4,16];;
- : int = 9

Although association lists are simple and convenient, they can be ineffi-
cient when the list becomes long. In most cases we use a somewhat more
elaborate type of finite partial functions (FPFs); the OCaml type of finite
partial functions from α to β is just (α, β)func. Conceptually these FPFs are
much like association lists, but in general they are more efficient and they are
also canonical, so one can test if two functions are equal (same domain and
same values on that domain) just using the usual OCaml equality operator.

The empty, everywhere undefined FPF is undefined, while is_undefined
tests whether a FPF is that empty one. To update the FPF f with a new
mapping from x to y, use (x |-> y) f, and to create a function defined
only for the value x and mapping it to y, use (x |=> y). To test if an FPF
f is defined for x, use defined f x, and to remove any definition for the
value x use undefine x f. In order to apply the FPF f to an argument x,
use apply f x, or the variants tryapplyd f x z and tryapplyl f x that
return a default value of, respectively, z and the empty list if f is undefined
at x. To compose an OCaml function g with an FPF f, i.e. replace each
assignment x �→ y in f with x �→ g(y), use mapf g f. To get the graph,
domain and range of a FPF, use graph, dom and ran respectively, while to
create a FPF from two equally-sized lists of inputs and outputs, use fpf, e.g.

# let smallsqs = fpf [1;2;3] [1;4;9];;
val smallsqs : (int, int) func = <func>
# graph smallsqs;;
- : (int * int) list = [(1, 1); (2, 4); (3, 9)]
# graph (undefine 2 smallsqs);;
- : (int * int) list = [(1, 1); (3, 9)]
# graph ((3 |-> 0) smallsqs);;
- : (int * int) list = [(1, 1); (2, 4); (3, 0)]
# apply smallsqs 3;;
- : int = 9

We sometimes want to manipulate equivalence relations (partitions) on
finite sets. For this purpose the following operations on a type (α)partition
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are useful. The value unequal is an empty partition, and equated p is the
domain of the partition p. The expression equivalent p x y tests if x and
y are equivalent w.r.t. p, while canonize p x produces a canonical represen-
tative of the p-equivalence class containing x, and equate (x,y) p produces
a new partition that results from merging the x and y classes in p, i.e. the
smallest equivalence relation containing p such that x and y are equivalent.



Appendix 3

Parsing and printing of formulas

Although parsing and printing support is vital to making the programs in
this book usable for experimentation, we have deferred a detailed discussion
of how parsing and printing are done to the present appendix. This is partly
because the material is fairly unexciting and rather peripheral to the main
concerns of the book, and partly because, while first used in the propositional
logic chapter, it actually covers full first-order logic and so doesn’t clearly
fit at any point in the otherwise systematic sequence.

General parsing functions

We often need to parse infix operators of various kinds, e.g. the logical
connectives like ==> and the arithmetic operators like +. For most of these
we adopt a policy of right-association, i.e. interpreting a⊕b⊕c as a⊕(b⊕c).
However, this is a bit unnatural for ‘−’, since we want to read x − y − z as
(x− y)− z not x− (y − z). We therefore want to be able to insist on either
left or right associativity. Both can be subsumed by the following generic
parsing function that lets us associate the subitems however we want:

let rec parse_ginfix opsym opupdate sof subparser inp =
let e1,inp1 = subparser inp in
if inp1 <> [] & hd inp1 = opsym then

parse_ginfix opsym opupdate (opupdate sof e1) subparser (tl inp1)
else sof e1,inp1;;

This has two function arguments: sof takes the current input and com-
bines it in some way with the items arrived at so far, while opupdate mod-
ifies the function appropriately when a new item is parsed. This may look
obscure, but it should become clearer looking at the following examples,
which show how using the same core function we can parse a list of items
and combine them in either a left or right associated manner, or even just
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collect them all into a list. We will use the last of these to parse the list
of arguments to a function f(t1, t2, . . . , t3), treating the comma as another
infix symbol.

let parse_left_infix opsym opcon =
parse_ginfix opsym (fun f e1 e2 -> opcon(f e1,e2)) (fun x -> x);;

let parse_right_infix opsym opcon =
parse_ginfix opsym (fun f e1 e2 -> f(opcon(e1,e2))) (fun x -> x);;

let parse_list opsym =
parse_ginfix opsym (fun f e1 e2 -> (f e1)@[e2]) (fun x -> [x]);;

In the same spirit of generality, it’s useful to define general ‘parser combi-
nators’ to cover a few other common idioms and so avoid duplicating essen-
tially the same piece of code (Burge 1975). The following function applies a
function to the first element of a pair, the idea being to modify the returned
abstract syntax tree while leaving the ‘unparsed input’ alone:

let papply f (ast,rest) = (f ast,rest);;

The next function checks if the head of a list (typically the list of unparsed
input) is some particular item, but also first checks that the list is nonempty
before looking at its head:

let nextin inp tok = inp <> [] & hd inp = tok;;

The last function deals with the common situation of syntactic items
enclosed in brackets. It simply calls the subparser and then checks and elim-
inates the closing bracket. In principle, the terminating character can be
anything, so this function could equally be used for other purposes, but we
will always use ‘)’ for the cbra (‘closing bracket’) argument.

let parse_bracketed subparser cbra inp =
let ast,rest = subparser inp in
if nextin rest cbra then ast,tl rest
else failwith "Closing bracket expected";;

Parsing formulas

Lexical issues are unproblematical. The lexical analyzer developed in the
introduction (Section 1.7) was already designed to understand composite
symbolic characters like ‘==>’, so it can be used unchanged.

Formulas are a little involved to parse, because of infix predicate symbols.
For example, input ‘k(x)’ could be a complete atomic formula with predicate
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symbol k, or it could be a term k(x) to be followed by an infix relation
symbol as in k(x) < k(y). Similarly, an opening bracket ‘(’ could introduce
a bracketing of a formula, e.g. (P (x) ⇒ Q(x)) ⇒ P (x), or of a term, e.g.
(x · y) · z = x · (y · z). In order to allow both possibilities, we first attempt
to parse an atomic formula as a term followed by an infix predicate symbol,
and only if that fails proceed to considering other kinds of formulas. For this
to work we require both a restricted parser ifn for these infix atoms and a
more general one afn for arbitrary atoms. (If we used afn everywhere then,
for example, ‘((x) = 1)’ would fail to parse.)

let rec parse_atomic_formula (ifn,afn) vs inp =
match inp with
[] -> failwith "formula expected"

| "false"::rest -> False,rest
| "true"::rest -> True,rest
| "("::rest -> (try ifn vs inp with Failure _ ->

parse_bracketed (parse_formula (ifn,afn) vs) ")" rest)
| "~"::rest -> papply (fun p -> Not p)

(parse_atomic_formula (ifn,afn) vs rest)
| "forall"::x::rest ->

parse_quant (ifn,afn) (x::vs) (fun (x,p) -> Forall(x,p)) x rest
| "exists"::x::rest ->

parse_quant (ifn,afn) (x::vs) (fun (x,p) -> Exists(x,p)) x rest
| _ -> afn vs inp

The main function has several cases, and delegates quantifier parsing to
another function parse quant that absorbs the list of variables, allowing
the convention of omitting repeated quantifiers, then recursively parses the
body:

and parse_quant (ifn,afn) vs qcon x inp =
match inp with
[] -> failwith "Body of quantified term expected"

| y::rest ->
papply (fun fm -> qcon(x,fm))

(if y = "." then parse_formula (ifn,afn) vs rest
else parse_quant (ifn,afn) (y::vs) qcon y rest)

As usual the overall function is built up from an atomic formula parser
by cascading instances of parse infix in order of precedence, following the
conventions established in chapter 2 with ‘/\’ coming highest and ‘<=>’
lowest.
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and parse_formula (ifn,afn) vs inp =
parse_right_infix "<=>" (fun (p,q) -> Iff(p,q))
(parse_right_infix "==>" (fun (p,q) -> Imp(p,q))

(parse_right_infix "\\/" (fun (p,q) -> Or(p,q))
(parse_right_infix "/\\" (fun (p,q) -> And(p,q))

(parse_atomic_formula (ifn,afn) vs)))) inp;;

Printing formulas

Instead of mapping an expression to a string and then printing it, as in Sec-
tion 1.8, we will just print it directly on the standard output, and instead of
concatenating substrings inside the printer we just output the pieces sequen-
tially. Moreover, we try to break output intelligently across lines to reflect
its structure, and for this we rely on a special OCaml library called Format.

