
: 1

Knowledge Representation and Processing

Florian Rabe (for a course given with Michael Kohlhase)

Computer Science, University Erlangen-Nürnberg, Germany

Summer 2020

: Administrative Information 2

Administrative Information

: Administrative Information 3

Format

Zoom
I lectures and exercises via zoom

I participants muted by default for simplicity

I interaction strongly encouraged We don’t want to lecture —
we want to have a conversation during which you learn

I let’s try out zoom
I use reactions to say yes no, ask for break etc.
I feel free to annotate my slides
I talk in the chat

Recordings
I maybe prerecorded video lectures or recorded zoom meeting

I to be decided along the way

: Administrative Information 4

Background

Instructors

I Prof. Dr. Michael Kohlhase
Professor of Knowledge Representation and Processing

I PD Dr. Florian Rabe same research group

Course
I This course is given for the first time

I Always a little bit of an experiment cutting edge vs. unpolished

I Could become signature course of our research group same name!

: Administrative Information 5

Prerequisites

Required

I basic knowledge about formal languages, context-free grammars
but we’ll do a quick revision here

Helpful

I Algorithms and Data Structures mostly as a contrast to this lecture

I Basic logic we’ll revise it slightly differently here

I all other courses as examples of how knowledge pervades all of CS

General

I Curiosity this course is a bit unusual

I Interest in big picture
this course touches on lots of things from all over CS

: Administrative Information 6

Examination and Grading

Suggestion
I grade determined by single exam

I written or oral depends on number of students

I some acknowledgment for practical exercises

to be finalized next week

Exam-relevant
I anything mentioned in notes

I anything discussed in lectures

neither is a superset of the other!

: Administrative Information 7

Materials and Exam-Relevance

Textbook
I does not exist

I normal for research-near specialization courses

Notes
I textbook-style but not as comprehensive

I developed along the way

Slides
I not comprehensive

I used as visual aid, conversation starters

: Administrative Information 8

Communication

Open for questions

I open door policy in our offices if the lockdown ever ends

I always room for questions during lectures

I for personal questions, contact me during/after lecture or by email

I forum at https://fsi.cs.fau.de/forum/
154-Wissensrepraesentation-und-Verarbeitung

Materials
I official notes and slides as pdf:

https://kwarc.info/teaching/WuV/

will be updated from time to time

I watch me prepare the materials: https:

//github.com/florian-rabe/Teaching/tree/master/WuV

pull requests and issues welcome

https://fsi.cs.fau.de/forum/154-Wissensrepraesentation-und-Verarbeitung
https://fsi.cs.fau.de/forum/154-Wissensrepraesentation-und-Verarbeitung
https://kwarc.info/teaching/WuV/
https://github.com/florian-rabe/Teaching/tree/master/WuV
https://github.com/florian-rabe/Teaching/tree/master/WuV

: Administrative Information 9

Exercises

Learning Goals
I Get acquainted with state of the art of practice

I Try out real tools

Homeworks
I one major project as running example

I homeworks building on each other

build one large knowledge-based system

details on later slides

: Overview and Essential Concepts 10

Overview and Essential Concepts

: Overview and Essential Concepts 11

Representation and Processing

Common pairs of concepts:

Representation Processing

Static Dynamic
Situation Change
Be Become
Data Structures Algorithms
Set Function
State Transition
Space Time

: Overview and Essential Concepts 12

Data and Knowledge
2× 2 key concepts

Syntax Data

Semantics Knowledge

I Data: any object that can be stored in a computer
Example: ((49.5739143, 11.0264941), ”2020− 04− 21T 16 :
15 : 00CEST ”)

I Syntax: a system of rules that describes which data is
well-formed
Example: “a pair of (a pair of two IEEE double precision
floating point numbers) and a string encoding of a time
stamp”

I Semantics: system of rules that determines the meaning of
well-formed data

I Knowledge: combination of some data with its syntax and
semantics

: Overview and Essential Concepts 13

Knowledge is Elusive

Representation of key concepts

I Data: using primitive objects
implemented as bits, bytes, strings, records, arrays, . . .

I Syntax: (context-free) grammars, (context-sensitive) type
systems implemeted as inductive data structures

I Semantics: functions for evaluation, interpretation, of
well-formed data

implemented as recursive algorithms on the syntax

I Knowledge: elusive
emerges from applying and interacting with the semantics

: Overview and Essential Concepts 14

Semantics as Translation

I Knowledge can be captured by a higher layer of syntax

I Then semantics is translation into syntax

Data syntax Semantics function Knowledge syntax

SPARQL query evaluation result set
SQL query evaluation result table
program compiler binary code
program expression interpreter result value
logical formula interpretation in a model mathematical object
HTML document rendering graphics context

: Overview and Essential Concepts 15

Heterogeneity of Data and Knowledge

I Capturing knowledge is difficult
I Many different approaches to semantics

I fundamental formal and methodological differences
I often captured in different fields, conferences, courses,

languages, tools

I Data formats equally heterogeneous
I ontologies
I programs
I logical proofs
I databases
I documents

: Overview and Essential Concepts 16

Challenges of Heterogeneity

Challenges
I collaboration across communities

I translation across languages

I conversion between data formats

I interoperability across tools

Sources of problems
I interoperability across formats/tools major source of

I complexity
I bugs

I friction in project team due to differing preferences, expertise

I difficult choice between languages/tools with competing advantages
I reverting choices difficult, costly
I maintaining legacy choices increases complexity

: Overview and Essential Concepts 17

Aspects of Knowledge

I Tetrapod model of knowledge active research by our group

I classifies approaches to knowledge into five aspects

Aspect KRLs (examples) KPTs (examples)

ontologization ontology languages (OWL), description logics (ALC) reasoners, SPARQL engines (Virtuoso)
concretization relational databases (SQL, JSON) databases (MySQL, MongoDb)
computation programming languages (C) interpreters, compilers (gcc)
deduction logics (HOL) theorem provers (Isabelle)
narration document languages (HTML, LaTeX) editors, viewers

: Overview and Essential Concepts 18

Relations between the Aspects

Ontology is distinguished: capture the knowledge that the other
four aspects share

Ontologization

Computation

ConcretizationDeduction

Narration

: Overview and Essential Concepts 19

Complementary Advantages of the Aspects

Aspect objects characteristic
advantage joint advantage

of the other as-
pects

application

ded. formal proofs correctness ease of use verification
comp. programs efficiency well-

definedness
execution

concr. concrete objects tangibility abstraction storage/retrieval
narr. texts flexibility formal seman-

tics
human understanding

Aspect pair characteristic advantage

ded./comp. rich meta-theory
narr./conc. simple languages

ded./narr. theorems and proofs
comp./conc. normalization

ded./conc. decidable well-definedness
comp./narr. Turing completeness

: Overview and Essential Concepts 20

Structure of the Course

Aspect-independent parts
I general methods that are shared among the aspects

I to be discussed as they come up

Aspects-specific parts
I one part (about 2 weeks) for each aspect

I high-level overview of state of the art

I focus on comparison/evaluation of the aspect-specific results

: Overview and Essential Concepts 21

Structure of the Exercises
One major project
I representative for a project that a CS graduate might be put in

charge of

I challenging heterogeneous data and knowledge

I requires integrating/combining different languages, tools

unique opportunity in this course because knowledge is everywhere

Concrete project
I develop a univis-style system for a university

I lots of heterogeneous knowledge
I course and program descriptions
I legal texts
I websites
I grade tables
I transcript generation code

I build a completely functional system applying the lessons of the
course

: Ontological Knowledge 22

Ontological Knowledge

: Ontological Knowledge 23

Components of an Ontology
8 main declarations

I individual — concrete objects that exist in the real world,
e.g., ”Florian Rabe” or ”WuV”

I concept — abstract groups of individuals, e.g., ”instructor”
or ”course”

I relation — binary relations between two individuals, e.g.,
”teaches”

I properties — binary relations between an individuals and a
concrete value (a number, a date, etc.), e.g., ”has-credits”

I concept assertions — the statement that a particular
individual is an instance of a particular concept

I relation assertions — the statement that a particular
relation holds about two individuals

I property assertions — the statement that a particular
individual has a particular value for a particular property

I axioms — statements about relations between concepts, e.g.,
”instructor” v ”person”

: Ontological Knowledge 24

Divisions of an Ontology

Abstract vs. concrete

I TBox: concepts, relations, properties, axioms
everything that does not use individuals

I ABox: individuals and assertions

Named vs. unnamed

I Signature: individuals, concepts, relations, properties
together called entities or resources

I Theory: assertions, axioms

: Ontological Knowledge 25

Comparison of Terminology

Here OWL Description logics ER model UML semantics via logics
individual instance individual entity object, instance constant
concept class concept entity-type class unary predicate
relation object property role role association binary predicate
property data property (not common) attribute field of base type binary predicate

domain individual concept
type theory, logic constant, term type
set theory element set
database row table

philosophy1 object property
grammar proper noun common noun

1as in https://plato.stanford.edu/entries/object/

https://plato.stanford.edu/entries/object/

: Ontological Knowledge 26

Ontologies as Sets of Triples

Assertion Triple
Subject Predicate Object

concept assertion ”Florian Rabe” is-a ”instructor”
relation assertion ”Florian Rabe” ”teaches” ”WuV”
property assertion ”WuV” ”has credits” 7.5

Efficient representation of ontologies using RDF and RDFS
standardized special entities.

: Ontological Knowledge 27

Special Entities

RDF and RDFS define special entities for use in ontologies:

I ”rdfs:Resource”: concept of which all individuals are an
instance and thus of which every concept is a subconcept

I ”rdf:type”: relates an entity to its type:
I an individual to its concept (corresponding to is-a above)
I other entities to their special type (see below)

I ”rdfs:Class”: special class for the type of classes

I ”rdf:Property”: special class for the type of properties

I ”rdfs:subClassOf”: a special relation that relates a subconcept
to a superconcept

I ”rdfs:domain”: a special relation that relates a relation to the
concepts of its subjects

I ”rdfs:range”: a special relation that relates a relation/property
to the concept/type of its objects

Goal/effect: capture as many parts as possible as RDF triples.

: Ontological Knowledge 28

Declarations as Triples using Special Entities

Assertion Triple
Subject Predicate Object

individual individual ”rdf:type” ”rdfs:Resource”
concept concept ”rdf:type” ”rdf:Class”
relation relation ”rdf:type” ”rdf:Property”
property property ”rdf:type” ”rdf:Property”
concept assertion individual ”rdf:type” concept
relation assertion individual relation individual
property assertion individual property value

for special forms of axioms
c v d c ”rdfs:subClassOf” d
dom r ≡ c r ”rdfs:domain” c
rng r ≡ c r ”rdfs:range” c

: Ontological Knowledge 29

An Example Ontology Language

see syntax of BOL in the lecture notes

: Semantics as Translation 30

Semantics as Translation

: Semantics as Translation 31

Example: Syntax of Arithmetic Language

Syntax: represented as formal grammar

Numbers

N ::= 0 | 1 literals
| N + N sum
| N ∗ N product

Formulas

F ::= N
.

= N equality
| N ≤ N ordering by size

Implementation as inductive data type

: Semantics as Translation 32

Example: Semantics of Arithmetic Language
Semantics: represented as translation into known language

Problem: Need to choose a known language first
Here: unary numbers represented as strings

Built-in data (strings and booleans):

S ::= ε empty
| (Unicode) characters

B ::= true truth
| false falsity

Built-in operations to work on the data:

I concatenation of strings S ::=conc(S ,S)

I replacing all occurrences of c in S1 with S2

S ::=replace(S1, c , S2)

I equality test: B::=S1 == S2

I prefix test: B::=startsWith(S1, S2)

: Semantics as Translation 33

Example: Semantics of Arithmetic Language

Represented as function from syntax to semantics
I mutually recursive, inductive functions for each non-terminal symbol

I compositional: recursive call on immediate subterms of argument

For numbers n: semantics JnK is a string

I J0K = ε

I J1K = ”|”
I Jm + nK = conc(JmK, JnK)

I Jm ∗ nK = replace(JmK, ”|”, JnK)

For formulas f : semantics Jf K is a boolean

I Jm
.

