
Logic-Based Natural Language Semantics
SS 2025

Lecture Notes

Prof. Dr. Michael Kohlhase

Knowledge Representation and -Processing
Computer Science, FAU Erlangen-Nürnberg

Michael.Kohlhase@FAU.de

2025-10-07

Michael.Kohlhase@FAU.de

0.1. PREFACE i

0.1 Preface

0.1.1 This Document
This document contains the lecture notes for the course “Logic-Based Natural Language Seman-
tics” (LBS) held at FAU Erlangen-Nürnberg in the Winter Semesters 2017/18 ff.
This course is a one-semester introductory course that provides an overview over logic-based se-

mantics of natural language. It follows the method of fragments introduced by Richard Montague,
and builds a sequence of fragments of English with increasing coverage and a sequence of logics
that serve as target representation formats. The course can be seen as both a course on semantics
and as a course on applied logics.
As this course is predominantly about modeling natural language and not about the theoretical

aspects of the logics themselves, we give the discussion about these as a “suggested readings”
section part in ???. This material can safely be skipped (thus it is in the appendix), but contains
the missing parts of the “bridge” from logical forms to truth conditions and textual entailment.

Presentation: The document mixes the slides presented in class with comments of the
instructor to give students a more complete background reference.

Caveat: This document is primarily made available for the students of the LBS course only.
After multiple iterations of this course it is reasonably feature-complete, but will evolve and be
polished in coming academic years.

Licensing: This document is licensed under a Creative Commons license that requires attribu-
tion, forbids commercial use, and allows derivative works as long as these are licensed under the
same license.

Knowledge Representation Experiment: This document is also an experiment in
knowledge representation. Under the hood, it uses the STEX package [Koh08; sTeX], a TEX/LATEX
extension for semantic markup, which allows to export the contents into active documents that
adapt to the reader and can be instrumented with services based on the explicitly represented
meaning of the documents.

Comments: Comments and extensions are always welcome, please send them to the author.

0.1.2 Acknowledgments
Materials: Some of the material in this course is based on a course “Formal Semantics of Natural
Language” held by the author jointly with Prof. Mandy Simons at Carnegie Mellon University in
2001.
ComSem Students: The course is based on a series of courses “Computational Natural Language
Semantics” held at Jacobs University Bremen and shares a lot of material with these. The following
students have submitted corrections and suggestions to this and earlier versions of the notes:
Bastian Laubner, Ceorgi Chulkov, Stefan Anca, Elena Digor, Xu He, and Frederik Schäfer.
LBS Students: The following students have submitted corrections and suggestions to this and
earlier versions of the notes: Maximilian Lattka, Frederik Schaefer, Navid Roux.

ii

0.2 Recorded Syllabus
The recorded syllabus – a record the progress of the course in the SS 2025 – is in the course

page in the ALeA system at https://courses.voll-ki.fau.de/course-home/lbs. The table
of contents in the LBS lecture notes at https://kwarc.info/teaching/LBS indicates the material
covered to date in yellow.

https://courses.voll-ki.fau.de/course-home/lbs
https://kwarc.info/teaching/LBS

Contents

0.1 Preface . i
0.1.1 This Document . i
0.1.2 Acknowledgments . i

0.2 Recorded Syllabus . ii

1 Preliminaries 3
1.1 Administrative Ground Rules . 3
1.2 Getting Most out of LBS . 6
1.3 Learning Resources for LBS . 8

2 An Introduction to Natural Language Semantics 11
2.1 Natural Language and its Meaning . 11
2.2 Natural Language Understanding as Engineering 17
2.3 Looking at Natural Language . 20
2.4 A Taste of Language Philosophy . 24

2.4.1 Epistemology: The Philosphy of Science . 24
2.4.2 Meaning Theories . 27

2.5 Computational Semantics as a Natural Science . 32

I English as a Formal Language: The Method of Fragments 35

3 Logic as a Tool for Modeling NL Semantics 37
3.1 The Method of Fragments . 37
3.2 What is Logic? . 39
3.3 Using Logic to Model Meaning of Natural Language 41

4 Fragment 1 43
4.1 The First Fragment: Setting up the Basics . 43

4.1.1 Natural Language Syntax (Fragment 1) . 43
4.1.2 Predicate Logic without Quantifiers . 45
4.1.3 Natural Language Semantics via Translation 48

4.2 Testing Truth Conditions via Inference . 49
4.3 Summary & Evaluation . 50

5 Fragment 2: Pronouns and World Knowledge ; Semantic/Pragmatic Analysis 53
5.1 Fragment 2: Pronouns and Anaphora . 53
5.2 Inference with World Knowledge and Free Variables – A Case Study 55

5.2.1 Pragmatics via Model Generation Tableaux? 55
5.2.2 Case Study: Peter loves Fido, even though he sometimes bites him 57
5.2.3 The Computational Role of Ambiguities . 58

5.3 Tableaux and Model Generation . 60
5.3.1 Tableau Branches and Herbrand Models . 60

iii

iv CONTENTS

5.3.2 Using Model Generation for Interpretation 62
5.3.3 Adding Equality to PLNQ for Fragment 1 67

5.4 Summary & Evaluation . 69

6 Fragment 3: Complex Verb Phrases 71
6.1 Fragment 3 (Handling Verb Phrases) . 71
6.2 Dealing with Functions in Logic and Language . 73
6.3 Simply Typed λ-Calculus . 76
6.4 A Logical System for Fragment 3 . 79
6.5 Translation for Fragment 3 . 81
6.6 Summary & Evaluation . 82

6.6.1 Overview/Summary so far . 82

7 Fragment 4: Noun Phrases and Quantification 85
7.1 Fragment 4 . 85
7.2 A Target Logic for Fragment 4 . 87

7.2.1 Quantifiers and Equality in Higher-Order Logic 88
7.2.2 A Logic for Definite Descriptions . 90

7.3 Translation for Fragment 4 . 91
7.4 Inference for Fragment 4 . 95

7.4.1 Model Generation with Quantifiers . 96
7.4.2 Model Generation with Definite Descriptions 98
7.4.3 Model Generation with Unique Name Assumptions 100

7.5 Quantifier Scope Ambiguity and Underspecification 102
7.5.1 Scope Ambiguity and Quantifying-In . 102
7.5.2 Dealing with Quantifier Scope Ambiguity: Cooper Storage 105
7.5.3 Underspecification . 108

7.5.3.1 Unplugging Predicate Logic . 108
7.5.3.2 PLH a first-order logic with holes 108
7.5.3.3 Plugging and Chugging . 109

7.6 Summary & Evaluation . 109

8 Davidsonian Semantics: Treating Verb Modifiers 111

II Topics in Semantics 113

9 Dynamic Approaches to NL Semantics 115
9.1 Discourse Representation Theory . 115
9.2 Dynamic Model Generation . 123

10 Propositional Attitudes and Modalities 129
10.1 Introduction . 129
10.2 Semantics for Modal Logics . 132
10.3 A Multiplicity of Modalities ; Multimodal Logic 136
10.4 Dynamic Logic for Imperative Programs . 138

11 Some Issues in the Semantics of Tense 143

12 Quantifier Scope Ambiguity and Underspecification 149
12.1 Scope Ambiguity and Quantifying-In . 149
12.2 Type Raising for non-quantificational NPs . 152
12.3 Dealing with Quantifier Scope Ambiguity: Cooper Storage 154
12.4 Underspecification . 157

12.4.1 Unplugging Predicate Logic . 157

CONTENTS v

12.4.2 PLH a first-order logic with holes . 157
12.4.3 Plugging and Chugging . 158

13 Higher-Order Unification and NL Semantics Reconstruction 159
13.1 Introduction . 159
13.2 Higher-Order Unification . 162

13.2.1 Higher-Order Unifiers . 162
13.2.2 Higher-Order Unification Transformations 163
13.2.3 Properties of Higher-Order Unification . 167
13.2.4 Pre-Unification . 170
13.2.5 Applications of Higher-Order Unification 172

13.3 Linguistic Applications of Higher-Order Unification 172
13.4 Sorted Higher-Order Unification . 178

14 Conclusion 181
14.1 A Recap in Diagrams . 181
14.2 Where to From Here . 183

III Excursions 193

A ALeA – AI-Supported Learning 197

B Properties of the Simply Typed λ Calculus 205
B.1 Computational Properties of λ-Calculus . 205

B.1.1 Termination of β-reduction . 205
B.1.2 Confluence of βη Conversion . 209

B.2 The Semantics of the Simply Typed λ-Calculus . 212
B.2.1 Soundness of the Simply Typed λ-Calculus 213
B.2.2 Completeness of αβη-Equality . 214

B.3 Simply Typed λ-Calculus via Inference Systems . 217

C Higher-Order Dynamics 223
C.1 Introduction . 223
C.2 Setting Up Higher-Order Dynamics . 225
C.3 A Type System for Referent Dynamics . 228
C.4 Modeling Higher-Order Dynamics . 232
C.5 Direct Semantics for Dynamic λ Calculus . 234
C.6 Dynamic λ Calculus outside Linguistics . 235

D Model Existence and Completeness for Modal Logic 237

vi CONTENTS

CONTENTS 1

Elevator Pitch for LBS

� Mission: In this course we will

� explore how to model the meaning of natural language via transformation into
logical systems

� use logical inference there to unravel the missing pieces; the information that is
not linguistically realized, but is conveyed anyways.

� Warning: This course is only for you if you like logic!

You are going to get lots of it and we are going to introduce our own logics, usually
a new facet every week or fortnight.

� Theory in this course: We wild do so in an abstract, mathematical fashion, but
concrete enough that we could implement all moving parts – NL grammars, seman-
tics construction, and inference systems – in meta-grammatical/logical systems.

� Practice in PSNLP Project: We will implement them in the meta-grammatical/logical
GLIF system (based on GF, MMT, and ELPI) in the Symbolic NLP Project (5 ECTS;
lab work). (see me if you are interested)

Michael Kohlhase: LBS 1 2025-10-07

2 CONTENTS

Chapter 1

Preliminaries

In this chapter, we want to get all the organizational matters out of the way, so that we can
get course contents unencumbered. We will talk about the necessary administrative details, go
into how students can get most out of the course, talk about where the various resources provided
with the course can be found, and finally introduce the ALeA system, an experimental – using
AI methods – learning support system for the LBS course.

1.1 Administrative Ground Rules
We will now go through the ground rules for the course. This is a kind of a social contract

between the instructor and the students. Both have to keep their side of the deal to make learning
as efficient and painless as possible.

Prerequisites for LBS

� Content Prerequisites: The mandatory courses in CS@FAU; Sem 1-4, in partic-
ular:

� course “Grundlagen der Logik in der Informatik” (GLOIN)

� some of the CS Math courses “Mathematik C1-4” (IngMath1-4) (math
tolerance)

� algorithms and data structures (programming/complexity)

� AI-1 (“Artificial Intelligence I”) (for the logic part)

� Intuition: (take them with a kilo of salt)

� This is what I assume you know! (I have to assume something)

� In many cases, the dependency of LBS on these is partial and “in spirit”.

� If you have not taken these courses (or do not remember),

� read up on them as needed! (preferred, do it in a group)
� We can cover them in class (if there are more of you)

� The real Prerequisite: Motivation, interest, curiosity, hard work. (LBS is
non-trivial)

3

4 CHAPTER 1. PRELIMINARIES

� You can do this course if you want! (We will help you)

Michael Kohlhase: LBS 2 2025-10-07

Now we come to a topic that is always interesting to the students: the grading scheme.

Assessment, Grades

� Overall (Module) Grade:

� Grade via the exam (Klausur) ; 100% of the grade.

� Up to 10% bonus on-top for an exam with ≥ 50% points.(< 50% ; no bonus)

� Bonus points =̂ percentage sum of the best 10 prepquizzes divided by 100.

� Exam: exam conducted in presence on paper! (∼ July 20. 2025)

� Retake Exam: 60 minutes exam six months later. (∼ October 10. 2025)

� You have to register for exams in https://campo.fau.de in the first month
of classes.

� Note: You can de-register from an exam on https://campo.fau.de up to three
working days before exam. (do not miss that if you are not prepared)

Michael Kohlhase: LBS 3 2025-10-07

Preparedness Quizzes

� PrepQuizzes: Before every lecture we offer a 10 min online quiz – the PrepQuiz
– about the material from the previous week. (∼ 10:0?-10:15 (check on ALeA);
starts in week 2)

� Motivations: We do this to

� keep you prepared and working continuously. (primary)

� bonus points if the exam has ≥ 50% points (potential part of your grade)

� update the ALeA learner model. (fringe benefit)

� The prepquizes will be given in the ALeA system

https://campo.fau.de
https://campo.fau.de

1.1. ADMINISTRATIVE GROUND RULES 5

� https://courses.voll-ki.fau.de/quiz-dash/lbs

� You have to be logged into ALeA! (via FAU IDM)

� You can take the prepquiz on your laptop or phone, . . .

� . . . in the lecture or at home . . .

� . . . via WLAN or 4G Network. (do not overload)

� Prepquizzes will only be available ∼ 10:0?-10:15 (check on ALeA)!

Michael Kohlhase: LBS 4 2025-10-07

Next Week: Pretest

� Next week we will try out the prepquiz infrastructure with a pretest!

� Presence: bring your laptop or cellphone.

� Online: you can and should take the pretest as well.

� Have a recent firefox or chrome (chrome: younger than March 2023)

� Make sure that you are logged into ALeA (via FAU IDM; see below)

� Definition 1.1.1. A pretest is an assessment for evaluating the preparedness of
learners for further studies.

� Concretely: This pretest

� establishes a baseline for the competency expectations in and

� tests the ALeA quiz infrastructure for the prepquizzes.

� Participation in the pretest is optional; it will not influence grades in any way.

� The pretest covers the prerequisites of LBS and some of the material that may have
been covered in other courses.

� The test will be also used to refine the ALeA learner model, which may make
learning experience in ALeA better. (see below)

Michael Kohlhase: LBS 5 2025-10-07

https://courses.voll-ki.fau.de/quiz-dash/lbs

6 CHAPTER 1. PRELIMINARIES

1.2 Getting Most out of LBS
In this section we will discuss a couple of measures that students may want to consider to get

most out of the LBS course.
None of the things discussed in this section – homeworks, tutorials, study groups, and at-

tendance – are mandatory (we cannot force you to do them; we offer them to you as learning
opportunities), but most of them are very clearly correlated with success (i.e. passing the exam
and getting a good grade), so taking advantage of them may be in your own interest.

LBS Homework Assignments

� Goal: Homework assignments reinforce what was taught in lectures.

� Homework Assignments: Small individual problem/programming/proof task

� but take time to solve (at least read them directly ; questions)

� Didactic Intuition: Homework assignments give you material to test your under-
standing and show you how to apply it.

� Homeworks give no points, but without trying you are unlikely to pass the exam.

� Our Experience: Doing your homework is probably even more important (and
predictive of exam success) than attending the lecture in person!

� Homeworks will be mainly peer-graded in the ALeA system.

� Didactic Motivation: Through peer grading students are able to see mistakes
in their thinking and can correct any problems in future assignments. By grading
assignments, students may learn how to complete assignments more accurately and
how to improve their future results. (not just us being lazy)

Michael Kohlhase: LBS 6 2025-10-07

It is very well-established experience that without doing the homework assignments (or something
similar) on your own, you will not master the concepts, you will not even be able to ask sensible
questions, and take very little home from the course. Just sitting in the course and nodding is not
enough!

LBS Homework Assignments – Howto

� Homework Workflow: in ALeA (see below)

� Homework assignments will be published on thursdays: see https://courses.
voll-ki.fau.de/hw/lbs

� Submission of solutions via the ALeA system in the week after

� Peer grading/feedback (and master solutions) via answer classes.

� Quality Control: TAs and instructors will monitor and supervise peer grading.

� Experiment: Can we motivate enough of you to make peer assessment self-
sustaining?

� I am appealing to your sense of community responsibility here . . .

https://courses.voll-ki.fau.de/hw/lbs
https://courses.voll-ki.fau.de/hw/lbs

1.2. GETTING MOST OUT OF LBS 7

� You should only expect other’s to grade your submission if you grade their’s
(cf. Kant’s “Moral Imperative”)

� Make no mistake: The grader usually learns at least as much as the gradee.

� Homework/Tutorial Discipline:

� Start early! (many assignments need more than one evening’s work)

� Don’t start by sitting at a blank screen (talking & study groups help)

� Humans will be trying to understand the text/code/math when grading it.

� Go to the tutorials, discuss with your TA! (they are there for you!)

Michael Kohlhase: LBS 7 2025-10-07

If you have questions please make sure you discuss them with the instructor, the teaching
assistants, or your fellow students. There are three sensible venues for such discussions: online in
the lectures, in the tutorials, which we discuss now, or in the course forum – see below. Finally,
it is always a very good idea to form study groups with your friends.

Collaboration

� Definition 1.2.1. Collaboration (or cooperation) is the process of groups of agents
acting together for common, mutual benefit, as opposed to acting in competition
for selfish benefit. In a collaboration, every agent contributes to the common goal
and benefits from the contributions of others.

� In learning situations, the benefit is “better learning”.

� Observation: In collaborative learning, the overall result can be significantly better
than in competitive learning.

� Good Practice: Form study groups. (long- or short-term)

1. Those learners who work/help most, learn most!

2. Freeloaders – individuals who only watch – learn very little!

� It is OK to collaborate on homework assignments in LBS! (no bonus points)

� Choose your study group well! (ALeA helps via the study buddy feature)

Michael Kohlhase: LBS 8 2025-10-07

As we said above, almost all of the components of the LBS course are optional. That even applies
to attendance. But make no mistake, attendance is important to most of you. Let me explain, . . .

Do I need to attend the LBS Lectures

� Attendance is not mandatory for the LBS course. (official version)

� Note: There are two ways of learning: (both are OK, your mileage may vary)

� Approach B: Read a book/papers (here: lecture notes)

� Approach I: come to the lectures, be involved, interrupt the instructor whenever
you have a question.

8 CHAPTER 1. PRELIMINARIES

The only advantage of I over B is that books/papers do not answer questions

� Approach S: come to the lectures and sleep does not work!

� The closer you get to research, the more we need to discuss!

Michael Kohlhase: LBS 9 2025-10-07

1.3 Learning Resources for LBS

Supplemental Literature

� Classical Semantics/Pragmatics: (in the FAU Library)

� Primary reference for LBS: [CKG09] (in the FAU Library)

� also: [HHS07; Bir13; Rie10; ZS13; Sta14; Sae03; Por04; Kea11; Jac83; Cru11;
Ari10]

� Computational Semantics: [BB05; EU10]

� For GLIF: Frederik’s Master’s Thesis [Sch20]

Michael Kohlhase: LBS 10 2025-10-07

Course Notes, Forum, Matrix

� Lecture notes will be posted at https://kwarc.info/teaching/LBS

� We mostly prepare/update them as we go along (semantically preloaded ;
research resource)

� Please report any errors/shortcomings you notice. (improve for the
group/successors)

� StudOn Forum: For announcements – ⟨forum⟩

� Matrix Channel: ⟨matrixURL⟩ for questions, discussion with instructors and
among your fellow students. (your channel, use it!)

Login via FAU IDM ; instructions

� Course Videos are at at ⟨fautvURL⟩.

� Do not let the videos mislead you: Coming to class is highly correlated with
passing the exam!

Michael Kohlhase: LBS 11 2025-10-07

FAU has issued a very insightful guide on using lecture videos. It is a good idea to heed these
recommendations, even if they seem annoying at first.

Practical recommendations on Lecture Videos

https://kwarc.info/teaching/LBS
https://www.anleitungen.rrze.fau.de/serverdienste/matrix-an-der-fau/erste-schritte/

1.3. LEARNING RESOURCES FOR LBS 9

� Excellent Guide: [Nor+18a] (German version at [Nor+18b])

 

Attend lectures.

Take notes.

Be specific.

Catch up.

Ask for help.

Don’t cut corners.

Using lecture
recordings:
A guide for students

Michael Kohlhase: LBS 12 2025-10-07

ALeA in LBS

� We assume that you already know the ALeA system from AI-1/2

� Use it for

� lecture notes (notes- vs slides-oriented)

� flashcards (drill yourself on the LBS jargon/concepts)

� course forum (questions, discussions and error reporting)

� solving and peer-grading homework assignments

10 CHAPTER 1. PRELIMINARIES

� finding study groups (you need not endure LBS alone)

� practicing with targeted problems (e.g. from old exams)

� doing the prepquizzes (before each lecture)

Michael Kohlhase: LBS 13 2025-10-07

Excursion: We will recap an introduction to ALeA system in???.

Chapter 2

An Introduction to Natural
Language Semantics

In this chapter we will introduce the topic of this course and situate it in the larger field of natural
language understanding. But before we do that, let us briefly step back and marvel at the wonders
of natural language, perhaps one of the most human of abilities.

Fascination of (Natural) Language

� Definition 2.0.1. A natural language is any form of spoken or signed means of
communication that has evolved naturally in humans through use and repetition
without conscious planning or premeditation.

� In other words: the language you use all day long, e.g. English, German, . . .

� Why Should we care about natural language?:

� Even more so than thinking, language is a skill that only humans have.

� It is a miracle that we can express complex thoughts in a sentence in a matter
of seconds.

� It is no less miraculous that a child can learn tens of thousands of words and
complex syntax in a matter of a few years.

Michael Kohlhase: LBS 14 2025-10-07

With this in mind, we will embark on the intellectual journey of building artificial systems that
can process (and possibly understand) natural language as well.

2.1 Natural Language and its Meaning
Before we embark on the journey into understanding the meaning of natural language, let us get

an overview over what the concept of “semantics” or “meaning” means in various disciplines.

What is Natural Language Semantics? A Difficult Question!

� Question: What is “Natural Language Semantics”?

� Definition 2.1.1 (Generic Answer). Semantics is the study of reference, meaning,

11

12 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

or truth.

� Definition 2.1.2. A sign is anything that communicates a meaning that is not the
sign itself to the interpreter of the sign. The meaning can be intentional, as when
a word is uttered with a specific meaning, or unintentional, as when a symptom is
taken as a sign of a particular medical condition

Meaning is a relationship between signs and the objects they intend, express, or
signify.

� Definition 2.1.3. Reference is a relationship between objects in which one object
(the name) designates, or acts as a means by which to refer to – i.e. to connect to
or link to – another object (the referent).

� Definition 2.1.4. Truth is the property of being in accord with reality in a/the
mind-independent world. An object ascribed truth is called true, iff it is, and false,
if it is not.

� Definition 2.1.5. For natural language semantics, the signs are usually utterances
and names are usually phrases.

� That is all very abstract and general, can we make this more concrete?

� Different (academic) disciplines find different concretizations.

Michael Kohlhase: LBS 15 2025-10-07

What is (NL) Semantics? Answers from various Disciplines!

� Observation: Different (academic) disciplines specialize the notion of semantics
(of natural language) in different ways.

� Philosophy: has a long history of trying to answer it, e.g.

� Platon ; cave allegory, Aristotle ; syllogisms.

� Frege/Russell ; sense vs. referent. (“Michael Kohlhase” vs. “Odysseus”)

� Linguistics/Language Philosophy: We need semantics e.g. in translation
“Der Geist ist willig aber das Fleisch ist schwach!” vs.
“Der Schnaps ist gut, aber der Braten ist verkocht!” (meaning counts)

� Psychology/Cognition: Semantics =̂ “what is in our brains” (; mental models)

� Mathematics has driven much of modern logic in the quest for foundations.

� Logic as “foundation of mathematics” solved as far as possible

� In daily practice syntax and semantics are not differentiated (much).

� Logic@AI/CS tries to define meaning and compute with them. (applied
semantics)

� makes syntax explicit in a formal language (formulae, sentences)

� defines truth/validity by mapping sentences into “world” (interpretation)

2.1. NATURAL LANGUAGE AND ITS MEANING 13

� gives rules of truth-preserving reasoning (inference)

Michael Kohlhase: LBS 16 2025-10-07

A good probe into the issues involved in natural language understanding is to look at translations
between natural language utterances – a task that arguably involves understanding the utterances
first.

Meaning of Natural Language; e.g. Machine Translation

� Idea: Machine translation is very simple! (we have good lexica)

� Example 2.1.6. “Peter liebt Maria.” ; “Peter loves Mary.”

� this only works for simple examples!

� Example 2.1.7. “Wirf der Kuh das Heu über den Zaun.” ̸;“Throw the cow the
hay over the fence.” (differing grammar; Google Translate)

� Example 2.1.8. Grammar is not the only problem

� “Der Geist ist willig, aber das Fleisch ist schwach!”

� “Der Schnaps ist gut, aber der Braten ist verkocht!”

� Observation 2.1.9. We have to understand the meaning for high-quality transla-
tion!

Michael Kohlhase: LBS 17 2025-10-07

If it is indeed the meaning of natural language, we should look further into how the form of the
utterances and their meaning interact.

Language and Information

� Observation: Humans use words (sentences, texts) in natural languages to rep-
resent and communicate information.

� But: What really counts is not the words themselves, but the meaning information
they carry.

� Example 2.1.10 (Word Meaning).

“Newspaper ” ;

� For questions/answers, it would be very useful to find out what words (sentences/texts)
mean.

� Definition 2.1.11. Interpretation of natural language utterances: three problems

https://goo.gl/4Wgqw5

14 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

schema abstraction ambiguity composition

language
utterance

semantic
intepretation

Michael Kohlhase: LBS 18 2025-10-07

Let us support the last claim a couple of initial examples. We will come back to these phenomena
again and again over the course of the course and study them in detail.

Language and Information (Examples)

� Example 2.1.12 (Abstraction).

“Car ” and “automobile” have the same meaning.

� Example 2.1.13 (Ambiguity).

A “bank” can be a financial institution or a geographical fea-
ture.

� Example 2.1.14 (Composition).

“Every student sleeps” ; ∀x.student(x)⇒ sleep(x)

Michael Kohlhase: LBS 19 2025-10-07

But there are other phenomena that we need to take into account when compute the meaning
of NL utterances.

Context Contributes to the Meaning of NL Utterances

� Observation: Not all information conveyed is linguistically realized in an utterance.

� Example 2.1.15. “The lecture begins at 11:00 am.” What lecture? Today?

� Definition 2.1.16. We call a piece i of information linguistically realized in an
utterance U , iff, we can trace i to a fragment of U .

� Definition 2.1.17 (Possible Mechanism). Inferring the missing pieces from the
context and world knowledge:

2.1. NATURAL LANGUAGE AND ITS MEANING 15

Utterance Meaning
relevant

information
of utterance

Grammar

Lexicon

Inference

World knowledge

We call this process semantic/pragmatic analysis.

Michael Kohlhase: LBS 20 2025-10-07

We will look at another example, that shows that the situation with semantic/pragmatic analysis
is even more complex than we thought. Understanding this is one of the prime objectives of the
LBS lecture.

Context Contributes to the Meaning of NL Utterances

� Example 2.1.18. “It starts at eleven.” What starts?

� Before we can resolve the time, we need to resolve the anaphor “ it”.

� Possible Mechanism: More Inference!

Utterance
semantic
potential

utterance-
specific
meaning

relevant
information
of utterance

Grammar

Lexicon

Inference

World/Context Knowledge

; Semantic/pragmatic analysis is quite complex! (prime topic of LBS)

Michael Kohlhase: LBS 21 2025-10-07

Example 2.1.18 is also a very good example for the claim Observation 2.1.9 that even for high-
quality (machine) translation we need semantics. We end this very high-level introduction with
a caveat.

Semantics is not a Cure-It-All!

How many animals of each species did Moses take onto the ark?

16 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

� Actually, it was Noah (But you understood the question anyways)

Michael Kohlhase: LBS 22 2025-10-07

But Semantics works in some cases

� The only thing that currently really helps is a restricted domain:

� I. e. a restricted vocabulary and world model.

� Demo:

DBPedia http://dbpedia.org/snorql/
Query: Soccer players, who are born in a country with more than 10 million in-
habitants, who played as goalkeeper for a club that has a stadium with more than
30.000 seats and the club country is different from the birth country

Michael Kohlhase: LBS 23 2025-10-07

But Semantics works in some cases

� Answer:

(is computed by DBPedia from a SPARQL query)

http://dbpedia.org/snorql/
https://goo.gl/2i3ng1

2.2. NATURAL LANGUAGE UNDERSTANDING AS ENGINEERING 17

Michael Kohlhase: LBS 24 2025-10-07

Even if we can get a perfect grasp of the semanticss (aka. meanings) of NL utterances, their
structure and context dependency – we will try this in this lecture, but of course fail, since the
issues are much too involved and complex for just one lecture – then we still cannot account for
all the human mind does with language. But there is hope, for limited and well-understood
domains, we can to amazing things. This is what this course tries to show, both in theory as well
as in practice.

2.2 Natural Language Understanding as Engineering

Even though this course concentrates on computational aspects of natural language semantics,
it is useful to see it in the context of the field of natural language processing.

Language Technology

� Language Assistance:

� written language: Spell/grammar/style-checking,

� spoken language: dictation systems and screen readers,

� multilingual text: machine-supported text and dialog translation, eLearning.

� Information management:

� search and classification of documents, (e.g. Google/Bing)

� information extraction, question answering. (e.g. http://ask.com)

http://ask.com

18 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

� Dialog Systems/Interfaces:

� information systems: at airport, tele-banking, e-commerce, call centers,

� dialog interfaces for computers, robots, cars. (e.g. Siri/Alexa)

� Observation: The earlier technologies largely rely on pattern matching, the
latter ones need to compute the meaning of the input utterances, e.g. for database
lookups in information systems.

Michael Kohlhase: LBS 25 2025-10-07

The general context of LBS is natural language processing (NLP), and in particular natural lan-
guage understanding (NLU). The dual side of NLU: natural language generation (NLG) requires
similar foundations, but different techniques is less relevant for the purposes of this course.

What is Natural Language Processing?

� Generally: Studying of natural languages and development of systems that can
use/generate these.

� Definition 2.2.1. Natural language processing (NLP) is an engineering field at
the intersection of computer science, AI, and linguistics which is concerned with the
interactions between computers and human (natural) languages. Most challenges
in NLP involve:

� Natural language understanding (NLU) that is, enabling computers to derive
meaning (representations) from human or natural language input.

� Natural language generation (NLG) which aims at generating natural language
or speech from meaning representation.

� For communication with/among humans we need both NLU and NLG.

Michael Kohlhase: LBS 26 2025-10-07

What is the State of the Art In NLU?

� Two avenues of attack for the problem: knowledge-based and statistical techniques
(they are complementary)

Deep Knowledge-based Not there yet
We are here cooperation?

Shallow no-one wants this Statistical Methods
applications

Analysis ↑
vs. narrow wide

Coverage →

� We will cover foundational methods of deep processing in the course and a mixture

2.2. NATURAL LANGUAGE UNDERSTANDING AS ENGINEERING 19

of deep and shallow ones in the lab.

Michael Kohlhase: LBS 27 2025-10-07

On the last slide we have classified the two main approaches to NLU. In the last 10 years the
community has almost entirely concentrated on statistical- and machine-learning based methods,
because that has led to applications like google translate, Siri, and the likes. We will now borrow
an argument by Aarne Ranta to show that there are (still) interesting applications for knowledge-
based methods in NLP, even if they are less visible.

Environmental Niches for both Approaches to NLU

� Definition 2.2.2. There are two kinds of applications/tasks in NLU:

� Consumer tasks: consumer grade applications have tasks that must be fully
generic and wide coverage. (e.g. machine translation like Google Translate)

� Producer tasks: producer grade applications must be high-precision, but can be
domain-specific (e.g. multilingual documentation, machinery-control, program
verification, medical technology)

Precision
100% Producer Tasks

50% Consumer Tasks

103±1 Concepts 106±1 Concepts Coverage

after Aarne Ranta [Ran17].

� Example 2.2.3. Producing/managing machine manuals in multiple languages
across machine variants is a critical producer task for machine tool company.

� A producer domain I am interested in: mathematical/technical documents.

Michael Kohlhase: LBS 28 2025-10-07

An example of a producer task – indeed this is where the name comes from – is the case of a
machine tool manufacturer T , which produces digitally programmed machine tools worth multiple
million Euro and sells them into dozens of countries. Thus T must also comprehensive machine
operation manuals, a non-trivial undertaking, since no two machines are identical and they must
be translated into many languages, leading to hundreds of documents. As those manual share a
lot of semantic content, their management should be supported by NLP techniques. It is critical
that these NLP maintain a high precision, operation errors can easily lead to very costly machine
damage and loss of production. On the other hand, the domain of these manuals is quite restricted.
A machine tool has a couple of hundred components only that can be described by a comple of
thousand attribute only.

Indeed companies like T employ high-precision NLP techniques like the ones we will cover in
this course successfully; they are just not so much in the public eye as the consumer tasks.

NLP for NLU: The Waterfall Model

https://translate.google.com/

20 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

� Definition 2.2.4 (The NLU Waterfall). NL understanding is often modeled as a
simple linear process: the NLU waterfall consists of five consecutive steps:

0) speech processing: acoustic signal ; word hypothesis graph

1) syntactic processing: word sequence ; phrase structure

2) semantics construction: phrase structure ; (quasi-)logical form

3) semantic/pragmatic analysis:
(quasi-)logical form ; knowledge representation

4) problem solving: using the generated knowledge (application-specific)

� Definition 2.2.5. We call any formalization of an utterance as a logical formula
a logical form. A quasi-logical form (QLF) is a representation which can be turned
into a logical form by further computation.2

� In this course: steps 1), 2) and 3).

Michael Kohlhase: LBS 29 2025-10-07

The waterfall model shown above is of course only an engineering-centric model of natural language
understanding and not to be confused with a cognitive model; i.e. an account of what happens in
human cognition. Indeed, there is a lot of evidence that this simple sequential processing model
is not adequate, but it is the simplest one to implement and can therefore serve as a background
reference to situating the processes we are interested in.

2.3 Looking at Natural Language

The next step will be to make some observations about natural language and its meaning, so that
we get an intuition of what problems we will have to overcome on the way to modeling natural
language.

Fun with Diamonds (are they real?) [Dav67b]

� Example 2.3.1. We study the truth conditions of adjectival complexes:

� “This is a diamond.” (|= diamond)

� “This is a blue diamond.” (|= diamond, |= blue)

� “This is a big diamond.” (|= diamond, ̸|= big)

� “This is a fake diamond.” (|= ¬diamond)
� “This is a fake blue diamond.” (|= blue?, |= diamond?)

� “Mary knows that this is a diamond.” (|= diamond)

� “Mary believes that this is a diamond.” (̸|= diamond)

Michael Kohlhase: LBS 30 2025-10-07

Logical analysis vs. conceptual analysis: These examples — mostly borrowed from David-
son:tam67 — help us to see the difference between “logical-analysis” and “conceptual-analysis”.

We observed that from “This is a big diamond.” we cannot conclude “This is big”. Now
consider the sentence “Jane is a beautiful dancer ”. Similarly, it does not follow from this that
Jane is beautiful, but only that she dances beautifully. Now, what it is to be beautiful or to be a
beautiful dancer is a complicated matter. To say what these things are is a problem of conceptual

2.3. LOOKING AT NATURAL LANGUAGE 21

analysis. The job of semantics is to uncover the logical form of these sentences. Semantics should
tell us that the two sentences have the same logical forms; and ensure that these logical forms make
the right predictions about the entailments and truth conditions of the sentences, specifically, that
they don’t entail that the object is big or that Jane is beautiful. But our semantics should provide
a distinct logical form for sentences of the type: “This is a fake diamond.” From which it follows
that the thing is fake, but not that it is a diamond.

Ambiguity: The dark side of Meaning

� Definition 2.3.2. We call an utterance ambiguous, iff it has multiple meanings,
which we call readings.

� Example 2.3.3. All of the following sentences are ambiguous:

� “John went to the bank.” (river or financial?)

� “You should have seen the bull we got from the pope.” (three readings!)

� “I saw her duck.” (animal or action?)

� “John chased the gangster in the red sports car.” (three-way too!)

Michael Kohlhase: LBS 31 2025-10-07

One way to think about the examples of ambiguity on the previous slide is that they illustrate a
certain kind of indeterminacy in sentence meaning. But really what is indeterminate here is what
sentence is represented by the physical realization (the written sentence or the phonetic string).
The symbol “duck ” just happens to be associated with two different things, the noun and the verb.
Figuring out how to interpret the sentence is a matter of deciding which item to select. Similarly
for the syntactic ambiguity represented by PP attachment. Once you, as interpreter, have selected
one of the options, the interpretation is actually fixed. (This doesn’t mean, by the way, that as
an interpreter you necessarily do select a particular one of the options, just that you can.) A
brief digression: Notice that this discussion is in part a discussion about compositionality,
and gives us an idea of what a non-compositional account of meaning could look like. The Radical
Pragmatic View is a non-compositional view: it allows the information content of a sentence to
be fixed by something that has no linguistic reflex.

To help clarify what is meant by compositionality, let me just mention a couple of other ways
in which a semantic account could fail to be compositional.

• Suppose your syntactic theory tells you that S has the structure [a[bc]] but your semantics
computes the meaning of S by first combining the meanings of a and b and then combining the
result with the meaning of c. This is non-compositional.

• Recall the difference between:

1. Jane knows that George was late.
2. Jane believes that George was late.

Sentence 1. entails that George was late; sentence 2. doesn’t. We might try to account for
this by saying that in the environment of the verb “believe”, a clause doesn’t mean what it
usually means, but something else instead. Then the clause “that George was late” is assumed
to contribute different things to the informational content of different sentences. This is a
non-compositional account.

Quantifiers, Scope and Context

22 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

� Example 2.3.4. “Every man loves a woman.” (Keira Knightley or his mother!)

� Example 2.3.5. “Every car has a radio.” (only one reading!)

� Example 2.3.6. “Some student in every course sleeps in every class at least some
of the time.” (how many readings?)

� Example 2.3.7. “The president of the US is having an affair with an intern.”
(2002 or 2000?)

� Example 2.3.8. “Everyone is here.” (who is everyone?)

Michael Kohlhase: LBS 32 2025-10-07

Observation: If we look at the first sentence, then we see that it has two readings:

1. there is one woman who is loved by every man.

2. for each man there is one woman whom that man loves.

These correspond to distinct situations (or possible worlds) that make the sentence true. We call
this quantifier scope ambiguity
Observation: For the second example we only get one reading: the analogue of 2. The reason
for this lies not in the logical structure of the sentence, but in concepts involved. We interpret
the meaning of the word “has” as the relation “has as physical part”, which in our world carries a
certain uniqueness condition: If a is a physical part of b, then it cannot be a physical part of c,
unless b is a physical part of c or vice versa. This makes the structurally possible analogue to 1.
impossible in our world and we discard it.
Observation: In the examples above, we have seen that (in the worst case), we can have one
reading for every ordering of the quantificational phrases in the sentence. So, in the third example,
we have four of them, we would get 4! = 24 readings. It should be clear from introspection that
we (humans) do not entertain 12 readings when we understand and process this sentence. Our
models should account for such effects as well.
Context and Interpretation: It appears that the last two sentences have different informational
content on different occasions of use. Suppose I say “Everyone is here.” at the beginning of class.
Then I mean that everyone who is meant to be in the class is here. Suppose I say it later in the
day at a meeting; then I mean that everyone who is meant to be at the meeting is here. What
shall we say about this? Here are three different kinds of solution:

Radical Semantic View On every occasion of use, the sentence literally means that everyone
in the world is here, and so is strictly speaking false. An interpreter recognizes that the speaker
has said something false, and uses general principles to figure out what the speaker actually
meant.

Radical Pragmatic View What the semantics provides is in some sense incomplete. What the
sentence means is determined in part by the context of utterance and the speaker’s intentions.
The differences in meaning are entirely due to extra-linguistic facts which have no linguistic
reflex.

The Intermediate View The logical form of sentences with the quantifier “every” contains a
slot for information which is contributed by the context. So extra-linguistic information is
required to fix the meaning; but the contribution of this information is mediated by linguistic
form.

We now come to a phenomenon of natural language, that is a paradigmatic challenge for pragmatic
analysis: anaphora – the practice of replacing a (complex) reference with a mere pronoun.

2.3. LOOKING AT NATURAL LANGUAGE 23

More Context: Anaphora – Challenge for Pragmatic Analysis

� Example 2.3.9 (Anaphoric References).

� “John is a bachelor. His wife is very nice.” (Uh, what?, who?)

� “John likes his dog Spiff even though he bites him sometimes.” (who bites?)

� “John likes Spiff. Peter does too.” (what to does Peter do?)

� “John loves his wife. Peter does too.” (whom does Peter love?)

� “John loves golf, and Mary too.” (who does what?)

� Definition 2.3.10. A word or phrase is called anaphoric (or an anaphor), if its
interpretation depends upon another phrase in context. In a narrower sense, an
anaphor refers to an earlier phrase (its antecedent), while a cataphor to a later one
(its postcedent).

Definition 2.3.11. The process of determining the antecedent or postcedent of an
anaphoric phrase is called anaphor resolution.

Definition 2.3.12. An anaphoric connection between anaphor and its antecedent or
postcedent is called direct, iff it can be understood purely syntactically. An anaphoric
connection is called indirect or a bridging reference if additional knowledge is needed.

� Anaphora are another example, where natural languages use the inferential capa-
bilities of the hearer/reader to “shorten” utterances.

� Anaphora challenge pragmatic analysis, since they can only be resolved from the
context using world knowledge.

Michael Kohlhase: LBS 33 2025-10-07

Anaphora are also interesting for pragmatic analysis, since they introduce (often initially massive
amoungs of) ambiguity that needs to be taken care of in the language understanding process.
We now come to another challenge to pragmatic analysis: presuppositions. Instead of just being
subject to the context of the readers/hearers like anaphora, they even have the potential to change
the context itself or even affect their world knowledge.

Context is Personal and Keeps Changing

� Example 2.3.13. Consider the following sentences involving definite description:

1. “The king of America is rich.” (true or false?)

2. “The king of America isn’t rich.” (false or true?)

3. “If America had a king, the king of America would be rich.” (true or false!)

4. “The king of Buganda is rich.” (Where is Buganda?)

5. “. . . Joe Smith. . . The CEO of Westinghouse announced budget cuts.”
(CEO=J.S.!)

How do the interact with your context and world knowledge?

� The interpretation or whether they make sense at all dep

� Note: Last two examples feed back into the context or even world knowledge:

24 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

� If 4. is uttered by an Africa expert, we add “Buganda exists and is a monarchy ”
to our world knowledge

� We add “Joe Smith is the CEO of Westinghouse to the context/world knowl-
edge” (happens all the time in newpaper
articles)

Michael Kohlhase: LBS 34 2025-10-07

2.4 A Taste of Language Philosophy
We will now discuss some concerns from language philosophy as they pertain to the LBS course.
Note that this discussion is only intended to give our discussion on natural language semantics
some perspective; in particular, it is in no way a complete introduction to language philosophy, or
does the discussion there full justice.
We start out our tour through language philosophy with some examples – as linguists and philoso-
phers often to – to obtain an intuition of the phenomena we want to understand.

What is the Meaning of Natural Language Utterances?

� Question: What is the meaning of the word “chair ”?

� Answer: “the set of all chairs” (difficult to delineate, but more or less clear)

� Question: What is the meaning of the word “Michael Kohlhase”?

� Answer: The word refers to an object in the real world: the instructor of LBS.

� Alternatively: The singleton with that object (as for “set of chairs” above)

� Question: What about “Michael Kohlhase sits on a chair ”?

� Towards an Answer: We have to combine the two sets, via the meaning of “sits”.

� Question: What is the meaning of the word “John F. Kennedy ” or “Odysseus”?

� Problem: There are no objects in the real worlds, so the meaning of both is ∅ and
thus equal /.

Michael Kohlhase: LBS 35 2025-10-07

The main intuition we get is that meaning is more complicated than we may have thought in the
beginning.

2.4.1 Epistemology: The Philosphy of Science

We start out by looking at the foundations of epistemology, which sets the basis for modern
(empirical) science. Our presentation here is modeled on Karl Popper’s work on the theory of
science. Naturally, our account here is simplified to fit the occasion, see [Pop34; Pop59] for the
full story.

Note that like any foundational account of complex concepts like knowledge, belief, rationality,
and their justification, we have to base our philosophy on some concepts we take at face value.
Here these are natural and formal languages, worlds, situations, etc. which will stay very general
in the current foundational setting.

2.4. A TASTE OF LANGUAGE PHILOSOPHY 25

We will later instantiate these by more concrete notions as we go along in the LBS course.

Epistemology – Propositions & Observations

� Definition 2.4.1. Epistemology is the branch of philosophy concerned with study-
ing nature of knowledge, its justification, the rationality of belief, scientific theories
and predictions, and various related issues.

� Definition 2.4.2. A proposition is a sentence about the actual world or a class of
worlds deemed possible whose meaning can be expressed as being true or false in a
specific world.

� Definition 2.4.3. A belief is a proposition φ that an agent a holds true about a
class of worlds. This is a characterizing feature of the agent.

� Definition 2.4.4 (Knowledge - The JTB Account). Knowledge is justified, true
belief.

� Problem: How can an agent justify a belief to obtain knowledge.

� Definition 2.4.5. Given a world w, the observed value (or just value, i.e. true
or false) of a proposition (in w) can be determined by observations, that is an
agent, the observer, either observes (experiences) that φ is true in w or conducts a
deliberate, systematic experiment that determines φ to be true in w.

Michael Kohlhase: LBS 36 2025-10-07

The crucial intuition here is that we express belief and possibly knowledge about the world using
language. But we can only access truth in the world by observation, a possibly flawed operation.
So we will never be able to ascertain the “true belief” part, and need to work all the harder on the
“justified” part.

Epistemology – Reproducibility & Phenomena

� Problem: Observations are sometimes unreliable, e.g. observer o perceives φ to
be true, while it is false or vice versa.

� Idea: Repeat the observations to raise the probability of getting them right.

� Definition 2.4.6. An observation φ is said to be reproducible, iff φ can observed
by different observers in different situations.

� Definition 2.4.7. A phenomenon φ is a proposition that is reproducibly observable
to be true in a class of worlds.

� Problem: We would like to verify a phenomenon φ, i.e. observe φ in all worlds,
But relevant world classes are too large to make this practically feasible.

� Definition 2.4.8. A world w is a counterexample to a proposition φ, if φ is
observably false in w.

� Intuition: The absence of counterexamples is the best we can hope for in general
for accepting phenomena.

� Intuition: The phenomena constitute the “world model” of an agent.

26 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

� Problem: It is impossible/inefficient (for an agent) to know all phenomena.

� Idea: An agent could retain only a small subset of known propositions, from this
all phenomena can be derived.

Michael Kohlhase: LBS 37 2025-10-07

We will pursue this last idea. The (small) subset of propositions from which the phenomena that
are relevant to an agent can be derived will become the beliefs of the agent. An agent will make
strive to justify these beliefs to succeed in the world. This is where our notion of knowledge comes
from.

Epistemology – Explanations & Hypotheses

� Definition 2.4.9. A proposition ψ follows from a proposition φ, iff ψ is true in any
world where φ is.

� Definition 2.4.10. An explanation of a phenomenon φ is a set Φ of propositions,
such that φ follows from Φ.

� Example 2.4.11. {φ} is a (rather useless) explanation for φ.

� Intuition: We prefer explanations Φ that explain more than just φ.

� Observation: This often coincides with explanations that are in some sense “sim-
pler” or “more elementary” than φ. (; Occam’s
razor)

� Definition 2.4.12. A proposition is called falsifiable, iff counterexamples are the-
oretically possible and the observation of a reproducible series of counterexample is
practically feasible.

� Definition 2.4.13. A hypothesis is a proposed explanation of a phenomenon that
is falsifiable.

Michael Kohlhase: LBS 38 2025-10-07

We insist that a hypothesis be falsifiable, because we cannot hope to verify it and indeed the
absence of counterexamples is the best we can hope for. But if finding counterexamples is hopeless,
it is not even worth bothering with a hypothesis.
This gives rise to a very natural strategy of accumulating propositions to represent (what could)
knowledge about the world.

Epistemology – Scientific Theories

� Knowledge Strategy: Collect hypotheses about the world, drop those with coun-
terexamples and those that can be explained themselves.

� Definition 2.4.14. A hypothesis φ can be tested in world/situation w by observing
the value of φ in w. If the value is true, then we say that the observation o supports
φ or is evidence for φ. If it is false then o falsifies φ.

� Definition 2.4.15. A (scientific) theory for a collection Φ of phenomena is a set
Θ of hypotheses that

� has been tested extensively and rigorously without finding counterexamples, and

2.4. A TASTE OF LANGUAGE PHILOSOPHY 27

� is minimal in the sense that no sub-collection of Θ explains Φ.

� Definition 2.4.16. We call any proposition φ that follows from a theory Φ a
prediction of Φ.

� Note: To falsify a theory Φ, it is sufficient to falsify any prediction. Any observation
of a prediction φ of Φ supports Φ.

Michael Kohlhase: LBS 39 2025-10-07

Indeed the epistemological approach described in this subsection has become the predominant one
in modern science. We will introduce both on very simple examples next.

2.4.2 Meaning Theories
If the meaning of natural language is indeed complicated, then we should really admit to that

and instead of directly answering the question, allow for multiple opinions and embark on a regime
of testing them against reality. We review some concepts from language philosophy towards that
end.
We now specialize the general epistemology for natural language the “world” we try to model
empirically.

Theories of Meaning

� The Central Question: What is the meaning of natural language?

� This is difficult to answer definitely, . . .

� But we can form meaning theory that make predictions that we can test.

� Definition 2.4.17. A semantic meaning theory assigns semantic contents to ex-
pressions of a language.

� Definition 2.4.18. A foundational meaning theory tries to explain why language
expressions have the meanings they have; e.g. in terms of mental states of individuals
and groups.

� It is important to keep these two notions apart.

� We will concentrate on semantic meaning theories in this course.

Michael Kohlhase: LBS 40 2025-10-07

In [Spe17], an excellent survey on meaning theories, the author likens the difference between
semantic and foundational theories of meaning to the differing tasks of an anthropologist trying
to fully document the table manner of a distant tribe (=̂ semantic meaning theory) or to explain
why the table manners evolve (=̂ foundational meaning theory).
Let us fortify our intuition about semantic meaning theories by showing one that can deal with
the meaning of names we started our subsection with.

The Meaning of Singular Terms

� Let’s see a semantic meaning theory in action.

� Definition 2.4.19. A singular term is a phrase that purports to denote or designate

28 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

a particular individual person, place, or other object.

� Example 2.4.20. “Michael Kohlhase” and “Odysseus” are singular terms.

� Definition 2.4.21. In [Fre92], Gottlob Frege distinguishes between sense (Sinn)
and referent (Bedeutung) of singular terms.

� Example 2.4.22. Even though “Odysseus” does not have a referent, it has a very
real sense. (but what is a sense?)

� Example 2.4.23. The ancient greeks knew the planets “Hesperos” (the evening
star) and “Phosphoros” (the morning star). These words have different senses, but
the – as we now know – same referent: the planet Venus.

� Remark: Bertrand Russell views singular terms as disguised definite descriptions
– “Hesperos” as “the brightest heavenly body that sometimes rises in the evening”.
Frege’s sense can often be conflated with Russell’s descriptions.(there can be more
than one definite description)

Michael Kohlhase: LBS 41 2025-10-07

We think of Frege’s conceptualization as a semantic meaning theory, since it assigns semantic
content – the pair of sense and referent, whatever they might concretely be – to singular terms.

Cresswell’s “Most Certain Principle” and Truth Conditions

� Problem: How can we test meaning theories in practice?

� Definition 2.4.24. Cresswell’s (1982) most certain principle (MCP): [Cre82]

I’m going to begin by telling you what I think is the most certain thing I think
about meaning. Perhaps it’s the only thing. It is this. If we have two sentences
A and B, and A is true and B is false, then A and B do not mean the same.

� Definition 2.4.25. The truth conditions of a sentence are the conditions of the
world under which it is true. These conditions must be such that if all obtain, the
sentence is true, and if one doesn’t obtain, the sentence is false.

� Observation: Meaning determines truth conditions and vice versa.

� In Fregean terms The sense of a sentence (a thought) determines its referent (a
truth value).

Michael Kohlhase: LBS 42 2025-10-07

This principle sounds trivial – and indeed it is, if you think about it – but gives rise to the
notion of truth conditions, which form the most important way of finding out about the meaning
of sentences: the determinations of truth conditions.

Truth Conditions in Practice

� Idea: To test/determine the truth conditions of a sentence S in practice, we tell
little stories that describe situations/worlds that embed S.

� Example 2.4.26. Consider the ambiguous sentence from Example 2.3.3:
“John chased the gangster in the red sports car.”

2.4. A TASTE OF LANGUAGE PHILOSOPHY 29

For each of three readings there is story =̂ truth conditions

� John drives the red sports car and chases the gangster.

� John chases the gangster who drives the red sports car.

� John chases the gangster on the back seat of a (very very big) red sports car.

All of these stories correspond to different worlds, so by the MCP there must be at
least three readings!

Michael Kohlhase: LBS 43 2025-10-07

Compositionality

� Definition 2.4.27. A meaning theory T is compositional, iff the meaning of an
expression is a function of the meanings of its parts. We say that T obeys the
compositionality principle or simply compositionality if it is.

� To compute the meaning of an expression, look up the meanings of the basic
expressions forming it and successively compute the meanings of larger parts until
a meaning for the whole expression is found.

� Example 2.4.28 (Compositionality at work in arithmetic). To compute the
value of (x+ y)/(z · u), look up the values of x, y, z, and u, then compute x+ y
and z · u, and finally compute the value of the whole expression.

� Many philosophers and linguists hold that compositionality is at work in ordinary
language too.

Michael Kohlhase: LBS 44 2025-10-07

Why Compositionality is Attractive

� Compositionality gives a nice building block for a meaning theory:

� Example 2.4.29. “[Expressions [are [built [from [words [that [combine [into [[larger
[and larger]] subexpressions]]]]]]]]]”

� Consequence: To compute the meaning of an expression, look up the meanings
of its words and successively compute the meanings of larger parts until a meaning
for the whole expression is found.

� Compositionality explains how people can easily understand sentences they have
never heard before, even though there are an infinite number of sentences any given
person at any given time has not heard before.

Michael Kohlhase: LBS 45 2025-10-07

Compositionality and the Congruence Principle

� Given reasonable assumptions compositionality entails the

30 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

� Definition 2.4.30. The congruence principle states that whenever A is part of B
and A′ means just the same as A, replacing A by A′ in B will lead to a result that
means just the same as B.

� Example 2.4.31. Consider the following (complex) sentences:

1. “blah blah blah such and such blah blah”

2. “blah blah blah so and so blah blah”

If “such and such” and “so and so” mean the same thing, then 1. and 2. mean the
same too.

� Conversely: if 1. and 2. do not mean the same, then “such and such” and “so
and so” do not either.

Michael Kohlhase: LBS 46 2025-10-07

A Test for Synonymity

� Suppose we accept the most certain principle (difference in truth conditions implies
difference in meaning) and the congruence principle (replacing words by synonyms
results in a synonymous utterance). Then we have a diagnostics for synonymy:
Replacing utterances by synonyms preserves truth conditions, or equivalently

� Definition 2.4.32. The following is called the truth conditional synonymy test:

If replacing A by B in some sentence C does not preserve truth conditions,
then A and B are not synonymous.

� We can use this as a test for the question of individuation: when are the meanings
of two words the same – when are they synonymous?

� Example 2.4.33 (Unsurprising Results). The following sentences differ in truth
conditions.

1. “The cat is on the mat.”

2. “The dog is on the mat.”

Hence “cat” and “dog ” are not synonymous. The converse holds for

1. “John is a Greek.”

2. “John is a Hellene.”

