	University Study Course Text and Digital Media $020059 ~ — ~ S p r i n g ~ 2011 ~$

1 Preface

This document contains the course notes for the university study course "Text and Digital Media" held at Jacobs University Bremen in the the spring semester 2011 by Profs. Thomas Rommel and Michael Kohlhase.

This Document

1.1 This Document

Contents: The document mixes the slides presented in class with comments of the instructor to give students a more complete background reference.
Caveat: This document is made available for the students of this course only. It is still an early draft, and will develop over the course of the course. If the course is repeated, it will be developed further in coming academic years.
Licensing: Apart from this caveat, the course materials (slides, course notes, and problems) are licensed under a Creative Commons license that requires attribution, forbids commercial use, and allows derivative works as long as these are licensed under the same license.
Knowledge Representation Experiment: This document is also an experiment in knowledge representation. Under the hood, it uses the $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ package [Koh08, Koh10], a $\mathrm{T}_{\mathrm{E}} \mathrm{X} / \mathrm{E}_{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ extension for semantic markup, which allows to export the contents into the eLearning platform PantaRhei.
Other Resources: ${ }^{1} 2$
Comments: Comments and extensions are always welcome, please send them to the author.

[^0]
Contents

1 Preface 1
1.1 This Document 1
2 Administrativa 3
2.1 Resources 3
2.2 Grades 4
2.3 Homeworks, Submission, and Cheating 4
2.4 Resources 7
3 Documents as Digital Objects 9
3.1 Character Encodings 10
3.2 Texts are more than Sequences of Characters 14
4 On the Meaning of Texts (Natural Language) 16
5 Basics Concepts of the World Wide Web 19
6 Computing with Documents 25
7 Programming Documents 30
8 Copyright and Licensing 34
9 An Overview over XML Technologies 36
10 Converting the arXiv 41
11 Electronic Books and their Formats 44
12 Centralized Version Control 48
13 Writing Technical Documentation and Manuals 49
13.1 Technical Documentation in DocBook 49
13.2 Topic-Oriented Documentation with DITA 51
14 The Semantic Web 53
15 Introduction to Knowledge Representation 56
16 Description Logics and the Semantic Web 61
17 Planetary: A Social Semantic eScience System 64
18 Realizing Planetary 66
19 Levels of Service in Planetary 69

2 Administrativa

We will now go through the ground rules for the course. This is a kind of a social contract between the instructors and the students. Both have to keep their side of the deal to make the acquaintance with issues about "text and digital media" as efficient and painless as possible.

2.1 Resources

No Textbook: Due to the special circumstances discussed above, there is no single textbook that covers the course. Instead we have a comprehensive set of course notes (this document). They are provided in two forms: as a large PDF that is posted at the course web page and on the Planet TDM system. The latter is actually the preferred method of interaction with the course materials, since it allows to discuss the material in place, to play with notations, to give feedback, etc. The PDF file is for printing and as a fallback, if the Planet TDM system, which is still under development develops problems.
Next we come to a special project that is going on in parallel to teaching the course. I am using the coures materials as a research object as well. This gives you an additional resource, but may affect the shape of the coures materials (which now server double purpose). Of course I can use all the help on the research project I can get.

2.2 Grades

Now we come to a topic that is always interesting to the students: the grading scheme. The grading scheme I am using has changed over time, but I am quite happy with it.
Prerequisites, Requirements, Grades
\triangleright Prerequisites: Motivation, Interest, Curiosity, hard work
$\quad \triangleright$ you can do this course if you want!
\triangleright Grades: The final grade will entirely be based on weekly homework assignments
\triangleright TDM Teams: Homeworks will be solved and submitted in teams of three (two from SES,
one from SHSS), which will be formed for the course in the beginning.
\triangleright Rationale: We want to have knowledge transfer
(between the disciplines.)
©: Michael Kohllhase

2.3 Homeworks, Submission, and Cheating

Homework assignments

\triangleright Goal: Reinforce and apply what is taught/discussed in class.
\triangleright homeworks: will be practical writing assgignmenst in a variety of geners and formats
(take time to solve)
\triangleright admin: To keep things running smoothly
\triangleright Homeworks will be posted on PantaRhei
\triangleright Homeworks are handed in electronically in grader (plain text, Postscript, PDF,...)
\triangleright discuss problems on PantaRhei (Profs/TAs/students can help you!)
\triangleright Homework discipline:
\triangleright start early! (many assignments need more than one evening's work)
\triangleright Don't start by sitting at a blank screen
\triangleright Humans will be trying to understand the text/code/math when grading it.

	(c): Michael Kohlhase	5	IACOBS

Homework assignments are a central part of the course, they allow you to review the concepts covered in class, and practice using them.

Homework Submissions, Grading, Tutorials

\triangleright Submissions: We use Heinrich Stamerjohanns' grader system
\triangleright submit all homework assignments electronically to https://jgrader.de
\triangleright you can login with you Jacobs account (should have one!)
\triangleright feedback/grades to your submissions
\triangleright get an overview over how you are doing! (do not leave to midterm)
\triangleright Tutorials: select a tutorial group and actually go to it regularly
\triangleright to discuss the course topics after class (GenCS needs pre/postparation)
\triangleright to discuss your homework after submission (to see what was the problem)
\triangleright to find a study group (probably the most determining factor of success)

@umiex mix	© : Michael Kohlhase	6	

The next topic is very important, you should take this very seriously, even it you think that this is just a self-serving regulation made by the faculty.

All societies have their rules, written and unwritten ones, which serve as a social contract among its members, protect their interestes, and optimize the functioning of the society as a whole. This is also true for the community of scientists worldwide. This society is special, since it balances intense cooperation on joint issues with fierce competition. Most of the rules are largely unwritten; you are expected to follow them anyway. The code of academic integrity at Jacobs is an attempt to put some of the aspects into writing.

It is an essential part of your academic education that you learn to behave like academics, i.e. to function as a member of the academic community. Even if you do not want to become a scientist in the end, you should be aware that many of the people you are dealing with have
gone through an academic education and expect that you (as a graduate of Jacobs) will behave by these rules.

The Code of Academic Integrity

\triangleright Jacobs has a "Code of Academic Integrity"
\triangleright this is a document passed by the faculty
(our law of the university)
\triangleright you have signed it last week
(we take this seriously)
\triangleright It mandates good behavior and penalizes bad from both faculty and students
\triangleright honest academic behavior (we don't cheat)
\triangleright respect and protect the intellectual property of others (no plagiarism)
\triangleright treat all Jacobs members equally (no favoritism)
\triangleright this is to protect you and build an atmosphere of mutual respect
\triangleright academic societies thrive on reputation and respect as primary currency
\triangleright The Reasonable Person Principle (one lubricant of academia)
\triangleright we treat each other as reasonable persons
\triangleright the other's requests and needs are reasonable until proven otherwise

	(c): Michael Kohlhase	7	∇^{7}

To understand the rules of academic societies it is central to realize that these communities are driven by economic considerations of their members. However, in academic societies, the the primary good that is produced and consumed consists in ideas and knowledge, and the primary currency involved is academic reputation ${ }^{1}$. Even though academic societies may seem as altruistic - scientists share their knowledge freely, even investing time to help their peers understand the concepts more deeply - it is useful to realize that this behavior is just one half of an economic transaction. By publishing their ideas and results, scientists sell their goods for reputation. Of course, this can only work if ideas and facts are attributed to their original creators (who gain reputation by being cited). You will see that scientists can become quite fierce and downright nasty when confronted with behavior that does not respect other's intellectual property.
One special case of academic rules that affects students is the question of cheating, which we will cover next.

[^1]
Cheating [adapted from CMU:15-211 (P. Lee, 2003)]

\triangleright There is no need to cheat in this course!!
\triangleright cheating prevents you from learning

- if you are in trouble, come and talk to me
\triangleright We expect you to know what is useful collaboration and what is cheating
\triangleright you will be required to hand in your own original code/text/math for all assignments
\triangleright you may discuss your homework assignments with others, but if doing so impairs your ability to write truly original code/text/math, you will be cheating
\triangleright copying from peers, books or the Internet is plagiarism unless properly attributed (even if you change most of the actual words)
\triangleright more on this as the semester goes on...
$\triangleright *$ There are data mining tools that monitor the originality of text/code. *

```
@
```

(c): Michael Kohlhase

8
∇^{7}

We are fully aware that the border between cheating and useful and legitimate collaboration is difficult to find and will depend on the special case. Therefore it is very difficult to put this into firm rules. We expect you to develop a firm intuition about behavior with integrity over the course of stay at Jacobs.

2.4 Resources

No Textbook: Due to the special circumstances discussed above, there is no single textbook that covers the course. Instead we have a comprehensive set of course notes (this document). They are provided in two forms: as a large PDF that is posted at the course web page and on the Planet TDM system. The latter is actually the preferred method of interaction with the course materials, since it allows to discuss the material in place, to play with notations, to give feedback, etc. The PDF file is for printing and as a fallback, if the Planet TDM system, which is still under development develops problems.

Touch-typing: You should not underestimate the amount of time you will spend typing during your studies. Even if you consider yourself fluent in two-finger typing, touch-typing will give you a factor two in speed. This ability will save you at least half an hour per day, once you master it. Which can make a crucial difference in your success.

Touch-typing is very easy to learn, if you practice about an hour a day for a week, you will re-gain your two-finger speed and from then on start saving time. There are various free typing tutors on the network. At http://typingsoft.com/all_typing_tutors.htm you can find about programs, most for windows, some for linux. I would probably try Ktouch or TuxType

Darko Pesikan recommends the TypingMaster program. You can download a demo version from http://www.typingmaster.com/index.asp?go=tutordemo

You can find more information by googling something like "learn to touch-type". (goto http: //www.google.com and type these search terms).
Next we come to a special project that is going on in parallel to teaching the course. I am using the coures materials as a research object as well. This gives you an additional resource, but may affect the shape of the coures materials (which now server double purpose). Of course I can use all the help on the research project I can get.

3 Documents as Digital Objects

Documents as Digital Objects

\triangleright Question: how do texts get onto the computer? (after all, computers can only do $0 / 1$)
\triangleright Hint: At the most basic level, texts are just sequences of characters.
\triangleright Answer: We have to encode characters as sequences of bits.
\triangleright We will not go into how sequences of bits are stored on a hard disc or in memory of a computer here.

Θ	© : Michael Kohlhase	12	

Before we go on, let us first get into some basics: how do we measure information, and how does this relate to units of information we know.

The information in this table is compiled from various studies, most recently [HL11].

3.1 Character Encodings

Now we can come back to the question of how characters (and thus texts) can be encoded. Actually, this is a rather interesting story, once we realize the history and scope of such encodings.
The ASCII code we will introduce here is one of the first standardized and widely used character encodings for a complete alphabet. It is still widely used today. The code tries to strike a balance between a being able to encode a large set of characters and the representational capabiligies in the time of punch cards (cardboard cards that represented sequences of binary numbers by

The ASCII Character Code

\triangleright Definition 1 The American Standard Code for Information Interchange (ASCII) code assigns characters to numbers 0-127

Code	$\cdots 0$	$\cdots 1$	$\cdots 2$	$\cdots 3$	$\cdots 4$	\cdots	$\cdots 6$	$\cdots 7$	$\cdots 8$	$\cdots 9$	$\cdots A$	$\cdots B$	$\cdots{ }^{\text {a }}$	$\cdots D$	E	$\cdots F$
0...	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI
1*	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2 \cdots	-	!	"	\#	\$	\%	\&		()	*	+	,	-	.	$/$
3 \cdots	0	1	2	3	4	5	6	7	8	9	:	;	<	$=$	>	?
4 \cdots	@	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
5 \cdots	P	Q	R	S	T	U	V	W	X	Y	Z		\backslash]		-
6 \cdots		a	b	c	d	e	f	g	h	i	j	k	1	m	n	\bigcirc
7 \cdots	p	q	r	s	t	u	v	w	x	y	z	\{		J	\sim	DEL

The first 32 characters are control characters for ASCII devices like printers
\bowtie Motivated by punchcards: The character 0 (binary 000000) carries no information NUL,
(used as dividers)
Character 127 (binary 1111111) can be used for deleting (overwriting) last value
(cannot delete holes)
\triangleright The ASCII code was standardized in 1963 and is still prevalent in computers today (but seen as US-centric)
© : Michael Kohlhase
14
(7)

A Punchcard

\triangleright A punch card is a piece of stiff paper that contains digital information represented by the presence or absence of holes in predefined positions.
\triangleright Example 2 This punch card encoded the Fortran statement $Z(1)=Y+W(1)$

The ASCII code as above has a variety of problems, for instance that the control characters are mostly no longer in use, the code is lacking many characters of languages other than the English

[^2]language it was developed for, and finally, it only uses seven bits, where a byte (eight bits) is the preferred unit in information technology. Therefore there have been a whole zoo of extensions, which - due to the fact that there were so many of them - never quite solved the encoding problem.

