Content & Form in Mathematics Presenting and Capturing Mathematics for the Web in *MathML*

Michael Kohlhase

Professur für Wissensrepräsentation und -verarbeitung Informatik, FAU Erlangen-Nürnberg http://kwarc.info

March 15, 2018

Math on the Web *← MathML*

- ► MathML extends HTML with mathematical formulae
- ► *MathML* is the first XML application by the W3C

- MathML extends HTML with mathematical formulae
- ► *MathML* is the first XML application by the W3C
- MathML has two sub-languages
 - Presentation MathML (layout) and
 - Content MathML (structure/semantics)

- MathML extends HTML with mathematical formulae
- ► MathML is the first XML application by the W3C
- MathML has two sub-languages
 - ▶ Presentation MathML (layout) and
 - Content MathML (structure/semantics)
- ► MathML3 reconciles *OpenMath* and Content MathML. (2010)
- ► MathML is part of HTML5 (well-integrated; current standard)

- MathML extends HTML with mathematical formulae
- ► *MathML* is the first XML application by the W3C
- MathML has two sub-languages
 - ► Presentation MathML (layout) and
 - Content MathML (structure/semantics)
- ► MathML3 reconciles *OpenMath* and Content MathML. (2010)
- ► MathML is part of HTML5 (well-integrated; current standard)
- lacktriangle two major browsers support $\it MathML$ natively: FireFox and Safari $\it (\sim 15\%)$
- ► all browsers support *MathML* via MathJax (JavsScript+CSS+Fonts)

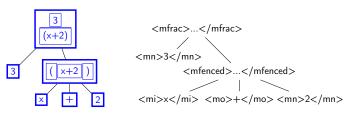
- MathML extends HTML with mathematical formulae
- ► MathML is the first XML application by the W3C

- ► MathML has two sub-languages
 - ► Presentation MathML (layout) and
 - Content MathML (structure/semantics)
- ► MathML3 reconciles *OpenMath* and Content MathML. (2010)
- ► MathML is part of HTML5 (well-integrated; current standard)
- lacktriangle two major browsers support $\it MathML$ natively: FireFox and Safari $\it (\sim 15\%)$
- ► all browsers support *MathML* via MathJax (JavsScript+CSS+Fonts)
- ► MathML support in Chrome under way (~78%) see https://mathml.igalia.com/

- ► MathML extends HTML with mathematical formulae
- MathML is the first XML application by the W3C
- MathML has two sub-languages
 - ► Presentation MathML (layout) and
 - Content MathML (structure/semantics)
- ► MathML3 reconciles *OpenMath* and Content MathML. (2010)
- ► MathML is part of HTML5 (well-integrated; current standard)
- lacktriangle two major browsers support $\it MathML$ natively: FireFox and Safari $\it (\sim 15\%)$
- ► all browsers support *MathML* via MathJax (JavsScript+CSS+Fonts)
- ► MathML support in Chrome under way (~78%) see https://mathml.igalia.com/
- ▶ Join the MathML Association (http://mathml-association.org/)

MathML: Mathematical Markup Language

MathML is an XML application for describing mathematical notation and capturing both its structure and content. The goal of *MathML* is to enable mathematics to be served, received, and processed on the World Wide Web, just as HTML has enabled this functionality for text.


from the MathML2 Recommendation

Representation of Formulae as Expression Trees

- Mathematical Expressions are build up as expression trees
 - ▶ of layout schemata in Presentation-MathML
 - ▶ of functional subexpressions in Content-MathML
- ► Example: $\frac{3}{(x+2)}$

Layout Schemata and the *MathML* Box model

- Presentation MathML represents the visual appearance of a formula in a tree of layout primitives
- **Example 0.1 (Presentation MathML for** 3/(x+2)**).**

P-MathML Token Elements

- ► Tokens Elements directly contain character data (the only way to include it) Attributes: fontweight, fontfamily and fontstyle, color...
- ► Identifiers: <mi>... </mi> (~ variables, italicized)
- ► Numbers: <mn>... </mn> (numbers)
- ► Operators: <mo>... </mo> (constants, functions, upright)
- Operator display is often ideosyncratic (Operator Dictionaries for defaults)
 - Examples: spacing, *-scripts in sums and limits, stretchy integrals,...
 - Attributes: Ispace, rspace, stretchy, and movablelimits.
 - Operators include delimiter characters like
 - parentheses (which stretch),
 - punctuation (which has uneven spacing around it) and
 - accents (which also stretch).