In this case there is no difference in truth conditions.

� But there might be another context that does give a difference.

Michael Kohlhase: LBS 47 2025-10-07

Contentious Cases of Synonymy Test

� Example 2.4.34 (Problem). The following sentences differ in truth values:

2.4. A TASTE OF LANGUAGE PHILOSOPHY 31

1. “Mary believes that John is a Greek”

2. “Mary believes that John is a Hellene”

So “Greek” is not synonymous to “Hellene”. The same holds in the classical example:

1. “The Ancients knew that Hesperus was Hesperus”

2. “The Ancients knew that Hesperus was Phosphorus”

In these cases most language users do perceive a difference in truth conditions while
some philosophers vehemently deny that the sentences under 1. could be true in
situations where the 2. sentences are false.

� It is important here of course that the context of substitution is within the scope
of a verb of propositional attitude. (maybe later!)

Michael Kohlhase: LBS 48 2025-10-07

A better Synonymy Test

� Definition 2.4.35 (Synonymy). The following is called the truth conditional
synonymy test:

If replacing A by B in some sentence C does not preserve truth conditions in
a compositional part of C, then A and B are not synonymous.

Michael Kohlhase: LBS 49 2025-10-07

Testing Truth Conditions with Logic

� Definition 2.4.36. A logical language modelM for a natural language L consists
of a logical system ⟨L,⊨⟩ and a function φ from L sentences to L-formulae.

� Problem: How do we find out whether M models L faithfully?

� Idea: Test truth conditions of sentences against the predictions M makes.

� Problem: The truth conditions for a sentence S in L can only be formulated and
verified by humans that speak L.

� In Practice: Truth conditions are expressed as “stories” that specify salient situa-
tions. Native speakers of L are asked to judge whether they make S true/false.

� Observation 2.4.37. A logical language model M := ⟨L,L, φ⟩ can be tested:

1. Select a sentence S and a situation W that makes S true in W . (according to
humans)

2. Translate S in to an L-formula S′ := φ(S).

3. Express W as a set Φ of L-formulae. (Φ =̂ truth conditions)

4.M is supported if Φ ⊨ S′, falsified if Φ ̸⊨ S′.

� Corollary 2.4.38. A logical language model constitutes a semantic meaning theory.

32 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

Michael Kohlhase: LBS 50 2025-10-07

2.5 Computational Semantics as a Natural Science
Overview: Formal natural language semantics is an approach to the study of meaning in
natural language which utilizes the tools of logic and model theory. Computational semantics adds
to this the task of representing the role of inference in interpretation. By combining these two
different approaches to the study of linguistic interpretation, we hope to expose you (the students)
to the best of both worlds.

Computational Semantics as a Natural Science

� In a nutshell: Formal logic studies formal languages, their relation with the world
(in particular the truth conditions). Computational logic adds the question about
the computational behavior of the relevant aspects of the formal languages.

� This is almost the same as the task of natural language semantics!

� It is one of the key ideas that logics are good scientific models for natural languages,
since they simplify certain aspects so that they can be studied in isolation. In
particular, we can use the general scientific method of

1. observing

2. building formal theories for an aspect of reality,

3. deriving the consequences of the hypotheses about the world in the theories

4. testing the predictions made by the theory against the real-world data. If the
theory predicts the data, then this supports the theory, if not, we refine the
theory, starting the process again at 2.

Michael Kohlhase: LBS 51 2025-10-07

Excursion: In natural sciences, this is established practice; e.g. astronomers observe the
planets, and try to make predictions about the locations of the planets in the future. If you graph
the location over time, it appears as a complicated zig-zag line that is difficult to understand. In
1609 Johannes Kepler postulated the model that the planets revolve around the sun in ellipses,
where the sun is in one of the focal points. This model made it possible to predict the future
whereabouts of the planets with great accuracy by relatively simple mathematical computations.
Subsequent observations have confirmed this theory, since the predictions and observations match.

Later, the model was refined by Isaac Newton, by a theory of gravitation; it replaces the
Keplerian assumptions about the geometry of planetary orbits by simple assumptions about grav-
itational forces (gravitation decreases with the inverse square of the distance) which entail the
geometry.

Even later, the Newtonian theory of celestial mechanics was replaced by Einstein’s relativity
theory, which makes better predictions for great distances and high-speed objects.

All of these theories have in common, that they build a mathematical model of the physical
reality, which is simple and precise enough to compute/derive consequences of basic assumptions,
that can be tested against observations to validate or falsify the model/theory.
The study of natural language (and of course its meaning) is more complex than natural sciences,
where we only observe objects that exist independently of ourselves as observers. Language is an
inherently human activity, and deeply interdependent with human cognition (it is arguably one
of its motors and means of expression). On the other hand, language is used to communicate
about phenomena in the world around us, the world in us, and about hypothetical worlds we only
imagine.

2.5. COMPUTATIONAL SEMANTICS AS A NATURAL SCIENCE 33

Therefore, natural language semantics must necessarily be an intersective discipline and a
trans-disciplinary endeavour, combining methods, results and insights from various disciplines.

NL Semantics as an Intersective Discipline

Michael Kohlhase: LBS 52 2025-10-07

34 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

Part I

English as a Formal Language: The
Method of Fragments

35

Chapter 3

Logic as a Tool for Modeling NL
Semantics

In this chapter we will briefly introduce formal logic and motivate how we will use it as a tool
for developing precise theories about natural language semantics.

We want to build a compositional, semantic meaning theory based on truth conditions, so that
we can directly model the truth conditional synonymy test. We will see how this works in detail
in section 3.3 after we have recapped the necessary concepts about logic.

3.1 The Method of Fragments
We will proceed by the “method of fragments”, introduced by Richard Montague in [Mon70], where
he insists on specifying a complete syntax and semantics for a specified subset (“fragment”) of a
natural language, rather than writing rules for the a single construction while making implicit
assumptions about the rest of the grammar. [Mon70]

In the present paper I shall accordingly present a precise treatment, culminating in a theory
of truth, of a formal language that I believe may be reasonably regarded as a fragment of
ordinary English. R. Montague 1970 [Mon70, p.188]

The first step in defining a fragment of natural language is to define which sentences we want to
consider. We will do this by means of a context-free grammar. This will do two things: act as
an oracle deciding which sentences (of natural language) are OK, and secondly to build up parse
trees, which we will later use for semantics construction.

Natural Language Fragments

� Methodological Problem: How to organize the scientific method for natural
language?

� Delineation Problem: What is natural language, e.g. English?
Which aspects do we want to study?

� Idea: Select a subset (NL) sentences we want to study by a grammar!
; Richard Montague’s method of fragments (1972).

� Definition 3.1.1. The language L of a context-free grammar is called a fragment
of a natural language N , iff L ⊆ N .

37

38 CHAPTER 3. LOGIC AS A TOOL FOR MODELING NL SEMANTICS

� Scientific Fiction: We can exhaust English with ever-increasing fragments, de-
velop a semantic meaning theory for each.

Michael Kohlhase: LBS 53 2025-10-07

So far so good, these are nice ideas, but what does this mean in practice?

Using CFGs for NL Fragments

� Idea: Use nonterminals to classify NL phrases.

� Definition 3.1.2. We call a nonterminal symbol of a context-free grammar a
phrasal category. We distinguish two kinds of rules:

structural rules: L : H→ c1, . . . , cn with headH, label L, and a sequence of phrasal
categories ci.

lexical rules: L : H→ t1 | . . . | tn, where the ti are terminals (i.e. NL phrases)

� Definition 3.1.3. In the method of fragments we use a CFG to parse sentences
from the fragment into a parse tree (also called abstract syntax tree (AST) for
further processing.

� Todo: We have to restrict our logical language models to fragments.

� Definition 3.1.4. A language fragment model consists of a CFG G, a logical system
L, and a semantics construction mapping φ from G-parse trees to L-propositions.

Michael Kohlhase: LBS 54 2025-10-07

We generically distinguish two parts of a grammar: the structural rules and the lexical rules,
because they are guided by differing intuitions. The former set of rules govern how NL phrases
can be composed to sentences (and later even to discourses). The latter rules are a simple repre-
sentation of a lexicon, i.e. a structure which tells us about words (the atomic objects of language):
their phrasal categories, their meaning, etc.

Formal Natural Language Semantics with Fragments

� Idea: We will follow the picture we have discussed before

Comp Ling
NL

FL

M = ⟨D, I⟩

|=NL ⊆ NL×NL

⊢C ⊆ FL× FL

⊨ ⊆ FL× FL

Analysis

Iφ

induces?

induces

choose calculus C

⊨ ≡ ⊢C?

|=NL ≡ ⊢C?

Logic

Choose a target logic FL and specify a translation from syntax trees to formulae!

3.2. WHAT IS LOGIC? 39

Michael Kohlhase: LBS 55 2025-10-07

Semantics by Translation

� Idea: We translate sentences by translating their syntax trees via tree node trans-
lation rules.

� Note: This makes the induced meaning theory compositional.

� Definition 3.1.5. We represent a node α in a syntax tree with children β1, . . ., βn
by [X1β1

, . . . , Xnβn
]α and write a translation rule as

L : [X1β1
, . . . , Xnβn

]α ; Φ(X1
′, . . ., Xn

′)

if the translation of the node α can be computed from those of the βi via a semantical
function Φ.

� Definition 3.1.6. For a natural language utterance or text A, we will use ⟨A⟩ for
the result of translating A and call it the interpretation of A.

� Definition 3.1.7 (Default Rule). For every word w in the fragment we assume a
constant w′ in the logic L and the “pseudo-rule” t1: w ; w′. (if no other
translation rule applies)

Michael Kohlhase: LBS 56 2025-10-07

3.2 What is Logic?

What is Logic?

� Definition 3.2.1. Logic =̂ formal languages, inference and their relation with the
world

� Formal language FL: set of formulae (2 + 3/7, ∀x.x+ y = y + x)

� Formula: sequence/tree of symbols (x, y, f, g, p, 1, π,∈,¬, ∀, ∃)
� Model: things we understand (e.g. number theory)

� Interpretation: maps formulae into models ([[three plus five]]
I
= 8)

� Validity: M ⊨ A, iff [[A]]
I
= T (five greater three is valid)

� Entailment: A ⊨ B, iff M ⊨ B for allM ⊨ A. (generalize to H ⊨ A)

� Inference: rules to transform (sets of) formulae (A,A⇒B⊢B)

� Syntax: formulae, inference (just a bunch of symbols)

� Semantics: models, interpr., validity, entailment (math. structures)

� Important Question: relation between syntax and semantics?

Michael Kohlhase: LBS 57 2025-10-07

So logic is the study of formal representations of objects in the real world, and the formal state-
ments that are true about them. The insistence on a formal language for representation is actually

40 CHAPTER 3. LOGIC AS A TOOL FOR MODELING NL SEMANTICS

something that simplifies life for us. Formal languages are something that is actually easier to
understand than e.g. natural languages. For instance it is usually decidable, whether a string is
a member of a formal language. For natural language this is much more difficult: there is still
no program that can reliably say whether a sentence is a grammatical sentence of the English
language.
We have already discussed the meaning mappings (under the monicker “semantics”). Meaning
mappings can be used in two ways, they can be used to understand a formal language, when we
use a mapping into “something we already understand”, or they are the mapping that legitimize a
representation in a formal language. We understand a formula (a member of a formal language)
A to be a representation of an object O, iff [[A]] = O.
However, the game of representation only becomes really interesting, if we can do something with
the representations. For this, we give ourselves a set of syntactic rules of how to manipulate the
formulae to reach new representations or facts about the world.

Consider, for instance, the case of calculating with numbers, a task that has changed from a
difficult job for highly paid specialists in Roman times to a task that is now feasible for young
children. What is the cause of this dramatic change? Of course the formalized reasoning procedures
for arithmetic that we use nowadays. These calculi consist of a set of rules that can be followed
purely syntactically, but nevertheless manipulate arithmetic expressions in a correct and fruitful
way. An essential prerequisite for syntactic manipulation is that the objects are given in a formal
language suitable for the problem. For example, the introduction of the decimal system has been
instrumental to the simplification of arithmetic mentioned above. When the arithmetical calculi
were sufficiently well-understood and in principle a mechanical procedure, and when the art of
clock-making was mature enough to design and build mechanical devices of an appropriate kind,
the invention of calculating machines for arithmetic by (1623), (1642), and (1671) was only a
natural consequence.

We will see that it is not only possible to calculate with numbers, but also with representations
of statements about the world (propositions). For this, we will use an extremely simple example; a
fragment of propositional logic (we restrict ourselves to only one connective) and a small calculus
that gives us a set of rules how to manipulate formulae.
In computational semantics, the picture is slightly more complicated than in Physics. Where

Physics considers mathematical models, we build logical models, which in turn employ the term
“model”. To sort this out, let us briefly recap the components of logics, we have seen so far.

Logics make good (scientific1) models for natural language, since they are mathematically precise
and relatively simple.

Formal languages simplify natural languages, in that problems of grammaticality no longer
arise. Well-formedness can in general be decided by a simple recursive procedure.

Semantic models simplify the real world by concentrating on (but not restricting itself to)
mathematically well-understood structures like sets or numbers. The induced semantic notions
of validity and logical consequence are precisely defined in terms of semantic models and allow
us to make predictions about truth conditions of natural language.

The only missing part is that we can conveniently compute the predictions made by the model.
The underlying problem is that the semantic notions like validity and semantic consequence are
defined with respect to all models, which are difficult to handle.

Therefore, logics typically have a third part, an inference system, or a calculus, which is a
syntactic counterpart to the semantic notions. Formally, a calculus is just a set of rules (called
inference rules) that transform (sets of) formulae (the assumptions) into other (sets of) formulae
(the conclusions). A sequence of rule applications that transform the empty set of assumptions
into a formula T, is called a proof of A. To make these assumptions clear, let us look at a very
simple example.

1As we use the word “model” in two ways, we will sometimes explicitly label it by the attribute “scientific” to
signify that a whole logic is used to model a natural language phenomenon and with the attribute “semantic” for
the mathematical structures that are used to give meaning to formal languages

3.3. USING LOGIC TO MODEL MEANING OF NATURAL LANGUAGE 41

3.3 Using Logic to Model Meaning of Natural Language

Modeling Natural Language Semantics

� Problem: Find formal (logic) system for the meaning of natural language.

� History of ideas

� Propositional logic [ancient Greeks like Aristotle]
* “Every human is mortal ”

� First-Order Predicate logic [Frege ≤ 1900]
* “I believe, that my audience already knows this.”

� Modal logic [Lewis18, Kripke65]
* “A man sleeps. He snores.” ((∃X.man(X) ∧ sleeps(X))) ∧ snores(X)

� Various dynamic approaches (e.g. DRT, DPL)
* “Most men wear black”

� Higher-order Logic, e.g. generalized quantifiers

� . . .

Michael Kohlhase: LBS 58 2025-10-07

Let us now reconcider the role of all of this for natural language semantics. We have claimed
that the goal of the course is to provide you with a set of methods to determine the meaning of
natural language. If we look back, all we did was to establish translations from natural languages
into formal languages like first-order or higher-order logic (and that is all you will find ituisn most
semantics papers and textbooks). Now, we have just tried to convince you that these are actually
syntactic entities. So, where is the semantics?.

Natural Language Semantics?

Comp Ling
NL

FL

M = ⟨D, I⟩

|=NL ⊆ NL×NL

⊢C ⊆ FL× FL

⊨ ⊆ FL× FL

Analysis

Iφ

induces?

induces

choose calculus C

⊨ ≡ ⊢C?

|=NL ≡ ⊢C?

Logic

Michael Kohlhase: LBS 59 2025-10-07

As we mentioned, the green area is the one generally covered by natural language semantics. In
the analysis process, the natural language utterance (viewed here as formulae of a language NL)
are translated to a formal language FL (a set wff(,) of well-formed formulae). We claim that this
is all that is needed to recapture the semantics even if this is not immediately obvious at first:
Theoretical Logic gives us the missing pieces.

Since FL is a formal language of a logical system, it comes with a notion of model and an value

42 CHAPTER 3. LOGIC AS A TOOL FOR MODELING NL SEMANTICS

function Iφ that translates FL formulae into objects of that model. This induces a notion of logical
consequence2 as explained in ???. It also comes with a calculus C acting on FL formulae, which
(if we are lucky) is sound and complete (then the mappings in the upper rectangle commute).

What we are really interested in natural language semantics is the truth conditions and natural
consequence relations on natural language utterances, which we have denoted by |=NL. If the
calculus C of the logical system ⟨FL,K,⊨⟩ is adequate (it might be a bit presumptious to say
sound and complete), then it is a model of the linguistic entailment relation |=NL. Given that both
rectangles in the diagram commute, then we really have a model for truth conditions and logical
consequence for text/speech fragments, if we only specify the analysis mapping (the green part)
and the calculus.

Logic-Based Knowledge Representation for NLP

� Logic (and related formalisms) allow to integrate world knowledge

� explicitly (gives more understanding than statistical methods)

� transparently (symbolic methods are monotonic)

� systematically (we can prove theorems about our systems)

� Signal + world knowledge makes more powerful model

� Does not preclude the use of statistical methods to guide inference

� Problems with logic-based approaches

� Where does the world knowledge come from? (Ontology problem)

� How to guide search induced by logical calculi? (combinatorial explosion)

� One possible answer: Description Logics. (Recall the AI-1 lecture?)

Michael Kohlhase: LBS 60 2025-10-07

2Relations on a set S are subsets of the Cartesian product of S, so we use R ⊆ Sn × S to signify that R is a
(n-ary) relation on X.

Chapter 4

Fragment 1

We will now put the ideas from the last chapter into practice in the setting of the Montague’s
“Method of Fragments”. We will introduce a first very simple fragment mostly for the purpose of
setting up the conceptual infrastructure and seeing how the various bits and pieces might interact,
not so much because the fragment in and of itself is linguistically interesting.

4.1 The First Fragment: Setting up the Basics
The first fragment will primarily be used for setting the stage, and introducing the method of

fragments itself. the coverage of the fragment is too small to do anything useful with it, but it
will allow us to discuss the salient features of the method, the particular setup of the grammars
and semantics before graduating to more useful fragments.

Fragment F1 Data (Sentences we want to cover)

� Fragment F1 Data: We delineate the intended fragment by giving examples

1. “Ethel kicked the cat and Fiona laughted ”

2. “Peter is the teacher ”

3. “The teacher is happy ”

4. “It is not the case that Bertie ran”

5. “It is not the case that Jo is happy ”

� We can later use these sentences as benchmark tests.

Michael Kohlhase: LBS 61 2025-10-07

Now that we have the target logic we can complete the analysis arrow in slide 56. We do this
again, by giving translation rules.

4.1.1 Natural Language Syntax (Fragment 1)

Structural Grammar Rules

� Definition 4.1.1. F1 uses the following eight phrasal categories

43

44 CHAPTER 4. FRAGMENT 1

S sentence NP noun phrase
N noun Npr proper name
V i intransitive verb V t transitive verb
conj coordinator Adj adjective

� Definition 4.1.2. We have the following production rules in F1.
S1: S→NP V i,
S2: S→NP V t NP,
N1: NP→Npr,
N2: NP→ the N ,
S3: S→ It is not the case that S,
S4: S→S conj S,
S5: S→NP is NP, and
S6: S→NP is Adj

Michael Kohlhase: LBS 62 2025-10-07

Lexical insertion rules for Fragment F1

� Definition 4.1.3. We have the following lexical insertion rules in fragment F1.

L1: Npr→Prudence | Ethel | Chester | Jo | Bertie | Fiona,
L2: N→ book | cake | cat | golfer | dog | lecturer | student | singer,
L3: V i→ ran | laughed | sang | howled | screamed,
L4: V t→ read | poisoned | ate | liked | loathed | kicked,
L5: conj→ and | or,
L6: Adj→ happy | crazy |messy | disgusting | wealthy

� Definition 4.1.4. A production rule whose head is a single non-terminal and whose
body consists of a single terminal is called lexical or a lexical insertion rule.

� Notation: Lexical insertion rules are usually written using BNF alternative in the
body ⇝grouping rules with the same head.

� Definition 4.1.5. The subset of lexical rules of a grammar G is called the lexicon
of G and the set of body symbols the vocabulary (or alphabet). The nonterminals
in their heads are called lexical categories of G.

� Note: We will adopt the convention that new lexical insertion rules can be gener-
ated spontaneously as needed.

Michael Kohlhase: LBS 63 2025-10-07

These rules represent a simple lexicon, they specify which words are accepted by the grammar
and what their phrasal categories are.

Syntax Example: “Jo poisoned the dog and Ethel laughed ”

� Observation 4.1.6. “Jo poisoned the dog and Ethel laughed” is a sentence of
fragment 1

� We can construct a parse tree for it!

4.1. THE FIRST FRAGMENT: SETTING UP THE BASICS 45

Jo poisoned the dog and Ethel laughed

Npr V t N conj Npr V i

NP NP NP

S S

S

Michael Kohlhase: LBS 64 2025-10-07

4.1.2 Predicate Logic without Quantifiers
The next step will be to introduce the logical model we will use for fragment F1: Predicate Logic

without Quantifiers. Syntactically, this logic is a fragment of first-order logic, but it’s expressivity
is equivalent to propositional logic.

Individuals and their Properties/Relationships

� Observation: We want to talk about individuals like Stefan, Nicole, and Jochen
and their properties, e.g. being blond, or studying AI
and relationships, e.g. that “Stefan loves Nicole”.

� Idea: Re-use PL0, but replace propositional variables with something more expres-
sive! (instead of fancy variable name
trick)

� Definition 4.1.7. A first-order signature ⟨Σf ,Σp⟩ consists of

� Σf :=
⋃
k∈NΣ

f
k of function constants, where members of Σfk denote k-ary

functions on individuals,

� Σp :=
⋃
k∈NΣ

p
k of predicate constants, where members of Σpk denote k-ary

relations among individuals,

where Σfk and Σpk are pairwise disjoint, countable sets of symbols for each k ∈ N.

A 0-ary function constant refers to a single individual, therefore we call it a individual
constant.

Michael Kohlhase: LBS 65 2025-10-07

A Grammar for PLnq

46 CHAPTER 4. FRAGMENT 1

� Definition 4.1.8. The formulae of PLnq are given by the following grammar

function constants fk ∈ Σfk
predicate constants pk ∈ Σpk
terms t ::= f0 individualconstant

| fk(t1, . . ., tk) application
formulae A ::= pk(t1, . . ., tk) atomic

| ¬A negation
| A1 ∧A2 conjunction

Michael Kohlhase: LBS 66 2025-10-07

PLnq Semantics

� Definition 4.1.9. Domains D0 = {T,F} of truth values and Dι ̸= ∅ of individuals.

� Definition 4.1.10. Interpretation I assigns values to constants, e.g.

� I(¬) : D0→D0;T 7→ F;F 7→ T and I(∧) = . . . (as in PL0)

� I : Σf0 →Dι (interpret individual constants as individuals)

� I : Σfk →Dι
k→Dι (interpret function constants as functions)

� I : Σpk→P(Dι
k) (interpret predicate constants as relations)

� Definition 4.1.11. The value function I assigns values to formulae: (recursively)

� I(f(A1, . . .,Ak)) := I(f)(I(A1), . . . , I(Ak))

� I(p(A1, . . .,Ak)) := T, iff ⟨I(A1), . . . , I(Ak)⟩ ∈ I(p)
� I(¬A) = I(¬)(I(A)) and I(A ∧B) = I(∧)(I(A), I(G)) (just as in PL0)

� Definition 4.1.12. Model: M = ⟨Dι, I⟩ varies in Dι and I.

� Theorem 4.1.13. PLnq is isomorphic to PL0 (interpret atoms as prop. variables)

Michael Kohlhase: LBS 67 2025-10-07

All of the definitions above are quite abstract, we now look at them again using a very concrete –
if somewhat contrived – example: The relevant parts are a universe D with four elements, and an
interpretation that maps the signature into individuals, functions, and predicates over D, which
are given as concrete sets.

A Model for PLnq

� Example 4.1.14. Let L := {a, b, c, d, e, P ,Q,R, S}, we set the universe D :=
{♣,♠,♡,♢}, and specify the interpretation function I by setting

� a 7→ ♣, b 7→ ♠, c 7→ ♡, d 7→ ♢, and e 7→ ♢ for constants,

� P 7→ {♣,♠} and Q 7→ {♠,♢}, for unary predicate constants.

� R 7→{⟨♡,♢⟩, ⟨♢,♡⟩}, and S 7→{⟨♢,♠⟩, ⟨♠,♣⟩} for binary predicate constants.

� Example 4.1.15 (Computing Meaning in this Model).

4.1. THE FIRST FRAGMENT: SETTING UP THE BASICS 47

� I(R(a, b) ∧ P (c)) = T, iff

� I(R(a, b)) = T and I(P (c)) = T, iff

� ⟨I(a), I(b)⟩ ∈ I(R) and I(c) ∈ I(P), iff

� ⟨♣,♠⟩ ∈ {⟨♡,♢⟩, ⟨♢,♡⟩} and ♡ ∈ {♣,♠}

So, I(R(a, b) ∧ P (c)) = F.

Michael Kohlhase: LBS 68 2025-10-07

The example above also shows how we can compute of meaning by in a concrete model: we just
follow the evaluation rules to the letter.
We now come to the central technical result about PLnq: it is essentially the same as propositional
logic (PL0). We say that the two logic are isomorphic. Technically, this means that the formulae
of PLnq can be translated to PL0 and there is a corresponding model translation from the models
of PL0 to those of PLnq such that the respective notions of evaluation are assignped to each other.

PLnq and PL0 are Isomorphic

� Observation: For every choice of Σ of signature, the set AΣ of atomic PLnq

formulae is countable, so there is a VΣ ⊆ V0 and a bijection θΣ : AΣ→VΣ.

θΣ can be extended to a bijection on formulae as PLnq and PL0 share connectives.

� Lemma 4.1.16. For every modelM = ⟨D, I⟩, there is a variable assignment φM,
such that IφM(A) = I(A).

� Proof sketch: We just define φM(X) := I(θ−1
Σ (X)), then the assertion follows by

induction on A.

� Lemma 4.1.17. For every variable assignment ψ : VΣ→ {T,F} there is a model
Mψ = ⟨Dψ, Iψ⟩, such that Iψ(A) = Iψ(A).

� Proof sketch: see next slide

� Corollary 4.1.18. PLnq is isomorphic to PL0, i.e. the following diagram commutes:

PLnq(Σ) PL0(AΣ)
θΣ

⟨Dψ, Iψ⟩ VΣ→{T,F}
ψ 7→ Mψ

Iψ() IφM()

� Note: This constellation with a language isomorphism and a corresponding model
isomorphism (in converse direction) is typical for a logic isomorphism.

Michael Kohlhase: LBS 69 2025-10-07

The practical upshot of the commutative diagram from ??? is that if we have a way of computing
evaluation (or entailment for that matter) in PL0, then we can “borrow” it for PLnq by composing
it with the language and model translations. In other words, we can reuse calculi and automated
theorem provers from PL0 for PLnq.
But we still have to provide the proof for ???, which we do now.

48 CHAPTER 4. FRAGMENT 1

Valuation and Satisfiability

� Lemma 4.1.19. For every variable assignment ψ : VΣ→ {T,F} there is a model
Mψ = ⟨Dψ, Iψ⟩, such that Iψ(A) = Iψ(A).

� Proof: We constructMψ = ⟨Dψ, Iψ⟩ and show that it works as desired.

1. Let Dψ be the set of PLnq terms over Σ, and
� Iψ(f) : Dψk→Dψ ; ⟨A1, . . .,Ak⟩ 7→ f(A1, . . .,Ak) for f ∈ Σfk
� Iψ(p) := {⟨A1, . . .,Ak⟩ |ψ(θ−1

ψ p(A1, . . .,Ak)) = T} for p ∈ Σpk.

2. We show Iψ(A) = A for terms A by induction on A

2.1. If A = c, then Iψ(A) = Iψ(c) = c = A

2.2. If A = f(A1, . . . ,An) then
Iψ(A) = Iψ(f)(I(A1), . . . , I(An)) = Iψ(f)(A1, . . .,Ak) = A.

4. For a PLnq formula A we show that Iψ(A) = Iψ(A) by induction on A.
4.1. If A = p(A1, . . .,Ak), then Iψ(A) = Iψ(p)(I(A1), . . . , I(An)) = T, iff
⟨A1, . . .,Ak⟩ ∈ Iψ(p), iff ψ(θ−1

ψ A) = T, so Iψ(A) = Iψ(A) as desired.
4.2. If A = ¬B, then Iψ(A) = T, iff Iψ(B) = F, iff Iψ(B) = Iψ(B), iff
Iψ(A) = Iψ(A).

4.3. If A = B ∧C then we argue similarly

6. Hence Iψ(A) = Iψ(A) for all PLnq formulae and we have concluded the proof.

□

Michael Kohlhase: LBS 70 2025-10-07

Now that we have the target logic we can complete the analysis arrow in slide 56. We do this
again, by giving translation rules.

4.1.3 Natural Language Semantics via Translation

Translation rules for non-basic expressions (NP and S)

� Definition 4.1.20. We have the following translation rules for non-leaf node of the
syntax tree

T1: [XNP, YV i]S ; Y ′(X ′)
T2: [XNP, YV t , ZNP]S ; Y ′(X ′, Z ′)
T3: [XNpr

]NP ; X ′

T4: [the, XN]NP ; theX ′

T5: [It is not the case thatXS]S ; (¬X ′)
T6: [XS , Yconj, ZS]S ; Y ′(X ′, Z ′)
T7: [XNP, is, YNP]S ; X ′ = Y ′

T8: [XNP, is, YAdj]S ; Y ′(X ′)

Read e.g. [Y, Z]X as a node with label X in the syntax tree with children X and
Y . Read X ′ as the translation of X via these rules.

� Note that we have exactly one translation per syntax rule.

Michael Kohlhase: LBS 71 2025-10-07

4.2. TESTING TRUTH CONDITIONS VIA INFERENCE 49

Translation rule for basic lexical items

� Definition 4.1.21. The target logic for F1 is PLnq, the fragment of PL1 without
quantifiers.

� Lexical Translation Rules for F1 Categories:

� If w is a proper name, then w′ ∈ Σf0 . (individual constant)

� If w is an intransitive verb, then w′ ∈ Σp1. (one-place predicate)

� If w is a transitive verb, w′ ∈ Σp2. (two-place predicate)

� If w is a noun phrase, then w′ ∈ Σf0 . (individual constant)

� Semantics by Translation: We translate sentences by translating their syntax
trees via tree node translation rules.

� For any lexical item (i.e. word) w, we have the “pseudo-rule” t1: w ; w′.

� Note: This rule does not apply to the syncategorematic items is and the.

� Translations for logical connectives

t2: and ; ∧, t3: or ; ∨, t4: it is not the case that ; ¬

Michael Kohlhase: LBS 72 2025-10-07

Translation Example

� Observation 4.1.22. “Jo poisoned the dog and Ethel laughed” is a sentence of
fragment F1.

� We can construct a syntax tree for it!

Jo poisoned the dog and Ethel laughed

Npr V t N conj Npr V i

NP NP NP

S S

S

Jo′ poisoned′ ∧ Ethel′ laughed′

Jo′ thedog′ Ethel′

poisoned′(Jo′, thedog′) laughed′(Ethel′)

poisoned′(Jo′, thedog′) ∧ laughed′(Ethel′)

Michael Kohlhase: LBS 73 2025-10-07

4.2 Testing Truth Conditions via Inference

Now that our language fragment model is complete for fragment F1, we can test it to see whether
it makes the correct predictions.

We use one of the examples from introduction even though we have to somewhat force-fit
into fragment F1. As the fragment was mostly introduced to show the basic setup, this may be

50 CHAPTER 4. FRAGMENT 1

forgivable.

Testing Truth Conditions in PLnq

� Idea 1: To test our language model (F1)

� Select a sentence S and a situation W that makes S true. (according to
humans)

� Translate S in to a formula S′ in PLnq.

� Express W as a set Φ of formulae in PLnq (Φ =̂ truth conditions)

� Our language model is supported if Φ ⊨ S′, falsified if Φ ̸⊨ S′.

� Example 4.2.1 (John chased the gangster in the red sports car).

� We claimed that we have three readings Example 2.3.3
R1 := c(j, g)∧ in(j, s), R2 := c(j, g)∧ in(g, s), and R3 := c(j, g)∧ in(j, s)∧ in(g, s)

� So there must be three distinct situations W that make S true

1. “John is in the red sports car, but the gangster isn’t”
W1 := c(j, g) ∧ in(j, s) ∧ ¬in(g, s), so W1 ⊨ R1, but W1 ̸⊨ R2 and W1 ̸⊨ R3

2. “The gangster is in the red sports car, but John isn’t”
W2 := c(j, g) ∧ in(g, s) ∧ ¬in(j, s), so W2 ⊨ R2, but W2 ̸⊨ R1 and W2 ̸⊨ R3

3. “Both are in the red sports car ”
=̂ they run around on the back seat of a very big sports car
W3 := c(j, g) ∧ in(j, s) ∧ in(g, s), so W3 ⊨ R3, but W3 ̸⊨ R1 and W3 ̸⊨ R1

� Idea 2: Use a calculus to model ⊨, e.g. ND0

Michael Kohlhase: LBS 74 2025-10-07

4.3 Summary & Evaluation

So let us evaluate what we have achieved so far:

Fragment F1 – Summary

� Fragment F1 of English (defined by grammar + lexicon)

� Logic PLnq (serves as a mathematical model for F1)

� Formal Language (individuals, predicates, ¬,∧,∨,⇒)

� Semantics Iφ defined recursively on formula structure
(; validity, entailment)

� Tableau calculus for validity and entailment (Calculemus!)

� Analysis function F1 ; PLnq (Translation)

� Test the model by checking predictions (calculate truth conditions)

� Coverage: Extremely Boring! (accounts for 0 examples from the intro) but the
conceptual setup is fascinating

Michael Kohlhase: LBS 75 2025-10-07

4.3. SUMMARY & EVALUATION 51

Summary: The Interpretation Process (so far)

� The Interpretation Process in F1: Can be visualized in the following diagram:

Syntax Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional)
checking

truth
conditions

Michael Kohlhase: LBS 76 2025-10-07

52 CHAPTER 4. FRAGMENT 1

Chapter 5

Fragment 2: Pronouns and World
Knowledge ; Semantic/Pragmatic
Analysis

In this chapter we will extend fragment F1 from last chapter with and pronouns: We want
to cover discourses like “Peter loves Fido. Even though he bites him sometimes”. As we already
observed there, we crucially need a notion of context to determine the meaning of the pronoun
during semantic/pragmatic analysis, which we focus on here.

In particular, the example shows us that we will need to take into account world knowledge as
a way to integrate world knowledge to filter out one interpretation/reading, i.e. “Humans don’t
bite dogs.”

For this purpose, we introduce a new concept: the notion of a tableau machine that casts
semantic/pragmatic analysis as an inferential process.

5.1 Fragment 2: Pronouns and Anaphora

We start out with the new data we want to cover in this fragment and some ideas of all the things
we need to adapt. Actually there that is only one new sentence: The Peter/Fido example from
the introduction of LBS.

Fragment F2 (F2 =̂ F1 + Anaphoric Pronouns)

� Want to cover: “Peter loves Fido. He bites him”. (almost intro)

� We need: Translation and interpretation for pronouns like “he”, “she”, “him”,. . . .

� Also: A way to integrate world knowledge to filter out one interpretation. (i.e.
“Humans don’t bite dogs.”)

� Idea: Integrate variables into PLnq (work backwards from that)

� Logical System: PLnq(V) = PLnq + variables (Translate pronouns to variables)

Michael Kohlhase: LBS 77 2025-10-07

For the syntax, the necessary changes are quite minor as well. We need to extend the grammar
from fragment 1 by one new phrasal category and one derivation rule:

53

54CHAPTER 5. FRAGMENT 2: PRONOUNS AND WORLD KNOWLEDGE ; SEMANTIC/PRAGMATIC ANALYSIS

New Grammar in F2 (Pronouns)

� Definition 5.1.1. We have the following structural grammar rules in F2

S1: S→NP, V i,
S2: S→NP, V t,NP,
N1: NP→Npr,
N2: NP→Pron,
N3: NP→ the, N ,

S3: S→ it is not the case that, S,
S4: S→S, conj, S,
S5: S→NP, is,NP,
S6: S→NP, is,Adj

and one additional lexical rule:

L7: Pron→he | she | it | we | they

Michael Kohlhase: LBS 78 2025-10-07

We also have to adapt the logical system we want to translate into, and we do this by adding
variables. Recall that variables denote arbitrary individuals and can be instantiated in inference-
processes. That makes them seem suitable as a logical counterpart for pronouns.

The main idea here is to extend PLnq – the fragment of first-order logic we use as a model for
natural language – to include free variables, and assume that pronouns like “he”, “she”, “it”, and
“they” are translated to distinct free variables i.e. every occurrance of a pronoun to a new variable.

The mathematical development of PLnq(V) itself is rather simple: it extends PLnq, but stays a
fragment of first-order logic, so we can get by with the methods developed for that.

Note that we do not allow quantifiers yet that will come in chapter 7, as quantifiers will
pose new problems, and we can already solve some linguistically interesting problems without
them.

Predicate Logic with Variables (but no Quantifiers)

� Definition 5.1.2 (Logical System PLnq(V)). PLnq(V) := PLnq + variables

� Definition 5.1.3 (PLnq(V) Syntax).
Category V = {X,Y , Z,X1, X2, . . .} of variables (allow variables wherever
individual constants were allowed)

� Definition 5.1.4 (PLnq(V) Semantics).
First-order model M = ⟨D, I⟩ (need to evaluate variables)

� variable assignment: φ : Vι→ U

� value function: Iφ(X) = φ(X) (defined like I elsewhere)

� call a PLnq(V) formula A valid inM under φ, iff Iφ(A) = T,

� call it satisfiable inM, iff there is a variable assignment φ, such that Iφ(A) = T

Michael Kohlhase: LBS 79 2025-10-07

And now, the translation to PLnq(V) is again very simple:

5.2. INFERENCE WITH WORLD KNOWLEDGE AND FREE VARIABLES – A CASE STUDY55

Translation for F2 (first attempt)

� Idea: Pronouns are translated into new variables (so far)

� New Translation Rule: We translate pronouns by the “rule”:
T9: [X]Pron ; Ynew, where Ynew is a new variable.

� The syntax/semantic trees for “Peter loves Fido and he bites him.” are straightforward.
(almost intro)

Peter loves Fido and he bites him

Npr V t N conj Pron V t Pron

NP NP NP NP

S S

S

Peter loves Fido and he bites him

Peter′ loves′ Fido′ ∧ X bites′ Y

Peter′ Fido′ X Y

loves′(Peter′, F ido′) bites′(X,Y)

loves′(Peter′ ∧ Fido′) ∧ bites′(X ∧ Y)

Michael Kohlhase: LBS 80 2025-10-07

Here we see how the principle of compositionality we impose on semantics construction makes our
life easy: for every syntax rule, we need exactly one translation rule – here the one above.

5.2 Inference with World Knowledge and Free Variables – A
Case Study

In F1 we did not have a dedicated semantic/pragmatic analysis phase, but in F2 we have
anaphoric pronouns which need to be resolved. So we will start experimenting with model gener-
ation tableaux to see where this will go with respect to anaphor resolution.

5.2.1 Pragmatics via Model Generation Tableaux?
As we have established (see ???) that PLnq is isomorphic to PL0, we can directly use the proposi-
tional tableau calculus for deciding entailment in PLnq. For PLnq(V), we have to do more, especially,
if we want to deal with anaphora and the world knowledge we have to use to process them. In par-
ticular we will have to extend our tableau calculus with new inference rules for the new language
capabilities.

A Tableau Calculus for PLnq(V)

� Definition 5.2.1 (Tableau Calculus for PLnq(V)). T pV = T0 + new tableau rules
for formulae with variables

...
Aα

...

c ∈ H

([c/X](A))
α T pV WK

...
A

H = {a1, . . ., an}
free(A) = {X1, . . ., Xm}

(σ1(A))
T
∣∣∣ . . . ∣∣∣ (σnm(A))

T
T pVAna

56CHAPTER 5. FRAGMENT 2: PRONOUNS AND WORLD KNOWLEDGE ; SEMANTIC/PRAGMATIC ANALYSIS

H is the set of ind. constants in the branch above (Herbrand universe)

and the σi are substitutions that instantiate the Xj with any combinations of the
ak (there are nm of them).

� the first rule is used for world knowledge (up in the branch)

� the second rule is used for input logical forms · · ·
this rule has to be applied eagerly (while they are still at the leaf)

Michael Kohlhase: LBS 81 2025-10-07

We use free variables for two purposes in our new fragment: Free variables in the input stand
for pronouns, their value will be determined by random instantiation. Free variables in the world
knowledge allow us to express schematic knowledge. For instance, if we want to express “Humans
don’t bite dogs.”, then we can do this by the formula human(X)∧dog(Y)⇒¬bites(X,Y).
Let us look at two examples: To understand the role of background knowledge we interpret “Peter
snores” with respect to the knowledge that “Only sleeping people snore”.
To allow for world knowledge, we generalize the notion of an initial tableau. Instead of allowing

only the initial labeled formula at the root node, we allow a linear tree whose nodes are labeled
formulae with positive formulae representing the world knowledge. As the world knowledge resides
in the initial tableau (intuitively before all input), we will also speak of background knowledge.

Some Examples in F2

� Example 5.2.2 (Peter snores). (Only sleeping people snore)

(snores(X)⇒ sleeps(X))
T

snores(peter)

(snores(peter)⇒ sleeps(peter))
T

sleeps(peter)
T

� Example 5.2.3 (Peter sleeps. John walks. He snores). (who snores?)

sleeps(peter)

walks(john)

snores(X)

snores(peter)
T

snores(john)
T

Michael Kohlhase: LBS 82 2025-10-07

The background knowledge is represented in the schematic formula in the first line of the tableau.
Upon receiving the input, the tableau instantiates the schema to line three and uses the chaining
rule from ??? to derive the fact that Peter must sleep.
The third input formula contains a free variable, which is instantiated by all constant in the
Herbrand universe (two in our case). This gives rise to two Herbrand models that correspond to
the two readings of the discourse.
Let us now look at an example with more realistic background knowledge. Say we know that
birds fly, if they are not penguins. Furthermore, eagles and penguins are birds, but eagles are
not penguins. Then we can answer the classic question “Does Tweety fly? ” by the following two

5.2. INFERENCE WITH WORLD KNOWLEDGE AND FREE VARIABLES – A CASE STUDY57

tableaux.

Does Tweety Fly? The everlasting Question in AI

� Example 5.2.4.

“Tweety is a bird ” “Tweety is an eagle”

(bird(X)⇒ (flies(X) ∨ penguin(X)))
T

(penguin(X)⇒¬flies(X))
T

bird(tweety)

(flies(tweety) ∨ penguin(tweety))
T

flies(tweety)
T

penguin(tweety)
T

¬flies(tweety)T

flies(tweety)
F

(bird(X)⇒ (flies(X) ∨ penguin(X)))
T

(eagle(X)⇒ bird(X))
T

(penguin(X)⇒¬eagle(X))
T

(penguin(X)⇒¬flies(X))
T

eagle(tweety)

bird(tweety)
T

(flies(tweety) ∨ penguin(tweety))
T

flies(tweety)
T

penguin(tweety)
T

(¬eagle(tweety))T

eagle(tweety)
F

⊥

� For the second we need to add more world knowledge.

Michael Kohlhase: LBS 83 2025-10-07

5.2.2 Case Study: Peter loves Fido, even though he sometimes bites
him

Let us now return to the motivating example from the introduction, and see how our system fares
with it (this allows us to test our computational/linguistic theory). We will do this in a completely
naive manner and see what comes out, and worry about the theory in the next subsection.
The first problem we run into immediately is that we do not know how to cope with “even though”
and “sometimes”, so we simplify the discourse to “Peter loves Fido and he bites him.”.

Finally: “Peter loves Fido. He bites him.”

� Let’s try it naively (worry about the problems later.)

l(p, f)

b(X,Y)

b(p, p)
T

b(p, f)
T

b(f, p)
T

b(f, f)
T

� Problem: We get four readings instead of one!

� Idea: We have not specified enough world knowledge.

Michael Kohlhase: LBS 84 2025-10-07

The next problem is obvious: We get four readings instead of one (or two)! What has happened?
If we look at the models, we see that we did not even specify the background knowledge that was
supposed filter out the one intended reading.

58CHAPTER 5. FRAGMENT 2: PRONOUNS AND WORLD KNOWLEDGE ; SEMANTIC/PRAGMATIC ANALYSIS

We try again with the additional knowledge that “Nobody bites himself ” and “Humans do not bite
dogs”.

Peter and Fido with World Knowledge

� Nobody bites himself, humans do not bite dogs.

d(f)
T

m(p)
T

b(X,X)
F

(d(X) ∧m(Y)⇒¬b(Y,X))
T

l(p, f)

b(X,Y)

b(p, p)
T

b(p, p)
F

⊥

b(p, f)
T

(d(f) ∧m(p)⇒¬b(p, f))T

b(p, f)
F

⊥

b(f, p)
T

b(f, f)
T

b(f, f)
F

⊥

� Observation: Anaphor resolution introduces ambiguities.

� Pragmatics: Use world knowledge to filter out impossible readings.

Michael Kohlhase: LBS 85 2025-10-07

We observe that our extended tableaucalculus was indeed able to handle this example, if we
only give it enough background knowledge to act upon.

But the world knowledge we can express in PLnq(V) is very limited. We can say that humans
do not bite dogs, but we cannot provide the background knowledge to understand a sentence like
“Peter was late for class today, the car had a flat tire.”, which needs knowledge like “Every car
has wheels, which have a tire.” and “if a tire is flat, the car breaks down.”, which is outside the
realm of PLnq(V).

5.2.3 The Computational Role of Ambiguities
In the case study above we have seen that anaphor resolution introduces ambiguities, and we
can use world knowledge to filter out impossible readings. Generally in the traditional waterfall
model of language processing – which posits that NL understanding is a process that analyzes the
input in stages: syntax, semantics construction, pragmatics – every processing stage introduces
ambiguities that need to be resolved in this stage or later.

The computational Role of Ambiguities

� Observation: (in the traditional waterfall model)
Every processing stage introduces ambiguities that need to be resolved.

� Syntax: e.g. “Peter chased the man in the red sports car ” (attachment)

� Semantics: e.g. “Peter went to the bank” (lexical)

� Pragmatics: e.g. “Two men carried two bags” (collective vs. distributive)

� Question: Where does pronoun ambiguity belong? (much less clear)

� Answer: we have freedom to choose

5.2. INFERENCE WITH WORLD KNOWLEDGE AND FREE VARIABLES – A CASE STUDY59

1. resolve the pronouns in the syntax (generic waterfall model)

; multiple syntactic representations (pragmatics as filter)

2. resolve the pronouns in the pragmatics (our model here)

; need underspecified syntactic representations (e.g. variables)
; pragmatics needs ambiguity treatment (e.g. tableaux)

Michael Kohlhase: LBS 86 2025-10-07

For pronoun ambiguities, this is much less clear. In a way we have the freedom to choose. We can

1. resolve the pronouns in the syntax as in the generic waterfall model, then we arrive at multiple
syntactic representations, and can use pragmatics as filter to get rid of unwanted readings

2. resolve the pronouns in the pragmatics (our model here) then we need underspecified syntactic
representations (e.g. variables) and pragmatics needs ambiguity treatment (in our case the
tableaux).

We will continue to explore the second alternative in more detail, and refine the approach. One
of the advantages of treating the anaphoric ambiguities in the syntax is that syntactic agree-
ment information like gender can be used to disambiguate. Say that we vary the example from
subsection 5.2.2 to “Peter loves Mary. She loves him.”.

Translation for Fragment F2 Reconsidered

� Idea: Pronouns are translated into new variables. (so far)

� Problem: “Peter loves Mary. She loves him.”

loves(peter,mary)

loves(X,Y)

loves(peter, peter)T loves(peter,mary)T loves(mary,peter)T loves(mary,mary)T

� Idea: Attach world knowledge to pronouns. (just as with Peter and Fido)

� Use the world knowledge to distinguish (linguistic) gender by predicates masc and fem.

� Problem: Properties of

� proper names are given in the model,

� pronouns must be given by the syntax-semantics interface.

� In particular: How to generate loves(X,Y)∧masc(X)∧fem(Y) compositionally?

Michael Kohlhase: LBS 87 2025-10-07

The tableau (over)-generates the full set of pronoun readings. At first glance it seems that we can
fix this just like we did in subsection 5.2.2 by attaching world knowledge to pronouns, just as with
Peter and Fido. Then we could use the world knowledge to distinguish gender by predicates, say
masc and fem.

But if we look at the whole picture of building a system, we can see that this idea will not
work. The problem is that properties of proper names like Fido are given in the background
knowledge, whereas the relevant properties of pronouns must be given by the syntax-semantics
interface. Concretely, we woulad need to generate loves(X,Y) ∧masc(X) ∧ fem(Y) for “She loves
him”. How can we do such a thing compositionally?

60CHAPTER 5. FRAGMENT 2: PRONOUNS AND WORLD KNOWLEDGE ; SEMANTIC/PRAGMATIC ANALYSIS

Again we basically have two options, we can either design a clever syntax-semantics interface,
or we can follow the lead of Montague semantics and extend the logic, so that compositionality
becomes simpler to achieve. We will explore the latter option in the next section. The
problem we stumbled across in the last section is how to associate certain properties (in this case
agreement information) with variables compositionally. Fortunately, there is a ready-made logical
theory for it. Sorted first-order logic. Actually there are various sorted first-order logics, but we
will only need the simplest one for our application at the moment.
Sorted first-order logic extends the language with a set S of sorts A,B,C, . . ., which are just special
symbols that are attached to all terms in the language.

Syntactically, all constants, and variables are assigned sorts, which are annotated in the lower
index, if they are not clear from the context. Semantically, the universe D is subdivided into
subsets DA ⊆ D, which denote the objects of sort A; furthermore, the interpretation function I
and variable assignment φ have to be well sorted. Finally, on the calculus level, the only change
we have to make is to restrict instantiation to well-sorted substitutions:

Sorts refine World Categories

� Definition 5.2.5 (Sorted Logics). (in our case PL1
S)

Assume a set of sorts S := {A,B,C, . . .}, annotate every syntactic and semantic
structure with them. Make all constructions and operations well worted:

� Syntax: Variables and constants are sorted XA, YB, Z
1
C1
. . ., aA, bA, . . .

� Semantics: Subdivide the universe D into subsets DA ⊆ D
Interpretation I and variable assignment φ have to be well-sorted. I(aA), φ(XA) ∈
DA.

� Calculus: Substitutions must be well sorted [aA/XA] OK, [aA/XB] not.

� Observation: Sorts do not add expressivity in principle (just practically) For
every sort A, we introduce a first-order predicate RA and

� Translate R(XA) ∧ ¬P (ZC) to RA(X) ∧ RC(Z)⇒ R(X) ∧ ¬P (Z) in world
knowledge.

� Translate R(XA) ∧ ¬P (ZC) to RA(X) ∧RC(Z) ∧R(X,Y) ∧ ¬P (Z) in input.

� Meaning is preserved, but translation is non-compositional!

Michael Kohlhase: LBS 88 2025-10-07

5.3 Tableaux and Model Generation
Now that we have seen that using tableaux in model generation mode – i.e. decorate the initial

formula with T and see what branches develop – let us supply some of the theory after the fact,
and clean up all the details that have been missing.

The main result of this section is the a tableau machine – an online inferential process for
natural language interpretation – that we will develop further as a model for semantic/pragmatic
analysis in this course.

5.3.1 Tableau Branches and Herbrand Models
We have claimed above that the set of literals in open saturated tableau branches corresponds

to a model. To gain an intuition, we will study our example above,

5.3. TABLEAUX AND MODEL GENERATION 61

Model Generation and Interpretation

� Example 5.3.1 (from above). In ??? we claimed that the set

B := {loves(john,mary)
F
, loves(mary, bill)

T}

of literals on the open branch of the tableau T below

(loves(mary, bill) ∨ loves(john,mary))
T

loves(john,mary)
F

loves(mary, bill)
T

loves(john,mary)
T

⊥

constitutes a “model”. (it can be conveniently read off)

� Recap: A first-order model M is a pair ⟨D, I⟩, where D is a set of individuals,
and I is an interpretation function.

� Problem: Find D and I based on B.

Michael Kohlhase: LBS 89 2025-10-07

So the first task is to find a domain D of interpretation. Our formula mentions “Mary”, “John”,
and “Bill ”, which we assume to refer to distinct individuals so we need (at least) three individuals
in the domain; so let us take D := {A,B,C} and fix I(mary) = A, I(bill) = B, I(john) = C.

So the only task is to find a suitable interpretation for the predicate loves that makes loves(john,mary)
false and loves(mary, bill) true. This is simple: we just take I(loves) = {⟨A,B⟩}. Indeed we have

Iφ(loves(mary, bill) ∨ loves(john,mary)) = T

but Iφ(loves(john,mary)) = F according to the rules in1.

Model Generation and Models

� Idea: Choose the universe D as the set Σf0 of constants, choose I = IdΣf
0
,

interpret p ∈ Σpk as RB(p):={⟨a1, . . ., ak⟩ | p(a1, . . ., ak)T ∈ B}.

� Definition 5.3.2. We call a model a Herbrand model, iff D = Σf0 and I = IdΣf
0
.

� Definition 5.3.3. Let H be a set of atomic propositions such that AF ̸∈ H, if
AT ∈ H, then we call H a Herbrand valuation.

� Lemma 5.3.4. Let H be a Herbrand valuation, then setting I(p):=RH(p) yields
a Herbrand model that satisfies H. (proof trivial)

� Corollary 5.3.5. Let H be a Herbrand valuation, then there is a Herbrand model
that satisfies H. (use RH)

Michael Kohlhase: LBS 90 2025-10-07

In particular, the literals of an open saturated tableau branch B are a Herbrand model H, as
we have convinced ourselves above. By inspection of the inference rules above, we can further
convince ourselves, that H satisfies all formulae on B. We must only check that if H satisfies the

1EdNote: crossref

62CHAPTER 5. FRAGMENT 2: PRONOUNS AND WORLD KNOWLEDGE ; SEMANTIC/PRAGMATIC ANALYSIS

succedents of the rule, then it satisfies the antecedent (which is immediate from the semantics of
the principal connectives).

In particular, H is a model for the root formula of the tableau, which is on B by construction.
So the tableau procedure is also a procedure that generates explicit (Herbrand) models for the root
literal of the tableau. Every branch of the tableau corresponds to a (possibly) different Herbrand
model. We will use this observation in the next section in an application to natural language
semantics.

5.3.2 Using Model Generation for Interpretation
We will now use model generation directly as a tool for discourse interpretation. To do so, we

will have to go beyond just looking at model generation calculi and extend this to an inference-
driven processing model: the tableau machine. But first we look for the motivation for this from
cognitive science.

Using Model Generation for Interpretation

� Definition 5.3.6. Mental model theory [JL83; JLB91] posits that humans form
mental models of the world, i.e. (neural) representations of possible states of the
world that are consistent with the perceptions up to date and use them to reason
about the world.

� So communication by natural language is a process of transporting parts of the
mental model of the speaker into the mental model of the hearer.

� Therefore the NL interpretation process on the part of the hearer is a process of
integrating the meaning of the utterances of the speaker into his mental model.

� Idea: We can model discourse understanding as a process of generating Herbrand
models for the logical form of an utterance in a discourse by a tableau based model
generation procedure.

� Advantage: Capturing ambiguity by generating multiple models for input logical
forms.

