Content \& Form in Mathematics Presenting and Capturing Mathematics for the Web in MathML

Michael Kohlhase

Professur für Wissensrepräsentation und -verarbeitung
Informatik, FAU Erlangen-Nürnberg
http://kwarc.info

March 15, 2018

Math on the Web $\widehat{=}$ MathML

- MathML extends HTML with mathematical formulae
- MathML is the first XML application by the W3C

Math on the Web $\widehat{=}$ MathML

- MathML extends HTML with mathematical formulae
- MathML is the first XML application by the W3C
- MathML has two sub-languages
- Presentation MathML (layout) and
- Content MathML (structure/semantics)

Math on the Web $\widehat{=}$ MathML

- MathML extends HTML with mathematical formulae
- MathML is the first XML application by the W3C
- MathML has two sub-languages
- Presentation MathML (layout) and
- Content MathML (structure/semantics)
- MathML3 reconciles OpenMath and Content MathML.
- MathML is part of HTML5

Math on the Web $\widehat{=}$ MathML

- MathML extends HTML with mathematical formulae
- MathML is the first XML application by the W3C
- MathML has two sub-languages
- Presentation MathML (layout) and
- Content MathML (structure/semantics)
- MathML3 reconciles OpenMath and Content MathML.
- MathML is part of HTML5 (well-integrated; current standard)
- two major browsers support MathML natively: FireFox and Safari ($\sim 15 \%$)
- all browsers support MathML via MathJax

Math on the Web $\widehat{=}$ MathML

- MathML extends HTML with mathematical formulae
- MathML is the first XML application by the W3C
- MathML has two sub-languages
- Presentation MathML (layout) and
- Content MathML (structure/semantics)
- MathML3 reconciles OpenMath and Content MathML.
- MathML is part of HTML5 (well-integrated; current standard)
- two major browsers support MathML natively: FireFox and Safari ($\sim 15 \%$)
- all browsers support MathML via MathJax (JavsScript+CSS+Fonts)
- MathML support in Chrome under way ($\sim 78 \%$) see https://mathml.igalia.com/

Math on the Web $\widehat{=}$ MathML

- MathML extends HTML with mathematical formulae
- MathML is the first XML application by the W3C
- MathML has two sub-languages
- Presentation MathML (layout) and
- Content MathML (structure/semantics)
- MathML3 reconciles OpenMath and Content MathML.
- MathML is part of HTML5 (well-integrated; current standard)
- two major browsers support MathML natively: FireFox and Safari ($\sim 15 \%$)
- all browsers support MathML via MathJax (JavsScript+CSS+Fonts)
- MathML support in Chrome under way ($\sim 78 \%$) see https://mathml.igalia.com/
- Join the MathML Association

MathML: Mathematical Markup Language

> MathML is an XML application for describing mathematical notation and capturing both its structure and content. The goal of MathML is to enable mathematics to be served, received, and processed on the World Wide Web, just as HTML has enabled this functionality for text.
> from the MathML2 Recommendation

Representation of Formulae as Expression Trees

- Mathematical Expressions are build up as expression trees
- of layout schemata in Presentation-MathML
- of functional subexpressions in Content-MathML
- Example: $\frac{3}{(x+2)}$

```
<mfrac>
    <mn>3</mn>
    <mfenced>
    \(<\mathbf{m i}>\times</ \mathbf{m i}>\)
        \(<\) mo> \(>\) </mo>
        \(<\mathbf{m n}>2</ \mathbf{m n}>\)
        </mfenced>
</mfrac>
```

<apply>
<divide/>
<cn>3</cn>
<apply>
<plus/>
$<$ ci>x</ci>
<cn>2</cn>
</apply>
</apply>

Layout Schemata and the MathML Box model

- Presentation MathML represents the visual appearance of a formula in a tree of layout primitives
- Example 0.1 (Presentation MathML for $3 /(x+2)$).