In the theorem proving code for this book there was a line ‘open Format;;’
early on, so this is already set up and certain functions like print_string are
being taken from the Format library. We will not explain this in full detail,
but the basic idea is that every time we reach a natural starting point, such
as following an opening bracket, we issue an open box n command, which
ensures that if lines are subsequently broken, they will be aligned n places
from the current character position. In each case, after dealing with the cor-
responding sub-tree we issue a corresponding close box command. More-
over, rather than simply printing spaces after operators using print string
we use the special print space function. This will either print a space as
usual, or if it seems more appropriate, split the line and start again at the
position defined by the current innermost box.

For example, the following modifies a basic printer f x y to have this
kind of ‘boxing’ wrapped round it, and also bracketing it when the Boolean
input p is ‘true’:

let bracket p n f x y =
(if p then print_string "(" else ());
open_box n; f x y; close_box();
(if p then print_string ")" else ());;

In order to conform to the convention of omitting the quantifier symbol
with repeated quantifiers, it’s convenient to have a function that breaks up
a quantified term into its quantified variables and body. This takes a flag
isforall to specify whether the quantifier being stripped down is universal
or existential.
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let rec strip_quant fm =
match fm with
Forall(x,(Forall(y,p) as yp)) | Exists(x,(Exists(y,p) as yp)) ->

let xs,q = strip_quant yp in x::xs,q
| Forall(x,p) | Exists(x,p) -> [x],p
| _ -> [],fm;;

Printing is parametrized by a function to print atoms, which is the param-
eter pfn of the main printing function. This contains mutually recursive func-
tions print_infix to print instances of infix operators and print_prefix
to print iterated prefix operations without multiple brackets. This is only
actually used for negation, so that ¬(¬p) is printed as ¬¬p.

let print_formula pfn =
let rec print_formula pr fm =
match fm with
False -> print_string "false"

| True -> print_string "true"
| Atom(pargs) -> pfn pr pargs
| Not(p) -> bracket (pr > 10) 1 (print_prefix 10) "~" p
| And(p,q) -> bracket (pr > 8) 0 (print_infix 8 "/\\") p q
| Or(p,q) -> bracket (pr > 6) 0 (print_infix 6 "\\/") p q
| Imp(p,q) -> bracket (pr > 4) 0 (print_infix 4 "==>") p q
| Iff(p,q) -> bracket (pr > 2) 0 (print_infix 2 "<=>") p q
| Forall(x,p) -> bracket (pr > 0) 2 print_qnt "forall" (strip_quant fm)
| Exists(x,p) -> bracket (pr > 0) 2 print_qnt "exists" (strip_quant fm)

and print_qnt qname (bvs,bod) =
print_string qname;
do_list (fun v -> print_string " "; print_string v) bvs;
print_string "."; print_space(); open_box 0;
print_formula 0 bod;
close_box()

and print_prefix newpr sym p =
print_string sym; print_formula (newpr+1) p
and print_infix newpr sym p q =
print_formula (newpr+1) p;
print_string(" "^sym); print_space();
print_formula newpr q in

print_formula 0;;

The main toplevel printer just adds the guillemot-style quotations round
the formula so that it looks like the quoted formulas we parse.

let print_qformula pfn fm =
open_box 0; print_string "<<";
open_box 0; print_formula pfn fm; close_box();
print_string ">>"; close_box();;
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Parsing first-order terms and formulas

As noted in the main text, we adopt the convention that only numerals
and the empty list constant nil are considered as constants, so we define a
corresponding function:

let is_const_name s = forall numeric (explode s) or s = "nil";;

In order to check whether a name is within the scope of a quantifier, all
the parsing functions take an additional argument vs which is the set of
bound variables in the current scope. Parsing is then straightforward: we
have a function for the special ‘atomic’ terms:

let rec parse_atomic_term vs inp =
match inp with
[] -> failwith "term expected"

| "("::rest -> parse_bracketed (parse_term vs) ")" rest
| "-"::rest -> papply (fun t -> Fn("-",[t])) (parse_atomic_term vs rest)
| f::"("::")"::rest -> Fn(f,[]),rest
| f::"("::rest ->

papply (fun args -> Fn(f,args))
(parse_bracketed (parse_list "," (parse_term vs)) ")" rest)

| a::rest ->
(if is_const_name a & not(mem a vs) then Fn(a,[]) else Var a),rest

and build up parsing of general terms via parsing of the various infix oper-
ators, in precedence order.

and parse_term vs inp =
parse_right_infix "::" (fun (e1,e2) -> Fn("::",[e1;e2]))
(parse_right_infix "+" (fun (e1,e2) -> Fn("+",[e1;e2]))

(parse_left_infix "-" (fun (e1,e2) -> Fn("-",[e1;e2]))
(parse_right_infix "*" (fun (e1,e2) -> Fn("*",[e1;e2]))

(parse_left_infix "/" (fun (e1,e2) -> Fn("/",[e1;e2]))
(parse_left_infix "^" (fun (e1,e2) -> Fn("^",[e1;e2]))

(parse_atomic_term vs)))))) inp;;

We can turn this into a convenient function for the user in the normal way:

let parset = make_parser (parse_term []);;

For formulas, recall that the generic formula parser requires a special
recognizer for ‘infix’ atomic formulas like s < t, so we define that first:

let parse_infix_atom vs inp =
let tm,rest = parse_term vs inp in
if exists (nextin rest) ["="; "<"; "<="; ">"; ">="] then

papply (fun tm’ -> Atom(R(hd rest,[tm;tm’])))
(parse_term vs (tl rest))

else failwith "";;
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We then use this is one of the options in parsing a general atomic formula.
Note that we allow nullary predicates to be written without brackets, i.e.
just ‘P ’, not necessarily ‘P ()’.

let parse_atom vs inp =
try parse_infix_atom vs inp with Failure _ ->
match inp with
| p::"("::")"::rest -> Atom(R(p,[])),rest
| p::"("::rest ->

papply (fun args -> Atom(R(p,args)))
(parse_bracketed (parse_list "," (parse_term vs)) ")" rest)

| p::rest when p <> "(" -> Atom(R(p,[])),rest
| _ -> failwith "parse_atom";;

Now the overall function is defined as usual and we set up the default
parsers for quotations. Note that we have things set up so that anything in
quotations with bars <<|like this|>> gets passed to secondary_parser,
while anthing else in quotations gets passed to default_parser.

let parse = make_parser
(parse_formula (parse_infix_atom,parse_atom) []);;

let default_parser = parse;;

let secondary_parser = parset;;

Printing first-order terms and formulas

Now we consider printing, first of terms. Most of this is similar to what
we have seen before for formulas except that we include a special function
print fargs for printing a function and argument list f(t1, . . . , tn). Note
also that since some infix operators are now left associative, we need an
additional flag isleft to the print infix term function so that brackets
are included only on the necessary side of iterated applications. We then
have three functions with some mutual recursion, for terms themselves:

let rec print_term prec fm =
match fm with
Var x -> print_string x

| Fn("^",[tm1;tm2]) -> print_infix_term true prec 24 "^" tm1 tm2
| Fn("/",[tm1;tm2]) -> print_infix_term true prec 22 " /" tm1 tm2
| Fn("*",[tm1;tm2]) -> print_infix_term false prec 20 " *" tm1 tm2
| Fn("-",[tm1;tm2]) -> print_infix_term true prec 18 " -" tm1 tm2
| Fn("+",[tm1;tm2]) -> print_infix_term false prec 16 " +" tm1 tm2
| Fn("::",[tm1;tm2]) -> print_infix_term false prec 14 "::" tm1 tm2
| Fn(f,args) -> print_fargs f args

a function and its arguments:
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and print_fargs f args =
print_string f;
if args = [] then () else
(print_string "(";
open_box 0;
print_term 0 (hd args); print_break 0 0;
do_list (fun t -> print_string ","; print_break 0 0; print_term 0 t)