Michael Kohlhase: LBS 91 2025-10-07

Tableau Machine

� Definition 5.3.7. The tableau machine is an inferential cognitive model for incre-
mental natural language understanding that implements mental model theory via
tableau based model generation over a sequence of input sentences.

It iterates the following process for every input sentence staring with the empty
tableau:

1. add the logical form of the input sentence Si to the selected branch,

2. perform tableau inferences below Si until saturated or some resource criterion is
met

3. if there are open branches choose a “preferred branch”, otherwise backtrack to
previous tableau for Sj with j < i and open branches, then re-process Sj+1, . . . , Si
if possible, else fail.

5.3. TABLEAUX AND MODEL GENERATION 63

The output is application-dependent; some choices are

� the Herbrand model for the preferred branch ; preferred interpretation;

� the literals augmented with all non-expanded formulae
(from the discourse); (resource-bound was reached)

� Tableau machine answers user queries (preferred model |= query?)

� Interpretation mode via model generation (guided by resources and strategies)

� Query mode by refutation theorem proving (2 for side conditions; using tableau
rules)

Michael Kohlhase: LBS 92 2025-10-07

Concretely, we treat discourse understanding as an online process that receives as input the logical
forms of the sentences of the discourse one by one, and maintains a tableau that represents the
current set of alternative models for the discourse. Since we are interested in the internal state of
the machine (the current tableau), we do not specify the output of the tableau machine. We also
assume that the tableau machine has a mechanism for choosing a preferred model from a set of
open branches and that it maintains a set of deferred branches that can be re-visited, if extension
of the preferred model fails.

The Tableau Machine in Model Generation Mode

� Example 5.3.8. The tableau machine in action (query mode on two sentences).

initialize tableau
World

Knowledge

World
Knowledgeinput sentence 1

Sentence 1
World

Knowledge

Sentence 1

saturate tableau

⊥ 2 ⊥ 2

World
Knowledge

Sentence 1

⊥ 2 ⊥ 2

choose branch

64CHAPTER 5. FRAGMENT 2: PRONOUNS AND WORLD KNOWLEDGE ; SEMANTIC/PRAGMATIC ANALYSIS

World
Knowledgeinput sentence 2

Sentence 1

⊥ 2 ⊥ 2

Sentence 2
World

Knowledge

Sentence 1

saturate tableau

⊥ 2 ⊥ 2

Sentence 2

⊥ ⊥ ⊥ ⊥
World

Knowledge

Sentence 1

⊥ 2 ⊥ 2

Sentence 2

⊥ ⊥ ⊥ ⊥

reject branch

5.3. TABLEAUX AND MODEL GENERATION 65

World
Knowledge

Sentence 1

⊥ 2 ⊥ 2

Sentence 2

⊥ ⊥ ⊥ ⊥

re-add sentence

Sentence 2

World
Knowledge

Sentence 1

⊥ 2 ⊥ 2

Sentence 2

⊥ ⊥ ⊥ ⊥

saturate tableau

Sentence 2

⊥ 2 ⊥ ⊥

66CHAPTER 5. FRAGMENT 2: PRONOUNS AND WORLD KNOWLEDGE ; SEMANTIC/PRAGMATIC ANALYSIS

World
Knowledge

Sentence 1

⊥ 2 ⊥ 2

choose branch

Sentence 2

⊥ ⊥ ⊥ ⊥

Sentence 2

⊥ 2 ⊥ ⊥

Michael Kohlhase: LBS 93 2025-10-07

Upon input, the tableau machine appends the given logical form as a leaf to the preferred branch.
The machine then saturates the current tableau branch, exploring the set of possible models for
the sequence of input sentences. If the subtableau generated by this saturation process contains
open branches, then the machine chooses one of them as the preferred model, marks some of the
other open branches as deferred, and waits for further input. If the saturation yields a closed
sub-tableau, then the machine backtracks, i.e. selects a new preferred branch from the deferred
ones, appends the input logical form to it, saturates, and tries to choose a preferred branch.
Backtracking is repeated until successful, or until some termination criterion is met, in which case
discourse processing fails altogether.
After discussing the general operation of the tableau machine, let us now come to a concrete
linguistic example to see whether it behaves as we expect from a semantic/pragmatic analysis
method.
The example we consider below is challenging for most NLU pipelines, since it combines syntactic
and pragmatic ambiguity.

Two (Syntactical) Readings

� Example 5.3.9 (A syntactically ambiguous sentence).
“Peter loves Mary and Mary sleeps or Peter snores”.

Reading 1: loves(peter,mary) ∧ (sleeps(mary) ∨ snores(peter))

Reading 2: loves(peter,mary) ∧ sleeps(mary) ∨ snores(peter)

Consider the first reading, start out with the empty tableau for simplicity, even
though this is cognitively implausible.

loves(peter,mary) ∧ (sleeps(mary) ∨ snores(peter))

loves(peter,mary)
T

(sleeps(mary) ∨ snores(peter))
T

sleeps(mary)
T

snores(peter)
T

5.3. TABLEAUX AND MODEL GENERATION 67

� Observation: We have two models, so we have a case of pragmatic ambiguity.

Michael Kohlhase: LBS 94 2025-10-07

We see that model generation gives us two models; in both Peter loves Mary, in the first, Mary
sleeps, and in the second one Peter snores. If we get a logically different input, e.g. the second
reading in Example 5.3.9, then we obtain different models.

The other (Syntactical) Reading

loves(peter,mary) ∧ sleeps(mary) ∨ snores(peter)

(loves(peter,mary) ∧ sleeps(mary))
T

loves(peter,mary)
T

sleeps(mary)
T

snores(peter)
T

Michael Kohlhase: LBS 95 2025-10-07

In a discourse understanding system, both readings have to considered in parallel, since they
pertain to a genuine ambiguity. The strength of our tableau-based procedure is that it keeps the
different readings around, so they can be acted upon later.
Note furthermore, that the overall (syntactical and semantic) ambiguity is not as bad as it looks:
the left models of both readings are identical, so we only have three semantic readings not four.

Continuing the Discourse

� Example 5.3.10. “Peter does not love Mary ”.
Then the second tableau would be extended to

loves(peter,mary) ∧ sleeps(mary) ∨ snores(peter)

(loves(peter,mary) ∧ sleeps(mary))
T

loves(peter,mary)
T

sleeps(mary)
T

¬loves(peter,mary)

loves(peter,mary)
F

⊥

snores(peter)
T

¬loves(peter,mary)

and the first tableau closes altogether.

� In effect the choice of models has been reduced to one, which constitutes the
intuitively correct reading of the discourse.

Michael Kohlhase: LBS 96 2025-10-07

5.3.3 Adding Equality to PLNQ for Fragment 1
We will now extend PLnq by equality, which is a very important relation in natural language –

and a liability from F1: remember the translation rule

T7: [XNP, is, YNP]S ; X ′ = Y ′

which we conveniently forgot because PLnq did not have equality? We fix this now.
Generally, extending a logic with a new logical constant equality is counted as a logical constant,
since it semantics is fixed in all models involves extending all three components of the logical
system: the language, semantics, and the calculus.

68CHAPTER 5. FRAGMENT 2: PRONOUNS AND WORLD KNOWLEDGE ; SEMANTIC/PRAGMATIC ANALYSIS

PL=
NQ: Adding Equality to PLnq

� Syntax: Just another binary predicate constant =

� Semantics: Fixed as Iφ(a = b) = T, iff Iφ(a) = Iφ(b). (logical constant)

� Definition 5.3.11 (Tableau Calculus T =
NQ). Add two additional inference rules

(a positive and a negative) to T0

a ∈ H
a = aT

T =
NQsym

a = bT

A [a]p
α

[b/p]A
α T =

NQrep

where

� H =̂ the Herbrand universe, i.e. the set of constants occurring on the branch.

� we write C [A]p to indicate that C|p = A (C has subterm A at position p).

� [A/p]C is obtained from C by replacing the subterm at position p with A.

� Note: We could have equivalently written T =
NQsym as

a = aF

⊥
:

With T =
NQsym conjure a = aT from thin air, use it to close a = aF.

� So, . . . T =
NQsym and T =

NQrep follow the pattern of having a T and a F rule per
logical constant.

Michael Kohlhase: LBS 97 2025-10-07

If we use the simple translation of definite descriptions from fragment F1, where the phrase
“the teacher ” translates to a concrete individual constant, then we can interpret (??) as (??).

Reading Comprehension Example: Mini TOEFL test

� Example 5.3.12 (Reading Comprehension). If you hear/read “Mary is the
teacher. Peter likes the teacher.”, do you know whether “Peter likes Mary ”?

� Idea: Interpret via tableau machine (interpretation mode) and test entailment in
query mode.

� Interpretation: Feed Φ1 := mary = the_teacher and Φ2 := likes(peter, the_teacher)
to the tableau machine in turn. Model generation tableau (nothing to do on
these inputs)

mary = the_teacher

likes(peter, the_teacher)

� Question Answering: Use the tableau machine in query mode for an “entailment

5.4. SUMMARY & EVALUATION 69

test”: Label φ := likes(peter,mary) with F and saturate.

mary = the_teacher

likes(peter, the_teacher)

likes(peter,mary)
F

likes(peter, the_teacher)
F

⊥

Indeed, it closes, so Φ1,Φ2 ⊨ φ ; “yes, Peter likes Mary ”.

� Note: The part marked in double vertical lines is removed from the tableau after
answering. (do not mess up the tree/models)

Michael Kohlhase: LBS 98 2025-10-07

5.4 Summary & Evaluation

So let us evaluate what we have achieved in the new, extended fragment.

Fragment F2 – Summary

� Fragment F2 extends F1 by pronouns.

� Logic/translation extended correspondingly:

� Equality (actually already needed for F1)

� Variables as underspecified representations for anaphoric pronouns.

� New NLU component: semantic/pragmatic analysis

� Tableau machine as an inferential model for pronoun resolution.

� Uses world knowledge to augment/prune models.

� Coverage: Still relatively limited (accounts for 1 example from the intro)

Michael Kohlhase: LBS 99 2025-10-07

Model Generation models Discourse Understanding

� The tableau machine algorithm conforms with psycholinguistic findings:

� Zwaan& Radvansky [ZR98]: listeners not only represent logical form, but also
models containing referents.

� deVega [de 95]: online, incremental process.

� Singer [Sin94]: enriched by background knowledge.

� Glenberg et al. [GML87]: major function is to provide basis for anaphor resolu-
tion.

Michael Kohlhase: LBS 100 2025-10-07

70CHAPTER 5. FRAGMENT 2: PRONOUNS AND WORLD KNOWLEDGE ; SEMANTIC/PRAGMATIC ANALYSIS

Towards a Performance Model for NLU

� Problem: The tableau machine is only a competence model.

� Definition 5.4.1. A competence model is a meaning theory that delineates a space
of possible discourses. A performance model delineates the discourses actually used
in communication. (after [Cho65])

� Idea: We need to guide the tableau machine in which inferences and branch
choices it performs.

� Idea: Each tableau rule comes with rule costs.

� Here: each sentence in the discourse has a fixed inference budget.
Expansion until budget used up.

� Ultimately we want bounded optimization regime [Rus91]:
Expansion as long as expected gain in model quality outweighs proof costs

� Effect: Expensive rules are rarely applied. (only if the promise great rewards)

� Finding appropriate values for rule costs and model quality is an open problem.

Michael Kohlhase: LBS 101 2025-10-07

Summary: The Full Interpretation Process

� Full Interpretation Process: In F2 we have extended the interpretation process
by semantic/pragmatic analysis, so we arrive at:

Syntax Quasi-Logical Form Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Pragmatic
Analysis

(inferential)

truth
conditions

Michael Kohlhase: LBS 102 2025-10-07

Chapter 6

Fragment 3: Complex Verb Phrases

With the setup of the method of fragments in fragment F2 and its tableau machine for seman-
tic/pragmatic analysis complete, we now extend it to cover more interesting syntactical structures.
The main new feature will be to significantly extend the logical system so that it can cope with
the composition problem identified in ???.

6.1 Fragment 3 (Handling Verb Phrases)

F3: New Data (Verb Phrases)

� New Data: in F3.

1. “Ethel howled and screamed.”

2. “Ethel kicked the dog and poisoned the cat.”

3. “Fiona liked Jo and loathed Ethel and tolerated Prudence.”

4. “Fiona kicked the cat and laughed.”

5. “Bertie didn’t laugh.”

6. “Bertie didn’t laugh and didn’t scream.”

7. “Bertie didn’t laugh or scream.”

8. “Bertie didn’t laugh or kick the dog.”

9. * “Bertie didn’t didn’t laugh.”

� We extend F2. (no feature interaction)

Michael Kohlhase: LBS 103 2025-10-07

The main extension of the fragment is the introduction of the new phrasal category VP, we have
to interpret.

New Grammar in Fragment F3 (Verb Phrases)

� To account for the syntax we come up with the concept of a verb phrase (VP)

� Definition 6.1.1. A verb phrase is any phrase that can be used (syntactially)
whereever a verb can be.

71

72 CHAPTER 6. FRAGMENT 3: COMPLEX VERB PHRASES

� Example 6.1.2. The phrase “tolerated Prudence” is like “slept” (syntactially)

� Idea: Allow verb phrases (VP in the grammar wherever we had intransitive verbs
(V i) before.

� Problem: The obvious rule VP→ didn’t VP over-generates: it accepts * “Bertie
didn’t didn’t laugh.” (note the infinitive)

� Definition 6.1.3. A verb is called finite, iff it contextually complements either an
explicit subject or – in the imperative mood – an implicit subject.

� Observation: Finite verbs are inflected.

� Definition 6.1.4. Non-finite verbs, are verb forms that do not show tense, person,
or number.

� Idea: We will use features +fin for finite, -fin for non-finite in grammar rules, and
±fin for schemata.

Michael Kohlhase: LBS 104 2025-10-07

Intuitively, verb phrases denote functions that can be applied to the NP meanings (rule 1 be-
low). Complex VP functions can be constructed from simpler ones by NL coordinators acting as
functional operators.

New Grammar in Fragment F3 (Verb Phrases)

� Definition 6.1.5. F3 has the following rules:
S1. S ! : → NP VP+fin
S2. S ! : → S conj S

V1. VP±fin ! : → V i±fin
V2. VP±fin ! : → V t±fin NP

V3. VP±fin ! : → VP±fin conj VP±fin
V4. VP+fin ! : → BE= NP
V5. VP+fin ! : → BEpred Adj.
V6. VP+fin ! : → didn’t VP-fin

N1. NP → Npr

N2. NP → Pron
N3. NP → the N
L8. BE= → is
L9. BEpred → is
L10. V i-fin → run, laugh,. . .
L11. V t-fin → read, poison,. . .

� Remark: The ±fin feature solves the “didn’t” over-generation problem.

� Remark: Many machine-oriented grammars have extensive feature systems like
our ±fin.

� Limitations of F3:

� F3 does not allow coordination of transitive verbs (problematic anyways)
“Prudence kicked and scratched Ethel.”

Michael Kohlhase: LBS 105 2025-10-07

Testing the Grammar on an Example

� Example 6.1.6. Ethel howled and screamed

Npr V i+fin conj V i+fin

6.2. DEALING WITH FUNCTIONS IN LOGIC AND LANGUAGE 73

Michael Kohlhase: LBS 106 2025-10-07

Towards a Semantics for F3

� Recall: So far we have mapped intransitive verb (V i) to predicates which could
be applied to NP meanings (individuals).

� So: VP meanings are functions from individuals to truth values

� And: conj meanings are functionals that map functions to functions.

� In logic we distinguish such objects (individuals and functions of various kinds) by
assigning them types.

� Let’s make this formal ; develop a suitable logic!

Michael Kohlhase: LBS 107 2025-10-07

6.2 Dealing with Functions in Logic and Language
So we need to have a logic that can deal with functions and functionals (i.e. functions that

construct new functions from existing ones) natively. This goes beyond the realm of first-order
logic we have studied so far. We need two things from this logic:

1. a way of distinguishing the respective individuals, functions and functionals, and

2. a way of constructing functions from individuals and other functions.

There are standard ways of achieving both, which we will combine in the following to get the
“simply typed lambda calculus” which will be the workhorse logic for F3.

The standard way for distinguishing objects of different levels is by introducing types, here
we can get by with a very simple type system that only distinguishes functions from their argu-
ments.

Types

� Intuition: Types are semantic annotations for terms that prevent antinomies.

� Definition 6.2.1. Given a set BT of base types, construct function types: α→ β
is the type of functions with domain type α and range type β. We call the closure
T of BT under function types the set of simple types over BT .

� Definition 6.2.2. We will use ι for the type of individuals and o for the type of
truth values.

� Right Associativity: The type constructor is used as a right-associative operator,
i.e. we use α→ β → γ as an abbreviation for α→ (β → γ)

� Vector Notation: We will use a kind of vector notation for function types, ab-
breviating α1→ . . .→ αn → β with αn → β.

Michael Kohlhase: LBS 108 2025-10-07

To strengthen our intuition about the way types can work, we look at the canonical example:
Russell’s paradox.

74 CHAPTER 6. FRAGMENT 3: COMPLEX VERB PHRASES

What can happen without Types as a Safety-Net

� Definition 6.2.3. The unrestricted comprehension principle states that for any
sufficiently well-defined property P , there is the set of all and only the objects that
have property P .

� Definition 6.2.4. Russell’s paradox (also known as Russell’s antinomy) is a set-
theoretic paradox that shows that every set theory that contains an unrestricted
comprehension principle leads to contradictions.

� Definition 6.2.5. The Russell set R is the set of all sets that are not members of
themselves.

� Observation: If R is assumed to exist (e.g. by the unrestricted comprehension
principle), then we end up with an antinomy:

� Suppose R ∈ R, then then we must have R ̸∈ R, since we have explicitly taken
out the set that contain themselves.

� Suppose R ̸∈ R, then have R ∈ R, since all other sets are elements.

So R ∈ R iff R ̸∈ R, which is a contradiction! (Russell’s Antinomy [Rus03])

� Does Logic help?:

� No, if untyped: R := {m |m ̸∈ m} or equivalently: R := {m |m m}.
� Yes, if typed: m(m) cannot be well-typed with simple types, so we can not

define R.

� Generally: Simple types prevent self-application: If we type m(m) as mα(mβ),
then we must have α = β → γ for the function application to work but also α = β
to have consistent typing.

Michael Kohlhase: LBS 109 2025-10-07

Here we see the isomorphism between characteristic functions and sets at work again. In the
argumentation about preventing harmful self-application.
But let us come back to the work types can do in FragmentThree. In anticipation of a typed
target logic, we can associate types to the syntactic categories. Note that different categories can
have the same type, which can look confusing at first. But we should take this as a sign that the
syntactic analysis of natural language is finer-grained than is needed in knowledge representation
and inference for the semantic-pragmatic analysis.

Syntactical Categories and Types

� Now, we can assign types to syntactic categories.

Cat Type Intuition
S o truth value
NP ι individual
Npr ι individuals
VP ι→ o property
V i ι→ o unary predicate
V t ι→ ι→ o binary relation

6.2. DEALING WITH FUNCTIONS IN LOGIC AND LANGUAGE 75

� For the category conj, we cannot get by with a single type. Depending on where it
is used, we need the types

� o→ o→ o for S-coordination in rule S2: S→S conj S

� (ι→ o)→ (ι→ o)→ (ι→ o) for VP-coordination in V 3: VP→VP conj VP.

� Note: Computational Linguistics, often uses a different notation for types: e (en-
tity) for ι, t (truth value) for o, and ⟨α,β⟩ for α→ β (no bracket elision convention).

So the type for VP-coordination has the form ⟨⟨e,t⟩,⟨⟨e,t⟩,⟨e,t⟩⟩⟩

Michael Kohlhase: LBS 110 2025-10-07

For a logic which can really deal with functions, we have to have two properties, which we
can already read off the language of mathematics (as the discipine that deals with functions and
funcitonals professionally): We

1. need to be able to construct functions from expressions with variables, as in f(x) = 3x2+7x+5,
and

2. consider two functions the same, iff they return the same values on the same arguments.

In a logical system (let us for the moment assume a first-order logic with types that can quantify
over functions) this gives rise to the following axioms:

Comprehension ∃Fα→β .∀Xα.F X = Aβ

Extensionality ∀Fα→β .∀Gα→β .(∀Xα.FX = GX)⇒ F = G

The comprehension axioms are computationally very problematic. First, we observe that they
are equality axioms, and thus are needed to show that two objects of PLΩ are equal. Second
we observe that there are countably infinitely many of them (they are parametric in the term A,
the type α and the variable name), which makes dealing with them difficult in practice. Finally,
axioms with both existential and universal quantifiers are always difficult to reason with.

Therefore we would like to have a formulation of higher-order logic without comprehension
axioms. In the next slide we take a close look at the comprehension axioms and transform them
into a form without quantifiers, which will turn out useful.

From Comprehension to β-Conversion

� ∃Fα→β .∀Xα.FX = Aβ for arbitrary variable Xα and term A ∈ wffβ(ΣT ,VT)
(for each term A and each variable X there is a function f ∈ Dα→β , with
f(φ(X)) = Iφ(A))

� schematic in α, β, Xα and Aβ , very inconvenient for deduction

� Transformation in HΩ

� ∃Fα→β .∀Xα.FX = Aβ

� ∀Xα.(λXα.A)X = Aβ (∃E)
Call the function F whose existence is guaranteed “(λXα.A)”

� (λXα.A)B = [B/X]Aβ (∀E), in particular for B ∈ wffα(ΣT ,VT).

� Definition 6.2.6. Axiom of β equality: (λXα.A) B = [B/X](Aβ)

� Idea: Introduce a new class of formulae (λ-calculus [Chu40])

76 CHAPTER 6. FRAGMENT 3: COMPLEX VERB PHRASES

Michael Kohlhase: LBS 111 2025-10-07

In a similar way we can treat (functional) extensionality.

From Extensionality to η-Conversion

� Definition 6.2.7. Extensionality Axiom: ∀Fα→β .∀Gα→β .(∀Xα.FX = GX)⇒
F = G

� Idea: Maybe we can get by with a simplified equality schema here as well.

� Definition 6.2.8. We say that A and λXα.A X are η-equal, (write Aα→β =η
λXα.A X), iff X ̸∈ free(A).

� Theorem 6.2.9. η-equality and Extensionality are equivalent

� Proof: We show that η-equality is special case of extensionality; the converse
direction is trivial

1. Let ∀Xα.AX = BX, thus AX = BX with ∀E

2. λXα.AX = λXα.BX, therefore A = B with η

3. Hence ∀Fα→β .∀Gα→β .(∀Xα.FX = GX)⇒ F = G by twice ∀I.

□

� Axiom of truth values: ∀Fo.∀Go.FG⇔ F = G unsolved.

Michael Kohlhase: LBS 112 2025-10-07

The price to pay is that we need to pay for getting rid of the comprehension and extensionality
axioms is that we need a logic that systematically includes the λ-generated names we used in the
transformation as (generic) witnesses for the existential quantifier. Alonzo Church did just that
with his “simply typed λ-calculus” which we will introduce next.

This is all very nice, but what do we actually translate into?

6.3 Simply Typed λ-Calculus
In this section we will present a logical system that can deal with functions – the simply typed

λ-calculus. It is a typed logic, so everything we write down is typed (even if we do not always
write the types down).

Simply typed λ-Calculus (Syntax)

� Definition 6.3.1. Signature ΣT =
⋃
α∈T Σα (includes countably infinite signatures

ΣSkα of Skolem contants).

� VT =
⋃
α∈T Vα, such that Vα are countably infinite.

� Definition 6.3.2. We call the set wffα(ΣT ,VT) defined by the rules

� Vα ∪ Σα ⊆ wffα(ΣT ,VT)

� If C ∈ wffα→β(ΣT ,VT) and A ∈ wffα(ΣT ,VT), then C A ∈ wffβ(ΣT ,VT)

� If A ∈ wffα(ΣT ,VT), then λXβ .A ∈ wffβ→α(ΣT ,VT)

6.3. SIMPLY TYPED λ-CALCULUS 77

the set of well typed formulae of type α over the signature ΣT and use wffT (ΣT ,VT) :=⋃
α∈T wffα(ΣT ,VT) for the set of all well-typed formulae.

� Definition 6.3.3. We will call all occurrences of the variable X in A bound in
λX.A. Variables that are not bound in B are called free in B.

� Substitutions are well typed, i.e. σ(Xα) ∈ wffα(ΣT ,VT) and capture-avoiding.

� Definition 6.3.4 (Simply Typed λ-Calculus). The simply typed λ calculus Λ→

over a signature ΣT has the formulae wffT (ΣT ,VT) (they are called λ-terms) and
the following equalities:

� α conversion: λX.A =α λY .([Y /X](A)).

� β conversion: (λX.A) B =β [B/X](A).

� η reduction: λX.A X =η A if X ̸∈ free(A).

Michael Kohlhase: LBS 113 2025-10-07

The intuitions about functional structure of λ-terms and about free and bound variables are
encoded into three transformation rules Λ→: The first rule (α-conversion) just says that we can
rename bound variables as we like. β conversion codifies the intuition behind function application
by replacing bound variables with arguments. The equality relation induced by the η-reduction is
a special case of the extensionality principle for functions (f = g iff f(a) = g(a) for all possible
arguments a): If we apply both sides of the transformation to the same argument – say B and
then we arrive at the right hand side, since λXα.A XB =β A B.
We will use a set of bracket elision rules that make the syntax of Λ→ more palatable. This makes Λ→
expressions look much more like regular mathematical notation, but hides the internal structure.
Readers should make sure that they can always reconstruct the brackets to make sense of the
syntactic notions below.

Simply typed λ-Calculus (Notations)

� Application is left-associative: We abbreviate F A1 A2 . . . An with F A1 . . . An

eliding the brackets and further with F An in a kind of vector notation.

� Andrews’ dot Notation: A . stands for a left bracket whose partner is as far right
as is consistent with existing brackets; i.e. A .B C abbreviates A (B C).

� Abstraction is right-associative: We abbreviate λX1.λX2. · · ·λXn.A · · · with
λX1. . .Xn.A eliding brackets, and further to λXn.A in a kind of vector notation.

� Outer brackets: Finally, we allow ourselves to elide outer brackets where they can
be inferred.

Michael Kohlhase: LBS 114 2025-10-07

Intuitively, λX.A is the function f , such that f(B) will yield A, where all occurrences of the formal
parameter X are replaced by B.2 In this presentation of the simply typed λ-calculus we
build-in =α-equality and use capture-avoiding substitution directly. A clean introduction would
followed the steps in ??? by introducing substitutions with a substitutability condition like the
one in ???, then establishing the soundness of =α conversion, and only then postulating defining
capture-avoiding substitution application as in ???. The development for Λ→ is directly parallel to
the one for PL1, so we leave it as an exercise to the reader and turn to the computational properties

2EdNote: rationalize the semantic macros for syntax!

78 CHAPTER 6. FRAGMENT 3: COMPLEX VERB PHRASES

of the λ-calculus.
Computationally, λ-calculi obtains much of its power from the fact that two of its three equalities
can be oriented into a reduction system. Intuitively, we only use the equalities in one direction, i.e.
in one that makes the terms “simpler”. If this terminates (and is confluent), then we can establish
equality of two λ-terms by reducing them to normal forms and comparing them structurally. This
gives us a decision procedure for equality. Indeed, we have these properties in Λ→ as we will see
below.

=αβη-Equality (Overview)

� Definition 6.3.5.

Reduction with
{

=β : (λX.A) B→β [B/X](A)
=η : λX.A X→ηA

under =α :
λX.A
=α

λY .([Y /X](A))

The treductions can be applied at top-level (as above), but also in subterms:

If A→αβηB, then C A→αβηC B, A C→αβηB C, and λX.A→αβηλX.B.

� Theorem 6.3.6. β-reduction is well-typed, terminating and confluent in the pres-
ence of α-conversion.

� Definition 6.3.7 (Normal Form). We call a λ-term A a normal form (in a
reduction system E), iff no rule (from E) can be applied to A.

� Corollary 6.3.8. =βη-reduction yields unique normal forms (up to =α-equivalence).

Michael Kohlhase: LBS 115 2025-10-07

We will now introduce some terminology to be able to talk about λ terms and their parts.

Syntactic Parts of λ-Terms

� Definition 6.3.9 (Parts of λ-Terms). We can always write a λ-term in the form
T = λX1. . .Xk.HA1 . . .An, where H is not an application. We call

� H the syntactic head of T

� H(A1, . . .,An) the matrix of T, and

� λX1. . .Xk. (or the sequence X1, . . ., Xk) the binder of T

� Definition 6.3.10. Head reduction always has a unique β redex

λXn.(λY .A) B1 . . . Bn→h
βλX

n.([B1/Y](A)) B2. . .Bn

� Theorem 6.3.11. The syntactic heads of β-normal forms are constant or variables.

� Definition 6.3.12. Let A be a λ-term, then the syntactic head of the β-normal
form of A is called the head symbol of A and written as head(A). We call a λ-term
a j-projection, iff its head is the jth bound variable.

� Definition 6.3.13. We call a λ-term a η long form, iff its matrix has base type.

� Definition 6.3.14. η Expansion makes η long forms

η
[
λX1. . .Xn.A

]
:= λX1. . .Xn.λY 1. . .Y m.A Y 1 . . . Y m

6.4. A LOGICAL SYSTEM FOR FRAGMENT 3 79

� Definition 6.3.15. Long βη normal form, iff it is β normal and η-long.

Michael Kohlhase: LBS 116 2025-10-07

η long forms are structurally convenient since for them, the structure of the term is isomorphic
to the structure of its type (argument types correspond to binders): if we have a term A of type
αn → β in η-long form, where β ∈ BT , then A must be of the form λXn

α .B, where B has type β.
Furthermore, the set of η-long forms is closed under β-equality, which allows us to treat the two
equality theories of Λ→ separately and thus reduce argumentational complexity.
The semantics of Λ→ is structured around the types. Like the models we discussed before, a model
(we call them “algebras”, since we do not have truth values in Λ→) is a pair ⟨D, I⟩, where D is the
universe of discourse and I is the interpretation of constants.

Semantics of Λ→

� Definition 6.3.16. We call a collection DT := {Dα |α ∈ T } a typed collection
(of sets) and a collection fT : DT →ET , a typed function, iff fα : Dα→Eα.

� Definition 6.3.17. A typed collection DT is called a frame, iff Dα→β ⊆ Dα→Dβ .

� Definition 6.3.18. Given a frame DT , and a typed function I : Σ→D, we call
Iφ : wffT (ΣT ,VT)→D the value function induced by I, iff

1. Iφ|VT
= φ, Iφ|ΣT

= I,
2. Iφ(A B) = Iφ(A)(Iφ(B)), and

3. Iφ(λXα.A) is that function f ∈ Dα→β , such that f(a) = Iφ,[a/X](A) for all
a ∈ Dα.

� Note: Not every λ-term has a Iφ-value as we have only required Dα→β ⊆
Dα→Dβ for frames. (there might not be enough functions)

� Definition 6.3.19. We call ⟨D, I⟩, where D is a frame and I is a typed function
comprehension closed or a ΣT -algebra, iff Iφ : wffT (ΣT ,VT)→D is total.

� Theorem 6.3.20. =αβη (seen as a calculus) is sound and complete for Σ-algebras.

� Upshot for LBS: Λ→ is the logical system for reasoning about functions!

Michael Kohlhase: LBS 117 2025-10-07

The definition of the semantics in Definition B.2.3 is surprisingly simple. The only part that is new
at all is the third clause, and there we already know the trick with treating binders by extending
the variable assignment from quantifiers in first-order logic.

The real subtlety is in the definition of frames, where instead of requiring Dα→β = Dα→Dβ
(full function universes we have only required Dα→β ⊆ Dα→Dβ , which necessitates the post-hoc
definition of a ΣT -algebra. But the added complexity gives us thm.abe-sound-complete.
Excursion: We will discuss the semantics, computational properties, and a more modern
presentation of the λ calculus in Appendix B.

6.4 A Logical System for Fragment 3

Higher-Order Logic without Quantifiers (HOLnq)

80 CHAPTER 6. FRAGMENT 3: COMPLEX VERB PHRASES

� Problem: Need a logic like PLnq, but with λ-terms to interpret F3 into.

� Idea: Re-use the syntactical framework of Λ→.

� Definition 6.4.1. Let HOLnq be an instance of Λ→, with BT = {ι, o}, ∧ ∈ Σo→o→o,
¬ ∈ Σo→o, and =∈ Σα→α→o for all types α.

� Idea: To extend this to a semantics for HOLnq, we only have to say something
about the base type o, and the logical constants ¬o→o, ∧o→o→o, and =α→α→o.

� Definition 6.4.2. We define the semantics of HOLnq by setting

1. Do = {T,F}; the set of truth values

2. I(¬) ∈ Do→o, is the function {F 7→ T,T 7→ F}
3. I(∧) ∈ Do→o→o is the function with I(∧)(⟨a, b⟩) = T, iff a = T and b = T.

4. I(=) ∈ Dα→α→o is the identity relation on Dα.

Michael Kohlhase: LBS 118 2025-10-07

You may be worrying that we have changed our assumptions about the denotations of predicates.
When we were working with PLnq as our target logic, we assumed that one-place predicates denote
sets of individuals, that two-place predicates denote sets of pairs of individuals, and so on. Now,
we have adopted a new target logic, HOLnq, which interprets all predicates as functions of one kind
or another.

The reason we can do this is that there is a systematic relation between the functions we now
assume as denotations, and the sets we used to assume as denotations. The functions in question
are the characteristic functions of the old sets, or are curried versions of such functions.

Recall that we have characterized sets extensionally, i.e. by saying what their members are.
A characteristic function of a set A is a function which “says” which objects are members of A. It
does this by giving one value (for our purposes, the value 1) for any argument which is a member
of A, and another value, (for our purposes, the value 0), for anything which is not a member of
the set.
Definition 6.4.3 (Characteristic function of a set). fS is the characteristic function of the
set S iff fS(a) = T if a ∈ S and fS(a) = F if a ̸∈ S.
Thus any function in Dι→o will be the characteristic function of some set of individuals. So,
for example, the function we assign as denotation to the predicate “run” will return the value T
for some arguments and F for the rest. Those for which it returns T correspond exactly to the
individuals which belonged to the set “run” in our old way of doing things.

Now, consider functions in Dι→ι→o. Recall that these functions are equivalent to two-place
relations, i.e. functions from pairs of entities to truth values. So functions of this kind are
characteristic functions of sets of pairs of individuals.

In fact, any function which ultimately maps an argument to Do is a characteristic function of
some set. The fact that many of the denotations we are concerned with turn out to be characteristic
functions of sets will be very useful for us, as it will allow us to go backwards and forwards between
“set talk” and “function talk,” depending on which is easier to use for what we want to say.

HOLnq is an expressive logical system

� HOLnq is an expressive logical system

� Example 6.4.4. We can express set union as a HOLnq term:

∪ := λPι→o.λQι→o.λXι.P X ∨Q X

6.5. TRANSLATION FOR FRAGMENT 3 81

Let us test whether {1, 2} ∪ {2, 3} really is {1, 2, 3}.
Note that we can represent (the characteristic function of) {1, 2} as the HOLnq term
λZι.Z = 1 ∨ Z = 2. (and the other sets analogously)

So lets represent {1, 2} ∪ {2, 3} as a HOLnq term and β-reduce:

(λPι→o.λQι→o.λXι.P X ∨Q X) (λZι.Z = 1 ∨ Z = 2) (λZι.Z = 2 ∨ Z = 3)
→β (λQι→o.λXι.(λZι.Z = 1 ∨ Z = 2) X ∨Q X) (λZι.Z = 2 ∨ Z = 3)
→β λXι.(λZι.Z = 1 ∨ Z = 2) X ∨ (λZι.Z = 2 ∨ Z = 3) X
→β λXι.X = 1 ∨X = 2 ∨X = 2 ∨X = 3
⇔ λXι.X = 1 ∨X = 2 ∨X = 3

Michael Kohlhase: LBS 119 2025-10-07

Example 6.4.4 shows the characteristic strength of HOLnq as a logical system: The ability of con-
structing functions via the λ operator allows us to define many of the operators and relations that
we would have to declare in a first-order signature in e.g. a first-order logic and then axiomatize
so that we can reason about them. The logical connectives and equality we would normally use
in the axioms, we can directly use in the operator definitions directly. When these λ-defined
operators are applied to arguments, the substitution from β-reduction brings them into the right
positions.

6.5 Translation for Fragment 3
Now that we have done the heavy lifting by building our target logic HOLnq, the translation for F3

is relatively straightforward. We just have to deal with verb phrases and VP coordination. The
first works just as for intransitive verbs in F1 and for the latter we define custom operators as
denotations for the coordinators.

Translations for Fragment F3

� We will look at the new translation rules: (the rest from F2 stay the same)

T1: [XNP, YVP]S ; VP′(NP′),
T3: [XVP, Yconj, ZVP]VP; conj′(VP′, VP′),
T4: [XV t , YNP]VP; V t′(NP′)

� Note: We can get away with this because PLnq ⊆ HOLnq in the target logic.

� The lexical insertion rules will give us two items each for “ is”, “and ”, and “or ”,
corresponding to the two types we have given them above.

word type term case
BEpred (ι → o)→ ι → o λPι→o.P adjective
BEeq ι→ ι → o λXιYι.X = Y verb
and o→ o → o ∧ S-coord.
and (ι → o)→ (ι → o)→ ι → o λFι→oGι→oXι.F (X) ∧G(X) VP-coord.
or o→ o → o ∨ S-coord.
or (ι → o)→ (ι → o)→ ι → o λFι→oGι→oXι.F (X) ∨G(X) VP-coord.
didn′t (ι → o)→ ι → o λPι→oXι.¬P X

� Note: All words are translated to HOLnq formulae.

82 CHAPTER 6. FRAGMENT 3: COMPLEX VERB PHRASES

� BTW: The translation of “or ” in VP-coordination is just set union =̂ disjunction
lifted to sets. (analogous with “and ”, conjunction and intersection)

Michael Kohlhase: LBS 120 2025-10-07

Translation Example

� It only remains to test F3 on an example from the original data!

� Example 6.5.1. “Ethel howled and screamed ” to

(λFι→oGι→oXι.F (X) ∧G(X)) howls screams ethel

→β (λGι→oXι.howls(X) ∧G(X)) screams ethel

→β (λXι.howls(X) ∧ screams(X)) ethel

→β howls(ethel) ∧ screams(ethel)

Michael Kohlhase: LBS 121 2025-10-07

6.6 Summary & Evaluation
So let us evaluate what we have achieved in the new, extended fragment.

Fragment F3 – Summary

� Fragment F3 extends F2 by verb phrases.

� We need a completely new idea for the logic ⇝need functions to express translation

� Logical system: HOLnq =̂ Λ→ + PL0.

� Λ→ contributes the simple types and functions

� PL0 contributes type o and connectives.

� Coverage: Better: we can do verb phrase coordination.

Michael Kohlhase: LBS 122 2025-10-07

6.6.1 Overview/Summary so far
Where we started: A VP-less fragment and PLnq.:

PLnq Fragment of English
Syntax: Definition of wffs Syntax: Definition of allowable sentences
Semantics: Model theory SEMANTICS BY TRANSLATION

What we did:

• Tested the translation by testing predictions: semantic tests of entailment.

• More testing: syntactic tests of entailment. For this, we introduced the model generation
calculus. We can make this move from semantic proofs to syntactic ones safely, because we
know that PLnq is sound and complete.

6.6. SUMMARY & EVALUATION 83

• Moving beyond semantics: Used model generation to predict interpretations of semantically
under-determined sentence types.

Where we are now: A fragment with a VP and HOLnq.: We expanded the fragment and began
to consider data which demonstrate the need for a VP in any adequate syntax of English, and the
need for coordinators which connect VPs and other expression types. At this point, the resources
of PLnq no longer sufficed to provide adequate compositional translations of the fragment. So we
introduced a new translation language, HOLnq. However, the general picture of the table above does
not change; only the target logic itself changes.
Some discoveries:

• The task of giving a semantics via translation for natural language includes as a subtask the
task of finding an adequate target logic.

• Given a typed language, function application is a powerful and very useful tool for modeling the
derivation of the interpretation of a complex expression from the interpretations of its parts and
their syntactic arrangement. To maintain a transparent interface between syntax and semantics,
binary branching is preferable. Happily, this is supported by syntactic evidence.

• Syntax and semantics interact: Syntax forces us to introduce VP. The assumption of composi-
tionality then forces us to translate and interpret this new category.

• We discovered that the “logical operators” of natural language can’t always be translated directly
by their formal counterparts. Their formal counterparts are all sentence connectives; but English
has versions of these connectives for other types of expressions. However, we can use the familiar
sentential connectives to construct appropriate translations for the differently-typed variants.

Some issues about translations: HOLnq provides multiple syntactically and semantically equiv-
alent versions of many of its expressions. For example:

1. Let runs be an HOLnq constant of type ι→ o. Then runs = λX.runs(X)

2. Let loves be an HOLnq constant of type ι→ ι→ o. Then loves = λX.λY .loves(X,Y)

3. Similarly, loves(a) = λY .loves(a, Y)

4. And loves(jane, george) = (λX.λY .loves(X,Y)) jane(george)

Logically, both sides of the equations are considered equal, since =η-equality (remember λX.A X→ηA,
if X ̸∈ free(A)) is built into HOLnq. In fact all the right-hand sides are =η-expansions of the left-
hand sides. So you can use both, as you choose in principle.

But practically, you like to know which to give when you are asked for a translation? The
answer depends on what you are using it for. Let’s introduce a distinction between reduced
translations and unreduced translations. An unreduced translation makes completely explicit the
type assignment of each expression and the mode of composition of the translations of complex
expressions, i.e. how the translation is derived from the translations of the parts. So, for example,
if you have just offered a translation for a lexical item (say, “and ” as a V t coordinator), and now
want to demonstrate how this lexical item works in a sentence, give the unreduced translation of
the sentence in question and then demonstrate that it reduces to the desired reduced version.

The reduced translations have forms to which the deduction rules apply. So always use reduced
translations for input in model generation: here, we are assuming that we have got the translation
right, and that we know how to get it, and are interested in seeing what further inference can be
performed.

84 CHAPTER 6. FRAGMENT 3: COMPLEX VERB PHRASES

Chapter 7

Fragment 4: Noun Phrases and
Quantification

In this chapter we will continue to enhance the fragment both by introducing additional types
of expressions and by improving the syntactic analysis of the sentences we are dealing with.
F4 will require further enrichments of the translation language. Our next steps are:

• Analysis of NP.

• Treatment of adjectives and adverbs.

• Quantification and definite description

7.1 Fragment 4

As always we start off a new fragment by looking at the new data we want to cover.

New Data in Fragment F4 (more Noun Phrases)

� In F4 we want to extend F3 so it can deal with the following sentences: (without
the “the-NP” trick)

1. “Peter loved the cat.”, but not * “Peter loved the the cat.”

2. “John killed a cat with a white tail.”

3. “Peter chased the gangster in the red sportscar.”

4. “Peter loves every cat.”

5. “Every man loves a woman.”

6. “The quick brown fox jumps over the lazy dog.”

7. “The very heavy boat sank quickly.”

Michael Kohlhase: LBS 123 2025-10-07

The first example sugests that we need a full and uniform treatment of determiners like “the”, “a”,
and “every”. The second and third introduces a new phenomenon: prepositional phrases like “with
a hammer/mouse”; these are essentially nominal phrases that modify the meaning of other phrases
via a preposition like “with”, “in”, “on”, “at”. These two show that the prepositional phrase can
modify the verb or the object.

85

86 CHAPTER 7. FRAGMENT 4: NOUN PHRASES AND QUANTIFICATION

New Grammar in Fragment F4 (Common Noun Phrases)

� To account for the syntax we extend the functionality of noun phrases from F1.

� Definition 7.1.1. F4 adds the rules on the right to F3 (on the left):

S1: S→NP VP+fin,
S2: S→S conj S,
V 1: VP±fin →V i±fin,
V 2: VP±fin →V t±fin NP,
V 4: VP+fin →BE= NP,
V 5: VP+fin →BEpred Adj,
V 6: VP+fin → didn′t VP-fin,
N1: NP→Npr,
N2: NP→Pron

S3: S→S PP,
N3: NP→Det CNP,
N4: CNP→N ,
N5: CNP→CNP PP,
N6: CNP→Adj CNP,
P1: PP→P NP,
V 3′ : VP±fin →VP±fin VPconj±fin,
V 7: VPconj±fin → conj VP±fin,
V 8: VP+fin →VP+fin Adv,
V 9: VP±fin →VP±fin PP,
L1: P →with | of | . . .

� Definition 7.1.2. A common noun is a noun that describes a type, for example
“woman”, or “philosophy ” rather than an token, such as “Amelia Earhart” (proper
name).

Michael Kohlhase: LBS 124 2025-10-07

Note: Again, we assume appropriate lexical insertion rules without specification.

Testing the F4 Syntax on an example

� Example 7.1.3. Can we capture the (syntactic) attachment ambiguity in

“Peter chased the gangster in the red sportscar.”

Peter chased the gangster in the red sportscar

Npr V t+fin Det N P Det Adj N

CNP

CNP

NP

CNP

NP

PP

CNP

VP+fin

S

; The gangster is in the car

7.2. A TARGET LOGIC FOR FRAGMENT 4 87

Peter chased the gangster in the red sportscar

Npr V t+fin Det N P Det Adj N

CNP CNP

NP CNP

NP

PP
VP+fin

VP+fin

S

; Peter is in the car

Peter chased the gangster in the red sportscar

Npr V t+fin Det N P Det Adj N

CNP CNP

NP CNP

NP

PP

VP+fin

S

S

; Both Peter and the gangster are in the car

Michael Kohlhase: LBS 125 2025-10-07

7.2 A Target Logic for Fragment 4
Now that we have fixed F4 and have an idea of the syntactical categories, we have to take a look
at the target logic. We will first take stock of what we need and then develop the necessary logic
technology.

Higher-Order Logic with Descriptions

� Plan: We need to extend HOLnq with

� quantifiers so we can treat “Every student sleeps”

� a logical operator for definite descriptions, e.g. “the teacher sleeps”

We will call this logic Higher-Order Logic with Descriptions (quantifiers taken for
granted)

� Note: Quantifiers can be added to any logic: Extend the

� syntax by variables and a new binding symbol (language-level)

� semantics by a new clause for the value function

� calculi by new quantifier introduction/elimination rules

Quite tedious compared to simply adding a new logical constant!

88 CHAPTER 7. FRAGMENT 4: NOUN PHRASES AND QUANTIFICATION

� Note: The description operator will have to have type (ι → o) → ι, as the
denotation of “teacher ” has type ι→ o and “the teacher ” has type ι. (like “Mary ”)

Michael Kohlhase: LBS 126 2025-10-07

7.2.1 Quantifiers and Equality in Higher-Order Logic
As a first step towards our target logic, we will now introduce a higher-order logic with quantifiers

and equality building on HOLnq as a logical system without concern for linguistic issues. We will
call this system HOL→.

Actually, there are two (equivalent) ways of developing HOL→: we can either add quantifiers
and define equality using them or we can take equality as primitive and define all connectives and
quantifiers from that. The latter shows that HOLnq and HOL→ are equally expressive – and the
extension does not add anything in theory.
There is a more elegant way to treat quantifiers than extending language, semantics, and inference
systems in HOL→. It builds on the realization that the λ-abstraction is the only binding operator
we need, quantifiers are then modeled as second-order logical constants. Note that we do not have
to change the syntax of HOL→ to introduce quantifiers; only the “lexicon”, i.e. the set of logical
constants. Since Πα and Σα are logical constants, we need to fix their semantics.

Higher-Order Abstract Syntax

� Idea: In HOL→, we already have binding operator: λ, use that to treat quantifi-
cation.

� Definition 7.2.1. We add two new logical constants Πα and Σα for each type α:

1. I(Πα)(p) = T, iff p(a) = T for all a ∈ Dα (i.e. if p is the universal set)

2. I(Σα)(p) = T, iff p(a) = T for some a ∈ Dα (i.e. iff p is non-empty)

� Definition 7.2.2. Regain traditional quantifiers as abbreviations:

∀Xα.A := Πα (λXα.A) ∃Xα.A := Σα (λXα.A)

� Observation: Indeed: Iφ(∀Xι.A) = Iφ(Πι (λXι.A)) = I(Πι)(Iφ(λXι.A)) =
T iff Iφ(λXι.A)(a) = I [a/X],φ(A) = T for all a ∈ Dα.

� Definition 7.2.3. We call this approach to binding operators higher-order abstract
syntax (HOAS).

Michael Kohlhase: LBS 127 2025-10-07

In HOL→, where we have quantifiers, we can define an operator for equality using Leibniz’ indis-
cernibility criterion. According to this, two objects are equal, iff they do not have any properties
that can be used to tell them apart. As we can quantify over properties – which can be expressed
as variables of type α→ o – in HOL→ we can directly express the principle and β-abstract it into
a predicate.

Equality

� Definition 7.2.4 (Leibniz equality). QαAαBα = ∀Pα→o.PA⇔ PB (Leibniz’
indiscernibility of identicals)

7.2. A TARGET LOGIC FOR FRAGMENT 4 89

� Note: ∀Pα→o.PA⇒ PB (get the other direction by instantiating P with Q,
where QX ⇔¬PX)

� Theorem 7.2.5. If M = ⟨D, I⟩ is a standard model, then Iφ(Qα) is the identity
relation on Dα.

� Definition 7.2.6 (Notation). We write A = B for QAB(A and B are equal, iff
there is no property P that can tell them apart.)

� Proof:

1. Iφ(QAB) = Iφ(∀P .PA⇒ PB) = T, iff
Iφ,[r/P](PA⇒ PB) = T for all r ∈ Dα→o.

2. For A = B we have Iφ,[r/P](PA) = r(Iφ(A)) = F or Iφ,[r/P](PB) =
r(Iφ(B)) = T.

3. Thus Iφ(QAB) = T.

4. Let Iφ(A) ̸= Iφ(B) and r={Iφ(A)}∈Dα→o (exists in a standard model)

5. so r(Iφ(A)) = T and r(Iφ(B)) = F

6. Iφ(QAB) = F, as Iφ,[r/P](PA⇒PB) = F, since Iφ,[r/P](PA) = r(Iφ(A)) =
T and Iφ,[r/P](PB) = r(Iφ(B)) = F.

□

Michael Kohlhase: LBS 129 2025-10-07

As we can see, we can even prove that the denotation of Leibniz equality expressed in HOL→ is
the identity relation on the respective universe.

Alternative: HOL∞

� Definition 7.2.7. There is only one logical constant in HOL∞: qα ∈ Σα→α→o

with I(qα)(a, b) = T, iff a = b.

We define the rest as below: Definitions (D) and Notations (N)

N Aα = Bα for qαAαBα

D T for qo = qo

D F for λXo.T = λXo.Xo

D Πα for qα→o (λXα.T)
N ∀Xα.A for Πα (λXα.A)
D ∧ for λXo.λYo.(λGo→o→o.GTT = λGo→o→o.GXY)
N A ∧B for ∧ (Ao) (Bo)
D ⇒ for λXo.λYo.(X = X ∧ Y)
N A⇒B for ⇒ (Ao) (Bo)
D ¬ for qo F
D ∨ for λXo.λYo.¬(¬X ∧ ¬Y)
N A ∨B for ∨ (Ao) (Bo)
D ∃Xα.Ao for ¬(∀Xα.¬A)
N Aα ̸= Bα for ¬qα (Aα) (Bα)

� yield the intuitive meanings for connectives and quantifiers.

90 CHAPTER 7. FRAGMENT 4: NOUN PHRASES AND QUANTIFICATION

Michael Kohlhase: LBS 130 2025-10-07

In a way, this development of higher-order logic is more foundational, especially in the context of
Henkin semantics. There, ??? does not hold (see [And72] for details). Indeed the proof of ???
needs the existence of singletons, which can be shown to be equivalent to the existence of the
identity relation. In other words, Leibniz equality only denotes the equality relation, if we have an
equality relation in the models. However, the only way of enforcing this (remember that Henkin
models only guarantee functions that can be explicitly written down as λ-terms) is to add a logical
constant for equality to the signature.

7.2.2 A Logic for Definite Descriptions
The next extension is a description operator. Again, we will develop the target logic from a logical
systems perspective before we come to linguistic or inferential aspects.

Semantics of Definite Descriptions

� Problem: We need the meaning for the determiner “the”, as in “the boy runs”

� Idea (Type): “the boy ” behaves like a proper name (e.g. “Peter ”), i.e. has type
ι. Applying “the” to a noun (type ι→ o) yields ι. So “the” has type (α→ o)→ α,
i.e. it takes a set as argument.

� Idea (Semantics): “the” has the fixed semantics that this function returns the
single member of its argument if the argument is a singleton, and is otherwise
undefined. (new logical constant)

� Definition 7.2.8. We introduce a new logical constant ι . I(ι) is the function
f ∈ D(α→o)→α, such that f(s) = a, iff s ∈ Dα→o is the singleton {a}, and is
otherwise undefined. (remember that we can interpret predicates as sets)

� Axioms for ι :

∀Xα.X = ι = X
∀P ,Q.Q(ι P) ∧ (∀X,Y .P (X) ∧ P (Y)⇒X = Y)⇒ (∀Z.P (Z)⇒Q(Z))

Michael Kohlhase: LBS 131 2025-10-07

Note: The first axiom is an equational characterization of ι . It uses the fact that the singleton
with member X can be written as = X (or λY . = XY , which is =η-equivalent). The second
axiom says that if we have Q ι P and P is a singleton (i.e. all X,Y ∈ P are identical), then Q
holds on any member of P . Surprisingly, these two axioms are equivalent in HOL→.
Actually, the description operator is just one of a set of similar operators. We will look at them
together to get a better intution.

More Operators and Axioms for HOL→

� Definition 7.2.9. The unary conditional wα ∈ Σo→α→α

w (Ao)Bα means: “If A, then B”.

� Definition 7.2.10. The binary conditional ifα ∈ Σo→α→α→α

if (Ao) (Bα) (Cα) means: “if A, then B else C”.

� Definition 7.2.11. The description operator ια ∈ Σ(α→o)→α

7.3. TRANSLATION FOR FRAGMENT 4 91

if P is a singleton set, then ι (Pα→o) is the (unique) element in P.

� Definition 7.2.12. The choice operator γα ∈ Σ(α→o)→α

if P is non-empty, then γ (Pα→o) is an arbitrary element from P.

� Definition 7.2.13 (Axioms for these Operators).

� unary conditional: ∀φo.∀Xα.φ⇒w φX = X

� binary conditional: ∀φo.∀Xα, Yα, Zα.(φ⇒if φ X Y = X)∧(¬φ⇒if φ Z X =
X)

� description operator ∀Pα→o.(∃1Xα.PX)⇒ (∀Yα.PY ⇒ ι P = Y)

� choice operator ∀Pα→o.(∃Xα.PX)⇒ (∀Yα.PY ⇒ γ P = Y)

� Idea: These operators ensure a much larger supply of functions in Henkin models.

Michael Kohlhase: LBS 132 2025-10-07

More on the Description Operator

� ι is a weak form of the choice operator. (only works on singletons)

� Alternative Axiom of Descriptions: ∀Xα.ι
α = X = X.

� use that I [a/X](= X) = {a}
� we only need this for base types ̸= o

� Define ιo :== (λXo.X) or ιo := λGo→o.G T or ιo :== = T

� ι(α→β) := λH(α→β)→oXα.ι
β (λZβ .(∃Fα→β .H F ∧ F X = Z))

Michael Kohlhase: LBS 133 2025-10-07

7.3 Translation for Fragment 4
Now we can finally come to the linguistic aspects of F4 and in particular the translation.
If we assume that ∀X.boy(X)⇒ runs(X) is an adequate translation of “Every boy runs”, and
∃X.boy(X)∧ runs(X) one for “Some boy runs”, then we obtain the translations of the determiners
by straightforward =β-expansion.

