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Conclusion

I For a VRE from Open Source Systems we need a uniform meaning space.
(promise/danger in the communication)

I Idea: Center system API theories around the shared math knowledge
(Math-in-the-Middle Ontology)

I Idea: Represent it as OMDoc/MMT Theory graphs (profit from the MMT
system and SCSCP)
Use MMT alignments to specify MitM-pivoting translations.

I Implementation: Docker with ODK systems and Jupyter front-end at
https://github.com/vv20/mitm_proof_of_concept (deploy publically soon)

I MitM Economics: these will decide on the utility!
I MitM network costs = O(3k(n + 1)), where k=̂ # (constr. + API ops.) instead of
O(nk2) (6 vs. 9 for three systems)

I MitM joining costs linear in API size. (interoperability workflows star-shaped)
I What can you do?: Connect your system to MitM ; API theories/Phrasebook
I What will we do?: OpenDreamKit still runs 13 months
I compiling MitM pivoting translations into P2P translations (eliminate SCSCP too)
I provide MitM-based documentation for all systems (translate docs not terms)
I math service discovery (via alignment paths  priority?)
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Running Example/Use Case: Jane’s Invariant Experiments

I Jane wants to experiment with invariant theory of finite groups.
I She works in the polynomial ring R = Z[X1, . . . ,Xn],
I Goal: construct an ideal I in R that is fixed by a group G ≤ Sn acting on the

variables, linking properties of G to properties of I and the quotient of R by I .
I Idea: pick some polynomial p from R and consider the ideal I of R that is generated

by all elements of the orbit O = Orbit(G ,R, p) ⊆ R.
I For effective further computation with I , she needs a Gröbner base of I .

I Jane is a SageMath user and wants to receive the result in SageMath, but she
wants to use GAP’s orbit algorithm and Singular’s Gröbner base algorithm,
which she knows to be very efficient.

I Problem: Jane has to learn the GAP and Singular languages and retype the
results in them. (error-prone)

I For the sake of example, we will work with n = 4, G = D4 (the dihedral group),
and p = 3 · X1 + 2 · X2, but our results apply to arbitrary values.

I Caveat: G is called “D4” in SageMath but “D8” in GAP due to differing
conventions in different mathematical communities
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1 Towards a Math VRE
— Interoperability via a Joint Meaning Space —
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Interoperability in OpenDreamKit

I OpenDreamKit (ODK): EU Project 2015-19, 16 Partners
; build a “mathematical VRE (Virtual Research Environment) toolkit”

I ODK Approach: VRE by connecting existing OSS systems. (and improve them)

I Advantages: well-known Open Source Software
1. Let the specialists do what they do best and like (and avoid what they don’t)
2. collaboration exponentiates results
3. competition fosters innovation (+ no vendor lock-in)

I Problem: does an elliptic curve mean the same in GAP, SageMath, LMFDB?
I otherwise delegating computation becomes unsound
I storing data in a central KB becomes unsafe
I the user cannot interpret the results in an UI

I Idea: Need a common meaning space for safe distributed computation in a VRE!
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Obtaining a Common Meaning Space for our VRE

I Three approaches for safe distributed computation/storage/UIs
peer to peer open standard industry standard
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n2/2 translations 2n translations 2n − 2 translations
symmetric symmetric asymmetric

I Observation: We already have a “standard” for expressing the meaning of
concepts/objects/models: mathematical vernacular! (e.g. in math. documents)

I Problem: mathematical vernacular is too
I ambiguous: need a human to understand structure, words, and symbols
I redundant: every paper introduces slightly different notions.

I Math-in-the-Middle Paradigm: encode math knowledge in modular flexiformal
format as a frame of reference for joint meaning (OMDoc/MMT)
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Standardization with Interfaces

I Problem: We are talking about knowledge-based systems (large investment)
I Problem: Knowledge is part of both the
I System ; system-specific representation requirements and release cycle
I Interoperability Standard ; stability and generality requirements.

I Idea: Open standard knowledge base with API theories
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I Definition 1.1. API theories are
I system-near (import/export facilities maintained with system)
I declarative, in standard format (refine general theories, relation documented)
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OpenMath System Dialects

I Observation: Every system has its own input language (optimized to domain)

I Idea: Abstract away from system surface languages (use internal syntax trees)

I Observation: There are two kinds of symbols in syntax trees of a system S
I constructors build primitive objects without involving computation, and
I operations compute objects from other objects.

