1 Mixing Problem

Background Mixing problems occur quite frequently in chemical industry. We explain here how to solve the basic model involving a single tank (see the figure on the right). The tank
 contains 1000 gal of water in which initially 100 lb of salt is dissolved. Brine - i.e. salt water - runs in at a rate of $10 \mathrm{gal} / \mathrm{min}$, and each gallon contains 5 lb of dissolved salt. The mixture in the tank is kept uniform by stirring. Brine runs out at $10 \mathrm{gal} / \mathrm{min}$.

Problem Find the amount of salt in the tank at any time t
Solution Step 1: Setting up a model Let $y(t)$ denote the amount of salt in the tank at time t. Its time rate of change is

$$
\begin{equation*}
y^{\prime}=\text { salt inflow rate }- \text { salt outflow rate } \tag{1}
\end{equation*}
$$

5 lb times 10 galgives an inflow of 50 lb of salt. Now, the outflow is 10 gal of brine. This is $10 / 1000=0.01(=1 \%)$ of the total brine content in the tank, hence 0.01 of the salt content $y(t)$, that is, $0.01 y(t)$. Thus, from (1) we obtain the following ODE as a model:

$$
\begin{equation*}
y^{\prime}=50-0.01 y=-0.01(y-5000) . \tag{2}
\end{equation*}
$$

Solution Step 2: Solution of the Model The ODE (2) is separable. Separation, integration, and taking exponents on both sides gives
$\frac{d y}{y-5000}=-0.01 d t, \quad \ln |y-5000|=-0.01 t+c^{*}, \quad y-5000=c e^{-0.01 t}$.
Initially, the tank contains 100 lb of salt. Hence $y(0)=100$ is the initial condition that will give the unique solution. Substituting $y=100$ and $t=0$ in the last equation gives $100-5000=c e^{0}=c$. Hence $c=4900$. Hence the amount of salt in the tank at time t is

$$
\begin{equation*}
y(t)=5000-4900 e^{-0.01 t} . \tag{3}
\end{equation*}
$$

This function (see the graph on the right) shows an exponential approach to the limit 5000 lb . Can you explain physically that $y(t)$ should increase with time? That its limit is 5000 lb ? Can you see the limit directly from the ODE?