(tl args);
close_box();
print_string ")")

and an infix operation:

and print_infix_term isleft oldprec newprec sym p q =
if oldprec > newprec then (print_string "("; open_box 0) else ();
print_term (if isleft then newprec else newprec+1) p;
print_string sym;
print_break (if String.sub sym 0 1 = " " then 1 else 0) 0;
print_term (if isleft then newprec+1 else newprec) q;
if oldprec > newprec then (close_box(); print_string ")") else ();;

As usual, we set up the overall printer and install it.

let printert tm =
open_box 0; print_string "<<|";
open_box 0; print_term 0 tm; close_box();
print_string "|>>"; close_box();;

#install_printer printert;;

Printing of formulas is straightforward via the atom printing function:

let print_atom prec (R(p,args)) =
if mem p ["="; "<"; "<="; ">"; ">="] & length args = 2
then print_infix_term false 12 12 (" "^p) (el 0 args) (el 1 args)
else print_fargs p args;;

as follows:

let print_fol_formula = print_qformula print_atom;;

#install_printer print_fol_formula;;
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ume 3 of Graduate Studies in Mathematics. American Mathematical Society.

Agrawal, M., Kayal, N. and Saxena, N. (2004) PRIMES is in P. Annals of Mathe-
matics, 160, 781–793.

Aho, A. V., Sethi, R. and Ullman, J. D. (1986) Compilers: Principles, Techniques
and Tools. Addison-Wesley.

Aichinger, E. (1994) Interpolation with Near-rings of Polynomial Functions. Ph.
D. thesis, Johannes Kepler Universität Linz. Author’s Diplomarbeit.

Aigner, M. and Ziegler, G. M. (2001) Proofs from The Book (2nd edn.). Springer-
Verlag.

Akers, S. B. (1978) Binary decision diagrams. ACM Transactions on Computers,
C-27, 509–516.

Allen, S., Constable, R., Howe, D. and Aitken, W. (1990) The semantics of reflected
proof. In Proceedings of the Fifth Annual Symposium on Logic in Computer
Science, Los Alamitos, CA, USA, pp. 95–107. IEEE Computer Society Press.

Andersen, F. and Petersen, K. D. (1991) Recursive boolean functions in HOL. See
Archer, Joyce, Levitt and Windley (1991), pp. 367–377.

Andrews, P. B. (1976) Theorem proving by matings. IEEE Transactions on Com-
puters, 25, 801–807.

Andrews, P. B. (1981) Theorem proving via general matings. Journal of the ACM ,
28, 193–214.

631



632 References

Andrews, P. B. (1986) An Introduction to Mathematical Logic and Type Theory:
To Truth Through Proof. Academic Press.

Andrews, P. B. (2003) Herbrand award acceptance speech. Journal of Automated
Reasoning , 31, 169–187.

Appel, K. and Haken, W. (1976) Every planar map is four colorable. Bulletin of
the American Mathematical Society , 82, 711–712.

Archer, M., Joyce, J. J., Levitt, K. N. and Windley, P. J. (eds.) (1991) Proceedings
of the 1991 International Workshop on the HOL Theorem Proving System
and its Applications, University of California at Davis, Davis CA, USA. IEEE
Computer Society Press.

Armando, A., Castellini, C. and Giunchiglia, E. (1999) SAT-based procedures for
temporal reasoning. In Proceedings of the 5th European conference on Planning,
Lecture Notes in Computer Science, pp. 97–108. Springer-Verlag.

Aschenbrenner, M. (2004) Ideal membership in polynomial rings over the integers.
Journal of the American Mathematical Society , 17, 407–441.

Astrachan, O. L. and Stickel, M. E. (1992) Caching and lemmaizing in model elim-
ination theorem provers. In Kapur, D. (ed.), 11th International Conference on
Automated Deduction, Volume 607 of Lecture Notes in Computer Science, pp.
224–238. Springer-Verlag.

Aubrey, J. (1898) Brief Lives. Clarendon Press. Edited from the author’s MSS by
Andrew Clark.

Avigad, J. and Friedman, H. (2006) Combining decision procedures for the reals.
Logical Methods in Computer Science, 2(4), 1–42.

Ax, J. (1967) Solving diophantine problems modulo every prime. Annals of Math-
ematics, 2nd series, 85, 161–183.

Ax, J. (1968) The elementary theory of finite fields. Annals of Mathematics, 2nd
series, 88, 239–271.

Baader, F. (ed.) (2003) Automated Deduction – CADE-19, Volume 2741 of Lecture
Notes in Computer Science. Springer-Verlag.

Baader, F. and Nipkow, T. (1998) Term Rewriting and All That. Cambridge Uni-
versity Press.
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nication homme-machine en français. Technical report, Artificial Intelligence
Group, University of Aix-Marseilles, Luminay, France.

Comon, H., Narendran, P., Nieuwenhuis, R. and Rusinowitch, M. (1998) Decision
problems in ordered rewriting. In Proceedings of the Thirteenth Annual IEEE
Symposium on Logic in Computer Science, pp. 276–286. IEEE Computer Soci-
ety Press.

Constable, R. (1986) Implementing Mathematics with The Nuprl Proof Development
System. Prentice-Hall.

Conway, J. H. and Sloane, N. J. A. (1993) The kissing number problem. In Conway,
J. H. and Sloaue, N. J. A. (eds.), Sphere Packings, Lattices, and Groups (2nd
edn.)., pp. 21–24. Springer-Verlag.

Cook, B., Podelski, A. and Rybalchenko, A. (2006) Termination proofs for systems
code. In Ball, T. (ed.), Proceedings of Conference on Programming Language
Design and Implementation, PLDI, pp. 415–426. ACM Press.

Cook, S. A. (1971) The complexity of theorem-proving procedures. In Proceedings
of the 3rd ACM Symposium on the Theory of Computing, pp. 151–158, ACM.

Cooper, D. C. (1972) Theorem proving in arithmetic without multiplication. See
Melzer and Michie (1972), pp. 91–99.

Corbineau, P. (2008) A declarative language for the Coq proof assistant. In Miculan,
M., Scagnetto, I. and Honsell, F. (eds.), Types for Proofs and Programs: Inter-
national Workshop TYPES 2007, Volume 4941 of Lecture Notes in Computer
Science, pp. 69–84. Springer-Verlag.

Corcoran, J. (1980) Categoricity. History and Philosophy of Logic, 1, 187–207.
Coudert, O., Berthet, C. and Madre, J.-C. (1989) Verification of synchronous

sequential machines based on symbolic execution. In Sifakis, J. (ed.),



References 639

Automatic Verification Methods for Finite State Systems, Volume 407 of Lec-
ture Notes in Computer Science, pp. 365–373. Springer-Verlag.

Cousineau, G. and Mauny, M. (1998) The Functional Approach to Programming.
Cambridge University Press.

Cox, D., Little, J. and O’Shea, D. (1992) Ideals, Varieties, and Algorithms. Springer-
Verlag.

Craig, W. (1952) On axiomatizability within a system. Journal of Symbolic Logic,
18, 30–32.

Craig, W. (1957) Three uses of the Herbrand–Genzen theorem in relating model
theory and proof theory. Journal of Symbolic Logic, 22, 269–285.

Crawford, J. and Auton, L. (1996) Experimental results on the crossover point in
random 3SAT. Artificial Intelligence, 81, 31–57.

Cutland, N. (ed.) (1988) Nonstandard Analysis and its Applications, Volume 10 of
London Mathematical Society student texts. Cambridge University Press.
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Franzén, T. (2005) Gödel’s Theorem. An Incomplete Guide to its Use and Abuse.
A. K. Peters.