I Definition 1.2. The API theories A(S) of S document them ; we can
represent the API of S as OpenMath objects with constants from A(S) (the
A(S)-objects). We call the set of A(S)-objects the system dialect of S .

I Idea: For each system S generate the API theories A(S) and a
serializer/deserializer into the system dialect: an OpenMath phrasebook.

I Progress: For system interoperability we only need to relate system dialects
meaningfully.
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Meaning-Preserving Relations between System Dialects

I Definition 1.3. We call a pair of identifiers (a1, a2) that describe the same
mathematical concept an alignment.
We call an alignment perfect, if it induces a total, truth-preserving translation.

(e.g. alignment up to argument order)

I Intuition: Alignments don’t need to be perfect to be useful!
I Alignment up to Totality of Functions (e.g. division undefined on 0 and with x

0 = 0)
I Alignment for Certain Arguments (e.g. Addition on natural numbers and addition on

real numbers)
I Alignment up to Associativity (e.g. binary addition and “sequential” addition)

They still allow for translating expressions between libraries. (under certain
conditions)
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MitM-Based Distributed Computation

I Observation: For interoperability between systems A and B with OpenMath
phrasebooks and API theories, we only need
1. a way of transporting OpenMath objects between systems A and B
2. a system dialect mediator that translates A-objects into B-objects based on

alignments.

I Idea: Mediator-based architecture
System A OM I/O OM I/O Mediator OM I/O System BOM I/OSCSCP SCSCP

I Idea for 1.: translate A-objects to B-objects in two steps: A to ontology and
ontology to B.
Implemented in [Mül+17] based on the MMT system [Rab13; MMT], which
implements the OMDoc/MMT format.

I Idea for 2.: Use the OpenMath SCSCP (Symbolic Computation Software
Composability) protocol [Fre+] for that.
Implemented SCSCP clients/server by for various OpenDreamKit systems.
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2 Realizing MitM Interoperability
– The Computational Group Theory Case Study –
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2.1 Modular Knowledge Representation
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Modular Representation of Math (MMT Example)

I Example 2.1 (Elementary Algebra and Arithmetics).

Magma
G , ◦ : G → G → G

Abelian

c : `x◦y=y◦x

SemiGrp

assoc : `(x◦y)◦z=x◦(y◦z)

Monoid
e : G
neutl : `x◦e=x

neutr : `e◦x=x

Group
i : =λx.ιy.x◦y=e

inv : `∀x : G.∃1y : G.x◦y=e

NonGrpMon

ni : `∃x : G.∀y : G.x◦y 6=e

AbelGroup

Ring
dom : `G m/◦=G a/◦
distl : `x m/◦ (y a/◦ z)=(x m/◦ y) a/◦ (x m/◦ z)

distr : `(y a/◦ z) m/◦ x=(y m/◦ x) a/◦ (z m/◦ x)

NatNums
N, N+, 0 : N, s : N→ N+

P3,. . . ,P5

NatPlus
+: N→ N→ N
base : n+0=n,
step : n+s(m)=s(n+m)

NatPlusTimes
· : N→ N→ N
base : n·0=0,
stepn·s(m)=n·m+n

IntArith
Z, − : Z→ Z
dom : `Z=p/N∪n/N+

dneg : `−−z=z

ϕ =

 G 7→ N
◦ 7→ ·
e 7→ 1


ψ =

 G 7→ N
◦ 7→ +
e 7→ 0


ψ′ =

{
i 7→ −
g 7→ f

}
ϑ =

{
m 7→ e
a 7→ c

}

p n

e :ϕ

f :ψ

d :ψ′

g

c :ϕ

ng

a

m

i : ϑ

s : {x◦y 7→y◦x}
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Representing Logics and Foundations as Theories

I Example 2.2. Logics and foundations represented as MMT theories

LF LF+X

FOL HOL

Monoid CGroup Ring

ZFC

f2h

add

mult

folsem

mod

I Definition 2.3. Meta-relation between theories – special case of inclusion

I Uniform Meaning Space: morphisms between formalizations in different logics
become possible via meta-morphisms.

