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Elevator Pitch for LBS

▶ Mission: In this course we will
▶ explore how to model the meaning of natural language via transformation into

logical systems
▶ use logical inference there to unravel the missing pieces; the information that is not

linguistically realized, but is conveyed anyways.

▶ Warning: This course is only for you if you like logic!
You are going to get lots of it and we are going to introduce our own logics,
usually a new facet every week or fortnight.
▶ Theory in this course: We wild do so in an abstract, mathematical fashion,

but concrete enough that we could implement all moving parts – NL grammars,
semantics construction, and inference systems – in meta-grammatical/logical
systems.
▶ Practice in PSNLP Project: We will implement them in the

meta-grammatical/logical GLIF system (based on GF, MMT, and ELPI) in the
Symbolic NLP Project (5 ECTS; lab work). (see me if you are interested)
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Chapter 1
Preliminaries
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1.1 Administrative Ground Rules
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Prerequisites for LBS

▶ Content Prerequisites: The mandatory courses in CS@FAU; Sem 1-4, in
particular:
▶ course “Grundlagen der Logik in der Informatik” (GLOIN)
▶ some of the CS Math courses “Mathematik C1-4” (IngMath1-4) (math tolerance)
▶ algorithms and data structures (programming/complexity)
▶ AI-1 (“Artificial Intelligence I”) (for the logic part)

▶ Intuition: (take them with a kilo of salt)
▶ This is what I assume you know! (I have to assume something)
▶ In many cases, the dependency of LBS on these is partial and “in spirit”.
▶ If you have not taken these courses (or do not remember),
▶ read up on them as needed! (preferred, do it in a group)
▶ We can cover them in class (if there are more of you)

▶ The real Prerequisite: Motivation, interest, curiosity, hard work. (LBS is
non-trivial)
▶ You can do this course if you want! (We will help you)
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Assessment, Grades

▶ Overall (Module) Grade:
▶ Grade via the exam (Klausur) ; 100% of the grade.
▶ Up to 10% bonus on-top for an exam with ≥ 50% points. (< 50% ; no bonus)
▶ Bonus points =̂ percentage sum of the best 10 prepquizzes divided by 100.

▶ Exam: 60 minutes exam conducted in presence on paper (∼ April 1. 2025)
▶ Retake Exam: 60 min exam six months later (∼ October 1. 2025)

▶ You have to register for exams in https://campo.fau.de in the first
month of classes.
▶ Note: You can de-register from an exam on campo up to three working days

before.
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Preparedness Quizzes

▶ PrepQuizzes: Before every lecture we offer a 10 min online quiz – the
PrepQuiz – about the material from the previous week. (10:00-10:10; starts in
week 3)
▶ Motivations: We do this to
▶ keep you prepared and working continuously. (primary)
▶ bonus points if the exam has ≥ 50% points (potential part of your grade)
▶ update the ALeA learner model. (fringe benefit)
▶ The prepquiz will be given in the ALeA system

▶ https://courses.voll-ki.fau.de/quiz-dash/lbs
▶ You have to be logged into ALeA! (via FAU IDM)
▶ You can take the prepquiz on your laptop or phone, . . .
▶ . . . in the lecture or at home . . .
▶ . . . via WLAN or 4G Network. (do not overload)
▶ Prepquizzes will only be available 10:00-16:10!
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Next Week: Pretest

▶ Next week we will try out the prepquiz infrastructure with a pretest!
▶ Presence: bring your laptop or cellphone.
▶ Online: you can and should take the pretest as well.
▶ Have a recent firefox or chrome (chrome: younger than March 2023)
▶ Make sure that you are logged into ALeA (via FAU IDM; see below)
▶ Definition 1.1. A pretest is an assessment for evaluating the preparedness of

learners for further studies.
▶ Concretely: This pretest
▶ establishes a baseline for the competency expectations in AI-1 and
▶ tests the ALeA quiz infrastructure for the prepquizzes.
▶ Participation in the pretest is optional; it will not influence grades in any way.
▶ The pretest covers the prerequisites of AI-1 and some of the material that may

have been covered in other courses.
▶ The test will be also used to refine the ALeA learner model, which may make

learning experience in ALeA better. (see below)
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1.2 Getting Most out of LBS
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LBS Homework Assignments

▶ Goal: Homework assignments reinforce what was taught in lectures.
▶ Homework Assignments: Small individual problem/programming/proof task
▶ but take time to solve (at least read them directly ; questions)
▶ Didactic Intuition: Homework assignments give you material to test your

understanding and show you how to apply it.
▶ Homeworks give no points, but without trying you are unlikely to pass the

exam.

▶ Homeworks will be mainly peer-graded in the ALeA system.
▶ Didactic Motivation: Through peer grading students are able to see mistakes

in their thinking and can correct any problems in future assignments. By grading
assignments, students may learn how to complete assignments more accurately
and how to improve their future results. (not just us being lazy)
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LBS Homework Assignments – Howto

▶ Homework Workflow: in ALeA (see below)
▶ Homework assignments will be published on thursdays: see

https://courses.voll-ki.fau.de/hw/lbs
▶ Submission of solutions via the ALeA system in the week after
▶ Peer grading/feedback (and master solutions) via answer classes.
▶ Quality Control: TAs and instructors will monitor and supervise peer grading.

▶ Experiment: Can we motivate enough of you to make peer assessment
self-sustaining?
▶ I am appealing to your sense of community responsibility here . . .
▶ You should only expect other’s to grade your submission if you grade their’s

(cf. Kant’s “Moral Imperative”)
▶ Make no mistake: The grader usually learns at least as much as the gradee.
▶ Homework/Tutorial Discipline:
▶ Start early! (many assignments need more than one evening’s work)
▶ Don’t start by sitting at a blank screen (talking & study groups help)
▶ Humans will be trying to understand the text/code/math when grading it.
▶ Go to the tutorials, discuss with your TA! (they are there for you!)
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Collaboration

▶ Definition 2.1. Collaboration (or cooperation) is the process of groups of
agents acting together for common, mutual benefit, as opposed to acting in
competition for selfish benefit. In a collaboration, every agent contributes to the
common goal and benefits from the contributions of others.
▶ In learning situations, the benefit is “better learning”.
▶ Observation: In collaborative learning, the overall result can be significantly

better than in competitive learning.
▶ Good Practice: Form study groups. (long- or short-term)

1. those learners who work most, learn most!
2. freeloaders – individuals who only watch – learn very little!
▶ It is OK to collaborate on homework assignments in LBS! (no bonus points)
▶ Choose your study group well! (We will (eventually) help via ALeA)
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Do I need to attend the LBS Lectures

▶ Attendance is not mandatory for the LBS course. (official version)
▶ Note: There are two ways of learning: (both are OK, your mileage may vary)
▶ Approach B: Read a book/papers (here: lecture notes)
▶ Approach I: come to the lectures, be involved, interrupt the instructor whenever you

have a question.

The only advantage of I over B is that books/papers do not answer questions
▶ Approach S: come to the lectures and sleep does not work!
▶ The closer you get to research, the more we need to discuss!
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1.3 Learning Resources for AI-1
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Textbook, Handouts and Information, Forums, Videos

▶ (No) Textbook: Lecture notes at http://kwarc.info/teaching/LBS
▶ I mostly prepare them as we go along (semantically preloaded ; research resource)
▶ Please e-mail me any errors/shortcomings you notice. (improve for group)
▶ For GLIF: Frederik’s Master’s Thesis [Sch20]
▶ Classical Semantics/Pragmatics: (in the FAU Library)
▶ Primary reference for LBS: [CKG09] (in the FAU Library)
▶ also: [HHS07; Bir13; Rie10; ZS13; Sta14; Sae03; Por04; Kea11; Jac83; Cru11;

Ari10]
▶ Computational Semantics: [BB05; EU10]
▶ StudOn Forum: https://www.studon.fau.de/crs4625835.html for
▶ announcements, homeworks (my view on the forum)
▶ questions, discussion among your fellow students (your forum too, use it!)
▶ Course Videos: at https://www.fau.tv/course/id/4076.html
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Practical recommendations on Lecture Videos

▶ Excellent Guide: [Nor+18a] (German version at [Nor+18b])

 

Attend lectures.

Take notes.

Be specific.

Catch up.

Ask for help.

Don’t cut corners.

Using lecture 
recordings: 
A guide for students
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ALeA in LBS
▶ We assume that you already know the ALeA system from AI-1/2

▶ Use it for
▶ lecture notes (notes- vs slides-oriented)
▶ flashcards (drill yourself on the LBS jargon/concepts)
▶ course forum (questions, discussions and error reporting)
▶ solving and peer-grading homework assignments
▶ finding study groups (you need not endure LBS alone)
▶ practicing with targeted problems (e.g. from old exams)
▶ doing the prepquizzes (before each lecture)
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Chapter 2
An Introduction to Natural Language Semantics

Michael Kohlhase: LBS 12 2025-02-06



Fascination of (Natural) Language

▶ Definition 0.1. A natural language is any form of spoken or signed means of
communication that has evolved naturally in humans through use and repetition
without conscious planning or premeditation.
▶ In other words: the language you use all day long, e.g. English, German, . . .
▶ Why Should we care about natural language?:
▶ Even more so than thinking, language is a skill that only humans have.
▶ It is a miracle that we can express complex thoughts in a sentence in a matter of

seconds.
▶ It is no less miraculous that a child can learn tens of thousands of words and

complex syntax in a matter of a few years.

Michael Kohlhase: LBS 13 2025-02-06



2.1 Natural Language and its Meaning
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What is Natural Language Semantics? A Difficult Question!
▶ Question: What is “Natural Language Semantics”?

▶ Definition 1.1 (Generic Answer). Semantics is the study of reference,
meaning, or truth.
▶ Definition 1.2. A sign is anything that communicates a meaning that is not

the sign itself to the interpreter of the sign. The meaning can be intentional, as
when a word is uttered with a specific meaning, or unintentional, as when a
symptom is taken as a sign of a particular medical condition
Meaning is a relationship between signs and the objects they intend, express, or
signify.
▶ Definition 1.3. Reference is a relationship between objects in which one object

(the name) designates, or acts as a means by which to refer to – i.e. to connect
to or link to – another object (the referent).
▶ Definition 1.4. Truth is the property of being in accord with reality in a/the

mind-independent world. An object ascribed truth is called true, iff it is, and
false, if it is not.
▶ Definition 1.5. For natural language semantics, the signs are usually

utterances and names are usually phrases.
▶ That is all very abstract and general, can we make this more concrete?
▶ Different (academic) disciplines find different concretizations.
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What is Natural Language Semantics? A Difficult Question!
▶ Question: What is “Natural Language Semantics”?
▶ Definition 1.11 (Generic Answer). Semantics is the study of reference,

meaning, or truth.
▶ Definition 1.12. A sign is anything that communicates a meaning that is not

the sign itself to the interpreter of the sign. The meaning can be intentional, as
when a word is uttered with a specific meaning, or unintentional, as when a
symptom is taken as a sign of a particular medical condition
Meaning is a relationship between signs and the objects they intend, express, or
signify.
▶ Definition 1.13. Reference is a relationship between objects in which one

object (the name) designates, or acts as a means by which to refer to – i.e. to
connect to or link to – another object (the referent).
▶ Definition 1.14. Truth is the property of being in accord with reality in a/the

mind-independent world. An object ascribed truth is called true, iff it is, and
false, if it is not.

▶ Definition 1.15. For natural language semantics, the signs are usually
utterances and names are usually phrases.
▶ That is all very abstract and general, can we make this more concrete?
▶ Different (academic) disciplines find different concretizations.
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What is Natural Language Semantics? A Difficult Question!
▶ Question: What is “Natural Language Semantics”?
▶ Definition 1.16 (Generic Answer). Semantics is the study of reference,

meaning, or truth.
▶ Definition 1.17. A sign is anything that communicates a meaning that is not

the sign itself to the interpreter of the sign. The meaning can be intentional, as
when a word is uttered with a specific meaning, or unintentional, as when a
symptom is taken as a sign of a particular medical condition
Meaning is a relationship between signs and the objects they intend, express, or
signify.
▶ Definition 1.18. Reference is a relationship between objects in which one

object (the name) designates, or acts as a means by which to refer to – i.e. to
connect to or link to – another object (the referent).
▶ Definition 1.19. Truth is the property of being in accord with reality in a/the

mind-independent world. An object ascribed truth is called true, iff it is, and
false, if it is not.
▶ Definition 1.20. For natural language semantics, the signs are usually

utterances and names are usually phrases.
▶ That is all very abstract and general, can we make this more concrete?
▶ Different (academic) disciplines find different concretizations.
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What is (NL) Semantics? Answers from various Disciplines!
▶ Observation: Different (academic) disciplines specialize the notion of

semantics (of natural language) in different ways.

▶ Philosophy: has a long history of trying to answer it, e.g.
▶ Platon ; cave allegory, Aristotle ; Syllogisms.
▶ Frege/Russell ; sense vs. referent. (Michael Kohlhase vs. Odysseus)
▶ Linguistics/Language Philosophy: We need semantics e.g. in translation

Der Geist ist willig aber das Fleisch ist schwach! vs.
Der Schnaps ist gut, aber der Braten ist verkocht! (meaning counts)
▶ Psychology/Cognition: Semantics =̂ “what is in our brains” (; mental

models)
▶ Mathematics has driven much of modern logic in the quest for foundations.
▶ Logic as “foundation of mathematics” solved as far as possible
▶ In daily practice syntax and semantics are not differentiated (much).
▶ Logic@AI/CS tries to define meaning and compute with them. (applied

semantics)
▶ makes syntax explicit in a formal language (formulae, sentences)
▶ defines truth/validity by mapping sentences into “world” (interpretation)
▶ gives rules of truth-preserving reasoning (inference)
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Der Schnaps ist gut, aber der Braten ist verkocht! (meaning counts)

▶ Psychology/Cognition: Semantics =̂ “what is in our brains” (; mental
models)
▶ Mathematics has driven much of modern logic in the quest for foundations.
▶ Logic as “foundation of mathematics” solved as far as possible
▶ In daily practice syntax and semantics are not differentiated (much).
▶ Logic@AI/CS tries to define meaning and compute with them. (applied

semantics)
▶ makes syntax explicit in a formal language (formulae, sentences)
▶ defines truth/validity by mapping sentences into “world” (interpretation)
▶ gives rules of truth-preserving reasoning (inference)
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Meaning of Natural Language; e.g. Machine Translation

▶ Idea: Machine translation is very simple! (we have good lexica)
▶ Example 1.21. Peter liebt Maria. ; Peter loves Mary.
▶ this only works for simple examples!
▶ Example 1.22. Wirf der Kuh das Heu über den Zaun. ̸;Throw the cow the

hay over the fence. (differing grammar; Google Translate)
▶ Example 1.23. Grammar is not the only problem
▶ Der Geist ist willig, aber das Fleisch ist schwach!
▶ Der Schnaps ist gut, aber der Braten ist verkocht!
▶ Observation 1.24. We have to understand the meaning for high-quality

translation!
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Language and Information
▶ Observation: Humans use words (sentences, texts) in natural languages to

represent and communicate information.
▶ But: What really counts is not the words themselves, but the meaning

information they carry.

▶ Example 1.25 (Word Meaning).

Newspaper ;

▶ For questions/answers, it would be very useful to find out what words
(sentences/texts) mean.
▶ Definition 1.26. Interpretation of natural language utterances: three problems

schema abstraction ambiguity composition

language
utterance

semantic
intepretation
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Language and Information
▶ Observation: Humans use words (sentences, texts) in natural languages to

represent and communicate information.
▶ But: What really counts is not the words themselves, but the meaning

information they carry.
▶ Example 1.29 (Word Meaning).

Newspaper ;

▶ For questions/answers, it would be very useful to find out what words
(sentences/texts) mean.
▶ Definition 1.30. Interpretation of natural language utterances: three problems

schema abstraction ambiguity composition

language
utterance

semantic
intepretation
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Language and Information (Examples)

▶ Example 1.31 (Abstraction).

Car and automobile have the same meaning.

▶ Example 1.32 (Ambiguity).

A bank can be a financial institution or a geographical
feature.

▶ Example 1.33 (Composition).

Every student sleeps ; ∀x .student(x)⇒ sleep(x)
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Language and Information (Examples)

▶ Example 1.34 (Abstraction).

Car and automobile have the same meaning.

▶ Example 1.35 (Ambiguity).

A bank can be a financial institution or a geographical
feature.

▶ Example 1.36 (Composition).

Every student sleeps ; ∀x .student(x)⇒ sleep(x)
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Language and Information (Examples)

▶ Example 1.37 (Abstraction).

Car and automobile have the same meaning.

▶ Example 1.38 (Ambiguity).

A bank can be a financial institution or a geographical
feature.

▶ Example 1.39 (Composition).

Every student sleeps ; ∀x .student(x)⇒ sleep(x)
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Context Contributes to the Meaning of NL Utterances

▶ Observation: Not all information conveyed is linguistically realized in an
utterance.
▶ Example 1.40. The lecture begins at 11:00 am. What lecture? Today?
▶ Definition 1.41. We call a piece i of information linguistically realized in an

utterance U, iff, we can trace i to a fragment of U.
▶ Definition 1.42 (Possible Mechanism). Inferring the missing pieces from the

context and world knowledge:

Utterance Meaning
relevant

information
of utterance

Grammar

Lexicon

Inference

World knowledge

We call this process semantic/pragmatic analysis.
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Context Contributes to the Meaning of NL Utterances

▶ Example 1.43. It starts at eleven. What starts?
▶ Before we can resolve the time, we need to resolve the anaphor it.
▶ Possible Mechanism: More Inference!

Utterance
semantic
potential

utterance-
specific
meaning

relevant
information
of utterance

Grammar

Lexicon

Inference

World/Context Knowledge

; Semantic/pragmatic analysis is quite complex! (prime topic of LBS)
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Semantics is not a Cure-It-All!

How many animals of each species did Moses take onto the ark?
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Semantics is not a Cure-It-All!

How many animals of each species did Moses take onto the ark?

▶ Actually, it was Noah (But you understood the question anyways)
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But Semantics works in some cases

▶ The only thing that currently really helps is a restricted domain:
▶ I. e. a restricted vocabulary and world model.

▶ Demo:
DBPedia http://dbpedia.org/snorql/
Query: Soccer players, who are born in a country with more than 10 million
inhabitants, who played as goalkeeper for a club that has a stadium with more
than 30.000 seats and the club country is different from the birth country

Michael Kohlhase: LBS 22 2025-02-06
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But Semantics works in some cases
▶ Answer:

(is computed by DBPedia from a SPARQL query)
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2.2 Natural Language Understanding as
Engineering
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Language Technology

▶ Language Assistance:
▶ written language: Spell/grammar/style-checking,
▶ spoken language: dictation systems and screen readers,
▶ multilingual text: machine-supported text and dialog translation, eLearning.

▶ Information management:
▶ search and classification of documents, (e.g. Google/Bing)
▶ information extraction, question answering. (e.g. http://ask.com)
▶ Dialog Systems/Interfaces:
▶ information systems: at airport, tele-banking, e-commerce, call centers,
▶ dialog interfaces for computers, robots, cars. (e.g. Siri/Alexa)
▶ Observation: The earlier technologies largely rely on pattern matching, the

latter ones need to compute the meaning of the input utterances, e.g. for
database lookups in information systems.
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What is Natural Language Processing?

▶ Generally: Studying of natural languages and development of systems that
can use/generate these.
▶ Definition 2.1. Natural language processing (NLP) is an engineering field at

the intersection of computer science, artificial intelligence, and linguistics which
is concerned with the interactions between computers and human (natural)
languages. Most challenges in NLP involve:
▶ Natural language understanding (NLU) that is, enabling computers to derive

meaning (representations) from human or natural language input.
▶ Natural language generation (NLG) which aims at generating natural language or

speech from meaning representation.
▶ For communication with/among humans we need both NLU and NLG.
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What is the State of the Art In NLU?

▶ Two avenues of attack for the problem: knowledge-based and statistical
techniques (they are complementary)

Deep Knowledge-based Not there yet
We are here cooperation?

Shallow no-one wants this Statistical Methods
applications

Analysis ↑
vs. narrow wide

Coverage →
▶ We will cover foundational methods of deep processing in the course and a

mixture of deep and shallow ones in the lab.
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Environmental Niches for both Approaches to NLU

▶ Definition 2.2. There are two kinds of applications/tasks in NLU:
▶ Consumer tasks: consumer grade applications have tasks that must be fully generic

and wide coverage. ( e.g. machine translation like Google Translate)
▶ Producer tasks: producer grade applications must be high-precision, but can be

domain-specific (e.g. multilingual documentation, machinery-control, program
verification, medical technology)

Precision
100% Producer Tasks

50% Consumer Tasks

103±1 Concepts 106±1 Concepts Coverage
after Aarne Ranta [Ran17].

▶ Example 2.3. Producing/managing machine manuals in multiple languages
across machine variants is a critical producer task for machine tool company.
▶ A producer domain I am interested in: mathematical/technical documents.

Michael Kohlhase: LBS 27 2025-02-06
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NLP for NLU: The Waterfall Model

▶ Definition 2.4 (The NLU Waterfall). NL understanding is often modeled as
a simple linear process: the NLU waterfall consists of five consecutive steps:
0) speech processing: acoustic signal ; word hypothesis graph
1) syntactic processing: word sequence ; phrase structure
2) semantics construction: phrase structure ; (quasi-)logical form
3) semantic/pragmatic analysis:

(quasi-)logical form ; knowledge representation
4) problem solving: using the generated knowledge (application-specific)
▶ Definition 2.5. We call any formalization of an utterance as a logical formula a

logical form. A quasi-logical form (QLF) is a representation which can be turned
into a logical form by further computation.2
▶ In this course: steps 1), 2) and 3).
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2.3 Looking at Natural Language
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Fun with Diamonds (are they real?) [Dav67b]

▶ Example 3.1. We study the truth conditions of adjectival complexes:
▶ This is a diamond. (|= diamond)

▶ This is a blue diamond. (|= diamond , |= blue)
▶ This is a big diamond. (|= diamond , ̸|= big)
▶ This is a fake diamond. (|= ¬diamond)
▶ This is a fake blue diamond. (|= blue?, |= diamond?)
▶ Mary knows that this is a diamond. (|= diamond)
▶ Mary believes that this is a diamond. (̸|= diamond)
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Fun with Diamonds (are they real?) [Dav67b]

▶ Example 3.3. We study the truth conditions of adjectival complexes:
▶ This is a diamond. (|= diamond)
▶ This is a blue diamond. (|= diamond , |= blue)
▶ This is a big diamond. (|= diamond , ̸|= big)

▶ This is a fake diamond. (|= ¬diamond)
▶ This is a fake blue diamond. (|= blue?, |= diamond?)
▶ Mary knows that this is a diamond. (|= diamond)
▶ Mary believes that this is a diamond. (̸|= diamond)
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Fun with Diamonds (are they real?) [Dav67b]

▶ Example 3.4. We study the truth conditions of adjectival complexes:
▶ This is a diamond. (|= diamond)
▶ This is a blue diamond. (|= diamond , |= blue)
▶ This is a big diamond. (|= diamond , ̸|= big)
▶ This is a fake diamond. (|= ¬diamond)

▶ This is a fake blue diamond. (|= blue?, |= diamond?)
▶ Mary knows that this is a diamond. (|= diamond)
▶ Mary believes that this is a diamond. (̸|= diamond)
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Fun with Diamonds (are they real?) [Dav67b]

▶ Example 3.5. We study the truth conditions of adjectival complexes:
▶ This is a diamond. (|= diamond)
▶ This is a blue diamond. (|= diamond , |= blue)
▶ This is a big diamond. (|= diamond , ̸|= big)
▶ This is a fake diamond. (|= ¬diamond)
▶ This is a fake blue diamond. (|= blue?, |= diamond?)

▶ Mary knows that this is a diamond. (|= diamond)
▶ Mary believes that this is a diamond. (̸|= diamond)
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Fun with Diamonds (are they real?) [Dav67b]

▶ Example 3.6. We study the truth conditions of adjectival complexes:
▶ This is a diamond. (|= diamond)
▶ This is a blue diamond. (|= diamond , |= blue)
▶ This is a big diamond. (|= diamond , ̸|= big)
▶ This is a fake diamond. (|= ¬diamond)
▶ This is a fake blue diamond. (|= blue?, |= diamond?)
▶ Mary knows that this is a diamond. (|= diamond)

▶ Mary believes that this is a diamond. (̸|= diamond)
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Fun with Diamonds (are they real?) [Dav67b]

▶ Example 3.7. We study the truth conditions of adjectival complexes:
▶ This is a diamond. (|= diamond)
▶ This is a blue diamond. (|= diamond , |= blue)
▶ This is a big diamond. (|= diamond , ̸|= big)
▶ This is a fake diamond. (|= ¬diamond)
▶ This is a fake blue diamond. (|= blue?, |= diamond?)
▶ Mary knows that this is a diamond. (|= diamond)
▶ Mary believes that this is a diamond. ( ̸|= diamond)
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Ambiguity: The dark side of Meaning

▶ Definition 3.8. We call an utterance ambiguous, iff it has multiple meanings,
which we call readings.
▶ Example 3.9. All of the following sentences are ambiguous:
▶ John went to the bank. (river or financial?)

▶ You should have seen the bull we got from the pope. (three readings!)
▶ I saw her duck. (animal or action?)
▶ John chased the gangster in the red sports car. (three-way too!)
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Ambiguity: The dark side of Meaning

▶ Definition 3.10. We call an utterance ambiguous, iff it has multiple meanings,
which we call readings.
▶ Example 3.11. All of the following sentences are ambiguous:
▶ John went to the bank. (river or financial?)
▶ You should have seen the bull we got from the pope. (three readings!)
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▶ John chased the gangster in the red sports car. (three-way too!)
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Ambiguity: The dark side of Meaning

▶ Definition 3.12. We call an utterance ambiguous, iff it has multiple meanings,
which we call readings.
▶ Example 3.13. All of the following sentences are ambiguous:
▶ John went to the bank. (river or financial?)
▶ You should have seen the bull we got from the pope. (three readings!)
▶ I saw her duck. (animal or action?)

▶ John chased the gangster in the red sports car. (three-way too!)
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Ambiguity: The dark side of Meaning

▶ Definition 3.14. We call an utterance ambiguous, iff it has multiple meanings,
which we call readings.
▶ Example 3.15. All of the following sentences are ambiguous:
▶ John went to the bank. (river or financial?)
▶ You should have seen the bull we got from the pope. (three readings!)
▶ I saw her duck. (animal or action?)
▶ John chased the gangster in the red sports car. (three-way too!)
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Quantifiers, Scope and Context

▶ Example 3.16. Every man loves a woman. (Keira Knightley or his mother!)

▶ Example 3.17. Every car has a radio. (only one reading!)
▶ Example 3.18. Some student in every course sleeps in every class at least some

of the time. (how many readings?)
▶ Example 3.19. The president of the US is having an affair with an intern.

(2002 or 2000?)
▶ Example 3.20. Everyone is here. (who is everyone?)

Michael Kohlhase: LBS 31 2025-02-06



Quantifiers, Scope and Context

▶ Example 3.21. Every man loves a woman. (Keira Knightley or his mother!)
▶ Example 3.22. Every car has a radio. (only one reading!)

▶ Example 3.23. Some student in every course sleeps in every class at least some
of the time. (how many readings?)
▶ Example 3.24. The president of the US is having an affair with an intern.

(2002 or 2000?)
▶ Example 3.25. Everyone is here. (who is everyone?)
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Quantifiers, Scope and Context

▶ Example 3.26. Every man loves a woman. (Keira Knightley or his mother!)
▶ Example 3.27. Every car has a radio. (only one reading!)
▶ Example 3.28. Some student in every course sleeps in every class at least some

of the time. (how many readings?)

▶ Example 3.29. The president of the US is having an affair with an intern.
(2002 or 2000?)
▶ Example 3.30. Everyone is here. (who is everyone?)
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Quantifiers, Scope and Context

▶ Example 3.31. Every man loves a woman. (Keira Knightley or his mother!)
▶ Example 3.32. Every car has a radio. (only one reading!)
▶ Example 3.33. Some student in every course sleeps in every class at least some

of the time. (how many readings?)
▶ Example 3.34. The president of the US is having an affair with an intern.

(2002 or 2000?)

▶ Example 3.35. Everyone is here. (who is everyone?)
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Quantifiers, Scope and Context

▶ Example 3.36. Every man loves a woman. (Keira Knightley or his mother!)
▶ Example 3.37. Every car has a radio. (only one reading!)
▶ Example 3.38. Some student in every course sleeps in every class at least some

of the time. (how many readings?)
▶ Example 3.39. The president of the US is having an affair with an intern.

(2002 or 2000?)
▶ Example 3.40. Everyone is here. (who is everyone?)
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More Context: Anaphora – Challenge for Pragmatic Analysis
▶ Example 3.41 (Anaphoric References).
▶ John is a bachelor. His wife is very nice. (Uh, what?, who?)

▶ John likes his dog Spiff even though he bites him sometimes. (who bites?)
▶ John likes Spiff. Peter does too. (what to does Peter do?)
▶ John loves his wife. Peter does too. (whom does Peter love?)
▶ John loves golf, and Mary too. (who does what?)
▶ Definition 3.42. A word or phrase is called anaphoric (or an anaphor), if its

interpretation depends upon another phrase in context. In a narrower sense, an
anaphor refers to an earlier phrase (its antecedent), while a cataphor to a later
one (its postcedent).
Definition 3.43. The process of determining the antecedent or postcedent of an
anaphoric phrase is called anaphor resolution.
Definition 3.44. An anaphoric connection between anaphor and its antecedent
or postcedent is called direct, iff it can be understood purely syntactically. An
anaphoric connection is called indirect or a bridging reference if additional
knowledge is needed.
▶ Anaphora are another example, where natural languages use the inferential

capabilities of the hearer/reader to “shorten” utterances.
▶ Anaphora challenge pragmatic analysis, since they can only be resolved from the

context using world knowledge.
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More Context: Anaphora – Challenge for Pragmatic Analysis
▶ Example 3.45 (Anaphoric References).
▶ John is a bachelor. His wife is very nice. (Uh, what?, who?)
▶ John likes his dog Spiff even though he bites him sometimes. (who bites?)

▶ John likes Spiff. Peter does too. (what to does Peter do?)
▶ John loves his wife. Peter does too. (whom does Peter love?)
▶ John loves golf, and Mary too. (who does what?)
▶ Definition 3.46. A word or phrase is called anaphoric (or an anaphor), if its

interpretation depends upon another phrase in context. In a narrower sense, an
anaphor refers to an earlier phrase (its antecedent), while a cataphor to a later
one (its postcedent).
Definition 3.47. The process of determining the antecedent or postcedent of an
anaphoric phrase is called anaphor resolution.
Definition 3.48. An anaphoric connection between anaphor and its antecedent
or postcedent is called direct, iff it can be understood purely syntactically. An
anaphoric connection is called indirect or a bridging reference if additional
knowledge is needed.
▶ Anaphora are another example, where natural languages use the inferential

capabilities of the hearer/reader to “shorten” utterances.
▶ Anaphora challenge pragmatic analysis, since they can only be resolved from the

context using world knowledge.
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More Context: Anaphora – Challenge for Pragmatic Analysis
▶ Example 3.49 (Anaphoric References).
▶ John is a bachelor. His wife is very nice. (Uh, what?, who?)
▶ John likes his dog Spiff even though he bites him sometimes. (who bites?)
▶ John likes Spiff. Peter does too. (what to does Peter do?)