Problems with ASCII encoding

\triangleright Problem: Many of the control characters are obsolete by now (e.g. NUL,BEL, or DEL)
\triangleright Problem: Many European characters are not represented (e.g. è, ñ,ü,ß,...)
\triangleright European ASCII Variants: Exchange less-used characters for national ones
\triangleright Example 3 (German ASCII) remap e.g. $\quad[\mapsto \ddot{A},] \mapsto \ddot{U}$ in German ASCII ("Apple][" comes out as "Apple Ü̈̈̈")
\triangleright Definition 4 (ISO-Latin (ISO/IEC 8859)) 16 Extensions of ASCII to 8-bit (256 characters) ISO-Latin $1 \hat{=}$ "Western European", ISO-Latin $6 \hat{=}$ "Arabic", ISO-Latin 7 解"Greek"...
\triangleright Problem: No cursive Arabic, Asian, African, Old Icelandic Runes, Math,...
\triangleright Idea: Do something totally different to include all the world's scripts: For a scalable architecture, separate
\triangleright what characters are available from the
(character set)
\triangleright bit string-to-character mapping
(character encoding)
. Michael Kohlhase

The goal of the UniCode standard is to cover all the worlds scripts (past, present, and future) and provide efficient encodings for them. The only scripts in regular use that are currently excluded are fictional scripts like the elvish scripts from the Lord of the Rings or Klingon scripts from the Star Trek series.
An important idea behind UniCode is to separate concerns between standardizing the character set - i.e. the set of encodable characters and the encoding itself.

Unicode and the Universal Character Set

\triangleright Definition 5 (Twin Standards) A scalable Architecture for representing all the worlds scripts
\triangleright The Universal Character Set defined by the ISO/IEC 10646 International Standard, is a standard set of characters upon which many character encodings are based.
\triangleright The Unicode Standard defines a set of standard character encodings, rules for normalization, decomposition, collation, rendering and bidirectional display order
\triangleright Definition 6 Each UCS character is identified by an unambiguous name and an integer number called its code point.
\triangleright The UCS has 1.1 million code points and nearly 100000 characters.
\triangleright Definition 7 Most (non-Chinese) characters have code points in $[1,65536]$ (the basic multilingual plane).
\triangleright Notation 8 For code points in the Basic Multilingual Plane (BMP), four digits are used, e.g. $\mathrm{U}+0058$ for the character LATIN CAPITAL LETTER X ;

Note that there is indeed an issue with space-efficient encoding here. UniCode reserves space for 2^{32} (more than a million) characters to be able to handle future scripts. But just simply using 32 bits for every UniCode character would be extremely wasteful: UniCode-encoded versions of ASCII files would be four times as large.

Therefore UniCode allows multiple encodings. UTF-32 is a simple 32-bit code that directly uses the code points in binary form. UTF-8 is optimized for western languages and coincides with the ASCII where they overlap. As a consequence, ASCII encoded texts can be decoded in UTF-8 without changes - but in the UTF-8 encoding, we can also address all other UniCode characters (using multi-byte characters).

Character Encodings in Unicode

\triangleright Definition 9 A character encoding is a mapping from bit strings to UCS code points.
\triangleright Idea: Unicode supports multiple encodings (but not character sets) for efficiency
\triangleright Definition 10 (Unicode Transformation Format) \triangleright UTF-8, 8-bit, variablewidth encoding, which maximizes compatibility with ASCII.
\triangleright UTF-16, 16-bit, variable-width encoding (popular in Asia)
\triangleright UTF-32, a 32-bit, fixed-width encoding
(for safety)
\triangleright Definition 11 The UTF-8 encoding follows the following encoding scheme

Unicode	Byte1	Byte2	Byte3	Byte4
U+000000-U+00007F	0xxxxxxx			
$\mathrm{U}+000080-\mathrm{U}+0007 F F$	110xxxxx	10xxxxxx		
U $+000800-\mathrm{U}+00 F F F F$	1110xxxx	$10 x x x x x x$	$10 x x x x x x$	
$\mathrm{U}+010000-\mathrm{U}+10$ FFFF	11110xxx	10xxxxxx	10xxxxxx	10xxxxxx

Example $12 \$=\mathrm{U}+0024$ is encoded as 00100100
(1 byte)
$\oint=\mathrm{U}+00 A 2$ is encoded as 11000010,10100010
(two bytes)
$e=\mathrm{U}+20 A C$ is encoded as $11100010,10000010,10101100$
(three bytes)
©
© : Michael Kohlhase
18

Note how the fixed bit prefixes in the encoding are engineered to determine which of the four cases apply, so that UTF-8 encoded documents can be safely decoded..

3.2 Texts are more than Sequences of Characters

Document Markup

Definition 13 (Document Markup) Document markup is the process of adding codes to a document to identify the structure of a document or the format in which it is to appear.

(c): Michael Kohlhase

19
\checkmark

Styles of Markup

\triangleright Definition 14 (Presentation Markup) A presentation markup scheme is one that specifies document structure to aid document processing by humans
\triangleright Example 15 e.g. *roff, Postscript, DVI, early MS Word, low-level TEX

+ simple, context-free, portable (verbatim), easy to implement/transform
- inflexible, possibly verbose,
\triangleright Definition 16 (Content Markup) A content markup scheme is one that specifies document structure to aid document processing by machines or with machine support.
\triangleright Example 17 e.g. LATEX (if used correctly), Programming Languages, ATP input
+ flexible, portable (in spirit), unambiguous, language-independent
- possibly verbose, context dependent, hard to read and write

\bigcirc	© : Michael Kohlhase	20	\

Content	t VS.	Presentation by	Example
Format	Representation	Content?	
${ }^{\text {AT }}$ EX ${ }^{\text {P }}$	\{\textbf \{proof\}\}:... \hfill\Box	\begin\{proof\}... \end\{proof\} }	
HTML	...	<h1>...</h1>	
Lisp	$8+\sqrt{x}^{3}$	(power (plus 8 (sqrt x)) 3)	
$\mathrm{TEX}^{\text {E }}$	\$ $\backslash\{\mathrm{f} \mid \mathrm{f}(0)>0\{\backslash \mathrm{rm}$ and\}f(1)<0		
$\$ }$	$\{f \mid f(0)>0$ and $f(1)<0\}$		
TEX	\$		
{f\|f(0)> } 0 \text { \$ and \$f(1)<0			
}\$	$\{f \mid f(0)>0$ and $f(1)<0\}$		

\triangleright We consider these to be representations of the same content (object)
\triangleright Problem: Transformations between presentation and content Markup
\triangleright Content \leadsto Pres.: usually done by styling (++ user-adaptivity)
\triangleright Pres. \sim Content: Heuristic Process (e.g. binomials $\binom{n}{k}$ vs. C_{k}^{n} vs. $\left.C_{n}^{k}\right)$
©
© : Michael Kohlhase
21

Content vs. Semantics/Formalization

\triangleright Content: logic-independent infrastructure
Identification of abstract syntax, "semantics" by reference for symbols.

```
<apply>
        <plus/>
        <csymbol definitionURL="mbase://numbers/perfect\#the-smallest"/>
        <cn>2</cn>
            </apply>
```

\triangleright Semantics: establishing meaning by fixing consequences adds formal inference rules and axioms.
\triangleright Mechanization in a specific system \triangleright logical framework
(Thm Prover or Proof Checker) (specify the logic in the system itself)

4 On the Meaning of Texts (Natural Language)

Fascination of Language
\triangleright Even more so than thinking, language is a skill that only humans have.
\triangleright It is a miracle that we can express complex thoughts in a sentence in a matter of seconds.
\triangleright It is no less miracuous that a child can learn tens of thousands of words and a complex
grammar in a matter of a few years.
©: Michael Kohlhase

The study of natural language (and of course its meaning) is more complex than natural sciences, where we only observe objects that exist independently of ourselves as observers. Language is an inherently human activity, and deeply interdependent with human cognition (it is arguably one of its motors and means of expression). On the other hand, language is used to communicate about phenomena in the world around us, the world in us, and about hypothetical worlds we only imagine.

Therefore, natural language semantics must necessarily be an intersective discipiline and a trans-disciplinary endeavor, combining methods, results and insights from various disciplines.


```
Language Technoloty
Language Assistance
    \triangleright ~ w r i t t e n ~ l a n g u a g e : S p e l l - / g r a m m a r - / s t y l e - c h e c k i n g ~
    \triangleright ~ s p o k e n ~ l a n g u a g e : ~ d i c t a t i o n ~ s y s t e m s ~ a n d ~ s c r e e n ~ r e a d e r s
    multilingual text: machine-supported text and dialog translation, eLearning
Dialog Systems
    | Information Systems: at airport, tele-banking, e-commerce, call centers
    Dialog interfaces for computers, robots, cars
\triangleright Information management:
     search and classification of documetns
    \triangleright ~ i n f o r m a t i o n ~ e x t r a c t i o n , ~ q u e s t i o n ~ a n s w e r i n g .
\begin{tabular}{|c|c|c|c|}
\hline  & (c): Michael Kohlhase & 25 &  \\
\hline
\end{tabular}
```

Language and Information
\triangleright humans use words (sentences, texts) in natural languages to represent information
\triangleright but:
\triangleright what really counts is not the words themselves, but the meaning information they carry.
\triangleright for questions/answers, it would be very useful to find out what words (sentences/texts)
mean.
\square Interpretation of natural language utterances: three problems

Fun with Diamonds (are they real?) [Dav67]

\triangleright This is a blue diamond
\triangleright This is a big diamond
\triangleright This is a fake diamond
\triangleright This is a fake blue diamond
\triangleright Mary knows that this is a diamond
\triangleright Mary believes that this is a diamond
$(\models$ diamond,\models blue $)$
$(\models$ diamond, $\not \vDash$ big)
($\not \models$ diamond)
$(\models$ blue?, \vDash diamond? $)$
$(\models$ diamond $)$
(\nLeftarrow diamond)

Logical analysis vs. conceptual analysis: These examples - Mostly borrowed from [Dav67] help us to see the difference between logical analysis and conceptual analysis. We observed that from This is a big diamond. we cannot conclude This is big. Now consider the sentence Jane is a beautiful dancer. Similarly, it does not follow from this that Jane is beautiful, but only that she dances beautifully. Now, what it is to be beautiful or to be a beautiful dancer is a complicated matter. To say what these things are is a problem of conceptual analysis. The job of semantics is to uncover the logical form of these sentences. Semantics should tell us that the two sentences have the same logical forms; and ensure that these logical forms make the right predictions about the entailments and truth conditions of the sentences, specifically, that they don't entail that the object is big or that Jane is beautiful. But our semantics should provide a distinct logical form for sentences of the type: This is a fake diamond. From which it follows that the thing is fake, but not that it is a diamond.

Ambiguity (It could mean more than one thing)

\triangleright John went to the bank		(river or financial?)
- You should have seen the bull we got from the pope		(three-way!)
\triangleright I saw her duck		(animal or action?)
\triangleright John chased the gangster in the red sports car		(three-way too!)
@ © © Michael Kohlhase	28	

One way to think about the examples of ambiguity on the previous slide is that they illustrate a certain kind of indeterminacy in sentence meaning. But really what is indeterminate here is what sentence is represented by the physical realization (the written sentence or the phonetic string). The symbol duck just happens to be associated with two different things, the noun and the verb. Figuring out how to interpret the sentence is a matter of deciding which item to select. Similarly for the syntactic ambiguity represented by PP attachment. Once you, as interpreter, have selected one of the options, the interpretation is actually fixed. (This doesn't mean, by the way, that as an interpreter you necessarily do select a particular one of the options, just that you can.)

5 Basics Concepts of the World Wide Web

The world wide web is a service on the Internet based on specific protocols and markup formats for documents.

