
Searching for Distributivity



Searching for Distributivity



Searching for Distributivity



Does Image Search help?

I Math formulae are visual objects, after all (let’s try it)



Of course Google cannot work out of the box
I Formulae are not words:

I a, b, c, k, l , m, x , y , and z are (bound) variables.(do not behave like
words/symbols)

I where are the word boundaries for “bag-of-words” methods?

I Formulae are not images either: They have internal (recursive)
structure and compositional meaning

I Idea: Need a special treatment for formulae (translate into “special
words”) Indeed this is done ([MilYou:tadlmf02;
MunMin:MathFind06; LibMel:marmca06; MisGal:egoMath11])
. . . and works surprisingly well (using e.g. Lucene as an indexing
engine)

I Idea: Use database techniques (extract metadata and index it)
Indeed this is done for the Coq/HELM corpus

([AGSTZ:ContMathSearchWhelp04])

I Our Idea: Use Automated Reasoning Techniques (free term indexing
from theorem prover jails)

I Demo: MathWebSearch on Zentralblatt Math, the arXiv Data Set

https://zbmath.org/formulae/
http://arxivsearch.mathweb.org


Substitution Tree [Graf ’94]

u 7→ f (x1, h(∗1))

x1 7→ a x1 7→ g(x3)

x3 7→ ∗1 x3 7→ d

u 7→ f (a, h(x)) u 7→ f (g(y), h(y)) u 7→ f (g(d), h(z))

I Variant of abstraction trees that indexes Substitutions(Nodes labeled
with Substitutions)

I includes Variable renaming (∗i =̂ i th variable)
I less redundant than abstraction trees
I allows n : m indexing



Index statistics
I Experiment: Indexing the arXiv (1M documents, ∼ 108 non-trivial

formulae)
I Results: indexing up to 15 M formulae on a standard laptop

Query Times Memory Footprint

I query time is constant (∼ 15ms) (as expected; goes by
depth× symbols)

I memory footprint seems linear (∼ 500 B
formula ) (expected more

duplicates)
I So we need ca. 100GB RAM for indexing the whole arXiv.
I Can index all published Math (=̂ 5× arXiv) on a large server (.5TB

RAM). (ZBL =̂ 3.5M art.)



Formula/Text Search Combination?
I Observation: MathWebSearch is similar to a one-word IR algorithm,

except . . . unification directly matches one search term against lots
of search terms.

I Idea: combine unification indexing with the vector space model for a
"bag-of-formulae" (instead of standard IR’s "bag-of-words") method
. . .

I at Indexing time: when we index a math document D,
I insert the formulae into the MathWebSearch index (remember dbid)
I replace all formulae in D with their dbid to get D ′
I index D ′ in a bag-of-words index (e.g. Elastic Search or Terrier)

I At query time: (essentially query expansion)
I query Q consists of a set Qf of formulae and a set Qw of words.
I run Qf through MathWebSearch to get set If of matching dbids.
I run Q ′ = Qw + If through nutch to get a set R of document

fragments URIs.
I we return R together with the fragments of D they point to.
I we can even inherit the ranking mechanisms from nutch. (see if they

help)