I Remark 2.4. Semantics of logics as views into foundations, e.g., folsem.
I Remark 2.5. Models represented as views into foundations (e.g. ZFC)
I Example 2.6. mod := {G 7→ Z, ◦ 7→ +, e 7→ 0} interprets Monoid in ZFC.
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A MitM Theory in MMT Surface Language

I Example 2.7. A theory of Groups

I Declaration =̂
name : type [= Def] [# notation]

I Axioms =̂ Declaration with type ` F

I ModelsOf makes a record type from a theory.

I MitM Foundation: optimized for natural math formulation
I higher-order logic based on polymorphic λ-calculus
I judgements-as-types paradigm: ` F =̂ type of proofs of F
I dependent types with predicate subtyping, e.g. {n}{′a ∈ mat(n, n)|symm(a)′}
I (dependent) record types for reflecting theories
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MitM Computational Group Theory

I Four levels of modeling (Following the GAP template)
I Abstract Level: the group axioms, generating sets, homomorphisms, group actions,

stabilisers, orbits, centralizers, normalizers.
I Representation Level: axiomatizations concrete objects suitable for computation –

permutation groups, matrix groups, . . . , also group actions, group homomorphism
I Implementation Level: permutation groups as subgroups of SN+, concretely S[1,...,n].
I Concrete Level: where actual computations happen.

I Alignments between the MitM Ontology and the GAP API
Level

abstract

repn.

impl.

concrete

MitM Ontology

Abstract GT

Permutation
Groups

Matrix
Groups

Finitely
Presented
Groups

G ≤ Symmetric([1..n]) G ≤ GL(n,F ) G = Fn/K

Mathieu(11) ≤ Symmetric([1..11])

GAP API

IsGroup

IsPermGroup IsMatrixGroup IsFpGroup

Group((1,2,3))
Group([[0, 1], [2, 0]])

MathieuGroup(11)
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2.2 API Theories for Computer Algebra Systems

Kohlhase: Composing Math Software Systems: MitM 13 CAAT 2018



SageMath, GAP, and Singular API Theories/Phrasebooks

I Observation: Most of the information is already present in mature systems
I name/type information of constructors and operations.
I existing API documentation for flexiformal specification.

I SageMath: extracting 500+ API theories
I type information by “categories” where possible, else introspection of Python

classes/method call patterns
I Phrasebook via Python’s pickling infrastructure (full structure sharing)

I GAP: existing phrasebook adapted to 350+ API theories
I very good, structured API documentation (found 3000 structure errors)
I regularized constructor calls in ca. 2400 places (performance gain by typed method

dispatch?)

I Singular: thanks to Sebastian Gutsche
I return types are missing ; infer from call patterns  C++ parsing
I documentation strings are often semi-structured ; string-scraping

Kohlhase: Composing Math Software Systems: MitM 14 CAAT 2018



SageMath, GAP, and Singular API Theories/Phrasebooks

I Observation: Most of the information is already present in mature systems
I name/type information of constructors and operations.
I existing API documentation for flexiformal specification.

I SageMath: extracting 500+ API theories
I type information by “categories” where possible, else introspection of Python

classes/method call patterns
I Phrasebook via Python’s pickling infrastructure (full structure sharing)

I GAP: existing phrasebook adapted to 350+ API theories
I very good, structured API documentation (found 3000 structure errors)
I regularized constructor calls in ca. 2400 places (performance gain by typed method

dispatch?)

I Singular: thanks to Sebastian Gutsche
I return types are missing ; infer from call patterns  C++ parsing
I documentation strings are often semi-structured ; string-scraping

Kohlhase: Composing Math Software Systems: MitM 14 CAAT 2018



SageMath, GAP, and Singular API Theories/Phrasebooks

I Observation: Most of the information is already present in mature systems
I name/type information of constructors and operations.
I existing API documentation for flexiformal specification.

I SageMath: extracting 500+ API theories
I type information by “categories” where possible, else introspection of Python

classes/method call patterns
I Phrasebook via Python’s pickling infrastructure (full structure sharing)

I GAP: existing phrasebook adapted to 350+ API theories
I very good, structured API documentation (found 3000 structure errors)
I regularized constructor calls in ca. 2400 places (performance gain by typed method

dispatch?)