Uniform Resource Identifier (URI), Plumbing of the Web

\triangleright Definition 18 A uniform resource identifier is a global identifiers of network-retrievable documents (web resources). URIs adhere a uniform syntax (grammar) defined in RFC3986 [BLFM05]. Rules contain: URI $:==$ scheme, ${ }^{\prime}:^{\prime}, \underline{\text { hierPart, }}$, ${ }^{\prime}$?' query], ['\#' fragment] hier - part $:==^{\prime} / /{ }^{\prime}$ (pathAbempty | pathAbsolute | pathRootless | pathEmpty)
\triangleright Example 19 The following are two example URIs and their component parts:

Note: URIs only identify documents, they do not have to be provide access to them (e.g. in a browser).

```
@\mp@code{@m}
```


Uniform Resource Locators and relative URIs

\triangleright Definition 20 A uniform resource locator is a URI that that gives access to a web resource via the http protocol.
\triangleright Example 21 The following URI is a URL (try it in your browser)

```
http://kwarc.info/kohlhase/index.html
```

\triangleright Note: URI/URLs are one of the core features of the web infrastructure, they are considered to be the plumbing of the WWWeb.
(direct the flow of data)
\triangleright Definition 22 URIs can be abbreviated to relative URIs; missing parts are filled in from the context

Example 23

relative URI	abbreviates	in context
\#foo	《current_file》\#foo	curent file
../bar.txt	file:///home/kohlhase/foo/bar.txt	file system
../bar.html	http ://example.org/foo/bar.html	on the web

(c): Michael Kohlhase

33

Web Browsers

$>$ Definition 24 A web Browser is a software application for retrieving, presenting, and traversing information resources on the World Wide Web, enabling users to view Web pages and to jump from one page to another.
\triangleright Practical Browser Tools:
\triangleright Status Bar: security info, page load progress
\triangleright Favorites (bookmarks)
\triangleright View Source: view the code of a Web page
\triangleright Tools/Internet Options, history, temporary Internet files, home page, auto complete, security settings, programs, etc.
\triangleright Example 25 e.g. IE, Mozilla Firefox, Safari, etc.
\triangleright Definition 26 A web page is a document on the Web that can include multimedia data
\triangleright Definition 27 A web site is a collection of related Web pages usually designed or controlled by the same individual or company.
\triangleright a web site generally shares a common domain name.
© : Michael Kohlhase
34
\checkmark

HTTP: Hypertext Transfer Protocol

\triangleright Definition 28 The Hypertext Transfer Protocol (HTTP) is an application layer protocol for distributed, collaborative, hypermedia information systems.
\triangleright June 1999: HTTP/1.1 is defined in RFC $2616\left[\mathrm{FGM}^{+} 99\right]$
Definition 29 HTTP is used by a client (called user agent) to access web resources (addressed by Uniform Resource Locators (URLs)) via a http request. The web server answers by supplying the resource
\triangleright Most important HTTP requests

GET	Requests a representation of the specified resource.	safe
PUT	Uploads a representation of the specified resource.	idempotent
DELETE	Deletes the specified resource.	idempotent
POST	Submits data to be processed (e.g., from a web form) to the identified resource.	

Definition 30 We call a HTTP request safe, iff it does not change the state in the web server.
(except for server logs, counters,... ; no side effects)
\triangleright Definition 31 We call a HTTP request idempotent, iff executing it twice has the same effect as executing it once.
\triangleright HTTP is a stateless protocol
(very memory-efficient for the server.)
(c): Michael Kohlhase
\bigcirc

Overview: A http request in the browser

[^3]
HTML: Hypertext Markup Language

\triangleright Definition 32 The HyperText Markup Language (HTML), is a representation format for web pages. Current version 4.01 is defined in [RHJ98].
\triangleright Definition 33 (Main markup tagsof HTML) HTML marks up the structure and apearance of text with tags of the form <el> (begin) and </el> (end), where el is one of the following

structure	html,head, body	metadata	title, link, meta
headings	h1, h2, .., h6	paragraphs	p, br
lists	ul, ol, dl, ..., li	hyperlinks	a
images	img	tables	table, th, tr, td, ...
CSS style	style, div, span	old style	b, u, tt, i,...
interaction	script	forms	form, input, button

\triangleright Example 34 A (very simple) HTML file.

<html>
<body>
<p>Hello GenCSII!</p>
</body>
</html>
\triangleright Example 35 Forms contain input fields and explanations.

```
<form name="input" action="html_form_submit.asp" method="get">
            Username: <input type="text" name="user" />
            <input type="submit" value="Submit" />
    </form>
    Username:
```



```
©
(C): Michael Kohlhase
38

\section*{HTML5: The Next Generation HTML}
\(\triangleright\) Definition 36 The HyperText Markup Language (HTML5), is believed to be the next generation of HTML. It is defined by the W3C and the WhatWG.
\(\triangleright\) HTML5 includes support for video and MathML (without namespaces).
(c): Michael Kohlhase

39
〇

\section*{CSS: Cascading Style Sheets}
\(\triangleright\) Idea: Separate structure/function from appearance.
Definition 37 The Cascading Style Sheets (CSS), is a style sheet language that allows authors and users to attach style (e.g., fonts and spacing) to structured documents. Current version 2.1 is defined in [BCHL09].
\(\triangleright\) Example 38 Our text file from Example 34 with embedded CSS
<html>
<head>
            <style type="text/css">
                    body \{background-color:\#d0e4fe;\}
                    h1 \{color:orange;
                                    text-align: center; \(\}\)
                    p \{font-family:"Verdana";
                            font-size:20px;\}
        </style>
    </head>
    <body>
        <h1>CSS example</h1>
        <p>Hello GenCSII!.</p>
        </body>
    </html>

\section*{CSS example}

Hello GenCSII!.

© : Michael Kohlhase
40 \(\nabla^{7}\)

\section*{Dynamic HTML}
\(\triangleright\) Idea: generate some of the web page dynamically. (embed interpreter into browser)
Definition 39 JavaScript is an object-oriented scripting language mostly used to enable programmatic access to the document object model in a web browser, providing enhanced user interfaces and dynamic websites. Current version is standardized by ECMA in [ECM09].
\(\triangleright\) Example 40 We write the some text into a HTML document object (the document API)
<html>
<head>

</head>
<body>
<!-- nothing here; will be added by the script later -->
</body>
</html>
\(\Theta\)
© : Michael Kohlhase
41

\section*{Applications and useful tricks in Dynamic HTML}
\(\Delta\) hide document parts by setting CSS style attributes to display:none
```

 <html>
    ```
        <head>
            <style type="text/css">\#dropper \{ display: none; \}</style>
            <script language="JavaScript" type="text/javascript">
                    function toggleDiv(element)\{
                        if (document.getElementById(element).style.display = 'none')
                            \{document.getElementById(element).style.display = 'block'\}
                    else if (document.getElementById(element).style.display = 'block')
                            \{document.getElementById(element).style.display = 'none’\}\}
                </script>
        </head>
        <body>
            <div onClick="toggleDiv('dropper');">...more </div>
            <div id="dropper">
                    <p>Now you see it!</p>
            </div>
        </body>
    </html>
\(\triangleright\) precompute input fields from browser caches and cookies
\(\triangleright\) write "gmail" or "google docs" in JavaScript web applicaitions.
©
© : Michael Kohlhase
42

\section*{Cookies}

Definition 41 A cookie is a little text files left on your hard disk by some websites you visit.
\(\triangleright\) cookies are data not programs, they do not generate pop-ups or behave like viruses, but they can include your log-in name and browser preferences
\(\triangleright\) cookies can be convenient, but they can be used to gather information about you and your browsing habits
\(\triangleright\) Definition 42 third party cookies are used by advertising companies to track users across multiple sites
. Michael Kohlhase

\section*{6 Computing with Documents}

\section*{Regular Expressions}

Definition 43 A regular expression (also called regexp) is a formal expression that specifies a set of strings.
\(\triangleright\) Definition 44 (Meta-Characters for Regexps)
\begin{tabular}{|l|l|}
\hline char & denotes \\
\hline \hline\(\cdot\) & any single character \\
\hline\(\wedge\) & beginning of a string \\
\hline\(\$\) & end of a string \\
\hline\([\ldots]\) & any single character in the brackets \\
\hline\([\wedge \ldots]\) & any single character not in the brackets \\
\hline\((\ldots)\) & marks a group \\
\hline\(\backslash n\) & the \(n^{\text {th }}\) group \\
\hline\(\square\) & disjunction \\
\hline\(*\) & matches the preceding element zero or more times \\
\hline+ & matches the preceding element one or more times \\
\hline\(?\) & matches the preceding element zero or one times \\
\hline\(\{n, m\}\) & matches the preceding element between \(n\) and \(m\) times \\
\hline
\end{tabular}
\(\triangleright\) Example 45 (Regular Expressions and their Values)
\begin{tabular}{|l|l|}
\hline regexp & values \\
\hline \hline car & car \\
\hline .at & cat, hat, mat,... \\
\hline\([\) hc \(]\) at & cat, hat,.. \\
\hline\([\wedge\) c \(]\) at & hat, mat,.. \\
\hline\({ }^{\wedge}[\mathrm{hc}]\) at & hat, cat, but only at the beginning of the line \\
\hline\([0-9]\) & Digits \\
\hline\([1-9][0-9] *\) & natural numbers \\
\hline\((. *) \backslash 1\) & mama, papa, wakawaka \\
\hline cat \(\mid\) dog & cat, dog \\
\hline
\end{tabular}
\(\triangleright\) A regular expression can be interpreted by a regular expression processor (a program that identifies parts that match the provided specification) or a compiled by a parser generator.
@
(c): Michael Kohlhase
44
©

\section*{Playing with Regular Expressions}
\(\triangleright\) If you want to play with regexps, go e.g. to http://regexpal.com

293 regexpal o.1.4-a JavaScript regular expression tester
(6) \(\square\) Case insensitive (i) \(\square \wedge \$\) match at line breaks (m) \(\square\) Dot matches all (s; via \(\underline{X R e q E x p}\)
(\S)

Commas, should be used correctly, indeed.
© : Michael Kohlhase
45

\section*{The sed Stream Editor}
\(\triangleright\) Definition 46 The sed utility is a stream editor, it takes a stream (think file) and some regexp replacement commands as an input and gives a stream as a output.
A sed command is of the form \(s /\langle\) regexp \(\rangle /\langle\) replacement \(\rangle /\) (replace once) or s/《regexp \(\rangle /\langle\) replacement \(\rangle / \mathrm{g}\) (replace globally).
To invoke sed in a shell (e.g. on linux, MacOSX, or cygwin on Windows)
sed -e 's/oldstuff/newstuff/g' inputFileName > outputFileName
or (if sedfile.sed contains many sed commands)
sed -f sedfile.sed inputFileName \(>\) outputFileName
\(\triangleright\) Example 47 (Update the Jacobs Web Site)
sed -e 's/International University/Jacobs University/g;s/IUB/Jacobs/g' index.html > index.html

Example 48 (Stalin eliminates Trotzki) Let cleanse.sed be the sed file
s/Leon Trotzki//g;s/Trotzki//g
s/Lev Davidovich Bronstein//g;s/Davidovich//g;s/Bronstein//g
then Stalin can just use the following shell script to cleanse Kreml documents
find / -name -E '".*\.html|.*\.txt" -exec 'sed -f cleanse.sed \(\}>\{ \} \backslash ;\)

\section*{The lex/flex Lexer Generator}
\(\triangleright\) Definition 49 The lex is a generator of lexical analyzers (lexers), i.e. a program that reads a lexer specification and outputs \(C\) code for a lexer.

A lexer specification is a list of pairs \(\langle R, P\rangle\), where \(R\) is a regexp and \(P\) is C code to be executed when \(R\) is matched.
lex is part of UNIX (proprietary), it is extended by the open-source flex.
\(\triangleright\) Example 50 (Spotting Integers)
\(-?[1-9][0-9] *\left\{p r i n t f\left(" S a w \_a n \_i n t e g e r:-\% s \backslash n ", y y t e x t\right)\right\}\)
. \(\\) \n \(\{/\) / Ignore all other characters. */ \}
If this input is given to flex, it will be converted into a CLanguage file, lex.yy.c. This can be compiled into an executable which matches and outputs strings of integers. For example, given the input abc123z.! \(\& * 2 \mathrm{ghj}-6\) the program will print:
Saw an integer: 123
Saw an integer: 2
Saw an integer: -6


\section*{lex Example: Tokenizing Artithmetic Expressions}
\(\triangleright\) Example 51 We want to build a simple calculator, so we need a tokenizer for arithmetic expressions. Here is a the flex code for one (see [Vol11] for details):
```

delim [\t]
whitesp {delim}+
digit [0-9]
number [-]?{digit}*[.]?{digit}+
%%
{number} { sscanf(yytext, "%lf", \&yylval); return NUMBER;}
"+" { return PLUS; }
"-" { return MINUS; }
"/" { return SLASH; }
"*" { return ASTERISK; }
"(" { return LPAREN; }
")" { return RPAREN; }
"\n" { return NEWLINE; }
{whitesp} { /* No action and no return */}

```
\(\triangleright\) The declarations before the \(\% \%\) are abbreviations for number (note that they are recursive)
\(\triangleright\) instead of printing notifications we just return token types (values are in yytext)


\section*{The yacc/bison Parser Generator}
\(\triangleright\) Definition 52 yacc (Yet Another Compiler Compiler) is a parser generator, i.e. a program that reads a parser specification and outputs \(C\) code for a parser. Historically, yacc was used to generate the C parser in UNIX, today, it is superseded by open-source extensions, e.g. bison.

A yacc parser specification consists of three parts divided by \% \% .
1. token definitions that specify which tokens to expect from flex
2. grammar and the actions: \(\$ \$\) is the constructed result.
3. more C code, including the usual main function.
```

@

```
(c): Michael Kohlhase

49

\section*{yacc/bison Example: Building a Calculator}
\(\triangleright\) Example 53 We want to build a simple calculator, so we need a tokenizer for arithmetic expressions. Here is a the flex code for one (see [Vol11] for details):
```

%token NEWLINE NUMBER PLUS MINUS SLASH ASTERISK LPAREN RPAREN
%%
input: /* empty string */
input line;
line: NEWLINE
| expr NEWLINE { printf("\t%.10g\n",\$1); };

expr: expr PLUS term { \$\$ = \$1 + \$3; }

 | expr MINUS term { $$ = $1 - $3; }
 | term;
 term: term ASTERISK factor { \$\$ = \$1 * \$3; }

 | term SLASH factor { $$ = $1 / $3; }
 | factor;
 factor: LPAREN expr RPAREN { \$\$ = \$2; }
| NUMBER;
%%
int main(void) {yyparse(); exit(0)}
```

Using this to generate a parser with bison gives a program tcalc which is a simple calculator
$-1.1+2 *(4 / 3)$
1566666667
$2+2$
4


## The perl Programming Language

$\triangleright$ Definition 54 perl is a high-level, general-purpose, interpreted, dynamic programming language that makes extensive use of regular expressions.
$\triangleright$ perl can directly use sed commands (with more regexps and execute subroutines)
$\triangleright$ instead of specifying the language, let us go through an example!