▶ John loves his wife. Peter does too. (whom does Peter love?)
▶ John loves golf, and Mary too. (who does what?)
▶ Definition 3.50. A word or phrase is called anaphoric (or an anaphor), if its

interpretation depends upon another phrase in context. In a narrower sense, an
anaphor refers to an earlier phrase (its antecedent), while a cataphor to a later
one (its postcedent).
Definition 3.51. The process of determining the antecedent or postcedent of an
anaphoric phrase is called anaphor resolution.
Definition 3.52. An anaphoric connection between anaphor and its antecedent
or postcedent is called direct, iff it can be understood purely syntactically. An
anaphoric connection is called indirect or a bridging reference if additional
knowledge is needed.
▶ Anaphora are another example, where natural languages use the inferential

capabilities of the hearer/reader to “shorten” utterances.
▶ Anaphora challenge pragmatic analysis, since they can only be resolved from the

context using world knowledge.
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More Context: Anaphora – Challenge for Pragmatic Analysis
▶ Example 3.53 (Anaphoric References).
▶ John is a bachelor. His wife is very nice. (Uh, what?, who?)
▶ John likes his dog Spiff even though he bites him sometimes. (who bites?)
▶ John likes Spiff. Peter does too. (what to does Peter do?)
▶ John loves his wife. Peter does too. (whom does Peter love?)

▶ John loves golf, and Mary too. (who does what?)
▶ Definition 3.54. A word or phrase is called anaphoric (or an anaphor), if its

interpretation depends upon another phrase in context. In a narrower sense, an
anaphor refers to an earlier phrase (its antecedent), while a cataphor to a later
one (its postcedent).
Definition 3.55. The process of determining the antecedent or postcedent of an
anaphoric phrase is called anaphor resolution.
Definition 3.56. An anaphoric connection between anaphor and its antecedent
or postcedent is called direct, iff it can be understood purely syntactically. An
anaphoric connection is called indirect or a bridging reference if additional
knowledge is needed.
▶ Anaphora are another example, where natural languages use the inferential

capabilities of the hearer/reader to “shorten” utterances.
▶ Anaphora challenge pragmatic analysis, since they can only be resolved from the

context using world knowledge.
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More Context: Anaphora – Challenge for Pragmatic Analysis
▶ Example 3.57 (Anaphoric References).
▶ John is a bachelor. His wife is very nice. (Uh, what?, who?)
▶ John likes his dog Spiff even though he bites him sometimes. (who bites?)
▶ John likes Spiff. Peter does too. (what to does Peter do?)
▶ John loves his wife. Peter does too. (whom does Peter love?)
▶ John loves golf, and Mary too. (who does what?)

▶ Definition 3.58. A word or phrase is called anaphoric (or an anaphor), if its
interpretation depends upon another phrase in context. In a narrower sense, an
anaphor refers to an earlier phrase (its antecedent), while a cataphor to a later
one (its postcedent).
Definition 3.59. The process of determining the antecedent or postcedent of an
anaphoric phrase is called anaphor resolution.
Definition 3.60. An anaphoric connection between anaphor and its antecedent
or postcedent is called direct, iff it can be understood purely syntactically. An
anaphoric connection is called indirect or a bridging reference if additional
knowledge is needed.
▶ Anaphora are another example, where natural languages use the inferential

capabilities of the hearer/reader to “shorten” utterances.
▶ Anaphora challenge pragmatic analysis, since they can only be resolved from the

context using world knowledge.
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More Context: Anaphora – Challenge for Pragmatic Analysis
▶ Example 3.61 (Anaphoric References).
▶ John is a bachelor. His wife is very nice. (Uh, what?, who?)
▶ John likes his dog Spiff even though he bites him sometimes. (who bites?)
▶ John likes Spiff. Peter does too. (what to does Peter do?)
▶ John loves his wife. Peter does too. (whom does Peter love?)
▶ John loves golf, and Mary too. (who does what?)
▶ Definition 3.62. A word or phrase is called anaphoric (or an anaphor), if its

interpretation depends upon another phrase in context. In a narrower sense, an
anaphor refers to an earlier phrase (its antecedent), while a cataphor to a later
one (its postcedent).
Definition 3.63. The process of determining the antecedent or postcedent of an
anaphoric phrase is called anaphor resolution.
Definition 3.64. An anaphoric connection between anaphor and its antecedent
or postcedent is called direct, iff it can be understood purely syntactically. An
anaphoric connection is called indirect or a bridging reference if additional
knowledge is needed.

▶ Anaphora are another example, where natural languages use the inferential
capabilities of the hearer/reader to “shorten” utterances.
▶ Anaphora challenge pragmatic analysis, since they can only be resolved from the

context using world knowledge.
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More Context: Anaphora – Challenge for Pragmatic Analysis
▶ Example 3.65 (Anaphoric References).
▶ John is a bachelor. His wife is very nice. (Uh, what?, who?)
▶ John likes his dog Spiff even though he bites him sometimes. (who bites?)
▶ John likes Spiff. Peter does too. (what to does Peter do?)
▶ John loves his wife. Peter does too. (whom does Peter love?)
▶ John loves golf, and Mary too. (who does what?)
▶ Definition 3.66. A word or phrase is called anaphoric (or an anaphor), if its

interpretation depends upon another phrase in context. In a narrower sense, an
anaphor refers to an earlier phrase (its antecedent), while a cataphor to a later
one (its postcedent).
Definition 3.67. The process of determining the antecedent or postcedent of an
anaphoric phrase is called anaphor resolution.
Definition 3.68. An anaphoric connection between anaphor and its antecedent
or postcedent is called direct, iff it can be understood purely syntactically. An
anaphoric connection is called indirect or a bridging reference if additional
knowledge is needed.
▶ Anaphora are another example, where natural languages use the inferential

capabilities of the hearer/reader to “shorten” utterances.
▶ Anaphora challenge pragmatic analysis, since they can only be resolved from the

context using world knowledge.
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Context is Personal and Keeps Changing

▶ Example 3.69. Consider the following sentences involving definite description:
1. The king of America is rich. (true or false?)

2. The king of America isn’t rich. (false or true?)
3. If America had a king, the king of America would be rich. (true or false!)
4. The king of Buganda is rich. (Where is Buganda?)
5. . . . Joe Smith. . . The CEO of Westinghouse announced budget cuts. (CEO=J.S.!)

How do the interact with your context and world knowledge?

▶ The interpretation or whether they make sense at all dep
▶ Note: Last two examples feed back into the context or even world knowledge:
▶ If 4. is uttered by an Africa expert, we add “Buganda exists and is a monarchy to

our world knowledge
▶ We add Joe Smith is the CEO of Westinghouse to the context/world knowledge

(happens all the time in newpaper articles)
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Context is Personal and Keeps Changing

▶ Example 3.70. Consider the following sentences involving definite description:
1. The king of America is rich. (true or false?)
2. The king of America isn’t rich. (false or true?)

3. If America had a king, the king of America would be rich. (true or false!)
4. The king of Buganda is rich. (Where is Buganda?)
5. . . . Joe Smith. . . The CEO of Westinghouse announced budget cuts. (CEO=J.S.!)

How do the interact with your context and world knowledge?

▶ The interpretation or whether they make sense at all dep
▶ Note: Last two examples feed back into the context or even world knowledge:
▶ If 4. is uttered by an Africa expert, we add “Buganda exists and is a monarchy to

our world knowledge
▶ We add Joe Smith is the CEO of Westinghouse to the context/world knowledge

(happens all the time in newpaper articles)
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Context is Personal and Keeps Changing

▶ Example 3.71. Consider the following sentences involving definite description:
1. The king of America is rich. (true or false?)
2. The king of America isn’t rich. (false or true?)
3. If America had a king, the king of America would be rich. (true or false!)

4. The king of Buganda is rich. (Where is Buganda?)
5. . . . Joe Smith. . . The CEO of Westinghouse announced budget cuts. (CEO=J.S.!)

How do the interact with your context and world knowledge?

▶ The interpretation or whether they make sense at all dep
▶ Note: Last two examples feed back into the context or even world knowledge:
▶ If 4. is uttered by an Africa expert, we add “Buganda exists and is a monarchy to

our world knowledge
▶ We add Joe Smith is the CEO of Westinghouse to the context/world knowledge

(happens all the time in newpaper articles)
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Context is Personal and Keeps Changing

▶ Example 3.72. Consider the following sentences involving definite description:
1. The king of America is rich. (true or false?)
2. The king of America isn’t rich. (false or true?)
3. If America had a king, the king of America would be rich. (true or false!)
4. The king of Buganda is rich. (Where is Buganda?)

5. . . . Joe Smith. . . The CEO of Westinghouse announced budget cuts. (CEO=J.S.!)

How do the interact with your context and world knowledge?

▶ The interpretation or whether they make sense at all dep
▶ Note: Last two examples feed back into the context or even world knowledge:
▶ If 4. is uttered by an Africa expert, we add “Buganda exists and is a monarchy to

our world knowledge
▶ We add Joe Smith is the CEO of Westinghouse to the context/world knowledge

(happens all the time in newpaper articles)
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Context is Personal and Keeps Changing

▶ Example 3.73. Consider the following sentences involving definite description:
1. The king of America is rich. (true or false?)
2. The king of America isn’t rich. (false or true?)
3. If America had a king, the king of America would be rich. (true or false!)
4. The king of Buganda is rich. (Where is Buganda?)
5. . . . Joe Smith. . . The CEO of Westinghouse announced budget cuts. (CEO=J.S.!)

How do the interact with your context and world knowledge?

▶ The interpretation or whether they make sense at all dep
▶ Note: Last two examples feed back into the context or even world knowledge:
▶ If 4. is uttered by an Africa expert, we add “Buganda exists and is a monarchy to

our world knowledge
▶ We add Joe Smith is the CEO of Westinghouse to the context/world knowledge

(happens all the time in newpaper articles)
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Context is Personal and Keeps Changing

▶ Example 3.74. Consider the following sentences involving definite description:
1. The king of America is rich. (true or false?)
2. The king of America isn’t rich. (false or true?)
3. If America had a king, the king of America would be rich. (true or false!)
4. The king of Buganda is rich. (Where is Buganda?)
5. . . . Joe Smith. . . The CEO of Westinghouse announced budget cuts. (CEO=J.S.!)

How do the interact with your context and world knowledge?
▶ The interpretation or whether they make sense at all dep
▶ Note: Last two examples feed back into the context or even world knowledge:
▶ If 4. is uttered by an Africa expert, we add “Buganda exists and is a monarchy to

our world knowledge
▶ We add Joe Smith is the CEO of Westinghouse to the context/world knowledge

(happens all the time in newpaper articles)
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2.4 A Taste of Language Philosophy
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What is the Meaning of Natural Language Utterances?

▶ Question: What is the meaning of the word chair?

▶ Answer: “the set of all chairs” (difficult to delineate, but more or less clear)
▶ Question: What is the meaning of the word Michael Kohlhase?
▶ Answer: The word refers to an object in the real world: the instructor of LBS.
▶ Alternatively: The singleton with that object (as for “set of chairs” above)
▶ Question: What about Michael Kohlhase sits on a chair?
▶ Towards an Answer: We have to combine the two sets, via the meaning of

“sits”.
▶ Question: What is the meaning of the word John F. Kennedy or Odysseus?
▶ Problem: There are no objects in the real worlds, so the meaning of both is ∅

and thus equal /.
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▶ Answer: The word refers to an object in the real world: the instructor of LBS.
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What is the Meaning of Natural Language Utterances?

▶ Question: What is the meaning of the word chair?
▶ Answer: “the set of all chairs” (difficult to delineate, but more or less clear)
▶ Question: What is the meaning of the word Michael Kohlhase?
▶ Answer: The word refers to an object in the real world: the instructor of LBS.
▶ Alternatively: The singleton with that object (as for “set of chairs” above)
▶ Question: What about Michael Kohlhase sits on a chair?

▶ Towards an Answer: We have to combine the two sets, via the meaning of
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What is the Meaning of Natural Language Utterances?
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2.4.1 Epistemology: The Philosphy of Science
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Epistemology – Propositions & Observations

▶ Definition 4.1. Epistemology is the branch of philosophy concerned with
studying nature of knowledge, its justification, the rationality of belief, scientific
theories and predictions, and various related issues.
▶ Definition 4.2. A proposition is a sentence about the actual world or a class of

worlds deemed possible whose meaning can be expressed as being true or false in
a specific world.
▶ Definition 4.3. A belief is a proposition φ that an agent a holds true about a

class of worlds. This is a characterizing feature of the agent.
▶ Definition 4.4 (Knowledge - The JTB Account). Knowledge is justified,

true belief.
▶ Problem: How can an agent justify a belief to obtain knowledge.
▶ Definition 4.5. Given a world w , the observed value (or just value, i.e. true or

false) of a proposition (in w) can be determined by observations, that is an
agent, the observer, either observes (experiences) that φ is true in w or conducts
a deliberate, systematic experiment that determines φ to be true in w .
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Epistemology – Reproducibility & Phenomena
▶ Problem: Observations are sometimes unreliable, e.g. observer o perceives φ

to be true, while it is false or vice versa.
▶ Idea: Repeat the observations to raise the probability of getting them right.
▶ Definition 4.6. An observation φ is said to be reproducible, iff φ can observed

by different observers in different situations.
▶ Definition 4.7. A phenomenon φ is a proposition that is reproducibly

observable to be true in a class of worlds.
▶ Problem: We would like to verify a phenomenon φ, i.e. observe φ in all

worlds, But relevant world classes are too large to make this practically feasible.
▶ Definition 4.8. A world w is a counterexample to a proposition φ, if φ is

observably false in w .
▶ Intuition: The absence of counterexamples is the best we can hope for in

general for accepting phenomena.
▶ Intuition: The phenomena constitute the “world model” of an agent.
▶ Problem: It is impossible/inefficient (for an agent) to know all phenomena.
▶ Idea: An agent could retain only a small subset of known propositions, from

this all phenomena can be derived.
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Epistemology – Explanations & Hypotheses

▶ Definition 4.9. A proposition ψ follows from a proposition φ, iff ψ is true in
any world where φ is.
▶ Definition 4.10. An explanation of a phenomenon φ is a set Φ of propositions,

such that φ follows from Φ.
▶ Example 4.11. {φ} is a (rather useless) explanation for φ.
▶ Intuition: We prefer explanations Φ that explain more than just φ.
▶ Observation: This often coincides with explanations that are in some sense

“simpler” or “more elementary” than φ. (; Occam’s razor)
▶ Definition 4.12. A proposition is called falsifiable, iff counterexamples are

theoretically possible and the observation of a reproducible series of
counterexample is practically feasible.
▶ Definition 4.13. A hypothesis is a proposed explanation of a phenomenon that

is falsifiable.
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Epistemology – Scientific Theories

▶ Knowledge Strategy: Collect hypotheses about the world, drop those with
counterexamples and those that can be explained themselves.
▶ Definition 4.14. A hypothesis φ can be tested in world/situation w by

observing the value of φ in w . If the value is true, then we say that the
observation o supports φ or is evidence for φ. If it is false then o falsifies φ.
▶ Definition 4.15. A (scientific) theory for a collection Φ of phenomena is a set
Θ of hypotheses that
▶ has been tested extensively and rigorously without finding counterexamples, and
▶ is minimal in the sense that no sub-collection of Θ explains Φ.
▶ Definition 4.16. We call any proposition φ that follows from a theory Φ a

prediction of Φ.
▶ Note: To falsify a theory Φ, it is sufficient to falsify any prediction. Any

observation of a prediction φ of Φ supports Φ.
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2.4.2 Meaning Theories
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Theories of Meaning

▶ The Central Question: What is the meaning of natural language?
▶ This is difficult to answer definitely, . . .
▶ But we can form meaning theory that make predictions that we can test.
▶ Definition 4.17. A semantic meaning theory assigns semantic contents to

expressions of a language.
▶ Definition 4.18. A foundational meaning theory tries to explain why language

expressions have the meanings they have; e.g. in terms of mental states of
individuals and groups.
▶ It is important to keep these two notions apart.
▶ We will concentrate on semantic meaning theories in this course.
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The Meaning of Singular Terms

▶ Let’s see a semantic meaning theory in action.
▶ Definition 4.19. A singular term is a phrase that purports to denote or

designate a particular individual person, place, or other object.
▶ Example 4.20. Michael Kohlhase and Odysseus are singular terms.
▶ Definition 4.21. In [Fre92], Gottlob Frege distinguishes between sense (Sinn)

and referent (Bedeutung) of singular terms.
▶ Example 4.22. Even though Odysseus does not have a referent, it has a very

real sense. (but what is a sense?)
▶ Example 4.23. The ancient greeks knew the planets Hesperos (the evening

star) and Phosphoros (the morning star). These words have different senses, but
the – as we now know – same referent: the planet Venus.
▶ Remark: Bertrand Russell views singular terms as disguised definite

descriptions – Hesperos as “the brightest heavenly body that sometimes rises in
the evening”. Frege’s sense can often be conflated with Russell’s descriptions.
(there can be more than one definite description)
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Cresswell’s “Most Certain Principle” and Truth Conditions

▶ Problem: How can we test meaning theories in practice?
▶ Definition 4.24. Cresswell’s (1982) most certain principle (MCP): [Cre82]

I’m going to begin by telling you what I think is the most certain thing I think
about meaning. Perhaps it’s the only thing. It is this. If we have two sentences
A and B, and A is true and B is false, then A and B do not mean the same.

▶ Definition 4.25. The truth conditions of a sentence are the conditions of the
world under which it is true. These conditions must be such that if all obtain,
the sentence is true, and if one doesn’t obtain, the sentence is false.
▶ Observation: Meaning determines truth conditions and vice versa.
▶ In Fregean terms The sense of a sentence (a thought) determines its referent

(a truth value).
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This principle sounds trivial – and indeed it is, if you think about it – but gives rise
to the notion of truth conditions, which form the most important way of finding
out about the meaning of sentences: the determinations of truth conditions.
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Truth Conditions in Practice

▶ Idea: To test/determine the truth conditions of a sentence S in practice, we
tell little stories that describe situations/worlds that embed S .
▶ Example 4.26. Consider the ambiguous sentence from Example 3.27 (Looking

at Natural Language) in the LBS lecture notes:
John chased the gangster in the red sports car.
For each of three readings there is story =̂ truth conditions
▶ John drives the red sports car and chases the gangster.
▶ John chases the gangster who drives the red sports car.
▶ John chases the gangster on the back seat of a (very very big) red sports car.

All of these stories correspond to different worlds, so by the MCP there must be
at least three readings!
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Compositionality

▶ Definition 4.27. A meaning theory T is compositional, iff the meaning of an
expression is a function of the meanings of its parts. We say that T obeys the
compositionality principle or simply compositionality if it is.
▶ To compute the meaning of an expression, look up the meanings of the basic

expressions forming it and successively compute the meanings of larger parts
until a meaning for the whole expression is found.
▶ Example 4.28 (Compositionality at work in arithmetic). To compute the

value of (x + y)/(z · u), look up the values of x , y , z , and u, then compute
x + y and z · u, and finally compute the value of the whole expression.
▶ Many philosophers and linguists hold that compositionality is at work in

ordinary language too.
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Why Compositionality is Attractive

▶ Compositionality gives a nice building block for a meaning theory:
▶ Example 4.29. [Expressions [are [built [from [words [that [combine [into

[[larger [and larger]] subexpressions]]]]]]]]]
▶ Consequence: To compute the meaning of an expression, look up the

meanings of its words and successively compute the meanings of larger parts
until a meaning for the whole expression is found.
▶ Compositionality explains how people can easily understand sentences they have

never heard before, even though there are an infinite number of sentences any
given person at any given time has not heard before.
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Compositionality and the Congruence Principle

▶ Given reasonable assumptions compositionality entails the
▶ Definition 4.30. The congruence principle states that whenever A is part of B

and A′ means just the same as A, replacing A by A′ in B will lead to a result
that means just the same as B.
▶ Example 4.31. Consider the following (complex) sentences:

1. blah blah blah such and such blah blah
2. blah blah blah so and so blah blah

If such and such and so and so mean the same thing, then 1. and 2. mean the
same too.
▶ Conversely: if 1. and 2. do not mean the same, then such and such and so

and so do not either.
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A Test for Synonymity
▶ Suppose we accept the most certain principle (difference in truth conditions

implies difference in meaning) and the congruence principle (replacing words by
synonyms results in a synonymous utterance). Then we have a diagnostics for
synonymy: Replacing utterances by synonyms preserves truth conditions, or
equivalently
▶ Definition 4.32. The following is called the truth conditional synonymy test:

If replacing A by B in some sentence C does not preserve truth conditions, then
A and B are not synonymous.

▶ We can use this as a test for the question of individuation: when are the
meanings of two words the same – when are they synonymous?
▶ Example 4.33 (Unsurprising Results). The following sentences differ in truth

conditions.
1. The cat is on the mat.
2. The dog is on the mat.
Hence cat and dog are not synonymous. The converse holds for
1. John is a Greek.
2. John is a Hellene.
In this case there is no difference in truth conditions.
▶ But there might be another context that does give a difference.
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Contentious Cases of Synonymy Test

▶ Example 4.34 (Problem). The following sentences differ in truth values:
1. Mary believes that John is a Greek
2. Mary believes that John is a Hellene
So Greek is not synonymous to Hellene. The same holds in the classical
example:
1. The Ancients knew that Hesperus was Hesperus
2. The Ancients knew that Hesperus was Phosphorus

In these cases most language users do perceive a difference in truth conditions
while some philosophers vehemently deny that the sentences under 1. could be
true in situations where the 2. sentences are false.
▶ It is important here of course that the context of substitution is within the

scope of a verb of propositional attitude. (maybe later!)
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A better Synonymy Test

▶ Definition 4.35 (Synonymy). The following is called the truth conditional
synonymy test:

If replacing A by B in some sentence C does not preserve truth conditions in a
compositional part of C , then A and B are not synonymous.
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Testing Truth Conditions with Logic

▶ Definition 4.36. A logical language modelM for a natural language L consists
of a logical system ⟨L,K,⊨⟩ and a function φ from L sentences to L-formulae.
▶ Problem: How do we find out whetherM models L faithfully?
▶ Idea: Test truth conditions of sentences against the predictions M makes.
▶ Problem: The truth conditions for a sentence S in L can only be formulated

and verified by humans that speak L.
▶ In Practice: Truth conditions are expressed as “stories” that specify salient

situations. Native speakers of L are asked to judge whether they make S
true/false.
▶ Observation 4.37. A logical language modelM := ⟨L,L, φ⟩ can be tested:

1. Select a sentence S and a situation W that makes S true in W . (according to
humans)

2. Translate S in to an L-formula S ′ := φ(S).
3. Express W as a set Φ of L-formulae. (Φ =̂ truth conditions)
4. M is supported if Φ ⊨ S ′, falsified if Φ ̸⊨ S ′.
▶ Corollary 4.38. A logical language model constitutes a semantic meaning

theory.
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2.5 Computational Semantics as a Natural
Science
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Computational Semantics as a Natural Science

▶ In a nutshell: Formal logic studies formal languages, their relation with the
world (in particular the truth conditions). Computational logic adds the question
about the computational behavior of the relevant aspects of the formal
languages.
▶ This is almost the same as the task of natural language semantics!
▶ It is one of the key ideas that logics are good scientific models for natural

languages, since they simplify certain aspects so that they can be studied in
isolation. In particular, we can use the general scientific method of
1. observing
2. building formal theories for an aspect of reality,
3. deriving the consequences of the hypotheses about the world in the theories
4. testing the predictions made by the theory against the real-world data. If the theory

predicts the data, then this supports the theory, if not, we refine the theory, starting
the process again at 2.
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NL Semantics as an Intersective Discipline
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Part 1
English as a Formal Language: The Method of

Fragments
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Chapter 3
Logic as a Tool for Modeling NL Semantics
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3.1 The Method of Fragments
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Natural Language Fragments

▶ Methodological Problem: How to organize the scientific method for natural
language?
▶ Delineation Problem: What is natural language, e.g. English?

Which aspects do we want to study?
▶ Idea: Select a subset (NL) sentences we want to study by a grammar!
; Richard Montague’s method of fragments (1972).
▶ Definition 1.1. The language L of a context-free grammar is called a fragment

of a natural language N, iff L ⊆ N.
▶ Scientific Fiction: We can exhaust English with ever-increasing fragments,

develop a semantic meaning theory for each.
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Using CFGs for NL Fragments

▶ Idea: Use nonterminals to classify NL phrases.
▶ Definition 1.2. We call a nonterminal symbol of a context-free grammar a

phrasal category. We distinguish two kinds of rules:
structural rules: L : H→ c1, . . . , cn with head H, label L, and a sequence of
phrasal categories ci .
lexical rules: L : H→ t1 | . . . | tn, where the ti are terminals (i.e. NL phrases)

▶ Definition 1.3. In the method of fragments we use a CFG to parse sentences
from the fragment into a parse tree (also called abstract syntax tree (AST) for
further processing.
▶ Todo: We have to restrict our logical language models to fragments.
▶ Definition 1.4. A language fragment model consists of a CFG G , a logical

system L, and a semantics construction mapping φ from G -parse trees to
L-formulae.
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Formal Natural Language Semantics with Fragments

▶ Idea: We will follow the picture we have discussed before

Comp Ling
NL

FL

M = ⟨D, I⟩

|=NL ⊆ NL×NL

⊢C ⊆ FL× FL

⊨ ⊆ FL× FL

Analysis

Iφ

induces?

induces

choose calculus C

⊨ ≡ ⊢C?

|=NL ≡ ⊢C?

Logic

Choose a target logic FL and specify a translation from syntax trees to formulae!
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Semantics by Translation

▶ Idea: We translate sentences by translating their syntax trees via tree node
translation rules.
▶ Note: This makes the induced meaning theory compositional.
▶ Definition 1.5. We represent a node α in a syntax tree with children β1, . . ., βn

by [X1β1 , . . . ,Xnβn
]α and write a translation rule as

L : [X1β1 , . . . ,Xnβn
]α ; Φ(X 1

′, . . .,X n
′)

if the translation of the node α can be computed from those of the βi via a
semantical function Φ.
▶ Definition 1.6. For a natural language utterance or text A, we will use ⟨A⟩ for

the result of translating A and call it the interpretation of A.
▶ Definition 1.7 (Default Rule). For every word w in the fragment we assume

a constant w ′ in the logic L and the “pseudo-rule” t1 : w ; w ′. (if no other
translation rule applies)
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3.2 What is Logic?
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What is Logic?

▶ Definition 2.1. Logic =̂ formal languages, inference and their relation with the
world
▶ Formal language FL: set of formulae (2 + 3/7, ∀x .x + y = y + x)
▶ Formula: sequence/tree of symbols (x , y , f , g , p, 1, π,∈,¬, ∀,∃)
▶ Model: things we understand (e.g. number theory)
▶ Interpretation: maps formulae into models ([[three plus five]]I = 8)
▶ Validity: M ⊨ A, iff [[A]]I = T (five greater three is valid)
▶ Entailment: A ⊨ B, iff M ⊨ B for all M ⊨ A. (generalize to H ⊨ A)
▶ Inference: rules to transform (sets of) formulae (A,A ⇒ B⊢B)
▶ Syntax: formulae, inference (just a bunch of symbols)
▶ Semantics: models, interpr., validity, entailment (math. structures)
▶ Important Question: relation between syntax and semantics?
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3.3 Using Logic to Model Meaning of Natural
Language
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Modeling Natural Language Semantics

▶ Problem: Find formal (logic) system for the meaning of natural language.
▶ History of ideas
▶ Propositional logic [ancient Greeks like Aristotle]

* Every human is mortal
▶ First-Order Predicate logic [Frege ≤ 1900]

* I believe, that my audience already knows this.
▶ Modal logic [Lewis18, Kripke65]

* A man sleeps. He snores. ((∃X .man(X ) ∧ sleeps(X ))) ∧ snores(X )
▶ Various dynamic approaches (e.g. DRT, DPL)

* Most men wear black
▶ Higher-order Logic, e.g. generalized quantifiers
▶ . . .
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Natural Language Semantics?

Comp Ling
NL

FL

M = ⟨D, I⟩

|=NL ⊆ NL×NL

⊢C ⊆ FL× FL

⊨ ⊆ FL× FL

Analysis

Iφ

induces?

induces

choose calculus C

⊨ ≡ ⊢C?

|=NL ≡ ⊢C?

Logic
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Logic-Based Knowledge Representation for NLP

▶ Logic (and related formalisms) allow to integrate world knowledge
▶ explicitly (gives more understanding than statistical methods)
▶ transparently (symbolic methods are monotonic)
▶ systematically (we can prove theorems about our systems)
▶ Signal + world knowledge makes more powerful model
▶ Does not preclude the use of statistical methods to guide inference
▶ Problems with logic-based approaches
▶ Where does the world knowledge come from? (Ontology problem)
▶ How to guide search induced by logical calculi? (combinatorial explosion)
▶ One possible answer: Description Logics. (Recall the AI-1 lecture?)
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Chapter 4
Fragment 1
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4.1 The First Fragment: Setting up the Basics
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Fragment F1 Data (Sentences we want to cover)

▶ Fragment F1 Data: We delineate the intended fragment by giving examples
1. Ethel kicked the cat and Fiona laughted
2. Peter is the teacher
3. The teacher is happy
4. It is not the case that Bertie ran
5. It is not the case that Jo is happy
▶ We can later use these sentences as benchmark tests.
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4.1.1 Natural Language Syntax (Fragment 1)

Michael Kohlhase: LBS 60 2025-02-06



Structural Grammar Rules

▶ Definition 1.1. F1 uses the following eight phrasal categories
S sentence NP noun phrase
N noun Npr proper name
V i intransitive verb V t transitive verb
conj coordinator Adj adjective

▶ Definition 1.2. We have the following production rules in F1.
S1 : S→NP V i ,
S2 : S→NP V t NP,
N1 : NP→Npr,
N2 : NP→ the N,
S3 : S→ It is not the case that S ,
S4 : S→S conj S ,
S5 : S→NP is NP, and
S6 : S→NP is Adj
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Lexical insertion rules for Fragment F1

▶ Definition 1.3. We have the following lexical insertion rules in fragment F1.
L1 : Npr→Prudence | Ethel | Chester | Jo | Bertie | Fiona,
L2 : N→ book | cake | cat | golfer | dog | lecturer | student | singer,
L3 : V i→ ran | laughed | sang | howled | screamed,
L4 : V t→ read | poisoned | ate | liked | loathed | kicked,
L5 : conj→ and | or,
L6 : Adj→ happy | crazy |messy | disgusting | wealthy

▶ Definition 1.4. A production rule whose head is a single non-terminal and
whose body consists of a single terminal is called lexical or a lexical insertion rule.
▶ Notation: Lexical insertion rules are usually written using BNF alternative in

the body ⇝grouping rules with the same head.
▶ Definition 1.5. The subset of lexical rules of a grammar G is called the lexicon

of G and the set of body symbols the vocabulary (or alphabet). The
nonterminals in their heads are called lexical categories of G .
▶ Note: We will adopt the convention that new lexical insertion rules can be

generated spontaneously as needed.
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Syntax Example: Jo poisoned the dog and Ethel laughed

▶ Observation 1.6. Jo poisoned the dog and Ethel laughed is a sentence of
fragment 1
▶ We can construct a parse tree for it!

