
i

From the Textual to the Technological:

Documents and Structure in a Digital Age

USC 020059 Lecture Notes

Giselda Beaudin

International Programs
Rollins Colege, Winter Park, FL, USA

gbeaudin@rollins.edu

Michael Kohlhase

School of Engineering & Science
Jacobs University, Bremen Germany
m.kohlhase@jacobs-university.de

January 21, 2014

gbeaudin@rollins.edu
m.kohlhase@jacobs-university.de

ii

Preface

This Document

This document contains the course notes for the University Study Course 020059 held at Jacobs
University Bremen. So far this course has had two installments:

• “Text and Digital Media” held in the spring semester 2011 by Profs. Michael Kohlhase and
Thomas Rommel.

• “From the Textual to the Technological: Documents and Structure in a Digital Age” held
in the Intersession 2014 by Giselda Beaudin (Rollins College) and Prof. Michael Kohlhase.

The CS part is more or less the same (apart from improvements), and the literary part has been
contributed by Giselda Beaudin for the integrated course notes in 2014.

Contents: The document mixes the slides presented in class with comments of the instructor to
give students a more complete background reference.

Caveat: This document is made available for the students of this course only. It is still a draft
and will develop over the course of the current course and in coming academic years.

Licensing: This document is licensed under a Creative Commons license that requires attribution,
allows commercial use, and allows derivative works as long as these are licensed under the same
license.

Knowledge Representation Experiment: This document is also an experiment in knowledge
representation. Under the hood, it uses the STEX package [Koh08, Koh13], a TEX/LATEX extension
for semantic markup, which allows to export the contents into the eLearning platform PantaRhei.

Comments and extensions are always welcome, please send them to the author.

Other Resources: 1 2EdN:1
EdN:2 Comments: Comments and extensions are always welcome, please send them to the author.

Course Concept

Aims: The University Study Course 020059 is a one-semester course taught to students of all
majors at Jacobs University. The concept of a University Study Course (USC) is somewhat
peculiar to Jacobs University, USCs aim to give students a trans-disciplinary look at a particular
topic; here documents as technical artefacts and as communication objects.

Prerequisites: 3 As a consequence, the USC course does not make any assumptions about priorEdN:3
knowledge, and introduces all the necessary material, developing it from first principles. To
compensate for this, the course progresses very rapidly and leaves much of the actual learning
experience to homework problems and student-run tutorials.

Course Contents
4EdN:4

Acknowledgments

Materials: 5EdN:5

GenCS Students: The following students have submitted corrections and suggestions to this and
earlier versions of the notes: Anca Dumitrache, Calin Lupitu, Bogdan Matican, Isabel Schlie.

1EdNote: describe the discussions in Panta Rhei
2EdNote: Say something about the problems
3EdNote: MK: say something and adapt the following
4EdNote: MK: Give an overview, once we have it.
5EdNote: MK: only course notes, but see also . . .

iii

Syllabus

The course will consist of 6 75-minute slots per day, which can be lectures (usually 3-4) or super-
vised labs (the rest: 2-3).

13 January
8:15-9:30 Introduction Quiz 1 and Course and Review of Syllabus
9:45-11:00 Lecture 1
11:15-12:30 Lecture 2 Pre-course readings and our experience/relationship with

technology
14:15-15:30 Lecture 3
15:45-17:00 Lecture 4 The Structures of Language
17:15-18:30 Lab 1 assign groups
14 January
8:15-9:30 Lecture 5 Quiz 2 and Deconstruction
9:45-11:00 Lab 2
11:15-12:30 Lecture 6
14:15-15:30 Lab 3
15:45-17:00 Lecture 7 The Structure(s) of Digital Texts
17:15-18:30 Lab 4 Webpage Analysis using Structuralism and Deconstruction
15 January
8:15-9:30 Lecture 8 Quiz 3 and
9:45-11:00 Lab 5
11:15-12:30 Lecture 9 Privilege, language and the Digital
14:15-15:30 Lab 6 Poem in code
15:45-17:00 Lecture 10
17:15-18:30 Lecture 11 Welcome to the Desert of the Real
16 January
8:15-9:30 Lecture 12 Quiz 4 and
9:45-11:00 Lab 7
11:15-12:30 Lecture 13 A Journey Through the Hyperreal
14:15-15:30 Lab 8 Identifying Examples of the Hyperreal
15:45-17:00 Lecture 14
17:15-18:30 Lab 9
17 January
8:15-9:30 Lecture 15 Quiz 5 and I’m So Meta Even This Acronym
9:45-11 Lecture 16
11:15-12:30 Lecture 17 Privacy, Performance, and Identity
14:15-15:30 Lecture 18
15:45-17:00 Lab 10 Weekend Project
17:15-18:30 Lab 11 Weekend Project
20 January
8:15-9:30 Lecture 19 Quiz 6 and The Digital Generation?
9:45-11:00 Lab 12 Blog analysis
11:15-12:30 Lecture 20
14:15-15:30 Lecture 21 Digital Immortality
15:45-17:00 Lecture 22
17:15-18:30 Lab 13
21 January
8:15-9:30 Lecture 23 Quiz 7 and
9:45-11:00 Lecture 24 The Zombie Apocalypse
11:15-12:30 Lab 14 Presentations of Weekend Projects
14:15-15:30 Lab 15 Presentations of Weekend Projects

iv

15:45-17:00 Conclusion Final Discussion

Contents

Preface . ii

This Document . ii

Course Concept . ii

Course Contents . ii

Acknowledgments . ii

Syllabus . iii

1 Administrativa 3

1.1 Grades . 3

1.2 Homeworks, Submission, and Cheating . 3

1.3 Resources . 5

I Tools and Concepts 9

2 Reading and our Experience/Relationship with Technology 13

2.1 Reading in the Internet Era . 13

2.2 Our Relationship with Technology . 16

3 Documents as Digital Objects and their Meaning 21

3.1 Character Codes in the Real World . 21

3.2 Measuring Sizes of Digital Documents . 25

3.3 Texts are more than Sequences of Characters . 26

4 Documents and Meaning 29

4.1 Structuralism . 29

4.2 Formal Logic as the Mathematics of Meaning . 35

4.3 Using Logic to Model Meaning of Natural Language 38

4.4 Deconstruction . 41

5 Genre, Language, and Digital Documents 49

6 Deconstruction 55

7 Basic Concepts of the World Wide Web 63

7.1 Addressing on the World Wide Web . 63

7.2 Running the World Wide Web . 65

7.3 Multimedia Documents on the World Wide Web 68

8 Web Applications 71

9 An Overview over XML Technologies 77

v

vi CONTENTS

II Mechanics and Consequences of Digital Media 83

10 Legal Foundations of Information Technology 87

10.1 Intellectual Property, Copyright, and Licensing . 87

10.1.1 Copyright . 89

10.1.2 Licensing . 92

10.2 Information Privacy . 95

11 Welcome to the Desert of the Real 99

12 Computing with Documents 107

13 Privilege, Language, and the Ditgital 113

14 Journeys in the Hyperreall 119

15 Programming Documents 125

16 Practical Writing Tips 131

17 Electronic Books and their Formats 135

18 I’m So Meta 139

19 Writing Technical Documentation and Manuals 145

19.1 Technical Documentation in DocBook . 145

19.2 Topic-Oriented Documentation with DITA . 146

20 Revision Control Systems 149

20.1 Introduction/Motivation . 149

20.2 Centralized Version Control . 152

20.3 Distributed Revision Control . 154

21 Privacy, Performance and Identity 155

III Intelligent Media and the Future 161

22 Digital Generation 165

23 Knowledge Representation & Semantic Web 171

23.1 The Semantic Web . 171

23.2 Semantic Networks . 177

23.3 Description Logics and the Semantic Web . 180

24 MathML: Content vs. Presentation Markup 183

24.1 MathML: Presentation and Content of Mathematical Formulae 183

24.2 Presentation MathML . 186

24.3 Content MathML . 190

25 Converting the arXiv 195

26 Virtual Immortality 199

CONTENTS 1

27 Active Documents 205
27.1 Planetary: A Social Semantic eScience System . 205
27.2 Realizing Planetary . 206

27.2.1 Organization of Content/Narrative Structure 207
27.3 Levels of Service in Planetary . 211

28 Zombie Apocalypse 215

2 CONTENTS

Chapter 1

Administrativa

We will now go through the ground rules for the course. This is a kind of a social contract between
the instructors and the students. Both have to keep their side of the deal to make the acquaintance
with issues about “text and digital media” as efficient and painless as possible.

1.1 Grades

Now we come to a topic that is always interesting to the students: the grading scheme.

Prerequisites, Requirements, Grades

� Prerequisites: Motivation, Interest, Curiosity, hard work

� you can do this course if you want!

� Grades:

Lab Work/Homework 30%
Quizz(es) 30%
Weekend Project 30%
Attendance and Wakefulness 10%

� TDM Teams: Homeworks will be solved and submitted in teams of three
(one from CS, one from SHSS), which will be formed for the course in the
beginning.

� Rationale: We want to have knowledge transfer (between the disciplines.)

©:Michael Kohlhase 1

1.2 Homeworks, Submission, and Cheating

Homework assignments

� Goal: Reinforce and apply what is taught/discussed in class.

3

http://creativecommons.org/licenses/by-sa/2.5/

4 CHAPTER 1. ADMINISTRATIVA

� homeworks: will be practical writing assgignmenst in a variety of geners
and formats (take time to solve)

� admin: To keep things running smoothly

� Homeworks will be posted on PantaRhei

� Homeworks are handed in electronically in JGrader(plain text, Postscript, PDF,. . .)

� discuss problems on PantaRhei (Profs/TAs/students can help you!)

� Homework discipline:

� start early! (many assignments need more than one evening’s work)

� Don’t start by sitting at a blank screen

� Humans will be trying to understand the text/code/math when grading
it.

©:Michael Kohlhase 2

Homework assignments are a central part of the course, they allow you to review the concepts
covered in class, and practice using them.

Homework Submissions, Grading, Tutorials

� Submissions: We use Heinrich Stamerjohanns’ JGrader system

� submit all homework assignments electronically to https://jgrader.

de.

� you can login with your Jacobs account and password.(should have one!)

� feedback/grades to your submissions

� get an overview over how you are doing! (do not leave to midterm)

� Tutorials: select a tutorial group and actually go to it regularly

� to discuss the course topics after class(lectures need pre/postparation)

� to discuss your homework after submission(to see what was the problem)

� to find a study group(probably the most determining factor of success)

©:Michael Kohlhase 3

The next topic is very important, you should take this very seriously, even if you think that this
is just a self-serving regulation made by the faculty.

All societies have their rules, written and unwritten ones, which serve as a social contract
among its members, protect their interestes, and optimize the functioning of the society as a
whole. This is also true for the community of scientists worldwide. This society is special, since it
balances intense cooperation on joint issues with fierce competition. Most of the rules are largely
unwritten; you are expected to follow them anyway. The code of academic integrity at Jacobs is
an attempt to put some of the aspects into writing.

It is an essential part of your academic education that you learn to behave like academics,
i.e. to function as a member of the academic community. Even if you do not want to become
a scientist in the end, you should be aware that many of the people you are dealing with have
gone through an academic education and expect that you (as a graduate of Jacobs) will behave

http://creativecommons.org/licenses/by-sa/2.5/
https://jgrader.de
https://jgrader.de
http://creativecommons.org/licenses/by-sa/2.5/

1.3. RESOURCES 5

by these rules.

The Code of Academic Integrity

� Jacobs has a “Code of Academic Integrity”

� this is a document passed by the Jacobs community(our law of the university)

� you have signed it during enrollment (we take this seriously)

� It mandates good behaviors from both faculty and students and penalizes
bad ones:

� honest academic behavior (we don’t cheat/falsify)

� respect and protect the intellectual property of others (no plagiarism)

� treat all Jacobs members equally (no favoritism)

� this is to protect you and build an atmosphere of mutual respect

� academic societies thrive on reputation and respect as primary currency

� The Reasonable Person Principle (one lubricant of academia)

� we treat each other as reasonable persons

� the other’s requests and needs are reasonable until proven otherwise

� but if the other violates our trust, we are deeply disappointed(severe uncompromising consequences)

©:Michael Kohlhase 4

To understand the rules of academic societies it is central to realize that these communities are
driven by economic considerations of their members. However, in academic societies, the primary
good that is produced and consumed consists in ideas and knowledge, and the primary currency
involved is academic reputation1. Even though academic societies may seem as altruistic —
scientists share their knowledge freely, even investing time to help their peers understand the
concepts more deeply — it is useful to realize that this behavior is just one half of an economic
transaction. By publishing their ideas and results, scientists sell their goods for reputation. Of
course, this can only work if ideas and facts are attributed to their original creators (who gain
reputation by being cited). You will see that scientists can become quite fierce and downright
nasty when confronted with behavior that does not respect other’s intellectual property.

1.3 Resources

Textbooks, Handouts and Information, Forum

� No required textbook, but course notes, posted slides

� Information resources (e.g. Course notes) will be posted at http://kwarc.
info/teaching/TDM

� Everything will be posted on PantaRhei(Notes+assignments+course forum)

1Of course, this is a very simplistic attempt to explain academic societies, and there are many other factors at
work there. For instance, it is possible to convert reputation into money: if you are a famous scientist, you may
get a well-paying job at a good university,. . .

http://creativecommons.org/licenses/by-sa/2.5/
http://kwarc.info/teaching/TDM
http://kwarc.info/teaching/TDM

6 CHAPTER 1. ADMINISTRATIVA

� announcements, contact information, course schedule and calendar

� discussion among your fellow students(careful, we will occasionally check for academic integrity!)

� http://panta.kwarc.info (follow instructions there)

� if there are problems send e-mail to m.fieraru@jacobs-university.

de

©:Michael Kohlhase 5

No Textbook: Due to the special circumstances discussed above, there is no single textbook that
covers the course. Instead we have a comprehensive set of course notes (this document). They are
provided in two forms: as a large PDF that is posted at the course web page and on the PantaRhei
system. The latter is actually the preferred method of interaction with the course materials, since
it allows to discuss the material in place, to play with notations, to give feedback, etc. The PDF

file is for printing and as a fallback, if the PantaRhei system, which is still under development
develops problems.

Software/Hardware tools

� You will need computer access for this course(come see me if you do not have a computer of your own)

� we recommend the use of standard software tools

� the emacs and vi text editor (powerful, flexible, available, free)

� UNIX (linux, MacOSX, cygwin) (prevalent in CS)

� FireFox (just a better browser (for Math))

� learn how to touch-type NOW (reap the benefits earlier, not later)

©:Michael Kohlhase 6

Touch-typing: You should not underestimate the amount of time you will spend typing during
your studies. Even if you consider yourself fluent in two-finger typing, touch-typing will give you
a factor two in speed. This ability will save you at least half an hour per day, once you master it.
Which can make a crucial difference in your success.

Touch-typing is very easy to learn, if you practice about an hour a day for a week, you will
re-gain your two-finger speed and from then on start saving time. There are various free typing
tutors on the network. At http://typingsoft.com/all_typing_tutors.htm you can find about
programs, most for windows, some for linux. I would probably try Ktouch or TuxType

Darko Pesikan (one of the previous TAs) recommends the TypingMaster program. You can
download a demo version from http://www.typingmaster.com/index.asp?go=tutordemo

You can find more information by googling something like ”learn to touch-type”. (goto http:

//www.google.com and type these search terms).

Next we come to a special project that is going on in parallel to teaching the course. I am using the
coures materials as a research object as well. This gives you an additional resource, but may affect
the shape of the coures materials (which now server double purpose). Of course I can use all the
help on the research project I can get, so please give me feedback, report errors and shortcomings,
and suggest improvements.

Experiment: E-Learning with OMDoc/PantaRhei

� My research area: deep representation formats for (mathematical) knowl-

http://panta.kwarc.info
m.fieraru@jacobs-university.de
m.fieraru@jacobs-university.de
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://typingsoft.com/all_typing_tutors.htm
http://www.typingmaster.com/index.asp?go=tutordemo
http://www.google.com
http://www.google.com

1.3. RESOURCES 7

edge

� Application: E-learning systems (represent knowledge to transport it)

� Experiment: Start with this course (Drink my own medicine)

� Re-Represent the slide materials in OMDoc (Open Math Documents)

� Feed it into the PantaRhei system (http://panta.kwarc.info)

� Try it on you all (to get feedback from you)

� Tasks (Unfortunately, I cannot pay you for this; maybe later)

� help me complete the material on the slides(what is missing/would help?)

� I need to remember “what I say”, examples on the board. (take notes)

� Benefits for you (so why should you help?)

� you will be mentioned in the acknowledgements (for all that is worth)

� you will help build better course materials(think of next-year’s students)

©:Michael Kohlhase 7

http://panta.kwarc.info
http://creativecommons.org/licenses/by-sa/2.5/

8 CHAPTER 1. ADMINISTRATIVA

Part I

Tools and Concepts

9

11

In this part of the Course we will introduce and discuss the main conceptual and technological
tools use in the course6 EdN:6

6EdNote: MK: continue

12

Chapter 2

Reading and our
Experience/Relationship with
Technology

2.1 Reading in the Internet Era

Slide 8

13

14CHAPTER 2. READING AND OUR EXPERIENCE/RELATIONSHIP WITH TECHNOLOGY

Slide 9

Slide 10

2.1. READING IN THE INTERNET ERA 15

Slide 11

Slide 12

Slide 13

16CHAPTER 2. READING AND OUR EXPERIENCE/RELATIONSHIP WITH TECHNOLOGY

Slide 14

2.2 Our Relationship with Technology

Slide 15

2.2. OUR RELATIONSHIP WITH TECHNOLOGY 17

Slide 16

Slide 17

18CHAPTER 2. READING AND OUR EXPERIENCE/RELATIONSHIP WITH TECHNOLOGY

Slide 18

Slide 19

Slide 20

2.2. OUR RELATIONSHIP WITH TECHNOLOGY 19

Slide 21

20CHAPTER 2. READING AND OUR EXPERIENCE/RELATIONSHIP WITH TECHNOLOGY

Chapter 3

Documents as Digital Objects and
their Meaning

Documents as Digital Objects

� Question: how do texts get onto the computer?(after all, computers can only do 0/1)

� Hint: At the most basic level, texts are just sequences of characters.

� Answer: We have to encode characters as sequences of bits.

� We will not go into how sequences of bits are stored on a hard disc or in
memory of a computer here.

©:Michael Kohlhase 22

Before we go on, let us first get into some basics: how do we measure information, and how does
this relate to units of information we know.

3.1 Character Codes in the Real World

We will now turn to a class of codes that are extremely important in information technology:
character encodings. The idea here is that for IT systems we need to encode characters from
our alphabets as bit strings (sequences of binary digits 0 and 1) for representation in computers.
Indeed the Morse code we have seen above can be seen as a very simple example of a character
encoding that is geared towards the manual transmission of natural languages over telegraph lines.
For the encoding of written texts we need more extensive codes that can e.g. distinguish upper
and lowercase letters.

The ASCII code we will introduce here is one of the first standardized and widely used character
encodings for a complete alphabet. It is still widely used today. The code tries to strike a balance
between a being able to encode a large set of characters and the representational capabilities in
the time of punch cards (see below).

The ASCII Character Code

� Definition 3.1.1 The American Standard Code for Information Inter-

21

http://creativecommons.org/licenses/by-sa/2.5/

22 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS AND THEIR MEANING

change (ASCII) code assigns characters to numbers 0-127

Code ···0 ···1 ···2 ···3 ···4 ···5 ···6 ···7 ···8 ···9 ···A ···B ···C ···D ···E ···F
0··· NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1··· DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2··· ! ” # $ % & ′ () ∗ + , − . /
3··· 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4··· @ A B C D E F G H I J K L M N O

5··· P Q R S T U V W X Y Z [\] ˆ
6··· ‘ a b c d e f g h i j k l m n o

7··· p q r s t u v w x y z { | } ∼ DEL

The first 32 characters are control characters for ASCII devices like printers

�� Motivated by punchcards: The character 0 (binary 0000000) carries no
information NUL, (used as dividers)
Character 127 (binary 1111111) can be used for deleting (overwriting) last
value (cannot delete holes)

� The ASCII code was standardized in 1963 and is still prevalent in computers
today (but seen as US-centric)

©:Michael Kohlhase 23

Punch cards were the the preferred medium for long-term storage of programs up to the late
1970s, since they could directly be produced by card punchers and automatically read by comput-
ers.

A Punchcard

� A punch card is a piece of stiff paper that contains digital information
represented by the presence or absence of holes in predefined positions.

� Example 3.1.2 This punch card encoded the FORTRAN statement Z(1) = Y + W(1)

©:Michael Kohlhase 24

Up to the 1970s, computers were batch machines, where the programmer delivered the program to
the operator (a person behind a counter who fed the programs to the computer) and collected the

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

3.1. CHARACTER CODES IN THE REAL WORLD 23

printouts the next morning. Essentially, each punch card represented a single line (80 characters)
of program code. Direct interaction with a computer is a relatively young mode of operation.

The ASCII code as above has a variety of problems, for instance that the control characters are
mostly no longer in use, the code is lacking many characters of languages other than the English
language it was developed for, and finally, it only uses seven bits, where a byte (eight bits) is the
preferred unit in information technology. Therefore there have been a whole zoo of extensions,
which — due to the fact that there were so many of them — never quite solved the encoding
problem.

Problems with ASCII encoding

� Problem: Many of the control characters are obsolete by now (e.g. NUL,BEL, or DEL)

� Problem: Many European characters are not represented(e.g. è,ñ,ü,ß,. . .)

� European ASCII Variants: Exchange less-used characters for national ones

� Example 3.1.3 (German ASCII) remap e.g. [7→ Ä,] 7→ Ü in German
ASCII (“Apple][” comes out as “Apple ÜÄ”)

� Definition 3.1.4 (ISO-Latin (ISO/IEC 8859)) 16 Extensions of ASCII
to 8-bit (256 characters) ISO-Latin 1 =̂ “Western European”, ISO-Latin 6 =̂

“Arabic”,ISO-Latin 7 =̂ “Greek”. . .

� Problem: No cursive Arabic, Asian, African, Old Icelandic Runes, Math,. . .

� Idea: Do something totally different to include all the world’s scripts: For
a scalable architecture, separate

� what characters are available from the (character set)

� bit string-to-character mapping (character encoding)

©:Michael Kohlhase 25

The goal of the UniCode standard is to cover all the worlds scripts (past, present, and future) and
provide efficient encodings for them. The only scripts in regular use that are currently excluded
are fictional scripts like the elvish scripts from the Lord of the Rings or Klingon scripts from the
Star Trek series.

An important idea behind UniCode is to separate concerns between standardizing the character
set — i.e. the set of encodable characters and the encoding itself.

Unicode and the Universal Character Set

� Definition 3.1.5 (Twin Standards) A scalable Architecture for repre-
senting all the worlds scripts

� The Universal Character Set defined by the ISO/IEC 10646 International
Standard, is a standard set of characters upon which many character
encodings are based.

� The Unicode Standard defines a set of standard character encodings,
rules for normalization, decomposition, collation, rendering and bidirec-
tional display order

http://creativecommons.org/licenses/by-sa/2.5/

24 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS AND THEIR MEANING

� Definition 3.1.6 Each UCS character is identified by an unambiguous
name and an integer number called its code point.

� The UCS has 1.1 million code points and nearly 100 000 characters.

� Definition 3.1.7 Most (non-Chinese) characters have code points in [1, 65536]
(the basic multilingual plane).

� Notation 3.1.8 For code points in the Basic Multilingual Plane (BMP),
four digits are used, e.g. U+0058 for the character LATIN CAPITAL LETTER X;

©:Michael Kohlhase 26

Note that there is indeed an issue with space-efficient encoding here. UniCode reserves space for
232 (more than a million) characters to be able to handle future scripts. But just simply using
32 bits for every UniCode character would be extremely wasteful: UniCode-encoded versions of
ASCII files would be four times as large.

Therefore UniCode allows multiple encodings. UTF-32 is a simple 32-bit code that directly uses
the code points in binary form. UTF-8 is optimized for western languages and coincides with
the ASCII where they overlap. As a consequence, ASCII encoded texts can be decoded in UTF-8
without changes — but in the UTF-8 encoding, we can also address all other UniCode characters
(using multi-byte characters).

Character Encodings in Unicode

� Definition 3.1.9 A character encoding is a mapping from bit strings to
UCS code points.

� Idea: Unicode supports multiple encodings (but not character sets) for
efficiency

� Definition 3.1.10 (Unicode Transformation Format) � UTF-8, 8-
bit, variable-width encoding, which maximizes compatibility with ASCII.

