
Logic-Based Natural Language Processing
WS 2023/24

Lecture Notes

Michael Kohlhase

Professur für Wissensrepräsentation und -verarbeitung
Informatik, FAU Erlangen-Nürnberg

Michael.Kohlhase@FAU.de

2024-01-20

Michael.Kohlhase@FAU.de

0.1. PREFACE i

0.1 Preface

0.1.1 This Document
This document contains the course notes for the course “Logic-Based Natural Language Process-
ing” (Logik-Basierte Sprachverarbeitung) held at FAU Erlangen-Nürnberg in the Winter Semesters
2017/18 ff.

This course is a one-semester introductory course that provides an overview over logic-based
semantics of natural language. It follows the “method of fragments” introduced by Richard Mon-
tague, and builds a sequence of fragments of English with increasing coverage and a sequence of
logics that serve as target representation formats. The course can be seen as both a course on
semantics and as a course on applied logics.
As this course is predominantly about modeling natural language and not about the theoretical

aspects of the logics themselves, we give the discussion about these as a “suggested readings”
section part in ??. This material can safely be skipped (thus it is in the appendix), but contains
the missing parts of the “bridge” from logical forms to truth conditions and textual entailment.
Contents: The document mixes the slides presented in class with comments of the instructor to
give students a more complete background reference.
Caveat: This document is made available for the students of this course only. It is still an
early draft, and will develop over the course of the course. It will be developed further in coming
academic years.
Licensing:

This document is licensed under a Creative Commons license that requires attribution, forbids
commercial use, and allows derivative works as long as these are licensed under the same license.
Knowledge Representation Experiment: This document is also an experiment in knowl-
edge representation. Under the hood, it uses the STEX package [Koh08; sTeX], a TEX/LATEX
extension for semantic markup, which allows to export the contents into active documents that
adapt to the reader and can be instrumented with services based on the explicitly represented
meaning of the documents.
Comments: Comments and extensions are always welcome, please send them to the author.

0.1.2 Acknowledgments
Materials: Some of the material in this course is based on a course “Formal Semantics of Natural
Language” held by the author jointly with Prof. Mandy Simons at Carnegie Mellon University in
2001.
ComSem Students: The course is based on a series of courses “Computational Natural Language
Semantics” held at Jacobs University Bremen and shares a lot of material with these. The following
students have submitted corrections and suggestions to this and earlier versions of the notes:
Bastian Laubner, Ceorgi Chulkov, Stefan Anca, Elena Digor, Xu He, and Frederik Schäfer.
LBS Students: The following students have submitted corrections and suggestions to this and
earlier versions of the notes: Maximilian Lattka, Frederik Schaefer, Navid Roux.

ii

0.2 Recorded Syllabus
The recorded syllabus – a record the progress of the course in the WS 2023/24 – is in the course

page in the ALeA system at https://courses.voll-ki.fau.de/course-home/ai-1. The table
of contents in the LBS notes at https://courses.voll-ki.fau.de indicates the material covered
to date in yellow.

For the topics planned for this course, see ??.

https://courses.voll-ki.fau.de/course-home/ai-1
https://courses.voll-ki.fau.de

Contents

0.1 Preface . i
0.1.1 This Document . i
0.1.2 Acknowledgments . i

0.2 Recorded Syllabus . ii

1 Administrativa 3

2 An Introduction to Natural Language Semantics 7
2.1 Natural Language and its Meaning . 7
2.2 Natural Language Understanding as Engineering 13
2.3 Looking at Natural Language . 16
2.4 A Taste of Language Philosophy . 19

2.4.1 Epistemology: The Philosphy of Science . 20
2.4.2 Meaning Theories . 22

2.5 Computational Semantics as a Natural Science . 27

3 Symbolic Systems for Semantics 29
3.1 The Grammatical Framework (GF) . 29

3.1.1 Recap: (Context-Free) Grammars . 29
3.1.2 A first GF Grammar . 31
3.1.3 Inflection and Case in GF . 34
3.1.4 Engineering Resource Grammars in GF . 38

3.2 MMT: A Modular Framework for Representing Logics and Domains 41
3.2.1 Propositional Logic in MMT: A first Example 41
3.2.2 General Functionality of MMT . 47

3.3 ELPI a Higher-Order Logic Programming Language 50

I English as a Formal Language: The Method of Fragments 53

4 Logic as a Tool for Modeling NL Semantics 55
4.1 The Method of Fragments . 55
4.2 What is Logic? . 57
4.3 Using Logic to Model Meaning of Natural Language 58

5 Fragment 1 61
5.1 The First Fragment: Setting up the Basics . 61

5.1.1 Natural Language Syntax (Fragment 1) . 61
5.1.2 Predicate Logic without Quantifiers . 63
5.1.3 Natural Language Semantics via Translation 65

5.2 Testing Truth Conditions via Inference . 67

iii

iv CONTENTS

6 Fragment 1: The Grammatical Logical Framework 69
6.1 Implementing Fragment 1 in GF . 69
6.2 Implementing Fragment1 in GF and MMT . 69
6.3 Implementing Natural Deduction in MMT . 74

7 Adding Context: Pronouns and World Knowledge 77
7.1 Fragment 2: Pronouns and Anaphora . 77
7.2 A Tableau Calculus for PLNQ with Free Variables 79

7.2.1 Calculi for Automated Theorem Proving: Analytical Tableaux 79
7.2.1.1 Analytical Tableaux . 80
7.2.1.2 Practical Enhancements for Tableaux 84

7.2.2 A Tableau Calculus for PLNQ with Free Variables 86
7.2.3 Case Study: Peter loves Fido, even though he sometimes bites him 88
7.2.4 The Computational Role of Ambiguities . 89

7.3 Tableaux and Model Generation . 91
7.3.1 Tableau Branches and Herbrand Models . 91
7.3.2 Using Model Generation for Interpretation 92
7.3.3 Adding Equality to PLNQ or Fragment 1 96

8 Pronouns and World Knowledge in First-Order Logic 99
8.1 First-Order Logic . 99

8.1.1 First-Order Logic: Syntax and Semantics 100
8.1.2 First-Order Substitutions . 104
8.1.3 Alpha-Renaming for First-Order Logic . 107

8.2 First-Order Inference with Tableaux . 108
8.2.1 Free Variable Tableaux . 108

8.3 Model Generation with Quantifiers . 112

9 Fragment 3: Complex Verb Phrases 117
9.1 Fragment 3 (Handling Verb Phrases) . 117
9.2 Dealing with Functions in Logic and Language . 118
9.3 Translation for Fragment 3 . 121
9.4 Simply Typed λ-Calculus . 123

10 Fragment 4: Noun Phrases and Quantification 127
10.1 Overview/Summary so far . 127
10.2 Fragment 4 . 128
10.3 Inference for Fragment 4 . 131

10.3.1 Quantifiers and Equality in Higher-Order Logic 131
10.3.2 Model Generation with Definite Descriptions 134
10.3.3 Model Generation with Unique Name Assumptions 136

10.4 Davidsonian Semantics: Treating Verb Modifiers 138

11 Davidsonian Semantics: Treating Verb Modifiers 141

II Topics in Semantics 143

12 Dynamic Approaches to NL Semantics 145
12.1 Discourse Representation Theory . 145
12.2 Dynamic Model Generation . 153

CONTENTS v

13 Propositional Attitudes and Modalities 159
13.1 Introduction . 159
13.2 Semantics for Modal Logics . 162
13.3 A Multiplicity of Modalities ; Multimodal Logic 166
13.4 Dynamic Logic for Imperative Programs . 167

14 Some Issues in the Semantics of Tense 173

15 Conclusion 179
15.1 A Recap in Diagrams . 179
15.2 Where to From Here . 181

III Excursions 191

A Properties of Propositional Tableaux 195
A.1 Soundness and Termination of Tableaux . 195
A.2 Abstract Consistency and Model Existence . 197
A.3 A Completeness Proof for Propositional Tableaux 202

B First-Order Unification 205

C Soundness and Completeness of First-Order Tableaux 211

D Properties of the Simply Typed λ Calculus 215
D.1 Computational Properties of λ-Calculus . 215

D.1.1 Termination of β-reduction . 215
D.1.2 Confluence of βη Conversion . 219

D.2 The Semantics of the Simply Typed λ-Calculus . 222
D.2.1 Soundness of the Simply Typed λ-Calculus 222
D.2.2 Completeness of αβη-Equality . 224

D.3 Simply Typed λ-Calculus via Inference Systems . 226

E Higher-Order Dynamics 231
E.1 Introduction . 231
E.2 Setting Up Higher-Order Dynamics . 233
E.3 A Type System for Referent Dynamics . 236
E.4 Modeling Higher-Order Dynamics . 240
E.5 Direct Semantics for Dynamic λ Calculus . 241
E.6 Dynamic λ Calculus outside Linguistics . 243

F Model Existence and Completeness for Modal Logic 245

vi CONTENTS

CONTENTS 1

Elevator Pitch for LBS

� Mission: In this course we will

� explore how to model the meaning of natural language via transformation into
logical systems

� use logical inference there to unravel the missing pieces; the information that is
not linguistically realized, but is conveyed anyways.

� Warning: This course is only for you if you like logic, you are going to get lots
of it and we are going to build our own logics, usually a new one every week or
fortnight.

� Approach: We will do so in a hands-on fashion using the GLIF system, for-
malizing NL grammars, semantics construction, and inference systems in meta-
grammatical/logical systems: GF and MMT.

� Mixing Theory and Practice: Half of the lectures will be classroom-style teaching
of theory and half will be joint formalization.

Michael Kohlhase: LBS 1 2024-01-20

2 CONTENTS

Chapter 1

Administrativa

We will now go through the ground rules for the course. This is a kind of a social con-
tract between the instructor and the students. Both have to keep their side of the deal to make
the acquaintance with research in natural language semantics as efficient and painless as possi-
ble.

Prerequisites

� I will presuppose: the mandatory CS courses from Semester 1-4, in particular:
(or equivalent)

� Course “Grundlagen der Logik in der Informatik” (GLOIN)

� Course “Algorithms and data structures”

� The following will help: (we recap if necessary)

� AI-1 (symbolic AI)

� Ontologies in the semantic web (INF8)

� Key Ingredients: Motivation, interest, curiosity, hard work (LBS is non-trivial)

� You can do this course if you want! (and we will help you)

Michael Kohlhase: LBS 2 2024-01-20

LBS Lab (Dogfooding our own Techniques)

� General Plan: We use the thursday slot to get our hands dirty with actual GLIF
representations.

� Responsible: Frederik Schaefer (jan.frederik.schaefer@fau.de) Room: 11.137.

� Goal: Reinforce what was taught on tuesdays and have some fun.

� Homeworks will be small individual modeling/formalization problems (but take
time to solve)

Group submission if and only if explicitly permitted.

3

jan.frederik.schaefer@fau.de

4 CHAPTER 1. ADMINISTRATIVA

� Admin: To keep things running smoothly

� Homeworks will be posted on course forum. (discussed in the lab)

� Submission via StudOn (details ; course forum)

� Homework Discipline:

� start early! (many assignments need more than one evening’s work)

� Don’t start by sitting at a blank screen!

� Humans will be trying to understand the text/code/math when grading it.

Michael Kohlhase: LBS 3 2024-01-20

Now we come to a topic that is always interesting to the students: the grading scheme.

Grades

� Academic Assessment: so far: two parts (Portfolio Assessment)

� (20-30 min oral) or 90 min written exam at the end of the semester (50%)

� results of the LBS lab (50%)

This might not work with 50+ students, need to see how the course develops!

� If you have a suggestions, I will probably be happy with that as well.

Michael Kohlhase: LBS 4 2024-01-20

Actually, I do not really care what the grading scheme is, and so it is open to discussion. For all
I care we would not have grades at all; but students need them to graduate. Generally, I would
like to spend as little time as possible on the grades admin, to the extent that I can give grades
without going to jail or blushing too much.

Textbook, Handouts and Information, Forums, Videos

� (No) Textbook: Course notes at http://kwarc.info/teaching/LBS

� I mostly prepare them as we go along (semantically preloaded ; research
resource)

� Please e-mail me any errors/shortcomings you notice. (improve for group)

� For GLIF: Frederik’s Master’s Thesis [Sch20]

� Classical Semantics/Pragmatics: (in the FAU Library)

� Primary reference for LBS: [CKG09] (in the FAU Library)

� also: [HHS07; Bir13; Rie10; ZS13; Sta14; Sae03; Por04; Kea11; Jac83; Cru11;
Ari10]

� Computational Semantics: [BB05; EU10]

� StudOn Forum: https://www.studon.fau.de/crs4625835.html for

� announcements, homeworks (my view on the forum)

http://kwarc.info/teaching/LBS
https://www.studon.fau.de/crs4625835.html

5

� questions, discussion among your fellow students (your forum too, use it!)

� Course Videos: at https://fau.tv/course/3647

Michael Kohlhase: LBS 5 2024-01-20

Do I need to attend the lectures

� Attendance is not mandatory for the LBS lecture (official version)

� There are two ways of learning: (both are OK, your mileage may vary)

� Approach B: Read a book/papers (here: course notes)

� Approach I: come to the lectures, be involved, interrupt me whenever you have
a question.

The only advantage of I over B is that books/papers do not answer questions

� Approach S: come to the lectures and sleep does not work!

� The closer you get to research, the more we need to discuss!

Michael Kohlhase: LBS 6 2024-01-20

Next we come to a special project that is going on in parallel to teaching the course. I am using the
course materials as a research object as well. This gives you an additional resource, but may affect
the shape of the coures materials (which now serve double purpose). Of course I can use all the
help on the research project I can get, so please give me feedback, report errors and shortcomings,
and suggest improvements.

Experiment: Learning Support with KWARC Technologies

� My research area: Deep representation formats for (mathematical) knowledge

� One Application: Learning support systems(represent knowledge to transport it)

� Experiment: Start with this course (Drink my own medicine)

1. Re-represent the slide materials in OMDoc (Open Mathematical Documents)

2. Feed it into the ALeA system (http://courses.voll-ki.fau.de)

3. Try it on you all (to get feedback from you)

� Research tasks

� help me complete the material on the slides (what is missing/would help?)

� I need to remember “what I say”, examples on the board. (take notes)

� Benefits for you (so why should you help?)

� you will be mentioned in the acknowledgements (for all that is worth)

� you will help build better course materials (think of next-year’s students)

Michael Kohlhase: LBS 7 2024-01-20

https://fau.tv/course/3647
http://courses.voll-ki.fau.de

6 CHAPTER 1. ADMINISTRATIVA

VoLL-KI Portal at https://courses.voll-ki.fau.de

� Portal for ALeA Courses: https://courses.voll-ki.fau.de

� AI-1 in ALeA: https://courses.voll-ki.fau.de/course-home/ai-1

� All details for the course.

� recorded syllabus (keep track of material covered in course)

� syllabus of the last semester (for over/preview)

� ALeA Status: The ALeA system is deployed at FAU for over 1000 students
taking six courses

� (some) students use the system actively (our logs tell us)

� reviews are mostly positive/enthusiastic (error reports pour in)

Michael Kohlhase: LBS 8 2024-01-20

The VoLL-KI course portal (and the AI-1) home page is the central entry point for working with
the ALeA system. You can get to all the components of the system, including two presentations
of the course contents (notes- and slides-centric ones), the flash cards, the localized forum, and
the quiz dashboard.

https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de/course-home/ai-1

Chapter 2

An Introduction to Natural
Language Semantics

In this chapter we will introduce the topic of this course and situate it in the larger field of
natural language understanding. But before we do that, let us briefly step back and marvel at the
wonders of natural language, perhaps one of the most human of abilities.

Fascination of (Natural) Language

� Definition 2.0.1. A natural language is any form of spoken or signed means
communication that has evolved naturally in humans through use and repetition
without conscious planning or premeditation.

� In other words: the language you use all day long, e.g. English, German, . . .

� Why Should we care about natural language?:

� Even more so than thinking, language is a skill that only humans have.

� It is a miracle that we can express complex thoughts in a sentence in a matter
of seconds.

� It is no less miraculous that a child can learn tens of thousands of words and a
complex grammar in a matter of a few years.

Michael Kohlhase: LBS 9 2024-01-20

With this in mind, we will embark on the intellectual journey of building artificial systems that
can process (and possibly understand) natural language as well.

2.1 Natural Language and its Meaning
Before we embark on the journey into understanding the meaning of natural language, let us get

an overview over what the concept of “semantics” or “meaning” means in various disciplines.

What is Natural Language Semantics? A Difficult Question!

� Question: What is “Natural Language Semantics”?

� Definition 2.1.1 (Generic Answer). Semantics is the study of reference, meaning,

7

8 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

or truth.

� Definition 2.1.2. A sign is anything that communicates a meaning that is not the
sign itself to the interpreter of the sign. The meaning can be intentional, as when
a word is uttered with a specific meaning, or unintentional, as when a symptom is
taken as a sign of a particular medical condition

Meaning is a relationship between signs and the objects they intend, express, or
signify.

� Definition 2.1.3. Reference is a relationship between objects in which one object
(the name) designates, or acts as a means by which to refer to – i.e. to connect to
or link to – another object (the referent).

� Definition 2.1.4. Truth is the property of being in accord with reality in a/the
mind-independent world. An object ascribed truth is called true, iff it is, and false,
if it is not.

� Definition 2.1.5. For natural language semantics, the signs are usually utterances
and names are usually phrases.

� That is all very abstract and general, can we make this more concrete?

� Different (academic) disciplines find different concretizations.

Michael Kohlhase: LBS 10 2024-01-20

What is (NL) Semantics? Answers from various Disciplines!

� Observation: Different (academic) disciplines specialize the notion of semantics
(of natural language) in different ways.

� Philosophy: has a long history of trying to answer it, e.g.

� Platon ; cave allegory, Aristotle ; Syllogisms.

� Frege/Russell ; sense vs. referent. (Michael Kohlhase vs. Odysseus)

� Linguistics/Language Philosophy: We need semantics e.g. in translation
Der Geist ist willig aber das Fleisch ist schwach! vs.
Der Schnaps ist gut, aber der Braten ist verkocht! (meaning counts)

� Psychology/Cognition: Semantics =̂ “what is in our brains” (; mental models)

� Mathematics has driven much of modern logic in the quest for foundations.

� Logic as “foundation of mathematics” solved as far as possible

� In daily practice syntax and semantics are not differentiated (much).

� Logic@AI/CS tries to define meaning and compute with them. (applied
semantics)

� makes syntax explicit in a formal language (formulae, sentences)

� defines truth/validity by mapping sentences into “world” (interpretation)

2.1. NATURAL LANGUAGE AND ITS MEANING 9

� gives rules of truth-preserving reasoning (inference)

Michael Kohlhase: LBS 11 2024-01-20

A good probe into the issues involved in natural language understanding is to look at translations
between natural language utterances – a task that arguably involves understanding the utterances
first.

Meaning of Natural Language; e.g. Machine Translation

� Idea: Machine Translation is very simple! (we have good lexica)

� Example 2.1.6. Peter liebt Maria. ; Peter loves Mary.

� this only works for simple examples!

� Example 2.1.7. Wirf der Kuh das Heu über den Zaun. ̸;Throw the cow the
hay over the fence. (differing grammar; Google Translate)

� Example 2.1.8. Grammar is not the only problem

� Der Geist ist willig, aber das Fleisch ist schwach!

� Der Schnaps ist gut, aber der Braten ist verkocht!

� Observation 2.1.9. We have to understand the meaning for high-quality transla-
tion!

Michael Kohlhase: LBS 12 2024-01-20

If it is indeed the meaning of natural language, we should look further into how the form of the
utterances and their meaning interact.

Language and Information

� Observation: Humans use words (sentences, texts) in natural languages to rep-
resent and communicate information.

� But: What really counts is not the words themselves, but the meaning information
they carry.

� Example 2.1.10 (Word Meaning).

Newspaper ;

� For questions/answers, it would be very useful to find out what words (sentences/-
texts) mean.

� Definition 2.1.11. Interpretation of natural language utterances: three problems

https://goo.gl/4Wgqw5

10 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

schema abstraction ambiguity composition

language
utterance

semantic
intepretation

Michael Kohlhase: LBS 13 2024-01-20

Let us support the last claim a couple of initial examples. We will come back to these phenomena
again and again over the course of the course and study them in detail.

Language and Information (Examples)

� Example 2.1.12 (Abstraction).

Car and automobile have the same meaning

� Example 2.1.13 (Ambiguity).

A bank can be a financial institution or a geographical feature

� Example 2.1.14 (Composition).

Every student sleeps ; ∀x.student(x) ⇒ sleep(x)

Michael Kohlhase: LBS 14 2024-01-20

But there are other phenomena that we need to take into account when compute the meaning
of NL utterances.

Context Contributes to the Meaning of NL Utterances

� Observation: Not all information conveyed is linguistically realized in an utterance.

� Example 2.1.15. The lecture begins at 11:00 am. What lecture? Today?

� Definition 2.1.16. We call a piece i of information linguistically realized in an
utterance U , iff, we can trace i to a fragment of U .

� Definition 2.1.17 (Possible Mechanism). Inferring the missing pieces from the
context and world knowledge:

2.1. NATURAL LANGUAGE AND ITS MEANING 11

Utterance Meaning
relevant

information
of utterance

Grammar

Lexicon

Inference

World knowledge

We call this process pragmatic analysis.

Michael Kohlhase: LBS 15 2024-01-20

We will look at another example, that shows that the situation with pragmatic analysis is even
more complex than we thought. Understanding this is one of the prime objectives of the LBS
lecture.

Context Contributes to the Meaning of NL Utterances

� Example 2.1.18. It starts at eleven. What starts?

� Before we can resolve the time, we need to resolve the anaphor it.

� Possible Mechanism: More Inference!

Utterance
semantic
potential

utterance-
specific
meaning

relevant
information
of utterance

Grammar

Lexicon

Inference

World/Context Knowledge

; Pragmatic analysis is quite complex! (prime topic of LBS)

Michael Kohlhase: LBS 16 2024-01-20

Example 2.1.18 is also a very good example for the claim Observation 2.1.9 that even for high-
quality (machine) translation we need semantics. We end this very high-level introduction with
a caveat.

Semantics is not a Cure-It-All!

How many animals of each species did Moses take onto the ark?

12 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

� Actually, it was Noah (But you understood the question anyways)

Michael Kohlhase: LBS 17 2024-01-20

But Semantics works in some cases

� The only thing that currently really helps is a restricted domain:

� I. e. a restricted vocabulary and world model.

� Demo:

DBPedia http://dbpedia.org/snorql/
Query: Soccer players, who are born in a country with more than 10 million in-
habitants, who played as goalkeeper for a club that has a stadium with more than
30.000 seats and the club country is different from the birth country

Michael Kohlhase: LBS 18 2024-01-20

But Semantics works in some cases

� Answer:

(is computed by DBPedia from a SPARQL query)

http://dbpedia.org/snorql/
https://goo.gl/2i3ng1

2.2. NATURAL LANGUAGE UNDERSTANDING AS ENGINEERING 13

Michael Kohlhase: LBS 19 2024-01-20

Even if we can get a perfect grasp of the semanticss (aka. meanings) of NL utterances, their
structure and context dependency – we will try this in this lecture, but of course fail, since the
issues are much too involved and complex for just one lecture – then we still cannot account for
all the human mind does with language. But there is hope, for limited and well-understood
domains, we can to amazing things. This is what this course tries to show, both in theory as well
as in practice.

2.2 Natural Language Understanding as Engineering

Even though this course concentrates on computational aspects of natural language semantics,
it is useful to see it in the context of the field of natural language processing.

Language Technology

� Language Assistance:

� written language: Spell/grammar/style-checking,

� spoken language: dictation systems and screen readers,

� multilingual text: machine-supported text and dialog translation, eLearning.

� Information management:

� search and classification of documents, (e.g. Google/Bing)

� information extraction, question answering. (e.g. http://ask.com)

http://ask.com

14 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

� Dialog Systems/Interfaces:

� information systems: at airport, tele-banking, e-commerce, call centers,

� dialog interfaces for computers, robots, cars. (e.g. Siri/Alexa)

� Observation: The earlier technologies largely rely on pattern matching, the
latter ones need to compute the meaning of the input utterances, e.g. for database
lookups in information systems.

Michael Kohlhase: LBS 20 2024-01-20

The general context of LBS is natural language processing (NLP), and in particular natural lan-
guage understanding (NLU). The dual side of NLU: natural language generation (NLG) requires
similar foundations, but different techniques is less relevant for the purposes of this course.

What is Natural Language Processing?

� Generally: Studying of natural languages and development of systems that can
use/generate these.

� Definition 2.2.1. Natural language processing (NLP) is an engineering field at
the intersection of computer science, artificial intelligence, and linguistics which is
concerned with the interactions between computers and human (natural) languages.
Most challenges in NLP involve:

� Natural language understanding (NLU) that is, enabling computers to derive
meaning (representations) from human or natural language input.

� Natural language generation (NLG) which aims at generating natural language
or speech from meaning representation.

� For communication with/among humans we need both NLU and NLG.

Michael Kohlhase: LBS 21 2024-01-20

What is the State of the Art In NLU?

� Two avenues of attack for the problem: knowledge-based and statistical techniques
(they are complementary)

Deep Knowledge-based Not there yet
We are here cooperation?

Shallow no-one wants this Statistical Methods
applications

Analysis ↑
vs. narrow wide

Coverage →

� We will cover foundational methods of deep processing in the course and a mixture

2.2. NATURAL LANGUAGE UNDERSTANDING AS ENGINEERING 15

of deep and shallow ones in the lab.

Michael Kohlhase: LBS 22 2024-01-20

On the last slide we have classified the two main approaches to NLU. In the last 10 years the
community has almost entirely concentrated on statistical- and machine-learning based methods,
because that has led to applications like google translate, Siri, and the likes. We will now borrow
an argument by Aarne Ranta to show that there are (still) interesting applications for knowledge-
based methods in NLP, even if they are less visible.

Environmental Niches for both Approaches to NLU

� Definition 2.2.2. There are two kinds of applications/tasks in NLU:

� Consumer tasks: consumer grade applications have tasks that must be fully
generic and wide coverage. (e.g. machine translation like Google Translate)

� Producer tasks: producer grade applications must be high-precision, but can be
domain-specific (e.g. multilingual documentation, machinery-control, program
verification, medical technology)

Precision
100% Producer Tasks

50% Consumer Tasks

103±1 Concepts 106±1 Concepts Coverage

� Example 2.2.3. Producing/managing machine manuals in multiple languages
across machine variants is a critical producer task for machine tool company.

� A producer domain I am interested in: mathematical/technical documents.

Michael Kohlhase: LBS 23 2024-01-20

An example of a producer task – indeed this is where the name comes from – is the case of a
machine tool manufacturer T , which produces digitally programmed machine tools worth multiple
million Euro and sells them into dozens of countries. Thus T must also comprehensive machine
operation manuals, a non-trivial undertaking, since no two machines are identical and they must
be translated into many languages, leading to hundreds of documents. As those manual share a
lot of semantic content, their management should be supported by NLP techniques. It is critical
that these NLP maintain a high precision, operation errors can easily lead to very costly machine
damage and loss of production. On the other hand, the domain of these manuals is quite restricted.
A machine tool has a couple of hundred components only that can be described by a comple of
thousand attribute only.

Indeed companies like T employ high-precision NLP techniques like the ones we will cover
in this course successfully; they are just not so much in the public eye as the consumer tasks.

NLP for NLU: The Waterfall Model

� Definition 2.2.4 (The NLU Waterfall). NL understanding is often modeled as a

https://translate.google.com/

16 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

simple linear process: the NLU waterfall consists of five consecutive steps:

0) speech processing: acoustic signal ; word hypothesis graph

1) syntactic processing: word sequence ; phrase structure

2) semantics construction: phrase structure ; (quasi-)logical form

3) semantic/pragmatic analysis:
(quasi-)logical form ; knowledge representation

4) problem solving: using the generated knowledge (application-specific)

� Definition 2.2.5. We call any formalization of an utterance as a logical formula
a logical form. A quasi-logical form (QLF) is a representation which can be turned
into a logical form by further computation.

� In this course: steps 1), 2) and 3).