P-MathML Token Elements

- Tokens Elements directly contain character data
(the only way to include it) Attributes: fontweight, fontfamily and fontstyle, color. . .
- Identifiers: <mi>... </mi>
- Numbers: <mn>.. </mn>
- Operators: <mo>...</mo>
- Operator display is often ideosyncratic
- Examples: spacing, ${ }^{*}$-scripts in sums and limits, stretchy integrals,...
- Attributes: Ispace, rspace, stretchy, and movablelimits.
- Operators include delimiter characters like
- parentheses (which stretch),
- punctuation (which has uneven spacing around it) and
- accents (which also stretch).

MathML Symbols in UniCode

- Problem: Mathematical formula use lots of non-ASCII symbols (not on your keyboard)
- Math Symbols: $\alpha, \beta, \ldots \Theta, \int, \uplus, \pm, \infty, \mathbb{N}, \mathbb{R}, \ldots$ (+ ca. 5000 more)
- Recap: The UniCode standard collects all characters of all languages in the world.
- Idea: Math is a language, use UniCode for its characters.
- Recap: Each UniCode character is identified by an unambiguous name and an integer number called its code point (a number ≤ 1100000)

- Example 0.2 (Some Math Symbols).

- The integral symbol \int has the number U+8747 and the name INTEGRAL
- The universal quantifier \forall has the number $U+8704$ and the name FOR ALL
- The letter θ has number $\mathrm{U}+952$ and the name GREEK SMALL LETTER THETA

For MathML: UniCode letters can be used in HTML directly (and in MathML). Encode them via their code point as \&\#952; (decimal) or \&\#x3B8; (hex).

Invisible Characters in MathML

- Problem: What is the difference (in meaning) between $3(a+b), c(a+b)$, and $f(a+b)$?

Invisible Characters in MathML

- Problem: What is the difference (in meaning) between $3(a+b), c(a+b)$, and $f(a+b)$?
- Observation: We need to know what a formula means to e.g. read it correctly - three a plus b vs. c times a plus b vs.
- f applied to the sum of a and b or f of a plus b

Invisible Characters in MathML

- Problem: What is the difference (in meaning) between $3(a+b), c(a+b)$, and $f(a+b)$?
- Observation: We need to know what a formula means to e.g. read it correctly
- three a plus b vs. c times a plus b vs.
- f applied to the sum of a and b or f of a plus b
- MathML introduces "invisible" (non-marking) characters for this:

$\mathrm{U}+2061$	FUNCTION APPLICATION	character showing function application in presentation tagging
$\mathrm{U}+2062$	INVISIBLE TIMES	marks multiplication when it is understood without a mark
$\mathrm{U}+2063$	INVISIBLE SEPARATOR	
$\mathrm{U}+2064$	used as a separator, e.g., in indices INVISIBLE PLUS	marks addition, especially in constructs such as $1 \frac{1}{2}$

Invisible Characters in MathML

- Problem: What is the difference (in meaning) between $3(a+b), c(a+b)$, and $f(a+b)$?
- Observation: We need to know what a formula means to e.g. read it correctly
- three a plus b vs. c times a plus b vs.
- f applied to the sum of a and b or f of a plus b
- MathML introduces "invisible" (non-marking) characters for this:

$\mathrm{U}+2061$	FUNCTION APPLICATION	character showing function application in presentation tagging marks multiplication when it is understood without a mark
$\mathrm{U}+2062$	INVISIBLE TIMES	INVISIBLE SEPARATOR
$\mathrm{U}+2064$	used as a separator, e.g., in indices marks addition, especially in constructs such as $1 \frac{1}{2}$	

- Example 0.3. Encode $f(a+b)$ as <mrow>f\&\#2061; $(a+b)</$ mrow $>$

General Layout Schemata

- horizontal row: <mrow>child1 ... </mrow> (alignment and grouping)
- fraction: <mfrac>numerator denominator $</$ mfrac>

Attribute: linethickness

- Radicals: <msqrt>child1 ... </msqrt> and
<mroot>base index</mroot>
- grouping with parenthesis: <mfenced>child ... </mfenced>