= nK = JmK == JnK
I Jm ≤ nK = startsWith(JnK, JmK)

: Semantics as Translation 34

Semantics of BOL

Aspect kind of semantic language semantic language

deduction logic SFOL
concretization database language SQL
computation programming language Scala
narration natural language English

see details of each translation in the lecture notes

: Semantics as Translation 35

General Definition

A semantics by translation consists of

I syntax: a formal language l

I semantic language: a formal language L
different or same aspect as l

I semantic prefix: a theory P in L
formalizes fundamentals that are needed to represent l-objects

I interpretation: translates every l-theory T to an L-theory
P, JT K

: Semantics as Translation 36

Common Principles

Properties shared by all semantics of BOL
not part of formal definition, but best practices

I l-declaration translated to L-declaration for the same name

I ontologies translated declaration-wise
I one inductive function for every kind of complex l-expression

I individuals, concepts, relations, properties, formulas
I maps l-expressions to L-expressions

I atomic cases (base cases): l-identifier translated to
L-identifier of the same name or something very similar

I complex cases (step cases): compositional

: Semantics as Translation 37

Compositionality

Case for operator ∗ in interpretation function compositional iff
interpretation of ∗(e1, . . . , en) only depends on on the
interpretation of the ei

J∗(e1, . . . , en)K = J∗K(Je1K, . . . , JenK)

for some function J∗K

Example: ;-operator of BOL in translation to FOL

I translation: JR1; R2K = ∃m : ι.JR1K(x ,m) ∧ JR2K(m, y)
I special case of the above via

I ∗ =;
I n = 2
I J; K = (p1, p2) 7→ ∃m : ι.p1(x ,m) ∧ p2(m, y)

I Indeed, we have JR1; R2K = J; K(JR1K, JR2K)

: Semantics as Translation 38

Compositionality (2)

Translation compositional iff

I one translation function for each non-terminal all written J−K
I each defined by one induction on syntax

i.e., one case for production
mutually recursive

I all cases compositional

Substitution theorem: a compositional translation satisfies

JE (e1, . . . , en)K = JEK(Je1K, . . . , JenK)

for

I every expression E (N1, . . . ,Nn) with non-terminals Ni

I some function JEK that only depends on E

: Semantics as Translation 39

Compositionality (3)

JE (e1, . . . , en)K = JEK(Je1K, . . . , JenK)

for every expression E (N1, . . . ,Nn) with non-terminals Ni

Now think of

I variable xi of type Ni instead of non-terminal Ni

I E (x1, . . . , xn) as expression with free variables xi of type Ni

I expressions e derived from N as expressions of type N
I E (e1, . . . , en) as result of substituting ei for xi
I JEK(x1, . . . , xn) as (semantic) expression with free variables xi

Then both sides of equations act on E (x1, . . . , xn):
I left side yields JE (e1, . . . , en)K by

I first substitution ei for xi
I then semantics J−K of the whole

I right side yields JEK(Je1K, . . . , JenK) by
I first semantics J−K of all parts
I then substitution JeiK for xi

semantics commutes with substitution

: Semantics as Translation 40

Non-Compositionality

Examples
I deduction: cut elimination, translation from natural deduction to

Hilbert calculus

I computation: optimizing compiler, e.g., loop unrolling

I concretization: query optimization, e.g., turning a WHERE of a join
into a join of WHEREs,

I narration: ambiguous words are translated based on context

Typical sources
I subcases in a case of translation function

I based on inspecting the arguments, e.g., subinduction
I based on context

I custom-built semantic prefix

: Type Systems 41

Type Systems

: Type Systems 42

Breakout Question

Is this an improvement over BOL?

Declarations

D ::= individual ID : C typed atomic individual
| concept ID atomic concept
| relation ID ⊆ C × C typed atomic relation
| property ID ⊆ C × T typed atomic property

rest as before

: Type Systems 43

Actually, when is a language an improvement?

Criteria: orthogonal, often mutually exclusive

I syntax design trade-off
I expressivity: easy to express knowledge

e.g., big grammar, extra production for every user need
I simplicity: easy to implement/interpret

e.g., few, carefully chosen productions

I semantics: specify, implement, document
I intended users

I skill level
I prior experience with related languages
I amount of training needed

I long-term plans: re-answer the above question but now
I maintainability: syntax was changed, everything to be redone
I scalability: expressed knowledge content has reached huge sizes

: Type Systems 44

Church vs. Curry Typing

intrinsic extrinsic

λ-calculus by Church Curry
type is carried by object given by environment
typing is a function objects → types relation objects × types
objects have unique type any number of types
types interpreted as disjoint sets unary predicates

type given by part of declaration additional axiom
example individual ”WuV”:”course” individual ”Wuv”,

”WuV” is-a ”course”

examples SFOL, SQL OWL, Scala, English
most logics, functional PLs ontology, OO,

natural languages
many type theories set theories

: Type Systems 45

Type Checking

intrinsic extrinsic

type is carried by object given by environment
typing is a function objects → types relation objects × types
objects have unique type any number of types

type given by part of declaration additional axiom
example individual ”WuV”:”course” individual ”Wuv”,

”WuV” is-a ”course”

type inference for x uniquely infer A from x find minimal A with x : A
type checking inferred=expected prove x : A
subtyping A <: B cast from A to B x : A implies x : B
typing decidable yes unless too expressive no unless restricted
typing errors static (compile-time) dynamic (run-time)

advantages easy flexible
unique type inference allows subtyping

: Type Systems 46

Curry Typing in BOL

language objects types typing relation

Syntax individuals concepts i is-a c

Semantics in
FOL type ι predicates c ⊆ ι c(i) true
SQL table Individuals tables containing ids id of i in table c
Scala String hash sets of strings c.contains(i)
English proper nouns common nouns ”i is a c” is true

: Type Systems 47

Subtyping

Subtyping works best with Curry Typing

I explicit subtyping as in N <: Z
I comprehension/refinement as in {x : N|x 6= 0}
I operations like union and intersection on types

I inheritance between classes, in which case subclass = subtype

I anonymous record types as in {x : N, y : Z} <: {x : N}

: Type Systems 48

A General Definition of a Type System

A type system consists of

I a collection, whose elements are called objects,

I a collection, whose elements are called intrinsic types,

I a function assigning to every object x its intrinsic type I , in
which case we write x : I ,

I for some intrinsic types I
I an intrinsic type EI

I a relation ∈I between objects with intrinsic types I and EI ,
called the extrinsic typing relation for I .

: Type Systems 49

Examples

System intrinsic types EI ∈I
pure Church one per type none none
pure Curry objects O, types T EO = T ∈O=:
FOL one per type none none
Scala Any , Class EAny = Class ∈Any= isInstanceOf

BOL Ind , Conc EInd = Conc ∈Ind= is-a

set theory Set, Prop ESet = Set ∈Set=∈

: Type Systems 50

Breakout Question

What do the following have in common?

I Java class

I SQL schema for a table

I logical theory (e.g., Monoid)

all are (essentially) abstract data types

: Type Systems 50

Breakout Question

What do the following have in common?

I Java class

I SQL schema for a table

I logical theory (e.g., Monoid)

all are (essentially) abstract data types

: Type Systems 51

Abstract Data Types: Motivation

Recall subject-centered representation of assertion triples:

i n d i v i d u a l ” F l o r i a n R a b e ”
i s−a ” i n s t r u c t o r ” ” male ”
” t e a c h ” ”WuV” ”KRMT”
” age ” 40
” o f f i c e ” ”11.137”

Can we use types to force certain assertions to occur together?

I Every instructor should teach a list of courses.

I Every instructor should have an office.

: Type Systems 52

Abstract Data Types: Motivation

Inspires subject-centered types, e.g.,

c o n c e p t i n s t r u c t o r
t e a c h c o u r s e ∗

age : i n t
o f f i c e : s t r i n g

i n d i v i d u a l ” F l o r i a n R a b e ” : ” i n s t r u c t o r ”
i s−a ” male ”
t e a c h ”WuV” ”KRMT”
age 40
o f f i c e ”11.137”

Incidental benefits:

I no need to declare relations/properties separately

I reuse relation/property names
distinguish via qualified names: instructor .age

: Type Systems 53

Abstract Data Types: Motivation

Natural next step: inheritance

c o n c e p t p e r s o n
age : i n t

c o n c e p t male <: p e r s o n

c o n c e p t i n s t r u c t o r <: p e r s o n
t e a c h c o u r s e ∗

o f f i c e : s t r i n g

i n d i v i d u a l ” F l o r i a n R a b e ” : ” i n s t r u c t o r ” u ” male ”
” t e a c h ” ”WuV” ”KRMT”
” age ” 40
” o f f i c e ” ”11.137”

our language quickly gets a very different flavor

: Type Systems 54

Abstract Data Types: Examples

Prevalence of abstract data types:

aspect language abstract data type

ontologization UML class
concretization SQL table schema
computation Scala class, interface
deduction various theory, specification, module, locale
narration various emergent feature

same idea, but may look very different across languages

: Type Systems 55

Abstract vs. Concrete Types

Concrete type: values are

I given by their internal form,

I defined along with the type, typically built from
already-known pieces.

examples: products, inductive data types

Abstract type: values are

I given by their externally visible properties,

I defined in any environment that understands the type
definition.

main example: abstract data types

: Type Systems 56

Abstract Data Types: Examples

aspect type values

computation abstract class instances of implementing classes
concretization table schema table rows
deduction theory models

Values depend on the environment in which the type is used:

I class defined in one specification language (e.g., UML),
implementations in programing languages Java, Scala, etc.

available values may depend on run-time state

I theory defined in logic,
models defined in set theories, type theories, programming
languages

available values may depend on philosophical position

: Type Systems 57

Abstract Data Types: Definition

Given some type system, an abstract data type (ADT) is

I a flat type

{c1 : T1[= t1], . . . , cn : Tn[= tn]}

where
I ci are distinct names
I Ti are types
I ti are optional definitions; if given, ti : Ti required

I or a mixin type
A1 ∗ . . . ∗ An

for ADTs Ai .

Languages may or may not make ADTs additional types of the
type system

: Type Systems 58

Abstract Data Types: Class Definitions
A class definition in OO:

a b s t r a c t c l a s s a e x t e n d s a1 w i t h . . . w i t h am {
c1 : T1

...
cn : Tn

}

Corresponding ADT definition:

a = a1 ∗ . . . ∗ am ∗ {c1 : T1, . . . , cn : Tn}

The usual terminology:

I a inherits from ai
I ai are super-X or parent-X of a where X is whatever the

language calls its ADTs (e.g., X=class)

: Type Systems 59

Abstract Data Types: Flattening

The flattening A[of an ADT A is

I if A is flat: A[= A

I (A1 ∗ . . . ∗ An)[is union of all A[i
where duplicate field names are handled as follows
I same name, same type, same or omitted definition: merge

details may be much more difficult
I otherwise: ill-formed

: Type Systems 60

Abstract Data Types: Subtleties

We gloss over several major issues:

I How exactly do we merge duplicate field names? Does it
always work? implement abstract methods, override, overload

I Is recursion allowed, i.e., can I define an ADT a = A where a
occurs in A?

common in OO-languages: use a in the types of its fields

I What about ADTs with type arguments?
e.g., generics in Java, square-brackets in Scala

I Is mutual recursion between fields in a flat type allowed?
common in OO-languages

I Is * commutative? What about dependencies between fields?

no unique answers

incarnations of ADTs subtly different across languages

: Context-Sensitive Syntax 61

Context-Sensitive Syntax

: Context-Sensitive Syntax 62

Definition

A language system consists of

I context-free syntax

I distinguished non-terminal symbol V
words called vocabularies

I some distinguished non-terminal symbols E
words called E-expressions

I unary predicate wft(Θ) on vocabularies Θ
well-formed vocabulary Θ

I unary predicates wffEΘ(E) well-formed E-expressions E

: Context-Sensitive Syntax 63

Typical Structure

Vocabularies

I lists of declarations

Declarations

I named

I at least one for each expression kind

I may contain other expressions e.g., type, definition

I may contain nested declarations e.g., fields in an ADT

Expressions

I inductive data type

I relative to vocabulary names occur as base cases

I formulas as special case

: Context-Sensitive Syntax 64

Vocabularies and Expressions

Aspect vocabulary Θ expression kinds E
Ontologization ontology individual, concept, relation, property, formula
Concretization database schema cell, row, table, formula
Computation program term, type, object, class, . . .
Logic signature, theory term, type, formula, . . .
Narration dictionary phrases, sentences, texts

: Context-Sensitive Syntax 65

Examples

See notes made during the lecture for examples

: Concrete Knowledge and Typed Ontologies 66

Concrete Knowledge and Typed Ontologies

: Concrete Knowledge and Typed Ontologies 67

Motivation

Main ideas
I Ontology abstractly describes concepts and relations

I Tool maintains concrete data set

I Focus on efficiently
I identifying (i.e., assign names)
I representing
I processing
I querying

large sets of concrete data

Recall: TBox-ABox distinction

I TBox: general parts, abstract, fixed
main challenge: correct modeling of domain

I ABox: concrete individuals and assertions about them, growing
main challenge: aggregate them all

: Concrete Knowledge and Typed Ontologies 68

Concrete Data

Concrete is
I Base values: integers, strings, booleans, etc.