Translation of Determiners and Quantifiers

� Idea: We establish the meaning of quantifying determiners by =β-expansion.

1. assume that we are translating into a λ-calculus with quantifiers and that

� ∀X.boy(X)⇒ runs(X) translates “Every boy runs”, and
� ∃X.boy(X) ∧ runs(X) for “Some boy runs”

2. ∀∀ := λPι→oQι→o.(∀X.P (X)⇒Q(X)) for “every ”. (subset relation)

3. ∃∃ := λPι→oQι→o.(∃X.P (X) ∧Q(X)) for “some”. (non-empty intersection)

� Problem: Linguistic quantifiers take two arguments (restriction and scope), logical
ones only one! (in logics, restriction is the universal set)

92 CHAPTER 7. FRAGMENT 4: NOUN PHRASES AND QUANTIFICATION

� We cannot treat “the” with regular quantifiers (new logical constant; see below)

� Definition 7.3.1.

We translate the word the to τ := λPι→oQι→o.Q ι P , where ι is a new operator
that given a set returns its (unique) member.

� Example 7.3.2. This translates “The pope spoke” to τ(pope, speaks), which =β-
reduces to speaks(ι pope).

Michael Kohlhase: LBS 134 2025-10-07

Note that if we interpret objects of type ι→ o as sets, then the denotations of “boy” and “run” are
sets (of boys and running individuals). Then the denotation of “every” is a relation between sets;
more specifically the subset relation. As a consequence, “All boys run” is true if the set of boys is
a subset of the set of running individuals. For “some” the relation is the non-empty intersection
relation, “some boy runs” is true if the intersection of set of boys and the set of running individuals
is non-empty.
Note that there is a mismatch in the “arity” of linguistic and logical notions of quantifiers here.
Linguistic quantifiers take two arguments, the restriction (in our example “boy”) and the predi-
cation (“run”). The logical quantifiers only take one argument, the predication A in ∀X.A. In
a way, the restriction is always the universal set. In our model, we have modeled the linguistic
quantifiers by adding the restriction with a connective (implication for the universal quantifier and
conjunction for the existential one).

Translation of Special lexical items and classes

� If “Adj” is an intersective adjective and Adj′ is an constant of type ι→ o, then

� 9: Adj ; Adj′ or

� 9′ : Adj ; (λPι→oXι.P (X) ∧Adj′(X))

� If “Adj” is a non-intersective adjective, then Adj′ is a constant of type (ι→ o)→ι→
o whose denotation is given the interpretation by I and

� 10: Adj ; Adj′.

Michael Kohlhase: LBS 135 2025-10-07

There is now a discrepancy in the type assigned to subject NPs with quantificational determiners,
and subject NPs consisting of a proper name or a definite description. This corresponds to a
discrepancy in the roles of the NP and VP in interpretation: where the NP is quantificational, it
takes the VP as argument; where the NP is non-quantificational, it constitutes the argument of
the VP. This discrepancy can be resolved by type raising.

Proper names

� Problem: Subject NPs with quantificational determiners have type (ι→ o)→ o
(and are applied to the VP) whereas subject NPs with proper names have type ι.
(argument to the VP)

� Idea: “John runs” translates to runs(john), where runs ∈ Σι→o and john ∈ Σι.

Now we =β-expand over the VP yielding (λPι→o.P (john)) runs

7.3. TRANSLATION FOR FRAGMENT 4 93

λPι→o.P (john) has type (ι→ o)→ o and can be applied to the VP runs.

� Definition 7.3.3. If c ∈ Σα, then type raising c yields λPα→o.P c.

Michael Kohlhase: LBS 136 2025-10-07

Definite NPs

� Problem: On our current assumptions, the′ = ι , and so for any definite NP “the
N”, its translation is ι N , an expression of type ι.

� Idea: Type lift just as we did with proper names: ι N type lifts to λP .P ι N , so
the′ = λPQ.Q ι P

� Advantage: This is a “generalized quantifier treatment”: the′ treated as denoting
relations between sets.

� Solution by Barwise&Cooper 1981: For any a ∈ Dι→o: I(the′)(a) = I(every′)(a)
if #(a) = 1, undefined otherwise

So the′ is that function in D(ι→o)→(ι→o)→o such that for any A,B ∈ Dι→o

if #(A) = 1 then the′(A,B) = T if A ⊆ B and the′(A,B) = F if A̸⊆B otherwise
undefined

Michael Kohlhase: LBS 137 2025-10-07

This treatment of “the” is completely equivalent to the ι treatment, guaranteeing that, for example,
the sentence “The dog barked ” has the value true if there is a unique dog and that dog barked, the
value false if there is a unique dog and that dog did not bark, and, if there is no dog or more than
one dog, has an undefined value. So we can indeed treat “the” as a generalized quantifier.

However, there are two further considerations.

1. The function characterized above cannot straightforwardly be represented as a relation on sets.
We might try the following:

{⟨X,Y ⟩ |#(X) = 1 & X ⊆ Y }

Now, consider a pair ⟨X,Y ⟩ which is not a member of the set. There are two possibilities:
either #(X) ̸= 1 or #(X) = 1 and X ̸⊆Y . But we want to treat these two cases differently: the
first leads to undefinedness, and the second to falsity. But the relation does not capture this
difference.

2. If we adopt a generalized quantifier treatment for the definite article, then we must always
treat it as an expression of type ι→ o → o. If we maintain the ι treatment, we can choose,
for any given case, whether to treat a definite NP as an expression of type ι, or to type lift the
NP to ι→ o→ o. This flexibility will be useful (particularly for purposes of model generation).
Consequently, we will maintain the ι treatment.
These considerations may appear purely technical in nature. However, there is a significant
philosophical literature on definite descriptions, much of which focuses on the question of
whether these expressions are referential or quantificational. Many have the view that definite
descriptions are ambiguous between a referential and a quantificational interpretation, which in
fact differentiates them from other NPs, and which is captured to some extent by our proposed
treatment.

Our discussion of quantification has led us to a treatment of quantified NPs as expressions of type
(ι→ o)→ o. Moreover, we now have the option of treating proper names and definite descriptions

94 CHAPTER 7. FRAGMENT 4: NOUN PHRASES AND QUANTIFICATION

as expressions of this higher type too. This change in the type of NPs causes no difficulties with
composition in the intransitive sentences considered so far, although it requires us to take the
translation of the VP as argument to the subject NP.

Problems with Type raised NPs

� Problem: We have type-raised NPs, but consider transitive verbs as in “Mary loves
most cats”. loves is of type ι→ ι→ o while the object NP is of type (ι→ o)→ o
(application?)

� Another Problem: We encounter the same problem in the sentence “Mary loves
John” if we choose to type-lift the NPs.

� Idea: Change the type of the transitive verb to allow it to “swallow” the higher-
typed object NP.

� Better Idea: Adopt a new rule for semantic composition for this case.

� Remember: loves′ is a function from individuals (e.g. “John”) to properties (in
the case of the VP “ loves John”, the property “X loves John” of X).

Michael Kohlhase: LBS 138 2025-10-07

In our type-raised semantics, the denotation of NPs is a function f from properties to truth values.
So if we compose an NP denotation with a transitive verb denotation, we obtain a function from
individuals to truth values, i.e. a property.

Type raised NPs and Function Composition

� We can extend HOL→ by a constant ◦(β→γ)→(α→β)→α→γ by setting ◦ := λFGX.F (G(X))
thus

◦ g f→βλX.g(f(X)) and ◦ g f a→βg(f(a))

In our example, we have

◦ (λP .P (john)) loves =Def (λFGX.F (G(X))) (λP .P (john)) loves

→β (λGX.(λP .P (john)) G(X)) loves

→β λX.(λP .P (john)) loves X

→β ! λX.loves(X, john)

Michael Kohlhase: LBS 139 2025-10-07

Definition 7.3.4 (Function Composition). Let f : A→ B and g : B → C be functions, then
we call the function h : A→ C such that h(a) = g(f(a)) for all a ∈ A the composition of g and f
and write it as gf (read this as “ g after f ”).
We have managed to deal with the determiners “every” and “some” in a compositional fashion,
using the familiar first-order quantifiers. However, most natural language determiners cannot be
treated so straightforwardly. Consider the determiner “most”, as in:

1. “Most boys run.”

There is clearly no simple way to translate this using ∀ or ∃ in any way familiar from first-order
logic. As we have no translation at hand, then, let us consider what the truth conditions of this
sentence are.

7.4. INFERENCE FOR FRAGMENT 4 95

Generalized Quantifiers

� Problem: What about “Most boys run.”: linguistically “most” behaves exactly
like “every ” or “some”.

� Idea: “Most boys run” is true just in case the number of boys who run is greater
than the number of boys who do not run.

#(Iφ(boy) ∩ Iφ(runs)) > #(Iφ(boy) \ Iφ(runs))

� Definition 7.3.5. #(A) > #(B), iff there is no surjective function from B to A,
so we can define

most′ := λAB.¬(∃F .∀X.A(X) ∧ ¬B(X)⇒ (∃Y .A(Y) ∧B(Y) ∧X = F (Y)))

Michael Kohlhase: LBS 140 2025-10-07

The NP “most boys” thus must denote something which, combined with the denotation of a VP,
gives this statement. In other words, it is a function from sets (or, equivalently, from functions in
Dι→o) to truth values which gives true just in case the argument stands in the relevant relation
to the denotation of “boy”. This function is itself a characteristic function of a set of sets, namely:

{X |#(Iφ(boy), X) > #(Iφ(boy) \X)}

Note that this is just the same kind of object (a set of sets) as we postulated above for the
denotation of “every boy”.

Now we want to go a step further, and determine the contribution of the determiner “most”
itself. “most” must denote a function which combines with a CNP denotation (i.e. a set of
individuals or, equivalently, its characteristic function) to return a set of sets: just those sets
which stand in the appropriate relation to the argument.

The function most′ is the characteristic function of a set of pairs:

{⟨X,Y ⟩ |#(X ∩ Y) > #(X \ Y)}

Conclusion: “most” denotes a relation between sets, just as “every” and “some” do. In fact, all
natural language determiners have such a denotation. (The treatment of the definite article along
these lines raises some issues to which we will return.)

Back to “every ” and “some” (set characterization)

� We can now give an explicit set characterization of “every ” and “some”:

1. “every ” denotes {⟨X,Y ⟩ |X ⊆ Y }
2. “some” denotes {⟨X,Y ⟩ |X ∩ Y ̸= ∅}

� The denotations can be given in equivalent function terms, as demonstrated above
with the denotation of “most”.

Michael Kohlhase: LBS 141 2025-10-07

7.4 Inference for Fragment 4
In F4 we have extended the target logic with quantifiers and description operators of any type.

But if we look at the results of the results semantics construction on the examples we see that

96 CHAPTER 7. FRAGMENT 4: NOUN PHRASES AND QUANTIFICATION

these are first-order with descriptions only.
As a consequence, we can get by with modest extensions of the first-order model generation

calculi we have used for the tableau machine in semantic/pragmatic analysis. We will develop
these separately for the quantifiers and descriptions now.

7.4.1 Model Generation with Quantifiers

Since we have introduced new logical constants, we have to extend the model generation
calculus by rules for these. To keep the calculus simple, we will treat ∃X.A as an abbreviation of
¬(∀X.¬A). Thus we only have to treat the universal quantifier in the rules.

Model Generation (The RM Calculus [Kon04])

� Idea: Try to generate domain-minimal (i.e. fewest individuals) Herbrand models
(for NL interpretation)

� Problem: Even one function constant makes Herbrand universe infinite (solution:
leave them out)

� Definition 7.4.1. RM adds ground quantifier rules to propositional tableau cal-
culus

(∀X.A)T c ∈ H
([c/X](A))T

RM ∀

(∀X.A)F H = {a1, . . ., an} w ̸∈ H new

([a1/X](A))F . . . ([an/X](A))F ([w/X](A))F
RM ∃

� RM ∃ rule introduces new witness constant w to the branch Herbrand universe H: the
set of all individual constants on the branch.

� Apply RM ∀ exhaustively (for new w reapply all RM ∀ rules on branch!)

Michael Kohlhase: LBS 142 2025-10-07

The rule RM ∀ allows to instantiate the scope of the quantifier with all the instances of the
Herbrand universe, whereas the rule RM ∃ makes a case distinction between the cases that the
scope holds for one of the already known individuals (those in the Herbrand universe) or a currently
unknown one (for which it introduces a witness constant w ∈ Σsk0).
Note that in order to have a complete calculus, it is necessary to apply theRM ∀ rule to all universal
formulae in the tree with the new constant w. With this strategy, we arrive at a complete calculus
for (finite) satisfiability in first-order logic, i.e. if a formula has a (finite) Model, then this calculus
will find it. Note that this calculus (in this simple form) does not necessarily find minimal models.

Generating infinite models (Natural Numbers)

� We have to re-apply the RM ∀ rule for any new constant

7.4. INFERENCE FOR FRAGMENT 4 97

� Example 7.4.2. This leads to the generation of infinite models

(∀x.¬x > x ∧ . . .)T

N(0)
T

(∀x.N(x)⇒ (∃y.N(y) ∧ y > x))
T

(N(0)⇒ (∃y.N(y) ∧ y > 0))
T

N(0)
F

⊥
(∃y.N(y) ∧ y > 0)

T

0 > 0T

N(0)
T

0 > 0F

⊥

N(1)
T

1 > 0T

(N(1)⇒ (∃y.N(y) ∧ y > 1))
T

N(1)
F

⊥
(∃y.N(y) ∧ y > 1)

T

N(0)
T

0 > 1T

...
⊥

N(1)
T

1 > 1T

1 > 1F

⊥

N(2)
T

2 > 1T

...

Michael Kohlhase: LBS 143 2025-10-07

The rules RM ∀ and RM ∃ may remind you of the rules we introduced for PLnq(V) in F2. In fact
the rules mainly differ in their scoping behavior. We will use RM ∀ as a drop-in replacement for
the world-knowledge rule T pV WK, and express world knowledge as universally quantified sentences.
The rules T pVAna and RM ∃ differ in that the first may only be applied to input formulae and does
not introduce a witness constant. (It should not, since variables here are anaphoric). We need the
rule RM ∃ to deal with rule-like world knowledge.
Let us test the new calculus on a couple of linguistically motivated examples. We start very simple:
with a discourse of two sentences, where the second has a quantifier.

Example: “Peter is a man. No man walks”

� Example 7.4.3 (Model generation with quantifiers).
“Peter is a man. No man walks”

man(peter)

¬(∃X.man(X) ∧ walks(X))

(∃X.man(X) ∧ walks(X))
F

(∀X.¬man(X) ∨ ¬walks(X))
T

(¬man(peter) ∨ ¬walks(peter))T

¬man(peter)
T

man(peter)
F

⊥

¬walks(peter)T

walks(peter)
F

Herbrand valuation: {man(peter)
T
,walks(peter)

F}

Michael Kohlhase: LBS 144 2025-10-07

The next example is a bit more interesting: We have an anaphor that needs to be resolved.

Anaphor Resolution “A man sleeps. He snores”

� Example 7.4.4 (Anaphor Resolution). “A man sleeps. He snores”

98 CHAPTER 7. FRAGMENT 4: NOUN PHRASES AND QUANTIFICATION

∃X.man(X) ∧ sleeps(X)

(man(c1) ∧ sleeps(c1))
T

man(c1)
T

sleeps(c1)
T

∃Y .man(Y) ∧ snores(Y)

(man(c1) ∧ snores(c1))
T

man(c1)
T

snores(c1)
T

minimal

(man(c2) ∧ snores(c2))
T

man(c2)
T

snores(c2)
T

deictic

Michael Kohlhase: LBS 145 2025-10-07

Anaphora with World Knowledge

� Example 7.4.5. “Mary is married to Jeff. Her husband is not in town.” (slightly
outside F2)
In PL1: married(mary, jeff), and

∃WMale,W
′
Female.husband(W,W

′) ∧ ¬intown(W)

� World knowledge

� If woman X is married to man Y , then Y is the only husband of X.

� ∀XFemale, YMale.married(X,Y)⇒husband(Y,X)∧(∀Z.husband(Z,X)⇒(Z =
Y))

� Model generation gives tableau where all open branches contain

{married(mary, jeff)
T
, husband(jeff,mary)

T
, intown(jeff)

F}

� Differences: Additional negative facts e.g. married(mary,mary)
F.

Michael Kohlhase: LBS 146 2025-10-07

A branch without World Knowledge
married(mary, jeff)T

(∃ZMale, Z
′
Female.husband(Z,Z

′) ∧ ¬intown(Z))T

(∃Z′.husband(c1Male, Z
′) ∧ ¬intown(c1Male))

T

(husband(c1Male,mary) ∧ ¬intown(c1Male))
T

husband(c1Male,mary)
T

¬intown(c1Male)
T

intown(c1Male)
F

� Problem: Bigamy:
c1Male and jeff are hus-
bands of “Mary ”!

Michael Kohlhase: LBS 147 2025-10-07

7.4.2 Model Generation with Definite Descriptions
To obtain a model generation calculus for HOLnq with descriptions, we could in principle add one
of these axioms to the world knowledge, and work with that. It is better to have a dedicated

7.4. INFERENCE FOR FRAGMENT 4 99

inference rule, which we present here.

A Model Generation Rule for ι

� Definition 7.4.6.
P (c)

T

Q(ι P)
α H = {c, a1, . . . , an}

RM ι
Q(c)

α

(P (a1)⇒ c = a1)
T

...
(P (an)⇒ c = an)

T

� Intuition: If we have a member c of P and Q(ι P) is defined (it has truth value
α ∈ {T,F}), then P must be a singleton (i.e. all other members X of P are
identical to c) and Q must hold on c. So the rule RM ι forces it to be by making
all other members of P equal to c.

Michael Kohlhase: LBS 148 2025-10-07

“Mary owned a lousy computer. The hard drive crashed.”
(∀X.computer(X)⇒ (∃Y .harddrive(Y) ∧ partof(Y,X)))

T

∃X.computer(X) ∧ lousy(X) ∧ own(mary, X)

computer(c)
T

lousy(c)
T

own(mary, c)
T

harddrive(c)
T

partof(c, c)
T

...
⊥

harddrive(d)
T

partof(d, c)
T

crashes(ι harddrive)

crashes(d)
T

(harddrive(mary)⇒mary = d)
T

(harddrive(c)⇒ c = d)
T

Michael Kohlhase: LBS 149 2025-10-07

Definition 7.4.7. In this example, we have a case of what is called a bridging reference, following
H. Clark (1977): intuitively, we build an inferential bridge from the computer whose existence is
asserted in the first sentence to the hard drive invoked in the second.
By incorporating world knowledge into the tableau, we are able to model this kind of inference,
and provide the antecedent needed for interpreting the definite.
Now let us use the RM ι rule for interpreting “The dog barks” in a situation where there are two
dogs: Fido and Chester. Intuitively, this should lead to a closed tableau, since the uniqueness
presupposition is violated. Applying the rules, we get the following tableau.

Another Example “The dog barks”

100 CHAPTER 7. FRAGMENT 4: NOUN PHRASES AND QUANTIFICATION

� In a situation, where there are two dogs: Fido and Chester

dog(fido)
T

dog(chester)
T

bark(ι dog)

bark(fido)
T

(dog(chester)⇒ chester = fido)
T

dog(chester)
F

⊥
chester = fidoT

(7.1)

� Note that none of our rules allows us to close the right branch, since we do not
know that Fido and Chester are distinct. Indeed, they could be the same dog
(with two different names). But we can eliminate this possibility by adopting a new
assumption.

Michael Kohlhase: LBS 150 2025-10-07

7.4.3 Model Generation with Unique Name Assumptions

Normally (i.e. in natural languages) we have the default assumption that names are unique. In
principle, we could do this by adding axioms of the form n = mF to the world knowledge for all
pairs of names n and m. Of course the cognitive plausibility of this approach is very questionable.
As a remedy, we can build a Unique-Name-Assumption (UNA) into the calculus itself.

Model Generation with Unique Name Assumption (UNA)

� Problem: Names are unique usually in natural language

� Definition 7.4.8. The unique name assumption (UNA) makes the assumption that
names are unique (in the respective context)

� Idea: Add background knowledge of the form n = mF (n and m names)

� Better Idea: Build UNA into the calculus: partition the Herbrand universe H =
U ∪W into subsets U for constants with a UNA, and W without. (treat them
differently)

� Definition 7.4.9 (Model Generation with UNA). We add the following two rules
to the RM calculus to deal with the unique name assumption.

a = bT

Aα a ∈ W b ∈ H

([b/a](A))
α RM subst

a = bT a, b ∈ U
⊥

RM una

Michael Kohlhase: LBS 151 2025-10-07

In effect we make the equality replacement rule directional; it only allows the substitution for a
constant without the unique name assumption. Finally, RM una mechanizes the unique name
assumption by allowing a branch to close if two different constants with unique names are claimed
to be equal. All the other rules in our model generation calculus stay the same. Note that with
RM una, we can close the right branch of tableau (7.1), in accord with our intuition about the
discourse.

7.4. INFERENCE FOR FRAGMENT 4 101

Solving a Crime with Unique Names

� Example 7.4.10. Tony has observed (at most) two people. Tony observed a
murderer that had black hair. It turns out that Bill and Bob were the two people
Tony observed. Bill is blond, and Bob has black hair. (Who was the murderer.)
Let U = {Bill,Bob} and W = {murderer}:

(∀z.observes(Tony, z)⇒ (z = Bill ∨ z = Bob))
T

observes(Tony,Bill)
T

observes(Tony,Bob)
T

observes(Tony,murderer)
T

black_hair(murderer)
T

¬black_hair(Bill)
T

black_hair(Bill)
F

black_hair(Bob)
T

(observes(Tony,murderer)⇒ (murderer = Bill ∨murderer = Bob))
T

(murderer = Bill ∨murderer = Bob)
T

murderer = BillT

black_hair(Bill)
T

⊥

murderer = BobT

Michael Kohlhase: LBS 152 2025-10-07

Rabbits [Gardent & Konrad ’99]

� Interpret “the” as λPQ.Qι P ∧ uniq(P)
where uniq := λP .(∃X.P (X) ∧ (∀Y .P (Y)⇒X = Y))
and ∀∀ := λPQ.(∀X.P (X)⇒Q(X)).

� “the rabbit is cute”, has logical form uniq(rabbit) ∧ (rabbit ⊆ cute).

� RM generates { . . . , rabbit(c), cute(c)} in situations with at most 1 rabbit.
(special RM ∃ rule yields identification and accommodation (cnew))

+ At last an approach that takes world knowledge into account!

– tractable only for toy discourses/ontologies
“The world cup final was watched on TV by 7 million people.”
“A rabbit is in the garden.”
∀X.human(x)∃Y .human(X) ∧ father(X,Y) ∀X,Y .father(X,Y)⇒X ̸= Y

Michael Kohlhase: LBS 153 2025-10-07

More than one Rabbit

� Problem: What about two rabbits?
“Bugs and Bunny are rabbits. Bugs is in the hat. Jon removes the rabbit from the
hat.”

102 CHAPTER 7. FRAGMENT 4: NOUN PHRASES AND QUANTIFICATION

� Idea: Uniqueness under Scope [Gardent & Konrad ’99]:

� refine “the” to λPRQ.uniq(P ∩R ∧ ∀∀(P ∩R,Q))
where R is an “identifying property” (identified from the context and passed as
an arbument to “the”)

� here R is “being in the hat” (by world knowledge about removing)

� makes Bugs unique (in P ∩R) and the discourse acceptable.

� Idea: [Hobbs & Stickel&. . .]:

� use generic relation rel for “relatedness to context” for P 2.

?? Is there a general theory of relatedness?

Michael Kohlhase: LBS 154 2025-10-07

7.5 Quantifier Scope Ambiguity and Underspecification

7.5.1 Scope Ambiguity and Quantifying-In
Now that we are able to interpret sentences with quantification objects and subjects, we can

address the issue of quantifier scope ambiguities.

Quantifier Scope Ambiguities: Data

� Consider the following sentences:

1. “Every man loves a woman” (Britney Spears or his mother?)

2. “Most Europeans speak two languages.”

3. “Some student in every course sleeps in every class at least some of the time.”

� Definition 7.5.1. We call these systematic ambiguities quantifyer scope ambigui-
ties

� Example 7.5.2. We can represent the “wide-scope” reading with our methods

every man loves a woman

Det N Det NV t

NP NP

VP

S

every man loves a woman

every′ man loves a′ woman

λP .(∀X.man(X)⇒ P (X))

λQ.(∃Y .woman(Y)Q(Y))

λx.(∃Y .woman(Y) ∧ loves(X,Y))

∀X.man(X)⇒ (∃Y .woman(Y)⇒ loves(X,Y))

� Question: How to map an unambiguous input structure to multiple translations.

Michael Kohlhase: LBS 155 2025-10-07

This is a correct representation of one of the possible readings of the sentence – namely the one
where the quantifier of the object-NP occurs inside the scope of the quantifier of the subject-NP.
We say that the quantifier of the object-NP has narrow scope while the quantifier of the subject-
NP has wide scope. But the other reading is not generated here! This means our algorithm doesn’t
represent the linguistic reality correctly.

7.5. QUANTIFIER SCOPE AMBIGUITY AND UNDERSPECIFICATION 103

What’s the problem?: This is because our approach so far constructs the semantics determin-
istically from the syntactic analysis. Our analysis simply isn’t yet able to compute two different
readings for a syntactically unambiguous sentence. The reason why we only get the reading with
wide scope for the subject is because in the semantic construction process, the verb semantics
is first combined with the object semantics, then with that of the subject. And given the order
of the -prefixes in our semantic representations, this eventually transports the object semantics
inside the subject’s scope.
A Closer Look: To understand why our algorithm produces the reading it does (and not the
other alternative), let us have a look at the order of applications in the semantic representation
as it is before we start =β-reducing. To be able to see the order of applications more clearly, we
abbreviate the representations for the determiners. E.g. we write instead of . We will of course
have to expand those abbreviations at some point when we want to perform =β-reduction.

In the VP node for “ loves a woman” we have (λFX.λQ.(∃Y .woman(Y)∧Q Y)) loves and thus
the sentence representation is

(λP .(∀X.man(X)⇒ P (X))) (λFX.λQ.(∃Y .woman(Y) ∧Q Y)) loves

The resulting expression is an application of form ⟨everyman⟩(⟨awoman⟩(⟨loves⟩)). I.e. the
universal quantifier occurs in the functor (the translation of the subject NP), and the existential
quantifier occurs in the argument (corresponding to the VP). The scope relations in the =β-reduced
result reflect the structure in this application.

With some imagination we can already guess what an algorithm would have to do in or-
der to produce the second reading we’ve seen above (where the subject-NP has narrow scope):
It would somehow have to move the “a woman” part in front of the “every”. Something like
⟨awoman⟩(⟨everyman⟩(⟨loves⟩)) would do.

Storing and Quantifying In

� Analysis: The sentence meaning is of the form ⟨everyman⟩(⟨awoman⟩(⟨loves⟩))

� Idea: Somehow have to move the “a woman” part in front of the “every ” to obtain

⟨awoman⟩(⟨everyman⟩(⟨loves⟩))

� More concretely: Let’s try “A woman - every man loves her.”
In semantics construction, apply “a woman” to “every man loves her ”.
So “a woman” out-scopes “every man”.

� Problem: How to represent pronouns and link them to their antecedents

� STORE is an alternative translation rule. Given a node with an NP daughter, we
can translate the node by passing up to it the translation of its non-NP daughter,
and putting the translation of the NP into a store, for later use.

� The QI rule allows us to empty out a non-empty store.

Michael Kohlhase: LBS 156 2025-10-07

To make the second analysis work, one has to think of a representation for the pronoun, and
one must provide for linking the pronoun to its antecedent “a woman” later in the semantics
construction process. Intuitively, the pronoun itself is semantically empty. Now Montague’s idea
essentially was to choose a new variable to represent the pronoun. Additionally, he had to secure
that this variable ends up in the right place after -reduction.

104 CHAPTER 7. FRAGMENT 4: NOUN PHRASES AND QUANTIFICATION

Storing and Quantifying In (Technically)

� Definition 7.5.3. STORE(NP,Φ) −→ (Φ,Σ∗NP), where Σ∗NP is the result
of adding NP to Σ, i.e. Σ∗NP = Σ ∪ {NP}; we will assume that NP is not
already in Σ, when we use the ∗ operator.

� Definition 7.5.4. QI(⟨Φ,Σ∗NP ⟩) → ⟨NP ⊕ Φ,Σ⟩ where ⊕ is either function
application or function composition.

� Nondeterministic Semantics Construction: Adding rules gives us more choice

1. Rule C (simple combination) If A is a node with daughters B and C, and
the translations of B and of C have empty stores, then A translates to B′ ⊕C ′.
Choice of rule is determined by types.

2. STORE If A is a node with daughters B and C, where:

� B is an NP with translation B′ and
� C translates to (C ′,Σ)

then A may translate to STORE(B′, C ′)

Note that STORE may be applied whether or not the stores of the constituent
nodes are empty.

Michael Kohlhase: LBS 157 2025-10-07

We now have more than one way to translate a branching node, but the choice is partly constrained
by whether or not the daughters of the node have empty stores. We have the following two
options for translating a branching node. (Note: To simplify the notation, let us adopt the
following convention: If the translation of A has an empty store, we omit reference to the store in
representing the translation of A, A.)
Application of STORE must always eventually be followed by application of QI. (Note that QI
is not a translation rule, but a sort of transformation on translations.) But when must QI be
applied? There are two cases:

1. The process of semantics construction must conclude with an empty store.

2. If A is a branching node one of whose daughters is a conjunction (i.e. “and ” or “or ”, the
translation of A is given by Rule C).

The first of these rules has the effect that if the initial translation of S has a non-empty store,
we must apply QI as many times as needed to empty the store. The second rule has the effect of
requiring the same thing where “and ” attaches to any constituent.
We assume that our syntax processing returned the syntax tree on the left. Just as before; the only
difference is that we have a different syntax-semantics interface. The NP nodes get their semantics
A := λP .(∀X.man(X)⇒ P (X)) and B := λQ.(∃Y .woman(Y)⇒Q(Y)) as before. Similarly, the
V t node has the value loves. To compute the semantics of the VP nodes, we use the rule STORE
and obtain ⟨loves, {A}⟩ and similarly ⟨loves, {A,B}⟩ for the for the S node, thus we have the
following semantics tree.

Quantifying in Practice: “Every man loves a woman”

� Example 7.5.5.

7.5. QUANTIFIER SCOPE AMBIGUITY AND UNDERSPECIFICATION 105

every man loves a woman

Det N Det NV t

NP NP

VP

S

every man loves a woman

every′ man loves a′ woman

⟨λP .(∀X.man(X)⇒ P (X)), ∅⟩
⟨λQ.(∃Y .woman(Y)⇒Q(Y)), ∅⟩

⟨loves, {λP .(∀X.man(X)⇒ P (X))}⟩

⟨loves, {λP .(∀X.man(X)⇒ P (X)), λQ.(∃Y .woman(Y)⇒Q(Y))}⟩

� Continue with QI applications: first retrieve λQ.(∃Y .woman(Y)⇒Q(Y))

⟨loves, {λP .(∀X.man(X)⇒ P (X)), λQ.(∃Y .woman(Y)⇒Q(Y))}⟩
→QI ⟨◦ (λP .(∀X.man(X)⇒ P (X))) loves, {λQ.(∃Y .woman(Y)⇒Q(Y))}⟩
→β ⟨λZ.(λP .(∀X.man(X)⇒ P (X))) loves Z, {λQ.(∃Y .woman(Y)⇒Q(Y))}⟩
→β ⟨λZ.(∀X.man(X)⇒ loves Z X), {λQ.(∃Y .woman(Y)⇒Q(Y))}⟩
→QI ⟨(λQ.(∃Y .woman(Y)⇒Q(Y))) (λZ.(∀X.man(X)⇒ loves Z X)), ∅⟩
→β ⟨∃Y .woman(Y)⇒ (λZ.(∀X.man(X)⇒ loves Z X)) Y , ∅⟩
→β ⟨∃Y .woman(Y)⇒ (∀X.man(X)⇒ loves Y X), ∅⟩

Michael Kohlhase: LBS 158 2025-10-07

This reading corresponds to the wide scope reading for “a woman”. If we had used the QI rules
the other way around, first extracting “a woman” and then “every man”, we would have gotten
the reading with wide scope for “every man” in the same way.

7.5.2 Dealing with Quantifier Scope Ambiguity: Cooper Storage

Type raising transitive verbs

� We need transitive verbs to combine with quantificational objects of type (ι →
o)→ o but . . .

� We still ultimately want their “basic” translation to be type ι→ι→ o, i.e. something
that denotes a relation between individuals.

� We do this by starting with the basic translation, and raising its type. Here is what
we’ll end up with, for the verb “ like”:

λPY .P (λX.likes(X,Y))

where P is a variable of type (ι → o) → o and X, Y are variables of type ι. (For
details on how this is derived, see [CKG09, pp.178-179])

Michael Kohlhase: LBS 159 2025-10-07

We have already seen the basic idea that we will use here. We will proceed with compositional
translation in the familiar way. But when we encounter a QNP, we will put its translation aside, in
a store. To make sure we know where it came from, we will put a “place holder” in the translation,
and co-index the stored NP with its place holder. When we get to the S node, we will have a
representation which we can re-combine with each of the stored NPs in turn. The order in which
we re-combine them will determine the scopal relations among them.

106 CHAPTER 7. FRAGMENT 4: NOUN PHRASES AND QUANTIFICATION

Cooper Storage

� Intuition: A store consists of a “core” semantic representation, computed in the
usual way, plus the representations of quantifiers encountered in the composition so
far.

� Definition 7.5.6. A store is an n place sequence. The first member of the sequence
is the core semantic representation. The other members of the sequence (if any)
are pairs (β,i) where:

� β is a QNP translation and

� i is an index, which will associate the NP translation with a free variable in the
core semantic translation.

We call these pairs binding operators (because we will use them to bind free variables
in the core representation).

� Definition 7.5.7. In the Cooper storage method, QNPs are stored in the store
and later retrieved – not necessarily in the order they were stored – to build the
representation.

� The elements in the store are written enclosed in angled brackets. However, we
will often have a store which consists of only one element, the core semantic rep-
resentation. This is because QNPs are the only things which add elements beyond
the core representation to the store. So we will adopt the convention that when the
store has only one element, the brackets are omitted.

Michael Kohlhase: LBS 160 2025-10-07

How we put QNPs in the Store

� Storage Rule
If the store ⟨φ, (β, j), . . . , (γ, k)⟩ is a possible translation for a QNP, then the store

⟨λP .P (Xi)(φ, i)(β, j), . . . , (γ, k)⟩

where i is a new index, is also a possible translation for that QNP.

� This rule says: if you encounter a QNP with translation φ, you can replace its
translation with an indexed place holder of the same type, λP .P (Xi), and add φ
to the store, paired with the index i. We will use the place holder translation in the
semantic composition of the sentence.

Michael Kohlhase: LBS 161 2025-10-07

Working with Stores

� Working out the translation for “Every student likes some professor.”

7.5. QUANTIFIER SCOPE AMBIGUITY AND UNDERSPECIFICATION 107

NP1 → λP .(∃X.prof(X) ∧ P (X)) or ⟨λQ.Q(X1), (λP .(∃X.prof(X) ∧ P (X)), 1)⟩
Vt → λRY .R (λZ.likes(Z, Y))
V P → (Combine core representations by FA; pass store up)*

→ ⟨λY .likes(X1, Y), (λP .(∃X.prof(X) ∧ P (X)), 1)⟩
NP2 → λP .(∀Z.student(Z)⇒ P (Z)) or ⟨λR.R(X2), (λP .(∀Z.student(Z)⇒ P (Z)), 2)⟩
S → (Combine core representations by FA; pass stores up)**

→ ⟨likes(X1, X2), (λP .(∃X.prof(X) ∧ P (X)), 1), (λP .(∀Z.student(Z)⇒ P (Z)), 2)⟩

* Combining Vt with place holder

1. (λRY .R (λZ.likes(Z, Y))) (λQ.Q(X1))

2. λY .(λQ.Q(X1)) (λZ.likes(Z, Y))

3. λY .(λZ.likes(Z, Y)) X1

4. λY .likes(X1, Y)

** Combining V P with place holder

1. (λR.R(X2)) (λY .likes(X1, Y))

2. (λY .likes(X1, Y)) X2

3. likes(X1, X2)

Michael Kohlhase: LBS 162 2025-10-07

Retrieving NPs from the store

� Retrieval:

Let σ1 and σ2 be (possibly empty) sequences of binding operators. If the store
⟨φ, σ1, σ2, (β, i)⟩ is a translation of an expression of category S, then the store
⟨β(λX1.φ), σ1, σ2⟩ is also a translation of it.

� What does this say?: It says: suppose you have an S translation consisting
of a core representation (which will be of type o) and one or more indexed QNP
translations. Then you can do the following:

1. Choose one of the QNP translations to retrieve.

2. Rewrite the core translation, λ-abstracting over the variable which bears the index
of the QNP you have selected. (Now you will have an expression of type ι→ o.)

3. Apply this λ-term to the QNP translation (which is of type (ι→ o)→ o).

Michael Kohlhase: LBS 163 2025-10-07

Example: “Every student likes some professor.”

1. Retrieve “every student”

(a) (λQ.(∀Z.student(Z)⇒Q(Z))) (λX2.likes(X1, X2))

(b) ∀Z.student(Z)⇒ (λX2.likes(X1, X2)) Z

(c) ∀Z.student(Z)⇒ likes(X1, Z)

2. Retrieve “some professor ”

(a) (λP .(∃X.prof(X) ∧ P (X))) (λX1.(∀Z.student(Z)⇒ likes(X1, Z)))

(b) ∃X.prof(X)(λX1.(∀Z.student(Z)⇒ likes(X1, Z))) X

(c) ∃X.prof(X) ∧ (∀Z.student(Z)⇒ likes(X,Z))

108 CHAPTER 7. FRAGMENT 4: NOUN PHRASES AND QUANTIFICATION

Michael Kohlhase: LBS 164 2025-10-07

The Cooper storage approach to quantifier scope ambiguity basically moved the ambiguity
problem into the syntax/semantics interface: from a single syntactic tree, it generated multiple
unambiguous semantic representations. We will now come to an approach, which does not force
the system to commit to a particular reading so early.

7.5.3 Underspecification
In this subsection we introduce Johan Bos’ “Hole Semantics”, since this is possibly the simplest
underspecification framework around. The main idea is that the result of the translation is a
“quasi-logical form” (QLF), i.e. a representation that represents all possible readings. This QLF
can then be used for semantic/pragmatic analysis.

7.5.3.1 Unplugging Predicate Logic

The problem we need to solve for our QLF is that regular logical formulae, such as

∀X.man(X)⇒ (∃Y .woman(Y)⇒ loves(Y,X))

fully specifies the scope relation between the quantifiers. The idea behind “hole semantics” (and
most other approaches to quantifier scope underspecification) is to “unplug” first-order logic, i.e.
to take apart logical formulae into smaller parts, and add constraints on how the parts can be
plugged together again. To keep track of where formulae have to be plugged together again, “hole
semantics” uses the notion of “holes”. Our example “ Every man loves a woman” now has the
following form:

love

∀X.man(X)⇒2 ∃X.woman(X)2

21 2

3 4

The meaning of the dashed arrows is that the holes (depicted by 2) can be filled by one of the
formulas that are pointed to. The hole at the top of the graph serves as the representation of the
whole sentence.

We can disambiguate the QLF by choosing an arc for every hole and plugging the respective
formulae into the holes, collapsing the graph into a single logical formula. If we act on arcs 1
and 4, we obtain the wide-scope reading for “every man”, if we act on 2 and 3, we obtain the
reading, where “a woman” out-scopes “every man”. So much for the general idea, how can this be
represented in logic?

7.5.3.2 PLH a first-order logic with holes

The main idea is to label the holes and formulae, and represent the arcs as pairs of labels. To
do this, we add holes to first-order logic, arriving at a logic PLH . This can simply be done by
reserving a lexical category H = {h0, h1, h2, . . . } of holes, and adding them as possible atomic
formulae, so that ∀X.man(X)⇒ h1 is a PLH formula.

Using this, a QLF is a triple ⟨F ,C⟩, where F is a set of labeled formulae of the form ℓi : A1,
where ℓi is taken from a set L = {ℓ0, ℓ1, . . . } of labels, and Ai is a PLH formula, and C is a set
constraints of the form ℓi ≤ hj . The underspecified representation above now has the form

⟨{ℓ1 : ∀X.man(X)⇒ h1, ℓ2 : ∀Y .woman(Y)⇒ h2}, {ℓ1 ≤ h0, ℓ2 ≤ h0, ℓ3 ≤ h1, ℓ3 ≤ h2}⟩

7.6. SUMMARY & EVALUATION 109

Note that we always reserve the hole h0 for the top-level hole, that represents the sentence mean-
ing.

7.5.3.3 Plugging and Chugging

A plugging p for a QLF Q is now a mapping from the holes in Q to the labels in Q that satisfies the
constraint C of Q, i.e. for all holes h in Q we have h ≤ p(h) ∈ C. Note that the set of admissible
pluggings can be computed from the constraint alone in a straightforward manner. Acting on
the pluggings yields a logical formula. In our example, we have two pluggings that give us the
intended readings of the sentence.

plugging logical form
1 [ℓ1/h0], [ℓ2/h1], [ℓ3/h2] ∀X.man(X)⇒ (∃Y .woman(Y) ∧ loves(X,Y))
2 [ℓ2/h0], [ℓ3/h1], [ℓ1/h2] ∃Y .woman(Y)⇒ (∀X.man(X) ∧ loves(X,Y))

7.6 Summary & Evaluation
So let us evaluate what we have achieved in the new, extended fragment.

Fragment F4 – Summary

� Fragment F4 extends F3 by noun phrases.

� Coverage: Better:

Michael Kohlhase: LBS 165 2025-10-07

110 CHAPTER 7. FRAGMENT 4: NOUN PHRASES AND QUANTIFICATION

Chapter 8

Davidsonian Semantics: Treating
Verb Modifiers

Event semantics: Davidsonian Systems

� Problem: How to deal with argument structure of (action) verbs and their modi-
fiers

� “John killed a cat with a hammer.”

� Idea: Just add an argument to kills for express the means

� Problem: But there may be more modifiers

1. “Peter killed the cat in the bathroom with a hammer.”

2. “Peter killed the cat in the bathroom with a hammer at midnight.”

So we would need a lot of different predicates for the verb “killed ”. (impractical)

� Definition 8.0.1. In event semantics we extend the argument structure of (action)
verbs contains a ’hidden’ argument, the event argument, then treat modifiers as
predicates (often called roles) over events [Dav67a].

� Example 8.0.2.

1. ∃e.∃x, y.bathroom(x) ∧ hammer(y) ∧ kill(e,peter, ι cat) ∧ in(e, x) ∧ with(e, y)

2. ∃e.∃x, y.bathroom(x)∧hammer(y)∧kill(e,peter, ι cat)∧ in(e, x)∧with(e, y)∧ at(e, 24 : 00)

Michael Kohlhase: LBS 166 2025-10-07

Event semantics: Neo-Davidsonian Systems

� Idea: Take apart the Davidsonian predicates even further, add event participants
via thematic roles (from [Par90]).

� Definition 8.0.3. Neo-Davidsonian semantics extends event semantics by adding
two standardized roles: the agent ag(e, s) and the patient pat(e, o) for the subject
s and direct object d of the event e.

111

112 CHAPTER 8. DAVIDSONIAN SEMANTICS: TREATING VERB MODIFIERS

� Example 8.0.4. Translate “John killed a cat with a hammer.” as
∃e.∃x.hammer(x) ∧ killing(e) ∧ ag(e, peter) ∧ pat(e, ι cat) ∧ with(e, x)

� Further Elaboration: Events can be broken down into sub-events and modifiers
can predicate over sub-events.

� Example 8.0.5. The “process” of climbing Mt. Everest starts with the “event”
of (optimistically) leaving the base camp and culminates with the “achievement” of
reaching the summit (being completely exhausted).

� Note: This system can get by without functions, and only needs unary and binary
predicates. (well-suited for model generation)

Michael Kohlhase: LBS 167 2025-10-07

Event Types and Properties of Events

� Example 8.0.6 (Problem). Some (temporal) modifiers are incompatible with
some events, e.g. in English progressive:

1. “He is eating a sandwich” and “He is pushing the cart.”, but not

2. * “He is being tall.” or * “He is finding a coin.”

� Definition 8.0.7 (Types of Events). There are different types of events that go
with different temporal modifiers. [Ven57] distinguishes

1. states: e.g. “know the answer ”, “stand in the corner ”

2. processes: e.g. “run”, “eat”, “eat apples”, “eat soup”

3. accomplishments: e.g. “run a mile”, “eat an apple”, and

4. achievements: e.g. “reach the summit”

� Observations:

1. processes and accomplishments appear in the progressive (1),

2. states and achievements do not (2).

� Definition 8.0.8. The for/in test

1. states and activities, but not accomplishments and achievements are compatible
with “for ”-adverbials

2. whereas the opposite holds for in-adverbials (5).

� Example 8.0.9.

1. “run a mile in an hour ” vs. * “run a mile for an hour ”, but

2. * “reach the summit for an hour ” vs “reach the summit in an hour ”

Michael Kohlhase: LBS 168 2025-10-07

Part II

Topics in Semantics

113

Chapter 9

Dynamic Approaches to NL
Semantics

In this chapter we tackle another level of language, the discourse level, where we look
especially at the role of cross-sentential anaphora. This is an aspect of natural language that
cannot (compositionally) be modeled in first-order logic, due to the strict scoping behavior of
quantifiers. This has led to the developments of dynamic variants of first-order logic: the “file
change semantics” [Hei82] by Irene Heim and (independently) “discourse representation theory”
(DRT [Kam81]) by Hans Kamp, which solve the problem by re-interpreting indefinites to introduce
representational objects – called discourse referents in DRT – that are not bound variables and
can therefore have a different scoping behavior. These approaches have been very influential in
the representation of discourse – i.e. multi-sentence – phenomena.

In this chapter, we will introduce dynamic logics taking DRT as a starting point since it
was adopted more widely than file change semantics and the later “dynamic predicate logics”
(DPL [GS91]). section 9.1 gives an introduction to dynamic language phenomena and how they
can be modeled in DRT. section 10.4 relates the linguistically motivated logics to modal logics used
for modeling imperative programs and draws conclusions about the role of language in cognition.
??? extends our primary inference system – model generation – to DRT and relates the concept
of discourse referents to Skolem constants. Dynamic model generation also establishes a natural
system of “direct deduction” for dynamic semantics. Finally, Appendix C discusses how dynamic
approaches to NL semantics can be combined with ideas Montague Semantics to arrive at a fully
compositional approach to discourse semantics.

9.1 Discourse Representation Theory
In this section we introduce Discourse Representation Theory as the most influential framework

for aproaching dynamic phenomena in natural language. We will only cover the basic ideas here
and leave the coverage of larger fragments of natural language to [KR93].
Let us look at some data about effects in natural languages that we cannot really explain with
our treatment of indefinite descriptions in fragment F4 (see ???).

Anaphora and Indefinites revisited (Data)

� Observation: We have concentrated on single sentences so far; let’s do better.

� Definition 9.1.1. A discourse is a unit of natural language longer than a single
sentence.

115

116 CHAPTER 9. DYNAMIC APPROACHES TO NL SEMANTICS

� New Data: Discourses interact with anaphora.:

� “Peter1 is sleeping. He1 is snoring ”. (normal anaphoric reference)

� “A man1 is sleeping. He1 is snoring ”. (scope of existential?)

� “Peter has a car1. It1 is parked outside”. (even if this worked)

� * “Peter has no car1. It1 is parked outside”. (what about negation?)

� “There is a book1 that Peter does not own. It1 is a novel ”. (OK)

� * “Peter does not own every book1. It1 is a novel ”. (equivalent in PL1)

� “If a farmer1 owns a donkey2, he1 beats it2”. (even inside sentences)

� We gloss the intended anaphoric reference with the labels in upper and lower indices.

Michael Kohlhase: LBS 169 2025-10-07

In the first example, we can pick up the subject “Peter ” of the first sentence with the anaphoric
reference “He” in the second. And indeed, we can resolve the anaphoric reference in the semantic
representation by translating “He” to (the translation of) “Peter ”. Alternatively we can follow the
lead of fragment F2 (see ???) and introduce variables for anaphora and adding a conjunct that
equates the respective variable with the translation of “Peter ”. This is the general idea of anaphor
resolution we will adopt in this section.
Intuitively, the second example should work exactly the same – it should not matter, whether
the subject NP is given as a proper name or an indefinite description. The problem with the
indefinite descriptions is that they are translated into existential quantifiers and we cannot refer
to the bound variables; see below. Note that this is not a failure of our envisioned treatment of
anaphora, but of our treatment of indefinite descriptions; they just do not generate the objects
that can be referred back to by anaphoric references (we will call them discourse referents). We
will speak of the anaphoric potential for this the set of referents that can be anaphorically referred
to.
The second pair of examples is peculiar in the sense that if we had a solution for the indefinite
description in “Peter has a car ”, we would need a solution that accounts for the fact that even
though “Peter has a car ” puts a car referent into the anaphoric potential “Peter has no car ”
– which we analyze compositionally as “It is not the case that Peter has a car ” does not. The
interesting effect is that the negation closes the anaphoric potential and excludes the car referent
that “Peter has a car ” introduced.
The third pair of sentences shows that we need more than PL1 to represent the meaning of quan-
tification in natural language while the sentence “There is a book that peter does not own.” induces
a book referent in the anaphoric potential, but the sentence “Peter does not own every book ” does
not, even though their translations ∃x.book(x)∧¬own(peter, x) and ¬(∀x.book(x)⇒own(peter, x))
are logically equivalent.
The last sentence is the famous donkey sentence that shows that the dynamic phenomena we have
seen above are not limited to inter-sentential anaphora.

Dynamic Effects in Natural Language

� Problem: E.g. Quantifier Scope

� * “A man sleeps. He snores.”

� (∃X.man(X) ∧ sleeps(X)) ∧ snores(X)

� X is bound in the first conjunct, and free in the second.

9.1. DISCOURSE REPRESENTATION THEORY 117

� Problem: Donkey sentence: “If a farmer owns a donkey, he beats it.”
∀X,Y .farmer(X) ∧ donkey(Y) ∧ own(X,Y)⇒ beat(X,Y)

� Ideas:

� Composition of sentences by conjunction inside the scope of existential quanti-
fiers (non-compositional,
. . .)

� Extend the scope of quantifiers dynamically (DPL)

� Replace existential quantifiers by something else (DRT)

Michael Kohlhase: LBS 170 2025-10-07

The central idea of Discourse Representation Theory (DRT), is to eschew the first-order quantifi-
cation and the bound variables it induces altogether and introduce a new representational device:
discourse referents, and manage their visibility (called accessibility in DRT) explicitly.
We will introduce the traditional, visual “box notation” by example now before we turn to a
systematic definition based on a symbolic notation later.

Discourse Representation Theory (DRT)

� Definition 9.1.2. Discourse Representation Theory (DRT) is a logical system,
which uses discourse referents to model quantification and pronouns. DRT formu-
lae are called discourse representation structures (DRS); these introduce a set of
discourse referents and specify their meaning by conditions which comprise:

� atomic first-order propositions,

� dynamic negations ¬¬D,

� dynamic implications D⇒⇒E, and

� dynamic disjunctions D∨∨E.

� Example 9.1.3. Discourse referents e.g. in “A student owns a book.”

� are kept in a dynamic context (; accessibility)

� are declared e.g. in indefinite nominals

� specified in conditions via predicates

X,Y
student(X)
book(Y)
own(X,Y)

� Example 9.1.4. Discourse representation structures (DRS)
“A student owns a book. He reads it.” “If a farmer owns a donkey, he beats it.”

X,Y ,R, S
student(X)
book(Y)
own(X,Y)
read(R,S)
X = R
Y = S

X, Y
farmer(X)
donkey(Y)
own(X,Y)

⇒⇒
beat(X,Y)

Michael Kohlhase: LBS 171 2025-10-07

These examples already show that there are three kinds of objects in DRT: The meaning of
sentences is given as DRSes, which are denoted as “file cards” that list the discourse referents (the
participants in the situation described in the DRS) at the top of the “card” and state a couple

118 CHAPTER 9. DYNAMIC APPROACHES TO NL SEMANTICS

of conditions on the discourse referents. The conditions can contain DRSes themselves, e.g. in
conditional conditions.
With this representational infrastructure in place we can now look at how we can construct dis-
course DRSes i.e. DRSes for whole discourses. The sentence composition problem was – after all
– the problem that led to the development of DRT since we could not compositionally solve it in
first-order logic.

Discourse DRS Construction

� Problem: How do we construct DRSes for multi-sentence discourses?

� Solution: We construct sentence DRSes individually and merge them (DRSes
and conditions separately)

� Example 9.1.5. A three-sentence discourse. (not quite Shakespeare)

“Mary sees John.” “John kills a cat.” “Mary calls a cop.” merge

see(mary, john)

U
cat(U)
kills(john, U)

V
policeman(V)
calls(mary, V)

U, V
see(mary, john)
cat(U)
kills(john, U)
policeman(V)
calls(mary, V)

� Sentence composition via the DRT Merge Operator ⊗. (acts on DRSes)

Michael Kohlhase: LBS 172 2025-10-07

Note that – in contrast to the “smuggling-in”-type solutions we would have to dream up for first-
order logic – sentence composition in DRT is compositional: We construct sentence DRSes1 and
merge them. We can even introduce a “logic operator” for this: the merge operator ⊗, which can
be thought of as the “full stop” punctuation operator.
Now we can have a look at anaphor resolution in DRT. This is usually considered as a separate
process – part of semantic-pragmatic analysis.

Anaphor Resolution in DRT

� Problem: How do we resolve anaphora in DRT?

� Solution: Two phases

� translate pronouns into discourse referents (semantics construction)

� identify (equate) coreferring discourse referents, (maybe) simplify
(semantic/pragmatic analysis)

� Example 9.1.6. “A student owns a book. He reads it.”

1We will not go into the sentence semantics construction process here

9.1. DISCOURSE REPRESENTATION THEORY 119

“A student1 owns a book2.” “He1 reads it2” merge/resolve simplify

X,Y
student(X)
book(Y)
own(X,Y)

R,S
read(R,S)

X,Y ,R, S
student(X)
book(Y)
own(X,Y)
read(R,S)
X = R
Y = S

X, Y
student(X)
book(Y)
own(X,Y)
read(X,Y)

Michael Kohlhase: LBS 173 2025-10-07

We will sometime abbreviate the anaphor resolution process and directly use the simplified version
of the DRSes for brevity.
Using these examples, we can now give a more systematic introduction of DRT using a more
symbolic notation. Note that the grammar below over-generates, we still need to specify the
visibility of discourse referents.

DRT (more Logic-like Syntax)

� Definition 9.1.7. Given a set DR of discourse referents, discourse representation
structures (DRSes) are given by the following grammar:

conditions C::=p(a1, . . ., an) | C1 ∧ C2 | ¬¬D | D1∨∨D2 | D1⇒⇒D2

DRSes D::=δU1, . . ., Un.C | D1 ⊗D2 | D1 ;;D2

� ⊗ and ;; are for sentence composition (⊗ from DRT, ;; from DPL)

� Example 9.1.8. δU, V .farmer(U) ∧ donkey(V) ∧ own(U, V) ∧ beat(U, V)

� Definition 9.1.9. The meaning of ⊗ and ;; is given operationally by =τ equality:

δX .C1 ⊗ δY.C2 →τ δX ,Y.C1 ∧ C2
δX .C1 ;; δY.C2 →τ δX ,Y.C1 ∧ C2

� Discourse referents used instead of bound variables.(specify scoping independently
of logic)

� Idea: Semantics inherited from first-order logic by a translation mapping.