Attributes: open="(" and close="]" to specify parentheses

- grouping and style: <mstyle>child ... </mstyle>

First Practical Markup Challenge (aka. Practice Example)

- We will jointly practice with concrete examples, here $x^{2}+4 x+4=0$
- General Workflow: write, test, repeat until done.
- bring out your favorite text editor.
(it really does not matter which one)
- prepare a HTML5 file test.html
<html>
<body>
testing a polynomial:
$...$
</body>
</html>
- have a look at it in FireFox
- replace the <math> element by your markup for $x^{2}+4 x+4=0$
- have a look at it in FireFox again

Example: $x^{2}+4 x+4=0$

just presentation	some structure
<mrow>	<mrow > <mrow> <msup>
<msup>	<mi>x</mi>
$<\mathbf{m i}>\times</ \mathrm{mi}>$	$<\mathbf{m n}>2</ \mathbf{m n}>$
$<\mathbf{m n}>2</ \mathbf{m n}>$	</msup $>$
</msup $>$	<mo>+</mo>
$<$ mo $>+</$ mo>	$<$ mrow $>$ -
$<\mathbf{m n}>4</ \mathbf{m n}>$	<mn>4</mn>
$<\mathbf{m i}>x</ \mathbf{m i}>$	$<\mathbf{m i}>x</ \mathbf{m i}>$
$<\mathrm{mo}>+</ \mathrm{mo}>$	</mrow $>$
$<\mathrm{mn}>4</ \mathrm{mn}>$	$<\mathrm{mo}>+</ \mathrm{mo}>$
$<\mathrm{mo}>=</ \mathrm{mo}>$	$<\mathrm{mn}>4</ \mathrm{mn}>$
$<\mathbf{m n}>0</ \mathrm{mn}>$	$</$ mrow $>$
</mrow $>$	$<\mathrm{mo}>=</ \mathrm{mo}>$
	$<\mathbf{m n}>0</ \mathbf{m n}>$
	</mrow ${ }^{\text {c }}$

Example: Grouping Arguments by mfenced

$f(x+y)$	$f(x+y)$
	<mrow>
<mrow>	<mi>f</mi>
<mi>f</mi>	<mfenced>
<mfenced> <mrow>	<mstyle color='\#ff0000'> <mrow>
$<\mathbf{m i}>\times</$ mi>	$<\mathbf{m i}>\times</$ mi>
<mo>+</mo>	<mo>+</mo>
$<\mathbf{m i}>$ y</mi>	$<\mathbf{m i}>\mathrm{y}</ \mathrm{mi}>$
</mrow>	</mrow>
</mfenced>	</mstyle>
</mrow>	</mfenced>
	</mrow>

Example: <mfrac> and <mroot>

Example: <mfrac> and <mroot>

Example: The quadratic formula $x=-b \pm \sqrt{b^{2}-4 a c}$ $2 a$

Example: The quadratic formula $x=-b \pm \sqrt{b^{2}-4 a c}$

```
<mrow>
    <mi>x</mi>
    <mo>=</mo>
    <mfrac>
        <mrow>
            <mrow><mo>-</mo><mi>b</mi></mrow>
            <mo>&plusmn;</mo>
            <msqrt>
                <mrow>
                        <msup><mi>b</mi><mn>2</mn></msup>
                            <mo>-</mo>
                            <mrow><mn>4</mn><mi>a</mi><mi>c</mi></mrow>
                    </mrow>
            </msqrt>
        </mrow>
        <mrow><mn>2</mn><mo>&InvisibleTimes;</mo><mi>a</mi></mrow>
    </mfrac>
</mrow>
```


