
Composing Mathematical Software Systems
via the Math-in-the-Middle Paradigm

Michael Kohlhase

Professur für Wissensrepräsentation und -verarbeitung
Informatik, FAU Erlangen-Nürnberg

http://kwarc.info

Computer Algebra in the Age of Types, Hagenberg, August 17. 2018

Kohlhase: Composing Math Software Systems: MitM 1 CAAT 2018

http://kwarc.info

Conclusion

I For a VRE from Open Source Systems we need a uniform meaning space.
(promise/danger in the communication)

I Idea: Center system API theories around the shared math knowledge
(Math-in-the-Middle Ontology)

I Idea: Represent it as OMDoc/MMT Theory graphs (profit from the MMT
system and SCSCP)
Use MMT alignments to specify MitM-pivoting translations.

I Implementation: Docker with ODK systems and Jupyter front-end at
https://github.com/vv20/mitm_proof_of_concept (deploy publically soon)

I MitM Economics: these will decide on the utility!
I MitM network costs = O(3k(n + 1)), where k=̂ # (constr. + API ops.) instead of
O(nk2) (6 vs. 9 for three systems)

I MitM joining costs linear in API size. (interoperability workflows star-shaped)
I What can you do?: Connect your system to MitM ; API theories/Phrasebook
I What will we do?: OpenDreamKit still runs 13 months
I compiling MitM pivoting translations into P2P translations (eliminate SCSCP too)
I provide MitM-based documentation for all systems (translate docs not terms)
I math service discovery (via alignment paths priority?)

Kohlhase: Composing Math Software Systems: MitM 2 CAAT 2018

https://github.com/vv20/mitm_proof_of_concept

Conclusion and Future Work

I For a VRE from Open Source Systems we need a uniform meaning space.
(promise/danger in the communication)

I Idea: Center system API theories around the shared math knowledge
(Math-in-the-Middle Ontology)

I Idea: Represent it as OMDoc/MMT Theory graphs (profit from the MMT
system and SCSCP)
Use MMT alignments to specify MitM-pivoting translations.

I Implementation: Docker with ODK systems and Jupyter front-end at
https://github.com/vv20/mitm_proof_of_concept (deploy publically soon)

I MitM Economics: these will decide on the utility!
I MitM network costs = O(3k(n + 1)), where k=̂ # (constr. + API ops.) instead of
O(nk2) (6 vs. 9 for three systems)

I MitM joining costs linear in API size. (interoperability workflows star-shaped)
I What can you do?: Connect your system to MitM ; API theories/Phrasebook
I What will we do?: OpenDreamKit still runs 13 months
I compiling MitM pivoting translations into P2P translations (eliminate SCSCP too)
I provide MitM-based documentation for all systems (translate docs not terms)
I math service discovery (via alignment paths priority?)

Kohlhase: Composing Math Software Systems: MitM 2 CAAT 2018

https://github.com/vv20/mitm_proof_of_concept

Conclusion and Future Work

I For a VRE from Open Source Systems we need a uniform meaning space.
(promise/danger in the communication)

I Idea: Center system API theories around the shared math knowledge
(Math-in-the-Middle Ontology)

I Idea: Represent it as OMDoc/MMT Theory graphs (profit from the MMT
system and SCSCP)
Use MMT alignments to specify MitM-pivoting translations.

I Implementation: Docker with ODK systems and Jupyter front-end at
https://github.com/vv20/mitm_proof_of_concept (deploy publically soon)

I MitM Economics: these will decide on the utility!
I MitM network costs = O(3k(n + 1)), where k=̂ # (constr. + API ops.) instead of
O(nk2) (6 vs. 9 for three systems)

I MitM joining costs linear in API size. (interoperability workflows star-shaped)
I What can you do?: Connect your system to MitM ; API theories/Phrasebook
I What will we do?: OpenDreamKit still runs 13 months
I compiling MitM pivoting translations into P2P translations (eliminate SCSCP too)
I provide MitM-based documentation for all systems (translate docs not terms)
I math service discovery (via alignment paths priority?)

Kohlhase: Composing Math Software Systems: MitM 2 CAAT 2018

https://github.com/vv20/mitm_proof_of_concept

Running Example/Use Case: Jane’s Invariant Experiments

I Jane wants to experiment with invariant theory of finite groups.
I She works in the polynomial ring R = Z[X1, . . . ,Xn],
I Goal: construct an ideal I in R that is fixed by a group G ≤ Sn acting on the

variables, linking properties of G to properties of I and the quotient of R by I .
I Idea: pick some polynomial p from R and consider the ideal I of R that is generated

by all elements of the orbit O = Orbit(G ,R, p) ⊆ R.
I For effective further computation with I , she needs a Gröbner base of I .

I Jane is a SageMath user and wants to receive the result in SageMath, but she
wants to use GAP’s orbit algorithm and Singular’s Gröbner base algorithm,
which she knows to be very efficient.

I Problem: Jane has to learn the GAP and Singular languages and retype the
results in them. (error-prone)

I For the sake of example, we will work with n = 4, G = D4 (the dihedral group),
and p = 3 · X1 + 2 · X2, but our results apply to arbitrary values.

I Caveat: G is called “D4” in SageMath but “D8” in GAP due to differing
conventions in different mathematical communities

Kohlhase: Composing Math Software Systems: MitM 3 CAAT 2018

Running Example/Use Case: Jane’s Invariant Experiments

I Jane wants to experiment with invariant theory of finite groups.
I She works in the polynomial ring R = Z[X1, . . . ,Xn],
I Goal: construct an ideal I in R that is fixed by a group G ≤ Sn acting on the

variables, linking properties of G to properties of I and the quotient of R by I .
I Idea: pick some polynomial p from R and consider the ideal I of R that is generated

by all elements of the orbit O = Orbit(G ,R, p) ⊆ R.
I For effective further computation with I , she needs a Gröbner base of I .

I Jane is a SageMath user and wants to receive the result in SageMath, but she
wants to use GAP’s orbit algorithm and Singular’s Gröbner base algorithm,
which she knows to be very efficient.

I Problem: Jane has to learn the GAP and Singular languages and retype the
results in them. (error-prone)

I For the sake of example, we will work with n = 4, G = D4 (the dihedral group),
and p = 3 · X1 + 2 · X2, but our results apply to arbitrary values.

I Caveat: G is called “D4” in SageMath but “D8” in GAP due to differing
conventions in different mathematical communities

Kohlhase: Composing Math Software Systems: MitM 3 CAAT 2018

Running Example/Use Case: Jane’s Invariant Experiments

I Jane wants to experiment with invariant theory of finite groups.
I She works in the polynomial ring R = Z[X1, . . . ,Xn],
I Goal: construct an ideal I in R that is fixed by a group G ≤ Sn acting on the

variables, linking properties of G to properties of I and the quotient of R by I .
I Idea: pick some polynomial p from R and consider the ideal I of R that is generated

by all elements of the orbit O = Orbit(G ,R, p) ⊆ R.
I For effective further computation with I , she needs a Gröbner base of I .

I Jane is a SageMath user and wants to receive the result in SageMath, but she
wants to use GAP’s orbit algorithm and Singular’s Gröbner base algorithm,
which she knows to be very efficient.