� UTF-16, 16-bit, variable-width encoding (popular in Asia)

� UTF-32, a 32-bit, fixed-width encoding (for safety)

� Definition 3.1.11 The UTF-8 encoding follows the following encoding
scheme

Unicode Byte1 Byte2 Byte3 Byte4

U+000000− U+00007F 0xxxxxxx

U+000080− U+0007FF 110xxxxx 10xxxxxx

U+000800− U+00FFFF 1110xxxx 10xxxxxx 10xxxxxx

U+010000− U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

� Example 3.1.12 $ = U+0024 is encoded as 00100100 (1 byte)

¢ = U+00A2 is encoded as 11000010,10100010 (two bytes)

e = U+20AC is encoded as 11100010,10000010,10101100 (three bytes)

©:Michael Kohlhase 27

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

3.2. MEASURING SIZES OF DIGITAL DOCUMENTS 25

Note how the fixed bit prefixes in the encoding are engineered to determine which of the four cases
apply, so that UTF-8 encoded documents can be safely decoded..

3.2 Measuring Sizes of Digital Documents

How much Information?

Bit (b) binary digit 0/1
Byte (B) 8 bit
2 Bytes A Unicode character in UTF.
10 Bytes your name.
Kilobyte (kB) 1,000 bytes OR 103 bytes
2 Kilobytes A Typewritten page.
100 Kilobytes A low-resolution photograph.
Megabyte (MB) 1,000,000 bytes OR 106 bytes
1 Megabyte A small novel or a 3.5 inch floppy disk.
2 Megabytes A high-resolution photograph.
5 Megabytes The complete works of Shakespeare.
10 Megabytes A minute of high-fidelity sound.
100 Megabytes 1 meter of shelved books.
500 Megabytes A CD-ROM.
Gigabyte (GB) 1,000,000,000 bytes or 109 bytes
1 Gigabyte a pickup truck filled with books.
20 Gigabytes A good collection of the works of Beethoven.
100 Gigabytes A library floor of academic journals.

Terabyte (TB) 1,000,000,000,000 bytes or 1012 bytes
1 Terabyte 50000 trees made into paper and printed.
2 Terabytes An academic research library.
10 Terabytes The print collections of the U.S. Library of Congress.
400 Terabytes National Climate Data Center (NOAA) database.
Petabyte (PB) 1,000,000,000,000,000 bytes or 1015 bytes
1 Petabyte 3 years of EOS data (2001).
2 Petabytes All U.S. academic research libraries.
20 Petabytes Production of hard-disk drives in 1995.
200 Petabytes All printed material (ever).
Exabyte (EB) 1,000,000,000,000,000,000 bytes or 1018 bytes
2 Exabytes Total volume of information generated in 1999.
5 Exabytes All words ever spoken by human beings ever.
300 Exabytes All data stored digitally in 2007.
Zettabyte (ZB) 1,000,000,000,000,000,000,000 bytes or 1021 bytes
2 Zettabytes Total volume digital data transmitted in 2011
100 Zettabytes Data equivalent to the human Genome in one body.

©:Michael Kohlhase 28

The information in this table is compiled from various studies, most recently [HL11].

Note: Information content of real-world artifacts can be assessed differently, depending on the
view. Consider for instance a text typewritten on a single page. According to our definition, this
has ca. 2 kB, but if we fax it, the image of the page has 2 MB or more, and a recording of a
text read out loud is ca. 50 MB. Whether this is a terrible waste of bandwidth depends on the

http://creativecommons.org/licenses/by-sa/2.5/

26 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS AND THEIR MEANING

application. On a fax, we can use the shape of the signature for identification (here we actually
care more about the shape of the ink mark than the letters it encodes) or can see the shape of a
coffee stain. In the audio recording we can hear the inflections and sentence melodies to gain an
impression on the emotions that come with text.

3.3 Texts are more than Sequences of Characters

Document Markup

� Definition 3.3.1 (Document Markup) Document markupmarkup is
the process of adding codes (special, standardized character sequences) to
a document to control the structure, formatting, or the relationship among
its parts.

� Example 3.3.2 A text with markup codes (for printing)

©:Michael Kohlhase 29

There are many systems for document markup ranging from informal ones as in Definition 7.3.1
that specify the intended document appearance to humans – in this case the printer – to technical
ones which can be understood by machines but serving the same purpose.

Styles of Markup

� Definition 3.3.3 (Presentation Markup) A presentation markup scheme
is one that specifies document structure to aid document processing by hu-
mans

� Example 3.3.4 e.g. *roff, Postscript, DVI, early MS Word, low-level
TEX

+ simple, context-free, portable (verbatim), easy to implement/transform

– inflexible, possibly verbose,

� Definition 3.3.5 (Content Markup) A content markup scheme is one
that specifies document structure to aid document processing by machines
or with machine support.

� Example 3.3.6 e.g. LATEX (if used correctly), Programming Languages,
ATP input

http://creativecommons.org/licenses/by-sa/2.5/

3.3. TEXTS ARE MORE THAN SEQUENCES OF CHARACTERS 27

+ flexible, portable (in spirit), unambiguous, language-independent

– possibly verbose, context dependent, hard to read and write

©:Michael Kohlhase 30

Content vs. Presentation by Example

Format Representation Content?
LATEX {\textbf{proof}}:. . . \hfill\Box \begin{proof}. . . \end{proof}
HTML . . . <h1>. . . </h1>

Lisp 8 +
√
x
3

(power (plus 8 (sqrt x)) 3)

TEX $\{f|f(0)> 0{\rm and}f(1)<0\}$ {f |f(0) > 0 and f(1) < 0}
TEX $\{f|f(0)> 0$ and $f(1)<0\}$ {f |f(0) > 0 and f(1) < 0}

� We consider these to be representations of the same content (object)

� Problem: Transformations between presentation and content Markup

� Content ; Pres.: usually done by styling (++ user-adaptivity)

� Pres. ; Content: Heuristic Process(e.g. binomials
(
n
k

)
vs. Cnk vs. Ckn)

©:Michael Kohlhase 31

Content vs. Semantics/Formalization

� Content: logic-independent infrastructure
Identification of abstract syntax, “semantics” by reference for symbols.

<apply>
<plus/>
<csymbol definitionURL="mbase://numbers/perfect#the-smallest"/>
<cn>2</cn>

</apply>

� Semantics: establishing meaning by fixing consequences
adds formal inference rules and axioms.

� Mechanization in a specific system (Thm Prover or Proof Checker)

� logical framework (specify the logic in the system itself)

©:Michael Kohlhase 32

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

28 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS AND THEIR MEANING

Chapter 4

Documents and Meaning

4.1 Structuralism

Slide 33

Slide 34

29

30 CHAPTER 4. DOCUMENTS AND MEANING

Slide 35

Slide 36

4.1. STRUCTURALISM 31

Slide 37

Slide 38

Slide 39

32 CHAPTER 4. DOCUMENTS AND MEANING

Slide 40

Slide 41

4.1. STRUCTURALISM 33

Slide 42

Slide 43

Slide 44

34 CHAPTER 4. DOCUMENTS AND MEANING

Slide 45

Slide 46

4.2. FORMAL LOGIC AS THE MATHEMATICS OF MEANING 35

Slide 47

Slide 48

Slide 49

4.2 Formal Logic as the Mathematics of Meaning

What a logic is and is good for?

� Q: What is a “logic”?

� A: A mathematical language that can describe non-mathematical and math-
ematical facts in mathematical “propositions”.

� Q: What can you “do” with a logic?

� A: You can formally derive (“deduce”) new propositions from ones that

36 CHAPTER 4. DOCUMENTS AND MEANING

you already have, thereby answering interesting questions about the reality
you are describing.

� You already know Logic (Propositional Logic)

� We will learn about a powerful extension: First-Order Logic

©:Michael Kohlhase 50

What is Logic?

� formal languages, inference and their relation with the world

� Formal language FL: set of formulae (2 + 3/7, ∀x.x+ y = y + x)

� Formula: sequence/tree of symbols (x, y, f, g, p, 1, π,∈,¬, ∧ ∀,∃)

� Models: things we understand (e.g. number theory)

� Interpretation: maps formulae into models ([[three plus five]] = 8)

� Validity: M |= A, iff [[A]]
M

= T (five greater three is valid)

� Entailment: A |= B, iffM |= B for allM |= A.(generalize to H |= A)

� Inference: rules to transform (sets of) formulae (A,A⇒ B ` B)

� Syntax: formulae, inference (just a bunch of symbols)

� Semantics: models, interpr., validity, entailment (math. structures)

� Important Question: relation between syntax and semantics?

©:Michael Kohlhase 51

So logic is the study of formal representations of objects in the real world, and the formal state-
ments that are true about them. The insistence on a formal language for representation is actually
something that simplifies life for us. Formal languages are something that is actually easier to
understand than e.g. natural languages. For instance it is usually decidable, whether a string is
a member of a formal language. For natural language this is much more difficult: there is still
no program that can reliably say whether a sentence is a grammatical sentence of the English
language.

We have already discussed the meaning mappings (under the monicker “semantics”). Meaning
mappings can be used in two ways, they can be used to understand a formal language, when we
use a mapping into “something we already understand”, or they are the mapping that legitimize
a representation in a formal language. We understand a formula (a member of a formal language)
A to be a representation of an object O, iff [[A]] = O.

However, the game of representation only becomes really interesting, if we can do something with
the representations. For this, we give ourselves a set of syntactic rules of how to manipulate the
formulae to reach new representations or facts about the world.

Consider, for instance, the case of calculating with numbers, a task that has changed from a difficult
job for highly paid specialists in Roman times to a task that is now feasible for young children.
What is the cause of this dramatic change? Of course the formalized reasoning procedures for
arithmetic that we use nowadays. These calculi consist of a set of rules that can be followed
purely syntactically, but nevertheless manipulate arithmetic expressions in a correct and fruitful
way. An essential prerequisite for syntactic manipulation is that the objects are given in a formal
language suitable for the problem. For example, the introduction of the decimal system has been

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

4.2. FORMAL LOGIC AS THE MATHEMATICS OF MEANING 37

instrumental to the simplification of arithmetic mentioned above. When the arithmetical calculi
were sufficiently well-understood and in principle a mechanical procedure, and when the art of
clock-making was mature enough to design and build mechanical devices of an appropriate kind,
the invention of calculating machines for arithmetic by Wilhelm Schickard (1623), Blaise Pascal
(1642), and Gottfried Wilhelm Leibniz (1671) was only a natural consequence.

We will see that it is not only possible to calculate with numbers, but also with representations
of statements about the world (propositions). For this, we will use an extremely simple example;
a fragment of propositional logic (we restrict ourselves to only one logical connective) and a small
calculus that gives us a set of rules how to manipulate formulae.

Within the world of logics, one can derive new propositions (the conclusions, here: Socrates is
mortal) from given ones (the premises, here: Every human is mortal and Sokrates is human).
Such derivations are proofs.

In particular, logics can describe the internal structure of real-life facts; e.g. individual things,
actions, properties. A famous example, which is in fact as old as it appears, is illustrated in the
slide below.

The miracle of logics

� Purely formal derivations are true in the real world!

©:Michael Kohlhase 52

If a logic is correct, the conclusions one can prove are true (= hold in the real world) whenever
the premises are true. This is a miraculous fact (think about it!)

In general formulae can be used to represent facts about the world as propositions; they have a
semantics that is a mapping of formulae into the real world (propositions are mapped to truth
values.) We have seen two relations on formulae: the entailment relation and the deduction
relation. The first one is defined purely in terms of the semantics, the second one is given by a
calculus, i.e. purely syntactically. Is there any relation between these relations?

Soundness and Completeness

� Definition 4.2.1 Let S := 〈L,K, |=〉 be a logical system, then we call a
calculus C for S

http://creativecommons.org/licenses/by-sa/2.5/

38 CHAPTER 4. DOCUMENTS AND MEANING

� sound (or correct), iff H |= A, whenever H `C A, and

� complete, iff H `C A, whenever H |= A.

� Goal: ` A iff |=A (provability and validity coincide)

� To TRUTH through PROOF (CALCULEMUS [Leibniz ∼1680])

©:Michael Kohlhase 53

Ideally, both relations would be the same, then the calculus would allow us to infer all facts that
can be represented in the given formal language and that are true in the real world, and only
those. In other words, our representation and inference is faithful to the world.

A consequence of this is that we can rely on purely syntactical means to make predictions
about the world. Computers rely on formal representations of the world; if we want to solve a
problem on our computer, we first represent it in the computer (as data structures, which can be
seen as a formal language) and do syntactic manipulations on these structures (a form of calculus).
Now, if the provability relation induced by the calculus and the validity relation coincide (this will
be quite difficult to establish in general), then the solutions of the program will be correct, and
we will find all possible ones.

Three Principal Modes of Inference

� Deduction: knowledge extension
rains⇒ wet street rains

wet street
D

� Abduction explanation
rains⇒ wet street wet street

rains
A

� Induction learning rules
wet street rains

rains⇒ wet street
I

©:Michael Kohlhase 54

4.3 Using Logic to Model Meaning of Natural Language

Modeling Natural Language Semantics

� Problem: Find formal (logic) system for the meaning of natural language

� History of ideas

� Propositional logic [ancient Greeks like Aristotle]
*Every human is mortal

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

4.3. USING LOGIC TO MODEL MEANING OF NATURAL LANGUAGE 39

� First-Order Predicate logic [Frege ≤ 1900]
*I believe, that my audience already knows this.

� Modal logic [Lewis18, Kripke65]
*A man sleeps. He snores. ((∃Xman(X) ∧ sleep(X))) ∧ snore(X)

� Various dynamic approaches (e.g. DRT, DPL)
*Most men wear black

� Higher-order Logic, e.g. generalized quantifiers

� . . .

©:Michael Kohlhase 55

Let us now reconcider the role of all of this for natural language semantics. We have claimed
that the goal of the course is to provide you with a set of methods to determine the meaning of
natural language. If we look back, all we did was to establish translations from natural languages
into formal languages like first-order or higher-order logic (and that is all you will find in most
semantics papers and textbooks). Now, we have just tried to convince you that these are actually
syntactic entities. So, where is the semantics? .

Natural Language Semantics?

Comp Ling

NL

L = wff (Σ)

M = 〈D, I〉

|=NL ⊆ NL×NL

`C ⊆ FL× FL

|= ⊆ FL× FL

Analysis

Iϕ

induces

induces

formulae

|= ≡ `C?

|=NL ≡ `C?

©:Michael Kohlhase 56

As we mentioned, the green area is the one generally covered by natural language semantics. In
the analysis process, the natural language utterances (viewed here as formulae of a language NL)
are translated to a formal language FL (a set wff (Σ) of well-formed formulae). We claim that
this is all that is needed to recapture the semantics even it this is not immediately obvious at first:
Theoretical Logic gives us the missing pieces.

Since FL is a formal language of a logical systems, it comes with a notion of model and an
interpretation function Iϕ that translates FL formulae into objects of that model. This induces
a notion of logical consequence1 as explained in7. It also comes with a calculus C acting on EdN:7
FL-formulae, which (if we are lucky) is correct and complete (then the mappings in the upper
rectangle commute).

What we are really interested in in natural language semantics is the truth conditions and
natural consequence relations on natural language utterances, which we have denoted by |=NL.

1Relations on a set S are subsets of the cartesian product of S, so we use R ∈ (S∗)S to signify that R is a
(n-ary) relation on X.

7EdNote: crossref

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

40 CHAPTER 4. DOCUMENTS AND MEANING

If the calculus C of the logical system 〈FL,K, |=〉 is adequate (it might be a bit presumptious to
say sound and complete), then it is a model of the relation |=NL. Given that both rectangles in
the diagram commute, then we really have a model for truth-conditions and logical consequence
for natural language utterances, if we only specify the analysis mapping (the green part) and the
calculus.

Logic-Based Knowledge Representation for NLP

� Logic (and related formalisms) allow to integrate world knowledge

� explicitly (gives more understanding than statistical methods)

� transparently (symbolic methods are monotonic)

� systematically (we can prove theorems about our systems)

� Signal + World knowledge makes more powerful model

� Does not preclude the use of statistical methods to guide inference

� Problems with logic-based approaches

� Where does the world knowledge come from? (Ontology problem)

� How to guide search induced by log. calculi (combinatorial explosion)

One possible answer: Description Logics. (next couple of times)

©:Michael Kohlhase 57

� Document Markup

� Definition 4.3.1 (Document Markup) Document markupmarkup is
the process of adding codes (special, standardized character sequences) to
a document to control the structure, formatting, or the relationship among
its parts.

� Example 4.3.2 A text with markup codes (for printing)

©:Michael Kohlhase 58

There are many systems for document markup ranging from informal ones as in Definition 7.3.1
that specify the intended document appearance to humans – in this case the printer – to technical
ones which can be understood by machines but serving the same purpose.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

4.4. DECONSTRUCTION 41

4.4 Deconstruction

we start with the first stlide

Slide 59

Slide 60

42 CHAPTER 4. DOCUMENTS AND MEANING

Slide 61

Slide 62

4.4. DECONSTRUCTION 43

Slide 63

Slide 64

Slide 65

44 CHAPTER 4. DOCUMENTS AND MEANING

Slide 66

Slide 67

4.4. DECONSTRUCTION 45

Slide 68

Slide 69

Slide 70

46 CHAPTER 4. DOCUMENTS AND MEANING

Slide 71

Slide 72

4.4. DECONSTRUCTION 47

Slide 73

48 CHAPTER 4. DOCUMENTS AND MEANING

Chapter 5

Genre, Language, and Digital
Documents

Slide 74

Slide 75

49

50 CHAPTER 5. GENRE, LANGUAGE, AND DIGITAL DOCUMENTS

Slide 76

Slide 77

51

Slide 78

Slide 79

Slide 80

52 CHAPTER 5. GENRE, LANGUAGE, AND DIGITAL DOCUMENTS

Slide 81

Slide 82

53

Slide 83

Slide 84

Slide 85

54 CHAPTER 5. GENRE, LANGUAGE, AND DIGITAL DOCUMENTS

Slide 86

Chapter 6

Deconstruction

we start with the first stlide

Slide 87

Slide 88

55

56 CHAPTER 6. DECONSTRUCTION

Slide 89

Slide 90

57

Slide 91

Slide 92

Slide 93

58 CHAPTER 6. DECONSTRUCTION

Slide 94

Slide 95

59

Slide 96

Slide 97

Slide 98

60 CHAPTER 6. DECONSTRUCTION

Slide 99

Slide 100

61

Slide 101

62 CHAPTER 6. DECONSTRUCTION

Chapter 7

Basic Concepts of the World Wide
Web

The World Wide Web (WWWeb) is the hypertext/multimedia part of the Internet. It is imple-
mented as a service on top of the Internet (at the aplication level) based on specific protocols and
markup formats for documents.

Concepts of the World Wide Web

� Definition 7.0.1 A web page is a document on the WWWeb that can
include multimedia data and hyperlinks.

� Definition 7.0.2 A web site is a collection of related Web pages usually
designed or controlled by the same individual or company.

� a web site generally shares a common domain name.

� Definition 7.0.3 A hyperlink is a reference to data that can immediately
be followed by the user or that is followed automatically by a user agent.

� Definition 7.0.4 A collection text documents with hyperlinks that point
to text fragments within the collection is called a hypertext. The action
of following hyperlinks in a hypertext is called browsing or navigating the
hypertext.

� In this sense, the WWWeb is a multimedia hypertext.

©:Michael Kohlhase 102

7.1 Addressing on the World Wide Web

The essential idea is that the World Wide Web consists of a set of resources (documents, images,
movies, etc.) that are connected by links (like a spider-web). In the WWWeb, the the links consist
of pointers to addresses of resources. To realize them, we only need addresses of resources (much
as we have IP numbers as addresses to hosts on the Internet).

Uniform Resource Identifier (URI), Plumbing of the Web

63

http://creativecommons.org/licenses/by-sa/2.5/

64 CHAPTER 7. BASIC CONCEPTS OF THE WORLD WIDE WEB

� Definition 7.1.1 A uniform resource identifier (URI) is a global identifiers
of network-retrievable documents (web resources). URIs adhere a uniform
syntax (grammar) defined in RFC-3986 [BLFM05]. Grammar Rules contain:
URI :== scheme, ′ :′, hierPart, [′?′ query], [′#′ fragment] hier − part :== ′//′ (pathAbempty | pathAbsolute | pathRootless | pathEmpty)

� Example 7.1.2 The following are two example URIs and their component
parts:

http: // example.com:8042/over/there?name=ferret#nose
__/ ______________ /\ _________/ _________/ __/
| | | | |

scheme authority path query fragment
|___ __________________|__________

/ \ / \
mailto:m.kohlhase@jacobs -university.de

Note: URIs only identify documents, they do not have to be provide access
to them (e.g. in a browser).

©:Michael Kohlhase 103

The definition above only specifies the structure of a URI and its functional parts. It is designed
to cover and unify a lot of existing addressing schemes, including URLs (which we cover next),
ISBN numbers (book identifiers), and mail addresses.

In many situations URIs still have to be entered by hand, so they can become quite unwieldy.
Therefore there is a way to abbreviate them.

� Relative URIs

� Definition 7.1.3 URIs can be abbreviated to relative URIs; missing parts
are filled in from the context

� Example 7.1.4 Relative URIs are more convenient to write

relative URI abbreviates in context
#foo 〈〈current-file〉〉#foo curent file
../bar.txt file:///home/kohlhase/foo/bar.txt file system
../bar.html http://example.org/foo/bar.html on the web

©:Michael Kohlhase 104

Note that some forms of URIs can be used for actually locating (or accessing) the identified
resources, e.g. for retrieval, if the resource is a document or sending to, if the resource is a mailbox.
Such URIs are called “uniform resource locators”, all others “uniform resource locators”.

Uniform Resource Names and Locators

� Definition 7.1.5 A uniform resource locator (URL) is a URI that that
gives access to a web resource, by specifying an access method or location.
All other URIs are called uniform resource names (URN).

� Idea: A URN defines the identity of a resource, a URL provides a method
for finding it.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

7.2. RUNNING THE WORLD WIDE WEB 65

� Example 7.1.6 The following URI is a URL (try it in your browser)

http://kwarc.info/kohlhase/index.html

� Example 7.1.7 urn:isbn:978-3-540-37897-6 only identifies [Koh06]
(it is in the library)

� Example 7.1.8 URNs can be turned into URL via a catalog service, e.g.
http://wm-urn.org/urn:isbn:978-3-540-37897-6

� Note: URI/URLs are one of the core features of the web infrastructure, they
are considered to be the plumbing of the WWWeb.(direct the flow of data)

©:Michael Kohlhase 105

Historically, started out as URLs as short strings used for locating documents on the Internet.
The generalization to identifiers (and the addition of URNs) as a concept only came about when
the concepts evolved and the application layer of the Internet grew and needed more structure.

Note that there are two ways in URIs can fail to be resource locators: first, the scheme does
not support direct access (as the ISBN scheme in our example), or the scheme specifies an access
method, but address does not point to an actual resource that could be accessed. Of course, the
problem of “dangling links” occurs everywhere we have addressing (and change), and so we will
neglect it from our discussion. In practice, the URL/URN distinction is mainly driven by the
scheme part of a URI, which specifies the access/identification scheme.

7.2 Running the World Wide Web

The infrastructure of the WWWeb relies on a client-server architecture, where the servers (called
web servers) provide documents and the clients (usually web browsers) present the documents to
the (human) users. Clients and servers communicate via the http protocol. We give an overview
via a concrete example before we go into details.

The World Wide Web as a Client/Server System

©:Michael Kohlhase 106

http://wm-urn.org/urn:isbn:978-3-540-37897-6
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

66 CHAPTER 7. BASIC CONCEPTS OF THE WORLD WIDE WEB

We will now go through and introduce the infrastructure components of the WWWeb in the order
we encounter them. We start with the user agent; in our example the web browser used by the
user to request the web page by entering its URL into the URL bar.

Web Browsers

� Definition 7.2.1 A web Browser is a software application for retrieving,
presenting, and traversing information resources on the World Wide Web,
enabling users to view Web pages and to jump from one page to another.

� Practical Browser Tools:

� Status Bar: security info, page load progress

� Favorites (bookmarks)

� View Source: view the code of a Web page

� Tools/Internet Options, history, temporary Internet files, home page,
auto complete, security settings, programs, etc.

� Example 7.2.2 (Common Browsers) � MSInternetExplorer is pro-
vided by Microsoft for Windows (very common)

� FireFox is an open source browser for all platforms, it is known for its
standards compliance.

� Safari is provided by Apple for MacOSX and Windows

� Chrome is a lean and mean browser provided by Google

� WebKit is a library that forms the open source basis for Safari and
Chrome.

©:Michael Kohlhase 107

The web browser communicates with the web server through a specialized protocol, the hypertext
transfer protocol, which we cover now.

HTTP: Hypertext Transfer Protocol

� Definition 7.2.3 The Hypertext Transfer Protocol (HTTP) is an appli-
cation layer protocol for distributed, collaborative, hypermedia information
systems.

� June 1999: HTTP/1.1 is defined in RFC 2616 [FGM+99].