## perl Example: Correcting and Anonymizing Documents

$\triangleright$ Example 55 We write an a program that makes simple corrections on documents and also crossres out all names.
$\triangleright$ The worst president of the US, arguably was George W. Bush. right?
■ However, are you famILIar with Paul Erdős or Henri Poincaré?
Here is the program:
$\triangleright$ we first initialize and load modules
\#!/usr/bin/perl -w
use warnings;
use utf8;
use Encode;
$\triangleright$ then we decode the argument and put it into a variable
my \$expr = shift;
\$expr = decode('utf8',\$expr);
$\triangleright$ We put put a space after a comma,
\$expr =~ s/,(\S)/, \$1/g;
$\triangleright$ next we make abbreviations for regular expressions to save space
\$c=qr/\p\{UpperCase_Letter\}/;
\$l=qr/\p\{Lowercase_Letter\}/;
$\triangleright$ capitalize the first letter of a new sentence,
\$expr $=^{\sim}$ s/([?.!]) \s(\$1)/\$1."ப".uc(\$2)/eg;
$\triangleright$ remove capital letters in the middle of words
\$expr $=^{\sim}$ s/(\$1)(\$c+)(\$1)/\$1.lc(\$2).\$3/eg;
$\triangleright$ and we cross-out for official public versions of government documents,
\$expr =~ s/(\$c\$l+ (\$c\$l*(\.?) ) ?\$c\$l+)/'X' x length(\$1)/eg;
$\triangleright$ finally, we print the result
print \$expr,"\n";

The worst president of the US,arguably was George W. Bush. right? becomes The worst president of the US, arguably was XXXXXX XX XXXX right?

## 7 Programming Documents

## The TEX Typesetting System

$\triangleright$ Definition 56 Typesetting is the process of creating the visual appearance of a document by assembling glyphs (visual representations of characters; also called types) on pages.
$\triangleright$ Since Gutenberg's time (to ca. 1975), typesetting was done by assembling movable types (special metal positives of single letters) into lines and later into pages, which were inked and the printed; or using negatives to form cast-metal positives for printing.

$\triangleright$ Definition $57 \mathrm{~T}_{\mathrm{E} X}$ is a typesetting program designed by Donald Knuth in 1978. It combines movable types (character boxes) with macro programming.
$\triangleright$ Definition 58 The pdftex program reads a file of text marked up with $T_{E} X$ macros and outputs PDF.
$\triangleright$ Example 59 (Hello World in $\mathbf{T E X}_{\mathbf{E}}$ ) pdftex typesets the following $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ program

Hello, World \bye
The command sequence $\backslash$ bye stops pdftex and is not shown in the output.

```
@(%)
```

(c): Michael Kohlhase

53

## $\mathrm{T}_{\mathrm{E}} \mathrm{M}$ Macros for Programming Documents

$\triangleright \mathrm{T}_{\mathrm{E} X}$ uses command sequences (words starting with " $\backslash$ "; also called macros) for special effects.
$\triangleright$ Example $60 \backslash$ bye stops the formatter, \alpha prints $\alpha$, \int prints $\int, \ldots$
$\triangleright$ Users can also define $T_{E X}$ macros as abbreviations via \def
$\triangleright$ Example 61 \def $\backslash t d m\{T e x t$ and Digital Media\} defines the macro $\backslash t d m$. We love the USC ' $\backslash$ tdm"' ! expands to
"We love the USC "Text and Digital Media"!
$\triangleright \mathrm{T}_{\mathrm{E}} \mathrm{X}$ macros can have arguments specify with \#1, \#2... : delimit with \{ and \}
$\triangleright$ Example 62 with the macro \def $\backslash$ tnwhat\#1\{Text and \textbf\{\#1\}\}
\tnwhat\{Beer\} expands to "Text and Beer"

$\triangleright T_{E} X$ has a math mode for formulae: Greeks, sub/superscripts with ^, delimit with $\$$ (inline math) or \[ and $\backslash$ ] (display style)
$\triangleright$ Example 63 \$ ${ }^{\text {int_ } 0^{\wedge} \backslash i n f t y ~} \mathrm{f}\left(\backslash\right.$ theta) $\mathrm{d} \backslash$ theta\$ expands to $\int_{0}^{\infty} f(\theta) d \theta$
$\triangleright$ Example 64 Use macros in math mode as well: \def\frac\#1\#2\{\#1\over \#2\} Then $\backslash[1+\backslash$ frac $\{2\}\{2+\backslash$ frac $\{3\}\{3+\backslash 1$ dots $\}\} \backslash]$ expands to

$$
1+\frac{2}{2+\frac{3}{3+\ldots}}
$$

## TEX Counters

$\triangleright \mathrm{T}_{\mathrm{E} X}$ uses special macros as counters, \newcount, allocates a counter, \advance alters it, and \the references it.
$\triangleright$ Example 65 We define a sectioning macros
\newcount\seccount \% allocate a new counter for sections
\newcount\subseccount \% allocate a new counter subsections \seccountO\subseccount0 \% initialize both with 0
\def\section\#1\{ \% begin macro definition
\advance\seccount by $1 \%$ step the counter
\subseccount0 \% reset the subsection counter \textbf\{\Large\the\seccount. \#1\} \% section number and title \} \% end macro definition
\def \subsection\#1\{\advance\subseccount by 1
\textbf\{\large\the\seccount.\the\subseccount. \#1\}\}

Eminixysie
(c): Michael Kohlhase

55
$1 \overbrace{\substack{\text { acoss } \\ \text { UNVEISTr }}}$

## TEX Conditionals

$\triangleright T_{E} X$ provides some conditional for your use:
e.g. \ifx compares two macros, \ifnum compares two number, and \ifmmode tells you if you are in math mode.
\if $\langle$ cond $\rangle .. . \backslash e l s e .$. . fi uses it.
$\triangleright T_{E X}$ uses special macros for conditionals, \newif $\backslash i f\langle$ cond $\rangle$, allocates a conditional, \if $\langle$ cond $\rangle$ true and $\backslash i f\langle$ cond $\rangle$ false alter it,
$\triangleright$ Example 66 sdfsdf

## Programming a Chain Letter

## $\triangleright$ Example 67 (A Parametric Reminder)

\def $\backslash$ reminder\#1\#2\{\hfill Bremen, \today $\backslash$ par $\backslash$ bigskip
\noindent Dear \#1,\par\medskip\noindent
please be sure that you will not forget to come to the lecture today. We are planning big things. \par\medskip\noindent
Sincerely, \par\bigskip\noindent \#2
\}
$\triangleright$ Example 68 (Programming a Serial Letter)
We can use arbitrary characters to delineate arguments in macro definitions.
\def $\backslash$ sletter\#1, \#2; $\{\backslash$ def $\backslash$ first $\{\# 1\} \backslash$ def $\backslash$ second\{\#2\}
\ifx\first\empty\else\reminder\{\#1\}\{Thomas <br>\& Michael\}
\ifx\second\empty\else\sletter\#2,; \fi\fi\}
\def\serialletter\#1\{\sletter \#1; \}
Also nothing prevents us from using recursion.
$\triangleright$ Example 69 (Making a Serial Letter)
\serialletter\{Mati, Anca, Isabel, Calin\}
@ @
© : Michael Kohlhase
57

## TEX Macro Packages

$\triangleright$ Idea: Separate out common macro definitions into a separate file and include that via \input.
(So we can reuse them over multiple documents)
$\triangleright$ Actually: many people have already done that.
$\triangleright$ The AMS (American Mathematical Society) supplies AMSTEX: $\mathrm{T}_{\mathrm{E}} \mathrm{A}$ macros that make it more convenient to write Math (e.g. the $\backslash$ frac macro)
$\triangleright$ Till Tantau supplies tikz ( $T_{E X}$ ist kein Zeichenprogram): $T_{E X}$ macros that allow you to draw images.
$\triangleright$ Leslie Lamport supplies ${ }^{A} T_{E} \mathrm{E}$, a set of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ packages and classes.
$\triangleright$ Michael Kohlhase supplies $S^{T} E X$, a semantic variant of $A T_{E X}$. classes.
$\triangleright$ The bibTEX package handles bibliographic references.
© © Michael Kohlhase

## The Anatomy of a ${ }^{A T} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$ Document

$\triangleright$ Example 70 (A IATEX file)

```
\documentclass{article} % use the article class (Journal Article)
\title{Anatomy of a {\LaTeX} Document} % specify the title
\author{Michael Kohlhase\\Jacobs University Bremen} % and the author
\date{\today} % and the date
\begin{document} % start the document
\maketitle % make the title
\tableofcontents % make the table of contents
\section{Introduction}\label{sec:intro}
This is really easy, just start writing,
\section{Main Part}\label{sec:main}
We refer the reader to \cite{Lamport:ladps94} for details.
\section{Conclusion}\label{concl:intro}
As we already said in the in Section \ref{sec:intro} this was not so bad was it?
\bibliographystyle{alpha}
\bibliography{kwarc}
\end{document}
```

$\triangleright$ Example 71 (and the bibTEX database used in it)
@BOOK\{Lamport:ladps94,
title $=$ \{LaTeX: A Document Preparation System, 2/e\},
publisher = \{Addison Wesley\},
year $=$ \{1994\},
author $=\{$ Leslie Lamport $\}\}$
©
(c): Michael Kohlhase

59

## 8 Copyright and Licensing

## Copyright

$\triangleright$ Definition 72 Copyright is a set of exclusive rights granted to the author or creator of an original work, including the right to copy, distribute and adapt the work.
$\triangleright$ Clarification: Copyright does not protect ideas, only their expression. ( $\neq$ patents)
$\triangleright$ Registration: In most jurisdictions copyright arises upon fixation and does not need to be registered.
$\triangleright$ Control: Copyright owners have the exclusive statutory right to exercise control over copying and other exploitation of the works
$\triangleright$ Expiration: After a specific period of time, the work is said to enter the public domain.
$\triangleright$ Exceptions: Some jurisdictions state exceptions(e.g. documents funded by US government are copyright-exempt)
$\triangleright$ Permission: Uses covered under limitations and exceptions to copyright, such as fair use, do not require permission from the copyright owner. All other uses require permission.
$\triangleright$ In particular: If you write a text, then you have copyright (any original text)
$\triangleright$ and: nobody else but you has any right to copy, distribute, or adapt your text
$\triangleright$ so: if you want to allow them to copy, distribute, or adapt your text, you have to explicitly give them the right to do so
(licensing)
$\triangleright$ Licensing: Copyright owners can license or permanently transfer or assign their exclusive rights to others.