Jo poisoned the dog and Ethel laughed

Npr V t N conj Npr V i

NP NP NP

S S

S
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4.1.2 Predicate Logic without Quantifiers

Michael Kohlhase: LBS 63 2025-02-06



Individuals and their Properties/Relationships

▶ Observation: We want to talk about individuals like Stefan, Nicole, and
Jochen
and their properties, e.g. being blond, or studying AI
and relationships, e.g. that Stefan loves Nicole.
▶ Idea: Re-use PL0, but replace propositional variables with something more

expressive! (instead of fancy variable name trick)

▶ Definition 1.7. A first-order signature ⟨Σf ,Σp ⟩ consists of
▶ Σf :=

⋃
k∈NΣ

f
k of function constants, where members of Σf

k denote k-ary functions
on individuals,

▶ Σp :=
⋃

k∈NΣ
p
k of predicate constants, where members of Σp

k denote k-ary
relations among individuals,

where Σf
k and Σp

k are pairwise disjoint, countable sets of symbols for each
k ∈ N.
A 0-ary function constant refers to a single individual, therefore we call it a
individual constant.
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Individuals and their Properties/Relationships

▶ Observation: We want to talk about individuals like Stefan, Nicole, and
Jochen
and their properties, e.g. being blond, or studying AI
and relationships, e.g. that Stefan loves Nicole.
▶ Idea: Re-use PL0, but replace propositional variables with something more

expressive! (instead of fancy variable name trick)
▶ Definition 1.8. A first-order signature ⟨Σf ,Σp ⟩ consists of
▶ Σf :=

⋃
k∈NΣ

f
k of function constants, where members of Σf

k denote k-ary functions
on individuals,

▶ Σp :=
⋃

k∈NΣ
p
k of predicate constants, where members of Σp

k denote k-ary
relations among individuals,

where Σf
k and Σp

k are pairwise disjoint, countable sets of symbols for each
k ∈ N.
A 0-ary function constant refers to a single individual, therefore we call it a
individual constant.
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A Grammar for PLnq

▶ Definition 1.9. The formulae of PLnq are given by the following grammar

function constants f k ∈ Σf
k

predicate constants pk ∈ Σp
k

terms t ::= f 0 individualconstant
| f k(t1, . . ., tk) application

formulae A ::= pk(t1, . . ., tk) atomic
| ¬A negation
| A1 ∧ A2 conjunction
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PLnq Semantics

▶ Definition 1.10. Domains D0 = {T,F} of truth values and Dι ̸= ∅ of
individuals.
▶ Definition 1.11. Interpretation I assigns values to constants, e.g.
▶ I(¬) : D0 →D0;T 7→ F;F 7→ T and I(∧) = . . . (as in PL0)
▶ I : Σf

0 →Dι (interpret individual constants as individuals)
▶ I : Σf

k →Dιk →Dι (interpret function constants as functions)
▶ I : Σp

k →P(Dιk) (interpret predicate constants as relations)

▶ Definition 1.12. The value function I assigns values to formulae: (recursively)
▶ I(f (A1, . . .,Ak)) := I(f )(I(A1), . . . , I(Ak))
▶ I(p(A1, . . .,Ak)) := T, iff ⟨I(A1), . . . , I(Ak)⟩ ∈ I(p)
▶ I(¬A) = I(¬)(I(A)) and I(A ∧ B) = I(∧)(I(A), I(G)) (just as in PL0)
▶ Definition 1.13. Model: M = ⟨Dι, I⟩ varies in Dι and I.
▶ Theorem 1.14. PLnq is isomorphic to PL0 (interpret atoms as prop. variables)
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A Model for PLnq

▶ Example 1.15. Let L := {a, b, c , d , e,P,Q,R,S}, we set the universe
D := {♣,♠,♡,♢}, and specify the interpretation function I by setting
▶ a 7→ ♣, b 7→ ♠, c 7→ ♡, d 7→ ♢, and e 7→ ♢ for constants,
▶ P 7→ {♣,♠} and Q 7→ {♠,♢}, for unary predicate constants.
▶ R 7→ {⟨♡,♢⟩, ⟨♢,♡⟩}, and S 7→ {⟨♢,♠⟩, ⟨♠,♣⟩} for binary predicate constants.
▶ Example 1.16 (Computing Meaning in this Model).
▶ I(R(a, b) ∧ P(c)) = T, iff
▶ I(R(a, b)) = T and I(P(c)) = T, iff
▶ ⟨I(a), I(b)⟩ ∈ I(R) and I(c) ∈ I(P), iff
▶ ⟨♣,♠⟩ ∈ {⟨♡,♢⟩, ⟨♢,♡⟩} and ♡ ∈ {♣,♠}
So, I(R(a, b) ∧ P(c)) = F.
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PLnq and PL0 are Isomorphic
▶ Observation: For every choice of Σ of signature, the set AΣ of atomic PLnq

formulae is countable, so there is a VΣ ⊆ V0 and a bijection θΣ : AΣ→VΣ.
θΣ can be extended to formulae as PLnq and PL0 share connectives.
▶ Lemma 1.17. For every modelM = ⟨Dι, I⟩, there is a variable assignment
φM, such that IφM(A) = I(A).
▶ Proof sketch: We just define φM(X ) := I(θ−1

Σ (X ))
▶ Lemma 1.18. For every variable assignment ψ : VΣ→{T,F} there is a model
Mψ = ⟨Dψ, Iψ⟩, such that Iψ(A) = Iψ(A).
▶ Proof sketch: see next slide
▶ Corollary 1.19. PLnq is isomorphic to PL0, i.e. the following diagram commutes:

PLnq(Σ) PL0(AΣ)
θΣ

⟨Dψ, Iψ⟩ VΣ→{T,F}
ψ 7→ Mψ

Iψ() IφM()

▶ Note: This constellation with a language isomorphism and a corresponding
model isomorphism (in converse direction) is typical for a logic isomorphism.
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Valuation and Satisfiability

▶ Lemma 1.20. For every variable assignment ψ : VΣ→{T,F} there is a model
Mψ = ⟨Dψ, Iψ⟩, such that Iψ(A) = Iψ(A).
▶ Proof: We constructMψ = ⟨Dψ, Iψ⟩ and show that it works as desired.

1. Let Dψ be the set of PLnq terms over Σ, and
▶ Iψ(f ) : Dιk →Dψk

; ⟨A1, . . .,Ak⟩ 7→ f (A1, . . .,Ak) for f ∈ Σf
k

▶ Iψ(p) := {⟨A1, . . .,Ak⟩ |ψ(θ−1
ψ p(A1, . . .,Ak)) = T} for p ∈ Σp.

2. We show Iψ(A) = A for terms A by induction on A
2.1. If A = c , then Iψ(A) = Iψ(c) = c = A
2.2. If A = f (A1, . . . ,An) then
Iψ(A) = Iψ(f )(I(A1), . . . , I(An)) = Iψ(f )(A1, . . .,Ak) = A.

3. For a PLnq formula A we show that Iψ(A) = Iψ(A) by induction on A.
3.1. If A = p(A1, . . .,Ak), then Iψ(A) = Iψ(p)(I(A1), . . . , I(An)) = T, iff
⟨A1, . . .,Ak⟩ ∈ Iψ(p), iff ψ(θ−1

ψ A) = T, so Iψ(A) = Iψ(A) as desired.
3.2. If A = ¬B, then Iψ(A) = T, iff Iψ(B) = F, iff Iψ(B) = Iψ(B), iff
Iψ(A) = Iψ(A).
3.3. If A = B ∧ C then we argue similarly

4. Hence Iψ(A) = Iψ(A) for all PLnq formulae and we have concluded the
proof.
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4.1.3 Natural Language Semantics via
Translation
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Translation rules for non-basic expressions (NP and S)

▶ Definition 1.21. We have the following translation rules for non-leaf node of
the syntax tree
T1 : [XNP,YV i ]S ; Y ′(X ′)
T2 : [XNP,YV t ,ZNP]S ; Y ′(X ′,Z ′)
T3 : [XNpr ]NP ; X ′

T4 : [the,XN ]NP ; theX ′

T5 : [It is not the case thatXS ]S ; (¬X ′)
T6 : [XS ,Yconj,ZS ]S ; Y ′(X ′,Z ′)
T7 : [XNP, is,YNP]S ; X ′ = Y ′

T8 : [XNP, is,YAdj]S ; Y ′(X ′)
Read e.g. [Y ,Z ]X as a node with label X in the syntax tree with children X and
Y . Read X ′ as the translation of X via these rules.
▶ Note that we have exactly one translation per syntax rule.
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Translation rule for basic lexical items

▶ Definition 1.22. The target logic for F1 is PLnq, the fragment of PL1 without
quantifiers.
▶ Lexical Translation Rules for F1 Categories:
▶ If w is a proper name, then w ′ ∈ Σf

0. (individual constant)
▶ If w is an intransitive verb, then w ′ ∈ Σp

1. (one-place predicate)
▶ If w is a transitive verb, w ′ ∈ Σp

2. (two-place predicate)
▶ If w is a noun phrase, then w ′ ∈ Σf

0. (individual constant)
▶ Semantics by Translation: We translate sentences by translating their syntax

trees via tree node translation rules.
▶ For any lexical item (i.e. word) w , we have the “pseudo-rule” t1 : w ; w ′.
▶ Note: This rule does not apply to the syncategorematic items is and the.
▶ Translations for logical connectives

t2 : and ; ∧, t3 : or ; ∨, t4 : it is not the case that ; ¬
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Translation Example

▶ Observation 1.23. Jo poisoned the dog and Ethel laughed is a sentence of
fragment F1.
▶ We can construct a syntax tree for it!

Jo poisoned the dog and Ethel laughed

Npr V t N conj Npr V i

NP NP NP

S S

S

Jo′ poisoned ′ ∧ Ethel ′ laughed ′

Jo′ thedog ′ Ethel ′

poisoned ′(Jo′, thedog ′) laughed ′(Ethel ′)

poisoned ′(Jo′, thedog ′) ∧ laughed ′(Ethel ′)
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4.2 Testing Truth Conditions via Inference
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Testing Truth Conditions in PLnq

▶ Idea 1: To test our language model (F1)
▶ Select a sentence S and a situation W that makes S true. (according to humans)
▶ Translate S in to a formula S ′ in PLnq.
▶ Express W as a set Φ of formulae in PLnq (Φ =̂ truth conditions)
▶ Our language model is supported if Φ ⊨ S ′, falsified if Φ ̸⊨ S ′.
▶ Example 2.1 (John chased the gangster in the red sports car).
▶ We claimed that we have three readings ??

R1 := c(j , g) ∧ in(j , s), R2 := c(j , g) ∧ in(g , s), and R3 := c(j , g) ∧ in(j , s) ∧ in(g , s)
▶ So there must be three distinct situations W that make S true

1. John is in the red sports car, but the gangster isn’t
W1 := c(j , g) ∧ in(j , s) ∧ ¬in(g , s), so W1 ⊨ R1, but W1 ̸⊨ R2 and W1 ̸⊨ R3

2. The gangster is in the red sports car, but John isn’t
W2 := c(j , g) ∧ in(g , s) ∧ ¬in(j , s), so W2 ⊨ R2, but W2 ̸⊨ R1 and W2 ̸⊨ R3

3. Both are in the red sports car
=̂ they run around on the back seat of a very big sports car
W3 := c(j , g) ∧ in(j , s) ∧ in(g , s), so W3 ⊨ R3, but W3 ̸⊨ R1 and W3 ̸⊨ R1

▶ Idea 2: Use a calculus to model ⊨, e.g. ND0
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4.3 Summary & Evaluation
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Fragment F1 – Summary

▶ Fragment F1 of English (defined by grammar + lexicon)
▶ Logic PLnq (serves as a mathematical model for F1)
▶ Formal Language (individuals, predicates, ¬,∧,∨,⇒)
▶ Semantics Iφ defined recursively on formula structure

(; validity, entailment)
▶ Tableau calculus for validity and entailment (Calculemus!)
▶ Analysis function F1 ; PLnq (Translation)
▶ Test the model by checking predictions (calculate truth conditions)
▶ Coverage: Extremely Boring! (accounts for 0 examples from the intro) but the

conceptual setup is fascinating
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Summary: The Interpretation Process (so far)

▶ The Interpretation Process in F1: Can be visualized in the following
diagram:

Syntax Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional)
checking

truth
conditions
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Chapter 5
Fragment 2: Pronouns and World Knowledge ;

Semantic/Pragmatic Analysis
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5.1 Fragment 2: Pronouns and Anaphora
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Fragment F2 (F2 =̂ F1 + Anaphoric Pronouns)

▶ Want to cover: Peter loves Fido. He bites him. (almost intro)
▶ We need: Translation and interpretation for pronouns like he, she, him,. . . .
▶ Also: A way to integrate world knowledge to filter out one interpretation. (i.e.

Humans don’t bite dogs.)
▶ Idea: Integrate variables into PLnq (work backwards from that)
▶ Logical System: PLnq(V) = PLnq + variables (Translate pronouns to variables)
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New Grammar in F2 (Pronouns)

▶ Definition 1.1. We have the following structural grammar rules in F2

S1 : S→NP,V i ,
S2 : S→NP,V t ,NP,

N1 : NP→Npr,
N2 : NP→Pron,
N3 : NP→ the,N,

S3 : S→ it is not the case that,S ,
S4 : S→S , conj,S ,
S5 : S→NP, is,NP,
S6 : S→NP, is,Adj

and one additional lexical rule:
L7 : Pron→ he | she | it | we | they
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Predicate Logic with Variables (but no Quantifiers)

▶ Definition 1.2 (Logical System PLnq(V)). PLnq(V) := PLnq + variables
▶ Definition 1.3 (PLnq(V) Syntax).

Category V = {X ,Y ,Z ,X 1,X 2, . . .} of variables (allow variables wherever
individual constants were allowed)
▶ Definition 1.4 (PLnq(V) Semantics).

First-order model M = ⟨D, I⟩ (need to evaluate variables)
▶ variable assignment: φ : Vι → U
▶ value function: Iφ(X ) = φ(X ) (defined like I elsewhere)
▶ call a PLnq(V) formula A valid in M under φ, iff Iφ(A) = T,
▶ call it satisfiable in M, iff there is a variable assignment φ, such that Iφ(A) = T
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Translation for F2 (first attempt)

▶ Idea: Pronouns are translated into new variables (so far)
▶ New Translation Rule: We translate pronouns by the “rule”:
T9 : [X ]Pron ; Ynew , where Ynew is a new variable.
▶ The syntax/semantic trees for Peter loves Fido and he bites him. are

straightforward. (almost intro)

Peter loves Fido and he bites him

Npr V t N conj Pron V t Pron

NP NP NP NP

S S

S

Peter loves Fido and he bites him

Peter ′ loves′ Fido′ ∧ X bites′ Y

Peter ′ Fido′ X Y

loves′(Peter ′,Fido′) bites′(X ,Y )

loves′(Peter ′ ∧ Fido′) ∧ bites′(X ∧ Y )
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5.2 Inference with World Knowledge and Free
Variables – A Case Study
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5.2.1 Pragmatics via Model Generation
Tableaux?
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A Tableau Calculus for PLnq(V)

▶ Definition 2.1 (Tableau Calculus for PLnq(V)). T p
V = T0 + new tableau rules

for formulae with variables

...
Aα
...

c ∈ H

([c/X ](A))α
T p
V WK

...
A

H = {a1, . . ., an}
free(A) = {X 1, . . .,Xm}

(σ1(A))
T
∣∣∣ . . . ∣∣∣ (σnm(A))

T
T p
V Ana

H is the set of ind. constants in the branch above (Herbrand universe)
and the σi are substitutions that instantiate the X j with any combinations of
the ak (there are nm of them).
▶ the first rule is used for world knowledge (up in the branch)
▶ the second rule is used for input logical forms · · ·

this rule has to be applied eagerly (while they are still at the leaf)
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To allow for world knowledge, we generalize the notion of an initial tableau.
Instead of allowing only the initial labeled formula at the root node, we allow a
linear tree whose nodes are labeled formulae with positive formulae representing
the world knowledge. As the world knowledge resides in the initial tableau
(intuitively before all input), we will also speak of background knowledge.
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Some Examples in F2

▶ Example 2.2 (Peter snores). (Only sleeping people snore)

(snores(X )⇒ sleeps(X ))T

snores(peter)

(snores(peter)⇒ sleeps(peter))T

sleeps(peter)T

▶ Example 2.3 (Peter sleeps. John walks. He snores). (who snores?)

sleeps(peter)

walks(john)

snores(X )

snores(peter)T snores(john)T
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Does Tweety Fly? The everlasting Question in AI

▶ Example 2.4.

Tweety is a bird Tweety is an eagle

(bird(X )⇒ (flies(X ) ∨ penguin(X )))T

(penguin(X )⇒¬flies(X ))T

bird(tweety)

(flies(tweety) ∨ penguin(tweety))T

flies(tweety)T penguin(tweety)T

¬flies(tweety)T

flies(tweety)F

(bird(X )⇒ (flies(X ) ∨ penguin(X )))T

(eagle(X )⇒ bird(X ))T

(penguin(X )⇒¬eagle(X ))T

(penguin(X )⇒¬flies(X ))T

eagle(tweety)

bird(tweety)T

(flies(tweety) ∨ penguin(tweety))T

flies(tweety)T penguin(tweety)T

(¬eagle(tweety))T

eagle(tweety)F

⊥
▶ For the second we need to add more world knowledge.
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5.2.2 Case Study: Peter loves Fido, even though
he sometimes bites him
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Finally: Peter loves Fido. He bites him.

▶ Let’s try it naively (worry about the problems later.)

l(p, f )

b(X ,Y )

b(p, p)T b(p, f )T b(f , p)T b(f , f )T

▶ Problem: We get four readings instead of one!
▶ Idea: We have not specified enough world knowledge.
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Peter and Fido with World Knowledge

▶ Nobody bites himself, humans do not bite dogs.

d(f )T

m(p)T

b(X ,X )F

(d(X ) ∧m(Y )⇒¬b(Y ,X ))T

l(p, f )

b(X ,Y )

b(p, p)T

b(p, p)F

⊥

b(p, f )T

(d(f ) ∧m(p)⇒¬b(p, f ))T

b(p, f )F

⊥

b(f , p)T b(f , f )T

b(f , f )F

⊥

▶ Observation: Anaphor resolution introduces ambiguities.
▶ Pragmatics: Use world knowledge to filter out impossible readings.
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5.2.3 The Computational Role of Ambiguities
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The computational Role of Ambiguities

▶ Observation: (in the traditional waterfall model)
Every processing stage introduces ambiguities that need to be resolved.
▶ Syntax: e.g. Peter chased the man in the red sports car (attachment)
▶ Semantics: e.g. Peter went to the bank (lexical)
▶ Pragmatics: e.g. Two men carried two bags (collective vs. distributive)
▶ Question: Where does pronoun ambiguity belong? (much less clear)
▶ Answer: we have freedom to choose

1. resolve the pronouns in the syntax (generic waterfall model)
; multiple syntactic representations (pragmatics as filter)

2. resolve the pronouns in the pragmatics (our model here)
; need underspecified syntactic representations (e.g. variables)
; pragmatics needs ambiguity treatment (e.g. tableaux)
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Translation for Fragment F2 Reconsidered

▶ Idea: Pronouns are translated into new variables. (so far)
▶ Problem: Peter loves Mary. She loves him.

loves(peter,mary)

loves(X ,Y )

loves(peter, peter)T loves(peter,mary)T loves(mary, peter)T loves(mary,mary)T

▶ Idea: Attach world knowledge to pronouns. (just as with Peter and Fido)
▶ Use the world knowledge to distinguish (linguistic) gender by predicates masc and

fem.
▶ Problem: Properties of
▶ proper names are given in the model,
▶ pronouns must be given by the syntax-semantics interface.
▶ In particular: How to generate loves(X ,Y ) ∧masc(X ) ∧ fem(Y )

compositionally?
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Sorts refine World Categories

▶ Definition 2.5 (Sorted Logics). (in our case PL1
S)

Assume a set of sorts S := {A,B,C, . . .}, annotate every syntactic and semantic
structure with them. Make all constructions and operations well worted:
▶ Syntax: Variables and constants are sorted XA,YB,Z

1
C1 . . ., aA, bA, . . .

▶ Semantics: Subdivide the universe D into subsets DA ⊆ D
Interpretation I and variable assignment φ have to be well-sorted.
I(aA), φ(XA) ∈ DA.

▶ Calculus: Substitutions must be well sorted [aA/XA] OK, [aA/XB] not.
▶ Observation: Sorts do not add expressivity in principle (just practically) For

every sort A, we introduce a first-order predicate RA and
▶ Translate R(XA) ∧ ¬P(ZC) to RA(X ) ∧RC(Z)⇒ R(X ) ∧ ¬P(Z) in world

knowledge.
▶ Translate R(XA) ∧ ¬P(ZC) to RA(X ) ∧RC(Z) ∧ R(X ,Y ) ∧ ¬P(Z) in input.
▶ Meaning is preserved, but translation is non-compositional!
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5.3 Tableaux and Model Generation
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5.3.1 Tableau Branches and Herbrand Models
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Model Generation and Interpretation

▶ Example 3.1 (from above). In ?? we claimed that the set

B := {loves(john,mary)F, loves(mary, bill)T}

of literals on the open branch of the tableau T below

(loves(mary, bill) ∨ loves(john,mary))T

loves(john,mary)F

loves(mary,bill)T loves(john,mary)T

⊥

constitutes a “model”. (it can be conveniently read off)
▶ Recap: A first-order modelM is a pair ⟨D, I⟩, where D is a set of individuals,

and I is an interpretation function.
▶ Problem: Find D and I based on B.
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Model Generation and Models

▶ Idea: Choose the universe D as the set Σf
0 of constants, choose I = IdΣf

0
,

interpret p ∈ Σp
k as RB(p):={⟨a1, . . ., ak⟩ | p(a1, . . ., ak)

T ∈ B}.
▶ Definition 3.2. We call a model a Herbrand model, iff D = Σf

0 and I = IdΣf
0
.

▶ Definition 3.3. Let H be a set of atomic propositions such that AF ̸∈ H, if
AT ∈ H, then we call H a Herbrand valuation.
▶ Lemma 3.4. Let H be a Herbrand valuation, then setting I(p):=RH(p) yields

a Herbrand model that satisfies H. (proof trivial)
▶ Corollary 3.5. Let H be a Herbrand valuation, then there is a Herbrand model

that satisfies H. (use RH)
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5.3.2 Using Model Generation for Interpretation
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Using Model Generation for Interpretation

▶ Definition 3.6. Mental model theory [JL83; JLB91] posits that humans form
mental models of the world, i.e. (neural) representations of possible states of the
world that are consistent with the perceptions up to date and use them to
reason about the world.
▶ So communication by natural language is a process of transporting parts of the

mental model of the speaker into the mental model of the hearer.
▶ Therefore the NL interpretation process on the part of the hearer is a process of

integrating the meaning of the utterances of the speaker into his mental model.
▶ Idea: We can model discourse understanding as a process of generating

Herbrand models for the logical form of an utterance in a discourse by a tableau
based model generation procedure.
▶ Advantage: Capturing ambiguity by generating multiple models for input

logical forms.

Michael Kohlhase: LBS 90 2025-02-06



Tableau Machine

▶ Definition 3.7. The tableau machine is an inferential cognitive model for
incremental natural language understanding that implements mental model
theory via tableau based model generation over a sequence of input sentences.
It iterates the following process for every input sentence staring with the empty
tableau:
1. add the logical form of the input sentence Si to the selected branch,
2. perform tableau inferences below Si until saturated or some resource criterion is met
3. if there are open branches choose a “preferred branch”, otherwise backtrack to

previous tableau for Sj with j < i and open branches, then re-process Sj+1, . . . , Si if
possible, else fail.

The output is application-dependent; some choices are
▶ the Herbrand model for the preferred branch ; preferred interpretation;
▶ the literals augmented with all non-expanded formulae

(from the discourse); (resource-bound was reached)
▶ Tableau machine answers user queries (preferred model |= query?)
▶ Interpretation mode via model generation (guided by resources and strategies)
▶ Query mode by refutation theorem proving (2 for side conditions; using tableau

rules)
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The Tableau Machine in Model Generation Mode

▶ Example 3.8. The tableau machine in action (query mode on two sentences).

initialize tableau
World

Knowledge
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The Tableau Machine in Model Generation Mode

▶ Example 3.9. The tableau machine in action (query mode on two sentences).

World
Knowledgeinput sentence 1

Sentence 1
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The Tableau Machine in Model Generation Mode

▶ Example 3.10. The tableau machine in action (query mode on two sentences).

World
Knowledge

Sentence 1

saturate tableau

⊥ 2 ⊥ 2
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The Tableau Machine in Model Generation Mode

▶ Example 3.11. The tableau machine in action (query mode on two sentences).

World
Knowledge

Sentence 1

⊥ 2 ⊥ 2

choose branch
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The Tableau Machine in Model Generation Mode

▶ Example 3.12. The tableau machine in action (query mode on two sentences).

World
Knowledgeinput sentence 2

Sentence 1

⊥ 2 ⊥ 2

Sentence 2
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The Tableau Machine in Model Generation Mode
▶ Example 3.13. The tableau machine in action (query mode on two sentences).

World
Knowledge

Sentence 1

saturate tableau

⊥ 2 ⊥ 2

Sentence 2

⊥ ⊥ ⊥ ⊥
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The Tableau Machine in Model Generation Mode
▶ Example 3.14. The tableau machine in action (query mode on two sentences).

World
Knowledge

Sentence 1

⊥ 2 ⊥ 2

Sentence 2

⊥ ⊥ ⊥ ⊥

reject branch
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The Tableau Machine in Model Generation Mode
▶ Example 3.15. The tableau machine in action (query mode on two sentences).

World
Knowledge

Sentence 1

⊥ 2 ⊥ 2

Sentence 2

⊥ ⊥ ⊥ ⊥

re-add sentence

Sentence 2
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The Tableau Machine in Model Generation Mode
▶ Example 3.16. The tableau machine in action (query mode on two sentences).

World
Knowledge

Sentence 1

⊥ 2 ⊥ 2

Sentence 2

⊥ ⊥ ⊥ ⊥

saturate tableau

Sentence 2

⊥ 2 ⊥ ⊥
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The Tableau Machine in Model Generation Mode
▶ Example 3.17. The tableau machine in action (query mode on two sentences).

World
Knowledge

Sentence 1

⊥ 2 ⊥ 2

choose branch

Sentence 2

⊥ ⊥ ⊥ ⊥

Sentence 2

⊥ 2 ⊥ ⊥
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Two (Syntactical) Readings

▶ Example 3.18 (A syntactically ambiguous sentence).
Peter loves Mary and Mary sleeps or Peter snores.
Reading 1: loves(peter,mary) ∧ (sleeps(mary) ∨ snores(peter))
Reading 2: loves(peter,mary) ∧ sleeps(mary) ∨ snores(peter)
Consider the first reading, start out with the empty tableau for simplicity, even
though this is cognitively implausible.

loves(peter,mary) ∧ (sleeps(mary) ∨ snores(peter))

loves(peter,mary)T

(sleeps(mary) ∨ snores(peter))T

sleeps(mary)T snores(peter)T

▶ Observation: We have two models, so we have a case of pragmatic ambiguity.
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The other (Syntactical) Reading

loves(peter,mary) ∧ sleeps(mary) ∨ snores(peter)

(loves(peter,mary) ∧ sleeps(mary))T

loves(peter,mary)T

sleeps(mary)T

snores(peter)T
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Continuing the Discourse

▶ Example 3.19. Peter does not love Mary.
Then the second tableau would be extended to

loves(peter,mary) ∧ sleeps(mary) ∨ snores(peter)

(loves(peter,mary) ∧ sleeps(mary))T

loves(peter,mary)T

sleeps(mary)T

¬loves(peter,mary)

loves(peter,mary)F

⊥

snores(peter)T

¬loves(peter,mary)

and the first tableau closes altogether.
▶ In effect the choice of models has been reduced to one, which constitutes the

intuitively correct reading of the discourse.
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5.3.3 Adding Equality to PLNQ for Fragment 1
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PL=
NQ: Adding Equality to PLnq

▶ Syntax: Just another binary predicate constant =
▶ Semantics: Fixed as Iφ(a = b) = T, iff Iφ(a) = Iφ(b). (logical constant)
▶ Definition 3.20 (Tableau Calculus T =

NQ). Add two additional inference rules
(a positive and a negative) to T0

a ∈ H
a = aT T

=
NQsym

a = bT

A [a]p
α

[b/p]Aα
T =

NQrep

where
▶ H =̂ the Herbrand universe, i.e. the set of constants occurring on the branch.
▶ we write C [A]p to indicate that C|p = A (C has subterm A at position p).
▶ [A/p]C is obtained from C by replacing the subterm at position p with A.

▶ Note: We could have equivalently written T =
NQsym as

a = aF

⊥
:

With T =
NQsym conjure a = aT from thin air, use it to close a = aF.

▶ So, . . . T =
NQsym and T =

NQrep follow the pattern of having a T and a F rule per
logical constant.
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Reading Comprehension Example: Mini TOEFL test
▶ Example 3.21 (Reading Comprehension). If you hear/read Mary is the

teacher. Peter likes the teacher., do you know whether Peter likes Mary?
▶ Idea: Interpret via tableau machine (interpretation mode) and test entailment

in query mode.

▶ Interpretation: Feed Φ1 := mary = the_teacher and
Φ2 := likes(peter, the_teacher) to the tableau machine in turn.
▶ Question Answering: Use the tableau machine in query mode for an

“entailment test”: Label φ := likes(peter,mary) with F and saturate.

mary = the_teacher

likes(peter, the_teacher)

likes(peter,mary)F

likes(peter, the_teacher)F

⊥

Indeed, it closes, so Φ1,Φ2 ⊨ φ ; yes, Peter likes Mary.
▶ Note: The part marked in double vertical lines is removed from the tableau

after answering. (do not mess up the tree/models)
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Reading Comprehension Example: Mini TOEFL test
▶ Example 3.22 (Reading Comprehension). If you hear/read Mary is the

teacher. Peter likes the teacher., do you know whether Peter likes Mary?
▶ Idea: Interpret via tableau machine (interpretation mode) and test entailment

in query mode.
▶ Interpretation: Feed Φ1 := mary = the_teacher and
Φ2 := likes(peter, the_teacher) to the tableau machine in turn. Model
generation tableau (nothing to do on these inputs)

mary = the_teacher

likes(peter, the_teacher)

▶ Question Answering: Use the tableau machine in query mode for an
“entailment test”: Label φ := likes(peter,mary) with F and saturate.

mary = the_teacher

likes(peter, the_teacher)

likes(peter,mary)F

likes(peter, the_teacher)F

⊥
Indeed, it closes, so Φ1,Φ2 ⊨ φ ; yes, Peter likes Mary.
▶ Note: The part marked in double vertical lines is removed from the tableau

after answering. (do not mess up the tree/models)
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Reading Comprehension Example: Mini TOEFL test
▶ Example 3.23 (Reading Comprehension). If you hear/read Mary is the

teacher. Peter likes the teacher., do you know whether Peter likes Mary?
▶ Idea: Interpret via tableau machine (interpretation mode) and test entailment

in query mode.
▶ Interpretation: Feed Φ1 := mary = the_teacher and
Φ2 := likes(peter, the_teacher) to the tableau machine in turn.
▶ Question Answering: Use the tableau machine in query mode for an

“entailment test”: Label φ := likes(peter,mary) with F and saturate.

mary = the_teacher

likes(peter, the_teacher)

likes(peter,mary)F

likes(peter, the_teacher)F

⊥

Indeed, it closes, so Φ1,Φ2 ⊨ φ ; yes, Peter likes Mary.

