
Assignment1 – SymNLProj Warmup-Up: Natural
Language Semanticswith Prolog

The goal of this assignment will be to implement a basic natural language-based
reasoning system in Prolog.

Problem files, example solutions, and a code skeleton are provided in the as-
signment repository1.

Important

1. This assignment has to be solved individually. If you use someone else’s code
(even if you modify it), you will fail the assignment.

2. This assignment is pre-requisite for the project. You can only participate in
the project if you pass this assignment. The idea is that this assignment lets
you find out if the project works for you.

3. If you are stuck, ask for help.

4. Deadline: Nov. 29, 2024.

5. Early deadline: Nov. 15, 2024. At this early deadline, you have to submit
a solution worth at least 10 points. This is a requirement to continue the
project.

6. This is a new assignment. If you find any mistakes/inconsistencies/poor de-
scriptions (very likely), please report them.

Background: The Wumpus World You may know the Wumpus World from
the AI lectures. In this assignment, we will do some reasoning about theWumpus
World based on scout reports.

The world is a 4×2 grid, where each cell is labelled with a lowercase letter. Here
is the map:

a b c d

e f g h

Scouts can explore the world and report back what they see. In particular, they
look for pits and echoes. A cell will have an echo if and only if there is a pit in it or
one of the adjacent cells.

1https://gitlab.rrze.fau.de/wrv/SymNLProj/ws2425/a1-warmup/assignment

1

https://gitlab.rrze.fau.de/wrv/SymNLProj/ws2425/a1-warmup/assignment

Overview In this assignment, you will have to implement a Prolog program that
parses English scout reports (observations about the world) and ultimately answers
questions based on them. The assignment repository contains a lot of example
problems and solutions, and some “driver code” that iterates over the problems
and calls your predicates.

Task 1.1 (Parse scout reports into PLnq)
Scout reports are writting in English and report on the distribution of pits and

echoes on the grid. Here are some examples:

1. There is no echo in f.

2. If there is a pit in cell h, then there is no pit in b.

3. We discovered echoes in cells d, a, b and f.

We intentionally do not specify the scout report fragment in detail – you can infer
it from the problem files.

Write a Prolog program that parses the English sentences into a PLnq formula. For
example, the sentence

If there is a pit in g or there is no pit in a, then there is a pit in f.

should be translated to the formula

implies(or(pit(g),not(pit(a))),pit(f))

You can use the following predicate to translate a sentence into a list of tokens.

string_to_words(String, Words) :−
string_lower(String, LowerString),
split_string(LowerString, " ", ",.?", WordStrs),
maplist(atom_string, Words, WordStrs).

The appendix contains more information on how to use Prolog for parsing.

Notes

1. It is okay if your grammar overgenerates, i.e. if it accepts sentences that are
ungrammatical, like There is a pits in a.

2. The driver code expects the predicate to be called nl_to_plnq (see the driver
code for details).

3. For simplicity, the scout reports are designed to be (semantically) non-ambiguous.
The same will be true for the questions in the later tasks. If you do find am-
biguities, please report them.

2

Task 1.2 (Evaluate truth of scout reports)
Write a predicate report_eval that, given a description of the world and a scout

report, determines whether the scout report is true or false. The description of the
world is a list of variable assignments asgn(X, Y), where X is an atomic proposition
and Y is a truth value.
Example:

?− report_eval([asgn(pit(a), true), asgn(pit(b), false)], "There is a pit in a.", X).
X = true.
?− report_eval([asgn(pit(a), true), asgn(pit(b), false)], "There is a pit in b.", X).
X = false.

Hint:

1. Use your solution from the previous task for parsing the scout reports.

2. As inspiration: 𝑋∧𝑌 should evaluate to true if both𝑋 and𝑌 evaluate to true.
𝑋 ∧ 𝑌 should evaluate to false if either 𝑋 or 𝑌 evaluates to false.