I Problem: Jane has to learn the GAP and Singular languages and retype the
results in them. (error-prone)

I For the sake of example, we will work with n = 4, G = D4 (the dihedral group),
and p = 3 · X1 + 2 · X2, but our results apply to arbitrary values.

I Caveat: G is called “D4” in SageMath but “D8” in GAP due to differing
conventions in different mathematical communities

Kohlhase: Composing Math Software Systems: MitM 3 CAAT 2018

Running Example/Use Case: Jane’s Invariant Experiments

I Jane wants to experiment with invariant theory of finite groups.
I She works in the polynomial ring R = Z[X1, . . . ,Xn],
I Goal: construct an ideal I in R that is fixed by a group G ≤ Sn acting on the

variables, linking properties of G to properties of I and the quotient of R by I .
I Idea: pick some polynomial p from R and consider the ideal I of R that is generated

by all elements of the orbit O = Orbit(G ,R, p) ⊆ R.
I For effective further computation with I , she needs a Gröbner base of I .

I Jane is a SageMath user and wants to receive the result in SageMath, but she
wants to use GAP’s orbit algorithm and Singular’s Gröbner base algorithm,
which she knows to be very efficient.

I Problem: Jane has to learn the GAP and Singular languages and retype the
results in them. (error-prone)

I For the sake of example, we will work with n = 4, G = D4 (the dihedral group),
and p = 3 · X1 + 2 · X2, but our results apply to arbitrary values.

I Caveat: G is called “D4” in SageMath but “D8” in GAP due to differing
conventions in different mathematical communities

Kohlhase: Composing Math Software Systems: MitM 3 CAAT 2018

1 Towards a Math VRE
— Interoperability via a Joint Meaning Space —

Kohlhase: Composing Math Software Systems: MitM 3 CAAT 2018

Interoperability in OpenDreamKit

I OpenDreamKit (ODK): EU Project 2015-19, 16 Partners
; build a “mathematical VRE (Virtual Research Environment) toolkit”

I ODK Approach: VRE by connecting existing OSS systems. (and improve them)

I Advantages: well-known Open Source Software
1. Let the specialists do what they do best and like (and avoid what they don’t)
2. collaboration exponentiates results
3. competition fosters innovation (+ no vendor lock-in)

I Problem: does an elliptic curve mean the same in GAP, SageMath, LMFDB?
I otherwise delegating computation becomes unsound
I storing data in a central KB becomes unsafe
I the user cannot interpret the results in an UI

I Idea: Need a common meaning space for safe distributed computation in a VRE!

Kohlhase: Composing Math Software Systems: MitM 4 CAAT 2018

Obtaining a Common Meaning Space for our VRE

I Three approaches for safe distributed computation/storage/UIs
peer to peer open standard industry standard

A B

C

D

EF

G

H

A B

C

D

EF

G

H
S

A B

C

D

EF

G

H

n2/2 translations 2n translations 2n − 2 translations
symmetric symmetric asymmetric

I Observation: We already have a “standard” for expressing the meaning of
concepts/objects/models: mathematical vernacular! (e.g. in math. documents)

I Problem: mathematical vernacular is too
I ambiguous: need a human to understand structure, words, and symbols
I redundant: every paper introduces slightly different notions.

I Math-in-the-Middle Paradigm: encode math knowledge in modular flexiformal
format as a frame of reference for joint meaning (OMDoc/MMT)

Kohlhase: Composing Math Software Systems: MitM 5 CAAT 2018

Standardization with Interfaces

I Problem: We are talking about knowledge-based systems (large investment)
I Problem: Knowledge is part of both the
I System ; system-specific representation requirements and release cycle
I Interoperability Standard ; stability and generality requirements.

I Idea: Open standard knowledge base with API theories

A B

C

D

EF

G

H
S

A B

C

D

EF

G

H

MitM

a b
c

d
ef

g

h

I Definition 1.1. API theories are
I system-near (import/export facilities maintained with system)
I declarative, in standard format (refine general theories, relation documented)

Kohlhase: Composing Math Software Systems: MitM 6 CAAT 2018

OpenMath System Dialects

I Observation: Every system has its own input language (optimized to domain)

I Idea: Abstract away from system surface languages (use internal syntax trees)

I Observation: There are two kinds of symbols in syntax trees of a system S
I constructors build primitive objects without involving computation, and
I operations compute objects from other objects.

I Definition 1.2. The API theories A(S) of S document them ; we can
represent the API of S as OpenMath objects with constants from A(S) (the
A(S)-objects). We call the set of A(S)-objects the system dialect of S .

I Idea: For each system S generate the API theories A(S) and a
serializer/deserializer into the system dialect: an OpenMath phrasebook.

I Progress: For system interoperability we only need to relate system dialects
meaningfully.

Kohlhase: Composing Math Software Systems: MitM 7 CAAT 2018

OpenMath System Dialects

I Observation: Every system has its own input language (optimized to domain)

I Idea: Abstract away from system surface languages (use internal syntax trees)

I Observation: There are two kinds of symbols in syntax trees of a system S
I constructors build primitive objects without involving computation, and
I operations compute objects from other objects.

I Definition 1.2. The API theories A(S) of S document them ; we can
represent the API of S as OpenMath objects with constants from A(S) (the
A(S)-objects). We call the set of A(S)-objects the system dialect of S .

I Idea: For each system S generate the API theories A(S) and a
serializer/deserializer into the system dialect: an OpenMath phrasebook.

I Progress: For system interoperability we only need to relate system dialects
meaningfully.

Kohlhase: Composing Math Software Systems: MitM 7 CAAT 2018

OpenMath System Dialects

I Observation: Every system has its own input language (optimized to domain)

I Idea: Abstract away from system surface languages (use internal syntax trees)

I Observation: There are two kinds of symbols in syntax trees of a system S
I constructors build primitive objects without involving computation, and
I operations compute objects from other objects.

I Definition 1.2. The API theories A(S) of S document them ; we can
represent the API of S as OpenMath objects with constants from A(S) (the
A(S)-objects). We call the set of A(S)-objects the system dialect of S .

I Idea: For each system S generate the API theories A(S) and a
serializer/deserializer into the system dialect: an OpenMath phrasebook.

I Progress: For system interoperability we only need to relate system dialects
meaningfully.

Kohlhase: Composing Math Software Systems: MitM 7 CAAT 2018

Meaning-Preserving Relations between System Dialects

I Definition 1.3. We call a pair of identifiers (a1, a2) that describe the same
mathematical concept an alignment.
We call an alignment perfect, if it induces a total, truth-preserving translation.

(e.g. alignment up to argument order)

I Intuition: Alignments don’t need to be perfect to be useful!
I Alignment up to Totality of Functions (e.g. division undefined on 0 and with x

0 = 0)
I Alignment for Certain Arguments (e.g. Addition on natural numbers and addition on

real numbers)
I Alignment up to Associativity (e.g. binary addition and “sequential” addition)

They still allow for translating expressions between libraries. (under certain
conditions)

Kohlhase: Composing Math Software Systems: MitM 8 CAAT 2018

MitM-Based Distributed Computation

I Observation: For interoperability between systems A and B with OpenMath
phrasebooks and API theories, we only need
1. a way of transporting OpenMath objects between systems A and B
2. a system dialect mediator that translates A-objects into B-objects based on

alignments.