Script Schemata

- Indices: $G^{1}, H_{5}, R_{j}^{i} \ldots$
- Super: <msup>base script </msup>
- Subs: <msub>base script </msub>
- Both: <msubsup>base superscript subscript</msub> (vertical alignment!)
- Bars and Arrows: \bar{X}, \underbrace{Y}, lue $\underbrace{\bar{Z}}$, .
- Under: <munder>base script</munder>
- Over: <mover>base script</mover>
- Both: <munderover>base underscript overscript </munderover>
- Tensor-like: use <none/> for missing scripts
<mmultiscripts>
base (sub sup)* [<mprescripts/> (psub psup) $*$]
</mmultiscripts>

msub + msup vs. msubsup

msub + msup	msubsup
<msup>	
<msub>	<msubsup>
$<\mathbf{m i}>\times</$ mi $>$	<mi>x</mi>
<mn>1</mn>	$<\mathbf{m n}>1</ \mathbf{m n}>$
</msub>	<mi>\α</mi>
<mi>\α </mi>	</msubsup>
</msup>	
$X_{1}{ }^{\alpha}$	χ_{1}^{α}

Example: Movable Limits on Sums

- Example 0.4.


```
<mrow>
    <mstyle displaystyle='true'>
            <munderover>
                <mo>&sum;</mo>
            <mrow><\mathbf{mi}>\mathbf{i}</\mathbf{mi}><\mathbf{mo}>=</\mathbf{mo}><\mathbf{mn}>1</\mathbf{mn}></\mathbf{mrow}>
            <mi>&infty;</mi>
            </munderover>
            <msup><mi>x</mi><mi}>\mathbf{i}</\mathbf{mi}></\mathbf{msup}
        </mstyle>
        <mo>+</mo>
        <mstyle displaystyle='false'>
            <munderover>
            <mo>&sum;</mo>
            <mrow><\mathbf{mi}>i</\mathbf{mi}><\mathbf{mo}>=</\mathbf{mo}><\mathbf{mn}>1</\mathbf{mn}></\mathbf{mrow}>
            <mi>&infty;</mi>
        </munderover>
        <msup><mi>x</mi><mi>i</mi></msup>
        </mstyle>
    </mrow>
```


Content Mathml: Expression Trees in Prefix Notation I

- Prefix Notation saves parentheses

$(x-y) / 2$	$x-(y / 2)$
<apply>	<apply>
<divide/>	<minus/>
<apply>	$<\mathbf{c i}>x</ \mathrm{ci}>$
<minus/>	<apply>
<ci>x</ci>	<divide/>
$<\mathbf{c i}>\mathrm{y}</ \mathbf{c i}>$	<ci>y</ci>
</apply>	<cn>2</cn>
<cn>2</cn>	</apply>

Function Application: <apply>function arg1 ... argn </apply>

Content Mathml: Expression Trees in Prefix Notation II

- Operators and Functions: ~ 100 empty elements <sin/>, <plus/>, <eq/>, <compose/>,...
- Token elements: ci, cn (identifiers and numbers)
- Extra Operators: <csymbol cd="...">...</csymbol>

Parallel Markup e.g. in MathML I

- Idea: Combine the presentation and content markup and cross-reference

use e.g. for semantic copy and paste. copy content)
(click o3n presentation, follow link and

Parallel Markup e.g. in MathML II

- Concrete Realization in MathML: semantics element with presentation as first child and content in annotation-xml child

Content Mathml: Expression Trees in Prefix Notation I

- Prefix Notation saves parentheses

$(x-y) / 2$	$x-(y / 2)$
<apply>	<apply>
<divide/>	<minus/>
<apply>	$<\mathbf{c i}>x</ \mathrm{ci}>$
<minus/>	<apply>
<ci>x</ci>	<divide/>
$<\mathbf{c i}>\mathrm{y}</ \mathbf{c i}>$	<ci>y</ci>
</apply>	<cn>2</cn>
<cn>2</cn>	</apply>

Function Application: <apply>function arg1 ... argn </apply>

Content Mathml: Expression Trees in Prefix Notation II

- Operators and Functions: ~ 100 empty elements <sin/>, <plus/>, <eq/>, <compose/>,...
- Token elements: ci, cn (identifiers and numbers)
- Extra Operators: <csymbol cd="...">...</csymbol>

Examples of Content Math

Expression	Markup
<apply>	$\sin (x)+9$
<plus/>	
<apply><sin/><ci>x</ci></apply>	
<cn>9</cn>	
</apply>	