Michael Kohlhase: LBS 24 2024-01-20

The waterfall model shown above is of course only an engineering-centric model of natural language
understanding and not to be confused with a cognitive model; i.e. an account of what happens in
human cognition. Indeed, there is a lot of evidence that this simple sequential processing model
is not adequate, but it is the simplest one to implement and can therefore serve as a background
reference to situating the processes we are interested in.

2.3 Looking at Natural Language

The next step will be to make some observations about natural language and its meaning, so that
we get an intuition of what problems we will have to overcome on the way to modeling natural
language.

Fun with Diamonds (are they real?) [Dav67b]

� Example 2.3.1. We study the truth conditions of adjectival complexes:

� This is a diamond. (|= diamond)

� This is a blue diamond. (|= diamond, |= blue)

� This is a big diamond. (|= diamond, ̸|= big)

� This is a fake diamond. (|= ¬diamond)
� This is a fake blue diamond. (|= blue?, |= diamond?)

� Mary knows that this is a diamond. (|= diamond)

� Mary believes that this is a diamond. (̸|= diamond)

Michael Kohlhase: LBS 25 2024-01-20

Logical analysis vs. conceptual analysis: These examples — mostly borrowed from David-
son:tam67 — help us to see the difference between “logical-analysis” and “conceptual-analysis”.

We observed that from This is a big diamond. we cannot conclude This is big. Now consider the
sentence Jane is a beautiful dancer. Similarly, it does not follow from this that Jane is beautiful,
but only that she dances beautifully. Now, what it is to be beautiful or to be a beautiful dancer
is a complicated matter. To say what these things are is a problem of conceptual analysis. The
job of semantics is to uncover the logical form of these sentences. Semantics should tell us that

2.3. LOOKING AT NATURAL LANGUAGE 17

the two sentences have the same logical forms; and ensure that these logical forms make the right
predictions about the entailments and truth conditions of the sentences, specifically, that they
don’t entail that the object is big or that Jane is beautiful. But our semantics should provide a
distinct logical form for sentences of the type: This is a fake diamond. From which it follows that
the thing is fake, but not that it is a diamond.

Ambiguity: The dark side of Meaning

� Definition 2.3.2. We call an utterance ambiguous, iff it has multiple meanings,
which we call readings.

� Example 2.3.3. All of the following sentences are ambiguous:

� John went to the bank. (river or financial?)

� You should have seen the bull we got from the pope. (three readings!)

� I saw her duck. (animal or action?)

� John chased the gangster in the red sports car. (three-way too!)

Michael Kohlhase: LBS 26 2024-01-20

One way to think about the examples of ambiguity on the previous slide is that they illustrate a
certain kind of indeterminacy in sentence meaning. But really what is indeterminate here is what
sentence is represented by the physical realization (the written sentence or the phonetic string).
The symbol duck just happens to be associated with two different things, the noun and the verb.
Figuring out how to interpret the sentence is a matter of deciding which item to select. Similarly
for the syntactic ambiguity represented by PP attachment. Once you, as interpreter, have selected
one of the options, the interpretation is actually fixed. (This doesn’t mean, by the way, that as
an interpreter you necessarily do select a particular one of the options, just that you can.) A
brief digression: Notice that this discussion is in part a discussion about compositionality,
and gives us an idea of what a non-compositional account of meaning could look like. The Radical
Pragmatic View is a non-compositional view: it allows the information content of a sentence to
be fixed by something that has no linguistic reflex.

To help clarify what is meant by compositionality, let me just mention a couple of other ways
in which a semantic account could fail to be compositional.

• Suppose your syntactic theory tells you that S has the structure [a[bc]] but your semantics
computes the meaning of S by first combining the meanings of a and b and then combining the
result with the meaning of c. This is non-compositional.

• Recall the difference between:

1. Jane knows that George was late.
2. Jane believes that George was late.

Sentence 1. entails that George was late; sentence 2. doesn’t. We might try to account for
this by saying that in the environment of the verb believe, a clause doesn’t mean what it
usually means, but something else instead. Then the clause that George was late is assumed
to contribute different things to the informational content of different sentences. This is a
non-compositional account.

Quantifiers, Scope and Context

� Example 2.3.4. Every man loves a woman. (Keira Knightley or his mother!)

18 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

� Example 2.3.5. Every car has a radio. (only one reading!)

� Example 2.3.6. Some student in every course sleeps in every class at least some
of the time. (how many readings?)

� Example 2.3.7. The president of the US is having an affair with an intern.
(2002 or 2000?)

� Example 2.3.8. Everyone is here. (who is everyone?)

Michael Kohlhase: LBS 27 2024-01-20

Observation: If we look at the first sentence, then we see that it has two readings:

1. there is one woman who is loved by every man.

2. for each man there is one woman whom that man loves.

These correspond to distinct situations (or possible worlds) that make the sentence true.
Observation: For the second example we only get one reading: the analogue of 2. The reason
for this lies not in the logical structure of the sentence, but in concepts involved. We interpret
the meaning of the word has as the relation “has as physical part”, which in our world carries a
certain uniqueness condition: If a is a physical part of b, then it cannot be a physical part of c,
unless b is a physical part of c or vice versa. This makes the structurally possible analogue to 1.
impossible in our world and we discard it.
Observation: In the examples above, we have seen that (in the worst case), we can have one
reading for every ordering of the quantificational phrases in the sentence. So, in the third example,
we have four of them, we would get 4! = 24 readings. It should be clear from introspection that
we (humans) do not entertain 12 readings when we understand and process this sentence. Our
models should account for such effects as well.
Context and Interpretation: It appears that the last two sentences have different informational
content on different occasions of use. Suppose I say Everyone is here. at the beginning of class.
Then I mean that everyone who is meant to be in the class is here. Suppose I say it later in the
day at a meeting; then I mean that everyone who is meant to be at the meeting is here. What
shall we say about this? Here are three different kinds of solution:

Radical Semantic View On every occasion of use, the sentence literally means that everyone
in the world is here, and so is strictly speaking false. An interpreter recognizes that the speaker
has said something false, and uses general principles to figure out what the speaker actually
meant.

Radical Pragmatic View What the semantics provides is in some sense incomplete. What the
sentence means is determined in part by the context of utterance and the speaker’s intentions.
The differences in meaning are entirely due to extra-linguistic facts which have no linguistic
reflex.

The Intermediate View The logical form of sentences with the quantifier every contains a slot
for information which is contributed by the context. So extra-linguistic information is required
to fix the meaning; but the contribution of this information is mediated by linguistic form.

More Context: Anaphora

� Example 2.3.9 (Anaphoric References).

� John is a bachelor. His wife is very nice. (Uh, what?, who?)

� John likes his dog Spiff even though he bites him sometimes. (who bites?)

2.4. A TASTE OF LANGUAGE PHILOSOPHY 19

� John likes Spiff. Peter does too. (what to does Peter do?)

� John loves his wife. Peter does too. (whom does Peter love?)

� nJohn loves golf, and Mary too. (who does what?)

� Definition 2.3.10. A word or phrase is called anaphoric (or an anaphor), if its
interpretation depends upon another phrase in context. In a narrower sense, an
anaphor refers to an earlier phrase (its antecedent), while a cataphor to a later one
(its postcedent).

The process of determining the antecedent or postcedent of an anaphoric phrase is
called anaphor resolution.

Michael Kohlhase: LBS 28 2024-01-20

Context is Personal and keeps changing

� The king of America is rich. (true or false?)

� The king of America isn’t rich. (false or true?)

� If America had a king, the king of America would be rich. (true or false!)

� The king of Buganda is rich. (Where is Buganda?)

� . . . Joe Smith. . . The CEO of Westinghouse announced budget cuts.
(CEO=J.S.!)

Michael Kohlhase: LBS 29 2024-01-20

2.4 A Taste of Language Philosophy
We will now discuss some concerns from language philosophy as they pertain to the LBS course.
Note that this discussion is only intended to give our discussion on natural language semantics
some perspective; in particular, it is in no way a complete introduction to language philosophy, or
does the discussion there full justice.
We start out our tour through language philosophy with some examples – as linguists and philoso-
phers often to – to obtain an intuition of the phenomena we want to understand.

What is the Meaning of Natural Language Utterances?

� Question: What is the meaning of the word chair?

� Answer: “the set of all chairs” (difficult to delineate, but more or less clear)

� Question: What is the meaning of the word Michael Kohlhase?

� Answer: The word refers to an object in the real world: the instructor of LBS.

� Alternatively: The singleton with that object (as for “set of chairs” above)

� Question: What about Michael Kohlhase sits on a chair?

� Towards an Answer: We have to combine the two sets, via the meaning of “sits”.

20 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

� Question: What is the meaning of the word John F. Kennedy or Odysseus?

� Problem: There are no objects in the real worlds, so the meaning of both is ∅ and
thus equal /.

Michael Kohlhase: LBS 30 2024-01-20

The main intuition we get is that meaning is more complicated than we may have thought in the
beginning.

2.4.1 Epistemology: The Philosphy of Science

We start out by looking at the foundations of epistemology, which sets the basis for modern
(empirical) science. Our presentation here is modeled on Karl Popper’s work on the theory of
science. Naturally, our account here is simplified to fit the occasion, see [Pop34; Pop59] for the
full story.

Note that like any foundational account of complex concepts like knowledge, belief, rationality,
and their justification, we have to base our philosophy on some concepts we take at face value.
Here these are natural and formal languages, worlds, situations, etc. which will stay very general
in the current foundational setting.

We will later instantiate these by more concrete notions as we go along in the LBS course.

Epistemology – Propositions & Observations

� Definition 2.4.1. Epistemology is the branch of philosophy concerned with study-
ing nature of knowledge, its justification, the rationality of belief, scientific theories
and predictions, and various related issues.

� Definition 2.4.2. A proposition is a sentence about the actual world or a class
of worlds deemed possible in a natural or formal language whose meaning can be
expressed as being true or false in a specific world.

� Definition 2.4.3. A belief is a proposition φ that an agent a holds true about a
class of worlds. This is a characterizing feature of the agent.

� Definition 2.4.4 (Belief - The JTB Account). Knowledge is justified, true belief.

� Problem: How can an agent justify a belief to obtain knowledge.

� Definition 2.4.5. Given a world w, the observed value (or just value, i.e. true
or false) of a proposition (in w) can be determined by observations, that is an
agent, the observer, either observes (experiences) that φ is true in w or conducts a
deliberate, systematic experiment that determines φ to be true in w.

Michael Kohlhase: LBS 31 2024-01-20

The crucial intuition here is that we express belief and possibly knowledge about the world using
language. But we can only access truth in the world by observation, a possibly flawed operation.
So we will never be able to ascertain the “true belief” part, and need to work all the harder on the
“justified” part.

Epistemology – Reproducibility & Phenomena

2.4. A TASTE OF LANGUAGE PHILOSOPHY 21

� Problem: Observations are sometimes unreliable, e.g. observer o perceives φ to
be true, while it is false or vice versa.

� Idea: Repeat the observations to raise the probability of getting them right.

� Definition 2.4.6. An observation φ is said to be reproducible, iff φ can observed
by different observers in different situations.

� Definition 2.4.7. A phenomenon φ is a proposition that is reproducibly observable
to be true in a class of worlds.

� Problem: We would like to verify a phenomenon φ, i.e. observe φ in all worlds,
But relevant world classes are too large to make this practically feasible.

� Definition 2.4.8. A world w is a counterexample to a proposition φ, if φ is
observably false in w.

� Intuition: The absence of counterexamples is the best we can hope for in general
for accepting phenomena.

� Intuition: The phenomena constitute the “world model” of an agent.

� Problem: It is impossible/inefficient (for an agent) to know all phenomena.

� Idea: An agent could retain only a small subset of known propositions, from this
all phenomena can be derived.

Michael Kohlhase: LBS 32 2024-01-20

We will pursue this last idea. The (small) subset of propositions from which the phenomena that
are relevant to an agent can be derived will become the beliefs of the agent. An agent will make
strive to justify these beliefs to succeed in the world. This is where our notion of knowledge comes
from.

Epistemology – Explanations & Hypotheses

� Definition 2.4.9. A proposition ψ follows from a proposition φ, iff ψ is true in any
world where φ is.

� Definition 2.4.10. An explanation of a phenomenon φ is a set Φ of propositions,
such that φ follows from Φ.

� Example 2.4.11. {φ} is a (rather useless) explanation for φ.

� Intuition: We prefer explanations Φ that explain more than just φ.

� Observation: This often coincides with explanations that are in some sense “sim-
pler” or “more elementary” than φ. (; Occam’s
razor)

� Definition 2.4.12. A proposition is called falsifiable, iff counterexamples are the-
oretically possible and the observation of a reproducible series of counterexample is
practically feasible.

� Definition 2.4.13. A hypothesis is a proposed explanation of a phenomenon that
is falsifiable.

22 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

Michael Kohlhase: LBS 33 2024-01-20

We insist that a hypothesis be falsifiable, because we cannot hope to verify it and indeed the
absence of counterexamples is the best we can hope for. But if finding counterexamples is hopeless,
it is not even worth bothering with a hypothesis.
This gives rise to a very natural strategy of accumulating propositions to represent (what could)
knowledge about the world.

Epistemology – Scientific Theories

� Knowledge Strategy: Collect hypotheses about the world, drop those with coun-
terexamples and those that can be explained themselves.

� Definition 2.4.14. A hypothesis φ can be tested in world/situation w by observing
the value of φ in w. If the value is true, then we say that the observation o supports
φ or is evidence for φ. If it is false then o falsifies φ.

� Definition 2.4.15. A (scientific) theory for a set Φ of phenomena is a set Θ of
hypotheses that

� has been tested extensively and rigorously without finding counterexamples, and

� is minimal in the sense that no subset of Θ explains Φ.

� Definition 2.4.16. We call any proposition φ that follows from a theory Φ a
prediction of Φ.

� Note: To falsify a theory Φ, it is sufficient to falsify any prediction. Any observation
of a prediction φ of Φ supports Φ.

Michael Kohlhase: LBS 34 2024-01-20

Indeed the epistemological approach described in this subsection has become the predominant one
in modern science. We will introduce both on very simple examples next.

2.4.2 Meaning Theories
If the meaning of natural language is indeed complicated, then we should really admit to that

and instead of directly answering the question, allow for multiple opinions and embark on a regime
of testing them against reality. We review some concepts from language philosophy towards that
end.
We now specialize the general epistemology for natural language the “world” we try to model
empirically.

Theories of Meaning

� The Central Question: What is the meaning of natural language?

� This is difficult to answer definitely, . . .

� But we can form meaning theory that make predictions that we can test.

� Definition 2.4.17. A semantic meaning theory assigns semantic contents to ex-
pressions of a language.

� Definition 2.4.18. A foundational meaning theory tries to explain why language

2.4. A TASTE OF LANGUAGE PHILOSOPHY 23

expressions have the meanings they have; e.g. in terms of mental states of individuals
and groups.

� It is important to keep these two notions apart.

� We will concentrate on semantic meaning theories in this course.

Michael Kohlhase: LBS 35 2024-01-20

In [Spe17], an excellent survey on meaning theories, the author likens the difference between
semantic and foundational theories of meaning to the differing tasks of an anthropologist trying
to fully document the table manner of a distant tribe (=̂ semantic meaning theory) or to explain
why the table manners evolve (=̂ foundational meaning theory).
Let us fortify our intuition about semantic meaning theories by showing one that can deal with
the meaning of names we started our subsection with.

The Meaning of Singular Terms

� Let’s see a semantic meaning theory in action.

� Definition 2.4.19. A singular term is a phrase that purports to denote or designate
a particular individual person, place, or other object.

� Example 2.4.20. Michael Kohlhase and Odysseus are singular terms.

� Definition 2.4.21. In [Fre92], Gottlob Frege distinguishes between sense (Sinn)
and referent (Bedeutung) of singular terms.

� Example 2.4.22. Even though Odysseus does not have a referent, it has a very
real sense. (but what is a sense?)

� Example 2.4.23. The ancient greeks knew the planets Hesperos (the evening star)
and Phosphoros (the morning star). These words have different senses, but the –
as we now know – same referent: the planet Venus.

� Remark: Bertrand Russell views singular terms as disguised definite descriptions
– Hesperos as “the brightest heavenly body that sometimes rises in the evening”.
Frege’s sense can often be conflated with Russell’s descriptions.(there can be more
than one definite description)

Michael Kohlhase: LBS 36 2024-01-20

We think of Frege’s conceptualization as a semantic meaning theory, since it assigns semantic
content – the pair of sense and referent, whatever they might concretely be – to singular terms.

Cresswell’s “Most Certain Principle” and Truth Conditions

� Problem: How can we test meaning theories in practice?

� Definition 2.4.24. Cresswell’s (1982) most certain principle (MCP): [Cre82]

I’m going to begin by telling you what I think is the most certain thing I think
about meaning. Perhaps it’s the only thing. It is this. If we have two sentences
A and B, and A is true and B is false, then A and B do not mean the same.

� Definition 2.4.25. The truth conditions of a sentence are the conditions of the

24 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

world under which it is true. These conditions must be such that if all obtain, the
sentence is true, and if one doesn’t obtain, the sentence is false.

� Observation: Meaning determines truth conditions and vice versa.

� In Fregean terms The sense of a sentence (a thought) determines its referent (a
truth value).

Michael Kohlhase: LBS 37 2024-01-20

a
This principle sounds trivial – and indeed it is, if you think about it – but gives rise to the

notion of truth conditions, which form the most important way of finding out about the meaning
of sentences: the determinations of truth conditions.

Truth Conditions in Practice

� Idea: To test/determine the truth conditions of a sentence S in practice, we tell
little stories that describe situations/worlds that embed S.

� Example 2.4.26. Consider the ambiguous sentence from Example 2.3.3
John chased the gangster in the red sports car.
For each of three readings there is story =̂ truth conditions

� John drives the red sports car and chases the gangster

� John chases the gangster who drives the red sports car

� John chases the gangster on the back seat of a (very very big) red sports car.

All of these stories correspond to different worlds, so by the MCP there must be at
least three readings!

Michael Kohlhase: LBS 38 2024-01-20

Compositionality

� Definition 2.4.27. A meaning theory T is compositional, iff the meaning of an
expression is a function of the meanings of its parts. We say that T obeys the
compositionality principle or simply compositionality if it is.

� To compute the meaning of an expression, look up the meanings of the basic
expressions forming it and successively compute the meanings of larger parts until
a meaning for the whole expression is found.

� Example 2.4.28 (Compositionality at work in arithmetic). To compute the
value of (x+ y)/(z · u), look up the values of x, y, z, and u, then compute x+ y
and z · u, and finally compute the value of the whole expression.

� Many philosophers and linguists hold that compositionality is at work in ordinary
language too.

Michael Kohlhase: LBS 39 2024-01-20

2.4. A TASTE OF LANGUAGE PHILOSOPHY 25

Why Compositionality is Attractive

� Compositionality gives a nice building block for a meaning theory:

� Example 2.4.29. [Expressions [are [built [from [words [that [combine [into
[[larger [and larger]] subexpressions]]]]]]]]]

� Consequence: To compute the meaning of an expression, look up the meanings
of its words and successively compute the meanings of larger parts until a meaning
for the whole expression is found.

� Compositionality explains how people can easily understand sentences they have
never heard before, even though there are an infinite number of sentences any given
person at any given time has not heard before.

Michael Kohlhase: LBS 40 2024-01-20

Compositionality and the Congruence Principle

� Given reasonable assumptions compositionality entails the

� Definition 2.4.30. The congruence principle states that whenever A is part of B
and A′ means just the same as A, replacing A by A′ in B will lead to a result that
means just the same as B.

� Example 2.4.31. Consider the following (complex) sentences:

1. blah blah blah such and such blah blah

2. blah blah blah so and so blah blah

If such and such and so and so mean the same thing, then 1. and 2. mean the
same too.

� Conversely: if 1. and 2. do not mean the same, then such and such and so and
so do not either.

Michael Kohlhase: LBS 41 2024-01-20

A Test for Synonymity

� Suppose we accept the most certain principle (difference in truth conditions implies
difference in meaning) and the congruence principle (replacing words by synonyms
results in a synonymous utterance). Then we have a diagnostics for synonymity:
Replacing utterances by synonyms preserves truth conditions, or equivalently

� Definition 2.4.32. The following is called the truth conditional synonymy test:

If replacing A by B in some sentence C does not preserve truth conditions,
then A and B are not synonymous.

� We can use this as a test for the question of individuation: when are the meanings
of two words the same – when are they synonymous?

26 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

� Example 2.4.33 (Unsurprising Results). The following sentences differ in truth
conditions.

1. The cat is on the mat.

2. The dog is on the mat.

Hence cat and dog are not synonymous. The converse holds for

1. John is a Greek.

2. John is a Hellene.

In this case there is no difference in truth conditions.

� But there might be another context that does give a difference.

Michael Kohlhase: LBS 42 2024-01-20

Contentious Cases of Synonymy Test

� Example 2.4.34 (Problem). The following sentences differ in truth values:

1. Mary believes that John is a Greek

2. Mary believes that John is a Hellene

So Greek is not synonymous to Hellene. The same holds in the classical example:

1. The Ancients knew that Hesperus was Hesperus

2. The Ancients knew that Hesperus was Phosphorus

In these cases most language users do perceive a difference in truth conditions while
some philosophers vehemently deny that the sentences under 1. could be true in
situations where the 2. sentences are false.

� It is important here of course that the context of substitution is within the scope
of a verb of propositional attitude. (maybe later!)

Michael Kohlhase: LBS 43 2024-01-20

A better Synonymy Test

� Definition 2.4.35 (Synonymy). The following is called the truth conditional
synonymy test:

If replacing A by B in some sentence C does not preserve truth conditions in
a compositional part of C, then A and B are not synonymous.

Michael Kohlhase: LBS 44 2024-01-20

Testing Truth Conditions with Logic

2.5. COMPUTATIONAL SEMANTICS AS A NATURAL SCIENCE 27

� Definition 2.4.36. A logical language model M for a natural language L consists
of a logical system ⟨L,K, |=⟩ and a function φ from L sentences to L-formulae.

� Problem: How do we find out whether M models L faithfully?

� Idea: Test truth conditions of sentences against the predictions M makes.

� Problem: The truth conditions for a sentence S in L can only be formulated and
verified by humans that speak L.

� In Practice: Truth conditions are expressed as “stories” that specify salient situa-
tions. Native speakers of L are asked to judge whether they make S true/false.

� Observation 2.4.37. A logical language model M:=⟨L,L, φ⟩ can be tested:

1. Select a sentence S and a situation W that makes S true.(according to humans)

2. Translate S in to an L-formula S′:=φ(S).

3. Express W as a set Φ of L-formulae. (Φ =̂ truth conditions)

4. M is supported if Φ |=S′, falsified if Φ ̸|=S′.

� Corollary 2.4.38. A logical language model constitutes a semantic meaning theory.

Michael Kohlhase: LBS 45 2024-01-20

2.5 Computational Semantics as a Natural Science
Overview: Formal natural language semantics is an approach to the study of meaning in
natural language which utilizes the tools of logic and model theory. Computational semantics adds
to this the task of representing the role of inference in interpretation. By combining these two
different approaches to the study of linguistic interpretation, we hope to expose you (the students)
to the best of both worlds.

Computational Semantics as a Natural Science

� In a nutshell: Formal logic studies formal languages, their relation with the world
(in particular the truth conditions). Computational logic adds the question about
the computational behavior of the relevant aspects of the formal languages.

� This is almost the same as the task of natural language semantics!

� It is one of the key ideas that logics are good scientific models for natural languages,
since they simplify certain aspects so that they can be studied in isolation. In
particular, we can use the general scientific method of

1. observing

2. building formal theories for an aspect of reality,

3. deriving the consequences of the hypotheses about the world in the theories

4. testing the predictions made by the theory against the real-world data. If the
theory predicts the data, then this supports the theory, if not, we refine the
theory, starting the process again at 2.

Michael Kohlhase: LBS 46 2024-01-20

Excursion: In natural sciences, this is established practice; e.g. astronomers observe the

28 CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

planets, and try to make predictions about the locations of the planets in the future. If you graph
the location over time, it appears as a complicated zig-zag line that is difficult to understand. In
1609 Johannes Kepler postulated the model that the planets revolve around the sun in ellipses,
where the sun is in one of the focal points. This model made it possible to predict the future
whereabouts of the planets with great accuracy by relatively simple mathematical computations.
Subsequent observations have confirmed this theory, since the predictions and observations match.

Later, the model was refined by Isaac Newton, by a theory of gravitation; it replaces the
Keplerian assumptions about the geometry of planetary orbits by simple assumptions about grav-
itational forces (gravitation decreases with the inverse square of the distance) which entail the
geometry.

Even later, the Newtonian theory of celestial mechanics was replaced by Einstein’s relativity
theory, which makes better predictions for great distances and high-speed objects.

All of these theories have in common, that they build a mathematical model of the physical
reality, which is simple and precise enough to compute/derive consequences of basic assumptions,
that can be tested against observations to validate or falsify the model/theory.
The study of natural language (and of course its meaning) is more complex than natural sciences,
where we only observe objects that exist independently of ourselves as observers. Language is an
inherently human activity, and deeply interdependent with human cognition (it is arguably one
of its motors and means of expression). On the other hand, language is used to communicate
about phenomena in the world around us, the world in us, and about hypothetical worlds we only
imagine.

Therefore, natural language semantics must necessarily be an intersective discipline and a
trans-disciplinary endeavour, combining methods, results and insights from various disciplines.

NL Semantics as an Intersective Discipline

Michael Kohlhase: LBS 47 2024-01-20

Chapter 3

Symbolic Systems for Semantics

In this chapter, we introduce four symbolic systems for dealing with the semantics of languages
(both natural and formal); they form the basis of the GLIF system we will be using for modeling
natural language semantics in the LBS course. They will be combined to the GLIF (Grammatical
Logical, and Inferential Framework) later, when we actually use them on a first natural language
fragment.

3.1 The Grammatical Framework (GF)
In this section we give a hands-on introduction to the GF system, a comprehensive framework

for engineering natural language grammars and using them for symbolic machine translation. But
before we do that, let us recap the basics of context-free grammars. GF grammars are slightly
stronger, but most of intuitions still apply.

3.1.1 Recap: (Context-Free) Grammars

Phrase Structure Grammars (Motivation)

� Problem Recap: We do not have enough text data to build word sequence
language models ⇝data sparsity.

� Idea: Categorize words into classes and then generalize “acceptable word se-
quences” into “acceptable word class sequences” ; phrase structure grammars.

� Advantage: We can get by with much less information.

� Example 3.1.1 (Generative Capacity). 103 structural rules over a lexicon of 105

words generate most German sentences.

� Vervet monkeys, antelopes etc. use isolated symbols for sentences.
; restricted set of communicable propositions, no generative capacity.

� Disadvantage: Grammars may over generalize or under generalize.

� The formal study of grammars was introduced by Noam Chomsky in 1957 [Cho65b].

Michael Kohlhase: LBS 48 2024-01-20

We fortify our intuition about these – admittedly very abstract – constructions by an example
and introduce some more vocabulary.

29

30 CHAPTER 3. SYMBOLIC SYSTEMS FOR SEMANTICS

Phrase Structure Grammars (cont.)

� Example 3.1.2. A simple phrase structure grammar G:

S → NP Vi

NP → Article N

Article → the | a | an
N → dog | teacher | . . .
Vi → sleeps | smells | . . .

Here S , is the start symbol, NP , VP , Article, N , and Vi are nonterminals.

� Definition 3.1.3. The subset of lexical rules, i.e. those whose body consists of a
single terminal is called its lexicon and the set of body symbols the alphabet. The
nonterminals in their heads are called lexical categories.

� Definition 3.1.4. The non-lexicon production rules are called structural, and the
nonterminals in the heads are called phrasal categories.

Michael Kohlhase: LBS 49 2024-01-20

Context-Free Parsing

� Recall: The sentences accepted by a grammar are defined “top-down” as those
the start symbol can be rewritten into.

� Definition 3.1.5. Bottom up parsing works by replacing any substring that matches
the body of a production rule with its head.