I Singular: thanks to Sebastian Gutsche
I return types are missing ; infer from call patterns  C++ parsing
I documentation strings are often semi-structured ; string-scraping

Kohlhase: Composing Math Software Systems: MitM 14 CAAT 2018



SageMath, GAP, and Singular API Theories/Phrasebooks

I Observation: Most of the information is already present in mature systems
I name/type information of constructors and operations.
I existing API documentation for flexiformal specification.

I SageMath: extracting 500+ API theories
I type information by “categories” where possible, else introspection of Python

classes/method call patterns
I Phrasebook via Python’s pickling infrastructure (full structure sharing)

I GAP: existing phrasebook adapted to 350+ API theories
I very good, structured API documentation (found 3000 structure errors)
I regularized constructor calls in ca. 2400 places (performance gain by typed method

dispatch?)

I Singular: thanks to Sebastian Gutsche
I return types are missing ; infer from call patterns  C++ parsing
I documentation strings are often semi-structured ; string-scraping

Kohlhase: Composing Math Software Systems: MitM 14 CAAT 2018



The SageMath API Theories

I API theories can be automatically exported from SageMath categories
(in-memory structures)

I Problem: SageMath relies on the Python object system where categories are
missing

I Solution?: Introspection of method calls for “typical SageMath objects.(what are
the mathematically meaningful methods?)

I Future: The (ongoing) port of SageMath to Python 3, will enable gradual typing
(MitM type inference?)
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The SageMath Phrasebook

I For the SageMath phrasebook we use Python serialization/deserialization
I Example 2.8. The dihedral group D4 is serialized to

pg_unreduce = unpickle_global(’sage.structure.unique_representation’, ’unreduce’)
pg_DihedralGroup =

unpickle_global(’sage.groups.perm_gps.permgroup_named’, ’DihedralGroup’)
pg_make_integer = unpickle_global(’sage.rings.integer’, ’make_integer’)
pg_unreduce(pg_DihedralGroup, (pg_make_integer(’4’),), {})

I This is already very close to the SageMath system dialect.
I Extend the Python deserializer to generate OpenMath objects from the

constructors.
I We profit from the optimizations (structure sharing) in Python.
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The GAP API Theories and Phrasebook

I GAP exports types, constructors, functions, data, and their documentation from
type system and documentation.

This exercise revealed ca. 2000 documentation inconsistencies
I GAP phrasebook serializes/de-serializes OpenMath in JSON and XML
I GAP source code was refactored with ca. 700+1700 constructor macros

(independently useful for static typing  Markus Pfeiffer)
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2.3 Alignments: Glueing System APIs and MitM
together
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Meaning-Preserving Relations between System Dialects

I Definition 2.9. We call a pair of identifiers (a1, a2) that describe the same
mathematical concept an alignment.
We call an alignment perfect, if it induces a total, truth-preserving translation.

(e.g. alignment up to argument order)

I Intuition: Alignments don’t need to be perfect to be useful!
I Alignment up to Totality of Functions (e.g. division undefined on 0 and with x

0 = 0)
I Alignment for Certain Arguments (e.g. Addition on natural numbers and addition on

real numbers)
I Alignment up to Associativity (e.g. binary addition and “sequential” addition)

They still allow for translating expressions between libraries. (under certain
conditions)
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Addition on Natural Numbers

I Constructive Type Theory: defined as fixed point of some equation (e.g. Coq,
Matita)
In our syntax:

coq:?Init/Nat?add matita:?nat/plus?plus direction="both"
I Addition defined more generically (restricted to natural numbers via subtyping)

(e.g. HOL Light, HOL4, PVS)
coq:?Init/Nat?add pvs:/Prelude?number_fields?+ direction=”forward”

I Set theories: least straight-forward; often primitive recursion (e.g. Isabelle/ZFm
Mizar)
Mizar: Ordinal addition → rational addition → R+ → R→ C and finally
restricted to N.
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Collecting Alignments

I Git repository at https://gl.mathhub.info/alignments/Public
I text files with one alignment per line
I hundreds of manual alignments (students at Jacobs University)
I thousands of alignments by AI techniques (Cezary Kaliszyk’s group)
I anyone can add new alignments (using pull requests).