▶ Note: The part marked in double vertical lines is removed from the tableau
after answering. (do not mess up the tree/models)
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Reading Comprehension Example: Mini TOEFL test
▶ Example 3.24 (Reading Comprehension). If you hear/read Mary is the

teacher. Peter likes the teacher., do you know whether Peter likes Mary?
▶ Idea: Interpret via tableau machine (interpretation mode) and test entailment

in query mode.
▶ Interpretation: Feed Φ1 := mary = the_teacher and
Φ2 := likes(peter, the_teacher) to the tableau machine in turn.
▶ Question Answering: Use the tableau machine in query mode for an

“entailment test”: Label φ := likes(peter,mary) with F and saturate.

mary = the_teacher

likes(peter, the_teacher)

likes(peter,mary)F

likes(peter, the_teacher)F

⊥

Indeed, it closes, so Φ1,Φ2 ⊨ φ ; yes, Peter likes Mary.
▶ Note: The part marked in double vertical lines is removed from the tableau

after answering. (do not mess up the tree/models)
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5.4 Summary & Evaluation
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Fragment F2 – Summary

▶ Fragment F2 extends F1 by pronouns.
▶ Logic/translation extended correspondingly:
▶ Equality (actually already needed for F1)
▶ Variables as underspecified representations for anaphoric pronouns.
▶ New NLU component: semantic/pragmatic analysis
▶ Tableau machine as an inferential model for pronoun resolution.
▶ Uses world knowledge to augment/prune models.
▶ Coverage: Still relatively limited (accounts for 1 example from the intro)
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Model Generation models Discourse Understanding

▶ The tableau machine algorithm conforms with psycholinguistic findings:
▶ Zwaan& Radvansky [ZR98]: listeners not only represent logical form, but also

models containing referents.
▶ deVega [de 95]: online, incremental process.
▶ Singer [Sin94]: enriched by background knowledge.
▶ Glenberg et al. [GML87]: major function is to provide basis for anaphor resolution.
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Towards a Performance Model for NLU

▶ Problem: The tableau machine is only a competence model.
▶ Definition 4.1. A competence model is a meaning theory that delineates a

space of possible discourses. A performance model delineates the discourses
actually used in communication. (after [Cho65])
▶ Idea: We need to guide the tableau machine in which inferences and branch

choices it performs.
▶ Idea: Each tableau rule comes with rule costs.
▶ Here: each sentence in the discourse has a fixed inference budget.

Expansion until budget used up.
▶ Ultimately we want bounded optimization regime [Rus91]:

Expansion as long as expected gain in model quality outweighs proof costs
▶ Effect: Expensive rules are rarely applied. (only if the promise great rewards)

▶ Finding appropriate values for rule costs and model quality is an open
problem.
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Summary: The Full Interpretation Process

▶ Full Interpretation Process: In F2 we have extended the interpretation
process by semantic/pragmatic analysis, so we arrive at:

Syntax Quasi-Logical Form Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Pragmatic
Analysis

(inferential)

truth
conditions
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Chapter 6
Fragment 3: Complex Verb Phrases
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6.1 Fragment 3 (Handling Verb Phrases)
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F3: New Data (Verb Phrases)

▶ New Data: in F3.
1. Ethel howled and screamed.
2. Ethel kicked the dog and poisoned the cat.
3. Fiona liked Jo and loathed Ethel and tolerated Prudence.
4. Fiona kicked the cat and laughed.
5. Bertie didn’t laugh.
6. Bertie didn’t laugh and didn’t scream.
7. Bertie didn’t laugh or scream.
8. Bertie didn’t laugh or kick the dog.
9. * Bertie didn’t didn’t laugh.
▶ We extend F2. (no feature interaction)

Michael Kohlhase: LBS 102 2025-02-06



New Grammar in Fragment F3 (Verb Phrases)

▶ To account for the syntax we come up with the concept of a verb phrase (VP)
▶ Definition 1.1. A verb phrase is any phrase that can be used (syntactially)

whereever a verb can be.
▶ Example 1.2. The phrase tolerated Prudence is like slept (syntactially)
▶ Idea: Allow verb phrases (VP in the grammar wherever we had intransitive

verbs (V i ) before.
▶ Problem: The obvious rule VP→ didn’t VP over-generates: it accepts * Bertie

didn’t didn’t laugh. (note the infinitive)
▶ Definition 1.3. A verb is called finite, iff it contextually complements either an

explicit subject or – in the imperative mood – an implicit subject.
▶ Observation: Finite verbs are inflected.
▶ Definition 1.4. Non-finite verbs, are verb forms that do not show tense,

person, or number.
▶ Idea: We will use features +fin for finite, -fin for non-finite in grammar rules,

and ±fin for schemata.
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New Grammar in Fragment F3 (Verb Phrases)

▶ Definition 1.5. F3 has the following rules:
S1. S ! : → NP VP+fin
S2. S ! : → S conj S
V1. VP±fin ! : → V i

±fin
V2. VP±fin ! : → V t

±fin NP
V3. VP±fin ! : → VP±fin conj VP±fin
V4. VP+fin ! : → BE= NP
V5. VP+fin ! : → BEpred Adj.
V6. VP+fin ! : → didn’t VP-fin

N1. NP → Npr
N2. NP → Pron
N3. NP → the N
L8. BE= → is
L9. BEpred → is
L10. V i

-fin → run, laugh,. . .
L11. V t

-fin → read, poison,. . .

▶ Remark: The ±fin feature solves the “didn’t” over-generation problem.
▶ Remark: Many machine-oriented grammars have extensive feature systems like

our ±fin.
▶ Limitations of F3:
▶ F3 does not allow coordination of transitive verbs (problematic anyways)

Prudence kicked and scratched Ethel.
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Testing the Grammar on an Example

▶ Example 1.6. Ethel howled and screamed

Npr V i
+fin conj V i

+fin
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Towards a Semantics for F3

▶ Recall: So far we have mapped intransitive verb (V i ) to predicates which
could be applied to NP meanings (individuals).
▶ So: VP meanings are functions from individuals to truth values
▶ And: conj meanings are functionals that map functions to functions.
▶ In logic we distinguish such objects (individuals and functions of various kinds)

by assigning them types.
▶ Let’s make this formal ; develop a suitable logic!
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6.2 Dealing with Functions in Logic and
Language
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Types

▶ Intuition: Types are semantic annotations for terms that prevent antinomies.
▶ Definition 2.1. Given a set BT of base types, construct function types: α→ β

is the type of functions with domain type α and range type β. We call the
closure T of BT under function types the set of simple types over BT .
▶ Definition 2.2. We will use ι for the type of individuals and o for the type of

truth values.
▶ Right Associativity: The type constructor is used as a right-associative

operator, i.e. we use α→ β → γ as an abbreviation for α→ (β → γ)

▶ Vector Notation: We will use a kind of vector notation for function types,
abbreviating α1→ . . .→ αn → β with αn → β.
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What can happen without Types as a Safety-Net
▶ Definition 2.3. The unrestricted comprehension principle states that for any

sufficiently well-defined property P, there is the set of all and only the objects
that have property P.
▶ Definition 2.4. Russell’s paradox (also known as Russell’s antinomy) is a

set-theoretic paradox that shows that every set theory that contains an
unrestricted comprehension principle leads to contradictions.
▶ Definition 2.5. The Russell set R is the set of all sets that are not members of

themselves.

▶ Observation: If R is assumed to exist (e.g. by the unrestricted comprehension
principle), then we end up with an antinomy:
▶ Suppose R ∈ R, then then we must have R ̸∈ R, since we have explicitly taken out

the set that contain themselves.
▶ Suppose R ̸∈ R, then have R ∈ R, since all other sets are elements.
So R ∈ R iff R ̸∈ R, which is a contradiction! (Russell’s Antinomy [Rus03])
▶ Does Logic help?:
▶ No, if untyped: R := {m |m ̸∈ m} or equivalently: R := {m |m m}.
▶ Yes, if typed: m(m) cannot be well-typed with simple types, so we can not define R.
▶ Generally: Simple types prevent self-application: If we type m(m) as mα(mβ),

then we must have α = β → γ for the function application to work but also
α = β to have consistent typing.
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What can happen without Types as a Safety-Net
▶ Definition 2.6. The unrestricted comprehension principle states that for any

sufficiently well-defined property P, there is the set of all and only the objects
that have property P.
▶ Definition 2.7. Russell’s paradox (also known as Russell’s antinomy) is a

set-theoretic paradox that shows that every set theory that contains an
unrestricted comprehension principle leads to contradictions.
▶ Definition 2.8. The Russell set R is the set of all sets that are not members of

themselves.
▶ Observation: If R is assumed to exist (e.g. by the unrestricted comprehension

principle), then we end up with an antinomy:
▶ Suppose R ∈ R, then then we must have R ̸∈ R, since we have explicitly taken out

the set that contain themselves.
▶ Suppose R ̸∈ R, then have R ∈ R, since all other sets are elements.
So R ∈ R iff R ̸∈ R, which is a contradiction! (Russell’s Antinomy [Rus03])

▶ Does Logic help?:
▶ No, if untyped: R := {m |m ̸∈ m} or equivalently: R := {m |m m}.
▶ Yes, if typed: m(m) cannot be well-typed with simple types, so we can not define R.
▶ Generally: Simple types prevent self-application: If we type m(m) as mα(mβ),

then we must have α = β → γ for the function application to work but also
α = β to have consistent typing.
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What can happen without Types as a Safety-Net
▶ Definition 2.9. The unrestricted comprehension principle states that for any

sufficiently well-defined property P, there is the set of all and only the objects
that have property P.
▶ Definition 2.10. Russell’s paradox (also known as Russell’s antinomy) is a

set-theoretic paradox that shows that every set theory that contains an
unrestricted comprehension principle leads to contradictions.
▶ Definition 2.11. The Russell set R is the set of all sets that are not members

of themselves.
▶ Observation: If R is assumed to exist (e.g. by the unrestricted comprehension

principle), then we end up with an antinomy:
▶ Suppose R ∈ R, then then we must have R ̸∈ R, since we have explicitly taken out

the set that contain themselves.
▶ Suppose R ̸∈ R, then have R ∈ R, since all other sets are elements.
So R ∈ R iff R ̸∈ R, which is a contradiction! (Russell’s Antinomy [Rus03])
▶ Does Logic help?:
▶ No, if untyped: R := {m |m ̸∈ m} or equivalently: R := {m |m m}.
▶ Yes, if typed: m(m) cannot be well-typed with simple types, so we can not define R.
▶ Generally: Simple types prevent self-application: If we type m(m) as mα(mβ),

then we must have α = β → γ for the function application to work but also
α = β to have consistent typing.

Michael Kohlhase: LBS 108 2025-02-06



Syntactical Categories and Types

▶ Now, we can assign types to syntactic categories.
Cat Type Intuition
S o truth value

NP ι individual
Npr ι individuals
VP ι→ o property
V i ι→ o unary predicate
V t ι→ ι→ o binary relation

▶ For the category conj, we cannot get by with a single type. Depending on
where it is used, we need the types
▶ o → o → o for S-coordination in rule S2 : S →S conj S
▶ (ι→ o)→ (ι→ o) → (ι→ o) for VP-coordination in V 3 : VP→VP conj VP.
▶ Note: Computational Linguistics, often uses a different notation for types: e

(entity) for ι, t (truth value) for o, and ⟨α,β⟩ for α→ β (no bracket elision
convention).
So the type for VP-coordination has the form ⟨⟨e,t⟩,⟨⟨e,t⟩,⟨e,t⟩⟩⟩
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From Comprehension to β-Conversion

▶ ∃Fα→β .∀Xα.FX = Aβ for arbitrary variable Xα and term A ∈ wff β(ΣT ,VT )
(for each term A and each variable X there is a function f ∈ Dα→β , with
f (φ(X )) = Iφ(A))
▶ schematic in α, β, Xα and Aβ , very inconvenient for deduction
▶ Transformation in HΩ

▶ ∃Fα→β .∀Xα.FX = Aβ
▶ ∀Xα.(λXα.A)X = Aβ (∃E)

Call the function F whose existence is guaranteed “(λXα.A)”
▶ (λXα.A)B = [B/X ]Aβ (∀E), in particular for B ∈ wff α(ΣT ,VT ).
▶ Definition 2.12. Axiom of β equality: (λXα.A) B = [B/X ](Aβ)
▶ Idea: Introduce a new class of formulae (λ-calculus [Chu40])
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From Extensionality to η-Conversion

▶ Definition 2.13. Extensionality Axiom:
∀Fα→β .∀Gα→β .(∀Xα.FX = GX )⇒ F = G

▶ Idea: Maybe we can get by with a simplified equality schema here as well.
▶ Definition 2.14. We say that A and λXα.A X are η-equal, (write

Aα→β =η λXα.A X ), iff X ̸∈ free(A).
▶ Theorem 2.15. η-equality and Extensionality are equivalent
▶ Proof: We show that η-equality is special case of extensionality; the converse

direction is trivial
1. Let ∀Xα.AX = BX , thus AX = BX with ∀E
2. λXα.AX = λXα.BX , therefore A = B with η
3. Hence ∀Fα→β .∀Gα→β .(∀Xα.FX = GX )⇒ F = G by twice ∀I .

▶ Axiom of truth values: ∀Fo .∀Go .FG ⇔ F = G unsolved.
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6.3 Simply Typed λ-Calculus
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Simply typed λ-Calculus (Syntax)
▶ Definition 3.1. Signature ΣT =

⋃
α∈T Σα (includes countably infinite

signatures ΣSk
α of Skolem contants).

▶ VT =
⋃
α∈T Vα, such that Vα are countably infinite.

▶ Definition 3.2. We call the set wff α(ΣT ,VT ) defined by the rules
▶ Vα ∪ Σα ⊆ wff α(ΣT ,VT )
▶ If C ∈ wff α→β(ΣT ,VT ) and A ∈ wff α(ΣT ,VT ), then C A ∈ wff β(ΣT ,VT )
▶ If A ∈ wff α(ΣT ,VT ), then λXβ .A ∈ wff β→α(ΣT ,VT )

the set of well typed formulae of type α over the signature ΣT and use
wff T (ΣT ,VT ) :=

⋃
α∈T wff α(ΣT ,VT ) for the set of all well-typed formulae.

▶ Definition 3.3. We will call all occurrences of the variable X in A bound in
λX .A. Variables that are not bound in B are called free in B.
▶ Substitutions are well typed, i.e. σ(Xα) ∈ wff α(ΣT ,VT ) and capture-avoiding.
▶ Definition 3.4 (Simply Typed λ-Calculus). The simply typed λ calculus Λ→

over a signature ΣT has the formulae wff T (ΣT ,VT ) (they are called λ-terms)
and the following equalities:
▶ α conversion: λX .A =α λY .([Y /X ](A)).
▶ β conversion: (λX .A) B =β [B/X ](A).
▶ η conversion: λX .A X =η A if X ̸∈ free(A).
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Simply typed λ-Calculus (Notations)

▶ Application is left-associative: We abbreviate F A1 A2 . . . An with
F A1 . . . An eliding the brackets and further with F An in a kind of vector
notation.
▶ Andrews’ dot Notation: A . stands for a left bracket whose partner is as far

right as is consistent with existing brackets; i.e. A .B C abbreviates A (B C).
▶ Abstraction is right-associative: We abbreviate λX 1.λX 2. · · ·λX n.A · · · with
λX 1. . .X n.A eliding brackets, and further to λX n.A in a kind of vector notation.
▶ Outer brackets: Finally, we allow ourselves to elide outer brackets where they

can be inferred.
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=αβη-Equality (Overview)

▶ Definition 3.5.

Reduction with
{

=β : (λX .A) B→β[B/X ](A)
=η : λX .A X→ηA

under =α :
λX .A
=α

λY .([Y /X ](A))
The treductions can be applied at top-level (as above), but also in subterms:
If A→αβηB, then C A→αβηC B, A C→αβηB C, and λX .A→αβηλX .B.
▶ Theorem 3.6. β-reduction is well-typed, terminating and confluent in the

presence of α-conversion.
▶ Definition 3.7 (Normal Form). We call a λ-term A a normal form (in a

reduction system E), iff no rule (from E) can be applied to A.
▶ Corollary 3.8. =βη-reduction yields unique normal forms (up to
=α-equivalence).
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Syntactic Parts of λ-Terms
▶ Definition 3.9 (Parts of λ-Terms). We can always write a λ-term in the form

T = λX 1. . .X k .HA1 . . .An, where H is not an application. We call
▶ H the syntactic head of T
▶ H(A1, . . .,An) the matrix of T, and
▶ λX 1. . .X k . (or the sequence X 1, . . .,X k) the binder of T
▶ Definition 3.10. Head reduction always has a unique β redex

λX n.(λY .A) B1 . . . Bn→h
βλX

n.([B1/Y ](A)) B2. . .Bn

▶ Theorem 3.11. The syntactic heads of β-normal forms are constant or
variables.
▶ Definition 3.12. Let A be a λ-term, then the syntactic head of the β-normal

form of A is called the head symbol of A and written as head(A). We call a
λ-term a j-projection, iff its head is the j th bound variable.
▶ Definition 3.13. We call a λ-term a η long form, iff its matrix has base type.
▶ Definition 3.14. η Expansion makes η long forms

η
[
λX 1. . .X n.A

]
:= λX 1. . .X n.λY 1. . .Ym.A Y 1 . . . Ym

▶ Definition 3.15. Long βη normal form, iff it is β normal and η-long.
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Semantics of Λ→

▶ Definition 3.16. We call a collection DT := {Dα |α ∈ T } a typed collection
(of sets) and a collection fT : DT →ET , a typed function, iff fα : Dα→Eα.
▶ Definition 3.17. A typed collection DT is called a frame, iff
Dα→β ⊆ Dα→Dβ .
▶ Definition 3.18. Given a frame DT , and a typed function I : Σ→D, we call
Iφ : wff T (ΣT ,VT )→D the value function induced by I, iff
1. Iφ|VT

= φ, Iφ|ΣT
= I,

2. Iφ(A B) = Iφ(A)(Iφ(B)), and
3. Iφ(λXα.A) is that function f ∈ Dα→β , such that f (a) = Iφ,[a/X ](A) for all a ∈ Dα.
▶ Note: Not every λ-term has a Iφ-value as we have only required
Dα→β ⊆ Dα→Dβ for frames. (there might not be enough functions)
▶ Definition 3.19. We call ⟨D, I⟩, where D is a frame and I is a typed function

comprehension closed or a ΣT -algebra, iff Iφ : wff T (ΣT ,VT )→D is total.
▶ Theorem 3.20. =αβη (seen as a calculus) is sound and complete for
Σ-algebras.
▶ Upshot for LBS: Λ→ is the logical system for reasoning about functions!

Michael Kohlhase: LBS 116 2025-02-06



6.4 A Logical System for Fragment 3
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Higher-Order Logic without Quantifiers (HOLnq)

▶ Problem: Need a logic like PLnq, but with λ-terms to interpret F3 into.
▶ Idea: Re-use the syntactical framework of Λ→.
▶ Definition 4.1. Let HOLnq be an instance of Λ→, with BT = {ι, o},
∧ ∈ Σo→o→o , ¬ ∈ Σo→o , and =∈ Σα→α→o for all types α.
▶ Idea: To extend this to a semantics for HOLnq, we only have to say something

about the base type o, and the logical constants ¬o→o , ∧o→o→o , and =α→α→o .
▶ Definition 4.2. We define the semantics of HOLnq by setting

1. Do = {T,F}; the set of truth values
2. I(¬) ∈ Do→o , is the function {F 7→ T,T 7→ F}
3. I(∧) ∈ Do→o→o is the function with I(∧)(⟨a, b⟩) = T, iff a = T and b = T.
4. I(=) ∈ Dα→α→o is the identity relation on Dα.
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HOLnq is an expressive logical system

▶ HOLnq is an expressive logical system
▶ Example 4.3. We can express set union as a HOLnq term:

∪ := λPι→o .λQι→o .λXι.P X ∨ Q X

Let us test whether {1, 2} ∪ {2, 3} really is {1, 2, 3}.
Note that we can represent (the characteristic function of) {1, 2} as the HOLnq

term λZι.Z = 1 ∨ Z = 2. (and the other sets analogously)
So lets represent {1, 2} ∪ {2, 3} as a HOLnq term and β-reduce:

(λPι→o .λQι→o .λXι.P X ∨ Q X ) (λZι.Z = 1 ∨ Z = 2) (λZι.Z = 2 ∨ Z = 3)
→β (λQι→o .λXι.(λZι.Z = 1 ∨ Z = 2) X ∨ Q X ) (λZι.Z = 2 ∨ Z = 3)
→β λXι.(λZι.Z = 1 ∨ Z = 2) X ∨ (λZι.Z = 2 ∨ Z = 3) X
→β λXι.X = 1 ∨ X = 2 ∨ X = 2 ∨ X = 3
⇔ λXι.X = 1 ∨ X = 2 ∨ X = 3
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6.5 Translation for Fragment 3
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Translations for Fragment F3

▶ We will look at the new translation rules: (the rest from F2 stay the same)

T1 : [XNP,YVP]S ; VP′(NP′),
T3 : [XVP,Yconj,ZVP]VP; conj′(VP′,VP′),
T4 : [XV t ,YNP]VP; V t ′(NP′)

▶ Note: We can get away with this because PLnq ⊆ HOLnq in the target logic.
▶ The lexical insertion rules will give us two items each for is, and, and or,

corresponding to the two types we have given them above.
word type term case
BEpred (ι → o)→ ι → o λPι→o .P adjective
BEeq ι→ ι → o λXιYι.X = Y verb
and o → o → o ∧ S-coord.
and (ι → o)→ (ι → o)→ ι → o λFι→oGι→oXι.F (X ) ∧ G(X ) VP-coord.
or o → o → o ∨ S-coord.
or (ι → o)→ (ι → o)→ ι → o λFι→oGι→oXι.F (X ) ∨ G(X ) VP-coord.
didn′t (ι → o)→ ι → o λPι→oXι.¬P X

▶ Note: All words are translated to HOLnq formulae.
▶ BTW: The translation of or in VP-coordination is just set union =̂ disjunction

lifted to sets. (analogous with and, conjunction and intersection)
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Translation Example

▶ It only remains to test F3 on an example from the original data!
▶ Example 5.1. Ethel howled and screamed to

(λFι→oGι→oXι.F (X ) ∧ G (X )) howls screams ethel
→β (λGι→oXι.howls(X ) ∧ G (X )) screams ethel
→β (λXι.howls(X ) ∧ screams(X )) ethel
→β howls(ethel) ∧ screams(ethel)
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6.6 Summary & Evaluation
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Fragment F3 – Summary

▶ Fragment F3 extends F2 by verb phrases.
▶ We need a completely new idea for the logic ⇝need functions to express

translation
▶ Logical system: HOLnq =̂ Λ→ + PL0.
▶ Λ→ contributes the simple types and functions
▶ PL0 contributes type o and connectives.
▶ Coverage: Better: we can do verb phrase coordination.
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Chapter 7
Fragment 4: Noun Phrases and Quantification
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7.1 Fragment 4
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New Data in Fragment F4 (more Noun Phrases)

▶ In F4 we want to extend F3 so it can deal with the following sentences:
(without the “the-NP” trick)
1. Peter loved the cat., but not * Peter loved the the cat.
2. John killed a cat with a white tail.
3. Peter chased the gangster in the red sportscar.
4. Peter loves every cat.
5. Every man loves a woman.
6. The quick brown fox jumps over the lazy dog.
7. The very heavy boat sank quickly.
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New Grammar in Fragment F4 (Common Noun Phrases)

▶ To account for the syntax we extend the functionality of noun phrases from F1.
▶ Definition 1.1. F4 adds the rules on the right to F3 (on the left):

S1 : S →NP VP+fin,
S2 : S → S conj S ,
V 1 : VP±fin →V i

±fin,
V 2 : VP±fin →V t

±fin NP,
V 4 : VP+fin →BE= NP,
V 5 : VP+fin →BEpred Adj,
V 6 : VP+fin → didn′t VP-fin,
N1 : NP→Npr,
N2 : NP→Pron

S3 : S →S PP,
N3 : NP→Det CNP,
N4 : CNP→N,
N5 : CNP→CNP PP,
N6 : CNP→Adj CNP,
P1 : PP→P NP,
V 3′ : VP±fin →VP±fin VPconj±fin,
V 7 : VPconj±fin → conj VP±fin,
V 8 : VP+fin →VP+fin Adv,
V 9 : VP±fin →VP±fin PP,
L1 : P →with | of | . . .

▶ Definition 1.2. A common noun is a noun that describes a type, for example
woman, or philosophy rather than an token, such as Amelia Earhart (proper
name).
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Testing the F4 Syntax on an example

▶ Example 1.3. Can we capture the (syntactic) attachment ambiguity in
Peter chased the gangster in the red sportscar.

Peter chased the gangster in the red sportscar

Npr V t
+fin Det N P Det Adj N

CNP

CNP

NP

CNP

NP

PP

CNP

VP+fin

S

; The gangster is in the car
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Testing the F4 Syntax on an example

▶ Example 1.4. Can we capture the (syntactic) attachment ambiguity in
Peter chased the gangster in the red sportscar.

Peter chased the gangster in the red sportscar

Npr V t
+fin Det N P Det Adj N

CNP CNP

NP CNP

NP

PP
VP+fin

VP+fin

S

; Peter is in the car
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Testing the F4 Syntax on an example

▶ Example 1.5. Can we capture the (syntactic) attachment ambiguity in
Peter chased the gangster in the red sportscar.

Peter chased the gangster in the red sportscar

Npr V t
+fin Det N P Det Adj N

CNP CNP

NP CNP

NP

PP

VP+fin

S

S

; Both Peter and the gangster are in the car
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7.2 A Target Logic for Fragment 4
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Higher-Order Logic with Descriptions

▶ Plan: We need to extend HOLnq with
▶ quantifiers so we can treat Every student sleeps
▶ a logical operator for definite descriptions, e.g. the teacher sleeps

We will call this logic Higher-Order Logic with Descriptions (quantifiers taken
for granted)

▶ Note: Quantifiers can be added to any logic: Extend the
▶ syntax by variables and a new binding symbol (language-level)
▶ semantics by a new clause for the value function
▶ calculi by new quantifier introduction/elimination rules

Quite tedious compared to simply adding a new logical constant!
▶ Note: The description operator will have to have type (ι→ o)→ ι, as the

denotation of teacher has type ι→ o and the teacher has type ι. (like Mary)
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Higher-Order Logic with Descriptions

▶ Plan: We need to extend HOLnq with
▶ quantifiers so we can treat Every student sleeps
▶ a logical operator for definite descriptions, e.g. the teacher sleeps

We will call this logic Higher-Order Logic with Descriptions (quantifiers taken
for granted)
▶ Note: Quantifiers can be added to any logic: Extend the
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Higher-Order Logic with Descriptions

▶ Plan: We need to extend HOLnq with
▶ quantifiers so we can treat Every student sleeps
▶ a logical operator for definite descriptions, e.g. the teacher sleeps

We will call this logic Higher-Order Logic with Descriptions (quantifiers taken
for granted)
▶ Note: Quantifiers can be added to any logic: Extend the
▶ syntax by variables and a new binding symbol (language-level)
▶ semantics by a new clause for the value function
▶ calculi by new quantifier introduction/elimination rules

Quite tedious compared to simply adding a new logical constant!
▶ Note: The description operator will have to have type (ι→ o)→ ι, as the

denotation of teacher has type ι→ o and the teacher has type ι. (like Mary)

Michael Kohlhase: LBS 125 2025-02-06



7.2.1 Quantifiers and Equality in Higher-Order
Logic
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Higher-Order Abstract Syntax

▶ Idea: In HOL→, we already have binding operator: λ, use that to treat
quantification.
▶ Definition 2.1. We add two new logical constants Πα and Σα for each type α:

1. I(Πα)(p) = T, iff p(a) = T for all a ∈ Dα (i.e. if p is the universal set)
2. I(Σα)(p) = T, iff p(a) = T for some a ∈ Dα (i.e. iff p is non-empty)
▶ Definition 2.2. Regain traditional quantifiers as abbreviations:

(∀Xα.A) := Πα (λXα.A) (∃Xα.A) := Σα (λXα.A)

▶ Observation: Indeed: Iφ(∀Xι.A) = Iφ(Πι (λXι.A)) = I(Πι)(Iφ(λXι.A)) = T
iff Iφ(λXι.A)(a) = I [a/X ],φ(A) = T for all a ∈ Dα.
▶ Definition 2.3. We call this approach to binding operators higher-order

abstract syntax (HOAS).
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Equality
▶ Definition 2.4 (Leibniz equality). QαAαBα = ∀Pα→o .PA⇔ PB (Leibniz’

indiscernibility of identicals)
▶ Note: ∀Pα→o .PA⇒ PB (get the other direction by instantiating P with Q,

where QX ⇔¬PX )
▶ Theorem 2.5. IfM = ⟨D, I⟩ is a standard model, then Iφ(Qα) is the identity

relation on Dα.
▶ Definition 2.6 (Notation). We write A = B for QAB (A and B are equal, iff

there is no property P that can tell them apart.)
▶ Proof:

1. Iφ(QAB) = Iφ(∀P.PA⇒ PB) = T, iff
Iφ,[r/P](PA⇒ PB) = T for all r ∈ Dα→o .

2. For A = B we have Iφ,[r/P](PA) = r(Iφ(A)) = F or
Iφ,[r/P](PB) = r(Iφ(B)) = T.

3. Thus Iφ(QAB) = T.
4. Let Iφ(A) ̸= Iφ(B) and r={Iφ(A)}∈Dα→o (exists in a standard model)
5. so r(Iφ(A)) = T and r(Iφ(B)) = F
6. Iφ(QAB) = F, as Iφ,[r/P](PA⇒ PB) = F, since
Iφ,[r/P](PA) = r(Iφ(A)) = T and Iφ,[r/P](PB) = r(Iφ(B)) = F.
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Alternative: HOL∞

▶ Definition 2.7. There is only one logical constant in HOL∞: qα ∈ Σα→α→o

with I(qα)(a, b) = T, iff a = b.
We define the rest as below: Definitions (D) and Notations (N)

N Aα = Bα for qαAαBα
D T for qo = qo

D F for λXo .T = λXo .Xo

D Πα for qα→o (λXα.T )
N ∀Xα.A for Πα (λXα.A)
D ∧ for λXo .λYo .(λGo→o→o .GTT = λGo→o→o .GXY )
N A ∧ B for ∧ (Ao) (Bo)
D ⇒ for λXo .λYo .(X = X ∧ Y )
N A⇒ B for ⇒ (Ao) (Bo)
D ¬ for qo F
D ∨ for λXo .λYo .¬(¬X ∧ ¬Y )
N A ∨ B for ∨ (Ao) (Bo)
D ∃Xα.Ao for ¬(∀Xα.¬A)
N Aα ̸= Bα for ¬qα (Aα) (Bα)

▶ yield the intuitive meanings for connectives and quantifiers.
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7.2.2 A Logic for Definite Descriptions
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Semantics of Definite Descriptions

▶ Problem: We need the meaning for the determiner the, as in the boy runs
▶ Idea (Type): the boy behaves like a proper name (e.g. Peter), i.e. has type ι.