I Idea: Mediator-based architecture
System A OM I/O OM I/O Mediator OM I/O System BOM I/OSCSCP SCSCP

I Idea for 1.: translate A-objects to B-objects in two steps: A to ontology and
ontology to B.
Implemented in [Mül+17] based on the MMT system [Rab13; MMT], which
implements the OMDoc/MMT format.

I Idea for 2.: Use the OpenMath SCSCP (Symbolic Computation Software
Composability) protocol [Fre+] for that.
Implemented SCSCP clients/server by for various OpenDreamKit systems.

Kohlhase: Composing Math Software Systems: MitM 9 CAAT 2018

2 Realizing MitM Interoperability
– The Computational Group Theory Case Study –

Kohlhase: Composing Math Software Systems: MitM 9 CAAT 2018

2.1 Modular Knowledge Representation

Kohlhase: Composing Math Software Systems: MitM 9 CAAT 2018

Modular Representation of Math (MMT Example)

I Example 2.1 (Elementary Algebra and Arithmetics).

Magma
G , ◦ : G → G → G

Abelian

c : `x◦y=y◦x

SemiGrp

assoc : `(x◦y)◦z=x◦(y◦z)

Monoid
e : G
neutl : `x◦e=x

neutr : `e◦x=x

Group
i : =λx.ιy.x◦y=e

inv : `∀x : G.∃1y : G.x◦y=e

NonGrpMon

ni : `∃x : G.∀y : G.x◦y 6=e

AbelGroup

Ring
dom : `G m/◦=G a/◦
distl : `x m/◦ (y a/◦ z)=(x m/◦ y) a/◦ (x m/◦ z)

distr : `(y a/◦ z) m/◦ x=(y m/◦ x) a/◦ (z m/◦ x)

NatNums
N, N+, 0 : N, s : N→ N+

P3,. . . ,P5

NatPlus
+: N→ N→ N
base : n+0=n,
step : n+s(m)=s(n+m)

NatPlusTimes
· : N→ N→ N
base : n·0=0,
stepn·s(m)=n·m+n

IntArith
Z, − : Z→ Z
dom : `Z=p/N∪n/N+

dneg : `−−z=z

ϕ =

 G 7→ N
◦ 7→ ·
e 7→ 1


ψ =

 G 7→ N
◦ 7→ +
e 7→ 0


ψ′ =

{
i 7→ −
g 7→ f

}
ϑ =

{
m 7→ e
a 7→ c

}

p n

e :ϕ

f :ψ

d :ψ′

g

c :ϕ

ng

a

m

i : ϑ

s : {x◦y 7→y◦x}

Kohlhase: Composing Math Software Systems: MitM 10 CAAT 2018

Representing Logics and Foundations as Theories

I Example 2.2. Logics and foundations represented as MMT theories

LF LF+X

FOL HOL

Monoid CGroup Ring

ZFC

f2h

add

mult

folsem

mod

I Definition 2.3. Meta-relation between theories – special case of inclusion

I Uniform Meaning Space: morphisms between formalizations in different logics
become possible via meta-morphisms.

I Remark 2.4. Semantics of logics as views into foundations, e.g., folsem.
I Remark 2.5. Models represented as views into foundations (e.g. ZFC)
I Example 2.6. mod := {G 7→ Z, ◦ 7→ +, e 7→ 0} interprets Monoid in ZFC.

Kohlhase: Composing Math Software Systems: MitM 11 CAAT 2018

A MitM Theory in MMT Surface Language

I Example 2.7. A theory of Groups

I Declaration =̂
name : type [= Def] [# notation]

I Axioms =̂ Declaration with type ` F

I ModelsOf makes a record type from a theory.

I MitM Foundation: optimized for natural math formulation
I higher-order logic based on polymorphic λ-calculus
I judgements-as-types paradigm: ` F =̂ type of proofs of F
I dependent types with predicate subtyping, e.g. {n}{′a ∈ mat(n, n)|symm(a)′}
I (dependent) record types for reflecting theories

Kohlhase: Composing Math Software Systems: MitM 12 CAAT 2018

MitM Computational Group Theory

I Four levels of modeling (Following the GAP template)
I Abstract Level: the group axioms, generating sets, homomorphisms, group actions,

stabilisers, orbits, centralizers, normalizers.
I Representation Level: axiomatizations concrete objects suitable for computation –

permutation groups, matrix groups, . . . , also group actions, group homomorphism
I Implementation Level: permutation groups as subgroups of SN+, concretely S[1,...,n].
I Concrete Level: where actual computations happen.

I Alignments between the MitM Ontology and the GAP API
Level

abstract

repn.

impl.

concrete

MitM Ontology

Abstract GT

Permutation
Groups

Matrix
Groups

Finitely
Presented
Groups

G ≤ Symmetric([1..n]) G ≤ GL(n,F) G = Fn/K

Mathieu(11) ≤ Symmetric([1..11])

GAP API

IsGroup

IsPermGroup IsMatrixGroup IsFpGroup

Group((1,2,3))
Group([[0, 1], [2, 0]])

MathieuGroup(11)

Kohlhase: Composing Math Software Systems: MitM 13 CAAT 2018

2.2 API Theories for Computer Algebra Systems

Kohlhase: Composing Math Software Systems: MitM 13 CAAT 2018

SageMath, GAP, and Singular API Theories/Phrasebooks

I Observation: Most of the information is already present in mature systems
I name/type information of constructors and operations.
I existing API documentation for flexiformal specification.

I SageMath: extracting 500+ API theories
I type information by “categories” where possible, else introspection of Python

classes/method call patterns
I Phrasebook via Python’s pickling infrastructure (full structure sharing)

I GAP: existing phrasebook adapted to 350+ API theories
I very good, structured API documentation (found 3000 structure errors)
I regularized constructor calls in ca. 2400 places (performance gain by typed method

dispatch?)

I Singular: thanks to Sebastian Gutsche
I return types are missing ; infer from call patterns C++ parsing
I documentation strings are often semi-structured ; string-scraping

Kohlhase: Composing Math Software Systems: MitM 14 CAAT 2018

SageMath, GAP, and Singular API Theories/Phrasebooks

I Observation: Most of the information is already present in mature systems
I name/type information of constructors and operations.
I existing API documentation for flexiformal specification.

I SageMath: extracting 500+ API theories
I type information by “categories” where possible, else introspection of Python

classes/method call patterns
I Phrasebook via Python’s pickling infrastructure (full structure sharing)

I GAP: existing phrasebook adapted to 350+ API theories
I very good, structured API documentation (found 3000 structure errors)
I regularized constructor calls in ca. 2400 places (performance gain by typed method

dispatch?)