@	(c): Michael Kohlhase	60	



## 9 An Overview over XML Technologies

## Excursion: XML (EXtensible Markup Language)

$\triangleright \mathrm{XML}$ is language family for the Web
$\triangleright$ tree representation language (begin/end brackets)
$\Delta$ restrict instances by Doc. Type Def. (DTD) or Schema
(Grammar)
$\triangleright$ Presentation markup by style files
(XSL: XML Style Language)
$\triangleright$ XML is extensible HTML \& simplified SGML
$\triangleright$ logic annotation (markup) instead of presentation!
$\triangleright$ many tools available: parsers, compression, data bases, ...
$\triangleright$ conceptually: transfer of directed graphs instead of strings.
$\triangleright$ details at http://www.w3c.org
XML is Everywhere (E.g. document metadata)
$\triangleright$ Example 74 Open a PDF file in AcrobatReader, then cklick on File $\searrow$ DocumentProperties $\searrow$ DocumentMetadata $\searrow$ ViewSource, you get the following text: (showing only a small part)
<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns\#'
<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns\#'
xmlns:iX='http://ns.adobe.com/iX/1.0/'>
xmlns:iX='http://ns.adobe.com/iX/1.0/'>
<rdf:Description xmlns:pdf='http://ns.adobe.com/pdf/1.3/'>
<rdf:Description xmlns:pdf='http://ns.adobe.com/pdf/1.3/'>
[pdf:CreationDate](pdf:CreationDate)2004-09-08T16:14:07Z</pdf:CreationDate>
[pdf:CreationDate](pdf:CreationDate)2004-09-08T16:14:07Z</pdf:CreationDate>
[pdf:ModDate](pdf:ModDate)2004-09-08T16:14:07Z</pdf:ModDate>
[pdf:ModDate](pdf:ModDate)2004-09-08T16:14:07Z</pdf:ModDate>
[pdf:Producer](pdf:Producer)Acrobat Distiller 5.0 (Windows)</pdf:Producer>
[pdf:Producer](pdf:Producer)Acrobat Distiller 5.0 (Windows)</pdf:Producer>
[pdf:Author](pdf:Author)Herbert Jaeger</pdf:Author>
[pdf:Author](pdf:Author)Herbert Jaeger</pdf:Author>
[pdf:Creator](pdf:Creator)Acrobat PDFMaker 5.0 for Word</pdf:Creator>
[pdf:Creator](pdf:Creator)Acrobat PDFMaker 5.0 for Word</pdf:Creator>
[pdf:Title](pdf:Title)Exercises for ACS 1, Fall 2003</pdf:Title>
[pdf:Title](pdf:Title)Exercises for ACS 1, Fall 2003</pdf:Title>
</rdf:Description>
</rdf:Description>
*
*
<rdf:Description xmlns:dc='http://purl.org/dc/elements/1.1/'>
<rdf:Description xmlns:dc='http://purl.org/dc/elements/1.1/'>
[dc:creator](dc:creator)Herbert Jaeger</dc:creator>
[dc:creator](dc:creator)Herbert Jaeger</dc:creator>
[dc:title](dc:title)Exercises for ACS 1, Fall 2003</dc:title>
[dc:title](dc:title)Exercises for ACS 1, Fall 2003</dc:title>
</rdf:Description>
</rdf:Description>
</rdf:RDF>
</rdf:RDF>


This is an excerpt from the document metadata which AcrobatDistiller saves along with each PDF document it creates. It contains various kinds of information about the creator of the document, its title, the software version used in creating it and much more. Document metadata is useful for libraries, bookselling companies, all kind of text databases, book search engines, and generally all institutions or persons or programs that wish to get an overview of some set of books, documents, texts. The important thing about this document metadata text is that it is not written in an arbitrary, PDF-proprietary format. Document metadata only make sense if these metadata are independent of the specific format of the text. The metadata that MSWord saves with each Word document should be in the same format as the metadata that Amazon saves with each of its book records, and again the same that the British library uses, etc.

```
XML is Everywhere (E.g. Web Pages)
 \triangleright Example 75 Open web page file in FireFox, then click on View \PageSource, you
 get the following text: (showing only a small part and reformatting)
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML &1.0」Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Michael Kohlhase</title>
 <meta name="generator"
 content="Page
 </head>
 <body>...
 <p>
 <i>Professor of Computer Science</i>

 Jacobs University

 Mailing address - Jacobs (except Thursdays)

 School of Engineering & Science

...
 </p>...
 </body>
 </html>
```



## XML Documents as Trees

$\triangleright$ Idea: An XML Document is a Tree
<omtext xml:id="foo"
xmlns="..."
xmlns:om=". . .">
<CMP xml:lang='en'>
The number
[om:OMOBJ](om:OMOBJ)
<om:OMS cd="nums1"
<om.0MOB name="pi"/> <om: OMOBJ>
is irrational.
</CMP>
</omtext>

$\triangleright$ Definition 76 The XML document tree is made up of element nodes, attribute nodes, text nodes
(and namespace declarations, comments,... )
$\triangleright$ Definition 77 For communication this tree is serialized into a balanced bracketing structure, where
$\triangleright$ an element el is represented by the brackets <el> (called the opening tag) and </el> (called the closing tag).
$\triangleright$ The leaves of the tree are represented by empty elements (serialized as <el></el>, which can be abbreviated as <el/>
$\triangleright$ and text nodes (serialized as a sequence of UniCode characters).
$\triangleright$ An element node can be annotated by further information using attribute nodes serialized as an attribute in its opening tag

Note: As a document is a tree, the XML specification mandates that there must be a unique document root.
© Michael Kohlhase $\quad$ ©

## The Dual Role of Grammar in XML (I)

$\triangleright$ The XML specification [XML] contains a large character-level grammar.(81 productions)
$\underline{\text { NameChar }:==\underline{\text { Letter }}|\underline{\text { Digit }}|^{\prime} .\left.\right|^{\prime}-\left.\left.^{\prime}\right|^{\prime} \_^{\prime}\right|^{\prime}::^{\prime} \mid \underline{\text { CombiningChar } \mid ~ E x t e n d e r ~}}$
Name $:==\left(\left.\underline{\text { Letter }}\right|^{\prime}\right.$ _ $\left.\left.\right|^{\prime}:^{\prime}\right)(\underline{\text { NameChar }})^{*}$

STag : $==^{\prime}<^{\prime}(S)^{*}$ Name $(S)^{*}$ attribute $(S)^{*}$ ' $>^{\prime}$
ETag : $==^{\prime}</^{\prime}(S)^{*}$ Name $(S)^{*}{ }^{\prime}>^{\prime}$
EmptyElementTag :==' $=^{\prime}(S)^{*}$ Name $(S)^{*}$ attribute $(S)^{*}{ }^{\prime} />^{\prime}$
$\triangleright$ use these to parse well-formed XML document into a tree data structure
$\triangleright$ use these to serialize a tree data structure into a well-formed XML document
$\triangleright$ Idea: Integrate XML parsers/serializers into all programming languages to communicate trees instead of strings. (more structure $\hat{=}$ better CS )

@		6	
	(c): Michael Kohihase	66	

## The Dual Role of Grammar in XML (II)

$\triangleright$ Idea: We can define our own XML language by defining our own elements and attributes.
$\triangleright$ Validation: Specify your language with a tree grammar (works like a charm)
$\triangleright$ Definition 78 Document Type Definitions (DTDs) are grammars that are built into the XML framework.

Put <!DOCTYPE foo PUBLIC "foo.dtd"> into the second line of the document to validate.
$\triangleright$ Definition 79 RelaxNG is a modern XML grammar/schema framework on top of the XML framework.
E
© : Michael Kohlhase
67
17

## RelaxNG, A tree Grammar for XML

Definition 80 Relax NG (RelaxNG: Regular Language for XML Next Generation) is a tree grammar framework for XML documents.

A RelaxNG schema is itself an XML document; however, RelaxNG also offers a popular, non-XML compact syntax.
$\triangleright$ Example 81 The RelaxNG grammars validate the left document

document	RelaxNG in XML	RelaxNG compact
```<lecture> <slide id="foo"> first slide </slide> <slide id="bar"> second one </slide> </lecture>```	```<grammar> <start> <element name="lecture"> <oneOrMore> <ref name="slide"/> </oneOrMore> </element> </start> <define name="slide"> <element name="slide"> <text/> </element> <attribute name="id"> <text/> </attribute> </define> </grammar>```	```start = element lecture {slide+} slide = element slide {attribute id {text} text}```


@	(c): Michael Kohlhase	68	

XPath, A Language for talking about XML Tree Fragments

\triangleright Definition 82 The XML path language (XPath) is a language framework for specifying fragments of XML trees.

XSLT, A tree Transformer for XML

\triangleright Definition 84 XSLT (Extensible Stylesheet Language Transformations) is a declarative, XML-based language used for the transformation of XML documents. It is standardized by the W3C.
\triangleright Definition 85 XSLT stylesheets consist of a set of templates which match a XML elements via an XPath expression and create a result tree.
\triangleright Definition 86 An XSLT processor is a program that takes an XSLT stylesheet S and an XML file X as input and transforms X as specified by the templates in S.
\triangleright Example 87 There are various open source or free XSLT processors
\triangleright xsltproc [Vei] is very fast, but only supports XSLT version 1.
\triangleright saxon [Kay08] supports XSLT version 2, but is slower.
\triangleright Example 88 Use this stylesheet to extract a numbered table of contents from an HTML document
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<html><body><xsl:apply-templates select="//h1"/></body></html>
</xsl:template>
<xsl:template match="*"/>
<xsl:template match="h1">

<p style="font-size:large">
<xsl:value-of select="preceeding-sibling::h1"/> <xsl:copy-of select="*|text()"/>
 </p>
 </xsl:template>
 </xsl:stylesheet>

10 Converting the arXiv

The arXMLiv Project: arXiv to semantic XML
\triangleright Idea: Develop a large corpus of knowledge in OMDoc/PhysML
\triangleright to get around the chicken-and-egg problem of MKM
\triangleright corpus-linguistic methods for semantics recovery (linguists interested)
\triangleright Definition 89 (The Cornell Preprint arXiv) (http://www. arxiv.org) Open access to ca. 600.000 e-prints in Physics, Mathematics, Computer Science and Quantitative Biology.
\triangleright Definition 90 (The arXMLiv Project) (http://arxmliv.kwarc.info)
\triangleright use Bruce Miller's LATEXML to transform to $^{\text {PHTML+MathML }}$
\triangleright we have an automated, distributed build system
(ca. 1 CPU-year)
\triangleright create ca. 8000 LATEXML binding files
(8 Jacobs students help)
\triangleright use MathWebSearch to index XML version (realistic search corpus)
\triangleright More semantic information will enable more added-value services
\triangleright e.g. filter papers by model assumptions(expanding, stationary, or contracting universe)
\triangleright use linguistic techniques to add the necessary semantics
©
(c): Michael Kohlhase
71
\mathfrak{T}

Why reimplement the $T_{E} X$ parser?

\triangleright Problem: The TEX parser can change the tokenizer while at runtime
(\catcode)
\triangleright Example 91 (Obfuscated $\mathbf{T E X}_{\mathbf{E}}$) David Carlisle posted the following, when someone claimed that word counting is simple in $\mathrm{T}_{\mathrm{E}} \mathrm{X} / \mathrm{A} T_{E X}$
\let~\catcode~‘76~'A13~‘F1~‘j00~'P2jdefA71F~‘7113jdefPALLF PA' ' FwPA; ; FPAZZFLaLPA//71F71iPAHHFLPAzzFenPASSFthP;A\$\$FevP A@@FfPARR717273F737271P; ADDFRgniPAWW71FPATTFvePA**FstRsamP AGGFRruoPAqq71.72.F717271PAYY7172F727171PA??Fi*LmPA\&\&71jfi Fjfi 71 PAVVFjbigskipRPWGAUU 71727374 75, 76Fjpar 71727375 Djifx : 76jelse\&U76jfiPLAKK7172F7117271PAXX71FVLnOSeL71SLRyadR@oL RrhC?yLRurtKFeLPFovPgaTLtReRomL;PABB71 72,73:Fjif.73.jelse B73: jfiXF71PU71 72,73:PWs;AMM71F71diPAJJFRdriPAQQFRsreLPAI I71Fo71dPA!!FRgiePBt'el@ $1 T L q d r Y m u . Q ., K e ; v z ~ v z L q p i p . Q ., t z ;$
; Lql. IrsZ.eap, qn.i. i.eLlMaesLdRcna,;!;h htLqm.MRasZ.ilk,\%
s\$;z zLqs'.ansZ.Ymi,/sx ;LYegseZRyal,@i;@ TLRlogdLrDsW,@;G
LcYlaDLbJsW, SWXJW ree @rzchLhzsW,; WERcesInW qt.'oL.Rtrul;e
doTsW, Wk; Rri@stW aHAHHFndZPpqar.tridgeLinZpe.LtYer.W,: jbye
When formatted by TeX, this leads to the full lyrics of "The twelve days of christmas". When formattet by LATEXML, it gives