Applying the to a noun (type ι→ o) yields ι. So the has type (α→ o)→ α, i.e.
it takes a set as argument.
▶ Idea (Semantics): the has the fixed semantics that this function returns the

single member of its argument if the argument is a singleton, and is otherwise
undefined. (new logical constant)
▶ Definition 2.8. We introduce a new logical constant ι . I(ι ) is the function
f ∈ D(α→o)→α, such that f (s) = a, iff s ∈ Dα→o is the singleton {a}, and is
otherwise undefined. (remember that we can interpret predicates as sets)
▶ Axioms for ι :

∀Xα.X = ι = X
∀P,Q.Q(ι P) ∧ (∀X ,Y .P(X ) ∧ P(Y )⇒ X = Y )⇒ (∀.P(Z )⇒ Q(Z ))
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More Operators and Axioms for HOL→

▶ Definition 2.9. The unary conditional wα ∈ Σo→α→α

w (Ao)Bα means: “If A, then B”.
▶ Definition 2.10. The binary conditional ifα ∈ Σo→α→α→α

if (Ao) (Bα) (Cα) means: “if A, then B else C”.
▶ Definition 2.11. The description operator ια ∈ Σ(α→o)→α

if P is a singleton set, then ι (Pα→o) is the (unique) element in P.
▶ Definition 2.12. The choice operator γα ∈ Σ(α→o)→α

if P is non-empty, then γ (Pα→o) is an arbitrary element from P.
▶ Definition 2.13 (Axioms for these Operators).
▶ unary conditional: ∀φo .∀Xα.φ⇒ w φX = X
▶ binary conditional: ∀φo .∀Xα,Yα,Zα.(φ⇒ if φ X Y = X ) ∧ (¬φ⇒ if φ Z X = X )
▶ description operator ∀Pα→o .(∃1Xα.PX )⇒ (∀Yα.PY ⇒ ι P = Y )
▶ choice operator ∀Pα→o .(∃Xα.PX )⇒ (∀Yα.PY ⇒ γ P = Y )

▶ Idea: These operators ensure a much larger supply of functions in Henkin
models.
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More on the Description Operator

▶ ι is a weak form of the choice operator. (only works on singletons)
▶ Alternative Axiom of Descriptions: ∀Xα.ια = X = X .
▶ use that I [a/X ](= X ) = {a}
▶ we only need this for base types ̸= o
▶ Define ιo :== (λXo .X ) or ιo := λGo→o .G T or ιo :== = T
▶ ι(α→β) := λH(α→β)→oXα.ι

β (λZβ .(∃Fα→β .H F ∧ F X = Z))
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7.3 Translation for Fragment 4
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Translation of Determiners and Quantifiers

▶ Idea: We establish the meaning of quantifying determiners by =β-expansion.
1. assume that we are translating into a λ-calculus with quantifiers and that
▶ ∀X .boy(X )⇒ runs(X ) translates Every boy runs, and
▶ ∃X .boy(X ) ∧ runs(X ) for Some boy runs

2. ∀∀ := λPι→oQι→o .(∀.P(X )⇒ Q(X )) for every. (subset relation)
3. ∃∃ := λPι→oQι→o .(∃.P(X ) ∧ Q(X )) for some. (non-empty intersection)
▶ Problem: Linguistic quantifiers take two arguments (restriction and scope),

logical ones only one! (in logics, restriction is the universal set)
▶ We cannot treat the with regular quantifiers (new logical constant; see below)
▶ Definition 3.1.

We translate the word the to τ := λPι→oQι→o .Q ι P, where ι is a new
operator that given a set returns its (unique) member.
▶ Example 3.2. This translates The pope spoke to τ(pope, speaks), which
=β-reduces to speaks(ι pope).
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Translation of Special lexical items and classes

▶ If Adj is an intersective adjective and Adj ′ is an constant of type ι→ o, then
▶ 9 : Adj ; Adj ′ or
▶ 9′ : Adj ; (λPι→oXι.P(X ) ∧ Adj ′(X ))

▶ If Adj is a non-intersective adjective, then Adj ′ is a constant of type
(ι→ o)→ ι→ o whose denotation is given the interpretation by I and
▶ 10 : Adj ; Adj ′.
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Proper names

▶ Problem: Subject NPs with quantificational determiners have type
(ι→ o)→ o (and are applied to the VP) whereas subject NPs with proper
names have type ι. (argument to the VP)
▶ Idea: John runs translates to runs(john), where runs ∈ Σι→o and john ∈ Σι.

Now we =β-expand over the VP yielding (λPι→o .P(john)) runs
λPι→o .P(john) has type (ι→ o)→ o and can be applied to the VP runs.
▶ Definition 3.3. If c ∈ Σα, then type raising c yields λPα→o .P c.
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Definite NPs

▶ Problem: On our current assumptions, the′ = ι , and so for any definite NP
the N, its translation is ι N, an expression of type ι.
▶ Idea: Type lift just as we did with proper names: ι N type lifts to λP.P ι N,

so the′ = λPQ.Q ι P

▶ Advantage: This is a “generalized quantifier treatment”: the′ treated as
denoting relations between sets.
▶ Solution by Barwise&Cooper 1981: For any a ∈ Dι→o :
I(the′)(a) = I(every ′)(a) if #(a) = 1, undefined otherwise
So the′ is that function in D(ι→o)→(ι→o)→o such that for any A,B ∈ Dι→o

if #(A) = 1 then the′(A,B) = T if A ⊆ B and the′(A,B) = F if A̸⊆B otherwise
undefined
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Problems with Type raised NPs

▶ Problem: We have type-raised NPs, but consider transitive verbs as in Mary
loves most cats. loves is of type ι→ ι→ o while the object NP is of type
(ι→ o)→ o (application?)
▶ Another Problem: We encounter the same problem in the sentence Mary

loves John if we choose to type-lift the NPs.
▶ Idea: Change the type of the transitive verb to allow it to “swallow” the

higher-typed object NP.
▶ Better Idea: Adopt a new rule for semantic composition for this case.
▶ Remember: loves ′ is a function from individuals (e.g. John) to properties (in

the case of the VP loves John, the property X loves John of X ).

Michael Kohlhase: LBS 136 2025-02-06



Type raised NPs and Function Composition

▶ We can extend HOL→ by a constant ◦(β→γ)→(α→β)→α→γ by setting
◦ := λFGX .F (G (X )) thus

◦ g f→βλX .g(f (X )) and ◦ g f a→βg(f (a))

In our example, we have

◦ (λP.P(john)) loves =Def (λFGX .F (G (X ))) (λP.P(john)) loves
→β (λGX .(λP.P(john)) G (X )) loves
→β λX .(λP.P(john)) loves X
→β! λX .loves(X , john)
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Generalized Quantifiers

▶ Problem: What about Most boys run.: linguistically most behaves exactly like
every or some.
▶ Idea: Most boys run is true just in case the number of boys who run is greater

than the number of boys who do not run.

#(Iφ(boy) ∩ Iφ(runs)) > #(Iφ(boy)\Iφ(runs))

▶ Definition 3.4. #(A) > #(B), iff there is no surjective function from B to A,
so we can define

most ′ := λAB.¬(∃F .∀X .A(X ) ∧ ¬B(X )⇒ (∃.A(Y ) ∧ B(Y ) ∧ X = F (Y )))
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Back to every and some (set characterization)

▶ We can now give an explicit set characterization of every and some:
1. every denotes {⟨X ,Y ⟩ |X ⊆ Y }
2. some denotes {⟨X ,Y ⟩ |X ∩ Y ̸= ∅}
▶ The denotations can be given in equivalent function terms, as demonstrated

above with the denotation of most.
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7.4 Inference for Fragment 4
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7.4.1 Model Generation with Quantifiers
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Model Generation (The RM Calculus [Kon04])

▶ Idea: Try to generate domain-minimal (i.e. fewest individuals) Herbrand
models (for NL interpretation)
▶ Problem: Even one function constant makes Herbrand universe infinite

(solution: leave them out)
▶ Definition 4.1. RM adds ground quantifier rules to propositional tableau

calculus
(∀X .A)T c ∈ H
([c/X ](A))T

RM ∀

(∀X .A)F H = {a1, . . ., an} w ̸∈ H new
([a1/X ](A))F . . . ([an/X ](A))F ([w/X ](A))F

RM ∃

▶ RM ∃ rule introduces new witness constant w to the branch Herbrand universe H:
the set of all individual constants on the branch.

▶ Apply RM ∀ exhaustively (for new w reapply all RM ∀ rules on branch!)
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Generating infinite models (Natural Numbers)

▶ We have to re-apply the RM ∀ rule for any new constant
▶ Example 4.2. This leads to the generation of infinite models

(∀x .¬x > x ∧ . . .)T

N(0)T

(∀x .N(x)⇒ (∃y .N(y) ∧ y > x))T

(N(0)⇒ (∃y .N(y) ∧ y > 0))T

N(0)F

⊥
(∃y .N(y) ∧ y > 0)T

0 > 0T

N(0)T

0 > 0F

⊥

N(1)T

1 > 0T

(N(1)⇒ (∃y .N(y) ∧ y > 1))T

N(1)F

⊥
(∃y .N(y) ∧ y > 1)T

N(0)T

0 > 1T

...
⊥

N(1)T

1 > 1T

1 > 1F

⊥

N(2)T

2 > 1T

...
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Example: Peter is a man. No man walks

▶ Example 4.3 (Model generation with quantifiers).
Peter is a man. No man walks

man(peter)

¬(∃X .man(X ) ∧ walks(X ))

(∃X .man(X ) ∧ walks(X ))F

(∀X .¬man(X ) ∨ ¬walks(X ))T

(¬man(peter) ∨ ¬walks(peter))T

¬man(peter)T

man(peter)F

⊥

¬walks(peter)T

walks(peter)F

Herbrand valuation: {man(peter)T,walks(peter)F}
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Anaphor Resolution A man sleeps. He snores

▶ Example 4.4 (Anaphor Resolution). A man sleeps. He snores

∃X .man(X ) ∧ sleeps(X )

(man(c1) ∧ sleeps(c1))
T

man(c1)
T

sleeps(c1)
T

∃Y .man(Y ) ∧ snores(Y )

(man(c1) ∧ snores(c1))
T

man(c1)
T

snores(c1)
T

minimal

(man(c2) ∧ snores(c2))
T

man(c2)
T

snores(c2)
T

deicbtic
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Anaphora with World Knowledge

▶ Example 4.5. Mary is married to Jeff. Her husband is not in town. (slightly
outside F2)
In PL1: married(mary, jeff), and

∃WMale,W
′
Female.husband(W ,W ′) ∧ ¬intown(W )

▶ World knowledge
▶ If woman X is married to man Y , then Y is the only husband of X .
▶

∀XFemale,YMale.married(X ,Y )⇒ husband(Y ,X )∧ (∀Z .husband(Z ,X )⇒ (Z = Y ))

▶ Model generation gives tableau where all open branches contain

{married(mary, jeff)T, husband(jeff,mary)T, intown(jeff)F}

▶ Differences: Additional negative facts e.g. married(mary,mary)F.
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A branch without World Knowledge

married(mary, jeff)T

(∃ZMale,Z
′
Female.husband(Z ,Z ′) ∧ ¬intown(Z))T

(∃Z ′.husband(c1
Male,Z

′) ∧ ¬intown(c1
Male))

T

(husband(c1
Male,mary) ∧ ¬intown(c1

Male))
T

husband(c1
Male,mary)T

¬intown(c1
Male)

T

intown(c1
Male)

F

▶ Problem: Bigamy:
c1

Male and jeff are
husbands of Mary!
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7.4.2 Model Generation with Definite
Descriptions
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A Model Generation Rule for ι

▶ Definition 4.6.
P(c)T

Q(ι P)α
H = {c , a1, . . . , an}

RM ι
Q(c)α

(P(a1)⇒ c = a1)
T

...
(P(an)⇒ c = an)

T

▶ Intuition: If we have a member c of P and Q(ι P) is defined (it has truth
value α ∈ {T,F}), then P must be a singleton (i.e. all other members X of P
are identical to c) and Q must hold on c . So the rule RM ι forces it to be by
making all other members of P equal to c .
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Mary owned a lousy computer. The hard drive crashed.

(∀X .computer(X )⇒ (∃Y .harddrive(Y ) ∧ partof(Y ,X )))T

∃X .computer(X ) ∧ lousy(X ) ∧ own(mary,X )

computer(c)T

lousy(c)T

own(mary, c)T

harddrive(c)T

partof(c , c)T
...
⊥

harddrive(d)T

partof(d , c)T

crashes(ι harddrive)

crashes(d)T

(harddrive(mary)⇒mary = d)T

(harddrive(c)⇒ c = d)T
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Another Example The dog barks

▶ In a situation, where there are two dogs: Fido and Chester

dog(fido)T

dog(chester)T

bark(ι dog)

bark(fido)T

(dog(chester)⇒ chester = fido)T

dog(chester)F

⊥
chester = fidoT

(1)

▶ Note that none of our rules allows us to close the right branch, since we do not
know that Fido and Chester are distinct. Indeed, they could be the same dog
(with two different names). But we can eliminate this possibility by adopting a
new assumption.
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7.4.3 Model Generation with Unique Name
Assumptions
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Model Generation with Unique Name Assumption (UNA)

▶ Problem: Names are unique usually in natural language
▶ Definition 4.7. The unique name assumption (UNA) makes the assumption

that names are unique (in the respective context)
▶ Idea: Add background knowledge of the form n = mF (n and m names)
▶ Better Idea: Build UNA into the calculus: partition the Herbrand universe
H = U ∪W into subsets U for constants with a UNA, and W without. (treat
them differently)
▶ Definition 4.8 (Model Generation with UNA). We add the following two

rules to the RM calculus to deal with the unique name assumption.

a = bT

Aα
a ∈ W b ∈ H

([b/a](A))α
RM subst

a = bT a, b ∈ U
⊥

RM una
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Solving a Crime with Unique Names
▶ Example 4.9. Tony has observed (at most) two people. Tony observed a

murderer that had black hair. It turns out that Bill and Bob were the two people
Tony observed. Bill is blond, and Bob has black hair. (Who was the murderer.)
Let U = {Bill,Bob} and W = {murderer}:

(∀z .observes(Tony, z)⇒ (z = Bill ∨ z = Bob))T

observes(Tony,Bill)T

observes(Tony,Bob)T

observes(Tony,murderer)T

black_hair(murderer)T

¬black_hair(Bill)T

black_hair(Bill)F

black_hair(Bob)T

(observes(Tony,murderer)⇒ (murderer = Bill ∨murderer = Bob))T

(murderer = Bill ∨murderer = Bob)T

murderer = BillT

black_hair(Bill)T

⊥

murderer = BobT
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Rabbits [Gardent & Konrad ’99]

▶ Interpret “the” as λPQ.Qι P ∧ uniq(P)
where uniq := λP.(∃X .P(X ) ∧ (∀Y .P(Y )⇒ X = Y ))
and ∀∀ := λPQ.(∀X .P(X )⇒ Q(X )).

▶ “the rabbit is cute”, has logical form uniq(rabbit) ∧ (rabbit ⊆ cute).
▶ RM generates { . . . , rabbit(c), cute(c)} in situations with at most 1 rabbit.

(special RM ∃ rule yields identification and accommodation (cnew ))
+ At last an approach that takes world knowledge into account!
– tractable only for toy discourses/ontologies

The world cup final was watched on TV by 7 million people.
A rabbit is in the garden.
∀X .human(x)∃Y .human(X ) ∧ father(X ,Y ) ∀X ,Y .father(X ,Y )⇒ X ̸= Y
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More than one Rabbit

▶ Problem: What about two rabbits?
Bugs and Bunny are rabbits. Bugs is in the hat. Jon removes the rabbit from
the hat.
▶ Idea: Uniqueness under Scope [Gardent & Konrad ’99]:
▶ refine the to λPRQ.uniq(P ∩ R ∧ ∀∀(P ∩ R,Q))

where R is an “identifying property” (identified from the context and passed as an
arbument to the)

▶ here R is “being in the hat” (by world knowledge about removing)
▶ makes Bugs unique (in P ∩ R) and the discourse acceptable.
▶ Idea: [Hobbs & Stickel&. . . ]:
▶ use generic relation rel for “relatedness to context” for P2.
?? Is there a general theory of relatedness?
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7.5 Quantifier Scope Ambiguity and
Underspecification
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7.5.1 Scope Ambiguity and Quantifying-In
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Quantifier Scope Ambiguities: Data

▶ Consider the following sentences:
1. Every man loves a woman (Britney Spears or his mother?)
2. Most Europeans speak two languages.
3. Some student in every course sleeps in every class at least some of the time.
▶ Definition 5.1. We call these systematic ambiguities quantifyer scope

ambiguities
▶ Example 5.2. We can represent the “wide-scope” reading with our methods

every man loves a woman

Det N Det NV t

NP NP

VP

S

every man loves a woman

every ′ man loves a′ woman

λP.(∀X .man(X )⇒ P(X ))

λQ.(∃Y .woman(Y )Q(Y ))

λx .(∃Y .woman(Y ) ∧ loves(X ,Y ))

∀X .man(X )⇒ (∃Y .woman(Y )⇒ loves(X ,Y ))

▶ Question: How to map an unambiguous input structure to multiple
translations.
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Storing and Quantifying In

▶ Analysis: The sentence meaning is of the form
⟨everyman⟩(⟨awoman⟩(⟨loves⟩))
▶ Idea: Somehow have to move the a woman part in front of the every to obtain

⟨awoman⟩(⟨everyman⟩(⟨loves⟩))

▶ More concretely: Let’s try A woman - every man loves her.
In semantics construction, apply a woman to every man loves her.
So a woman out-scopes every man.
▶ Problem: How to represent pronouns and link them to their antecedents
▶ STORE is an alternative translation rule. Given a node with an NP daughter,

we can translate the node by passing up to it the translation of its non-NP
daughter, and putting the translation of the NP into a store, for later use.
▶ The QI rule allows us to empty out a non-empty store.
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Storing and Quantifying In (Technically)

▶ Definition 5.3. STORE(NP,Φ) −→ (Φ,Σ∗NP), where Σ∗NP is the result of
adding NP to Σ, i.e. Σ∗NP = Σ ∪ {NP}; we will assume that NP is not already
in Σ, when we use the ∗ operator.
▶ Definition 5.4. QI(⟨Φ,Σ∗NP⟩)→ ⟨NP ⊕ Φ,Σ⟩ where ⊕ is either function

application or function composition.
▶ Nondeterministic Semantics Construction: Adding rules gives us more

choice
1. Rule C (simple combination) If A is a node with daughters B and C , and the

translations of B and of C have empty stores, then A translates to B ′ ⊕ C ′. Choice
of rule is determined by types.

2. STORE If A is a node with daughters B and C , where:
▶ B is an NP with translation B′ and
▶ C translates to (C ′,Σ)

then A may translate to STORE(B ′,C ′)

Note that STORE may be applied whether or not the stores of the constituent
nodes are empty.
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Quantifying in Practice: Every man loves a woman

▶ Example 5.5.

every man loves a woman

Det N Det NV t

NP NP

VP

S

every man loves a woman

every ′ man loves a′ woman

⟨λP.(∀X .man(X )⇒ P(X )), ∅⟩
⟨λQ.(∃Y .woman(Y )⇒ Q(Y )), ∅⟩

⟨loves, {λP.(∀X .man(X )⇒ P(X ))}⟩

⟨loves, {λP.(∀X .man(X )⇒ P(X )), λQ.(∃Y .woman(Y )⇒ Q(Y ))}⟩

▶ Continue with QI applications: first retrieve λQ.(∃Y .woman(Y )⇒ Q(Y ))
⟨loves, {λP.(∀X .man(X )⇒ P(X )), λQ.(∃Y .woman(Y )⇒ Q(Y ))}⟩

→QI ⟨◦ (λP.(∀X .man(X )⇒ P(X ))) loves, {λQ.(∃Y .woman(Y )⇒ Q(Y ))}⟩
→β ⟨λZ .(λP.(∀X .man(X )⇒ P(X ))) loves Z , {λQ.(∃Y .woman(Y )⇒ Q(Y ))}⟩
→β ⟨λZ .(∀X .man(X )⇒ loves Z X ), {λQ.(∃Y .woman(Y )⇒ Q(Y ))}⟩
→QI ⟨(λQ.(∃Y .woman(Y )⇒ Q(Y ))) (λZ .(∀X .man(X )⇒ loves Z X )), ∅⟩
→β ⟨∃Y .woman(Y )⇒ (λZ .(∀X .man(X )⇒ loves Z X )) Y , ∅⟩
→β ⟨∃Y .woman(Y )⇒ (∀X .man(X )⇒ loves Y X ), ∅⟩
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7.5.2 Dealing with Quantifier Scope Ambiguity:
Cooper Storage
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Type raising transitive verbs

▶ We need transitive verbs to combine with quantificational objects of type
(ι→ o)→ o but . . .
▶ We still ultimately want their “basic” translation to be type ι→ ι→ o, i.e.

something that denotes a relation between individuals.
▶ We do this by starting with the basic translation, and raising its type. Here is

what we’ll end up with, for the verb like:

λPY .P (λX .likes(X ,Y ))

where P is a variable of type (ι→ o)→ o and X , Y are variables of type ι.
(For details on how this is derived, see [CKG09, pp.178-179])
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Cooper Storage
▶ Intuition: A store consists of a “core” semantic representation, computed in

the usual way, plus the representations of quantifiers encountered in the
composition so far.
▶ Definition 5.6. A store is an n place sequence. The first member of the

sequence is the core semantic representation. The other members of the
sequence (if any) are pairs (β,i) where:
▶ β is a QNP translation and
▶ i is an index, which will associate the NP translation with a free variable in the core

semantic translation.
We call these pairs binding operators (because we will use them to bind free
variables in the core representation).
▶ Definition 5.7. In the Cooper storage method, QNPs are stored in the store

and later retrieved – not necessarily in the order they were stored – to build the
representation.
▶ The elements in the store are written enclosed in angled brackets. However, we

will often have a store which consists of only one element, the core semantic
representation. This is because QNPs are the only things which add elements
beyond the core representation to the store. So we will adopt the convention
that when the store has only one element, the brackets are omitted.
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How we put QNPs in the Store

▶ Storage Rule
If the store ⟨φ, (β, j), . . . , (γ, k)⟩ is a possible translation for a QNP, then the
store

⟨λP.P(Xi )(φ, i)(β, j), . . . , (γ, k)⟩

where i is a new index, is also a possible translation for that QNP.
▶ This rule says: if you encounter a QNP with translation φ, you can replace its

translation with an indexed place holder of the same type, λP.P(Xi ), and add φ
to the store, paired with the index i . We will use the place holder translation in
the semantic composition of the sentence.
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Working with Stores

▶ Working out the translation for Every student likes some professor.

NP1 → λP.(∃X .prof(X ) ∧ P(X )) or ⟨λQ.Q(X1), (λP.(∃X .prof(X ) ∧ P(X )), 1)⟩
Vt → λRY .R (λZ .likes(Z ,Y ))
VP → (Combine core representations by FA; pass store up)*

→ ⟨λY .likes(X1,Y ), (λP.(∃X .prof(X ) ∧ P(X )), 1)⟩
NP2 → λP.(∀Z .student(Z)⇒ P(Z)) or ⟨λR.R(X2), (λP.(∀Z .student(Z)⇒ P(Z)), 2)⟩
S → (Combine core representations by FA; pass stores up)**

→ ⟨likes(X1,X2), (λP.(∃X .prof(X ) ∧ P(X )), 1), (λP.(∀Z .student(Z)⇒ P(Z)), 2)⟩
* Combining Vt with place holder

1. (λRY .R (λZ .likes(Z ,Y ))) (λQ.Q(X1))

2. λY .(λQ.Q(X1)) (λZ .likes(Z ,Y ))

3. λY .(λZ .likes(Z ,Y )) X1

4. λY .likes(X1,Y )

** Combining VP with place holder

1. (λR.R(X2)) (λY .likes(X1,Y ))

2. (λY .likes(X1,Y )) X2

3. likes(X1,X2)
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Retrieving NPs from the store

▶ Retrieval:
Let σ1 and σ2 be (possibly empty) sequences of binding operators. If the store
⟨φ, σ1, σ2, (β, i)⟩ is a translation of an expression of category S , then the store
⟨β(λX1.φ), σ1, σ2⟩ is also a translation of it.
▶ What does this say?: It says: suppose you have an S translation consisting of

a core representation (which will be of type o) and one or more indexed QNP
translations. Then you can do the following:
1. Choose one of the QNP translations to retrieve.
2. Rewrite the core translation, λ-abstracting over the variable which bears the index

of the QNP you have selected. (Now you will have an expression of type ι→ o.)
3. Apply this λ-term to the QNP translation (which is of type (ι→ o) → o).
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Example: Every student likes some professor.

1. Retrieve every student
1.1 (λQ.(∀Z .student(Z)⇒ Q(Z))) (λX2.likes(X1,X2))
1.2 ∀Z .student(Z)⇒ (λX2.likes(X1,X2)) Z
1.3 ∀Z .student(Z)⇒ likes(X1,Z)

2. Retrieve some professor
2.1 (λP.(∃X .prof(X ) ∧ P(X ))) (λX1.(∀Z .student(Z)⇒ likes(X1,Z)))
2.2 ∃X .prof(X )(λX1.(∀Z .student(Z)⇒ likes(X1,Z))) X
2.3 ∃X .prof(X ) ∧ (∀Z .student(Z)⇒ likes(X ,Z))
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7.6 Summary & Evaluation
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Fragment F4 – Summary

▶ Fragment F4 extends F3 by noun phrases.
▶ Coverage: Better:
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Chapter 8
Davidsonian Semantics: Treating Verb Modifiers
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Event semantics: Davidsonian Systems

▶ Problem: How to deal with argument structure of (action) verbs and their
modifiers
▶ John killed a cat with a hammer.
▶ Idea: Just add an argument to kills for express the means
▶ Problem: But there may be more modifiers

1. Peter killed the cat in the bathroom with a hammer.
2. Peter killed the cat in the bathroom with a hammer at midnight.

So we would need a lot of different predicates for the verb killed. (impractical)
▶ Definition 0.1. In event semantics we extend the argument structure of

(action) verbs contains a ’hidden’ argument, the event argument, then treat
modifiers as predicates (often called roles) over events [Dav67a].
▶ Example 0.2.

1. ∃e.∃x , y .bathroom(x) ∧ hammer(y) ∧ kill(e,peter, ι cat) ∧ in(e, x) ∧ with(e, y)
2. ∃e.∃x , y .bathroom(x) ∧ hammer(y) ∧ kill(e, peter, ι cat) ∧ in(e, x) ∧ with(e, y) ∧

at(e, 24 : 00)
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Event semantics: Neo-Davidsonian Systems

▶ Idea: Take apart the Davidsonian predicates even further, add event
participants via thematic roles (from [Par90]).
▶ Definition 0.3. Neo-Davidsonian semantics extends event semantics by adding

two standardized roles: the agent ag(e, s) and the patient pat(e, o) for the
subject s and direct object d of the event e.
▶ Example 0.4. Translate John killed a cat with a hammer. as
∃e.∃x .hammer(x) ∧ killing(e) ∧ ag(e, peter) ∧ pat(e, ι cat) ∧ with(e, x)
▶ Further Elaboration: Events can be broken down into sub-events and

modifiers can predicate over sub-events.
▶ Example 0.5. The “process” of climbing Mt. Everest starts with the “event” of

(optimistically) leaving the base camp and culminates with the “achievement” of
reaching the summit (being completely exhausted).
▶ Note: This system can get by without functions, and only needs unary and

binary predicates. (well-suited for model generation)
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Event Types and Properties of Events
▶ Example 0.6 (Problem). Some (temporal) modifiers are incompatible with

some events, e.g. in English progressive:
1. He is eating a sandwich and He is pushing the cart., but not
2. * He is being tall. or * He is finding a coin.
▶ Definition 0.7 (Types of Events). There are different types of events that go

with different temporal modifiers. [Ven57] distinguishes
1. states: e.g. know the answer, stand in the corner
2. processes: e.g. run, eat, eat apples, eat soup
3. accomplishments: e.g. run a mile, eat an apple, and
4. achievements: e.g. reach the summit
▶ Observations:

1. processes and accomplishments appear in the progressive (1),
2. states and achievements do not (2).
▶ Definition 0.8. The in test

1. states and activities, but not accomplishments and achievements are compatible
with for-adverbials

2. whereas the opposite holds for in-adverbials (5).
▶ Example 0.9.

1. run a mile in an hour vs. * run a mile for an hour, but
2. * reach the summit for an hour vs reach the summit in an hour
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Part 2
Topics in Semantics
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Chapter 9
Dynamic Approaches to NL Semantics
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9.1 Discourse Representation Theory
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Anaphora and Indefinites revisited (Data)

▶ Observation: We have concentrated on single sentences so far; let’s do better.
▶ Definition 1.1. A discourse is a unit of natural language longer than a single

sentence.
▶ New Data: Discourses interact with anaphora.:
▶ Peter1 is sleeping. He1 is snoring. (normal anaphoric reference)
▶ A man1 is sleeping. He1 is snoring. (scope of existential?)
▶ Peter has a car1. It1 is parked outside. (even if this worked)
▶ * Peter has no car1. It1 is parked outside. (what about negation?)
▶ There is a book1 that Peter does not own. It1 is a novel. (OK)
▶ * Peter does not own every book1. It1 is a novel. (equivalent in PL1)
▶ If a farmer1 owns a donkey2, he1 beats it2. (even inside sentences)
▶ We gloss the intended anaphoric reference with the labels in upper and lower

indices.
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Dynamic Effects in Natural Language

▶ Problem: E.g. Quantifier Scope
▶ * A man sleeps. He snores.
▶ (∃X .man(X ) ∧ sleeps(X )) ∧ snores(X )
▶ X is bound in the first conjunct, and free in the second.
▶ Problem: Donkey sentence: If a farmer owns a donkey, he beats it.
∀X ,Y .farmer(X ) ∧ donkey(Y ) ∧ own(X ,Y )⇒ beat(X ,Y )

▶ Ideas:
▶ Composition of sentences by conjunction inside the scope of existential quantifiers

(non-compositional, . . . )
▶ Extend the scope of quantifiers dynamically (DPL)
▶ Replace existential quantifiers by something else (DRT)
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Discourse Representation Theory (DRT)
▶ Definition 1.2. Discourse Representation Theory (DRT) is a logical system,

which uses discourse referents to model quantification and pronouns. DRT
formulae are called discourse representation structures (DRS); these introduce a
set of discourse referents and specify their meaning by conditions which
comprise:
▶ atomic first-order propositions,
▶ dynamic negations ¬¬D,
▶ dynamic implications D⇒⇒E , and
▶ dynamic disjunctions D∨∨E .
▶ Example 1.3. Discourse referents e.g. in A student owns a book.

▶ are kept in a dynamic context (; accessibility)
▶ are declared e.g. in indefinite nominals
▶ specified in conditions via predicates

X ,Y
student(X )
book(Y )
own(X ,Y )

▶ Example 1.4. Discourse representation structures (DRS)
A student owns a book. He reads it. If a farmer owns a donkey, he beats it.