Michael Kohlhase: LBS 174 2025-10-07

We can now define the notion of accessibility in DRT, which in turn determines the (predicted)
dynamic potential of a DRS: A discourse referent has to be accessible to be picked up by an
anaphoric reference.
We will follow the classical exposition and introduce accessibility as a derived concept induced by
a non-structural notion of sub-DRS.

Sub DRSes and Accessibility

� Problem: How can we formally define accessibility. (to make predictions)

120 CHAPTER 9. DYNAMIC APPROACHES TO NL SEMANTICS

� Idea: Make use of the structural properties of DRT.

� Definition 9.1.10. A referent is accessible in all sub DRS of the declaring DRS.

� If D = δU1, . . ., Un.C, then any sub DRS of C is a sub DRS of D.

� If D = D1 ⊗D2, then D1 is a sub DRS of D2 and vice versa.

� If D = D1 ;;D2, then D2 is a sub DRS of D1.

� If C is of the form C1 ∧ C2, or ¬¬D, or D1∨∨D2, or D1⇒⇒D2, then any sub DRS
of the Ci, and the Di is a sub DRS of C.

� If D = D1⇒⇒D2, then D2 is a sub DRS of D1

� Definition 9.1.11 (Dynamic Potential). (which
referents can be picked up?) A referent U is in the dynamic potential of a DRS D,

iff it is accessible in D ⊗
p(U)

� Definition 9.1.12. We call a DRS static, iff the dynamic potential is empty, and
dynamic, if it is not.

Michael Kohlhase: LBS 175 2025-10-07

Sub DRSes and Accessibility

� Observation: Accessibility gives DRSes the flavor of binding structures. (with
non-standard scoping!)

� Idea: Apply the usual binding heuristics to DRT, e.g.

� reject DRSes with unbound discourse referents.

� Questions: If we view of discourse referents as “nonstandard bound variables”

� what about renaming referents?

Michael Kohlhase: LBS 176 2025-10-07

The meaning of DRSes is (initially) given by a translation to PL1. This is a convenient way to
specify meaning, but as we will see, it has its costs, as we will see.

Translation from DRT to FOL

� Definition 9.1.13. For =τ -normal (fully merged) DRSes use the translation ·:

δU1, . . ., Un.C = ∃U1, . . ., Un.C
¬¬D = ¬D

D∨∨E = D ∨ E
D ∧ E = D ∧ E

(δU1, . . ., Un.C1)⇒⇒(δV 1, . . ., V n.C2) = ∀U1, . . ., Un.C1 ⇒ (∃V 1, . . ., V n.C2)

9.1. DISCOURSE REPRESENTATION THEORY 121

� Example 9.1.14.

X,Y
student(X)
book(Y)
own(X,Y)

= ∃X.∃Y .student(X) ∧ book(Y) ∧ own(X,Y).

� Example 9.1.15.

(δU, V .farmer(U) ∧ donkey(V) ∧ own(U, V))⇒⇒(δW.stick(W) ∧ beatwith(U, V,W))
= ∀X,Y .farmer(X) ∧ donkey(X) ∧ own(X,Y)⇒ (∃Z.stick(Z) ∧ beatwith(Z,X, Y))

� Consequence: Validity of DRSes can be checked by translation.

� Question: Why not use first-order logic directly?

� Answer: Only translate at the end of a discourse (translation closes all dynamic
contexts: frequent re-translation).

Michael Kohlhase: LBS 177 2025-10-07

We can now test DRT as a logical system on the data and see whether it makes the right predictions
about the dynamic effects identified at the beginning of the section.

Properties of Dynamic Scope

� Idea: Test DRT on the data above for the dynamic phenomena

� Example 9.1.16 (Negation Closes Dynamic Potential).
“Peter has no1 car.” * “It1 is parked outside.”

¬¬
U

acar(U)
own(peter, U)

⊗
parked(U)

¬(∃U.acar(U) ∧ own(peter, U)). . .

� Example 9.1.17 (Universal Quantification is Static).
“Peter does not own every book1.” * “It1 is a novel.”

¬¬ U

book(U)
⇒⇒

own(peter, U)

⊗
novel(U)

¬(∀U.book(U)⇒own(peter, U)). . .

� Example 9.1.18 (Existential Quantification is Dynamic).
“There is a book1 that Peter does not own. It1 is a novel.”
V

book(V)
(¬own(peter, V))

⊗
novel(V)

∃U.book(U) ∧ ¬own(peter, U) ∧ novel(U)

Michael Kohlhase: LBS 178 2025-10-07

Example 9.1.16 shows that dynamic negation closes off the dynamic potential. Indeed, the referent
U is not accessible in the second argument of ⊗. Example 9.1.17 predicts the inaccessibility of U
for the same reason. In contrast to that, U is accessible in Example 9.1.18, since it is not under
the scope of a dynamic negation.
The examples above, and in particular the difference between Example 9.1.17 and Example 9.1.18
show that DRT forms a representational level above recall that we can translate down – PL1,
which serves as the semantic target language. Indeed DRT@ makes finer distinctions than PL1,
and supports an incremental process of semantics construction: DRS construction for sentences

122 CHAPTER 9. DYNAMIC APPROACHES TO NL SEMANTICS

followed by DRS merging via =τ reduction.

DRT as a Representational Level

� DRT adds a level to the knowledge representation which provides anchors (the
discourse referents) for anaphora and the like.

� Propositional semantics by translation into PL1. (“+s” adds a sentence)

a
A

a,b
A
B

a,b,c
A
B
C

· · ·
· · ·

∃a.A ∃a, b.A ∧B ∃a, b, c.A ∧B ∧ C · · ·

+s +s +s

? ? ?

τ τ τ

Repn.
Layer

Logic
Layer

� Anaphor resolution works incrementally on the representational level.

Michael Kohlhase: LBS 179 2025-10-07

We will now introduce a direct semantics for DRT: a notion of “model” and an evaluation mapping
that interprets DRSes directly – i.e. not via a translation of first-order logic. The main idea is that
atomic conditions and conjunctions are interpreted largely like first-order formulae, while DRSes
are interpreted as sets of states that satisfy the conditions. A DRS is satisfied by a model, if that
set is non-empty.

A Direct Semantics for DRT (Dyn. Interpretation Iδφ)

� Definition 9.1.19. Let M = ⟨D, I⟩ be a first-order model, then a state is an
assignment from discourse referents into D.

� Definition 9.1.20. Let φ,ψ : DR→ U be states, then we say that ψ extends φ
on X ⊆ DR (write φ[X]ψ), if φ(U) = ψ(U) for all U ̸∈ X .

� Idea: Conditions as truth values; DRSes as pairs (X ,S) (S set of states)

� Definition 9.1.21 (Meaning of complex formulae).The value function Iφ for
DRT is defined with the help of a dynamic value function Iδφ on DRSs: For condi-
tions:

� Iφ(¬¬D) = T, if Iδφ(D)
2
= ∅.

� Iφ(D∨∨E) = T, if Iδφ(D)
2 ̸= ∅ or Iδφ(E)

2 ̸= ∅.

� Iφ(D⇒⇒E) = T, if for all ψ ∈ Iδφ(D)
2 there is a τ ∈ Iδφ(E)

2 with ψ[Iδφ(E)
1
]τ .

For DRSs D we set Iφ(D) = T, iff Iδφ(D)
2 ̸= ∅, and define

� Iδφ(δX .C) = (X ,{ψ |φ[X]ψ and Iψ(C) = T}).

� Iδφ(D ⊗ E) = Iδφ(D ;; E) = (Iδφ(D)
1 ∪ Iδφ(E)

1
,Iδφ(D)

2 ∩ Iδφ(E)
2
)

9.2. DYNAMIC MODEL GENERATION 123

Michael Kohlhase: LBS 180 2025-10-07

We use the dynamic value function Iδφ(D) for DRSs D that might be continued and (the static
Iφ(D) for ones that are already final.
We can now fortify our intuition by computing the direct semantics of two sentences, which differ
in their dynamic potential. We start out with the simple “Peter owns a car ” and then progress to
“Peter owns no car ”.

Examples (Computing Direct Semantics)

� Example 9.1.22. “Peter owns a car ”

Iδφ(δU.acar(U) ∧ own(peter, U))

= ({U},{ψ |φ[U]ψ and Iψ(acar(U) ∧ own(peter, U)) = T})
= ({U},{ψ |φ[U]ψ and Iψ(acar(U)) = T and Iψ(own(peter, U)) = T})
= ({U},{ψ |φ[U]ψ and ψ(U) ∈ I(acar) and (ψ(U),peter) ∈ I(own)})

The set of states [a/U], such that a is a car and is owned by Peter

� Example 9.1.23. For “Peter owns no car ” we look at the condition:

Iφ(¬¬(δU.acar(U) ∧ own(peter, U))) = T

⇔ Iδφ(δU.acar(U) ∧ own(peter, U))
2
= ∅

⇔ ({U},{ψ |φ[X]ψ and ψ(U) ∈ I(acar) and (ψ(U),peter) ∈ I(own)})2 = ∅
⇔ {ψ |φ[X]ψ and ψ(U) ∈ I(acar) and (ψ(U),peter) ∈ I(own)} = ∅

i.e. iff there are no a, that are cars and that are owned by Peter.

Michael Kohlhase: LBS 181 2025-10-07

The first thing we see in Example 9.1.22 is that the dynamic potential can directly be read off
the direct interpretation of a DRS: it is the domain of the states in the first component. In
Example 9.1.23, the interpretation is of the form (∅,Iδφ(C)), where C is the condition we compute
the truth value of in Example 9.1.23.

9.2 Dynamic Model Generation
We will now establish a method for direct deduction on DRT, i.e. deduction at the representational
level of DRT, without having to translate – and retranslate – before deduction. This calculus can
be seen as a first step towards a tableau machine for DRT and thus as a first step towards
semantic-pragmatic analysis for discourses.

Deduction in Dynamic Logics

� Problem: Mechanize the dynamic entailment relation (with anaphora)

� Idea: Use dynamic deduction theorem to reduce (dynamic) entailment to (dy-
namic) satisfiability

� History of Attempts: Direct Deduction on DRT (or DPL) [Sau93; RG94; MR98]

(++) Specialized Calculi for dynamic representations.

124 CHAPTER 9. DYNAMIC APPROACHES TO NL SEMANTICS

(– –) Needs lots of development until we have efficient implementations.

� Translation approach (used in our experiment)

(–) Translate to PL1.

(++) Use off-the-shelf theorem prover (in this case MathWeb).

Michael Kohlhase: LBS 182 2025-10-07

An Opportunity for Off-The-Shelf ATP?

� Pro: ATP is mature enough to tackle applications

� Current ATP are highly efficient reasoning tools.

� Full automation is needed for NLP. (ATP as an oracle)

� ATP as logic engines is one of the initial promises of the field.

� contra: ATP are general logic systems

1. NLP uses other representation formalisms (DRT, Feature Logic,. . .)

2. ATP optimized for mathematical (combinatorially complex) proofs.

3. ATP (often) do not terminate.

� Experiment: Use translation approach for 1. to test 2. and 3. [Bla+01] (Wow,
it works!)

Michael Kohlhase: LBS 183 2025-10-07

Excursion: Incrementality in Dynamic Calculi

� For applications, we need to be able to check for

� satisfiability (∃M.M ⊨ A), validity (∀M.M ⊨ A) and

� entailment (H ⊨ A, iffM ⊨ H impliesM ⊨ A for all M)

� Theorem 9.2.1 (Entailment Theorem). H,A ⊨ B, iff H ⊨ A⇒B. (e.g. for
first-order logic and DPL)

� Theorem 9.2.2 (Deduction Theorem). For most calculi C we have H,A⊢CB,
iff H⊢CA⇒B. (e.g. for ND1)

� Problem: Analogue H1 ⊗ · · · ⊗ Hn |= A is not equivalent to |= (H1 ⊗ · · · ⊗
Hn)⇒⇒A in DRT, as ⊗ symmetric.

� Thus the validity check cannot be used for entailment in DRT.

� Solution: Use sequential merge ;; (from DPL) for sentence composition.

Michael Kohlhase: LBS 184 2025-10-07

9.2. DYNAMIC MODEL GENERATION 125

Model Generation for Dynamic Logics

� Problem: Translation approach is not incremental!

� For each check, the DRS for the whole discourse has to be translated.

� Can become infeasible, once discourses get large (e.g. novel).

� This applies for all other approaches for dynamic deduction too.

� Idea: Extend model generation techniques instead!

� Remember: A DRS D is valid inM = ⟨D, I⟩, iff Iδ∅(D)
2 ̸= ∅.

� Find a model M and state φ, such that φ ∈ Iδ∅(D)
2.

� Adapt first-order model generation technology for that.

Michael Kohlhase: LBS 185 2025-10-07

Dynamic Herbrand Valuation

� Definition 9.2.3. We call a model M = ⟨U , I, Iδ· ⟩ a dynamic Herbrand interpre-
tation, if ⟨U , I⟩ is a Herbrand model.

� Question: Can represent M as a triple ⟨X ,S,B⟩, where B is the Herbrand
valuation for ⟨U , I⟩?

� Definition 9.2.4. M is called finite, iff U is finite.

� Definition 9.2.5. M is minimal, iff for all M′ the following holds: (B(M)′ ⊆
B(M))⇒M =M′.

� Definition 9.2.6. M is domain minimal if for all M′ the following holds:

#(U(M)) ≤ #(U(M)′)

Michael Kohlhase: LBS 186 2025-10-07

Dynamic Model Generation Calculus

� Definition 9.2.7. We use a tableau framework, extend by state information, and
rules for DRSes.

�

(δUA.A)
T H = {a1, . . ., an} w ̸∈ H new

[a1/U]

([a1/U](A))
T

∣∣∣ . . . ∣∣∣ [an/U]

([an/U](A))
T

∣∣∣ [w/U]

([w/U](A))
T

RM δ

� Mechanize ;; by adding representation of the second DRS at all leaves. (⇝
tableau machine)

126 CHAPTER 9. DYNAMIC APPROACHES TO NL SEMANTICS

� Treat conditions by DRT translation

¬¬D
¬¬D

D⇒⇒D′

D⇒⇒D′
D∨∨D′

D∨∨D′

Michael Kohlhase: LBS 187 2025-10-07

Example: “Peter is a man. No man walks”

� Example 9.2.8 (Model Generation). “Peter is a man. No man walks”

man(peter)

man(peter)
T

¬¬(δU.man(U) ∧ walks(U))

¬(∀U.man(U) ∧ walks(U))
T

(∀X.man(X) ∧ walks(X))
F

(man(peter) ∧ walks(peter))
F

man(peter)
F

⊥
walks(peter)

F

Dynamic Herbrand interpretation: ⟨∅, ∅, {man(peter)
T
,walks(peter)

F}⟩

Michael Kohlhase: LBS 188 2025-10-07

Example: Anaphor Resolution “A man sleeps. He snores”

� Example 9.2.9 (Anaphor Resolution). “A man sleeps. He snores”

δUMan.man(U) ∧ sleeps(U)

[c1Man/UMan]

man(c1Man)
T

sleeps(c1Man)
T

δVMan.snores(V)

[c1Man/VMan]

snores(c1Man)
T

minimal

[c2Man/VMan]

snores(c2Man)
T

deictic

Michael Kohlhase: LBS 189 2025-10-07

Anaphora with World Knowledge

� Example 9.2.10 (Anaphora with World Knowledge).

� “Mary is married to Jeff. Her husband is not in town”.

� δUF, VM.U = mary ∧married(U, V) ∧ V = jeff ;; δWM,W ′
F.husband(W,W ′) ∧ ¬intown(W)

9.2. DYNAMIC MODEL GENERATION 127

� World knowledge

� If a female X is married to a male Y , then Y is X’s only husband.
� ; ∀XF, YM.married(X,Y)⇒husband(Y,X)∧ (∀Z.husband(Z,X)⇒Z =
Y)

� Model generation yields saturated tableau, all branches contain

⟨{U, V ,W,W ′}, {[mary/U], [jeff/V], [jeff/W], [mary/W ′]},H⟩

with

H = {married(mary, jeff)
T
, husband(jeff,mary)

T
,¬intown(jeff)T}

� They only differ in additional negative facts, e.g. married(mary,mary)
F.

Michael Kohlhase: LBS 190 2025-10-07

Model Generation models Discourse Understanding

� The tableau machine algorithm conforms with psycholinguistic findings:

� Zwaan& Radvansky [ZR98]: listeners not only represent logical form, but also
models containing referents.

� deVega [de 95]: online, incremental process.

� Singer [Sin94]: enriched by background knowledge.

� Glenberg et al. [GML87]: major function is to provide basis for anaphor resolu-
tion.

Michael Kohlhase: LBS 191 2025-10-07

The cost we had to pay for being able to deal with discourse phenomena is that we had
to abandon the compositional treatment of natural language we worked so hard to establish in
fragments 3 and 4. To have this, we would have to have a dynamic λ calculus that would allow
us to raise the respective operators to the functional level. Such a logical system is non-trivial,
since the interaction of structurally scoped λ-bound variables and dynamically bound discourse
referents is non-trivial.

Excursion: We will discuss such a dynamic λ calculus in???.

128 CHAPTER 9. DYNAMIC APPROACHES TO NL SEMANTICS

Chapter 10

Propositional Attitudes and
Modalities

10.1 Introduction

Modalities and Propositional Attitudes

� Definition 10.1.1. Modality is a feature of language that allows for communicating
things about, or based on, situations which need not be actual. A sentence is called
modal, if it involves a modality

� Definition 10.1.2. Modality is signaled by phrases (called moods) that express a
speaker’s general intentions and commitment to how believable, obligatory, desir-
able, or actual an expressed proposition is.

� Example 10.1.3. Data on modalities (moods in red)

� “A probably holds”, (possibilistic)

� “ it has always been the case that A”, (temporal)

� “ it is well-known that A”, (epistemic)

� “A is allowed/prohibited”, (deontic)

� “A is provable”, (provability)

� “A holds after the program P terminates”, (program)

� “A hods during the execution of P ”. (dito)

� “ it is necessary that A”, (aletic)

� “ it is possible that A”, (dito)

Michael Kohlhase: LBS 192 2025-10-07

Modeling Modalities and Propositional Attitudes

� Example 10.1.4. Again, the pattern from above:

� “ it is necessary that Peter knows logic” (A = Peter knows logic)

129

130 CHAPTER 10. PROPOSITIONAL ATTITUDES AND MODALITIES

� “ it is possible that John loves logic”, (A = John loves logic)

� Observation: All of the red parts above modify the clause/sentence A. We call
them modalities.

� Definition 10.1.5 (A related Concept from Philosophy). A propositional atti-
tude is a mental state held by an agent toward a proposition.

� Question: But how to model this in logic?

� Idea: New sentence-to-sentence operators for “necessary ” and “possible”.(extend
existing logics with them.)

� Observation: “A is necessary ”, iff “¬A is impossible”.

� Definition 10.1.6. A modal logic is a logical system that has logical constants
that model modalities.

Michael Kohlhase: LBS 193 2025-10-07

Various logicians and philosophers looked at ways to use possible worlds, or similar theoretical
entities, to give a semantics for modal sentences (specifically, for a modal logic), including Descartes
and Leibniz. In the modern era, Carnap, Montague and Hintikka pursued formal developments
of this idea. But the semantics for modal logic which became the basis of all following work on
the topic was developed by Kripke 1963. This kind of semantics is often referred to as Kripke
semantics.

History of Modal Logic

� Aristoteles studies the logic of necessity and possibility

� Diodorus: temporal modalities

� possible: “ is true or will be”

� necessary: “ is true and will never be false”

� Clarence Irving Lewis 1918 [Lew18] (Systems S1, . . . , S5)

� strict implication I(A ∧B) (I for “impossible”)

� Kurt Gödel 1932: Modal logic of provability (S4) [Göd32]

� Saul Kripke 1959-63: Possible worlds semantics [Kri63]

� Vaugham Pratt 1976: Dynamic Program Logic [Pra76]

�
...

Michael Kohlhase: LBS 194 2025-10-07

Basic Modal Logics (ML0 and ML1)

� Definition 10.1.7. Propositional modal logic ML0 extends propositional logic with
two new logical constants: 2 for necessity and 3 for possibility. (3A = ¬(2¬A))

10.1. INTRODUCTION 131

� Observation: Nothing hinges on the fact that we use propositional logic!

� Definition 10.1.8. First-order modal logic ML1 extends first-order logic with two
new logical constants: 2 for necessity and 3 for possibility.

� Example 10.1.9. We interpret

1. “Necessarily, every mortal will die.” as 2(∀X.mortal(X)⇒ willdie(X))

2. “Possibly, something is immortal.” as 3(∃X.¬mortal(X))

� Questions: What do 2 and 3 mean? How do they behave?

Michael Kohlhase: LBS 195 2025-10-07

Epistemic and Doxastic Modality

� Definition 10.1.10. Modal sentences can convey information about the speaker’s
state of knowledge (epistemic state) or belief (doxastic state).

� Example 10.1.11. We might paraphrase sentence (2) as (3):

1. A: “Where’s John? ”

2. B: “He might be in the library.”

3. B′: “ It is consistent with the speaker’s knowledge that John is in the library.”

� Definition 10.1.12. We way that a world w is an epistemic possibility for an agent
B if it could be consistent with B’s knowledge.

� Definition 10.1.13. An epistemic logic is one that models the epistemic state of
a speaker. Doxastic logic does the same for the doxastic state.

� Definition 10.1.14. In deontic logic, we interpret the accessibility relation R as
epistemic accessibility:

� With this R, represent B’s utterance as 3inlib(j).

� Similarly, represent “John must be in the library ”. as 2inlib(j).

� Question: If R is epistemic accessibility, what properties should it have?

Michael Kohlhase: LBS 196 2025-10-07

To determine the properties of epistemic accessibility we ask ourselves, what statements involving
2 and 3 should be valid on the epistemic interpretation of the operators, and how do we fix the
accessibility relation to guarantee this?

Deontic Modality

� Definition 10.1.15. Deontic modality is a modality that indicates how the world
ought to be according to certain norms, expectations, speaker desire, etc.

� Definition 10.1.16. Deontic modality has the following subcategories

� Commissive modality (the speaker’s commitment to do something, like a promise
or threat): e.g. “ I shall help you”.

132 CHAPTER 10. PROPOSITIONAL ATTITUDES AND MODALITIES

� Directive modality (commands, requests, etc.): e.g. “Come!”, “Let’s go!”,
“You’ve got to taste this curry!”

� Volitive modality (wishes, desires, etc.): “If only I were rich!”

� Question: If we want to interpret 2runs(j) as “ It is required that John runs”
(or, more idiomatically, as “John must run”), what formulae should be valid on this
interpretation of the operators? (This is for homework!)

Michael Kohlhase: LBS 197 2025-10-07

10.2 Semantics for Modal Logics
Basic Ideas: The fundamental intuition underlying the semantics for modality is that modal
statements are statements about how things might be, statements about possible states of affairs.
According to this intuition, sentence (Example 10.1.9.1) in Example 10.1.9 says that in every
possible state of affairs – every way that things might be – every mortal will die, while sentence
(Example 10.1.9.2) says that there is some possible state of affairs – some way that things might
be – in which something is mortal1. What is needed in order to express this intuition in a model
theory is some kind of entity which will stand for possible states of affairs, or ways things might
be. The entity which serves this purpose is the infamous possible world.

Semantics of ML0

� Definition 10.2.1. We use a set W of possible worlds, and a accessibility relation
R ⊆ W ×W: if R(v, w), then we say that w is accessible from v.

� Example 10.2.2. W = N with R = {⟨n, n+ 1⟩ |n ∈ N}. (temporal logic)

� Definition 10.2.3. Variable assignment φ : V0×W→D0 assigns values to variables
in a given possible world.

� Definition 10.2.4. Value function I ·· : W × wff0(V0)→D0 (assigns values to
formulae in a possible world)

� Iwφ (V) = φ(w, V) for .V ∈ V0
� Iwφ (¬A) = T, iff Iwφ (A) = F. (∧ analogous)

� Iwφ (2A) = T, iff Iw′

φ (A) = T for all w′ ∈ W with wRw′.

� Definition 10.2.5. We call a tripleM := ⟨W,R, I⟩ a Kripke model.

Michael Kohlhase: LBS 198 2025-10-07

In Kripke semantics, the intuitions about the truth conditions of modals sentences are expressed
as follows:

• A sentence of the form 2A, where A is a proposition, is true at w iff A is true at every possible
world accessible from w.

• A sentence of the form 3A, where A is a proposition, is true at w iff A is true at some possible
world accessible from w.

You might notice that these truth conditions are parallel in certain ways to the truth conditions
for tensed sentence. In fact, the semantics of tense is itself a modal semantics which was developed
on analogy to Kripke’s modal semantics. Here are the relevant similarities:

1Note the impossibility of avoiding modal language in the paraphrase!

10.2. SEMANTICS FOR MODAL LOGICS 133

1. Relativization of evaluation A tensed sentence must be evaluated for truth relative to a
given time. A tensed sentence may be true at one time butg false at another. Similarly, we
must evaluate modal sentences relative to a possible world, for a modal sentence may be true
at one world (i.e. relative to one possible state of affairs) but false at another.

2. Truth depends on value of embedded formula at another world The truth of a tensed
sentence at a time t depends on the truth of the formula embedded under the temporal operator
at some relevant time (possibly) different from t. Similarly, the truth of a modal sentence at
w depends on the truth of the formula embedded under the modal operator at some world or
worlds possibly different from w.

3. Accessibility You will notice that the world at which the embedded formula is to be evaluated
is required to be accessible from the world of evaluation. The accessibility relation on possible
worlds is a generalization of the ordering relation on times that we introduced in our temporal
semantics. (We will return to this momentarily).

It will be helpful to start by thinking again about the ordering relation on times introduced in
temporal models. This ordering relation is in fact one sort of accessibility relation.
Why did we need the ordering relation? We needed it in order to ensure that our temporal
semantics makes intuitively correct predictions about the truth conditions of tensed sentences and
about entailment relations between them. Here are two illustrative examples:

Accessibility Relations. E.g. for Temporal Modalities

� Example 10.2.6 (Temporal Worlds with Ordering). Let ⟨W, ◦, <,⊆⟩ an interval
time structure, then we can use ⟨W, <⟩ as a Kripke models. Then PAST becomes
a modal operator.

� Example 10.2.7. Suppose we have i < j and j < k. Then intuitively, if “Jane
is laughing ” is true at i, then “Jane laughed ” should be true at j and at k, i.e.
Iwφ (j)PAST(laughs(j)) and Iwφ (k)PAST(laughs(j)).
But this holds only if “<” is transitive. (which it is!)

� Example 10.2.8. Here is a clearly counter-intuitive claim: For any time i and any
sentence A, if Iwφ (i)PRES(A) then Iwφ (i)PAST(A).
(For example, the truth of “Jane is at the finish line” at i implies the truth of “Jane
was at the finish line” at i.)
But we would get this result if we allowed < to be reflexive. (< is irreflexive)

� Treating tense modally, we obtain reasonable truth conditions.

Michael Kohlhase: LBS 199 2025-10-07

Thus, by ordering the times in our model in accord with our intuitions about time, we can ensure
correct predictions about truth conditions and entailment relations for tensed sentences.
In the modal domain, we do not have intuitions about how possible worlds should be ordered. But
we do have intuitions about truth conditions and entailment relations among modal sentences. So
we need to set up an accessibility relation on the set of possible worlds in our model which, in
combination with the truth conditions for 2 and 3 given above, will produce intuitively correct
claims about entailment.
One of the prime occupations of modal logicians is to look at the sets of validities which are
obtained by imposing various different constraints on the accessibility relation. We will here
consider just two examples.
What must be, is:

134 CHAPTER 10. PROPOSITIONAL ATTITUDES AND MODALITIES

1. It seems intuitively correct that if it is necessarily the case that A, then A is true, i.e. that
wg(2A) = T implies that wg(A) = T or, more simply, that the following formula is valid:

2A⇒A

2. To guarantee this implication, we must ensure that any world w is among the world accessible
from w, i.e. we must make R reflexive.

3. Note that this also guarantees, among other things, that the following is valid: A⇒3A

Whatever is, is necessarily possible:

1. This also seems like a reasonable slogan. Hence, we want to guarantee the validity of:

A⇒23A

2. To do this, we must guarantee that if A is true at a some world w, then for every world w′

accessible from w, there is at least one A world accessible from w′. To do this, we can guarantee
that every world w is accessible from every world which is accessible from it, i.e. make R
symmetric.

Modal Axioms (Propositional Logic)

� Definition 10.2.9. Necessitation:
A

2A
N

� Definition 10.2.10 (Normal Modal Logics).

System Axioms Accessibility Relation
K 2(A⇒B)⇒ (2A⇒2B) general
T K + 2A⇒A reflexive
S4 T + 2A⇒22A reflexive + transitive
B T + 32A⇒A reflexive + symmetric
S5 S4 + 3A⇒23A equivalence relation

Michael Kohlhase: LBS 200 2025-10-07

K Theorems

� Observation 10.2.11. 2(A ∧B) ⊨ 2A ∧2B in K.

� Observation 10.2.12. A⇒B ⊨ 2A⇒2B in K.

� Observation 10.2.13. A⇒B ⊨ 3A⇒3B in K.

Michael Kohlhase: LBS 201 2025-10-07

Translation to First-Order Logic

� Question: Is modal logic more expressive than predicate logic?

� Answer: Very rarely! (usually can be translated)

10.2. SEMANTICS FOR MODAL LOGICS 135

� Definition 10.2.14. Translation τ from ML into PL1, (so that the diagram
commutes)

modal logic predicate logic

Kripke-Sem. Tarski-Sem.

IφIwφ
τ

τ

� Idea: Axiomatize Kripke models in PL1. (diagram is simple consequence)

� Definition 10.2.15. A logic morphism Θ: L→L′ is called

� correct, iff ∃M.M |= Φ implies ∃M′.M′ |=′ Θ(Φ).

� complete, iff ∃M′.M′ |=′ Θ(Φ) implies ∃M.M |= Φ.

Michael Kohlhase: LBS 202 2025-10-07

Modal Logic Translation (formal)

� Definition 10.2.16. The standard translation τw from modal logics to first-order
logic is given by the following process:

� Extend all function constants by a “world argument”: f ∈ Σfk+1 for every f ∈ Σfk

� for predicate constants accordingly.

� insert the “translation world” there: e.g. τw(f(a, b)) = f(w, a(w), b(w)).

� New predicate constant R for the accessibility relation.

� New constant s for the “start world”.

� τw(2A) = ∀w′.wRw′⇒ τw′(A).

� Use all axioms from the respective correspondence theory.

� Definition 10.2.17 (Alternative). Functional translations, if R associative:

� New function constant fR for the accessibility relation.

� Revise the standard translation by one of the following

� τw(2A) = ∀w′.w = fR(w′)⇒ τw(A). (naive solution)
� τfR(w)(2A) = τw(A) (better for mechanizing [Ohl88])

Michael Kohlhase: LBS 203 2025-10-07

Translation (continued)

� Theorem 10.2.18. τs : ML0→ PL0 is correct and complete.

� Proof: show that ∃M.M |= Φ iff ∃M′.M′ |= τs(Φ)

1. LetM = ⟨W,R, φ⟩ withM |= A

2. choseM = ⟨W, I ′⟩, such that I(p) = φ(p) : W →{T,F} and I(r) = R.

136 CHAPTER 10. PROPOSITIONAL ATTITUDES AND MODALITIES

we prove M |=ψ τw(A)′ for ψ = IdW by structural induction over A.

3. A = P

3.1. Iψ(τw(A)) = Iψ(p(w)) = I (p(w)) = φ(P,w) = T

5. A = ¬B, A = B ∧C
trivial by IH.

7. A = 2B
7.1. Iψ(τw(A)) = Iψ(∀w.r(w, v)⇒τv(B)) = T, if Iψ(r(w, v)) = F or Iψ(τv(B)) =

T for all v ∈ W.
7.2.M |=ψ τv′(B) so by IHM |=v B.
7.3. soM |=ψ τw(A)

′.

□

Michael Kohlhase: LBS 204 2025-10-07

Modal Logic (References)

� G. E. Hughes und M. M. Cresswell: A companion to Modal Logic, University
Paperbacks, Methuen (1984) [HC84].

� David Harel: Dynamic Logic, Handbook of Philosophical Logic, D. Gabbay, Hrsg.
Reidel (1984) [Har84].

� Johan van Benthem: Language in Action, Categories, Lambdas and Dynamic Logic,
North Holland (1991) [Ben91].

� Reinhard Muskens, Johan van Benthem, Albert Visser, Dynamics, in Handbook of
Logic and Language, Elsevier, (1995) [MBV95].

� Blackburn, DeRijke, Vedema: Modal Logic ; 2001 [BRV01]. look at the chapter
“Guide to the literature” in the end.

Michael Kohlhase: LBS 205 2025-10-07

Excursion: We discuss a model existence theorem that can be the basis of completeness proofs
for modal logics inAppendix D.

10.3 A Multiplicity of Modalities ; Multimodal Logic
The epistemic and deontic modality modalities differ from alethic, or logical, modality in that
they must be relativized to an individual. Although we can choose to abstract away from this, it
is clear that what is possible relative to John’s set of beliefs may not be possible relative to Jane’s,
or that what is obligatory for Jane may not be obligatory for John. A theory of modalities for
natural language must have a means of representing this relativization.

A Multiplicity of Modalities

� Epistemic (knowledge and belief) modalities must be relativized to an individual

� “Peter knows that Trump is lying habitually.”

10.3. A MULTIPLICITY OF MODALITIES ; MULTIMODAL LOGIC 137

� “John believes that Peter knows that Trump is lying habitually.”

� “You must take the written drivers’ exam to be admitted to the practical test.”

� Similarly, we find in natural language expressions of necessity and possibility relative
to many different kinds of things.

� Consider the deontic (obligatory/permissible) modalities

� “[Given the university’s rules] Jane can take that class.”

� “[Given her intellectual ability] Jane can take that class.”

� “[Given her schedule] Jane can take that class.”

� “[Given my desires] I must meet Henry.”

� “[Given the requirements of our plan] I must meet Henry.”

� “[Given the way things are] I must meet Henry [every day and not know it].”

� Many different sorts of modality, sentences are multiply ambiguous towards which
one.

Michael Kohlhase: LBS 206 2025-10-07

In a series of papers beginning with her 1978 dissertation (in German), Angelika Kratzer proposed
an account of the semantics of natural language which accommodates this ambiguity. (The am-
biguity is treated not as a semantic ambiguity, but as context dependency.) Kratzer’s account,
which is now the standard view in semantics and (well-informed) philosophy of language, adopts
central ingredients from Kripke semantics – the basic possible world framework and the notion
of an accessibility relation – but puts these together in a novel way. Kratzer’s account of modals
incorporates an account of natural language conditionals; this account has been influenced by,
and been influential for, the accounts of conditionals developed by David Lewis and Robert Stal-
naker. These also are now standardly accepted (at least by those who accept the possible worlds
framework).

Some references: [Kra12; Lew73; Sta68].

Multimodal Logics

� Definition 10.3.1. A multimodal logic provides operators for multiple modalities:
[1], [2], [3], . . . , ⟨1⟩, ⟨2⟩, . . .

� Definition 10.3.2. Multimodal Kripke models provide multiple accessibility rela-
tions R1,R2, . . .⊆W ×W.

� Definition 10.3.3. The value function in multimodal logic generalizes the clause
for 2 in ML0 to

� Iwφ ([i]A) = T, iff Iw′

φ (A) = T for all w′ ∈ W with wRiw′.

� Example 10.3.4 (Epistemic Logic: talking about knowing/believing). [peter]⟨klaus⟩A
(Peter knows that Klaus considers A possible)

� Example 10.3.5 (Program Logic: talking about programs).

[X:=A][Y :=A]X = Y (after assignments, the values of X and Y are equal)

Michael Kohlhase: LBS 207 2025-10-07

We will now contrast DRT (see section 9.1) with a modal logic for modeling imperative programs

138 CHAPTER 10. PROPOSITIONAL ATTITUDES AND MODALITIES

– incidentally also called “dynamic logic”. This will give us new insights into the nature of dynamic
phenomena in natural language.

10.4 Dynamic Logic for Imperative Programs

Dynamic Program Logic (DL)

� Modal logics for argumentation about imperative, non-deterministic programs.

� Idea: Formalize the traditional argumentation about program correctness:
tracing the variable assignments (state) across program statements.

� Example 10.4.1 (Fibonacci). Consider the following (imperative) program that
computes Fib(X) as the value of Z:
α := ⟨Y , Z⟩:=⟨1, 1⟩ ;while X ̸= 0 do ⟨X,Y , Z⟩:=⟨X − 1, Z, Y + Z⟩ end

� States for the “input” X = 4: ⟨4,_,_⟩, ⟨4, 1, 1⟩, ⟨3, 1, 2⟩, ⟨2, 2, 3⟩, ⟨1, 3, 5⟩, ⟨0, 5, 8⟩
� Correctness? For positive X, running α with input ⟨X,_,_⟩ we end with
⟨0,Fib(X − 1),Fib(X)⟩

� Termination? α does not terminate on input ⟨ − 1,_,_⟩.

Michael Kohlhase: LBS 208 2025-10-07

Multi-Modal Logic fits well

� Observation: Multi modal logic fits well

� States as possible worlds, program statements as accessibility relations.

� Two syntactic categories: programs α and formulae A.

� Interpret [α]A as “If α terminates, then A holds afterwards”

� Interpret ⟨α⟩A as “α terminates and A holds afterwards”.

� Example 10.4.2. Assertions about Fibonacci number (α)

� ∀X,Y .[α]Z = Fib(X)

� ∀X,Y .(X ≥ 0)⇒ ⟨α⟩Z = Fib(X)

Michael Kohlhase: LBS 209 2025-10-07

Levels of Description in Dynamic Program Logic

� Propositional dynamic logic (DL0) (independent of variable assignments)

� |= [α]A ∧ [α]B⇔ [α](A ∧B)

� |= [while A ∨B do α end]C⇔ [while A do α end ;while B do α ;while A do α end end]C

� First-order program logic (DL1) (function, predicates uninterpreted)

� |= p(f(X))⇒ g(Y, f(X))⇒ ⟨Z:=f(X)⟩p(Z, g(Y,Z))

10.4. DYNAMIC LOGIC FOR IMPERATIVE PROGRAMS 139

� |= Z = Y ∧ (∀X.f(g(X)) = X) ⇒ [while p(Y) do Y :=g(Y) end]⟨while Y ̸= Z do Y :=f(Y) end⟩T

� DL1 with interpreted functions, predicates (maybe some other time)

� ∀X.⟨while X ̸= 1 do if even(X) thenX:=X
2

else X:=3X + 1 end⟩T

� Definition 10.4.3. We collectively call these dynamic program logics.

Michael Kohlhase: LBS 210 2025-10-07

DL0 Syntax

� Definition 10.4.4. Propositional dynamic logic (DL0) is PL0 extended by

� program variables Vπ = {α, β, γ, . . .},
� modalities [α], ⟨α⟩.
� program constructors Σπ = {;,∪, ∗, ?} (minimal set)

α ; β execute first α, then β sequence
α ∪ β execute (non-deterministically) either α or β distribution
∗α (non-deterministically) repeat α finitely often iteration
A? proceed if |= A, else stop test

� Idea: Standard program primitives as derived concepts

Construct as
if A thenα else β (A? ; α) ∪ (¬A? ; β)
while A do α end ∗(A? ; α) ; ¬A?
repeat α until A end ∗(α ; ¬A?) ;A?

Michael Kohlhase: LBS 211 2025-10-07

DL0 Semantics

� Definition 10.4.5. A model for DL0 consists of a set W of possible worlds called
states for DL0.

� Definition 10.4.6. DL0 variable assignments come in two parts:

� φ : V0 ×W →D0 (for propositional variables)

� π : Vπ→P(W ×W) (maps program variables to accessibility relations)

� Definition 10.4.7. The meaning of complex formulae is given by the following
value function Iwφ,π : wff0(V0)→D0 on formulae:

� Iwφ,π(V) = φ(w, V) for V ∈ V0.
� Iwφ,π(¬A) = T iff Iwφ,π(A) = F

� Iwφ,π([α]A) = T iff Iw′

φ,π(A) = T for all w′ ∈ W with wIφ,π(α)w′.

And Iφ,π : wff0(V0)→P(W ×W) on programs: (independent of w ∈ W)

140 CHAPTER 10. PROPOSITIONAL ATTITUDES AND MODALITIES

� Iφ,π(α) = π(α). (program variable by assignment)

� Iφ,π(α ; β) = Iφ,π(β) ◦ Iφ,π(α) (sequence by composition)

� Iφ,π(α ∪ β) = Iφ,π(α) ∪ Iφ,π(β) (distribution by union)

� Iφ,π(∗α) = Iφ,π(α)
∗ (iteration by reflexive transitive closure)

� Iφ,π(A?) = {⟨w,w⟩ | Iwφ,π(A) = T} (test by subset of identity relation)

Michael Kohlhase: LBS 212 2025-10-07

First-Order Program Logic (DL1)

� Observation: Imperative programs uses variables, function and predicate con-
stants (uninterpreted), but no program variables. The main operation is variable
assignment.

� Idea: Make a multimodal logic in the spirit of DL0 that features all of these for a
deeper understanding.

� Definition 10.4.8. First-order program logic (DL1) combines the features of PL1,
DL0 without program variables, with the following two assignment operators:

� nondeterministic assignment X:=?

� deterministic assignment X:=A

� Example 10.4.9. |= p(f(X))⇒ g(Y, f(X))⇒ ⟨Z:=f(X)⟩p(Z, g(Y, Z)) in DL1.

� Example 10.4.10. In DL1 we have
|= Z = Y ∧ (∀X.p(f(g(X)) = X)) ⇒ [while p(Y) do Y :=g(Y) end]⟨while Y ̸= Z do Y :=f(Y) end⟩T

Michael Kohlhase: LBS 213 2025-10-07

DL1 Semantics

� Definition 10.4.11. Let M = ⟨D, I⟩ be a first-order model then the states
(possible worlds) are variable assignments: W = {φ |φ : Vι→D}

� Definition 10.4.12. For a set X of variables, write φ[X]ψ, iff φ(X) = ψ(X) for
all X ̸∈ X .

� Definition 10.4.13. The meaning of complex formulae is given by the following
value function Iwφ : wffo(Σ,Vι)→D0

� Iwφ (A) = Iφ(A) if A term or atom.

� Iwφ (¬A) = T iff Iwφ (A) = F

�
...

� Iφ(X:=?) = {⟨φ,ψ⟩ |φ[X]ψ}
� Iφ(X:=A) = {⟨φ,ψ⟩ |φ[X]ψ and ψ(X) = Iφ(A)}.

� Observation 10.4.14 (Substitution and Quantification). We have

10.4. DYNAMIC LOGIC FOR IMPERATIVE PROGRAMS 141

� Iφ([X:=A]B) = Iφ,[Iφ(A)/X](B)

� ∀X.A = [X:=?]A.

� Thus substitutions and quantification are definable in DL1.

Michael Kohlhase: LBS 214 2025-10-07

Natural Deduction for DL0

� Definition 10.4.15. The natural deduction calculus DND0 for DL0 contains the
inference rules from ND0 plus:

Introduction Elimination

[α][β]A

[α ; β]A
DND0;I

[α ; β]A

[α][β]A
DND0;E

[α]A [β]A

[α ∪ β]A
DND0∪I

[α ∪ β]A
[α]A

DND0∪El
[α ∪ β]A
[β]A

DND0∪Er

[α]0A . . . [α]nA for all n ∈ N
[∗α]A

DND0∗I
[∗α]A n ∈ N

[α]nA
DND0∗E

[A]1

...
B

[A?]B
DND0?I1

[A?]B A

B
DND0?E

For details see [HM95].

Michael Kohlhase: LBS 215 2025-10-07

Natural Deduction for DL1

� Definition 10.4.16. The natural deduction calculus DND1 for DL1 contains the
inference rules from ND1 and DND0 plus:

[A/X](B) X ̸∈ (free(A) ∪ free(B))

[X:=A]B
DND0 :=I

[X:=A]B
[[A/X](B)]1

...
C

C
DND0 :=E

For details see [HM95].

� Observation: No inference rules for :=? needed as ∀X.A = [X:=?]A
⇝∀I and ∀E suffice.

Michael Kohlhase: LBS 216 2025-10-07

142 CHAPTER 10. PROPOSITIONAL ATTITUDES AND MODALITIES

Natural Language as Programming Languages

� Question: Why is dynamic program logic interesting in a natural language seman-
tics course?

� Answer: There are fundamental relations between dynamic (discourse) logics and
dynamic program logics.

� David Israel: “Natural languages are programming languages for mind ” [Isr93]

Michael Kohlhase: LBS 217 2025-10-07

Chapter 11

Some Issues in the Semantics of
Tense

Tense as a Deictic Element

� Goal: Capturing the truth conditions and the logical form of sentences of English.

� Clearly: The following three sentences have different truth conditions.

1. “Jane saw George.”

2. “Jane sees George.”

3. “Jane will see George.”

� Observation 11.0.1. Tense is a deictic element, i.e. its interpretation requires
reference to something outside the sentence itself.

� Remark: Often, in particular in the case of monoclausal sentences occurring in
isolation, as in our examples, this “something” is the speech time.

� Idea: make use of the reference time “now ”:

� “Jane saw George” is true at a time iff “Jane sees George” was true at some
point in time before now.

� “Jane will see George” is true at a time iff “Jane sees George” will be true at
some point in time after now.

Michael Kohlhase: LBS 218 2025-10-07

A Simple Semantics for Tense

� Problem: The meaning of “Jane saw George” and “Jane will see George” is defined
in terms of “Jane sees George”.

; We need the truth conditions of the present tense sentence.

� Idea: “Jane sees George” is true at a time iff Jane sees George at that time.

� Implementation: Postulate temporal operator as sentential operators (expressions
of type o→ o). Interpret

143

144 CHAPTER 11. SOME ISSUES IN THE SEMANTICS OF TENSE

1. “Jane saw George” as PAST(see(g, j)),

2. “Jane sees George” as PRES(see(g, j)), and

3. “Jane wil see George” as FUT(see(g, j)).

Michael Kohlhase: LBS 219 2025-10-07

Some notes:

• Most treatments of the semantics of tense invoke some notion of a tenseless proposition/formula
for the base case, just like we do. The idea here is that markers of past, present and future all
operate on an underlying un-tenseed expression, which can be evaluated for truth at a time.

• Note that we have made no attempt to show how these translations would be derived from the
natural language syntax. Giving a compositional semantics for tense is a complicated business
– for one thing, it requires us to first establish the syntax of tense – so we set this goal aside in
this brief presentation.

• Here, we have implicitly assumed that the English modal “will ” is simply a tense marker. This
is indeed assumed by some. But others consider that it is no accident that “will ” has the syntax
of other modals like “can” and “must”, and believe that “will ” is also semantically a modal.

Models and Evaluation for a Tensed Language

� Problem: The interpretations of constants vary over time.

� Idea: Introduce times into our models, and let the interpretation function give
values of constants at a time. Relativize the valuation function to times

� Idea: We will consider temporal structures, where denotations are constant on
intervals.

� Definition 11.0.2. Let I ⊆ {[i,j] | i, j ∈ R} be a set of real intervals, then we call
⟨I, ◦, <,⊆⟩ an interval time structure, where for intervals i := [il,il] and j := [ll,jr]
we say that

� i and j overlap (written i ◦ j), iff ll ≤ ir,
� i precedes j (written i < j), iff ir ≤ ll, and

� i is contained in j (written i ⊆ j), iff ll ≤ il and ir ≤ jr.

� Definition 11.0.3. A temporal model is a triple ⟨D, I, I⟩, where

� D is a set called the domain,

� I is an interval time structure, and

� I : I× ΣT →D an interpretation function.

Michael Kohlhase: LBS 220 2025-10-07

The ordering relation: The ordering relation < is needed to make sure that our models
represent temporal relations in an intuitively correct way. Whatever the truth may be about time,
as language users we have rather robust intuitions that time goes in one direction along a straight
line, so that every moment of time is either before, after or identical to any other moment; and no
moment of time is both before and after another moment. If we think of the set of times as the
set of natural numbers, then the ordering relation < is just the relation “ less than” on that set.

145

Intervals: Although intuitively time is given by as a set of moments of time, we will adopt
here (following Cann, who follows various others) an interval semantics, in which expressions are
evaluated relative to intervals of time. Intervals are defined in terms of moments, as a continuous
set of moments ordered by <.
The new interpretation function: In models without times, the interpretation function I
assigned an extension to every constant. Now, we want it to assign an extension to each constant
relative to each interval in our interval time structure. I.e. the interpretation function associates
each constant with a pair consisting of an interval and an appropriate extension, interpreted as the
extension at that interval. This set of pairs is, of course, equivalent to a function from intervals
to extensions.

Interpretation rules for the temporal operators

� Definition 11.0.4. For the value function Iiφ(·) we only redefine the clause for
constants:

� Iiφ(c):=Ii(c)

� Iiφ(X):=φ(X)

� Iiφ(FA):=Iiφ(F)(Iiφ(A)).

� Definition 11.0.5. We define the meaning of the temporal operators:

1. Iiφ(PRES(Φ)) = T, iff Iiφ(Φ) = T.

2. Iiφ(PAST(Φ)) = T iff there is an interval j ∈ I with j < i and Ijφ(Φ) = T.

3. Iiφ(FUT(Φ)) = T iff there is an interval j ∈ I with i < j and Ijφ(Φ) = T.

Michael Kohlhase: LBS 221 2025-10-07

Complex Tenses in English

� How do we use this machinery to deal with complex tenses in English?

� Past of past (pluperfect): “Jane had left (by the time I arrived)”.

� Future perfect: “Jane will have left (by the time I arrive)”.

� Past progressive: “Jane was going to leave (when I arrived)”.

Michael Kohlhase: LBS 222 2025-10-07

Perfective vs. imperfective

� Data:

� “Jane left.”

� “Jane was leaving.”

� Question: How do the truth conditions of these sentences differ?

� Standard observation:

146 CHAPTER 11. SOME ISSUES IN THE SEMANTICS OF TENSE

� Perfective indicates a completed action,

� imperfective indicates an incomplete or ongoing action.

� This becomes clearer when we look at the “creation predicates” like “build a house”
or “write a book”

� “Jane built a house.” entails: “There was a house that Jane built.”

� “Jane was building a house.” does not entail that “there was a house that Jane
built.”

Michael Kohlhase: LBS 223 2025-10-07

Future Readings of Present Tense

� New Data:

1. “Jane leaves tomorrow.”

2. “Jane is leaving tomorrow.”

3. ?? “ It rains tomorrow.”

4. ?? “ It is raining tomorrow.”

5. ?? “The dog barks tomorrow.”

6. ?¿‘The dog is barking tomorrow.”

� Future readings of present tense appear to arise only when the event described is
planned, or planable, either by the subject of the sentence, the speaker, or a third
party.

Michael Kohlhase: LBS 224 2025-10-07

Sequence of Tense

� “George said that Jane was laughing.”

� Reading 1: George said “Jane is laughing.” I.e. saying and laughing co-occur.
So past tense in subordinate clause is past of utterance time, but not of main
clause reference time.

� Reading 2: George said “Jane was laughing.” I.e. laughing precedes saying. So
past tense in subordinate clause is past of utterance time and of main clause
reference time.

� “George saw the woman who was laughing.”

� How many readings?

� “George will say that Jane is laughing.”

� Reading 1: George will say “Jane is laughing.” Saying and laughing co-occur,
but both saying and laughing are future of utterance time. So present tense in
subordinate clause indicates futurity relative to utterance time, but not to main
clause reference time.

147

� Reading 2: Laughing overlaps utterance time and saying (by George). So present
tense in subordinate clause is present relative to utterance time and main clause
reference time.

Michael Kohlhase: LBS 225 2025-10-07

Sequence of Tense (continued)

� “George will see the woman who is laughing.”

� How many readings?

� Note that in all of the above cases, the predicate in the subordinate clause describes
an event that is extensive in time. Consider readings when subordinate event is
punctual.

� “George said that Mary fell.”

� Falling must precede George’s saying.

� “George saw the woman who fell.”

� Same three readings as before: falling must be past of utterance time, but could
be past, present or future relative to seeing (i.e main clause reference time).

� And just for fun, consider past under present. . . “George will claim that Mary hit
Bill.”

� Reading 1: hitting is past of utterance time (therefore past of main clause
reference time).

� Reading 2: hitting is future of utterance time, but past of main clause reference
time.

� And finally. . .

1. “A week ago, John decided that in ten days at breakfast he would tell his mother
that they were having their last meal together.” (Abusch 1988)

2. “John said a week ago that in ten days he would buy a fish that was still alive.”
(Ogihara 1996)

Michael Kohlhase: LBS 226 2025-10-07

Interpreting Tense in Discourse

� Example 11.0.6 (Ordering and Overlap). “A man walked into the bar. He sat
down and ordered a beer. He was wearing a nice jacket and expensive shoes, but
he asked me if I could spare a buck.”

� Example 11.0.7 (Tense as anaphora?).

1. Said while driving down the NJ turnpike: “I forgot to turn off the stove.”

2. “I didn’t turn off the stove.”

148 CHAPTER 11. SOME ISSUES IN THE SEMANTICS OF TENSE

Michael Kohlhase: LBS 227 2025-10-07

Chapter 12

Quantifier Scope Ambiguity and
Underspecification

12.1 Scope Ambiguity and Quantifying-In
Now that we are able to interpret sentences with quantification objects and subjects, we can

address the issue of quantifier scope ambiguities.

Quantifier Scope Ambiguities: Data

� Consider the following sentences:

1. “Every man loves a woman” (Britney Spears or his mother?)

2. “Most Europeans speak two languages.”

3. “Some student in every course sleeps in every class at least some of the time.”

� Definition 12.1.1. We call these systematic ambiguities quantifyer scope ambigu-
ities

� Example 12.1.2. We can represent the “wide-scope” reading with our methods

every man loves a woman

Det N Det NV t

NP NP

VP

S

every man loves a woman

every′ man loves a′ woman

λP .(∀X.man(X)⇒ P (X))

λQ.(∃Y .woman(Y)Q(Y))

λx.(∃Y .woman(Y) ∧ loves(X,Y))

∀X.man(X)⇒ (∃Y .woman(Y)⇒ loves(X,Y))

� Question: How to map an unambiguous input structure to multiple translations.

Michael Kohlhase: LBS 228 2025-10-07

This is a correct representation of one of the possible readings of the sentence – namely the one
where the quantifier of the object-NP occurs inside the scope of the quantifier of the subject-NP.
We say that the quantifier of the object-NP has narrow scope while the quantifier of the subject-
NP has wide scope. But the other reading is not generated here! This means our algorithm doesn’t
represent the linguistic reality correctly.

149

150 CHAPTER 12. QUANTIFIER SCOPE AMBIGUITY AND UNDERSPECIFICATION

What’s the problem?: This is because our approach so far constructs the semantics determin-
istically from the syntactic analysis. Our analysis simply isn’t yet able to compute two different
readings for a syntactically unambiguous sentence. The reason why we only get the reading with
wide scope for the subject is because in the semantic construction process, the verb semantics
is first combined with the object semantics, then with that of the subject. And given the order
of the -prefixes in our semantic representations, this eventually transports the object semantics
inside the subject’s scope.
A Closer Look: To understand why our algorithm produces the reading it does (and not the
other alternative), let us have a look at the order of applications in the semantic representation
as it is before we start =β-reducing. To be able to see the order of applications more clearly, we
abbreviate the representations for the determiners. E.g. we write instead of . We will of course
have to expand those abbreviations at some point when we want to perform =β-reduction.