I Singular: thanks to Sebastian Gutsche
I return types are missing ; infer from call patterns C++ parsing
I documentation strings are often semi-structured ; string-scraping

Kohlhase: Composing Math Software Systems: MitM 14 CAAT 2018

SageMath, GAP, and Singular API Theories/Phrasebooks

I Observation: Most of the information is already present in mature systems
I name/type information of constructors and operations.
I existing API documentation for flexiformal specification.

I SageMath: extracting 500+ API theories
I type information by “categories” where possible, else introspection of Python

classes/method call patterns
I Phrasebook via Python’s pickling infrastructure (full structure sharing)

I GAP: existing phrasebook adapted to 350+ API theories
I very good, structured API documentation (found 3000 structure errors)
I regularized constructor calls in ca. 2400 places (performance gain by typed method

dispatch?)

I Singular: thanks to Sebastian Gutsche
I return types are missing ; infer from call patterns C++ parsing
I documentation strings are often semi-structured ; string-scraping

Kohlhase: Composing Math Software Systems: MitM 14 CAAT 2018

SageMath, GAP, and Singular API Theories/Phrasebooks

I Observation: Most of the information is already present in mature systems
I name/type information of constructors and operations.
I existing API documentation for flexiformal specification.

I SageMath: extracting 500+ API theories
I type information by “categories” where possible, else introspection of Python

classes/method call patterns
I Phrasebook via Python’s pickling infrastructure (full structure sharing)

I GAP: existing phrasebook adapted to 350+ API theories
I very good, structured API documentation (found 3000 structure errors)
I regularized constructor calls in ca. 2400 places (performance gain by typed method

dispatch?)

I Singular: thanks to Sebastian Gutsche
I return types are missing ; infer from call patterns C++ parsing
I documentation strings are often semi-structured ; string-scraping

Kohlhase: Composing Math Software Systems: MitM 14 CAAT 2018

The SageMath API Theories

I API theories can be automatically exported from SageMath categories
(in-memory structures)

I Problem: SageMath relies on the Python object system where categories are
missing

I Solution?: Introspection of method calls for “typical SageMath objects.(what are
the mathematically meaningful methods?)

I Future: The (ongoing) port of SageMath to Python 3, will enable gradual typing
(MitM type inference?)

Kohlhase: Composing Math Software Systems: MitM 15 CAAT 2018

The SageMath Phrasebook

I For the SageMath phrasebook we use Python serialization/deserialization
I Example 2.8. The dihedral group D4 is serialized to

pg_unreduce = unpickle_global(’sage.structure.unique_representation’, ’unreduce’)
pg_DihedralGroup =

unpickle_global(’sage.groups.perm_gps.permgroup_named’, ’DihedralGroup’)
pg_make_integer = unpickle_global(’sage.rings.integer’, ’make_integer’)
pg_unreduce(pg_DihedralGroup, (pg_make_integer(’4’),), {})

I This is already very close to the SageMath system dialect.
I Extend the Python deserializer to generate OpenMath objects from the

constructors.
I We profit from the optimizations (structure sharing) in Python.

Kohlhase: Composing Math Software Systems: MitM 16 CAAT 2018

The GAP API Theories and Phrasebook

I GAP exports types, constructors, functions, data, and their documentation from
type system and documentation.

This exercise revealed ca. 2000 documentation inconsistencies
I GAP phrasebook serializes/de-serializes OpenMath in JSON and XML
I GAP source code was refactored with ca. 700+1700 constructor macros

(independently useful for static typing Markus Pfeiffer)

Kohlhase: Composing Math Software Systems: MitM 17 CAAT 2018

2.3 Alignments: Glueing System APIs and MitM
together

Kohlhase: Composing Math Software Systems: MitM 17 CAAT 2018

Meaning-Preserving Relations between System Dialects

I Definition 2.9. We call a pair of identifiers (a1, a2) that describe the same
mathematical concept an alignment.
We call an alignment perfect, if it induces a total, truth-preserving translation.

(e.g. alignment up to argument order)

I Intuition: Alignments don’t need to be perfect to be useful!
I Alignment up to Totality of Functions (e.g. division undefined on 0 and with x

0 = 0)
I Alignment for Certain Arguments (e.g. Addition on natural numbers and addition on

real numbers)
I Alignment up to Associativity (e.g. binary addition and “sequential” addition)

They still allow for translating expressions between libraries. (under certain
conditions)

Kohlhase: Composing Math Software Systems: MitM 18 CAAT 2018

Addition on Natural Numbers

I Constructive Type Theory: defined as fixed point of some equation (e.g. Coq,
Matita)
In our syntax:

coq:?Init/Nat?add matita:?nat/plus?plus direction="both"
I Addition defined more generically (restricted to natural numbers via subtyping)

(e.g. HOL Light, HOL4, PVS)
coq:?Init/Nat?add pvs:/Prelude?number_fields?+ direction=”forward”

I Set theories: least straight-forward; often primitive recursion (e.g. Isabelle/ZFm
Mizar)
Mizar: Ordinal addition → rational addition → R+ → R→ C and finally
restricted to N.

Kohlhase: Composing Math Software Systems: MitM 19 CAAT 2018

Collecting Alignments

I Git repository at https://gl.mathhub.info/alignments/Public
I text files with one alignment per line
I hundreds of manual alignments (students at Jacobs University)
I thousands of alignments by AI techniques (Cezary Kaliszyk’s group)
I anyone can add new alignments (using pull requests).

I The more alignments we have, the more useful they are
Submit your alignments!

Kohlhase: Composing Math Software Systems: MitM 20 CAAT 2018

https://gl.mathhub.info/alignments/Public

The Knowledge Graph for MitM, SageMath, GAP, Singular

Kohlhase: Composing Math Software Systems: MitM 21 CAAT 2018

2.4 MitM-based Distributed Computation

Kohlhase: Composing Math Software Systems: MitM 21 CAAT 2018

Jane’s Use case in the MitM System

I In SageMath Jane has already built the ring R = Z[X1,X2,X3,X4], the group
G = D4, the action A of G on R that permutes the variables, and
p = 3 · X1 + 2 · X2.

I She calls
o = MitM.Gap.orbit(G,A,p) # the orbit
i = MitM.Singular(o).Ideal() # the ideal
g = i.Groebner().sage() # the Groebner basis

I The MitM server translates MitM.Gap.orbit(G,A,p) to the GAP system dialect and
sends it to GAP.

I GAP returns the orbit: O = [3X1 + 2X2, 2X3 + 3X4, 3X2 + 2X3, 3X3 +
2X4, 2X2 + 3X3, 3X1 + 2X4, 2X1 + 3X4, 2X1 + 3X2]

I The MitM server translates MitM.Singular(O).Ideal().Groebner() to the Singular
system dialect and sends it to Singular..

I Singular returns the Gröbner base B.
I The MitM server translates B to the SageMath system dialect and sends it to

SageMath, where the result is shown to Jane.

B = [X1 − X4,X2 − X4,X3 − X4, 5 ∗ X4] .

Kohlhase: Composing Math Software Systems: MitM 22 CAAT 2018

Jane’s Use case in the MitM System

I In SageMath Jane has already built the ring R = Z[X1,X2,X3,X4], the group
G = D4, the action A of G on R that permutes the variables, and
p = 3 · X1 + 2 · X2.