Definition 7.2.4 HTTP is used by a client (called user agent) to access
web resources (addressed by Uniform Resource Locators (URLs)) via a http
request. The web server answers by supplying the resource

� Most important HTTP requests (5 more less prominent)

http://creativecommons.org/licenses/by-sa/2.5/

7.2. RUNNING THE WORLD WIDE WEB 67

GET Requests a representation of the specified resource. safe

PUT Uploads a representation of the specified resource. idempotent

DELETE Deletes the specified resource. idempotent

POST Submits data to be processed (e.g., from a web
form) to the identified resource.

� Definition 7.2.5 We call a HTTP request safe, iff it does not change the
state in the web server.(except for server logs, counters,. . . ; no side effects)

� Definition 7.2.6 We call a HTTP request idempotent, iff executing it
twice has the same effect as executing it once.

� HTTP is a stateless protocol (very memory-efficient for the server.)

©:Michael Kohlhase 108

Finally, we come to the last component, the web server, which is responsible for providing the web
page requested by the user.

Web Servers

� Definition 7.2.7 A web server is a network program that delivers web
pages and supplementary resources to and receives content from user agents
via the hypertext transfer protocol.

� Example 7.2.8 (Common Web Servers) � apache is an open source
web server that serves about 60% of the WWWeb.

� IIS is a proprietary server provided by Microsoft.

� nginx is a lightweight open source web server.

� Even though web servers are very complex software systems, they come pre-
installed on most UNIX systems and can be downloaded for Windows [XAM].

©:Michael Kohlhase 109

Now that we have seen all the components we fortify our intuition of what actually goes down the
net by tracing the http messages.

Example: An http request in real life

� Connect to the web server (port 80)(so that we can see what is happening)

telnet www.kwarc.info 80

� Send off the GET request

GET /teaching/GenCS2.html http/1.1
Host: www.kwarc.info
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.6; en-US; rv:1.9.2.4)
Gecko/20100413 Firefox/3.6.4

� Response from the server

HTTP/1.1 200 OK
Date: Mon, 03 May 2010 06:48:36 GMT
Server: Apache/2.2.9 (Debian) DAV/2 SVN/1.5.1 mod_fastcgi/2.4.6 PHP/5.2.6-1+lenny8 with

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

68 CHAPTER 7. BASIC CONCEPTS OF THE WORLD WIDE WEB

Suhosin-Patch mod_python/3.3.1 Python/2.5.2 mod_ssl/2.2.9 OpenSSL/0.9.8g
Last-Modified: Sun, 02 May 2010 13:09:19 GMT
ETag: "1c78b-db1-4859c2f221dc0"
Accept-Ranges: bytes
Content-Length: 3505
Content-Type: text/html

<!--This file was generated by ws2html.xsl. Do NOT edit manually! -->
<html xmlns="http://www.w3.org/1999/xhtml"><head>...</head></html>

©:Michael Kohlhase 110

7.3 Multimedia Documents on the World Wide Web

We have seen the client-server infrastructure of the WWWeb, which essentially specifies how
hypertext documents are retrieved. Now we look into the documents themselves.

In Section3.0 have already discussed how texts can be encoded in files. But for the rich docments
we see on the WWWeb, we have to realize that documents are more than just sequences of
characters. This is traditionally captured in the notion of document markup.

Document Markup

� Definition 7.3.1 (Document Markup) Document markupmarkup is
the process of adding codes (special, standardized character sequences) to
a document to control the structure, formatting, or the relationship among
its parts.

� Example 7.3.2 A text with markup codes (for printing)

©:Michael Kohlhase 111

There are many systems for document markup ranging from informal ones as in Definition 7.3.1
that specify the intended document appearance to humans – in this case the printer – to technical
ones which can be understood by machines but serving the same purpose.

WWWeb documents have a specialized markup language that mixes markup for document struc-
ture with layout markup, hyper-references, and interaction. The HTML markup elements always
concern text fragments, they can be nested but may not otherwise overlap. This essentially turns
a text into a document tree.

HTML: Hypertext Markup Language

� Definition 7.3.3 The HyperText Markup Language (HTML), is a repre-

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

7.3. MULTIMEDIA DOCUMENTS ON THE WORLD WIDE WEB 69

sentation format for web pages. Current version 4.01 is defined in [RHJ98].

� Definition 7.3.4 (Main markup elements of HTML) HTML marks
up the structure and appearance of text with tags of the form <el> (begin)
and </el> (end), where el is one of the following

structure html,head, body metadata title, link, meta
headings h1, h2, . . . , h6 paragraphs p, br
lists ul, ol, dl, . . . , li hyperlinks a

images img tables table, th, tr, td, . . .
styling style, div, span old style b, u, tt, i, . . .
interaction script forms form, input, button

� Example 7.3.5 A (very simple) HTML file with a single paragraph.

<html>
<body>
<p>Hello GenCS students!</p>

</body>
</html>

©:Michael Kohlhase 112

HTML was created in 1990 and standardized in version 4 in 1997. Since then there has HTML
has been basically stable, even though the WWWeb has evolved considerably from a web of static
web pages to a Web in which highly dynamic web pages become user interfaces for web-based
applications and even mobile applets. Acknowledging the growing discrepancy, the W3C has
started the standardization of version 5 of HTML.

HTML5: The Next Generation HTML

� Definition 7.3.6 The HyperText Markup Language (HTML5), is believed
to be the next generation of HTML. It is defined by the W3C and the
WhatWG.

� HTML5 includes support for

� audio/video without plugins,

� a canvas element for scriptable, 2D, bitmapped graphics

� SV G for Scalable Vector Graphics

� MathML inline and display-style mathematical formulae

� The W3C is expected to issue a “recommendation” that standardizes HTML5
in 2014.

� Even though HTML5 is not formally standardized yet, almost all major web
browsers already implement almost all of HTML5.

©:Michael Kohlhase 113

As the WWWeb evolved from a hypertext system purely aimed at human readers to an Web of
multimedia documents, where machines perform added-value services like searching or aggregating,
it became more important that machines could understand critical aspects web pages. One way

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

70 CHAPTER 7. BASIC CONCEPTS OF THE WORLD WIDE WEB

to facilitate this is to separate markup that specifies the content and functionality from markup
that specifies human-oriented layout and presentation (together called “styling”). This is what
“cascading style sheets” set out to do. Another motivation for CSS is that we often want the
styling of a web page to be customizable (e.g. for vision-impaired readers).

CSS: Cascading Style Sheets

� Idea: Separate structure/function from appearance.

Definition 7.3.7 The Cascading Style Sheets (CSS), is a style sheet lan-
guage that allows authors and users to attach style (e.g., fonts and spacing)
to structured documents. Current version 2.1 is defined in [BCHL09].

� Example 7.3.8 Our text file from Example 7.3.5 with embedded CSS

<html>
<head>
<style type="text/css">

body {background-color:#d0e4fe;}
h1 {color:orange;

text-align:center;}
p {font-family:"Verdana";

font-size:20px;}
</style>
</head>
<body>
<h1>CSS example</h1>
<p>Hello GenCSII!.</p>

</body>
</html>

©:Michael Kohlhase 114

http://creativecommons.org/licenses/by-sa/2.5/

Chapter 8

Web Applications

In this chapter we show how with a few additions to the basic WWWeb infrastructure introduced
in Chapter6, we can turn web pages into web-based applications that can be used without having
to install additional software.

The first thing we need is a means to send information back to the web server, which can be used
as input for the web application. Fortunately, this is already forseen by the HTML format.

HTML Forms: Submitting Information to the Web Server

� Example 8.0.9 Forms contain input fields and explanations.

<form name="input" action="html_form_submit.asp" method="get">
Username: <input type="text" name="user" />
<input type="submit" value="Submit" />

</form>

The result is a form with three elements: a text, an input field, and a submit
button, that will trigger a HTTP GET request to the URL specified in the
action attribute.

©:Michael Kohlhase 115

As the WWWeb is based on a client-server architecture, computation in web applications can be
executed either on the client (the web browser) or the server (the web server). For both we have
a special technology; we start with computation on the web server.

Server-Side Scripting: Programming Web Pages

� Idea: Why write HTML pages if we can also program them! (easy to do)

� Definition 8.0.10 A server-side scripting framework is a web server ex-
tension that generates web pages upon HTTP GET requests.

� Example 8.0.11 perl is a scripting language with good string manipu-
lation facilities. perl CGI is an early server-side scripting framework based
on this.

71

http://creativecommons.org/licenses/by-sa/2.5/

72 CHAPTER 8. WEB APPLICATIONS

� Server-side scripting frameworks allow to make use of external resources
(e.g. databases or data feeds) and computational services during web page
generation.

� Problem: Most web page content is static (page head, text blocks, etc.)
(and no HTML editing support in program editors)

� Idea: Embed program snippets into HTML pages.(only execute these, copy rest)

� Definition 8.0.12 A server-side scripting language is a server side script-
ing framework where web pages are generated from HTML documents with
embedded program fragments that are executed in context during web page
generation.

� Note: No program code is left in the resulting web page after generation
(important security concern)

©:Michael Kohlhase 116

To get a concrete intuition on the possibilities of server-side scripting frameworks, we will present
PHP, a commonly used open source scripting framework. There are many other examples, but
they mainly differ on syntax and advanced features.

PHP, a Server-Side Scripting Language

� Definition 8.0.13 PHP (originally “Programmable Home Page Tools”,
later “PHP: Hypertext Processor”) is a server-side scripting language with
a C-like syntax. PHP code is embedded into HTML via special “tags” <?php

and ?>

� Example 8.0.14 The following PHP program uses echo for string output

<html>
<body><?php echo ’Hello world’;?></body>

</html>

� Example 8.0.15 We can access the server clock in PHP (and manipulate
it)

<?php
$tomorrow = mktime(0,0,0,date("m"),date("d")+1,date("Y"));
echo "Tomorrow is ".date("d. m. Y", $tomorrow);
?>
This fragment inserts tomorrow’s date into a web page

� Example 8.0.16 We can generate pages from a database (here MySQL)

<?php
$con = mysql_connect("localhost","peter","abc123");
if (!$con)
{
die(’Could not connect: ’ . mysql_error());
}

mysql_select_db("my_db", $con);

$result = mysql_query("SELECT * FROM Persons");

http://creativecommons.org/licenses/by-sa/2.5/

73

while($row = mysql_fetch_array($result))
{
echo $row[’FirstName’] . " " . $row[’LastName’];
echo "
";
}

mysql_close($con);
?>

� Example 8.0.17 We can even send e-mail via this e-mail form.

<html><body>
<?php
if (isset($_REQUEST[’email’]))//if "email" is filled out, send email
{//send email
$email = $_REQUEST[’email’] ;
$subject = $_REQUEST[’subject’] ;
$message = $_REQUEST[’message’] ;
mail("someone@example.com", $subject,
$message, "From:" . $email);
echo "Thank you for using our mail form";}

else //if "email" is not filled out, display the form
{echo "<form method=’post’ action=’mailform.php’>
Email: <input name=’email’ type=’text’ />

Subject: <input name=’subject’ type=’text’ />

Message:

<textarea name=’message’ rows=’15’ cols=’40’>
</textarea>

<input type=’submit’ />
</form>";}

?>
</body></html>

©:Michael Kohlhase 117

With server-side scripting frameworks like PHP, we can already build web applications, which we
now define.

Web Applications: Using Applications without Installing

� Definition 8.0.18 A web application is a website that serves as a user
interface for a server-based application using a web browser as the client.

� Example 8.0.19 Commonly used web applications include

� http://ebay.com; auction pages are generated from databases

� http://www.weather.com; weather information generated weather feeds

� http://slashdot.org; aggregation of news feeds/discussions

� http://github.com; source code hosting and project management

Common Traits: pages generated from databases and external feeds, con-
tent submission via HTML forms, file upload

�� Definition 8.0.20 A web application framework is a software framework
for creating web applications.

http://creativecommons.org/licenses/by-sa/2.5/
http://ebay.com
http://www.weather.com
http://slashdot.org
http://github.com

74 CHAPTER 8. WEB APPLICATIONS

� Example 8.0.21 The LAMP stack is a web application framework based
on linux, apache, MySQL, and PHP.

� Example 8.0.22 A variant of the LAMP stack is available for Windows

as XAMPP [XAM].

©:Michael Kohlhase 118

Indeed, the first web applications were essentially built in this way. Note however, that as we
remarked above, no PHP code remains in the generated web pages, which thus “look like” static
web pages to the client, even though they were generated dynamically on the server.

There is one problem however with web applications that is difficult to solve with the technologies
so far. We want web applications to give the user a consistent user experience even though they
are made up of multiple web pages. In a regular application we we only want to login once and
expect the application to remember e.g. our username and password over the course of the various
interactions with the system. For web applications this poses a technical problem which we now
discuss.

State in Web Applications and Cookies

� Recall: Web applications contain multiple pages, HTTP is a stateless pro-
tocol.

� Problem: how do we pass state between pages?(e.g. username, password)

� Simple Solution: Pass information along in query part of page URLs.

� Example 8.0.23 (HTTP GET for Single Login) Since we are gen-
erating pages we can generated augmented links

... more

Problem: only works for limited amounts of information and for a single
session

�� Other Solution: Store state persistently on the client hard disk

� Definition 8.0.24 A cookie is a text file stored on the client hard disk by
the web browser. Web servers can request the browser to store and send
cookies.

� cookies are data not programs, they do not generate pop-ups or behave
like viruses, but they can include your log-in name and browser preferences

� cookies can be convenient, but they can be used to gather information
about you and your browsing habits

� Definition 8.0.25 third party cookies are used by advertising companies
to track users across multiple sites.(but you can turn off, and even delete cookies)

©:Michael Kohlhase 119

Note that that both solutions to the state problem are not ideal, for usernames and passwords the
URL-based solution is particularly problematic, since HTTP transmits URLs in GET requests
without encryption, and in our example passwords would be visible to anybody with a packet

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

75

sniffer. Here cookies are little better as cookies, since they can be requested by any website you
visit.

We now turn to client-side computation

One of the main advantages of moving documents from their traditional ink-on-paper form into
an electronic form is that we can interact with them more directly. But there are many more
interactions than just browsing hyperlinks we can think of: adding margin notes, looking up
definitions or translations of particular words, or copy-and-pasting mathematical formulae into
a computer algebra system. All of them (and many more) can be made, if we make documents
programmable. For that we need three ingredients: i) a machine-accessible representation of
the document structure, and ii) a program interpreter in the web browser, and iii) a way to send
programs to the browser together with the documents. We will sketch the WWWeb solution to
this in the following.

Dynamic HTML

� Observation: The nested, markup codes turn HTML documents into trees.

� Definition 8.0.26 The document object model (DOM) is a data struc-
ture for the HTML document tree together with a standardized set of access
methods.

� Note: All browsers implement the DOM and parse HTML documents into
it; only then is the DOM rendered for the user.

� Idea: generate parts of the web page dynamically by manipulating the
DOM.

� Definition 8.0.27 JavaScript is an object-oriented scripting language mostly
used to enable programmatic access to the DOM in a web browser.

� JavaScript is standardized by ECMA in [ECM09].

� Example 8.0.28 We write the some text into a HTML document object
(the document API)

<html>
<head>
<script type="text/javascript">document.write("Dynamic HTML!");</script>
</head>
<body><!-- nothing here; will be added by the script later --></body>
</html>

©:Michael Kohlhase 120

Let us fortify our intuition about dynamic HTML by going into a more involved example.

Applications and useful tricks in Dynamic HTML

� Example 8.0.29 hide document parts by setting CSS style attribs to
display:none

<html>
<head>

<style type="text/css">#dropper { display: none; }</style>
<script language="JavaScript" type="text/javascript">

function toggleDiv(element){
if(document.getElementById(element).style.display == ’none’)

http://creativecommons.org/licenses/by-sa/2.5/

76 CHAPTER 8. WEB APPLICATIONS

{document.getElementById(element).style.display = ’block’}
else if(document.getElementById(element).style.display == ’block’)

{document.getElementById(element).style.display = ’none’}}
</script>

</head>
<body>

<div onClick="toggleDiv(’dropper’);">...more </div>
<div id="dropper">

<p>Now you see it!</p>
</div>

</body>
</html>

Application: write “gmail” or “google docs” as JavaScript enhanced web
applications. (client-side computation for immediate reaction)

�� Current Megatrend: Computation in the “cloud”, browsers (or “apps”) as
user interfaces

©:Michael Kohlhase 121

Current web applications include simple office software (word processors, online spreadsheets, and
presentation tools), but can also include more advanced applications such as project management,
computer-aided design, video editing and point-of-sale. These are only possible if we carefully
balance the effects of server-side and client-side computation. The former is needed for compu-
tational resources and data persistence (data can be stored on the server) and the latter to keep
personal information near the user and react to local context (e.g. screen size).

http://creativecommons.org/licenses/by-sa/2.5/

Chapter 9

An Overview over XML
Technologies

Excursion: XML (EXtensible Markup Language)

� XML is language family for the Web

� tree representation language (begin/end brackets)

� restrict instances by Doc. Type Def. (DTD) or Schema (Grammar)

� Presentation markup by style files (XSL: XML Style Language)

� XML is extensible HTML & simplified SGML

� logic annotation (markup) instead of presentation!

� many tools available: parsers, compression, data bases, . . .

� conceptually: transfer of directed graphs instead of strings.

� details at http://www.w3c.org

©:Michael Kohlhase 122

The idea of XML being an “extensible” markup language may be a bit of a misnomer. It is made
“extensible” by giving language designers ways of specifying their own vocabularies. As such XML
does not have a vocabulary of its own, so we could have also it an “empty” markup language that
can be filled with a vocabulary.

XML is Everywhere (E.g. document metadata)

� Example 9.0.30 Open a PDF file in AcrobatReader, then cklick on
File↘ DocumentProperties↘ DocumentMetadata↘ V iewSource, you
get the following text: (showing only a small part)

<rdf:RDF xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
xmlns:iX=’http://ns.adobe.com/iX/1.0/’>

<rdf:Description xmlns:pdf=’http://ns.adobe.com/pdf/1.3/’>
<pdf:CreationDate>2004-09-08T16:14:07Z</pdf:CreationDate>
<pdf:ModDate>2004-09-08T16:14:07Z</pdf:ModDate>
<pdf:Producer>Acrobat Distiller 5.0 (Windows)</pdf:Producer>

77

http://www.w3c.org
http://creativecommons.org/licenses/by-sa/2.5/

78 CHAPTER 9. AN OVERVIEW OVER XML TECHNOLOGIES

<pdf:Author>Herbert Jaeger</pdf:Author>
<pdf:Creator>Acrobat PDFMaker 5.0 for Word</pdf:Creator>
<pdf:Title>Exercises for ACS 1, Fall 2003</pdf:Title>

</rdf:Description>
. . .
<rdf:Description xmlns:dc=’http://purl.org/dc/elements/1.1/’>
<dc:creator>Herbert Jaeger</dc:creator>
<dc:title>Exercises for ACS 1, Fall 2003</dc:title>

</rdf:Description>
</rdf:RDF>

©:Michael Kohlhase 123

This is an excerpt from the document metadata which AcrobatDistiller saves along with each
PDF document it creates. It contains various kinds of information about the creator of the doc-
ument, its title, the software version used in creating it and much more. Document metadata is
useful for libraries, bookselling companies, all kind of text databases, book search engines, and
generally all institutions or persons or programs that wish to get an overview of some set of books,
documents, texts. The important thing about this document metadata text is that it is not written
in an arbitrary, PDF-proprietary format. Document metadata only make sense if these metadata
are independent of the specific format of the text. The metadata that MSWord saves with each
Word document should be in the same format as the metadata that Amazon saves with each of
its book records, and again the same that the British library uses, etc.

XML is Everywhere (E.g. Web Pages)

� Example 9.0.31 Open web page file in FireFox, then click on V iew ↘ PageSource,
you get the following text: (showing only a small part and reformatting)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Michael Kohlhase</title>
<meta name="generator"

content="Page generated from XML sources with the WSML package"/>
</head>
<body>. . .
<p>
<i>Professor of Computer Science</i>

Jacobs University

Mailing address - Jacobs (except Thursdays)

School of Engineering & Science

. . .

</p>. . .
</body>

</html>

©:Michael Kohlhase 124

XML Documents as Trees

� Idea: An XML Document is a Tree

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

79

<omtext xml:id="foo"
xmlns=". . ."
xmlns:om=". . .">
<CMP xml:lang=’en’>
The number
<om:OMOBJ>
<om:OMS cd="nums1"

name="pi"/>
<om:OMOBJ>
is irrational.
</CMP>

</omtext>

omtext

CMP

xml:id foo

xml:lang en

text
The number

text
is irrational.

om : OMOBJ

om : OMS

cd nums1name pi

xmlns . . .

xmlns:om . . .

� Definition 9.0.32 The XML document tree is made up of element nodes,
attribute nodes, text nodes (and namespace declarations, comments,. . .)

� Definition 9.0.33 For communication this tree is serialized into a bal-
anced bracketing structure, where

� an element el is represented by the brackets < el > (called the opening
tag) and < /el > (called the closing tag).

� The leaves of the tree are represented by empty elements (serialized as
< el >< /el >, which can be abbreviated as < el/ >

� and text nodes (serialized as a sequence of UniCode characters).

� An element node can be annotated by further information using at-
tribute nodes — serialized as an attribute in its opening tag

Note: As a document is a tree, the XML specification mandates that there
must be a unique document root.

©:Michael Kohlhase 125

� Internet Standardization

� Question: Where do all the protocols come from?(someone has to manage that)

� Definition 9.0.34 The Internet Engineering Task Force (IETF) is an open
standards organization that develops and standardizes Internet standards,
in particular the TCP/IP and Internet protocol suite.

� All participants in the IETF are volunteers(usually paid by their employers)

� Rough Consensus and Running Code: Standards are determined by the
“rough consensus method”(consensus preferred, but not all members need agree)
IETF is interested in practical, working systems that can be quickly imple-
mented.

� Idea: running code leads to rough consensus or vice versa.

� Definition 9.0.35 The standards documents of the IETF are called Re-
quest for Comments (RFC). (more than 6300 so far; see http://www.rfc-editor.org/)

©:Michael Kohlhase 126

http://creativecommons.org/licenses/by-sa/2.5/
http://www.rfc-editor.org/
http://creativecommons.org/licenses/by-sa/2.5/

80 CHAPTER 9. AN OVERVIEW OVER XML TECHNOLOGIES

The Dual Role of Grammar in XML (I)

� The XML specification [XML] contains a large character-level grammar.
(81 productions)

NameChar :== Letter | Digit | ′.′ | ′−′ | ′ ′ | ′ :′ | CombiningChar | Extender

Name :== (Letter | ′ ′ | ′ :′) (NameChar)∗

element :== EmptyElementTag | STag content ETag

STag :== ′ <′ (S)∗ Name (S)∗ attribute (S)∗ ′ >′

ETag :== ′ < /′ (S)∗ Name (S)∗ ′ >′

EmptyElementTag :== ′ <′ (S)∗ Name (S)∗ attribute (S)∗ ′/ >′

� use these to parse well-formed XML document into a tree data structure

� use these to serialize a tree data structure into a well-formed XML docu-
ment

� Idea: Integrate XML parsers/serializers into all programming languages to
communicate trees instead of strings. (more structure =̂ better CS)

©:Michael Kohlhase 127

The Dual Role of Grammar in XML (II)

� Idea: We can define our own XML language by defining our own elements
and attributes.

� Validation: Specify your language with a tree grammar(works like a charm)

� Definition 9.0.36 Document Type Definitions (DTDs) are grammars that
are built into the XML framework.

Put <DOCTYPE foo PUBLIC ”foo.dtd”¿! into the second line of the doc-
ument to validate.

� Definition 9.0.37 RelaxNG is a modern XML grammar/schema frame-
work on top of the XML framework.

©:Michael Kohlhase 128

RelaxNG, A tree Grammar for XML

� Definition 9.0.38 RelaxNG (RelaxNG: Regular Language for XML Next
Generation) is a tree grammar framework for XML documents.

A RelaxNG schema is itself an XML document; however, RelaxNG also
offers a popular, non-XML compact syntax.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

81

� Example 9.0.39 The RelaxNG grammars validate the left document

document RelaxNG in XML RelaxNG compact
<lecture>
<slide id="foo">
first slide

</slide>
<slide id="bar">
second one

</slide>
</lecture>

<grammar>
<start>
<element name="lecture">
<oneOrMore>
<ref name="slide"/>

</oneOrMore>
</element>

</start>
<define name="slide">
<element name="slide">
<text/>

</element>
<attribute name="id">
<text/>

</attribute>
</define>

</grammar>

start = element lecture
{slide+}

slide = element slide
{attribute id {text}
text}

©:Michael Kohlhase 129

One of the great advantages of viewing marked-up documents as trees is that we can describe
subsets of its nodes.

XPath, A Language for talking about XML Tree Frag-
ments

� Definition 9.0.40 The XML path language (XPath) is a language frame-
work for specifying fragments of XML trees.