I Collections: sets, multisets, lists (always finite)

I Aggregations: tuples, records (always finite)

I User-defined concrete data: enumerations, inductive types

I Advanced objects: finite maps, graphs, etc.

Concrete is not

I Free symbols to be interpreted by a model
exception: foreign function interfaces

I Variables (free or bound) λ-abstraction, quantification

I Symbolic expressions formulas, algorithms
Exceptions:
I expressions of inductive type
I application of built-in functions
I queries that return concrete data

: Concrete Knowledge and Typed Ontologies 69

Breakout question

What is the difference between

I an OWL ontology

I an SQL database

: Concrete Knowledge and Typed Ontologies 70

Two Approaches

Based on untyped (Curry-typed) ontology languages

I Representation based on knowledge graph

I Ontology written in BOL-like language

I Data maintained as set of triples tool = triple store

I Typical language/tool design
I ontology and query language separate e.g., OWL, SPARQL
I triple store and query engine integrated e.g., Virtuoso tool

Based on typed (Church-typed) ontology languages

I Representation based on abstract data types

I Ontology written as database schema

I Data maintained as tables tool = (relational) database

I Typical language/tool design
I ontology and query language integrated e.g., SQL
I table store and query engine integrated e.g., SQLite tool

: Concrete Knowledge and Typed Ontologies 71

Evolution of Approaches

Our usage is non-standard
I Common

I ontologies = untyped approach, OWL, triples, SPARQL
I databases = typed approach, tables, SQL

I Our understanding: two approaches evolved from same idea
I triple store = untyped database
I SQL schema = typed ontology

Evolution
I Typed-untyped distinction minor technical difference

I Optimization of respective advantages causes speciation

I Today segregation into different
I jargons
I languages, tools
I communities, conferences
I courses

: Concrete Knowledge and Typed Ontologies 72

Curry-typed concrete data

Central data structure = knowledge graph
I nodes = individuals i

I identifier
I sets of concepts of i
I key-value sets of properties of i

I edges = relation assertions
I from subject to object
I labeled with name of relation

Processing strengths
I store: as triple set

I edit: Protege-style or graph-based

I visualize: as graph different colors for concepts, relations

I query: match, traverse graph structure

I untyped data simplifies integration, migration

: Concrete Knowledge and Typed Ontologies 73

Church-typed concrete data

Central data structure = relational database
I tables = abstract data type

I rows = objects of that type

I columns = fields of ADT

I cells = values of fields

Processing strengths
I store: as CSV text files, or similar

I edit: SQL commands or table editors

I visualize: as table view

I query: relational algebra

I typed data simplifies selecting, sorting, aggregating

: Concrete Knowledge and Typed Ontologies 74

Identifiers

Curry-Typed Knowledge graph
I concept, relation, property names given in TBox

I individual names attached to nodes

Church-Typed Database
I table, column names given in schema

I row identified by distinguished column (= key)
options
I preexistent characteristic column
I added upon insertion

I UUID string
I incremental integers
I concatenation of characteristic list of columns

I column/row identifiers formed by qualifying with table name

: Concrete Knowledge and Typed Ontologies 75

Axioms

Curry-Typed Knowledge Graph
I traditionally very expressive axioms

I yields inferred assertions

I triple store must do consequence closure to return correct query
results

I not all axioms supported by every triple store

Church-Typed Database
I typically no axioms

I instead consistency constraints, triggers

I allows limited support for axioms without calling it that way

I stronger need for users to program the consequence closure
manually

: Concrete Knowledge and Typed Ontologies 76

Breakout question

When using typed concrete data,
how to fully realize abstract data types

I nesting: ADTs occurring as field types

I inheritance between ADTs

I mixins

: Concrete Knowledge and Typed Ontologies 77

ADTs in Typed Concrete Data

Nesting: field a : A in ADT B
I field types must be base types, a : A not allowed

I allow ID as additional base type

I use field a : ID in table B

I store value of b in table A

Inheritance: B inherits from A
I add field parentA to table B

I store values of inherited fields of B in table A

general principle: all objects of type A stored in same table

Mixin: A ∗ B
I essentially join of tables A and B on common fields

I some subtleties depending on ADT flattening

: Concrete Knowledge and Typed Ontologies 78

Open/Closed World

I Question: is the data complete?
I closed world: yes
I open world: not necessarily

I Dimensions of openness
I existence of individual objects
I assertions about them

I Sources of openness
I more exists but has not yet been added
I more could be created later

I Orthogonal to typed/untyped distinction, but in practice
I knowledge graphs use open world
I databases use closed world

Open world is natural state, closing adds knowledge

: Concrete Knowledge and Typed Ontologies 79

Closing the World

Derivable consequences
I induction: prove universal property by proving for each object

I negation by failure: atomic property false if not provable

I term-generation constraint: only nameable objects exist

Enabled operations
I universal set: all objects

I complement of concept/type

I defaults: assume default value for property if not otherwise asserted

Monotonicity problem
I monotone operation: bigger world = more results

I examples: union, intersection, ∃R.C , join, IN conditions

I counter-examples: complement, ∀R.C , NOT IN conditions

technically, non-monotone operations in open world dubious

Primitive Types and Encoding Data: 80

Primitive Types and Encoding Data

Primitive Types and Encoding Data: Motivation 81

Primitive Types and Encoding Data

Motivation

Primitive Types and Encoding Data: Motivation 82

Data Interoperability

Situation

I languages systems focus on different aspects
frequent need to exchange data

I generally, lots of aspect/language-specific objects
proofs, programs, tables, sentences

I but same/similar primitive data types used across systems
should be easy to exchange

Problem

I crossing system barriers usually require interchange language
serialize as string and reparse

I interchange languages typically untyped XML, JSON, YAML, . . .

Solution
I standardize primitive data types

I standardize encoding in interchange languages

Primitive Types and Encoding Data: Motivation 83

Primitive vs. Declared
Primitive Types
I built into the language

I assumed to exist a priori fundamentals of nature

I fixed semantics (usually interpreted by identity function)

Triple Structure: 3 kinds of named objects

I the type eg: ’int’

I values of the type eg: 0, 1, -1, . . .

I operations on type eg: addition, multiplication, . . .

primitive declared

introduced by language designer user
introduced in grammar vocabulary V
visible in all vocabularies V only
semantics given explicitly implicitly

. . . by translation function axioms

Primitive Types and Encoding Data: Motivation 84

Examples

Typical primitive types
I natural numbers (= N)

I arbitrary precision integers (= Z)

I fixed precision integers (32 bit, 64 bit, . . .)

I floating point (float, double, . . .)

I Booleans

I characters (ASCII, Unicode)

I strings

Observation:

I essentially the same in every language
including whatever language used for semantics

I semantics by translation trivial

Primitive Types and Encoding Data: Motivation 85

Quasi-Primitive = Declared in standard library

Standard library

I present in every language assumed empty vocabulary by default

I one fixed vocabulary
I implicitly included into every other vocabulary
I implicitly fixed by any translation between vocabularies

I objects technically declared

I but practically part of primitive objects

Examples
I sufficiently expressive languages

I push many primitive objects to standard library never all
I simplifies language, especially when defining operations

strings in C, BigInteger in Java, inductive type for N
I inexpressive languages

I many primitives SQL, spreadsheet software
I few (quasi)-primitives few operations available in OWL

Primitive Types and Encoding Data: Motivation 86

Treatment in this Course

BOL syntax and semantics so far
I primitive objects omitted in syntax

I assumed reasonable collection available

I assumed same (quasi-)primitive objects in semantic languages
irrelevant if interpreting primitive objects as primitive or quasi-primitive

largely justified by practical languages

But what exactly is the standard?
I will present possible solution

I uses special ontology language just for specifying primitive objects
I name
I type
I semantics

typically narrative; alternatively deductive, computational

I current research, not standard practice

Primitive Types and Encoding Data: Motivation 87

Encoding Primitive Types

Problem
I quickly encounter primitive types not supported by common

languages

I need to encode them using existing types
typically as strings, ints, or prodcuts/lists thereof

Examples
I date, time, color, location on earth

I graph, function

I picture, audio, video

I physical quantities (1m, 1in, etc.)

I gene, person

Breakout questions: What primitive types do we need for univis?

Primitive Types and Encoding Data: Motivation 88

Failures of Encodings
Y2K bug
I date encoded as tuple of integers, using 2 digits for year

I needed fixing in year 2000

I estimated $300 billion spent to change software

I possible repeat: in 2038, number of seconds since 1970-01-01 (used
by Unix to encode time as integer) overflows 32-bit integers

Genes in Excel
I 2016 study found errors in 20% of spreadsheets accompanying

genomics journal papers

I gene names encoded as strings but auto-converted to other types by
Excel
I ”SEPT2” (Septin 2) converted to September 02
I REKIN identifiers, e.g., ”2310009E13”, converted to float

2.31E + 1

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1044-7

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1044-7

Primitive Types and Encoding Data: Motivation 89

Failures of Encodings (2)

Mars Climate Orbiter
I two components exchanged physical quantity

I specification required encoding as number using unit Newton
seconds

I one component used wrong encoding (with pound seconds as unit)

I led to false trajectory and loss of $300 million device

Shellshock
I bash allowed gaining root access from 1998 to 2014

I function definitions were encoded as source code

I not decoded at all; instead, code simply run (as root)

I allowed appending ”; ...” to function definitions

SQL injection similar: complex data encoded as string, no decoding

Primitive Types and Encoding Data: Motivation 90

Research Goal for Aspect-Independent Data in Tetrapod
Standardization of Common Data Types

I Ontology language optimized for declaring types, values, operations
semantics must exist but can be extra-linguistic

I Vocabulary declaring such objects
should be standardized, modular, extensible

Standardization of Codecs

I Fixed small set of primitive objects
should be (quasi-)primitive in every language

not too expressive, possibly untyped

I Standard codecs for translating common types to interchange
languages

Codec for type A and int. lang. L
I coding function A-values → L-objects

I partial decoding function L-objects → A-values

I inverse to each other in some sense

Primitive Types and Encoding Data: Motivation 91

Overview

Next steps

1. Data types

2. Data interchange languages

3. Codecs

Primitive Types and Encoding Data: Data Types 92

Primitive Types and Encoding Data

Data Types

Primitive Types and Encoding Data: Data Types 93

Breakout Question

What types do we need?

Primitive Types and Encoding Data: Data Types 94

Atomic Data Types: basic

typical in IT systems
I fixed precision integers (32 bit, 64 bit, . . .)

I IEEE float, double

I Booleans

I Unicode characters

I strings could be list of characters but usually bad idea

typical in math
I natural numbers (= N)

I arbitrary precision integers (= Z)

I rational, real, complex numbers

I graphs, trees

clear: language must be modular, extensible

Primitive Types and Encoding Data: Data Types 95

Atomic Data Types: advanced

general purpose
I date, time, color, location on earth

I picture, audio, video

domain-specific
I physical quantities (1m, 1in, etc.)

I gene, person

I semester, course id, . . .

clear: language must be modular, extensible

Primitive Types and Encoding Data: Data Types 96

Complex Data Types

I relatively easy if all primitive types atomic int, string, etc.