I She calls
o = MitM.Gap.orbit(G,A,p) # the orbit
i = MitM.Singular(o).Ideal() # the ideal
g = i.Groebner().sage() # the Groebner basis

I The MitM server translates MitM.Gap.orbit(G,A,p) to the GAP system dialect and
sends it to GAP.

I GAP returns the orbit: O = [3X1 + 2X2, 2X3 + 3X4, 3X2 + 2X3, 3X3 +
2X4, 2X2 + 3X3, 3X1 + 2X4, 2X1 + 3X4, 2X1 + 3X2]

I The MitM server translates MitM.Singular(O).Ideal().Groebner() to the Singular
system dialect and sends it to Singular..

I Singular returns the Gröbner base B.
I The MitM server translates B to the SageMath system dialect and sends it to

SageMath, where the result is shown to Jane.

B = [X1 − X4,X2 − X4,X3 − X4, 5 ∗ X4] .

Kohlhase: Composing Math Software Systems: MitM 22 CAAT 2018

Jane’s Use case in the MitM System

I In SageMath Jane has already built the ring R = Z[X1,X2,X3,X4], the group
G = D4, the action A of G on R that permutes the variables, and
p = 3 · X1 + 2 · X2.

I She calls
o = MitM.Gap.orbit(G,A,p) # the orbit
i = MitM.Singular(o).Ideal() # the ideal
g = i.Groebner().sage() # the Groebner basis

I The MitM server translates MitM.Gap.orbit(G,A,p) to the GAP system dialect and
sends it to GAP.

I GAP returns the orbit: O = [3X1 + 2X2, 2X3 + 3X4, 3X2 + 2X3, 3X3 +
2X4, 2X2 + 3X3, 3X1 + 2X4, 2X1 + 3X4, 2X1 + 3X2]

I The MitM server translates MitM.Singular(O).Ideal().Groebner() to the Singular
system dialect and sends it to Singular..

I Singular returns the Gröbner base B.
I The MitM server translates B to the SageMath system dialect and sends it to

SageMath, where the result is shown to Jane.

B = [X1 − X4,X2 − X4,X3 − X4, 5 ∗ X4] .

Kohlhase: Composing Math Software Systems: MitM 22 CAAT 2018

Jane’s Use case in the MitM System

I In SageMath Jane has already built the ring R = Z[X1,X2,X3,X4], the group
G = D4, the action A of G on R that permutes the variables, and
p = 3 · X1 + 2 · X2.

I She calls
o = MitM.Gap.orbit(G,A,p) # the orbit
i = MitM.Singular(o).Ideal() # the ideal
g = i.Groebner().sage() # the Groebner basis

I The MitM server translates MitM.Gap.orbit(G,A,p) to the GAP system dialect and
sends it to GAP.

I GAP returns the orbit: O = [3X1 + 2X2, 2X3 + 3X4, 3X2 + 2X3, 3X3 +
2X4, 2X2 + 3X3, 3X1 + 2X4, 2X1 + 3X4, 2X1 + 3X2]

I The MitM server translates MitM.Singular(O).Ideal().Groebner() to the Singular
system dialect and sends it to Singular..

I Singular returns the Gröbner base B.
I The MitM server translates B to the SageMath system dialect and sends it to

SageMath, where the result is shown to Jane.

B = [X1 − X4,X2 − X4,X3 − X4, 5 ∗ X4] .

Kohlhase: Composing Math Software Systems: MitM 22 CAAT 2018

Jane’s Use case in the MitM System

I In SageMath Jane has already built the ring R = Z[X1,X2,X3,X4], the group
G = D4, the action A of G on R that permutes the variables, and
p = 3 · X1 + 2 · X2.

I She calls
o = MitM.Gap.orbit(G,A,p) # the orbit
i = MitM.Singular(o).Ideal() # the ideal
g = i.Groebner().sage() # the Groebner basis

I The MitM server translates MitM.Gap.orbit(G,A,p) to the GAP system dialect and
sends it to GAP.

I GAP returns the orbit: O = [3X1 + 2X2, 2X3 + 3X4, 3X2 + 2X3, 3X3 +
2X4, 2X2 + 3X3, 3X1 + 2X4, 2X1 + 3X4, 2X1 + 3X2]

I The MitM server translates MitM.Singular(O).Ideal().Groebner() to the Singular
system dialect and sends it to Singular..

I Singular returns the Gröbner base B.
I The MitM server translates B to the SageMath system dialect and sends it to

SageMath, where the result is shown to Jane.

B = [X1 − X4,X2 − X4,X3 − X4, 5 ∗ X4] .

Kohlhase: Composing Math Software Systems: MitM 22 CAAT 2018

Jane’s Use case in the MitM System

I In SageMath Jane has already built the ring R = Z[X1,X2,X3,X4], the group
G = D4, the action A of G on R that permutes the variables, and
p = 3 · X1 + 2 · X2.

I She calls
o = MitM.Gap.orbit(G,A,p) # the orbit
i = MitM.Singular(o).Ideal() # the ideal
g = i.Groebner().sage() # the Groebner basis

I The MitM server translates MitM.Gap.orbit(G,A,p) to the GAP system dialect and
sends it to GAP.

I GAP returns the orbit: O = [3X1 + 2X2, 2X3 + 3X4, 3X2 + 2X3, 3X3 +
2X4, 2X2 + 3X3, 3X1 + 2X4, 2X1 + 3X4, 2X1 + 3X2]

I The MitM server translates MitM.Singular(O).Ideal().Groebner() to the Singular
system dialect and sends it to Singular..

I Singular returns the Gröbner base B.

I The MitM server translates B to the SageMath system dialect and sends it to
SageMath, where the result is shown to Jane.

B = [X1 − X4,X2 − X4,X3 − X4, 5 ∗ X4] .

Kohlhase: Composing Math Software Systems: MitM 22 CAAT 2018

Jane’s Use case in the MitM System

I In SageMath Jane has already built the ring R = Z[X1,X2,X3,X4], the group
G = D4, the action A of G on R that permutes the variables, and
p = 3 · X1 + 2 · X2.

I She calls
o = MitM.Gap.orbit(G,A,p) # the orbit
i = MitM.Singular(o).Ideal() # the ideal
g = i.Groebner().sage() # the Groebner basis

I The MitM server translates MitM.Gap.orbit(G,A,p) to the GAP system dialect and
sends it to GAP.

I GAP returns the orbit: O = [3X1 + 2X2, 2X3 + 3X4, 3X2 + 2X3, 3X3 +
2X4, 2X2 + 3X3, 3X1 + 2X4, 2X1 + 3X4, 2X1 + 3X2]

I The MitM server translates MitM.Singular(O).Ideal().Groebner() to the Singular
system dialect and sends it to Singular..

I Singular returns the Gröbner base B.
I The MitM server translates B to the SageMath system dialect and sends it to

SageMath, where the result is shown to Jane.

B = [X1 − X4,X2 − X4,X3 − X4, 5 ∗ X4] .

Kohlhase: Composing Math Software Systems: MitM 22 CAAT 2018

Distributed Computational Group Theory

I Combine SCSCP enabled GAP, SageMath, and Singular with MMT mediator.