MathML Symbols in UniCode

- Problem: Mathematical formula use lots of non-ASCII symbols (not on your keyboard)
- ▶ Math Symbols: α , β , ... Θ , \int , \uplus , \pm , ∞ , \mathbb{N} , \mathbb{R} , ... (+ ca. 5000 more)
- Recap: The UniCode standard collects all characters of all languages in the world. (100 000 so far)
- ▶ Idea: Math is a language, use UniCode for its characters.
- ► Recap: Each UniCode character is identified by an unambiguous name and an integer number called its code point (a number < 1100000)
- ► Example 0.2 (Some Math Symbols).
 - ► The integral symbol ∫ has the number U+8747 and the name INTEGRAL
 - ► The universal quantifier \forall has the number U+8704 and the name FOR ALL
 - \blacktriangleright The letter θ has number U+952 and the name GREEK SMALL LETTER THETA

For *MathML*: UniCode letters can be used in HTML directly (and in *MathML*). Encode them via their code point as θ (decimal) or θ (hex).

▶ Problem: What is the difference (in meaning) between 3(a+b), c(a+b), and f(a+b)?

- ▶ Problem: What is the difference (in meaning) between 3(a+b), c(a+b), and f(a+b)?
- ▶ Observation: We need to know what a formula means to e.g. read it correctly
 - three a plus b vs. c times a plus b vs.
 - f applied to the sum of a and b or f of a plus b

- ▶ Problem: What is the difference (in meaning) between 3(a+b), c(a+b), and f(a+b)?
- ▶ Observation: We need to know what a formula means to e.g. read it correctly
 - three a plus b vs. c times a plus b vs.
 - f applied to the sum of a and b or f of a plus b
- ▶ MathML introduces "invisible" (non-marking) characters for this:

U+2061	FUNCTION APPLICATION	character showing function application in presentation tagging
U+2062	INVISIBLE TIMES	marks multiplication when it is understood without a mark
U+2063	INVISIBLE SEPARATOR	used as a separator, e.g., in indices
U+2064	INVISIBLE PLUS	marks addition, especially in constructs such as $1\frac{1}{2}$

- ▶ Problem: What is the difference (in meaning) between 3(a+b), c(a+b), and f(a+b)?
- ▶ Observation: We need to know what a formula means to e.g. read it correctly
 - three a plus b vs. c times a plus b vs.
 - f applied to the sum of a and b or f of a plus b
- ▶ MathML introduces "invisible" (non-marking) characters for this:

U+2061	FUNCTION APPLICATION	character showing function application in presentation tagging
U+2062	INVISIBLE TIMES	marks multiplication when it is understood
		without a mark
U+2063	INVISIBLE SEPARATOR	used as a separator, e.g., in indices
U+2064	INVISIBLE PLUS	marks addition, especially in constructs such
		as $1\frac{1}{2}$

Example 0.3. Encode f(a+b) as <mrow>fࠍ(a+b)</mrow>

General Layout Schemata

- horizontal row: <mrow>child1 ... </mrow> (alignment and grouping)
 fraction: <mfrac>numerator denominator </mfrac>
- Attribute: linethickness (set to 0 for binomial coefficients)

 Radicals: <msqrt>child1 ... </msqrt> and
- <mroot>base index</mroot>
- ► grouping with parenthesis: <mfenced>child ... </mfenced> Attributes: open="(" and close="]" to specify parentheses
- ► grouping and style: <mstyle>child ... </mstyle> (pre-set attributes)

First Practical Markup Challenge (aka. Practice Example)

- ▶ We will jointly practice with concrete examples, here $x^2 + 4x + 4 = 0$
- ► General Workflow: write, test, repeat until done.
 - bring out your favorite text editor. (it really does not matter which one)
 - prepare a HTML5 file test.html

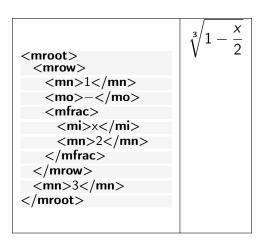
- have a look at it in FireFox
- replace the <math> element by your markup for $x^2 + 4x + 4 = 0$
- ► have a look at it in FireFox again (does it look right)

