
Künstliche Intelligenz 1 – WS 2017/18

Michael Kohlhase
Informatik, FAU Erlangen-Nürnberg

For Course Purposes Only

February 6, 2018

Contents
1 Assignment 1 (Rational Agents) – Given Oct. 26., Due Nov. 03. 2

2 Assignment 2 (Prolog) – Given Nov. 02., Due Nov. 10. 3

3 Assignment 3 (Tree Search) – Given Nov. 09., Due Nov. 17. 6

4 Assignment 4 (A* and Adversarial Search I) – Given Nov. 18., Due Nov.
24. 8

5 Assignment 5 (Adversarial Search II - MiniMax) – Given Nov. 23., Due
Dec. 01. 11

6 Assignment 6 (Constraint Satisfaction Problems) – Given Dec. 14., Due
Dec. 22. 13

7 Assignment 7 (Propositional Logic) – Given Dec. 21., Due Jan. 12. 15

8 Assignment 8 (Propositional Logic) – Given Dec. 11., Due Jan. 19. 19

9 Assignment 9 (First-order Logic) – Given Jan. 18., Due Jan. 26. 22

10 Assignment 10 (First-order Logic Proving) – Given Jan. 25., Due Feb.
2. 24

11 Assignment 11 (Planning) – Given Feb. 1.., Due Feb. 1. 27

1

1 Assignment 1 (Rational Agents) – Given Oct. 26., Due
Nov. 03.

Problem 1.1 Explain the difference between agent function and agent program. How 30pt
many agent programs can there be for a given agent function?
Solution: The function specifies the input-output relation (outside view). The program imple-
ments the function (inside view).

The function takes the full sequence of percepts as arguments. The program uses the internal
state to avoid that.

There are either none or infinitely many programs for a function.

Problem 1.2 For each of the following agents, develop a PEAS description of the task 40pt
environment.

1. Robot soccer player

2. Internet book-shop agent (that is: an agent for book shops that stocks up on books
depending on demand)

3. Autonomous Mars rover

4. Mathematical theorem prover

5. First-person shooter (Counterstrike, Unreal Tournament etc.)

Characterize the environments of these agents according to the properties discussed in the
lecture. Where not “obvious”, justify your choice with a short sentence.

Choose suitable designs for the agents.
Problem 1.3 Suggest agent programs for the following indeterministic variants of the 30pt
vacuum cleaner example.

1. In one out of four cases the suck action fails and deposits dirt on the floor. And the
dirt sensor is wrong in one out of ten cases.

2. In each time step a square has a 10 % chance of becoming dirty again.

2

2 Assignment 2 (Prolog) – Given Nov. 02., Due Nov.
10.

This exercise sheet is supposed to get you started with Prolog. The SWI ProLog interpreter
can be downloaded from http://www.swi-prolog.org/. The SWI manual is available at
http://www.swi-prolog.org/pldoc/.

The lecture notes explain the basics of ProLog, in particular handling lists. If there are
any commands missing that are strictly necessary to solve these exercises, use the course
forum to let us know.
Problem 2.1 (Basic ProLog Functions)
Your task is to implement the functions listed below in ProLog. Note that many of them 30pt
are built-in, but we ask you create your own functions.
• a function removing multiple occurrances of elements in a list

?− removeDuplicates([1,1,1,1,2,2,3,4,1,2,7],A).
A = [1, 2, 3, 4, 7].

• a function reversing a list
?− myReverse([1,2,3,4,2,5],R).
R = [5, 2, 4, 3, 2, 1].

• a function outputting all the permutations of the elements in a list
?− myPermutations([1,2,3],Z).
Z = [1, 2, 3] ;
Z = [2, 1, 3] ;
Z = [2, 3, 1] ;
Z = [1, 3, 2] ;
Z = [3, 1, 2] ;
Z = [3, 2, 1].

Feel free to implement any helper functions.
Solution:
% remove duplicates function
delete(_,[],[]).
delete(X,[X|T],R) :− delete(X,T,R).
delete(X,[H|T],[H|R]) :− not(X=H), delete(X,T,R).
removeDuplicates([],[]).
removeDuplicates([H|T],[H|R]) :− delete(H,T,S), removeDuplicates(S,R).

% reverse function
preReverse([],X,X).
preReverse([X|Y],Z,W) :− preReverse(Y,[X|Z],W).
myReverse(A,R) :− preReverse(A,[],R).

% permute function
takeout(X,[X|T],T).
takeout(X,[H|T1],[H|T2]) :− takeout(X,T1,T2).

3

http://www.swi-prolog.org/
http://www.swi-prolog.org/pldoc/

myPermutations([],[]).
myPermutations([X|Y],Z) :− myPermutations(Y,W), takeout(X,Z,W).

Problem 2.2 Program a predicate for addition, multiplication and exponentiation in unary 30pt
representation. The number 3 in unary representation is the ProLog term s(s(s(o))), i.e.
application of the arbitrary function s to an arbitrary value o iterated three times. Note
that ProLog does not allow you to program (binary) functions,so you must come up with
a three-place predicate.

You should use add(?X,?Y,?Z) to mean X+Y = Z and program the recursive equations
X + 0 = X (base case) and X + f(Y) = f(X + Y).
Solution:
uadd(X,o,X).
uadd(X,s(Y),s(Z)) :− add(X,Y,Z).

The problems for multiplication and exponentiation are quite similar

umult(_,o,o).
umult(X,s(Y),Z) :− umult(X,Y,W), uadd(X,W,Z).
uexpt(_,o,s(o)).
uexpt(X,s(Y),Z) :− uexpt(X,Y,W), umult(X,W,Z).

Problem 2.3 (Binary Tree)
40pt

1. Think of a way of representing binary trees in ProLog
2. Write a ProLog function construct that constructs a binary search tree out of a list

of (distinct) numbers.
3. Write a ProLog function count_leaves that given a binary tree returns the number

of leaves. Use it to test how cost efficient your previous function is (in terms of the
structure that you obtain). What can you observe for larger lists of numbers?