I but need to allow for complex types

Two kinds

I type operators: take only type arguments, return types
I type operator ×
I takes two types A,B
I returns type A× B

I dependent types: take also data arguments, return types
I dependent type operator vector
I takes natural number n, type A
I returns type An of n-tuples over A

dependent types much more complicated, less uniformly used

harder to starndardize

Primitive Types and Encoding Data: Data Types 97

Collection Data Types

Homogeneous Collection Types
I sets

I multisets (= bags)

I lists all unary type operators, e.g. list A is type of lists over A

I fixed-length lists (= Cartesian power, vector n-tuple)
dependent type operator

Heterogeneous Collection Types
I lists

I fixed-length lists (= Cartesian power, n-tuple)

I sets

I multisets (= bags)
all atomic types, e.g., list is type of lists over any objects

Primitive Types and Encoding Data: Data Types 98

Aggregation Data Types

Products
I Cartesian product of some types A× B

values are pairs (x , y) numbered projections 1, 2 — order relevant

I labeled Cartesian product (= record) {a : A, b : B}
values are records {a = x , b = y}

named projections a, b — order irrelevant

Disjoint Unions
I disjoint union of some types A] B

values are inj1(x), inj2(y) numbered injections 1, 2 — order relevant

I labeled disjoint union a(A)|b(B)
values are constructor applications a(x), b(y)

named injections a, b — order irrelevant

labeled disjoint unions uncommon

but recursive labeled disjoint union = inductive data type

Primitive Types and Encoding Data: Data Types 99

Subtyping
I relatively easy if all data types disjoint

I better with subtyping open problem how to do it nicely

Subtyping Atomic Types
I N <: Z
I ASCII <: Unicode

Subtyping Complex Types

I covariance subtyping (= vertical subtyping) same for disjoint unions

A <: A′ ⇒ list A <: list A′

Ai <: A′
i ⇒ {. . . , ai : Ai , . . .} <: {. . . , ai : A′

i , . . .}
I structural subtyping (= horizontal subtyping)

{a : A, b : B} :> {a : A, b : B, c : C}

a(A)|b(B) <: a(A)|b(B)|c(C)

Primitive Types and Encoding Data: Data Types 100

A Basic Language for Typed Data
Let BDL be given by

Types

T ::= int | float | string | bool base types
| listT homogeneous lists
| (ID : T)∗ record types
| . . . additional types

Data

D ::= (64 bit integers)
| (IEEE double)
| ”(Unicode strings)”
| true | false
| D∗ lists
| (ID = D)∗ records
| . . . constructors for additional types

Primitive Types and Encoding Data: Data Types 101

BDL Extended with Named ADTs

V ::= D∗ Vocabularies
D ::= adt t {ID : T ∗} ADT definitions
| datum d : T = D data definitions

Types

T ::= . . . as before
| t reference to a named ADT

Data

D ::= . . . as before
| d reference to a named datum
| t{(ID = D)∗} ADT elements

Primitive Types and Encoding Data: Data Representation Languages 102

Primitive Types and Encoding Data

Data Representation Languages

Primitive Types and Encoding Data: Data Representation Languages 103

Overview

General Properties
I general purpose or domain-specific

I typed or untyped
typical: Church-typed but no type operators, quasi untyped

I text or binary serialization

I libraries for many programming languages
I data structures
I serialization (data structure to string)
I parsing (string to data structure, partial)

Candidates
I XML: standard on the web, notoriously verbose

I JSON: JavaScript objects, more human-friendly text syntax
older than XML, probably better choice than XML in retrospect

I YAML: line/indentation-based

Primitive Types and Encoding Data: Data Representation Languages 104

Breakout Question

What is the difference between JSON, YAML, XML?

Primitive Types and Encoding Data: Data Representation Languages 105

Typical Data Representation Languages

XML, JSON, YAML essentially the same
except for concrete syntax

Atomic Types
I integer, float, boolean, string

I need to read fine-print on precision

(Not Very) Complex Types

I heterogeneous lists a single type for all lists

I records a single type for all records

Primitive Types and Encoding Data: Data Representation Languages 106

Example: JSON

JSON:
{

”individual” : ”FlorianRabe”,
”age” : 40,
”concepts” : [”instructor”, ”male”],
”teach” : [
{”name” : ”Wuv”, credits : 7.5},
{”name” : ”KRMT ”, credits : 5}

]
}

Weirdnesses:

I atomic/list/record = basic/array/object

I record field names are arbitrary strings, must be quoted

I records use : instead of =

Primitive Types and Encoding Data: Data Representation Languages 107

Example: YAML

inline syntax: same as JSON but without quoted field names

alternative: indentation-sensitive syntax

individual : ”FlorianRabe”
age : 40
concepts :
− ”instructor”
− ”male”

teach :
− name : ”WuV ”

credits : 7.5
− name : ”KRMT ” credits : 5

Weirdnesses:

I atomic/list/record = scalar/collection/structure

I records use : instead of =

Primitive Types and Encoding Data: Data Representation Languages 108

Example: XML
Weird structure but very similar

I elements both record (= attributes) and list (= children)
I elements carry name of type (= tag)

<Person i n d i v i d u a l =” F l o r i a n Rabe” age=”40”>
<con cepts>
<Concept> i n s t r u c t o r </Concept/>
<Concept>male</Concept/>

</co ncept s>
<teach>
<Course name=”WuV” c r e d i t s =”7.5”/>
<Course name=”KRMT” c r e d i t s =”5”/>

</teach>
</Person>

I Good: Person, Course, Concept give type of object
easier to decode

I Bad: value of record field must be string
concepts cannot be given in attribute

integers, Booleans, whitespace-separated lists coded as strings

Primitive Types and Encoding Data: Data Representation Languages 109

Structure Sharing

Problem

I Large objects are often redundant specially when machine-produced

I Same string, URL, mathematical objects occurs in multiple places

I Handled in memory via pointers

I Size of serialization can explode

Solution 1: in language

I Add definitions to language common part of most languages anyway

I Users should introduce name whenever object used twice

I Problem: only works if
I duplication anticipated
I users introduced definition
I duplication within same context

structure-sharing most powerful if across contexts

Primitive Types and Encoding Data: Data Representation Languages 110

Structure Sharing (2)
Solution 2: in tool
I Use factory methods instead of constructors

I Keep huge hash set of all objects

I Reuse existing object if already in hash set

I Advantages
I allows optimization
I transparent to users

I Problem: only works if
I for immutable data structures
I if no occurrence-specific metadata e.g., source reference

In data representation language
I Allow any subobject to carry identifier

I Allow identifier references as subobjects
allows preserving structure-sharing in serialization

supported by XML, YAML

Primitive Types and Encoding Data: Codecs 111

Primitive Types and Encoding Data

Codecs

Primitive Types and Encoding Data: Codecs 112

General Definition

Throughout this section, we fix a data representation language L.
L-words called codes

Given a data type T , a codec for T consists

I coding function: c : T → L

I partial decoding function: d : L→? T

I such that
d(c(x)) = x

Primitive Types and Encoding Data: Codecs 113

Codec Operators

Given a data type operator T taking n type arguments,
a codec operator C for T

I takes n codecs Ci for Ti

I returns a codec C (C1, . . . ,Cn) for T (T1, . . . ,Tn)

Primitive Types and Encoding Data: Codecs 114

Exercise 4

We fix strings as the data representation language L.

Then,

1. Jointly specify
I additional BDL types and constructors for univis-specific data
I codecs and codec operators for all types resp. type operators

2. Individually, in any programming language, implement
I data structures for BDL
I string codecs (operators) for all BDL base types (operators)

3. Use your codecs to exchange example data with your fellow
students, who used different implementations and different
programming languages.

Primitive Types and Encoding Data: Codecs 115

Codecs for Base Types

We define codecs for the base types using strings as the data
representation language L.

Easy cases:

I StandardFloat: as specified in IEEE floating point standard

I StandardString: as themselves, quoted

I StandardBool: as true or false

I StandardInt (64-bit): decimal digit-sequences as usual

Primitive Types and Encoding Data: Codecs 116

Breakout Question

How to encode unlimited precision integers?

Primitive Types and Encoding Data: Codecs 117

Codecs for Unlimited Precision Integers

Encode z ∈ Z
I L is strings: decimal digit sequence as usual
I L is JSON:

I IntAsInt: decimal digit sequence as usual
JSON does not specify precision

but target systems may get in trouble
I IntAsString: string containing decimal digit sequence

safe but awkward
I IntAsDecList: list of decimal digits safe but awkward
I IntAsList1: as list of digits for base 264

OK, but we can do better
I IntAsList2: as list of

I integer for the number of digits, sign indicate sign of z
I list of digits of |z | for base 264

Question: Why is this smart?

Can use lexicographic ordering for size comparison

Primitive Types and Encoding Data: Codecs 117

Codecs for Unlimited Precision Integers

Encode z ∈ Z
I L is strings: decimal digit sequence as usual
I L is JSON:

I IntAsInt: decimal digit sequence as usual
JSON does not specify precision

but target systems may get in trouble
I IntAsString: string containing decimal digit sequence

safe but awkward
I IntAsDecList: list of decimal digits safe but awkward
I IntAsList1: as list of digits for base 264

OK, but we can do better
I IntAsList2: as list of

I integer for the number of digits, sign indicate sign of z
I list of digits of |z | for base 264

Question: Why is this smart?
Can use lexicographic ordering for size comparison

Primitive Types and Encoding Data: Codecs 118

Codecs for Lists

Encode list x of elements of type T

I L is strings: e.g., comma-separated list of T -encoded
elements of x

I L is JSON:
I ListAsString: like for strings above
I ListAsArray: lists JSON array of T -encoded elements of x

Primitive Types and Encoding Data: Codecs 119

Additional Types

Examples: semester

Extend BDL:

Types

T ::= Sem semester

Data

D ::= sem(int, bool) i.e., year + summer?

Define standard codec:

sem(y , true) ”SSY ”

sem(y , false) ”WSY ”

where Y is encoding of y

Primitive Types and Encoding Data: Codecs 120

Additional Types (2)

Examples: timestamps

Extend BDL:

Types

T ::= timestamp

Data

D ::= (productions for dates, times, etc.)

Standard codec: encode as string as defined in ISO 8601

Primitive Types and Encoding Data: Data Interchange 121

Primitive Types and Encoding Data

Data Interchange

Primitive Types and Encoding Data: Data Interchange 122

Design

1. Specify type system, e.g., BDL
I types
I constructors
I operations

can be done in appropriate type theory

2. Pick data representation language L

3. Specify codecs for type system and L
I at least one codec per base type
I at least one codec operator per type operator

on paper

4. Every system implements
I type system (as they like) typically aspect-specific constraints
I codecs as specified
I function mapping types to codecs

5. Systems can exchange data by encoding-decoding
type-safe because codecs chosen by type

Primitive Types and Encoding Data: Data Interchange 123

Example

Implementation in Scala part of course resources

Primitive Types and Encoding Data: Data Interchange 124

Example Application: OpenDreamKit research project

Primitive Types and Encoding Data: Data Interchange 125

Integrating BOL and BDL

OWL-near option
I use BDL to define the primitive types of BOL

I use those as types of BOL properties

I Curry-typing throughout easy: just merge the grammars

SQL-near option
I use BDL to define the primitive types of BOL

I also add ADTs

I Church typing more prominent
open question: ADTs in addition to or instead of BOL concepts

We assume the latter for now without spelling out the details.

Primitive Types and Encoding Data: Data Interchange 126

BDL-Mediated Interoperability

Idea

I define data types in BDL or similar typed ontology language

I use ADTs
I generate corresponding

I class definitions for programming languages PL
one class per ADT

I table definitions in SQL one table per ADT

I use codecs to convert automatically when interchanging data
between PL and SQL

Open research problem
no shiny solution yet that can be presented in lectures

Primitive Types and Encoding Data: Data Interchange 127

Codecs in ADT Definitions

SQL table schema = list of fields where field is
I name

I type only types of database supported

BDL semantic table schema = list of fields where field is
I name

I type T of type system independent of database

I codec for T using primitive objects of database as codes
see research paper https://kwarc.info/people/frabe/Research/WKR_virtual_17.pdf

Codec could be chosen automatically, but we want to allow
multiple users a choice of codecs for the same type.

https://kwarc.info/people/frabe/Research/WKR_virtual_17.pdf

Primitive Types and Encoding Data: Data Interchange 128

Example
Ontology based on BDL-ADTs with additional codec information:

schema I n s t r u c t o r
<<<<<<< Updated upstream

name : s t r i n g codec S t a n d a r d S t r i n g
age : i n t codec S t a n d a r d I n t
c o u r s e s : l i s t Course codec CommaSeparatedList CourseAsName

=======
name : s t r i n g codec S t a n d a r d S t r i n g
age : i n t codec S t a n d a r d I n t
c o u r s e s : l i s t Course codec CommaSeparatedList CourseAsName

>>>>>>> Stashed changes
schema Course

name : s t r i n g codec S t a n d a r d S t r i n g
c r e d i t s : f l o a t codec S t a n d a r d F l o a t
s e m e s t e r : Semester codec S e m e s t e r A s S t r i n g

Generated SQL tables:

CREATE TABLE I n s t r u c t o r
(name s t r i n g , age i n t , c o u r s e s s t r i n g)

CREATE TABLE Course
(name s t r i n g , c r e d i t s f l o a t , s e m e s t e r s t r i n g)

Primitive Types and Encoding Data: Data Interchange 129

Open Problem: Non-Compositionality

Sometimes optimal translation is non-compositional
I example translate list-type in ADT to comma-separated string in DB

I better break up list B fields in type A into separate table with
columns for A and B

Similar problems

I a pair type in an ADT could be translated to two separate
columns

I an option type in an ADT could translated to a normal
column using SQL’s NULL value

Primitive Types and Encoding Data: Data Interchange 130

Open Problem: Querying

I General setup
I write SQL-style queries using at the BDL level
I automatically encode values when writing to database from PL
I automatically decode query results when reading from DB

I But queries using semantic operations cannot always be
translated to DB
I operation IsSummer : Semester → bool in BDL
I query SELECT ∗ FROM course WHEREIsSummer(semester)
I how to map IsSummer to SQL?