Example: $x^2 + 4x + 4 = 0$

just presentation	some structure
<mrow></mrow>	<mrow></mrow>

11

Example: Grouping Arguments by mfenced


f(x+y)	f(x+y)
	<mrow></mrow>
<mrow></mrow>	<mi>f</mi>
<mi>f</mi>	<mfenced></mfenced>
<mfenced> <mrow></mrow></mfenced>	<mstyle color="#ff0000"> <mrow></mrow></mstyle>
<mi>x</mi>	<mi>x</mi>
<mo>+</mo>	<mo>+</mo>
<mi>y</mi>	<mi>y</mi>
·	

12

Example: <mfrac> and <mroot>

Example: <mfrac> and <mroot>

Example: The quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Example: The quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

```
<mrow>
 < mi > x < /mi >
 <mo>=</mo>
 <mfrac>
   <mrow>
    <mrow><mo>-</mo><mi>b</mi></mrow>
    <mo>&plusmn;</mo>
    <msart>
      <mrow>
       <msup><mi>b</mi><mn>2</mn></msup>
       <mo>-</mo>
       <mrow><mn>4</mn><mi>a</mi><mi>c</mi></mrow>
      </mrow>
    </msqrt>
   </mrow>
   <mrow><mn>2</mn><mo>&InvisibleTimes;</mo><mi>a</mi></mrow>
 </mfrac>
</mrow>
```

Script Schemata

- ▶ Indices: G^1 , H_5 , R_i^i ...
 - ► Super: <msup>base script </msup>
 - ► Subs: <msub>base script </msub>
 - ► Both: <msubsup>base superscript subscript</msub> (vertical alignment!)
- ▶ Bars and Arrows: \overline{X} , \underline{Y} , lue $\overline{\underline{Z}}$,...
 - Under: <munder>base script</munder>
 - Over: <mover>base script</mover>
 - ▶ Both: <munderover>base underscript overscript </munderover>
- ► Tensor-like: use <none/> for missing scripts

```
<mmultiscripts>
base (sub sup)* [<mprescripts/> (psub psup)*]
</mmultiscripts>
```

msub + msup vs. msubsup

msub + msup	msubsup
<msup></msup>	<msubsup></msubsup>
\mathbf{x}_1^{α}	\mathbf{x}_1^{α}

Example: Movable Limits on Sums

ightharpoonup Example 0.4. $\sum_{i=1}^{\infty} x^i + \sum_{i=1}^{\infty} x^i$

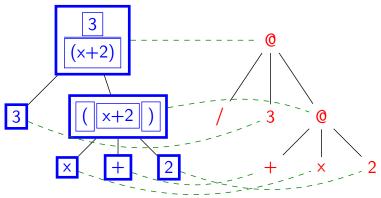
```
<mrow>
 <mstyle displaystyle='true'>
   <munderover>
    <mo>&sum;</mo>
    <mre><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow>
    <mi>&infty;</mi>
   </munderover>
   <msup><mi>x</mi><mi>i</mi></msup>
 </mstyle>
 <mo>+</mo>
 <mstyle displaystyle='false'>
   <munderover>
    <mo>&sum;</mo>
    <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow>
    <mi>&infty;</mi>
   </munderover>
   <msup><mi>x</mi><mi>i</mi></msup>
 </mstyle>
</mrow>
```

Content Mathml: Expression Trees in Prefix Notation I

► Prefix Notation saves parentheses

(so does postfix, BTW)

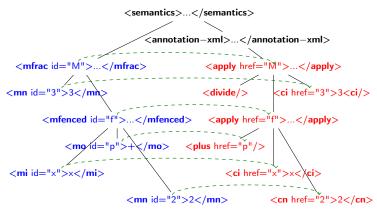
(x - y)/2	x - (y/2)
<apply></apply>	<apply></apply>
<divide></divide>	<minus></minus>
<apply></apply>	<ci>x</ci>
<minus></minus>	<apply></apply>
<ci>x</ci>	<divide></divide>
<ci>y</ci>	<ci>y</ci>
	<cn>2</cn>
<cn>2</cn>	


Function Application: <apply>function arg1 ... argn </apply>

Content Mathml: Expression Trees in Prefix Notation II

- ▶ Operators and Functions: ~ 100 empty elements <sin/>, <plus/>, <eq/>, <compose/>,...
- ► Token elements: ci, cn (identifiers and numbers)
- ► Extra Operators: <csymbol cd="...">...</csymbol>