� Example 3.1.6. Using the Wumpus grammar (below), we get the following parse
trees in bottom up parsing:

I shoot the Wumpus

Pronoun TransVerb Article Noun

NP NP

VP

S

Traditional linear notation: Also write this as:

[S[NP [Pronoun I]][V P [TransV erb shoot][NP [Article the][NounWumpus]]]]

� Bottom up parsing algorithms tend to be more efficient than top-down ones.

� Efficient context-free parsing algorithms run in O(n3), run at several thousand
words/second for real grammars.

3.1. THE GRAMMATICAL FRAMEWORK (GF) 31

� Theorem 3.1.7. Context-free parsing =̂ Boolean matrix multiplication!

� ; unlikely to find faster practical algorithms. (details in [Lee02])

Michael Kohlhase: LBS 50 2024-01-20

We now come to a problem that is common to all natural languages: grammaticality is not easily
formalized by grammars – even though we know a lot about their syntactic structure, the set of
sentences perceived as grammatical by native speakers is not sufficiently regular to be described
by a small set of rules.

Grammaticality Judgments

� Problem: The formal language L(G) accepted by a grammar G may differ from
the natural language Ln it supposedly models.

� Definition 3.1.8. We say that a grammar G over-generates, iff it accepts strings
outside of Ln (false positives) and under-generates, iff there are Ln strings (false
negatives) that L(G) does not accept.

� Adjusting L(G) to agree with Ln is an inductive learning problem!

� * the gold grab the wumpus

� * I smell the wumpus the gold

� I give the wumpus the gold

� * I donate the wumpus the gold

� Intersubjective agreement somewhat reliable, independent of semantics!

� Real grammars (100–5000 rules) are insufficient even for “proper” English.

Michael Kohlhase: LBS 51 2024-01-20

3.1.2 A first GF Grammar
We now introduce the general setup of GF grammars by a very simple toy example and charac-

terize two types of grammars by their intent.

The Grammatical Framework (GF)

� Definition 3.1.9. Grammatical Framework (GF [Ran04; Ran11]) is a modular
formal framework and functional programming language for writing multilingual
grammars of natural languages.

� Definition 3.1.10. GF comes with the GF Resource Grammar Library, a reusable

32 CHAPTER 3. SYMBOLIC SYSTEMS FOR SEMANTICS

library for dealing with the morphology and syntax of a growing number of natural
languages. (currently > 30)

� Definition 3.1.11. A GF grammar consists of

� an abstract grammar that specifies well-formed abstract syntax trees (AST),

� a collection of concrete grammars for natural languages that specify how ASTs
can be linearized into (natural language) strings.

� Definition 3.1.12. Parsing is the dual to linearization, it transforms NL utterances
into abstract syntax trees.

� Definition 3.1.13. The Grammatical Framwork comes with an implementation;
the GF system that implements parsing, linearization, and by combination machine
translation. (download/install from [GF])

Michael Kohlhase: LBS 52 2024-01-20

To introduce the syntax and operations of the GF system, and the underlying concepts, we will
look at a very simple example.

Hello World Example for GF (Syntactic)

� Example 3.1.14 (A Hello World Grammar).

abstract zero = {
flags startcat=O;
cat
S ; NP ; V2 ;

fun
spo : V2 -> NP -> NP -> S ;
John, Mary : NP ;
Love : V2 ;

}

concrete zeroEng of zero = {
lincat
S, NP, V2 = Str ;

lin
spo vp s o

= s ++ vp ++ o;
John = "John" ;
Mary = "Mary" ;
Love = "loves" ;

}

� Make a French grammar with John="Jean"; Mary="Marie"; Love="aime";

� Parse a sentence in GF: parse "John loves Mary" ; Love John Mary

� Linearize in GF: linearize Love John Mary ; John loves Mary

� translate in GF: parse -lang=Eng "John Loves Mary" | linearize -lang=Fre

� generate random sentences to test:
generate_random -number=10 | linearize -lang=Fre ; Jean aime Marie

Michael Kohlhase: LBS 53 2024-01-20

The GF system can be downloaded from [GF] and can be started from the command line or as
an inferior process of a text editor. Grammars are loaded via import or short i. Then the GF
commands above can be issued to the shell.

Command sequences can also be combined into an GF script, a text file with one command
per line that can be loaded into GF at startup to initialize the interpreter by running it as
gf --run script.gfo.
In standard accounts of the NLU waterfall or the method of fragments, parsing of natural language

3.1. THE GRAMMATICAL FRAMEWORK (GF) 33

utterances into syntax trees is followed by a translation into a logical representation. One way of
implementing this is to linearize the syntax tree into the input language of an implementation of
a logic and read them into the system for further processing. We will now explore this using a
Prolog interpreter, in which it is easy to program inference procedures.

Translation to Logic

� Idea: Use logic as a “natural language” (to translate into)

� Example 3.1.15 (Hello Prolog). Linearize to Prolog terms:

concrete zeroPro of zero = {
lincat
S , NP , V2 = Str;

lin
spo = \vt,subj,obj -> vt ++ "(" ++ subj ++ "," ++ obj ++ ").";
John = "john";
Mary = "mary";
Love = "loves";

}

� Linearization in GF: linearize Love John Mary; loves (john , mary)

� Note: loves (john , mary) is not a quasi-logical forms, but a Prolog term
that can be read into an Prolog interpreter for pragmatic analysis.

Michael Kohlhase: LBS 54 2024-01-20

We will now introduce an important conceptual distinction on the intent of grammars.

Syntactic and Semantic Grammars

� Recall our interpretation pipeline

Syntax Quasi-Logical Form Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Pragmatic
Analysis

(inferential)

34 CHAPTER 3. SYMBOLIC SYSTEMS FOR SEMANTICS

Syntax Quasi-Logical Form Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Pragmatic
Analysis

(inferential)

� Definition 3.1.16. We call a grammar syntactic, iff the categories and constructors
are motivated by the syntactic structure of the utterance, and semantic, iff they are
motivated by the structure of the domain to be modeled.

� Grammar zero from Example 3.1.14 is syntactic.

� We will look at semantic versions next.

Michael Kohlhase: LBS 55 2024-01-20

Hello World Example for GF (semantic)

� A semantic Hello World Grammar

abstract one = {
flags startcat = O;
cat
I; -- Individuals
O; -- Statements

fun
John, Mary : I;
Love : I -> I -> O;

}

concrete oneEng of one = {
lincat
I = Str ;
O = Str ;

lin
John = "John";
Mary = "Mary";
Love s o = s ++ "loves" ++ o;

}

� Instead of the “syntactic categories” S (sentence), NP (noun phrase), and V2 (tran-
sitive verb), we now have the semantic categories I (individual) and O (proposition).

Michael Kohlhase: LBS 56 2024-01-20

3.1.3 Inflection and Case in GF
We now extend the toy grammars from the last subsection with facilities for inflection and case.

Here we start to see the strenghts of a framework like GF: it provides representational primitves
that allow to do so with minimal pain. We use German – which has more inflection and cases
than English – as an example.
We first set up the example and test it for English

Towards Complex Linearizations (Setup/English)

� Extending our hello world grammar (the trivial bit) We add the determiner the as
an operator that turns a noun (N) into a noun phrase (NP)

3.1. THE GRAMMATICAL FRAMEWORK (GF) 35

abstract two = {
flags startcat=O;
cat
S ; NP ; V2 ; N;

fun
spo : V2 -> NP -> NP -> S ;
John, Mary : NP ;
Love : V2 ;
dog, mouse : N;
the : N -> NP ;

}

concrete twoEN of two = {
lincat
S, NP, V2, N = Str ;

lin
spo vp s o

= s ++ vp ++ o;
John = "John" ;
Mary = "Mary" ;
Love = "loves" ;
dog = "dog" ;
mouse = "mouse" ;
the x = "the" ++ x;

}

� Idea: A noun phrase is a phrase that can be used wherever a proper name can be
used.

Michael Kohlhase: LBS 57 2024-01-20

Now we test it with a German concrete grammar:

Towards Complex Linearizations (German)

� We try the same for German

abstract two = {
flags startcat=O;
cat
S ; NP ; V2 ; N;

fun
spo : V2 -> NP -> NP -> S ;
John, Mary : NP ;
Love : V2 ;
dog, mouse : N;
the : N -> NP ;

}

concrete twoDE0 of two = {
lincat S, NP, V2, N = Str ;
lin
spo vp s o = s ++ vp ++ o;
John = "Johann" ;
Mary = "Maria" ;
Love = "liebt" ;
dog = "Hund" ;
mouse = "Maus" ;
the x = "der" ++ x;

}

� Let us test-drive this; as expected we obtain
two> l -lang=DE0 spo Love John (the dog)
Johann liebt der Hund

� Problem: Johann liebt der Hund is not grammatical in German
; We need to take (grammatical) gender into account to obtain the correct form
den of the determiner.

Michael Kohlhase: LBS 58 2024-01-20

Adding Gender

� To add gender, we add a parameter and extend the type N to a record

36 CHAPTER 3. SYMBOLIC SYSTEMS FOR SEMANTICS

concrete twoDE1 of two = {
param
Gender = masc | fem | neut;

lincat
S, V2, NP = Str ;
N = {s : Str; gender : Gender};

lin
spo vp s o = s ++ vp ++ o;
John = "Johann" ;
Mary = "Maria" ;
Love = "liebt" ;
dog = {s = "Hund"; gender = masc} ;
mouse = {s = "Maus" ; gender = fem} ;
the x = case x.gender of {masc => "der" ++ x.s;

fem => "die" ++ x.s;
neut => "das" ++ x.s} ;

}

Michael Kohlhase: LBS 59 2024-01-20

Adding Gender

� Let us test-drive this; as expected we obtain
two> l -lang=DE1 spo Love (the mouse) Mary
Die Maus liebt Maria.
two> l -lang=DE1 spo Love Mary (the dog)
Maria liebt der Hund.

� We need to take into account case in German too.

Michael Kohlhase: LBS 60 2024-01-20

Adding Case

� To add case, we add a parameter, reinterpret type NP as a case-dependent table of
forms.

concrete twoDE2 of two = {
param
Gender = masc | fem | neut;
Case = nom | acc;

lincat
S, V2 = {s: Str} ;
N = {s : Str; gender : Gender};
NP = {s : Case => Str};

Michael Kohlhase: LBS 61 2024-01-20

Adding Case

3.1. THE GRAMMATICAL FRAMEWORK (GF) 37

�

lin
spo vp subj obj = {s = subj.s!nom ++ vp.s ++ obj.s!acc};
John = {s = table {nom => "Johann"; acc => "Johann"}};
Mary = {s = table {nom => "Maria"; acc => "Maria"}};
Love = {s = "liebt"} ;
dog = {s = "Hund"; gender = masc} ;
mouse = {s = "Maus" ; gender = fem} ;
the x = {s = table

{ nom => case x.gender of {masc => "der" ++ x.s;
fem => "die" ++ x.s;
neut => "das" ++ x.s};

acc => case x.gender of {masc => "den" ++ x.s;
fem => "die" ++ x.s;
neut => "das" ++ x.s}}};}

� Let us test-drive this; as expected we obtain
two> l -lang=DE2 spo Love Mary (the dog)
Maria liebt den Hund.

Michael Kohlhase: LBS 62 2024-01-20

Adding Operations (reusable components)

� We add operations (functions with λ =̂) to get the final form.

concrete twoDE of two = {
param

Gender = masc | fem | neut;
Case = nom | acc;

oper
Noun : Type = {s : Str; gender : Gender};

mkPN : Str −> NP = \x −> lin NP {s = table {nom => x; acc => x}};
mkV2 : Str −> V2 = \x −> lin V2 {s = x};
mkN : Str −> Gender −> Noun = \x,g −> {s = x; gender = g};
mkXXX : Str −> Str −> Str −> Noun −> Str =

\ma,fe,ne,noun −> case noun.gender of {masc => ma ++ noun.s;
fem => fe ++ noun.s;
neut => ne ++ noun.s};

Michael Kohlhase: LBS 63 2024-01-20

Adding Operations (reusable components)

38 CHAPTER 3. SYMBOLIC SYSTEMS FOR SEMANTICS

�

lincat
S, V2 = {s : Str};
N = Noun;
NP = {s: Case => Str};

lin
spo vp subj obj = {s = subj.s!nom ++ vp.s ++ obj.s!acc};
John = mkPN "Johannes";
Mary = mkPN "Maria";
Love = mkV2 "liebt";
dog = mkN "Hund" masc;
mouse = mkN "Maus" fem;
the n = {s = table { nom => mkXXX "der" "die" "das" n;

acc => mkXXX "den" "die" "das" n}
};

}

Michael Kohlhase: LBS 64 2024-01-20

3.1.4 Engineering Resource Grammars in GF
After understanding the moving parts of GF grammars, we can imagine that grammars that

cover large parts of the phenomena of a natural language will become quite large – if only because
for every word we need a declaration in the abstract grammar and a linearization in the concrete
grammar.

Therefore we will turn to GF functionalities for engineering practical grammars now. We do
what we mostly do in computer science: we modularize. The modularization functionality
presented in this subsection has been developed for the GF resource grammar library (RGL),
a giant shared abstract grammar together with ca. 40 concrete grammars for various natural
languages. For managing such a large project, modularity becomes crucial.

Modular Grammars (Abstract)

� We split the grammar into modules (resource + application grammar)

Monolithic Modular

abstract two = {
flags startcat=O;
cat

S ; NP ; V2 ; N;
fun

spo : V2 −> NP −> NP −> S ;
John, Mary : NP ;
Love : V2 ;
dog, mouse : N;
the : N −> NP ;

}

abstract twoCat = {
cat S ; NP ; V2 ; N;}

abstract twoGrammar = twoCat ∗∗ {
fun

spo : V2 −> NP −> NP −> S ;
the : N −> NP ; }

abstract twoLex = twoCat ∗∗ {
fun

John, Mary : NP ;
Love : V2 ;
dog, mouse : N;}

abstract twoRG = twoGrammar,twoLex;
∗∗ {flags startcat=O;}

� Functionality is the same, but we can reuse the components

Michael Kohlhase: LBS 65 2024-01-20

Modular Grammars (Concrete English)

3.1. THE GRAMMATICAL FRAMEWORK (GF) 39

� We split the grammar into modules (resource + application grammar)

Monolithic Modular

concrete twoEN of two = {
lincat

S, NP, V2, N = Str ;
lin

spo vp s o = s ++ vp ++ o;
John = "John" ;
Mary = "Mary" ;
Love = "loves" ;
dog = "dog" ;
mouse = "mouse" ;
the x = "the" ++ x;

}

resource twoParadigmsEN =
twoCatEN ∗∗ {oper

mkPN : Str −> StringType
= \x −> {s = x};

mkV2 : Str −> StringType
= \x −> {s = x};

mkN : Str −> StringType
= \x −> {s = x};}

concrete twoCatEN of twoCat = {
oper StringType : Type = {s : Str};
lincat

S, NP, N, V2 = StringType ;}
concrete twoGrammarEN of twoGrammar =

twoCatEN ∗∗ {
lin

spo vp s o
= {s= s.s ++ vp.s ++ o.s};

the x = {s = "the" ++ x.s};}
concrete twoLexEN of twoLex =

twoCatEN ∗∗ open twoParadigmsEN in {
lin

John = mkPN "John" ;
Mary = mkPN "Mary" ;
Love = mkV2 "loves" ;
dog = mkN "dog" ;
mouse = mkN "mouse" ;}

concrete twoRGEN of twoRG =
twoGrammarEN,twoLexEN;

Michael Kohlhase: LBS 66 2024-01-20

Modular Grammars (Concrete German)

� We split the grammar into modules (resource + application grammar)

concrete twoCatDE of twoCat = {
param

Gender = masc | fem | neut;
Case = nom | acc;

oper
Noun : Type = {s : Str; gender : Gender};
NounPhrase : Type = {s: Case => Str};

lincat
S, V2 = {s : Str};
N = Noun;
NP = NounPhrase;}

resource twoParadigmsDE = twoCatDE ∗∗ {
oper

mkPN : Str −> NounPhrase = \x −> {s = table {nom => x; acc => x}};
mkV2 : Str −> V2 = \x −> lin V2 {s = x};
mkN : Str −> Gender −> Noun = \x,g −> {s = x; gender = g};
mkXXX : Str −> Str −> Str −> Noun −> Str =

\ma,fe,ne,noun −> case noun.gender of {masc => ma ++ noun.s;
fem => fe ++ noun.s;
neut => ne ++ noun.s};}

Michael Kohlhase: LBS 67 2024-01-20

40 CHAPTER 3. SYMBOLIC SYSTEMS FOR SEMANTICS

Modular Grammars (Concrete German)

� concrete twoGrammarDE of twoGrammar =
twoCatDE ** open twoParadigmsDE in {
lin
spo vp subj obj = {s = subj.s!nom ++ vp.s ++ obj.s!acc};
the n = {s = table { nom => mkXXX "der" "die" "das" n;

acc => mkXXX "den" "die" "das" n}};}

concrete twoLexDE of twoLex = twoCatDE ** open twoParadigmsDE in {
lin
John = mkPN "Johannes";
Mary = mkPN "Maria";
Love = mkV2 "liebt";
dog = mkN "Hund" masc;
mouse = mkN "Maus" fem;}

concrete twoRGDE of twoRG = twoGrammarDE,twoLexDE;

Michael Kohlhase: LBS 68 2024-01-20

A Semantic Grammar

� We use logic-inspired categories instead of the syntactic ones

Syntactic Semantic

abstract two = {
flags startcat=O;
cat

S ; NP ; V2 ; N;
fun

spo : V2 −> NP −> NP −> S ;
John, Mary : NP ;
Love : V2 ;
dog, mouse : N;
the : N −> NP ;

}

abstract three = {
flags startcat=O;
cat

I; O; P1; P2;
fun

spo : P2 −> I −> I −> O ;
John, Mary : I ;
Love : P2 ;
dog, mouse : P1;
the : P1 −> I;

}

Michael Kohlhase: LBS 69 2024-01-20

A Semantic Grammar (Modular Development)

� We use logic-inspired categories instead of the syntactic ones

3.2. MMT: A MODULAR FRAMEWORK FOR REPRESENTING LOGICS AND DOMAINS41

Syntactic Semantic

concrete twoCatEN of twoCat = {
oper StringType : Type = {s : Str};
lincat

S, NP, N, V2 = StringType ;}
concrete twoGrammarEN of twoGrammar =

twoCatEN ∗∗ {
lin

spo vp s o = {s= s.s ++ vp.s ++ o.s};
the x = {s = "the" ++ x.s};}

concrete twoLexEN of twoLex =
twoCatEN ∗∗ open twoParadigmsEN in {
lin

John = mkPN "John" ;
Mary = mkPN "Mary" ;
Love = mkV2 "loves" ;
dog = mkN "dog" ;
mouse = mkN "mouse" ;}

concrete twoRGEN of twoRG =
twoGrammarEN,twoLexEN;

concrete threeEN of three =
twoLexEN,twoGrammarEN ∗∗
open twoParadigmsEN in {
lincat

I = NP;
O = S;
P1 = N;
P2 = V2;

}
concrete threeDE of three =

twoLexDE,twoGrammarDE ∗∗
open twoParadigmsDE in {
lincat

I = NP;
O = S;
P1 = N;
P2 = V2;

}

Michael Kohlhase: LBS 70 2024-01-20

3.2 MMT: A Modular Framework for Representing Logics
and Domains

In ?? we have identified truth conditions as the main tool for establishing semantic meaning
theories for natural language.

In the LBS course, we want to make the establishment of meaning theories machine-supported.
To do this we need to have

1. A formal language that allows us to to describe situations/worlds,

2. an formal system that allows us to compute predictions, and

3. a software system that mechanizes it.

For the first two we will use the Mmt language, and for the third the Mmt system that implements
it.

3.2.1 Propositional Logic in MMT: A first Example
We will now introduce the Mmt representation format and the Mmt system by going over a

simple example very carefully: the syntax and a proof theory for propositional logic. Even though
the formal system itself is quite simple, it already teaches us many of the basic ideas and tricks of
meta-logical representation of formal systems in LF.

Implementing minimal PL0 in Mmt

� Recall: The language wff0(Σ0) of propositional logic (PL0) consists of propositions
built from propositional variables from V0 and connectives from Σ0.

� We model wff0(Σ0) in a Mmt theory (Σ0:={¬,∧} for the moment)

theory proplogMinimal : ur:?LF =

42 CHAPTER 3. SYMBOLIC SYSTEMS FOR SEMANTICS

� theory is the Mmt keyword for modules, the module delimiter delimits them.

� A theory has a local name and a meta-theory (after the :)
Here it is LF (provides the logical constants →, type, λ, Π)

� Mmt theories contain declarations of the form ⟨⟨name⟩⟩ : ⟨⟨type⟩⟩ # ⟨⟨notation⟩⟩

� declarations are delimited by the declaration delimiter ,

� declaration components by the object delimiter .

� Example 3.2.1. A declaration for the type of propositions
prop : type # o

� the local name prop is the system identifier

� the type type declares prop to be a type (optional part)

� the notation definition o declares the notation for prop (can be used instead)
(optional part)

Michael Kohlhase: LBS 71 2024-01-20

Implementing minimal PL0 in Mmt (continued)

� Example 3.2.2. Declarations for the connectives ¬ and ∧
not : o → o # ¬1 prec 100

� the type o → o declares the constant not to be a unary function

� the notation definition ¬1 prec 100 establishes

� the function symbol ¬ for not followed by argument 1.
� brackets are governed by the precedence 100 (binding strength)

and : o → o → o # 1 ∧ 2 prec 90

� The type o → o → o declares the constant and to be a binary function (note
currying)

� the notation definition # 1 ∧ 2 prec 90 establishes

� the infix function symbol ∧ for and preceded by argument 1 and followed
by 2,

� brackets are governed by the precedence 90 (weaker than for not)

� Testing precedences: the Mmt system accepts A : o test : ¬A ∧ A
And ¬A ∧ A is parsed as (¬A) ∧ A instead of ¬(A ∧ A)

� All together now! PL0 Syntax as a Mmt theory:
theory proplogMinimal : ur:?LF =

prop : type # o
not : o → o # ¬1 prec 100
and : o → o → o # 1 ∧ 2 prec 90

Michael Kohlhase: LBS 72 2024-01-20

3.2. MMT: A MODULAR FRAMEWORK FOR REPRESENTING LOGICS AND DOMAINS43

Completing PL0 by Definitions

� Building on this, we can define additional connectives: ∨, ⇒, ⇔
theory proplog : ur:?LF =

include ?proplogMinimal
or : o → o → o # 1 ∨ 2 prec 80 = [a:o,b:o] ¬(¬ a ∧ ¬b)
implies : o → o → o # 1 ⇒ 2 prec 70 = [a:o,b:o] ¬a ∨ b

� include is the keyword for an inclusion declaration
here we include the theory proplogMinimal (notation: theory refs prefixed by
?)
this makes all of its declarations available locally in theory proplog.

� new declaration components: definientia give a constant meaning by replace-
ment.

� [a:o,b:o] ¬a ∨ b is the Mmt notation for λaobo ¬a ∨ b, i.e. the function
that given two propositions a and b returns the proposition ¬a ∨ b.

� Note: types optional in lambdas (Mmt system infers them from context)

� This completes the syntax (language of formulae) of PL0.

� Observation: The declarations in proplog amount to a context-free grammar of
PL0.

Michael Kohlhase: LBS 73 2024-01-20

Describing Situations for Truth Conditions

� We want to derive the truth conditions e.g. for Peter loves Mary.

� Definition 3.2.3. A situation theory is an Mmt theory that formalizes a situation.

� First Attempt: We provide declarations for the individuals and their relations.
theory world1 : ur:?LF =

include ?proplog

individual : type # ι
peter : ι
mary : ι
loves : ι→ ι→ o

plm = loves peter mary // just an abbreviation

� Problem: We have not asserted that plm is true in world1, . . .
. . . only that the proposition plm exists.

� Idea: Let’s assert that plm is “provable” in theory world1.

Michael Kohlhase: LBS 74 2024-01-20

44 CHAPTER 3. SYMBOLIC SYSTEMS FOR SEMANTICS

Asserting Truth by Declaring Provability in Mmt Theories

� Observation: We can only assert existance in a theory by declarations.

� Idea 1: Use declarations to declare certain types to be inhabited =̂ non-empty.

� Idea 2: A proposition A is “provable”, iff the “type of all proofs of A” is inhabited.

� Idea 3: We can express “the type of all proofs of A” as ⊢A
if we declare a suitable type constructor in Mmt:
ded : prop → type # ⊢1

� All Together Now: We can assert that Peter loves Mary in theory world1
plm_axiom : ⊢plm // the type of proofs of plm is inhabited

Note that in this interpretation the constant plm_axiom is a “proof of plm”

� Definition 3.2.4. This way of representing axioms (and eventually theorems) is
called the propositions as types paradigm.

Michael Kohlhase: LBS 75 2024-01-20

Asserting Truth in Mmt theories (continued)

� We can make world1 happier by asserting Mary loves Peter.
mlp = loves mary peter
mlp_axiom : ⊢mlp

� Do Peter and Mary love each other in world1?

� We would have to have a proof of plm ∧ mlp, which we don’t.

� Observation: There should be one, given that we have proofs for plm and mlp!

� Observation: We need a proof constructor – a function constant that constructs
a proof of plm ∧ mlp from those.

� Idea: Let’s just declare one: pc : ⊢plm →⊢mlp →⊢plm ∧ mlp

� We can generalize this to the inference rule of conjunction introduction
conjI : {A:o,B:o} ⊢A →⊢B →⊢A∧ B

{A:o,B:o} is the Mmt notation for Π from LF. (dependent
type constructor)
Read as “for arbitrary but fixed propositions A and B. . . ” . . .

A B

A ∧B
ND_0 ∧ I

� Idea: This leads to a Mmt formalization of the propositional natural deduction
calculus ND_0. (up next)

Michael Kohlhase: LBS 76 2024-01-20

Propositional Natural Deduction

3.2. MMT: A MODULAR FRAMEWORK FOR REPRESENTING LOGICS AND DOMAINS45

� Observation: With the ideas discussed above we can do almost all of the inference
rules of ND_0.

� Let’s start small with Σ0 = {¬,∧}: here are the rules again.

Introduction Elimination
A B

A ∧B
ND_0 ∧ I A ∧B

A
ND_0 ∧ El

A ∧B

B
ND_0 ∧ Er

[A]
1

...
C

[A]
1

...
¬C

¬A
ND_0¬I1 ¬¬A

A
ND_0¬E

� The start of an Mmt theory:
theory proplog-ND : ur:?LF =

include ?proplogMinimal
ded : prop → type # ⊢1
conjI : {A:o,B:o} ⊢A →⊢B →⊢A∧ B
conjEl : {A:o,B:o} ⊢A∧ B →⊢A
conjEr : {A:o,B:o} ⊢A∧ B →⊢B
negE : {A:o} ⊢¬¬A →⊢A

Michael Kohlhase: LBS 77 2024-01-20

Local Hypotheses in Natural Deduction

�

For ND_0¬I we need a new idea for the representation of the
local hypothesis A.
A subproof P with a local hypothesis [A] allows to plug in a
proof of A and complete it P to a full proof for C.
Idea: Represent this as a function from ⊢ A to ⊢ C.

[A]
1

...
C

[A]
1

...
¬C

¬A

� In Mmt we have:
negI : {A:o,C:o} (⊢A →⊢C) → (⊢A →⊢¬C) →⊢¬A

ND_0¬I1 takes proof transformers as arguments and returns a proof of ¬A.

� With this idea, we can do the rest of the inference rules of ND_0, e.g.

implI: {a,b} (⊢a →⊢b) →⊢(a⇒ b)

Michael Kohlhase: LBS 78 2024-01-20

Writing Proofs in Mmt

� Recap: In Mmt, we can write axioms as declarations c : ⊢a using the proposi-
tions as types paradigm: the proof type ⊢a must be inhabited, since it has the proof
c of a as an inhabitant.

46 CHAPTER 3. SYMBOLIC SYSTEMS FOR SEMANTICS

� Observation: This can be extended to theorems, by giving denfinientia:
A declaration c : ⊢a = Φ also ensures that ⊢a is inhabited, but using already
existing material Φ.