Sage MMT
Mediator GAP

Singular

1: orbit(G ,A, p)@Sa 2: orbit(G ,A, p)@G

3: O@G

4: O.i .p@Si5: B@Si

6: B@Sa

I Nucleus of the OpenDreamKit interoperability layer.
Delegate computations between systems if exchanged objects are covered
by the MitM ontology, the API theories, and the alignments

Kohlhase: Composing Math Software Systems: MitM 23 CAAT 2018

Distributed Computational Group Theory

I Combine SCSCP enabled GAP, SageMath, and Singular with MMT mediator.

Sage MMT
Mediator GAP

Singular

1: orbit(G ,A, p)@Sa

2: orbit(G ,A, p)@G

3: O@G

4: O.i .p@Si5: B@Si

6: B@Sa

I Nucleus of the OpenDreamKit interoperability layer.
Delegate computations between systems if exchanged objects are covered
by the MitM ontology, the API theories, and the alignments

Kohlhase: Composing Math Software Systems: MitM 23 CAAT 2018

Distributed Computational Group Theory

I Combine SCSCP enabled GAP, SageMath, and Singular with MMT mediator.

Sage MMT
Mediator GAP

Singular

1: orbit(G ,A, p)@Sa 2: orbit(G ,A, p)@G

3: O@G

4: O.i .p@Si5: B@Si

6: B@Sa

I Nucleus of the OpenDreamKit interoperability layer.
Delegate computations between systems if exchanged objects are covered
by the MitM ontology, the API theories, and the alignments

Kohlhase: Composing Math Software Systems: MitM 23 CAAT 2018

Distributed Computational Group Theory

I Combine SCSCP enabled GAP, SageMath, and Singular with MMT mediator.

Sage MMT
Mediator GAP

Singular

1: orbit(G ,A, p)@Sa 2: orbit(G ,A, p)@G

3: O@G

4: O.i .p@Si5: B@Si

6: B@Sa

I Nucleus of the OpenDreamKit interoperability layer.
Delegate computations between systems if exchanged objects are covered
by the MitM ontology, the API theories, and the alignments

Kohlhase: Composing Math Software Systems: MitM 23 CAAT 2018

Distributed Computational Group Theory

I Combine SCSCP enabled GAP, SageMath, and Singular with MMT mediator.

Sage MMT
Mediator GAP

Singular

1: orbit(G ,A, p)@Sa 2: orbit(G ,A, p)@G

3: O@G

4: O.i .p@Si

5: B@Si

6: B@Sa

I Nucleus of the OpenDreamKit interoperability layer.
Delegate computations between systems if exchanged objects are covered
by the MitM ontology, the API theories, and the alignments

Kohlhase: Composing Math Software Systems: MitM 23 CAAT 2018

Distributed Computational Group Theory

I Combine SCSCP enabled GAP, SageMath, and Singular with MMT mediator.

Sage MMT
Mediator GAP

Singular

1: orbit(G ,A, p)@Sa 2: orbit(G ,A, p)@G

3: O@G

4: O.i .p@Si5: B@Si

6: B@Sa

I Nucleus of the OpenDreamKit interoperability layer.
Delegate computations between systems if exchanged objects are covered
by the MitM ontology, the API theories, and the alignments

Kohlhase: Composing Math Software Systems: MitM 23 CAAT 2018

Distributed Computational Group Theory

I Combine SCSCP enabled GAP, SageMath, and Singular with MMT mediator.

Sage MMT
Mediator GAP

Singular

1: orbit(G ,A, p)@Sa 2: orbit(G ,A, p)@G

3: O@G

4: O.i .p@Si5: B@Si

6: B@Sa

I Nucleus of the OpenDreamKit interoperability layer.
Delegate computations between systems if exchanged objects are covered
by the MitM ontology, the API theories, and the alignments

Kohlhase: Composing Math Software Systems: MitM 23 CAAT 2018

Future Use Case (Steve is Jane’s Colleague)

I Steve prefers working in GAP, and he wants to compute the Galois group of the
rational polynomial p = x5 − 2.

I He discovers the GAP package radiroot (does not work for p)

I Jane suggests PARI/GP: he calls (once that is MitM-connected)
G := MitM("PARIGP","GaloisGroup",p) from PARI/GP which gives him the desired
Galois group as a GAP permutation group.

I Steve repeats Jane’s experiments on G, without leaving GAP.
I Finally, Steve installs a GAP method by calling

InstallMethod(GaloisGroup, "for a polynomial", [IsUnivariatePolynomial],
p −> MitM("PARIGP", "GaloisGroup", p))

; extends GaloisGroup to rational polynomials in GAP.
I This replaces a significant part of the 1800-LoC radiroot package (by PARI/GP

delegation)

Kohlhase: Composing Math Software Systems: MitM 24 CAAT 2018

Future Use Case (Steve is Jane’s Colleague)

I Steve prefers working in GAP, and he wants to compute the Galois group of the
rational polynomial p = x5 − 2.

I He discovers the GAP package radiroot (does not work for p)
I Jane suggests PARI/GP: he calls (once that is MitM-connected)

G := MitM("PARIGP","GaloisGroup",p) from PARI/GP which gives him the desired
Galois group as a GAP permutation group.

I Steve repeats Jane’s experiments on G, without leaving GAP.
I Finally, Steve installs a GAP method by calling

InstallMethod(GaloisGroup, "for a polynomial", [IsUnivariatePolynomial],
p −> MitM("PARIGP", "GaloisGroup", p))

; extends GaloisGroup to rational polynomials in GAP.
I This replaces a significant part of the 1800-LoC radiroot package (by PARI/GP

delegation)

Kohlhase: Composing Math Software Systems: MitM 24 CAAT 2018

Future Use Case (Steve is Jane’s Colleague)

I Steve prefers working in GAP, and he wants to compute the Galois group of the
rational polynomial p = x5 − 2.

I He discovers the GAP package radiroot (does not work for p)
I Jane suggests PARI/GP: he calls (once that is MitM-connected)

G := MitM("PARIGP","GaloisGroup",p) from PARI/GP which gives him the desired
Galois group as a GAP permutation group.

I Steve repeats Jane’s experiments on G, without leaving GAP.

I Finally, Steve installs a GAP method by calling
InstallMethod(GaloisGroup, "for a polynomial", [IsUnivariatePolynomial],

p −> MitM("PARIGP", "GaloisGroup", p))

; extends GaloisGroup to rational polynomials in GAP.
I This replaces a significant part of the 1800-LoC radiroot package (by PARI/GP

delegation)

Kohlhase: Composing Math Software Systems: MitM 24 CAAT 2018

Future Use Case (Steve is Jane’s Colleague)

I Steve prefers working in GAP, and he wants to compute the Galois group of the
rational polynomial p = x5 − 2.

I He discovers the GAP package radiroot (does not work for p)
I Jane suggests PARI/GP: he calls (once that is MitM-connected)

G := MitM("PARIGP","GaloisGroup",p) from PARI/GP which gives him the desired
Galois group as a GAP permutation group.