� Example 9.0.41

omtext

CMP

xml:id foo

xml:lang en

text
The number

text
is irrational.

om : OMOBJ

om : OMS

cd nums1name pi

xmlns . . .

xmlns:om . . .

XPath exp. fragment

/ root

omtext/CMP/* all CMP children

//@name the name attribute
on the om : OMS el-
ement

//CMP/*[1] the first child of all
OMS elements

//*[@cd=’nums1’] all elements whose
cd has value
nums1

©:Michael Kohlhase 130

An XPath processor is an application or library that reads an XML file into a DOM and given an
XPath expression returns (pointers to) the set of nodes in the DOM that satisfy the expression.

XSLT, A tree Transformer for XML

� Definition 9.0.42 XSLT (Extensible Stylesheet Language Transforma-
tions) is a declarative, XML-based language used for the transformation
of XML documents. It is standardized by the W3C.

� Definition 9.0.43 XSLT stylesheets consist of a set of templates which
match a XML elements via an XPath expression and create a result tree.

� Definition 9.0.44 An XSLT Processor is a program that takes an XSLT
stylesheet S and an XML file X as input and transforms X as specified by
the templates in S.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

82 CHAPTER 9. AN OVERVIEW OVER XML TECHNOLOGIES

� Example 9.0.45 There are various open source or free XSLT processors

� xsltproc [Vei] is very fast, but only supports XSLT version 1.

� saxon [Kay08] supports XSLT version 2, but is slower.

� Example 9.0.46 Use this stylesheet to extract a numbered table of con-
tents from an HTML document

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
<html><body><xsl:apply-templates select="//h1"/></body></html>

</xsl:template>

<xsl:template match="*"/>

<xsl:template match="h1">
<p style="font-size:large">

<xsl:value-of select="preceeding-sibling::h1"/>
<xsl:copy-of select="*|text()"/>

</p>
</xsl:template>

</xsl:stylesheet>

©:Michael Kohlhase 131

http://creativecommons.org/licenses/by-sa/2.5/

Part II

Mechanics and Consequences of
Digital Media

83

85

In this part of the course we introduce the mechanics of digital media – how do we create, transform,
and manage digital documetns, and discuss how digical media affect individuals and society8 EdN:8

8EdNote: MK: continue

86

Chapter 10

Legal Foundations of Information
Technology

In this chapter, we cover a topic that is a very important secondary aspect of our work as Computer
Scientists: the legal foundations that regulate how the fruits of our labor are appreciated (and
recompensated), and what we have to do to respect people’s personal data.

10.1 Intellectual Property, Copyright, and Licensing

The first complex of questions centers around the assessment of the products of work of knowl-
edge/information workers, which are largely intangible, and about questions of recompensation
for such work.

Intellectual Property: Concept

� Question: Intellectual labour creates (intangible) objects, can they be
owned?

� Answer: Yes: in certain circumstances they are property like tangible ob-
jects.

� Definition 10.1.1 The concept of intellectual property motivates a set
of laws that regulate property rights on intangible objects, in particular

� Patents grant exploitation rights on original ideas.

� Copyrights grant personal and exploitation rights on expressions of ideas.

� Industrial Design Rights protect the visual design of objects beyond their
function.

� Trademarks protect the signs that identify a legal entity or its products
to establish brand recognition.

� Intent: Property-like treatment of intangibles will foster innovation by giv-
ing individuals and organizations material incentives.

©:Michael Kohlhase 132

87

http://creativecommons.org/licenses/by-sa/2.5/

88 CHAPTER 10. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY

Naturally, many of the concepts are hotly debated. Especially due to the fact that intuitions
and legal systems about property have evolved around the more tangible forms of properties
that cannot be simply duplicated and indeed multiplied by copying them. In particular, other
intangibles like physical laws or mathematical theorems cannot be property.

Intellectual Property: Problems

� Delineation Problems: How can we distinguish the product of human
work, from “discoveries”, of e.g. algorithms, facts, genome, algorithms.

(not property)

� Philosophical Problems: The implied analogy with physical property (like
land or an automobile) fails because physical property is generally rivalrous
while intellectual works are non-rivalrous (the enjoyment of the copy does
not prevent enjoyment of the original).

� Practical Problems: There is widespread criticism of the concept of intel-
lectual property in general and the respective laws in particular.

� (software) patents are often used to stifle innovation in practice.
(patent trolls)

� copyright is seen to help big corporations and to hurt the innovating
individuals

©:Michael Kohlhase 133

We will not go into the philosophical debates around intellectual property here, but concentrate
on the legal foundations that are in force now and regulate IP issues. We will see that groups
holding alternative views of intellectual properties have learned to use current IP laws to their
advantage and have built systems and even whole sections of the software economy on this basis.

Many of the concepts we will discuss here are regulated by laws, which are (ultimately) subject
to national legislative and juridicative systems. Therefore, none of them can be discussed without
an understanding of the different jurisdictions. Of course, we cannot go into particulars here,
therefore we will make use of the classification of jurisdictions into two large legal traditions to
get an overview. For any concrete decisions, the details of the particular jurisdiction have to be
checked.

Legal Traditions

� The various legal systems of the world can be grouped into “traditions”.

� Definition 10.1.2 Legal systems in the common law tradition are usually
based on case law, they are often derived from the British system.

� Definition 10.1.3 Legal systems in the civil law tradition are usually
based on explicitly codified laws (civil codes).

� As a rule of thumb all English-speaking countries have systems in the com-
mon law tradition, whereas the rest of the world follows a civil law tradition.

©:Michael Kohlhase 134

Another prerequisite for understanding intellectual property concepts is the historical development

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

10.1. INTELLECTUAL PROPERTY, COPYRIGHT, AND LICENSING 89

of the legal frameworks and the practice how intellectual property law is synchronized interna-
tionally.

Historic/International Aspects of Intellectual Property
Law

� Early History: In late antiquity and the middle ages IP matters were regu-
lated by royal privileges

� History of Patent Laws: First in Venice 1474, Statutes of Monopolies in
England 1624, US/France 1790/1. . .

� History of Copyright Laws: Statue of Anne 1762, France: 1793, . . .

� Problem: In an increasingly globalized world, national IP laws are not
enough.

� Definition 10.1.4 The Berne convention process is a series of interna-
tional treaties that try to harmonize international IP laws. It started with
the original Berne convention 1886 and went through revision in 1896, 1908,
1914, 1928, 1948, 1967, 1971, and 1979.

� The World Intellectual Property Organization Copyright Treaty was adopted
in 1996 to address the issues raised by information technology and the In-
ternet, which were not addressed by the Berne Convention.

� Definition 10.1.5 The Anti-Counterfeiting Trade Agreement (ACTA) is
a multinational treaty on international standards for intellectual property
rights enforcement.

� With its focus on enforcement ACTA is seen my many to break fundamental
human information rights, criminalize FLOSS

©:Michael Kohlhase 135

10.1.1 Copyright

In this subsection, we go into more detail about a central concept of intellectual property law:
copyright is the component most of IP law applicable to the individual computer scientist. There-
fore a basic understanding should be part of any CS education. We start with a definition of
what works can be copyrighted, and then progress to the rights this affords to the copyright
holder.

Copyrightable Works

� Definition 10.1.6 A copyrightable work is any artefact of human labor
that fits into one of the following eight categories:

� Literary works: Any work expressed in letters, numbers, or symbols, re-
gardless of medium. (Computer source code is also considered to be a literary work.)

� Musical works: Original musical compositions.

� Sound recordings of musical works. (different licensing)

http://creativecommons.org/licenses/by-sa/2.5/

90 CHAPTER 10. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY

� Dramatic works: literary works that direct a performance through writ-
ten instructions.

� Choreographic works must be fixed, either through notation or video
recording.

� Pictorial, Graphic and Sculptural (PGS) works: Any two-dimensional or
three-dimensional art work

� Audiovisual works: work that combines audio and visual components.
(e.g. films, television programs)

� Architectural works (copyright only extends to aesthetics)

� The categories are interpreted quite liberally (e.g. for computer code).

� There are various requirements to make a work copyrightable: it has to

� exhibit a certain originality (Schöpfungshöhe)

� require a certain amount of labor and diligence(“sweat of the brow” doctrine)

©:Michael Kohlhase 136

In short almost all products of intellectual work are copyrightable, but this does not mean copyright
applies to all those works. Indeed there is a large body of works that are “out of copyright”, and
can be used by everyone. Indeed it is one of the intentions of intellectual property laws to increase
the body of intellectual resources a society a draw upon to create wealth. Therefore copyright
is limited by regulations that limit the duration of copyright and exempts some classes of works
from copyright (e.g. because they have already been payed for by society).

Limitations of Copyrightabilitiy: The Public Domain

� Definition 10.1.7 A work is said to be in the public domain, if no copy-
right applies, otherwise it is called copyrighted

� Example 10.1.8 Works made by US government employees (in their work
time) are in the public domain directly(Rationale: taxpayer already payed for them)

� Copyright expires: usually 70 years after the death of the creator

� Example 10.1.9 (US Copyright Terms) Some people claim that US
copyright terms are extended, whenever Disney’s Mickey Mouse would be-
come public domain.

http://creativecommons.org/licenses/by-sa/2.5/

10.1. INTELLECTUAL PROPERTY, COPYRIGHT, AND LICENSING 91

©:Michael Kohlhase 137

Now that we have established, which works are copyrighted — i.e. to which works are intellectual
property, let us see who owns them, and how that ownership is established.

Copyright Holder

� Definition 10.1.10 The copyright holder is the legal entity that holds
the copyright to a copyrighted work.

� By default, the original creator of a copyrightable work holds the copyright.

� In most jurisdictions, no registration or declaration is necessary(but copyright ownership may be difficult to prove)

� copyright is considered intellectual property, and can be transferred to
others (e.g. sold to a publisher or bequeathed)

� Definition 10.1.11 (Work for Hire) A work made for hire is a work
created by an employee as part of his or her job, or under the explicit
guidance or under the terms of a contract.

� In jurisdictions from the common law tradition, the copyright holder of a
work for hires the employer, in jurisdictions from the civil law tradition, the
author, unless the respective contract regulates it otherwise.

©:Michael Kohlhase 138

We now turn to the rights owning a copyright entails for the copyright holder.

Rights under Copyright Law

� Definition 10.1.12 The copyright is a collection of rights on a copy-
righted work;

� personal rights: the copyright holder may

� determine whether and how the work is published (right to publish)

� determine whether and how her authorship is acknowledged. (right of attribution)

� to object to any distortion, mutilation or other modification of the
work, which would be prejudicial to his honor or reputation (droit de respect)

� exploitation rights: the owner of a copyright has the exclusive right to
do, or authorize to do any of the following:

� to reproduce the copyrighted work in copies (or phonorecords);

� to prepare derivative works based upon the copyrighted work;

� to distribute copies of the work to the public by sale, rental, lease,
or lending;

� to perform the copyrighted work publicly;

� to display the copyrighted work publicly; and

� to perform the copyrighted work publicly by means of a digital-audio
transmission.

� Definition 10.1.13 The use of a copyrighted material, by anyone other
than the owner of the copyright, amounts to copyright infringement only

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

92 CHAPTER 10. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY

when the use is such that it conflicts with any one or more of the exclusive
rights conferred to the owner of the copyright.

©:Michael Kohlhase 139

Again, the rights of the copyright holder are mediated by usage rights of society; recall that
intellectual property laws are originally designed to increase the intellectual resources available to
society.

Limitations of Copyright (Citation/Fair Use)

� There are limitations to the exclusivity of rights of the copyrightholder
(some things cannot be forbidden)

� Citation Rights: Civil law jurisdictions allow citations of (extracts of) copy-
righted works for scientific or artistic discussions.(note that the right of attribution still applies)

� In the civil law tradition, there are similar rights:

� Definition 10.1.14 (Fair Use/Fair Dealing Doctrines) Case law in
common law jurisdictions has established a fair use doctrine, which allows
e.g.

� making safety copies of software and audiovisual data

� lending of books in public libraries

� citing for scientific and educational purposes

� excerpts in search engine

Fair use is established in court on a case-by-case taking into account the
purpose (commercial/educational), the nature of the work the amount of
the excerpt, the effect on the marketability of the work.

©:Michael Kohlhase 140

10.1.2 Licensing

Given that intellectual property law grants a set of exclusive rights to the owner, we will now
look at ways and mechanisms how usage rights can be bestowed on others. This process is called
licensing, and it has enormous effects on the way software is produced, marketed, and consumed.
Again, we will focus on copyright issues and how innovative license agreements have created the
open source movement and economy.

Licensing: the Transfer of Rights

� Remember: the copyright holder has exclusive rights to a copyrighted work.

� In particular: all others have only fair-use rights(but we can transfer rights)

� Definition 10.1.15 A license is an authorization (by the licensor) to use
the licensed material (by the licensee).

� Note: a license is a regular contract (about intellectual property) that is

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

10.1. INTELLECTUAL PROPERTY, COPYRIGHT, AND LICENSING 93

handled just like any other contract. (it can stipulate anything the licensor and licensees agree on)
in particular a license may

� involve term, territory, or renewal provisions

� require paying a fee and/or proving a capability.

� require to keep the licensor informed on a type of activity, and to give
them the opportunity to set conditions and limitations.

� Mass Licensing of Computer Software: Software vendors usually license
software under extensive end-user license agreement (EULA) entered into
upon the installation of that software on a computer. The license authorizes
the user to install the software on a limited number of computers.

©:Michael Kohlhase 141

Copyright law was originally designed to give authors of literary works — e.g. novelists and
playwrights — revenue streams and regulate how publishers and theatre companies can distribute
and display them so that society can enjoy more of their work.

With the inclusion of software as “literary works” under copyright law the basic parameters of
the system changed considerably:

• modern software development is much more a collaborative and diversified effort than literary
writing,

• re-use of software components is a decisive factor in software,
• software can be distributed in compiled form to be executable which limits inspection and

re-use, and
• distribution costs for digital media are negligible compared to printing.

As a consequence, much software development has been industrialized by large enterprises, who
become copyrights the software was created as work for hire This has led to software quasi-
monopolies, which are prone to stifling innovation and thus counteract the intentions of intellectual
property laws.

The Free/Open Source Software movement attempts to use the intellectual property laws them-
selves to counteract their negative side effects on innovation and collaboration and the (perceived)
freedom of the programmer.

Free/Open Source Licenses

� Recall: Software is treated as literary works wrt. copyright law.

� But: Software is different from literary works wrt. distribution channels
(and that is what copyright law regulates)

� In particular: When literary works are distributed, you get all there is, soft-
ware is usually distributed in binary format, you cannot understand/cite/-
modify/fix it.

� So: Compilation can be seen as a technical means to enforce copyright.
(seen as an impediment to freedom of fair use)

� Recall: IP laws (in particular patent law) was introduced explicitly for two
things

� incentivize innovation (by granting exclusive exploitation rights)

http://creativecommons.org/licenses/by-sa/2.5/

94 CHAPTER 10. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY

� spread innovation (by publishing ideas and processes)

Compilation breaks the second tenet (and may thus stifle innovation)

� Idea: We should create a public domain of source code

� Definition 10.1.16 Free/Libre/Open-Source Software (FLOSS) is soft-
ware that is and licensed via licenses that ensure that its source is available.

� Almost all of the Internet infrastructure is (now) FLOSS; so are the Linux
and Android operating systems and applications like OpenOffice and The
GIMP.

©:Michael Kohlhase 142

The relatively complex name Free/Libre/Open Source comes from the fact that the English1 word
“free” has two meanings: free as in “freedom” and free as in “free beer”. The initial name “free
software” confused issues and thus led to problems in public perception of the movement. Indeed
Richard Stallman’s initial motivation was to ensure the freedom of the programmer to create
software, and only used cost-free software to expand the software public domain. To disambiguate
some people started using the French “libre” which only had the “freedom” reading of “free”. The
term “open source” was eventually adopted in 1998 to have a politically less loaded label.

The main tool in brining about a public domain of open-source software was the use of licenses
that are cleverly crafted to guarantee usage rights to the public and inspire programmers to license
their works as open-source systems. The most influential license here is the Gnu public license
which we cover as a paradigmatic example.

GPL/Copyleft: Creating a FLOSS Public Domain?

� Problem: How do we get people to contribute source code to the FLOSS
public domain?

� Idea: Use special licenses to:

� allow others to use/fix/modify our source code (derivative works)

� require them to release their modifications to the FLOSS public domain
if they do.

� Definition 10.1.17 A copyleft license is a license which requires that
allows derivative works, but requires that they be licensed with the same
license.

� Definition 10.1.18 The General Public License (GPL) is a copyleft li-
cense for FLOSS software originally written by Richard Stallman in 1989. It
requires that the source code of GPL-licensed software be made available.

� The GPL was the first copyleft license to see extensive use, and continues
to dominate the licensing of FLOSS software.

� FLOSS based development can reduce development and testing costs
(but community involvement must be managed)

1the movement originated in the USA

http://creativecommons.org/licenses/by-sa/2.5/

10.2. INFORMATION PRIVACY 95

� Various software companies have developed successful business models
based on FLOSS licensing models. (e.g. Red Hat, Mozilla, IBM, . . .)

©:Michael Kohlhase 143

Note: that the GPL does not make any restrictions on possible uses of the software. In particular,
it does not restrict commercial use of the copyrighted software. Indeed it tries to allow commercial
use without restricting the freedom of programmers. If the unencumbered distribution of source
code makes some business models (which are considered as “extortion” by the open-source pro-
ponents) intractable, this needs to be compensated by new, innovative business models. Indeed,
such business models have been developed, and have led to an “open-source economy” which now
constitutes a non-trivial part of the software industry.

With the great success of open-source sofware, the central ideas have been adapted to other
classes of copyrightable works; again to create and enlarge a public domain of resources that allow
re-use, derived works, and distribution.

Open Content via Open Content Licenses

� Recall: FLOSS licenses have created a vibrant public domain for software.

� How about: other copyrightable works: music, video, literature, technical
documents

�

Definition 10.1.19 The Creative Commons licenses
are

� a common legal vocabulary for sharing content

� to create a kind of “public domain” using licensing

� presented in three layers (human/lawyer/machine)-
readable

� Creative Commons license provisions(http://www.creativecommons.org)

� author retains copyright on each module/course

� author licenses material to the world with requirements

+/- attribuition (must reference the author)

+/- commercial use (can be restricted)

+/- derivative works (can allow modification)

+/- share alike (copyleft) (modifications must be donated back)

©:Michael Kohlhase 144

10.2 Information Privacy

Information/Data Privacy

� Definition 10.2.1 The principle of information privacy comprises the idea

http://creativecommons.org/licenses/by-sa/2.5/
http://www.creativecommons.org
http://creativecommons.org/licenses/by-sa/2.5/

96 CHAPTER 10. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY

that humans have the right to control who can access their personal data
when.

� Information privacy concerns exist wherever personally identifiable informa-
tion is collected and stored – in digital form or otherwise. In particular in
the following contexts

� Healthcare records

� Criminal justice investigations and proceedings

� Financial institutions and transactions

� Biological traits, such as ethnicity or genetic material

� Residence and geographic records

� Information privacy is becoming a growing concern with the advent of
the Internet and search engines that make access to information easy and
efficient.

� The “reasonable expectation of privacy” is regulated by special laws.

� These laws differ considerably by jurisdiction; Germany has particularly
stringent regulations (and you are subject to these.)

Acquisition and storage of personal data is only legal for the purposes of
the respective transaction, must be minimized, and distribution of personal
data is generally forbidden with few exceptions. Users have to be informed
about collection of personal data.

©:Michael Kohlhase 145

Organizational Measures or Information Privacy (under
German Law)

� Physical Access Control: Unauthorized persons may not be granted physical
access to data processing equipment that process personal data.(; locks, access control systems)

� System Access Control: Unauthorized users may not use systems that pro-
cess personal data (; passwords, firewalls, . . .)

� Information Access Control: Users may only access those data they are au-
thorized to access. (; access control lists, safe boxes for storage media, encryption)

� Data Transfer Control: Personal data may not be copied during transmis-
sion between systems (; encryption)

� Input Control: It must be possible to review retroactively who entered,
changed, or deleted personal data. (; authentification, journaling)

� Availability Control: Personal data have to be protected against loss and
accidental destruction (; physical/building safety, backups)

� Obligation of Separation: Personal data that was acquired for separate
purposes has to be processed separately.

http://creativecommons.org/licenses/by-sa/2.5/

10.2. INFORMATION PRIVACY 97

©:Michael Kohlhase 146

http://creativecommons.org/licenses/by-sa/2.5/

98 CHAPTER 10. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY

Chapter 11

Welcome to the Desert of the Real

Slide 147

Slide 148

99

100 CHAPTER 11. WELCOME TO THE DESERT OF THE REAL

Slide 149

Slide 150

101

Slide 151

Slide 152

Slide 153

102 CHAPTER 11. WELCOME TO THE DESERT OF THE REAL

Slide 154

Slide 155

103

Slide 156

Slide 157

Slide 158

104 CHAPTER 11. WELCOME TO THE DESERT OF THE REAL

Slide 159

Slide 160

105

Slide 161

106 CHAPTER 11. WELCOME TO THE DESERT OF THE REAL

Chapter 12

Computing with Documents

Regular Expressions

� Definition 12.0.2 A regular expression (also called regexp) is a formal
expression that specifies a set of strings.

� Definition 12.0.3 (Meta-Characters for Regexps)

char denotes

. any single character
ˆ beginning of a string
$ end of a string
[. . .] any single character in the brackets
[ˆ . . .] any single character not in the brackets
(. . .) marks a group
\n the nth group
| disjunction
∗ matches the preceding element zero or more times
+ matches the preceding element one or more times
? matches the preceding element zero or one times
{n,m} matches the preceding element between n and m times

� Example 12.0.4 (Regular Expressions and their Values)

regexp values

car car

.at cat, hat, mat, . . .
[hc]at cat, hat, . . .
[^c]at hat, mat, . . . (but not cat)
^[hc]at hat, cat, but only at the beginning of the line
[0-9] Digits
[1-9][0-9]* natural numbers
(.*)\1 mama, papa, wakawaka
cat|dog cat, dog

� A regular expression can be interpreted by a regular expression processor
(a program that identifies parts that match the provided specification) or a
compiled by a parser generator.

107

108 CHAPTER 12. COMPUTING WITH DOCUMENTS

©:Michael Kohlhase 162

Playing with Regular Expressions

� If you want to play with regexps, go e.g. to http://regexpal.com

©:Michael Kohlhase 163

The sed Stream Editor

� Definition 12.0.5 The sed utility is a stream editor, it takes a stream
(think file) and some regexp replacement commands as an input and gives
a stream as a output.

� Example 12.0.6 A sed command is of the form

� s/〈〈regexp〉〉/〈〈replacement〉〉/ (replace once), or

� s/〈〈regexp〉〉/〈〈replacement〉〉/g (replace globally).

� To invoke sed in a shell (e.g. on linux, MacOSX, or cygwin on Windows)

sed -e ’s/oldstuff/newstuff/g’ inputFileName > outputFileName

or (if sedfile.sed contains many sed commands)

sed −f sedfile.sed inputFileName > outputFileName

� Example 12.0.7 (Update the Jacobs Web Site)

sed −e ’s/International Univ/Jacobs Univ/g;s/IUB/Jacobs/g’ index.html > index.html

� Example 12.0.8 (Stalin eliminates Trotzki) Let cleanse.sed be the
sed file

s/Leon Trotzki//g;s/Trotzki//g
s/Lev Davidovich Bronstein//g;s/Davidovich//g;s/Bronstein//g

http://creativecommons.org/licenses/by-sa/2.5/
http://regexpal.com
http://creativecommons.org/licenses/by-sa/2.5/

109

then Stalin can just use the following shell script to cleanse Kreml documents

find / −name −E ’’.∗\.html|.∗\.txt’’ −exec ’sed −f cleanse.sed {} > {} \;

©:Michael Kohlhase 164

The lex/flex Lexer Generator

� Definition 12.0.9 The lex is a generator of lexical analyzers (lexers), i.e.
a program that reads a lexer specification and outputs C code for a lexer.

A lexer specification is a list of pairs 〈R,P 〉, where R is a regexp and P is
C code to be executed when R is matched.

lex is part of UNIX (proprietary), it is extended by the open-source flex.