I Ontology operations need commuting operations on codes
I given f : A→ B in BDL, codecs C ,D for A and B
I SQL function f ′ commutes with f iff

B.decode(f ′(C .encode a)) = f (a)

for all a : A

Primitive Types and Encoding Data: Data Interchange 131

Exercise 5, part 1

We build on the implementation of BDL and codecs from Exercise
4 and on the database schemas from Exercise 3.

1. Extend the implementation to BDL+ADT (see Slide 101).

2. Extend
I codecs and codec operators with identifiers I ::=(strings)
I ADT fields with codec expressions c ::= I | I (c1 . . . , cn)

and write a function that maps c to the corresponding codec.

Primitive Types and Encoding Data: Data Interchange 132

Exercise 5, part 2

3. Write a function that takes a vocabulary (= a list of ADT
definitions with codec expressions) and generates an SQL
schema for it. Use the type returned by the codec as the
database type.

4. Write a function that takes an element d of an ADT and
generates the SQL (or CSV) representation of d with all field
values encoded by the corresponding codec.

5. Write a function that takes an ADT name and a SQL or CSV
object and applies decoding to build the corresponding ADT
element.

6. Test this by
I writing some of your univis table schemas as ADTs and some

example values as ADT elements,
I exchanging these with a database and/or via CSV with fellow

students’ implementations.

Querying: 133

Querying

Querying: Overview 134

Querying

Overview

Querying: Overview 135

General Ideas

I Recall
I syntax = context-free grammar
I semantics = translation to another language

I Example: BOL translated to SQL, SFOL, Scala, English

I Querying = use semantics to answer questions about syntax

Note:

I Not the standard definition of querying

I Design of a new Tetrapod-level notion of querying
ongoing research

I Subsumes concepts of different names from the various
aspects

Querying: Overview 136

Propositions

syntax with propositions =
designated non-terminals for propositions

Examples:

aspect basic propositions

ontology language assertions, concept equality/subsumption
programming language equality for some types
database language equality for base types
logic equality for all types
natural language sentences

Aspects vary critically in how propositions can be formed

I any program in computation

I quantifiers in deductions undecidable

I IN in databases

Querying: Overview 137

Propositions as Queries

Propositions allow defining queries

Query Result

deduction proposition yes/no
concretization proposition with free variables true ground instances
computation term value
narration question answer

Querying: Overview 138

Semantics of Propositions

syntax with propositions =
designated non-terminals for propositions

needed to ask queries

semantics with theorems =
designates some propositions as theorems or contradictions

needed to answer queries

Note:

I A propositions may be neither theorem nor contradiction.

I We say that language has negation if:
F theorem iff ¬F contradiction and vice versa.

We write ` F if F is theorem.

Querying: Deductive Queries 139

Querying

Deductive Queries

Querying: Deductive Queries 140

Definition

We assume

I a semantics J−K from l to L

I l has propositions

I there is an operation True that maps translations of
l-propositions to L-propositions

I L has semantics with propositions

We define

I a deductive query is an l-proposition p
I the result is

I yes if TrueJpK is a theorem of L
I no if TrueJpK is a contradiction in L

Querying: Deductive Queries 141

Breakout question

What can go wrong?

Querying: Deductive Queries 142

Problem: Inconsistency

In general, (in)consistency of semantics

I Some propositions may be both a theorem and a
contradiction.

I In that case, queries do not have a result.

In practice, however:

I If this holds for some propositions, it typically holds for all of
them.

I In that, we call L inconsistent.

I We usually assume L to be consistent.

Querying: Deductive Queries 143

Problem: Incompleteness

In general, (in)completeness of semantics

I We cannot in general assume that every proposition in L is
either a theorem or a contradiction.

I In fact, most propositions are neither.

I So, queries do not necessarily have a result.

I We speak of incompleteness.
Note: not the same as the usual (in)completeness of logic

In practice, however:

I It may be that L is complete for all propositions in the image
of TrueJ−K.

I This is the case if l is simple enough
typical for ontology languages

Querying: Deductive Queries 144

Problem: Undecidability

In general, (un)decidability of semantics:

I We cannot in general assume that it is decidable whether a
proposition in L is a theorem or a contradiction.

I In fact, it usually isn’t.

I So, we cannot necessarily compute the result of a query.

I However: If we have completeness, decidability is likely.
run provers for F and ¬F in parallel

In practice, however:

I It may be that L is decidable for all propositions in the image
of TrueJ−K.

I This is the case if l is simple enough
typical for ontology languages

Querying: Deductive Queries 145

Problem: Inefficiency

In general, (in)efficiency of semantics:

I Answering deductive queries is very slow.

I Even if we are complete and decidable.

In practice, however:

I Decision procedures for the image of TrueJ−K may be quite
efficient.

I Dedicated implementations for specific fragments.

I This is the case if l is simple enough
typical for ontology languages

Querying: Contexts and Free Variables 146

Querying

Contexts and Free Variables

Querying: Contexts and Free Variables 147

Concepts

Recall the analogy between grammars and typing:

grammars typing

non-terminal type
production constructor
non-terminal on left of production return type of constructor
non-terminals on right of production arguments types of constructor
terminals on right of production notation of constructor
words derived from non-terminal N expressions of type N

We will now add contexts and substitutions.

Querying: Contexts and Free Variables 148

Contexts
Given a context-free language l , we define:

I A context Γ is of the form x1 : N1, . . . , xn : Nn where the
I xi are names
I Ni are non-terminals

We write this as `l Γ.
I A substitution for Γ is of the form x1 := w1, . . . , xn := wn

where the
I xi are as in Γ
I wi derived from the corresponding Ni

We write this as `l γ : Γ.

I An expression in context Γ of type N is a word w derived from
N using additionally the productions Ni ::= xi .
We write this as Γ `l w : N.

I Given Γ ` w : N and ` γ : Γ as above, the substitution of γ in
w is obtained by replacing every xi in w with wi . We write
this as w [γ].

Querying: Contexts and Free Variables 149

Contexts under Compositional Translation
Consider a compositional semantics J−K from l to L between
context-free languages.

I Every `l w : N is translated to some `L JwK : N ′ for some N ′.
I Compositionality ensures that N ′ is the same for all w derived

from N.
I We write JNK for that N ′.
I Then we have

`l w : N implies `L JwK : JNK

Now we translate contexts, substitutions, and variables as well:

Jx1 : N1, . . . , xn : NnK := x1 : JN1K, . . . , xn : JNnK

Jx1 := w1, . . . , xn := wnK := x1 := Jw1K, . . . , xn := JwnK

JxK := x

Then we have

Γ `l w : N implies JΓK `L JwK : JNK

Querying: Contexts and Free Variables 150

Substitution under Compositional Translation

From previous slide:

Jx1 : N1, . . . , xn : NnK := x1 : JN1K, . . . , xn : JNnK

Jx1 := w1, . . . , xn := wnK := x1 := Jw1K, . . . , xn := JwnK

JxK := x

Γ `l w : N implies JΓK `L JwK : JNK

We can now restate the substitution theorem as follows:

JE [γ]K = JEK[JγK]

Querying: Concretized Queries 151

Querying

Concretized Queries

Querying: Concretized Queries 152

Definition

We assume

I as for deductive queries

I semantics must be compositional

We define

I a concretized query is an l-proposition p in context Γ
I a single result is a

I a substitution `l γ : Γ
I such that `L TrueJp[γ]K

I the result set is the set of all results

Querying: Concretized Queries 153

Example

1. BOL ontology:

concept male, concept person, axiom male v person,
individual FlorianRabe, assertion FlorianRabe isa male

2. Query x : individual `BOL x isa person

3. Translation to SFOL: x : ι `SFOL person(x)

4. SFOL calculus yields theorem `SFOL person(FlorianRabe)

5. Query result JγK = x := FlorianRabe

6. Back-translating the result to BOL: γ = x := FlorianRabe
back translation is deceptively simple:

translates SFOL-constant to BOL-individual of same name

Querying: Concretized Queries 154

Breakout question

What can go wrong?

Querying: Concretized Queries 155

Problem: Open World

In general, semantics uses open world:

I open world: result contains all known results
same query might yield more results later

I closed world: result set contains all results

always relative to concrete database for L

In practice, however,

I system explicitly assumes closed world typical for databases

I users aware of open world and able to process results correctly

Querying: Concretized Queries 156

Problem: Infinity of Results

In general, there may be infinitely many results:

I e.g., query for all x such that ` x ,

In practice, however,

I systems pull results from finite database e.g., SQL, SPARQL

I systems enumerate results, require user to explicitly ask for
more e.g., Prolog

Querying: Concretized Queries 157

Problem: Back-Translation of Results
In general, J−K may be non-trivial to invert

I easy to obtain JpK in context JΓK just apply semantics

I possible to find substitutions

`L δ : JΓK where JΓK `L TrueJpK[δ]

easiest case: just look them up in database

I but how to translate δ to l-substitutions γ with

`l γ : Γ where JΓK `L TrueJp[γ]K

substitution theorem: pick such that JγK = δ
the more J−K does, the harder to invert

In practice, however:

I often only interested in concrete substitutions

I translation of concrete data usually identity

But: practice restricted to what works even if more is needed

Querying: Computational Queries 158

Querying

Computational Queries

Querying: Computational Queries 159

Definition

We assume

I the same as for deductive queries

I semantics has equality/equivalence
.

=

We define

I a computational query is an l-expression e

I the result is an l-expression e ′ so that `L JeK .
= Je ′K

intuition: e ′ is the result of evaluating e

If semantics is compositional, e may contain free variables
evaluate to themselves

Querying: Computational Queries 160

Problem: Back-Translation of Results

In general, J−K may be non-trivial to invert

I easy to obtain E := JeK
I possible to find E ′ with `L E ′

.
= E by working in the semantics

I non-obvious how to obtain e ′ such that Je ′K = E ′

In practice, however:

I evaluation meant to simplify, i.e., only useful if E ′ very simple

I simple E ′ usually in the image of J−K
I typical case: E ′ is concrete data and e ′ = E ′ called a value

Querying: Computational Queries 161

Problem: Non-Termination

In general, computation of E ′ from E might not terminate

I while-loops

I recursion

I (λx .x x) (λx .x x) with β-rule

I simplification rule x · y y · x
similar: distributivity, associativity

In practice, however:

I image of J−K part of terminating fragment

But: if l is Turing-complete or undecidable, general termination
not possible

Querying: Computational Queries 162

Problem: Lack of Confluence

In general, there may be multiple E ′ that are simpler than E

I there may be multiple rules that apply to E
I e.g., f (g(x))

I call-by-value: first simplify g(x) y , then f (y) z
I call-by-name: first plug g(x) into definition of f , then simplify

I Normal vs. canonical form
I normal: `L E

.
= E ′

I canonical: normal and `L E1
.