4. Write a ProLog function symmetric that checks whether a binary tree is symmetrical.
Solution:
add(X,nil,tree(X,nil,nil)).
add(X,tree(Root,L,R),tree(Root,L1,R)) :− X @< Root, add(X,L,L1).
add(X,tree(Root,L,R),tree(Root,L,R1)) :− X @> Root, add(X,R,R1).

construct(L,T) :− construct(L,T,nil).

construct([],T,T).
construct([N|Ns],T,T0) :− add(N,T0,T1), construct(Ns,T,T1).

count_leaves(nil,0).
count_leaves(tree(_,nil,nil),1) :− !.
count_leaves(tree(_,L,R),N) :− count_leaves(L,NL), count_leaves(R,NR), N is NL+NR.

symmetric(nil).
symmetric(t(_,L,R)) :− mirror(L,R).

4

mirror(nil,nil).
mirror(t(_,L1,R1),t(_,L2,R2)) :− mirror(L1,R2), mirror(R1,L2).

%A few tests
test1(X):− construct([5,2,4,1,3],Y), count_leaves(Y,X).
% X=2
test2(X):− construct([6,10,5,2,9,4,8,1,3,7],Y), count_leaves(Y,X).
% X=3
symmetric(tree(1,tree(2,nil,nil),tree(2,nil,nil))).
% true.
symmetric(tree(1,tree(3,nil,nil),tree(2,nil,nil))).
% false.

By looking at the number of leaves we can have an idea how balanced the binary tree is.
The bigger the number of leaves the more balanced the tree is, therefor the more efficient is you
representation.

(note: maybe this question is a bit out of scope so don’t cut too many points.)

5

3 Assignment 3 (Tree Search) – Given Nov. 09., Due
Nov. 17.

Problem 3.1 (Search Strategy Comparison on Tree Search)
Consider the tree shown below. The numbers on the arcs are the arc lengths. 20pt

Assume that the nodes are expanded in alphabetical order when no other order is
specified by the search, and that the goal is state G. No visited or expanded lists are used.
What order would the states be expanded by each type of search? Stop when you expand
G. Write only the sequence of states expanded by each search.

Search Type Sequence of States
Breadth First

Depth First

Iterative Deepening (step size 1)

Uniform Cost

Problem 3.2 (Tree Search in ProLog)
80pt

Implement the tree search algorithms presented in the lectures in ProLog, meaning:
1. BFS
2. DFS
3. Iterative Deepening with variable step size
4. Uniform cost search

Use the following implementation of trees:
subtrees([]). % The empty list is a valid list of subtrees
istree(tree(Value,Children)) :− string(Value),subtrees(Children).
% A (valid) tree is a pair of some value/label

6

% (represented as a string) and a valid list of subtrees
subtrees([(Cost,T)|Rest]) :− number(Cost),istree(T), subtrees(Rest).
% A non−empty list is a valid list of subtrees, if it consists of pairs (Cost,T), where T
% is a valid tree and Cost is a number representing the step cost. i.e. the simple binary
% tree with root A, two children B, C and step costs A−>B=2 and A−>C=3 would be
%represented as: tree("A",[tree(2,("B",[])),tree(3,("C",[]))])

Solution: https://swish.swi-prolog.org/p/Tree%20search.swinb

7

https://swish.swi-prolog.org/p/Tree%20search.swinb

4 Assignment 4 (A* and Adversarial Search I) – Given
Nov. 18., Due Nov. 24.

Problem 4.1 (Binary Pacman)
Consider the Pacman game played on a perfect binary tree (full binary tree in which all 30pt
leaves are at the same depth) similar to the picture below.

In each node, there is the possibility of having Cherries or not. The goal of the game is
to reach one of the leaves with the maximum number of collected Cherries. A valid move
from a node is only to the chidren of that node.

To solve this problem, define:
• a cost function
• 2 admissible heuristics h1(n) and h2(n) which are different from h∗(n) (the true cost

from n to goal), and not constant functions
that help find the solutions with most Cherries first, when using A∗. Give a short argument
why your heuristics are admissible.

Prove that your choice of functions find the solutions with most Cherries first.
Provide a non-trivial example of the game with 5 levels and 15 Cherries randomly

assigned to nodes (meaning don’t put them all in the leaves, or all on 1 path, etc.) and
show the order in which nodes are explored by A∗ using each heuristic.
Solution: Since we want solutions with most Cherries first, and all goal states are equally far
from the initial state, a good cost function could be c(n) = number of nodes without Cherries.

Since the heuristics must be admissible, they have to be smaller than the real cost to the goal.
But in order to know the real cost to the goal, we have to know the best solution of that subtree.
Also, constant functions are not allowed.

To get around this, 2 heuristics could be h1(n) =

{
0 if this node has a Cherry
, 1 else and

h2(n) = h1(n) +
{

1 if both children of this node are 1 . Those heuristics are admissible be-
cause we add 1 every time we are forced to add 1 for a certain path, which cannot be avoided.

8

Assume that A∗ with those heuristics doesn’t find the solution with most Cherries first. All
solutions explore the same numbers of nodes (hight of the binary tree). Assume that the best
solution has cost c1, while our solution has cost c2 > c1. This means that at some step we
explored a node with cost n and heuristic 1, before we explored a node with cost n and heuristic
0, but since we are using A∗ this cannot happen. Contradiction.

Problem 4.2 (Let’s play games!)
You are playing an RPG game where you have to control a character on a map. The 50pt
map is internally represented as a matrix D of integer numbers between 0 and 10; the
number represents how difficult is for your character to pass (therefore, if Di,j = 0 then
your character will pass really fast, while if Di,j = 10 your character might not pass at all).
Consider that the game assigns to your character a certain visibility radius r (that is, you
cannot “see” further away than r units). You now want to move your character from one
cell of the map to another.
• The programmer of the game decided to use A* for finding the shortest path (time-

wise) between the two points. Design a heuristic that would work for the given
problem.
• While playing the game, you observe that it consumes a lot of memory and is very

slow while your character is moving. How would you improve the A* algorithm or
the heuristic it uses in order to become more efficient?
• Consider that the programmer chose a really bad heuristic for the pathfinding algo-

rithm, which takes your character through slow terrain. However, you are a skilled
player and you already know the map by heart. You decide to use the “waypoint”
feature of the game (defining a set of points the character has to reach in the order
you input them in order to optimize the path). Design a heuristic function that
would make use of the waypoints you set and/or of the lines connecting them.