```
    <song>
        <verse>
            <line>On the first day of Christmas my true love gave to me</line>
            <line>a partridge in a pear tree.</line>
    </verse>
    <verse>
            <line>On the second day of Christmas my true love gave to me</line>
            <line>two turtle doves</line>
            <line>and a partridge in a pear tree.</line>
    </verse>
    <verse>
            <line>On the third day of Christmas my true love gave to me</line>
            <line>three french hens</line>
            <line>two turtle doves</line>
            <line>and a partridge in a pear tree.</line>
    </verse>
    <verse>
            <line>On the fourth day of Christmas my true love gave to me</line>
            <line>four calling birds</line>
            <line>three french hens</line>
            <line>two turtle doves</line>
            <line>and a partridge in a pear tree.</line>
    </verse>
    ...
```

\triangleright But the real reason is: that we can take advantage of the semantics in the $A T E X$.
$>$ ATEXML does not need to expand macros, we can tell it about XML equivalents.
\triangleright Example 92 (Recovering the Semantics of Proofs)
Add the following magic incantation to amsthm.sty.ltxml
DefEnvironment('\{proof\}',"<xhtml:div class='proof'>\#body</xhtml:div>");

The arXMLiv approach: Try to cover most packages and classes in the arXiv
(Jacobs undergrads' intro to research)
(c): Michael Kohlhase

72
$1 \int_{\substack{\text { acons } \\ \text { UNIVERSTTY }}}$

Future Plans for arXMLiv

\triangleright State: ATEX-to-XHTML+MathML Format Conversion works
(65\% success)
\triangleright Over the summer: Bump up success rate to 75%, daily downloads, web site, instrumentation,...
\triangleright Soon: Integrate user-level quality control
(integrate JS feedback into html)
\triangleright starting Fall: Extend post-processing by linguistic methods for semantic analysis
\triangleright build semantics blackboard/database for linguistic information
(rdf triples)
\triangleright extend build system for arbitrary XML2BB processes
\triangleright invite the linguists over
(they leave semantics results in BB)
\triangleright harvest the semantics BB to get OMDoc representations

Current and Possible Applications

\triangleright the arxmliv build system http://arxmliv.kwarc.info
\triangleright the transformation web service http://tex2xml.kwarc.info
\triangleright ATEXML daemon to avoid perl and $\mathrm{AT}_{\mathrm{E}} \mathrm{EX}$ startup times
\triangleright keep $A T_{E X M L}$ alive as a daemon that can process multiple files/fragments (patch memory leaks)
\triangleright a $A T_{E X M L}$ client just passes files/fragments along ($\frac{10}{s}$ to $\frac{100}{s}$)
\triangleright embedding/editing $4 T_{E X}$ in web pages http://tex2xml.kwarc.info/test
\triangleright a MathML version of the arXiv allows vision-impared readers to understand the texts
\triangleright generalization search (need to know sentence structure for detecting universal variables)
\triangleright semantic search by academic discipline or theory assumption (need discourse structure)
\triangleright development of scientific vocabularies (over the past 18 years; drink from the source)
© : Michael Kohlhase
74
$\sqrt{ }$

11 Electronic Books and their Formats

Electronic Books

\triangleright Definition 93 An electronic book (eBook) is a publication in electronic form that can be read on digital devices.
\triangleright Example 94 Arguably the first eBooks were the texts provided by Project Gutenberg in 1971.
\triangleright Definition 95 An electronic book reader (eReader) is a hardware or software devide for reading electronic books.
\triangleright Example 96 Popular hardware-based eReaders are Kindle (Amazon.com), the iPad (Apple), and the Nook (Barnes\&Noble), but sofware readers also abound.

EPUB: A Standard for Electronic Publishing [Wik11]

\triangleright Definition 97 EPUB is a free and open standard for electronic books provided by the International Digital Publishing Forum (IDPF). It consists of three specifications:

Open Publication Structure (OPS), essentially XHTML and CSS for the document contents

Open Packaging Format (OPF), which describes the structure of the EPUB file in XML.
Open Container Format (Ocf), which collects all files as a ZIP archive.

\triangleright EPUB files usually have the extension .epub.
\triangleright EPUB does not specify a format for digital rights management (DRM), which makes it less attractive for the big publishers.
\triangleright EPUB is supported by almost all eReaders and publishing software

EPUB: Open Packaging Format \& Navigation Control

\triangleright Definition 98 The Open Packaging Format (OPF) is a standard for specifying giving additional structure and coherence to an electronic book in EPUB. It specifies the
Δ contents (what files) in the manifest element
\triangleright metadata (author, date, etc) in the metadata element
Δ linear reading order in the spine element, and
\triangleright (optionally) important structural components in the guide element.
of the package in a OPF file with the extension .opf.
\triangleright Definition 99 The navigation control of the an EPUB gives a machine-readable table of contents of the book in XML.

@	(c): Michael Kohlhase	77	
	(C). Michael Kohinase	77	

```
An Example OPF file
<?xml version="1.0"?>
<package version="2.0" xmlns="http://www.idpf.org/2007/opf" unique-identifier="BookId">
    <metadata xmlns:dc="http://purl.org/dc/elements/1.1/"
                    xmlns:opf="http://www.idpf.org/2007/opf">
        <dc:title>Pride and Prejudice</dc:title>
        <dc:language>en</dc:language>
        <dc:identifier id="BookId" opf:scheme="ISBN">123456789X</dc:identifier>
        <dc:creator opf:file-as="Austen, \sqcupJane" opf:role="aut">Jane Austen</dc:creator>
    </metadata>
    <manifest>
        <item id="chapter1" href="chapter1.xhtml" media-type="application/xhtml+xml"/>
        <item id="stylesheet" href="style.css" media-type="text/css"/>
        <item id="ch1-pic" href="ch1-pic.png" media-type="image/png"/>
        <item id="myfont" href="css/myfont.otf" media-type="application/x-font-opentype"/>
        <item id="ncx" href="book.ncx" media-type="application/x-dtbncx+xml"/>
    </manifest>
    <spine toc="ncx">
        <itemref idref="chapter1" />
    </spine>
    <guide>
        <reference type="loi" title="List\sqcupOf}\sqcupIllustrations" href="appendix.html#figures" />
    </guide>
</package>
\begin{tabular}{|ccc|}
\hline @uminisic & © : Michael Kohlhase & 78 \\
\hline
\end{tabular}
```

```
An Example NCX file
<?xml version="1.0" encoding="UTF-8"?>
<ncx version="2005-1" xml:lang="en" xmlns="http://www.daisy.org/z3986/2005/ncx/">
    <head>
        <meta name="dtb:uid" content="123456789X"/> <!-- same as in .opf -->
        <meta name="dtb:depth" content="1"/> <!-- 1 or higher -->
        <meta name="dtb:totalPageCount" content="0"/> <!-- must be 0 -->
        <meta name="dtb:maxPageNumber" content="0"/> <!-- must be 0 -->
    </head>
    <docTitle>
        <text>Pride and Prejudice</text>
    </docTitle>
    <docAuthor>
        <text>Austen, Jane</text>
    </docAuthor>
    <navMap>
        <navPoint class="chapter" id="chapter1" playOrder="1">
            <navLabel><text>Chapter 1</text></navLabel>
            <content src="chapter1.xhtml"/>
        </navPoint>
    </navMap>
</ncx>
p @ @ <m,

\section*{EPUB: Open Container Format}
\(\triangleright\) Definition 100 An EPUB file is a group of files conforming to the OPS/OPF standards that is wrapped in a ZIP file. The Open Container Format (OCF) specifies how these files should be organized in the ZIP archive, and defines two additional files that must be included.
\(\triangleright\) The mimetype file must be a text document in ASCII and must contain the string application/epub+zip. It must also be uncompressed, unencrypted, and the first file in the ZIP archive.
\(\triangleright\) The purpose of this file is to provide a more reliable way for applications to identify the mimetype of the file than just the .epub extension.
\(\triangleright\) Also, there must be a folder named META-INF which contains the required file container.xml. This XML file points to the file defining the contents of the book. This will be the .opf file.
\begin{tabular}{|c|c|c|c|}
\hline  & (c): Michael Kohlhase & 80 & \\
\hline
\end{tabular}


\section*{12 Centralized Version Control}

\section*{Computing and Managing Differences with diff \& patch}
\(\triangleright\) Definition 101 diff is a file comparison utility that computes differences between two files \(f_{1}\) and \(f_{2}\). Differences are output linewise in a "patch", which can be applied to \(f_{1}\) to obtain \(f_{2}\) via the patch utility.
\begin{tabular}{|c|c|c|c|}
\hline \(\triangleright\) Example 102 & The quick brown fox jumps over the lazy dog & The quack brown fox jumps over the loozy dog & \begin{tabular}{l}
1c1 \\
< The quick brown \\
> The quack brown 3c3 \\
< the lazy dog
\(\qquad\) \\
> the loozy dog
\end{tabular} \\
\hline ¢ ¢ & (c): Michael Kohlh & 82 & \(\nabla\) \\
\hline
\end{tabular}

\section*{Merging Differences with merge3}
\(\triangleright\) There are basically two ways of merging the differences of files into one.
\(\triangleright\) Definition 103 In two-way merge, an automated procedure tries to combine two different files by copying over differences by guessing or asking the user.
\(\triangleright\) Definition 104 In three-way merge the files are assumed to be created by changing a joint original (the parent) by editing. The merge3 tool examines the differences and patterns appearing in the changes between both files as well as the parent, building a relationship model to generate a new revision. Usually, non-conflicting differences (affecting only one of the files) can directly be copied over.
\(\Theta\)
© : Michael Kohlhase 83
\(\sqrt{ }{ }^{\text {ucons }}\) UNVITr

\section*{Version Control with Subversion}
\(\triangleright\) Definition 105 Subversion is a centralized version control system that features
\(\triangleright\) Central repository
(for current revision and reverse diffs)
\(\triangleright\) Local working copies
(asynchronous checkouts, updates, commits)
They are kept synchronized by passing around diff differences and patching the repository and working copies. Conflicts are resolved by (three-way) merge.

(c): Michael Kohlhase

84

\section*{13 Writing Technical Documentation and Manuals}

\subsection*{13.1 Technical Documentation in DocBook}

\section*{DocBook}
\(\triangleright\) Definition 106 DocBook is a content markup language for technical documentation based on SGML or XML. It supplies elements/tags for the logical of book-like documents.
\(\triangleright\) DocBook was originally intended for writing technical documents related to computer hardware and software but it can be used for any other sort of documentation.
\(\triangleright\) DocBook content is presentation-neutral and can be published in a variety of formats, including HTML, XHTML, EPUB, PDF, man pages and HTML Help, without requiring users to make any changes to the source.
\(\triangleright\) DocBook began in 1991 as a joint project of HAL Computer Systems and O'Reilly \& Associates. Since 1998 it is maintained by a Technical Committee at OASIS.
\begin{tabular}{|c|c|c|c|}
\hline & (c): Michael Kohlhase & 85 &  \\
\hline  & & & \\
\hline
\end{tabular}

\section*{DocBook Elements}
\(\triangleright\) DocBook provides about 400 content markup tags
\(\triangleright\) Structural Elements: specify broad characteristics of their contents, e.g. book, part, article, chapter, appendix, dedication
\(\triangleright\) Block-level Elements: specify structured blocks of text (usually starting and ending with new "lines"). e.g. paragraphs, lists, definitions, etc. They usually have a fixed content model; some can contain text.
- Inline-level Elements: wrap text within a block-level element (usually without breaking "lines" ), e.g. for emphasis, hyperlinks, definienda,. They typically cause the document processor to apply some kind of distinct typographical treatment to the enclosed text.
```

@

```
© : Michael Kohlhase
86
〇

\section*{DocBook Example}
```

A "Hello World" document in DocBook
<?xml version="1.0" encoding="UTF-8"?>
<book xml:id="simple_book" xmlns="http://docbook.org/ns/docbook" version="5.0">
<title>Very simple book</title>
<chapter xml:id="chapter_1">
<title>Chapter 1</title>
<para>Hello world!</para>
<para>
I hope that your day is proceeding
<emphasis>splendidly</emphasis>!
</para>
</chapter>
<chapter xml:id="chapter_2">
<title>Chapter 2</title>
<para>Hello again, world!</para>
</chapter>
</book>

```

\subsection*{13.2 Topic-Oriented Documentation with DITA}

\section*{DITA the "Darwin Information Typing Architecture"}
\(\triangleright\) Definition 107 DITA is a topic-oriented content markup language for technical documentation based on XML. It supports a topic-oriented documentation style.
\(\triangleright\) Definition 108 The basic unit of information in DITA is a topic, i.e. a discrete piece of content that is about a specific subject, has an identifiable purpose, and can stand alone (does not need to be presented in context for the end-user to make sense of the content).
\(\triangleright\) Topics can be reused in any context; DITA makes use of this.
\(\triangleright\) Definition 109 DITA combines topics into documents via DITA maps.
\(\triangleright\) Consequence: A DITA topic (and DITA map) can be referenced in multiple DITA maps.
\(\triangleright\) Extension: Conditional text allows filtering or styling content based on attributes for audience, platform, product, and other properties. (the DITA processor filters text)
©
(c): Michael Kohlhase

88
Using DITA Maps for Reuse
\(\triangleright\) Idea: Concepts can be reused in more than one DITA map
\(\triangleright\) Example 110 For instance a module on HTML/XML in the courses "General Computer
Science" and "Text and Digital Media".
©: Michael Kohilhase

\section*{A DITA Concept File}

Definition 111 A DITA concept is a special DITA topic that describes an abstract idea or a named unit of knowledge.
\(\triangleright\) Example 112 A concept for "academic conference" (note the conditional text)
<concept id="A.dita">
<title>Academic Conference</title> <conbody>
<p audience="students">
An <term>academic conference</term> is a gathering of scientists
who discuss <term>scientific papers</term>.
</p>
<p audience="professors">
An <term>academic conference</term> is a pretense to travel to nice locations on university money and drink loads of beer.
</p>
<para conref="\#topic/p2"/>
</conbody>
<related-links>
<linkpool type="concept">
<link audience="students" href="http://easychair.org"/>
<link audience="professors" href="http://acapulco.mx"/>
</linkpool>
</related-links>
</concept>
We can generate two versions from this content markup format. For instance, with the following DITA value specification:
```

 <!-- this file specifies the actions for students -->
    ```
    <val>
        <prop action="exclude" att="audience" val="professors"/>
        <prop action="include" att="audience" val="students"/>
    </val>
(c): Michael Kohlhase

90

\section*{A DITA Task File}
\(\triangleright\) Definition 113 A DITA task is a special DITA topic that describes a process.
\(\triangleright\) Example 114 DITA task markup for assignment 8 of the TDM course
<task id="TDMassignment8">
<title>Assignment 8: Reviewing Papers</title>
<taskbody>
<prereq>You have to be a registered TDM student.</prereq> <steps> <step>
<cmd>accept the PC invitation, log into easychair</cmd>
<info>You should have been given the information in the invitation e-mail</info> </step> <step>
<cmd>indicate your conflicts of interest</cmd>
<info>you have a conflict with anybody you have a relationship that
would keep you from being objective (yourself, your family members,
loved/hated ones, group members,... be honorable)
</info>
<stepresult>
<p>The system records a list of conflicted paper and will not show you anything about them. </p> </stepresult> </step>
</steps>
</taskbody>
</task>
```