� Example 3.2.5. Let’s try this on the well-known ND_0 proof

[A ∧B]1

ND_0 ∧ Er
B

[A ∧B]1

ND_0 ∧ El
A

ND_0 ∧ I
B ∧A

ND_0 ⇒I1
A ∧B⇒B ∧A

Eventually, this will be represented as
ac : {a,b} ⊢((a∧ b)⇒ (b∧ a))

= [a, b] ([p:⊢(a∧ b)] (p andEr) (p andEl) andI) implI

Michael Kohlhase: LBS 79 2024-01-20

Writing Proofs in Mmt (step by step)

� Example 3.2.6 (Continued).

[A ∧B]1

ND_0 ∧ Er
B

[A ∧B]1

ND_0 ∧ El
A

ND_0 ∧ I
B ∧A

ND_0 ⇒I1
A ∧B⇒B ∧A

1ac : {a,b} ⊢((a∧ b)⇒ (b∧ a))
2= [a, b] ([p:⊢(a∧ b)]
3(p andEr)
4(p andEl)
5andI)
6implI

� Line 1: name and type (optional)

� Line 2: λ-abstraction [a,b] corresponding to Π-abstraction {a,b}

� Line 6: the proof is constructed by impI with one argument (a subproof Ψ)

� But remember: implI: {a,b} (⊢a →⊢b) →⊢(a⇒ b) takes three!
� Idea: add special postfix notation definition # 3 impI (3 7→ Ψ)
� Justification: The Mmt system can reconstruct implicit arguments

� Lines 2-5: Subproof Ψ with local hyp. [a ∧ b]1, represented as λp-term in Line
4
Idea: the (informal) function of the co-indexing is formalized by λ-abstraction

� Line 5: result of Ψ constructed by andI – notation definition # 3 4 andI

� Line 3/4: two subproofs constructed from p by andEl/andEr.

� Observation 1: The postfix notations make the Mmt proof term similar!

� Observation 2: But writing them is very tedious and complex still.

Michael Kohlhase: LBS 80 2024-01-20

Modular Representation in Mmt

3.2. MMT: A MODULAR FRAMEWORK FOR REPRESENTING LOGICS AND DOMAINS47

� Recall: We said that for PL0, it does not matter if Σ0 = {¬,∧} or Σ0 = {¬,∨}.

� In particular we can always inter-define ∧ and ∨ via de-Morgan.

� Let’s make this formal using views.

� Example 3.2.7. A modular development of the two variants of PL0

theory dednot : ur:?LF =
prop : type # o
ded : o → type # ⊢1
not : o → o # ¬1

theory notand : ur:?LF =
include ?dednot
and : o → o → o # 1 ∧ 2
andI : {a,b} ⊢a →⊢b →

⊢(a∧ b)

theory notor : ur:?LF =
include ?dednot
or : o → o → o # 1 ∨ 2
orIl : {a,b} ⊢a →

⊢(a∨ b)
orIr : {a,b} ⊢b →

⊢(a∨ b)

view and2or : ?notand -> ?notor =
and = [a,b] ¬((¬a) ∨

(¬b))
andI = Φ

view or2and : ?notor -> ?notand =
or = [a,b] ¬((¬a) ∧

(¬b))
andI = Ψ

For some suitable proof expressions Φ and Ψ.

Michael Kohlhase: LBS 81 2024-01-20

3.2.2 General Functionality of MMT
We will use the OMDoc/Mmt to represent both logical systems and the semantic domains

(universes of discourse) of the various fragments. The Mmt system implements the OMDoc/Mmt
language, it can be used as

• a Java library that provides data structures and an API of logic oriented algorithms, and as

• a standalone knowledge-management service provider via web interfaces.

We will make use of both in the LBS course and give a brief overview in this subsection. For a
(math-themed) tutorial that introduces format and system in more detail see [OMT].

Representation language (Mmt)

� Definition 3.2.8. Mmt =̂ module system for mathematical theories

� Formal syntax and semantics

� needed for mathematical interface language

� but how to avoid foundational commitment?

� Foundation-independence

� identify aspects of underlying language that are necessary for large scale pro-
cessing

� formalize exactly those, be parametric in the rest

48 CHAPTER 3. SYMBOLIC SYSTEMS FOR SEMANTICS

� observation: most large scale operations need the same aspects

� Module system

� preserve mathematical structure wherever possible

� formal semantics for modularity

� Web-scalable

� build on XML, OpenMath, OMDoc

� URI based logical identifiers for all declarations

� Implemented in the Mmt system.

Michael Kohlhase: LBS 82 2024-01-20

The basic idea of the OMDoc/Mmt format is that knowledge (originally mathematical knowl-
edge for which the format is designed, but also world knowledge of the semantic domains in the
fragments) can be represented modularly, using strong forms of inheritance to avoid duplicate for-
malization. This leads to the notion of a theory graph, where the nodes are theories that declare
language fragments and axiomatize knowledge about the objects in the domain of discourse. The
following theory graph is taken from [OMT].

Modular Representation of Math (Mmt Example)

� Example 3.2.9 (Elementary Algebra and Arithmetics).

Magma
G, ◦ : G → G → G

Abelian

c : ⊢x◦y=y◦x

SemiGrp

assoc : ⊢(x◦y)◦z=x◦(y◦z)

Monoid
e : G
neutl : ⊢x◦e=x

neutr : ⊢e◦x=x

Group
i : =λx.ιy.x◦y=e

inv : ⊢∀x : G.∃1y : G.x◦y=e

NonGrpMon

ni : ⊢∃x : G.∀y : G.x◦y ̸=e

AbelGroup

Ring
dom : ⊢G m/◦=G a/◦
distl : ⊢x m/◦ (y a/◦ z)=(x m/◦ y) a/◦ (x m/◦ z)

distr : ⊢(y a/◦ z) m/◦ x=(y m/◦ x) a/◦ (z m/◦ x)

NatNums
N, N+, 0: N, s : N → N+

P3,. . . ,P5

NatPlus
+: N → N → N
base : ⊢n+0=n,
step : ⊢n+s(m)=s(n+m)

NatPlusTimes
· : N → N → N
base : ⊢n·0=0,
step : ⊢n·s(m)=n·m+n

IntArith
Z, − : Z → Z
dom : ⊢Z=p/N∪n/N+

dneg : ⊢−−z=z

φ =

 G 7→ N
◦ 7→ ·
e 7→ 1

ψ =

 G 7→ N
◦ 7→ +
e 7→ 0

ψ′ =

{
i 7→ −
g 7→ f

}
ϑ =

{
m 7→ e
a 7→ c

}

p n

e : φ

f : ψ

d : ψ′

g

c : φ

ng

a

m

i : ϑ

s : {x◦y 7→y◦x}

Michael Kohlhase: LBS 83 2024-01-20

We will use the foundation-independence (bring-your-own logic) in this course, since the models
for the different fragments come with differing logics and foundational theories (together referred
to as “foundations”). Logics can be represented as theories in OMDoc/Mmt– after all they just
introduce language fragments and specify their behavior – and are subject to the same modularity
and inheritance regime as domain theories. The only difference is that logics form the meta-
language of the domain theories – they provide the language used to talk about the domain – and
are thus connected to the domain theories by the meta relation. The next slide gives some details
on the construction.

3.2. MMT: A MODULAR FRAMEWORK FOR REPRESENTING LOGICS AND DOMAINS49

Representing Logics and Foundations as Theories

� Example 3.2.10. Logics and foundations represented as Mmt theories

LF LF+ X

FOL HOL

Monoid CGroup Ring

ZFC

f2h

add

mult

folsem

mod

� Definition 3.2.11. Meta relation between theories special case of inclusion

� Uniform Meaning Space: morphisms between formalizations in different logics
become possible via meta-morphisms.

� Remark 3.2.12. Semantics of logics as views into foundations, e.g., folsem.

� Remark 3.2.13. Models represented as views into foundations (e.g. ZFC)

� Example 3.2.14. mod := {G 7→ Z, ◦ 7→ +, e 7→ 0} interprets Monoid in ZFC.

Michael Kohlhase: LBS 84 2024-01-20

In the next slide we show the Mmt surface language which gives a human-oriented syntax to
the OMDoc/Mmt format.

A MitM Theory in Mmt Surface Language

� Example 3.2.15. A theory of Groups
� Declaration =̂

name : type [= Def] [# notation]

� Axioms =̂ Declaration with type ⊢ F

� ModelsOf makes a record type from a
theory.

� MitM Foundation: optimized for natural math formulation

� higher-order logic based on polymorphic λ-calculus

� judgments-as-types paradigm: ⊢ F =̂ type of proofs of F

� dependent types with predicate subtyping, e.g. {n}{′a ∈ mat(n, n)|symm(a)′}
� (dependent) record types for reflecting theories

Michael Kohlhase: LBS 85 2024-01-20

Finally, we summarize the concepts and features of the OMDoc/Mmt.

50 CHAPTER 3. SYMBOLIC SYSTEMS FOR SEMANTICS

The Mmt Module System

� Central notion: Theory graph with theory nodes and theory morphisms as edges.

� Definition 3.2.16. In Mmt, a theory is a sequence of constant declarations op-
tionally with type declarations and definitions.

� Mmt employs the Curry/Howard isomorphism and treats

� axioms/conjectures as typed symbol declarations (propositions-as-types)

� inference rules as function types (proof transformers)

� theorems as definitions (proof terms for conjectures)

� Definition 3.2.17. Mmt has two kinds of theory morphisms

� structures instantiate theories in a new context (also called: definitional link,
import)
they import theory S into theory T (induces theory morphism S → T)

� views translate between existing theories (also called: postulated link, theorem
link)
Views transport theorem from source to target (framing).

� Together, structures and views allow a very high degree of re-use

� Definition 3.2.18. We call a statement t induced in a theory T , iff there is

� a path of theory morphisms from a theory S to T with (joint) assignment σ,

� such that t = σ(s) for some statement s in S.

� Definition 3.2.19. In Mmt, all induced statements have a canonical name, the
MMT URI.

Michael Kohlhase: LBS 86 2024-01-20

3.3 ELPI a Higher-Order Logic Programming Language

ELPI

� Definition 3.3.1. λProlog, also written lambda Prolog, is a logic programming
language featuring polymorphic typing, modular programming, and h i g h e r - o r -
d e r f u n c t i o nhigher-order programming.

� Definition 3.3.2. ELPI implements a variant of λProlog enriched with constraint
handling rules.

Michael Kohlhase: LBS 87 2024-01-20

ELPI by example

� Intuition: ELPI almost works like Prolog, if we forget the advanced features

3.3. ELPI A HIGHER-ORDER LOGIC PROGRAMMING LANGUAGE 51

� But: ELPI insists on types declarations for all objects it works with.

� Example 3.3.3 (A Member Predicate). Indeed in line 1 we see an ELPI type
declaration for the ismember predicate. As in Prolog, we use identifiers starting
with capital letters for variables. This makes ismember polymorphic in the type T.

1 type ismember T -> list T -> prop.
2 ismember X [X|_T].
3 ismember X [_H|T] :- ismember X T.

The recursive ismember predicate itself is just as we would write it in Prolog.

As always, we can test this with the queries

� ismember 2 [1,2,3] which succeeds and

� ismember 5 [1,2,3] which fails.

Michael Kohlhase: LBS 88 2024-01-20

Warning: If you have a functional programming background, you might have expected something
like

1 ismember X [] = false
2 ismember X [X|_T] = true
3 ismember X [_Y|T] = ismember X T

with an explicit failure case. But ELPI/Prolog works differently: It fails unless it finds a way
to make it true. For example, in our case ismember 1 [] fails because there is no rule that makes
it work.

You may have to brush up on these lovely Prolog tutorials if this baffles you.

Propositional Logic in ELPI

� Remember: we wanted to use ELPI to automate proof construction for our target
logics.

� Idea: Let’s just start with PL0 – this is really just like in Mmt.
kind oo type. % propositions (prop and o are taken)
type neg oo -> oo.
type and oo -> oo -> oo.
type or oo -> oo -> oo.
type impl oo -> oo -> oo.
type true oo.
type false oo.
type pvar int -> oo.

The declarations (and their ELPI syntax) should be quite obvious
the pvar function makes a countable collection of propositional variables.

Michael Kohlhase: LBS 89 2024-01-20

Predicates for Properties of Formulae

� Problem: We will need to know when a PL0 formula is atomic later.

� Idea: It is easier to (first) specify whehter a formula is complex.
type complex oo -> prop.

52 CHAPTER 3. SYMBOLIC SYSTEMS FOR SEMANTICS

complex (neg _Y).
complex (and _X _Y).

And then we just make atomic to be “not complex”.

� Standard Method: In ELPI, we use negation as failure: To establish that a term
t is atomic we try to establish that it complex and if that succeeds, then we fail.
On the other hand, if the first clause of the atomic predicate fails, then the second
clause (automatically) succeeeds.
Together they switch orchestrate the switch of truth values needed for negation as
failure
type atomic oo -> prop.
atomic (X) :- complex(X),!,fail.
atomic (_X).

The trick now is to guard the fail with a cut operator !, a literal that forbids
the atomic predicate to backtrack after it failed. Otherwise the first clause would
succeed via the second clause ruining the effect.

Michael Kohlhase: LBS 90 2024-01-20

Part I

English as a Formal Language: The
Method of Fragments

53

Chapter 4

Logic as a Tool for Modeling NL
Semantics

In this chapter we will briefly introduce formal logic and motivate how we will use it as a tool
for developing precise theories about natural language semantics.

We want to build a compositional, semantic meaning theory based on truth conditions, so that
we can directly model the truth conditional synonymy test. We will see how this works in detail
in section 4.3 after we have recapped the necessary concepts about logic.

4.1 The Method of Fragments
We will proceed by the “method of fragments”, introduced by Richard Montague in [Mon70], where
he insists on specifying a complete syntax and semantics for a specified subset (“fragment”) of a
natural language, rather than writing rules for the a single construction while making implicit
assumptions about the rest of the grammar. [Mon70]

In the present paper I shall accordingly present a precise treatment, culminating in a theory
of truth, of a formal language that I believe may be reasonably regarded as a fragment of
ordinary English. R. Montague 1970 [Mon70, p.188]

The first step in defining a fragment of natural language is to define which sentences we want to
consider. We will do this by means of a context-free grammar. This will do two things: act as
an oracle deciding which sentences (of natural language) are OK, and secondly to build up syntax
trees, which we will later use for semantics construction.

Natural Language Fragments

� Methodological Problem: How to organize the scientific method for natural
language?

� Delineation Problem: What is natural language, e.g. English?
Which Aspects do we want to study?

� Idea: Formalize a set (NL) sentences we want to study by a grammar
; Richard Montague’s method of fragments (1972).

� Definition 4.1.1. The language L of a context-free grammar is called a fragment
of a natural language N , iff L ⊆ N .

55

56 CHAPTER 4. LOGIC AS A TOOL FOR MODELING NL SEMANTICS

� Scientific Fiction: We can exhaust English with ever-increasing fragments, de-
velop a semantic meaning theory for each.

� Idea: Use nonterminals to classify NL phrases.

� Definition 4.1.2. We call a nonterminal symbol of a context-free grammar a
phrasal category. We distinguish two kinds of rules:

structural rules: L : H→c1, . . . , cn with head H, label L, and a sequence of phrasal
categories ci.

lexical rules: L : H→t1 | . . . | tn, where the ti are terminals (i.e. NL phrases)

� Definition 4.1.3. In the method of fragments we use a CFG to parse sentences
from the fragment into an abstract syntax tree (AST) for further processing.

Michael Kohlhase: LBS 91 2024-01-20

We generically distinguish two parts of a grammar: the structuralrules and the lexical rules, be-
cause they are guided by differing intuitions. The former set of rules govern how NL phrases can be
composed to sentences (and later even to discourses). The latter rules are a simple representation
of a lexicon, i.e. a structure which tells us about words (the terminal objects of language): their
phrasal categories, their meaning, etc.

Formal Natural Language Semantics with Fragments

� Idea: We will follow the picture we have discussed before

Comp Ling
NL

FL

M = ⟨D, I⟩

|=NL ⊆ NL×NL

⊢C ⊆ FL× FL

|= ⊆ FL× FL

Analysis

Iφ

induces?

induces

choose calculus C

|= ≡ ⊢C?

|=NL ≡ ⊢C?

Logic

Choose a target logic FL and specify a translation from syntax trees to formulae!

Michael Kohlhase: LBS 92 2024-01-20

Semantics by Translation

� Idea: We translate sentences by translating their syntax trees via tree node trans-
lation rules.

� Note: This makes the induced meaning theory compositional.

� Definition 4.1.4. We represent a node α in a syntax tree with children β1, . . ., βn

4.2. WHAT IS LOGIC? 57

by [X1β1
, . . . , Xnβn

]α and write a translation rule as

L : [X1β1
, . . . , Xnβn

]α ; Φ(X1
′, . . ., Xn

′)

if the translation of the node α can be computed from those of the βi via a semantical
function Φ.

� Definition 4.1.5. For a natural language utterance A, we will use ⟨A⟩ for the result
of translating A.

� Definition 4.1.6 (Default Rule). For every word w in the fragment we assume a
constant w′ in the logic L and the “pseudo-rule” t1: w ; w′. (if no other
translation rule applies)

Michael Kohlhase: LBS 93 2024-01-20

4.2 What is Logic?

What is Logic?

� Definition 4.2.1. Logic =̂ formal languages, inference and their relation with the
world

� Formal language FL: set of formulae (2 + 3/7, ∀x.x+ y = y + x)

� Formula: sequence/tree of symbols (x, y, f, g, p, 1, π,∈,¬,∀,∃)

� Model: things we understand (e.g. number theory)

� Interpretation: maps formulae into models ([[three plus five]]
I
= 8)

� Validity: M|=A, iff [[A]]
I
= T (five greater three is valid)

� Entailment: A |=B, iff M|=B for all M|=A. (generalize to H |=A)

� Inference: rules to transform (sets of) formulae (A,A⇒B⊢B)

� Syntax: formulae, inference (just a bunch of symbols)

� Semantics: models, interpr., validity, entailment (math. structures)

� Important Question: relation between syntax and semantics?

Michael Kohlhase: LBS 94 2024-01-20

So logic is the study of formal representations of objects in the real world, and the formal
statements that are true about them. The insistence on a formal language for representation is
actually something that simplifies life for us. Formal languages are something that is actually
easier to understand than e.g. natural languages. For instance it is usually decidable, whether a
string is a member of a formal language. For natural language this is much more difficult: there is
still no program that can reliably say whether a sentence is a grammatical sentence of the English
language.
We have already discussed the meaning mappings (under the monicker “semantics”). Meaning
mappings can be used in two ways, they can be used to understand a formal language, when we
use a mapping into “something we already understand”, or they are the mapping that legitimize a
representation in a formal language. We understand a formula (a member of a formal language)
A to be a representation of an object O, iff [[A]] = O.
However, the game of representation only becomes really interesting, if we can do something with

58 CHAPTER 4. LOGIC AS A TOOL FOR MODELING NL SEMANTICS

the representations. For this, we give ourselves a set of syntactic rules of how to manipulate the
formulae to reach new representations or facts about the world.

Consider, for instance, the case of calculating with numbers, a task that has changed from a
difficult job for highly paid specialists in Roman times to a task that is now feasible for young
children. What is the cause of this dramatic change? Of course the formalized reasoning procedures
for arithmetic that we use nowadays. These calculi consist of a set of rules that can be followed
purely syntactically, but nevertheless manipulate arithmetic expressions in a correct and fruitful
way. An essential prerequisite for syntactic manipulation is that the objects are given in a formal
language suitable for the problem. For example, the introduction of the decimal system has been
instrumental to the simplification of arithmetic mentioned above. When the arithmetical calculi
were sufficiently well-understood and in principle a mechanical procedure, and when the art of
clock-making was mature enough to design and build mechanical devices of an appropriate kind,
the invention of calculating machines for arithmetic by (1623), (1642), and (1671) was only a
natural consequence.

We will see that it is not only possible to calculate with numbers, but also with representations
of statements about the world (propositions). For this, we will use an extremely simple example; a
fragment of propositional logic (we restrict ourselves to only one connective) and a small calculus
that gives us a set of rules how to manipulate formulae.
In computational semantics, the picture is slightly more complicated than in Physics. Where

Physics considers mathematical models, we build logical models, which in turn employ the term
“model”. To sort this out, let us briefly recap the components of logics, we have seen so far.

Logics make good (scientific1) models for natural language, since they are mathematically precise
and relatively simple.

Formal languages simplify natural languages, in that problems of grammaticality no longer
arise. Well-formedness can in general be decided by a simple recursive procedure.

Semantic models simplify the real world by concentrating on (but not restricting itself to)
mathematically well-understood structures like sets or numbers. The induced semantic notions
of validity and logical consequence are precisely defined in terms of semantic models and allow
us to make predictions about truth conditions of natural language.

The only missing part is that we can conveniently compute the predictions made by the model.
The underlying problem is that the semantic notions like validity and semantic consequence are
defined with respect to all models, which are difficult to handle.

Therefore, logics typically have a third part, an inference system, or a calculus, which is a
syntactic counterpart to the semantic notions. Formally, a calculus is just a set of rules (called
inference rules) that transform (sets of) formulae (the assumptions) into other (sets of) formulae
(the conclusions). A sequence of rule applications that transform the empty set of assumptions
into a formula T, is called a proof of A. To make these assumptions clear, let us look at a very
simple example.

4.3 Using Logic to Model Meaning of Natural Language

Modeling Natural Language Semantics

� Problem: Find formal (logic) system for the meaning of natural language.

� History of ideas

1As we use the word “model” in two ways, we will sometimes explicitly label it by the attribute “scientific” to
signify that a whole logic is used to model a natural language phenomenon and with the attribute “semantic” for
the mathematical structures that are used to give meaning to formal languages

4.3. USING LOGIC TO MODEL MEANING OF NATURAL LANGUAGE 59

� Propositional logic [ancient Greeks like Aristotle]
* Every human is mortal

� First-Order Predicate logic [Frege ≤ 1900]
* I believe, that my audience already knows this.

� Modal logic [Lewis18, Kripke65]
* A man sleeps. He snores. ((∃X man(X) ∧ sleeps(X))) ∧ snores(X)

� Various dynamic approaches (e.g. DRT, DPL)
* Most men wear black

� Higher-order Logic, e.g. generalized quantifiers

� . . .

Michael Kohlhase: LBS 95 2024-01-20

Let us now reconcider the role of all of this for natural language semantics. We have claimed
that the goal of the course is to provide you with a set of methods to determine the meaning of
natural language. If we look back, all we did was to establish translations from natural languages
into formal languages like first-order or higher-order logic (and that is all you will find ituisn most
semantics papers and textbooks). Now, we have just tried to convince you that these are actually
syntactic entities. So, where is the semantics?.

Natural Language Semantics?

Comp Ling
NL

FL

M = ⟨D, I⟩

|=NL ⊆ NL×NL

⊢C ⊆ FL× FL

|= ⊆ FL× FL

Analysis

Iφ

induces?

induces

choose calculus C

|= ≡ ⊢C?

|=NL ≡ ⊢C?

Logic

Michael Kohlhase: LBS 96 2024-01-20

As we mentioned, the green area is the one generally covered by natural language semantics. In
the analysis process, the natural language utterance (viewed here as formulae of a language NL)
are translated to a formal language FL (a set wff(,) of well-formed formulae). We claim that this
is all that is needed to recapture the semantics even if this is not immediately obvious at first:
Theoretical Logic gives us the missing pieces.

Since FL is a formal language of a logical system, it comes with a notion of model and an value
function Iφ that translates FL formulae into objects of that model. This induces a notion of logical
consequence2 as explained in ??. It also comes with a calculus C acting on FL formulae, which (if
we are lucky) is sound and complete (then the mappings in the upper rectangle commute).

What we are really interested in natural language semantics is the truth conditions and natural
consequence relations on natural language utterances, which we have denoted by |=NL. If the
calculus C of the logical system ⟨FL,K, |=⟩ is adequate (it might be a bit presumptious to say

2Relations on a set S are subsets of the Cartesian product of S, so we use R ⊆ Sn × S to signify that R is a
(n-ary) relation on X.

60 CHAPTER 4. LOGIC AS A TOOL FOR MODELING NL SEMANTICS

sound and complete), then it is a model of the linguistic entailment relation |=NL. Given that both
rectangles in the diagram commute, then we really have a model for truth conditions and logical
consequence for text/speech fragments, if we only specify the analysis mapping (the green part)
and the calculus.

Logic-Based Knowledge Representation for NLP

� Logic (and related formalisms) allow to integrate world knowledge

� explicitly (gives more understanding than statistical methods)

� transparently (symbolic methods are monotonic)

� systematically (we can prove theorems about our systems)

� Signal + World knowledge makes more powerful model

� Does not preclude the use of statistical methods to guide inference

� Problems with logic-based approaches

� Where does the world knowledge come from? (Ontology problem)

� How to guide search induced by log. calculi (combinatorial explosion)

Michael Kohlhase: LBS 97 2024-01-20

Chapter 5

Fragment 1

5.1 The First Fragment: Setting up the Basics
The first fragment will primarily be used for setting the stage, and introducing the method itself.
The coverage of the fragment is too small to do anything useful with it, but it will allow us to
discuss the salient features of the method, the particular setup of the grammars and semantics
before graduating to more useful fragments.

Fragment 1 Data (Sentences we want to cover)

� Fragment 1 Data: We delineate the intended fragment by giving examples

1. Ethel kicked the cat and Fiona laughted

2. Peter is the teacher

3. The teacher is happy

4. It is not the case that Bertie ran

5. It is not the case that Jo is happy

� We can later use these sentences as benchmark tests.

Michael Kohlhase: LBS 98 2024-01-20

5.1.1 Natural Language Syntax (Fragment 1)

Structural Grammar Rules

� Definition 5.1.1. F1 knows the following eight phrasal categories

S sentence NP noun phrase
N noun Npr proper name
V i intransitive verb V t transitive verb
conj connective Adj adjective

� Definition 5.1.2. We have the following production rules in F1.
S1: S→NP, V i,
S2: S→NP, V t,NP,

61

62 CHAPTER 5. FRAGMENT 1

N1: NP→Npr,
N2: NP→the, N ,
S3: S→It is not the case that, S,
S4: S→S, conj, S,
S5: S→NP, is,NP,
S6: S→NP, is,Adj

Michael Kohlhase: LBS 99 2024-01-20

Lexical insertion rules for Fragment 1

� Definition 5.1.3. We have the following lexical rules in Fragment 1.

L1: Npr→Prudence | Ethel | Chester | Jo | Bertie | Fiona,
L2: N→book | cake | cat | golfer | dog | lecturer | student | singer,

L3: V i→ran | laughed | sang | howled | screamed,
L4: V t→read | poisoned | ate | liked | loathed | kicked, L5: conj→and | or,

L6: Adj→happy | crazy | messy | disgusting | wealthy

� Note: We will adopt the convention that new lexical rules can be generated spon-
taneously as needed.

Michael Kohlhase: LBS 100 2024-01-20

These rules represent a simple lexicon, they specify which words are accepted by the grammar
and what their phrasal categories are.

Syntax Example: Jo poisoned the dog and Ethel laughed

� Observation 5.1.4. Jo poisoned the dog and Ethel laughed is a sentence of
fragment 1

� We can construct a syntax tree for it!

Jo poisoned the dog and Ethel laughed

Npr V t N conj Npr V i

NP NP NP

S S

S

Michael Kohlhase: LBS 101 2024-01-20

5.1. THE FIRST FRAGMENT: SETTING UP THE BASICS 63

5.1.2 Predicate Logic without Quantifiers
The next step will be to introduce the logical model we will use for Fragment 1: Predicate Logic
without Quantifiers. Syntactically, this logic is a fragment of first-order logic, but it’s expressivity
is equivalent to propositional logic. Therefore, we will introduce the syntax of full first-order logic
(with quantifiers since we will need if for Fragment 4 later), but for the semantics stick with a setup
without quantifiers. We will go into the semantic difficulties that they pose later (in section 9.1
and chapter 10).