Frege, G. (1879) Begriffsschrift, eine der arithmetischen nachgebildete Formel-
sprache des reinen Denkens. Louis Nebert, Halle. English translation, ‘Begriff-
sschrift, a formula language, modeled upon that of arithmetic, for pure thought’
in Van Heijenoort (1967), pp. 1–82.

Frege, G. (1893) Grundgesetze der Arithmetik begriffsschrift abgeleitet. Jena. Partial
English translation by Montgomery Furth in The Basic Laws of Arithmetic.
Exposition of the System, University of California Press, 1964.

Friedmann, H. (1976) Systems of second order arithmetic with restricted induction,
I, II (abstracts). Journal of Symbolic Logic, 41, 193–220.

Fuchs, D. (1988) Cooperation Between Top-down and Bottom-up Theorem Provers
by Subgoal Clause Transfer. Technical Report SR-98-01, University of Kaiser-
slautern.

Furbach, U. and Shankar, N. (eds.) (2006) Proceedings of the Third International
Joint Conference, IJCAR 2006, Volume 4130 of Lecture Notes in Computer
Science. Springer-Verlag.

Gabbay, D. M., Hogger, C. J. and Robinson, J. A. (eds.) (1993) Handbook of Logic in
Artificial Intelligence and Logic Programming, volume 1 (logical foundations).
Oxford University Press.

Gandy, R. (1980) Church’s thesis and principles for mechanisms. In Barwise, J.,
Keistes, H. J. and Kuren, K. (eds.), The Kleene Symposium, Volume 101 of
Studies in Logic and the Foundations of Mathematics, pp. 123–148. North-
Holland.

Gandy, R. (1988) The confluence of ideas in 1936. In Herken, R. (ed.), The Universal
Turing Machine: a Half-Century Survey, pp. 55–111. Oxford University Press.

Ganzinger, H. (2002) Shostak light. See Voronkov (2002), pp. 332–346.



644 References

G̊arding, L. (1997) Some Points of Analysis and Their History, Volume 11 of
University Lecture Series. American Mathematical Society/Higher Education
Press.

Gardner, M. (1958) Logic Machines and Diagrams. McGraw-Hill.
Gardner, M. (1975) Mathematical games: six sensational discoveries that somehow

or another have escaped public notice. Scientific American, 232(4), 127–131.
Garey, M. R. and Johnson, D. S. (1979) Computers and Intractibility: a Guide to

the Theory of NP-Completeness. Freeman and Company.
Garnier, R. and Taylor, J. (1996) 100% Mathematical Proof. Wiley.
Gelerntner, H. (1959) Realization of a geometry-theorem proving machine. In Pro-

ceedings of the International Conference on Information Processing, UNESCO
House, pp. 273–282. Also appears in Siekmann and Wrightson (1983a), pp.
99–117 and in Feigenbaum and Feldman (1995), pp. 134–152.

Gentzen, G. (1935) Untersuchungen über das logische Schliessen. Mathematische
Zeitschrift , 39, 176–210, 405–431. This was Gentzen’s Inaugural Dissertation
at Göttingen. English translation, ‘Investigations into Logical Deduction’, in
Szabo (1969), p. 68–131.

Geser, A. (1990) Relative Termination. Ph.D. thesis, University of Passau.
Giese, M. (2001) Incremental closure of free variable tableaux. In Goré, R., Leitsch,
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Motzkin, T. S. (1936) Beiträge zur Theorie der linearen Ungleichungen. Ph.D.
thesis, Universität Zurich.

Narboux, J. (2007) A graphical user interface for formal proofs in geometry. Journal
of Automated Reasoning , 39, 161–180.

Nash-Williams, C. S. J. A. (1963) On well-quasi-ordering finite trees. Proceedings
of the Cambridge Philosophical Society , 59, 833–835.

Nathanson, M. B. (1996) Additive Number Theory: the Classical Bases, Volume 164
of Graduate Texts in Mathematics. Springer-Verlag.

Nederpelt, R. P., Geuvers, J. H. and Vrijer, R. C. d. (eds.) (1994) Selected Papers on
Automath, Volume 133 of Studies in Logic and the Foundations of Mathematics.
North-Holland.

Nelson, G. and Oppen, D. (1980) Fast decision procedures based on congruence
closure. Journal of the ACM , 27, 356–364.

Nelson, G. and Oppen, D. (1979) Simplification by cooperating decision proce-
dures. ACM Transactions on Programming Languages and Systems, 1, 245–
257.

Nemhauser, G. L. and Wolsey, L. A. (1999) Integer and Combinatorial Optimiza-
tion. Wiley-Interscience Series in Discrete Mathematics and Optimization.
Wiley.

Newborn, M. (2001) Automated Theorem Proving: Theory and Practice. Springer-
Verlag.

Newell, A. and Simon, H. A. (1956) The logic theory machine. IRE Transactions
on Information Theory , 2, 61–79.

Newman, M. H. A. (1942) On theories with a combinatorial definition of “equiva-
lence”. Annals of Mathematics, 43, 223–243.

Nicod, J. G. (1917) A reduction in the number of primitive propositions of logic.
Proceedings of the Cambridge Philosophical Society , 19, 32–41.

Nieuwenhuis, R. (ed.) (2005) CADE-20: 20th International Conference on Auto-
mated Deduction, proceedings, Volume 3632 of Lecture Notes in Computer Sci-
ence. Springer-Verlag.

Nieuwenhuis, R., Oliveras, A. and Tinelli, C. (2006) Solving SAT and SAT modulo
theories: from an abstract Davis–Putnam–Logemann–Loveland procedure to
DPLL(T). Journal of the ACM , 53, 937–977.

Nipkow, T. (1998) An inductive proof of the wellfoundedness of the multiset
order. Available from www4.informatik.tu-muenchen.de/~nipkow/misc/
multiset.ps.

Noll, H. (1980) A note on resolution: how to get rid of factoring without losing
completeness. See Bibel and Kowalski (1980), pp. 250–263.

Nonnengart, A. and Weidenbach, C. (2001) Computing small clause normal forms.
See Robinson and Voronkov (2001), pp. 335–367.

Novikov, P. S. (1955) The algorithmic insolubility of the word problem in group
theory. Trudy Mat. Inst. Steklov , 44, 1–143.

Obua, S. and Skalberg, S. (2006) Importing HOL into Isabelle/HOL. See Furbach
and Shankar (2006), pp. 298–302.



References 657

Odifreddi, P. (1989) Classical Recursion Theory: the Theory of Functions and Sets
of Natural Numbers, Volume 125 of Studies in Logic and the Foundations of
Mathematics. North-Holland.

Ohlbach, H.-J., Gabbay, D. and Plaisted, D. (1994) Killer Transformations. Tech-
nical report MPI-I-94-226, Max-Planck-Institut für Informatik.

O’Leary, D. J. (1991) Principia Mathematica and the development of automated
theorem proving. In Drucker, T. (ed.), Perspectives on the History of Mathe-
matical Logic, pp. 48–53. Birkhäuser.
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(x, y) (pair), 594
− (negation of literal), 51
− (set difference), 594
C− (negation of literal set), 181
∧ (and), 27
Δ0 formula, 547
Δ1-definable, 564
⊥ (false), 27
⇔ (iff), 27
⇒ (implies), 27
∩ (intersection), 594
¬ (not), 27
∨ (or), 27
Π1-formula, 550
Σ1-formula, 550
� (true), 27
∪ (union), 594
◦ (function composition), 596
∂ (degree), 355
∅ (empty set), 594
≡ (congruent modulo), 594
∈ (set membership), 594
κ-categorical, 245
�→ (maps to), 595
| (divides), 593
|= (logical consequence), 40, 130
|=M (holds in M), 130
℘ (power set), 598
⊂ (proper subset), 594
→ (sequent), 471
\ (set difference), 594
⊆ (subset), 594
× (Cartesian product), 594
→ (function space), 595
→ (reduction relation), 258
→∗ (reflexive transitive closure of →), 258
→+ (transitive closure of →), 258
� (provability), 246, 470, 474
{1, 2, 3} (set enumeration), 594
**, 618
*/, 617
+/, 617
--, 618