A DITA Map File
D Definition 115 A DITA map combines DITA topics and maps into a document by
transclusion.
Example 116 <map>
<title>Life as an Academic</title>
<topicmeta>...</topicmeta>
<topicref href="introduction.dita" collection-type="sequence">
<topicref href="conference.dita"/>
<topicref href="TDMassignment8.dita"/>
</topicref>
<reltable>
<relcell>conference.dita</relcell>
<relcell>TDMassignment8.dita</relcell>
</reltable>
</map>
@
CC: Michael Kohlhase 92
7

```

\section*{14 The Semantic Web}

\section*{The Current Web}
\(\triangleright\) Resources: identified by URI's, untyped
\(\triangleright\) Links: href, src, ... limited, non-descriptive
\(\triangleright\) User: Exciting world - semantics of the resource, however, gleaned from content
\(\triangleright\) Machine: Very little information available - significance of the links only evident from the context around the anchor.


\section*{The Semantic Web}
\(\triangleright\) Resources: Globally Identified by URI's or Locally scoped (Blank), Extensible, Relational
\(\triangleright\) Links: Identified by URI's, Extensible, Relational
\(\triangleright\) User: Even more exciting world, richer user experience
\(\triangleright\) Machine: More processable information is available (Data Web)
\(\triangleright\) Computers and people: Work, learn and exchange knowledge effectively


\section*{What is the Information a User sees?}

\section*{WWW2002}

The eleventh international world wide web conference
Sheraton waikiki hotel
Honolulu, hawaii, USA
7-11 may 2002
1 location 5 days learn interact

Registered participants coming from australia, canada, chile denmark, france, germany, ghana, hong kong, india, ireland, italy, japan, malta, new zealand, the netherlands, norway, singapore, switzerland, the united kingdom, the united states, vietnam, zaire

On the 7th May Honolulu will provide the backdrop of the eleventh international world wide web conference. This prestigious event? Speakers confirmed
Tim Berners-Lee: Tim is the well known inventor of the Web, ?
Ian Foster: Ian is the pioneer of the Grid, the next generation internet?
© © Michael Kohlhase
```

What the machine sees
$\mathcal{W W W} \in \boldsymbol{\prime} \in$

```

```

 \(\mathcal{S}\rceil \nabla-\dashv \sqcup \backslash \backslash \supseteq \dashv\rangle \|\rangle \|\rangle\langle\langle\sqcup\rangle \downarrow\)
 \(\mathcal{H} \backslash \backslash \uparrow \square \downarrow \square \Leftrightarrow\langle-\sqsupseteq-\dashv\rangle\rangle \Leftrightarrow \mathcal{U} \mathcal{A}\)
 \(\nwarrow \infty \infty \Uparrow-1 \dagger \in \prime \prime \in\)
    ```









```

@
© : Michael Kohlhase 96
7 ․

```

\section*{Solution: XML markup with "meaningful" Tags}
<title>WWW

<date> \(\infty \infty \Uparrow-\dagger \dagger \in \prime \prime \in</\) date>




\(\ddagger-\mid \nabla\rceil</\) participants>


\(<\) program>S \(\left.\left.\sqrt{ }\rceil-\|\mid\| \nabla \int\right\rfloor _\backslash\{ \rangle \nabla \mathbb{V}\right\rceil\lceil\)


\7ப<speaker></program>
@ © Michael Kohlhase
```

What the machine sees of the XML

```







```

 \(\ddagger-\dagger \nabla\rceil</ \sqrt{ }-|\nabla \sqcup\rangle\rfloor\rangle \sqrt{ }-\backslash \backslash\lrcorner\rangle\)
    ```






```

@
(c): Michael Kohlhas

Need to add "Semantics"

\triangleright External agreement on meaning of annotations E.g., Dublin Core
\triangleright Agree on the meaning of a set of annotation tags
\triangleright Problems with this approach: Inflexible, Limited number of things can be expressed \triangleright Use Ontologies to specify meaning of annotations
\triangleright Ontologies provide a vocabulary of terms
\triangleright New terms can be formed by combining existing ones
\triangleright Meaning (semantics) of such terms is formally specified
\triangleright Can also specify relationships between terms in multiple ontologies
(c): Michael Kohlhase

99
\checkmark

15 Introduction to Knowledge Representation

What is knowledge? Why Representation?

\triangleright For the purposes of this course: Knowledge is the information necessary to support intelligent reasoning (during NLP)

representation	can be used to determine
set of words	whether a word is admissible
list of words	the rank of a word
a lexicon	translation or grammatical function
structure	function

\triangleright Representation as structure and function.
\triangleright the representation determines the content theory
(what is the data?)
\triangleright the function determines the process model (what do we do with the data?)

¢ ¢

Knowledge Representation vs. Data Structures

\triangleright Why do we use the term "knowledge representation" rather than
\triangleright data structures?
(sets, lists, ... above)
\triangleright information representation?
(it is information)
\triangleright no good reason other than Al practice, with the intuition that
\triangleright data is simple and general (supports many algorithms)
\triangleright knowledge is complex (has distinguished process model)
(c): Michael Kohlhase
101 V

Some Paradigms for AI/NLP

\triangleright GOFAI
\triangleright symbolic knowledge representation, process model based on heuristic search \triangleright statistical, corpus-based approaches.
Δ symbolic representation, process model based on machine learning
\triangleright knowledge is divided into symbolic- and statistical (search) knowledge
\triangleright connectionist approach
(not in this course)
\triangleright sub-symbolic representation, process model based on primitive processing elements (nodes) and weighted links
Δ knowledge is only present in activation patters, etc.

KR Approaches/Evaluation Criteria

\triangleright Expressive Adequacy: What can be represented, what distinctions are supported.
\triangleright Reasoning Efficiency: can the representation support processing that generates results in acceptable speed?
\triangleright Primitives: what are the primitive elements of representation, are they intuitive, cognitively adequate?
\triangleright Meta-representation: knowledge about knowledge
\triangleright Incompleteness: the problems of reasoning with knowledge that is known to be incomplete.
: Michael Kohlhase

The famous "Isa-Hierarchy"

\triangleright Idea: encode taxonomic information about concepts and individuals
\triangleright in "isa" links
(inclusion of concepts)

- in "inst" links (concept memberships)
\triangleright use property inheritance in the process model

©
(c): Michael Kohlhase

105 7

Limitations of Semantic Networks

\triangleright What is the meaning of a link?
\triangleright link names are very suggestive
(misleading for humans)
\triangleright meaning of link types defined in the process model (no denotational semantics)
\triangleright No division of optional and defining arguments

4
\bigcirc
${ }^{d}$ EdNote: with a cancel link link to the has link

| A Denotational Semantics for Semantic Networks |
| :--- | :--- |
| \triangleright take |

```
Frame Notation as Logic with Locality
    \triangleright Predicate Logic:
    (where is the locality?)
```

catch_22 \in catch_object catcher(catch_22, jack_2) caught(catch_22,ball_5)

There is an instance of catching
Jack did the catching
He caught a certain ball

```
\(\Delta\) Frame Notation (group everything around the object)
```

```
(catch_object catch_22
```

(catch_object catch_22
(catcher jack_2)
(catcher jack_2)
(caught ball_5))
(caught ball_5))

+ Once you have decided on a frame, all the information is local
+ easy to define schemes for concepts (aka. types in feature structures)
- how to determine frame, when to choose frame (log/chair)

```


```

(c): Michael Kohlhase
109 \bigcirc

```

\section*{KR involving Time (Scripts [Shank '77])}
\(\triangleright\) Idea: organize typical event sequences, actors and props into representation structure
\(\triangleright\) Example 117 getting your hair cut (at a beauty parlor)
\(\triangleright\) props, actors as "script variables"
\(\triangleright\) events in a (generalized) sequence
\(\triangleright\) use script material for
\(>\) anaphors, bridging references
\(>\) default common ground
\(>\) to fill in missing material into situations


Other Representation Formats (not covered)
\(\triangleright\) Procedural Representations
\(\triangleright\) analogical representations
\(\triangleright\) iconic representations
If you are interested, come see me off-line
(C): Michael Kohlhase

111

\section*{16 Description Logics and the Semantic Web}

\section*{Resource Description Framework}
\(\triangleright\) Definition 118 The Resource Description Framework (RDF) is a framework for describing resources on the web. It is a XML vocabulary developed by the W3C.
\(\triangleright\) Note: RDF is designed to be read and understood by computers, not to be being displayed to people
\(\triangleright\) Example 119 RDF can be used for describing
\(\triangleright\) properties for shopping items, such as price and availability
\(\triangleright\) time schedules for web events
\(\triangleright\) information about web pages (content, author, created and modified date)
\(\triangleright\) content and rating for web pictures
\(\triangleright\) content for search engines
\(\triangleright\) electronic libraries


\section*{Resources and URIs}
\(\triangleright\) RDF describes resources with properties and property values.
\(\triangleright\) RDF uses Web identifiers (URIs) to identify resources.
\(\triangleright\) Definition 120 A resource is anything that can have a URI, such as http://www. jacobs-university.de
\(\triangleright\) Definition 121 A property is a resource that has a name, such as author or homepage, and a property value is the value of a property, such as Michael Kohlhase or http: //kwarc.info/kohlhase (a property value can be another resource)
\(\triangleright\) Definition 122 The combination of a resource, a property, and a property value forms a statement (known as the subject, predicate and object of a statement).
\(\triangleright\) Example 123 Statement: The [author] \({ }^{\text {pred }}\) of [this slide] \({ }^{\text {subj }}\) is [Michael Kohlhase] \({ }^{\text {obj }}\)
@ © Michael Kohlhase

\section*{XML Syntax for RDF}
\(\triangleright\) RDF is a concrete XML vocabulary for writing statements
\(\triangleright\) Example 124 The following RDF document could describe the slides as a resource
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns\#"
xmlns:dc= "http://purl.org/dc/elements/1.1/">
<rdf:Description about="https://svn.kwarc.info/.../slides/kr/en/rdf.tex"> <dc:creator>Michael Kohlhase</dc:creator> <dc:source>http://www.w3schools.com/rdf</dc:source>
</rdf:Description>
</rdf:RDF>
This RDF document makes two statements:
\(\triangleright\) The subject of both is given in the about attribute of the rdf:Description element
\(\triangleright\) The predicates are given by the element names of its children
\(\triangleright\) The objects are given in the elements as URIs or literal content.
Intuitively: RDF is a way to write down ABox information in a web-scalable way.
\begin{tabular}{|c|c|c|c|}
\hline ¢ ¢ & (c): Michael Kohlhase & 114 & Smers \\
\hline
\end{tabular}

\section*{RDFa as an Inline RDF Markup Format}
\(\triangleright\) Problem: RDF is a standoff markup format (annotate by URIs pointing into other files)
\(\triangleright\) Example 125 <div xmlns:dc="http://purl.org/dc/elements/1.1/">
<h2 property="dc:title">RDF as an Inline RDF Markup Format</h2>
<h3 property="dc:creator">Michael Kohlhase</h3>
<em property="dc:date" datatype="xsd:date"
content="20091111">November 11., 2009</em>
</div>


\section*{OWL as an Ontology Language for the Semantic Web}
\(\triangleright\) Idea: Use Description Logics to talk about RDF triples.
\(\triangleright\) An RDF triple is an ABox entry for a role contraint \(h \mathrm{R} s\)
\(\triangleright\) Example \(126 h\) is the resource for lan Horrocks, \(s\) is the resource for Ulrike Sattler, and R is the the relation "hasColleague" in

\section*{<rdf:Description about="some.uri/person/ian_horrocks">} <hasColleague resource="some.uri/person/uli_sattler"/>
</rdf:Description>

Idea: Now collect similar resources in classes, and state rules about them in a way, so that we can use inference to make kwnowledge explicit that was implicit before (saves us lots of work!)
\(\bowtie\) Idea: We know how to do this, this is just \(\mathcal{A L C}+!!!\)
```

@\mp@code{@MMEHISHBEEFWED}
(c):Michael Kohlhase

The OWL Language

\triangleright Three species of OWL
\triangleright OWL Full is union of OWL syntax and RDF
\triangleright OWL DL restricted to FOL fragment
\triangleright OWL Lite is "easier to implement" subset of OWL DL
\triangleright Semantic layering
\triangleright OWL DL $\hat{=}$ OWL Full within DL fragment
\triangleright DL semantics officially definitive
\triangleright OWL DL based on SHIQ Description Logic $(\mathcal{A K C}+$ nubmer restrictions, transitive roles, inverse roles, role inclusior
\triangleright OWL DL benefits from many years of DL research
\triangleright Well defined semantics, formal properties well understood (complexity, decidability)
\triangleright Known reasoning algorithms, Implemented systems (highly optimized)
(c): Michael Kohlhase

117

17 Planetary: A Social Semantic eScience System

The Planetary System

\triangleright The Planetary system is a Web 3.0 system for semantically annotated document collections in Science, Technology, Engineering and Mathematics (STEM).
\triangleright Web 3.0 stands for extension of the Social Web with Semantic Web/Linked Open Data technologies.
\triangleright documents published in the Planetary system become flexible, adaptive interfaces to a content commons of domain objects, context, and their relations.
\triangleright Planetary is based on the Active Documents Paradigm (see next)
\triangleright Example 127 (Example installments)

\triangleright arxivdemo.mathweb.org	(presentation/structural Level: arXiv)
\triangleright gencs.kwarc.info	(semantic level: PantaRhei course system)
\triangleright logicatlas.omdoc.org	(fully formal level: Logic Representations)
\triangleright planetbox.kwarc.info	(Technology Sandbox)

\triangleright The Planetary system is finalist in the Elsevier Executable Papers Challenge.