Individuals and their Properties/Relations

� Observation: We want to talk about individuals like Stefan, Nicole, and Jochen
and their properties, e.g. being blond, or studying AI
and relationships, e.g. that Stefan loves Nicole.

� Idea: Re-use PL0, but replace propositional variables with something more expres-
sive! (instead of fancy variable name
trick)

� Definition 5.1.5. A first-order signature ⟨Σf ,Σp⟩ consists of

� Σf :=
⋃
k∈NΣ

f
k of function constants, where members of Σfk denote k-ary func-

tions on individuals,

� Σp:=
⋃
k∈NΣ

p
k of predicate constants, where members of Σpk denote k-ary rela-

tions among individuals,

where Σfk and Σpk are pairwise disjoint, countable sets of symbols for each k∈N.

� Definition 5.1.6. The formulae of PLnq are given by the following grammar

function constants fk ∈ Σfk
predicate constants pk ∈ Σpk
terms t ::= f0 constant

| fk(t1, . . ., tk) application
formulae A ::= pk(t1, . . ., tk) atomic

| ¬A negation
| A1 ∧A2 conjunction

Michael Kohlhase: LBS 102 2024-01-20

PLnq Semantics

� Definition 5.1.7. Domains D0 = {T,F} of truth values and Dι ̸= ∅ of individuals.

� Definition 5.1.8. Interpretation I assigns values to constants, e.g.

� I(¬) : D0→D0;T7→F;F 7→T and I(∧) = . . . (as in PL0)

� I : Σf0→Dι (interpret individual constants as individuals)

� I : Σfk→Dιk →Dι (interpret function constants as functions)

� I : Σpk→P(Dιk) (interpret predicate constants as relations)

� Definition 5.1.9. The value function I assigns values to formulae: (recursively)

64 CHAPTER 5. FRAGMENT 1

� I(f(A1, . . .,Ak)):=I(f)(I(A1), . . . , I(Ak))

� I(p(A1, . . .,Ak)):=T, iff ⟨I(A1), . . . , I(Ak)⟩∈I(p)
� I(¬A) = I(¬)(I(A)) and I(A ∧B) = I(∧)(I(A), I(G)) (just as in PL0)

� Definition 5.1.10. Model: M = ⟨Dι, I⟩ varies in Dι and I.

� Theorem 5.1.11. PLnq is isomorphic to PL0 (interpret atoms as prop. variables)

Michael Kohlhase: LBS 103 2024-01-20

A Model for PLnq

� Example 5.1.12. Let L:={a, b, c, d, e, P ,Q,R, S}, we set the universe D:={♣,♠,♡,♢},
and specify the interpretation function I by setting

� a7→♣, b 7→♠, c7→♡, d7→♢, and e 7→♢ for constants,

� P 7→{♣,♠} and Q7→{♠,♢}, for unary predicate constants.

� R 7→{⟨♡,♢⟩, ⟨♢,♡⟩}, and S 7→{⟨♢,♠⟩, ⟨♠,♣⟩} for binary predicate constants.

� Example 5.1.13 (Computing Meaning in this Model).

� I(R(a, b) ∧ P (c)) = T, iff

� I(R(a, b)) = T and I(P (c)) = T, iff

� ⟨I(a), I(b)⟩∈I(R) and I(c)∈I(P), iff

� ⟨♣,♠⟩∈{⟨♡,♢⟩, ⟨♢,♡⟩} and ♡∈{♣,♠}

So, I(R(a, b) ∧ P (c)) = F.

Michael Kohlhase: LBS 104 2024-01-20

PLnq and PL0 are Isomorphic

� Observation: For every choice of Σ of signature, the set AΣ of atomic PLnq

formulae is countable, so there is a VΣ ⊆ V0 and a bijection θΣ : AΣ→VΣ.

θΣ can be extended to formulae as PLnq and PL0 share connectives.

� Lemma 5.1.14. For every model M = ⟨Dι, I⟩, there is a variable assignment φM,
such that IφM(A) = I(A).

� Proof sketch: We just define φM(X):=I(θ−1
Σ (X))

� Lemma 5.1.15. For every variable assignment ψ : VΣ→{T,F} there is a model
Mψ = ⟨Dψ, Iψ⟩, such that Iψ(A) = Iψ(A).

� Proof sketch: see next slide

� Corollary 5.1.16. PLnq is isomorphic to PL0, i.e. the following diagram commutes:

5.1. THE FIRST FRAGMENT: SETTING UP THE BASICS 65

PLnq(Σ) PL0(AΣ)
θΣ

⟨Dψ, Iψ⟩ VΣ →{T,F}
ψ 7→ Mψ

Iψ() IφM()

� Note: This constellation with a language isomorphism and a corresponding model
isomorphism (in converse direction) is typical for a logic isomorphism.

Michael Kohlhase: LBS 105 2024-01-20

Valuation and Satisfiability

� Lemma 5.1.17. For every variable assignment ψ : VΣ→{T,F} there is a model
Mψ = ⟨Dψ, Iψ⟩, such that Iψ(A) = Iψ(A).

� Proof: We construct Mψ = ⟨Dψ, Iψ⟩ and show that it works as desired.

1. Let Dψ be the set of PLnq terms over Σ, and
� Iψ(f) : Dιk→Dψk;⟨A1, . . .,Ak⟩7→f(A1, . . .,Ak) for f∈Σfk
� Iψ(p):={⟨A1, . . .,Ak⟩|ψ(θ−1

ψ p(A1, . . .,Ak)) = T} for p∈Σp.
2. We show Iψ(A) = A for terms A by induction on A

2.1. If A = c, then Iψ(A) = Iψ(c) = c = A

2.2. If A = f(A1, . . . ,An) then
Iψ(A) = Iψ(f)(I(A1), . . . , I(An)) = Iψ(f)(A1, . . .,Ak) = A.

3. For a PLnq formula A we show that Iψ(A) = Iψ(A) by induction on A.
3.1. If A = p(A1, . . .,Ak), then Iψ(A) = Iψ(p)(I(A1), . . . , I(An)) = T, iff

⟨A1, . . .,Ak⟩∈Iψ(p), iff ψ(θ−1
ψ A) = T, so Iψ(A) = Iψ(A) as desired.

3.2. If A = ¬B, then Iψ(A) = T, iff Iψ(B) = F, iff Iψ(B) = Iψ(B), iff
Iψ(A) = Iψ(A).

3.3. If A = B ∧C then we argue similarly
4. Hence Iψ(A) = Iψ(A) for all PLnq formulae and we have concluded the proof.

Michael Kohlhase: LBS 106 2024-01-20

Now that we have the target logic we can complete the analysis arrow in slide 93. We do this
again, by giving transformation rules.

5.1.3 Natural Language Semantics via Translation

Translation rules for non-basic expressions (NP and S)

� Definition 5.1.18. We have the following translation rules for non-leaf node of the
abstract syntax tree

T1: [XNP, YV i]S ; Y ′(X ′)
T2: [XNP, YV t , ZNP]S ; Y ′(X ′, Z ′)
T3: [XNpr]NP ; X ′

T4: [the, XN]NP ; theX ′

T5: [It is not the case thatXS]S ; (¬X ′)

66 CHAPTER 5. FRAGMENT 1

T6: [XS , Yconj, ZS]S ; Y ′(X ′, Z ′)
T7: [XNP, is, YNP]S ; X ′ = Y ′

T8: [XNP, is, YAdj]S ; Y ′(X ′)

Read e.g. [Y,Z]X as a node with label X in the syntax tree with children X and
Y . Read X ′ as the translation of X via these rules.

� Note that we have exactly one translation per syntax rule.

Michael Kohlhase: LBS 107 2024-01-20

Translation rule for basic lexical items

� Definition 5.1.19. The target logic for F1 is PLnq, the fragment of PL1 without
quantifiers.

� Lexical Translation Rules for F1 Categories:

� If w is a proper name, then w′∈Σf0 . (individual constant)

� If w is an intransitive verb, then w′∈Σp1. (one-place predicate)

� If w is a transitive verb, w′∈Σp2. (two-place predicate)

� If w is a noun phrase, then w′∈Σf0 . (individual constant)

� Semantics by Translation: We translate sentences by translating their syntax
trees via tree node translation rules.

� For any non-logical word w, we have the “pseudo-rule” t1: w ; w′.

� Note: This rule does not apply to the syncategorematic items is and the.

� Translations for logical connectives

t2: and ; ∧, t3: or ; ∨, t4: it is not the case that ; ¬

Michael Kohlhase: LBS 108 2024-01-20

Translation Example

� Observation 5.1.20. Jo poisoned the dog and Ethel laughed is a sentence of
Fragment 1

� We can construct a syntax tree for it!

5.2. TESTING TRUTH CONDITIONS VIA INFERENCE 67

Jo poisoned the dog and Ethel laughed

Npr V t N conj Npr V i

NP NP NP

S S

S

Jo′ poisoned′ ∧ Ethel′ laughed′

Jo′ thedog′ Ethel′

poisoned′(Jo′, thedog′) laughed′(Ethel′)

poisoned′(Jo′, thedog′) ∧ laughed′(Ethel′)

Michael Kohlhase: LBS 109 2024-01-20

5.2 Testing Truth Conditions via Inference

Testing Truth Conditions in PLnq

� Idea 1: To test our language model (F1)

� Select a sentence S and a situation W that makes S true. (according to
humans)

� Translate S in to a formula S′ in PLnq.

� Express W as a set Φ of formulae in PLnq (Φ =̂ truth conditions)

� Our language model is supported if Φ |=S′, falsified if Φ ̸|=S′.

� Example 5.2.1 (John chased the gangster in the red sports car).

� We claimed that we have three readings Example 2.3.3
R1:=c(j, g) ∧ in(j, s), R2:=c(j, g) ∧ in(g, s), and R3:=c(j, g) ∧ in(j, s) ∧ in(g, s)

� So there must be three distinct situations W that make S true

1. John is in the red sports car, but the gangster isn’t
W1:=c(j, g) ∧ in(j, s) ∧ ¬in(g, s), so W1 |=R1, but W1 ̸|=R2 and W1 ̸|=R3

2. The gangster is in the red sports car, but John isn’t
W2:=c(j, g) ∧ in(j, s) ∧ ¬in(g, s), so W2 |=R2, but W2 ̸|=R1 and W2 ̸|=R3

3. Both are in the red sports car
=̂ they run around on the back seat of a very big sports car
W3:=c(j, g) ∧ in(j, s) ∧ in(g, s), so W3 |=R3, but W3 ̸|=R1 and W3 ̸|=R1

� Idea 2: Use a calculus to model |=, e.g. ND_0

Michael Kohlhase: LBS 110 2024-01-20

Fragment 1

� Fragment F1 of English (defined by grammar + lexicon)

� Logic PLnq (serves as a mathematical model for F1)

� Formal Language (individuals, predicates, ¬,∧,∨,⇒)

68 CHAPTER 5. FRAGMENT 1

� Semantics Iφ defined recursively on formula structure
(; validity, entailment)

� Tableau calculus for validity and entailment (Calculemus!)

� Analysis function F1 ; PLnq (Translation)

� Test the model by checking predictions (calculate truth conditions)

� Coverage: Extremely Boring! (accounts for 0 examples from the intro) but the
conceptual setup is fascinating

Michael Kohlhase: LBS 111 2024-01-20

Summary: The Interpretation Process

� Interpretation Process:

Syntax Quasi-Logical Form Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Pragmatic
Analysis

(inferential)

Michael Kohlhase: LBS 112 2024-01-20

Chapter 6

Fragment 1: The Grammatical
Logical Framework

Now that we have introduced the “Method of Fragments” in theory, let see how we can implement
it in a contemporary grammatical and logical framework. For the implementation of the semantics
construction, we use GF, the “grammatical framework”. For the implementation of the logic we
will use the MMT system.

In this chapter we develop and implement a toy/tutorial language fragment chosen mostly for
didactical reasons to introduce the two systems. The code for all the examples can be found at
https://gl.mathhub.info/Teaching/LBS/tree/master/source/tutorial.

6.1 Implementing Fragment 1 in GF

Implementing Fragment 1 in GF

� The grammar of Fragment 1 only differs trivially from Hello World grammar two.gf
from slide 65.

� Verbs: V t =̂ V2, V i =̂ cat V; fun sp : NP -> V -> S;

� Negation: fun not : S -> S; lin not a = mkS ("it is not the case that"++ a.s);

� the: fun the : N -> NP; lin the n = mkNP ("the"++ n.s);

� conjunction: fun and : S -> S -> S; lin and a b = mkS (a.s ++ "and"++ b.s);

Michael Kohlhase: LBS 113 2024-01-20

6.2 Implementing Fragment1 in GF and MMT

Discourse Domain Theories for F1 (Lexicon)

� A “lexicon theory” (only selected constants here)

theory plnqFrag1 : ?plnq =
ethel : ι # ethel’
prudence : ι # prudence’
dog : ι # dog’

69

https://gl.mathhub.info/Teaching/LBS/tree/master/source/tutorial

70 CHAPTER 6. FRAGMENT 1: THE GRAMMATICAL LOGICAL FRAMEWORK

poison : ι→ ι→ o # poison’ 1 2
laugh : ι→ o # laugh’ 1

declares one logical constant for each from abstract GF grammar.

� Enough to interpret Prudence poisoned the dog and Ethel laughed from above.
ex : o = poison’ prudence’ dog’ ∧ laugh’ ethel’

Michael Kohlhase: LBS 114 2024-01-20

Representing Multiple Readings

� We can even represent the three readings of John chased the gangster in the red
sports car from Example 2.3.3.
theory sportscar : ?plnq =

john : ι gangster : ι sportscar : ι red : ι→ o
chased : ι→ ι→ o in : ι→ ι→ o
jcgirs1 : o = chased john gangster ∧ in sportscar gangster ∧ red sportscar
jcgirs2 : o = chased john gangster ∧ in sportscar john ∧ red sportscar
jcgirs3 : o = chased john gangster ∧ in sportscar john ∧

in sportscar gangster ∧ red sportscar

� Problem: Can we systematically generate terms like jcgirs1, jcgirs2, and
jcgirs3?

� Idea: Use the ASTs from GF in Mmt.

Michael Kohlhase: LBS 115 2024-01-20

Embedding GF into Mmt

� Observation: The GF system provides Java bindings and Mmt is programed in
Scala, which compiles into the Java virtual machine.

� Idea: Use GF as a sophisticated NL-parser/generator for Mmt

; Mmt with a natural language front-end.

; GF with a multi-logic back-end

� Definition 6.2.1. The MMT integration mapping interprets GF abstract syntax
trees as Mmt terms.

� Observation: This fits very well with our interpretation process in LBS

6.2. IMPLEMENTING FRAGMENT1 IN GF AND MMT 71

Syntax Quasi-Logical Form Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Pragmatic
Analysis

(inferential)

� Implementation: transform GF system (Java) data structures to Mmt (Scala)
ones in Mmt.

Michael Kohlhase: LBS 116 2024-01-20

GF Abstract syntax trees as Mmt Terms

� Idea: Make the MMT integration mapping (essentially) the identity.

� Prerequisite: Mmt theory isomorphic to GF grammar (declarations aligned)

� Recall: ASTs in GF are essentially terms.

� Indeed: GF abstract grammars are essentially Mmt theories.

� Example 6.2.2. Syntactic categories of F1 (Syntactic categories =̂ types)

theory Frag1CatMMT : ur:?LF =
S : type
Conj : type
NP : type
Npr : type
N : type
Vi : type
Vt : type

The F1 lexicon (words =̂ constants)

theory Frag1LexMMT : ur:?LF =
include ? Frag1CatMMT
ethel : Npr
prudence : Npr
dog : N
poison : Vt
laugh : Vi
and : Conj

The structural rules of F1 (functions =̂ functions)

theory Frag1RulesMMT : ur:?LF =
include ? Frag1CatMMT
s1 : NP → Vi → S
s2 : NP → Vt → NP → S
n1 : Npr → NP
n2 : N → NP
s3 : S → S
s4 : S → Conj → S → S
s5 : NP → NP → S

72 CHAPTER 6. FRAGMENT 1: THE GRAMMATICAL LOGICAL FRAMEWORK

s6 : NP → Adj → S

putting it all together
theory Frag1LexMMT : ur:?LF =

include ? Frag1LexMMT
include ? Frag1RulesMMT

� Observation: GF grammars and Mmt theories best when organized modularly.

Michael Kohlhase: LBS 117 2024-01-20

Semantics Construction as an MMT View

� Observation 6.2.3. We can express semantics construction as an Mmt view

Syntax Logic

NL Utterance

t
Syntax
Tree

parsing

φ(t)
Logic

Expression

Concrete
Grammar

CG
Theory PLNQ

=̂ φ

GF MMT

� Example 6.2.4. Syntactic categories ; PLnq types
view Frag1CatSem : ?Frag1CatMMT -> ?plnqFrag1 =

S = o
NP = ι
Vi = ι→ o
Vt = ι→ ι→ o
Npr = ι
N = ι
Conj = o → o → o

Lexicon ; mapping into PLnq terms
view Frag1LexSem : ?Frag1CatMMT -> ?plnqFrag1 =

include ?Frag1CatSem
ethel = ethel’
prudence = prudence’
dog = dog’
poison = poison
laugh = laugh
and = and

Structural rules ; defining functions via λ-terms
view Frag1RulesSem : ?Frag1CatMMT -> ?plnqFrag1 =

include ?Frag1CatSem
s1 = [n, v] v n
s2 = [n1,v,n2] v n1 n2

6.2. IMPLEMENTING FRAGMENT1 IN GF AND MMT 73

n1 = [n] n
n2 = [n] n
s3 = [s] ¬s
s4 = [a,c,b] c a b
s5 = [n1,n2] n1 .

=n2
s6 = [n,a] a s

putting it all together
view Frag1Sem : ?Frag1CatMMT -> ?plnqFrag1 =

include ?Frag1LexSem
include ?Frag1RulesSem

Michael Kohlhase: LBS 118 2024-01-20

Montague-Style Processing of F1 in GLF

� Example 6.2.5. Prudence poisoned the dog and Ethel laughed

� Parsing with GF

� parse -lang=Eng "Prudence poisons the dog and Ethel laughs"
� s4 (s2 (n1 prudence) poison (n2 dog)) and (s1 (n1 ethel) laugh)

� Semantics construction via GLF: GF parsing + Mmt view

� parse -lang=Eng "Ethel poisons the dog and Prudence laughs" con-
struct|

� poison’ prudence’ ∧ dog’ laugh’ ethel’

Michael Kohlhase: LBS 119 2024-01-20

Montague-Style Analysis of F1 in GF and MMT

� Recap: We have realized the green part of

Comp Ling
NL

FL

M = ⟨D, I⟩

|=NL ⊆ NL×NL

⊢C ⊆ FL× FL

|= ⊆ FL× FL

Analysis

Iφ

induces?

induces

choose calculus C

|= ≡ ⊢C?

|=NL ≡ ⊢C?

Logic

� The GF grammar for F1 defines the fragment NL.

74 CHAPTER 6. FRAGMENT 1: THE GRAMMATICAL LOGICAL FRAMEWORK

� The Mmt implementation of PLnq is FL.

� The Mmt view implements the compositional translation function for F1

Michael Kohlhase: LBS 120 2024-01-20

6.3 Implementing Natural Deduction in MMT

Implementing Calculi in Mmt (Judgments as Types)

� Idea: Represent proofs and derivations as expressions in theory of “proofs” .

� Concretely: For any proposition A, introduce ⊢ A for the type of proofs of A.

� Any term of type ⊢ A =̂ a proof of A

� A is provable =̂ ⊢ A is nonempty

� inference rules are proof constructors (functions)

� a declaration c : ⊢A makes ¬A non-empty ; c : ⊢A =̂ an axiom

� a definition c : ⊢A = P does as well but also exhibits a “proof” P
; c : ⊢A = P =̂ a theorem

� in MMT: we introduce a (proof) type constructor ded a type ⊢ A.
theory pl0NDminimal : ur:?LF =

include ?proplogMinimal
ded : o → type # ⊢1 prec 10 role Judgment

the role Judgment specifies ?????

Michael Kohlhase: LBS 121 2024-01-20

Implementing Calculi in Mmt (ND_0 Rules)

� Recap: We only need the ND_0 rules for negation and conjunction:

A B

A ∧B
ND_0 ∧ I A ∧B

A
ND_0 ∧ El

A ∧B

B
ND_0 ∧ Er

[A]
1

...
C

[A]
1

...
¬C

¬A
ND_0¬I1 ¬¬A

A
ND_0¬E

� The ND Rules:
notE : {A} ⊢¬¬A →⊢A # ¬E 2
notI : {A,Q} (⊢A →⊢Q) → (⊢A →⊢¬Q) →⊢¬A # ¬I 3 4
andI : {A,B} ⊢A →⊢B →⊢A∧ B # ∧ I 3 4
andEl : {A,B} ⊢A∧ B →⊢A # ∧ El 3
andEr : {A,B} ⊢A∧ B →⊢B # ∧ Er 3

Inference rules as and hypothetical derivations as proof-to-proof functions.

6.3. IMPLEMENTING NATURAL DEDUCTION IN MMT 75

� Derived ND Rules: All other inference rules of ND_0 can be written down
similarly. What is more, as they are derivable from those above, they can become
Mmt definitions.

Michael Kohlhase: LBS 122 2024-01-20

Implementing Calculi in Mmt (a proof)

� Example 6.3.1. We can now write down the proof for the commutativity of V !

[A ∧B]1

ND_0 ∧ Er
B

[A ∧B]1

ND_0 ∧ El
A

ND_0 ∧ I
B) ∧A

ND_0 ⇒I1
A ∧B⇒B) ∧A

from ?? as the Mmt declaration
andcomm {A,B} ⊢A∧ B ⇒ B∧ A = ⇒ I([x] ∧ I (∧ Er x) (∧ El x))

Michael Kohlhase: LBS 123 2024-01-20

76 CHAPTER 6. FRAGMENT 1: THE GRAMMATICAL LOGICAL FRAMEWORK

Chapter 7

Adding Context: Pronouns and
World Knowledge

In this chapter we will extend the model generation system by facilities for dealing with world
knowledge and pronouns. We want to cover discourses like Peter loves Fido. Even though he
bites him sometimes. As we already observed there, we crucially need a notion of context which
determines the meaning of the pronoun. Furthermore, the example shows us that we will need
to take into account world knowledge as A way to integrate world knowledge to filter out one
interpretation, i.e. Humans don’t bite dogs.

7.1 Fragment 2: Pronouns and Anaphora

Fragment 2 (F2 =̂ F1 + Pronouns)

� Want to cover: Peter loves Fido. He bites him. (almost intro)

� We need: Translation and interpretation for he, she, him,. . . .

� Also: A way to integrate world knowledge to filter out one interpretation (i.e.
Humans don’t bite dogs.)

� Idea: Integrate variables into PLnq (work backwards from that)

� Logical System: PLV
NQ = PLnq + variables (Translate pronouns to variables)

Michael Kohlhase: LBS 124 2024-01-20

New Grammar in F2 (Pronouns)

� Definition 7.1.1. We have the following structural grammar rules in F2

S1: S→NP, V i,
S2: S→NP, V t,NP,
N1: NP→Npr,
N2: NP→Pron,
N3: NP→the, N ,

77

78 CHAPTER 7. ADDING CONTEXT: PRONOUNS AND WORLD KNOWLEDGE

S3: S→it is not the case that, S,
S4: S→S, conj, S,
S5: S→NP, is,NP,
S6: S→NP, is,Adj

and one additional lexical rule:

L7: Pron→he | she | it | we | they

Michael Kohlhase: LBS 125 2024-01-20

Translation for F2 (first attempt)

� Idea: Pronouns are translated into new variables (so far)

� The syntax/semantic trees for Peter loves Fido and he bites him. are straightforward.
(almost intro)

Peter loves Fido and he bites him

Npr V t N conj Pron V t Pron

NP NP NP NP

S S

S

Peter loves Fido and he bites him

Peter′ loves′ Fido′ ∧ X bites′ Y

Peter′ Fido′ X Y

loves′(Peter′, F ido′) bites′(X,Y)

loves′(Peter′ ∧ Fido′) ∧ bites′(X ∧ Y)

Michael Kohlhase: LBS 126 2024-01-20

Predicate Logic with Variables (but no Quantifiers)

� Definition 7.1.2 (Logical System PLV
NQ). PLV

NQ:=PLnq + variables

� Definition 7.1.3 (PLV
NQ Syntax).

Category V = {X,Y , Z,X1, X2, . . .} of variables (allow variables wherever
individual constants were allowed)

� Definition 7.1.4 (PLV
NQ Semantics). Model M = ⟨D, I⟩ (need to evaluate

variables)

� variable assignment: φ : Vι→U

� value function: Iφ(X) = φ(X) (defined like I elsewhere)

� call a PLV
NQ formula A valid in M under φ, iff Iφ(A) = T,

� call it satisfiable in M, iff there is a variable assignment φ, such that Iφ(A) = T

Michael Kohlhase: LBS 127 2024-01-20

7.2. A TABLEAU CALCULUS FOR PLNQ WITH FREE VARIABLES 79

Implementing Fragment 2 in GF

� The grammar of Fragment 2 only differs from that of Fragment 1 by

� Pronouns: Pron =̂ cat Pron; fun usePron : Pron -> NP; he,she,it : Pron;,

� Case: for distinguishing he/him in English.

param Case = nom | acc;
oper
NounPhraseType : Type = { s : Case => Str };
PronounType : Type = { s : Case => Str };

lincat
NP = NounPhraseType;
Pron = PronounType;

� English Paradigms to deal with case

mkNP = overload {
mkNP : Str −> NP =

\name −> lin NP { s = table { nom => name; acc => name } };
mkNP : (Case => Str) −> NP = \caseTable −> lin NP { s = caseTable };};
mkPron : (she : Str) −> (her : Str) −> Pron =

\she,her −> lin Pron {s = table {nom => she; acc => her}};
he = mkPron "he" "him" ; she = mkPron "she" "her";it = mkPron "it" "it";

Michael Kohlhase: LBS 128 2024-01-20

7.2 A Tableau Calculus for PLNQ with Free Variables

The main idea here is to extend the fragment of first-order logic we use as a model for natural
language to include free variables, and assume that pronouns like he, she, it, and they are translated
to distinct free variables i.e. every occurrance of a pronoun to a new variable. Note that we do
not allow quantifiers yet that will come in 1, as quantifiers will pose new problems, and we can EdN:1
already solve some linguistically interesting problems without them.
To allow for world knowledge, we generalize the notion of an initial tableau 2. Instead of allowing EdN:2
only the initial signed formula at the root node, we allow a linear tree whose nodes are labeled
with signed formulae representing the world knowledge. As the world knowledge resides in the
initial tableau (intuitively before all input), we will also speak of background knowledge.
We will use free variables for two purposes in our new fragment. Free variables in the input will

stand for pronouns, their value will be determined by random instantiation. Free variables in the
world knowledge allow us to express schematic knowledge. For instance, if we want to express
Humans don’t bite dogs., then we can do this by the formula human(X)∧dog(Y)⇒¬bites(X,Y).
Of course we will have to extend our tableau calculus with new inference rules for the new language
capabilities.

7.2.1 Calculi for Automated Theorem Proving: Analytical Tableaux

In this section we will introduce tableau calculi for propositional logics. To make the reasoning
procedure more interesting, we will use first-order predicate logic without variables, function sym-
bols and quantifiers as a basis. This logic (we will call it PLnq) allows us express simple natural
language sentences and to re-use our grammar for experimentation, without introducing the whole
complications of first-order inference.

1EdNote: crossref
2EdNote: crossref

80 CHAPTER 7. ADDING CONTEXT: PRONOUNS AND WORLD KNOWLEDGE

The logic PLnq is equivalent to propositional logic in expressivity: atomic formulae take the role
of propositional variables.

Instead of deducing new formulae from axioms (and hypotheses) and hoping to arrive at the
desired theorem, we try to deduce a contradiction from the negation of the theorem. Indeed,
a formula A is valid, iff ¬A is unsatisfiable, so if we derive a contradiction from ¬A, then we
have proven A. The advantage of such “test-calculi” (also called negative calculi) is easy to see.
Instead of finding a proof that ends in A, we have to find any of a broad class of contradictions.
This makes the calculi that we will discuss now easier to control and therefore more suited for
mechanization.