X ,Y ,R, S
student(X )
book(Y )
own(X ,Y )
read(R, S)
X = R
Y = S

X ,Y
farmer(X )
donkey(Y )
own(X ,Y )

⇒⇒ beat(X ,Y )
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Discourse DRS Construction

▶ Problem: How do we construct DRSes for multi-sentence discourses?
▶ Solution: We construct sentence DRSes individually and merge them (DRSes

and conditions separately)
▶ Example 1.5. A three-sentence discourse. (not quite Shakespeare)

Mary sees John. John kills a cat. Mary calls a cop. merge

see(mary, john)

U
cat(U)
kills(john,U)

V
policeman(V )
calls(mary,V )

U,V
see(mary, john)
cat(U)
kills(john,U)
policeman(V )
calls(mary,V )

▶ Sentence composition via the DRT Merge Operator ⊗. (acts on DRSes)
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Anaphor Resolution in DRT

▶ Problem: How do we resolve anaphora in DRT?
▶ Solution: Two phases
▶ translate pronouns into discourse referents (semantics construction)
▶ identify (equate) coreferring discourse referents, (maybe) simplify

(semantic/pragmatic analysis)
▶ Example 1.6. A student owns a book. He reads it.

A student1 owns a book2. He1 reads it2 merge/resolve simplify

X ,Y
student(X )
book(Y )
own(X ,Y )

R,S
read(R,S)

X ,Y ,R,S
student(X )
book(Y )
own(X ,Y )
read(R,S)
X = R
Y = S

X ,Y
student(X )
book(Y )
own(X ,Y )
read(X ,Y )
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DRT (more Logic-like Syntax)

▶ Definition 1.7. Given a set DR of discourse referents, discourse representation
structure (DRSes) are given by the following grammar:

conditions C::=p(a1, . . ., an) | C1 ∧ C2 | ¬¬D | D1∨∨D2 | D1⇒⇒D2
DRSes D::=δU1, . . .,Un.C | D1 ⊗D2 | D1 ;;D2

▶ ⊗ and ;; are for sentence composition (⊗ from DRT, ;; from DPL)
▶ Example 1.8. δU,V .farmer(U) ∧ donkey(V ) ∧ own(U,V ) ∧ beat(U,V )

▶ Definition 1.9. The meaning of ⊗ and ;; is given operationally by =τ equality:

δX .C1 ⊗ δY.C2 →τ δX ,Y.C1 ∧ C2

δX .C1 ;; δY.C2 →τ δX ,Y.C1 ∧ C2

▶ Discourse referents used instead of bound variables. (specify scoping
independently of logic)
▶ Idea: Semantics inherited from first-order logic by a translation mapping.
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Sub DRSes and Accessibility

▶ Problem: How can we formally define accessibility. (to make predictions)
▶ Idea: Make use of the structural properties of DRT.
▶ Definition 1.10. A referent is accessible in all sub DRS of the declaring DRS.
▶ If D = δU1, . . .,Un.C, then any sub DRS of C is a sub DRS of D.
▶ If D = D1 ⊗D2, then D1 is a sub DRS of D2 and vice versa.
▶ If D = D1 ;;D2, then D2 is a sub DRS of D1.
▶ If C is of the form C1 ∧ C2, or ¬¬D, or D1∨∨D2, or D1⇒⇒D2, then any sub DRS of

the C i , and the Di is a sub DRS of C.
▶ If D = D1⇒⇒D2, then D2 is a sub DRS of D1

▶ Definition 1.11 (Dynamic Potential). (which referents can be picked up?) A
referent U is in the dynamic potential of a DRS D, iff it is accessible in

D ⊗
p(U)

▶ Definition 1.12. We call a DRS static, iff the dynamic potential is empty, and
dynamic, if it is not.
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Sub DRSes and Accessibility

▶ Observation: Accessibility gives DRSes the flavor of binding structures. (with
non-standard scoping!)
▶ Idea: Apply the usual binding heuristics to DRT, e.g.
▶ reject DRSes with unbound discourse referents.
▶ Questions: If we view of discourse referents as “nonstandard bound variables”
▶ what about renaming referents?
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Translation from DRT to FOL
▶ Definition 1.13. For =τ -normal (fully merged) DRSes use the translation ·:

δU1, . . .,Un.C = ∃U1, . . .,Un.C
¬¬D = ¬D

D∨∨E = D ∨ E
D ∧ E = D ∧ E

(δU1, . . .,Un.C1)⇒⇒(δV 1, . . .,V n.C2) = ∀U1, . . .,Un.C1 ⇒ (∃V 1, . . .,V n.C2)

▶ Example 1.14.

X ,Y
student(X )
book(Y )
own(X ,Y )

= ∃X .∃Y .student(X ) ∧ book(Y ) ∧ own(X ,Y ).

▶ Example 1.15.

(δU,V .farmer(U) ∧ donkey(V ) ∧ own(U,V ))⇒⇒(δW .stick(W ) ∧ beatwith(U,V ,W ))
= ∀X ,Y .farmer(X ) ∧ donkey(X ) ∧ own(X ,Y )⇒ (∃.stick(Z) ∧ beatwith(Z ,X ,Y ))

▶ Consequence: Validity of DRSes can be checked by translation.
▶ Question: Why not use first-order logic directly?
▶ Answer: Only translate at the end of a discourse(translation closes all dynamic

contexts: frequent re-translation).
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Properties of Dynamic Scope
▶ Idea: Test DRT on the data above for the dynamic phenomena
▶ Example 1.16 (Negation Closes Dynamic Potential).

Peter has no1 car. * It1 is parked outside.

¬¬
U

acar(U)
own(peter,U)

⊗ parked(U)
¬(∃U.acar(U) ∧ own(peter,U)). . .

▶ Example 1.17 (Universal Quantification is Static).
Peter does not own every book1. * It1 is a novel.

¬¬ U

book(U)
⇒⇒ own(peter,U)

⊗ novel(U)

¬(∀U.book(U)⇒ own(peter,U)). . .
▶ Example 1.18 (Existential Quantification is Dynamic).

There is a book1 that Peter does not own. It1 is a novel.
V

book(V )
(¬own(peter,V ))

⊗ novel(V )
∃U.book(U) ∧ ¬own(peter,U) ∧ novel(U)
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DRT as a Representational Level

▶ DRT adds a level to the knowledge representation which provides anchors (the
discourse referents) for anaphora and the like.
▶ Propositional semantics by translation into PL1. (“+s” adds a sentence)

a
A

a,b
A
B

a,b,c
A
B
C

· · ·
· · ·

∃a.A ∃a, b.A ∧ B ∃a, b, c .A ∧ B ∧ C · · ·

+s +s +s

? ? ?

τ τ τ

Repn.
Layer

Logic
Layer

▶ Anaphor resolution works incrementally on the representational level.

Michael Kohlhase: LBS 177 2025-02-06



A Direct Semantics for DRT (Dyn. Interpretation Iδφ)

▶ Definition 1.19. Let M = ⟨D, I⟩ be a first-order model, then a state is an
assignment from discourse referents into D.
▶ Definition 1.20. Let φ,ψ : DR→U be states, then we say that ψ extends φ

on X ⊆ DR (write φ[X ]ψ), if φ(U) = ψ(U) for all U ̸∈ X .
▶ Idea: Conditions as truth values; DRSes as pairs (X ,S) (S set of states)
▶ Definition 1.21 (Meaning of complex formulae).The value function Iφ for

DRT is defined with the help of a dynamic value function Iδφ on DRSs: For
conditions:
▶ Iφ(¬¬D) = T, if Iδφ(D)2 = ∅.
▶ Iφ(D∨∨E) = T, if Iδφ(D)2 ̸= ∅ or Iδφ(E)2 ̸= ∅.
▶ Iφ(D⇒⇒E) = T, if for all ψ ∈ Iδφ(D)2 there is a τ ∈ Iδφ(E)2 with ψ[Iδφ(E)1]τ .

For DRSs D we set Iφ(D) = T, iff Iδφ(D)
2 ̸= ∅, and define

▶ Iδφ(δX .C) = (X ,{ψ |φ[X ]ψ and Iψ(C) = T}).
▶ Iδφ(D ⊗ E) = Iδφ(D ;; E) = (Iδφ(D)1 ∪ Iδφ(E)1,Iδφ(D)2 ∩ Iδφ(E)2)
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Examples (Computing Direct Semantics)

▶ Example 1.22. Peter owns a car

Iδφ(δU.acar(U) ∧ own(peter,U))

= ({U},{ψ |φ[U]ψ and Iψ(acar(U) ∧ own(peter,U)) = T})
= ({U},{ψ |φ[U]ψ and Iψ(acar(U)) = T and Iψ(own(peter,U)) = T})
= ({U},{ψ |φ[U]ψ and ψ(U) ∈ I(acar) and (ψ(U),peter) ∈ I(own)})

The set of states [a/U], such that a is a car and is owned by Peter
▶ Example 1.23. For Peter owns no car we look at the condition:

Iφ(¬¬(δU.acar(U) ∧ own(peter,U))) = T

⇔ Iδφ(δU.acar(U) ∧ own(peter,U))2 = ∅
⇔ ({U},{ψ |φ[X ]ψ and ψ(U) ∈ I(acar) and (ψ(U),peter) ∈ I(own)})2 = ∅
⇔ {ψ |φ[X ]ψ and ψ(U) ∈ I(acar) and (ψ(U),peter) ∈ I(own)} = ∅

i.e. iff there are no a, that are cars and that are owned by Peter.
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9.2 Dynamic Model Generation
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Deduction in Dynamic Logics

▶ Problem: Mechanize the dynamic entailment relation (with anaphora)
▶ Idea: Use dynamic deduction theorem to reduce (dynamic) entailment to

(dynamic) satisfiability
▶ History of Attempts: Direct Deduction on DRT (or DPL) [Sau93; RG94;

MR98]
(++) Specialized Calculi for dynamic representations.
(– –) Needs lots of development until we have efficient implementations.
▶ Translation approach (used in our experiment)

(–) Translate to PL1.
(++) Use off-the-shelf theorem prover (in this case MathWeb).
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An Opportunity for Off-The-Shelf ATP?

▶ Pro: ATP is mature enough to tackle applications
▶ Current ATP are highly efficient reasoning tools.
▶ Full automation is needed for NLP. (ATP as an oracle)
▶ ATP as logic engines is one of the initial promises of the field.
▶ contra: ATP are general logic systems

1. NLP uses other representation formalisms (DRT, Feature Logic,. . . )
2. ATP optimized for mathematical (combinatorially complex) proofs.
3. ATP (often) do not terminate.
▶ Experiment: Use translation approach for 1. to test 2. and 3. [Bla+01]

(Wow, it works!)
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Excursion: Incrementality in Dynamic Calculi

▶ For applications, we need to be able to check for
▶ satisfiability (∃M.M ⊨ A), validity (∀M.M ⊨ A) and
▶ entailment (H ⊨ A, iff M ⊨ H implies M ⊨ A for all M)
▶ Theorem 2.1 (Entailment Theorem). H,A ⊨ B, iff H ⊨ A⇒ B. (e.g. for

first-order logic and DPL)
▶ Theorem 2.2 (Deduction Theorem). For most calculi C we have H,A⊢CB,

iff H⊢CA⇒ B. (e.g. for ND1)
▶ Problem: Analogue H1 ⊗ · · · ⊗ Hn |= A is not equivalent to
|= (H1 ⊗ · · · ⊗ Hn)⇒⇒A in DRT, as ⊗ symmetric.
▶ Thus the validity check cannot be used for entailment in DRT.
▶ Solution: Use sequential merge ;; (from DPL) for sentence composition.
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Model Generation for Dynamic Logics

▶ Problem: Translation approach is not incremental!
▶ For each check, the DRS for the whole discourse has to be translated.
▶ Can become infeasible, once discourses get large (e.g. novel).
▶ This applies for all other approaches for dynamic deduction too.
▶ Idea: Extend model generation techniques instead!
▶ Remember: A DRS D is valid in M = ⟨D, I⟩, iff Iδ∅(D)2 ̸= ∅.
▶ Find a model M and state φ, such that φ ∈ Iδ∅(D)2.
▶ Adapt first-order model generation technology for that.
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Dynamic Herbrand Valuation

▶ Definition 2.3. We call a model M = ⟨U , I, Iδ· ⟩ a dynamic Herbrand
interpretation, if ⟨U , I⟩ is a Herbrand model.
▶ Question: Can representM as a triple ⟨X ,S,B⟩, where B is the Herbrand

valuation for ⟨U , I⟩?
▶ Definition 2.4. M is called finite, iff U is finite.
▶ Definition 2.5. M is minimal, iff for all M′ the following holds:
(B(M)′ ⊆ B(M))⇒M =M′.
▶ Definition 2.6. M is domain minimal if for allM′ the following holds:

#(U(M)) ≤ #(U(M)′)
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Dynamic Model Generation Calculus

▶ Definition 2.7. We use a tableau framework, extend by state information, and
rules for DRSes.
▶

(δUA.A)T H = {a1, . . ., an} w ̸∈ H new
[a1/U]

([a1/U](A))T
∣∣∣ . . . ∣∣∣ [an/U]

([an/U](A))T
∣∣∣ [w/U]

([w/U](A))T

RM δ

▶ Mechanize ;; by adding representation of the second DRS at all leaves. ( ⇝tableau
machine)

▶ Treat conditions by DRT translation

¬¬D
¬¬D

D⇒⇒D′

D⇒⇒D′

D∨∨D′

D∨∨D′

Michael Kohlhase: LBS 185 2025-02-06



Example: Peter is a man. No man walks

▶ Example 2.8 (Model Generation). Peter is a man. No man walks

man(peter)

man(peter)T

¬¬(δU.man(U) ∧ walks(U))

¬(∀U.man(U) ∧ walks(U))T

(∀X .man(X ) ∧ walks(X ))F

(man(peter) ∧ walks(peter))F

man(peter)F

⊥
walks(peter)F

Dynamic Herbrand interpretation: ⟨∅, ∅, {man(peter)T,walks(peter)F}⟩
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Example: Anaphor Resolution A man sleeps. He snores

▶ Example 2.9 (Anaphor Resolution). A man sleeps. He snores

δUMan.man(U) ∧ sleeps(U)

[c1
Man/UMan]

man(c1
Man)

T

sleeps(c1
Man)

T

δVMan.snores(V )

[c1
Man/VMan]

snores(c1
Man)

T

minimal

[c2
Man/VMan]

snores(c2
Man)

T

deictic
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Anaphora with World Knowledge

▶ Example 2.10 (Anaphora with World Knowledge).
▶ Mary is married to Jeff. Her husband is not in town.
▶ δUF,VM.U = mary ∧ married(U,V ) ∧ V = jeff ;;

δWM,W ′
F.husband(W ,W ′) ∧ ¬intown(W )

▶ World knowledge
▶ If a female X is married to a male Y , then Y is X ’s only husband.
▶ ; ∀XF,YM.married(X ,Y )⇒ husband(Y ,X ) ∧ (∀Z .husband(Z ,X )⇒ Z = Y )

▶ Model generation yields saturated tableau, all branches contain

⟨{U,V ,W ,W ′}, {[mary/U], [jeff/V ], [jeff/W ], [mary/W ′]},H⟩

with

H = {married(mary, jeff)T, husband(jeff,mary)T,¬intown(jeff)T}

▶ They only differ in additional negative facts, e.g. married(mary,mary)F.
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Model Generation models Discourse Understanding

▶ The tableau machine algorithm conforms with psycholinguistic findings:
▶ Zwaan& Radvansky [ZR98]: listeners not only represent logical form, but also

models containing referents.
▶ deVega [de 95]: online, incremental process.
▶ Singer [Sin94]: enriched by background knowledge.
▶ Glenberg et al. [GML87]: major function is to provide basis for anaphor resolution.

Michael Kohlhase: LBS 189 2025-02-06



Chapter 10
Propositional Attitudes and Modalities
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10.1 Introduction

Michael Kohlhase: LBS 189 2025-02-06



Modalities and Propositional Attitudes

▶ Definition 1.1. Modality is a feature of language that allows for
communicating things about, or based on, situations which need not be actual.
A sentence is called modal, if it involves a modality
▶ Definition 1.2. Modality is signaled by phrases (called moods) that express a

speaker’s general intentions and commitment to how believable, obligatory,
desirable, or actual an expressed proposition is.
▶ Example 1.3. Data on modalities (moods in red)
▶ A probably holds, (possibilistic)
▶ it has always been the case that A, (temporal)
▶ it is well-known that A, (epistemic)
▶ A is allowed/prohibited, (deontic)
▶ A is provable, (provability)
▶ A holds after the program P terminates, (program)
▶ A hods during the execution of P. (dito)
▶ it is necessary that A, (aletic)
▶ it is possible that A, (dito)
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Modeling Modalities and Propositional Attitudes

▶ Example 1.4. Again, the pattern from above:
▶ it is necessary that Peter knows logic (A = Peter knows logic)
▶ it is possible that John loves logic, (A = John loves logic)
▶ Observation: All of the red parts above modify the clause/sentence A. We

call them modalities.
▶ Definition 1.5 (A related Concept from Philosophy). A propositional

attitude is a mental state held by an agent toward a proposition.
▶ Question: But how to model this in logic?
▶ Idea: New sentence-to-sentence operators for necessary and possible. (extend

existing logics with them.)
▶ Observation: A is necessary, iff ¬A is impossible.
▶ Definition 1.6. A modal logic is a logical system that has logical constants

that model modalities.
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History of Modal Logic

▶ Aristoteles studies the logic of necessity and possibility
▶ Diodorus: temporal modalities
▶ possible: is true or will be
▶ necessary: is true and will never be false
▶ Clarence Irving Lewis 1918 [Lew18] (Systems S1, . . . , S5)
▶ strict implication I (A ∧ B) (I for “impossible”)
▶ Kurt Gödel 1932: Modal logic of provability (S4) [Göd32]
▶ Saul Kripke 1959-63: Possible worlds semantics [Kri63]
▶ Vaugham Pratt 1976: Dynamic Program Logic [Pra76]

▶
...
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Basic Modal Logics (ML0 and ML1)

▶ Definition 1.7. Propositional modal logic ML0 extends propositional logic with
two new logical constants: 2 for necessity and 3 for possibility.(3A = ¬(2¬A))
▶ Observation: Nothing hinges on the fact that we use propositional logic!
▶ Definition 1.8. First-order modal logic ML1 extends first-order logic with two

new logical constants: 2 for necessity and 3 for possibility.
▶ Example 1.9. We interpret

1. Necessarily, every mortal will die. as 2(∀X .mortal(X )⇒ willdie(X ))

2. Possibly, something is immortal. as 3(∃X .¬mortal(X ))

▶ Questions: What do 2 and 3 mean? How do they behave?

Michael Kohlhase: LBS 193 2025-02-06



Epistemic and Doxastic Modality

▶ Definition 1.10. Modal sentences can convey information about the speaker’s
state of knowledge (epistemic state) or belief (doxastic state).
▶ Example 1.11. We might paraphrase sentence (2) as (3):

1. A: Where’s John?
2. B: He might be in the library.
3. B ′: It is consistent with the speaker’s knowledge that John is in the library.
▶ Definition 1.12. We way that a world w is an epistemic possibility for an agent
B if it could be consistent with B’s knowledge.
▶ Definition 1.13. An epistemic logic is one that models the epistemic state of a

speaker. Doxastic logic does the same for the doxastic state.
▶ Definition 1.14. In deontic logic, we interpret the accessibility relation R as

epistemic accessibility:
▶ With this R, represent B’s utterance as 3inlib(j).
▶ Similarly, represent John must be in the library. as 2inlib(j).
▶ Question: If R is epistemic accessibility, what properties should it have?
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Deontic Modality

▶ Definition 1.15. Deontic modality is a modality that indicates how the world
ought to be according to certain norms, expectations, speaker desire, etc.
▶ Definition 1.16. Deontic modality has the following subcategories
▶ Commissive modality (the speaker’s commitment to do something, like a promise or

threat): e.g. I shall help you.
▶ Directive modality (commands, requests, etc.): e.g. Come!, Let’s go!, You’ve got to

taste this curry!
▶ Volitive modality (wishes, desires, etc.): If only I were rich!
▶ Question: If we want to interpret 2runs(j) as It is required that John runs

(or, more idiomatically, as John must run), what formulae should be valid on
this interpretation of the operators? (This is for homework!)
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10.2 Semantics for Modal Logics
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Semantics of ML0

▶ Definition 2.1. We use a set W of possible worlds, and a accessibility relation
R ⊆ W ×W: if R(v ,w), then we say that w is accessible from v .
▶ Example 2.2. W = N with R = {⟨n, n + 1⟩ | n ∈ N}. (temporal logic)
▶ Definition 2.3. Variable assignment φ : V0 ×W →D0 assigns values to

variables in a given possible world.
▶ Definition 2.4. Value function I ·· : W × wff0(V0)→D0 (assigns values to

formulae in a possible world)
▶ Iw

φ(V ) = φ(w ,V ) for .V ∈ V0
▶ Iw

φ(¬A) = T, iff Iw
φ(A) = F. (∧ analogous)

▶ Iw
φ(2A) = T, iff Iw′

φ (A) = T for all w ′ ∈ W with wRw ′.
▶ Definition 2.5. We call a triple M := ⟨W,R, I⟩ a Kripke model.
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Accessibility Relations. E.g. for Temporal Modalities

▶ Example 2.6 (Temporal Worlds with Ordering). Let ⟨W, ◦, <,⊆⟩ an
interval time structure, then we can use ⟨W, <⟩ as a Kripke models. Then
PAST becomes a modal operator.
▶ Example 2.7. Suppose we have i < j and j < k . Then intuitively, if Jane is

laughing is true at i , then Jane laughed should be true at j and at k , i.e.
Iwφ(j)PAST(laughs(j)) and Iwφ(k)PAST(laughs(j)).
But this holds only if “<” is transitive. (which it is!)
▶ Example 2.8. Here is a clearly counter-intuitive claim: For any time i and any

sentence A, if Iwφ(i)PRES(A) then Iwφ(i)PAST(A).
(For example, the truth of Jane is at the finish line at i implies the truth of Jane
was at the finish line at i .)
But we would get this result if we allowed < to be reflexive. (< is irreflexive)
▶ Treating tense modally, we obtain reasonable truth conditions.
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Modal Axioms (Propositional Logic)

▶ Definition 2.9. Necessitation:
A
2A

N

▶ Definition 2.10 (Normal Modal Logics).
System Axioms Accessibility Relation
K 2(A⇒ B)⇒ (2A⇒2B) general
T K + 2A⇒ A reflexive
S4 T + 2A⇒22A reflexive + transitive
B T + 32A⇒ A reflexive + symmetric
S5 S4 + 3A⇒23A equivalence relation
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K Theorems

▶ Observation 2.11. 2(A ∧ B) ⊨ 2A ∧2B in K.
▶ Observation 2.12. A⇒ B ⊨ 2A⇒2B in K.
▶ Observation 2.13. A⇒ B ⊨ 3A⇒3B in K.
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Translation to First-Order Logic

▶ Question: Is modal logic more expressive than predicate logic?
▶ Answer: Very rarely! (usually can be translated)
▶ Definition 2.14. Translation τ from ML into PL1, (so that the diagram

commutes)

modal logic predicate logic

Kripke-Sem. Tarski-Sem.

IφIwφ
τ

τ

▶ Idea: Axiomatize Kripke models in PL1. (diagram is simple consequence)
▶ Definition 2.15. A logic morphism Θ: L→L′ is called
▶ correct, iff ∃M.M |= Φ implies ∃M′.M′ |=′ Θ(Φ).
▶ complete, iff ∃M′.M′ |=′ Θ(Φ) implies ∃M.M |= Φ.
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Modal Logic Translation (formal)

▶ Definition 2.16. The standard translation τw from modal logics to first-order
logic is given by the following process:
▶ Extend all function constants by a “world argument”: f ∈ Σf

k+1 for every f ∈ Σf
k

▶ for predicate constants accordingly.
▶ insert the “translation world” there: e.g. τw (f (a, b)) = f (w , a(w), b(w)).
▶ New predicate constant R for the accessibility relation.
▶ New constant s for the “start world”.
▶ τw (2A) = ∀w ′.wRw ′ ⇒ τw′(A).
▶ Use all axioms from the respective correspondence theory.
▶ Definition 2.17 (Alternative). Functional translations, if R associative:
▶ New function constant fR for the accessibility relation.
▶ Revise the standard translation by one of the following
▶ τw (2A) = ∀w ′.w = fR(w ′)⇒ τw (A). (naive solution)
▶ τfR(w)(2A) = τw (A) (better for mechanizing [Ohl88])
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Translation (continued)

▶ Theorem 2.18. τs : ML0→ PL0 is correct and complete.
▶ Proof: show that ∃M.M |= Φ iff ∃M′.M′ |= τs(Φ)

1. Let M = ⟨W,R, φ⟩ with M |= A
2. chose M = ⟨W, I ′⟩, such that I(p) = φ(p) : W →{T,F} and I(r) = R.
we prove M |=ψ τw (A)′ for ψ = IdW by structural induction over A.
3. A = P

3.1. Iψ(τw (A)) = Iψ(p(w)) = I (p(w)) = φ(P,w) = T
4. A = ¬B, A = B ∧ C trivial by IH.
5. A = 2B

5.1. Iψ(τw (A)) = Iψ(∀w .r(w , v)⇒ τv (B)) = T, if Iψ(r(w , v)) = F or
Iψ(τv (B)) = T for all v ∈ W.
5.2. M |=ψ τv ′(B) so by IHM |=v B.
5.3. soM |=ψ τw (A)′.
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Modal Logic (References)

▶ G. E. Hughes und M. M. Cresswell: A companion to Modal Logic, University
Paperbacks, Methuen (1984) [HC84].
▶ David Harel: Dynamic Logic, Handbook of Philosophical Logic, D. Gabbay,

Hrsg. Reidel (1984) [Har84].
▶ Johan van Benthem: Language in Action, Categories, Lambdas and Dynamic

Logic, North Holland (1991) [Ben91].
▶ Reinhard Muskens, Johan van Benthem, Albert Visser, Dynamics, in Handbook

of Logic and Language, Elsevier, (1995) [MBV95].
▶ Blackburn, DeRijke, Vedema: Modal Logic; 2001 [BRV01]. look at the chapter

“Guide to the literature” in the end.
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10.3 A Multiplicity of Modalities ; Multimodal
Logic
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A Multiplicity of Modalities

▶ Epistemic (knowledge and belief) modalities must be relativized to an individual
▶ Peter knows that Trump is lying habitually.
▶ John believes that Peter knows that Trump is lying habitually.
▶ You must take the written drivers’ exam to be admitted to the practical test.
▶ Similarly, we find in natural language expressions of necessity and possibility

relative to many different kinds of things.
▶ Consider the deontic (obligatory/permissible) modalities
▶ [Given the university’s rules] Jane can take that class.
▶ [Given her intellectual ability] Jane can take that class.
▶ [Given her schedule] Jane can take that class.
▶ [Given my desires] I must meet Henry.
▶ [Given the requirements of our plan] I must meet Henry.
▶ [Given the way things are] I must meet Henry [every day and not know it].
▶ Many different sorts of modality, sentences are multiply ambiguous towards

which one.
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Multimodal Logics

▶ Definition 3.1. A multimodal logic provides operators for multiple modalities:
[1], [2], [3], . . . , ⟨1⟩, ⟨2⟩, . . .
▶ Definition 3.2. Multimodal Kripke models provide multiple accessibility

relations R1,R2, . . .⊆W ×W.
▶ Definition 3.3. The value function in multimodal logic generalizes the clause

for 2 in ML0 to
▶ Iw

φ([i ]A) = T, iff Iw′
φ (A) = T for all w ′ ∈ W with wRiw

′.
▶ Example 3.4 (Epistemic Logic: talking about knowing/believing).
[peter ]⟨klaus⟩A (Peter knows that Klaus considers A possible)
▶ Example 3.5 (Program Logic: talking about programs).
[X :=A][Y :=A]X = Y (after assignments, the values of X and Y are equal)
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10.4 Dynamic Logic for Imperative Programs
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Dynamic Program Logic (DL)

▶ Modal logics for argumentation about imperative, non-deterministic programs.
▶ Idea: Formalize the traditional argumentation about program correctness:

tracing the variable assignments (state) across program statements.
▶ Example 4.1 (Fibonacci). Consider the following (imperative) program that

computes Fib(X ) as the value of Z :
α := ⟨Y ,Z ⟩:=⟨1, 1⟩ ; while X ̸= 0 do ⟨X ,Y ,Z ⟩:=⟨X − 1,Z ,Y + Z ⟩ end
▶ States for the “input” X = 4: ⟨4,_,_⟩, ⟨4, 1, 1⟩, ⟨3, 1, 2⟩, ⟨2, 2, 3⟩, ⟨1, 3, 5⟩, ⟨0, 5, 8⟩
▶ Correctness? For positive X , running α with input ⟨X ,_,_⟩ we end with

⟨0,Fib(X − 1),Fib(X )⟩
▶ Termination? α does not terminate on input ⟨ − 1,_,_⟩.
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Multi-Modal Logic fits well

▶ Observation: Multi modal logic fits well
▶ States as possible worlds, program statements as accessibility relations.
▶ Two syntactic categories: programs α and formulae A.
▶ Interpret [α]A as If α terminates, then A holds afterwards
▶ Interpret ⟨α⟩A as α terminates and A holds afterwards.
▶ Example 4.2. Assertions about Fibonacci number (α)
▶ ∀X ,Y .[α]Z = Fib(X )
▶ ∀X ,Y .(X ≥ 0)⇒ ⟨α⟩Z = Fib(X )
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Levels of Description in Dynamic Program Logic

▶ Propositional dynamic logic (DL0) (independent of variable assignments)
▶ |= [α]A ∧ [α]B ⇔ [α](A ∧ B)
▶ |= [while A ∨ B do α end]C ⇔ [while A do α end ; while B do α ; while A do α end end]C

▶ First-order program logic (DL1) (function, predicates uninterpreted)
▶ |= p(f (X ))⇒ g(Y , f (X ))⇒ ⟨Z :=f (X )⟩p(Z , g(Y ,Z))
▶ |= Z = Y ∧ (∀X .f (g(X )) = X ) ⇒ [while p(Y ) do Y :=g(Y ) end]⟨while Y ̸= Z do Y :=f (Y ) end⟩T

▶ DL1 with interpreted functions, predicates (maybe some other time)
▶ ∀X .⟨while X ̸= 1 do if even(X ) thenX :=X

2 else X :=3X + 1 end⟩T

▶ Definition 4.3. We collectively call these dynamic program logics.
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DL0 Syntax

▶ Definition 4.4. Propositional dynamic logic (DL0) is PL0 extended by
▶ program variables Vπ = {α, β, γ, . . .},
▶ modalities [α], ⟨α⟩.
▶ program constructors Σπ = {;,∪, ∗, ?} (minimal set)

α ; β execute first α, then β sequence
α ∪ β execute (non-deterministically) either α or β distribution
∗α (non-deterministically) repeat α finitely often iteration
A? proceed if |= A, else stop test

▶ Idea: Standard program primitives as derived concepts
Construct as
if A thenα else β (A? ; α) ∪ (¬A? ; β)
while A do α end ∗(A? ; α) ; ¬A?
repeat α until A end ∗(α ; ¬A?) ; A?
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DL0 Semantics

▶ Definition 4.5. A model for DL0 consists of a set W of possible worlds called
states for DL0.
▶ Definition 4.6. DL0 variable assignments come in two parts:
▶ φ : V0 ×W →D0 (for propositional variables)
▶ π : Vπ →P(W ×W) (maps program variables to accessibility relations)
▶ Definition 4.7. The meaning of complex formulae is given by the following

value function Iwφ,π : wff0(V0)→D0 on formulae:
▶ Iw

φ,π(V ) = φ(w ,V ) for V ∈ V0.
▶ Iw

φ,π(¬A) = T iff Iw
φ,π(A) = F

▶ Iw
φ,π([α]A) = T iff Iw′

φ,π(A) = T for all w ′ ∈ W with wIφ,π(α)w ′.

