1 Heating an Office Building (Newton's Law of Cooling)

Background Suppose that in Winter the daytime temperature in a certain office building is maintained at $70^{\circ} \mathrm{F}$. The heating is shut off at 10 P.M. and turned on again at 6 A.M. On a certain day the temperature inside the building at 2 A.M was found to be $65^{\circ} \mathrm{F}$. The outside temperature was $50^{\circ} \mathrm{F}$ at 10 P.M. and had dropped to $40^{\circ} F$ by 6 A.M.

Problem What was the temperature inside the building when the heat was turned on at 6 A.M.

Physical Information Experiments show that the time rate of change of the temperature T of a body B (which conducts heat well, as, for example, a copper ball does) is proportional to the difference between T and the temperature of the surrounding medium (Newton's law of cooling).

Solution Step 1: Setting up a model Let $T(t)$ be the temperature inside the building and T_{A} the outside temperature (assumed to be constant in Newton's Law). Then by Newton's law,

$$
\begin{equation*}
\frac{d T}{d t}=k\left(T-T_{A}\right) \tag{1}
\end{equation*}
$$

Such experimental laws are derived under idealized assumptions that rarely hold exactly. However, even if a model seems to fit the reality only poorly (as in the present case), it will still give valuable qualitative information. To see how good a model is, the engineer will collect experimental data and compare them with the calculations from the model.

Solution Step 2: General Solution We cannot solve (1) because we do not know T_{A}, just that it varied between $50^{\circ} F$ and $40^{\circ} F$, so we follow the Golden Rule: If you cannot solve your problem, try to solve a simpler one. We solve (1) with the unknown function T_{A} replaced by the average of the two known values, or $45^{\circ} \mathrm{F}$. For physical reasons we may expect that this will give us a reasonable approximate value of T at 6 A.M.

For constant $T_{A}=45$ (or any other constant value) the ODE (1) is separable. Separation, integration, and taking exponents gives the general solution

$$
\frac{d T}{T-45}=k d t, \quad \ln |T-45|=k t+c^{*}, \quad T(t)=45+c e^{k t} \quad\left(c=e^{c^{*}}\right)
$$

Solution Step 3: Particular Solution We choose 10 P.M. to be $t=0$. Then the given initial condition is $T(0)=70$ and yields a particular solution, call it T_{p}. By substitution

$$
T(0)=45+c e^{0}=70, \quad c=70-45=25, \quad T_{p}(t)=45+25 e^{k t} .
$$

Solution Step 4: Determination of k We use $T(4)=65$, where $t=4$ is 2 A.M. Solving algebraically for k and inserting k into $T_{p}(t)$ gives (see Figure ??)

$$
T_{p}(4)=45+25 e^{4 k}=65, \quad e^{4 k}=0.8, \quad k=\frac{1}{4} \ln 0.8=-0.056, \quad T_{P}(t)=45+25 e^{-0.056 t}
$$

Figure 1: Particular Solution (temperature)

Solution Step 4: Answer and Interpretation 6 A.M. is $t=8$ (namely 8 hours after 10 P.M.), and

$$
T_{p}(8)=45+25 e^{-0.056 \cdot 8}=61
$$

Hence the temperature in the building dropped by $9^{\circ} F$ from $70^{\circ} F$ to $61^{\circ} F$, a result that looks reasonable.