� Example 12.0.10 (Spotting Integers)

-?[1-9][0-9]* {printf("Saw an integer: %s\n", yytext)}
.|\n { /* Ignore all other characters. */ }

If this input is given to flex, it will be converted into a CLanguage file,
lex.yy.c. This can be compiled into an executable which matches and
outputs strings of integers. For example, given the input abc123z.&*2ghj-
6! the program will print:

Saw an integer: 123
Saw an integer: 2
Saw an integer: -6

©:Michael Kohlhase 165

lex Example: Tokenizing Artithmetic Expressions

� Example 12.0.11 We want to build a simple calculator, so we need a to-
kenizer for arithmetic expressions. Here is the flex code for one (see [Vol11]
for details):

delim [\t]
whitesp {delim}+
digit [0-9]
number [-]?{ digit }*[.]?{ digit}+
%%
{number} { sscanf(yytext , "%lf", &yylval); return NUMBER ;}
"+" { return PLUS; }
"-" { return MINUS; }
"/" { return SLASH; }
"*" { return ASTERISK; }
"(" { return LPAREN; }
")" { return RPAREN; }
"\n" { return NEWLINE; }
{whitesp} { /* No action and no return */}

� The declarations before the %% are abbreviations for number(note that they are recursive)

� instead of printing notifications we just return token types (values are
in yytext)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

110 CHAPTER 12. COMPUTING WITH DOCUMENTS

©:Michael Kohlhase 166

The yacc/bison Parser Generator

� Definition 12.0.12 yacc (Yet Another Compiler Compiler) is a parser
generator, i.e. a program that reads a parser specification and outputs C

code for a parser. Historically, yacc was used to generate the C parser in
UNIX, today, it is superseded by open-source extensions, e.g. bison.

A yacc parser specification consists of three parts divided by %%.

1. token definitions that specify which tokens to expect from flex

2. grammar and the actions: $$ is the constructed result.

3. more C code, including the usual main function.

©:Michael Kohlhase 167

yacc/bison Example: Building a Calculator

� Example 12.0.13 We want to build a simple calculator, so we need a to-
kenizer for arithmetic expressions. Here is the yacc code for one (see [Vol11]
for details):

%token NEWLINE NUMBER PLUS MINUS SLASH ASTERISK LPAREN RPAREN
%%
input: /* empty string */

| input line;
line: NEWLINE

| expr NEWLINE { printf("\t%.10g\n",$1); };
expr: expr PLUS term { $$ = $1 + $3; }

| expr MINUS term { $$ = $1 - $3; }
| term;

term: term ASTERISK factor { $$ = $1 * $3; }
| term SLASH factor { $$ = $1 / $3; }
| factor;

factor: LPAREN expr RPAREN { $$ = $2; }
| NUMBER;

%%
int main(void) {yyparse (); exit (0)}

Using this to generate a parser with bison gives a program tcalc which is
a simple calculator

-1.1 + 2 * (4 / 3)
1566666667

2+2
4

©:Michael Kohlhase 168

The perl Programming Language

� Definition 12.0.14 perl is a high-level, general-purpose, interpreted, dy-
namic programming language that makes extensive use of regular expres-
sions.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

111

� perl can directly use sed commands(with more regexps and execute subroutines)

� instead of specifying the language, let us go through an example!

©:Michael Kohlhase 169

perl Example: Correcting and Anonymizing Documents

� Example 12.0.15 We write an a program that makes simple corrections
on documents and also crossres out all names.

� The worst president of the US,arguably was George W. Bush. right?

� However,are you famILIar with Paul Erdős or Henri Poincaré?(Unicode)

Here is the program:

� we first initialize and load modules

#!/usr/bin/perl -w
use warnings;
use utf8;
use Encode;

� then we decode the argument and put it into a variable

my $expr = shift;
$expr = decode(’utf8’,$expr);

� We put put a space after a comma,

$expr =~ s/,(\S)/, $1/g;

� next we make abbreviations for regular expressions to save space

$c=qr/\p{UpperCase_Letter}/;
$l=qr/\p{Lowercase_Letter}/;

� capitalize the first letter of a new sentence,

$expr =~ s/([?.!])\s($l)/$1." ".uc($2)/eg;

� remove capital letters in the middle of words

$expr =~ s/($l)($c+)($l)/$1.lc($2).$3/eg;

� and we cross-out for official public versions of government documents,

$expr =~ s/($c$l+ ($c$l*(\.?))?$c$l+)/’X’ x length($1)/eg;

� finally, we print the result

print $expr,"\n";

The worst president of the US,arguably was George W. Bush. right?
becomes
The worst president of the US, arguably was XXXXXX XX XXXX
right?

©:Michael Kohlhase 170

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

112 CHAPTER 12. COMPUTING WITH DOCUMENTS

Chapter 13

Privilege, Language, and the
Ditgital

Slide 171

113

114 CHAPTER 13. PRIVILEGE, LANGUAGE, AND THE DITGITAL

Slide 172

Slide 173

Slide 174

115

Slide 175

Slide 176

116 CHAPTER 13. PRIVILEGE, LANGUAGE, AND THE DITGITAL

Slide 177

Slide 178

Slide 179

117

Slide 180

Slide 181

118 CHAPTER 13. PRIVILEGE, LANGUAGE, AND THE DITGITAL

Chapter 14

Journeys in the Hyperreall

Slide 182

Slide 183

119

120 CHAPTER 14. JOURNEYS IN THE HYPERREALL

Slide 184

Slide 185

121

Slide 186

Slide 187

Slide 188

122 CHAPTER 14. JOURNEYS IN THE HYPERREALL

Slide 189

Slide 190

123

Slide 191

Slide 192

Slide 193

124 CHAPTER 14. JOURNEYS IN THE HYPERREALL

Chapter 15

Programming Documents

Idea: Even though documents should be thought of as sequences of characters with markup (and
images, formulae, tables, etc.), we can also think of them as programs that produce such characters
with markup. In some situations, this is profitable, e.g. when the documents have parts that
can be computed from the rest, e.g. a table of contents, the section numberings, or indices. In
such situations, the author does not need to type in the computable document fragments, but
can just represent them by a command. A conversion program interprets such a “document
program” (usually text interspersed with commands), executes all the commands, and outputs a
document (without commands), which can then be read. The main advantage of the “documents
as programs” paradigm is that the computed document fragments can never get out of sync with
the rest of the document, which eases the maintenance burden over the document life-cycle.

There are various implementations of this idea, in this chapter we present the TEX/LATEX system,
in which the pdflatex program is used to transform documents with macros into PDF. Systems
like PHP do similar things for the Web.

The TEX Typesetting System

� Definition 15.0.16 Typesetting is the process of creating the visual ap-
pearance of a document by assembling glyphs (visual representations of
characters; also called types) on pages.

�

Since Gutenberg’s time (to ca. 1975), typeset-
ting was done by assembling movable types (spe-
cial metal positives of single letters) into lines
and later into pages, which were inked and the
printed; or using negatives to form cast-metal
positives for printing.

� Definition 15.0.17 TEX is a typesetting program designed by Donald
Knuth in 1978. It combines movable types (character boxes) with macro
programming.

� Definition 15.0.18 The pdftex program reads a file of text marked up
with TEX macros and outputs PDF.

� Example 15.0.19 (Hello World in TEX) pdftex typesets the follow-
ing TEX file

Hello, World \bye

125

126 CHAPTER 15. PROGRAMMING DOCUMENTS

The command sequence \bye stops pdftex and is not shown in the output.

©:Michael Kohlhase 194

Note that the “document program”

Hello, World \bye

the pdftex interprets all characters as “self-inserting characters”, i.e the character “a” is essentially
a command that inserts a character “a” into the PDF (in the right font and size).

We have already seen one document program command used by TEX above, and there are many
more. Most of them insert special characters into the document or change the formatting. But TEX
goes much further, it allows the author to define commands as well. This makes the TEX format
self-extensible, and into a very expressive special purpose programming language for documents.

TEX Macros for Programming Documents

� TEX uses command sequences (words starting with “\”; also called macros)
for special effects.

� Example 15.0.20 \bye stops the formatter, \alpha prints α, \int prints∫
,. . .

� Users can also define TEX macros as abbreviations via \def

� Example 15.0.21 \def\tdm{Text and Digital Media} defines the macro
\tdm.
We love the USC ‘‘\tdm’’! expands to
“We love the USC “Text and Digital Media”!

� TEX macros can have arguments specify with #1, #2. . . : delimit with {

and }

� Example 15.0.22 with the macro \def\tnwhat#1{Text and \textbf{#1}}

\tnwhat{Beer} expands to “Text and Beer”

©:Michael Kohlhase 195

TEX was invented by a mathematician, so it is not a surprise that it is the most capable tool for
typesetting formulae — an art that only a select few professional typesetters (humans who put
lead into rows) could do.

Mathematical Formulae in TEX

� Definition 15.0.23 TEX has a math mode for formulae delimited with $
(inline math) or \[and \] (display math)

� Example 15.0.24 Some TEX commands can be used everywhere: e.g.
the Greek letters, \alpha prints α, \beta prints β,. . .

� Example 15.0.25 Many TEX commands only make sense in math mode:
e.g. superscripts with ^, e.g. x^3 gives x3, subscripts with _, e.g. x_{ij}

gives xij , \int prints
∫

, \frac{1}{2} prints 1
2 ,. . .

� Example 15.0.26 $\int_0^\infty f(\theta) d\theta$ expands to∫∞
0
f(θ)dθ

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

127

� Example 15.0.27 Use macros in math mode as well: \def\frac#1#2{#1\over #2}

Then \[1+\frac{2}{2+\frac{3}{3+\ldots}}\] expands to

1 +
2

2 + 3
3+...

©:Michael Kohlhase 196

One of the things that TEX is useful for is to automate numbering of sections, subsections, foot-
notes, etc. For that TEX offers some basic data structures. Here we introduce counters, and show
how we can make simple sectioning macros from them.

TEX Counters

� TEX uses special macros as counters, \newcount, allocates a counter,
\advance alters it, and \the references it.

� Example 15.0.28 We define a sectioning macros

\newcount\seccount % allocate a new counter for sections
\newcount\subseccount % allocate a new counter subsections
\seccount0\subseccount0 % initialise both with 0
\def\section#1{ % begin macro definition
\advance\seccount by 1 % step the counter
\subseccount0 % reset the subsection counter
\textbf{\Large\the\seccount. #1} % section number and title
} % end macro definition
\def\subsection#1{\advance\subseccount by 1
\textbf{\large\the\seccount.\the\subseccount. #1}}

©:Michael Kohlhase 197

Anyone who is experienced in programming realizes that TEX is not a modern programming
language. But of course, it was conceived in 1978, the age of COBOL, and a lot has happened in
programming language design since then. But even if it is relatively inconvenient and ugly code,
it gets the job done.

We will now present a couple of internal macros that build up to more document automation that
shows the advantages of programming documents: a serial letter macro.

TEX Conditionals

� TEX provides some conditionals for your use:
e.g. \ifx compares two macros, \ifnum compares two number, and \ifmmode

tells you if you are in math mode.
\if〈〈cond〉〉...\else...\fi uses it.

� TEX uses special macros for user-defined conditionals, \newif\if〈〈cond〉〉,
allocates a conditional, 〈〈cond〉〉true and 〈〈cond〉〉false alter it,

©:Michael Kohlhase 198

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

128 CHAPTER 15. PROGRAMMING DOCUMENTS

Programming a Chain Letter

� Example 15.0.29 (A Parametric Reminder)

\def\reminder#1#2{\hfill Bremen, \today\par\bigskip
\noindent Dear #1,\par\medskip\noindent
please be sure that you will not forget to come to the lecture
today. We are planning big things.\par\medskip\noindent
Sincerely,\par\bigskip\noindent #2\newpage}

� Example 15.0.30 (Programming a Serial Letter)
We can use arbitrary characters to delineate arguments in macro definitions.

\def\sletter#1,#2;{\def\first{#1}\def\second{#2}\def\empty{}
\ifx\first\empty\else\reminder{#1}{Thomas \& Michael}
\ifx\second\empty\else\sletter#2,;\fi\fi}
\def\serialletter#1{\sletter #1;}

Also nothing prevents us from using recursion.

� Example 15.0.31 (Making a Serial Letter)

\serialletter{Mati, Anca, Isabel, Calin}

©:Michael Kohlhase 199

Our serial letter example shows that with a bit of programming effort the self-extensibility of
TEX can be used to automate various document-oriented tasks, or style the documents for a given
situation. Naturally, this brought forth a vibrant community that started swapping and re-using
TEX programs.

TEX Macro Packages

� Idea: Separate out common macro definitions into a separate file and in-
clude that via \input. (So we can reuse them over multiple documents)

� Actually: many people have already done that.

� The AMS (American Mathematical Society) supplies AMSTEX: TEX macros
that make it more convenient to write Math (e.g. the \frac macro)

� Till Tantau supplies tikz (TEX ist kein Zeichenprogram): TEX macros that
allow you to draw images.

� Leslie Lamport supplies LATEX, a set of TEX packages and classes. pdflatex
is pdftex with the LATEX package macros pre-loaded.

� The bibTEX package handles bibliographic references.

©:Michael Kohlhase 200

The most widely used macro package for TEX is LATEX, there are tens of thousands of macro
packages that use the basic LATEX infrastructure. LATEX is the standard for high-end document

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

129

formatting for scientific/technical documents nowadays. We now show a typical document as
model for your own documents.

The Anatomy of a LATEX Document

� Example 15.0.32 (A LATEX file: main.tex)

\documentclass{article} % use the article class (Journal Article)
\title{Anatomy of a {\LaTeX} Document} % specify the title,
\author{Michael Kohlhase\\Jacobs University Bremen} % author,
\date{\today} % and date
\begin{document} % start the document
\maketitle % make the title
\tableofcontents % make the table of contents
\section{Introduction}\label{sec:intro}
This is really easy, just start writing,
\section{Main Part}\label{sec:main}
We refer the reader to~\cite{Lamport:ladps94} for details. But there should be at least
one formula: \[1+\frac{2}{2+\frac{3}{3+\ldots}}\]
\section{Conclusion}\label{concl:intro}
As we already said in Section~\ref{sec:intro} on
p. \pageref{sec:intro} this was not so bad was it?
\bibliographystyle{alpha}
\bibliography{example}
\end{document}

� Format it with pdflatex main (generates main.aux for references)

©:Michael Kohlhase 201

and the bibTEX database used in it

� Example 15.0.33 (a bibTEX file example.bib)

@BOOK{Lamport:ladps94,
title = {LaTeX: A Document Preparation System, 2/e},
publisher = {Addison Wesley},
year = {1994},
author = {Leslie Lamport}}

� Generate bibliography with bibtex main(it knows about example.bib from main.aux)

� run pdflatex twice (to get all the cross-references right)

©:Michael Kohlhase 202

The Result (generated parts in red)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

130 CHAPTER 15. PROGRAMMING DOCUMENTS

Anatomy of a LATEX
Document

Michael Kohlhase
Jacobs University Bremen

January 21, 2014

Contents
1. Introduction 1
2. Main Part 1
3. Conclusion 1

1. Introduction
This is really easy, just start writing,

2. Main Part
We refer the reader to [Lam84] for details. But there
should be at least one formula:

1 +
2

2 + 3
3+...

3. Conclusion
As we already said in Section 1 on p. 1 this was not so
bad was it?

References
[Lam94] Leslie Lamport, LaTeX: A Document Prepara-

tion System, 2/e, Addison Wesley, 1994.

©:Michael Kohlhase 203

http://creativecommons.org/licenses/by-sa/2.5/

Chapter 16

Practical Writing Tips

Slide 204

Slide 205

131

132 CHAPTER 16. PRACTICAL WRITING TIPS

Slide 206

Slide 207

133

Slide 208

Slide 209

134 CHAPTER 16. PRACTICAL WRITING TIPS

Chapter 17

Electronic Books and their
Formats

Electronic Books
� Definition 17.0.34 An electronic

book (eBook) is a publication in elec-
tronic form that can be read on digital
devices.

� Example 17.0.35 Arguably the
first eBooks were the texts provided
by Project Gutenberg in 1971.

� Definition 17.0.36 An electronic
book reader (eReader) is a hardware
or software devide for reading elec-
tronic books.

� Example 17.0.37 Popular
hardware-based eReaders are Kindle
(Amazon.com), the iPad (Apple),
and the Nook (Barnes&Noble), but
sofware readers also abound.

©:Michael Kohlhase 210

EPUB: A Standard for Electronic Publishing [Wik11]

135

http://creativecommons.org/licenses/by-sa/2.5/

136 CHAPTER 17. ELECTRONIC BOOKS AND THEIR FORMATS

�

Definition 17.0.38 EPUB is a free and open stan-
dard for electronic books provided by the International
Digital Publishing Forum (IDPF).
It consists of three specifications:

Open Publication Structure (OPS), essentially
XHTML and CSS for the document contents

Open Packaging Format (OPF), which describes
the structure of the EPUB file in XML.

Open Container Format (Ocf), which collects all
files as a ZIP archive.

� EPUB files usually have the extension .epub.

� EPUB does not specify a format for digital rights management (DRM),
which makes it less attractive for the big publishers.

� EPUB is supported by almost all eReaders and publishing software

©:Michael Kohlhase 211

EPUB: Open Packaging Format & Navigation Control

� Definition 17.0.39 The Open Packaging Format (OPF) is a standard for
specifying giving additional structure and coherence to an electronic book
in EPUB. It specifies the

� contents (what files) in the manifest element

� metadata (author, date, etc) in the metadata element

� linear reading order in the spine element, and

� (optionally) important structural components in the guide element.

of the package in a OPF file with the extension .opf.

� Definition 17.0.40 The navigation control of the an EPUB gives a machine-
readable table of contents of the book in XML.

©:Michael Kohlhase 212

An Example OPF file

<?xml version="1.0"?>
<package version="2.0" xmlns="http://www.idpf.org/2007/opf" unique-identifier="BookId">

<metadata xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:opf="http://www.idpf.org/2007/opf">

<dc:title>Pride and Prejudice</dc:title>
<dc:language>en</dc:language>
<dc:identifier id="BookId" opf:scheme="ISBN">123456789X</dc:identifier>
<dc:creator opf:file-as="Austen, Jane" opf:role="aut">Jane Austen</dc:creator>

</metadata>

<manifest>
<item id="chapter1" href="chapter1.xhtml" media-type="application/xhtml+xml"/>
<item id="stylesheet" href="style.css" media-type="text/css"/>
<item id="ch1-pic" href="ch1-pic.png" media-type="image/png"/>
<item id="myfont" href="css/myfont.otf" media-type="application/x-font-opentype"/>

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

137

<item id="ncx" href="book.ncx" media-type="application/x-dtbncx+xml"/>
</manifest>

<spine toc="ncx">
<itemref idref="chapter1" />

</spine>

<guide>
<reference type="loi" title="List Of Illustrations" href="appendix.html#figures" />

</guide>

</package>

©:Michael Kohlhase 213

An Example NCX file

<?xml version="1.0" encoding="UTF-8"?>
<ncx version="2005-1" xml:lang="en" xmlns="http://www.daisy.org/z3986/2005/ncx/">

<head>
<meta name="dtb:uid" content="123456789X"/> <!-- same as in .opf -->
<meta name="dtb:depth" content="1"/> <!-- 1 or higher -->
<meta name="dtb:totalPageCount" content="0"/> <!-- must be 0 -->
<meta name="dtb:maxPageNumber" content="0"/> <!-- must be 0 -->

</head>

<docTitle>
<text>Pride and Prejudice</text>

</docTitle>

<docAuthor>
<text>Austen, Jane</text>

</docAuthor>

<navMap>
<navPoint class="chapter" id="chapter1" playOrder="1">
<navLabel><text>Chapter 1</text></navLabel>
<content src="chapter1.xhtml"/>

</navPoint>
</navMap>

</ncx>

©:Michael Kohlhase 214

EPUB: Open Container Format

� Definition 17.0.41 An EPUB file is a group of files conforming to the
OPS/OPF standards that is wrapped in a ZIP file. The Open Container
Format (OCF) specifies how these files should be organized in the ZIP
archive, and defines two additional files that must be included.

� The mimetype file must be a text document in ASCII and must contain
the string application/epub+zip. It must also be uncompressed, unen-
crypted, and the first file in the ZIP archive.

� The purpose of this file is to provide a more reliable way for applications
to identify the mimetype of the file than just the .epub extension.

� Also, there must be a folder named META-INF which contains the required
file container.xml. This XML file points to the file defining the contents
of the book. This will be the .opf file.

©:Michael Kohlhase 215

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

138 CHAPTER 17. ELECTRONIC BOOKS AND THEIR FORMATS

An Example Container

ZIP Container container.xml

mimetype
META-INF/
container.xml
OPS/
book.opf
book.ncx
chapter1.xhtml
ch1-pic.png
css/
style.css
myfont.otf

<?xml version="1.0" encoding="UTF-8" ?>
<container version="1.0"

xmlns="urn:oasis:names:tc:opendocument:xmlns:container">
<rootfiles>
<rootfile full-path="OPS/book.opf"

media-type="application/oebps-package+xml"/>
<rootfile full-path="OPS/book.ncx"

media-type="application/x-dtbncx+xml"/>
</rootfiles>

</container>

©:Michael Kohlhase 216

http://creativecommons.org/licenses/by-sa/2.5/

Chapter 18

I’m So Meta

Slide 217

Slide 218

139

140 CHAPTER 18. I’M SO META

Slide 219

Slide 220

141

Slide 221

Slide 222

Slide 223

142 CHAPTER 18. I’M SO META

Slide 224

Slide 225

143

Slide 226

144 CHAPTER 18. I’M SO META

Chapter 19

Writing Technical Documentation
and Manuals

19.1 Technical Documentation in DocBook

DocBook

� Definition 19.1.1 DocBook is a content markup language for technical
documentation based on SGML or XML. It supplies elements/tags for the
logical of book-like documents.

� DocBook was originally intended for writing technical documents related
to computer hardware and software but it can be used for any other sort of
documentation.

� DocBook content is presentation-neutral and can be published in a variety
of formats, including HTML, XHTML, EPUB, PDF, man pages and HTML
Help, without requiring users to make any changes to the source.

� DocBook began in 1991 as a joint project of HAL Computer Systems
and O’Reilly & Associates. Since 1998 it is maintained by a Technical
Committee at OASIS.

©:Michael Kohlhase 227

DocBook Elements

� DocBook provides about 400 content markup tags

� Structural Elements: specify broad characteristics of their contents, e.g.
book, part, article, chapter, appendix, dedication

� Block-level Elements: specify structured blocks of text (usually starting
and ending with new “lines”). e.g. paragraphs, lists, definitions, etc. They
usually have a fixed content model; some can contain text.

145

http://creativecommons.org/licenses/by-sa/2.5/

146 CHAPTER 19. WRITING TECHNICAL DOCUMENTATION AND MANUALS

� Inline-level Elements: wrap text within a block-level element (usually with-
out breaking “lines”), e.g. for emphasis, hyperlinks, definienda,. They
typically cause the document processor to apply some kind of distinct typo-
graphical treatment to the enclosed text.

©:Michael Kohlhase 228

DocBook Example

� A “Hello World” document in DocBook

<?xml version="1.0" encoding="UTF-8"?>
<book xml:id="simple_book" xmlns="http://docbook.org/ns/docbook" version="5.0">
<title>Very simple book</title>
<chapter xml:id="chapter_1">
<title>Chapter 1</title>
<para>Hello world!</para>
<para>
I hope that your day is proceeding
<emphasis>splendidly</emphasis>!

</para>
</chapter>
<chapter xml:id="chapter_2">
<title>Chapter 2</title>
<para>Hello again, world!</para>

</chapter>
</book>

©:Michael Kohlhase 229

19.2 Topic-Oriented Documentation with DITA

DITA the “Darwin Information Typing Architecture”

� Definition 19.2.1 DITA is a topic-oriented content markup language for
technical documentation based on XML. It supports a topic-oriented doc-
umentation style.

� Definition 19.2.2 The basic unit of information in DITA is a topic, i.e. a
discrete piece of content that is about a specific subject, has an identifiable
purpose, and can stand alone (does not need to be presented in context for
the end-user to make sense of the content).

� Topics can be reused in any context; DITA makes use of this.

� Definition 19.2.3 DITA combines topics into documents via DITA maps.

� Consequence: A DITA topic (and DITA map) can be referenced in multiple
DITA maps.

� Extension: Conditional text allows filtering or styling content based on at-
tributes for audience, platform, product, and other properties.(the DITA processor filters text)

©:Michael Kohlhase 230

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

19.2. TOPIC-ORIENTED DOCUMENTATION WITH DITA 147

Using DITA Maps for Reuse

� Idea: Concepts can be reused in more than one DITA map

� Example 19.2.4 For instance a module on HTML/XML in the courses
“General Computer Science” and “Text and Digital Media”.

strings
prefix
codes

codes

XMLUniCode

XHTML

DocBook DITA

Manuals

GenCS
2011

GenCS
2010

GenCS
2012

. . .

TDM
2011

TDM
2012

. . .

Courses given in different years share most of their content (but not all)

©:Michael Kohlhase 231

A DITA Concept File

� Definition 19.2.5 A DITA concept is a special DITA topic that describes
an abstract idea or a named unit of knowledge.

� Example 19.2.6 A concept for “academic conference”(note the conditional text)

<concept id="A.dita">
<title>Academic Conference</title>
<conbody>
<p audience="students">
An <term>academic conference</term> is a gathering of scientists
who discuss <term>scientific papers</term>.
</p>
<p audience="professors">
An <term>academic conference</term> is a pretense to travel to
nice locations on university money and drink loads of beer.