And Iφ,π : wff0(V0)→P(W ×W) on programs: (independent of w ∈ W)
▶ Iφ,π(α) = π(α). (program variable by assignment)
▶ Iφ,π(α ; β) = Iφ,π(β) ◦ Iφ,π(α) (sequence by composition)
▶ Iφ,π(α ∪ β) = Iφ,π(α) ∪ Iφ,π(β) (distribution by union)
▶ Iφ,π(∗α) = Iφ,π(α)∗ (iteration by reflexive transitive closure)
▶ Iφ,π(A?) = {⟨w ,w⟩ | Iw

φ,π(A) = T} (test by subset of identity relation)
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First-Order Program Logic (DL1)

▶ Observation: Imperative programs uses variables, function and predicate
constants (uninterpreted), but no program variables. The main operation is
variable assignment.
▶ Idea: Make a multimodal logic in the spirit of DL0 that features all of these for

a deeper understanding.
▶ Definition 4.8. First-order program logic (DL1) combines the features of PL1,

DL0 without program variables, with the following two assignment operators:
▶ nondeterministic assignment X :=?
▶ deterministic assignment X :=A
▶ Example 4.9. |= p(f (X ))⇒ g(Y , f (X ))⇒ ⟨Z :=f (X )⟩p(Z , g(Y ,Z )) in DL1.
▶ Example 4.10. In DL1 we have

|= Z = Y ∧ (∀X .p(f (g(X )) = X )) ⇒ [while p(Y ) do Y :=g(Y ) end]⟨while Y ̸= Z do Y :=f (Y ) end⟩T
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DL1 Semantics

▶ Definition 4.11. Let M = ⟨D, I⟩ be a first-order model then the states
(possible worlds) are variable assignments: W = {φ |φ : Vι→D}
▶ Definition 4.12. For a set X of variables, write φ[X ]ψ, iff φ(X ) = ψ(X ) for all
X ̸∈ X .
▶ Definition 4.13. The meaning of complex formulae is given by the following

value function Iwφ : wff o(Σ,Vι)→D0
▶ Iw

φ(A) = Iφ(A) if A term or atom.
▶ Iw

φ(¬A) = T iff Iw
φ(A) = F

▶
...

▶ Iφ(X :=?) = {⟨φ,ψ⟩ |φ[X ]ψ}
▶ Iφ(X :=A) = {⟨φ,ψ⟩ |φ[X ]ψ and ψ(X ) = Iφ(A)}.
▶ Observation 4.14 (Substitution and Quantification). We have
▶ Iφ([X :=A]B) = Iφ,[Iφ(A)/X ](B)
▶ ∀X .A = [X :=?]A.
▶ Thus substitutions and quantification are definable in DL1.
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Natural Deduction for DL0

▶ Definition 4.15. The natural deduction calculus DND0 for DL0 contains the
inference rules from ND0 plus:

Introduction Elimination

[α][β]A
[α ; β]A

DND0;I
[α ; β]A
[α][β]A

DND0;E

[α]A [β]A
[α ∪ β]A

DND0∪I
[α ∪ β]A
[α]A

DND0∪El
[α ∪ β]A
[β]A

DND0∪Er

[α]0A . . . [α]nA for all n ∈ N
[∗α]A

DND0∗I
[∗α]A n ∈ N

[α]nA
DND0∗E

[A]1

B
[A?]B

DND0?I
1 [A?]B A

B
DND0?E

For details see [HM95].
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Natural Deduction for DL1

▶ Definition 4.16. The natural deduction calculus DND1 for DL1 contains the
inference rules from ND1 and DND0 plus:

[A/X ](B) X ̸∈ (free(A) ∪ free(B))
[X :=A]B

DND0 := I

[X :=A]B

[[A/X ](B)]1

C
C

DND0 :=E

For details see [HM95].
▶ Observation: No inference rules for :=? needed as ∀X .A = [X :=?]A
⇝ND1∀I and ND1∀E suffice.
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Natural Language as Programming Languages

▶ Question: Why is dynamic program logic interesting in a natural language
semantics course?
▶ Answer: There are fundamental relations between dynamic (discourse) logics

and dynamic program logics.
▶ David Israel: “Natural languages are programming languages for mind” [Isr93]
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Chapter 11
Some Issues in the Semantics of Tense
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Tense as a Deictic Element

▶ Goal: Capturing the truth conditions and the logical form of sentences of
English.
▶ Clearly: The following three sentences have different truth conditions.

1. Jane saw George.
2. Jane sees George.
3. Jane will see George.
▶ Observation 0.1. Tense is a deictic element, i.e. its interpretation requires

reference to something outside the sentence itself.
▶ Remark: Often, in particular in the case of monoclausal sentences occurring in

isolation, as in our examples, this “something” is the speech time.
▶ Idea: make use of the reference time now:
▶ Jane saw George is true at a time iff Jane sees George was true at some point in

time before now.
▶ Jane will see George is true at a time iff Jane sees George will be true at some point

in time after now.
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A Simple Semantics for Tense

▶ Problem: The meaning of Jane saw George and Jane will see George is
defined in terms of Jane sees George.
; We need the truth conditions of the present tense sentence.
▶ Idea: Jane sees George is true at a time iff Jane sees George at that time.
▶ Implementation: Postulate temporal operator as sentential operators

(expressions of type o → o). Interpret
1. Jane saw George as PAST(see(g , j)),
2. Jane sees George as PRES(see(g , j)), and
3. Jane wil see George as FUT(see(g , j)).
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Models and Evaluation for a Tensed Language

▶ Problem: The interpretations of constants vary over time.
▶ Idea: Introduce times into our models, and let the interpretation function give

values of constants at a time. Relativize the valuation function to times
▶ Idea: We will consider temporal structures, where denotations are constant on

intervals.
▶ Definition 0.2. Let I ⊆ {[i ,j ] | i , j ∈ R} be a set of real intervals, then we call
⟨I , ◦, <,⊆⟩ an interval time structure, where for intervals i := [il ,il ] and
j := [ll ,jr ] we say that
▶ i and j overlap (written i ◦ j), iff ll ≤ ir ,
▶ i precedes j (written i < j), iff ir ≤ ll , and
▶ i is contained in j (written i ⊆ j), iff ll ≤ il and ir ≤ jr .
▶ Definition 0.3. A temporal model is a triple ⟨D, I, I⟩, where
▶ D is a set called the domain,
▶ I is an interval time structure, and
▶ I : I× ΣT →D an interpretation function.
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Interpretation rules for the temporal operators

▶ Definition 0.4. For the value function I iφ(·) we only redefine the clause for
constants:
▶ I i

φ(c):=I i (c)
▶ I i

φ(X ):=φ(X )
▶ I i

φ(FA):=I i
φ(F)(I i

φ(A)).
▶ Definition 0.5. We define the meaning of the temporal operators:

1. I i
φ(PRES(Φ)) = T, iff I i

φ(Φ) = T.
2. I i

φ(PAST(Φ)) = T iff there is an interval j ∈ I with j < i and I j
φ(Φ) = T.

3. I i
φ(FUT(Φ)) = T iff there is an interval j ∈ I with i < j and I j

φ(Φ) = T.
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Complex Tenses in English

▶ How do we use this machinery to deal with complex tenses in English?
▶ Past of past (pluperfect): Jane had left (by the time I arrived).
▶ Future perfect: Jane will have left (by the time I arrive).
▶ Past progressive: Jane was going to leave (when I arrived).
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Perfective vs. imperfective

▶ Data:
▶ Jane left.
▶ Jane was leaving.
▶ Question: How do the truth conditions of these sentences differ?
▶ Standard observation:
▶ Perfective indicates a completed action,
▶ imperfective indicates an incomplete or ongoing action.
▶ This becomes clearer when we look at the “creation predicates” like build a

house or write a book
▶ Jane built a house. entails: There was a house that Jane built.
▶ Jane was building a house. does not entail that there was a house that Jane built.
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Future Readings of Present Tense

▶ New Data:
1. Jane leaves tomorrow.
2. Jane is leaving tomorrow.
3. ?? It rains tomorrow.
4. ?? It is raining tomorrow.
5. ?? The dog barks tomorrow.
6. ??The dog is barking tomorrow.
▶ Future readings of present tense appear to arise only when the event described

is planned, or planable, either by the subject of the sentence, the speaker, or a
third party.
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Sequence of Tense

▶ George said that Jane was laughing.
▶ Reading 1: George said “Jane is laughing.” I.e. saying and laughing co-occur. So

past tense in subordinate clause is past of utterance time, but not of main clause
reference time.

▶ Reading 2: George said “Jane was laughing.” I.e. laughing precedes saying. So past
tense in subordinate clause is past of utterance time and of main clause reference
time.

▶ George saw the woman who was laughing.
▶ How many readings?
▶ George will say that Jane is laughing.
▶ Reading 1: George will say “Jane is laughing.” Saying and laughing co-occur, but

both saying and laughing are future of utterance time. So present tense in
subordinate clause indicates futurity relative to utterance time, but not to main
clause reference time.

▶ Reading 2: Laughing overlaps utterance time and saying (by George). So present
tense in subordinate clause is present relative to utterance time and main clause
reference time.

Michael Kohlhase: LBS 223 2025-02-06



Sequence of Tense

▶ George said that Jane was laughing.
▶ Reading 1: George said “Jane is laughing.” I.e. saying and laughing co-occur. So

past tense in subordinate clause is past of utterance time, but not of main clause
reference time.

▶ Reading 2: George said “Jane was laughing.” I.e. laughing precedes saying. So past
tense in subordinate clause is past of utterance time and of main clause reference
time.

▶ George saw the woman who was laughing.
▶ How many readings?

▶ George will say that Jane is laughing.
▶ Reading 1: George will say “Jane is laughing.” Saying and laughing co-occur, but

both saying and laughing are future of utterance time. So present tense in
subordinate clause indicates futurity relative to utterance time, but not to main
clause reference time.

▶ Reading 2: Laughing overlaps utterance time and saying (by George). So present
tense in subordinate clause is present relative to utterance time and main clause
reference time.

Michael Kohlhase: LBS 223 2025-02-06



Sequence of Tense
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Sequence of Tense (continued)
▶ George will see the woman who is laughing.
▶ How many readings?
▶ Note that in all of the above cases, the predicate in the subordinate clause

describes an event that is extensive in time. Consider readings when subordinate
event is punctual.

▶ George said that Mary fell.
▶ Falling must precede George’s saying.
▶ George saw the woman who fell.
▶ Same three readings as before: falling must be past of utterance time, but could be

past, present or future relative to seeing (i.e main clause reference time).
▶ And just for fun, consider past under present. . . George will claim that Mary hit

Bill.
▶ Reading 1: hitting is past of utterance time (therefore past of main clause reference

time).
▶ Reading 2: hitting is future of utterance time, but past of main clause reference

time.
▶ And finally. . .

1. A week ago, John decided that in ten days at breakfast he would tell his mother
that they were having their last meal together. (Abusch 1988)

2. John said a week ago that in ten days he would buy a fish that was still alive.
(Ogihara 1996)
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Sequence of Tense (continued)
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Sequence of Tense (continued)
▶ George will see the woman who is laughing.
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Sequence of Tense (continued)
▶ George will see the woman who is laughing.
▶ How many readings?
▶ Note that in all of the above cases, the predicate in the subordinate clause
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Sequence of Tense (continued)
▶ George will see the woman who is laughing.
▶ How many readings?
▶ Note that in all of the above cases, the predicate in the subordinate clause

describes an event that is extensive in time. Consider readings when subordinate
event is punctual.
▶ George said that Mary fell.
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▶ Reading 2: hitting is future of utterance time, but past of main clause reference

time.
▶ And finally. . .
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2. John said a week ago that in ten days he would buy a fish that was still alive.
(Ogihara 1996)
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Interpreting Tense in Discourse

▶ Example 0.6 (Ordering and Overlap). A man walked into the bar. He sat
down and ordered a beer. He was wearing a nice jacket and expensive shoes, but
he asked me if I could spare a buck.
▶ Example 0.7 (Tense as anaphora?).

1. Said while driving down the NJ turnpike: I forgot to turn off the stove.
2. I didn’t turn off the stove.
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Chapter 12
Quantifier Scope Ambiguity and

Underspecification
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12.1 Scope Ambiguity and Quantifying-In
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Quantifier Scope Ambiguities: Data

▶ Consider the following sentences:
1. Every man loves a woman (Britney Spears or his mother?)
2. Most Europeans speak two languages.
3. Some student in every course sleeps in every class at least some of the time.
▶ Definition 1.1. We call these systematic ambiguities quantifyer scope

ambiguities
▶ Example 1.2. We can represent the “wide-scope” reading with our methods

every man loves a woman

Det N Det NV t

NP NP

VP

S

every man loves a woman

every ′ man loves a′ woman

λP.(∀X .man(X )⇒ P(X ))

λQ.(∃Y .woman(Y )Q(Y ))

λx .(∃Y .woman(Y ) ∧ loves(X ,Y ))

∀X .man(X )⇒ (∃Y .woman(Y )⇒ loves(X ,Y ))

▶ Question: How to map an unambiguous input structure to multiple
translations.
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Storing and Quantifying In

▶ Analysis: The sentence meaning is of the form
⟨everyman⟩(⟨awoman⟩(⟨loves⟩))
▶ Idea: Somehow have to move the a woman part in front of the every to obtain

⟨awoman⟩(⟨everyman⟩(⟨loves⟩))

▶ More concretely: Let’s try A woman - every man loves her.
In semantics construction, apply a woman to every man loves her.
So a woman out-scopes every man.
▶ Problem: How to represent pronouns and link them to their antecedents
▶ STORE is an alternative translation rule. Given a node with an NP daughter,

we can translate the node by passing up to it the translation of its non-NP
daughter, and putting the translation of the NP into a store, for later use.
▶ The QI rule allows us to empty out a non-empty store.
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Storing and Quantifying In (Technically)

▶ Definition 1.3. STORE(NP,Φ) −→ (Φ,Σ∗NP), where Σ∗NP is the result of
adding NP to Σ, i.e. Σ∗NP = Σ ∪ {NP}; we will assume that NP is not already
in Σ, when we use the ∗ operator.
▶ Definition 1.4. QI(⟨Φ,Σ∗NP⟩)→ ⟨NP ⊕ Φ,Σ⟩ where ⊕ is either function

application or function composition.
▶ Nondeterministic Semantics Construction: Adding rules gives us more

choice
1. Rule C (simple combination) If A is a node with daughters B and C , and the

translations of B and of C have empty stores, then A translates to B ′ ⊕ C ′. Choice
of rule is determined by types.

2. STORE If A is a node with daughters B and C , where:
▶ B is an NP with translation B′ and
▶ C translates to (C ′,Σ)

then A may translate to STORE(B ′,C ′)

Note that STORE may be applied whether or not the stores of the constituent
nodes are empty.
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Quantifying in Practice: Every man loves a woman

▶ Example 1.5.

every man loves a woman

Det N Det NV t

NP NP

VP

S

every man loves a woman

every ′ man loves a′ woman

⟨λP.(∀X .man(X )⇒ P(X )), ∅⟩
⟨λQ.(∃Y .woman(Y )⇒ Q(Y )), ∅⟩

⟨loves, {λP.(∀X .man(X )⇒ P(X ))}⟩

⟨loves, {λP.(∀X .man(X )⇒ P(X )), λQ.(∃Y .woman(Y )⇒ Q(Y ))}⟩

▶ Continue with QI applications: first retrieve λQ.(∃Y .woman(Y )⇒ Q(Y ))
⟨loves, {λP.(∀X .man(X )⇒ P(X )), λQ.(∃Y .woman(Y )⇒ Q(Y ))}⟩

→QI ⟨◦ (λP.(∀X .man(X )⇒ P(X ))) loves, {λQ.(∃Y .woman(Y )⇒ Q(Y ))}⟩
→β ⟨λZ .(λP.(∀X .man(X )⇒ P(X ))) loves Z , {λQ.(∃Y .woman(Y )⇒ Q(Y ))}⟩
→β ⟨λZ .(∀X .man(X )⇒ loves Z X ), {λQ.(∃Y .woman(Y )⇒ Q(Y ))}⟩
→QI ⟨(λQ.(∃Y .woman(Y )⇒ Q(Y ))) (λZ .(∀X .man(X )⇒ loves Z X )), ∅⟩
→β ⟨∃Y .woman(Y )⇒ (λZ .(∀X .man(X )⇒ loves Z X )) Y , ∅⟩
→β ⟨∃Y .woman(Y )⇒ (∀X .man(X )⇒ loves Y X ), ∅⟩
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12.2 Type Raising for non-quantificational NPs
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Proper names

▶ Problem: Subject NPs with quantificational determiners have type
(ι→ o)→ o (and are applied to the VP) whereas subject NPs with proper
names have type ι. (argument to the VP)
▶ Idea: John runs translates to runs(john), where runs ∈ Σι→o and john ∈ Σι.

Now we =β-expand over the VP yielding (λPι→o .P(john)) runs
λPι→o .P(john) has type (ι→ o)→ o and can be applied to the VP runs.
▶ Definition 2.1. If c ∈ Σα, then type raising c yields λPα→o .P c.
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Definite NPs

▶ Problem: On our current assumptions, the′ = ι , and so for any definite NP
the N, its translation is ι N, an expression of type ι.
▶ Idea: Type lift just as we did with proper names: ι N type lifts to λP.P ι N,

so the′ = λPQ.Q ι P

▶ Advantage: This is a “generalized quantifier treatment”: the′ treated as
denoting relations between sets.
▶ Solution by Barwise&Cooper 1981: For any a ∈ Dι→o :
I(the′)(a) = I(every ′)(a) if #(a) = 1, undefined otherwise
So the′ is that function in D(ι→o)→(ι→o)→o such that for any A,B ∈ Dι→o

if #(A) = 1 then the′(A,B) = T if A ⊆ B and the′(A,B) = F if A̸⊆B otherwise
undefined
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Problems with Type raised NPs

▶ Problem: We have type-raised NPs, but consider transitive verbs as in Mary
loves most cats. loves is of type ι→ ι→ o while the object NP is of type
(ι→ o)→ o (application?)
▶ Another Problem: We encounter the same problem in the sentence Mary

loves John if we choose to type-lift the NPs.
▶ Idea: Change the type of the transitive verb to allow it to “swallow” the

higher-typed object NP.
▶ Better Idea: Adopt a new rule for semantic composition for this case.
▶ Remember: loves ′ is a function from individuals (e.g. John) to properties (in

the case of the VP loves John, the property X loves John of X ).
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Type raised NPs and Function Composition

▶ We can extend HOL→ by a constant ◦(β→γ)→(α→β)→α→γ by setting
◦ := λFGX .F (G (X )) thus

◦ g f→βλX .g(f (X )) and ◦ g f a→βg(f (a))

In our example, we have

◦ (λP.P(john)) loves =Def (λFGX .F (G (X ))) (λP.P(john)) loves
→β (λGX .(λP.P(john)) G (X )) loves
→β λX .(λP.P(john)) loves X
→β! λX .loves(X , john)
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12.3 Dealing with Quantifier Scope Ambiguity:
Cooper Storage
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Type raising transitive verbs

▶ We need transitive verbs to combine with quantificational objects of type
(ι→ o)→ o but . . .
▶ We still ultimately want their “basic” translation to be type ι→ ι→ o, i.e.

something that denotes a relation between individuals.
▶ We do this by starting with the basic translation, and raising its type. Here is

what we’ll end up with, for the verb like:

λPY .P (λX .likes(X ,Y ))

where P is a variable of type (ι→ o)→ o and X , Y are variables of type ι.
(For details on how this is derived, see [CKG09, pp.178-179])
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Cooper Storage
▶ Intuition: A store consists of a “core” semantic representation, computed in

the usual way, plus the representations of quantifiers encountered in the
composition so far.
▶ Definition 3.1. A store is an n place sequence. The first member of the

sequence is the core semantic representation. The other members of the
sequence (if any) are pairs (β,i) where:
▶ β is a QNP translation and
▶ i is an index, which will associate the NP translation with a free variable in the core

semantic translation.
We call these pairs binding operators (because we will use them to bind free
variables in the core representation).
▶ Definition 3.2. In the Cooper storage method, QNPs are stored in the store

and later retrieved – not necessarily in the order they were stored – to build the
representation.
▶ The elements in the store are written enclosed in angled brackets. However, we

will often have a store which consists of only one element, the core semantic
representation. This is because QNPs are the only things which add elements
beyond the core representation to the store. So we will adopt the convention
that when the store has only one element, the brackets are omitted.
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How we put QNPs in the Store

▶ Storage Rule
If the store ⟨φ, (β, j), . . . , (γ, k)⟩ is a possible translation for a QNP, then the
store

⟨λP.P(Xi )(φ, i)(β, j), . . . , (γ, k)⟩

where i is a new index, is also a possible translation for that QNP.
▶ This rule says: if you encounter a QNP with translation φ, you can replace its

translation with an indexed place holder of the same type, λP.P(Xi ), and add φ
to the store, paired with the index i . We will use the place holder translation in
the semantic composition of the sentence.
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Working with Stores

▶ Working out the translation for Every student likes some professor.

NP1 → λP.(∃X .prof(X ) ∧ P(X )) or ⟨λQ.Q(X1), (λP.(∃X .prof(X ) ∧ P(X )), 1)⟩
Vt → λRY .R (λZ .likes(Z ,Y ))
VP → (Combine core representations by FA; pass store up)*

→ ⟨λY .likes(X1,Y ), (λP.(∃X .prof(X ) ∧ P(X )), 1)⟩
NP2 → λP.(∀Z .student(Z)⇒ P(Z)) or ⟨λR.R(X2), (λP.(∀Z .student(Z)⇒ P(Z)), 2)⟩
S → (Combine core representations by FA; pass stores up)**

→ ⟨likes(X1,X2), (λP.(∃X .prof(X ) ∧ P(X )), 1), (λP.(∀Z .student(Z)⇒ P(Z)), 2)⟩
* Combining Vt with place holder

1. (λRY .R (λZ .likes(Z ,Y ))) (λQ.Q(X1))

2. λY .(λQ.Q(X1)) (λZ .likes(Z ,Y ))

3. λY .(λZ .likes(Z ,Y )) X1

4. λY .likes(X1,Y )

** Combining VP with place holder

1. (λR.R(X2)) (λY .likes(X1,Y ))

2. (λY .likes(X1,Y )) X2

3. likes(X1,X2)
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Retrieving NPs from the store

▶ Retrieval:
Let σ1 and σ2 be (possibly empty) sequences of binding operators. If the store
⟨φ, σ1, σ2, (β, i)⟩ is a translation of an expression of category S , then the store
⟨β(λX1.φ), σ1, σ2⟩ is also a translation of it.
▶ What does this say?: It says: suppose you have an S translation consisting of

a core representation (which will be of type o) and one or more indexed QNP
translations. Then you can do the following:
1. Choose one of the QNP translations to retrieve.
2. Rewrite the core translation, λ-abstracting over the variable which bears the index

of the QNP you have selected. (Now you will have an expression of type ι→ o.)
3. Apply this λ-term to the QNP translation (which is of type (ι→ o) → o).
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Example: Every student likes some professor.

1. Retrieve every student
1.1 (λQ.(∀Z .student(Z)⇒ Q(Z))) (λX2.likes(X1,X2))
1.2 ∀Z .student(Z)⇒ (λX2.likes(X1,X2)) Z
1.3 ∀Z .student(Z)⇒ likes(X1,Z)

2. Retrieve some professor
2.1 (λP.(∃X .prof(X ) ∧ P(X ))) (λX1.(∀Z .student(Z)⇒ likes(X1,Z)))
2.2 ∃X .prof(X )(λX1.(∀Z .student(Z)⇒ likes(X1,Z))) X
2.3 ∃X .prof(X ) ∧ (∀Z .student(Z)⇒ likes(X ,Z))
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Chapter 13
Higher-Order Unification and NL Semantics

Reconstruction
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13.1 Introduction
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Application of HOL in NL Semantics: Ellipsis

▶ Example 1.1. John loves his wife. George does too
▶ loves(john,wifeof(john)) ∧ Q(george)
▶ “George has property some Q, which we still have to determine”
▶ Idea: If John has property Q, then it is that he loves his wife.
▶ Equation: Q(john) =αβη loves(john,wifeof(john))
▶ Solutions (computed by HOU):
▶ Q = λz .loves(z ,wifeof(z)) and Q = λz .loves(z ,wifeof(john))
* Q = λz .loves(john,wifeof(z)) and Q = λz .loves(john,wifeof(john))

▶ Readings: George loves his own wife. and George loves John’s wife.
▶ Erraneous HOU Predictions: * John loves George’s wife. and * John loves

John’s wife.
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Higher-Order Unification (HOU)

▶ Intuitively: Equation solving in the simply typed λ-calculus (modulo the
built-in αβη-equality)
▶ Formally: Given formulae A,B ∈ wff α(ΣT ,VT ), find a substitution σ with
σ(A) =αβη σ(B).
▶ Definition 1.2.

We call E := A1=
?B1 ∧ . . . ∧ An=

?Bn a unification problem. The set
U(E) = {σ |σ(Ai ) =αβη σ(Bi )} is called the set of unifiers for E and any of its
members a unifier.
▶ Example 1.3. the unification problem F (fa)=?f (Fa) where F , f :α→ α and
⊢Σa : α has unifiers [f /F ], [λXα.f (fX )/F ], [λXα.f (f (fX ))/F ], . . .

▶ find Representatives that induce all of U(E) (are there most general unifiers?)
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Discourse Coherence

▶ Meaning of a discourse is more than just the conjunction of sentences
▶ Coherence is prerequisite for well-formedness (not just pragmatics)

A John killed Peter.
B1 No, John killed BILL!
B2 * No, John goes hiking!
B3 No, PETER died in that fight!
▶ Coherence in a discourse is achieved by discourse relations
▶ in this case “contrastive parallelism”
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Discourse Relations (Examples)

▶ Parallel: John organized rallies for Clinton, and Fred distributed pamphlets for
him.
▶ Contrast: John supported Clinton, but Mary opposed him.
▶ Exemplification: Young aspiring politicians often support their party’s

presidential candidate. For instance John campaigned hard for Clinton in 1996.
▶ Generalization: John campaigned hard for Clinton in 1996. Young aspiring

politicians often support their party’s presidential candidate.
▶ Elaboration: A young aspiring politician was arrested in Texas today. John

Smith, 34, was nabbed in a Houston law firm while attempting to embezzle
funds for his campaign.
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Discourse Relations (The General Case)

▶ We need inferences to discover them
▶ General conditions [Hobbs 1990]

Relation Requirements Particle
Parallel ai ∼ bi , p =|= q and
Contrast ai ∼ bi , p |= ¬q or ¬p |= q ai , bi contrastive but
Exempl. p =| q, ai ∈ b⃗ or ai =| bi for example
Generl. p =| q, bi ∈ a⃗ or bi =| ai in general
Elabor. q ≃ p, ai ∼ bi that is

Source semantics p(a1, . . . , an), Target semantics q(a1, . . . , am)
▶ Need theorem proving methods for general case.

Michael Kohlhase: LBS 244 2025-02-06



Underspecification/Ellipsis

▶ Natural language is economic
▶ Use the hearer’s inferential capabilities to reduce communication costs.
▶ Makes use of discourse coherence for reconstruction (here: Parallelism)
▶ Jon loves his wife. Bill does too. [love his/Bill’s wife]
▶ Mary wants to go to Spain and Fred wants to go to Peru, but because of limited

resources, only one of them can. [go where he/she wants to go]
▶ Anaphora give even more coherence. (here: Elaboration)
▶ I have a new car. It is in the parking lot downstairs. [My new car]
▶ Discourse relation determines the value of underspecified element.
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Analyses based on Parallelism

▶ HOU Analyses (the structural level)
▶ Ellipsis [DSP’91, G&K’96, DSP’96, Pinkal, et al’97]
▶ Focus [Pulman’95, G&K96]
▶ Corrections [G&K& v. Leusen’96]
▶ Deaccenting, Sloppy Interpretation [Gardent, 1996]
▶ Discourse theories (the general case, needs deduction!)
▶ Literature and Cognition [Hobbs, CSLI Notes’90]
▶ Cohesive Forms [Kehler, PhD’95]
▶ Problem: All assume parallelism structure: given a pair of parallel utterances,

the parallel elements are taken as given.

Michael Kohlhase: LBS 246 2025-02-06



13.2 Higher-Order Unification
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13.2.1 Higher-Order Unifiers
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HOU: Complete Sets of Unifiers
▶ Question: Are there most general higher-order Unifiers?
▶ Answer: What does that mean anyway?
▶ Definition 2.1. σ=βηρ[W ], iff σ(X ) =αβη ρ(X ) for all X ∈W . σ=βηρ[E ] iff
σ=βηρ[free(E)]
▶ Definition 2.2. σ is more general than θ on W (σ≤βηθ[W ]), iff there is a

substitution ρ with θ=βη(ρ ◦ σ)[W ].
▶ Definition 2.3. Ψ ⊆ U(E) is a complete set of unifiers, iff for all unifiers
θ ∈ U(E) there is a σ ∈ Ψ, such that σ≤βηθ[E ].
▶ Definition 2.4. If Ψ ⊆ U(E) is complete, then ≤β-minimal elements σ ∈ Ψ are

most general unifier of E .
▶ Theorem 2.5. The set {[λuv .h u/F ]} ∪ {σi | i ∈ N} where

σi :=[λuv .gn u u hn1 u v . . . u hnn u v/F ], [λv .z/X ]

is a complete set of unifiers for the equation F X (aι)=
?F X (bι), where F and

X are variables of types (ι→ ι)→ ι→ ι and ι→ ι
Furthermore, σi+1 is more general than σi .
▶ Proof sketch: [Hue76, Theorem 5]
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Unification

▶ Definition 2.6. X 1=?B1 ∧ . . . ∧ X n=?Bn is in solved form, if the X i are distinct
free variables X i ̸∈ free(Bj) and Bj does not contain Skolem constants for all j .
▶ Lemma 2.7. If E = X 1=?B1 ∧ . . . ∧ X n=?Bn is in solved form, then
σE := [B1/X 1], . . . ,[Bn/X n] is the unique most general unifier of E
▶ Proof:

1. σ(X i ) =αβη σ(Bi ), so σ ∈ U(E)
2. Let θ ∈ U(E), then θ(X i ) =αβη θ(Bi ) = θ ◦ σ(X i )
3. so θ≤βη(θ ◦ σ)[E ].
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13.2.2 Higher-Order Unification Transformations
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Simplification SIM
▶ Definition 2.8. The higher order simplification transformations SIM consist

of the rules below.