In the VP node for “ loves a woman” we have (λFX.λQ.(∃Y .woman(Y)∧Q Y)) loves and thus
the sentence representation is

(λP .(∀X.man(X)⇒ P (X))) (λFX.λQ.(∃Y .woman(Y) ∧Q Y)) loves

The resulting expression is an application of form ⟨everyman⟩(⟨awoman⟩(⟨loves⟩)). I.e. the
universal quantifier occurs in the functor (the translation of the subject NP), and the existential
quantifier occurs in the argument (corresponding to the VP). The scope relations in the =β-reduced
result reflect the structure in this application.

With some imagination we can already guess what an algorithm would have to do in or-
der to produce the second reading we’ve seen above (where the subject-NP has narrow scope):
It would somehow have to move the “a woman” part in front of the “every”. Something like
⟨awoman⟩(⟨everyman⟩(⟨loves⟩)) would do.

Storing and Quantifying In

� Analysis: The sentence meaning is of the form ⟨everyman⟩(⟨awoman⟩(⟨loves⟩))

� Idea: Somehow have to move the “a woman” part in front of the “every ” to obtain

⟨awoman⟩(⟨everyman⟩(⟨loves⟩))

� More concretely: Let’s try “A woman - every man loves her.”
In semantics construction, apply “a woman” to “every man loves her ”.
So “a woman” out-scopes “every man”.

� Problem: How to represent pronouns and link them to their antecedents

� STORE is an alternative translation rule. Given a node with an NP daughter, we
can translate the node by passing up to it the translation of its non-NP daughter,
and putting the translation of the NP into a store, for later use.

� The QI rule allows us to empty out a non-empty store.

Michael Kohlhase: LBS 229 2025-10-07

To make the second analysis work, one has to think of a representation for the pronoun, and
one must provide for linking the pronoun to its antecedent “a woman” later in the semantics
construction process. Intuitively, the pronoun itself is semantically empty. Now Montague’s idea
essentially was to choose a new variable to represent the pronoun. Additionally, he had to secure
that this variable ends up in the right place after -reduction.

12.1. SCOPE AMBIGUITY AND QUANTIFYING-IN 151

Storing and Quantifying In (Technically)

� Definition 12.1.3. STORE(NP,Φ) −→ (Φ,Σ∗NP), where Σ∗NP is the result
of adding NP to Σ, i.e. Σ∗NP = Σ ∪ {NP}; we will assume that NP is not
already in Σ, when we use the ∗ operator.

� Definition 12.1.4. QI(⟨Φ,Σ∗NP ⟩) → ⟨NP ⊕ Φ,Σ⟩ where ⊕ is either function
application or function composition.

� Nondeterministic Semantics Construction: Adding rules gives us more choice

1. Rule C (simple combination) If A is a node with daughters B and C, and
the translations of B and of C have empty stores, then A translates to B′ ⊕C ′.
Choice of rule is determined by types.

2. STORE If A is a node with daughters B and C, where:

� B is an NP with translation B′ and
� C translates to (C ′,Σ)

then A may translate to STORE(B′, C ′)

Note that STORE may be applied whether or not the stores of the constituent
nodes are empty.

Michael Kohlhase: LBS 230 2025-10-07

We now have more than one way to translate a branching node, but the choice is partly constrained
by whether or not the daughters of the node have empty stores. We have the following two
options for translating a branching node. (Note: To simplify the notation, let us adopt the
following convention: If the translation of A has an empty store, we omit reference to the store in
representing the translation of A, A.)
Application of STORE must always eventually be followed by application of QI. (Note that QI
is not a translation rule, but a sort of transformation on translations.) But when must QI be
applied? There are two cases:

1. The process of semantics construction must conclude with an empty store.

2. If A is a branching node one of whose daughters is a conjunction (i.e. “and ” or “or ”, the
translation of A is given by Rule C).

The first of these rules has the effect that if the initial translation of S has a non-empty store,
we must apply QI as many times as needed to empty the store. The second rule has the effect of
requiring the same thing where “and ” attaches to any constituent.
We assume that our syntax processing returned the syntax tree on the left. Just as before; the only
difference is that we have a different syntax-semantics interface. The NP nodes get their semantics
A := λP .(∀X.man(X)⇒ P (X)) and B := λQ.(∃Y .woman(Y)⇒Q(Y)) as before. Similarly, the
V t node has the value loves. To compute the semantics of the VP nodes, we use the rule STORE
and obtain ⟨loves, {A}⟩ and similarly ⟨loves, {A,B}⟩ for the for the S node, thus we have the
following semantics tree.

Quantifying in Practice: “Every man loves a woman”

� Example 12.1.5.

152 CHAPTER 12. QUANTIFIER SCOPE AMBIGUITY AND UNDERSPECIFICATION

every man loves a woman

Det N Det NV t

NP NP

VP

S

every man loves a woman

every′ man loves a′ woman

⟨λP .(∀X.man(X)⇒ P (X)), ∅⟩
⟨λQ.(∃Y .woman(Y)⇒Q(Y)), ∅⟩

⟨loves, {λP .(∀X.man(X)⇒ P (X))}⟩

⟨loves, {λP .(∀X.man(X)⇒ P (X)), λQ.(∃Y .woman(Y)⇒Q(Y))}⟩

� Continue with QI applications: first retrieve λQ.(∃Y .woman(Y)⇒Q(Y))

⟨loves, {λP .(∀X.man(X)⇒ P (X)), λQ.(∃Y .woman(Y)⇒Q(Y))}⟩
→QI ⟨◦ (λP .(∀X.man(X)⇒ P (X))) loves, {λQ.(∃Y .woman(Y)⇒Q(Y))}⟩
→β ⟨λZ.(λP .(∀X.man(X)⇒ P (X))) loves Z, {λQ.(∃Y .woman(Y)⇒Q(Y))}⟩
→β ⟨λZ.(∀X.man(X)⇒ loves Z X), {λQ.(∃Y .woman(Y)⇒Q(Y))}⟩
→QI ⟨(λQ.(∃Y .woman(Y)⇒Q(Y))) (λZ.(∀X.man(X)⇒ loves Z X)), ∅⟩
→β ⟨∃Y .woman(Y)⇒ (λZ.(∀X.man(X)⇒ loves Z X)) Y , ∅⟩
→β ⟨∃Y .woman(Y)⇒ (∀X.man(X)⇒ loves Y X), ∅⟩

Michael Kohlhase: LBS 231 2025-10-07

This reading corresponds to the wide scope reading for “a woman”. If we had used the QI rules
the other way around, first extracting “a woman” and then “every man”, we would have gotten
the reading with wide scope for “every man” in the same way.

12.2 Type Raising for non-quantificational NPs
There is now a discrepancy in the type assigned to subject NPs with quantificational determiners,
and subject NPs consisting of a proper name or a definite description. This corresponds to a
discrepancy in the roles of the NP and VP in interpretation: where the NP is quantificational, it
takes the VP as argument; where the NP is non-quantificational, it constitutes the argument of
the VP. This discrepancy can be resolved by type raising.

Proper names

� Problem: Subject NPs with quantificational determiners have type (ι→ o)→ o
(and are applied to the VP) whereas subject NPs with proper names have type ι.
(argument to the VP)

� Idea: “John runs” translates to runs(john), where runs ∈ Σι→o and john ∈ Σι.

Now we =β-expand over the VP yielding (λPι→o.P (john)) runs

λPι→o.P (john) has type (ι→ o)→ o and can be applied to the VP runs.

� Definition 12.2.1. If c ∈ Σα, then type raising c yields λPα→o.P c.

Michael Kohlhase: LBS 232 2025-10-07

Definite NPs

� Problem: On our current assumptions, the′ = ι , and so for any definite NP “the
N”, its translation is ι N , an expression of type ι.

12.2. TYPE RAISING FOR NON-QUANTIFICATIONAL NPS 153

� Idea: Type lift just as we did with proper names: ι N type lifts to λP .P ι N , so
the′ = λPQ.Q ι P

� Advantage: This is a “generalized quantifier treatment”: the′ treated as denoting
relations between sets.

� Solution by Barwise&Cooper 1981: For any a ∈ Dι→o: I(the′)(a) = I(every′)(a)
if #(a) = 1, undefined otherwise

So the′ is that function in D(ι→o)→(ι→o)→o such that for any A,B ∈ Dι→o

if #(A) = 1 then the′(A,B) = T if A ⊆ B and the′(A,B) = F if A̸⊆B otherwise
undefined

Michael Kohlhase: LBS 233 2025-10-07

This treatment of “the” is completely equivalent to the ι treatment, guaranteeing that, for example,
the sentence “The dog barked ” has the value true if there is a unique dog and that dog barked, the
value false if there is a unique dog and that dog did not bark, and, if there is no dog or more than
one dog, has an undefined value. So we can indeed treat “the” as a generalized quantifier.

However, there are two further considerations.

1. The function characterized above cannot straightforwardly be represented as a relation on sets.
We might try the following:

{⟨X,Y ⟩ |#(X) = 1 & X ⊆ Y }

Now, consider a pair ⟨X,Y ⟩ which is not a member of the set. There are two possibilities:
either #(X) ̸= 1 or #(X) = 1 and X ̸⊆Y . But we want to treat these two cases differently: the
first leads to undefinedness, and the second to falsity. But the relation does not capture this
difference.

2. If we adopt a generalized quantifier treatment for the definite article, then we must always
treat it as an expression of type ι→ o → o. If we maintain the ι treatment, we can choose,
for any given case, whether to treat a definite NP as an expression of type ι, or to type lift the
NP to ι→ o→ o. This flexibility will be useful (particularly for purposes of model generation).
Consequently, we will maintain the ι treatment.
These considerations may appear purely technical in nature. However, there is a significant
philosophical literature on definite descriptions, much of which focuses on the question of
whether these expressions are referential or quantificational. Many have the view that definite
descriptions are ambiguous between a referential and a quantificational interpretation, which in
fact differentiates them from other NPs, and which is captured to some extent by our proposed
treatment.

Our discussion of quantification has led us to a treatment of quantified NPs as expressions of type
(ι→ o)→ o. Moreover, we now have the option of treating proper names and definite descriptions
as expressions of this higher type too. This change in the type of NPs causes no difficulties with
composition in the intransitive sentences considered so far, although it requires us to take the
translation of the VP as argument to the subject NP.

Problems with Type raised NPs

� Problem: We have type-raised NPs, but consider transitive verbs as in “Mary loves
most cats”. loves is of type ι→ ι→ o while the object NP is of type (ι→ o)→ o
(application?)

� Another Problem: We encounter the same problem in the sentence “Mary loves
John” if we choose to type-lift the NPs.

154 CHAPTER 12. QUANTIFIER SCOPE AMBIGUITY AND UNDERSPECIFICATION

� Idea: Change the type of the transitive verb to allow it to “swallow” the higher-
typed object NP.

� Better Idea: Adopt a new rule for semantic composition for this case.

� Remember: loves′ is a function from individuals (e.g. “John”) to properties (in
the case of the VP “ loves John”, the property “X loves John” of X).

Michael Kohlhase: LBS 234 2025-10-07

In our type-raised semantics, the denotation of NPs is a function f from properties to truth values.
So if we compose an NP denotation with a transitive verb denotation, we obtain a function from
individuals to truth values, i.e. a property.

Type raised NPs and Function Composition

� We can extend HOL→ by a constant ◦(β→γ)→(α→β)→α→γ by setting ◦ := λFGX.F (G(X))
thus

◦ g f→βλX.g(f(X)) and ◦ g f a→βg(f(a))

In our example, we have

◦ (λP .P (john)) loves =Def (λFGX.F (G(X))) (λP .P (john)) loves

→β (λGX.(λP .P (john)) G(X)) loves

→β λX.(λP .P (john)) loves X

→β ! λX.loves(X, john)

Michael Kohlhase: LBS 235 2025-10-07

Definition 12.2.2 (Function Composition). Let f : A→B and g : B→ C be functions, then
we call the function h : A→ C such that h(a) = g(f(a)) for all a ∈ A the composition of g and f
and write it as gf (read this as “ g after f ”).

12.3 Dealing with Quantifier Scope Ambiguity: Cooper Stor-
age

Type raising transitive verbs

� We need transitive verbs to combine with quantificational objects of type (ι →
o)→ o but . . .

� We still ultimately want their “basic” translation to be type ι→ι→ o, i.e. something
that denotes a relation between individuals.

� We do this by starting with the basic translation, and raising its type. Here is what
we’ll end up with, for the verb “ like”:

λPY .P (λX.likes(X,Y))

where P is a variable of type (ι → o) → o and X, Y are variables of type ι. (For
details on how this is derived, see [CKG09, pp.178-179])

12.3. DEALING WITH QUANTIFIER SCOPE AMBIGUITY: COOPER STORAGE 155

Michael Kohlhase: LBS 236 2025-10-07

We have already seen the basic idea that we will use here. We will proceed with compositional
translation in the familiar way. But when we encounter a QNP, we will put its translation aside, in
a store. To make sure we know where it came from, we will put a “place holder” in the translation,
and co-index the stored NP with its place holder. When we get to the S node, we will have a
representation which we can re-combine with each of the stored NPs in turn. The order in which
we re-combine them will determine the scopal relations among them.

Cooper Storage

� Intuition: A store consists of a “core” semantic representation, computed in the
usual way, plus the representations of quantifiers encountered in the composition so
far.

� Definition 12.3.1. A store is an n place sequence. The first member of the
sequence is the core semantic representation. The other members of the sequence
(if any) are pairs (β,i) where:

� β is a QNP translation and

� i is an index, which will associate the NP translation with a free variable in the
core semantic translation.

We call these pairs binding operators (because we will use them to bind free variables
in the core representation).

� Definition 12.3.2. In the Cooper storage method, QNPs are stored in the store
and later retrieved – not necessarily in the order they were stored – to build the
representation.

� The elements in the store are written enclosed in angled brackets. However, we
will often have a store which consists of only one element, the core semantic rep-
resentation. This is because QNPs are the only things which add elements beyond
the core representation to the store. So we will adopt the convention that when the
store has only one element, the brackets are omitted.

Michael Kohlhase: LBS 237 2025-10-07

How we put QNPs in the Store

� Storage Rule
If the store ⟨φ, (β, j), . . . , (γ, k)⟩ is a possible translation for a QNP, then the store

⟨λP .P (Xi)(φ, i)(β, j), . . . , (γ, k)⟩

where i is a new index, is also a possible translation for that QNP.

� This rule says: if you encounter a QNP with translation φ, you can replace its
translation with an indexed place holder of the same type, λP .P (Xi), and add φ
to the store, paired with the index i. We will use the place holder translation in the
semantic composition of the sentence.

Michael Kohlhase: LBS 238 2025-10-07

156 CHAPTER 12. QUANTIFIER SCOPE AMBIGUITY AND UNDERSPECIFICATION

Working with Stores

� Working out the translation for “Every student likes some professor.”

NP1 → λP .(∃X.prof(X) ∧ P (X)) or ⟨λQ.Q(X1), (λP .(∃X.prof(X) ∧ P (X)), 1)⟩
Vt → λRY .R (λZ.likes(Z, Y))
V P → (Combine core representations by FA; pass store up)*

→ ⟨λY .likes(X1, Y), (λP .(∃X.prof(X) ∧ P (X)), 1)⟩
NP2 → λP .(∀Z.student(Z)⇒ P (Z)) or ⟨λR.R(X2), (λP .(∀Z.student(Z)⇒ P (Z)), 2)⟩
S → (Combine core representations by FA; pass stores up)**

→ ⟨likes(X1, X2), (λP .(∃X.prof(X) ∧ P (X)), 1), (λP .(∀Z.student(Z)⇒ P (Z)), 2)⟩

* Combining Vt with place holder

1. (λRY .R (λZ.likes(Z, Y))) (λQ.Q(X1))

2. λY .(λQ.Q(X1)) (λZ.likes(Z, Y))

3. λY .(λZ.likes(Z, Y)) X1

4. λY .likes(X1, Y)

** Combining V P with place holder

1. (λR.R(X2)) (λY .likes(X1, Y))

2. (λY .likes(X1, Y)) X2

3. likes(X1, X2)

Michael Kohlhase: LBS 239 2025-10-07

Retrieving NPs from the store

� Retrieval:

Let σ1 and σ2 be (possibly empty) sequences of binding operators. If the store
⟨φ, σ1, σ2, (β, i)⟩ is a translation of an expression of category S, then the store
⟨β(λX1.φ), σ1, σ2⟩ is also a translation of it.

� What does this say?: It says: suppose you have an S translation consisting
of a core representation (which will be of type o) and one or more indexed QNP
translations. Then you can do the following:

1. Choose one of the QNP translations to retrieve.

2. Rewrite the core translation, λ-abstracting over the variable which bears the index
of the QNP you have selected. (Now you will have an expression of type ι→ o.)

3. Apply this λ-term to the QNP translation (which is of type (ι→ o)→ o).

Michael Kohlhase: LBS 240 2025-10-07

Example: “Every student likes some professor.”

1. Retrieve “every student”

(a) (λQ.(∀Z.student(Z)⇒Q(Z))) (λX2.likes(X1, X2))

(b) ∀Z.student(Z)⇒ (λX2.likes(X1, X2)) Z

(c) ∀Z.student(Z)⇒ likes(X1, Z)

2. Retrieve “some professor ”

12.4. UNDERSPECIFICATION 157

(a) (λP .(∃X.prof(X) ∧ P (X))) (λX1.(∀Z.student(Z)⇒ likes(X1, Z)))

(b) ∃X.prof(X)(λX1.(∀Z.student(Z)⇒ likes(X1, Z))) X

(c) ∃X.prof(X) ∧ (∀Z.student(Z)⇒ likes(X,Z))

Michael Kohlhase: LBS 241 2025-10-07

The Cooper storage approach to quantifier scope ambiguity basically moved the ambiguity
problem into the syntax/semantics interface: from a single syntactic tree, it generated multiple
unambiguous semantic representations. We will now come to an approach, which does not force
the system to commit to a particular reading so early.

12.4 Underspecification

In this section we introduce Johan Bos’ “Hole Semantics”, since this is possibly the simplest
underspecification framework around. The main idea is that the result of the translation is a
“quasi-logical form” (QLF), i.e. a representation that represents all possible readings. This QLF
can then be used for semantic/pragmatic analysis.

12.4.1 Unplugging Predicate Logic

The problem we need to solve for our QLF is that regular logical formulae, such as

∀X.man(X)⇒ (∃Y .woman(Y)⇒ loves(Y,X))

fully specifies the scope relation between the quantifiers. The idea behind “hole semantics” (and
most other approaches to quantifier scope underspecification) is to “unplug” first-order logic, i.e.
to take apart logical formulae into smaller parts, and add constraints on how the parts can be
plugged together again. To keep track of where formulae have to be plugged together again, “hole
semantics” uses the notion of “holes”. Our example “ Every man loves a woman” now has the
following form:

love

∀X.man(X)⇒2 ∃X.woman(X)2

21 2

3 4

The meaning of the dashed arrows is that the holes (depicted by 2) can be filled by one of the
formulas that are pointed to. The hole at the top of the graph serves as the representation of the
whole sentence.

We can disambiguate the QLF by choosing an arc for every hole and plugging the respective
formulae into the holes, collapsing the graph into a single logical formula. If we act on arcs 1
and 4, we obtain the wide-scope reading for “every man”, if we act on 2 and 3, we obtain the
reading, where “a woman” out-scopes “every man”. So much for the general idea, how can this be
represented in logic?

12.4.2 PLH a first-order logic with holes

The main idea is to label the holes and formulae, and represent the arcs as pairs of labels. To
do this, we add holes to first-order logic, arriving at a logic PLH . This can simply be done by
reserving a lexical category H = {h0, h1, h2, . . . } of holes, and adding them as possible atomic
formulae, so that ∀X.man(X)⇒ h1 is a PLH formula.

158 CHAPTER 12. QUANTIFIER SCOPE AMBIGUITY AND UNDERSPECIFICATION

Using this, a QLF is a triple ⟨F ,C⟩, where F is a set of labeled formulae of the form ℓi : A1,
where ℓi is taken from a set L = {ℓ0, ℓ1, . . . } of labels, and Ai is a PLH formula, and C is a set
constraints of the form ℓi ≤ hj . The underspecified representation above now has the form

⟨{ℓ1 : ∀X.man(X)⇒ h1, ℓ2 : ∀Y .woman(Y)⇒ h2}, {ℓ1 ≤ h0, ℓ2 ≤ h0, ℓ3 ≤ h1, ℓ3 ≤ h2}⟩

Note that we always reserve the hole h0 for the top-level hole, that represents the sentence mean-
ing.

12.4.3 Plugging and Chugging
A plugging p for a QLF Q is now a mapping from the holes in Q to the labels in Q that satisfies the
constraint C of Q, i.e. for all holes h in Q we have h ≤ p(h) ∈ C. Note that the set of admissible
pluggings can be computed from the constraint alone in a straightforward manner. Acting on
the pluggings yields a logical formula. In our example, we have two pluggings that give us the
intended readings of the sentence.

plugging logical form
1 [ℓ1/h0], [ℓ2/h1], [ℓ3/h2] ∀X.man(X)⇒ (∃Y .woman(Y) ∧ loves(X,Y))
2 [ℓ2/h0], [ℓ3/h1], [ℓ1/h2] ∃Y .woman(Y)⇒ (∀X.man(X) ∧ loves(X,Y))

Chapter 13

Higher-Order Unification and NL
Semantics Reconstruction

13.1 Introduction

Application of HOL in NL Semantics: Ellipsis

� Example 13.1.1. “John loves his wife. George does too”

� loves(john,wifeof(john)) ∧Q(george)

� “George has property some Q, which we still have to determine”.

� Idea: If “John” has property Q, then it is that he “ loves his wife”.

� Equation: Q(john) =αβη loves(john,wifeof(john))

� Solutions (computed by HOU):

� Q = λz.loves(z,wifeof(z)) and Q = λz.loves(z,wifeof(john))

* Q = λz.loves(john,wifeof(z)) and Q = λz.loves(john,wifeof(john))

� Readings: “George loves his own wife”. and “George loves John’s wife”.

� Erraneous HOU Predictions: * “John loves George’s wife”. and * “John loves
John’s wife”.

Michael Kohlhase: LBS 242 2025-10-07

Higher-Order Unification (HOU)

� Intuitively: Equation solving in the simply typed λ-calculus (modulo the built-in
αβη-equality)

� Formally: Given formulae A,B ∈ wffα(ΣT ,VT), find a substitution σ with
σ(A) =αβη σ(B).

� Definition 13.1.2.

We call E := A1 =
? B1 ∧ . . . ∧An =

? Bn a unification problem. The set U(E) =

159

160CHAPTER 13. HIGHER-ORDER UNIFICATION AND NL SEMANTICS RECONSTRUCTION

{σ |σ(Ai) =αβη σ(Bi)} is called the set of unifiers for E and any of its members
a unifier.

� Example 13.1.3. The unification problem F (fa) =? f(Fa) where F, f :α → α
and ⊢Σa : α has unifiers [f/F], [λXα.f(fX)/F], [λXα.f(f(fX))/F], . . .

� find Representatives that induce all of U(E) (are there most general unifiers?)

Michael Kohlhase: LBS 243 2025-10-07

Discourse Coherence

� Meaning of a discourse is more than just the conjunction of sentences

� Coherence is prerequisite for well-formedness (not just pragmatics)

A “John killed Peter.”

B1 “No, John killed BILL!”

B2 * “No, John goes hiking!”

B3 “No, PETER died in that fight!”

� Coherence in a discourse is achieved by discourse relations

� in this case “contrastive parallelism”

Michael Kohlhase: LBS 244 2025-10-07

Discourse Relations (Examples)

� Parallel: “John organized rallies for Clinton, and Fred distributed pamphlets for
him.”

� Contrast: “John supported Clinton, but Mary opposed him.”

� Exemplification: “Young aspiring politicians often support their party’s presiden-
tial candidate. For instance John campaigned hard for Clinton in 1996.”

� Generalization: “John campaigned hard for Clinton in 1996. Young aspiring
politicians often support their party’s presidential candidate.”

� Elaboration: “A young aspiring politician was arrested in Texas today. John
Smith, 34, was nabbed in a Houston law firm while attempting to embezzle funds
for his campaign.”

Michael Kohlhase: LBS 245 2025-10-07

Discourse Relations (The General Case)

� We need inferences to discover them

� General conditions [Hobbs 1990]

13.1. INTRODUCTION 161

Relation Requirements Particle
Parallel ai ∼ bi, p =|= q “and ”
Contrast ai ∼ bi, p |= ¬q or ¬p |= q ai, bi contrastive “but”
Exempl. p =| q, ai ∈ b⃗ or ai =| bi “for example”
Generl. p =| q, bi ∈ a⃗ or bi =| ai “ in general ”
Elabor. q ≃ p, ai ∼ bi “that is”

Source semantics p(a1, . . . , an), Target semantics q(a1, . . . , am)

� Need theorem proving methods for general case.

Michael Kohlhase: LBS 246 2025-10-07

Underspecification/Ellipsis

� Natural language is economic

� Use the hearer’s inferential capabilities to reduce communication costs.

� Makes use of discourse coherence for reconstruction (here: Parallelism)

� “Jon loves his wife. Bill does too”. [love his/Bill’s wife]

� “Mary wants to go to Spain and Fred wants to go to Peru, but because of limited
resources, only one of them can”. [go where he/she wants to go]

� Anaphora give even more coherence. (here: Elaboration)

� “I have a new car. It is in the parking lot downstairs”. [My new car]

� Discourse relation determines the value of underspecified element.

Michael Kohlhase: LBS 247 2025-10-07

Analyses based on Parallelism

� HOU Analyses (the structural level)

� Ellipsis [DSP’91, G&K’96, DSP’96, Pinkal, et al’97]

� Focus [Pulman’95, G&K96]

� Corrections [G&K& v. Leusen’96]

� Deaccenting, Sloppy Interpretation [Gardent, 1996]

� Discourse theories (the general case, needs deduction!)

� Literature and Cognition [Hobbs, CSLI Notes’90]

� Cohesive Forms [Kehler, PhD’95]

� Problem: All assume parallelism structure: given a pair of parallel utterances, the
parallel elements are taken as given.

162CHAPTER 13. HIGHER-ORDER UNIFICATION AND NL SEMANTICS RECONSTRUCTION

Michael Kohlhase: LBS 248 2025-10-07

13.2 Higher-Order Unification
We now come to a very important (if somewhat non-trivial and under-appreciated) algorithm:

higher-order unification, i.e. unification in the simply typed λ-calculus, i.e. unification modulo
αβη equality.

13.2.1 Higher-Order Unifiers
Before we can start solving the problem of higher-order unification, we have to become clear about
the terms we want to use. It turns out that “most general αβη unifiers may not exist” – as ???
shows, there may be infinitely descending chains of unifiers that become more an more general.
Thus we will have to generalize our concepts a bit here.

HOU: Complete Sets of Unifiers

� Question: Are there most general higher-order Unifiers?

� Answer: What does that mean anyway?

� Definition 13.2.1. σ=βηρ[W], iff σ(X) =αβη ρ(X) for all X ∈ W . σ=βηρ[E] iff
σ=βηρ[free(E)]

� Definition 13.2.2. σ is more general than θ on W (σ≤βηθ[W]), iff there is a
substitution ρ with θ=βη(ρ ◦ σ)[W].

� Definition 13.2.3. Ψ ⊆ U(E) is a complete set of unifiers, iff for all unifiers
θ ∈ U(E) there is a σ ∈ Ψ, such that σ≤βηθ[E].

� Definition 13.2.4. If Ψ ⊆ U(E) is complete, then ≤β-minimal elements σ ∈ Ψ
are most general unifiers of E .

� Theorem 13.2.5. The set {[λuv.h u/F]} ∪ {σi | i ∈ N} where

σi:=[λuv.gn u u h
n
1 u v . . . u h

n
n u v/F], [λv.z/X]

is a complete set of unifiers for the equation F X (aι) =
? F X (bι), where F and

X are variables of types (ι→ ι)→ ι→ ι and ι→ ι

Furthermore, σi+1 is more general than σi.

� Proof sketch: [Hue76, Theorem 5]

Michael Kohlhase: LBS 249 2025-10-07

The definition of a solved form in Λ→ is just as always; even the argument that solved forms are
most general unifiers works as always, we only need to take αβη equality into account at every
level.

Unification

� Definition 13.2.6. X1 =? B1 ∧ . . . ∧Xn =? Bn is in solved form, if the Xi are
distinct free variables Xi ̸∈ free(Bj) and Bj does not contain Skolem constants for
all j.

13.2. HIGHER-ORDER UNIFICATION 163

� Lemma 13.2.7. If E = X1 =? B1 ∧ . . . ∧ Xn =? Bn is in solved form, then
σE := [B1/X1], . . . ,[Bn/Xn] is the unique most general unifier of E

� Proof:

1. σ(Xi) =αβη σ(B
i), so σ ∈ U(E)

2. Let θ ∈ U(E), then θ(Xi) =αβη θ(B
i) = θ ◦ σ(Xi)

3. so θ≤βη(θ ◦ σ)[E].

□

Michael Kohlhase: LBS 250 2025-10-07

13.2.2 Higher-Order Unification Transformations
We are now in a position to introduce the higher-order unifiation transformations. We proceed

just like we did for first-order unification by casting the unification algorithm as a set of inference
rules, leaving the control to a second layer of development.
We first look at a group of transformations that are (relatively) well-behaved and group them under
the concept of “simplification”, since (like the first-order transformation rules they resemble) have
good properties. These are usually implemented in a group and applied eagerly.

Simplification SIM

� Definition 13.2.8. The higher order simplification transformations SIM consist
of the rules below.

(λXα.A) =? (λYα.B) ∧ E s ∈ ΣSkα new
SIM:α

([s/X](A)) =? ([s/Y](B)) ∧ E

(λXα.A) =? B ∧ E s ∈ ΣSkα new
SIM:η

([s/X](A)) =? Bs ∧ E

(h Un) =? (h Vn) ∧ E h ∈ (Σ ∪ ΣSk)
SIM:dec

U1 =
? V1 ∧ . . . ∧Un=

? Vn ∧ E

E ∧X =? A X ̸∈ free(A) A ∩ ΣSk = ∅ X ∈ free(E)
SIM:elim

[A/X](E) ∧X =? A

After rule applications all λ-terms are reduced to head normal form.

Michael Kohlhase: LBS 251 2025-10-07

The main new feature of these rules (with respect to their first-order counterparts) is the handling
of λ-binders. We eliminate them by replacing the bound variables by Skolem constants in the
bodies: The SIM:α standardizes them to a single one using αβη-equality, and SIM:η first η-
expands the right-hand side (which must be of functional type) so that SIM:α applies. Given
that we are setting bound variables free in this process, we need to be careful that we do not use
them in the SIM:elim rule, as these would be variable capturing.

164CHAPTER 13. HIGHER-ORDER UNIFICATION AND NL SEMANTICS RECONSTRUCTION

Consider for instance the higher-order unification problem (λX.X) =? (λY .W), which is un-
solvable (the left hand side is the identity function and the right hand side some constant function
– whose value is given by W). So after an application of SIM:α, we have c=?W , which looks like
it could be a solved pair, but the elimination rule prevents that by insisting that instances may
not contain Skolem variables. Conceptually, SIM is a direct generalization of first-order
unification transformations, and shares it properties; even the proofs go correspondingly.

Properties of Simplification

� Lemma 13.2.9 (Properties of SIM). SIM generalizes first-order unification.

� SIM is terminating and confluent up to α-conversion

� Unique SIM normal forms exist (all pairs have the form (h Un) =? (k Vm))

� Lemma 13.2.10. U(E ∧ Eσ) = U(σ(E) ∧ Eσ).

� Proof: by the definitions

1. If θ ∈ U(E ∧ Eσ), then θ ∈ (U(E) ∩U(Eσ)).

2. So θ=βη(θ ◦ σ)[supp(σ)],

3. and thus θ ◦ σ ∈ U(E), iff θ ∈ U(σ(E)).

□

� Theorem 13.2.11. If E⊢SIMF , then U(E)≤βηU(F)[E]. (correct, complete)

Proof: By an induction over the length of the derivation
We the SIM rules individually for the base case

1. SIM:α
by αβη-conversion

3. SIM:η
By η-conversion in the presence of SIM:α

5. SIM:dec
The head h ∈ (Σ ∪ ΣSk) cannot be instantiated.

7. SIM:elim
By ???.

9. The step case goes directly by induction hypothesis and transitivity of the deriva-
tion relation.

□

Michael Kohlhase: LBS 253 2025-10-07

Now that we have simplifiation out of the way, we have to deal with unification pairs of the form
(h Un) =? (k Vm). Note that the case where both h and k are contstants is unsolvable, so we can
assume that one of them is a variable. The unification problem (Fα→α) a =

? a is a particularly
simple example; it has solutions [λXα.a/F] and [λXα.X/F]. In the first, the solution comes by
instantiating F with a λ-term of type α → α with head a, and in the second with a 1-projection
term of type α → α, which projects the head of the argument into the right position. In both
cases, the solution came from a term with a given type and an appropriate head. We will look at
the problem of finding such terms in more detail now.

13.2. HIGHER-ORDER UNIFICATION 165

General Bindings

� Problem: Find all formulae of given type α and head h.

� sufficient: long βη head normal form, most general.

� Definition 13.2.12 (General Bindings). Gh
α(Σ):=λX

k
α.h(H

1 X) . . . (Hn X)

� where α = αk → β, h:γn → β and β ∈ BT
� and Hi:αk → γi new variables.

is called the general binding of type α for the head h.

� Observation 13.2.13.

General bindings are unique up to choice of names for Hi.

� Definition 13.2.14. If the head h is jth bound variable in Gh
α(Σ), call Gh

α(Σ)
j-projection binding (and write Gj

α(Σ)) else imitation binding

� clearly Gh
α(Σ) ∈ wffα(ΣT ,VT) and head(Gh

α(Σ)) = h

Michael Kohlhase: LBS 254 2025-10-07

For the construction of general bindings, note that their construction is completely driven by the
intended type α and the (type of) the head h. Let us consider some examples.
Example 13.2.15.The following general bindings may be helpful: G(aι)

(ι→ι)(Σ) = λXι.a, G
(aι)
(ι→ι→ι)(Σ) =

λXιYι.a, and G
(aι→ι)
(ι→ι→ι)(Σ) = λXιYι.a(HXY), where H is of type ι→ ι→ ι

We will now show that the general bindings defined in Definition 13.2.14 are indeed the most
general λ-terms given their type and head symbol.

Approximation Theorem

� Theorem 13.2.16. If A ∈ wffα(ΣT ,VT) with head(A) = h, then there is a general
binding G = Gh

α(Σ) and asubstitution ρ with ρ(G) =αβη A and dpρ < dpA.

� Proof: We analyze the term structure of A

1. If α = αk → β and h:γn → β where β ∈ BT , then the long head normal form
of A must be λXk

α.h Un.

2. G = Gh
α(Σ) = λXk

α.h(H1 X) . . . (Hn X) for some variables Hi:αk → γi.

3. Choose ρ := [λXk
α.U1/H1], . . . ,[λXk

α.Un/Hn].

4. Then we have ρ(G) = λXk
α.h(λX

k
α.U1 X) . . . (λXk

α.Un X)

=βη λXk
α.h Un

=βη A

5. The depth condition can be read off as dp(λXk
α.U1) ≤ dpA− 1.

□

Michael Kohlhase: LBS 255 2025-10-07

With this result we can state the higher-order unification transformations.

166CHAPTER 13. HIGHER-ORDER UNIFICATION AND NL SEMANTICS RECONSTRUCTION

Higher-Order Unification (HOU)

� Recap: After simplification, we have to deal with pairs where one (flex/rigid) or
both heads (flex/flex) are variables

� Definition 13.2.17. Let G = Gh
α(Σ) (imitation) or G ∈ {Gj

α(Σ) | 1 ≤ j ≤ n},
then the calculus HOU for higher-order unification consists of the transformations
(always reduce to SIM normal form)

� Rule for flex/rigid pairs:
(Fα U) =? (h V) ∧ E

HOU :fr
F =? G ∧ (F U) =? (h V) ∧ E

� Rules for flex/flex pairs:
(Fα U) =? (H V) ∧ E

HOU :ff
F =? G ∧ (F U) =? (H V) ∧ E

Michael Kohlhase: LBS 256 2025-10-07

Let us now fortify our intuition with a simple example.

HOU Example
Example 13.2.18. Let Q,w:ι → ι, l:ι→ ι → ι, and j:ι, then we have the following
derivation tree in HOU .

Q(j) =? l(j, w(j))

j =? l(j, w(j)) l(H(j),K(j)) =? l(j, w(j))

H(j) =? j ∧K(j) =? w(j)

j =? j ∧K(j) =? w(j)j =? j ∧K(j) =? w(j)

j =? j ∧K′(j) =? jj =? j ∧K′(j) =? j

j
.
= j; j

.
= jj

.
= j; j

.
= jj

.
= j; j

.
= jj

.
= j; j

.
= j

Q = λX.l(X,w(X)) λX.l(X,w(j)) λX.l(j, w(X)) λX.l(j, w(j))

Q=λX.l(H(X),K(X))Q=λX.X

H=λX.X H=λX.j

K=λX.w(K′(X))
K=λX.X

K=λX.w(K′(X))
K=λX.X

K′=λX.X K′=λX.j K′=λX.X K′=λX.j

Michael Kohlhase: LBS 257 2025-10-07

The first thing that meets the eye is that higher-order unification is branching. Indeed, for flex/-
rigid pairs, we have to systematically explore the possibilities of binding the head variable the
imitation binding and all projection bindings. On the initial node, we have two bindings, the
projection binding leads to an unsolvable unification problem, whereas the imitation binding leads
to a unification problem that can be decomposed into two flex/rigid pairs. For the first one of
them, we have a projection and an imitation binding, which we systematically explore recursively.
Eventually, we arrive at four solutions of the initial problem. The following encoding of
natural number arithmetic into Λ→ is useful for testing our unification algorithm.

A Test Generator for Higher-Order Unification

13.2. HIGHER-ORDER UNIFICATION 167

� Definition 13.2.19 (Church Numerals). We define closed λ-terms of type ν :=
(α→ α)→ α→ α

� Numbers: Church numerals: (n fold iteration of arg1 starting from arg2)

n:=λSα→α.λOα. S(S . . . S︸ ︷︷ ︸
n

(O) . . .)

� Addition (N -fold iteration of S from N)

+ := λNνMν .λSα→α.λOα.NS(MSO)

� Multiplication: (N -fold iteration of MS (=+m) from O)

· := λNνMν .λSα→α.λOα.N(MS)O

� Observation 13.2.20. Subtraction and (integer) division on Church numberals
can be automted via higher-order unification.

� Example 13.2.21.

5− 2 by solving the unification problem (2+xν) =
? 5

� Equation solving for Church numerals yields a very nice generator for test cases
for higher-order unification, as we know which solutions to expect.

Michael Kohlhase: LBS 258 2025-10-07

13.2.3 Properties of Higher-Order Unification
We will now establish the properties of the higher-order unification problem and the algorithms

we have introduced above. We first establish the unidecidability, since it will influence how we go
about the rest of the properties.
We establish that higher-order unification is undecidable. The proof idea is a typical for un-
decidability proofs: we reduce the higher-order unification problem to one that is known to be
undecidable: here, the solution of Diophantine equations N.

Undecidability of Higher-Order Unification

� Theorem 13.2.22. Second-order unification is undecidable (Goldfarb ’82 [Gol81])

� Proof sketch: Reduction to Hilbert’s tenth problem (solving Diophantine equations)
(known to be undecidable)

� Definition 13.2.23.

We call an equation a Diophantine equation, if it is of the form

� xixj = xk

� xi + xj = xk

� xi = cj where cj ∈ N

where the variables xi range over N.

� These can be solved by higher-order unification on Church numerals. (cf. ???).

168CHAPTER 13. HIGHER-ORDER UNIFICATION AND NL SEMANTICS RECONSTRUCTION

� Theorem 13.2.24. The general solution for sets of Diophantine equations is un-
decidable. (Matijasevič
1970 [Mat70])

Michael Kohlhase: LBS 259 2025-10-07

The argument undecidability proofs is always the same: If higher-order unification were decidable,
then via the encoding we could use it to solve Diophantine equations, which we know we cannot
by Matijasevič’s Theorem.
The next step will be to analyze our transformations for higher-order unification for correctness

and completeness, just like we did for first-order unification.

HOU is Correct

� Lemma 13.2.25. If E⊢HOU:frE ′ or E⊢HOU:ffE ′, then U(E ′) ⊆ U(E).

� Proof sketch: HOU :fr and HOU :ff only add new pair.

� Corollary 13.2.26. HOU is correct: If E⊢HOUE ′, then U(E ′) ⊆ U(E).

Michael Kohlhase: LBS 260 2025-10-07

Given that higher-order unification is not unitary and undecidable, we cannot just employ the
notion of completeness that helped us in the analysis of first-order unification. So the first thing
is to establish the condition we want to establish to see that HOU gives a higher-order unification
algorithm.

Completeness of HOU

� We cannot expect completeness in the same sense as for first-order unification: “If
E⊢UF , then U(E) ⊆ U(F)” (see ???) as the rules fix a binding and thus partially
commit to a unifier (which excludes others).

� We cannot expect termination either, since HOU is undecidable.

� For a semi-decision procedure we only need termination on unifiable problems.

� Theorem 13.2.27 (HOU derives Complete Set of Unifiers). If θ ∈ U(E), then
there is a HOU-derivation E⊢HOUF , such that F is in solved form, σF ∈ U(E),
and σF is more general than θ.

� Proof sketch: Given a unifier θ of E , we guide the derivation with a measure µθ
towards F .

Michael Kohlhase: LBS 261 2025-10-07

So we will embark on the details of the completeness proof. The first step is to define a measure
that will guide the HOU transformation out of a unification problem E given a unifier θ of cE.

Completeness of HOU (Measure)

� Definition 13.2.28. We call µ(E , θ):=⟨µ1(E , θ), µ2(θ)⟩ the unification measure for
E and θ, if

13.2. HIGHER-ORDER UNIFICATION 169

� µ1(E , θ) is the multiset of term depths of θ(X) for the unsolved X ∈ supp(θ).

� µ2(E) the multiset of term depths in E .
� ≺ is the strict lexicographic order on pairs: (⟨a, b⟩ ≺ ⟨c, d⟩, if a < c or a = c

and b < d)

� Component orderings are multiset orderings: (M ∪ {m} < M ∪ N iff n < m
for all n ∈ N)

� Lemma 13.2.29. ≺ is well-founded. (by construction)

Michael Kohlhase: LBS 262 2025-10-07

This measure will now guide the HOU transformation in the sense that in any step it chooses
whether to use HOU :fr or HOU :ff, and which general binding (by looking at what θ would do).
We formulate the details in ??? and look at their consequences before we proove it.

Completeness of HOU (µ-Prescription)

� Theorem 13.2.30. If E is unsolved and θ ∈ U(E), then there is a unification
problem E with E⊢HOUE ′ and a substitution θ′ ∈ U(E ′) , such that

� θ=βηθ
′[E]

� µ(E , θ′0) ≺ µ(E , θ′).

we call such a HOU-step a µ-prescribed

� Corollary 13.2.31. If E is unifiable without µ-prescribed HOU-steps, then E is
solved.

� In other words: µ guides the HOU-transformations to a solved form.

Michael Kohlhase: LBS 263 2025-10-07

We now come to the proof of ???, which is a relatively simple consequence of ???.

Proof of ???

� Proof:

1. Let A=? B be an unsolved pair of the form (F U) =? (G V) in F .

2. E is a SIM normal form, so F and G must be constants or variables,

3. but not the same constant, since otherwise SIM:dec would be applicable.

4. By ??? there is a general binding G = Gf
α(Σ) and a substitution ρ with

ρ(G) =αβη θ(F). So,
� if head(G) ̸∈ supp(θ), then HOU :fr is applicable,
� if head(G) ∈ supp(θ), then HOU :ff is applicable.

5. Choose θ′ := θ ∪ ρ. Then θ=βηθ′[E] and θ′ ∈ U(E ′) by correctness.

6. HOU :ff and HOU :fr solve F ∈ supp(θ) and replace F by supp(ρ) in the set of
unsolved variable of E .

7. so µ1(E , θ′) ≺ µ1(E , θ)′ and thus µ(E , θ′) ≺ µ(E , θ′).

170CHAPTER 13. HIGHER-ORDER UNIFICATION AND NL SEMANTICS RECONSTRUCTION

□

Michael Kohlhase: LBS 264 2025-10-07

We now convince ourselves that if HOU terminates with a unification problem, then it is either
solved – in which case we can read off the solution – or unsolvable.

Terminal HOU -problems are Solved or Unsolvable

� Theorem 13.2.32. If E is a unsolved UP and θ ∈ U(E), then there is a HOU-
derivation E⊢HOUσσ, with σ≤βηθ[E].

� Proof: Let D : E⊢HOUF a maximal µ-prescribed HOU-derivation from E .

1. This must be finite, since ≺ is well-founded (ind. over length n of D)

2. If n = 0, then E is solved and σE most general unifier

3. thus σE≤βηθ[E]

4. If n > 0, then there is a µ-prescribed step E⊢HOUE ′ and a substitution θ as in
???.

5. by IH there is a HOU-derivation E ′⊢HOUF with σF≤βηθ′[E ′].

6. by correctness σF ∈ U(E ′) ⊆ U(E).

7. rules of HOU only expand free variables, so σF≤βηθ′[E ′].

8. Thus σF≤βηθ′[E],

9. This completes the proof, since θ′=βηθ[E] by ???.

□

Michael Kohlhase: LBS 265 2025-10-07

We now recap the properties of higher-order unification (HOU) to gain an overview.

Properties of HO-Unification

� HOU is undecidable,

� HOU need not have most general unifiers

� The HOU transformation induce an algorithm that enumerates a complete set of
higher-order unifiers.

� HOU :ff gives enormous degree of indeterminism

� HOU is intractable in practice consider restricted fragments where it is!

� HO Matching (decidable up to order four), HO Patterns (unitary, linear), . . .

Michael Kohlhase: LBS 266 2025-10-07

13.2.4 Pre-Unification

We will now come to a variant of higher-order unification that is used in higher-order theorem

13.2. HIGHER-ORDER UNIFICATION 171

proving, where we are only interested in the exgistence of a unifier – e.g. in mating-style tableaux.
In these cases, we can do better than full higher-order unification.

Pre-Unification

� HOU :ff has a giant branching factor in the search space for unifiers.(makes HOU
impracticable)

� In most situations, we are more interested in solvability of unification problems than
in the unifiers themselves.

� More liberal treatment of flex/flex pairs.

� Observation 13.2.33. flex/flex-pairs (F Un) =? (G Vm) are always (trivially)
solvable by [λXn.H/F], [λY m.H/G], where H is a new variable

� Idea: consider flex/flex-pairs as pre solved.

� Definition 13.2.34 (Pre-Unification). For given terms A,B ∈ wffα(ΣT ,VT)
find a substitution σ, such that σ(A)=pβησ(B), where =pβη is the equality theory
that is induced by =βη and F U = G V.

� Lemma 13.2.35. A higher-order unification problem is unifiable, iff it is pre-
unifiable.

Michael Kohlhase: LBS 267 2025-10-07

The higher-order pre-unification algorithm can be obtained from HOU by simply omitting the
offending HOU :ff rule.

Pre-Unification Algorithm HOPU

� Definition 13.2.36. A unification problem is a pre solved form, iff all of its pairs
are solved or flex/flex

� Lemma 13.2.37. If E is solved and P flex/flex, then σσ is a most general unifier
of a pre-solved form E ∧ P.

� Restrict all HOU rule so that they cannot be applied to pre-solved pairs.

� In particular, remove HOU :ff!

� Definition 13.2.38. The higher-order pre-unification calculusHOPU only consists
of SIM and HOU :fr.

� Theorem 13.2.39. HOPU is a correct and complete pre-unification algorithm

� Proof sketch: with exactly the same methods as higher-order unification

� Theorem 13.2.40. Higher-order pre-unification is infinitary, i.e. a unification
problem can have infinitely many unifiers. (Huet 76’ [Hue76])

� Example 13.2.41. Y (λXι.X) a =? a, where a is a constant of type ι and Y
a variable of type (ι → ι)→ ι → ι has the most general unifiers λsz.sn z and
λsz.sn a, which are mutually incomparable and thus most general.

172CHAPTER 13. HIGHER-ORDER UNIFICATION AND NL SEMANTICS RECONSTRUCTION

Michael Kohlhase: LBS 268 2025-10-07

13.2.5 Applications of Higher-Order Unification

Application of HOL in NL Semantics: Ellipsis

� Example 13.2.42. “John loves his wife. George does too”

� loves(john,wifeof(john)) ∧Q(george)

� “George has property some Q, which we still have to determine”.

� Idea: If “John” has property Q, then it is that he “ loves his wife”.

� Equation: Q(john) =αβη loves(john,wifeof(john))

� Solutions (computed by HOU):

� Q = λz.loves(z,wifeof(z)) and Q = λz.loves(z,wifeof(john))

* Q = λz.loves(john,wifeof(z)) and Q = λz.loves(john,wifeof(john))

� Readings: “George loves his own wife”. and “George loves John’s wife”.

� Erraneous HOU Predictions: * “John loves George’s wife”. and * “John loves
John’s wife”.

Michael Kohlhase: LBS 269 2025-10-07

13.3 Linguistic Applications of Higher-Order Unification

George does too (HOU)

Q(j) =? l(j, w(j))

j =? l(j, w(j)) l(H(j),K(j)) =? l(j, w(j))

H(j) =? j ∧K(j) =? w(j)

j =? j ∧K(j) =? w(j)j =? j ∧K(j) =? w(j)

j =? j ∧K′(j) =? jj =? j ∧K′(j) =? j

j
.
= j; j

.
= jj

.
= j; j

.
= jj

.
= j; j

.
= jj

.
= j; j

.
= j

Q = λX.l(X,w(X)) λX.l(X,w(j)) λX.l(j, w(X)) λX.l(j, w(j))

Q=λX.l(H(X),K(X))Q=λX.X

H=λX.X H=λX.j

K=λX.w(K′(X))
K=λX.X

K=λX.w(K′(X))
K=λX.X

K′=λX.X K′=λX.j K′=λX.X K′=λX.j

Michael Kohlhase: LBS 270 2025-10-07

Primary Occurrence Restriction

� Problem: HOU over-generates

13.3. LINGUISTIC APPLICATIONS OF HIGHER-ORDER UNIFICATION 173

� Idea: [Dalrymple, Shieber, Pereira]
Given a labeling of occurrences as either primary or secondary, the POR excludes of the
set of linguistically valid solutions, any solution which contains a primary occurrence.

� A primary occurrence is an occurrence that is directly associated with a source
parallel element.

� a source parallel element is an element of the source (i.e. antecedent) clause which
has a parallel counterpart in the target (i.e. elliptic) clause.

� Example 13.3.1.

� loves(john,wifeof(john)) = Q(george)

� Q = λx.loves(x,wifeof(john))

� Q = λx.loves(john,wifeof(john))

� Use the colored λ-calculus for general theory

Michael Kohlhase: LBS 271 2025-10-07

Colored λ-calculus [HK00]

� Developed for inductive theorem proving (Rippling with Metavariable)

� Definition 13.3.2. Symbol occurrences can be annotated with colors
(variables α, β, γ, . . . and constants a, b,. . .)

� Bound variables are uncolored (βη conversion just as usual)

� Definition 13.3.3. Well-colored substitutions σ

� Map colored variables XX to colored formulae.

� If a and b are different colors, then |σ(XX)| = |σ(XX)|:
equal color erasures. (Consistency)

� All color annotations on σ(XX) have to be compatible with those for c. (Monochro-
macity)

Michael Kohlhase: LBS 272 2025-10-07

Colored HO-Unification

� HOCU has only two differences wrt. general HOU

ff (t
1, . . . , tn) =? ff (s

1, . . . , sn)

a=? b ∧ t1 =? s1 ∧ tn=? sn

XX =? A ∧ E

X =? A ∧ [A/X](E)

� Decomposition must consider colors

� Elimination ensures Monochromicity and Consistency

174CHAPTER 13. HIGHER-ORDER UNIFICATION AND NL SEMANTICS RECONSTRUCTION

� X =? A := XX =? AA ∧XX =? AA

� [A/X] := [AA/XX], . . . ,[AA/XX] propagates color information

Michael Kohlhase: LBS 273 2025-10-07

George does too (HOCU)

Q(j) =? l(j, w(j))

j =? l(j, w(j)) l(H(j),K(j)) =? l(j, w(j))

H(j) =? j ∧K(j) =? w(j)

j =? j ∧K(j) =? w(j)j =? j ∧K(j) =? w(j)

j =? j ∧K′(j) =? jj =? j ∧K′(j) =? j

j
.
= j; j

.
= jj

.
= j; j

.
= jj

.
= j; j

.
= jj

.
= j; j

.
= j

Q = λX.l(X,w(X)) λX.l(X,w(j)) λX.l(j, w(X)) λX.l(j, w(j))

Q=λX.l(H(X),K(X))Q=λX.X

H=λX.X H=λX.j

K=λX.w(K′(X))
K=λX.X

K=λX.w(K′(X))
K=λX.X

K′=λX.X K′=λX.j K′=λX.X K′=λX.j

Michael Kohlhase: LBS 274 2025-10-07

The Original Motivation: First-Order Rippling
Example 13.3.4. Proving: ∀x, y : list.rev(app(rev(x))y) = app(rev(y))x

rev(app(rev(cons(h)))y) = app(rev(y))cons(h)

rev(app(app(rev(x))cons(h))y) = app(rev(y))cons(h)

rev(app(app(rev(x))cons(h))y) = app(F1(rev(y), h, x))x

rev(app(app(rev(x))cons(h))y) = app(rev(cons(h)))x

rev(app(rev(x))cons(h)) = app(rev(cons(h)))x

appα(XX, cons(Y)) = appα(F1(XX, Y, Z), ZZ)

app(revα(YY))cons(X) = revα(cons(X))

Michael Kohlhase: LBS 275 2025-10-07

The Higher-Order Case: Schematic Rippling
Example 13.3.5 (Synthesizing Induction Orderings). ∀x.∃y.f(g(y)) ≤ x

Induction Step: ∀x.∃y.f(g(y)) ≤ x to ∃y.f(g(y)) ≤ F (x)

13.3. LINGUISTIC APPLICATIONS OF HIGHER-ORDER UNIFICATION 175

f(g(y)) ≤ F (x)

f(s(g(y′))) ≤ F (x)

s(s(f(g(y′)))) ≤ F (x)

s(s(f(g(y′)))) ≤ s(s(x)) F←λX.s(s(X))

f(g(y′)) ≤ x

Michael Kohlhase: LBS 276 2025-10-07

A Unification Problem

� Example 13.3.6 (A Unification Problem).

F (rev(y), h, x) =? revα(Yβ) cons(X)

H(rev(u), h, v) =? revα(YY) ∧K(rev(u), h, v) =? cons(X)

rev(u) =? revα(YY) ∧ cons(M(rev(u), h, v)) =? cons(X)

α=? ∧ u=? YY ∧X =?M(rev(u), h, v) ∧N(rev(u), h, v) =? nil

h=? h ∧ nil =? nil

[λUVW.app(H(U, V ,W))K(U, V ,W)/F]

[λUVW.cons(M(U, V ,W))/K],
[λUVW.U/H]

Result: [λUVW.app(U)cons(V)/F], [u/YY], [h/X], [/α]

Michael Kohlhase: LBS 277 2025-10-07

Linguistic Application: Focus/Ground Structures

� Example 13.3.7. “John only likes MARY.”