Examples of Content Math

<apply><eq/><ci>x</ci><cn>1</cn></apply> $\mid x=1$

Examples of Content Math

```
<apply><eq/>
    <bind><int/>
        <bvar><ci>x</ci></bvar>
        <apply><sin/><ci>x</ci></apply>
    </bind>
    <cos/>
</apply>
```

 \(\int \sin (x) d x=\cos\)

Examples of Content Math

```
<bind>
    <apply>
            <csymbol cd=''calculus1''>defint</csymbol>
                <cn>0</cn>
                <csymbol cd=''nums1''>infinity</csymbol> }\quad\mp@subsup{\int}{0}{\infty}\operatorname{sin}(x)d
        </apply>
    <bvar><ci>x</ci></bvar>
    <apply><sin/><ci>x</ci></apply>
</bind>
```


Examples of Content Math

```
<bind>
    <apply><sum/>
        <cn>0</cn><ci>&infty;</ci>
    </apply>
    <bvar><ci>n</ci></bvar>
    <apply><power/><ci>x</ci><ci>n</ci></apply>
</bind>
```


Examples of Content Math

```
<bind>
    <set/>
    <bvar><ci>x</ci></bvar>
    <bvar><ci>y</ci></bvar>
    <apply><and/>
        <apply><lt/>
            <ci>0</ci><ci>x</ci><ci>1</ci>
        </apply>
    <apply><leq/>
        <ci>3</ci><ci>y</ci><ci>10</ci>
    </apply>
</bind>
```

$$
\left\{\begin{array}{l|l}
x, y & \begin{array}{l}
0<x<1 \\
3 \leq y \leq 10
\end{array}
\end{array}\right\}
$$

Examples of Content Math

Expression	Markup
<apply><eq/>	$\{x \mid x \geq 0\}=[0, \infty)$
<bind><set/>	
<bvar><ci>x</ci></bvar>	
<apply><geq/>	
<ci>x</ci><cn>0</cn>	
</apply>	
</bind>	
<apply>	
<cointerval/>	
<cn>0</cn>	
<cn>\&infty;</cn>	
</interval>	
</apply>	

Examples of Content Math

```
<apply><eq/>
```

<apply><eq/>
<apply><times/>
<apply><times/>
<apply><vector/>
<apply><vector/>
<cn>1</cn><cn>2</cn>
<cn>1</cn><cn>2</cn>
</apply>
</apply>
<apply><matrix/>
<apply><matrix/>
<apply><matrixrow/>
<apply><matrixrow/>
<n>0</cn><cn>1</cn>
<n>0</cn><cn>1</cn>
</apply>
</apply>
<apply><matrixrow/>
<apply><matrixrow/>
<cn>1</cn><cn>0</cn>
<cn>1</cn><cn>0</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<apply>
<transpose/>
<transpose/>
<apply><vector/>
<apply><vector/>
<cn>2</cn><cn>1</cn>
<cn>2</cn><cn>1</cn>
</apply>
</apply>
</apply>
</apply>
</apply>

```
</apply>
```


From Presentation to Content?

- Problem: Presentation Markup \leftrightarrow Content Markup
- many presentation for one concept (e.g. binomial coeff. $\binom{n}{k}$ vs. C_{k}^{n} vs. C_{n}^{k})
- many concepts for one presentation (e.g. m^{3} is m cubed, cubic meter, upper index, footnote, ...)
- grouping is left implicit, invisible operators

$$
\left(\text { e.g. } 3 a^{2}+6 a b+b^{2}\right)
$$

- disambiguation by context (e.g. $\lambda X_{\alpha} \cdot X={ }_{\alpha} \lambda Y_{\alpha} . Y$)
- notation is introduced and used on the fly.
- Content Recovery is a heuristic context/author-dependent process
- There is little hope we can do it fully automatically in principle
- for limited domains we can do a good job

