
Assignment1 – SymNLProj: Model generation

Task 1.1 (Implement model generation)
Implement tableau-based model generation in ELPI and connect it to the se-

mantics construction from the previous assignment.
If you want to restrict yourself to propositional tableaux, you can get partial

points if you connect it to fragment 1. For full points, your implementation should
support the NP fragment from the previous assignment. In this case, you can skip
fragment 1 (and of course the PP fragment).

Supporting the description operator is tricky. Therefore, it is optional and you
can get bonus points for it. In this case, youmight still want to restrict yourself to the
logical expressions that can actually occur in the fragment (no functions, equality
is only introduced by the description operator, etc.). If you support description, you
should also include the unique name assumption.

Tips
1. As always, feel free to reach out if you have any questions/problems (whether

it’s about ELPI or how to approach some part of the assignment).
2. Simplify the logical expressions as a pre-processing step, so that you are left

with a small set of connectives (e.g. only negation, conjunction and universal
quantification).

3. For propositional tableau, you canmake a predicatewith two arguments. The
first argument is the “todo list”. It lists all formulae that still have to be pro-
cessed. For example, if you process 𝐴 ∧ 𝐵𝑇 , then you should put 𝐴𝑇 and 𝐵𝑇
on the todo list. The second argument is the output. It contains the model as
a list of atomic formulae marked as true or false. ELPI’s backtracking allows
you to explore more models.

4. For branching, have one rule for each branch. ELPI’s DFS will then first ex-
plore the first branch. If it fails, it will backtrack and try the second branch.

5. For first-order tableau, you will need more arguments (e.g. the Herbrand
base, the set of universally quantified formulae, etc.).

6. Make sure you are aware of prolog’s/ELPI’s cut operator (!).

ELPI tips
Using pi Because of higher-order abstract syntax, the body of a quantification is
a function, not a logical expression. This can lead to some challenges, which can
be solved by using the pi operator. Essentially, pi is ELPI’s way of saying “for all”.
Here is an example if you want to simplify a formula:

1



type simplify oo −> oo −> prop.
% ...
simplify (forall A) (forall A2) :− pi x \ simplify (A x) (A2 x).

Tracing themodel generation A simple trick to debug the model generation is
to execute a print statement for every call:

type model_generation ... −> ... −> prop.
model_generation A B :− print "model_generation" A B, fail.
% ... (the actual implementation)

Generating witnesses One way to generate witnesses is to use the following
constructor:

type witness int −> ii.

Submission and Points
At the deadline, you have to submit:

1. All your code,

2. a README file that

(a) explains briefly your implementation (what files are relevant for what,
etc.),

(b) shows a few example commands for testing your implementation.

You can get up to 100 points for this assignment – 50 if you support fragment 1
and 100 if you support theNP fragment. If you also support description, you can get
up to 30 bonus points. If the grading scheme does not work well, we might adjust
it later on.

2


