
Assignment1 – SymNLProj: Semantics
Construction in ELPI

In the previous assignment, you have implemented a grammar in GF for differ-
ent fragments of English. In this assignment, the goal is to translate the abstract
syntax trees (ASTs) generated by the GF grammar into logical expressions. As a
programming language, we will use 𝜆Prolog, and more specifically ELPI.

As the name suggests, it is a combination of 𝜆-calculus and Prolog, which is
very useful for our purposes. ELPI is a niche language with limited documentation
(though there are resources for 𝜆Prolog in general). Therefore:

• make sure youunderstand the basics of Prolog and the simply typed𝜆-calculus
because ELPI is based on these concepts,

• we will provide a few examples of ELPI code and relevant ideas at the end of
this assignment,

• we will provide a mini fragment with semantics construction in ELPI as an
example (see the assignment repository),

• you should feel encouraged to ask questionswhenever you are stuck or some-
thing is unclear.

Tasks
For each fragment from the previous assignment, you should implement a seman-
tics construction inELPI. You canmodify yourGF grammar tomake the translation
easier if necessary.

Fragment 1
For fragment 1, the semantics construction should result in PLNQ expressions as
described in the lecture notes. For example,

Ethel poisoned the cake and Prudence laughed

should be translated into

𝑝𝑜𝑖𝑠𝑜𝑛(𝑒𝑡ℎ𝑒𝑙, 𝑡ℎ𝑒𝑐𝑎𝑘𝑒) ∧ 𝑙𝑎𝑢𝑔ℎ(𝑝𝑟𝑢𝑑𝑒𝑛𝑐𝑒)

Note that you do not have to produce that specific output. Instead, you can
produces an ELPI term like this:
and (poison ethel thecake) (laugh prudence)

1



NP fragment
This fragment includes complex noun phrases. The semantics construction should
correspond to fragment 4 from the lecture. For example,

Ethel poisons the cake and every happy dog laughs

should be translated to

𝑝𝑜𝑖𝑠𝑜𝑛(𝑒𝑡ℎ𝑒𝑙, 𝜄𝑐𝑎𝑘𝑒) ∧ ∀𝑥.(𝑑𝑜𝑔(𝑥) ∧ ℎ𝑎𝑝𝑝𝑦(𝑥)) → 𝑙𝑎𝑢𝑔ℎ(𝑥)

PP fragment
For this fragment, you should use event semantics (which will be explained in the
lecture very soon). For example,

Ethel poisons Peter with Prudence

should be translated to

∃𝑒.𝑡𝑝(𝑒, 𝑝𝑜𝑖𝑠𝑜𝑛) ∧ 𝑎𝑔(𝑒, 𝑒𝑡ℎ𝑒𝑙) ∧ 𝑤𝑖𝑡ℎ(𝑒, 𝑝𝑟𝑢𝑑𝑒𝑛𝑐𝑒))

Submission and Points
At the deadline, you have to submit:

1. All your code,

2. a README file that briefly explains how to use your code (what files are
relevant for what, etc.).

You can get up to 100 points for this assignment.

ELPI

Basics
ELPI syntax is similar to Prolog, but the notation of function application is based
on the 𝜆-calculus. Additionally, ELPI is typed.

For example, we can write the following Prolog code
member(X, [X|_]).
member(X, [_|T]) :− member(X, T).

in ELPI as follows:
type member A −> list A −> prop.
member X [X|_].
member X [_|T] :− member X T.

2



The type declaration has a variable A to make the predicate polymorphic (i.e. it
can work on integer lists, string lists, etc.). If we only wanted lists of integers, we
could write type member int −> list int −> prop.. The type declaration states
that the member predicate gets two arguments: an A and a list of As. As it is a
predicate, it returns a proposition (prop).

Specifying a logic
InELPI,we can define our own types and functions, which lets us specify the syntax
of a logic. We will use the type oo for propositions to keep it short (o is already used
by ELPI).
% oo is a type (the type of propositions). We use kind to define a new type.
kind oo type.
% neg is a function that takes a proposition and returns a proposition.
type neg oo −> oo.
% and is a function that takes two propositions and returns a proposition.
type and oo −> oo −> oo.
% etc.

To get an impression on how to use this, let’s define a predicate for removing
double negations:
type noDoubleNeg oo −> oo −> prop.
noDoubleNeg (neg (neg P)) P1 :− !, noDoubleNeg P P1.
noDoubleNeg (and P Q) (and P1 Q1) :− !, noDoubleNeg P P1, noDoubleNeg Q Q1.
noDoubleNeg (neg P) (neg P1) :− !, noDoubleNeg P P1.
noDoubleNeg P P.

% let’s define some propositions so we can test our logic
type phi oo. % phi is a proposition.
type psi oo. % psi is a proposition.

% a test case
type test prop.
test :− noDoubleNeg (and (neg (neg phi)) (neg psi)) X, print "Result:", print X.

To run this code, enter test. in the ELPI shell.

Quantifiers via Higher-Order Abstract Syntax (HOAS)
Quantifiers like ∀ bind variables. There is a trick to represent this in systems ELPI:
higher-order abstract syntax (HOAS).

Here is the relevant part of the code:
kind ind type. % individuals
type forall (ind −> oo) −> oo.

3



So forall is a function that takes a function from individuals to propositions and
returns a proposition. This may seem a bit odd at first, but it is a very powerful
concept. There are two different ways to think about this:

1. ∀ is a binder, i.e. it binds a variable. In ELPI, we already have a way to bind
variables: 𝜆 functions. In HOAS, we simply re-use this binding mechanism
for other binders. The ELPI notation for 𝜆𝑥.𝑝 is x \ p. If want to represent
the expression ∀𝑥.𝑝(𝑥) ∧ 𝑞(𝑥), we can write forall (x \ and (p x) (q x)).

2. forall takes a predicate as an argument. So forall p states that p evaluates to
true for all possible arguments.

GF and ELPI
The assignment repository has code for callingGF fromELPI. Specifically, the parse
predicate takes the path to the GF concrete syntax and a string to parse and (on the
third argument) returns the AST as a string. Example call:
parse "path/to/MiniFrag1Eng.gf" "it is not the case that we detected a pit" AST.

If this does not work for you, you can just hard-code a few example ASTs in
ELPI:
type parse string −> string −> string −> prop.
parse "MiniFrag1Eng.gf" "it is not the case that we detected a pit" "negate (detect pit)".
parse "MiniFrag1Eng.gf" "we detected a pit" "detect pit".
% ...

The same way that you can represent the syntax of a logic in ELPI, you can
also represent the syntax of the abstract syntax trees generated by GF. Writing this
down is very tedious and closely mirrors the GF abstract syntax. Therefore, the as-
signment repository has a script that generates this code for you. It prefixes all GF
function symbols and categories with g/ to avoid name clashes (ELPI identifiers
may contain slashes). It also generates predicates for parsing the string representa-
tion of the ASTs into ELPI terms.

Tips
1. There is an example in the assignment repository – take a look at it.

2. Ask questions if you are stuck or something is unclear. Some of the involved
concepts are tricky to understand the first time, so do not hesitate to ask for
help.

4