I The more alignments we have, the more useful they are
Submit your alignments!
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The Knowledge Graph for MitM, SageMath, GAP, Singular
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2.4 MitM-based Distributed Computation
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Jane’s Use case in the MitM System

I In SageMath Jane has already built the ring R = Z[X1,X2,X3,X4], the group
G = D4, the action A of G on R that permutes the variables, and
p = 3 · X1 + 2 · X2.

I She calls
o = MitM.Gap.orbit(G,A,p) # the orbit
i = MitM.Singular(o).Ideal() # the ideal
g = i.Groebner().sage() # the Groebner basis

I The MitM server translates MitM.Gap.orbit(G,A,p) to the GAP system dialect and
sends it to GAP.

I GAP returns the orbit: O = [3X1 + 2X2, 2X3 + 3X4, 3X2 + 2X3, 3X3 +
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Distributed Computational Group Theory

I Combine SCSCP enabled GAP, SageMath, and Singular with MMT mediator.

Sage MMT
Mediator GAP

Singular

1: orbit(G ,A, p)@Sa 2: orbit(G ,A, p)@G

3: O@G

4: O.i .p@Si5: B@Si

6: B@Sa

I Nucleus of the OpenDreamKit interoperability layer.
Delegate computations between systems if exchanged objects are covered
by the MitM ontology, the API theories, and the alignments
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Future Use Case (Steve is Jane’s Colleague)

I Steve prefers working in GAP, and he wants to compute the Galois group of the
rational polynomial p = x5 − 2.

I He discovers the GAP package radiroot (does not work for p)

I Jane suggests PARI/GP: he calls (once that is MitM-connected)
G := MitM("PARIGP","GaloisGroup",p) from PARI/GP which gives him the desired
Galois group as a GAP permutation group.

I Steve repeats Jane’s experiments on G, without leaving GAP.
I Finally, Steve installs a GAP method by calling

InstallMethod(GaloisGroup, "for a polynomial", [IsUnivariatePolynomial],
p −> MitM("PARIGP", "GaloisGroup", p))

; extends GaloisGroup to rational polynomials in GAP.
I This replaces a significant part of the 1800-LoC radiroot package (by PARI/GP

delegation)
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3 Integrating Mathematical Knowledge/Object Bases
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Mathematical Knowledge Sources (MKS)

I Generic information systems (Wikipedia)

I Informal mathematical document collections (Cornell preprint arXiv)
I Literature information systems (zbMATH, MathSciNet)
I Mathematical object databases (GAP libraries, OEIS, LMFDB)
I Formal theorem prover libraries (Mizar, Coq, PVS, HOL)
I We will concentrate on mathematical object databases here.
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|− the_kepler_conjecture <=>
(!V. packing V

==> (?c. !r. &1 <= r
==> &(CARD(V INTER ball(vec 0,r))) <=
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Searching in OEIS

I Question: Find all sequences starting with 0, 1, 1, 2, 3, 5, 8
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Searching in in the LMFDB

I Question: Find all cyclic transitive groups

I Problem: But what if I want to compute with them?
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MitM-based Integration of Math Knowledge Bases

I Requirements:
I a uniformal programatic API to multiple MKB
I interacting with MKB at the “mathematics Level”.

I Idea: use the Math-in-the-Middle Paradigm
I OMDoc/MMT-based API theories for the mathematical interface (; MKB records

as OM objects)
I alignments into MitM Ontology (for OM-dialect mediation)
I extend MMT’s built-in query language QMT to general Math query language

I Problems:
I MKB tables become OMDoc/MMT theories (size problems)
I how to reconcile MKB records with OMDoc/MMT terms. (encoding/decoding)
I tow to translate math-level queries to physical database queries
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4 Virtual Theories
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LMFDB Data (Database Level)

I Example 4.1 (A transitive group represented in in LMFDB).

{
"ab": 1,
"arith_equiv": 0,
"auts": 1,
"cyc": 1,
"label": "1T1",
"n": 1,
...

}

Legend: for understanding them (LMFDB improved documentation)
I the cyc field represents being cyclic (0 is false, 1 is true)
I the n field represents degree (IEEE Float 1 corresponds to 1 ∈ N)
I . . .