= E2 iff E ′
1 = E ′

2

equivalent expressions have identical evaluation
allows deciding equality

In practice, however:

I image of J−K part of confluent fragment

I typical: evaluation to a value is canonical form
works for BDL-types but not for, e.g., function types

Querying: Narrative Queries 163

Querying

Narrative Queries

Querying: Narrative Queries 164

Definition

We assume

I semantics into natural language

We define

I a narrative query is an L-question about some l-expressions

I the result is the answer to the question

Querying: Narrative Queries 165

Problem: Unimplementable

very expressive = very difficult to implement

I Natural language understanding
I no implementable syntax of natural language

needs restriction to controlled natural language
I specifying semantics hard even when controlled

I Knowledge base for question answering needed
I very large must include all common sense
I might be inconsistent common sense often is
I finding answers still very hard

In practice, however:

I accept unreliability attach probability measures to answers

I implement special cases
e.g., lookup in databases like Wikidata

I search knowledge base for related statements Google, Watson

Querying: Syntactic Querying 166

Querying

Syntactic Querying

Querying: Syntactic Querying 167

Search

I “search” not systematically separated from “querying”

I often interchangeable

I querying tends to imply formal languages for queries with
well-specified semantics e.g., SQL

I search tends to imply less targeted process e.g., Google

we will not distinguish between the two

Querying: Syntactic Querying 168

Syntactic vs. Semantic Querying

Semantic querying
I Query results specified by vocabulary V but (usually) not contained

in it

I Query answered using semantics of language

I Challenge: apply semantics to find results
I deductive query ` f : prop requires theorem prover
I computation query ` e : E requires evaluator
I concrete query Γ ` f : prop requires enumerating all

substitutions, running theorem prover/evaluator on all of them

what we’ve looked at so far

Syntactic querying
I Query is an expression e

I Result is set of occurrences of e in V

I Independent of semantics

I Much easier to realize

Querying: Syntactic Querying 169

Challenges for Syntactic Search

Easier to realize → scale until new challenges arise

I large vocabularies
I narrative: all text documents in a domain

e.g., all websites, all math papers
I deductive: large repositories of formalization in proof assistants

105 theorems
I computational: package managers for all programming

languages
I concrete: all databases in a domain TBs routine

I incremental indexing: reindex only new/changed parts

I incremental search to handle large result sets pagination
I sophisticated techniques for

I indexing: to allow for fast retrieval
I similarity: to select likely results
I quality: to rank selected results

I integration of some semantic parts

Querying: Syntactic Querying 170

Overview

I Deduction
I semantic: theorem proving called search
I syntactic: text search

I Concretization
I semantic: complex query languages (nestable queries)

SQL, SPARQL
I syntactic: search by identifier (linked data)

I Computation
I semantic: interpreters called execution
I mixed: IDEs search for occurrences, dependencies
I syntactic: search in IDE, package manager

I Narration:
I semantic: very difficult
I syntactic: bag of words search

Querying: Syntactic Querying 171

Abstract Definition: Document

Document =

I file or similar resource that contains vocabularies

I often with comments, metadata
I different names per aspect

I deduction: formalization, theory, article
I computation: source files
I concretization: database, ontology ABox
I narrative: document, web site

Library =

I collection of documents

I usually structured into folders, files or similar

I often grouped by user access e.g., git repository

I vocabularies interrelated within and across libraries

Querying: Syntactic Querying 172

Abstract Definition: Document Fragment

Fragment = subdivision of documents into nested semantic units

Examples

I deductive: theory, section, theorem, definition, proof step, etc.

I computational: class, function, command, etc.

I concrete: table, row, cell

I narrative: section, paragraph, etc.

Assign unique fragment URI, e.g., LIB/DOC?FRAG where

I LIB: base URI of library e.g., repository URL

I DOC: path to document within library
e.g., folder structure, file name

I FRAG: id of fragment within document
e.g., class name/method name

Querying: Syntactic Querying 173

Abstract Definition: Index(er)

Indexer consists of

I data structure O for indexable objects
specific to aspect, index design

e.g., words, syntax trees

I function that maps library to index the indexing

Index entry consists of

I object that occurred in the library

I URI of the containing fragment

I information on where in the fragment it was found

Index = set of index entries

Querying: Syntactic Querying 174

Abstract Definition: Query and Result

Given

I indexer I with data structure O

I set of libraries

I union of their indexes computed once, queried often

Query = object Γ `I q : O

Result consists of

I index entry with object o

I substitution for Γ such that q matches o
definition of “match” index-specific, e.g., q[γ] = o

Result set = set of all results in the index

Querying: Syntactic Querying 175

Bag of Words Search

Definition:

I Index data structure = sequences of words (n-grams) up to a
certain length

I Query = bag of words bag = multiset

I Match: (most) words in query occur in same n-gram or
n-grams near each other

Example implementations

I internet search engines for websites

I Elasticsearch: open source engine for custom vocabularies

Mostly used for narrative documents

I can treat concrete values as words e.g., numbers

I could treat other expressions as words works badly

Querying: Syntactic Querying 176

Symbolic Search

Definition:

I Index data structure = syntax tree (of any grammar) of
expressions o with free/bound variables

I Query = expression q with free (meta-)variables

I Match: q[γ] =α o, i.e., up to variable renaming

Example implementation

I MathWebSearch
see separate slides on MathWebSearch in the repository

Mostly used for formal documents

I deductive

I computational

Querying: Syntactic Querying 177

Knowledge Graph Search

Definition:

I Index data structure = assertion forming node/edge in a
knowledge graph

I Index = big knowledge graph G

I Query = knowledge graph g with free variables

I Match: g [γ] is part of G

Example implementations

I SPARQL engines without consequence closure
i.e., the most common case in practice

I graph databases

Mainly used for ABoxes of untyped ontologies

Querying: Syntactic Querying 178

Value Search

Definition:

I Index data structure = BDL values v

I Query = BDL expression q with free variables

I Match: q[γ] = v

Example implementations

I no systematic implementation yet

I special cases part of most database systems

Could be used for values occurring in any document

I all aspects

I may need to decode/encode before putting in index

Querying: Syntactic Querying 179

Cross-Aspect Occurrences

Observation

I libraries are written in one primary aspect

I indexer focuses on one aspect and kind of object

I but documents may contain indexable objects of any index

Querying: Syntactic Querying 180

Cross-Aspect Occurrences: Examples

I Any library can contain
I metadata on fragments

I relation assertions induce knowledge graph structure between
fragments

I property assertions contain values narrative, symbolic objects,
or values

I cross-references to fragments of any other library
I narrative comments

I Narrative text may contain symbolic expressions
STEM documents

I Database table may have columns containing
I text
I encoded BDL values
I symbolic expression (often as strings)

I Symbolic fragments may contain database references
e.g., when using database for persistent memoization

Querying: Syntactic Querying 181

A New Indexing Design

recent paper https:
//kwarc.info/people/frabe/Research/BKR_mdql_20.pdf

with K. Bercic

Libraries

lib 1

...

lib n

Indexes

MathWebSearch

Elasticsearch

value index

knowledge graph
...

Querying

QuComp

ResAgg

Q1:Symbolic

R1

Q 2
:B

oW

R2

Q
3

:V
al

ue

R3

Q
4

:K
n
ow

l.
G

r.

R4

Q

R

https://kwarc.info/people/frabe/Research/BKR_mdql_20.pdf
https://kwarc.info/people/frabe/Research/BKR_mdql_20.pdf

Querying: Syntactic Querying 182

A New Indexing Design (2)

Tricky question: What is the query language that allows combining
queries for each index?

Easy:

I query = conjunction of atomic queries

I each atom queries one index

I QuComp splits into atoms

I ResAgg take intersection of results

Better: allow variables to be shared across atoms
open research question

Querying: Syntactic Querying 183

A New Indexing Design: Example

Consider

I table of graphs with human-recognizable names and
arc-transitivity property
indexed into
I value index for the graph sparse6 codec
I Boolean computed property for the arc-transitivity in

knowledge graph
I text index for name

I papers from arXiv in narrative index
indexed into
I narrative index for text
I MathWebSearch for formulas
I knowledge graph for metadata

Query goal: find arc-transitive graphs mentioned by name in
articles with h-index greater than 50

Querying: Syntactic Querying 184

Integrating Semantic Querying

Word search

I find multi-meaning words for only one meaning
“normal” in math

I special treatment of certain queries e.g., “weather” in Google

Symbolic search

I match query e
.

= e ′ against occurrence e ′
.

= e

I similarly: associativity, commutativity, etc.

I slippery slope to deductive queries

Value search

I match query 1.5 against interval 1.4± 0.2

I match query 5 · x against 25

I slippery slope to computational queries

frontiers of research — in our group: for STEM documents

Semantics: 185

Semantics

Semantics: Overview 186

Semantics

Overview

Semantics: Overview 187

Motivation

Recall:

Syntax Data

Semantics Knowledge

Representing

I syntax = formal language
I grammar context-free part
I type system context-sensitive well-formedness

I data = words in the syntax
I set of vocabularies
I set of typed expressions for each vocabulary

I semantics = ???

I knowledge = emergent property of having well-formed words
with semantics

So far: semantics by translation

Semantics: Overview 188

Relative Semantics

Semantics by Translation

I Two syntaxes
I object-language l e.g., BOL
I meta-language L e.g., SFOL, Scala, SQL, English

I Semantics of L assumed fixed captures what we already know

I Semantics of l by translation into L

semantics of l relative to to existing semantics of L

Problem: just kicking the can?

Semantics: Overview 189

Discussion of Relative Semantics

Advantages
I a few meta-languages yield semantics for many languages

I easy to develop new languages

I good connection between syntax and semantics via compositionality,
substitution theorem

Disadvantages
I does not solve the problem once and for all

I impractical without implementation of semantics of meta-language

I meta-languages typically much more expressive than needed for
object-languages

I translations can be difficult, error-prone

Also needed: absolute semantics

Semantics: Overview 190

Absolute vs. Relative Semantics

Absolute = self-contained, no use of meta-language L

Get off the ground

I semantics for a few important meta-languages
e.g., FOL, assembly language, set theory

I relative semantics for all other languages, e.g.,
I model theory: logic → set theory
I compilation: Scala → JVM → assembly

Redundant semantics
I common to give

I relative and absolute semantics for same syntax
I multiple relative semantics translations to different aspects
I sometimes even maybe multiple absolute ones

I Allows understanding syntax from multiple perspectives

I Allows cross-checking show equivalence of two semantics

Semantics: Overview 191

No Perfect Model for Absolute Semantics

I Machine-actionable requires reduction to finite set of rules
whatever a rule is

I Does not work for most domains
I practical argument: any practically interesting system has too

many rules
cf. physics, e.g., three-body problem already chaotic

I theoretical argument: no language can fully model itself
cf. Gödel’s incompleteness theorems

I Imperfect representation of intended semantics required
focus on some aspect

Big question: what aspects to focus on?

Semantics: Overview 192

Querying as a Guide

Idea
I Very difficult to choose aspects for absolute semantics

I Turn problem around
I ask what the practical purpose of the semantics could be
I then choose aspects that allow realizing that purpose

Meta-remark: That’s why we did relative semantics and querying
first in this course even though absolute semantics conceptually
belongs at the beginning.

Querying as the Purpose

I Before: identified different kinds of querying
focussing on different aspects of knowledge

I Now: each induces a kind of absolute semantics

Semantics: Absolute Semantics 193

Semantics

Absolute Semantics

Semantics: Absolute Semantics 194

Deductive Semantics

Definition

I A system that determines which propositions are theorems
called a calculus

I Languages called logics

I Implementations called theorem provers

More precisely
I Judgment: ` F for “F is theorem”

I Set of rules for deriving judgments

Examples
I Natural deduction for first-order logic

I Axiomatic set theory for (most of) mathematics

Semantics: Absolute Semantics 195

Redundant Deductive Semantics

Multiple deductive semantics
I Proof theory: absolute

I Model theory: relative via translation to set theory L
write |= F for `L TrueJF K

I Logic translation: relative via translation into standard logics, e.g.,
SFOL

Equivalence Theorems
I Soundness: ` F implies |= F

I Completeness: |= F implies ` F accordingly for other translations

Semantics: Absolute Semantics 196

Computational Semantics

Definition
I A system that evaluates expressions to values

I Languages typically called programming languages

I Implementations called interpreters, evaluators

More precisely
I Judgment: ` E V for “E evaluates to V ”

I Set of rules for deriving E E1 E2 . . .

I Often more complex judgments using context containing heap,
stack, IO channels, local variables

Examples

I Any interpreted language Python, bash, . . .

I Machine language interpretation rules built into microchips

Semantics: Absolute Semantics 197

Redundant Computation Semantics

Multiple computational semantics
I Specification: absolute as rules on paper

I Interpreter: absolute as implementation

I Compiler: relative via translation to assembly L
write |= E V for `L JEK JV K

I Cross-compilation: relative via translation into other languages
Church-Turing thesis: always possible

Equivalence Theorems

I Correctness of compiler: ` E V iff |= E V
accordingly for other translations

Semantics: Absolute Semantics 198

Concrete Semantics

Definition
I A system that finds known ground instances of propositions

I Languages often called query languages
inspired our, more general use of the word

I Implementations focusing on caching finite sets of ground instances
called triple stores, databases

More precisely
I Judgment: ` F [γ] for “γ is known ground instance of F ”

I Set of rules/sets/tables for finding all γ

Examples
I SQL for Church-typed ontologies with ADTs

I SPARQL for Curry-typed ontologies

I Prolog for first-order logic

Semantics: Absolute Semantics 199

Yes/No vs. Wh-Questions

Deductive/concrete semantics may be a bit of a misnomer

I Queries about ` F are yes/no questions
I specialty of deductive semantics
I but maybe only because everything else is ever harder to do

deductively

I Queries about ground instances of Γ ` F are Wh questions
I specialty of concrete databases
I for the special case of retrieving finite results sets from a fixed

concrete store
I only situation where Wh questions are easy

But Yes/no and Wh questions exist in all aspects.