For example, in the picture below, we encoded the difficulty of the terain in grayscale
(white is equivalent to 0, up to black, which is equivalent to 10). The starting position is
marked in red, the goal position in green. You already have set two waypoints marked in
blue, which are connected by three lines in yellow. Your visible area is delimited by the
orange circle around your starting position.

9

Note: The problem does not have a fixed solution, but rather is meant to make you think of
varieties of A* and different heuristics. You are expected to give a rigurous description of your
assumptions while solving it. You are not required to give precise formulas for the heuristics,
but remember that they can make your solution more clear.
Solution:

Problem 4.3 (Adversarial Search)
20pt

Which of the following games can be handled by the appproaches to adversarial search
discussed in the lecture (Section 6.1)? Explain.

1. 2-player Poker

2. Backgammon

3. Basketball

4. Cephalopod (for game rules check out http://www.marksteeregames.com/Cephalopod_
rules.pdf)

5. Chinese Checkers (Halma)

6. Rock-Paper-Scissors

Solution:

1. (2-player Poker): No: Non-deterministic, incomplete information

2. (Backgammon) No: Non-deterministic

3. (Basketball) No: Too many players, non-deterministic, not discrete

4. Cephalopod Yes: Two-player turn-taking zero-sum game; deterministic (even though dice
are used); full-information; finite state space, finite number of moves, ends after finite
number of steps.

5. (Chinese Checkers): No: Too many players

6. (Rock-Paper-Scissors): No: Simultaneous moves

10

http://www.marksteeregames.com/Cephalopod_rules.pdf
http://www.marksteeregames.com/Cephalopod_rules.pdf

5 Assignment 5 (Adversarial Search II - MiniMax) –
Given Nov. 23., Due Dec. 01.

Problem 5.1 (Game Tree)
Consider the following game tree. Assume it is the maximizing player’s turn to move. The 30pt
values at the leaves are the static evaluation function values of the states at each of those
nodes.

A

B C D

E F G H I J K

L M N O P Q R S T U V W X Y Z
4 8 9 3 2 -2 9 -1 8 4 3 6 5 7 1

10 pt
1. Label each non-leaf node with its minimax value. See above 5 pt
2. Which move would be selected by Max? 10 pt
3. List the nodes that the alpha-beta algorithm would prune (i.e., not visit). Assume

children of a node are visited left-to-right. 5 pt
4. In general (i.e., not just for the tree shown above), if we traverse a game tree by

visiting children in right-to-left order instead of left-to-right, can this result in a
change to
(a) the minimax value computed at the root?
(b) The number of nodes pruned by the alpha-beta algorithm?

Solution:
1. A:8, B:8, C:2, D:6, E:8, F:9, G:2, H:9, I:8, J:6, K:7
2. B
3. OHRSITUKYZ
4. (a) no, (b) yes

Problem 5.2 (Tic-Tac-Toe in Prolog)
70pt

Look at the prolog implementation of the game tic-tac-toe at https://swish.swi-prolog.
org/p/Tic-Tac-Toe.swinb (original at https://courses.cs.washington.edu/courses/
cse341/03sp/slides/PrologEx/tictactoe.pl.txt).

You can play a game by querying for playo and can watch the AI play against itself by
typing selfgame.

The current AI strategy is implemented via the predicate orespond at lines 61ff. You’ll
notice that the primary rule for choosing a move is
orespond(Board,Newboard) :−
move(Board, o, Newboard),
not(x_can_win_in_one(Newboard)).

11

https://swish.swi-prolog.org/p/Tic-Tac-Toe.swinb
https://swish.swi-prolog.org/p/Tic-Tac-Toe.swinb
https://courses.cs.washington.edu/courses/cse341/03sp/slides/PrologEx/tictactoe.pl.txt
https://courses.cs.washington.edu/courses/cse341/03sp/slides/PrologEx/tictactoe.pl.txt

which basically translates to “pick the first valid move that doesn’t result in x winning in
their next move”.

Replace orespond by a predicate implementing the MiniMax algorithm.
Solution:

12

6 Assignment 6 (Constraint Satisfaction Problems) –
Given Dec. 14., Due Dec. 22.

Problem 6.1 Assume a CSP with a ternary constraint 20pt

(x1, x2, x3) ∈ C ⊆ D1 ×D2 ×D3.

Show how this constraint can be replaced with binary constraints by introducing additional
variables over appropriate domains.
Solution: Additional variable x4 with domain D4 = D1 ×D2.

Constraints: (x4, x3) ∈ C, x1 = π1(x4), x2 = π2(x4) where πi : D4 → Di is the projection.
I deducted points if the solution was not formally precise. In particular it is necessary to

mention explicitly what new variables, domains and constraints are introduced.
(In this way all constraints can be reduced to binary ones. Whether that is a good idea is

another question: The universes grow exponentially, but on the other hand there may be more
highly optimized implementations for the binary case available.)

Problem 6.2 (50 Queens)
Formalize the 50 Queens Problem as a constraint network. Hint: You do not have to write 30pt
down all the constraints explicitly, but it has to be clear what the exact constraints are.
Problem 6.3 (CSP: Greater (or Lesser) Chain)
Consider the general less-than chain below, which we interpret as a CSP: Each of the N 50pt

variables Xi has the domain {1, . . . ,M}. The constraints between adjacent variables Xi

and Xi+1 require that Xi < Xi+1.

X1 < X2 < X3 < · · · < XN

1. For now, assume N = M = 5.

(a) How many solutions does the CSP have?

(b) What will the domain of X1 be after enforcing the consistency of only the arc
X1 → X2?

(c) What will the domain of X1 be after enforcing the consistency of only the arcs
X2 → X3 and (then) X1 → X2?

(d) What will the domain of X1 be after fully enforcing arc consistency?

2. Now consider the general case for arbitrary N and M .

(a) What is the minimum number of arcs (big-O is ok) which must be processed by
AC-3 (the algorithm which enforces arc consistency) on this graph before arc
consistency is established?

(b) Imagine you wish to construct a similar family of CSPs which forces one of the
two following types of solutions: either all values must be ascending or all values
must be descending, from left to right. For example, ifM = N = 3, there would

13

be exactly two solutions: {1, 2, 3} and {3, 2, 1}. Explain how to formulate this
variant. Your answer should include a constraint graph and precise statements
of variables and constraints.

Solution:

1. N =M = 5.

(a) Just one: 1, 2, 3 . . .