7.2.1.1 Analytical Tableaux

Before we can start, we will need to recap some nomenclature on formulae.

Recap: Atoms and Literals

� Definition 7.2.1. A formula is called atomic (or an atom) if it does not contain
logical constants, else it is called complex.

� Definition 7.2.2. We call a pair Aα of a formula and a truth value α∈{T,F} a
labeled formula. For a set Φ of formulae we use Φα:={Aα|A∈Φ}.

� Definition 7.2.3. A labeled atom Aα is called a (positive if α = T, else negative)
literal.

� Intuition: To satisfy a formula, we make it “true”. To satisfy a labeled formula
Aα, it must have the truth value α.

� Definition 7.2.4. For a literal Aα, we call the literal Aβ with α ̸= β the opposite
literal (or partner literal).

Michael Kohlhase: LBS 129 2024-01-20

The idea about literals is that they are atoms (the simplest formulae) that carry around their
intended truth value.

Alternative Definition: Literals

� Note: Literals are often defined without recurring to labeled formulae:

� Definition 7.2.5. A literal is an atom A (positive literal) or negated atom ¬A
(negative literal). A and ¬A are opposite literals.

� Note: This notion of literal is equivalent to the labeled formulae-notion of literal,
but does not generalize as well to logics with more than two truth values.

Michael Kohlhase: LBS 130 2024-01-20

Test Calculi: Tableaux and Model Generation

� Idea: A tableau calculus is a test calculus that

� analyzes a labeled formulae in a tree to determine satisfiability,

� its branches correspond to valuations (; models).

7.2. A TABLEAU CALCULUS FOR PLNQ WITH FREE VARIABLES 81

� Example 7.2.6.Tableau calculi try to construct models for labeled formulae:

Tableau refutation (Validity) Model generation (Satisfiability)
|=P ∧Q⇒Q ∧ P |=P ∧ (Q ∨ ¬R) ∧ ¬Q

(P ∧Q⇒Q ∧ P)F

(P ∧Q)T

(Q ∧ P)F

PT

QT

P F

⊥
QF

⊥

(P ∧ (Q ∨ ¬R) ∧ ¬Q)T

(P ∧ (Q ∨ ¬R))T
¬QT

QF

PT

(Q ∨ ¬R)T
QT

⊥
¬RT

RF

No Model Herbrand Model {PT, QF, RF}
φ:={P 7→ T, Q 7→ F, R 7→ F}

� Idea: Open branches in saturated tableaux yield models.

� Algorithm: Fully expand all possible tableaux, (no rule can be applied)

� Satisfiable, iff there are open branches (correspond to models)

Michael Kohlhase: LBS 131 2024-01-20

Tableau calculi develop a formula in a tree-shaped arrangement that represents a case analysis on
when a formula can be made true (or false). Therefore the formulae are decorated with exponents
that hold the intended truth value.
On the left we have a refutation tableau that analyzes a negated formula (it is decorated with the
intended truth value F). Both branches contain an elementary contradiction ⊥.

On the right we have a model generation tableau, which analyzes a positive formula (it is
decorated with the intended truth value T. This tableau uses the same rules as the refutation
tableau, but makes a case analysis of when this formula can be satisfied. In this case we have a
closed branch and an open one, which corresponds a model).

Now that we have seen the examples, we can write down the tableau rules formally.

Analytical Tableaux (Formal Treatment of T0)

� Idea: A test calculus where

� A labeled formula is analyzed in a tree to determine satisfiability,

� branches correspond to valuations (models)

� Definition 7.2.7. The propositional tableau calculus T0 has two inference rules per
connective (one for each possible label)

(A ∧B)
T

AT

BT

T0∧
(A ∧B)

F

AF
∣∣∣ BF

T0∨
¬AT

AF
T0¬T ¬AF

AT
T0¬F

Aα

Aβ α ̸= β

⊥
T0⊥

Use rules exhaustively as long as they contribute new material (; termination)

� Definition 7.2.8. We call any tree (
∣∣∣ introduces branches) produced by the T0

inference rules from a set Φ of labeled formulae a tableau for Φ.

82 CHAPTER 7. ADDING CONTEXT: PRONOUNS AND WORLD KNOWLEDGE

� Definition 7.2.9. Call a tableau saturated, iff no rule adds new material and a
branch closed, iff it ends in ⊥, else open. A tableau is closed, iff all of its branches
are.

Michael Kohlhase: LBS 132 2024-01-20

These inference rules act on tableaux have to be read as follows: if the formulae over the line
appear in a tableau branch, then the branch can be extended by the formulae or branches below
the line. There are two rules for each primary connective, and a branch closing rule that adds the
special symbol ⊥ (for unsatisfiability) to a branch.
We use the tableau rules with the convention that they are only applied, if they contribute new
material to the branch. This ensures termination of the tableau procedure for propositional logic
(every rule eliminates one primary connective).
Definition 7.2.10. We will call a closed tableau with the labeled formula Aα at the root a
tableau refutation for Aα.
The saturated tableau represents a full case analysis of what is necessary to give A the truth value
α; since all branches are closed (contain contradictions) this is impossible.

Analytical Tableaux (T0 continued)

� Definition 7.2.11 (T0-Theorem/Derivability). A is a T0-theorem (⊢T0A), iff
there is a closed tableau with AF at the root.

Φ ⊆ wff0(V0) derives A in T0 (Φ⊢T0
A), iff there is a closed tableau starting with AF

and ΦT. The tableau with only a branch of AF and ΦT is called initial for Φ⊢T0
A.

Michael Kohlhase: LBS 133 2024-01-20

Definition 7.2.12. We will call a tableau refutation for AF a tableau proof for A, since it refutes
the possibility of finding a model where A evaluates to F. Thus A must evaluate to T in all
models, which is just our definition of validity.
Thus the tableau procedure can be used as a calculus for propositional logic. In contrast to the
propositional Hilbert calculus it does not prove a theorem A by deriving it from a set of axioms,
but it proves it by refuting its negation. Such calculi are called negative or test calculi. Generally
negative calculi have computational advantages over positive ones, since they have a built-in sense
of direction.
We have rules for all the necessary connectives (we restrict ourselves to ∧ and ¬, since the others
can be expressed in terms of these two via the propositional identities above. For instance, we can
write A ∨B as ¬(¬A ∧ ¬B), and A⇒B as ¬A ∨B,. . . .)
We now look at a formulation of propositional logic with fancy variable names. Note that
loves(mary, bill) is just a variable name like P or X, which we have used earlier.

A Valid Real-World Example

7.2. A TABLEAU CALCULUS FOR PLNQ WITH FREE VARIABLES 83

� Example 7.2.13. If Mary loves Bill and John loves Mary, then John loves Mary

(loves(mary, bill) ∧ loves(john,mary)⇒ loves(john,mary))F

¬(¬¬(loves(mary, bill) ∧ loves(john,mary)) ∧ ¬loves(john,mary))F

(¬¬(loves(mary, bill) ∧ loves(john,mary)) ∧ ¬loves(john,mary))T

¬¬(loves(mary, bill) ∧ loves(john,mary))T

¬(loves(mary, bill) ∧ loves(john,mary))F

(loves(mary, bill) ∧ loves(john,mary))T

¬loves(john,mary)T

loves(mary, bill)T

loves(john,mary)T

loves(john,mary)F

⊥

This is a closed tableau, so the loves(mary, bill)∧loves(john,mary)⇒loves(john,mary)
is a T0-theorem.

As we will see, T0 is sound and complete, so

loves(mary, bill) ∧ loves(john,mary)⇒ loves(john,mary)

is valid.

Michael Kohlhase: LBS 134 2024-01-20

We could have used the unsatisfiability theorem (??) here to show that If Mary loves Bill and John
loves Mary entails John loves Mary. But there is a better way to show entailment: we directly
use derivability in T0.

Deriving Entailment in T0

� Example 7.2.14. Mary loves Bill and John loves Mary together entail that John
loves Mary

loves(mary, bill)T

loves(john,mary)T

loves(john,mary)F

⊥

This is a closed tableau, so {loves(mary, bill), loves(john,mary)}⊢T0
loves(john,mary).

Again, as T0 is sound and complete we have

{loves(mary, bill), loves(john,mary)} |= loves(john,mary)

Michael Kohlhase: LBS 135 2024-01-20

Note: We can also use the tableau calculus to try and show entailment (and fail). The nice thing
is that the failed proof, we can see what went wrong.

A Falsifiable Real-World Example

� Example 7.2.15. * If Mary loves Bill or John loves Mary, then John loves Mary

84 CHAPTER 7. ADDING CONTEXT: PRONOUNS AND WORLD KNOWLEDGE

Try proving the implication (this fails)

((loves(mary, bill) ∨ loves(john,mary))⇒ loves(john,mary))F

¬(¬¬(loves(mary, bill) ∨ loves(john,mary)) ∧ ¬loves(john,mary))F

(¬¬(loves(mary, bill) ∨ loves(john,mary)) ∧ ¬loves(john,mary))T

¬loves(john,mary)T

loves(john,mary)F

¬¬(loves(mary, bill) ∨ loves(john,mary))T

¬(loves(mary, bill) ∨ loves(john,mary))F

(loves(mary, bill) ∨ loves(john,mary))T

loves(mary, bill)T loves(john,mary)T

⊥

Indeed we can make Iφ(loves(mary, bill)) = T but Iφ(loves(john,mary)) = F.

Michael Kohlhase: LBS 136 2024-01-20

Obviously, the tableau above is saturated, but not closed, so it is not a tableau proof for our initial
entailment conjecture. We have marked the literal on the open branch green, since they allow us
to read of the conditions of the situation, in which the entailment fails to hold. As we intuitively
argued above, this is the situation, where Mary loves Bill. In particular, the open branch gives us
a variable assignment (marked in green) that satisfies the initial formula. In this case, Mary loves
Bill, which is a situation, where the entailment fails.
Again, the derivability version is much simpler:

Testing for Entailment in T0

� Example 7.2.16. Does Mary loves Bill or John loves Mary entail that John loves
Mary?

(loves(mary, bill) ∨ loves(john,mary))T

loves(john,mary)F

loves(mary, bill)T loves(john,mary)T

⊥

This saturated tableau has an open branch that shows that the interpretation with
Iφ(loves(mary, bill)) = T but Iφ(loves(john,mary)) = F falsifies the derivability/en-
tailment conjecture.

Michael Kohlhase: LBS 137 2024-01-20

We have seen in the examples above that while it is possible to get by with only the connectives
∨ and ¬, it is a bit unnatural and tedious, since we need to eliminate the other connectives first.
In this subsection, we will make the calculus less frugal by adding rules for the other connectives,
without losing the advantage of dealing with a small calculus, which is good making statements
about the calculus itself.

7.2.1.2 Practical Enhancements for Tableaux

The main idea here is to add the new rules as derivable inference rules, i.e. rules that only
abbreviate derivations in the original calculus. Generally, adding derivable inference rules does
not change the derivation relation of the calculus, and is therefore a safe thing to do. In particular,
we will add the following rules to our tableau calculus.

7.2. A TABLEAU CALCULUS FOR PLNQ WITH FREE VARIABLES 85

We will convince ourselves that the first rule is derivable, and leave the other ones as an exercise.

Derived Rules of Inference

� Definition 7.2.17. An inference rule
A1 . . . An

C
is called derivable (or a derived

rule) in a calculus C, if there is a C derivation A1, . . .,An⊢CC.

� Definition 7.2.18. We have the following derivable inference rules in T0:

(A⇒B)
T

AF
∣∣∣ BT

(A⇒B)
F

AT

BF

AT

(A⇒B)
T

BT

(A ∨B)
T

AT
∣∣∣ BT

(A ∨B)
F

AF

BF

A⇔BT

AT

BT

∣∣∣∣ AF

BF

A⇔BF

AT

BF

∣∣∣∣ AF

BT

AT

(A⇒B)
T

(¬A ∨B)
T

¬(¬¬A ∧ ¬B)
T

(¬¬A ∧ ¬B)
F

¬¬AF

¬AT

AF

⊥

¬BF

BT

Michael Kohlhase: LBS 138 2024-01-20

With these derived rules, theorem proving becomes quite efficient. With these rules, the tableau
(Example 7.2.13) would have the following simpler form:

Tableaux with derived Rules (example)
Example 7.2.19.

(loves(mary, bill) ∧ loves(john,mary)⇒ loves(john,mary))F

(loves(mary, bill) ∧ loves(john,mary))T

loves(john,mary)F

loves(mary, bill)T

loves(john,mary)T

⊥

Michael Kohlhase: LBS 139 2024-01-20

Another thing that was awkward in (Example 7.2.13) was that we used a proof for an implication
to prove logical consequence. Such tests are necessary for instance, if we want to check consistency
or informativity of new sentences3. Consider for instance a discourse ∆ = D1, . . .,Dn, where n EdN:3
is large. To test whether a hypothesis H is a consequence of ∆ (∆ |= H) we need to show that
C:=D1 ∧ . . . ∧Dn ⇒H is valid, which is quite tedious, since C is a rather large formula, e.g. if
∆ is a 300 page novel. Moreover, if we want to test entailment of the form (∆ |=H) often, – for
instance to test the informativity and consistency of every new sentence H, then successive ∆s will
overlap quite significantly, and we will be doing the same inferences all over again; the entailment
check is not incremental.

incremental procedure for entailment checking in the model generation based setting: To test
whether ∆ |=H, where we have interpreted ∆ in a model generation tableau T , just check whether
the tableau closes, if we add ¬H to the open branches. Indeed, if the tableau closes, then ∆∧¬H

3EdNote: add reference to presupposition stuff

86 CHAPTER 7. ADDING CONTEXT: PRONOUNS AND WORLD KNOWLEDGE

is unsatisfiable, so ¬(∆∧¬H) is valid, but this is equivalent to ∆⇒H, which is what we wanted
to show.
Example 7.2.20. Consider for instance the following entailment in natural language.

Mary loves Bill. John loves Mary |= John loves Mary

4 We obtain the tableauEdN:4
loves(mary,bill)T

loves(john,mary)T

¬loves(john,mary)T

loves(john,mary)F

⊥

which shows us that the conjectured entailment relation really holds.
Excursion: We will discuss the properties of propositional tableaux in??.

7.2.2 A Tableau Calculus for PLNQ with Free Variables

A Tableau Calculus for PLV
NQ

� Definition 7.2.21 (Tableau Calculus for PLV
NQ). T p

V = T0 + new tableau rules
for formulae with variables

...
Aα

...

c∈H

([c/X](A))
α T p

V WK

...
(Aα)

H = {a1, . . ., an}
free(A) = {X1, . . ., Xm}

(σ1(A))
α
∣∣∣ . . . ∣∣∣ (σ(nm)(A))

α
T p
V Ana

H is the set of ind. constants in the branch above (Herbrand Base)
and the σi are substitutions that instantiate the Xj with any combinations of the
ak (there are nm of them).

� the first rule is used for world knowledge (up in the branch)

� the second rule is used for input logical forms · · ·
this rule has to be applied eagerly (while they are still at the leaf)

Michael Kohlhase: LBS 140 2024-01-20

Let us look at two examples: To understand the role of background knowledge we interpret Peter
snores with respect to the knowledge that Only sleeping people snore.

Some Examples in F2

4EdNote: need to mark up the embedding of NL strings into Math

7.2. A TABLEAU CALCULUS FOR PLNQ WITH FREE VARIABLES 87

� Example 7.2.22 (Peter snores). (Only sleeping people snore)

(snores(X)⇒ sleeps(X))
T

(snores(peter)T)

(snores(peter)⇒ sleeps(peter))T

sleeps(peter)T

� Example 7.2.23 (Peter sleeps. John walks. He snores). (who snores?)

(sleeps(peter)T)

(walks(john)T)

(snores(X)
T
)

snores(peter)T snores(john)T

Michael Kohlhase: LBS 141 2024-01-20

The background knowledge is represented in the schematic formula in the first line of the tableau.
Upon receiving the input, the tableau instantiates the schema to line three and uses the chaining
rule from Definition 7.2.18 to derive the fact that Peter must sleep.
The third input formula contains a free variable, which is instantiated by all constants in the
Herbrand base (two in our case). This gives rise to two models that correspond to the two
readings of the discourse.
Let us now look at an example with more realistic background knowledge. Say we know that
birds fly, if they are not penguins. Furthermore, eagles and penguins are birds, but eagles are
not penguins. Then we can answer the classic question Does Tweety fly? by the following two
tableaux.

Does Tweety fly? The everlasting Question in AI

� Example 7.2.24.

Tweety is a bird Tweety is an eagle

(bird(X)⇒ (flies(X) ∨ penguin(X)))
T

(penguin(X)⇒¬flies(X))
T

(bird(tweety)T)

(flies(tweety) ∨ penguin(tweety))T

flies(tweety)T penguin(tweety)T

¬flies(tweety)T

flies(tweety)F

(bird(X)⇒ (flies(X) ∨ penguin(X)))
T

(eagle(X)⇒ bird(X))
T

(penguin(X)⇒¬eagle(X))
T

(penguin(X)⇒¬flies(X))
T

(eagle(tweety)T)

bird(tweety)T

(flies(tweety) ∨ penguin(tweety))T

flies(tweety)T penguin(tweety)T

(¬eagle(tweety))T

eagle(tweety)F

⊥

� For the second we need to add more world knowledge.

Michael Kohlhase: LBS 142 2024-01-20

88 CHAPTER 7. ADDING CONTEXT: PRONOUNS AND WORLD KNOWLEDGE

7.2.3 Case Study: Peter loves Fido, even though he sometimes bites
him

Let us now return to the motivating example from the introduction, and see how our system fares
with it (this allows us to test our computational/linguistic theory). We will do this in a completely
naive manner and see what comes out.
The first problem we run into immediately is that we do not know how to cope with even though
and sometimes, so we simplify the discourse to Peter loves Fido and he bites him..

Finally: Peter loves Fido. He bites him.

� Let’s try it naively (worry about the problems later.)

(l(p, f)
T
)

(b(X,Y)
T
)

b(p, p)
T

b(p, f)
T

b(f, p)
T

b(f, f)
T

� Problem: We get four readings instead of one!

� Idea: We have not specified enough world knowledge

Michael Kohlhase: LBS 143 2024-01-20

The next problem is obvious: We get four readings instead of one (or two)! What has happened?
If we look at the models, we see that we did not even specify the background knowledge that was
supposed filter out the one intended reading.
We try again with the additional knowledge that Nobody bites himself and Humans do not bite
dogs.

Peter and Fido with World Knowledge

� Nobody bites himself, humans do not bite dogs.

d(f)
T

m(p)
T

b(X,X)
F

(d(X) ∧m(Y)⇒¬b(Y,X))
T

(l(p, f)
T
)

(b(X,Y)
T
)

b(p, p)
T

b(p, p)
F

⊥

b(p, f)
T

(d(f) ∧m(p)⇒¬b(p, f))T

b(p, f)
F

⊥

b(f, p)
T

b(f, f)
T

b(f, f)
F

⊥

� Observation: Pronoun resolution introduces ambiguities.

� Pragmatics: Use world knowledge to filter out impossible readings.

Michael Kohlhase: LBS 144 2024-01-20

We observe that our extended tableau calculus was indeed able to handle this example, if we only

7.2. A TABLEAU CALCULUS FOR PLNQ WITH FREE VARIABLES 89

give it enough background knowledge to act upon.

But the world knowledge we can express in PLV
NQ is very limited. We can say that humans

do not bite dogs, but we cannot provide the background knowledge to understand a sentence like
Peter was late for class today, the car had a flat tire., which needs knowledge like Every car has
wheels, which have a tire. and if a tire is flat, the car breaks down., which is outside the realm of
PLV

NQ.

7.2.4 The Computational Role of Ambiguities
In the case study, we have seen that pronoun resolution introduces ambiguities, and we can use
world knowledge to filter out impossible readings. Generally in the traditional waterfall model of
language processing – which posits that NL understanding is a process that analyzes the input in
stages: syntax, semantics composition, pragmatics – every processing stage introduces ambiguities
that need to be resolved in this stage or later.

The computational Role of Ambiguities

� Observation: (in the traditional waterfall model)
Every processing stage introduces ambiguities that need to be resolved.

� Syntax: e.g. Peter chased the man in the red sports car (attachment)

� Semantics: e.g. Peter went to the bank (lexical)

� Pragmatics: e.g. Two men carried two bags (collective vs. distributive)

� Question: Where does pronoun-ambiguity belong? (much less clear)

� Answer: we have freedom to choose

1. resolve the pronouns in the syntax (generic waterfall model)

; multiple syntactic representations (pragmatics as filter)

2. resolve the pronouns in the pragmatics (our model here)

; need underspecified syntactic representations (e.g. variables)
; pragmatics needs ambiguity treatment (e.g. tableaux)

Michael Kohlhase: LBS 145 2024-01-20

For pronoun ambiguities, this is much less clear. In a way we have the freedom to choose. We can

1. resolve the pronouns in the syntax as in the generic waterfall model, then we arrive at multiple
syntactic representations, and can use pragmatics as filter to get rid of unwanted readings

2. resolve the pronouns in the pragmatics (our model here) then we need underspecified syntactic
representations (e.g. variables) and pragmatics needs ambiguity treatment (in our case the
tableaux).

We will continue to explore the second alternative in more detail, and refine the approach. One
of the advantages of treating the anaphoric ambiguities in the syntax is that syntactic agree-
ment information like gender can be used to disambiguate. Say that we vary the example from
subsection 7.2.3 to Peter loves Mary. She loves him..

Translation for F2 Reconsidered

90 CHAPTER 7. ADDING CONTEXT: PRONOUNS AND WORLD KNOWLEDGE

� Idea: Pronouns are translated into new variables (so far)

� Problem: Peter loves Mary. She loves him.

(loves(peter,mary)T)

(loves(X,Y)
T
)

loves(peter, peter)T loves(peter,mary)T loves(mary, peter)T loves(mary,mary)T

� Idea: attach world knowledge to pronouns (just as with Peter and Fido)

� use the world knowledge to distinguish (linguistic) gender by predicates masc and fem

� Idea: attach world knowledge to pronouns (just as with Peter and Fido)

� Problem: properties of

� proper names are given in the model,

� pronouns must be given by the syntax/semantics interface

� In particular: How to generate loves(X,Y)∧masc(X)∧fem(Y) compositionally?

Michael Kohlhase: LBS 146 2024-01-20

The tableau (over)-generates the full set of pronoun readings. At first glance it seems that we
can fix this just like we did in subsection 7.2.3 by attaching world knowledge to pronouns, just as
with Peter and Fido. Then we could use the world knowledge to distinguish gender by predicates,
say masc and fem.

But if we look at the whole picture of building a system, we can see that this idea will not
work. The problem is that properties of proper names like Fido are given in the background
knowledge, whereas the relevant properties of pronouns must be given by the syntax/semantics
interface. Concretely, we would need to generate loves(X,Y) ∧ masc(X) ∧ fem(Y) for She loves
him. How can we do such a thing compositionally?

Again we basically have two options, we can either design a clever syntax/semantics interface,
or we can follow the lead of Montague semantics and extend the logic, so that compositionality
becomes simpler to achieve. We will explore the latter option in the next section. The
problem we stumbled across in the last section is how to associate certain properties (in this case
agreement information) with variables compositionally. Fortunately, there is a ready-made logical
theory for it. Sorted first-order logic. Actually there are various sorted first-order logics, but we
will only need the simplest one for our application at the moment.
Sorted first-order logic extends the language with a set S of sorts A,B,C, . . ., which are just special
symbols that are attached to all terms in the language.

Syntactically, all constants, and variables are assigned sorts, which are annotated in the lower
index, if they are not clear from the context. Semantically, the universe Dι is subdivided into
subsets DA ⊆ Dι, which denote the objects of sort A; furthermore, the interpretation function I
and variable assignment φ have to be well sorted. Finally, on the calculus level, the only change
we have to make is to restrict instantiation to well-sorted substitutions:

Sorts refine World Categories

� Definition 7.2.25 (Sorted Logics). (in our
case PL1

S) assume a set of sorts S:={A,B,C, . . .}, annotate every syntactic and
semantic structure with them. Make all constructions and operations well worted:

7.3. TABLEAUX AND MODEL GENERATION 91

� Syntax: variables and constants are sorted XA, YB, Z
1
C1
. . ., aA, bA, . . .

� Semantics: subdivide the Universe Dι into subsets DA ⊆ Dι
Interpretation I and variable assignment φ have to be well-sorted. I(aA), φ(XA)∈DA.

� calculus: substitutions must be well sorted [aA/XA] OK, [aA/XB] not.

� Observation: Sorts do not add expressivity in principle (just practically) For
every sort A, we introduce a first-order predicate RA and

� Translate R(XA) ∧ ¬P (ZC) to RA(X) ∧ RC(Z) ⇒ R(X) ∧ ¬P (Z) in world
knowledge.

� Translate R(XA) ∧ ¬P (ZC) to RA(X) ∧RC(Z) ∧R(X,Y) ∧ ¬P (Z) in input.

� Meaning is preserved, but translation is non-compositional!

Michael Kohlhase: LBS 147 2024-01-20

7.3 Tableaux and Model Generation

7.3.1 Tableau Branches and Herbrand Models

We have claimed above that the set of literals in open saturated tableau branches corresponds
to a model. To gain an intuition, we will study our example above,

Model Generation and Interpretation

� Example 7.3.1 (from above). In Example 7.2.16 we claimed that

H:={loves(john,mary)F, loves(mary, bill)T}

constitutes a model

(loves(mary, bill) ∨ loves(john,mary))T

loves(john,mary)F

loves(mary, bill)T loves(john,mary)T

⊥

� Recap: A model M is a pair ⟨U, I⟩, where D is a set of individuals, and I is an
interpretation function.

� Problem: Find U and I

Michael Kohlhase: LBS 148 2024-01-20

So the first task is to find a domain D of interpretation. Our formula mentions Mary, John, and
Bill, which we assume to refer to distinct individuals so we need (at least) three individuals in the
domain; so let us take U :={A,B,C} and fix I(mary) = A, I(bill) = B, I(john) = C.

So the only task is to find a suitable interpretation for the predicate loves that makes loves(john,mary)
false and loves(mary, bill) true. This is simple: we just take I(loves) = {⟨A,B⟩}. Indeed we have

Iφ(loves(mary,bill) ∨ loves(john,mary)) = T

but Iφ(loves(john,mary)) = F according to the rules in5.

5EdNote: crossref

92 CHAPTER 7. ADDING CONTEXT: PRONOUNS AND WORLD KNOWLEDGE

Model Generation and Models

� Idea: Choose the universe U as the set Σf0 of constants, choose I(=)IdΣf
0
, inter-

pret p∈Σpk via I(p):={⟨a1, . . ., ak⟩|p(a1, . . ., ak)∈H}.

� Definition 7.3.2. We call a model a Herbrand model, iff U = Σf0 and I = IdΣf
0
.

� Lemma 7.3.3.

Let H be a set of atomic propositions, then setting

I(p):={⟨a1, . . ., ak⟩|p(a1, . . ., ak)∈H}

yields a Herbrand Model that satisfies H. (proof trivial)

� Corollary 7.3.4. Let H be a consistent (i.e. ∇c holds) set of atomic propositions,
then there is a Herbrand Model that satisfies H. (take HT)

Michael Kohlhase: LBS 149 2024-01-20

In particular, the literals of an open saturated tableau branch B are a Herbrand model H, as
we have convinced ourselves above. By inspection of the inference rules above, we can further
convince ourselves, that H satisfies all formulae on B. We must only check that if H satisfies the
succedents of the rule, then it satisfies the antecedent (which is immediate from the semantics of
the principal connectives).

In particular, H is a model for the root formula of the tableau, which is on B by construction.
So the tableau procedure is also a procedure that generates explicit (Herbrand) models for the root
literal of the tableau. Every branch of the tableau corresponds to a (possibly) different Herbrand
model. We will use this observation in the next section in an application to natural language
semantics.

7.3.2 Using Model Generation for Interpretation
We will now use model generation directly as a tool for discourse interpretation.