Parallel Markup e.g. in *MathML* I


▶ Idea: Combine the presentation and content markup and cross-reference

use e.g. for semantic copy and paste. (click o3n presentation, follow link and copy content)

Parallel Markup e.g. in MathML II

Concrete Realization in MathML: semantics element with presentation as first child and content in annotation—xml child

Content Mathml: Expression Trees in Prefix Notation I

► Prefix Notation saves parentheses

(so does postfix, BTW)

(x - y)/2	x - (y/2)
<apply></apply>	<apply></apply>
<divide></divide>	<minus></minus>
<apply></apply>	<ci>x</ci>
<minus></minus>	<apply></apply>
<ci>x</ci>	<divide></divide>
<ci>y</ci>	<ci>y</ci>
	<cn>2</cn>
<cn>2</cn>	

Function Application: <apply>function arg1 ... argn </apply>

Content Mathml: Expression Trees in Prefix Notation II

- ▶ Operators and Functions: ~ 100 empty elements <sin/>, <plus/>, <eq/>, <compose/>,...
- ► Token elements: ci, cn (identifiers and numbers)
- ► Extra Operators: <csymbol cd="...">...</csymbol>

Examples of Content Math

Expression	Markup
<apply> <plus></plus> <plus></plus> <apply><sin></sin><ci>>×</ci></apply> <cn>9</cn> </apply>	$\sin(x) + 9$

Examples of Content Math

$$<$$
apply $><$ eq $/><$ ci $>×ci $><$ cn $>$ 1 $cn $>apply $>$ $x=1$$$$

```
\begin{array}{l} <\mathsf{apply}{>}\mathsf{eq}/{>} \\ <\mathsf{bind}{>}\mathsf{cint}/{>} \\ <\mathsf{bvar}{>}\mathsf{ci}{>}\mathsf{x}</\mathsf{bvar}{>} \\ <\mathsf{apply}{>}\mathsf{sin}/{>}\mathsf{ci}{>}\mathsf{x}</\mathsf{ci}{>}\mathsf{x}/\mathsf{apply}{>} \\ </\mathsf{bind}{>} \\ <\mathsf{cos}/{>} \\ </\mathsf{apply}{>} \end{array}
```

28

```
<bid><br/>d>
                                                    \langle \text{set}/ \rangle
                                                    <br/>

                                                    <br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>

                                                    <apply><and/>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \left\{ x,y \middle| \begin{array}{l} 0 < x < 1, \\ 3 < y < 10 \end{array} \right\}
                                                                                      <apply><lt/>
                                                                                                                                       <ci>0</ci><ci>x</ci><ci>1</ci>
                                                                                      </apply>
                                                                     <apply><leq/>
                                                                                                                         <ci>3</ci><ci>y</ci><ci>10</ci>
                                                                     </apply>
</bind>
```

Expression	Markup
<apply><eq></eq></apply>	
 bvar> <ci>x</ci>	
<apply><geq></geq></apply>	
<ci>x</ci> <cn>0</cn>	
	$ \{x x \ge 0\} = [0, \infty)$
<apply></apply>	
<cointerval></cointerval>	
<cn>0</cn>	
<cn>&infty</cn>	

```
<apply><eq/>
 <apply><times/>
    <apply><vector/>
        <cn>1</cn><cn>2</cn>
    </apply>
    <apply><matrix/>
      <apply><matrixrow/>
           < cn > 0 < /cn > < cn > 1 < /cn >
      </apply>
                                              (1,2) \times \left| \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right| = (2,1)^t
      <apply><matrixrow/>
           <cn>1</cn><cn>0</cn>
       </apply>
    </apply>
    <apply>
      <transpose/>
      <apply><vector/>
         < cn > 2 < /cn > < cn > 1 < /cn >
    </apply>
 </apply>
</apply>
```

From Presentation to Content?