---, 618
-/, 617
//, 617
::, 616
</, 617
<=/, 617
=/, 617
@, 616
#install printer, 22
0-saturation, 91
1-consistent, 554
1-saturation, 91
3-CNF, 79
3-SAT, 79

Abel, 6
abelian, 287
abstract syntax, 12
abstract syntax tree, 12
abstract type, 469
AC (associative–commutative), 285
AC (Axiom of Choice), 144
accumulator, 611
Ackermann reduction, 254
ad hoc polymorphism, 612
Add, 14
add 0, 565
add assum, 480
add assum’, 497
add default, 436
add suc, 565
adequate set (of connectives), 46
adjustcoeff, 342
AE fragment, 309
aedecide, 310
affine transformation, 417
affirmative negative rule, 81
afn dlo, 335
al-Khwarizmi, 6
algebra, 6
algebra of logic, 7
algebraic number, 527
algebraically closed, 352, 397

668
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align, 92
alldepmappings, 322
allfunctions, 322
allmappings, 322
allnonemptysubsets, 620
allpairs, 620
allpartitions, 444
allpredicates, 322
allsatvaluations, 56
allsets, 620
allsubsets, 620
alltuples, 322
alpha, 493
alpha-convert, 133
alphanumeric, 17
alternation, 8
analogue computer, 63
analytic tableaux, 176
And, 26
and left, 483
and pair, 484
and right, 483
andcnf, 78
andcnf3, 79
anglicize premiss, 318
anglicize syllogism, 318
ante disj, 513
antecedent, 31
antecedent, 31
antisymmetric relation, 595
apply, 621
arity, 119
arrangement, 441
arrangement, 442
arreq, 442
ASCII, 11
askolemize, 149
assertsign, 362
assignment, 131
assoc, 620
association list, 621
associative, 593
associative–commutative, 285
associativity, 12
assume, 515
assumps, 511
assumptate, 510
AST, 12
at once, 512
Atom, 26
atom, 25
atom, 92, 318
atom union, 32
atomic propositions, 25
atoms, 35
auto tac, 512
axiom, 3, 474
Axiom of Choice, 144, 598
axiom addimp, 477
axiom allimp, 477
axiom and, 477

axiom distribimp, 477
axiom doubleneg, 477
axiom eqrefl, 477
axiom exists, 477
axiom existseq, 477
axiom funcong, 477
axiom iffimp1, 477
axiom iffimp2, 477
axiom impall, 477
axiom impiff, 477
axiom not, 477
axiom or, 477
axiom predcong, 477
axiom true, 477
axiomatizable, 329
axiomatized, 329

backchain, 207
backjump, 88
backjumping, 88
backtrack, 87
Backus–Naur form, 19
backward deletion, 190
backward replacement, 190
bag, 597
BAPA, 454
basic complex qelim, 365
basic real qelim, 375
BDD, 100
Bdd, 102
bdd, 102
bdd and, 103
bdd iff, 104
bdd imp, 104
bdd or, 104
bddnode, 101
bddtaut, 104
behead, 359
bell, 444
Bell number, 444
belongs, 439
bi-implication, 30, 39
biconditional, 30
bijection, 596
bijective, 596
binary, 119
binary decision diagram, 100
binary decision tree, 99
bind, 120, 605
Birkhoff rules, 246
Birkhoff’s theorem, 246
bit, 65
bit-blasting, 455
bitlength, 71
Blank, 558
bmeson, 296
BNF, 19
bool interp, 125
Boole, 7
Boolean variable, 25
bottom-up method, 172
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bound, 120
bound variable, 118
bounded prove, 572
boundednum prove, 573
boundquant step, 571
bpuremeson, 296
bracket, 18
bracket, 626
branching quantifier, 150
brand, 296
Brand’s transformation, 289
bset, 345
Buchberger’s algorithm, 410
butlast, 618
by, 511
byte, 65

C (complex numbers), 594
CAD, 367
calculemus, 4
calculus ratiocinator, 4
can, 618
canonical, 256, 262
canonical interpretation, 152
canonize, 621
canonizer, 448
cardinality, 597
carry, 66
carry-select adder, 68
carryselect, 68
Cartesian product, 594
cases, 517
casesplit, 374
catch, 616
categorical, 245
categoricity, 245
ccsatisfiable, 253
ccvalid, 253
certificate, 519
characteristic function, 597
characteristic of a ring/field, 382
characteristica universalis, 4
chooselang, 437
chop list, 618
Church’s theorem, 564
Church’s thesis, 555
Church–Rosser, 260
Church–Turing thesis, 555
cinterpolate, 434
classical logic, 528
classify, 550
clausal, 80
clause, 80
Cn, 244
CNF, 54
cnf, 61
cnnf, 332
codomain, 596
coefficients, 358
cofactors, 387
cofinite, 598

commutative, 7, 593
compactness (first-order logic), 227
compactness (first-order with equality), 242
compactness (propositional logic), 107
compatible, 384, 585
complement edge, 100
complementary literals, 51, 58
complete, 247
complete, 279
complete (proof system), 247
complete (theory), 245, 329
complete induction, 601
complete and simplify, 283
completeness (first-order logic), 504
completion, 278
complex qelim, 366
complits’, 498
composition, 596
computable function, 560
computed table (BDD), 103
concl, 477
conclude, 517
condense, 370
conditional, 37
Config, 559
config, 559
conflict, 87
conflict clause, 89
confluent, 258
congruence, 236, 249
congruence closure, 249
congruent, 594
congruent, 250
congruent to, 71
conj intro tac, 508
conjoin, 67
conjths, 483
conjunct, 30
conjunction, 8, 30
conjunctive normal form, 54
conjuncts, 30
connected relation, 595
connection tableaux, 215
connective, 8
consequences, 93
consequent, 31
consequent, 31
conservative, 150
consider, 517
consistent (theory), 329
Const, 14
constructive proof, 527
constructor, 612
continuation, 176
contradiction, 39
contradiction (principle), 527
contrapos, 483
contraposition, 3, 45
contrapositive, 45, 214
contrapositives, 219
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convergent, 256
convex, 204, 447
cooper, 348
Cooper’s algorithm, 341
coordinate, 415
coordinations, 414
countable, 598
countermodel, 323
cqelim, 365
Craig interpolation theorem, 427
crit1, 277
critical pair, 275
critical pairs, 277
currying, 608
cut, 472
cut-free, 472
cylindrical algebraic decomposition, 367

Davis–Putnam procedure (first-order), 162
Davis–Putnam procedure (propositional), 79
davisputnam, 163
De Morgan’s laws, 46
decidable (theory), 329
decide finite, 322
decide fmp, 323
decide monadic, 324
decision literal, 87
decision problem, 308
declarative programming, 212
declarative proof , 516
decreasing, 619
Dedekind infinite, 598
dedmatrix, 372
Deduced, 86
deduction theorem, 505
deepen, 177
default parser, 20, 29, 629
defcnf, 77, 78
defcnf3, 79
defcnfs, 78
definable, 531
defined, 621
definite clause, 203
definition, 605
definitional CNF, 73
defstep, 76
degree, 355
degree, 358
degree (of a polynomial), 358
delayed theory combination, 450
delconst, 374
Delta, 550
demodulation, 255, 297
dense linear order, 333
denumerable, 598
depth, 177
derivability conditions (Löb), 577
derived rule, 479
descending chain, 601
deskol’, 498
deskolcont, 503

dest and, 30
dest def, 443
dest eq, 235
dest iff, 30
dest iffdef, 105
dest imp, 31
dest nimp, 105
dest numeral, 337
dest or, 30
dholds, 548
dhquant, 549
diag, 537, 539
diagonal lemma, 540
diagonalization, 537
diamond property, 258
Dickson’s lemma, 411
difference logic, 349
differential algebra, 425
digital computer, 63
dilemma rule, 90
Diophantine set, 580
direction, 558
disequation, 593
disj elim tac, 513
disjoint union, 613
disjunct, 30
disjunction, 8, 30
disjunctive normal form, 54
disjuncts, 30
distinctpairs, 620
distrib, 57, 58
divides, 593
divlcm, 344
Dixon resultant, 425
DLO, 333
dlobasic, 334
DNF, 54
dnf, 56, 59
do list, 618
dom, 621
domain, 123, 596
double negation, 527
downward Löwenheim–Skolem, 227, 242
DP, 79
dp, 84
dp loop, 163
dp mfn, 163
dp refine, 163
dp refine loop, 164
dplb, 89
dplbsat, 89
dpli, 87
dplisat, 88
dplitaut, 88
DPLL, 85
dpll, 85
dpllsat, 85
dplltaut, 85
dpltaut, 89
dpsat, 84
dptaut, 84
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drinker’s principle, 129
dtermval, 548
dual, 48
dual, 48
duality, 27, 49
dyadic, 119