(b) {1, 2, 3, 4}
(c) {1, 2, 3}
(d) {1}

2. (a) O(MN). You will have to process many arcs multiple times, one for each domain
value.

(b) Several good answers. One is have ternary constraints on each adjacent triple that the
triple should be either an increasing or decreasing triple. The overlap between triples
enforces that the choice be global. Another is to introduce a global variable indicating
ascent or descent and have ternary constraints between adjacent nodes and the global
one, allowing, for example, triples like 〈1, 2, <〉 or 〈2, 1, >〉.

14

7 Assignment 7 (Propositional Logic) – Given Dec. 21., Due
Jan. 12.

Problem 7.1 (Soundness of a Calculus)
We have a calculus for propositional logic that consist of the axioms 20pt

P ∨¬P and P ∧Q⇒Q∧P

and the inference rule (called “modus tollens” by the way)

P ⇒Q ¬Q
MT

¬P

Show that this calculus is sound.
Solution: Let C be the given calculus. We need to show that if H `C ϕ, then H |= ϕ.

So, assume H `C ϕ for some formula ϕ and some set of axioms H. Proof by induction on C:

• (Base case 1) ϕ ∈ H, then trivially H |= ϕ.

• (Base case 2) ϕ = P ∨ ¬P for some formula P . Then ϕ is a tautology (proof trivial) and
thus H |= ϕ.

• (Base case 3) ϕ = P ∧ Q ⇒ Q ∧ P for formulas P,Q. Again ϕ is a tautology and thus
H |= ϕ.

• (Induction step) ϕ = ¬P for some formula P and there are formulas P ⇒ Q and ¬Q such
that H `C P ⇒ Q and H `C ¬Q. By induction hypothesis we may assume H |= P ⇒ Q
and H |= ¬Q. Naturally, P ⇒ Q is equivalent to ¬Q⇒ ¬P , so by modus ponens we have
H |= ¬P .

Problem 7.2 (Natural Deduction)
20pt

Prove the following formula using only the rules of the Natural Deduction calculus.

(A⇒B⇒C)⇒A∧B⇒C

Specify the rules applied at each step.

We will now consider a formulation of propositional logic, which we will call PLNQ

(Predicate Logic with No Quantifiers). The idea is to use very elaborate names for propo-
sitional logic: ProLog terms, which encode atomic formulae.

Use ProLog for Talking/Programming about Logics

• Idea: We will use PLNQ (prop. logic where prop. variables are ADT terms)

15

• represent the ADT as facts of the form
constant(mia).
pred(love,2).
pred(run,1).
fun(father,1)

this licenses ProLog terms like run(mia). and love(mia,father(mia)).

• represent propositional connectives as ProLog operators, which we declare with the
following declarations.
:− op(900,yfx,<>). % equivalence
:− op(900,yfx,>). % implication
:− op(850,yfx,\/). % disjunction
:− op(800,yfx,\&). % conjunction
:− op(750,fx,~). % negation

The first argument of op is the operator precedence, the second the fixity. This
licenses ProLog terms like X > Y. and ~(X).

• Use the ProLog built-in predicate =.. to deconstruct terms: a literal f(a,b)=..Z binds
Z to the list [f,a,b], i.e. the first element of the list is the function/predicate symbol,
followed by the arguments.

Problem 7.3 Write a simple syntax checker that checks arities in function application 10pt
and complex formulae by writing a predicate wff/11.
Solution:
term(X):−constant(X).
term(X):−X=..[Y|R],length(R,N),fun(Y,N),termlist(R).
termlist([]).
termlist([X|R]):−term(X),termlist(R).
wffatom(X):−X=..[Y|R],length(R,N),pred(Y,N),termlist(R).
wff(X):−wffatom(X).
wff(X):−X=..[~,Y],wff(Y).
wff(X):−X=..[Y,Z,W],member(Y,[<>,>,\/,&]),wff(Z),wff(W).

Problem 7.4 Remember that we call a set H of atomic formulae in PLNQ a Herbrand 10pt
model; it induces a valuation ν for PLNQ by ν(A) := T, iff A ∈ H.

Write a couple of example Herbrand models (sets of atomic formulae), using a binary
model/22 relation, given by ProLog facts like the following

model(3,[love(peter,mary),hate(mary,peter)]).

Check well-formedness of the models, using the predicate wff/1 from Problem 7.3.
Solution:

1the /1 is the notation for a unary predicate.
2the first parameter just denotes the number of the model.

16

wfm(N):−model(N,L),wffatomlist(L).
wffatomlist([]).
wffatomlist([X|R]):−wffatom(X),wffatomlist(R).

Problem 7.5 Write a simple evaluator for closed formulae 15pt
evaluate(love(peter,mary) \& hate(mary,peter),3)

should succeed. evaluate should fail if the input is not valid or ill-formed.
Solution:
evaluate(X,N) :− wff(X),model(N,L),eval(X,L).
eval(X,L) :− member(X,L).
eval(~(X),L) :− \+ eval(X,L).
eval(X & Y,L) :− eval(X,L),eval(Y,L).
eval(X \/ _,L) :− eval(X,L).
eval(_ \/ Y,L) :− eval(Y,L).
eval(X > Y,L) :− eval(Y,L); not(eval(X,L)).
eval(X <> Y,L) :− eval(X,L),eval(Y,L).
eval(X <> Y,L) :− \+ eval(X,L), \+ eval(Y,L).

Problem 7.6 Write a translator predicate that translates away all logical connectives 10pt
except & and ~.
Solution:
naonly(X,X) :− wffatom(X).
naonly(~(X),~(Z)) :− naonly(X,Z).
naonly(X & Y, Z & W) :− naonly(X,Z), naonly(Y,W).
naonly(X \/ Y,~(~(Z) & ~(W))) :− naonly(X,Z), naonly(Y,W).
naonly(X > Y,~(Z & ~(W))) :− naonly(X,Z), naonly(Y,W).
naonly(X <> Y, (Z > W) & (W > Z)) :− naonly(X,Z),naonly(Y,W).

If we want to improve the output quality (less negations), we can introduce a line

naonly(~(~(X)),Z) :− naonly(X,Z).

before the negation treatment in line 2 (otherwise it is useless; why?)