¢ ¢

The Active Documents Paradigm

\triangleright Definition 128 The active documents paradigm (ADP) consists of
\triangleright semantically annotated documents together with
\triangleright background ontologies (which we call the content commons),
\triangleright semantic services that use this information
\triangleright a document player application tha embeds services to make documents executable.

$>$ Example 129 Services can be program (fragment) execution, computation, visualization, navigation, information aggregation and information retrieval
(c): Michael Kohlhase

119
$17{ }^{\substack{\text { acons } \\ \text { UNVEREsTr }}}$

18 Realizing Planetary

Realizing Planetary: The KWARC stack

Assembling Planetary: System Architecture

\triangleright Planetary functionality can be achieved by integrating existing components.

\triangleright Vanilla for discussions, user management, caching,
(standard forum [?])
\triangleright TNTBase for versioned XML storage, OMDoc presentation
\triangleright JOBAD integrates semantic services into documents
\triangleright Virtuoso is a triple store for semantic relations
\triangleright ATEXML transforms $\mathrm{A}_{\mathrm{E}} \mathrm{E}_{\mathrm{E}} / \mathrm{ST} \mathrm{TEX}^{2}$ to XHTML+MathML+RDFa

Layers of Documents/Content

\triangleright Content and narrative structures come at different conceptual layers

\triangleright Different layers support different functionality

TNTBase: Versioned Storage for XML

\triangleright The TNTBase system is a versioned storage system for XML documents. It combines the functionality and interfaces of Subversion with those of an XML database.

Versioned XML Database

XML-enabled Repository

OMDoc in a Nutshel	(three levels of modeling)
Formula level: OpenMath/C-MathML \triangleright Objects as logical formulae \triangleright semantics by ref. to theory level	<OMA> <DOSS cd="arith1" name="plus" $/>$ <OMS cd="nat" name="zero"/> <OMV name="N"/> </OMA>
Statement level: \triangleright Definition, Theorem, Proof, Ex. \triangleright semantics explicit forms and refs.	
Theory level: Development Graph \triangleright inheritance via symbol-mapping \triangleright theory-inclusion by proof-obligations \triangleright local (one-step) vs. global links	
\bigcirc O-M	7

STEX, a Semantic Variant of TEX/LATEX

\triangleright Problem: Need content markup formats for semantic services, but Mathematicians write LATEX
\triangleright Idea: Enable the author to make structure explicit and disambiguate meanings
\triangleright use the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ macro mechanism for this
(well established)
\triangleright the author knows the semantics best
(at least she understands)
\triangleright the burden is is alleviated by manageability savings (MKM on $T_{E} X / L A T_{E} X$)
\triangleright Definition 131 ($\mathbf{S T}_{\mathbf{E}} \mathbf{X}$ Approach) Semantic pre-loading of $T_{E} X / E T_{E} X$ documents.
\triangleright Introduce semantic macros: e.g. \union $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \sim a \cup b \cup c$
\triangleright Mark up discourse structure:
(largely invisible)
e.g. \begin\{sproof\}[id=Wiles,for=Fermat]... \end\{sproof\} }
\triangleright Generate PDF and OMDoc from that
(via $\left.\operatorname{AT} T_{E X M L}[?]\right)$
http://trac.kwarc.info/sTeX/
Θ
© : Michael Kohlhase
127
7

19 Levels of Service in Planetary

PantaRhei: Semantic Course Knowledge Exploration

\triangleright PantaRhei is a semantic course knowledge exploration system based on the Planetary system.

Accessing Encyclopedias via Ontologies

\triangleright Idea: add classification metadata to articles, harvest as RDF into triplestore, compute access methods via SPARQL queries and SKOS ontology.
\triangleright Example 133 (MSC View in PlanetMath) use the Math Subject Classification

	Discussions Activity Sign in Aricles		
	top	label	
	00-xx	General	
	${ }^{01-x x}$	History and biography [See also the classification number -03 in the other sections]	
	$0^{03-x x}$	Mathematical logic and foundations	
		subconcept	label
		03-00	General reference works [handbooks, dictionaries, bibliographies, etc.]
		03-01	Instructional exposition [textbooks, tutorial papers, etc.]
		03-02	Research exposition [monographs, survey articies]
		03-03	Historical [must also be assigned at least one classification number from
			Section 01]
			article
			PraeclarumTheorema
			Peircestaw
			Ampheck
		03-04	Explicit machine computation and programs [not the theory of computation
		: Michael Koh	hlhase 132

References

[BCHL09] Bert Bos, Tantek Celik, Ian Hickson, and Høakon Wium Lie. Cascading style sheets level 2 revision 1 (CSS 2.1) specification. W3C Candidate Recommendation, World Wide Web Consortium (W3C), 2009.
[BLFM05] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform resource identifier (URI): Generic syntax. RFC 3986, Internet Engineering Task Force (IETF), 2005.
[Dav67] Donald Davidson. Truth and meaning. Synthese, 17, 1967.
[ECM09] ECMAScript language specification. ECMA Standard ECMA-262, ECMA International, December 2009. $5^{\text {th }}$ Edition.
$\left[F^{+}{ }^{+} 99\right]$ R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. BernersLee. Hypertext transfer protocol - HTTP/1.1. RFC 2616, Internet Engineering Task Force (IETF), 1999.
[HL11] Martin Hilbert and Priscila López. The world's technological capacity to store, communicate, and compute information. Science, 331, feb 2011.
[Kay08] Michael Kay. Saxonica: XSLT and XQuery processing. http://www.saxonica.com, 2008.
[Koh08] Michael Kohlhase. Using $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ as a semantic markup format. Mathematics in Computer Science, 2(2):279-304, 2008.
[Koh10] Michael Kohlhase. sTeX: Semantic markup in $\mathrm{T}_{\mathrm{E}} \mathrm{X} / \mathrm{LA}_{\mathrm{E}} \mathrm{X}$. Technical report, Comprehensive $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Archive Network (CTAN), 2010.
[Mil] Bruce Miller. LaTeXML: A $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ to XML converter. Web Manual at http://dlmf. nist.gov/LaTeXML/. seen May2010.
[RHJ98] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.0 Specification. W3C Recommendation REC-html40, World Wide Web Consortium (W3C), April 1998.
[Van] Vanilla forums. project page at http://vanillaforums.org. visited April 2011.
[Vei] Daniel Veillard. The xslt c library for gnome; the xsltproc tool. System Home page at http://xmlsoft.org/XSLT/xsltproc2.html.
[Vol11] Victor Volkman. Classic parsing with flex and bison. http://www. codeguru.com/csharp/.net/net_general/patterns/article.php/c12805__2/ Classic-Parsing-with-Flex-and-Bison.htm, 2011. visited Feb 2011.
[Wik11] Wikipedia. Epub - wikipedia, the free encyclopedia, 2011. [Online; accessed 15-March-2011].
[XML] Extensible Markup Language (XML) 1.0 (Fourth Edition). Web site at http://www . w3. org/TR/REC-xml/.

Index

active
documents
paradigm, 65
ADP, 65
agent
user, 21
alike
share, 36
analysis
conceptual, 18
logical, 18
analyzer
lexical, 28
American Standard Code for Information Interchange, 11
attribuition, 36
attribute, 38
node, 38
balanced
bracketing
structure, 38
basic
multilingual
plane, 13
book
electronic, 45
electronic (), 45
bracketing
balanced (), 38
Browser
web, 21
card
punch, 11
Creative Commons
license, 36
character
encoding, 14
closing
tag, 38
code
point, 13
command
sequence, 32
commercial
use, 36
commons
content, 65
compact
syntax, 40
concept, 52
conceptual
analysis, 18
Container
Open (), 48
content
commons, 65
control
navigation, 46
cookie, 25
cookies
third party, 25
copy
working, 49
Copyright, 35
Cascading Style Sheets, 24
declaration namespace, 38
definition
token, 29
derivative
works, 36
document
player, 65
root, 38
XML (), 38
Document Type Definition, 39
documents
active (), 65
DTD, 39
eBook, 45
electronic book, 45
reader, 45
element
empty, 38
node, 38
empty
element, 38
encoding
character, 14
eReader, 45
expression
regular, 26
generator
parser, 29
HyperText Markup Language, 23
HyperText Markup Language, 23

HTTP, 21
Hypertext Transfer Protocol, 21
http
request, 21
idempotent, 21
lexer
specification, 28
lexical
analyzer, 28
license
Creative Commons, 36
logical
analysis, 18
macros, 32
map, 53
merge
three-way, 49
two-way, 49
two-way
merge, 49
three-way
merge, 49
multilingual
basic (), 13
namespace
declaration, 38
navigation
control, 46
node
attribute, 38
element, 38
text, 38
object, 62
OCF, 48
Open
Container
Format, 48
Packaging
Format, 46
opening
tag, 38
OPF, 46
Packaging
Open (), 46
page
web, 21
parent, 49
parser
generator, 29
path
XML (), 40
player
document, 65
point
code, 13
predicate, 62
preloading semantic, 69
property, 62
value, 62
punch
card, 11
Resource Description Framework, 62
regexp, 26
regular
expression, 26
relative URI, 20
Relax NG, 40
RelaxNG, 39
schema, 40
repository, 49
request
http, 21
resource, 62
uniform (), 20
web, 20
result
tree, 41
root
document, 38
safe, 21
schema
RelaxNG, 40
semantic
preloading, 69
sequence
command, 32
server
web, 21
share
alike, 36
site
web, 21
specification
lexer, 28
Standard
Unicode, 13
statement, 62
stylesheet, 41
subject, 62
syntax
compact, 40
tag
closing, 38
opening, 38
task, 52
template, 41
text
node, 38
third party
cookies, 25
token
definition, 29
topic, 51
transclusion, 53
tree
result, 41
Universal Character Set, 13
Unicode
Standard, 13
uniform
resource
identifier, 20
locator, 20
URI
relative, 20
use
commercial, 36
user
agent, 21
value
property, 62
version control system, 49
web
Browser, 21
page, 21
resource, 20
server, 21
site, 21
Web 3.0, 65
working
copy, 49
works
derivative, 36
XML
document
tree, 38
path
language, 40
Extensible Stylesheet Language Transformations, 41

[^0]: ${ }^{1}$ EdNote: describe the discussions in Panta Rhei
 ${ }^{2}$ EdNote: Say something about the problems

[^1]: ${ }^{1}$ Of course, this is a very simplistic attempt to explain academic societies, and there are many other factors at work there. For instance, it is possible to convert reputation into money: if you are a famous scientist, you may get a well-paying job at a good university,...

[^2]: ${ }^{3}$ EdNote: is the 7-bit grouping really motivated by the cognitive limit?

[^3]: Example: An http request in real life
 \triangleright Connect to the web server (port 80) (so that we can see what is happening) telnet www.kwarc.info 80
 \triangleright Send off the GET request
 GET /teaching/GenCS2.html http/1.1
 Host: www.kwarc.info
 User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.6; en-US; rv:1.9.2.4) Gecko/20100413 Firefox/3.6.4
 \triangleright Response from the server
 HTTP/1.1 200 OK
 Date: Mon, 03 May 2010 06:48:36 GMT
 Server: Apache/2.2.9 (Debian) DAV/2 SVN/1.5.1 mod_fastcgi/2.4.6 PHP/5.2.6-1+lenny8 with
 Suhosin-Patch mod_python/3.3.1 Python/2.5.2 mod_ssl/2.2.9 OpenSSL/0.9.8g
 Last-Modified: Sun, 02 May 2010 13:09:19 GMT
 ETag: "1c78b-db1-4859c2f221dc0"
 Accept-Ranges: bytes
 Content-Length: 3505
 Content-Type: text/html
 <!--This file was generated by ws2html.xsl. Do NOT edit manually! --> <html xmlns="http://www.w3.org/1999/xhtml"><head>...</head></html>
 © © Michael Kohlhase