</p>
<para conref="#topic/p2"/>

</conbody>
<related-links>
<linkpool type="concept">
<link audience="students" href="http://easychair.org"/>
<link audience="professors" href="http://acapulco.mx"/>

</linkpool>
</related-links>

</concept>

We can generate two versions from this content markup format. For in-
stance, with the following DITA value specification:

<!-- this file specifies the actions for students -->
<val>
<prop action="exclude" att="audience" val="professors"/>
<prop action="include" att="audience" val="students"/>

</val>

©:Michael Kohlhase 232

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

148 CHAPTER 19. WRITING TECHNICAL DOCUMENTATION AND MANUALS

A DITA Task File

� Definition 19.2.7 A DITA task is a special DITA topic that describes a
process.

� Example 19.2.8 DITA task markup for assignment 8 of the TDM course

<task id="TDMassignment8">
<title>Assignment 8: Reviewing Papers</title>
<taskbody>
<prereq>You have to be a registered TDM student.</prereq>
<steps>

<step>
<cmd>accept the PC invitation, log into easychair</cmd>
<info>You should have been given the information in the invitation e-mail</info>

</step>
<step>
<cmd>indicate your conflicts of interest</cmd>
<info>you have a conflict with anybody you have a relationship that
would keep you from being objective (yourself, your family members,
loved/hated ones, group members,... be honorable)

</info>
<stepresult>
<p>The system records a list of conflicted paper and will not show you anything about them.</p>

</stepresult>
</step>

</steps>
</taskbody>

</task>

©:Michael Kohlhase 233

A DITA Map File

� Definition 19.2.9 A DITA map combines DITA topics and maps into a
document by transclusion.

� Example 19.2.10 <map>
<title>Life as an Academic</title>
<topicmeta>...</topicmeta>
<topicref href="introduction.dita" collection-type="sequence">
<topicref href="conference.dita"/>
<topicref href="TDMassignment8.dita"/>

</topicref>
<reltable>
<relcell>conference.dita</relcell>
<relcell>TDMassignment8.dita</relcell>

</reltable>
</map>

©:Michael Kohlhase 234

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Chapter 20

Revision Control Systems

We address a very important topic for document management: supporting the document life-cycle
as a collaborative process. In this chapter we discuss how we can use a set of tools that have been
developed for supporting collaborative development of large program collections can be used for
document management.

We will first introduce the problems and current attempts at solutions and the introduce two
classes of revision control systems and discuss their paradigmatic systems.

20.1 Introduction/Motivation

Lifecycle Management for Digital Documents

� Documents may have a non-trivial life-cycle involving multiple actors.

� Example 20.1.1 For a novel we have the following stages:

1. skeleton/layout (chapters, characters, interactions)

2. first complete draft (given out to test readers)

3. private editing cycle; accepted draft(testing with more readers, refining/condensing the story)

4. publisher’s editing cycle; final draft(professional editor proposes refinements to the draft)

5. copyediting for spelling, adherence of publisher’s house style

6. adding artwork/cover ; first published edition

7. e-dition (eBook) etc. (different artwork, links, interactivity)

� Example 20.1.2 For technical books, multiple editions follow to adapt
them to changing domain or correct errors.

©:Michael Kohlhase 235

Document Lifecycle Mgmt. & Collaboration Approaches

� Practice: Send around MS Word documents by e-mail (dates in file name)

� Characteristics/Problems:

149

http://creativecommons.org/licenses/by-sa/2.5/

150 CHAPTER 20. REVISION CONTROL SYSTEMS

++ well-understood technology (no training need)

– version tracking as a social process (error prone)

– merging diverging versions is annoying (manual process)

– archiving past versions optional/manual (storage problems)

– no multifile support, no snapshots

� Summary: only supports serial collaboration, no multifile support

start finishtime

D1

δ1
D2

δ2 . . .
δ3

Dn

δn

larger teams ; more time wasted

©:Michael Kohlhase 236

Document Lifecycle Mgmt. & Collaboration Approaches

� Practice: Put your documents on Dropbox or MS Sharepoint

� Characteristics/Problems:

– local install of (proprietary) software

+ auto-synchronization between cloud and user copies upon save

+ auto-archiving past versions in cloud

– merging diverging versions unsupported (manual process)

– no multifile support, no snapshots

� Summary: only supports serial collaboration

start finishtime

D1

δ1
D2

δ2 . . .
δ3

Dn

δn

larger teams ; more time wasted

©:Michael Kohlhase 237

Document Lifecycle Mgmt. & Collaboration Approaches

� Practice: Use etherpad, google docs or Office 365 for collaborative editing.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

20.1. INTRODUCTION/MOTIVATION 151

� Characteristics/Problems:

+ browser-based, no installation necessary

+ real-time auto-synchronization between cloud and user copies

+ auto-archiving past versions in cloud

+ no diverging versions

– no multifile support, no snapshots

� Summary: only supports serial collaboration

start finishtime

D1

δ1
D2

δ2 . . .
δ3

Dn

δn

larger teams ; more time wasted

©:Michael Kohlhase 238

Document Lifecycle Mgmt. & Collaboration Approaches

� Practice: Use version control system (for ASCII-based file formats)

� Characteristics/Problems:

– special install, training necessary

– restricted to character/line-based formats

+ user-initiated synchronization between cloud and user copies

+ auto-archiving past versions on server

++ multifile support, snapshots, merging support, tagging

� Summary: supports parallel, branching collaboration

start finishtime

D1

δ1
D2

δ2

D3
δ3

D4
δ4

. . .
δ6

. . .
δ5

. . .
δ7

Dn−3
δn−3

Dn−2
δn−2

Dn−1
δn−1

δ′n−1

δ′n−3

Dn
δn

δ′n

larger teams ; large-scale parallelization/experimentation

©:Michael Kohlhase 239

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

152 CHAPTER 20. REVISION CONTROL SYSTEMS

20.2 Centralized Version Control

Centralized version control systems ti

Computing and Managing Differences with diff & patch

� Definition 20.2.1 diff is a file comparison utility that computes differ-
ences between two files f1 and f2. Differences are output linewise in a diff
file (also called a patch), which can be applied to f1 to obtain f2 via the
patch utility.

� Example 20.2.2

The quick brown
fox jumps over
the lazy dog

The quack brown

fox jumps over
the loozy dog

1c1,2
< The quick brown

> The quack brown
>
3c4
< the lazy dog

> the loozy dog

� Definition 20.2.3 A diff file consists of a sequence of hunks that in turn
consist of a locator which contrasts the source and target locations (in terms
of line numbers) followed by the added/deleted lines.

©:Michael Kohlhase 240

Merging Differences with merge3

� There are basically two ways of merging the differences of files into one.

� Definition 20.2.4 In two-way merge, an automated procedure tries to
combine two different files by copying over differences by guessing or asking
the user.

� Definition 20.2.5 In three-way merge the files are assumed to be created
by changing a joint original (the parent) by editing. The merge3 tool
examines the differences and patterns appearing in the changes between
both files as well as the parent, building a relationship model to generate a
new revision. Usually, non-conflicting differences (affecting only one of the
files) can directly be copied over.

©:Michael Kohlhase 241

Definition 20.2.6 A revision control system is a software system that tracks the change process
of sets of files via a repository that stores the files’ revisions – the content of the files at the time
of a commit.

Users do not directly work on the repository, but on a working copy that is synchronized with
the repository by revision control actions

• checkout: creates a new working copy from the repository

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

20.2. CENTRALIZED VERSION CONTROL 153

• update: merges the differences between the base revision of the working copy and the revision
of the repository into the working copy.

• commit: transmits the differences between the repository revision and the working copy to
the repository, which registers them, patches the repository revision, and makes this the new
head revision

Version Control with Subversion

� Definition 20.2.7 Subversion is a centralized revision control system that
features

� Central repository (for current revision and reverse diffs)

� Local working copies (asynchronous checkouts, updates, commits)

They are kept synchronized by passing around diff differences and patching
the repository and working copies. Conflicts are resolved by (three-way)
merge.

repository

LC1(∅)checkout O

commit δ1

LC2(O)
update δ1

LC3(O + δ2)

merge δ1

commit cr(δ1, δ2)

©:Michael Kohlhase 242

Collaboration with Subversion

� Idea: We can use the same technique for collaboration between multiple
working copies.

� Diff-Based Collaboration:

R19

WC1(O17) . . .

up

ci

WCn(O19)

up
ci

The Subversion system takes care of the synchronizeation:

� you can only commit, if your revision is HEAD (otherwise update)

� update merges the changes into your working copy

� If there are changes on the same line, you have a conflict.

http://creativecommons.org/licenses/by-sa/2.5/

154 CHAPTER 20. REVISION CONTROL SYSTEMS

©:Michael Kohlhase 243

20.3 Distributed Revision Control

Centralized vs. Distributed Version Control

� Problem with Subversion:

� we can only commit when online!

� all collaboration goes via the repository

� Idea: Distribute the Repositories and move differences between them.

R19 headless

WC1(Oδ17) R1(O17)

checkout

commit

. . .

pull

push

WCn(Oδ′19)R1(O19)

checkout

commit

pull push

pull

©:Michael Kohlhase 244

Distributed Version Control with git

� Definition 20.3.1 git is a distributed version control system t hat features

� local repositories (contains head and reverse diffs)

� local working copies (local commits)

� multiple remote repositories (branches/forks)

� local changes can pushed to a remote repository

� changes from a remote repository can be pulled into the local one.

� Definition 20.3.2 There are various repository management systems that
facilitate providing repositories, e.g.

� GitHub, a repository hosting service at http://GitHub.com(free public repositories)

� GitLab, an open source repository management system (http://gitlab.org)

©:Michael Kohlhase 245

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://GitHub.com
http://creativecommons.org/licenses/by-sa/2.5/

Chapter 21

Privacy, Performance and Identity

Slide 246

Slide 247

155

156 CHAPTER 21. PRIVACY, PERFORMANCE AND IDENTITY

Slide 248

Slide 249

157

Slide 250

Slide 251

Slide 252

158 CHAPTER 21. PRIVACY, PERFORMANCE AND IDENTITY

Slide 253

Slide 254

159

Slide 255

Slide 256

Slide 257

160 CHAPTER 21. PRIVACY, PERFORMANCE AND IDENTITY

Slide 258

Slide 259

Part III

Intelligent Media and the Future

161

163

In this part of the course, we will discuss cutting edge technologies to make digital documets more
intelligent, and try to give students a feeling of what such documents and media might bring to
our communication behavior and way of living.9 EdN:9

9EdNote: MK: expand

164

Chapter 22

Digital Generation

Slide 260

Slide 261

165

166 CHAPTER 22. DIGITAL GENERATION

Slide 262

Slide 263

167

Slide 264

Slide 265

Slide 266

168 CHAPTER 22. DIGITAL GENERATION

Slide 267

Slide 268

169

Slide 269

Slide 270

170 CHAPTER 22. DIGITAL GENERATION

Chapter 23

Knowledge Representation &
Semantic Web

What is knowledge? Why Representation?

� According to Probst/Raub/Romhardt [PRR97]

For the purposes of this course: Knowledge is the information necessary to
support intelligent reasoning

�

representation can be used to determine

set of words whether a word is admissible
list of words the rank of a word
a lexicon translation or grammatical function

structure function

©:Michael Kohlhase 271

According to an influential view of [PRR97], knowledge is appears in layers. Staring with a
character set that defines a set of glyphs, we can add syntax that turns mere strings into data.
Adding context information gives information, and finally, by relating the information to other
information allows to draw conclusions, turning information into knowledge.

Note that we already have aspects of representation and function in the diagram at the top of the
slide. In this, the additional functions added in ¡the successive layers give the representations more
and more function, until we reach the knowledge level, where the function is given by inferencing.
In the second example, we can see that representations determine possible functions.

23.1 The Semantic Web

171

http://creativecommons.org/licenses/by-sa/2.5/

172 CHAPTER 23. KNOWLEDGE REPRESENTATION & SEMANTIC WEB

The Semantic Web

� Definition 23.1.1 The semantic web is a collaborative movement led by
the W3C that promotes the inclusion of semantic content in web pages with
the aim of t converting the current web, dominated by unstructured and
semi-structured documents into a machine-understandable “web of data”.

� Idea: Move web content up the ladder, use inference to make connections.

� Example 23.1.2 We want to find information that is not explicitly rep-
resented (in one place)

Query: Who was US president when Barak Obama was born?

Google: . . . BIRTH DATE: August 04, 1961. . .

Query: Who was US president in 1961?

Google: President: Dwight D. Eisenhower [. . .] John F. Kennedy (start-
ing January 20)

Humans can read (and understand) the text and combine the information
to get the answer.

©:Michael Kohlhase 272

The term “Semantic Web” was coined by Tim Berners Lee in analogy to semantic networks, only
applied to the world wide web. And as for semantic networks, where we have inference processes
that allow us the recover information that is not explicitly represented from the network (here the
world-wide-web).

To see that problems have to be solved, to arrive at the “Semantic Web”, we will now look at a
concrete example about the “semantics” in web pages. Here is one that looks typical enough.

What is the Information a User sees?

WWW2002
The eleventh International World Wide Web Conference
Sheraton Waikiki Hotel
Honolulu, Hawaii, USA
7-11 May 2002

Registered participants coming from
Australia, Canada, Chile Denmark, France, Germany, Ghana,
Hong Kong, India,
Ireland, Italy, Japan, Malta, New Zealand, The Netherlands,
Norway,

http://creativecommons.org/licenses/by-sa/2.5/

23.1. THE SEMANTIC WEB 173

Singapore, Switzerland, the United Kingdom, the United States,
Vietnam, Zaire

On the 7th May Honolulu will provide the backdrop of the
eleventh
International World Wide Web Conference.

Speakers confirmed
Tim Berners-Lee: Tim is the well known inventor of the Web,
Ian Foster: Ian is the pioneer of the Grid, the next generation
internet.

©:Michael Kohlhase 273

But as for semantic networks, what you as a human can see (“understand” really) is deceptive, so
let us obfuscate the document to confuse your “semantic processor”. This gives an impression of
what the computer “sees”.

What the machine sees

WWW∈′′∈
T〈eeleve\t〈I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce
S〈e∇ato\Wa〉‖〉‖〉Hotel
Ho\olulu⇔Hawa〉〉⇔USA
7↖∞∞Ma†∈′′∈

Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om

Au∫t∇al〉a⇔Ca\ada⇔C〈〉leDe\ma∇‖⇔F∇a\ce⇔Ge∇ma\†⇔G〈a\a⇔Ho\}Ko\}⇔
I\d〉a⇔
I∇ela\d⇔Ital†⇔Ja√a\⇔Malta⇔NewZeala\d⇔T〈eNet〈e∇la\d∫⇔No∇↖

wa†⇔
S〉\}a√o∇e⇔Sw〉t‡e∇la\d⇔t〈eU\〉tedK〉\}dom⇔t〈eU\〉tedState∫⇔V〉et\am⇔

Za〉∇e

O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈

I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce↙

S√ea‖e∇∫co\{〉∇med

T〉mBe∇\e∇∫↖Lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb⇔
Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\te∇\et↙

©:Michael Kohlhase 274

Obviously, there is not much the computer understands, and as a consequence, there is not a lot
the computer can support the reader with. So we have to “help” the computer by providing some
meaning. Conventional wisdom is that we add some semantic/functional markup. Here we pick
XML without loss of generality, and characterize some fragments of text e.g. as dates.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

174 CHAPTER 23. KNOWLEDGE REPRESENTATION & SEMANTIC WEB

Solution: XML markup with “meaningful” Tags

<title>WWW∈′′∈
T〈eeleve\t〈I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce</title>
<place>S〈e∇ato\Wa〉‖〉‖〉HotelHo\olulu⇔Hawa〉〉⇔USA</place>
<date>7↖∞∞Ma†∈′′∈</date>
<participants>Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om

Au∫t∇al〉a⇔Ca\ada⇔C〈〉leDe\ma∇‖⇔F∇a\ce⇔Ge∇ma\†⇔G〈a\a⇔Ho\}Ko\}⇔
I\d〉a⇔
I∇ela\d⇔Ital†⇔Ja√a\⇔Malta⇔NewZeala\d⇔T〈eNet〈e∇la\d∫⇔No∇↖

wa†⇔
S〉\}a√o∇e⇔Sw〉t‡e∇la\d⇔t〈eU\〉tedK〉\}dom⇔t〈eU\〉tedState∫⇔V〉et\am⇔

Za〉∇e</participants>
</introduction>O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈

I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce↙</introduction>
<program>S√ea‖e∇∫co\{〉∇med

<speaker>T〉mBe∇\e∇∫↖Lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb</speaker>
<speaker>Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\↖

te∇\et<speaker>
</program>

©:Michael Kohlhase 275

What can we do with this?

� Example 23.1.3 Consider the following fragments:

<title>WWW∈′′∈
T〈eeleve\t〈I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce</title>
<place>S〈e∇ato\Wa〉‖〉‖〉HotelHo\olulu⇔Hawa〉〉⇔USA</place>
<date>7↖∞∞Ma†∈′′∈</date>

Given the markup above, we can

� parse 7↖∞∞Ma†∈′′∈ as the date May 7-11 2002 and add this to the
user’s calendar.

� parse S〈e∇ato\Wa〉‖〉‖〉HotelHo\olulu⇔Hawa〉〉⇔USA as a destination and
find flights.

But: do not be deceived by your ability to understand English

©:Michael Kohlhase 276

We have to obfuscate the markup as well, since it does not carry any meaning to the machine
intrinsically either.

� What the machine sees of the XML

<t〉tle>WWW∈′′∈

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

23.1. THE SEMANTIC WEB 175

T〈eeleve\t〈I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce</t〉tle>
<√lace>S〈e∇ato\Wa〉‖〉‖〉HotelHo\olulu⇔Hawa〉〉⇔USA</√lace>

<date>7↖∞∞Ma†∈′′∈</date>
<√a∇t〉c〉√a\t∫>Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om

Au∫t∇al〉a⇔Ca\ada⇔C〈〉leDe\ma∇‖⇔F∇a\ce⇔Ge∇ma\†⇔G〈a\a⇔Ho\}Ko\}⇔
I\d〉a⇔
I∇ela\d⇔Ital†⇔Ja√a\⇔Malta⇔NewZeala\d⇔T〈eNet〈e∇la\d∫⇔No∇↖

wa†⇔
S〉\}a√o∇e⇔Sw〉t‡e∇la\d⇔t〈eU\〉tedK〉\}dom⇔t〈eU\〉tedState∫⇔V〉et\am⇔

Za〉∇e</√a∇t〉c〉√a\t∫>

</〉\t∇oduct〉o\>O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈

I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce↙</〉\t∇oduct〉o\>
<√∇o}∇am>S√ea‖e∇∫co\{〉∇med

<∫√ea‖e∇>T〉mBe∇\e∇∫↖Lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb</∫√ea‖e∇>

<∫√ea‖e∇>Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\↖

te∇\et<∫√ea‖e∇>

</√∇o}∇am>

©:Michael Kohlhase 277

So we have not really gained much either with the markup, we really have to give meaning to the
markup as well, this is where techniques from knowledge representation come into play

To understand how we can make the web more semantic, let us first take stock of the current status
of (markup on) the web. It is well-known that world-wide-web is a hypertext, where multimedia
documents (text, images, videos, etc. and their fragments) are connected by hyperlinks. As we
have seen, all of these are largely opaque (non-understandable), so we end up with the following
situation (from the viewpoint of a machine).

The Current Web

� Resources: identified by URI’s, un-
typed

� Links: href, src, . . . limited, non-
descriptive

� User: Exciting world - semantics of
the resource, however, gleaned from
content

� Machine: Very little information
available - significance of the links
only evident from the context around
the anchor.

©:Michael Kohlhase 278

Let us now contrast this with the envisioned semantic web.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

176 CHAPTER 23. KNOWLEDGE REPRESENTATION & SEMANTIC WEB

The Semantic Web

� Resources: Globally Identified by
URI’s or Locally scoped (Blank), Ex-
tensible, Relational

� Links: Identified by URI’s, Extensi-
ble, Relational

� User: Even more exciting world,
richer user experience

� Machine: More processable informa-
tion is available (Data Web)

� Computers and people: Work, learn
and exchange knowledge effectively

©:Michael Kohlhase 279

Essentially, to make the web more machine-processable, we need to classify the resources by the
concepts they represent and give the links a meaning in a way, that we can do inference with
that.

The ideas presented here gave rise to a set of technologies jointly called the “semantic web”, which
we will now summarize before we return to our logical investigations of knowledge representation
techiques.

Need to add “Semantics”

� External agreement on meaning of annotations E.g., Dublin Core

� Agree on the meaning of a set of annotation tags

� Problems with this approach: Inflexible, Limited number of things can
be expressed

� Use Ontologies to specify meaning of annotations

� Ontologies provide a vocabulary of terms

� New terms can be formed by combining existing ones

� Meaning (semantics) of such terms is formally specified

� Can also specify relationships between terms in multiple ontologies

� Inference with annotations and ontologies (get out more than you put in!)

� Standardize annotations in RDF [KC04] or RDFa [HASB13] and ontolo-
gies on OWL [OWL09]

� Harvest RDF and RDFa in to a triplestore or OWL reasoner.

� Query that for implied knowledge(e.g. chaining multiple facts from Wikipedia)

SPARQL: Who was US President when Barack Obama was Born?

DBPedia: John F. Kennedy (was president in August 1961)

http://creativecommons.org/licenses/by-sa/2.5/

23.2. SEMANTIC NETWORKS 177

©:Michael Kohlhase 280

23.2 Semantic Networks

To get a feeling for early knowledge representation approaches from which description logics de-
veloped, we take a look at “semantic networks” and contrast them to logical approaches.

Semantic networks are a very simple way of arranging concepts and their relations in a graph.

Semantic Networks [CQ69]

� Definition 23.2.1 A semantic network is a graph structure for represent-
ing knowledge:

� nodes represent concepts (e.g. bird, John, robin)

� links represent relations between these (isa, father of, belongs to)

� Example 23.2.2 A semantic net for birds and persons:

wings

Mary

John

robin

bird Jack

has part

loves

owner of

instisa

Problem: how do we do inference from such a network?

�� Idea: encode taxonomic information about concepts and individuals

� in “isa” links (inclusion of concepts)

� in “inst” links (concept memberships)

� use property inheritance along “isa” and “inst” in the process model

©:Michael Kohlhase 281

Even though the network in Example 23.2.2 is very intuitive (we immediately understand the
concepts depicted), it is unclear how we (and more importantly a machine that does not asso-
ciate meaning with the labels of the nodes and edges) can draw inferences from the “knowledge”
represented.

Another problem is that the semantic net in Example 23.2.2 confuses two kinds of concepts:
individuals (represented by proper names like John and Jack) and concepts (nouns like robin and
bird). Even though the “isa” and “inst” links already acknowledge this distinction, the “has part”
and “loves” relations are at different levels entirely, but not distinguished in the networks.

Terminologies and Assertions

� Example 23.2.3 From the network

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

178 CHAPTER 23. KNOWLEDGE REPRESENTATION & SEMANTIC WEB

ClydeRexRoy

elephant graytigerstriped

higher animal

headlegs

amoeba

moveanimal

instinstinst

color

isaisa

pattern

has parthas part

isaisa

can

eat

eat
eat

infer that elephants have legs and that Clyde is gray.

� Definition 23.2.4 We call the subgraph of a semantic networkN spanned
by the “isa” relations the terminology (or TBox, or the famous Isa-Hierarchy)
and the subgraph spanned by the “inst” relation the assertions (or ABox)
of N .

©:Michael Kohlhase 282

But there are sever shortcomings of semantic networks: the suggestive shape and node names give
(humans) a false sense of meaning, and the inference rules are only given in the process model
(the implementation of the semantic network processing system).

This makes it very difficult to assess the strength of the inference system and make assertions
e.g. about completeness.

Limitations of Semantic Networks

� What is the meaning of a link?

� link names are very suggestive (misleading for humans)

� meaning of link types defined in the process model(no denotational semantics)

Problem: No distinction of optional and defining traits

�� Example 23.2.5 Consider a robin that has lost its wings in an accident

wings

robin

bird

jack

has part

isa

inst

wings

robin

joe

bird
has part

inst

isa
cancel

Cancel-links have been proposed, but their status and process model are
debatable.

©:Michael Kohlhase 283

To alleviate the perceived drawbacks of semantic networks, we can contemplate another notation
that is more linear and thus more easily implemented: function/argument notation.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

23.2. SEMANTIC NETWORKS 179

Another Notation for Semantic Networks

� Idea: use function/argument notation

� Interpret nodes as arguments (reification to individuals)

� Interpret links as functions (logical relations)

� Example 23.2.6

wings

Mary

John

robin

bird Jack

has part

loves

owner of

instisa isa(robin,bird)
haspart(bird,wings)
inst(Jack,robin)
owner of(John, robin)
loves(John,Mary)

� Evaluation:

+ linear notation (equivalent, but better to implement on a computer)

+ easy to give process model by deduction (e.g. in ProLog)

– worse locality properties (networks are associative)

©:Michael Kohlhase 284

Indeed the function/argument notation is the immediate idea how one would naturally represent
semantic networks for implementation.