Problem 7.7 Revise the evaluator to a tableau theorem prover/model generation proce- 15pt
dure for closed formulae that only contain the connectives & and ~.
Solution: We first need two special term constructors that associate truth values with terms.
We take true(X) and false(X) to mean that the formula represented by X carries the label T or
F . We say that a labeled formula is a literal, iff it is a labeled atom.

literal(true(X)) :− wffatom(X).
literal(false(X)) :− wffatom(X).

We develop the model generator along the lines of the evaluator from the last handout, recursing
over the structure of the term in question. Like the evaluator, we will make use of ProLog’s
backtracking feature to construct the models by depth-first search.

17

clash(List) :− member(A,List),member(~A,List).
tabl(F,[F]) :− literal(F).
tabl(true(A&B),H) :− tabl(true(A),K), tabl(true(B),L),

append(K,L,P),list_to_set(P,H),\+clash(H).
tabl(false(A&_,H)) :− tabl(false(A),H).
tabl(false(_&B,H)) :− tabl(false(B),H).
tabl(true(~A,H)) :− tabl(false(A),H).
tabl(false(~A,H)) :− tabl(true(A),H).

Extend the model generator from the last problem to one that works on arbitrary closed formulae
and takes closed world knowledge into account. We will use the bits and pieces that we have
developed so far. The first step is to convert the world knowledge into a conjunction of formulae
in ~,& form that can be fed to the tableau (we append the formula X at the end.)

mg(X,N,H) :− wk(N,L), toconj(L,I),naonly(X,Y),tab(I&Y,H).
toconj([X],X).
toconj([X|L],Y&C) :− naonly(X,Y),toconj(L,C).

(List("holidays","new year").map("happy " + _)).mkString(" and a ")

Figure 1: https://xkcd.com/835/

18

https://xkcd.com/835/

8 Assignment 8 (Propositional Logic) – Given Dec. 11., Due
Jan. 19.

Problem 8.1 (The NOR Connective)
Show that all logical binary connectives (¬,∧,∨,⇒,⇔) can be expressed by the ↓ (nor) 40pt
connective, which is (or, rather, can be) defined as A ↓B := ¬ (A∨B). Rewrite P∨¬P
(tertium non datur) into an expression containing only ↓ as a logical connective.
Solution: P ∨¬P = ¬¬ (P ∨¬P) = ¬ (P ↓¬P) = (P ↓ (P ↓P)) ↓ (P ↓ (P ↓P))

Problem 8.2 (Calculi Comparison)
Prove (or disprove) the validity of the following formulae in i) Natural Deduction ii) Tableau 60pt
and iii) Resolution:

1. (P ∧Q)⇒ (P ∨Q)

2. ((A ∨B) ∧ (A⇒ C) ∧ (B ⇒ C))⇒ C

3. ((P ⇒ Q)⇒ P)⇒ P

Can you identify any advantages or disadvantage of the calculi, and in which situations?
Solution:

ND 1.

(1) 1 (P ∧Q) Assumption
(2) 1 P ∧E` (on 1)
(3) 1 (P ∨Q) ∨I` (on 2)
(4) (P ∧Q)⇒ (P ∨Q) ⇒ I (on 1 and 3)

2.

(1) 1 (A ∨B) ∧ ((A⇒ C) ∧ (B ⇒ C)) Assumption
(2) 1 (A ∨B) ∧E` (on 1)
(3) 1 (A⇒ C) ∧ (B ⇒ C) ∧Er (on 1)
(4) 1 (A⇒ C) ∧E` (on 3)
(5) 1 (B ⇒ C) ∧Er (on 3)
(6) 1,6 A Assumption
(7) 1,6 C ⇒ E (on 4 and 6)
(8) 1,8 B Assumption
(9) 1,8 C ⇒ E (on 5 and 8)
(10) 1 C ∨E (on 2, 7 and 9)
(11) ((A ∨B) ∧ (A⇒ C) ∧ (B ⇒ C))⇒ C ⇒ I (on 1 and 10)

19

3.

(1) (P ∨ ¬P) TND
(2) 2 P Assumption
(3) 2,3 (P ⇒ Q)⇒ P) Assumption
(4) 2 ((P ⇒ Q)⇒ P)⇒ P ⇒ I (on 3 and 2)
(5) 5 ¬P Assumption
(6) 5,6 (P ⇒ Q)⇒ P) Assumption
(7) 5,6,7 P Assumption
(8) 5,6,7 F FI (on 5 and 7)
(9) 5,6,7 Q FE (on 8)

(10) 5,6 P ⇒ Q ⇒ −I (on 7 and 9)
(11) 5,6 P ⇒ E (on 6 and 10)
(12) 5 ((P ⇒ Q)⇒ P)⇒ P ⇒ I (on 6 and 11)
(13) ((P ⇒ Q)⇒ P)⇒ P ∨E (on 1, 4 and 12)

Tableau 1.

(1) (P ∧Q)⇒ (P ∨Q)F

(2) (P ∧Q)T (from 1)
(3) (P ∨Q)F (from 1)
(4) P T (from 2)
(5) QT (from 2)
(6) PF (from 3)

2.

(1) ((A ∨B) ∧ (A⇒ C) ∧ (B ⇒ C))⇒ CF

(2) (A ∨B) ∧ (A⇒ C) ∧ (B ⇒ C)T (from 1)
(3) CF (from 1)
(4) (A ∨B)T (from 2)
(5) (A⇒ C)T (from 2)
(6) (B ⇒ C)T (from 2)

(7) AT BT

AF CT (split on 5) BF CT (split on 6) (split on 4)

3.

(1) ((P ⇒ Q)⇒ P)⇒ PF

(2) (P ⇒ Q)⇒ P)T (from 1)
(3) PF (from 1)

(4) P ⇒ QF P T

(5) P T (from 4) (split on 2)

Resolution 1. (P ∧Q)⇒ (P ∨Q): We negate and build a CNF:

(P ∧Q) ∧ ¬(P ∨Q)

≡P ∧Q ∧ ¬P ∧ ¬Q

yielding clauses {P T }, {QT }, {PF }, {QF }
2. ((A ∨B) ∧ (A⇒ C) ∧ (B ⇒ C))⇒ C: We negate and build a CNF:

((A ∨B) ∧ (A⇒ C) ∧ (B ⇒ C)) ∧ ¬C
≡(A ∨B) ∧ (¬A ∨ C) ∧ (¬B ∨ C) ∧ ¬C

20

yielding clauses {AT , BT }, {AF , CT }, {BF , CT }, {CF }.
Resolving yields:

{AF , CT }+ {CF } =⇒ {AF }
{BF , CT }+ {CF } =⇒ {BF }
{ AT , BT }+ {AF } =⇒ {BT }

{ BT }+ {BF } =⇒ {}

3. ((P ⇒ Q)⇒ P)⇒ P : We negate and build a CNF:

((P ⇒ Q)⇒ P) ∧ ¬P
≡(¬(P ⇒ Q) ∨ P) ∧ ¬P
≡((P ∧ ¬Q) ∨ P) ∧ ¬P
≡((P ∨ P) ∧ (¬Q ∨ P) ∧ ¬P

yielding clauses {P T }, {QF , P T }, {PF }.