I Steve repeats Jane’s experiments on G, without leaving GAP.
I Finally, Steve installs a GAP method by calling

InstallMethod(GaloisGroup, "for a polynomial", [IsUnivariatePolynomial],
p −> MitM("PARIGP", "GaloisGroup", p))

; extends GaloisGroup to rational polynomials in GAP.
I This replaces a significant part of the 1800-LoC radiroot package (by PARI/GP

delegation)

Kohlhase: Composing Math Software Systems: MitM 24 CAAT 2018

3 Integrating Mathematical Knowledge/Object Bases

Kohlhase: Composing Math Software Systems: MitM 24 CAAT 2018

Mathematical Knowledge Sources (MKS)

I Generic information systems (Wikipedia)

I Informal mathematical document collections (Cornell preprint arXiv)
I Literature information systems (zbMATH, MathSciNet)
I Mathematical object databases (GAP libraries, OEIS, LMFDB)
I Formal theorem prover libraries (Mizar, Coq, PVS, HOL)
I We will concentrate on mathematical object databases here.

Kohlhase: Composing Math Software Systems: MitM 25 CAAT 2018

Mathematical Knowledge Sources (MKS)

I Generic information systems (Wikipedia)
I Informal mathematical document collections (Cornell preprint arXiv)

I Literature information systems (zbMATH, MathSciNet)
I Mathematical object databases (GAP libraries, OEIS, LMFDB)
I Formal theorem prover libraries (Mizar, Coq, PVS, HOL)
I We will concentrate on mathematical object databases here.

Kohlhase: Composing Math Software Systems: MitM 25 CAAT 2018

Mathematical Knowledge Sources (MKS)

I Generic information systems (Wikipedia)
I Informal mathematical document collections (Cornell preprint arXiv)
I Literature information systems (zbMATH, MathSciNet)

I Mathematical object databases (GAP libraries, OEIS, LMFDB)
I Formal theorem prover libraries (Mizar, Coq, PVS, HOL)
I We will concentrate on mathematical object databases here.

Kohlhase: Composing Math Software Systems: MitM 25 CAAT 2018

Mathematical Knowledge Sources (MKS)

I Generic information systems (Wikipedia)
I Informal mathematical document collections (Cornell preprint arXiv)
I Literature information systems (zbMATH, MathSciNet)
I Mathematical object databases (GAP libraries, OEIS, LMFDB)

I Formal theorem prover libraries (Mizar, Coq, PVS, HOL)
I We will concentrate on mathematical object databases here.

Kohlhase: Composing Math Software Systems: MitM 25 CAAT 2018

Mathematical Knowledge Sources (MKS)

I Generic information systems (Wikipedia)
I Informal mathematical document collections (Cornell preprint arXiv)
I Literature information systems (zbMATH, MathSciNet)
I Mathematical object databases (GAP libraries, OEIS, LMFDB)
I Formal theorem prover libraries (Mizar, Coq, PVS, HOL)

|− the_kepler_conjecture <=>
(!V. packing V

==> (?c. !r. &1 <= r
==> &(CARD(V INTER ball(vec 0,r))) <=

pi ∗ r pow 3 / sqrt(&18) + c ∗ r pow 2))

I We will concentrate on mathematical object databases here.

Kohlhase: Composing Math Software Systems: MitM 25 CAAT 2018

Mathematical Knowledge Sources (MKS)

I Generic information systems (Wikipedia)
I Informal mathematical document collections (Cornell preprint arXiv)
I Literature information systems (zbMATH, MathSciNet)
I Mathematical object databases (GAP libraries, OEIS, LMFDB)
I Formal theorem prover libraries (Mizar, Coq, PVS, HOL)
I We will concentrate on mathematical object databases here.

Kohlhase: Composing Math Software Systems: MitM 25 CAAT 2018

Searching in OEIS

I Question: Find all sequences starting with 0, 1, 1, 2, 3, 5, 8

Kohlhase: Composing Math Software Systems: MitM 26 CAAT 2018

Searching in in the LMFDB

I Question: Find all cyclic transitive groups

I Problem: But what if I want to compute with them?

Kohlhase: Composing Math Software Systems: MitM 27 CAAT 2018

MitM-based Integration of Math Knowledge Bases

I Requirements:
I a uniformal programatic API to multiple MKB
I interacting with MKB at the “mathematics Level”.

I Idea: use the Math-in-the-Middle Paradigm
I OMDoc/MMT-based API theories for the mathematical interface (; MKB records

as OM objects)
I alignments into MitM Ontology (for OM-dialect mediation)
I extend MMT’s built-in query language QMT to general Math query language

I Problems:
I MKB tables become OMDoc/MMT theories (size problems)
I how to reconcile MKB records with OMDoc/MMT terms. (encoding/decoding)
I tow to translate math-level queries to physical database queries

Kohlhase: Composing Math Software Systems: MitM 28 CAAT 2018

4 Virtual Theories

Kohlhase: Composing Math Software Systems: MitM 28 CAAT 2018

LMFDB Data (Database Level)

I Example 4.1 (A transitive group represented in in LMFDB).

{
"ab": 1,
"arith_equiv": 0,
"auts": 1,
"cyc": 1,
"label": "1T1",
"n": 1,
...

}

Legend: for understanding them (LMFDB improved documentation)
I the cyc field represents being cyclic (0 is false, 1 is true)
I the n field represents degree (IEEE Float 1 corresponds to 1 ∈ N)
I . . .

Two Problems: that have to be solved for MitM integration
I I data base schema is not at the mathematical level (let alone interoperable)
I values are encoded for MongoDB convenience (what do they mean?)

Kohlhase: Composing Math Software Systems: MitM 29 CAAT 2018

Codecs: Encoding and Decoding Database Values

I Definition 4.2 (Codec). A codec consists of two functions that translate
between semantic types and realized types.

I

Codecs
codec : type→ type
StandardPos : codec Z+ JSON number if small enough, else JSON

string of decimal expansion
StandardNat :codec N
StandardInt :codec Z
IntAsArray :codec Z JSON List of Numbers
IntAsString :codec Z JSON String of decimal expansion
StandardBool :codec B JSON Booleans
BoolAsInt :codec B JSON Numbers 0 or 1
StandardString :codec S JSON Strings

I StandardInt decodes 1 into the float 1, but 254 into the string "18014398509481984"

Kohlhase: Composing Math Software Systems: MitM 30 CAAT 2018

Elliptic Curve Code Operators

{
"degree": 1,
"x−coordinates_of_integral_points": "[5,16]",
"isogeny_matrix": [[1,5,25],[5,1,5],[25,5,1]],
"label": "11a1",
"_id": "ObjectId(’4f71d4304d47869291435e6e’)",
...

}

I Matrix in the isogeny_matrix field

I

 1 5 25
5 1 5
25 5 1


I represented as [[1,5,25],[5,1,5],[25,5,1]]

Kohlhase: Composing Math Software Systems: MitM 31 CAAT 2018

Codec Operator Examples

I Definition 4.3 (Codec Operator). A codec operator is a function which takes
a codec, a set of parameters, and returns a codec.