This notation has been also characterized as subject/predicate/object triples, alluding to simple
(English) sentences. This will play a role in the “semantic web” later.

Building on the function/argument notation from above, we can now give a formal semantics for
semantic networks: we translate into first-order logic and use the semantics of that.

A Denotational Semantics for Semantic Networks

� Extension: take isa/inst concept/individual distinction into account

wings

Mary

John

robin

bird Jack

has part

loves

owner of

instisa robin ⊆ bird
haspart(bird,wings)
Jack ∈ robin
owner of(John, Jack)
loves(John,Mary)

� Observation: this looks like first-order logic, if we take

� A ⊆ B to mean ∀XA(X)⇒ B(X)

� a ∈ S to mean S(a)

� haspart(A,B) to mean ∀XA(X)⇒ (∃Y B(Y) ∧ part of(X,Y))

� Idea: Take first-order deduction as process model(gives inheritance for free)

©:Michael Kohlhase 285

Indeed, the semantics induced by the translation to first-order logic, gives the intuitive meaning
to the semantic networks. Note that this only holds only for the features of semantic networks

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

180 CHAPTER 23. KNOWLEDGE REPRESENTATION & SEMANTIC WEB

that are representable in this way, e.g. the cancel links shown above are not (and that is a feature,
not a bug).

But even more importantly, the translation to first-order logic gives a first process model: we
can use first-order inference to compute the set of inferences that can be drawn from a semantic
network.

23.3 Description Logics and the Semantic Web

Resource Description Framework

� Definition 23.3.1 The Resource Description Framework (RDF) is a frame-
work for describing resources on the web. It is a XML vocabulary developed
by the W3C.

� Note: RDF is designed to be read and understood by computers, not to be
being displayed to people

� Example 23.3.2 RDF can be used for describing

� properties for shopping items, such as price and availability

� time schedules for web events

� information about web pages (content, author, created and modified
date)

� content and rating for web pictures

� content for search engines

� electronic libraries

©:Michael Kohlhase 286

Resources and URIs

� RDF describes resources with properties and property values.

� RDF uses Web identifiers (URIs) to identify resources.

� Definition 23.3.3 A resource is anything that can have a URI, such as
http://www.jacobs-university.de

� Definition 23.3.4 A property is a resource that has a name, such as au-
thor or homepage, and a property value is the value of a property, such as
Michael Kohlhase or http://kwarc.info/kohlhase(a property value can be another resource)

� Definition 23.3.5 The combination of a resource, a property, and a prop-
erty value forms a statement (known as the subject, predicate and object
of a statement).

� Example 23.3.6 Statement: The [author]pred of [this slide]subj is [Michael
Kohlhase]obj

©:Michael Kohlhase 287

http://creativecommons.org/licenses/by-sa/2.5/
http://www.jacobs-university.de
http://kwarc.info/kohlhase
http://creativecommons.org/licenses/by-sa/2.5/

23.3. DESCRIPTION LOGICS AND THE SEMANTIC WEB 181

XML Syntax for RDF

� RDF is a concrete XML vocabulary for writing statements

� Example 23.3.7 The following RDF document could describe the slides
as a resource

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc= "http://purl.org/dc/elements/1.1/">
<rdf:Description about="https://svn.kwarc.info/.../CompLog/kr/en/rdf.tex">
<dc:creator>Michael Kohlhase</dc:creator>
<dc:source>http://www.w3schools.com/rdf</dc:source>

</rdf:Description>
</rdf:RDF>

This RDF document makes two statements:

� The subject of both is given in the about attribute of the rdf:Description
element

� The predicates are given by the element names of its children

� The objects are given in the elements as URIs or literal content.

Intuitively: RDF is a way to write down ABox information in a web-scalable
way.

©:Michael Kohlhase 288

� RDFa as an Inline RDF Markup Format

� Problem: RDF is a standoff markup format(annotate by URIs pointing into other files)

� Example 23.3.8 <div xmlns:dc="http://purl.org/dc/elements/1.1/">
<h2 property="dc:title">RDF as an Inline RDF Markup Format</h2>
<h3 property="dc:creator">Michael Kohlhase</h3>
<em property="dc:date" datatype="xsd:date"

content="20091111">November 11., 2009
</div>

https://svn.kwarc.info/.../CompLog/kr/en/rdfa.tex

RDFasanInlineRDFMarkupFormat

20091111 (xsd:date)

MichaelKohlhase

http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/date

http://purl.org/dc/elements/1.1/creator

©:Michael Kohlhase 289

http://creativecommons.org/licenses/by-sa/2.5/
https://svn.kwarc.info/.../CompLog/kr/en/rdfa.tex
RDF as an Inline RDF Markup Format
20091111
xsd:date
Michael Kohlhase
http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/date
http://purl.org/dc/elements/1.1/creator
http://creativecommons.org/licenses/by-sa/2.5/

182 CHAPTER 23. KNOWLEDGE REPRESENTATION & SEMANTIC WEB

OWL as an Ontology Language for the Semantic Web

� Idea: Use Description Logics to talk about RDF triples.

� An RDF triple is an ABox entry for a role constraint hRs

� Example 23.3.9 h is the resource for Ian Horrocks, s is the resource for
Ulrike Sattler, and R is the the relation “hasColleague” in

<rdf:Description about="some.uri/person/ian_horrocks">
<hasColleague resource="some.uri/person/uli_sattler"/>

</rdf:Description>

Idea: Now collect similar resources in classes, and state rules about them
in a way, so that we can use inference to make knowledge explicit that was
implicit before (saves us lots of work!)

�� Idea: We know how to do this, this is just ALC+!!!

©:Michael Kohlhase 290

The OWL Language

� Three species of OWL

� OWL Full is union of OWL syntax and RDF

� OWL DL restricted to FOL fragment

� OWL Lite is ”easier to implement” subset of OWL DL

� Semantic layering

� OWL DL =̂ OWL Full within DL fragment

� DL semantics officially definitive

� OWL DL based on SHIQ Description Logic(ALC + number restrictions, transitive roles, inverse roles, role inclusions)

� OWL DL benefits from many years of DL research

� Well defined semantics, formal properties well understood (complexity,
decidability)

� Known reasoning algorithms, Implemented systems (highly optimized)

©:Michael Kohlhase 291

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Chapter 24

MathML: Content vs.
Presentation Markup

24.1 MathML: Presentation and Content of Mathematical
Formulae

Representation of Formulae as Expression Trees

� Mathematical Expressions are build up as expression trees

� of layout schemata in Presentation-MathML

� of functional subexpressions in Content-MathML

� Example: 3
x+2

<mfrac>
<mn>3</mn>
<mfenced>

<mi>x</mi>
<mo>+</mo>
<mn>2</mn>

</mfenced>
</mfrac>

<apply>
<divide/>
<cn>3</cn>
<apply>
<plus/>
<ci>x</ci>
<cn>2</cn>

</apply>
</apply>

©:Michael Kohlhase 292

Layout Schemata and the MathML Box model

� Presentation MathML represents the visual appearance of a formula in a
tree of layout primitives

� Example 24.1.1 (Presentation MathML for 3/(x + 2))

183

http://creativecommons.org/licenses/by-sa/2.5/

184 CHAPTER 24. MATHML: CONTENT VS. PRESENTATION MARKUP

3

(x+2)

3 (x+2)

x + 2

<mfrac>...</mfrac>

<mn>3</mn>

<mfenced>...</mfenced>

<mi>x</mi> <mo>+</mo> <mn>2</mn>

©:Michael Kohlhase 293

Functional Markup in MathML: The “Operator Tree”

� Content MathML represents the functional structureof a formula in a tree
of operators, via application and binding.

� Example 24.1.2 (Content MathML for 3/(x + 2))

@

3 @/

+ x 2

<apply>...</apply>

<div/> <cn>3</cn>

<apply>...</apply>

<plus/> <ci>x</ci> <mn>2</mn>

Extra Operators: use <csymbol cd="〈〈CD〉〉">〈〈Name〉〉</csymbol>, where

� � 〈〈CD〉〉 is a content dictionary – a document that defines 〈〈Name〉〉
� 〈〈Name〉〉 is the name of a symbol definition in 〈〈CD〉〉.

©:Michael Kohlhase 294

Content Mathml: Expression Trees in Prefix Notation

� Prefix Notation saves parentheses (so does postfix, BTW)

(x− y)/2 x− (y/2)

<apply>
<divide/>
<apply>
<minus/>
<ci>x</ci>
<ci>y</ci>

</apply>
<cn>2</cn>

</apply>

<apply>
<minus/>
<ci>x</ci>
<apply>
<divide/>
<ci>y</ci>
<cn>2</cn>

</apply>
</apply>

Function Application: <apply>function arg1 ... argn </apply>

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

24.1. MATHML: PRESENTATION AND CONTENT OF MATHEMATICAL FORMULAE185

�� Operators and Functions: ∼ 100 empty elements <sin/>, <plus/>, <eq/>,
<compose/>,. . .

� Token elements: ci, cn (identifiers and numbers)

� Extra Operators: <csymbol cd="...">...</csymbol>

©:Michael Kohlhase 295

Parallel Markup e.g. in MathML

� Idea: Combine the presentation and content markup and cross-reference

3

(x+2)

3 (x+2)

x + 2

@

3 @/

+ x 2

� use e.g. for semantic copy and paste.(click on presentation, follow link and copy content)

� Concrete Realization in MathML: semantics element with presentation
as first child and content in annotation-xml child

<semantics>...</semantics>

<annotation-xml>...</annotation-xml>

<mfrac id="M">...</mfrac>

<mn id="3">3</mn>

<mfenced id="f">...</mfenced>

<mi id="x">x</mi>

<mo id="p">+</mo>

<mn id="2">2</mn>

<apply href="M">...</apply>

<divide/> <ci href="3">3<ci/>

<apply href="f">...</apply>

<plus href="p"/>

<ci href="x">x</ci>

<cn href="2">2</cn>

©:Michael Kohlhase 296

Mixing Presentation and Content MathML

<semantics>
<mrow>
<mrow><mo>(</mo><mi>a</mi> <mo>+</mo> <mi>b</mi><mo>)</mo></mrow>
<mo>⁢</mo>

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

186 CHAPTER 24. MATHML: CONTENT VS. PRESENTATION MARKUP

<mrow><mo>(</mo><mi>c</mi> <mo>+</mo> <mi>d</mi><mo>)</mo></mrow>
</mrow>
<annotation-xml encoding="MathML-Content">
<apply><times/>
<apply><plus/><ci>a</ci> <ci>b</ci></apply>
<apply><plus/><ci>c</ci> <ci>d</ci></apply>
</apply>
</annotation-xml>
<annotation-xml encoding="openmath">
<OMA><OMS cd="arithmetics" name="times"/>
<OMA><OMS cd="arithmetics" name="plus"/><OMV name="a"/><OMV name="b"/></OMA>
<OMA><OMS cd="arithmetics" name="plus"/><OMV name="c"/><OMV name="d"/></OMA>
</OMA>
</annotation-xml>
</semantics>

©:Michael Kohlhase 297

24.2 Presentation MathML

Representation of Formulae as Expression Trees

� Mathematical Expressions are build up as expression trees

� of layout schemata in Presentation-MathML

� of functional subexpressions in Content-MathML

� Example: 3
x+2

<mfrac>
<mn>3</mn>
<mfenced>

<mi>x</mi>
<mo>+</mo>
<mn>2</mn>

</mfenced>
</mfrac>

<apply>
<divide/>
<cn>3</cn>
<apply>
<plus/>
<ci>x</ci>
<cn>2</cn>

</apply>
</apply>

©:Michael Kohlhase 298

Layout Schemata and the MathML Box model

� Presentation MathML represents the visual appearance of a formula in a
tree of layout primitives

� Example 24.2.1 (Presentation MathML for 3/(x + 2))

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

24.2. PRESENTATION MATHML 187

3

(x+2)

3 (x+2)

x + 2

<mfrac>...</mfrac>

<mn>3</mn>

<mfenced>...</mfenced>

<mi>x</mi> <mo>+</mo> <mn>2</mn>

©:Michael Kohlhase 299

P-MathML Token Elements

� Tokens Elements directly contain character data(the only way to include it)

Attributes: fontweight, fontfamily and fontstyle, color. . .

� Identifiers: <mi>... </mi> (∼ variables, italicized)

� Numbers: <mn>... </mn> (numbers)

� Operators: <mo>... </mo> (constants, functions, upright)

� Operator display is often ideosyncratic (Operator Dictionaries for defaults)

� Examples: spacing, *-scripts in sums and limits, stretchy integrals,. . .

� Attributes: lspace, rspace, stretchy, and movablelimits.

� Operators include delimiter characters like

� parentheses (which stretch),

� punctuation (which has uneven spacing around it) and

� accents (which also stretch).

©:Michael Kohlhase 300

General Layout Schemata

� horizontal row: <mrow>child1 ... </mrow> (alignment and grouping)

� fraction: <mfrac>numerator denominator </mfrac>

Attribute: linethickness (set to 0 for binomial coefficients)

� Radicals: <msqrt>child1 ... </msqrt> and
<mroot>base index</mroot>

� grouping with parenthesis: <mfenced>child ... </mfenced>

Attributes: open="(" and close="]" to specify parentheses

� grouping and style: <mstyle>child ... </mstyle> (pre-set attributes)

©:Michael Kohlhase 301

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

188 CHAPTER 24. MATHML: CONTENT VS. PRESENTATION MARKUP

Example: x2 + 4x+ 4 = 0

just presentation some structure

<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>

</msup>
<mo>+</mo>
<mn>4</mn>
<mi>x</mi>
<mo>+</mo>
<mn>4</mn>
<mo>=</mo>
<mn>0</mn>

</mrow>

<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>

</msup>
<mo>+</mo>
<mrow>
<mn>4</mn>
<mi>x</mi>

</mrow>
<mo>+</mo>
<mn>4</mn>

</mrow>
<mo>=</mo>
<mn>0</mn>

</mrow>

©:Michael Kohlhase 302

Example: Grouping Arguments by mfenced

f (x + y) f (x + y)

<mrow>
<mi>f</mi>
<mfenced>

<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
</mrow>

</mfenced>
</mrow>

<mrow>
<mi>f</mi>
<mfenced>

<mstyle color=’#ff0000’>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
</mrow>

</mstyle>
</mfenced>

</mrow>

©:Michael Kohlhase 303

Example: <mfrac> and mroot

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

24.2. PRESENTATION MATHML 189

<mroot>
<mrow>
<mn>1</mn>
<mo>-</mo>
<mfrac>
<mi>x</mi>
<mn>2</mn>

</mfrac>
</mrow>
<mn>3</mn>

</mroot>

3

√
1− x

2

©:Michael Kohlhase 304

Example: The quadratic formula x =
−b±

√
b2 − 4ac

2a

<mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow><mo>-</mo><mi>b</mi></mrow>
<mo>±</mo>
<msqrt>
<mrow>
<msup><mi>b</mi><mn>2</mn></msup>
<mo>-</mo>
<mrow><mn>4</mn><mi>a</mi><mi>c</mi></mrow>

</mrow>
</msqrt>

</mrow>
<mrow><mn>2</mn><mo>⁢</mo><mi>a</mi></mrow>

</mfrac>
</mrow>

©:Michael Kohlhase 305

Script Schemata

� Indices: G1, H5, Rij . . .

� Super: <msup>base script </msup>

� Subs: <msub>base script </msub>

� Both: <msubsup>base superscript subscript</msub>(vertical alignment!)

� Bars and Arrows: X, Y︸︷︷︸, Z︸︷︷︸,. . .

� Under: <munder>base script</munder>

� Over: <mover>base script</mover>

� Both: <munderover>base underscript overscript </munderover>

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

190 CHAPTER 24. MATHML: CONTENT VS. PRESENTATION MARKUP

� Tensor-like: <mmultiscripts>base sub1 sup1 ... [<mprescripts/>psub1 psup1 ...] </mmultiscripts>

©:Michael Kohlhase 306

msub + msup vs. msubsup

msub + msup msubsup

<msup>
<msub>
<mi>x</mi>
<mn>1</mn>

</msub>
<mi>α</mi>

</msup>

<msubsup>
<mi>x</mi>
<mn>1</mn>
<mi>α</mi>

</msubsup>

x1
α xα1

©:Michael Kohlhase 307

Example: Movable Limits on Sums

<mrow>
<mstyle displaystyle=’true’>
<munderover>
<mo>∑</mo>
<mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow>
<mi>&infty;</mi>

</munderover>
<msup><mi>x</mi><mi>i</mi></msup>

</mstyle>
<mo>+</mo>
<mstyle displaystyle=’false’>
<munderover>
<mo>∑</mo>
<mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow>
<mi>&infty;</mi>

</munderover>
<msup><mi>x</mi><mi>i</mi></msup>

</mstyle>
</mrow>

∞∑
i=1

xi+
∑∞

i=1 x
i

©:Michael Kohlhase 308

24.3 Content MathML

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

24.3. CONTENT MATHML 191

Content Mathml: Expression Trees in Prefix Notation

� Prefix Notation saves parentheses (so does postfix, BTW)

(x− y)/2 x− (y/2)

<apply>
<divide/>
<apply>
<minus/>
<ci>x</ci>
<ci>y</ci>

</apply>
<cn>2</cn>

</apply>

<apply>
<minus/>
<ci>x</ci>
<apply>
<divide/>
<ci>y</ci>
<cn>2</cn>

</apply>
</apply>

Function Application: <apply>function arg1 ... argn </apply>

�� Operators and Functions: ∼ 100 empty elements <sin/>, <plus/>, <eq/>,
<compose/>,. . .

� Token elements: ci, cn (identifiers and numbers)

� Extra Operators: <csymbol cd="...">...</csymbol>

©:Michael Kohlhase 309

Containers (aka Constructors)

� sets: <set><elt1><elt2>... </set> or
<set><bvar>...</bvar><condition>...</condition></set>

� intervals: <interval><pt1><pt2></interval>

Attribute: closure (one of open, closed, open-closed, closed-open)

� vectors: <vector><elt1><elt2>... </vector>

� matrix rows: <matrixrow><elt1><elt2>... </matrixrow>

� matrices: <matrix><row1><row2>... </matrix>

©:Michael Kohlhase 310

Examples of Content Math

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

192 CHAPTER 24. MATHML: CONTENT VS. PRESENTATION MARKUP

Expression Markup

<apply>
<plus/>
<apply><sin/><ci>x</ci></apply>
<cn>9</cn>

</apply>

sin(x) + 9

<apply><eq/><ci>x</ci><cn>1</cn></apply> x = 1

<apply><sum/>
<bvar><ci>n</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><ci>&infty;</ci></uplimit>
<apply><power/><ci>x</ci><ci>n</ci></apply>

</apply>

∑∞
0 xn

<apply><diff/>
<bvar><ci>x</ci><degree><cn>3</cn></degree></bvar>
<apply><ci>f</ci><ci>x</ci></apply>
</apply>

d3

dx3
f(x)

<set>
<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<condition>
<apply><and/>
<apply><lt/><ci>0</ci><ci>x</ci><ci>1</ci></apply>
<apply><leq/><ci>3</ci><ci>y</ci><ci>10</ci></apply>
</apply>
</condition>
</set>

{
x, y

∣∣∣∣ 0 < x < 1,
3 ≤ y ≤ 10

}

24.3. CONTENT MATHML 193

Expression Markup

<apply><eq/>
<set>
<bvar><ci>x</ci></bvar>
<condition>
<apply><geq/><ci>x</ci><cn>0</cn></apply>

</condition>
</set>
<interval closure=’closed-open’>
<cn>0</cn>
<cn>&infty;</cn>

</interval>
</apply>

{x
∣∣x ≥ 0} = [0,∞)

<apply> <eq/>
<apply><times/>
<vector><cn>1</cn><cn>2</cn></vector>
<matrix>
<matrixrow><cn>0</cn><cn>1</cn></matrixrow>
<matrixrow><cn>1</cn><cn>0</cn></matrixrow>

</matrix>
</apply>
<apply>
<transpose/>
<vector><cn>2</cn><cn>1</cn></vector>

</apply>
</apply>

(1, 2)×
[
0 1
1 0

]
= (2, 1)t

©:Michael Kohlhase 311

http://creativecommons.org/licenses/by-sa/2.5/

194 CHAPTER 24. MATHML: CONTENT VS. PRESENTATION MARKUP

Chapter 25

Converting the arXiv

The arXMLiv Project: arXiv to semantic XML

� Idea: Develop a large corpus of knowledge in OMDoc/PhysML

� to get around the chicken-and-egg problem of MKM

� corpus-linguistic methods for semantics recovery (linguists interested)

� Definition 25.0.1 (The Cornell Preprint arXiv) (http://www.arxiv.org)

Open access to ca. 850K e-prints in Physics, Mathematics, Computer Sci-
ence and Quantitative Biology.

� Definition 25.0.2 (The arXMLiv Project) (http://arxmliv.kwarc.info)

� use Bruce Miller’s LATEXML to transform to XHTML+MathML

� extend to LATEXML daemon (RESTful web service)(http://latexml.mathweb.org)

� we have an automated, distributed build system (ca. Q2CPU-years)

� create ca. 12K LATEXML binding files (8 Jacobs students help)

� use MathWebSearch to index XML version (realistic search corpus)

� More semantic information will enable more added-value services, e.g.

� filter hits by model assumptions(expanding, stationary, or contracting universe)

� use linguistic techniques to add the necessary semantics

©:Michael Kohlhase 312

Why reimplement the TEX parser?

� Problem: The TEX parser can change the tokenizer while at runtime(\catcode)

� Example 25.0.3 (Obfuscated TEX) David Carlisle posted the follow-
ing, when someone claimed that word counting is simple in TEX/LATEX

\let~\ catcode ~‘76~‘A13~‘F1~‘j00~‘P2jdefA 71F~ ‘7113 jdefPALLF
PA’’FwPA;; FPAZZFLaLPA //71F71 iPAHHFLPAzzFenPASSFthP;A$$FevP

195

http://www.arxiv.org
http://arxmliv.kwarc.info
http://latexml.mathweb.org
http://creativecommons.org/licenses/by-sa/2.5/

196 CHAPTER 25. CONVERTING THE ARXIV

A@@FfPARR 717273F737271P;ADDFRgniPAWW 71 FPATTFvePA ** FstRsamP
AGGFRruoPAqq 71.72.F717271 PAYY 7172F727171 PA??Fi*LmPA &&71 jfi
Fjfi71 PAVVFjbigskipRPWGAUU 71727374 75,76 Fjpar 71727375 Djifx
:76 jelse&U76 jfiPLAKK 7172F71l7271 PAXX71 FVLnOSeL 71 SLRyadR@oL
RrhC?yLRurtKFeLPFovPgaTLtReRomL;PABB71 72,73: Fjif .73. jelse
B73: jfiXF 71PU71 72 ,73:PWs;AMM71F71 diPAJJFRdriPAQQFRsreLPAI
I71Fo71dPA!!FRgiePBt ’el@ lTLqdrYmu.Q.,Ke;vz vzLqpip.Q.,tz;
;Lql.IrsZ.eap ,qn.i. i.eLlMaesLdRcna ,;!;h htLqm.MRasZ.ilk ,%
s$;z zLqs ’.ansZ.Ymi ,/sx ;LYegseZRyal ,@i;@ TLRlogdLrDsW ,@;G
LcYlaDLbJsW ,SWXJW ree @rzchLhzsW ,; WERcesInW qt.’oL.Rtrul;e
doTsW ,Wk;Rri@stW aHAHHFndZPpqar.tridgeLinZpe.LtYer.W,:jbye

When formatted by TeX, this leads to the full lyrics of “The twelve days of
christmas”. When formattet by LATEXML, it gives

<song>
<verse>
<line>On the first day of Christmas my true love gave to me</line>
<line>a partridge in a pear tree.</line>

</verse>
<verse>
<line>On the second day of Christmas my true love gave to me</line>
<line>two turtle doves</line>
<line>and a partridge in a pear tree.</line>

</verse>
<verse>
<line>On the third day of Christmas my true love gave to me</line>
<line>three french hens</line>
<line>two turtle doves</line>
<line>and a partridge in a pear tree.</line>

</verse>
<verse>
<line>On the fourth day of Christmas my true love gave to me</line>
<line>four calling birds</line>
<line>three french hens</line>
<line>two turtle doves</line>
<line>and a partridge in a pear tree.</line>

</verse>
...

But the real reason is: that we can take advantage of the semantics in the
LATEX.

�� LATEXML does not need to expand macros, we can tell it about XML
equivalents.