21

9 Assignment 9 (First-order Logic) – Given Jan. 18., Due
Jan. 26.

Problem 9.1 (Free variables)
Let H ∈ Σp

1 and f ∈ Σf
2 . For each of the following strings of symbols, state whether 30pt

they are syntactically correct first-order formulae. If they are, state the free and bound
variables. If they are not, explain why:

1. ∃X.(H(Y)⇒ ∀Y.¬H(f(X, Y)))

2. (H(Y)⇒ ∃Y.H(f(Y)))

3. ∀X.(H(X) ∧ ∃Y.H(f(X,Z)))

4. H(X)

5. ∀X.∀Y.H(X, Y)

Solution:

1. X is bound, Y is both free and bound.

2. Not well-formed - f is binary.

3. X is bound, Z is free.

4. X is free.

5. Not well-formed - H is unary.

Problem 9.2 (First-Order Semantics)
Let =∈ Σp

2, P ∈ Σp
1 and + ∈ Σf

2 . We use the semantics of first-order logic without equality. 40pt

• Prove or disprove the following formulae semantically, using value functions and
without using a proof calculus. If a formula is not valid, give a model in which it is
false.

• Which formulae change their validity if we allow for empty models, and why?

1. ∀X.∀Y X + Y = X + Y

2. ∃X.(P (X)⇒ ∀Y.P (Y))

3. P (Y)⇒ ∃X.P (X)

Solution: Let ϕ be any value function.

1. Not valid - Counter-model: Let Iϕ(=) be the empty relation on an arbitrary domain.

22

2. Valid:

Iϕ(∃X.(P (X)⇒ ∀Y.P (Y))) = >
⇔There is some a ∈ DI s.t. Iϕ((P (a)⇒ ∀Y.P (Y))) = >
⇔There is some a ∈ DI s.t. Iϕ(¬(P (a) ∧ ¬∀Y.P (Y))) = >
⇔There is some a ∈ DI s.t. Iϕ(P (a) ∧ ¬∀Y.P (Y)) = ⊥
⇔There is some a ∈ DI s.t. Iϕ(P (a)) = ⊥ or Iϕ(¬∀Y.P (Y)) = ⊥
⇔There is some a ∈ DI s.t. Iϕ(P (a)) = ⊥ or Iϕ(∀Y.P (Y)) = >
⇔There is some a ∈ DI s.t. Iϕ(P (a)) = ⊥ or for all b ∈ DI : Iϕ(P (b)) = >

3. Valid:

Iϕ(P (Y)⇒ ∃X.P (X)) = >
⇔Iϕ(¬(P (Y) ∧ ¬∃X.P (X))) = >
⇔Iϕ(P (Y) ∧ ¬∃X.P (X)) = ⊥
⇔Iϕ(P (Y)) = ⊥ or Iϕ(¬∃X.P (X)) = ⊥
⇔Iϕ(P (Y)) = ⊥ or Iϕ(∃X.P (X)) = >
⇔Iϕ(P)(ϕ(Y)) = ⊥ or there is some a ∈ DI s.t. Iϕ(P (a)) = >

Problem 9.3 (Variable Assignments)
Let ϕ1, ϕ2 be two variable assignments and A a first-order formula. Prove: If ϕ1(X) = 30pt
ϕ2(X) for all variables X ∈ free(A), then Iϕ1(A) = Iϕ2(A). Use structural induction on
the defintion of a value function.
Solution: Proof by induction:

• A = X for some variable X, then by assumption ϕ1(X) = ϕ2(X) and hence Iϕ1(A) =
Iϕ2(A).

• A = > or A = ⊥, then Iϕ1(A) = Iϕ2(A) = > (respectively ⊥).

• A = f(t1, ..., tn) for some n-ary function symbol and the claim holds (by induction hypoth-
esis) for t1, ..., tn. Then trivially Iϕ1(A) = Iϕ2(A).

• A = ¬A′ and the claim holds by induction hypothesis for A′. Then Iϕ1(A
′) = Iϕ2(A

′) and
hence Iϕ1(A) = Iϕ2(A).

• A = (A1∧A2) and the claim holds by induction hypothesis for A1 and A2. Then Iϕ1(A) =
> iff Iϕ1(A1) = > and Iϕ1(A2) = >, which by IH is the case iff Iϕ2(A1) = > and
Iϕ2(A2) = >, which is the case iff Iϕ2(A) = >.

• A = ∀X.A′ and by induction hypothesis the claim holds for A′. Then Iϕ1(A) = > iff for
all a ∈ DI : Iϕ1(A

′[aX]) = >, which is the case iff for all a ∈ DI : Iϕ2(A
′[aX]) = >, which

is the case iff Iϕ2(A) = >.

23

10 Assignment 10 (First-order Logic Proving) – Given
Jan. 25., Due Feb. 2.

Problem 10.1 (Natural Deduction)
Let ≤,∈ Σp

2, P ∈ Σp
1, + ∈ Σf

2 and − ∈ Σf
1 . We use the semantics and natural deduction of 40pt

first-order logic with equality.
Prove the following formulae in Natural Deduction:

1. ∀X.(X ≤ −X ⇒ ∃Y.X ≤ Y)

2. ∃X.(P (X)⇒ ∀Y.P (Y))

(Hint: The second formula requires the law of the excluded middle and is somewhat elab-
orate. Try proving the lemma ¬∀Y.P (Y) ⇒ ∃Y.¬P (Y) first and use that in your actual
proof)
Solution:

1.