Added-value services with Math Content

- cut and paste (cut output from web search engine and paste into CAS)
- automatically proof checking formal argumentations (bridge verification?)
- math explanation (e.g. specialize a proof to a simpler special case)
- semantical search for mathematical concepts (rather than keywords)
- data mining for representation theorems (find unnoticed groups out there) - classification (given a concrete math structure, is there a general theory?)
- personalized notation
- user-adapted documents (implication as \rightarrow vs. \supset, or Ricci as $\frac{1}{2} \mathcal{R}^{i j}$ vs. $2 \mathcal{R}^{i j}$)
(ActiveMath, Course Capsules)

The arXMLiv Project: arXiv to semantic XML

- Idea: Develop a large corpus of knowledge in HTML5
- to get around the chicken-and-egg problem of MKM/GDML
- corpus-linguistic methods for semantics recovery
(linguists interested)

The arXMLiv Project: arXiv to semantic XML

- Idea: Develop a large corpus of knowledge in HTML5
- to get around the chicken-and-egg problem of MKM/GDML
- corpus-linguistic methods for semantics recovery
- Definition 0.5 (The Cornell Preprint arXiv). (http://www.arxiv.org) Open access to ca. 1.3M e-prints in Physics, Mathematics, Computer Science, Quantitative Biology,....

The arXMLiv Project: arXiv to semantic XML

- Idea: Develop a large corpus of knowledge in HTML5
- to get around the chicken-and-egg problem of MKM/GDML
- corpus-linguistic methods for semantics recovery
- Definition 0.5 (The Cornell Preprint arXiv). (http://www.arxiv.org) Open access to ca. 1.3M e-prints in Physics, Mathematics, Computer Science, Quantitative Biology,....
- Definition 0.6 (The arXMLiv Project). (http://arxmliv.kwarc.info)
- use Bruce Miller's LATEXML to transform to HTML5
- extend to LATEXML daemon (RESTful web service) (http://latexml.mathweb.org)
- we have an automated, distributed build system
- create ca. 13K AT EXML binding files
- use MathWebSearch to index XML version

The arXMLiv Project: arXiv to semantic XML

- Idea: Develop a large corpus of knowledge in HTML5
- to get around the chicken-and-egg problem of MKM/GDML
- corpus-linguistic methods for semantics recovery
- Definition 0.5 (The Cornell Preprint arXiv). (http://www.arxiv.org) Open access to ca. 1.3M e-prints in Physics, Mathematics, Computer Science, Quantitative Biology,....
- Definition 0.6 (The arXMLiv Project). (http://arxmliv.kwarc.info)
- use Bruce Miller's LATEXML to transform to HTML5
- extend to LATEXML daemon (RESTful web service) (http://latexml.mathweb.org)
- we have an automated, distributed build system
- create ca. 13K AT EXML binding files
- use MathWebSearch to index XML version
(100 done $\widehat{=} 80 \%$ coverage) (realistic search corpus)
- More semantic information will enable more added-value services, e.g.
- filter hits by model assumptions (expanding, stationary, or contracting universe)
- use linguistic techniques to add the necessary semantics

Semantics Extraction, e.g. Quantity Expressions

- Idea: Find characteristic patterns in mathematical documents.
- Example 0.7. Quantity expressions, e.g.
- five seconds
- $1.0 \cdot 10^{17} \mathrm{~W} / \mathrm{cm}^{2}$
(Watt per square cm)
- $0.6 \mathrm{M}_{\odot}$
- $0.53 \pm 0.01 \mathrm{eV}$

Problem: Ambiguity

- GHz is could be gigahertz, but could also denote GauÃ§. Hertz.
- Pa has two possible meanings - petayear and Pascal.

Problem: Context Dependency
$\rightarrow 3 m / s$ vs. $E=m c^{2}$.
(n is "meter" or "mass")
Applications: that make use of the semantics
\rightarrow screen readers for the vision-impaired: read $3 \mathrm{~m} / \mathrm{s}$ as three meters per second instead of three m slash s.