� Analysis: likes(john,mary) ∧ (∀x.G(x))⇒ x = mary.

� Equation: likes(john,mary) =αβη G(mary).

� Variable G for (back)ground (Focus is prosodically marked)

� Solution: G = λz.likes(john, z)

� Semantics: likes(john,mary) ∧ (∀x.likes(john, x)⇒ x = mary).

� Linguistic Coverage: Prosodically unmarked focus, sentences with multiple focus
operators
[Gardent & Kohlhase’96]

Michael Kohlhase: LBS 278 2025-10-07

Isn’t HOCU just a notational variant of DSP’s POR?

176CHAPTER 13. HIGHER-ORDER UNIFICATION AND NL SEMANTICS RECONSTRUCTION

� HOCU has a formal, well–understood foundation which permits a clear assessment
of its mathematical and computational properties;

� It is a general theory of colors:

� Other Constraints

� POR for focus

� Second Occurrence Expressions

� Weak Crossover Constraints

� Multiple constraints and their interaction are easily handled

� Use feature constraints as colors

Michael Kohlhase: LBS 279 2025-10-07

Interaction of Constraints via Extended Colors

� Example 13.3.8. “John likes MARY and Peter does too”

� Ellipsis: l(jj , ss) = RR(jj)

� Focus: RR(p) = GG(FF)

� ¬pe forbids only pe ¬pf forbids only pf

� Derivation:

� Solution RR = λx.l(x, ss) to the Ellipsis equation

� yields Focus equation l(p, ss) = GG(FF)

� Solution: GG = λx.l(pp, x) FF = mm

Michael Kohlhase: LBS 280 2025-10-07

Featuring even more colors for Interaction

� “John1’s mum loves him1. Peter’s mum does too.”

� Two readings:

� “Peter’s mum loves Peter ” (sloppy)

� “Peter’s mum loves John” (strict)

� Parallelism equations
C(j) = l(m(j), j)
C(p) = R(m(p))

� Two solution for the first equation:

C = λZ.l(m(Z), j) (strict) and C = λZ.l(m(Z), Z) (sloppy)

13.3. LINGUISTIC APPLICATIONS OF HIGHER-ORDER UNIFICATION 177

� Two versions of the second equation

l(m(p), j) = R(m(p))
l(m(p), p) = R(m(p))

� R = λZ.l(Z, j) solves the first equation (strict reading)

� the second equation is unsolvable R = λZ.l(Z, p) is not well-colored.

� Idea: Need additional constraint:
VPE may not contain (any part of) it’s subject

� Need more dimensions of colors to model the interaction

� Idea: Extend supply of colors to feature terms.

Michael Kohlhase: LBS 282 2025-10-07

“John1’s mum loves him1. Peter’s mum does too.”

� Parallelism Constraints

CC(jj) = l(mm(jj), j)
CC(pp) = RR(mm(pp))

� Resolving the first equation yields two possible values for CC :

λz.l(mm(z), j) and λz.l(mm(z), z)

� Two versions of the second equation

l(mm(pp), j) = RR(mm(pp))
l(mm(pp), pp) = RR(mm(pp))

� Two solutions for the ellipsis (for RR)

{RR ← λz.l(z, j)} Strict Reading
{RR ← λz.l(z, pp)} Sloppy Reading

� Need dynamic constraints/

� resulting from the unification of several independent constraints

� VPE subject is [e +], while part of is a parallel element ([p +]).

� Various linguistic modules interact in creating complex constraints

Michael Kohlhase: LBS 284 2025-10-07

Computation of Parallelism (The General Case)

� We need inferences to discover discourse relations

178CHAPTER 13. HIGHER-ORDER UNIFICATION AND NL SEMANTICS RECONSTRUCTION

� General Conditions [Hobbs 1990]

Relation Requirements Particle
Parallel ai ∼ bi, p ≃ q “and ”
Contrast ai ∼ bi, p ⊃ ¬q or ¬p ⊃ q ai, bi contrastive “but”

Source semantics p(⃗a), Target semantics q(⃗b)

� a ∼ b, iff ∀p.p(a)⇒ (∃q ≃ p.q(b)) p ≃ q, iff ∀a.p(a)⇒ (∃b ∼ a.q(b))

� Need theorem proving methods for general case.

� Idea: use only special properties (Sorts from the Taxonomy)

Michael Kohlhase: LBS 285 2025-10-07

13.4 Sorted Higher-Order Unification

Sorted λ-Calculus

� higher-order automated theorem provers are relatively weak

� transfer first-order theorem proving technology to higher-order

� sorts are a particularly efficient refinement

� separation of sorts and types

� functional base sorts

� term declarations as very general mechanism for declaring sort information

Michael Kohlhase: LBS 286 2025-10-07

Sorted Unification:

� Example: Signature Σ with

[+ :(N→ N→N)]
[+ :(E→ E→E)]
[+ :(O→O→E)]
[(λX.+XX):(N→E)]

� general bindings

G+
E () =

 +ZEWE,
+ZOWO,
+ZNZN


Michael Kohlhase: LBS 287 2025-10-07

Example (Elementary Calculus)

� Sorts

13.4. SORTED HIGHER-ORDER UNIFICATION 179

� R+, R of type ι: (non-negative) real numbers

� M, P of type ι→ ι: monomials, polynomials

� M, P of type ι→ ι: differentiable and continuous functions

� Signature Σ

[+ :(R→ R→R)], [∗ :(R→ R→R)], [(λX. ∗XX):(R→R+)],
[R+<R], [M<P], [P<M], [M<P]
[(λX.X):M], [(λXY .Y):(R→M)],
[(λFGX. ∗ (FX)(GX)):(M→M→M)],
[(λFGX.+ (FX)(GX)):(M→M→P)],
[∂:(M→P)], [∂:(P→P)], [∂:(M→M)].

Michael Kohlhase: LBS 288 2025-10-07

Example (continued)

� Question: Are there non-negative, differentiable functions?

� Unification Problem: G(R→R+) =
? FM

� guess G(R→R+) to be (λX. ∗ (H1
(R→R)X)(H1X)):

FM =? (λX. ∗ (H1
(R→R)X)(H1X))

� imitate with FM as λX. ∗ (H2
MX)(H3

MX):

H1
(R→R)Z

0 =?H2
MZ

0 ∧H1
(R→R)Z

0 =?H3
MZ

0

� weaken H1
(R→R) to H4

M

H4
MZ

0 =?H2
MZ

0 ∧H4
MZ

0 =?H3
MZ

0

� solvable with with H4 = H3 = H2

� Answer: F = G = λXR. ∗ (H4
MX)(H4

MX)) (even degree monomial)

Michael Kohlhase: LBS 289 2025-10-07

Abductive Reconstruction of Parallelism (ARP)

� Mix Parallelism with HOCU

� Example (Gapping): “John likes Golf and Mary too.”

� Representation loves(john, golf) ∧R(mary)

� Equation loves(johnjohn, golfgolf)=
sR¬pe

(Woman→o)(marymary)

� R for the missing semantics (of Sort Woman→o and not primary for ellipsis)

� Number Restriction Constraint

180CHAPTER 13. HIGHER-ORDER UNIFICATION AND NL SEMANTICS RECONSTRUCTION

� “Jon” and “golf ” might be parallel to “Mary ”, but at most one of them can.

� color variable A: if Jon is pe then golf isn’t, and vice versa

� Generalizes DSP’s Primary Occurrence Restriction (POR)

Michael Kohlhase: LBS 290 2025-10-07

� Initial Equation: loves(johnjohn, golfgolf) =
?R¬pe

(Woman→o)(marymary)

� imitate R¬pe
(Woman→o) with λZ.loves(HHZ,KKZ)

� H,K new variables of sort Woman→Human

� loves(johnjohn, golfgolf) =
? loves(HH(marymary),KKmarymary)

� HHmarymary =
? johnjohn ∧KKmarymary =

? golfgolf

� Two possible continuations:
� project H = λZ.Z (so A=? pe)

� imitate K = λZ.golfgolf

� then
marymary =

? johnjohn

golfgolf =
? golfgolf

� Mary likes Golf (preferred)

� project K = λZ.Z (so ¬A=? pe)

� imitate H = λZ.johnjohn

� then
johnjohn =

? johnjohn

marymary =
? golfgolf

� John likes Mary

Michael Kohlhase: LBS 291 2025-10-07

Chapter 14

Conclusion

14.1 A Recap in Diagrams

NL Semantics as an Intersective Discipline

Michael Kohlhase: LBS 292 2025-10-07

A landscape of formal semantics

181

182 CHAPTER 14. CONCLUSION

Michael Kohlhase: LBS 293 2025-10-07

Modeling Natural Language Semantics

� Problem: Find formal (logic) system for the meaning of natural language.

� History of ideas

� Propositional logic [ancient Greeks like Aristotle]
* “Every human is mortal ”

� First-Order Predicate logic [Frege ≤ 1900]
* “I believe, that my audience already knows this.”

� Modal logic [Lewis18, Kripke65]
* “A man sleeps. He snores.” ((∃X.man(X) ∧ sleeps(X))) ∧ snores(X)

� Various dynamic approaches (e.g. DRT, DPL)
* “Most men wear black”

� Higher-order Logic, e.g. generalized quantifiers

� . . .

Michael Kohlhase: LBS 294 2025-10-07

A Semantic Processing Pipeline based on LF

14.2. WHERE TO FROM HERE 183

Syntax Quasi-Logical Form Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Pragmatic
Analysis

(inferential)

Michael Kohlhase: LBS 295 2025-10-07

Natural Language Semantics?

Comp Ling
NL

FL

M = ⟨D, I⟩

|=NL ⊆ NL×NL

⊢C ⊆ FL× FL

⊨ ⊆ FL× FL

Analysis

Iφ

induces?

induces

choose calculus C

⊨ ≡ ⊢C?

|=NL ≡ ⊢C?

Logic

Michael Kohlhase: LBS 296 2025-10-07

14.2 Where to From Here

Where to from here?

� We can continue the exploration of semantics in two different ways:

� Look around for additional logical/formal systems and see how they can be
applied to various linguistic problems. (the logician’s approach)

� Look around for additional linguistic forms and wonder about their truth condi-
tions, their logical forms, and how to represent them. (the linguist’s
approach)

� Here are some possibilities...

Michael Kohlhase: LBS 297 2025-10-07

Semantics of Plurals

184 CHAPTER 14. CONCLUSION

1. “The dogs were barking.”

2. “Fido and Chester were barking.” (What kind of an object do the subject NPs
denote?)

3. “Fido and Chester were barking. They were hungry.”

4. “Jane and George came to see me. She was upset.” (Sometimes we need to look
inside a plural!)

5. “Jane and George have two children.” (Each? Or together?)

6. “Jane and George got married.” (To each other? Or to other people?)

7. “Jane and George met.” (The predicate makes a difference to how we interpret the
plural)

Michael Kohlhase: LBS 298 2025-10-07

Reciprocals

� What’s required to make these true?

1. “The men all shook hands with one another.”

2. “The boys are all sitting next to one another on the fence.”

3. “The students all learn from each other.”

Michael Kohlhase: LBS 299 2025-10-07

Presuppositional expressions

� What are presuppositions?

� What expressions give rise to presuppositions?

� Are all apparent presuppositions really the same thing?

1. “The window in that office is open.”

2. “The window in that office isn’t open.”

3. “George knows that Jane is in town.”

4. “George doesn’t know that Jane is in town.”

5. “It was / wasn’t George who upset Jane.”

6. “Jane stopped / didn’t stop laughing.”

7. “George is / isn’t late.”

Michael Kohlhase: LBS 300 2025-10-07

Presupposition projection

14.2. WHERE TO FROM HERE 185

1. “George doesn’t know that Jane is in town.”

2. “Either Jane isn’t in town or George doesn’t know that she is.”

3. “If Jane is in town, then George doesn’t know that she is.”

4. “Henry believes that George knows that Jane is in town.”

Michael Kohlhase: LBS 301 2025-10-07

Conditionals

� What are the truth conditions of conditionals?

1. “If Jane goes to the game, George will go.”

� Intuitively, not made true by falsity of the antecedent or truth of consequent
independent of antecedent.

2. “If John is late, he must have missed the bus.”

� Generally agreed that conditionals are modal in nature. Note presence of modal in
consequent of each conditional above.

Michael Kohlhase: LBS 302 2025-10-07

Counterfactual conditionals

� And what about these??

1. “If kangaroos didn’t have tails, they’d topple over.” (David Lewis)

2. “If Woodward and Bernstein hadn’t got on the Watergate trail, Nixon might never
have been caught.”

3. “If Woodward and Bernstein hadn’t got on the Watergate trail, Nixon would have
been caught by someone else.”

� Counterfactuals undoubtedly modal, as their evaluation depends on which alterna-
tive world you put yourself in.

Michael Kohlhase: LBS 303 2025-10-07

Before and after

� These seem easy. But modality creeps in again...

1. “Jane gave up linguistics after she finished her dissertation.” (Did she finish?)

2. “Jane gave up linguistics before she finished her dissertation.” (Did she finish?
Did she start?)

Michael Kohlhase: LBS 304 2025-10-07

186 CHAPTER 14. CONCLUSION

Bibliography

[And72] Peter B. Andrews. “General Models and Extensionality”. In: Journal of Symbolic Logic
37.2 (1972), pp. 395–397.

[Ari10] Mira Ariel. Defining Pragmatics. Research Surveys in Linguistics. Cambridge Univer-
sity Press, 2010.

[BB05] Patrick Blackburn and Johan Bos. Representation and Inference for Natural Lan-
guage. A First Course in Computational Semantics. CSLI, 2005.

[Ben91] Johan van Benthem. Language in Action, Categories, Lambdas and Dynamic Logic.
Vol. 130. Studies in Logic and Foundation of Mathematics. North Holland, 1991.

[Bir13] Betty J. Birner. Introduction to Pragmatics. Wiley-Blackwell, 2013.

[Bla+01] Patrick Blackburn et al. “Inference and Computational Semantics”. In: Computing
Meaning (Volume 2). Ed. by Harry Bunt et al. Kluwer Academic Publishers, 2001,
pp. 11–28.

[BRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. New York, NY,
USA: Cambridge University Press, 2001. isbn: 0-521-80200-8.

[Cho65] Noam Chomsky. Aspects of the Theory of Syntax. MIT Press, 1965.

[Chu40] Alonzo Church. “A Formulation of the Simple Theory of Types”. In: Journal of Sym-
bolic Logic 5 (1940), pp. 56–68.

[CKG09] Ronnie Cann, Ruth Kempson, and Eleni Gregoromichelaki. Semantics – An Introduc-
tion to Meaning in Language. Cambridge University Press, 2009. isbn: 0521819628.

[Cre82] M. J. Cresswell. “The Autonomy of Semantics”. In: Processes, Beliefs, and Questions:
Essays on Formal Semantics of Natural Language and Natural Language Processing.
Ed. by Stanley Peters and Esa Saarinen. Springer, 1982, pp. 69–86. doi: 10.1007/
978-94-015-7668-0_2.

[Cru11] Alan Cruse. Meaning in Language: An Introduction to Semantics and Pragmatics.
Oxford Textbooks in Linguistics. 2011.

[Dav67a] Donald Davidson. “The logical form of action sentences”. In: The logic of decision and
action. Ed. by N. Rescher. Pittsburgh: Pittsburgh University Press, 1967, pp. 81–95.

[Dav67b] Donald Davidson. “Truth and Meaning”. In: Synthese 17 (1967).

[de 95] Manuel de Vega. “Backward updating of mental models during continuous reading of
narratives”. In: Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion 21 (1995), pp. 373–385.

[DSP91] Mary Dalrymple, Stuart Shieber, and Fernando Pereira. “Ellipsis and Higher-Order
Unification”. In: Linguistics & Philosophy 14 (1991), pp. 399–452.

[Eij97] Jan van Eijck. “Type Logic with States”. In: Logic Journal of the IGPL 5.5 (Sept.
1997).

[EU10] Jan van Eijck and Christina Unger. Computational Semantics with Functional Pro-
gramming. Cambridge University Press, 2010.

187

https://doi.org/10.1007/978-94-015-7668-0_2
https://doi.org/10.1007/978-94-015-7668-0_2

188 BIBLIOGRAPHY

[Fre92] Gottlob Frege. “Über Sinn und Bedeutung”. In: Zeitschrift für Philosophie und philosophis-
che Kritik 100 (1892), pp. 25–50.

[GK96] Claire Gardent and Michael Kohlhase. “Focus and Higher–Order Unification”. In: Pro-
ceedings of the 16th International Conference on Computational Linguistics. Copen-
hagen, 1996, pp. 268–279. url: https://kwarc.info/kohlhase/papers/coling96.
pdf.

[GKL96] Claire Gardent, Michael Kohlhase, and Noor van Leusen. “Corrections and Higher-
Order Unification”. In: Proceedings of KONVENS’96. Bielefeld, Germany: De Gruyter,
1996, pp. 268–279. url: https://kwarc.info/kohlhase/papers/konvens96.pdf.

[GML87] A. M. Glenberg, M. Meyer, and K. Lindem. “Mental models contribute to foreground-
ing during text comprehension”. In: Journal of Memory and Language 26 (1987),
pp. 69–83.

[Göd32] Kurt Gödel. “Zum Intuitionistischen Aussagenkalkül”. In: Anzeiger der Akademie der
Wissenschaften in Wien 69 (1932), pp. 65–66.

[Gol81] Warren D. Goldfarb. “The Undecidability of the Second-Order Unification Problem”.
In: Theoretical Computer Science 13 (1981), pp. 225–230.

[GS90] Jeroen Groenendijk and Martin Stokhof. “Dynamic Montague Grammar”. In: Papers
from the Second Symposium on Logic and Language. Ed. by L. Kálmán and L. Pólos.
Akadémiai Kiadó, Budapest, 1990, pp. 3–48.

[GS91] Jeroen Groenendijk and Martin Stokhof. “Dynamic Predicate Logic”. In: Linguistics
& Philosophy 14 (1991), pp. 39–100.

[Har84] D. Harel. “Dynamic Logic”. In: Handbook of Philosophical Logic. Ed. by D. Gabbay
and F. Günthner. Vol. 2. Reidel, Dordrecht, 1984, pp. 497–604.

[HC84] G. E. Hughes and M. M. Cresswell. A companion to Modal Logic. University Paper-
backs. Methuen, 1984.

[Hei82] Irene Heim. “The Semantics of Definite and Indefinite Noun Phrases”. PhD thesis.
University of Massachusetts, 1982.

[HHS07] James R. Hurford, Brendan Heasley, and Michael B. Smith. Semantics: A coursebook.
2nd. Cambridge University Press, 2007.

[HK00] Dieter Hutter and Michael Kohlhase. “Managing Structural Information by Higher-
Order Colored Unification”. In: Journal of Automated Reasoning 25.2 (2000), pp. 123–
164. url: https://kwarc.info/kohlhase/papers/jar00.pdf.

[HM95] Furio Honsell and Marino Miculan. “A natural deduction approach to dynamic logic”.
In: Types for Proofs and Programs TYPES ’95. Ed. by Stefano Berardi and Mario
Coppo. 1995, pp. 165–182. isbn: 978-3-540-61780-8. doi: 10.1007/3-540-61780-
9_69.

[Hue76] Gérard P. Huet. “Résolution d’Équations dans des Langages d’ordre 1,2,...,w.” Thèse
d‘État. Unif-bib: Université de Paris VII, 1976.

[Hue80] Gérard Huet. “Confluent Reductions: Abstract Properties and Applications to Term
Rewriting Systems”. In: Journal of the ACM (JACM) 27.4 (1980), pp. 797–821.

[Isr93] David J. Israel. “The Very Idea of Dynamic Semantics”. In: Proceedings of the Ninth
Amsterdam Colloquium. 1993. url: https://arxiv.org/pdf/cmp-lg/9406026.pdf.

[Jac83] Ray Jackendoff. Semantics and Cognition. MIT Press, 1983.

[JL83] P. N. Johnson-Laird. Mental Models. Cambridge University Press, 1983.

[JLB91] P. N. Johnson-Laird and Ruth M. J. Byrne. Deduction. Lawrence Erlbaum Associates
Publishers, 1991.

https://kwarc.info/kohlhase/papers/coling96.pdf
https://kwarc.info/kohlhase/papers/coling96.pdf
https://kwarc.info/kohlhase/papers/konvens96.pdf
https://kwarc.info/kohlhase/papers/jar00.pdf
https://doi.org/10.1007/3-540-61780-9_69
https://doi.org/10.1007/3-540-61780-9_69
https://arxiv.org/pdf/cmp-lg/9406026.pdf

BIBLIOGRAPHY 189

[Kam81] Hans Kamp. “A Theory of Truth and Semantic Representation”. In: Formal Methods
in the Study of Language. Ed. by J. Groenendijk, Th. Janssen, and M. Stokhof.
Amsterdam, Netherlands: Mathematisch Centrum Tracts, 1981, pp. 277–322.

[Kea11] Kate Kearns. Semantics. 2nd. Palgrave Macmillan, 2011.

[KKP96] Michael Kohlhase, Susanna Kuschert, and Manfred Pinkal. “A type-theoretic seman-
tics for λ-DRT”. In: Proceedings of the 10th Amsterdam Colloquium. Ed. by P. Dekker
and M. Stokhof. ILLC. Amsterdam, 1996, pp. 479–498. url: https://kwarc.info/
kohlhase/papers/amscoll95.pdf.

[Koh08] Michael Kohlhase. “Using LATEX as a Semantic Markup Format”. In: Mathematics in
Computer Science 2.2 (2008), pp. 279–304. url: https://kwarc.info/kohlhase/
papers/mcs08-stex.pdf.

[Kon04] Karsten Konrad. Model Generation for Natural Language Interpretation and Analysis.
Vol. 2953. LNCS. Springer, 2004. isbn: 3-540-21069-5. doi: 10.1007/b95744.

[KR93] Hans Kamp and Uwe Reyle. From Discourse to Logic: Introduction to Model-Theoretic
Semantics of Natural Language, Formal Logic and Discourse Representation Theory.
Dordrecht: Kluwer, 1993.

[Kra12] Angelika Kratzer. Modals and Conditionals. New and Revised Perspectives. Oxford
Studies in Theoretical Linguistics. Oxford University Press, 2012.

[Kri63] Saul Kripke. “Semantical Considerations on Modal Logic”. In: Acta Philosophica Fen-
nica (1963), pp. 83–94.

[Lew18] Clarence Irving Lewis. A Survey of Symbolic Logic. University of California Press,
1918. url: http://hdl.handle.net/2027/hvd.32044014355028.

[Lew73] David K. Lewis. Counterfactuals. Blackwell Publishers, 1973.

[Mat70] Ju. V. Matijasevič. “Enumerable sets are diophantine”. In: Soviet Math. Doklady 11
(1970), pp. 354–358.

[MBV95] Reinhard Muskens, Johan van Benthem, and Albert Visser. “Dynamics”. In: ed. by
Johan van Benthem and Ter Meulen. Elsevier Science B.V., 1995.

[Mon70] R. Montague. “English as a Formal Language”. In: Reprinted in [Tho74], 188–221.
Edizioni di Communita, Milan, 1970, pp. 189–224.

[Mon74] Richard Montague. “The Proper Treatment of Quantification in Ordinary English”.
In: Formal Philosophy. Selected Papers. Ed. by R. Thomason. New Haven: Yale Uni-
versity Press, 1974.

[MR98] C. Monz and M. de Rijke. “A Resolution Calculus for Dynamic Semantics”. In: Logics
in Artificial Intelligence. European Workshop JELIA ’98. LNAI 1489. Springer Verlag,
1998.

[Mus96] Reinhard Muskens. “Combining Montague Semantics and Discourse Representation”.
In: Linguistics & Philosophy 14 (1996), pp. 143 –186.

[Nor+18a] Emily Nordmann et al. Lecture capture: Practical recommendations for students and
lecturers. 2018. url: https://osf.io/huydx/download.

[Nor+18b] Emily Nordmann et al. Vorlesungsaufzeichnungen nutzen: Eine Anleitung für Studierende.
2018. url: https://osf.io/e6r7a/download.

[Ohl88] Hans Jürgen Ohlbach. “A Resolution Calculus for Modal Logics”. PhD thesis. Uni-
versität Kaiserslautern, 1988.

[Par90] Terence Parsons. Events in the Semantics of English: A Study in Subatomic Seman-
tics. Vol. 19. Current Studies in Linguistics. MIT Press, 1990.

[Pin96] Manfred Pinkal. “Radical underspecification”. In: Proceedings of the 10th Amsterdam
Colloquium. Ed. by P. Dekker and M. Stokhof. ILLC. Amsterdam, 1996, pp. 587–606.

https://kwarc.info/kohlhase/papers/amscoll95.pdf
https://kwarc.info/kohlhase/papers/amscoll95.pdf
https://kwarc.info/kohlhase/papers/mcs08-stex.pdf
https://kwarc.info/kohlhase/papers/mcs08-stex.pdf
https://doi.org/10.1007/b95744
http://hdl.handle.net/2027/hvd.32044014355028
https://osf.io/huydx/download
https://osf.io/e6r7a/download

190 BIBLIOGRAPHY

[Pop34] Karl Popper. Logik der Forschung. Springer Verlag, 1934.

[Pop59] Karl Popper. Logic of Scientific Discovery. Basic Books, 1959.

[Por04] Paul Portner. What is Meaning? Fundamentals of Formal Semantics. Blackwell, 2004.

[Pra76] V. Pratt. “Semantical considerations of Floyd-Hoare logic”. In: Proceedings of the 17th

Symposium on Foundations of Computer Science. 1976, pp. 109–121.

[Pul94] Stephen G. Pulman. Higher Order Unification and the Interpretation of Focus. Tech.
rep. CRC-049. SRI Cambridge, UK, 1994.

[Ran17] Aarne Ranta. Automatic Translation for Consumers and Producers. Presentation
given at the Chalmers Initiative Seminar. 2017. url: https://www.grammaticalframework.
org/~aarne/mt-digitalization-2017.pdf.

[RG94] Uwe Reyle and Dov M. Gabbay. “Direct Deductive computation on Discourse Repre-
sentation Structures”. In: Linguistics & Philosophy 17 (1994), pp. 343–390.

[Rie10] Nick Riemer. Introducing Semantics. Cambridge Introductions to Language and Lin-
guistics. Cambridge University Press, 2010.

[Rus03] Bertrand Russell. The Principles of Mathematics. Cambridge University Press, 1903.

[Rus91] Stuart J. Russell. “An Architecture for Bounded Rationality”. In: SIGART Bulletin
2.4 (1991), pp. 146–150.

[Sae03] John I. Saeed. Semantics. 2nd. Blackwell, 2003.

[Sau93] Werner Saurer. “A Natural Deduction System for Discourse Representation Theory”.
In: Journal of Philosophical Logic 22 (1993).

[Sch20] Jan Frederik Schaefer. “Prototyping NLU Pipelines – A Type-Theoretical Frame-
work”. Master’s Thesis. Informatik, FAU Erlangen-Nürnberg, 2020. url: https :
//gl.kwarc.info/supervision/MSc-archive/blob/master/2020/Schaefer_
Jan_Frederik.pdf.

[Sin94] M. Singer. “Discourse Inference Processes”. In: Handbook of Psycholinguistics. Ed. by
M. A. Gernsbacher. Academic Press, 1994, pp. 479–515.

[Spe17] Jeff Speaks. “Theories of Meaning”. In: The Stanford Encyclopedia of Philosophy. Ed.
by Edward N. Zalta. Fall 2017. Metaphysics Research Lab, Stanford University, 2017.
url: https://plato.stanford.edu/archives/fall2017/entries/meaning/.

[Sta14] Robert Stalnaker. Context. Oxford University Press, 2014.

[Sta68] Robert C. Stalnaker. “A Theory of Conditionals”. In: Studies in Logical Theory, Amer-
ican Philosophical Quarterly. Blackwell Publishers, 1968, pp. 98–112.

[Sta85] Rick Statman. “Logical relations and the typed lambda calculus”. In: Information and
Computation 65 (1985).

[sTeX] sTeX: A semantic Extension of TeX/LaTeX. url: https://github.com/sLaTeX/
sTeX (visited on 05/11/2020).

[Tho74] R. Thomason, ed. Formal Philosophy: selected Papers of Richard Montague. Yale
University Press, New Haven, CT, 1974.

[Ven57] Zeno Vendler. “Verbs and times”. In: Philosophical Review 56 (1957), pp. 143–160.

[Zee89] Henk Zeevat. “A Compositional Approach to DRT”. In: Linguistics & Philosophy 12
(1989), pp. 95–131.

[ZR98] R. A. Zwaan and G. A. Radvansky. “Situation models in language comprehension
and memory”. In: Psychological Bulletin 123 (1998), pp. 162–185.

[ZS13] Thomas Ede Zimmermann and Wolfgang Sternefeld. Introduction to Semantics. de
Gruyter Mouton, 2013.

https://www.grammaticalframework.org/~aarne/mt-digitalization-2017.pdf
https://www.grammaticalframework.org/~aarne/mt-digitalization-2017.pdf
https://gl.kwarc.info/supervision/MSc-archive/blob/master/2020/Schaefer_Jan_Frederik.pdf
https://gl.kwarc.info/supervision/MSc-archive/blob/master/2020/Schaefer_Jan_Frederik.pdf
https://gl.kwarc.info/supervision/MSc-archive/blob/master/2020/Schaefer_Jan_Frederik.pdf
https://plato.stanford.edu/archives/fall2017/entries/meaning/
https://github.com/sLaTeX/sTeX
https://github.com/sLaTeX/sTeX

Index

*, 56

Blaise Pascal, 40

Gottfried Wilhelm Leibniz, 40

Wilhelm Schickard, 40

191

192 INDEX

Part III

Excursions

193

195

As this course is predominantly about modeling natural language and not about the theoretical
aspects of the logics themselves, we give the discussion about these as a “suggested readings”
section part here.

196

Appendix A

ALeA – AI-Supported Learning

In this chapter we introduce the ALeA (Adaptive Learning Assistant) system, a learning support
system we will use to support students in LBS.

ALeA: Adaptive Learning Assistant

� Idea: Use AI methods to help teach/learn AI (AI4AI)

� Concretely: Provide HTML versions of the LBS slides/lecture notes and embed
learning support services into them. (for pre/postparation of lectures)

� Definition A.0.1. Call a document active, iff it is interactive and adapts to specific
information needs of the readers. (lecture notes on steroids)

� Intuition: ALeA serves active course materials. (PDF mostly inactive)

� Goal: Make ALeA more like a instructor + study group than like a book!

� Example A.0.2 (Course Notes). =̂ Slides + Comments

; yellow parts in table of contents (left) already covered in lectures.

Michael Kohlhase: LBS 305 2025-10-07

The central idea in the AI4AI approach – using AI to support learning AI – and thus the ALeA
system is that we want to make course materials – i.e. what we give to students for preparing and
postparing lectures – more like teachers and study groups (only available 24/7) than like static
books.

197

198 APPENDIX A. ALEA – AI-SUPPORTED LEARNING

VoLL-KI Portal at https://courses.voll-ki.fau.de

� Portal for ALeA Courses: https://courses.voll-ki.fau.de

� LBS in ALeA: https://courses.voll-ki.fau.de/course-home/lbs

� All details for the course.

� recorded syllabus (keep track of material covered in course)

� syllabus of the last semesters (for over/preview)

� ALeA Status: The ALeA system is deployed at FAU for over 1000 students
taking eight courses

� (some) students use the system actively (our logs tell us)

� reviews are mostly positive/enthusiastic (error reports pour in)

Michael Kohlhase: LBS 306 2025-10-07

The ALeA LBS page is the central entry point for working with the ALeA system. You can get
to all the components of the system, including two presentations of the course contents (notes-
and slides-centric ones), the flashcards, the localized forum, and the quiz dashboard.
We now come to the heart of the ALeA system: its learning support services, which we will now
briefly introduce. Note that this presentation is not really sufficient to undertstand what you may
be getting out of them, you will have to try them, and interact with them sufficiently that the
learner model can get a good estimate of your competencies to adapt the results to you.

Learning Support Services in ALeA

� Idea: Embed learning support services into active course materials.

� Example A.0.3 (Definition on Hover). Hovering on a (cyan) term reference
reminds us of its definition. (even works recursively)

https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de/course-home/lbs

199

� Example A.0.4 (More Definitions on Click). Clicking on a (cyan) term reference
shows us more definitions from other contexts.

� Example A.0.5 (Guided Tour). A guided tour for a concept c assembles defini-

200 APPENDIX A. ALEA – AI-SUPPORTED LEARNING

tions/etc. into a self-contained mini-course culminating at c.

c = count-
able ;

� Example A.0.6 (Problems Everywhere). We can deploy personalized practice
problems that explore/

� at the end of a secion S, based on the symbols introduced in S (review
knowledge)

� before a new section S, based on the symbols used in it. (traffic light)

� . . . in all generated materials.

� . . . your idea here . . . If the semantics supports it, we can build it! (the sky is the
limit)

Michael Kohlhase: LBS 307 2025-10-07

Note that this is only an initial collection of learning support services, we are constantly working

on additional ones. Look out for feature notifications () on the upper right hand of
the ALeA screen.

(Practice/Remedial) Problems Everywhere

� Problem: Learning requires a mix of understanding and test-driven practice.

� Idea: ALeA supplies targeted practice problems everywhere.

� Concretely: Revision markers at the end of sections.

� A relatively non-intrusive overview over competency

� Click to extend it for details.

� Practice problems as usual. (targeted to your specific competency)

201

Michael Kohlhase: LBS 308 2025-10-07

While the learning support services up to now have been adressed to individual learners, we
now turn to services addressed to communities of learners, ranging from study groups with three
learners, to whole courses, and even – eventually – all the alumni of a course, if they have not
de-registered from ALeA.

Currently, the community aspect of ALeA only consists in localized interactions with the course
materials.
The ALeA system uses the semantic structure of the course materials to localize some interactions
that are otherwise often from separate applications. Here we see two:

1. one for reporting content errors – and thus making the material better for all learners – and‘’

2. a localized course forum, where forum threads can be attached to learning objects.

Localized Interactions with the Community

� Selecting text brings up localized – i.e. anchored on the selection – interactions:
� post a (public) comment or take (private) note

� report an error to the course authors/instructors

� Localized comments induce a thread in the ALeA forum (like the StudOn
Forum, but targeted towards specific learning objects.)

202 APPENDIX A. ALEA – AI-SUPPORTED LEARNING

� Answering questions gives karma =̂ a public measure of user helpfulness.

� Notes can be anonymous (; generate no karma)

Michael Kohlhase: LBS 309 2025-10-07

We can use the same four models discussed in the space of guided tours to deploy additional
learning support services, which we now discuss.

New Feature: Drilling with Flashcards

� Flashcards challenge you with a task (term/problem) on the front. . .

. . . and the definition/answer is on the back.

� Self-assessment updates the learner model (before/after)

� Idea: Challenge yourself to a card stack, keep drilling/assessing flashcards until
the learner model eliminates all.

� Bonus: Flashcards can be generated from existing semantic markup (educational
equivalent to free beer)

Michael Kohlhase: LBS 310 2025-10-07

We have already seen above how the learner model can drive the drilling with flashcards. It can
also be used for the configuration of card stacks by configuring a domain e.g. a section in the
course materials and a competency threshold. We now come to a very important issue
that we always face when we do AI systems that interface with humans. Most web technology
companies that take one the approach “the user pays for the services with their personal data,
which is sold on” or integrate advertising for renumeration. Both are not acceptable in university
setting.

But abstaining from monetizing personal data still leaves the problem how to protect it from
intentional or accidental misuse. Even though the General Data Protection Regulation has quite
extensive exceptions for research, the ALeA system – a research prototype – adheres to the prin-
ciples and mandates of the General Data Protection Regulation. In particular it makes sure that
personal data of the learners is only used in learning support services directly or indirectly initiated
by the learners themselves.

Learner Data and Privacy in ALeA

203

� Observation: Learning support services in ALeA use the learner model; they

� need the learner model data to adapt to the invidivual learner!

� collect learner interaction data (to update the learner model)

� Consequence: You need to be logged in (via your FAU IDM credentials) for useful
learning support services!

� Problem: Learner model data is highly sensitive personal data!

� ALeA Promise: The ALeA team does the utmost to keep your personal data
safe. (SSO via FAU IDM/eduGAIN, ALeA trust zone)

� ALeA Privacy Axioms:

1. ALeA only collects learner models data about logged in users.

2. Personally identifiable learner model data is only accessible to its subject
(delegation possible)

3. Learners can always query the learner model about its data.

4. All learner model data can be purged without negative consequences (except
usability deterioration)

5. Logging into ALeA is completely optional.

� Observation: Authentication for bonus quizzes are somewhat less optional, but
you can always purge the learner model later.

Michael Kohlhase: LBS 311 2025-10-07

So, now that you have an overview over what the ALeA system can do for you, let us see what
you have to concretely do to be able to use it.

Concrete Todos for ALeA

� Recall: You will use ALeA for the prepquizzes (or lose bonus points)
All other use is optional. (but AI-supported pre/postparation can be helpful)

� To use the ALeA system, you will have to log in via SSO: (do it now)

� go to https://courses.voll-ki.fau.de/course-home/lbs,

� in the upper right hand corner you see ,

� log in via your FAU IDM credentials. (you should have them by now)

� You get access to your personal ALeA profile via
(plus feature notifications, manual, and language chooser)

� Problem: Most ALeA services depend on the learner model. (to adapt to you)

� Solution: Initialize your learner model with your educational history!

� Concretely: enter taken CS courses (FAU equivalents) and grades.

� ALeA uses that to estimate your CS/AI competencies. (for your benefit)

� then ALeA knows about you; I don’t! (ALeA trust zone)

https://courses.voll-ki.fau.de/course-home/lbs

204 APPENDIX A. ALEA – AI-SUPPORTED LEARNING

Michael Kohlhase: LBS 312 2025-10-07

Even if you did not understand some of the AI jargon or the underlying methods (yet), you
should be good to go for using the ALeA system in your day-to-day work.

Appendix B

Properties of the Simply Typed λ
Calculus

B.1 Computational Properties of λ-Calculus
As we have seen above, the main contribution of the λ-calculus is that it casts the comprehension

and (functional) extensionality axioms in a way that is more amenable to automation in reasoning
systems, since they can be oriented into a confluent and terminating reduction system. In this
section we prove the respective properties. We start out with termination, since we will need it
later in the proof of confluence.

B.1.1 Termination of β-reduction

We will use the termination of =β reduction to present a very powerful proof method, called
the “logical relations method”, which is one of the basic proof methods in the repertoire of a proof
theorist, since it can be extended to many situations, where other proof methods have no chance
of succeeding.
Before we start into the termination proof, we convince ourselves that a straightforward induction
over the structure of expressions will not work, and we need something more powerful.

Termination of β-Reduction

� only holds for the typed case
(λX.XX) (λX.XX)→β(λX.XX) (λX.XX)

� Theorem B.1.1 (Typed β-Reduction terminates). For all A ∈ wffα(ΣT ,VT),
the chain of reductions from A is finite.

� proof attempts:

� Induction on the structure A must fail, since this would also work for the untyped
case.

� Induction on the type of A must fail, since β-reduction conserves types.

� combined induction on both: Logical Relations [Tait 1967]

Michael Kohlhase: LBS 313 2025-10-07

205

206 APPENDIX B. PROPERTIES OF THE SIMPLY TYPED λ CALCULUS

The overall shape of the proof is that we reason about two relations: SR and LR between
λ-terms and their types. The first is the one that we are interested in, LR(A, α) essentially states
the property that =βη reduction terminates at A. Whenever the proof needs to argue by induction
on types it uses the “logical relation” LR, which is more “semantic” in flavor. It coincides with SR
on base types, but is defined via a functionality property.

Relations SR and LR

� Definition B.1.2. A is called strongly reducing at type α (write SR(A, α)), iff
each chain β-reductions from A terminates.

� Definition B.1.3. We define a logical relation LR inductively on the structure of
the type

� α base type: LR(A, α), iff SR(A, α)
� LR(C, α→ β), iff LR(C A, β) for all A ∈ wffα(ΣT ,VT) with LR(A, α).

� Proof: Termination Proof

1. LR ⊆ SR (??? b))

2. A ∈ wffα(ΣT ,VT) implies LR(A, α) (??? with σ = ∅)

3. thus SR(A, α).

□

� Lemma B.1.4 (SR is closed under subterms). If SR(A, α) and Bβ is a subterm
of A, then SR(B, β).

� Proof sketch: Every infinite β reduction from B would be one from A.

Michael Kohlhase: LBS 314 2025-10-07

The termination proof proceeds in two steps, the first one shows that LR is a sub-relation of SR,
and the second that LR is total on λ-terms. Togther they give the termination result.
The next result proves two important technical side results for the termination proofs in a joint
induction over the structure of the types involved. The name “rollercoaster lemma” alludes to the
fact that the argument starts with base type, where things are simple, and iterates through the
two parts each leveraging the proof of the other to higher and higher types.

LR ⊆ SR (Rollercoaster Lemma)

� Lemma B.1.5 (Rollercoaster Lemma).

a) If h is a constant or variable of type αn → α and SR(Ai, αi), then LR(h An, α).

b) LR(A, α) implies SR(A, α).

� Proof: we prove both assertions by simultaneous induction on α

1. α base type
1.1. a)

1.1.1. h An is strongly reducing, since the Ai are (brackets!)
1.1.2. so LR(h An, α) as α is a base type (SR = LR)

1.3. b)
by definition

B.1. COMPUTATIONAL PROPERTIES OF λ-CALCULUS 207

3. α = β → γ

3.1. a)
3.1.1. Let LR(B, β).
3.1.2. by IH b) we have SR(B, β), and LR((h An) B, γ) by IH a)
3.1.3. so LR(h An, α) by definition.

3.3. b)
3.3.1. Let LR(A, α) and Xβ /∈ free(A).
3.3.2. LR(X,β) by IH a) with n = 0, thus LR(A X, γ) by definition.
3.3.3. By IH b) we have SR(AX, γ) and by ??? SR(A, α).

□

Michael Kohlhase: LBS 315 2025-10-07

The part of the rollercoaster lemma we are really interested in is part b). But part a) will become
very important for the case where n = 0; here it states that constants and variables are LR.

The next step in the proof is to show that all well-formed formulae are LR. For that we need
to prove closure of LR under =β expansion

β-Expansion Lemma

� Lemma B.1.6. If LR([B/X](A), α) and LR(B, β) for Xβ ̸∈ free(B), then
LR((λXα.A) B, α).

� Proof:

1. Let α = γi → δ where δ base type and LR(Ci, γi)

2. It is sufficient to show that SR((λX.A) B C, δ), as δ base type

3. We have LR(([B/X](A)) C, δ) by hypothesis and definition of LR.

4. thus SR(([B/X](A)) C, δ), as δ base type.

5. in particular SR([B/X](A), α) and SR(Ci, γi) (subterms)

6. SR(B, β) by hypothesis and ???

7. So an infinite reduction from (λX.A) B C cannot solely consist of redexes from
[B/X](A) and the Ci.

8. so an infinite reduction from (λX.A) B C must have the form

(λX.A) B C →∗
β (λX.A′) B′ C′

→1
β ([B′/X](A′)) C′

→∗
β . . .

where A→∗
βA

′, B→∗
βB

′ and Ci→∗
βC

i′

9. so we have [B/X](A)→∗
β [B

′/X](A′)

10. so we have the infinite reduction

([B/X](A)) C →∗
β ([B′/X](A′)) C′

→∗
β . . .

which contradicts our assumption

208 APPENDIX B. PROPERTIES OF THE SIMPLY TYPED λ CALCULUS

□

� Lemma B.1.7 (LR is closed under β-expansion). If C→βD and LR(D, α), so
is LR(C, α).

Michael Kohlhase: LBS 316 2025-10-07

Note that this Lemma is one of the few places in the termination proof, where we actually look
at the properties of β reduction.
We now prove that every well-formed formula is related to its type by LR. But we cannot prove
this by a direct induction. In this case we have to strengthen the statement of the theorem – and
thus the induction hypothesis, so that we can make the step cases go through. This is common for
non-trivial induction proofs. Here we show instead that every instance of a well-formed formula is
related to its type by LR; we will later only use this result for the cases of the empty substitution,
but the stronger assertion allows a direct induction proof.

A ∈ wffα(ΣT ,VT) implies LR(A, α)

� Definition B.1.8. We write LR(σ) if LR(σ(Xα), α) for all X ∈ supp(σ).

� Theorem B.1.9. If A ∈ wffα(ΣT ,VT), then LR(σ(A), α) for any substitution σ
with LR(σ).

� Proof: by induction on the structure of A

1. A = Xα ∈ supp(σ)

1.1. then LR(σ(A), α) by assumption

3. A = X /∈ supp(σ)

3.1. then σ(A) = A and LR(A, α) by ??? with n = 0.

5. A ∈ ΣT
5.1. then σ(A) = A as above

7. A = BC

7.1. by IH LR(σ(B), γ → α) and LR(σ(C), γ)

7.2. so LR((σ(B)) (σ(C)), α) by definition of LR.

9. A = λXβ .Cγ

9.1. Let LR(B, β) and θ := σ,[B/X], then θ meets the conditions of the IH.
9.2. Moreover (σ(λXβ .Cγ)) B→βσ,[B/X](C) = θ(C).
9.3. Now, LR(θ(C), γ) by IH and thus LR((σ(A)) B, γ) by ???.
9.4. So LR(σ(A), α) by definition of LR.

□

Michael Kohlhase: LBS 317 2025-10-07

In contrast to the proof of the roller coaster Lemma above, we prove the assertion here by an
induction on the structure of the λ-terms involved. For the base cases, we can directly argue
with the first assertion from ???, and the application case is immediate from the definition of LR.
Indeed, we defined the auxiliary relation LR exclusively that the application case – which cannot
be proven by a direct structural induction; remember that we needed induction on types in ???–
becomes easy.

The last case on λ-abstraction reveals why we had to strengthen the induction hypothesis: β
reduction introduces a substitution which may increase the size of the subterm, which in turn

B.1. COMPUTATIONAL PROPERTIES OF λ-CALCULUS 209

keeps us from applying the induction hypothesis. Formulating the assertion directly under all
possible LR substitutions unblocks us here.

This was the last result we needed to complete the proof of termiation of =β-reduction.
Remark:

If we are only interested in the termination of head reductions, we can get by with a much
simpler version of this lemma, that basically relies on the uniqueness of head =β reduction.

Closure under Head β-Expansion (weakly reducing)

� Lemma B.1.10 (LR is closed under head β-expansion). If C→h
βD and LR(D, α),

so is LR(C, α).

� Proof: by induction over the structure of α

1. α base type
1.1. we have SR(D, α) by definition
1.2. so SR(C, α), since head reduction is unique
1.3. and thus LR(C, α).

3. α = β → γ

3.1. Let LR(B, β), by definition we have LR(DB, γ).
3.2. but C B→h

βD B, so LR(CB, γ) by IH
3.3. and LR(C, α) by definition.

□

� Note: This result only holds for weak reduction (any chain of β head reductions
terminates) for strong reduction we need a stronger Lemma.

Michael Kohlhase: LBS 318 2025-10-07

For the termination proof of head =β-reduction we would just use the same proof as above, just
for a variant of SR, where SR(A, α) that only requires that the head reduction sequence out of A
terminates. Note that almost all of the proof except ??? (which holds by the same argument) is
invariant under this change. Indeed Rick Statman uses this observation in [Sta85] to give a set of
conditions when logical relations proofs work.

B.1.2 Confluence of βη Conversion

We now turn to the confluence for =βη, i.e. that the order of reductions is irrelevant. This
entails the uniqueness of =βη normal forms, which is very useful.
Intuitively confluence of a relation R means that “anything that flows apart will come together
again.” – and as a consequence normal forms are unique if they exist. But there is more than one
way of formalizing that intuition.

Confluence

� Definition B.1.11 (Confluence). Let R ⊆ A2 be a relation on a set A, then we
say that

� has a diamond property, iff for every a, b, c ∈ A with a→1
Rb a→1

Rc there is a
d ∈ A with b→1

Rd and c→1
Rd.

210 APPENDIX B. PROPERTIES OF THE SIMPLY TYPED λ CALCULUS

� is confluent, iff for every a, b, c ∈ A with a→∗
Rb a→∗

Rc there is a d ∈ A with
b→∗

Rd and c→∗
Rd.

� weakly confluent iff for every a, b, c ∈ A with a→1
Rb a→1

Rc there is a d ∈ A
with b→∗

Rd and c→∗
Rd.

diamond confluent weakly
property confluent

a

b c

d

a

b c

d

* *

* *

a

b c

d* *

Michael Kohlhase: LBS 319 2025-10-07

The diamond property is very simple, but not many reduction relations enjoy it. Confluence is
the notion that directly gives us unique normal forms, but is difficult to prove via a digram chase,
while weak confluence is amenable to this, does not directly give us confluence.
We will now relate the three notions of confluence with each other: the diamond property (some-
times also called strong confluence) is stronger than confluence, which is stronger than weak
confluence

Relating the notions of confluence

� Observation B.1.12. If a rewrite relation has a diamond property, then it is weakly
confluent.

� Theorem B.1.13. If a rewrite relation has a diamond property, then it is confluent.

� Proof sketch: by a tiling argument, composing 1×1 diamonds to an n×m diamond.

� Theorem B.1.14 (Newman’s Lemma). If a rewrite relation is terminating and
weakly confluent, then it is also confluent.

Michael Kohlhase: LBS 320 2025-10-07

Note that Newman’s Lemma cannot be proven by a tiling argument since we cannot control the
growth of the tiles. There is a nifty proof by Gérard Huet [Hue80] that is worth looking at.

After this excursion into the general theory of reduction relations, we come back to the case at
hand: showing the confluence of =βη-reduction.
→∗
η is very well-behaved – i.e. confluent and terminating

η-Reduction ist terminating and confluent

� Lemma B.1.15. η-Reduction ist terminating

� Proof sketch: by a simple counting argument

� Lemma B.1.16. η-reduction is confluent.

B.1. COMPUTATIONAL PROPERTIES OF λ-CALCULUS 211

� Proof sketch: We show that η-reduction has the diamond property by diagram
chase over

λX.A X

A λX.A′ X

A’

where A→ηA′. Then the assertion follows by ???.

Michael Kohlhase: LBS 321 2025-10-07

For =β-reduction the situation is a bit more involved, but a simple diagram chase is still sufficient
to prove weak confluence, which gives us confluence via ???

=β is confluent

� Lemma B.1.17. =β-Reduction is weakly confluent.

� Proof sketch: by diagram chase over

(λX.A) B

(λX.A′) B (λX.A) B′ [B/X](A)

(λX.A′) B′ [B′/X](A)

[B′/X](A′)

*

� Corollary B.1.18. =β-Reduction is confluent.

� Proof sketch: by Newman’s Lemma.

Michael Kohlhase: LBS 322 2025-10-07

There is one reduction in the diagram in the proof of ??? which (note that B can occur multiple
times in [B/X](A)) is not necessary single-step. The diamond property is broken by the outer
two reductions in the diagram as well.

We have shown that the =β and =η reduction relations are terminating and confluent and
terminating individually, now, we have to show that =βη is a well. For that we introduce a new
concept.

Commuting Relations
� Definition B.1.19. Let A be a set, then we say that

relations R ∈ A2 and S ∈ A2 commute, if X→RY and
X→SZ entail the existence of a W ∈ A with Y→SW and
Z→RW .

� Observation B.1.20. If R and S commute, then →R
and →S do as well.

X

Y Z

W

R S

S R

212 APPENDIX B. PROPERTIES OF THE SIMPLY TYPED λ CALCULUS

� Observation B.1.21. R is confluent, if R commutes with itself.

� Lemma B.1.22. If R and S are terminating and confluent relations such that
→∗

R and →∗
S commute, then →∗

R∪S is confluent.

� Proof sketch: As R and S commute, we can reorder any reduction sequence so
that all R-reductions precede all S-reductions. As R is terminating and confluent,
the R-part ends in a unique normal form, and as S is normalizing it must lead to a
unique normal form as well.

Michael Kohlhase: LBS 323 2025-10-07

This directly gives us our goal.

→∗βη is confluent

� Lemma B.1.23. →∗
β and →∗

η commute.

� Proof sketch: diagram chase

Michael Kohlhase: LBS 324 2025-10-07

B.2 The Semantics of the Simply Typed λ-Calculus
The semantics of Λ→ is structured around the types. Like the models we discussed before, a model
(we call them “algebras”, since we do not have truth values in Λ→) is a pair ⟨D, I⟩, where D is the
universe of discourse and I is the interpretation of constants.

Semantics of Λ→

� Definition B.2.1. We call a collection DT := {Dα |α ∈ T } a typed collection (of
sets) and a collection fT : DT →ET , a typed function, iff fα : Dα→Eα.

� Definition B.2.2. A typed collection DT is called a frame, iff Dα→β ⊆ Dα→Dβ .

� Definition B.2.3. Given a frame DT , and a typed function I : Σ→ D, we call
Iφ : wffT (ΣT ,VT)→D the value function induced by I, iff

1. Iφ|VT
= φ, Iφ|ΣT

= I,
2. Iφ(A B) = Iφ(A)(Iφ(B)), and

3. Iφ(λXα.A) is that function f ∈ Dα→β , such that f(a) = Iφ,[a/X](A) for all
a ∈ Dα.

� Note: Not every λ-term has a Iφ-value as we have only required Dα→β ⊆
Dα→Dβ for frames. (there might not be enough functions)

� Definition B.2.4. We call ⟨D, I⟩, where D is a frame and I is a typed function
comprehension closed or a ΣT -algebra, iff Iφ : wffT (ΣT ,VT)→D is total.

� Theorem B.2.5. =αβη (seen as a calculus) is sound and complete for Σ-algebras.

� Upshot for LBS: Λ→ is the logical system for reasoning about functions!

B.2. THE SEMANTICS OF THE SIMPLY TYPED λ-CALCULUS 213

Michael Kohlhase: LBS 325 2025-10-07

The definition of the semantics in Definition B.2.3 is surprisingly simple. The only part that is new
at all is the third clause, and there we already know the trick with treating binders by extending
the variable assignment from quantifiers in first-order logic.

The real subtlety is in the definition of frames, where instead of requiring Dα→β = Dα→Dβ
(full function universes we have only required Dα→β ⊆ Dα→Dβ , which necessitates the post-hoc
definition of a ΣT -algebra. But the added complexity gives us thm.abe-sound-complete.

B.2.1 Soundness of the Simply Typed λ-Calculus
We will now show is that =αβη-reduction does not change the value of formulae, i.e. if A =αβη B,

then Iφ(A) = Iφ(B), for all D and φ. We say that the reductions are sound. As always, the main
tool for proving soundess is a substitution value lemma. It works just as always and verifies that
we the definitions are in our semantics plausible.