Task 1.3 (Scout Report Reasoning)
Ultimately, the goal is to answer questions based on knowledge from scout re-

ports. Extend your grammar to include yes/no questions like
1. Is there a pit in a?
2. Is it true that there are no echoes in cells d and h?
Write a predicate that, given scout reports and a question, provides an answer.

Example:

?− answer(
["If there is a pit in a, then there is a pit in b.",
"There is no pit in b".],

"Is there a pit in a?", X).
X = "no".

You can again use the problem files and example solutions as a guide.

Hint: Basically, you have to implement a prover here. You should already have an
evaluator from the previous task. If you feed an “uninstantiated” variable assign-
ment (i.e. [asgn(pit(a), B1), asgn(echo(a), B2), asgn(pit(b), B3), ...]) to the evalu-
ator, it will try to find a variable assignment that satisfies the PLnq formula. In other
words, you have a satisfiability checker for free. You can turn that into a prover by
exploiting the fact that 𝜑 is a theorem if and only if ¬𝜑 is unsatisfiable.

Task 1.4 (World Knowledge)

3

Include the world knowledge that an echo is present if and only if there is a pit
in the cell or in one of the neighboring cells.

You can get theworld knowledge as a list of facts from the assignment repository.
It contains sentences like

If there is a pit in a, then there are echoes in a, e and b.

You should already be able to parse these sentences.
Develop a predicate answer2 that anwers questions like in the previous task, but

now also takes the world knowledge into account:

?− answer2(["There is a pit in a."], "Is there an \sn{echo} in b?", X).
X = "yes".

Hint: You might notice that the problems are sufficiently complex that a naive
solver is slow. A proper solution would be to use a SAT solver, but that is beyond
the scope of this assignment. It is possible to solve the problems with a naive solver,
but youmight have tomake sure that you do not backtrack toomuch. For example,
if there are multiple readings, your answer predicate could just take the first one
(use the ! operator).

Submission and Points
At the deadline, you have to submit:

1. All your code,

2. solution files for the problems,

3. a README file that explains how to run your code,

4. a short summary of how you solved the problem (1
2
− 1 page, but the upper

limit is optional). The summary should focus on the conceptual aspects of
your solution, and not document the code.

For each task, you get 100 problem files. They are split into 4 groups of 25 files
each (0–24, 25–49, etc.) of increasing difficulty. For the first two tasks, you get 6
points for each group of 25 files you solve. And for the other two tasks, you get
4 points per group. Note that you only get points for a group if all problems were
solved correctly. That gives you a total of 80 points for the solutions.

If you get at least 1 point for the solutions, you can get additional 20 points are
for the README and the summary.

If the grading scheme does not work well, we might adjust it later on (likely in
your favor).

4

Parsing with Prolog

Parsing with lists
Consider the sentence

There is a pit in a and there is a pit in b.

which we will represent as the token sequence

[there, is, a, pit, in, a, and, there, is, a, pit, in, b]

We can parse this with a ternary predicate sentence/3, where the first argument
is the resulting PLNQ expression, the second argument is the list of words to parse,
and the third argument is words that remain to be parsed.

You can define the predicate as follows:

sentence(pit(X), [there, is, a, pit, in, X | T], T).
sentence(and(A, B), S0, T) :−

sentence(A, S0, [and | S1]),
sentence(B, S1, T).

You can use it by calling

?− sentence(Expr, [there,is,a,pit,in,a,and,there,is,a,pit,in,b], []).

Note that we directly obtain a PNLQ formula as a parse tree.
This trick of using lists is a common way to parse in Prolog. In fact, there is

essentially a short-hand for this in Prolog, called definite clause grammar (DCG).
There are many tutorials on the web that explain how to use DCGs in Prolog. For
example, the Wikipedia page on DCGs is a good starting point.

Here is the same parser as a DCG:

sentence(pit(X)) −−> [there, is, a, pit, in, X].
sentence(and(A, B)) −−> sentence(A), [and], sentence(B).

5