(λXα.A)=?(λYα.B) ∧ E s ∈ ΣSk
α new

SIM:α
([s/X ](A))=?([s/Y ](B)) ∧ E

(λXα.A)=?B ∧ E s ∈ ΣSk
α new

SIM:η
([s/X ](A))=?Bs ∧ E

(h Un)=?(h Vn) ∧ E h ∈ (Σ ∪ ΣSk)
SIM:dec

U1=
?V1 ∧ . . . ∧ Un=

?Vn ∧ E

E ∧ X=?A X ̸∈ free(A) A ∩ ΣSk = ∅ X ∈ free(E)
SIM:elim

[A/X ](E) ∧ X=?A

After rule applications all λ-terms are reduced to head normal form.
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Properties of Simplification I
▶ Lemma 2.9 (Properties of SIM). SIM generalizes first-order unification.
▶ SIM is terminating and confluent up to α-conversion
▶ Unique SIM normal forms exist (all pairs have the form (h Un)=?(k Vm))
▶ Lemma 2.10. U(E ∧ Eσ) = U(σ(E) ∧ Eσ).
▶ Proof: by the definitions

1. If θ ∈ U(E ∧ Eσ), then θ ∈ (U(E) ∩ U(Eσ)).
2. So θ=βη(θ ◦ σ)[supp(σ)],
3. and thus θ ◦ σ ∈ U(E), iff θ ∈ U(σ(E)).
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Properties of Simplification II

▶ Theorem 2.11. If E⊢SIMF , then U(E)≤βηU(F)[E ]. (correct, complete)
Proof: By an induction over the length of the derivation

We the SIM rules individually for the base case
1. SIM:α by αβη-conversion
2. SIM:η By η-conversion in the presence of SIM:α

3. SIM:dec The head h ∈ (Σ ∪ ΣSk) cannot be instantiated.
4. SIM:elim By ??.
5. The step case goes directly by induction hypothesis and transitivity of the

derivation relation.
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General Bindings

▶ Problem: Find all formulae of given type α and head h.
▶ sufficient: long βη head normal form, most general.
▶ Definition 2.12 (General Bindings). Gh

α(Σ):=λX
k
α .h(H

1 X ) . . . (Hn X )
▶ where α = αk → β, h:γn → β and β ∈ BT
▶ and H i :αk → γi new variables.

is called the general binding of type α for the head h.
▶ Observation 2.13.

General bindings are unique up to choice of names for H i .
▶ Definition 2.14. If the head h is j th bound variable in Gh

α(Σ), call Gh
α(Σ)

j-projection binding (and write Gj
α(Σ)) else imitation binding

▶ clearly Gh
α(Σ) ∈ wff α(ΣT ,VT ) and head(Gh

α(Σ)) = h
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Approximation Theorem

▶ Theorem 2.15. If A ∈ wff α(ΣT ,VT ) with head(A) = h, then there is a general
binding G = Gh

α(Σ) and asubstitution ρ with ρ(G) =αβη A and dpρ < dpA.
▶ Proof: We analyze the term structure of A

1. If α = αk → β and h:γn → β where β ∈ BT , then the long head normal
form of A must be λX k

α .h Un.
2. G = Gh

α(Σ) = λX k
α .h(H1 X ) . . . (Hn X ) for some variables H i :αk → γi .

3. Choose ρ := [λX k
α .U1/H1], . . . ,[λX k

α .Un/Hn].
4. Then we have ρ(G) = λX k

α .h(λX
k
α .U1 X ) . . . (λX k

α .Un X )

=βη λX k
α .h Un

=βη A
5. The depth condition can be read off as dp(λX k

α .U1) ≤ dpA− 1.

Michael Kohlhase: LBS 253 2025-02-06



Higher-Order Unification (HOU)

▶ Recap: After simplification, we have to deal with pairs where one (flex/rigid)
or both heads (flex/flex) are variables
▶ Definition 2.16. Let G = Gh

α(Σ) (imitation) or G ∈ {Gj
α(Σ) | 1 ≤ j ≤ n}, then

the calculus HOU for higher-order unification consists of the transformations
(always reduce to SIM normal form)

▶ Rule for flex/rigid pairs:
(Fα U)=?(h V) ∧ E

HOU :fr
F=?G ∧ (F U)=?(h V) ∧ E

▶ Rules for flex/flex pairs:
(Fα U)=?(H V) ∧ E

HOU :ff
F=?G ∧ (F U)=?(H V) ∧ E
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HOU Example

Example 2.17. Let Q,w :ι→ ι, l :ι→ ι→ ι, and j :ι, then we have the following
derivation tree in HOU .

Q(j)=?l(j ,w(j))

j=?l(j ,w(j)) l(H(j),K(j))=?l(j ,w(j))

H(j)=?j ∧ K(j)=?w(j)

j=?j ∧ K(j)=?w(j)j=?j ∧ K(j)=?w(j)

j=?j ∧ K ′(j)=?jj=?j ∧ K ′(j)=?j

j
.
= j ; j

.
= jj

.
= j ; j

.
= jj

.
= j ; j

.
= jj

.
= j ; j

.
= j

Q = λX .l(X ,w(X )) λX .l(X ,w(j)) λX .l(j ,w(X )) λX .l(j ,w(j))

Q=λX .l(H(X ),K(X ))Q=λX .X

H=λX .X H=λX .j

K=λX .w(K ′(X ))
K=λX .X

K=λX .w(K ′(X ))
K=λX .X

K ′=λX .X K ′=λX .j K ′=λX .X K ′=λX .j
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A Test Generator for Higher-Order Unification
▶ Definition 2.18 (Church Numerals). We define closed λ-terms of type
ν := (α→ α)→ α→ α
▶ Numbers: Church numerals: (n fold iteration of arg1 starting from arg2)

n:=λSα→α.λOα.S(S . . .S︸ ︷︷ ︸
n

(O) . . .)

▶ Addition (N-fold iteration of S from N)

+ := λNνMν .λSα→α.λOα.NS(MSO)

▶ Multiplication: (N-fold iteration of MS (=+m) from O)

· := λNνMν .λSα→α.λOα.N(MS)O

▶ Observation 2.19. Subtraction and (integer) division on Church numberals
can be automted via higher-order unification.
▶ Example 2.20.

5− 2 by solving the unification problem (2+xν)=
?5

▶ Equation solving for Church numerals yields a very nice generator for test cases
for higher-order unification, as we know which solutions to expect.
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13.2.3 Properties of Higher-Order Unification
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Undecidability of Higher-Order Unification

▶ Theorem 2.21. Second-order unification is undecidable (Goldfarb ’82 [Gol81])
▶ Proof sketch: Reduction to Hilbert’s tenth problem (solving Diophantine

equations) (known to be undecidable)
▶ Definition 2.22.

We call an equation a Diophantine equation, if it is of the form
▶ x ix j = xk

▶ x i + x j = xk

▶ x i = c j where c j ∈ N
where the variables x i range over N.
▶ These can be solved by higher-order unification on Church numerals. (cf. ??).
▶ Theorem 2.23. The general solution for sets of Diophantine equations is

undecidable. (Matijasevič 1970 [Mat70])
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HOU is Correct

▶ Lemma 2.24. If E⊢HOU:frE ′ or E⊢HOU:ffE ′, then U(E ′) ⊆ U(E).
▶ Proof sketch: HOU :fr and HOU :ff only add new pair.
▶ Corollary 2.25. HOU is correct: If E⊢HOUE ′, then U(E ′) ⊆ U(E).
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Completeness of HOU

▶ We cannot expect completeness in the same sense as for first-order unification:
“If E⊢UF , then U(E) ⊆ U(F)” (see ??) as the rules fix a binding and thus
partially commit to a unifier (which excludes others).
▶ We cannot expect termination either, since HOU is undecidable.
▶ For a semi-decision procedure we only need termination on unifiable problems.
▶ Theorem 2.26 (HOU derives Complete Set of Unifiers). If θ ∈ U(E), then

there is a HOU-derivation E⊢HOUF , such that F is in solved form, σF ∈ U(E),
and σF is more general than θ.
▶ Proof sketch: Given a unifier θ of E , we guide the derivation with a measure µθ

towards F .
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Completeness of HOU (Measure)

▶ Definition 2.27. We call µ(E , θ):=⟨µ1(E , θ), µ2(θ)⟩ the unification measure for
E and θ, if
▶ µ1(E , θ) is the multiset of term depths of θ(X ) for the unsolved X ∈ supp(θ).
▶ µ2(E) the multiset of term depths in E .
▶ ≺ is the strict lexicographic order on pairs: (⟨a, b⟩ ≺ ⟨c, d⟩, if a < c or a = c and

b < d)
▶ Component orderings are multiset orderings: (M ∪ {m} < M ∪ N iff n < m for all

n ∈ N)
▶ Lemma 2.28. ≺ is well-founded. (by construction)
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Completeness of HOU (µ-Prescription)

▶ Theorem 2.29. If E is unsolved and θ ∈ U(E), then there is a unification
problem E with E⊢HOUE ′ and a substitution θ′ ∈ U(E ′) , such that
▶ θ=βηθ

′[E]
▶ µ(E , θ′0) ≺ µ(E , θ′).
we call such a HOU-step a µ-prescribed
▶ Corollary 2.30. If E is unifiable without µ-prescribed HOU-steps, then E is

solved.
▶ In other words: µ guides the HOU-transformations to a solved form.
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Proof of ?? I

▶ Proof:
1. Let A=?B be an unsolved pair of the form (F U)=?(G V) in F .
2. E is a SIM normal form, so F and G must be constants or variables,
3. but not the same constant, since otherwise SIM:dec would be applicable.
4. By ?? there is a general binding G = Gf

α(Σ) and a substitution ρ with
ρ(G) =αβη θ(F ). So,
▶ if head(G) ̸∈ supp(θ), then HOU :fr is applicable,
▶ if head(G) ∈ supp(θ), then HOU :ff is applicable.

5. Choose θ′ := θ ∪ ρ. Then θ=βηθ′[E ] and θ′ ∈ U(E ′) by correctness.
6. HOU :ff and HOU :fr solve F ∈ supp(θ) and replace F by supp(ρ) in the

set of unsolved variable of E .
7. so µ1(E , θ′) ≺ µ1(E , θ)′ and thus µ(E , θ′) ≺ µ(E , θ′).
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Terminal HOU -problems are Solved or Unsolvable I

▶ Theorem 2.31. If E is a unsolved UP and θ ∈ U(E), then there is a
HOU-derivation E⊢HOUσσ, with σ≤βηθ[E ].
▶ Proof: Let D : E⊢HOUF a maximal µ-prescribed HOU-derivation from E .

1. This must be finite, since ≺ is well-founded (ind. over length n of D)
2. If n = 0, then E is solved and σE most general unifier
3. thus σE≤βηθ[E ]
4. If n > 0, then there is a µ-prescribed step E⊢HOUE ′ and a substitution θ

as in ??.
5. by IH there is a HOU-derivation E ′⊢HOUF with σF≤βηθ′[E ′].
6. by correctness σF ∈ U(E ′) ⊆ U(E).
7. rules of HOU only expand free variables, so σF≤βηθ′[E ′].
8. Thus σF≤βηθ′[E ],
9. This completes the proof, since θ′=βηθ[E ] by ??.
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Properties of HO-Unification

▶ HOU is undecidable,
▶ HOU need not have most general unifiers
▶ The HOU transformation induce an algorithm that enumerates a complete set

of higher-order unifiers.
▶ HOU :ff gives enormous degree of indeterminism
▶ HOU is intractable in practice consider restricted fragments where it is!
▶ HO Matching (decidable up to order four), HO Patterns (unitary, linear), . . .
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13.2.4 Pre-Unification
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Pre-Unification

▶ HOU :ff has a giant branching factor in the search space for unifiers. (makes
HOU impracticable)
▶ In most situations, we are more interested in solvability of unification problems

than in the unifiers themselves.
▶ More liberal treatment of flex/flex pairs.
▶ Observation 2.32. flex/flex-pairs (F Un)=?(G Vm) are always (trivially)

solvable by [λX n.H/F ], [λYm.H/G ], where H is a new variable
▶ Idea: consider flex/flex-pairs as pre solved.
▶ Definition 2.33 (Pre-Unification). For given terms A,B ∈ wff α(ΣT ,VT ) find

a substitution σ, such that σ(A)=p
βησ(B), where =p

βη is the equality theory that
is induced by =βη and F U = G V.
▶ Lemma 2.34. A higher-order unification problem is unifiable, iff it is

pre-unifiable.

Michael Kohlhase: LBS 265 2025-02-06



Pre-Unification Algorithm HOPU

▶ Definition 2.35. A unification problem is a pre solved form, iff all of its pairs
are solved or flex/flex
▶ Lemma 2.36. If E is solved and P flex/flex, then σσ is a most general unifier

of a pre-solved form E ∧ P.
▶ Restrict all HOU rule so that they cannot be applied to pre-solved pairs.
▶ In particular, remove HOU :ff!
▶ Definition 2.37. The higher-order pre-unification calculus HOPU only consists

of SIM and HOU :fr.
▶ Theorem 2.38. HOPU is a correct and complete pre-unification algorithm
▶ Proof sketch: with exactly the same methods as higher-order unification
▶ Theorem 2.39. Higher-order pre-unification is infinitary, i.e. a unification

problem can have infinitely many unifiers. (Huet 76’ [Hue76])
▶ Example 2.40. Y (λXι.X ) a=?a, where a is a constant of type ι and Y a

variable of type (ι→ ι)→ ι→ ι has the most general unifiers λsz .sn z and
λsz .sn a, which are mutually incomparable and thus most general.
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13.2.5 Applications of Higher-Order Unification
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Application of HOL in NL Semantics: Ellipsis

▶ Example 2.41. John loves his wife. George does too
▶ loves(john,wifeof(john)) ∧ Q(george)
▶ “George has property some Q, which we still have to determine”
▶ Idea: If John has property Q, then it is that he loves his wife.
▶ Equation: Q(john) =αβη loves(john,wifeof(john))
▶ Solutions (computed by HOU):
▶ Q = λz .loves(z ,wifeof(z)) and Q = λz .loves(z ,wifeof(john))
* Q = λz .loves(john,wifeof(z)) and Q = λz .loves(john,wifeof(john))

▶ Readings: George loves his own wife. and George loves John’s wife.
▶ Erraneous HOU Predictions: * John loves George’s wife. and * John loves

John’s wife.
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13.3 Linguistic Applications of Higher-Order
Unification
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George does too (HOU)

Q(j)=?l(j ,w(j))

j=?l(j ,w(j)) l(H(j),K(j))=?l(j ,w(j))

H(j)=?j ∧ K(j)=?w(j)

j=?j ∧ K(j)=?w(j)j=?j ∧ K(j)=?w(j)

j=?j ∧ K ′(j)=?jj=?j ∧ K ′(j)=?j

j
.
= j ; j

.
= jj

.
= j ; j

.
= jj

.
= j ; j

.
= jj

.
= j ; j

.
= j

Q = λX .l(X ,w(X )) λX .l(X ,w(j)) λX .l(j ,w(X )) λX .l(j ,w(j))

Q=λX .l(H(X ),K(X ))Q=λX .X

H=λX .X H=λX .j

K=λX .w(K ′(X ))
K=λX .X

K=λX .w(K ′(X ))
K=λX .X

K ′=λX .X K ′=λX .j K ′=λX .X K ′=λX .j
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Primary Occurrence Restriction

▶ Problem: HOU over-generates
▶ Idea: [Dalrymple, Shieber, Pereira]

Given a labeling of occurrences as either primary or secondary, the POR excludes of the
set of linguistically valid solutions, any solution which contains a primary occurrence.
▶ A primary occurrence is an occurrence that is directly associated with a source

parallel element.
▶ a source parallel element is an element of the source (i.e. antecedent) clause

which has a parallel counterpart in the target (i.e. elliptic) clause.
▶ Example 3.1.
▶ loves(john,wifeof(john)) = Q(george)
▶ Q = λx .loves(x ,wifeof(john))
▶ Q = λx .loves(john,wifeof(john))
▶ Use the colored λ-calculus for general theory
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Colored λ-calculus [HK00]

▶ Developed for inductive theorem proving (Rippling with Metavariable)
▶ Definition 3.2. Symbol occurrences can be annotated with colors

(variables α, β, γ, . . . and constants a, b,. . . )
▶ Bound variables are uncolored (βη conversion just as usual)
▶ Definition 3.3. Well-colored substitutions σ
▶ Map colored variables XX to colored formulae.
▶ If a and b are different colors, then |σ(XX )| = |σ(XX )|:

equal color erasures. (Consistency)
▶ All color annotations on σ(XX ) have to be compatible with those for c.

(Monochromacity)
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Colored HO-Unification

▶ HOCU has only two differences wrt. general HOU

ff (t
1, . . . , tn)=?ff (s

1, . . . , sn)

a=?b ∧ t1=?s1 ∧ tn=?sn

XX=
?A ∧ E

X=?A ∧ [A/X ](E)

▶ Decomposition must consider colors
▶ Elimination ensures Monochromicity and Consistency
▶ X=?A := XX=

?AA ∧ XX=
?AA

▶ [A/X ] := [AA/XX ], . . . ,[AA/XX ] propagates color information
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George does too (HOCU)

Q(j)=?l(j ,w(j))

j=?l(j ,w(j)) l(H(j),K(j))=?l(j ,w(j))

H(j)=?j ∧ K(j)=?w(j)

j=?j ∧ K(j)=?w(j)j=?j ∧ K(j)=?w(j)

j=?j ∧ K ′(j)=?jj=?j ∧ K ′(j)=?j

j
.
= j ; j

.
= jj

.
= j ; j

.
= jj

.
= j ; j

.
= jj

.
= j ; j

.
= j

Q = λX .l(X ,w(X )) λX .l(X ,w(j)) λX .l(j ,w(X )) λX .l(j ,w(j))

Q=λX .l(H(X ),K(X ))Q=λX .X

H=λX .X H=λX .j

K=λX .w(K ′(X ))
K=λX .X

K=λX .w(K ′(X ))
K=λX .X

K ′=λX .X K ′=λX .j K ′=λX .X K ′=λX .j
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The Original Motivation: First-Order Rippling

Example 3.4. Proving: ∀x , y : list.rev(app(rev(x), y)) = app(rev(y), x)

rev(app(rev(cons(h, x)), y)) = app(rev(y), cons(h, x))

rev(app(app(rev(x), cons(h, nil)), y)) = app(rev(y), cons(h, x))

rev(app(app(rev(x), cons(h, nil)), y)) = app(F1(rev(y), h, x), x)

rev(app(app(rev(x), cons(h, nil)), y)) = app(rev(cons(h, y)), x)

rev(app(rev(x), cons(h, y))) = app(rev(cons(h, y)), x)

appα(XX , cons(Y , ZZ )) = appα(F1(XX , Y , Z), ZZ )

app(revα(YY ), cons(X, nil)) = revα(cons(X, YY ))
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The Higher-Order Case: Schematic Rippling

Example 3.5 (Synthesizing Induction Orderings). ∀x .∃y .f (g(y)) ≤ x

Induction Step: ∀x .∃y .f (g(y)) ≤ x to ∃y .f (g(y)) ≤ F (x)

f (g(y)) ≤ F (x)

f (s(g(y ′))) ≤ F (x)

s(s(f (g(y ′)))) ≤ F (x)

s(s(f (g(y ′)))) ≤ s(s(x)) F←λX .s(s(X ))

f (g(y ′)) ≤ x
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A Unification Problem

▶ Example 3.6 (A Unification Problem).
F (rev(y), h, x)=?revα(Yβ) cons(X , nil)

H(rev(u), h, v)=?revα(YY ) ∧ K (rev(u), h, v)=?cons(X , nil)

rev(u)=?revα(YY ) ∧ cons(M(rev(u), h, v),N(rev(u), h, v))=?cons(X ,nil)

α=? ∧ u=?YY ∧ X=?M(rev(u), h, v) ∧ N(rev(u), h, v)=?nil

h=?h ∧ nil=?nil

[λUVW .app(H(U,V ,W ),K(U,V ,W ))/F ]

[λUVW .cons(M(U,V ,W ),N(U,V ,W ))/K ],
[λUVW .U/H]

Result: [λUVW .app(U, cons(V , nil))/F ], [u/YY ], [h/X ], [ /α]
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Linguistic Application: Focus/Ground Structures

▶ Example 3.7. John only likes MARY.
▶ Analysis: likes(john,mary) ∧ (∀x .G (x))⇒ x = mary.
▶ Equation: likes(john,mary) =αβη G (mary).
▶ Variable G for (back)ground (Focus is prosodically marked)
▶ Solution: G = λz .likes(john, z)
▶ Semantics: likes(john,mary) ∧ (∀x .likes(john, x)⇒ x = mary).
▶ Linguistic Coverage: Prosodically unmarked focus, sentences with multiple

focus operators
[Gardent & Kohlhase’96]
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Isn’t HOCU just a notational variant of DSP’s POR?

▶ HOCU has a formal, well–understood foundation which permits a clear
assessment of its mathematical and computational properties;
▶ It is a general theory of colors:
▶ Other Constraints
▶ POR for focus
▶ Second Occurrence Expressions
▶ Weak Crossover Constraints
▶ Multiple constraints and their interaction are easily handled
▶ Use feature constraints as colors
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Interaction of Constraints via Extended Colors

▶ Example 3.8. John likes MARY and Peter does too
▶ Ellipsis: l(j j , ss) = RR(j j)
▶ Focus: RR(p) = GG (F F )
▶ ¬pe forbids only pe ¬pf forbids only pf
▶ Derivation:
▶ Solution RR = λx .l(x , ss) to the Ellipsis equation
▶ yields Focus equation l(p, ss) = GG (F F )

▶ Solution: GG = λx .l(pp, x) F F = mm
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Featuring even more colors for Interaction
▶ John1’s mum loves him1. Peter’s mum does too.
▶ Two readings:
▶ Peter’s mum loves Peter (sloppy)
▶ Peter’s mum loves John (strict)
▶ Parallelism equations

C (j) = l(m(j), j)
C (p) = R(m(p))

▶ Two solution for the first equation:
C = λZ .l(m(Z ), j) (strict) and C = λZ .l(m(Z ),Z ) (sloppy)

▶ Two versions of the second equation

l(m(p), j) = R(m(p))
l(m(p), p) = R(m(p))

▶ R = λZ .l(Z , j) solves the first equation (strict reading)
▶ the second equation is unsolvable R = λZ .l(Z , p) is not well-colored.
▶ Idea: Need additional constraint:

VPE may not contain (any part of) it’s subject
▶ Need more dimensions of colors to model the interaction
▶ Idea: Extend supply of colors to feature terms.
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John1’s mum loves him1. Peter’s mum does too.
▶ Parallelism Constraints

CC (jj) = l(mm(jj), j)
CC (pp) = RR(mm(pp))

▶ Resolving the first equation yields two possible values for CC :

λz .l(mm(z), j) and λz .l(mm(z), z)

▶ Two versions of the second equation

l(mm(pp), j) = RR(mm(pp))
l(mm(pp), pp) = RR(mm(pp))

▶ Two solutions for the ellipsis (for RR)
{RR ← λz .l(z , j)} Strict Reading
{RR ← λz .l(z , pp)} Sloppy Reading

▶ Need dynamic constraints/
▶ resulting from the unification of several independent constraints
▶ VPE subject is [e +], while part of is a parallel element ([p +]).
▶ Various linguistic modules interact in creating complex constraints
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Computation of Parallelism (The General Case)

▶ We need inferences to discover discourse relations
▶ General Conditions [Hobbs 1990]

Relation Requirements Particle
Parallel ai ∼ bi , p ≃ q and
Contrast ai ∼ bi , p ⊃ ¬q or ¬p ⊃ q ai , bi contrastive but

Source semantics p(a⃗), Target semantics q(b⃗)

▶ a ∼ b, iff ∀p.p(a)⇒ (∃q ≃ p.q(b)) p ≃ q, iff ∀a.p(a)⇒ (∃b ∼ a.q(b))

▶ Need theorem proving methods for general case.
▶ Idea: use only special properties (Sorts from the Taxonomy)
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13.4 Sorted Higher-Order Unification
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Sorted λ-Calculus

▶ higher-order automated theorem provers are relatively weak
▶ transfer first-order theorem proving technology to higher-order
▶ sorts are a particularly efficient refinement
▶ separation of sorts and types
▶ functional base sorts
▶ term declarations as very general mechanism for declaring sort information
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Sorted Unification:

▶ Example: Signature Σ with

[ + :(N→ N→N)]
[ + :(E→ E→E)]
[ + :(O→O→E)]
[(λX .+ XX ):(N→E)]

▶ general bindings

G+
E () =

 +ZEWE,
+ZOWO,
+ZNZN
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Example (Elementary Calculus)

▶ Sorts
▶ R+, R of type ι: (non-negative) real numbers
▶ M, P of type ι→ ι: monomials, polynomials
▶ M, P of type ι→ ι: differentiable and continuous functions

▶ Signature Σ

[ + :(R→ R→R)], [ ∗ :(R→ R→R)], [(λX . ∗ XX ):(R→R+)],
[R+<R], [M<P], [P<M], [M<P]
[(λX .X ):M], [(λXY .Y ):(R→M)],
[(λFGX . ∗ (FX )(GX )):(M→M→M)],
[(λFGX .+ (FX )(GX )):(M→M→P)],
[∂:(M→P)], [∂:(P→P)], [∂:(M→M)].
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Example (continued)

▶ Question: Are there non-negative, differentiable functions?
▶ Unification Problem: G(R→R+)=

?FM
▶ guess G(R→R+) to be (λX . ∗ (H1

(R→R)X )(H1X )):

FM=
?(λX . ∗ (H1

(R→R)X )(H1X ))

▶ imitate with FM as λX . ∗ (H2
MX )(H3

MX ):

H1
(R→R)Z

0=?H2
MZ

0 ∧ H1
(R→R)Z

0=?H3
MZ

0

▶ weaken H1
(R→R) to H4

M

H4
MZ

0=?H2
MZ

0 ∧ H4
MZ

0=?H3
MZ

0

▶ solvable with with H4 = H3 = H2

▶ Answer: F = G = λXR. ∗ (H4
MX )(H4

MX )) (even degree monomial)
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Abductive Reconstruction of Parallelism (ARP)

▶ Mix Parallelism with HOCU
▶ Example (Gapping): John likes Golf and Mary too.
▶ Representation loves(john, golf) ∧ R(mary)
▶ Equation loves(johnjohn, golfgolf)=sR¬pe

(Woman→o)(marymary)

▶ R for the missing semantics (of Sort Woman→o and not primary for ellipsis)
▶ Number Restriction Constraint
▶ Jon and golf might be parallel to Mary, but at most one of them can.
▶ color variable A: if Jon is pe then golf isn’t, and vice versa
▶ Generalizes DSP’s Primary Occurrence Restriction (POR)
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▶ Initial Equation: loves(johnjohn, golfgolf)=?R¬pe
(Woman→o)(marymary)

▶ imitate R¬pe
(Woman→o) with λZ .loves(HHZ ,KKZ)

▶ H,K new variables of sort Woman→Human
▶ loves(johnjohn, golfgolf)=?loves(HH(marymary),KKmarymary)

▶ HHmarymary=
?johnjohn ∧ KKmarymary=

?golfgolf
▶ Two possible continuations:
▶ project H = λZ .Z (so A=?pe)
▶ imitate K = λZ .golfgolf

▶ then
marymary=

?johnjohn

golfgolf=?golfgolf

▶ Mary likes Golf (preferred)

▶ project K = λZ .Z (so ¬A=?pe)
▶ imitate H = λZ .johnjohn

▶ then
johnjohn=

?johnjohn

marymary=
?golfgolf

▶ John likes Mary
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Chapter 14
Conclusion
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14.1 A Recap in Diagrams
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NL Semantics as an Intersective Discipline
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A landscape of formal semantics
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Modeling Natural Language Semantics

▶ Problem: Find formal (logic) system for the meaning of natural language.
▶ History of ideas
▶ Propositional logic [ancient Greeks like Aristotle]

* Every human is mortal
▶ First-Order Predicate logic [Frege ≤ 1900]

* I believe, that my audience already knows this.
▶ Modal logic [Lewis18, Kripke65]

* A man sleeps. He snores. ((∃X .man(X ) ∧ sleeps(X ))) ∧ snores(X )
▶ Various dynamic approaches (e.g. DRT, DPL)

* Most men wear black
▶ Higher-order Logic, e.g. generalized quantifiers
▶ . . .
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A Semantic Processing Pipeline based on LF

Syntax Quasi-Logical Form Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Pragmatic
Analysis

(inferential)
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Natural Language Semantics?

Comp Ling
NL

FL

M = ⟨D, I⟩

|=NL ⊆ NL×NL

⊢C ⊆ FL× FL

⊨ ⊆ FL× FL

Analysis

Iφ

induces?

induces

choose calculus C

⊨ ≡ ⊢C?

|=NL ≡ ⊢C?

Logic
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14.2 Where to From Here
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Where to from here?

▶ We can continue the exploration of semantics in two different ways:
▶ Look around for additional logical/formal systems and see how they can be applied

to various linguistic problems. (the logician’s approach)
▶ Look around for additional linguistic forms and wonder about their truth conditions,

their logical forms, and how to represent them. (the linguist’s approach)
▶ Here are some possibilities...
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Semantics of Plurals

1. The dogs were barking.
2. Fido and Chester were barking. (What kind of an object do the subject NPs

denote?)
3. Fido and Chester were barking. They were hungry.
4. Jane and George came to see me. She was upset. (Sometimes we need to look

inside a plural!)
5. Jane and George have two children. (Each? Or together?)
6. Jane and George got married. (To each other? Or to other people?)
7. Jane and George met. (The predicate makes a difference to how we interpret

the plural)
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Reciprocals

▶ What’s required to make these true?
1. The men all shook hands with one another.
2. The boys are all sitting next to one another on the fence.
3. The students all learn from each other.
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Presuppositional expressions

▶ What are presuppositions?
▶ What expressions give rise to presuppositions?
▶ Are all apparent presuppositions really the same thing?

1. The window in that office is open.
2. The window in that office isn’t open.
3. George knows that Jane is in town.
4. George doesn’t know that Jane is in town.
5. It was / wasn’t George who upset Jane.
6. Jane stopped / didn’t stop laughing.
7. George is / isn’t late.
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Presupposition projection

1. George doesn’t know that Jane is in town.
2. Either Jane isn’t in town or George doesn’t know that she is.
3. If Jane is in town, then George doesn’t know that she is.
4. Henry believes that George knows that Jane is in town.
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Conditionals

▶ What are the truth conditions of conditionals?
1. If Jane goes to the game, George will go.
▶ Intuitively, not made true by falsity of the antecedent or truth of consequent independent

of antecedent.

2. If John is late, he must have missed the bus.
▶ Generally agreed that conditionals are modal in nature. Note presence of modal

in consequent of each conditional above.
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Counterfactual conditionals

▶ And what about these??
1. If kangaroos didn’t have tails, they’d topple over. (David Lewis)
2. If Woodward and Bernstein hadn’t got on the Watergate trail, Nixon might never

have been caught.
3. If Woodward and Bernstein hadn’t got on the Watergate trail, Nixon would have

been caught by someone else.
▶ Counterfactuals undoubtedly modal, as their evaluation depends on which

alternative world you put yourself in.

Michael Kohlhase: LBS 299 2025-02-06



Before and after

▶ These seem easy. But modality creeps in again...
1. Jane gave up linguistics after she finished her dissertation. (Did she finish?)
2. Jane gave up linguistics before she finished her dissertation. (Did she finish? Did

she start?)
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