- ▶ Problem: Presentation Markup ↔ Content Markup
 - ▶ many presentation for one concept (e.g. binomial coeff. $\binom{n}{k}$ vs. $\binom{n}{k}$ vs. $\binom{n}{k}$ vs. $\binom{n}{k}$
 - many concepts for one presentation (e.g. m^3 is m cubed, cubic meter, upper index, footnote...)
 - grouping is left implicit, invisible operators

(e.g.
$$3a^2 + 6ab + b^2$$
)

disambiguation by context

(e.g.
$$\lambda X_{\alpha}.X =_{\alpha} \lambda Y_{\alpha}.Y$$
)

- notation is introduced and used on the fly.
- ► Content Recovery is a heuristic context/author-dependent process
 - There is little hope we can do it fully automatically in principle (Al-hard!)
 - ▶ for limited domains we can do a good job (e.g. in Mathematica 4)

@

Added-value services with Math Content

- cut and paste (cut output from web search engine and paste into CAS)
- ► automatically proof checking formal argumentations (bridge verification?)
- math explanation (e.g. specialize a proof to a simpler special case)
- semantical search for mathematical concepts (rather than keywords)
- ► data mining for representation theorems (find unnoticed groups out there)
- classification (given a concrete math structure, is there a general theory?)
- ▶ personalized notation (implication as \rightarrow vs. \supset , or Ricci as $\frac{1}{2}\mathcal{R}^{ij}$ vs. $2\mathcal{R}^{ij}$)
- ▶ user-adapted documents (ActiveMath, Course Capsules)

- ▶ Idea: Develop a large corpus of knowledge in HTML5
 - to get around the chicken-and-egg problem of MKM/GDML
 - corpus-linguistic methods for semantics recovery

(linguists interested)

- ► Idea: Develop a large corpus of knowledge in HTML5
 - ▶ to get around the chicken-and-egg problem of MKM/GDML
 - corpus-linguistic methods for semantics recovery

(linguists interested)

Definition 0.5 (The Cornell Preprint arXiv). (http://www.arxiv.org)
Open access to ca. 1.3M e-prints in Physics, Mathematics, Computer Science,
Quantitative Biology,....

- ▶ Idea: Develop a large corpus of knowledge in HTML5
 - to get around the chicken-and-egg problem of MKM/GDML
 - corpus-linguistic methods for semantics recovery

(linguists interested)

- Definition 0.5 (The Cornell Preprint arXiv). (http://www.arxiv.org)
 Open access to ca. 1.3M e-prints in Physics, Mathematics, Computer Science,
 Quantitative Biology,....
- ▶ Definition 0.6 (The arXMLiv Project). (http://arxmliv.kwarc.info)
 - ▶ use Bruce Miller's LATEXML to transform to HTML5
 - extend to LATEXML daemon (RESTful web service) (http://latexml.mathweb.org)
 - we have an automated, distributed build system

(ca. 4 CPU-years)

reate ca. 13K LATEXML binding files

(100 done $\widehat{=}$ 80% coverage)

use MathWebSearch to index XML version

(realistic search corpus)

- ▶ Idea: Develop a large corpus of knowledge in HTML5
 - ▶ to get around the chicken-and-egg problem of MKM/GDML
 - corpus-linguistic methods for semantics recovery

(linguists interested)

- Definition 0.5 (The Cornell Preprint arXiv). (http://www.arxiv.org)
 Open access to ca. 1.3M e-prints in Physics, Mathematics, Computer Science,
 Quantitative Biology,....
- ▶ Definition 0.6 (The arXMLiv Project). (http://arxmliv.kwarc.info)
 - ▶ use Bruce Miller's LATEXML to transform to HTML5
 - extend to LATEXML daemon (RESTful web service) (http://latexml.mathweb.org)
 - ▶ we have an automated, distributed build system (ca. 4 CPU-years)
 - ► create ca. 13K LATEXML binding files (100 done $\hat{=}$ 80% coverage)
 - ▶ use MathWebSearch to index XML version (realistic search corpus)
- ▶ More semantic information will enable more added-value services, e.g.
 - ▶ filter hits by model assumptions (expanding, stationary, or contracting universe)
 - use linguistic techniques to add the necessary semantics

Semantics Extraction, e.g. Quantity Expressions

- Idea: Find characteristic patterns in mathematical documents.
- **Example 0.7.** Quantity expressions, e.g.
 - five seconds
 - $1.0 \cdot 10^{17} W/cm^2$
 - ► 0.6*M*_☉
 - $ightharpoonup 0.53 \pm 0.01 eV$

(Watt per square cm) (solar masses)

(range)

Problem: Ambiguity

- ► GHz is could be gigahertz, but could also denote Gau§ · Hertz.
 - Pa has two possible meanings petayear and Pascal.