1(Assumption)1 X ≤ −X
2∃-Introduction ∃Y.X ≤ Y
3⇒ -Introduction1 X ≤ −X ⇒ ∃Y.X ≤ Y
4∀-Introduction ∀X.(X ≤ −X ⇒ ∃Y.X ≤ Y)

2. We start with the lemma ¬∀Y.P (Y)⇒ ∃Y.¬P (Y):

(Assumption)1 ¬∀Y.P (Y)

(Assumption)2 ¬∃Y.¬P (Y)

(Assumption)3 ¬P (Y)

∃-Introduction ∃Y ¬P (Y)

⊥-Introduction ⊥
¬-introduction3 ¬¬P (Y)

¬-Elimination P (Y)

∀-Introduction ∀Y.P (Y)

⊥-Introduction ⊥
¬-introduction2 ¬¬∃Y.¬P (Y)

¬-Elimination ∃Y.¬P (Y)

⇒ -Introduction1 ¬∀Y.P (Y)⇒ ∃Y.¬P (Y)

24

Now for the actual proof, using the above lemma:

(TND) ∀Y.P (Y) ∨ ¬∀Y.P (Y)

(Assumption)1 ∀Y.P (Y)

(Assumption)2 P (X)

⇒ -Introduction2 P (X)⇒ ∀Y.P (Y)

∃-Introduction ∃X.(P (X)⇒ ∀Y.P (Y))

(Assumption)1 ¬∀Y.P (Y)

(Lemma) ¬∀Y.P (Y)⇒ ∃Y.¬P (Y)

⇒ -Elimination ∃Y.¬P (Y)

∃-Elimination ¬P (c)
(Assumption)2 P (c)

⊥-Introduction ⊥
⊥-Elimination ∀Y.P (Y)

⇒ -Introduction2 P (c)⇒ ∀Y.P (Y)

∃-Introduction ∃X.(P (X)⇒ ∀Y.P (Y))

∨ -Elimination1 ∃X.(P (X)⇒ ∀Y.P (Y))

Problem 10.2 (First-Order Resolution)
Prove the following formula using resolution. 30pt
P ∈ Σp

1, R ∈ Σp
2, a, b ∈ Σf

0

∃X.∀Y.∃Z.∃W. ((¬P (Z) ∧ ¬R(b, a)) ∨ ¬R(a, b) ∨R(W,a) ∨ (P (Y) ∧R(X, b)))

Solution: We negate:

∀X.∃Y.∀Z.∀W.(P (Z) ∨R(b, a)) ∧R(a, b) ∧ ¬R(W,a) ∧ (¬P (Y) ∨ ¬R(X, b))

We skolemize:

(P (Z) ∨R(b, a)) ∧R(a, b) ∧ ¬R(W,a) ∧ (¬P (fY (X)) ∨ ¬R(X, b))

This yields the clauses {P (Z)T , R(b, a)T }, {R(a, b)T }, {R(W,a)F }, {P (fY (X))F , R(X, b)F }. We
resolve:

{P (Z)T , R(b, a)T }+ {R(W,a)F }[b/W] =⇒ {P (Z)T }
{R(a, b)T }+ {P (fY (X))F , R(X, b)F }[a/X] =⇒ {P (fY (a))F }

{P (Z)T }[fY (a)/Z] + {P (fY (a))F } =⇒ {}

Problem 10.3 (First-Order Tableaux)
Prove the following formula using the tableaux calculus. 30pt
P ∈ Σp

1

∃X. (P (X)⇒ ∀Y.P (Y))

Solution:

25

(1) ∃X.(P (X)⇒ ∀Y.P (Y))F

(2) P (VX)⇒ ∀Y.P (Y)F (from 1)
(3) P (VX)T (from 2)
(4) ∀Y.P (Y)F (from 2)
(5) P (cY)

F (from 4)
(6) ⊥[cY /VX]

26

11 Assignment 11 (Planning) – Given Feb. 1.., Due
Feb. 1.

Problem 11.1 (STRIPS)
Encode the following problems as STRIPS planning tasks (Definition 15.3.2 in the slides): 40pt

1. Generalized Die Hard Problem: You are given a water spout and two jugs, one holding
p and one holding q gallons, where p < q and p and q are relatively prime. Starting
with both jugs empty, the goal is to have exactly k gallons in one of the jugs. You
can only fill the jugs from the spout fully.

2. Generalized Seven Bridges of Königsberg : Given a river with several islands and
various bridges between the islands and the two sides of the river, the goal is to find
a path which crosses every bridge exactly once.

Solution:

1.
P = {Jugp(n) | 0 ≤ n ≤ p, n ∈ N} ∪ {Jugq(n) | 0 ≤ n ≤ q, n ∈ N}

I = {Jugp(0), Jugq(0)}

G = {Jugp(k)}

(After all, if we manage to get k liters in jug q, we can just empty p and fill it with the
contents of q; that’s just two added steps, but it makes G definable)

A contains:

(a) Emptyp : pre = {}, add = {Jugp(0)}, del = {Jugp(n) | 1 ≤ n ≤ p}
(b) Emptyq : pre = {}, add = {Jugq(0)}, del = {Jugq(n) | 1 ≤ n ≤ q}
(c) FillUpp : pre = {}, add = {Jugp(p)}, del = {Jugp(n) | 0 ≤ n < p}
(d) FillUpq : pre = {}, add = {Jugq(q)}, del = {Jugq(n) | 0 ≤ n < q}
(e) For all x, y with 0 ≤ x ≤ p, 0 ≤ y ≤ q, and with m = min(x+ y, p):

Fillpx,y :
pre = {Jugp(x), Jugq(y)},

add = {Jugp(m), Jugq(m− x)},

del = {Jugp(z) | z 6= m} ∪ {Jugq(z) | z 6= m− x}

and with m = min(x+ y, q):
Fillqx,y :

pre = {Jugp(x), Jugq(y)},

add = {Jugp(m− y), Jugq(m)},

del = {Jugp(z) | z 6= m− y} ∪ {Jugq(z) | z 6= m}

27

2. Let I be the set of places, B a set of bridges and from, to : B → I and i0 /∈ I a starting
point.

P = {IsAt(i) | i ∈ I} ∪ {V isited(b) | b ∈ B} ∪ {NotV isited(b) | b ∈ B} ∪ {IsAt(i0)}