Semantics: Absolute Semantics 200

Redundant Concrete Semantics

Multiple concrete semantics
I Specification: absolute as rules on paper

I Database: absolute by custom database

I Database: relative via translation to assembly L

Equivalence Theorems
I typically: choose one, no redundancy, no equivalence theorems

I infinite results: easy on paper, hard in database

I open world: are all known ground instances in database?

Semantics: Absolute Semantics 201

Narrative Semantics

Definition
I Describes how to answer (some) questions

I Implementations tend to be AI-complete, hypothetical

I In practice, information retrieval = find related documents

More precisely?
I Not much theory, wide open research problem

I Some natural language document with interspersed definitions,
formulas

I Maybe judgment: ` Q?A for “A is answer to Q”

Examples
I “W3C Recommendation OWL 2” and Google

I “ISO/IEC 14882: 1998 Programming Language C++” and
Stroustrup’s book

I Mathematics textbooks and mathematicians

Semantics: An Abstract Definition 202

Semantics

An Abstract Definition

Semantics: An Abstract Definition 203

Languages

A formal system l consists of

I a set of vocabularies Vocl

I for every V ∈ Vocl , a set Expl(V) of expressions

I a typing relation `lV e : E between e,E ∈ Expl(V)

define: Expl
V (E) = {e ∈ Expl

V | `lV e : E}

convention: leave out superscript l , subscript V if clear

A formal system with propositions
I additionally has a distinguished expression prop

I define F is proposition if `V F : prop

A formal system with equality

I additionally has a distinguished proposition e1
.

=E e2 whenever
` ei : E

in the sequel: fix l as above

Semantics: An Abstract Definition 204

Deductive Semantics

A deductive semantics for l consists of

I for every V , a subset Thml
V ⊆ Expl

V (prop) of theorems

write `lV F for F ∈ Thml
V

Semantics: An Abstract Definition 205

Curry-Howard

Define deductive semantics as a special case of typing

I propositions as types

I proofs as expressions

I add typing rules such that ` P : F captures the statement “P
is proof of F ”

I define: ` F iff there is P such that ` P : F

Semantics: An Abstract Definition 206

Computational Semantics

A computational semantics for l consists of

I for every V , a function EvallV : Expl
V → Expl

V

I the image of Eval called the values

write `lV e e′ for e′ = EvallV (e)

If we also have typing, we say
I subject reduction: if ` e : E , then ` Eval(e) : E

If we also have equality and deductive semantics, we say
I normal forms:

I EvallV idempotent, i.e., EvallV (x) = x if x value
I `lV e

.
=E EvallV (e)

I canonical forms: `lV e1
.

=E e2 iff EvallV (e1) = EvallV (e2)

Semantics: An Abstract Definition 207

Interdefinability

Given a computational semantics, define a deductive one:
I distinguished expression ` true : prop,

I ` F iff Eval(F) = true
implies decidability, so usually only possible for some F

Given a deductive semantics, define computational one:

I Eval(e) is some e′ such that ` e
.

= e′

trivially normal, but usually not canonical

Both kinds of semantics add different value. We usually want both.

Semantics: An Abstract Definition 208

Why Abstract?

Our definitions are abstract
I Exp, Thm, Eval just assumed as sets/functions

I No requirement how they are constructed
I inductive structure of expressions optional
I both absolute and relative semantics are special cases

A more concrete definition might demand
I ExpV defined by grammar

I type system defined by
I calculus for `V e : E
I alternatively: trivial type system where

all non-terminals N are expressions too
and ` E : N iff E derived from N

I ThmV defined by calculus for `V F

I EvalV defined by calculus for `V e e′

Semantics: An Abstract Definition 209

Syntax with Contexts
If we want to talk about contexts, too, we need to expand all of
the above.

Syntax with contexts

I contexts: for every V , a set ContlV write `V Γ

I substitutions: for Γ,∆ ∈ ContV , a set SubsV (Γ,∆)
write `V γ : Γ→ ∆

Expressions in context
I expressions: sets ExpV (Γ)

I substitution application: functions Exp(γ) : Exp(Γ)→ Exp(∆) for
γ ∈ Subs(Γ,∆) write Exp(γ)(e) as e[γ]

Typing in context
I expressions: sets ExpV (Γ,E), written as Γ `V e : E

I substitution preserves types: if Γ ` e : E and ` γ : Γ→ ∆, then
∆ ` e[γ] : E [γ]

Semantics: An Abstract Definition 210

Contexts: General Definition

We can leave contexts abstract or spell out a concrete definition:

I contexts Γ are of the form

x1 : E1, . . . , xn : En

where Ei ∈ Exp(x1 : E1, . . . , xi−1 : Ei−1)

I for Γ as above, substitutions Γ→ ∆ are of the form:

x1 = e1, . . . , xn = en

where ∆ ` ei : Ei [x1 = e1, . . . , xi−1 = ei−1]

This works uniformly for any formal system. But most formal
systems are a bit more restrictive, e.g., by requiring that all Ei are
types.

Semantics: An Abstract Definition 211

Semantics with Contexts

Deductive semantics

I define: theorem sets ThmV (Γ) write F ∈ ThmV (Γ) as Γ `V F

I such that theorems are preserved by substitution:
if Γ `V F and ` γ : Γ→ ∆, then ∆ `V F [γ]

Computational semantics

I define: evaluation functions EvalV (Γ) : ExpV (Γ)→ ExpV (Γ)
write e′ = EvalV (Γ)(e) as Γ `V e e′

I extend to substitutions:
EvalV (∆)(. . . , x = e, . . .) = . . . , x = EvalV (∆)(e), . . .

I require that evaluation is preserved by substitution ` γ : Γ→ ∆
EvalV (∆)(e[γ]) = EvalV (∆)(e)[EvalV (∆)(γ)]

substitution theorem for Eval as a translation from l to itself

Semantics: An Abstract Definition 212

Concrete Semantics

General definitions for substitutions
I write · for empty context/substitution

I ground expression is expression in empty context
also called closed; then opposite is open

I ground substitution: ` γ : Γ→ ∅ no free variables after substitution

I if we have computational semantics:
value substitution is ground substitution where all expressions are
values

I if we have deductive semantics:
true instance of Γ ` F : prop is γ such that ` F [γ]

A concrete semantics for l consists of

I for every Γ `lV F : prop, a set InstlV (Γ,F) of ground substitutions
write Γ `V γ : F for γ ∈ InstV (Γ,F)

Semantics: An Abstract Definition 213

Interdefinability
Given concrete semantics, define a deductive one
I for ground F , Inst(·,F) is either {·} or {}
I ` F iff Inst(·,F) = {·}

but concrete semantics usually cannot find all substitutions for all F

Given concrete semantics, define a computational one

I ` e e′ iff (x = e′) ∈ Inst(x : E , e
.

=E x)
but concrete semantics usually cannot find that substitution for all e

Given deductive semantics, define a concrete one

I Inst(Γ,F) = {` γ : Γ→ · | ` F [γ]}
but deductive semantics usually does not allow computing that set

Given computational semantics, define a concrete one
I Inst(Γ,F) = {Eval(·, γ) | ` γ : Γ→ ·, ` F [γ] true}
I allows restricting results to value substitutions

composition of previous inter-definitions, inherits both problems

Semantics: An Abstract Definition 214

Translations

A translation T from formal system l to formal system L
consists of

I function VocT : Vocl → VocL

I family of functions ExpT
V : Expl

V → ExpL
VocT (V)

Desirable properties
I Should satisfy type preservation:

`lV e : E implies `LVocT (V) ExpT
V (e) : ExpT

V (E)

intuition: what we have, is preserved

I Might satisfy conservativity:

`LVocT (V) e′ : ExpT
V (E) implies `lV e : E for some e

intuition: nothing new is added

Semantics: An Abstract Definition 215

Translation of Contexts

Translations extend to contexts and substitutions

I ContT (. . . , x : E , . . .) = . . . , x : ExpT (E), . . .

I SubsT (. . . , x = e, . . .) = . . . , x = ExpT (e), . . .

I ExpT (x) = x for all variables

Desirable properties for arbitrary contexts
I Type preservation:

Γ `lV e : E implies ContTV (Γ) `LVocT (V) ExpT
V (e) : ExpT

V (E)

I Conservativity:

ContTV (Γ) `LVocT (V) e′ : ExpT
V (E) implies Γ `lV e : E for some e

Semantics: An Abstract Definition 216

Compositionality

Define: a translation is compositional iff we can show the
substitution theorem for it

Given
Γ `lV e : E `lV γ : Γ→ ∆

we have that

ContTV (∆) `L
VocT (V)

ExpT
V (e[γ])

.
=ExpTV (E [γ]) ExpT

V (e)[SubsTV (γ)]

Simplify: write T (−) for VocT (−),ExpT
V (−), ContTV (−),

SubsTV (−)

T (∆) `LT (V) T (e[γ])
.

=T (E [γ]) T (e)[T (γ)]

Semantics: An Abstract Definition 217

Relative Semantics
Given

I formal systems l and L
I semantics for L
I translation T from l to L

define semantics for l

I deductive: define

`lV F iff `L
VocT (V)

ExpT
V (F)

I computational: define

`lV e e ′ iff `L
VocT (V)

ExpT
V (e) ExpT

V (e ′)

both work accordingly with a context Γ
I concrete: define

Γ `lV γ : F iff ContTV (Γ) `L
VocT (V)

SubsTV (γ) : ExpT
V (F)

Semantics: An Abstract Definition 218

Equivalence of Semantics

Two semantics `1 and `2 for l are equivalent if they are equal in
the abstract sense.

I deductive: `1 F iff `2 F

I computational: `1 e e ′ iff `2 e e ′

I concrete: Γ `1 γ : F iff Γ `2 γ : F

Example for deductive semantics:

I `1 absolute semantics by calculus
e.g., natural deduction for SFOL

I `2 relatives semantics by translation e.g., L is set theory, T is
model theory of SFOL

I Assume proofs-as-expressions
I Then:

I type preservation = soundness
I conservativity = completeness

Semantics: An Abstract Definition 219

Exercise 6: Relative Deductive Semantics for BOL

I Implement a translation from BOL to untyped FOL
you can drop properties, types, and values

so that only one type of individuals is needed

I Use TPTP syntax for FOL see http://www.tptp.org/

I Translate an example ontology
pick any ontology with a non-trivial consequence closure

I Use a theorem prover for first-order logic to implement a
relative deductive semantics for BOL

Vampire and E are standard choices
see also http://www.tptp.org/cgi-bin/SystemOnTPTP

I Test by example whether your semantics yields the correct
consequence closure

http://www.tptp.org/
http://www.tptp.org/cgi-bin/SystemOnTPTP

Semantics: An Abstract Definition 220

Example: Relative Computational Semantics for BOL

Scala, SQL semantics evaluates

I concept c to
I SQL: table of individuals result of running query JcK
I Scala: hashset of individuals result of running program JcK

I propositions to booleans accordingly

Technically, results not in image of J−K
Fix: add productions for all values

F ::= true | false truth values
C ::= {I , . . . , I} finite concepts

Semantics: An Abstract Definition 221

Equivalence with respect to Semantics
So far: equivalence of two semantics wrt all queries

Related concept: equivalence of two queries wrt one semantics

I F , G deductively equivalence:

` F iff ` G

may be internalized by syntax as proposition F ↔ G

I F ,G concretely equivalent:

` F [γ] iff ` G [γ]

for all ground substitutions γ weaker than Γ ` F ↔ G

I closed e, e ′ computationally equivalent:

` e v iff ` e ′ v

may be internalized by syntax as proposition e
.

= e ′

Semantics: An Abstract Definition 222

Equivalence with respect to Semantics (2)

Interesting variants of computational semantics

I open e, e ′ extensionally equivalent:

` e[γ] v iff ` e ′[γ] v

for all ground substitutions γ
equal inputs produce equal outputs

weaker then Γ ` e
.

= e ′ — intensional equivalence

I machines M,M ′ observationally equivalent:
produce equal sequences of outputs for the same sequence of
inputs e.g., automata, objects in OO-programming

choice of semantics defines legal optimizations in compiler

Semantics: Absolute Semantics for BOL 223

Semantics

Absolute Semantics for BOL

Semantics: Absolute Semantics for BOL 224

Judgments

Typing:
Γ `BOL

V e : E

Deduction:
Γ `BOL

V F

Propositions prop:

I C v D, C ≡ D

I all three kinds of assertions

Notation:

I We drop the superscript BOL everywhere.

I We drop the subscript V unless we need to use V .

I We drop the context Γ unless we need to use/change Γ.