� Example 25.0.4 (Recovering the Semantics of Proofs)
Add the following magic incantation to amsthm.sty.ltxml(LATEXML binding)

DefEnvironment(’{proof}’,"<xhtml:div class=’proof’>#body</xhtml:div>");

The arXMLiv approach: Try to cover most packages and classes in the
arXiv (Jacobs undergrads’ intro to research)

©:Michael Kohlhase 313

� Future Plans for arXMLiv

http://creativecommons.org/licenses/by-sa/2.5/

197

� State: LATEX-to-XHTML+MathML Format Conversion works(65% success)

� Over the summer: Bump up success rate to 75%, daily downloads, web
site, instrumentation,. . .

� Soon: Integrate user-level quality control(integrate JS feedback into html)

� starting Fall: Extend post-processing by linguistic methods for semantic
analysis

� build semantics blackboard/database for linguistic information(rdf triples)

� extend build system for arbitrary XML2BB processes

� invite the linguists over (they leave semantics results in BB)

� harvest the semantics BB to get OMDoc representations

©:Michael Kohlhase 314

Current and Possible Applications

� the arxmliv build system http://arxmliv.kwarc.info

� the transformation web service http://tex2xml.kwarc.info

� LATEXML daemon to avoid perl and LATEX startup times (Deyan Ginev)

� keep LATEXML alive as a daemon that can process multiple files/frag-
ments (patch memory leaks)

� a LATEXML client just passes files/fragments along (10/s to 100/s)

� embedding/editing LATEX in web pages http://tex2xml.kwarc.info/

test

� a MathML version of the arXiv allows vision-impared readers to understand
the texts

� generalization search (need to know sentence structure for detecting universal variables)

� semantic search by academic discipline or theory assumption(need discourse structure)

� development of scientific vocabularies(over the past 18 years; drink from the source)

©:Michael Kohlhase 315

http://creativecommons.org/licenses/by-sa/2.5/
http://arxmliv.kwarc.info
http://tex2xml.kwarc.info
http://tex2xml.kwarc.info/test
http://tex2xml.kwarc.info/test
http://creativecommons.org/licenses/by-sa/2.5/

198 CHAPTER 25. CONVERTING THE ARXIV

Chapter 26

Virtual Immortality

Slide 316

Slide 317

199

200 CHAPTER 26. VIRTUAL IMMORTALITY

Slide 318

Slide 319

201

Slide 320

Slide 321

Slide 322

202 CHAPTER 26. VIRTUAL IMMORTALITY

Slide 323

Slide 324

203

Slide 325

Slide 326

Slide 327

204 CHAPTER 26. VIRTUAL IMMORTALITY

Chapter 27

Active Documents

27.1 Planetary: A Social Semantic eScience System

The Planetary System

� The Planetary system is a Web 3.0 system for semantically annotated
document collections in Science, Technology, Engineering and Mathematics
(STEM).

� Web 3.0 stands for extension of the Social Web with Semantic Web/Linked
Open Data technologies.

� documents published in the Planetary system become flexible, adaptive
interfaces to a content commons of domain objects, context, and their
relations.

� Planetary is based on the Active Documents Paradigm (see next)

� Example 27.1.1 (Example installments)

� arxivdemo.mathweb.org (presentation/structural Level: arXiv)

� panta.kwarc.info (semantic level: PantaRhei course system)

� logicatlas.omdoc.org (fully formal level: Logic Representations)

� planetbox.kwarc.info (Technology Sandbox)

� The Planetary system is finalist in the Elsevier Executable Papers Chal-
lenge.

©:Michael Kohlhase 328

The Active Documents Paradigm

� Definition 27.1.2 The active documents paradigm (ADP) consists of

� semantically annotated documents together with

� background ontologies (which we call the content commons),

205

arxivdemo.mathweb.org
panta.kwarc.info
logicatlas.omdoc.org
planetbox.kwarc.info
http://creativecommons.org/licenses/by-sa/2.5/

206 CHAPTER 27. ACTIVE DOCUMENTS

� semantic services that use this information

� a document player application that embeds services to make documents
executable.

Document Commons Content Commons

Content

Objects
Semantic

Docu-
ments

Semantic
Docu-
ments

Semantic
Docu-
ments

Semantic
Docu-
ments

Active
Document

Player

view

interact

� Example 27.1.3 Services can be program (fragment) execution, compu-
tation, visualization, navigation, information aggregation and information
retrieval

©:Michael Kohlhase 329

27.2 Realizing Planetary

Realizing Planetary: The KWARC stack

We have already developed the necessary tools/systems over the last decade

Planetary is the ideal test bed to integrate them. ©:Michael Kohlhase 330

Assembling Planetary: System Architecture

� Planetary functionality can be achieved by integrating existing compo-
nents.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

27.2. REALIZING PLANETARY 207

Firefox Drupal MMTHTML5

LATEXML

Virtuoso

REST
HTML5

GitLab

store

SPARQ
L

ST
EX

O
M

D
oc

RD
F

JOBAD

Content
Management

System

� Drupal for discussions, user management, caching,

� TNTBase for versioned XML storage, OMDoc presentation

� JOBAD integrates semantic services into documents

� Virtuoso is a triple store for semantic relations

� LATEXML transforms LATEX/STEX to XHTML+MathML+RDFa

©:Michael Kohlhase 331

27.2.1 Organization of Content/Narrative Structure

Layers of Documents/Content

� Content and narrative structures come at different conceptual layers

Content CommonsActive DocumentsLevel

1

0

2

3

4 PantaRhei Instance

Course

Notes/Problems/Exams

Learning Object

Slide

PlanetMath

Encyclopedia

Article

Library

Collection

Monograph

Module

Object

� Different layers support different functionality

©:Michael Kohlhase 332

The lowest level consists of atomic “modules”1, i.e. content objects that correspond to small
(active) documents dedicated to a single topic. For a course management system these might be
learning objects (either as single modules or module trees), for an encyclopedia these would be

1The level of objects below modules consists of individual statements (e.g. definitions, model assumptions,
theorems, and proofs), semantic phrase-level markup, and formulae. Even though it carries much of the semantic
relations, it does not play a great role for the document-level phenomena we want to discuss here in this paper.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

208 CHAPTER 27. ACTIVE DOCUMENTS

the individual articles introducing a topic. Note that technically, we allow modules to contain
(denoted by the arrows) other modules, so that larger discourse structures could be formed. For
example, sections can be realized as modules referencing other modules of subsections, etc.

The next level up is the level of “monographs”, written works on a single subject that have a
complete, self-contained narrative structure, usually by a single author or group of authors who
feel responsible for the whole monograph. As a content object, a monograph is usually built up
from modules, e.g. as a “module tree” that corresponds to sectioning structure of traditional
books, but often also includes front and backmatter such as a preface, acknowledgements (both
special kinds of modules), table of contents, lists of tables and figures, an index and references
(generated from content annotations). Course notes in the PantaRhei system are typical examples,
while other documents at the monograph level are articles in a journal, or books in a certain topical
section of a library.

Multiple monographs can be combined into collections, adding special modules for editorial com-
ments, etc. Concrete collections in the document realm are encyclopedias, academic journals,
conference proceedings, or courses in a course management system.

Finally, the library level collects and grants access to collections, concrete, modern-day examples
are digital libraries, installed course management systems, etc. In practice, a library provides a
base URI that establishes the web existence of the particular installation. In the Semantic Web
world, the library is the authority that makes its resources addressable by URLs.

Monographs as Module Graphs foster Reuse

� Idea: Modules can be reused in more than one monograph

� Note: Similar to, but more general (nesting) than DITA concepts and
DITA maps. (but no conditional processing (yet))

� Example 27.2.1 For instance a module on HTML/XML in the courses
“General Computer Science” and “Text and Digital Media”.

strings
prefix
codes

codes

XMLUniCode

XHTML

DocBook DITA

Manuals

GenCS
2011

GenCS
2010

GenCS
2012

. . .

TDM
2011

TDM
2012

. . .

Courses given in different years share most of their content (but not all)

� Observation: These graphs can get quite large: Our corpus has 3300 nodes
with 130 roots.

©:Michael Kohlhase 333

JOBAD: Embedding Semantic Services into Web Docs

� JavaScript API for (J)OMDoc Based Active Documents

� runs inside client browser (FireFox currently)

http://creativecommons.org/licenses/by-sa/2.5/

27.2. REALIZING PLANETARY 209

� provides client-only or server-based features (extensible framework)

based on semantic annotations in XHTML+MathML+RDFa documents

� Project home page: https://jomdoc.omdoc.org/wiki/JOBAD

©:Michael Kohlhase 334

TNTBase: Versioned Storage for XML

� The TNTBase system is a versioned storage system for XML documents.
It combines the functionality and interfaces of Subversion with those of an
XML database.

XML-enabled	
 Repository

VCS Storage Module

VCS Client Interface

VCS Storage XML DB

XML-aware Interface

xAccessor

XML DB API

XML-aware	
 App

Versioned XML Database

VcsAccessor

©:Michael Kohlhase 335

OMDoc in a Nutshell (three levels of modeling) [Koh06]

https://jomdoc.omdoc.org/wiki/JOBAD
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

210 CHAPTER 27. ACTIVE DOCUMENTS

Formula level: OpenMath/C-MathML

� Objects as logical formulae

� symbol meaning by reference to the-
ory level

<apply>
<csymbol cd="ring">plus</c.>
<csymbol cd="ring">zero</c.>
<ci>N</ci>
</apply>

Statement level:

� Definition, Theorem, Proof, Example

� semantics via explicit forms and refs.

� parallel formal & natural language

<defn for="plus" type="rec">
<CMP>rec. eq. for plus</CMP>
<FMP>X + 0 = X</FMP>
<FMP>X + s(Y) = s(X + Y)</FMP>
</defn>

Module level: Theory Graph [RK13]

� inheritance via symbol-mapping

� views by proof-obligations

� logics as meta-theories (logic atlas)

� meta-logics as oracles for type/eq

LF

fol zfc

monoidring integers

meta meta

metameta meta

v3

v1

©:Michael Kohlhase 336

LATEXML: Converting TEX/LATEX Documents to XML

� Definition 27.2.2 LATEXML converts LATEX documents to XHTML+MathML

� re-implement the TEX parser in perl.(do not expand semantic macros)

� needs LATEXML bindings for all LATEX packages and classes(specify the XML for the emitter)

Case Study: Converting the arXiv into XHTML+MathML(70% coverage of 550 k documents)

©:Michael Kohlhase 337

� STEX, a Semantic Variant of TEX/LATEX

� Problem: Need content markup formats for semantic services, but Mathe-
maticians write LATEX

� Idea: Enable the author to make structure explicit and disambiguate mean-
ings

� use the TEX macro mechanism for this (well established)

� the author knows the semantics best (at least she understands)

� the burden is is alleviated by manageability savings(MKM on TEX/LATEX)

� Definition 27.2.3 (STEX Approach) Semantic pre-loading of TEX/LATEX
documents.

� Introduce semantic macros: e.g. \union{a,b,c} ; a ∪ b ∪ c

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

27.3. LEVELS OF SERVICE IN PLANETARY 211

� Mark up discourse structure: (largely invisible)

e.g. \begin{sproof}[id=Wiles,for=Fermat]. . . \end{sproof}

� Generate PDF and OMDoc from that (via LATEXML [Mil])

http://trac.kwarc.info/sTeX/

©:Michael Kohlhase 338

27.3 Levels of Service in Planetary

The importance of the presentation structure level is that Planetary can turn legacy documents
into active documents by transforming them into XHTML+MathML+SVG-encoded documents
with semantic annotations in RDFa. We have transformed over half a million articles from the
Cornell ePrint arXiv to XHTML+MathML with LATEXML, preserving properties like document
and formula structures and embedded them into an instance of the Planetary system.

Planetary at the Presentation/Structural Level

� Planetary can make use objects and relations at various levels,

� Example 27.3.1 (arXivdemo: Document Structure and Presentational Math)

©:Michael Kohlhase 339

The document structure can then be exploited for a folding bar service (see on the left in Figure ??)
and for localizing discussions about document content to document structures and subformulae –
e.g. for questions/answers, or reviewers’ comments. In the situation in Figure ?? we have clicked on
formula (1), which pops up the icon menu with three options: reporting errors in the content (bug
icon), asking/answering a question (question mark icon), and accessing the discussion threads
of this element (balloons icon). Here, a click on the question mark icon allowed us to pose a
question and hope for an anser by other users in the forum. Figure ?? also shows the Planetary
infobar with information markers on the right, which indicate the availability and state of the
discussion threads pertaining to information objects in the line they are horizontally aligned with.
Clicking them will highlight all items that have discussions. Localized discussions have proven
a very valuable tool for community-based validation of papers, especially if they are coupled

http://trac.kwarc.info/sTeX/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

212 CHAPTER 27. ACTIVE DOCUMENTS

with a discussion subscription/trackback system for readers and personal notification system for
authors.

User Services at the Semantic Level in Planetary

Definition Lookup

Semantic Folding

⇓

Unit Conversion

Prerequisites Navigation

©:Michael Kohlhase 340

PantaRhei: Semantic Course Knowledge Exploration

� PantaRhei is a semantic course knowledge exploration system based on the
Planetary system.

©:Michael Kohlhase 341

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

27.3. LEVELS OF SERVICE IN PLANETARY 213

User Services at the Formal Level in Planetary

� Formal Level: e.g. specification and verification in the LATIN Logic Atlas

� flexible elision of brackets

� argument reconstruction via external TWELF system

� verification by the HETS system

� Example 27.3.2 Adapting formal representations user preferences

©:Michael Kohlhase 342

Accessing Encyclopedias via Ontologies

� Idea: add classification metadata to articles, harvest as RDF into triple
store,
compute access methods via SPARQL queries and SKOS ontology.

� Example 27.3.3 (MSC View in Planet Math) use the Math Sub-
ject Classification

http://logicatlas.omdoc.org/article/4/derived
http://creativecommons.org/licenses/by-sa/2.5/

214 CHAPTER 27. ACTIVE DOCUMENTS

©:Michael Kohlhase 343

http://creativecommons.org/licenses/by-sa/2.5/

Chapter 28

Zombie Apocalypse

Slide 344

Slide 345

215

216 CHAPTER 28. ZOMBIE APOCALYPSE

Slide 346

Slide 347

217

Slide 348

Slide 349

Slide 350

218 CHAPTER 28. ZOMBIE APOCALYPSE

Slide 351

Slide 352

219

Slide 353

220 CHAPTER 28. ZOMBIE APOCALYPSE

Bibliography

[BCHL09] Bert Bos, Tantek Celik, Ian Hickson, and Høakon Wium Lie. Cascading style sheets
level 2 revision 1 (CSS 2.1) specification. W3C Candidate Recommendation, World
Wide Web Consortium (W3C), 2009.

[BLFM05] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform resource identifier
(URI): Generic syntax. RFC 3986, Internet Engineering Task Force (IETF), 2005.

[CQ69] Allan M. Collins and M. Ross Quillian. Retrieval time from semantic memory. Journal
of verbal learning and verbal behavior, 8(2):240–247, 1969.

[ECM09] ECMAScript language specification, December 2009. 5th Edition.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext transfer protocol – HTTP/1.1. RFC 2616, Internet Engineering Task
Force (IETF), 1999.

[HASB13] Ivan Herman, Ben Adida, Manu Sporny, and Mark Birbeck. RDFa 1.1 primer – second
edition. W3C Working Goup Note, World Wide Web Consortium (W3C), 2013.

[HL11] Martin Hilbert and Priscila López. The world’s technological capacity to store, commu-
nicate, and compute information. Science, 331, feb 2011.

[Kay08] Michael Kay. Saxonica: XSLT and XQuery processing. http://www.saxonica.com,
2008.

[KC04] Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF): Con-
cepts and abstract syntax. W3C recommendation, World Wide Web Consortium (W3C),
2004.

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathematical documents
[Version 1.2]. Number 4180 in LNAI. Springer Verlag, August 2006.

[Koh08] Michael Kohlhase. Using LATEX as a semantic markup format. Mathematics in Computer
Science, 2(2):279–304, 2008.

[Koh13] Michael Kohlhase. sTeX: Semantic markup in TEX/LATEX. Technical report, Compre-
hensive TEX Archive Network (CTAN), 2013.

[Mil] Bruce Miller. LaTeXML: A LATEX to XML converter. Web Manual at http://dlmf.

nist.gov/LaTeXML/. seen September2011.

[OWL09] OWL Working Group. OWL 2 web ontology language: Document overview. W3C
recommendation, World Wide Web Consortium (W3C), October 2009.

[PRR97] G. Probst, St. Raub, and Kai Romhardt. Wissen managen. Gabler Verlag, 4 (2003)
edition, 1997.

221

http://www.w3.org/TR/CSS2
http://www.w3.org/TR/CSS2
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.sciencemag.org/content/331/6018/692.full.pdf
http://www.sciencemag.org/content/331/6018/692.full.pdf
http://www.saxonica.com
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://omdoc.org/pubs/omdoc1.2.pdf
http://omdoc.org/pubs/omdoc1.2.pdf
https://svn.kwarc.info/repos/stex/doc/mcs08/stex.pdf
http://www.ctan.org/get/macros/latex/contrib/stex/sty/stex.pdf
http://dlmf.nist.gov/LaTeXML/
http://dlmf.nist.gov/LaTeXML/
http://dlmf.nist.gov/LaTeXML/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

222 BIBLIOGRAPHY

[RHJ98] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.0 Specification. W3C Rec-
ommendation REC-html40, World Wide Web Consortium (W3C), April 1998.

[RK13] Florian Rabe and Michael Kohlhase. A scalable module system. Information & Com-
putation, 0(230):1–54, 2013.

[Vei] Daniel Veillard. The xslt c library for gnome; the xsltproc tool. System Home page at
http://xmlsoft.org/XSLT/xsltproc2.html.

[Vol11] Victor Volkman. Classic parsing with flex and bison. http://www.

codeguru.com/csharp/.net/net_general/patterns/article.php/c12805__2/

Classic-Parsing-with-Flex-and-Bison.htm, 2011. visited Feb 2011.

[Wik11] Wikipedia. Epub — wikipedia, the free encyclopedia, 2011. [Online; accessed 15-March-
2011].

[XAM] apache friends - xampp. http://www.apachefriends.org/en/xampp.html.

[XML] Extensible Markup Language (XML) 1.0 (Fourth Edition). Web site at http://www.

w3.org/TR/REC-xml/.

http://www.w3.org/TR/PR-xml.html
http://kwarc.info/frabe/Research/mmt.pdf
http://xmlsoft.org/XSLT/xsltproc2.html
http://xmlsoft.org/XSLT/xsltproc2.html
http://www.codeguru.com/csharp/.net/net_general/patterns/article.php/c12805__2/Classic-Parsing-with-Flex-and-Bison.htm
http://www.codeguru.com/csharp/.net/net_general/patterns/article.php/c12805__2/Classic-Parsing-with-Flex-and-Bison.htm
http://www.codeguru.com/csharp/.net/net_general/patterns/article.php/c12805__2/Classic-Parsing-with-Flex-and-Bison.htm
http://www.codeguru.com/csharp/.net/net_general/patterns/article.php/c12805__2/Classic-Parsing-with-Flex-and-Bison.htm
https://secure.wikimedia.org/wikipedia/en/w/index.php?title=EPUB&oldid=417503598
http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/

Index

Anti-Counterfeiting Trade Agreement, 89
active

documents
paradigm, 205

ADP, 205
agent

user, 66
alike

share, 95
analyzer

lexical, 109
application

web, 73
web (framework), 73

arithmetic, 36
American Standard Code for Information Inter-

change, 22
ABox, 178
assertions, 178
attribuition, 95
attribute, 79
attribute

node, 79

balanced
bracketing

structure, 79
basic

multilingual
plane, 24

Berne
convention, 89

Blaise Pascal, 37
book

electronic, 135
electronic (reader), 135

bracketing
balanced (structure), 79

Browser
web, 66

browsing, 63

card
punch, 22

Creative Commons

license, 95
license

Creative Commons, 95
character

encoding, 24
checkout, 152
civil

law
tradition, 88

closing
tag, 79

code
point, 24

command
sequence, 126

commercial
use, 95

commit, 152, 153
common

law
tradition, 88

commons
content, 205

compact
syntax, 80

complete, 38
concept, 147
conditional, 127
conditional

user-defined, 127
Container

Open (Format), 137
content

commons, 205
content

markup, 26
content

dictionary, 184
control

navigation, 136
control

revision (system), 152
convention

Berne, 89
cookie, 74

223

224 INDEX

cookies
third party, 74

copy
working, 152

copyleft, 94
copyright, 91
copyright

holder, 91
copyright

infringement, 91
copyrightable

work, 89
Cascading Style Sheets, 70

declaration
namespace, 79

definition
symbol, 184

definition
token, 110

derivative
works, 95

dictionary
content, 184

diff
file, 152

patch, 152
display

math, 126
DITA

map, 146
map

DITA, 146
document

player, 206
document

object
model, 75

document
XML (tree), 79
root, 79

documents
active (paradigm), 205

domain
public, 90

DTD, 80
Document Type Definition, 80

eBook, 135
electronic

book, 135
reader, 135

element
empty, 79

node, 79
empty

element, 79
encoding

character, 24
eReader, 135
end-user

license
agreement, 93

license
end-user (agreement), 93

exploitation
rights, 91

expression
regular, 107

fair
use

doctrine, 92
file

diff, 152
Free/Libre/Open-Source

Software, 94
Software

Free/Libre/Open-Source, 94

generator
parser, 110

glyph, 125
Gottfried Wilhelm Leibniz, 37
General

Public
License, 94

Public
General (License), 94

holder
copyright, 91

HyperText Markup Language, 68
HyperText Markup Language, 69
Hypertext Transfer Protocol, 66
http

request, 66
hunk, 152
hyperlink, 63
hypertext, 63

idempotent, 67
IETF, 79
Internet Engineering Task Force, 79
information

privacy, 95
infringement

copyright, 91

INDEX 225

inline
math, 126

intellectual
property, 87

law
civil (tradition), 88
common (tradition), 88

lexer, 109
lexer

specification, 109
lexical

analyzer, 109
license, 92
licensee, 92
licensor, 92

macros, 126
map, 148
markup

content, 26
presentation, 26

math
display, 126
inline, 126
mode, 126

merge
two-way, 152

two-way
merge, 152

merge
three-way, 152

three-way
merge, 152

mode
math, 126

multilingual
basic (plane), 24

namespace
declaration, 79

navigating, 63
navigation

control, 136
network

semantic, 177
node

attribute, 79
element, 79
text, 79

object, 180
object

document (model), 75

OCF, 137
Open

Container
Format, 137

Packaging
Format, 136

opening
tag, 79

OPF, 136

Packaging
Open (Format), 136

page
web, 63

parent, 152
parser

generator, 110
path

XML (language), 81
personal

rights, 91
player

document, 206
point

code, 24
predicate, 180
presentation

markup, 26
privacy

information, 95
property, 180
property

intellectual, 87
property

value, 180
public

domain, 90
punch

card, 22
push, 154

Resource Description Framework, 180
regexp, 107
regular

expression, 107
relative

URI, 64
RelaxNG, 80
RelaxNG, 80
RelaxNG

schema, 80
remote, 154
repository, 152
request

226 INDEX

http, 66
resource, 180
resource

uniform (identifier), 64
web, 64

resource
uniform (locator), 64
uniform (name), 64

result
tree, 81

revision, 152
revision

control
system, 152

RFC, 79
Request for Comments, 79
rights

exploitation, 91
personal, 91

root
document, 79

safe, 67
schema

RelaxNG, 80
scripting

server-side (framework), 71
server-side (language), 72

semantic
network, 177

semantic
web, 172

sequence
command, 126

server
web, 66

server
web, 67

server-side
scripting

framework, 71
language, 72

share
alike, 95

site
web, 63

correct, 38
sound, 38
specification

lexer, 109
Standard

Unicode, 23
statement, 180
stylesheet, 81

subject, 180
symbol

definition, 184
syntax

compact, 80

tag
closing, 79
opening, 79

task, 148
template, 81
Isa-Hierarchy, 178
TBox, 178
terminology, 178
text

node, 79
third party

cookies, 74
token

definition, 110
topic, 146
transclusion, 148
tree

result, 81
type, 125

Universal Character Set, 23
Unicode

Standard, 23
uniform

resource
identifier, 64

uniform
resource

locator, 64
name, 64

update, 153
URI, 64
URI

relative, 64
URL, 64
URN, 64
use

commercial, 95
use

fair (doctrine), 92
user

agent, 66
user-defined

conditional, 127

value
property, 180

web

INDEX 227

server, 66
web

semantic, 172
web

resource, 64
web

application, 73
framework, 73

web
Browser, 66

web
server, 67

web
page, 63
site, 63

Web 3.0, 205
Wilhelm Schickard, 37
work

copyrightable, 89
working

copy, 152
works

derivative, 95

XML
document

tree, 79
XML

path
language, 81

Extensible Stylesheet Language Transformations,
81

XSLT
Processor, 81

Processor
XSLT, 81