I = {IsAt(i0)} ∪ {NotV isited(b) | b ∈ B}

G = {V isited(b) | b ∈ B}

A contains:

(a) For every i ∈ I :

startAt(i) : pre = {IsAt(i0)}, add = {IsAt(i)}, del = {isAt(i0)}

(b) For every b ∈ B:
GoV ia(b) :

pre = {NotV isited(b), IsAt(from(b))},

add = {IsAt(to(b)), V isited(b)},

del = {isAt(from(b)), NotV isited(b)}

Problem 11.2 Consider the following problem. A bicycle has a front wheel and a back 40pt
wheel installed and both wheels have a flat tire. A robot needs to repair the bicycle. The
room also contains a tire pump and a box with all the other equipment needed by the
robot to repair a bicycle. The robot can repair a wheel with the help of the box and the
tire pump when the robot and the three objects are at the same position. The bicycle
is repaired when the robot has done a final overall check which requires both tires to be
repaired and to be installed on the bicycle again. For this check, the box is also needed at
the same position as the bicycle and the robot.

The exercise is to model this problem as a STRIPS planning task. In doing so, assume
the following framework. The robot is currently at position “A”, the bicycle is at position
“B”, and the “Frontwheel” and the “Backwheel” are installed on the “Bicycle”. The “Box”
is at position “C” and the “Pump” at position “D”. The actions available for the robot are:

• “Go” from one position to another. The four possible positions A, B, C, and D are
connected in such a way that the robot can reach every other place in one “Go”.

• “Push” an object from one place to another. The bicycle is not pushable and the
wheels are only pushable if not installed on the bicycle; obviously the robot cannot
push itself; every other object is always pushable. “Push” moves both the object and
the robot.

• “Remove” a wheel from the bike.

• “RepairWheel” to fix a wheel with a flat tire.

• “InstallWheel” to put a wheel back on the bike.

28

• “FinalCheck” to make sure that not only the two wheels are repaired and installed
but also the rest of the bike is in good condition. The box is needed at the same
position for this.

(a) Write a STRIPS formalization of the initial state and goal descriptions.

(b) Write a STRIPS formalization of the six actions. In doing so, please make use of
“object variables”, i.e., write the actions up in a parametrized way. State, for each
parameter, by which objects it can be instantiated.

In both (a) and (b), make use of only the following predicates:

• At(x, y): To indicate that object x ∈ {Robot, Bicycle, Frontwheel, Backwheel, Box,
Pump} is at position y ∈ {Bicycle, A,B,C,D}.

• Pushable(x): To indicate that object x ∈ {Robot, Bicycle, Frontwheel, Backwheel,
Box, Pump} can be pushed.

• Repaired(x): To indicate that object x ∈ {Robot, Bicycle, Frontwheel, Backwheel,
Box, Pump} is repaired.

• FlatT ire(x): To indicate that object x ∈ {Robot, Bicycle, Frontwheel, Backwheel,
Box, Pump} has a flat tire.

Solution:

(a) Initial state description:
I = {At(Robot, A), At(Bicycle,B), At(Frontwheel, Bicycle),

At(Backwheel, Bicycle), At(Box,C), At(Pump,D), Pushable(Box),

Pushable(Pump), F latT ire(Frontwheel), F latT ire(Backwheel)}

Goal description: G = {Repaired(Bicycle)}

(b) Action descriptions:

• Go(x, y) =
pre : {At(Robot, x)}
add : {At(Robot, y)}
del : {At(Robot, x)}

for all x, y ∈ {A,B,C,D}.
• Push(x, y, z) =

pre : {At(Robot, y), At(x, y), Pushable(x)}
add : {At(Robot, z), At(x, z)}
del : {At(Robot, y), At(x, y)}

for all x ∈ {Robot,Bicycle,Wheel, Box, Pump}, y, z ∈ {A,B,C,D}.

29

• Remove(x, y) =

pre : {At(Robot, x), At(Bicycle, x), At(y,Bicycle)}
add : {At(y, x), Pushable(y)}
del : {At(y,Bicycle)}

for all x ∈ {A,B,C,D}, y ∈ {Frontwheel, Backwheel}.
[Note that the facts Pushable(Frontwheel) and Pushable(Backwheel) can also be initially
given and never deleted because of the way the action “Push" is defined.]

• RepairWheel(x, y) =

pre : {At(Robot, x), At(y, x), F latT ire(y), At(Box, x), At(Pump, x)}
add : {Repaired(y)}
del : {FlatT ire(y)}

for all x ∈ {A,B,C,D}, y ∈ {Frontwheel, Backwheel}.
• InstallWheel(x, y) =

pre : {At(Robot, x), At(Bicycle, x), At(y, x), Repaired(y), Pushable(y)}
add : {At(y,Bicycle)}
del : {At(y, x), Pushable(y)}

for all x ∈ {A,B,C,D}, y ∈ {Frontwheel, Backwheel}.
• FinalCheck(x) =

pre : {At(Robot, x), At(Bicycle, x), At(Box, x),
At(Frontwheel, Bicycle), At(Backwheel, Bicycle),

Repaired(Frontwheel), Repaired(Backwheel)}
add : {Repaired(Bicycle)}
del : {}

for all x ∈ {A,B,C,D}.

30

	1 Assignment 1(Rational Agents) – Given Oct. 26., Due Nov. 03.
	2 Assignment 2(Prolog) – Given Nov. 02., Due Nov. 10.
	3 Assignment 3(Tree Search) – Given Nov. 09., Due Nov. 17.
	4 Assignment 4(A* and Adversarial Search I) – Given Nov. 18., Due Nov. 24.
	5 Assignment 5(Adversarial Search II - MiniMax) – Given Nov. 23., Due Dec. 01.
	6 Assignment 6(Constraint Satisfaction Problems) – Given Dec. 14., Due Dec. 22.
	7 Assignment 7(Propositional Logic) – Given Dec. 21., Due Jan. 12.
	8 Assignment 8(Propositional Logic) – Given Dec. 11., Due Jan. 19.
	9 Assignment 9(First-order Logic) – Given Jan. 18., Due Jan. 26.
	10 Assignment 10(First-order Logic Proving) – Given Jan. 25., Due Feb. 2.
	11 Assignment 11(Planning) – Given Feb. 1.., Due Feb. 1.