EA fragment, 311
eager, 450
earlier, 619
ebddtaut, 106
edge (of graph), 62
einterpolate, 435
el, 618
elementarily equivalent, 245
elementary equivalence, 245
elementary theory, 329
elim bex, 570
elim skolemvar, 502
eliminate connective, 485
eliminate connective’, 498
emerge, 251
emeson, 296
emodify, 295
empty set, 594
end itlist, 618
Entscheidungsproblem, 555
enumerated type, 612
eq sym, 489
eq trans, 489
equal, 221
equalitize, 240
equality axioms, 235
equate, 621
equate2, 92
equatecons, 95
equated, 621
equateset, 96
equisatisfiable, 73
equivalence, 30
equivalence classes, 595
equivalence relation, 595
equivalence axioms, 240
equivalent, 621
equivalid, 73
essentially undecidable, 585
Euclid, 3
eval, 32
evalc, 348
ex falso quodlibet, 482
ex falso, 482
ex falso’, 498
exception, 615
excluded middle (law), 527
exclusive or, 48, 66
exec, 560
existential quantifier, 120
Exists, 26
exists, 618
exists elim tac, 513
exists intro tac, 510

exists left, 491
exists left th, 491
expand2, 222
expand connective, 485
expand le, 569
expand lt, 569
expand nle, 569
expand nlt, 569
expand node, 102
explode, 618
expression, 14
extensionality, 594
extract thm, 508

fa, 66
factor, 183
factoring, 183
False, 26
Fibonacci sequence, 609
field, 394
filter, 619
find, 619
find count, 85
find nestnonvar, 294
find nvsubterm, 295
findasubset, 445
findsign, 362
findsubset, 445
finite model property, 321
finite partial function, 621
first, 618
first-order logic, 118
firstassum, 511
fix, 517
fixpoint lemma, 540
flat, 292
flattening, 292
Fn, 119
fol, 119
Forall, 26
forall, 618
forall2, 618
forall intro tac, 509
form match, 500
formal degree (of a polynomial), 359
formal verification, 107, 521
formalizing mathematics, 521
formlcm, 341
formula, 25, 118
formula, 26
formulaclass, 550
forward deletion, 190
FPF, 621
fpf, 621
free, 120
free logic, 123
free word problem, 380
free in, 476
Frege proof system, 470
full adder, 66
fullunify, 170
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fully solved, 169
func, 621
funcs, 146
function, 595
function congruence, 239
functional programming, 603
functional reflexive axioms, 298
functions, 146
Fundamental Theorem of Algebra, 352
funpow, 612
fv, 127
fvt, 127

gate, 64
GCD, 593
gcd num, 618
GCH, 578
gen, 477
gen right, 490
gen right alpha, 509
gen right th, 490
generalization (inference rule), 474
generalize, 131
generalized continuum hypothesis, 578
generic, 612
genimp, 490
gform, 533
gilmore, 160
Gilmore procedure, 158
gilmore loop, 160
given clause, 184
given clause algorithm, 185
global method, 172
gnumeral, 537
goal, 506
Goals, 507
goals, 507
Gödel’s first theorem, 546, 554
Gödel’s second theorem, 576
grammar, 19
graph, 62
graph, 621
greatest common divisor, 593
grobner, 410
Gröbner basis, 409
grobner decide, 413
grobner trivial, 412
groebner, 412
ground formula, 127
ground term, 127
groundterms, 159
groundtuples, 159
group, 241
grpform, 378
grpterm, 377
gterm, 533
Guessed, 86

ha, 66
half adder, 66
halfcarry, 66

halfsum, 66
handle, 616
Hauptsatz, 472
have, 516
hd, 618
head, 358
head monomial, 402
headconst, 359
herbfuns, 156
herbloop, 159
Herbrand base, 203
Herbrand domain, 155
Herbrand interpretation, 156
Herbrand skeleton problem, 584
Herbrand universe, 155
Herbrand’s theorem, 157
Hermite normal form, 352
higher-order logic, 122
Hilbert proof system, 470
Hilbert’s tenth problem, 580
Hilbert’s programme, 526
Hobbes, 3
holds, 125
holds in, 129
homo, 438
homogenization, 437
homogenize, 438
homol, 438
homomorphism, 242
homot, 438
Horn clause, 203
Horner form, 352
hornify, 208
hornprove, 208
hyperresolution, 201

icongruence, 490
Id, 387
ideal (in a ring), 387
identity, 611
identity function, 596, 611
IF logic, 228
iff, 26, 593
Iff, 26
iff def, 485
iff imp1, 482
iff imp2, 482
image, 596
image, 620
Imp, 26
imp add assum, 480
imp add concl, 481
imp antisym, 482
imp contr, 486
imp false conseqs, 486
imp false rule, 486
imp false rule’, 497
imp front, 487
imp front’, 497
imp front th, 487
imp insert, 480
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imp intro tac, 510
imp mono th, 483
imp refl, 478
imp swap, 481
imp swap2, 481
imp swap th, 481
imp trans, 480
imp trans2, 482
imp trans chain, 482
imp trans th, 481
imp true rule, 486
imp true rule’, 497
imp truefalse, 483
imp unduplicate, 479
imperative programming, 603
implication, 37
implies, 26
implode, 618
inclusive logic, 123
inclusive or, 48
incorporate, 191
increasing, 619
independence-friendly logic, 228
independent set of formulas, 116
index, 619
indicator function, 597
inductive definitions, 598
inequality, 593
inequation, 593
inference rule, 246
inferisign, 371
inferpsign, 370
init sgns, 365
injection, 596
injective, 596
input resolution, 233
input tape, 560
insert, 620
insertat, 618
instantiate, 594
instantiation, 131
Int, 617
int lang, 436
integer, 594
integer qelim, 348
integral domain, 390
intensional, 579
inter, 97
interpolant, 427
interpolate, 434
interpretation, 10, 123
interpreter, 604
interreduce, 283
intersect, 620
intersection, 594
introduce connective, 570
intuitionism, 528
intuitionistic logic, 528
invariant, 415
invariant under rotation, 416
invariant under scaling, 417

invariant under translation, 416
inverse image, 597
inverse method, 172, 472
inverter, 64
irredundant, 93
irreflexive relation, 595
is const name, 628
is constant, 358
is eq, 235
is nonvar, 294
is numeral, 337
is undefined, 621
isomorphic, 245
isotropic, 423
ispec, 493
istriv, 167
isubst, 492
iterative deepening, 177, 208
itlist, 618
itlist2, 618

jmodify, 509
joinable, 258
justify, 511

killer transformation, 289
Knuth–Bendix completion, 278
Kolmogorov complexity, 588
Kruskal’s theorem, 303