Using Model Generation for Interpretation

� Definition 7.3.5. Mental model theory [JL83; JLB91] posits that humans form
mental models of the world, i.e. (neural) representations of possible states of the
world that are consistent with the perceptions up to date and use them to reason
about the world.

� So communication by natural language is a process of transporting parts of the
mental model of the speaker into the mental model of the hearer.

� Therefore the NL interpretation process on the part of the hearer is a process of
integrating the meaning of the utterances of the speaker into his mental model.

� Idea: We can model discourse understanding as a process of generating Herbrand
models for the logical form of an utterance in a discourse by a tableau based model
generation procedure.

� Advantage: Capturing ambiguity by generating multiple models for input logical
forms.

7.3. TABLEAUX AND MODEL GENERATION 93

Michael Kohlhase: LBS 150 2024-01-20

Tableau Machine

� Definition 7.3.6. The tableau machine is an inferential cognitive model for incre-
mental natural language understanding that implements mental model theory via
tableau based model generation over a sequence of input sentences.

It iterates the following process for every input sentence staring with the empty
tableau:

1. add the logical form of the input sentence Si to the selected branch,

2. perform tableau inferences below Si until saturated or some resource criterion is
met

3. if there are open branches choose a “preferred branch”, otherwise backtrack to
previous tableau for Sj with j < i and open branches, then re-process Sj+1, . . . , Si
if possible, else fail.

The output is application dependent; some choices are

� the Herbrand model for the preferred branch ; preferred interpretation;

� the literals augmented with all non expanded formulae
(from the discourse); (resource-bound was reached)

� machine answers user queries (preferred model |= query?)

� model generation mode (guided by resources and strategies)

� theorem proving mode (2 for side conditions; using tableau rules)

Michael Kohlhase: LBS 151 2024-01-20

Concretely, we treat discourse understanding as an online process that receives as input the logical
forms of the sentences of the discourse one by one, and maintains a tableau that represents the
current set of alternative models for the discourse. Since we are interested in the internal state of
the machine (the current tableau), we do not specify the output of the tableau machine. We also
assume that the tableau machine has a mechanism for choosing a preferred model from a set of
open branches and that it maintains a set of deferred branches that can be re-visited, if extension
of the preferred model fails.
Upon input, the tableau machine will append the given logical form as a leaf to the preferred
branch. (We will mark input logical forms in our tableaux by enclosing them in a box.) The
machine then saturates the current tableau branch, exploring the set of possible models for the
sequence of input sentences. If the subtableau generated by this saturation process contains open
branches, then the machine chooses one of them as the preferred model, marks some of the other
open branches as deferred, and waits for further input. If the saturation yields a closed sub-tableau,
then the machine backtracks, i.e. selects a new preferred branch from the deferred ones, appends
the input logical form to it, saturates, and tries to choose a preferred branch. Backtracking
is repeated until successful, or until some termination criterion is met, in which case discourse
processing fails altogether.

The Tableau Machine in Action

� Example 7.3.7. The tableau machine in action on two sentences.

94 CHAPTER 7. ADDING CONTEXT: PRONOUNS AND WORLD KNOWLEDGE

initialize tableau
Background
Knowledgeinput sentence

Sentence 1

saturate tableau

⊥ 2 ⊥ 2

choose branch

Sentence 2

⊥ ⊥ ⊥ ⊥

reject branchre-add sentence

Sentence 2

⊥ 2 ⊥ ⊥

Michael Kohlhase: LBS 152 2024-01-20

Two (Syntactical) Readings

� Example 7.3.8. Peter loves Mary and Mary sleeps or Peter snores(syntactically
ambiguous)

Reading 1 loves(peter,mary) ∧ (sleeps(mary) ∨ snores(peter))

Reading 2 loves(peter,mary) ∧ sleeps(mary) ∨ snores(peter)

� Let us first consider the first reading in Example 7.3.8. Let us furthermore assume
that we start out with the empty tableau, even though this is cognitively implausible,
since it simplifies the presentation.

loves(peter,mary) ∧ (sleeps(mary) ∨ snores(peter))

loves(peter,mary)T

(sleeps(mary) ∨ snores(peter))T

sleeps(mary)T snores(peter)T

� Observation: We have two models, so we have a case of semantical ambiguity.

Michael Kohlhase: LBS 153 2024-01-20

We see that model generation gives us two models; in both Peter loves Mary, in the first, Mary
sleeps, and in the second one Peter snores. If we get a logically different input, e.g. the second
reading in Example 7.3.8, then we obtain different models.

The other (Syntactical) Reading

7.3. TABLEAUX AND MODEL GENERATION 95

loves(peter,mary) ∧ sleeps(mary) ∨ snores(peter)

(loves(peter,mary) ∧ sleeps(mary))T

loves(peter,mary)T

sleeps(mary)T

snores(peter)T

Michael Kohlhase: LBS 154 2024-01-20

In a discourse understanding system, both readings have to considered in parallel, since they
pertain to a genuine ambiguity. The strength of our tableau-based procedure is that it keeps the
different readings around, so they can be acted upon later.
Note furthermore, that the overall (syntactical and semantic) ambiguity is not as bad as it looks:
the left models of both readings are identical, so we only have three semantic readings not four.

Continuing the Discourse

� Example 7.3.9. Peter does not love Mary
then the second tableau would be extended to

loves(peter,mary) ∧ sleeps(mary) ∨ snores(peter)

(loves(peter,mary) ∧ sleeps(mary))T

loves(peter,mary)T

sleeps(mary)T

¬loves(peter,mary)

loves(peter,mary)F

⊥

snores(peter)T

¬loves(peter,mary)

and the first tableau closes altogether.

� In effect the choice of models has been reduced to one, which constitutes the
intuitively correct reading of the discourse

Michael Kohlhase: LBS 155 2024-01-20

Model Generation models Discourse Understanding

� Conforms with psycholinguistic findings:

� Zwaan& Radvansky [ZR98]: listeners not only represent logical form, but also
models containing referents.

� deVega [de 95]: online, incremental process.

� Singer [Sin94]: enriched by background knowledge.

� Glenberg et al. [GML87]: major function is to provide basis for anaphor resolu-
tion.

Michael Kohlhase: LBS 156 2024-01-20

Towards a Performance Model for NLU

96 CHAPTER 7. ADDING CONTEXT: PRONOUNS AND WORLD KNOWLEDGE

� Problem: The tableau machine is only a competence model.

� Definition 7.3.10. A competence model is a meaning theory that delineates a space
of possible discourses. A performance model delineates the discourses actually used
in communication. (after [Cho65a])

� Idea: We need to guide the tableau machine in which inferences and branch
choices it performs.

� Idea: Each tableau rule comes with rule costs.

� Here: each sentence in the discourse has a fixed inference budget.
Expansion until budget used up.

� Ultimately we want bounded optimization regime [Rus91]:
Expansion as long as expected gain in model quality outweighs proof costs

� Effect: Expensive rules are rarely applied. (only if the promise great rewards)

� Finding appropriate values for rule costs and model quality is an open problem.

Michael Kohlhase: LBS 157 2024-01-20

7.3.3 Adding Equality to PLNQ or Fragment 1
We will now extend PLnq by equality, which is a very important relation in natural language.
Generally, extending a logic with a new logical constant equality is counted as a logical constant,
since it semantics is fixed in all models involves extending all three components of the logical
system: the language, semantics, and the calculus.

PLNQˆ =: Adding Equality to PLnq

� Syntax: Just another binary predicate constant =

� Semantics: Fixed as Iφ(a = b) = T, iff Iφ(a) = Iφ(b). (logical constant)

� Definition 7.3.11 (Tableau Calculus T =
NQ). Add two additional inference rules

(a positive and a negative) to T0

a∈H
a = aT

T =
NQsym

a = bT

A [a]p
α

[b/p]A
α T =

NQrep

where

� H =̂ the Herbrand Base, i.e. the set of constants occurring on the branch

� we write C [A]p to indicate that C|p = A (C has subterm A at position p).

� [A/p]C is obtained from C by replacing the subterm at position p with A.

� Note: We could have equivalently written T =
NQsym as

a = aF

⊥
: With T =

NQsym we

can conjure a a = aT from thin air which can then be used to close the a = aF.

� So, . . . T =
NQsym and T =

NQrep follow the pattern of having a T and a F rule per
logical constant.

7.3. TABLEAUX AND MODEL GENERATION 97

Michael Kohlhase: LBS 158 2024-01-20

If we simplify the translation of definite descriptions, so that the phrase the teacher translates to
a concrete individual constant, then we can interpret (??) as (??).

Reading Comprehension Example: Mini TOEFL test

� Example 7.3.12 (Reading Comprehension). If you hear/read Mary is the
teacher. Peter likes the teacher., do you know whether Peter likes Mary?

� Idea: Interpret via tableau machine (interpretation mode) and test entailment in
theorem proving mode.

� Interpretation: Feed Φ1:=mary = the_teacher and Φ2:=likes(peter, the_teacher)
to the tableau machine in turn.
Model generation tableau (nothing to do on these inputs)

mary = the_teacherT

likes(peter, the_teacher)T

� Entailment Test: label φ:=likes(peter,mary) with F and saturate the tableau.

mary = the_teacherT

likes(peter, the_teacher)T

likes(peter,mary)F

likes(peter, the_teacher)F

⊥

Indeed, it closes, so Φ1,Φ2 |=φ.

Michael Kohlhase: LBS 159 2024-01-20

98 CHAPTER 7. ADDING CONTEXT: PRONOUNS AND WORLD KNOWLEDGE

Chapter 8

Pronouns and World Knowledge in
First-Order Logic

8.1 First-Order Logic
First-order logic is the most widely used formal systems for modelling knowledge and inference

processes. It strikes a very good bargain in the trade-off between expressivity and conceptual
and computational complexity. To many people first-order logic is “the logic”, i.e. the only logic
worth considering, its applications range from the foundations of mathematics to natural language
semantics.

First-Order Predicate Logic (PL1)

� Coverage: We can talk about (All humans are mortal)

� individual things and denote them by variables or constants

� properties of individuals, (e.g. being human or mortal)

� relations of individuals, (e.g. sibling_of relationship)

� functions on individuals, (e.g. the father_of function)

We can also state the existence of an individual with a certain property, or the
universality of a property.

� But we cannot state assertions like

� There is a surjective function from the natural numbers into the reals.

� First-Order Predicate Logic has many good properties (complete calculi,
compactness, unitary, linear unification,. . .)

� But too weak for formalizing: (at least directly)

� natural numbers, torsion groups, calculus, . . .

� generalized quantifiers (most, few,. . .)

Michael Kohlhase: LBS 160 2024-01-20

We will now introduce the syntax and semantics of first-order logic. This introduction differs
from what we commonly see in undergraduate textbooks on logic in the treatment of substitutions
in the presence of bound variables. These treatments are non syntactic, in that they take the

99

100 CHAPTER 8. PRONOUNS AND WORLD KNOWLEDGE IN FIRST-ORDER LOGIC

renaming of bound variables (α equivalence) as a basic concept and directly introduce capture-
avoiding substitutions based on this. But there is a conceptual and technical circularity in this
approach, since a careful definition of α-equivalence needs substitutions.

In this section we follow Peter Andrews’ lead from [And02] and break the circularity by intro-
ducing syntactic substitutions, show a substitution value lemma with a substitutability condition,
use that for a soundness proof of α renaming, and only then introduce capture-avoiding substitu-
tions on this basis. This can be done for any logic with bound variables, we go through the details
for first-order logic here as an example.

8.1.1 First-Order Logic: Syntax and Semantics

The syntax and semantics of first-order logic is systematically organized in two distinct layers:
one for truth values (like in propositional logic) and one for individuals (the new, distinctive feature
of first-order logic).
The first step of defining a formal language is to specify the alphabet, here the first-order signatures
and their components.

PL1 Syntax (Signature and Variables)

� Definition 8.1.1. First-order logic (PL1), is a formal system extensively used in
mathematics, philosophy, linguistics, and computer science. It combines proposi-
tional logic with the ability to quantify over individuals.

� PL1 talks about two kinds of objects: (so we have two kinds of symbols)

� truth values by reusing PL0

� individuals, e.g. numbers, foxes, Pokémon,. . .

� Definition 8.1.2. A first-order signature consists of (all disjoint; k∈N)

� connectives: Σ0 = {T , F ,¬,∨,∧,⇒,⇔, . . .} (functions on truth values)

� function constants: Σfk = {f, g, h, . . .} (k-ary functions on individuals)

� predicate constants: Σpk = {p, q, r, . . .} (k-ary relations among individuals.)

� (Skolem constants: Σskk = {f1k , f2k , . . .}) (witness constructors; countably ∞)

� We take Σ1 to be all of these together: Σ1:=Σf ∪Σp∪Σsk and define Σ:=Σ1∪
Σ0.

� Definition 8.1.3. We assume a set of individual variables: Vι:={X,Y , Z, . . .}.
(countably ∞)

Michael Kohlhase: LBS 161 2024-01-20

We make the deliberate, but non-standard design choice here to include Skolem constants into
the signature from the start. These are used in inference systems to give names to objects and
construct witnesses. Other than the fact that they are usually introduced by need, they work
exactly like regular constants, which makes the inclusion rather painless. As we can never predict
how many Skolem constants we are going to need, we give ourselves countably infinitely many for
every arity. Our supply of individual variables is countably infinite for the same reason.
The formulae of first-order logic are built up from the signature and variables as terms (to represent
individuals) and propositions (to represent proposition). The latter include the connectives from
PL0, but also quantifiers.

8.1. FIRST-ORDER LOGIC 101

PL1 Syntax (Formulae)

� Definition 8.1.4. Terms: A∈wff ι(Σ1,Vι) (denote individuals)

� Vι ⊆ wff ι(Σ1,Vι),

� if f∈Σfk and Ai∈wff ι(Σ1,Vι) for i≤k, then f(A1, . . .,Ak)∈wff ι(Σ1,Vι).

� Definition 8.1.5. Propositions: A∈wff o(Σ1,Vι): (denote truth values)

� if p∈Σpk and Ai∈wff ι(Σ1,Vι) for i≤k, then p(A1, . . .,Ak)∈wff o(Σ1,Vι),
� if A,B∈wff o(Σ1,Vι) and X∈Vι, then T ,A ∧B,¬A,∀X A∈wff o(Σ1,Vι).
∀ is a binding operator called the universal quantifier.

� Definition 8.1.6. We define the connectives F ,∨,⇒,⇔ via the abbreviations
A ∨ B:=¬(¬A ∧ ¬B), A ⇒ B:=¬A ∨ B, A ⇔ B:=(A ⇒ B) ∧ (B ⇒ A), and
F :=¬T . We will use them like the primary connectives ∧ and ¬

� Definition 8.1.7. We use ∃X A as an abbreviation for ¬(∀X ¬A). ∃ is a binding
operator called the existential quantifier.

� Definition 8.1.8. Call formulae without connectives or quantifiers atomic else
complex.

Michael Kohlhase: LBS 162 2024-01-20

Note: We only need e.g. conjunction, negation, and universal quantifier, all other log-
ical constants can be defined from them (as we will see when we have fixed their interpreta-
tions).

Alternative Notations for Quantifiers

Here Elsewhere
∀x A

∧
x A (x)A

∃x A
∨
x A

Michael Kohlhase: LBS 163 2024-01-20

The introduction of quantifiers to first-order logic brings a new phenomenon: variables that are
under the scope of a quantifiers will behave very differently from the ones that are not. Therefore
we build up a vocabulary that distinguishes the two.

Free and Bound Variables

� Definition 8.1.9. We call an occurrence of a variable X bound in a formula A, iff
it occurs in a sub-formula ∀X B of A. We call a variable occurrence free otherwise.

For a formula A, we will use BVar(A) (and free(A)) for the set of bound (free)
variables of A, i.e. variables that have a free/bound occurrence in A.

� Definition 8.1.10. We define the set free(A) of frees variable of a formula A:

102 CHAPTER 8. PRONOUNS AND WORLD KNOWLEDGE IN FIRST-ORDER LOGIC

free(X):={X}
free(f(A1, . . .,An)):=

⋃
1≤i≤nfree(Ai)

free(p(A1, . . .,An)):=
⋃

1≤i≤nfree(Ai)
free(¬A):=free(A)
free(A ∧B):=free(A) ∪ free(B)
free(∀X A):=free(A)\{X}

� Definition 8.1.11. We call a formula A closed or ground, iff free(A) = ∅. We
call a closed proposition a sentence, and denote the set of all ground terms with
cwff ι(Σ1) and the set of sentences with cwff o(Σ1).

Michael Kohlhase: LBS 164 2024-01-20

We will be mainly interested in (sets of) sentences – i.e. closed propositions – as the representations
of meaningful statements about individuals. Indeed, we will see below that free variables do
not gives us expressivity, since they behave like constants and could be replaced by them in all
situations, except the recursive definition of quantified formulae. Indeed in all situations where
variables occur freely, they have the character of meta variables, i.e. syntactic placeholders that
can be instantiated with terms when needed in an inference calculus.
The semantics of first-order logic is a Tarski-style set-theoretic semantics where the atomic syn-
tactic entities are interpreted by mapping them into a well-understood structure, a first-order
universe that is just an arbitrary set.

Semantics of PL1 (Models)

� Definition 8.1.12. We inherit the domain D0 = {T,F} of truth values from PL0

and assume an arbitrary domain Dι ̸= ∅ of individuals. (this choice is a parameter
to the semantics)

� Definition 8.1.13. An interpretation I assigns values to constants, e.g.

� I(¬) : D0→D0 with T7→F, F 7→T, and I(∧) = . . . (as in PL0)

� I : Σfk→Dιk →Dι (interpret function symbols as arbitrary functions)

� I : Σpk→P(Dιk) (interpret predicates as arbitrary relations)

� Definition 8.1.14. A variable assignment φ : Vι→Dι maps variables into the do-
main.

� Definition 8.1.15. A model M = ⟨Dι, I⟩ of PL1 consists of a domain Dι and an
interpretation I.

Michael Kohlhase: LBS 165 2024-01-20

We do not have to make the domain of truth values part of the model, since it is always the same;
we determine the model by choosing a domain and an interpretation functiong.
Given a first-order model, we can define the evaluation function as a homomorphism over the
construction of formulae.

Semantics of PL1 (Evaluation)

� Definition 8.1.16. Given a model ⟨D, I⟩, the value function Iφ is recursively
defined: (two parts: terms & propositions)

8.1. FIRST-ORDER LOGIC 103

� Iφ : wff ι(Σ1,Vι)→Dι assigns values to terms.

� Iφ(X):=φ(X) and
� Iφ(f(A1, . . .,Ak)):=I(f)(Iφ(A1), . . ., Iφ(Ak))

� Iφ : wff o(Σ1,Vι)→D0 assigns values to formulae:

� Iφ(T) = I(T) = T,
� Iφ(¬A) = I(¬)(Iφ(A))

� Iφ(A ∧B) = I(∧)(Iφ(A), Iφ(B)) (just as in PL0)
� Iφ(p(A1, . . .,Ak)):=T, iff ⟨Iφ(A1), . . ., Iφ(Ak)⟩∈I(p)
� Iφ(∀X A):=T, iff I(φ,[a/X])(A) = T for all a∈Dι.

� Definition 8.1.17 (Assignment Extension). Let φ be a variable assignment into
D and a∈D, then φ,[a/X] is called the extension of φ with [a/X] and is defined
as {(Y ,a)∈φ|Y ̸= X} ∪ {(X,a)}: φ,[a/X] coincides with φ off X, and gives the
result a there.

Michael Kohlhase: LBS 166 2024-01-20

The only new (and interesting) case in this definition is the quantifier case, there we define the
value of a quantified formula by the value of its scope – but with an extension of the incoming
variable assignment. Note that by passing to the scope A of ∀x A, the occurrences of the variable
x in A that were bound in ∀x A become free and are amenable to evaluation by the variable
assignment ψ:=φ,[a/X]. Note that as an extension of φ, the assignment ψ supplies exactly the
right value for x in A. This variability of the variable assignment in the definition of the value
function justifies the somewhat complex setup of first-order evaluation, where we have the (static)
interpretation function for the symbols from the signature and the (dynamic) variable assignment
for the variables.
Note furthermore, that the value Iφ(∃x A) of ∃x A, which we have defined to be ¬(∀x ¬A) is
true, iff it is not the case that Iφ(∀x ¬A) = Iψ(¬A) = F for all a∈Dι and ψ:=φ,[a/X]. This is
the case, iff Iψ(A) = T for some a∈Dι. So our definition of the existential quantifier yields the
appropriate semantics.

Semantics Computation: Example

� Example 8.1.18. We define an instance of first-order logic:

� Signature: Let Σf0 :={j,m}, Σf1 :={f}, and Σp2:={o}
� Universe: Dι:={J,M}
� Interpretation: I(j):=J , I(m):=M , I(f)(J):=M , I(f)(M):=M , and I(o):={(M,J)}.

Then ∀X o(f(X), X) is a sentence and with ψ:=φ,[a/X] for a∈Dι we have

Iφ(∀X o(f(X), X)) = T iff Iψ(o(f(X), X)) = T for all a∈Dι
iff (Iψ(f(X)),Iψ(X))∈I(o) for all a∈{J,M}
iff (I(f)(Iψ(X)),ψ(X))∈{(M,J)} for all a∈{J,M}
iff (I(f)(ψ(X)),a) = (M,J) for all a∈{J,M}
iff I(f)(a) =M and a = J for all a∈{J,M}

But a ̸= J for a =M , so Iφ(∀X o(f(X), X)) = F in the model ⟨Dι, I⟩.

Michael Kohlhase: LBS 167 2024-01-20

104 CHAPTER 8. PRONOUNS AND WORLD KNOWLEDGE IN FIRST-ORDER LOGIC

8.1.2 First-Order Substitutions

We will now turn our attention to substitutions, special formula-to-formula mappings that
operationalize the intuition that (individual) variables stand for arbitrary terms.

Substitutions on Terms

� Intuition: If B is a term and X is a variable, then we denote the result of
systematically replacing all occurrences of X in a term A by B with [B/X](A).

� Problem: What about [Z/Y], [Y /X](X), is that Y or Z?

� Folklore: [Z/Y], [Y /X](X) = Y , but [Z/Y]([Y /X](X)) = Z of course.
(Parallel application)

� Definition 8.1.19. Let wfe(Σ,V) be an expression language, then we call σ : V→wfe(Σ,V)
a substitution, iff the support supp(σ):={X|(X,A)∈σ,X ̸= A} of σ is finite. We
denote the empty substitution with ϵ.

� Definition 8.1.20 (Substitution Application). We define substitution application
by

� σ(c) = c for c∈Σ
� σ(X) = A, iff A∈V and (X,A)∈σ.

� σ(f(A1, . . .,An)) = f(σ(A1), . . ., σ(An)),

� σ(β X A) = β X σ−X(A).

� Example 8.1.21. [a/x], [f(b)/y], [a/z] instantiates g(x, y, h(z)) to g(a, f(b), h(a)).

� Definition 8.1.22. Let σ be a substitution then we call intro(σ):=
⋃
X∈supp(σ)free(σ(X))

the set of variables introduced by σ.

Michael Kohlhase: LBS 168 2024-01-20

The extension of a substitution is an important operation, which you will run into from time
to time. Given a substitution σ, a variable x, and an expression A, σ,[A/x] extends σ with a
new value for x. The intuition is that the values right of the comma overwrite the pairs in the
substitution on the left, which already has a value for x, even though the representation of σ may
not show it.

Substitution Extension

� Definition 8.1.23 (Substitution Extension).

Let σ be a substitution, then we denote the extension of σ with [A/X] by σ,[A/X]
and define it as {(Y ,B)∈σ|Y ̸= X} ∪ {(X,A)}: σ,[A/X] coincides with σ off X,
and gives the result A there.

� Note: If σ is a substitution, then σ,[A/X] is also a substitution.

� We also need the dual operation: removing a variable from the support:

� Definition 8.1.24. We can discharge a variable X from a substitution σ by setting
σ−X :=σ,[X/X].

8.1. FIRST-ORDER LOGIC 105

Michael Kohlhase: LBS 169 2024-01-20

Note that the use of the comma notation for substitutions defined in ?? is consistent with sub-
stitution extension. We can view a substitution [a/x], [f(b)/y] as the extension of the empty
substitution (the identity function on variables) by [f(b)/y] and then by [a/x]. Note furthermore,
that substitution extension is not commutative in general.
For PL1 substitutions we need to extend the substitutions defined on terms to act on propositions.
This is technically more involved, since we have to take care of bound variables.

Substitutions on Propositions

� Problem: We want to extend substitutions to propositions, in particular to quan-
tified formulae: What is σ(∀X A)?

� Idea: σ should not instantiate bound variables. ([A/X](∀X B) = ∀A B′

ill-formed)

� Definition 8.1.25. σ(∀X A):=(∀X σ−X(A)).

� Problem: This can lead to variable capture: [f(X)/Y](∀X p(X,Y)) would eval-
uate to ∀X p(X, f(X)), where the second occurrence of X is bound after instanti-
ation, whereas it was free before.

� Definition 8.1.26. Let B∈wff ι(Σι,Vι) and A∈wff o(Σι,Vι), then we call B sub-
stitutable for X in A, iff A has no occurrence of X in a subterm ∀Y C with
Y ∈free(B).

� Solution: Forbid substitution [B/X]A, when B is not substitutablex for X in A.

� Better Solution: Rename away the bound variable X in ∀X p(X,Y) before
applying the substitution. (see alphabetic renaming later.)

Michael Kohlhase: LBS 170 2024-01-20

Here we come to a conceptual problem of most introductions to first-order logic: they directly
define substitutions to be by stipulating that bound variables are renamed in the to ensure sub-
situtability. But at this time, we have not even defined alphabetic renaming yet, and cannot
formally do that without having a notion of substitution. So we will refrain from introducing
capture-avoiding substitutions until we have done our homework.

We now introduce a central tool for reasoning about the semantics of substitutions: the “sub-
stitution value Lemma”, which relates the process of instantiation to (semantic) evaluation. This
result will be the motor of all soundness proofs on axioms and inference rules acting on variables
via substitutions. In fact, any logic with variables and substitutions will have (to have) some form
of a substitution value Lemma to get the meta-theory going, so it is usually the first target in any
development of such a logic. We establish the substitution-value Lemma for first-order logic in
two steps, first on terms, where it is very simple, and then on propositions, where we have to take
special care of substitutability.

Substitution Value Lemma for Terms

� Lemma 8.1.27. Let A and B be terms, then Iφ([B/X]A) = Iψ(A), where
ψ = φ, [Iφ(B)/X].

� Proof: by induction on the depth of A:

106 CHAPTER 8. PRONOUNS AND WORLD KNOWLEDGE IN FIRST-ORDER LOGIC

1. depth=0 Then A is a variable (say Y), or constant, so we have three cases
1.1. A = Y = X

1.1.1. then Iφ([B/X](A)) = Iφ([B/X](X)) = Iφ(B) = ψ(X) = Iψ(X) =
Iψ(A).

1.2. A = Y ̸= X
1.2.1. then Iφ([B/X](A)) = Iφ([B/X](Y)) = Iφ(Y) = φ(Y) = ψ(Y) =

Iψ(Y) = Iψ(A).
1.3. A is a constant

1.3.1. Analogous to the preceding case (Y ̸= X).
1.4. This completes the base case (depth = 0).

2. depth> 0
2.1. then A = f(A1, . . .,An) and we have

Iφ([B/X](A)) = I(f)(Iφ([B/X](A1)), . . ., Iφ([B/X](An)))

= I(f)(Iψ(A1), . . ., Iψ(An))

= Iψ(A).

by induction hypothesis
2.2. This completes the induction step, and we have proven the assertion.

Michael Kohlhase: LBS 171 2024-01-20

We now come to the case of propositions. Note that we have the additional assumption of substi-
tutability here.

Substitution Value Lemma for Propositions

� Lemma 8.1.28. Let B∈wff ι(Σι,Vι) be substitutable for X in A∈wff o(Σι,Vι),
then Iφ([B/X](A)) = Iψ(A), where ψ = φ,[Iφ(B)/X].