I Codecs (continued)
StandardList : codec T → codec List(T) JSON list, recursively coding

each element of the list
StandardVector : codec T → codec Vector(n,T) JSON list of fixed length n
StandardMatrix : codec T → codec Matrix(n,m,T) JSON list of n lists of length m

I StandardMatrix(StandardInt, 3, 3) generates the codec we used for the isogeny
matrix

Kohlhase: Composing Math Software Systems: MitM 32 CAAT 2018

Our approach: Virtual Theories

Numbers
Z+ : type
Z : type
Z+ ⊂ Z

Matrices
matrix : type→ Z+ → Z+ → type

Codecs
codec : type→ type
standardInt : codec Z
standardMatrix : {T , n,m} codec T → codec matrix(n,m,T)

Elliptic Curve
ec : type
from_record : record→ ec
curveDegree : ec→ Z
isogenyMatrix : ec→ matrix(3, 3,Z)

Elliptic Curve Schema Theory
degree ?implements curveDegree

?codec StandardInt
isogeny_matrix ?implements isogenyMatrix

?codec StandardMatrix(3, 3, StandardInt)

lmfdb Elliptic Curves

Elliptic Curve Database Theory
11a1 : ec = . . .
11a2 : ec = . . .
. . .

lazily loads from implements

describes

Kohlhase: Composing Math Software Systems: MitM 33 CAAT 2018

An Example of a Query

I Example 4.4. Finding all cyclic transitive groups in LMFDB (recall from above)

x in (related to (literal ‘lmfdb:db/transitivegroups?group) by (object declares))
| holds x (x cyclic x ∗=∗ true)

I This example does not rely on the internal structure of LMFDB
I can be translated into an LMFDB query using the just-defined codecs theory
I http://www.lmfdb.org/api/transitivegroups/groups/?cyc=1

Kohlhase: Composing Math Software Systems: MitM 34 CAAT 2018

http://www.lmfdb.org/api/transitivegroups/groups/?cyc=1

Conclusion

I For a VRE from Open Source Systems we need a uniform meaning space.
(promise/danger in the communication)

I Idea: Center system API theories around the shared math knowledge
(Math-in-the-Middle Ontology)

I Idea: Represent it as OMDoc/MMT Theory graphs (profit from the MMT
system and SCSCP)
Use MMT alignments to specify MitM-pivoting translations.

I Implementation: Docker with ODK systems and Jupyter front-end at
https://github.com/vv20/mitm_proof_of_concept (deploy publically soon)

I MitM Economics: these will decide on the utility!
I MitM network costs = O(3k(n + 1)), where k=̂ # (constr. + API ops.) instead of
O(nk2) (6 vs. 9 for three systems)

I MitM joining costs linear in API size. (interoperability workflows star-shaped)
I What can you do?: Connect your system to MitM ; API theories/Phrasebook
I What will we do?: OpenDreamKit still runs 13 months
I compiling MitM pivoting translations into P2P translations (eliminate SCSCP too)
I provide MitM-based documentation for all systems (translate docs not terms)
I math service discovery (via alignment paths priority?)

Kohlhase: Composing Math Software Systems: MitM 35 CAAT 2018

https://github.com/vv20/mitm_proof_of_concept

Conclusion and Future Work

I For a VRE from Open Source Systems we need a uniform meaning space.
(promise/danger in the communication)

I Idea: Center system API theories around the shared math knowledge
(Math-in-the-Middle Ontology)

I Idea: Represent it as OMDoc/MMT Theory graphs (profit from the MMT
system and SCSCP)
Use MMT alignments to specify MitM-pivoting translations.

I Implementation: Docker with ODK systems and Jupyter front-end at
https://github.com/vv20/mitm_proof_of_concept (deploy publically soon)

I MitM Economics: these will decide on the utility!
I MitM network costs = O(3k(n + 1)), where k=̂ # (constr. + API ops.) instead of
O(nk2) (6 vs. 9 for three systems)

I MitM joining costs linear in API size. (interoperability workflows star-shaped)
I What can you do?: Connect your system to MitM ; API theories/Phrasebook
I What will we do?: OpenDreamKit still runs 13 months
I compiling MitM pivoting translations into P2P translations (eliminate SCSCP too)
I provide MitM-based documentation for all systems (translate docs not terms)
I math service discovery (via alignment paths priority?)

Kohlhase: Composing Math Software Systems: MitM 35 CAAT 2018

https://github.com/vv20/mitm_proof_of_concept

Conclusion and Future Work

I For a VRE from Open Source Systems we need a uniform meaning space.
(promise/danger in the communication)

I Idea: Center system API theories around the shared math knowledge
(Math-in-the-Middle Ontology)

I Idea: Represent it as OMDoc/MMT Theory graphs (profit from the MMT
system and SCSCP)
Use MMT alignments to specify MitM-pivoting translations.

I Implementation: Docker with ODK systems and Jupyter front-end at
https://github.com/vv20/mitm_proof_of_concept (deploy publically soon)

I MitM Economics: these will decide on the utility!
I MitM network costs = O(3k(n + 1)), where k=̂ # (constr. + API ops.) instead of
O(nk2) (6 vs. 9 for three systems)

I MitM joining costs linear in API size. (interoperability workflows star-shaped)
I What can you do?: Connect your system to MitM ; API theories/Phrasebook
I What will we do?: OpenDreamKit still runs 13 months
I compiling MitM pivoting translations into P2P translations (eliminate SCSCP too)
I provide MitM-based documentation for all systems (translate docs not terms)
I math service discovery (via alignment paths priority?)

Kohlhase: Composing Math Software Systems: MitM 35 CAAT 2018

https://github.com/vv20/mitm_proof_of_concept

Sebastian Freundt et al. Symbolic Computation Software
Composability Protocol (SCSCP). Version 1.3. URL:
https://github.com/OpenMath/scscp/blob/master/revisions/
SCSCP_1_3.pdf (visited on 08/27/2017).

MMT – Language and System for the Uniform Representation of
Knowledge. project web site. URL: https://uniformal.github.io/
(visited on 08/30/2016).

Dennis Müller et al. “Alignment-based Translations Across Formal
Systems Using Interface Theories”. In: Fifth Workshop on Proof
eXchange for Theorem Proving - PxTP 2017. 2017. URL:
http://jazzpirate.com/Math/AlignmentTranslation.pdf.

Florian Rabe. “The MMT API: A Generic MKM System”. In:
Intelligent Computer Mathematics. Conferences on Intelligent
Computer Mathematics (Bath, UK, July 8, 2013–July 12, 2013).
Ed. by Jacques Carette et al. Lecture Notes in Computer Science 7961.
Springer, 2013, pp. 339–343. ISBN: 978-3-642-39319-8. DOI:
10.1007/978-3-642-39320-4.

Kohlhase: Composing Math Software Systems: MitM 35 CAAT 2018

https://github.com/OpenMath/scscp/blob/master/revisions/SCSCP_1_3.pdf
https://github.com/OpenMath/scscp/blob/master/revisions/SCSCP_1_3.pdf
https://uniformal.github.io/
http://jazzpirate.com/Math/AlignmentTranslation.pdf
https://doi.org/10.1007/978-3-642-39320-4

	References