langpartition, 439
language, 119
last, 618
lazy, 450
LCF, 469
lcffol, 503
lcfptab, 487
lcfrefute, 501
lcftab, 499
lcftaut, 488
LCM (integers), 593
LCM (monomials), 405
lcm num, 618
le 0, 569
le def, 565
le suc, 569
learning, 89
least, 602
least Herbrand model, 203
least significant bit, 69
Left, 558
Leibniz, 4
lemma tac, 512
length, 618
lerules, 210
lex, 18
lexical analysis, 16
lexicographic, 602
lexicographic path order, 266
lexord, 267
lexwhile, 17
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lfn dlo, 333
lhs, 235
lift qelim, 331
lifting lemma, 181
limited meson, 323
limmeson, 323
linear, 336
linear (pattern), 263
linear order, 333, 595
linear resolution, 195
linear add, 339
linear cmul, 338
linear mul, 339
linear neg, 339
linear sub, 339
linform, 340
linrep, 347
lint, 340
list conj, 55
list disj, 55
listcases, 276
listify, 437
literal, 51
local method, 172
logic gate, 64
Logic of Computable Functions, 469
logic programming, 209
logical connective, 8
logical consequence, 43
logical form, 1
logical reasoning, 1
logical validity, 129
logically equivalent, 44, 129
logically valid, 39, 129
logisticos, 4
logos, 4
look, 558
lookup unique, 102
�Loś–Vaught test, 304
Löwenheim–Skolem, 227, 242, 243
lowest common multiple, 593
LPO, 266
lpo ge, 267
lpo gt, 267
LSB, 69
lt 0, 569
lt def, 565
lt suc, 569
LUSH resolution, 213

maincnf, 75
make parser, 20
many-sorted logic, 229
map, 618
map2, 618
mapf, 621
mapfilter, 618
match literals, 187
matches, 17
matching, 186
material conditional, 38

material implication, 38
matrix, 139
matrix, 375
max varindex, 76
maximize, 619
mdiv, 384
measure function, 602
mem, 620
member, 594
MESON, 214
meson, 220
metalanguage, 11
metalogic, 11
metamathematics, 11, 529
metatheorem, 11
mexpand, 220, 222
mexpands, 223
MGU, 166
mgu, 183
middle term (syllogism), 317
minimal, 601
minimal Herbrand model, 203
minimize, 619
miniscope, 314
miniscoping, 313
minusinf, 344
mk adder test, 69
mk and, 30
mk bdd, 103
mk defcnf, 76
mk eq, 235
mk exists, 30
mk forall, 30
mk iff, 30
mk imp, 30
mk index, 67
mk index2, 67
mk lits, 56
mk node, 102
mk numeral, 337
mk or, 30
mk skol, 501
mkatom, 340
mkbdd, 104
mkbdde, 106
mkbdds, 106
mkprop, 75
ML, 11, 469
mlcm, 384
mmul, 384
Mod, 328
mod interp, 125
model, 130
model complete, 451
model elimination, 213
model evolution, 173
modify E, 295
modify S, 290
modify T, 291
modulo, 594
modus ponens, 473
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modusponens, 477
monadic, 119, 315
monic, 359, 362
monic, 359
monoid, 398
monoid ring, 399
monomial, 383
monotone, 599
monotonic, 599
monotonic truth-function, 53
morder lt, 384
most general unifier, 166
move, 559
mpoly add, 385
mpoly const, 385
mpoly div, 386
mpoly inv, 386
mpoly mmul, 385
mpoly mul, 386
mpoly neg, 385
mpoly pow, 386
mpoly sub, 385
mpoly var, 385
mpolyatom, 386
mpolynate, 386
Mul, 14
mul 0, 565
mul suc, 565
multidegree, 384
multiplexer, 64
multiplier, 70
multiset, 597
multishunt, 515
mutual recursion, 610
mux, 68

N (natural numbers), 594
n-ary, 119
n-easy, 91
n-hard, 91
narrowing, 255
natural deduction, 470
natural number, 594
natural qelim, 350
negate, 51
negatef, 479
negating, 51
negation, 51
negation, logical, 8
negation normal form, 51
Negative, 362
negative, 51
negative literal, 51
negative resolution, 198
negativef, 479
nelop, 444
nelop1, 444, 446
nelop refute, 444, 446
Nelson–Oppen combination method, 435
nenf, 53
Newman’s lemma, 260

nextin, 624
NNF, 51
nnf, 52, 141
noetherian, 258
non, 618
non-chronological backjumping, 88
Nonzero, 362
normal form, 49, 258
normal interpretation, 236
normal model, 236
normalize and orient, 278
Not, 26
note, 516
NP-complete, 72
nullary, 119
Nullstellensatz (Hilbert), 394
Nullstellensatz (real), 453
num cases, 565
num lecases, 569
num of string, 617
number, 532
numeral, 530
numeral1, 338
numeral2, 338
numeric, 17

o-minimal, 451
object language, 11
object logic, 11
Objective CAML, 603
OCaml, 11, 603
occurs check, 212
occurs in, 476
octet, 65
offline, 450
offset, 68
Omega test, 451
onallvaluations, 35
onatoms, 31
One, 558
one–one, 596
one-to-one correspondence, 596
one literal rule, 81
online, 450
operations, 348
opp, 550
Or, 26
orcnf, 78
order, 595
order, 103
originate, 416
our thesis, 517
output tape, 560
overatoms, 31
overlapc, 301
overlapl, 301
overlaps, 276
overloading, 612

P, 28
P1-resolution, 196
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PA, 546
pair, 594
pair, 532
papply, 624
para clauses, 302
paraloop, 302
parametric polymorphism, 612
paramodulate, 301
paramodulation, 297
paramodulation, 302
parentheses, 18
parse, 629
parse atom, 20, 628
parse atomic formula, 625
parse atomic term, 628
parse bracketed, 624
parse expression, 19
parse formula, 625
parse ginfix, 623
parse infix atom, 628
parse left infix, 624
parse list, 624
parse product, 19
parse prop formula, 29
parse propvar, 29
parse quant, 625
parse right infix, 624
parse term, 628
parserule, 209
parset, 628
parsing, 12, 16
partial CAD, 367
partial computable function, 560
partial evaluation, 609
partial function, 596
partial order, 595
partition, 619, 621
pdivide, 360
pdivide pos, 373
Peano arithmetic, 546
pholds, 151
Pi, 550
pinterpolate, 428
planar, 110
pname, 28
PNF, 139
pnf, 144
poly add, 353
poly cmul, 359
poly diff, 368
poly diffn, 368
poly div, 354
poly ladd, 353
poly lmul, 354
poly mul, 354
poly neg, 353
poly nondiv, 364
poly nonzero, 363
poly pow, 354
poly sub, 353
poly var, 354

polyatom, 355
polymorphic, 612
polymorphism, 612
polynate, 354
polynomial, 352, 355
posineq, 341
Positive, 362
positive, 51
positive literal, 51
positive resolution, 196
power set, 598
pprove, 420
prawitz, 175
Prawitz procedure, 175
prawitz loop, 175
precedence, 12
predecessors, 252
predicate, 119
predicate (syllogism), 317
predicate logic, 118
predicate congruence, 240
predicates, 239
premiss A, 318
premiss E, 318
premiss I, 318
premiss O, 318
prenex, 143
prenex normal form, 139
preorder, 595
Presburger arithmetic, 337
presolution, 198
presolve clauses, 198
prettyprinting, 12
prime, 71
prime form, 549
primitive recursive function, 536
primitive rule (LCF), 475
Principia Mathematica, 473
print atom, 630
print bdd, 102
print exp, 22
print fargs, 629
print fol formula, 630
print formula, 627
print goal, 507
print infix term, 630
print int, 617
print prop formula, 29
print propvar, 29
print qformula, 627
print string, 617
print term, 629
print thm, 477
print truthtable, 36
printert, 630
procedural, 209
procedural proof, 515
product, 613
Prolog, 209
prolog, 211
Prolog technology theorem prover, 214
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proof, 512
proof planning, 465
proof rule, 246
proof theory, 520
prop, 28
proper subset, 594
proposition, 7, 8
propositional logic, 25
propositional variable, 25
prove, 508
pseudo-division, 360
psimplify, 50
psimplify1, 50
psubset, 620
psubst, 41
PTTP, 214
pullq, 143
pullquants, 143
punctuation, 17
pure literal rule, 81
pure paramodulation, 302
pure presolution, 198
pure resolution, 185, 201
purecnf, 60
purednf, 58
puremeson, 220
purification, 437
pushquant, 314