Substitution Value Lemma for λ-Terms

� Lemma B.2.6 (Substitution Value Lemma). Let A and B be terms, then
Iφ([B/X](A)) = Iψ(A), where ψ = φ,[Iφ(B)/X]

� Proof: by induction on the depth of A
we have five cases

1. A = X

1.1. Then Iφ([B/X](A)) = Iφ([B/X](X)) = Iφ(B) = ψ(X) = Iψ(X) =
Iψ(A).

3. A = Y ̸= X and Y ∈ VT
3.1. then Iφ([B/X](A)) = Iφ([B/X](Y)) = Iφ(Y) = φ(Y) = ψ(Y) =
Iψ(Y) = Iψ(A).

5. A ∈ ΣT
5.1. This is analogous to the last case.

7. A = C D

7.1. then Iφ([B/X](A)) = Iφ([B/X](C D)) = Iφ(([B/X](C)) ([B/X](D))) =
Iφ([B/X](C))(Iφ([B/X](D))) = Iψ(C)(Iψ(D)) = Iψ(C D) = Iψ(A)

9. A = λYα.C

9.1. We can assume that X ̸= Y and Y /∈ free(B)

9.2. Thus for all a ∈ Dα we have Iφ([B/X](A))(a) = Iφ([B/X](λY .C))(a) =
Iφ(λY .([B/X](C)))(a) = Iφ,[a/Y]([B/X](C)) = Iψ,[a/Y](C) = Iψ(λY .C)(a) =
Iψ(A)(a)

□

Michael Kohlhase: LBS 327 2025-10-07

Soundness of αβη-Equality

� Theorem B.2.7. Let A := ⟨D, I⟩ be a ΣT -algebra and Y ̸∈ free(A), then
Iφ(λX.A) = Iφ(λY .[Y /X]A) for all assignments φ.

214 APPENDIX B. PROPERTIES OF THE SIMPLY TYPED λ CALCULUS

� Proof: by substitution value lemma

Iφ(λY .[Y /X]A)@a = Iφ,[a/Y]([Y /X](A))

= Iφ,[a/X](A)

= Iφ(λX.A)@a

□

� Theorem B.2.8. If A := ⟨D, I⟩ is a ΣT -algebra and X not bound in A, then
Iφ((λX.A) B) = Iφ([B/X](A)).

� Proof: by substitution value lemma again

Iφ((λX.A) B) = Iφ(λX.A)@Iφ(B)

= Iφ,[Iφ(B)/X](A)

= Iφ([B/X](A))

□

Michael Kohlhase: LBS 328 2025-10-07

Soundness of αβη (continued)

� Theorem B.2.9. If X ̸∈ free(A), then Iφ(λX.A X) = Iφ(A) for all φ.

� Proof: by calculation

Iφ(λX.A X)@a = Iφ,[a/X](A X)

= Iφ,[a/X](A)@Iφ,[a/X](X)

= Iφ(A)@Iφ,[a/X](X) as X ̸∈ free(A).
= Iφ(A)@a

□

� Theorem B.2.10. αβη-equality is sound wrt. ΣT -algebras. (if A =αβη B, then
Iφ(A) = Iφ(B) for all assignments φ)

Michael Kohlhase: LBS 329 2025-10-07

B.2.2 Completeness of αβη-Equality

We will now show is that =αβη-equality is complete for the semantics we defined, i.e. that
whenever Iφ(A) = Iφ(B) for all variable assignments φ, then A =αβη B. We will prove this by
a model existence argument: we will construct a model M := ⟨D, I⟩ such that if A ̸=αβη B then
Iφ(A) ̸= Iφ(B) for some φ.

As in other completeness proofs, the model we will construct is a “ground term model”, i.e. a

B.2. THE SEMANTICS OF THE SIMPLY TYPED λ-CALCULUS 215

model where the carrier (the frame in our case) consists of ground terms. But in the λ-calculus,
we have to do more work, as we have a non-trivial built-in equality theory; we will construct the
“ground term model” from sets of normal forms. So we first fix some notations for them.

Normal Forms in the simply typed λ-calculus

� Definition B.2.11. We call a term A ∈ wffT (ΣT ,VT) a β normal form iff there
is no B ∈ wffT (ΣT ,VT) with A→βB.

We call N a β normal form of A, iff N is a β-normal form and A→βN.

We denote the set of β-normal forms with wffT (ΣT ,VT)
y
βη

.

The η- and βη normal forms are definied analogously.

� We have just proved that β, η, and βη-reduction are terminating and confluent, so
we have

� Corollary B.2.12 (Normal Forms). Every A ∈ wffT (ΣT ,VT) has a unique β
normal form (βη, long βη normal form), which we denote by A↓β (A↓βη A↓βηl).

Michael Kohlhase: LBS 330 2025-10-07

The term frames will be a quotient spaces over the equality relations of the λ-calculus, so we
introduce this construction generally.

Frames and Quotients

� Definition B.2.13. Let D be a frame and ∼ a typed equivalence relation on D,
then we call ∼ a congruence on D, iff f ∼ f ′ and g ∼ g′ imply f(g) ∼ f ′(g′).

� Definition B.2.14. We call a congruence ∼ functional, iff for all f, g ∈ Dα→β the
fact that f(a) ∼ g(a) holds for all a ∈ Dα implies that f ∼ g.

� Example B.2.15. =β (=βη) is a (functional) congruence on cwffT (ΣT) by defini-
tion.

� Theorem B.2.16. Let DT be a ΣT -frame and ∼ a functional congruence on D,
then the quotient space D/ ∼ is a ΣT -frame.

� Proof:

1. D/ ∼= {[f]∼ | f ∈ D}, define [f]∼([a]∼):=[f(a)]∼.

2. This only depends on equivalence classes: Let f ′ ∈ [f]∼ and a′ ∈ [a]∼.

3. Then [f(a)]∼ = [f ′(a)]∼ = [f ′(a′)]∼ = [f(a′)]∼

4. To see that we have [f]∼ = [g]∼, iff f ∼ g, iff f(a) = g(a) since ∼ is functional.

5. This is the case iff [f(a)]∼ = [g(a)]∼, iff [f]∼([a]∼) = [g]∼([a]∼) for all a ∈ Dα
and thus for all [a]∼ ∈ D/ ∼.

□

Michael Kohlhase: LBS 331 2025-10-07

To apply this result, we have to establish that =βη-equality is a functional congruence.
We first establish =βη as a functional congruence on wffT (ΣT ,VT) and then specialize this result
to show that is is also functional on cwffT (ΣT) by a grounding argument.

216 APPENDIX B. PROPERTIES OF THE SIMPLY TYPED λ CALCULUS

βη-Equivalence as a Functional Congruence

� Lemma B.2.17. βη-equality is a functional congruence on wffT (ΣT ,VT).

� Proof: Let A C =βη B C for all C and X ∈ Vγ \ (free(A) ∪ free(B)).

1. then (in particular) A X =βη B X, and

2. λX.A X =βη λX.B X, since βη-equality acts on subterms.

3. By definition we have A=ηλXα.A X=βηλXα.B X=ηB.

□

� Definition B.2.18. We call an injective substitution σ : free(C)→ΣT a grounding
substitution for C ∈ wffT (ΣT ,VT), iff no σ(X) occurs in C.

� Observation: They always exist, since all Σα are infinite and free(C) is finite.

� Theorem B.2.19. βη-equality is a functional congruence on cwffT (ΣT).

� Proof: We use ???

1. Let A,B ∈ cwff(α→β)(ΣT), such that A ̸=βη B.

2. As βη is functional on wffT (ΣT ,VT), there must be a C with A C ̸=βη B C.

3. Now let C′ := σ(C), for a grounding substitution σ.

4. Any βη conversion sequence for A C′ ̸=βη B C′ induces one for A C ̸=βη B C.

5. Thus we have shown that A ̸=βη B entails A C′ ̸=βη B C′.

□

Michael Kohlhase: LBS 332 2025-10-07

Note that: the result for cwffT (ΣT) is sharp. For instance, if ΣT = {cι}, then λX.X ̸=βη λX.c,
but (λX.X) c=βηc=βη(λX.c) c, as {c} = cwffι(ΣT) (it is a relatively simple exercise to extend
this problem to more than one constant). The problem here is that we do not have a constant
dι that would help distinguish the two functions. In wffT (ΣT ,VT) we could always have used a
variable.

This completes the preparation and we can define the notion of a term algebra, i.e. a ΣT -
algebra whose frame is made of =βη-normal λ-terms.

A Herbrand Model for Λ→

� Definition B.2.20. We call Tβη := ⟨cwffT (ΣT)
y
βη
, Iβη⟩ the Σ term algebra, if

Iβη = IdΣT .

� The name “term algebra” in the previous definition is justified by the following

� Theorem B.2.21. Tβη is a ΣT -algebra

� Proof: We use the work we did above

1. Note that cwffT (ΣT)
y
βη

= cwffT (ΣT)/=βη and thus a ΣT -frame by ??? and
???.

B.3. SIMPLY TYPED λ-CALCULUS VIA INFERENCE SYSTEMS 217

2. So we only have to show that the value function Iβη = IdΣT is total.

3. Let φ be an assignment into cwffT (ΣT)
y
βη

.

4. Note that σ := φ|free(A) is a substitution, since free(A) is finite.

5. A simple induction on the structure of A shows that Iβηφ(A) = (σ(A))
y
βη

.

6. So the value function is total since substitution application is.

□

Michael Kohlhase: LBS 333 2025-10-07

And as always, once we have a term model, showing completeness is a rather simple exercise.
We can see that αβη-equality is complete for the class of ΣT -algebras, i.e. if the equation A = B
is valid, then A =αβη B. Thus αβη equivalence fully characterizes equality in the class of all
ΣT -algebras.

Completetness of αβη-Equality

� Theorem B.2.22. A = B is valid in the class of ΣT -algebras, iff A =αβη B.

� Proof: For A, B closed this is a simple consequence of the fact that Tβη is a
ΣT -algebra.

1. If A = B is valid in all ΣT -algebras, it must be in Tβη and in particular A↓βη =

Iβη(A) = Iβη(B) = B↓βη and therefore A =αβη B.

If the equation has free variables, then the argument is more subtle.

2. Let σ be a grounding substitution for A and B and φ the induced variable
assignment.

3. Thus Iβηφ(A) = Iβηφ(B) is the βη-normal form of σ(A) and σ(B).

4. Since φ is a structure preserving homomorphism on well-formed formulae, φ−1(Iβηφ(A))
is the is the βη-normal form of both A and B and thus A =αβη B.

□

Michael Kohlhase: LBS 334 2025-10-07

??? and ??? complete our study of the semantics of the simply-typed λ-calculus by showing that
it is an adequate logical system for modeling (the equality) of functions and their applications.

B.3 Simply Typed λ-Calculus via Inference Systems
Now, we will look at the simply typed λ-calculus again, but this time, we will present it as an

inference system for well-typedness jugdments. This more modern way of developing type theories
is known to scale better to new concepts.

Simply Typed λ-Calculus as an Inference System: Terms

� Idea: Develop the λ-calculus in two steps

� A context-free grammar for “raw λ-terms” (for the structure)

218 APPENDIX B. PROPERTIES OF THE SIMPLY TYPED λ CALCULUS

� Identify the well-typed λ-terms in that (cook them until well-typed)

� Definition B.3.1. A grammar for the raw terms of the simply typed λ-calculus:

α ::= c | α→ α
Σ ::= · | Σ,[c : type] | Σ,[c:α]
Γ ::= · | Γ,[x:α]
A ::= c |X |A1 A2 | λXα.A

� Then: Define all the operations that are possible at the “raw terms level”, e.g.
realize that signatures and contexts are partial functions to types.

Michael Kohlhase: LBS 335 2025-10-07

Simply Typed λ-Calculus as an Inference System: Judgments

� Definition B.3.2. Judgments make statements about complex properties of the
syntactic entities defined by the grammar.

� Definition B.3.3. Judgments for the simply typed λ-calculus

⊢ Σ : sig Σ is a well-formed signature
Σ ⊢ α : type α is a well-formed type given the type assumptions in Σ
Σ ⊢ Γ : ctx Γ is a well-formed context given the type assumptions in Σ
Γ⊢ΣA : α A has type α given the type assumptions in Σ and Γ

Michael Kohlhase: LBS 336 2025-10-07

Simply Typed λ-Calculus as an Inference System: Rules

� Definition B.3.4. A ∈ wffα(ΣT ,VT), iff Γ⊢ΣA : α derivable in

Σ ⊢ Γ : ctx Γ(X) = α

Γ⊢ΣX : α
wff var

Σ ⊢ Γ : ctx Σ(c) = α

Γ⊢Σc : α
wff const

Γ⊢ΣA : β → α Γ⊢ΣB : β

Γ⊢ΣA B : α
wff app

Γ, [X:β]⊢ΣA : α

Γ⊢ΣλXβ .A : β → α
wff abs

� Oops: this looks surprisingly like a natural deduction calculus. (; Curry-Howard
isomorphism)

� To be complete, we need rules for well-formed signatures, types and contexts

� Definition B.3.5.

B.3. SIMPLY TYPED λ-CALCULUS VIA INFERENCE SYSTEMS 219

⊢ · : sig
sig empty

⊢ Σ : sig

⊢ (Σ,[α : type]) : sig
sig type

⊢ Σ : sig Σ ⊢ α : type

⊢ (Σ,[c:α]) : sig
sig const

Σ ⊢ α : type Σ ⊢ β : type

Σ ⊢ (α→ β) : type
typ fn

⊢ Σ : sig Σ(α) = type

Σ ⊢ α : type
typ start

⊢ Σ : sig

Σ ⊢ · : ctx
ctx empty

Σ ⊢ Γ : ctx Σ ⊢ α : type

Σ ⊢ (Γ,[X:α]) : ctx
ctx var

Michael Kohlhase: LBS 337 2025-10-07

Example: A Well-Formed Signature

� Let Σ := [α : type],[f :α→ α → α], then Σ is a well-formed signature, since we
have derivations A and B

⊢ · : sig
sig type

⊢ [α : type] : sig

A [α : type](α) = type
typ start

[α : type] ⊢ α : type

and with these we can construct the derivation C

A

B
B B

typ fn
[α : type] ⊢ (α→ α) : type

typ fn
[α : type] ⊢ (α→ α→ α) : type

sig const
⊢ Σ : sig

Michael Kohlhase: LBS 338 2025-10-07

Example: A Well-Formed λ-Term

� using Σ from above, we can show that Γ := [X:α] is a well-formed context:

C
ctx empty

Σ ⊢ · : ctx

C Σ(α) = type
typ start

Σ ⊢ α : type
ctx var

Σ ⊢ Γ : ctx

We call this derivation G and use it to show that

� λXα.f X X is well-typed and has type α→ α in Σ. This is witnessed by the type

220 APPENDIX B. PROPERTIES OF THE SIMPLY TYPED λ CALCULUS

derivation

C Σ(f) = α→ α→ α
wff const

Γ⊢Σf : α→ α→ α

G
wff var

Γ⊢ΣX : α
wff app

Γ⊢Σf X : α→ α

G
wff var

Γ⊢ΣX : α
wff app

Γ⊢Σf X X : α
wff abs

·⊢ΣλXα.f X X : α→ α

Michael Kohlhase: LBS 339 2025-10-07

βη-Equality by Inference Rules: One-Step Reduction

� Definition B.3.6. One-step Reduction (+ ∈ {α, β, η})

Γ,[X:β]⊢ΣA : α Γ⊢ΣB : β

Γ ⊢Σ (λX.A) B→1
β [B/X](A)

wffβ top

Γ⊢ΣA : β → α X ̸∈ dom(Γ)

Γ ⊢Σ λX.A X→1
ηA

wffη top

Γ ⊢Σ A→1
+B Γ⊢ΣA C : α

Γ ⊢Σ A C→1
+B C

tr appfn

Γ ⊢Σ A→1
+B Γ⊢ΣC A : α

Γ ⊢Σ C A→1
+C B

tr apparg

Γ,[X:α] ⊢Σ A→1
+B

Γ ⊢Σ λX.A→1
+λX.B

tr abs

Michael Kohlhase: LBS 340 2025-10-07

βη-Equality by Inference Rules: Multi-Step Reduction

� Definition B.3.7. Multi-Step-Reduction (+ ∈ {α, β, η})

Γ ⊢Σ A→1
+B

Γ ⊢Σ A→∗
+B

msstart
Γ⊢ΣA : α

Γ ⊢Σ A→∗
+A

msref

Γ ⊢Σ A→∗
+B Γ ⊢Σ B→∗

+C

Γ ⊢Σ A→∗
+C

ms trans

� Congruence Relation
Γ ⊢Σ A→∗

+B

Γ ⊢Σ A =+ B
eq start

Γ ⊢Σ A =+ B

Γ ⊢Σ B =+ A
eq sym

Γ ⊢Σ A =+ B Γ ⊢Σ B =+ C

Γ ⊢Σ A =+ C
eq trans

Michael Kohlhase: LBS 341 2025-10-07

B.3. SIMPLY TYPED λ-CALCULUS VIA INFERENCE SYSTEMS 221

Type Computation: Manage Types Algorithmically

� Questions:

type check: Is Γ⊢ΣA : α?

type inference: are there Γ, α, such that Γ⊢ΣA : α?

type reconstruction the above without type annota-
tions at bound variables?

� prenex fragment makes problems decidable (see Curry-Howard isomorphism)

� Algorithm (Hindley & Milner):

� invert inference rules

� first-order unification,

� universal generalization, minimization

Michael Kohlhase: LBS 342 2025-10-07

Example Computation
rule tree constraint

[X:α]

Γ, [X:β]

Γ, [X:β]⊢ΣX : α Γ⊢ΣλX.X : β → α
Γ⊢ΣλX.X(λZ.W) : α

[W :δ] ∈ Γ, [Z:γ]

Γ, [Z:γ]⊢ΣW : δ

Γ⊢ΣλZ.W : β

α = β,
[W :δ] ∈ Γ,
β = γ → δ

� unification: α = β = γ → δ,

� minimization: Γ = [W :δ]

� Solution: [W :δ]]⊢ΣλX.X(λZ.W) : ∀γ.γ → δ

Michael Kohlhase: LBS 343 2025-10-07

222 APPENDIX B. PROPERTIES OF THE SIMPLY TYPED λ CALCULUS

Appendix C

Higher-Order Dynamics

In this chapter we will develop a typed λ calculus that extend DRT-like dynamic logics like the
simply typed λ calculus extends first-order logic.

C.1 Introduction
We start out our development of a Montague-like compositional treatment of dynamic semantics
construction by naively “adding λs” to DRT and deriving requirements from that.

Making Montague Semantics Dynamic

� Example C.1.1. “A man sleeps.”

a_man = λQ.(
U
man(U)

⊗Q(U))

sleep = λX.
sleeps(X)

Application and β-reduction:

a_man_sleep = a_man(sleep)

→β
U
man(U)

⊗
sleeps(U)

→τ

U
man(U)
sleeps(U)

Michael Kohlhase: LBS 344 2025-10-07

At the sentence level we just disregard that we have no idea how to interpret λ-abstractions over
DRSes and just proceed as in the static (first-order) case. Somewhat surprisingly, this works
rather well, so we just continue at the discourse level.

Coherent Text (Capturing Discourse Referents)

� Example C.1.2. “A man1 sleeps. He1 snores.”

223

224 APPENDIX C. HIGHER-ORDER DYNAMICS

(λPQ.(P ⊗Q)) a_man_sleep he_snore

→=β

λQ. Uman(U)
sleeps(U)

⊗Q


snores(U)

→τ

U
man(U)
sleeps(U)

⊗
snores(U)

→τ

U
man(U)
sleeps(U)
snores(U)

� Example C.1.3 (Linear notation).(λQ.(δU.man(U) ∧ sleeps(U) ∧Q(U))) he_snore −→βτ

δU.man(U) ∧ sleeps(U) ∧ snores(U)

Michael Kohlhase: LBS 345 2025-10-07

Here we have our first surprise: the second =β reduction seems to capture the discourse referent
U : intuitively it is “free” in δU.snores(U) and after =β reduction it is under the influence of a
δ declaration. In the λ-calculus tradition variable capture is the great taboo, whereas in our
example, referent capture seems to drive/enable anaphor resolution.
Considerations like the ones above have driven the development of many logical systems attempting
the compositional treatment of dynamic logics. All were more or less severely flawed.

Compositional Discourse Representation Theories

� Many logical systems

� Compositional DRT (Zeevat, 1989 [Zee89])

� Dynamic Montague Grammar (DMG Gronendijk/Stokhof 1990 [GS90])

� CDRT (Muskens 1993/96 [Mus96])

� λ-DRT (Kohlhase/Kuschert/Pinkal 1995 [KKP96])

� TLS (van Eijck 1996 [Eij97])

� Problem: Difficult to tell the differences or make predictions!

� One Answer: Dynamic λ-calculus [Kohlhase&Kuschert&Müller’96,98]

� Augment type system by information on referents: a meta-logic that models
different forms of accessibility as a parameter.

Michael Kohlhase: LBS 346 2025-10-07

Here we will look at a system that makes the referent capture the central mechanism using an
elaborate type system to describe referent visibility and thus accessibility. This generalization
allows to understand and model the interplay of λ-bound variables and discourse referents without
being distracted by linguistic modeling questions (which are relegated to giving appropriate types
to the operators).
Another strong motivation for a higher-order treatment of dynamic logics is that maybe the
computational semantic analysis methods based on higher-order features (mostly higher-order
unification) can be analogously transferred to the dynamic setting.

C.2. SETTING UP HIGHER-ORDER DYNAMICS 225

Motivation for the Future

� Higher-Order Unification Analyses of

� Ellipsis (Dalrymple/Shieber/Pereira 1991 [DSP91])

� Focus (Pulman 1994 [Pul94], Gardent/Kohlhase 1996 [GK96])

� Corrections (Gardent/Kohlhase/van Leusen 1996 [GKL96])

� Underspecification (Pinkal 1995 [Pin96])

� are based on static type theory [Mon74]

� Higher-Order Dynamic Unification needed for dynamic variants of these

Michael Kohlhase: LBS 347 2025-10-07

To set the stage for the development of a higher-order system for dynamic logic, let us remind
ourselves of the setup of the static system

Recap: Simple Type Theory

� Structural layer: simply typed λ-calculus

� types, well-formed formulae, λ-abstraction

� Theory: αβη-conversion, Operational: Higher-Order Unification

� Logical layer: higher-order logic

� special types ι, o

� logical constants ∧o→o→o,⇒,∀, . . . with fixed semantics

� Theory: logical theory, Operational: higher-order theorem proving

� Goal: Develop two-layered approach to compositional discourse theories.

� Application: Dynamic Higher-Order Unification (DHOU) with structural layer
only.

Michael Kohlhase: LBS 348 2025-10-07

This separation of concerns: structural properties of functions vs. a propositional reasoning
level has been very influential in modeling static, intra-sentential properties of natural language,
therefore we want to have a similar system for dynamic logics as well. We will use this as a guiding
intuition below.

C.2 Setting Up Higher-Order Dynamics
To understand what primitives a language for higher-order dynamics should provide, we will

analyze one of the attempts – λ-DRT – to higher-order dynamics
λ−DRT is a relatively straightforward (and naive) attempt to “sprinkle λs over DRT” and give
that a semantics. This is mirrored in the type system, which had a primitive types for DRSes and
“intensions” (mappings from states to objects). To make this work we had to introduce “intensional
closure”, a semantic device akin to type raising that had been in the folklore for some time. We
will not go into intensions and closure here, since this did not lead to a solution and refer the
reader to [KKP96] and the references there.

226 APPENDIX C. HIGHER-ORDER DYNAMICS

Recap: λ−DRT (simplified)

� Definition C.2.1 (Types). ι (individuals), o (conditions), t (DRSes), α → β
(functions), s→ α (intensions)

� Syntax: if Uι a referent and A an expression of type o, then δUι.A a DRS (type
t).

� Definition C.2.2. =αβη-reduction for the λ-calculus part, and further:

� (δX .A⊗ δY.B)→τ (δX ∪ Y.A ∧B)

� ∨∧A→µ A

� Observations:

� complex interaction of λ and δ

� alphabetical change for δ-bound “variables” (referents)?

� need intensional closure for =βη-reduction to be correct

Michael Kohlhase: LBS 349 2025-10-07

In hindsight, the contribution of λ−DRT was less the proposed semantics – this never quite worked
beyond correctness of =αβη equality – but the logical questions about types, reductions, and the
role of states it raised, and which led to further investigations.
We will now look at the general framework of “a λ-calculus with discourse referents and δ-binding”
from a logic-first perspective and try to answer the questions this raises. The questions of modeling
dynamic phenomena of natural language take a back seat for the moment.

Finding the right Dynamic Primitives

� Need to understand merge reduction: (→τ -reduction)

� Why do we have (δU.A⊗B)→τ (δU.A ∧B)

� but not ((δU.A)⇒⇒B)→τ (δU.A⇒⇒B)

� and Referent Scoping: (ρ-equivalence)

� When are the meanings of C [(δU.A)]π and C [(δV .[V /U](A))]π equal?

� OK for C = ¬¬ and C = λP .(δW.A⇒⇒P)
� Not for C = λP .P and C = λP .P ∧ ¬¬P .

� Observation: There must be a difference of ⊗,¬¬, λP .(δW.A⇒⇒P), λP .P ∧¬¬P
wrt. the behavior on referents

� Intuitively: g ⊗, λP .(δW.A⇒⇒P) transport U , while ¬¬, λP .P ∧ ¬¬P do not

� Idea: Model this in the types (rest of the talk/lecture)

Michael Kohlhase: LBS 350 2025-10-07

A particularly interesting phenomenon is that of referent capture as the motor or anaphor resolu-
tion, which have already encountered Example 9.1.6.

C.2. SETTING UP HIGHER-ORDER DYNAMICS 227

Variable/Referent Capture

� Example C.2.3 (Anaphor Resolution Revisited). Let us revisit Example 9.1.6

“A student1 owns a book2.
He1 reads it2”

anaphor resolution simplify

X,Y
student(X)
book(Y)

⊗
R,S
read(R
S)

X,Y
student(X)
book(Y)

⊗

R,S
read(R
S)
R = X
S = Y

X, Y
student(X)
book(Y)
read(X
Y)

� Example C.2.4. (λP .
U
(¬¬P))

r(U)
(functor has dynamic binding power)

� Definition C.2.5. We call this referent capture.

� Note: Referent capture

� is the motor of dynamicity

� is a structural property

� Idea: Code the information for referent capture in the type system.

� Definition C.2.6. The dynamic λ calculus extends Λ→ with discourse referent and
a type system that encodes information about their dynamic status.

Michael Kohlhase: LBS 351 2025-10-07

In Example C.2.3 we see that with the act of anaphor resolution, the discourse referents induced by
the anaphoric pronouns get placed under the influence of the dynamic binding in the first DRS –
which is OK from an accessibility point of view, but from a λ-calculus perspective this constitutes
a capturing event, since the binding relation changes. This becomes especially obvious, if we look
at the simplified form, where the discourse referents introduced in the translation of the pronouns
have been eliminated altogether.
In Example C.2.4 we see that a capturing situation can occur even more explicitly, if we allow λs
– and =αβη equality – in the logic. We have to deal with this, and again, we choose to model it
in the type system.
With the intuitions sharpened by the examples above, we will now start to design a type system
that can take information about referents into account. In particular we are interested in the
capturing behavior identified above. Therefore we introduce information about the “capturing
status” of discourse referents in the respective expressions into the types.

Types in DLC

� Requirements: In the types we need information about

� δ-bound referents (they do the capturing)

� free referents (they are liable to be captured)

� Definition C.2.7. New type (moded type) Γ#α where

228 APPENDIX C. HIGHER-ORDER DYNAMICS

� mode Γ = V −, U+, . . . (V is a free and U a capturing referent)

� term type α (type in the old sense)

� What about functional types? (Look at example)

Michael Kohlhase: LBS 352 2025-10-07

To see how our type system for DLC fares in real life, we see whether we can capture the referent
dynamics of λ−DRT. Maybe this also tells us what we still need to improve.

Rational Reconstruction of λ−DRT (First Version)

� Two-level approach

� model structural properties (e.g. accessibility relation) in the types

� leave logical properties (e.g. negation flips truth values) for later

� Types: ι, o, α→ β only. Γ#o is a DRS.

� Idea: Use mode constructors ↓ and ⊎ to describe the accessibility relation.

� Definition C.2.8. ↓ closes off the dynamic binding potential and makes the refer-
ents classically bound
(↓U+, V + = U◦, V ◦)

� Definition C.2.9. The prioritized union operator combines two modes by letting
+ overwrite −. (U+, V − ⊎ U−, V + = U+, V +)

� Example C.2.10 (DRT Operators). Types of DRT connectives (indexed by Γ,∆):

� ¬¬ has type Γ#o→↓Γ#o (intuitively like t→ o)

� ⊗ has type Γ#o→∆#o→ Γ ⊎∆#o (intuitively like t→ t→ t)

� ∨∨ has type Γ#o→∆#o→↓Γ ⊎↓∆#o

�⇒⇒ has type Γ#o→∆#o→↓(Γ ⊎↓∆)#o

Michael Kohlhase: LBS 353 2025-10-07

We can already see with the experiment of modeling the DRT operators that the envisioned type
system gives us a way of specifying accessibility and how the dynamic operators handle discourse
referents. So we indeed have the beginning of a structural level for higher-order dynamics, and at
the same time a meta-logic flavor, since we can specify other dynamic logics in a λ-calculus.

C.3 A Type System for Referent Dynamics
We will now take the ideas above as the basis for a type system for DLC.

The types above have the decided disadvantage that they mix mode information with information
about the order of the operators. They also need free mode variables, which turns out to be a
problem for designing the semantics. Instead, we will employ two-dimensional types, where the
mode part is a function on modes and the other a normal simple type.

Types in DLC (Final Version)

C.3. A TYPE SYSTEM FOR REFERENT DYNAMICS 229

� Problem: A type like Γ#o → Γ−#o mixes mode information with simple type
information.

� Alternative formulation: ↓#o→ o (use a mode operator for the mode part)

� Definition C.3.1. DLC types are pairs A#α, where

� A is a mode specifier, α is a simple type; A is functional, iff α is.

� Idea: Use the simply typed λ-calculus for mode specifiers

� Other connectives (new version)

� ¬¬ gets type λF .↓F#o→ o

� ⊗ gets type ⊎#o→ o→ o

� ∨∨ gets type λFG.(↓F ⊎↓G)#o→ o→ o

�⇒⇒ gets type λFG.↓(F ⊎↓G)#o→ o→ o

Michael Kohlhase: LBS 354 2025-10-07

With this idea, we can re-interpret the DRT types from Example C.2.10.

A λ-Calculus for Mode Specifiers

� Definition C.3.2. New base type µ for modes; α̃ is α with ι, o replaced by µ.

� Definition C.3.3. Mode specifiers A,B,C are simply typed λ-terms built up from
mode variables F,G, F 1, . . . and mode constants

� the empty mode ∅ of type µ

� the elementary modes U+, U− and U◦ of type µ for all referents U ∈ R
� the mode functions ·+, ·−, ↓·, +·, and −· of type µ→ µ, and

� the mode function ⊎ of type µ→ µ→ µ.

� Definition C.3.4. Theory of mode equality specifies the meaning of mode con-
stants

(e.g. (U+, V −,W− ⊎ U−, V +)→µU
+, V +,W−)

� Definition C.3.5. For each DLC type α, we define the type α̃ which is α with all
base types replaced by µ.

Michael Kohlhase: LBS 355 2025-10-07

Summary: DLC Grammar

� We summarize the setup in the following context-free grammar

230 APPENDIX C. HIGHER-ORDER DYNAMICS

α::=ι | o | α1 → α2 simple types
γ::=µ | γ1 → γ2 mode types
B::=∅ | U+ | U− | U◦ | B1,B2 | B1 ⊎ B2 | ↓B basic modes
M::=B |M1M2 | λFγ .M modes (typed via mode types γ)
τ ::=M#α DLC types
M::=U | c |M1M2 | λXτ .M | δU.M DLC terms (typed via DLC types τ)

� But not all of these raw terms can be given a meaning ; only use those that can
be shown to be well-typed. (up next)

Michael Kohlhase: LBS 356 2025-10-07

Type Inference for DLC (two dimensions)

� Definition C.3.6. The type inference system for DLC consists of the following
rules:

c ∈ Σα
A⊢Σc : α

A(X) = F#α A(F) = α̃

A⊢ΣX : F#α

U ∈ Rα,A(U) = ∅#α
A⊢ΣU : U−#α

A, [X:F#β], [F :β̃]⊢ΣA : A#α
A⊢ΣλXF#β .A : λF .A#β → α

A⊢ΣA : A#β → γ A⊢ΣB : B#β
A⊢ΣA B : A(B)#γ

A⊢ΣA : A#α A⊢ΣA=βηµB
A⊢ΣA : B#α

A⊢ΣA : λF .A#α A⊢ΣA : µ

A⊢ΣδUβ .A : λF .(U+ ⊎ A)#α

where A is a variable context mapping variables and referents to types

Michael Kohlhase: LBS 357 2025-10-07

Example (Identity)

� We have the following type derivation for the identity.

[F :α̃], [X:F#α]⊢ΣX : F#α

⊢ΣλXF#α.X : λF
α̃
.F#α→ α

� (λXF#α→α.X) (λXG#α.X) has type

A⊢Σ(λFµ→µ.F) (λGµ.G)#α→ α=βηµλGµ.G#α→ α

� Theorem C.3.7 (Principal Types). For any given variable context A and for-
mula A, there is at most one type A#α (up to mode βηµ-equality) such that
A⊢ΣA : A#α is derivable in DLC.

C.3. A TYPE SYSTEM FOR REFERENT DYNAMICS 231

Michael Kohlhase: LBS 358 2025-10-07

Linguistic Example

� Example C.3.8. “No man sleeps.”
Assume U ∈ Rι and man, sleeps ∈ RλF.F#ι→o.

...

A⊢Σman(U) : U−#o

A⊢ΣδU.man(U) : U+#o

...

A⊢Σsleeps(U) : U−#o

A⊢ΣδU.man(U) ∧ sleeps(U) : U+ ⊎ U−#o

A⊢Σ¬¬(δU.man(U) ∧ sleeps(U)) : ↓(U+ ⊎ U−)#o

A⊢Σ¬¬(δU.man(U) ∧ sleeps(U)) : U◦#o

Michael Kohlhase: LBS 359 2025-10-07

A Further (Tricky) Example: A¬¬ := λX.X ∧ ¬¬X

� a referent declaration in the argument of A¬¬ will be copied, and the two occurrences
will have a different status
A¬¬ (δU.man(U))→β(δU.man(U) ∧ ¬¬(δU.man(U)))

� assuming A(X) = F#o gives

A⊢ΣX : F#o

A⊢ΣX : F#o

A⊢Σ¬¬X : ↓F#o

A⊢ΣX ∧ ¬¬X : F ⊎↓F#o

A⊢ΣλX.X ∧ ¬¬X : λF .(F ⊎↓F)#o→ o

� thus, assuming A⊢ΣδU.man(U) : U+#o, we derive

A⊢ΣA¬¬ (δU.man(U)) : U+, U◦#o

Michael Kohlhase: LBS 360 2025-10-07

A Further Example: Generalized Coordination

� We may define a generalised “and ”:
λR1. . .Rn.λX1. . .Xm.(R1 X1 . . . Xm ⊗ . . .⊗Rn X1 . . . Xm)
with type

232 APPENDIX C. HIGHER-ORDER DYNAMICS

λF 1. . .Fn.(F 1 ⊎ . . . ⊎ Fn)#βm → o → βm → o

� thus from john := λP .(δU.U = j ⊗ P (U))
and mary := λP .(δV .V = m⊗ P (V))

� we get johnandmary = λP .(δU.U = j ⊗ P (U)⊗ δV .V = m⊗ P (V))

� combine this with “own a donkey ”:

λX.(δW.donkey(W)⊗own(W,X)⊗δU.U = j⊗δW.donkey(W)⊗own(W,U)⊗δV .V = m⊗δW.donkey(W)⊗own(W,V))

Michael Kohlhase: LBS 361 2025-10-07

C.4 Modeling Higher-Order Dynamics

Discourse Variants =δ

� Definition C.4.1. We capture “referent renaming” in an equality judgment =δ.

� The order and multiplicity of introduction of discourse referents is irrelevant

� δU.δV .A=δδV .δU.A

� δU.δU.A=δδU.A.

� This is needed to model DRT, where discourse referents appear in sets.

� functional and dynamic binding can be interchanged

� λX.(δU.A)=δδU.λX.A

� This is useful for convenient =η-long-forms (DHOU).

Michael Kohlhase: LBS 362 2025-10-07

Renaming of Discourse Referents?

� Consider A := (λXY .Y) (δU.U)

� δU cannot have any effect on the environment, since it can be deleted by =β-
reduction.

� A has type λF .F#α→ α (U does not occur in it).

� Idea: Allow to rename U in A, if “A is independent of U ”

� Similar effect for B := ¬¬(δU.man(U)), this should equal ¬¬(δV .man(V))

� Definition C.4.2. ρ renaming is induced by the following inference rule:

V ∈ Rβ fresh Uβ ̸∈ DP (A)

A=ρCVU (A)

Where CVU (A) is the result of replacing all referents U by V .

C.4. MODELING HIGHER-ORDER DYNAMICS 233

Michael Kohlhase: LBS 363 2025-10-07

Dynamic Potential

� The binding effect of an expression A can be read off its mode specifier A

� A mode specifier A may be simplified by βηµ-reduction (where µ-equality reflects
the semantics of the mode functions, e.g. U+ ⊎ U− =µ U

+).

� Definition C.4.3. The dynamic binding potential of A:
DP (A) := {U |U+ ∈ occ(A′) or U− ∈ occ(A′)}, where A′ is the βηµ-normal
form of A.

� Definition C.4.4. If U ̸∈ DP (A), then U is called independent of A.

Michael Kohlhase: LBS 364 2025-10-07

Some Examples for Dynamic Potential

� Example C.4.5.

Formula Mode specifier DP
δU.P U+ {U}
λP .(δU.P) λF .(U+ ⊎ F) {U}
¬¬(δU.man(U)) U◦ ∅
λP .¬¬(δU.P) λF .↓(U+), F {U}
λX.U λF .U− {U}
(λX.X) U (λF .F) U− {U}
λP .man(U) ∧ P λF .(F ⊎ U−) {U}
λP .P λF .F ∅
λXY .Y λFG.G ∅
(λXY .Y) (δU.U) λG.G ∅
λP .P (λQ.¬¬(δU.Q)) (λR.(δU.R)) {U}

Michael Kohlhase: LBS 365 2025-10-07

Reductions

� βη-reduction:
(λX.A) B→β [B/X](A)

and
X ̸∈ free(A)

λX.A X→ηA

� Definition C.4.6. Dynamic Reduction:
A⊢ΣA : A#α U+ ∈ Trans(A)

A (δU.B)→τ (δU.A B)

� Example C.4.7. Merge-Reduction (δU.A⊗ δV .B)→τ (δU.δV .(A⊗B))

� Intuition: The merge operator is just dynamic conjunction!

� Observation: Sequential merge ;; of type
→
⊎ #o→ o→ o does not transport V in

the second argument.

234 APPENDIX C. HIGHER-ORDER DYNAMICS

Michael Kohlhase: LBS 366 2025-10-07

C.5 Direct Semantics for Dynamic λ Calculus

Higher-Order Dynamic Semantics (Static Model)

� Frame D = {Dα |α ∈ T }

� Dµ is the set of modes (mappings from variables to signs)

� Do is the set of truth values {T,F}.
� Dι is an arbitrary universe of individuals.

� Dα→β ⊆ Dα→Dβ

� Interpretation I of constants, assignment φ of variables.

� Iφ(c) = I(c), for a constant c

� Iφ(X) = φ(X), for a variable X

� Iφ(A B) = Iφ(A)(Iφ(B)))

� Iφ(λX.B)(a) = Iφ,[a/X](B).

Michael Kohlhase: LBS 367 2025-10-07

Dynamic Semantics (Frames)

� Two approaches: “Dynamic” (Amsterdam) and “Static” (Saarbrücken)

� Will show that they are equivalent (later)

� Use the static semantics for DLC now.

� What is the denotation of a dynamic object?

� “Static Semantics”: essentially a set of states (considers only type o)
(equivalently function from states to Do: characteristic function)

� generalize this to arbitrary base type:
DΓ
α = BΓ→Dα, where BΓ is the set of Γ-states

� Γ-states: well-typed referent assignments s : Dom±(Γ)→D
s|∆ is s coerced into a ∆-state.

� For expressions of functional type: DΦ
(α→β) =

⋃
Ψ∈D

α̃

DΨ
α →D

Φ(Ψ)
β

Michael Kohlhase: LBS 368 2025-10-07

Dynamic Semantics (Evaluation)

� Standard Tool: Intensionalization (guards variables by delaying evaluation of
current state)

C.6. DYNAMIC λ CALCULUS OUTSIDE LINGUISTICS 235

� Idea: Ideal for semantics of variable capture

� guard all referents

� make this part of the semantics (thus implicit in syntax)

� Definition C.5.1. Evaluation of variables and referents

� If X ∈ V, then Iφ(X) = φ(X)

� If U ∈ R, then Iφ(U) = Λs ∈ BU− .s(U) (implicit intensionalization!)

� Iφ(δU.BB#β) = Λs ∈ B(Iφ(Bµ)⊎U+).Iφ(B)s|Iφ(Bµ).
� Iφ(B C) = Iφ(B)(Iφ(C)).

� Iφ(λXγ .B) = ΛΦa ∈ DΦ
γ .Iφ,[a/X](B)

� Referent names crucial in dynamic objects

� Well actually: Iφ(δU.B(ΛFn.Bµ#β)
) = Λan.Λs ∈ B(Iφ(Bµ)⊎U+).Iφ(B)s|Iφ(Bµ).

Michael Kohlhase: LBS 369 2025-10-07

Metatheoretic Results

� Theorem C.5.2 (Normalization). βητ -Reduction is terminating and confluent
(modulo αρδ).

� Theorem C.5.3 (Substitution is type-preserving). If X ̸∈ dom(A), then
A, [X:F#β]⊢ΣA : A#α and A⊢ΣB : B#β imply

A⊢Σ[B/X](A) : [B/F](A)#α

� Theorem C.5.4 (Subject Reduction). If A⊢ΣA : A#α and A⊢ΣA=βητB, then
A⊢ΣB : A#α.

� Theorem C.5.5 (Soundness of Reduction). If A⊢ΣA=αβδητρB, then Iφ(A) =
Iφ(B).

� If Iφ(A) = Iφ(B), then A⊢ΣA=αβδητρB (just needs formalisation of equality of
logical operators.)

Michael Kohlhase: LBS 370 2025-10-07

C.6 Dynamic λ Calculus outside Linguistics

Conclusion

� Basis for compositional discourse theories

� two-layered approach (only use theorem proving where necessary)

� functional and dynamic information can be captured structurally

236 APPENDIX C. HIGHER-ORDER DYNAMICS

� comprehensive equality theory (interaction of func. and dyn. part)

� In particular

� new dynamic primitives (explain others)

� simple semantics (compared to other systems)

� This leads to

� dynamification of existing linguistic analyses (DHOU)

� rigorous comparison of different dynamic systems (Meta-Logic)

Michael Kohlhase: LBS 371 2025-10-07

Future Directions

� Generalize DLC to a true mode calculus:

� turn δ into a logical constant δU : (use type declaration and application)

A⊢ΣA : A#α
A⊢ΣδUβ .A : U+ ⊎ Aµ#α

⊢ΣδU : λF .(U+ ⊎ F)#α→ α A⊢ΣA : A#α
A⊢ΣδU A : U+ ⊎ Aµ#α

� this allows for more than one δ-like operator

� Better still (?) go for a dependent type discipline (implement in LF?)

� δ of type λUF .(U+ ⊎ F)#α→ α yields δ(U)=̂δU

Michael Kohlhase: LBS 372 2025-10-07

Use DLC as a model for Programming

� Remember dynamic binding in Lisp? ((lambda (F) (let ((U 1)) (F 1)))(lambda (X) (+ X U))→
2 ((lambda (F) (let ((U 0)) (F 1)))(lambda (X) (+ X U))→ 1

� Ever wanted to determine the \$PRINTERenvironment variable in a Java applet?
(sorry forbidden, since the semantics of dynamic binding are unclear.)

� DLC is ideal for that (about time too!)

� Example C.6.1 (LISP). give letU the type λF .F ⇑·◦U , where (A, U−)⇑·◦U= A, U◦.
(no need for U+ in Lisp)

� Example C.6.2 (Java). If you want to keep your $EDITOR variable private
(pirated?) only allow applets of type A#α, where $EDITOR ̸∈ DP (A).

� It is going to be a lot of fun!

Michael Kohlhase: LBS 373 2025-10-07

Appendix D

Model Existence and Completeness
for Modal Logic

Abstract Consistency for ML0

� Definition D.0.1. If Φ is a set of propositions, then

2−(Φ):={A |2A ∈ Φ}

� Definition D.0.2. A collection ∇ of sets of ML0-formulae is called propositional
modal abstract consistency class for ML0, it if is closed under subsets and for all
Φ ∈ ∇ we have

∇c) P ̸∈ Φ or ¬P ̸∈ Φ for P ∈ V0
...

∇∧) ¬(A ∨B) ∈ Φ implies Φ ∪ {¬A,¬B} ∈ ∇
∇2) 3A ∈ Φ implies 2−(Φ)∗A ∈ ∇

Michael Kohlhase: LBS 374 2025-10-07

∇-Hintikka Set

� Definition D.0.3. If ∇ is an propositional modal abstract consistency class, then
we call H a ∇-Hintikka set, if H maximal in ∇, i.e. for all A with H∗A ∈ ∇ we
already have A ∈ H.

� Theorem D.0.4 (Extension Theorem). If ∇ is an abstract consistency class for
ML and Φ ∈ ∇, then there is a ∇-Hintikka set H with Φ ⊆ H.

Proof:

1. chose an enumeration A1,A2. . . of wff0(V0)

2. construct sequence of sets Hi with H0 := Φ and
� Hn+1 := Hn, if Hn∗An ̸∈ ∇
� Hn+1 := Hn∗An, if Hn∗An ∈ ∇

237

238 APPENDIX D. MODEL EXISTENCE AND COMPLETENESS FOR MODAL LOGIC

3. All Hi ∈ ∇, so choose H :=
⋃
i∈NHi

4. Ψ ⊆ H finite implies that there is a j ∈ N with Ψ ⊆ Hj , so Ψ ∈ ∇ as ∇ closed
under subsets.

5. H ∈ ∇ since ∇ compact.

6. let H∗B ∈ ∇, then there is a j ∈ N with B = Aj

7. B ∈ Hj+1 ⊆ H, so H ∇-maximal.

□

Michael Kohlhase: LBS 375 2025-10-07

Canonical ∇-Model

� Definition D.0.5. If ∇ is an abstract consistency class, for ML0, then we call
M∇ := ⟨W∇,R∇, φ∇⟩ the canonical ∇ model, iff

� W∇ = {H |H ∈ ∇maximal}
� R∇(v, w) iff 2−(v) ⊆ w
� φ(P ,w) = T iff P ∈ w

� Lemma D.0.6. If w ∈ W∇ and 3A ∈ w, then there is a w′ ∈ W∇ withR∇(w,w′)
and A ∈ w′.

� Proof: Let 3A ∈ w

1. thus 2−(w)∗A ∈ ∇

2. by the extension theorem there is a w′ ∈ W∇ with 2−(w)∗A ⊆ w′

3. so 2−(w) ⊆ w′ and thus R∇(w,w′).

4. on the other and we have A ∈ w′.

□

Michael Kohlhase: LBS 376 2025-10-07

Model existence for ML0

� Lemma D.0.7. If w ∈ W∇, then Iwφ∇
(A) = T iff A ∈ w.

� Proof: Induction on the structure of A

1. If A is a variable
then we get the assertion by the definition of φ∇.

3. If A = ¬B and A ∈ w
then B ̸∈ w, thus Iwφ∇(B) = F, and thus Iwφ∇(A) = T.

5. A = B ∧C
analog

7. A = 2B
7.1. Let A ∈ w and wR∇w

′

239

7.2. thus 2−(w) ⊆ w′ and thus B ∈ w′

7.3. so (IH) Iw′

φ∇
(B) = T for any such w′.

7.4. and finally Iwφ∇
(A) = T

9. A = 3B

9.1. Let A ̸∈ w
9.2. so ¬A = 3¬B /∈ w
9.3. and thus ¬B ∈ w′ for some wR∇w

′ by (Lemma1)
9.4. so B ∈ w′ and thus Iw′

φ∇
(B) = T by IH and finally Iwφ∇

(A) = T.

□

� Theorem D.0.8 (Model existence). If ∇ is an abstract consistency class for ML0

and Φ ∈ ∇, then there is a world w ∈ W∇ withM∇ |=w Φ.

� Proof:

1. there is a ∇-Hintikka set H = w with w ∈ W∇ and Φ ⊆ H.

2. by Lemma 2 we have Iwφ (A) = T for all A ∈ Φ.

□

Michael Kohlhase: LBS 377 2025-10-07

Completeness

� Theorem D.0.9. K-consistency is an propositional modal abstract consistency
class for ML0

� Proof: Let 3A ∈ Φ

1. To show: 2−(Φ)∗A is K-consistent if Φ is K-consistent

2. converse: Φ is K-inconsistent if 2−(Φ)∗A K-inconsistent.

3. There is a finite subset Ψ ⊆ 2−(Φ) with Ψ⊢K(¬A)

4. (2Ψ)⊢K(2¬A) (distributivity of 2)

5. Φ⊢K(2¬A) = ¬(3A) since 2Ψ ⊆ Φ

6. thus Φ is K-inconsistent.

□

� Corollary D.0.10. K is complete wrt. Kripke models

Michael Kohlhase: LBS 378 2025-10-07

Further Completeness Theorems

� Theorem D.0.11. T-consistency is an abstract consistency class for ML0 and RT
is reflexive.

� Proof: Let A ∈ 2−(w)

240 APPENDIX D. MODEL EXISTENCE AND COMPLETENESS FOR MODAL LOGIC

1. then 2A ∈ w by definition

2. with T (2A⇒A) and Modus Ponens we have A ∈ w.

3. Thus 2−(w) ⊆ w and wRTw for all w ∈ WT.

□

� Theorem D.0.12. S4-consistency is an abstract consistency class for ML0 and RS4
is transitive.

� Proof: Let w1RS4w2RS4w3 and 2A ∈ w.

1. by S4 (2A⇒22A) and Modus Ponens we have 22A ∈ w1.

2. and thus 2A ∈ w2 = 2−(w1) and A ∈ w3 = 2−(w2).

3. Thus 2−(w1) ⊆ w3 and w1RS4w3.

□

� Corollary D.0.13. T (S4) is complete wrt. reflexive (reflexive transitive) Kripke-
models

Michael Kohlhase: LBS 379 2025-10-07

	0.1 Preface
	0.1.1 This Document
	0.1.2 Acknowledgments

	0.2 Recorded Syllabus
	1 Preliminaries
	1.1 Administrative Ground Rules
	1.2 Getting Most out of LBS
	1.3 Learning Resources for LBS

	2 An Introduction to Natural Language Semantics
	2.1 Natural Language and its Meaning
	2.2 Natural Language Understanding as Engineering
	2.3 Looking at Natural Language
	2.4 A Taste of Language Philosophy
	2.4.1 Epistemology: The Philosphy of Science
	2.4.2 Meaning Theories

	2.5 Computational Semantics as a Natural Science

	I English as a Formal Language: The Method of Fragments
	3 Logic as a Tool for Modeling NL Semantics
	3.1 The Method of Fragments
	3.2 What is Logic?
	3.3 Using Logic to Model Meaning of Natural Language

	4 Fragment 1
	4.1 The First Fragment: Setting up the Basics
	4.1.1 Natural Language Syntax (Fragment 1)
	4.1.2 Predicate Logic without Quantifiers
	4.1.3 Natural Language Semantics via Translation

	4.2 Testing Truth Conditions via Inference
	4.3 Summary & Evaluation

	5 Fragment 2: Pronouns and World Knowledge Semantic/Pragmatic Analysis
	5.1 Fragment 2: Pronouns and Anaphora
	5.2 Inference with World Knowledge and Free Variables – A Case Study
	5.2.1 Pragmatics via Model Generation Tableaux?
	5.2.2 Case Study: Peter loves Fido, even though he sometimes bites him
	5.2.3 The Computational Role of Ambiguities

	5.3 Tableaux and Model Generation
	5.3.1 Tableau Branches and Herbrand Models
	5.3.2 Using Model Generation for Interpretation
	5.3.3 Adding Equality to PLNQ for Fragment 1

	5.4 Summary & Evaluation

	6 Fragment 3: Complex Verb Phrases
	6.1 Fragment 3 (Handling Verb Phrases)
	6.2 Dealing with Functions in Logic and Language
	6.3 Simply Typed -Calculus
	6.4 A Logical System for Fragment 3
	6.5 Translation for Fragment 3
	6.6 Summary & Evaluation
	6.6.1 Overview/Summary so far

	7 Fragment 4: Noun Phrases and Quantification
	7.1 Fragment 4
	7.2 A Target Logic for Fragment 4
	7.2.1 Quantifiers and Equality in Higher-Order Logic
	7.2.2 A Logic for Definite Descriptions

	7.3 Translation for Fragment 4
	7.4 Inference for Fragment 4
	7.4.1 Model Generation with Quantifiers
	7.4.2 Model Generation with Definite Descriptions
	7.4.3 Model Generation with Unique Name Assumptions

	7.5 Quantifier Scope Ambiguity and Underspecification
	7.5.1 Scope Ambiguity and Quantifying-In
	7.5.2 Dealing with Quantifier Scope Ambiguity: Cooper Storage
	7.5.3 Underspecification
	7.5.3.1 Unplugging Predicate Logic
	7.5.3.2 PLH a first-order logic with holes
	7.5.3.3 Plugging and Chugging

	7.6 Summary & Evaluation

	8 Davidsonian Semantics: Treating Verb Modifiers

	II Topics in Semantics
	9 Dynamic Approaches to NL Semantics
	9.1 Discourse Representation Theory
	9.2 Dynamic Model Generation

	10 Propositional Attitudes and Modalities
	10.1 Introduction
	10.2 Semantics for Modal Logics
	10.3 A Multiplicity of Modalities Multimodal Logic
	10.4 Dynamic Logic for Imperative Programs

	11 Some Issues in the Semantics of Tense
	12 Quantifier Scope Ambiguity and Underspecification
	12.1 Scope Ambiguity and Quantifying-In
	12.2 Type Raising for non-quantificational NPs
	12.3 Dealing with Quantifier Scope Ambiguity: Cooper Storage
	12.4 Underspecification
	12.4.1 Unplugging Predicate Logic
	12.4.2 PLH a first-order logic with holes
	12.4.3 Plugging and Chugging

	13 Higher-Order Unification and NL Semantics Reconstruction
	13.1 Introduction
	13.2 Higher-Order Unification
	13.2.1 Higher-Order Unifiers
	13.2.2 Higher-Order Unification Transformations
	13.2.3 Properties of Higher-Order Unification
	13.2.4 Pre-Unification
	13.2.5 Applications of Higher-Order Unification

	13.3 Linguistic Applications of Higher-Order Unification
	13.4 Sorted Higher-Order Unification

	14 Conclusion
	14.1 A Recap in Diagrams
	14.2 Where to From Here

	III Excursions
	A ALeA – AI-Supported Learning
	B Properties of the Simply Typed Calculus
	B.1 Computational Properties of -Calculus
	B.1.1 Termination of -reduction
	B.1.2 Confluence of Conversion

	B.2 The Semantics of the Simply Typed -Calculus
	B.2.1 Soundness of the Simply Typed -Calculus
	B.2.2 Completeness of -Equality

	B.3 Simply Typed -Calculus via Inference Systems

	C Higher-Order Dynamics
	C.1 Introduction
	C.2 Setting Up Higher-Order Dynamics
	C.3 A Type System for Referent Dynamics
	C.4 Modeling Higher-Order Dynamics
	C.5 Direct Semantics for Dynamic Calculus
	C.6 Dynamic Calculus outside Linguistics

	D Model Existence and Completeness for Modal Logic