Semantics: Absolute Semantics for BOL 225

Typing

Trivial intrinsic typing (Church) ` e :int E

I E is a non-terminal

I e an expression derived from E

Refined by extrinsic typing (Curry) ` e :ext E

I e is an individual, i.e., ` e :int I

I E is a concept, i.e., ` E :int C
where I and C are the non-terminals from the grammar

I e has concept E , i.e., ` e is-aE

Semantics: Absolute Semantics for BOL 226

Propositions as Types

Say also ` p : f for proofs p of proposition f
in particular: x : f in contexts to make local assumptions

Notation:
Γ, f instead of Γ, p : f

sufficient if we only state the rules, not build proofs

Semantics: Absolute Semantics for BOL 227

Lookup Rules

The main rules that need to access the vocabulary:

f in V

`V f

for assertions or axioms f

Assumptions in the context are looked up accordingly:

x : f in Γ

Γ ` f

Semantics: Absolute Semantics for BOL 228

Rules for Subsumption and Equality

Subsumption is an order with respect to equality:

` c v c

` c v d ` d v e

` c v e

` c v d ` d v c

` c ≡ d

Equal concepts can be substituted for each other:

` c ≡ d x : C ` f (x) : prop ` f (c)

f (d)

This completely defines equality.

Semantics: Absolute Semantics for BOL 229

Rules relating Instancehood and Subsumption

` i is-a c ` c v d

` i is-a d

Read:

I if
I i is-a c
I c v d

I then i is-a d

x : I , x is-a c ` x is-a d

` c v d

Read:

I if
I assuming an individual x and x is-a c , then x is-a d

I then c v d

Semantics: Absolute Semantics for BOL 230

Induction

Consider from before

x : I , x is-a c ` x is-a d

` c v d

Question: Do we allow proving the hypothesis by checking for each
individual x? induction

I Open world: no

I Closed world: yes

Γ[x = i] ` f [x = i] for every individual i

Γ, x : I ` f (x)

effectively applicable if only finitely many individuals

Semantics: Absolute Semantics for BOL 230

Induction

Consider from before

x : I , x is-a c ` x is-a d

` c v d

Question: Do we allow proving the hypothesis by checking for each
individual x? induction

I Open world: no

I Closed world: yes

Γ[x = i] ` f [x = i] for every individual i

Γ, x : I ` f (x)

effectively applicable if only finitely many individuals

Semantics: Absolute Semantics for BOL 230

Induction

Consider from before

x : I , x is-a c ` x is-a d

` c v d

Question: Do we allow proving the hypothesis by checking for each
individual x? induction

I Open world: no

I Closed world: yes

Γ[x = i] ` f [x = i] for every individual i

Γ, x : I ` f (x)

effectively applicable if only finitely many individuals

Semantics: Absolute Semantics for BOL 231

Rules for Union and Intersection of Concepts

Union as the least upper bound:

` c v c t d ` d v c t d

` c v h ` d v h

` c t d v h

Dually, intersection as the greatest lower bound:

` c u d v c ` c u d v d

` h v c ` h v d

` h v c u d

Semantics: Absolute Semantics for BOL 232

Rules for Existential and Universal

Easy rules:

I Existential
` i r j ` j is-a c

` i is-a∃r .c

I Universal
` i is-a∀r .c ` i r j

` j is-a c

Other directions are trickier:

I Existential

` i is-a∃r .c j : I , i r j , j is-a c ` f

` f

I Universal
j : I , i r j ` j is-a c

` i is-a∀r .c

Semantics: Absolute Semantics for BOL 233

Selected Rules for Relations

Inverse:
` i r j

` j r−1 i

Composition:
` i r j ` j s k

` i (r ; s) k

Transitive closure:

` i r∗ i

` i r j ` j r∗k

` i r∗k

Identity at concept c :
` i is-a c

` i ∆c i

Semantics: Equivalence of BOL Semantics 234

Semantics

Equivalence of BOL Semantics

Semantics: Equivalence of BOL Semantics 235

Overview

Now 5 semantics for BOL

I absolute deductive via calculus

I relative deductive via SFOL

I relative computational via Scala

I relative concrete via SQL

I relative narrative via English

Moreover, these are interdefinable.
e.g., Scala translation also induces deductive semantics

Can compare equivalence

I for every pair of semantics

I for every kind of equivalence (deductive, concrete,
computational)

Question: Which of them hold?

Semantics: Equivalence of BOL Semantics 236

Questions

For example, consider:

I Are the absolute semantics and the Scala semantics
deductively equivalent?

I Assuming BOL and SQL have the base types and values: Are
the absolute semantics and the SQL semantics concretely
equivalent?

Semantics: Equivalence of BOL Semantics 237

Deductive Semantics

Are these two BOL semantics deductively equivalent

I absolute deductive semantics

I relative deductive semantics via translation J−K to SFOL

Soundness: `BOL
V f implies `SFOL

JV K Jf K

I induction on derivations of `BOL
V f

I one case per rule induction rule from above not sound

I several pages of work but straightforward and relatively easy

Semantics: Equivalence of BOL Semantics 237

Deductive Semantics

Are these two BOL semantics deductively equivalent

I absolute deductive semantics

I relative deductive semantics via translation J−K to SFOL

Completeness: `BOL
V f implied by `SFOL

JV K Jf K
works if we add missing rules

I induction on SFOL derivations does not work
I SFOL more expressive than BOL
I J−K not surjective

I instead show that J−K preserves consistency of vocabularies
no universal recipe how to do that

I then a typical proof uses V extended with ¬f
I if V inconsistent, `V f for all f , done
I if V consistent and V + ¬f inconsistent, then `V f , done
I if V + ¬f consistent, so is JV + ¬f K, which contradicts
`SFOL

JV K Jf K

Semantics: Equivalence of BOL Semantics 238

Computational Semantics

Are these two BOL semantics deductively equivalent

I absolute deductive semantics

I relative deductive semantics via translation J−K to Scala

Soundness: `BOL
V f implies `ScalaJV K Jf K true

I Problem: Absolute semantics performs consequence closure,
e.g.,
I transitivity of v
I relationship between v and is-a

I Scala semantics does so only if we explicitly implemented it
we didn’t

same problem for SQL semantics

Semantics: Equivalence of BOL Semantics 238

Computational Semantics

Are these two BOL semantics deductively equivalent

I absolute deductive semantics

I relative deductive semantics via translation J−K to Scala

Completness: `BOL
V f implied by `ScalaJV K Jf K true

I absolute semantics leaves closed world optional

I Scala uses closed worlds
e.g., used to compute c v d by checking all individuals

I complete only if we add induction rule

	Administrative Information
	Format
	Background
	Prerequisites
	Examination and Grading
	Materials and Exam-Relevance
	Communication
	Exercises

	Overview and Essential Concepts
	Representation and Processing
	Data and Knowledge
	Knowledge is Elusive
	Semantics as Translation
	Heterogeneity of Data and Knowledge
	Challenges of Heterogeneity
	Aspects of Knowledge
	Relations between the Aspects
	Complementary Advantages of the Aspects
	Structure of the Course
	Structure of the Exercises

	Ontological Knowledge
	Components of an Ontology
	Divisions of an Ontology
	Comparison of Terminology
	Ontologies as Sets of Triples
	Special Entities
	Declarations as Triples using Special Entities
	An Example Ontology Language

	Semantics as Translation
	Example: Syntax of Arithmetic Language
	Example: Semantics of Arithmetic Language
	Example: Semantics of Arithmetic Language
	Semantics of BOL
	General Definition
	Common Principles
	Compositionality
	Compositionality (2)
	Compositionality (3)
	Non-Compositionality

	Type Systems
	Breakout Question
	Actually, when is a language an improvement?
	Church vs. Curry Typing
	Type Checking
	Curry Typing in BOL
	Subtyping
	A General Definition of a Type System
	Examples
	Breakout Question
	Breakout Question
	Abstract Data Types: Motivation
	Abstract Data Types: Motivation
	Abstract Data Types: Motivation
	Abstract Data Types: Examples
	Abstract vs. Concrete Types
	Abstract Data Types: Examples
	Abstract Data Types: Definition
	Abstract Data Types: Class Definitions
	Abstract Data Types: Flattening
	Abstract Data Types: Subtleties

	Context-Sensitive Syntax
	Definition
	Typical Structure
	Vocabularies and Expressions
	Examples

	Concrete Knowledge and Typed Ontologies
	Motivation
	Concrete Data
	Breakout question
	Two Approaches
	Evolution of Approaches
	Curry-typed concrete data
	Church-typed concrete data
	Identifiers
	Axioms
	Breakout question
	ADTs in Typed Concrete Data
	Open/Closed World
	Closing the World

	Primitive Types and Encoding Data
	Motivation
	Data Interoperability
	Primitive vs. Declared
	Examples
	Quasi-Primitive = Declared in standard library
	Treatment in this Course
	Encoding Primitive Types
	Failures of Encodings
	Failures of Encodings (2)
	Research Goal for Aspect-Independent Data in Tetrapod
	Overview

	Data Types
	Breakout Question
	Atomic Data Types: basic
	Atomic Data Types: advanced
	Complex Data Types
	Collection Data Types
	Aggregation Data Types
	Subtyping
	A Basic Language for Typed Data
	BDL Extended with Named ADTs

	Data Representation Languages
	Overview
	Breakout Question
	Typical Data Representation Languages
	Example: JSON
	Example: YAML
	Example: XML
	Structure Sharing
	Structure Sharing (2)

	Codecs
	General Definition
	Codec Operators
	Exercise 4
	Codecs for Base Types
	Breakout Question
	Codecs for Unlimited Precision Integers
	Codecs for Unlimited Precision Integers
	Codecs for Lists
	Additional Types
	Additional Types (2)

	Data Interchange
	Design
	Example
	Example Application: OpenDreamKit research project
	Integrating BOL and BDL
	BDL-Mediated Interoperability
	Codecs in ADT Definitions
	Example
	Open Problem: Non-Compositionality
	Open Problem: Querying
	Exercise 5, part 1
	Exercise 5, part 2

	Querying
	Overview
	General Ideas
	Propositions
	Propositions as Queries
	Semantics of Propositions

	Deductive Queries
	Definition
	Breakout question
	Problem: Inconsistency
	Problem: Incompleteness
	Problem: Undecidability
	Problem: Inefficiency

	Contexts and Free Variables
	Concepts
	Contexts
	Contexts under Compositional Translation
	Substitution under Compositional Translation

	Concretized Queries
	Definition
	Example
	Breakout question
	Problem: Open World
	Problem: Infinity of Results
	Problem: Back-Translation of Results

	Computational Queries
	Definition
	Problem: Back-Translation of Results
	Problem: Non-Termination
	Problem: Lack of Confluence

	Narrative Queries
	Definition
	Problem: Unimplementable

	Syntactic Querying
	Search
	Syntactic vs. Semantic Querying
	Challenges for Syntactic Search
	Overview
	Abstract Definition: Document
	Abstract Definition: Document Fragment
	Abstract Definition: Index(er)
	Abstract Definition: Query and Result
	Bag of Words Search
	Symbolic Search
	Knowledge Graph Search
	Value Search
	Cross-Aspect Occurrences
	Cross-Aspect Occurrences: Examples
	A New Indexing Design
	A New Indexing Design (2)
	A New Indexing Design: Example
	Integrating Semantic Querying

	Semantics
	Overview
	Motivation
	Relative Semantics
	Discussion of Relative Semantics
	Absolute vs. Relative Semantics
	No Perfect Model for Absolute Semantics
	Querying as a Guide

	Absolute Semantics
	Deductive Semantics
	Redundant Deductive Semantics
	Computational Semantics
	Redundant Computation Semantics
	Concrete Semantics
	Yes/No vs. Wh-Questions
	Redundant Concrete Semantics
	Narrative Semantics

	An Abstract Definition
	Languages
	Deductive Semantics
	Curry-Howard
	Computational Semantics
	Interdefinability
	Why Abstract?
	Syntax with Contexts
	Contexts: General Definition
	Semantics with Contexts
	Concrete Semantics
	Interdefinability
	Translations
	Translation of Contexts
	Compositionality
	Relative Semantics
	Equivalence of Semantics
	Exercise 6: Relative Deductive Semantics for BOL
	Example: Relative Computational Semantics for BOL
	Equivalence with respect to Semantics
	Equivalence with respect to Semantics (2)

	Absolute Semantics for BOL
	Judgments
	Typing
	Propositions as Types
	Lookup Rules
	Rules for Subsumption and Equality
	Rules relating Instancehood and Subsumption
	Induction
	Induction
	Induction
	Rules for Union and Intersection of Concepts
	Rules for Existential and Universal
	Selected Rules for Relations

	Equivalence of BOL Semantics
	Overview
	Questions
	Deductive Semantics
	Deductive Semantics
	Computational Semantics
	Computational Semantics