Problem: Context Dependency

ightharpoonup 3m/s vs. $E = mc^2$.

- (n is "meter" or "mass")
- Applications: that make use of the semantics screen readers for the vision-impaired: read 3m/s as three meters per second instead
- of three m slash s. physical search engines: search for 3m/s, find 10.8 km/h or 18 037 furlongs per
 - fortnight document localization: show a recipe with 8 oz of butter as 225 g of butter.

35

Example 0.8 (Highlighting Quantity Expressions).

$$\tan \theta' = \frac{\sqrt{1 + \alpha I \lambda^2} - 1}{\sqrt{\alpha I \lambda^2}} \tan \theta . \quad (12)$$

Equation ($\underline{12}$) looses validity as soon as target deformations start to become significant. The validity also depends on the accuracy of the mean longitudinal momentum given as a function of intensity. For $I\lambda^2 = 1.0 \cdot 10^{17} \mathrm{Wcm}^{-2} \mu \mathrm{m}^2 \text{ we obtain an ejection angle of } \theta^{'} = 14^\circ \text{ and for } I\lambda^2 = 2.0 \cdot 10^{18} \mathrm{Wcm}^{-2} \mu \mathrm{m}^2 \text{ we obtain } \theta^{'} = 17^\circ \text{ from the simulations. This yields } \alpha^{-1} \approx 8.0 \cdot 10^{17} \mathrm{Wcm}^{-2} \mu \mathrm{m}^2 \text{ .}$

- ► Example 0.8 (Highlighting Quantity Expressions).
- **Example 0.9 (In-Situ Conversion).** Chossing a target unit

Equation (12) looses validity as soon as target deformations start to become significant. The validity also depends on the accuracy of the mean longitudinal momentum given as a function of intensity. For $I\lambda^2 = 1.0 \cdot 10^{17} \text{Wcm}^{-2} \mu\text{m}^2$ we obtain an ejection angle of $\theta' = 14^\circ$ and for Highlight annotations $I\lambda^2 = 2.0 \cdot 10^{18} \text{Wcm}^{-2} \mu \text{m}$ mulations. This vields $\alpha^{-1} \approx 8.0 \cdot 10^{17} \text{W}_{\odot}$ Convert all to basic SI units watt Watt In conclusion, we have centimeter^-2 horsepower simulation techniques micrometer^2 L sun can be emitted from an st electrons are corona is present. In a Reset this injected into the overn and injection Reset Document directions are almost along the general normal uncerton for p

36

- Example 0.8 (Highlighting Quantity Expressions).
- **Example 0.9 (In-Situ Conversion).** Converting one occurrence

Equation (12) looses validity as soon as target deformations start to become significant. The validity also depends on the accuracy of the mean longitudinal momentum given as a function of intensity. For $I\lambda^2=1.34\cdot 10^{14}\cdot {\rm horsepower}\cdot {\rm centimeter}^{-2}\cdot {\rm micrometer}^2$ we obtain an ejection angle of $\theta^{'}=14^{\circ}$ and for $I\lambda^2=2.0\cdot 10^{18}{\rm Wcm}^{-2}\mu{\rm m}^2$ we obtain $\theta^{'}=17^{\circ}$ from the simulations. This yields $\alpha^{-1}\approx 8.0\cdot 10^{17}{\rm Wcm}^{-2}\mu{\rm m}^2$.

- Example 0.8 (Highlighting Quantity Expressions).
- **Example 0.9 (In-Situ Conversion).** Converting all occurrences

Equation (12) looses validity as soon as target deformations start to become significant. The validity also depends on the accuracy of the mean longitudinal momentum given as a function of intensity. For $I\lambda^2 = 1.00 \cdot 10^9 \cdot \text{m}^2 \cdot \text{kg} \cdot \text{s}^{-3} \text{ we obtain an ejection angle of } \theta' = 0.244 \cdot \text{rad}$ and for $I\lambda^2 = 2.00 \cdot 10^{10} \cdot \text{m}^2 \cdot \text{kg} \cdot \text{s}^{-3} \text{ we obtain } \theta' = 0.297 \cdot \text{rad} \text{ from the simulations. This yields } \alpha^{-1} \approx 8.00 \cdot 10^9 \cdot \text{m}^2 \cdot \text{kg} \cdot \text{s}^{-3}$.

References I