Q (rational numbers), 594
QBF, 112
qdiag, 539
qed, 517
qelim, 331
quadrance, 414
quantforms, 500
quantified Boolean formulas, 112
quantifier, 38, 118
quantifier elimination, 330
quantifier-free formula, 146
quelim dlo, 335
quine, 539

R (real numbers), 594
R, 119
r.e., 563
rabinowitsch, 412
Rabinowitsch trick, 396
raise, 615
ramsey, 63
Ramsey’s theorem, 62
ran, 621
range, 596
rawdnf, 57
read–eval–print loop, 605
real lang, 436
real qelim, 375
real qelim’, 379
recursive, 604, 609
recursive (computable), 564
recursive descent parsing, 19

recursive learning, 112
recursive type, 614
recursively enumerable, 563
redeqs, 443
reduce, 404
reduce1, 404
reduceb, 404
reduced ordered binary decision diagram, 100
reduced ring, 459
reduction order, 264
reflection, 519
reflexive relation, 595
reflexive transitive closure, 600
refutation complete, 182
rel signs, 369
relation, 119, 595
relative computability, 588
relativization of quantifiers, 350
relativize, 350
relevance, 95
rename, 183
rename form, 225
rename term, 225
renamepair, 276
renamerule, 207
repeat, 618
replace, 191, 295
replacement, 191
replacet, 295
replicate, 618
resloop, 185, 192
resolution, 83, 172, 179
resolution, 185
resolution (first-order), 180
resolution blowup, 83
resolution rule, 83
resolve clauses, 184
resolve on, 83
resolvent, 83, 182
resolvents, 184
restart, 90
restore iffdef, 105
rev, 618
reverseq, 97
rewrite, 263
rewrite order, 264
rewrite rule, 255
rewrite1, 262
rewriting, 255
rhs, 235
Right, 558
right doubleneg, 482
right exists, 509
right imp trans, 565
right mp, 481, 565
right spec, 565
right sym, 565
right trans, 565
ring, 381
ripplecarry, 67
ripplecarry0, 67
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ripplecarry1, 68
rippleshift, 70
rob eq, 569
rob ne, 570
rob nen, 569
Robbins conjecture, 285, 304
ROBDD, 100
robeval, 566
robinson, 565
robinson consequences, 567
robinson thm, 567
robop, 566
root (of a polynomial), 356
rule induction, 600
run, 559
Russell’s paradox, 470

S-polynomial, 408
SAM, 467
SAM’s lemma, 467
SAT, 72
satisfiability modulo theories, 449
satisfiable, 39, 129
satisfiable, 41
satisfies, 39, 129
saturate, 98
saturate upto, 98
scaling, 417
scanning, 16
schema, 474
scope, 120
second-order logic, 122, 145
secondary parser, 629
semantic resolution, 199
semantical incompleteness, 545
semantics, 10
semantics of first-order logic, 123
semicomputable, 563
semidecidable, 563
semidefinite programming, 454
sentence, 128
separate, 313
separation logic, 349
sequent, 471
sequent calculus, 470
set, 594
set of support, 200
set eq, 620
set goal, 508
setify, 620
shearing, 417
Sheffer function, 113
Sheffer stroke, 48
sholds, 552
Shostak combination method, 447
shunt, 484
Sigma, 550
sigma bound, 552
sigma elim, 570
sigma prove, 572
sign, 362

signature, 119
simpcnf, 60
simpcont, 501
simpdnf, 59
simpleprolog, 210
simplification order, 271
simplify, 15, 140
simplify1, 15, 140
singleton set, 594
skolem, 149
Skolem constant, 146
Skolem function, 146
Skolem normal form, 231
skolem2, 149
skolemfuns, 500
Skolemization, 144
skolemize, 149
skolemizes, 226
Skolemizing, 145
skolems, 226
SL resolution, 213
SLD resolution, 213
small model property, 324
SMT, 449
SN, 258
so, 516
solve, 169
solver, 448
sort, 229
sort, 619
sort defs, 106
sound, 247
sound (proof system), 247
space, 17
spec, 494
spec’, 498
specialize, 149
spectrum, 327
split, 356
split sign, 373
split trichotomy, 373
split zero, 363
splits, 98
splittab, 178
spoly, 408
spread, 414
stably infinite, 440
stal intersect, 97
stalmarck, 98
static, 606
static typing, 607
statically typed, 607
status, 278
Stay, 558
string of exp, 21
strip quant, 626
strong typing, 611
strongly normalizing, 258
strongly typed, 611
strongly undecidable, 585
structural induction, 615
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St̊almarck’s method, 90
subalpha, 492
subcnf, 78
subject (syllogism), 317
subset, 594
subset, 620
subspec, 491
subst, 133
substitution (formulas), 133
substitution (terms), 131
substq, 134
subsumes, 59
subsumes clause, 187
subsumption, 59, 186
subterms, 249
subtract, 620
suc 0 l, 569
suc 0 r, 569
suc inj, 565
suc inj false, 569
suitable iffdef, 105
sum, 66
superposition, 303
surjective, 596
swap, 362
syllogism, 317
symbol, 558
symbolic, 17
symmetric relation, 595
syntax, 10

tab, 177
tableau, 176
tableaux, 176
tabrefute, 177
tac proof, 508
tactic, 506
tail recursive, 611
take, 517
Tape, 558
tape, 558
Tarski’s theorem, 530
Tarski–Seidenberg, 367
tautology, 39
tautology, 41
term, 118
term, 119
term (syllogism), 317
term match, 186
terminating, 258
termination ordering, 264
termsize, 265
termval, 125
testform, 369
Th, 328
theory, 328, 329
thm, 477
thread, 103
throw, 615
time, 617
tl, 618

top-down method, 172
toplevel, 604
topterms, 432
toptermt, 432
torsion-free, 389
total order, 595
TPTP, 230
trail, 86
trailmix, 86
transcendental, 527
transitive closure, 600
transitive relation, 595
triangular set, 419
triangulate, 421
trigger, 94
triggers, 93
triplet, 92
triplicate, 92
trivial, 59
True, 26
truefalse, 96
truth, 483
truth-table, 33
truth-value, 32
tryapplyd, 621
tryapplyl, 621
trydps, 443
tryfind, 619
tsubst, 131
Turing machine, 555
type, 606
type variable, 612

uinterpolate, 432
unary, 119
unassigned, 86
uncountable, 598
undef, 618
undefinability of truth, 530
undefine, 621
undefined, 621
unequal, 621
unfailing completion, 286
unifiable, 183
unification, 164
unifier, 165
uniform word problem, 380
unify, 168
unify and apply, 170
unify complements, 174
unify complementsf, 494
unify literals, 174
unify refute, 174
uninterpreted functions, 425
union, 594
union, 620
unions, 620
uniq, 619
unique table (BDD), 102
unit clause, 80
unit deletion, 232
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unit propagation, 80
unit resolution, 233
unit propagate, 87
unit subpropagate, 86
unitycoeff, 342
universal algebra, 303
universal quantifier, 120
unsat core, 90
unsatisfiable, 39
unsatisfiable, 41
unshunt, 484
unzip, 618
upward Löwenheim–Skolem, 227, 243
urinterpolate, 429
use laterimp, 496
using, 511
UTVPI, 349

vacuous quantifier, 139
valid, 39, 129
valmod, 618
valuation, 32, 123
Var, 14, 119
var, 127
variant, 133
veref, 551
verefboundquant, 552
verification, 107, 521
vertex (of a graph), 62
vertices (of a graph), 62

w.r.t., 593
wang, 316
weak Nullstellensatz, 396
weakly confluent, 258
weakly normalizing, 258
weight, 267
well-formed formula, 25
wellfounded, 601
wellfounded induction, 601
wellorder, 601
wellordered, 601
wff, 25
witness, 206
WN, 258
word problem, 380
write, 559
wu, 422
Wu’s method, 419

XOR, 66

Z (integers), 594
Zermelo–Fraenkel set theory, 578
Zero, 362
zero, 337
zero (of a polynomial), 356
zero saturate, 96
zero saturate and check, 96
ZF set theory, 578
zip, 618
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