- physical search engines: search for $3 \mathrm{~m} / \mathrm{s}$, find $10.8 \mathrm{~km} / \mathrm{h}$ or 18037 furlongs per fortnight
- document localization: show a recipe with 8 oz of butter as 225 g of butter.

Example Services

- Example 0.8 (Highlighting Quantity Expressions).

$$
\begin{align*}
& \tan \theta^{\prime}=\frac{\sqrt{1+\alpha I \lambda^{2}}-1}{\sqrt{\alpha I \lambda^{2}}} \tan \theta \text {. (12) } \tag{12}\\
& \text { Equation (} 12 \text {) looses validity as soon as target deformations start to } \\
& \text { become significant. The validity also depends on the accuracy of the } \\
& \text { mean longitudinal momentum given as a function of intensity. For } \\
& I \lambda^{2}=1.0 \cdot 10^{17} \mathrm{Wcm} \\
& I \lambda^{2}=2.0 \cdot 10^{18} \mathrm{~m}^{2} \text { we obtain an ejection angle of } \theta^{\prime}=14^{\circ} \text { and for } \\
& \text { yields } \alpha^{-1} \approx 8.0 \cdot 10^{17} \mathrm{Wem}^{-2} \mu \mathrm{~m}^{2} \text {. }
\end{align*}
$$

Example Services

- Example 0.8 (Highlighting Quantity Expressions).
- Example 0.9 (In-Situ Conversion). Chossing a target unit

Equation (12) looses validity as soon as target deformations start to become significant. The validity also depends on the accuracy of the mean longitudinal momentum given as a function of intensity. For $I \lambda^{2}=1.0 \cdot 10^{17} \mathrm{Wcm}^{-2} \mu \mathrm{~m}^{2}$ we obtain an eiection angle of $\theta^{\prime}=14^{\circ}$ and for $I \lambda^{2}=2.0 \cdot 10^{18} \mathrm{Wcm}^{-2} \mu \mathrm{~m} \quad$ Highlight annotations mulations. This yields $\alpha^{-1} \approx 8.0 \cdot 10^{17} \mathrm{~W}$ Convert all to basic SI units
In conclusion, we have simulation techniques can be emitted from al corona is present. In a injected into the over-(Reset Document Watt
horsepower
L_sun
it electrons are
n and injection
on for p directions are almost ávinu unu uvionv nunman unveuon for p

Example Services

- Example 0.8 (Highlighting Quantity Expressions).
- Example 0.9 (In-Situ Conversion). Converting one occurrence

Equation (12) looses validity as soon as target deformations start to become significant. The validity also depends on the accuracy of the mean longitudinal momentum given as a function of intensity. For $I \lambda^{2}=1.34 \cdot 10^{14} \cdot$ horsepower \cdot centimeter ${ }^{-2} \cdot$ micrometer 2 we obtain an ejection angle of $\theta^{\prime}=14^{\circ}$ and for $I \lambda^{2}=2.0 \cdot 10^{18} \mathrm{Wcm}^{-2} \mu \mathrm{~m}^{2}$ we obtain $\theta^{\prime}=17^{\circ}$ from the simulations. This yields $\alpha^{-1} \approx 8.0 \cdot 10^{17} \mathrm{Wcm}^{-2} \mu \mathrm{~m}^{2}$.

Example Services

- Example 0.8 (Highlighting Quantity Expressions).
- Example 0.9 (In-Situ Conversion). Converting all occurrences

Equation (12) looses validity as soon as target deformations start to become significant. The validity also depends on the accuracy of the mean longitudinal momentum given as a function of intensity. For $I \lambda^{2}=1.00 \cdot 10^{9} \cdot \mathrm{~m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-3}$ we obtain an ejection angle of $\theta^{\prime}=0.244 \cdot \mathrm{rad}$ and for $I \lambda^{2}=2.00 \cdot 10^{10} \cdot \mathrm{~m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-3}$ we obtain $\theta^{\prime}=0.297 \cdot \mathrm{rad}$ from the simulations. This yields $\alpha^{-1} \approx 8.00 \cdot 10^{9} \cdot \mathrm{~m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-3}$.

References I