Two Problems: that have to be solved for MitM integration
I I data base schema is not at the mathematical level (let alone interoperable)
I values are encoded for MongoDB convenience (what do they mean?)
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Codecs: Encoding and Decoding Database Values

I Definition 4.2 (Codec). A codec consists of two functions that translate
between semantic types and realized types.

I

Codecs
codec : type→ type
StandardPos : codec Z+ JSON number if small enough, else JSON

string of decimal expansion
StandardNat :codec N
StandardInt :codec Z
IntAsArray :codec Z JSON List of Numbers
IntAsString :codec Z JSON String of decimal expansion
StandardBool :codec B JSON Booleans
BoolAsInt :codec B JSON Numbers 0 or 1
StandardString :codec S JSON Strings

I StandardInt decodes 1 into the float 1, but 254 into the string "18014398509481984"
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Elliptic Curve Code Operators

{
"degree": 1,
"x−coordinates_of_integral_points": "[5,16]",
"isogeny_matrix": [[1,5,25],[5,1,5],[25,5,1]],
"label": "11a1",
"_id": "ObjectId(’4f71d4304d47869291435e6e’)",
...

}

I Matrix in the isogeny_matrix field

I

 1 5 25
5 1 5
25 5 1


I represented as [[1,5,25],[5,1,5],[25,5,1]]
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Codec Operator Examples

I Definition 4.3 (Codec Operator). A codec operator is a function which takes
a codec, a set of parameters, and returns a codec.

I Codecs (continued)
StandardList : codec T → codec List(T ) JSON list, recursively coding

each element of the list
StandardVector : codec T → codec Vector(n,T ) JSON list of fixed length n
StandardMatrix : codec T → codec Matrix(n,m,T ) JSON list of n lists of length m

I StandardMatrix(StandardInt, 3, 3) generates the codec we used for the isogeny
matrix
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Our approach: Virtual Theories

Numbers
Z+ : type
Z : type
Z+ ⊂ Z

Matrices
matrix : type→ Z+ → Z+ → type

Codecs
codec : type→ type
standardInt : codec Z
standardMatrix : {T , n,m} codec T → codec matrix(n,m,T )

Elliptic Curve
ec : type
from_record : record→ ec
curveDegree : ec→ Z
isogenyMatrix : ec→ matrix(3, 3,Z)

Elliptic Curve Schema Theory
degree ?implements curveDegree

?codec StandardInt
isogeny_matrix ?implements isogenyMatrix

?codec StandardMatrix(3, 3, StandardInt)

lmfdb Elliptic Curves

Elliptic Curve Database Theory
11a1 : ec = . . .
11a2 : ec = . . .
. . .

lazily loads from implements

describes
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An Example of a Query

I Example 4.4. Finding all cyclic transitive groups in LMFDB (recall from above)

x in (related to ( literal ‘lmfdb:db/transitivegroups?group ) by (object declares))
| holds x (x cyclic x ∗=∗ true)

I This example does not rely on the internal structure of LMFDB
I can be translated into an LMFDB query using the just-defined codecs theory
I http://www.lmfdb.org/api/transitivegroups/groups/?cyc=1
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Conclusion

I For a VRE from Open Source Systems we need a uniform meaning space.
(promise/danger in the communication)

I Idea: Center system API theories around the shared math knowledge
(Math-in-the-Middle Ontology)

I Idea: Represent it as OMDoc/MMT Theory graphs (profit from the MMT
system and SCSCP)
Use MMT alignments to specify MitM-pivoting translations.

I Implementation: Docker with ODK systems and Jupyter front-end at
https://github.com/vv20/mitm_proof_of_concept (deploy publically soon)

I MitM Economics: these will decide on the utility!
I MitM network costs = O(3k(n + 1)), where k=̂ # (constr. + API ops.) instead of
O(nk2) (6 vs. 9 for three systems)

I MitM joining costs linear in API size. (interoperability workflows star-shaped)
I What can you do?: Connect your system to MitM ; API theories/Phrasebook
I What will we do?: OpenDreamKit still runs 13 months
I compiling MitM pivoting translations into P2P translations (eliminate SCSCP too)
I provide MitM-based documentation for all systems (translate docs not terms)
I math service discovery (via alignment paths  priority?)
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I provide MitM-based documentation for all systems (translate docs not terms)
I math service discovery (via alignment paths  priority?)
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