� Proof: by induction on the number n of connectives and quantifiers in A

1. n = 0
1.1. then A is an atomic proposition, and we can argue like in the induction

step of the substitution value lemma for terms.
2. n>0 and A = ¬B or A = C ◦D

2.1. Here we argue like in the induction step of the term lemma as well.
3. n>0 and A = ∀X C

3.1. then Iψ(A) = Iψ(∀X C) = T, iff I(ψ,[a/X])(C) = I(φ,[a/X])(C) = T,
for all a∈Dι, which is the case, iff Iφ(∀X C) = Iφ([B/X](A)) = T.

4. n>0 and A = ∀Y C where X ̸= Y
4.1. then Iψ(A) = Iψ(∀Y C) = T, iff I(ψ,[a/Y])(C) = I(φ,[a/Y])([B/X](C)) =

T, by induction hypothesis.
4.2. So Iψ(A) = Iφ(∀Y [B/X](C)) = Iφ([B/X](∀Y C)) = Iφ([B/X](A))

Michael Kohlhase: LBS 172 2024-01-20

To understand the proof fully, you should look out where the substitutability is actually used.
Armed with the substitution value lemma, we can now define alphabetic renaming and show it

to be sound with respect to the semantics we defined above. And this soundness result will justify
the definition of capture-avoiding substitution we will use in the rest of the course.

8.1. FIRST-ORDER LOGIC 107

8.1.3 Alpha-Renaming for First-Order Logic
Armed with the substitution value lemma we can now prove one of the main representational

facts for first-order logic: the names of bound variables do not matter; they can be renamed at
liberty without changing the meaning of a formula.

Alphabetic Renaming

� Lemma 8.1.29. Bound variables can be renamed: If Y is substitutable for X in
A, then Iφ(∀X A) = Iφ(∀Y [Y /X](A)).

� Proof: by the definitions:

1. Iφ(∀X A) = T, iff
2. I(φ,[a/X])(A) = T for all a∈Dι, iff
3. I(φ,[a/Y])([Y /X](A)) = T for all a∈Dι, iff (by substitution value lemma)
4. Iφ(∀Y [Y /X](A)) = T.

� Definition 8.1.30. We call two formulae A and B alphabetic variants (or α-equal;
write A =α B), iff A = ∀X C and B = ∀Y [Y /X](C) for some variables X and
Y .

Michael Kohlhase: LBS 173 2024-01-20

We have seen that naive substitutions can lead to variable capture. As a consequence, we always
have to presuppose that all instantiations respect a substitutability condition, which is quite
tedious. We will now come up with an improved definition of substitution application for first-
order logic that does not have this problem.

Avoiding Variable Capture by Built-in α-renaming

� Idea: Given alphabetic renaming, consider alphabetic variants as identical!

� So: Bound variable names in formulae are just a representational device. (we
rename bound variables wherever necessary)

� Formally: Take cwff o(Σι) (new) to be the quotient space of cwff o(Σι) (old)
modulo =α. (formulae as syntactic representatives of equivalence classes)

� Definition 8.1.31 (Capture-Avoiding Substitution Application). Let σ be a
substitution, A a formula, and A′ an alphabetic variant of A, such that intro(σ)∩
BVar(A) = ∅. Then [A]=α = [A′]=α and we can define σ([A]=α):=[(σ(A′))]=α .

� Notation: After we have understood the quotient construction, we will neglect
making it explicit and write formulae and substitutions with the understanding that
they act on quotients.

� Alternative: Replace variables with numbers in formulae (de Bruijn indices).

Michael Kohlhase: LBS 174 2024-01-20

Undecidability of First-Order Logic

� Theorem 8.1.32. Validity in first-order logic is undecidable.

108 CHAPTER 8. PRONOUNS AND WORLD KNOWLEDGE IN FIRST-ORDER LOGIC

� Proof: We prove this by contradiction

1. Let us assume that there is a

Michael Kohlhase: LBS 175 2024-01-20

8.2 First-Order Inference with Tableaux
We will now extend the propositional tableau techniques to first-order logic. We only have to add
two new rules for the universal quantifier (in positive and negative polarity).

First-Order Standard Tableaux (T1)

� Definition 8.2.1. The standard tableau calculus (T1) extends T0 (propositional
tableau calculus) with the following quantifier rules:

(∀X A)
T

C∈cwff ι(Σι)
([C/X](A))

T
T1 ∀

(∀X A)
F
c∈Σsk0 new

([c/X](A))
F

T1 ∃

� Problem: The rule T1 ∀ displays a case of “don’t know indeterminism”: to find a
refutation we have to guess a formula C from the (usually infinite) set cwff ι(Σι).

For proof search, this means that we have to systematically try all, so T1 ∀ is infinitely
branching in general.

Michael Kohlhase: LBS 176 2024-01-20

The rule T1 ∀ operationalizes the intuition that a universally quantified formula is true, iff all
of the instances of the scope are. To understand the T1 ∃ rule, we have to keep in mind that
∃X A abbreviates ¬(∀X ¬A), so that we have to read (∀X A)

F existentially — i.e. as (∃X ¬A)
T,

stating that there is an object with property ¬A. In this situation, we can simply give this
object a name: c, which we take from our (infinite) set of witness constants Σsk0 , which we have
given ourselves expressly for this purpose when we defined first-order syntax. In other words
([c/X](¬A))

T
= ([c/X](A))

F holds, and this is just the conclusion of the T1 ∃ rule.
Note that the T1 ∀ rule is computationally extremely inefficient: we have to guess an (i.e. in a
search setting to systematically consider all) instance C∈wff ι(Σι,Vι) for X. This makes the rule
infinitely branching.

8.2.1 Free Variable Tableaux
In the next calculus we will try to remedy the computational inefficiency of the T1 ∀ rule. We do
this by delaying the choice in the universal rule.

Free variable Tableaux (T f
1)

� Definition 8.2.2. The free variable tableau calculus (T f1) extends T0 (propositional
tableau calculus) with the quantifier rules:

(∀X A)T Y new
([Y /X](A))T

T f1 ∀ (∀X A)F free(∀X A) = {X1, . . ., Xk} f∈Σskk new
([f(X1, . . . , Xk)/X](A))F

T f1 ∃

8.2. FIRST-ORDER INFERENCE WITH TABLEAUX 109

and generalizes its cut rule T0⊥ to:

Aα

Bβ α ̸= β σ(A) = σ(B)

⊥ : σ
T f1 ⊥

T f1 ⊥ instantiates the whole tableau by σ.

� Advantage: No guessing necessary in T f1 ∀-rule!

� New Problem: find suitable substitution (most general unifier) (later)

Michael Kohlhase: LBS 177 2024-01-20

Metavariables: Instead of guessing a concrete instance for the universally quantified variable
as in the T1 ∀ rule, T f1 ∀ instantiates it with a new meta-variable Y , which will be instantiated by
need in the course of the derivation.
Skolem terms as witnesses: The introduction of meta-variables makes is necessary to extend
the treatment of witnesses in the existential rule. Intuitively, we cannot simply invent a new name,
since the meaning of the body A may contain meta-variables introduced by the T f1 ∀ rule. As we
do not know their values yet, the witness for the existential statement in the antecedent of the
T f1 ∃ rule needs to depend on that. So witness it using a witness term, concretely by applying a
Skolem function to the meta-variables in A.
Instantiating Metavariables: Finally, the T f1 ⊥ rule completes the treatment of meta-variables,
it allows to instantiate the whole tableau in a way that the current branch closes. This leaves us
with the problem of finding substitutions that make two terms equal.

Free variable Tableaux (T f
1): Derivable Rules

� Definition 8.2.3. Derivable quantifier rules in T f1 :

(∃X A)
T free(∀X A) = {X1, . . ., Xk} f∈Σskk new

([f(X1, . . . , Xk)/X](A))
T

(∃X A)
F
Y new

([Y /X](A))
F

Michael Kohlhase: LBS 178 2024-01-20

We now come to some issues (and clarifications) pertaining to implementing proof search for
free variable tableaux. They all have to do with the – often overlooked – fact that T f1 ⊥ instantiates
the whole tableau.
The first question one may ask for implementation is whether we expect a terminating proof
search; after all, T0 terminated. We will see that the situation for T f1 is different.

Termination and Multiplicity in Tableaux

� Recall: In T0, all rules only needed to be applied once.
; T0 terminates and thus induces a decision procedure for PL0.

� Observation 8.2.4. All T f1 rules except T f1 ∀ only need to be applied once.

110 CHAPTER 8. PRONOUNS AND WORLD KNOWLEDGE IN FIRST-ORDER LOGIC

� Example 8.2.5. A tableau proof for (p(a) ∨ p(b))⇒ (∃ p()).

Start, close left branch use T f1 ∀ again (right branch)

((p(a) ∨ p(b))⇒ (∃ p()))F

(p(a) ∨ p(b))T

(∃x p(x))F

(∀x ¬p(x))T

¬p(y)T

p(y)
F

p(a)
T

⊥ : [a/y]
p(b)

T

((p(a) ∨ p(b))⇒ (∃ p()))F

(p(a) ∨ p(b))T

(∃x p(x))F

(∀x ¬p(x))T

¬p(a)T

p(a)
F

p(a)
T

⊥ : [a/y]
p(b)

T

¬p(z)T

p(z)
F

⊥ : [b/z]

After we have used up p(y)F by applying [a/y] in T f1 ⊥, we have to get a new instance
p(z)

F via T f1 ∀.

� Definition 8.2.6. Let T be a tableau for A, and a positive occurrence of ∀x B in
A, then we call the number of applications of T f1 ∀ to ∀x B its multiplicity.

� Observation 8.2.7. Given a prescribed multiplicity for each positive ∀, saturation
with T f1 terminates.

� Proof sketch: All T f1 rules reduce the number of connectives and negative ∀ or the
multiplicity of positive ∀.

� Theorem 8.2.8. T f1 is only complete with unbounded multiplicities.

� Proof sketch: Replace p(a) ∨ p(b) with p(a1) ∨ . . . ∨ p(an) in Example 8.2.5.

� Remark: Otherwise validity in PL1 would be decidable.

� Implementation: We need an iterative multiplicity deepening process.

Michael Kohlhase: LBS 179 2024-01-20

The other thing we need to realize is that there may be multiple ways we can use T f1 ⊥ to close a
branch in a tableau, and – as T f1 ⊥ instantiates the whole tableau and not just the branch itself –
this choice matters.

Treating T f
1 ⊥

� Recall: The T f1 ⊥ rule instantiates the whole tableau.

� Problem: There may be more than one T f1 ⊥ opportunity on a branch.

8.2. FIRST-ORDER INFERENCE WITH TABLEAUX 111

� Example 8.2.9. Choosing which matters – this tableau does not close!

(∃x (p(a) ∧ p(b)⇒ p()) ∧ (q(b)⇒ q(x)))
F

((p(a) ∧ p(b)⇒ p()) ∧ (q(b)⇒ q(y)))
F

(p(a)⇒ p(b)⇒ p())
F

p(a)
T

p(b)
T

p(y)
F

⊥ : [a/y]

(q(b)⇒ q(y))
F

q(b)
T

q(y)
F

choosing the other T f1 ⊥ in the left branch allows closure.

� Idea: Two ways of systematic proof search in T f1 :

� backtracking search over T f1 ⊥ opportunities

� saturate without T f1 ⊥ and find spanning matings (next slide)

Michael Kohlhase: LBS 180 2024-01-20

The method of spanning matings follows the intuition that if we do not have good information
on how to decide for a pair of opposite literals on a branch to use in T f1 ⊥, we delay the choice by
initially disregarding the rule altogether during saturation and then – in a later phase– looking
for a configuration of cuts that have a joint overall unifier. The big advantage of this is that we
only need to know that one exists, we do not need to compute or apply it, which would lead to
exponential blow-up as we have seen above.

Spanning Matings for T f
1 ⊥

� Observation 8.2.10. T f1 without T f1 ⊥ is terminating and confluent for given
multiplicities.

� Idea: Saturate without T f1 ⊥ and treat all cuts at the same time (later).

� Definition 8.2.11.

Let T be a T f1 tableau, then we call a unification problem E :=A1=
?B1 ∧ . . . ∧

An=
?Bn a mating for T , iff Ai

T and Bi
F occur in the same branch in T .

We say that E is a spanning mating, if E is unifiable and every branch B of T
contains Ai

T and Bi
F for some i.

� Theorem 8.2.12. A T f1 -tableau with a spanning mating induces a closed T1
tableau.

� Proof sketch: Just apply the unifier of the spanning mating.

� Idea: Existence is sufficient, we do not need to compute the unifier.

� Implementation: Saturate without T f1 ⊥, backtracking search for spanning mat-
ings with DU , adding pairs incrementally.

Michael Kohlhase: LBS 181 2024-01-20

Excursion: We will cover first-order unification in??.
The method of spanning matings follows the intuition that if we do not have good information
on how to decide for a pair of opposite literals on a branch to use in T f1 ⊥, we delay the choice by

112 CHAPTER 8. PRONOUNS AND WORLD KNOWLEDGE IN FIRST-ORDER LOGIC

initially disregarding the rule altogether during saturation and then – in a later phase– looking
for a configuration of cuts that have a joint overall unifier. The big advantage of this is that we
only need to know that one exists, we do not need to compute or apply it, which would lead to
exponential blow-up as we have seen above.

Spanning Matings for T f
1 ⊥

� Observation 8.2.13. T f1 without T f1 ⊥ is terminating and confluent for given
multiplicities.

� Idea: Saturate without T f1 ⊥ and treat all cuts at the same time (later).

� Definition 8.2.14.

Let T be a T f1 tableau, then we call a unification problem E :=A1=
?B1 ∧ . . . ∧

An=
?Bn a mating for T , iff Ai

T and Bi
F occur in the same branch in T .

We say that E is a spanning mating, if E is unifiable and every branch B of T
contains Ai

T and Bi
F for some i.

� Theorem 8.2.15. A T f1 -tableau with a spanning mating induces a closed T1
tableau.

� Proof sketch: Just apply the unifier of the spanning mating.

� Idea: Existence is sufficient, we do not need to compute the unifier.

� Implementation: Saturate without T f1 ⊥, backtracking search for spanning mat-
ings with DU , adding pairs incrementally.

Michael Kohlhase: LBS 182 2024-01-20

Excursion: We discuss soundness and completenss of first-order tableaux in??.

8.3 Model Generation with Quantifiers

Since we have introduced new logical constants, we have to extend the model generation
calculus by rules for these. To keep the calculus simple, we will treat ∃X A as an abbreviation of
¬(∀X ¬A). Thus we only have to treat the universal quantifier in the rules.

Model Generation (The RM Calculus [Kon04])

� Idea: Try to generate domain-minimal (i.e. fewest individuals) models (for NL
interpretation)

� Problem: Even one function constant makes Herbrand base infinite (solution:
leave them out)

� Definition 8.3.1. RM adds ground quantifier rules to propositional tableau cal-
culus

(∀X A)T c∈H
([c/X](A))T

RM ∀ (∀X A)F H = {a1, . . ., an} w ̸∈H new
([a1/X](A))F . . . ([an/X](A))F ([w/X](A))F

RM ∃

� RM ∃ rule introduces new witness constant w to Herbrand base H of branch

8.3. MODEL GENERATION WITH QUANTIFIERS 113

� Apply RM ∀ exhaustively (for new w reapply all RM ∀ rules on branch!)

Michael Kohlhase: LBS 183 2024-01-20

The rule RM ∀ allows to instantiate the scope of the quantifier with all the instances of the
Herbrand base, whereas the rule RM ∃ makes a case distinction between the cases that the scope
holds for one of the already known individuals (those in the Herbrand base) or a currently unknown
one (for which it introduces a witness constant w∈Σsk0).
Note that in order to have a complete calculus, it is necessary to apply theRM ∀ rule to all universal
formulae in the tree with the new constant w. With this strategy, we arrive at a complete calculus
for (finite) satisfiability in first-order logic, i.e. if a formula has a (finite) Model, then this calculus
will find it. Note that this calculus (in this simple form) does not necessarily find minimal models.

Generating infinite models (Natural Numbers)

� We have to re-apply the RM ∀ rule for any new constant

� Example 8.3.2. This leads to the generation of infinite models

(∀x ¬x > x ∧ . . .)T

N(0)
T

(∀x N(x)⇒ (∃y N(y) ∧ y > x))
T

(N(0)⇒ (∃y N(y) ∧ y > 0))
T

N(0)
F

⊥
(∃y N(y) ∧ y > 0)

T

0 > 0T

N(0)
T

0 > 0F

⊥

N(1)
T

1 > 0T

(N(1)⇒ (∃y N(y) ∧ y > 1))
T

N(1)
F

⊥
(∃y N(y) ∧ y > 1)

T

N(0)
T

0 > 1T

...
⊥

N(1)
T

1 > 1T

1 > 1F

⊥

N(2)
T

2 > 1T

...

Michael Kohlhase: LBS 184 2024-01-20

The rules RM ∀ and RM ∃ may remind you of the rules we introduced for PLV
NQ. In fact the

rules mainly differ in their scoping behavior. We will use RM ∀ as a drop-in replacement for the
world-knowledge rule T p

V WK, and express world knowledge as universally quantified sentences.
The rules T p

V Ana and RM ∃ differ in that the first may only be applied to input formulae and
does not introduce a witness constant. (It should not, since variables here are anaphoric). We
need the rule RM ∃ to deal with rule-like world knowledge.

Example: Peter is a man. No man walks

114 CHAPTER 8. PRONOUNS AND WORLD KNOWLEDGE IN FIRST-ORDER LOGIC

without sorts with sort Male

man(peter)

¬(∃X man(X) ∧ walks(X))

(∃X man(X) ∧ walks(X))
F

(man(peter) ∧ walks(peter))F

man(peter)F

⊥
walks(peter)F

man(peter)

¬(∃XMale walks(X))

(∃XMale walks(X))
F

walks(peter)F

problem: 1000 women
⇒

1000 closed branches

� Herbrand-model
{man(peter)T,walks(peter)F}

Michael Kohlhase: LBS 185 2024-01-20

Anaphor Resolution A man sleeps. He snores

�

∃X sleeps(X)

sleeps(c1Man)
T

∃YMan snores(Y)

snores(c1Man)
T

minimal
snores(c2Man)

T

deictic

In a situation without men (but maybe thousands of women)

Michael Kohlhase: LBS 186 2024-01-20

Anaphora with World Knowledge

� Example 8.3.3. Mary is married to Jeff. Her husband is not in town. (slightly
outside F2) In PL1: married(mary, jeff), and

∃WMale,W
′
Female husband(W,W ′) ∧ ¬intown(W)

� World knowledge

� If woman X is married to man Y , then Y is the only husband of X.

� ∀XFemale, YMale married(X,Y)⇒husband(Y,X)∧ (∀Z husband(Z,X)⇒ (Z =
Y))

� Model generation gives tableau where all open branches contain

{married(mary, jeff)T, husband(jeff,mary)T, intown(jeff)F}

8.3. MODEL GENERATION WITH QUANTIFIERS 115

� Differences: Additional negative facts e.g. married(mary,mary)F.

Michael Kohlhase: LBS 187 2024-01-20

A branch without world knowledge
married(mary, jeff)T

(∃ZMale, Z
′
Female husband(Z,Z′) ∧ ¬intown(Z))T

(∃Z′ husband(c1Male, Z
′) ∧ ¬intown(c1Male))

T

(husband(c1Male,mary) ∧ ¬intown(c1Male))
T

husband(c1Male,mary)T

¬intown(c1Male)
T

intown(c1Male)
F

� Problem: Bigamy:
c1Male and jeff are hus-
bands of Mary!

Michael Kohlhase: LBS 188 2024-01-20

116 CHAPTER 8. PRONOUNS AND WORLD KNOWLEDGE IN FIRST-ORDER LOGIC

Chapter 9

Fragment 3: Complex Verb Phrases

9.1 Fragment 3 (Handling Verb Phrases)

New Data (Verb Phrases)

� Ethel howled and screamed.

� Ethel kicked the dog and poisoned the cat.

� Fiona liked Jo and loathed Ethel and tolerated Prudence.

� Fiona kicked the cat and laughed.

� Prudence kicked and scratched Ethel.

� Bertie didn’t laugh.

� Bertie didn’t laugh and didn’t scream.

� Bertie didn’t laugh or scream.

� Bertie didn’t laugh or kick the dog.

� * Bertie didn’t didn’t laugh.

Michael Kohlhase: LBS 189 2024-01-20

New Grammar in Fragment 3 (Verb Phrases)

� To account for the syntax we come up with the concept of a verb-phrase (VP)

� Definition 9.1.1. F3 has the following rules:

117

118 CHAPTER 9. FRAGMENT 3: COMPLEX VERB PHRASES

S1. S → NPVP+fin

S2. S → SconjS
V1. VP±fin → V i±fin
V2. VP±fin → V t±fin,NP
V3. VP±fin → VP±fin, conj, VP±fin
V4. VP+fin → BE=,NP
V5. VP+fin → BEpred,Adj.
V6. VP+fin → didn’t VP−fin
N1. NP → Npr
N2. NP → Pron
N3. NP → the N

L8. BE= → is
L9. BEpred → is
L10. V i−fin → run, laugh, sing,. . .
L11. V t−fin → read, poison,eat,. . .

� Limitations of F3:

� The rule for didn’t over-generates: * John didn’t didn’t run (need tense for
that)

� F3 does not allow coordination of transitive verbs (problematic anyways)

Michael Kohlhase: LBS 190 2024-01-20

The main extension of the fragment is the introduction of the new phrasal category VP , we have
to interpret. Intuitively, VP s denote functions that can be applied to the NP meanings (rule
1). Complex VP functions can be constructed from simpler ones by NL connectives acting as
functional operators.
Given the discussion above, we have to deal with various kinds of functions in the semantics. NP
meanings are individuals, VP meanings are functions from individuals to individuals, and conj
meanings are functionals that map functions to functions. It is a tradition in logic to distinguish
such objects (individuals and functions of various kinds) by assigning them types.

Implementing Fragment 3 in GF

� The grammar of Fragment 3 only differs from that of Fragment 2 by

� Verb phrases: cat VP; VPf; infinite and finite verb phrases

� Verb Form: to distinguish howl and howled in English
param VForm = VInf | VPast;
oper VerbType : Type = {s : VForm => Str };

� English Paradigms to deal with verb forms.
mkVP = overload {

mkVP : (v : VForm => Str) −> VP = \v −> lin VP {s = v};
mkVP : (v : VForm => Str) −> Str −> VP =
\v,str −> lin VP {s = table{VInf => v!VInf ++ str; VPast => v!VPast ++ str}};
mkVP : (v : VForm => Str) −> Str −> (v : VForm => Str) −> VP =
\v1,str,v2 −> lin VP {s = table{VInf => v1!VInf ++ str ++ v2!VInf;

VPast => v1!VPast ++ str ++ v2!VPast}};};
mkVPf : Str −> VPf = \str −> lin VPf {s = str};

Michael Kohlhase: LBS 191 2024-01-20

9.2 Dealing with Functions in Logic and Language

So we need to have a logic that can deal with functions and functionals (i.e. functions that
construct new functions from existing ones) natively. This goes beyond the realm of first-order
logic we have studied so far. We need two things from this logic:

9.2. DEALING WITH FUNCTIONS IN LOGIC AND LANGUAGE 119

1. a way of distinguishing the respective individuals, functions and functionals, and

2. a way of constructing functions from individuals and other functions.

There are standard ways of achieving both, which we will combine in the following to get the
“simply typed lambda calculus” which will be the workhorse logic for F3.
The standard way for distinguishing objects of different levels is by introducing types, here we can
get by with a very simple type system that only distinguishes functions from their arguments

Types

� Types are semantic annotations for terms that prevent antinomies

� Definition 9.2.1. Given a set BT of base types, construct function types: α → β
is the type of functions with domain type α and range type β. We call the closure
T of BT under function types the set of types over BT .

� Definition 9.2.2.

We will use ι for the type ofindividuals and prop for the type of truth values.

� Right Associativity: The type constructor is used as a right-associative operator,
i.e. we use α→ β → γ as an abbreviation for α→ β → γ

� Vector Notation:

We will use a kind of vector notation for function types, abbreviating α1→. . .→αn →
β with αn → β.

Michael Kohlhase: LBS 192 2024-01-20

Syntactical Categories and Types

� Now, we can assign types to phrasial categories.

Cat Type Intuition
S prop truth value

NP ι individual
Npr ι individuals
VP ι→ prop property
V i ι→ prop unary predicate
V t ι→ ι→ prop binary relation

� For the category conj, we cannot get by with a single type. Depending on where it
is used, we need the types

� prop → prop → prop for S-coordination in rule S2: S→S, conj, S

� ι→ prop→ι→ prop → ι→ prop for VP -coordination in V 3: VP→VP , conj, VP .

� Note: Computational Linguistics, often uses a different notation for types: e
(entiry) for ι, t (truth value) for prop, and ⟨α,β⟩ for α → β (no bracket elision
convention).
So the type for VP -coordination has the form ⟨⟨ι,[⟩ling]t,⟨⟨ι,[⟩ling]t,⟨ι,[⟩ling]t⟩⟩

120 CHAPTER 9. FRAGMENT 3: COMPLEX VERB PHRASES

Michael Kohlhase: LBS 193 2024-01-20

For a logic which can really deal with functions, we have to have two properties, which we
can already read off the language of mathematics (as the discipine that deals with functions and
funcitonals professionally): We

1. need to be able to construct functions from expressions with variables, as in f(x) = 3x2+7x+5,
and

2. consider two functions the same, iff they return the same values on the same arguments.

In a logical system (let us for the moment assume a first-order logic with types that can quantify
over functions) this gives rise to the following axioms:

Comprehension ∃Fα→β ∀Xα F X = Aβ

Extensionality ∀Fα→β ∀Gα→β (∀Xα FX = GX)⇒ F = G

The comprehension axioms are computationally very problematic. First, we observe that they
are equality axioms, and thus are needed to show that two objects of PLΩ are equal. Second
we observe that there are countably infinitely many of them (they are parametric in the term A,
the type α and the variable name), which makes dealing with them difficult in practice. Finally,
axioms with both existential and universal quantifiers are always difficult to reason with.
Therefore we would like to have a formulation of higher-order logic without comprehension axioms.
In the next slide we take a close look at the comprehension axioms and transform them into a
form without quantifiers, which will turn out useful.

From Comprehension to β-Conversion

� ∃Fα→β ∀Xα FX = Aβ for arbitrary variable Xα and term A∈wff β(ΣT ,VT)
(for each term A and each variableX there is a function f∈D(α→β), with f(φ(X)) =
Iφ(A))

� schematic in α, β, Xα and Aβ , very inconvenient for deduction

� Transformation in HΩ

� ∃Fα→β ∀Xα FX = Aβ

� ∀Xα (λXα A)X = Aβ (∃E)
Call the function F whose existence is guaranteed “(λXα A)”

� (λXα A)B = [B/X]Aβ (∀E), in particular for B∈wff α(ΣT ,VT).

� Definition 9.2.3. Axiom of β equality: (λXα A) B = [B/X](Aβ)

� Idea: Introduce a new class of formulae (λ-calculus [Chu40])

Michael Kohlhase: LBS 194 2024-01-20

In a similar way we can treat (functional) extensionality.

From Extensionality to η-Conversion

� Definition 9.2.4. Extensionality Axiom: ∀Fα→β ∀Gα→β (∀Xα FX = GX) ⇒
F = G

� Idea: Maybe we can get by with a simplified equality schema here as well.

9.3. TRANSLATION FOR FRAGMENT 3 121

� Definition 9.2.5. We say that A and λXα A X are η-equal, (write Aα→β=η(λXα A X)),
iff X ̸∈free(A).

� Theorem 9.2.6. η-equality and Extensionality are equivalent

� Proof: We show that η-equality is special case of extensionality; the converse
direction is trivial

1. Let ∀Xα AX = BX, thus AX = BX with ∀E
2. λXα AX = λXα BX, therefore A = B with η
3. Hence ∀Fα→β ∀Gα→β (∀Xα FX = GX)⇒ F = G by twice ∀I.

� Axiom of truth values: ∀Fprop ∀Gprop FG⇔ F = G unsolved.

Michael Kohlhase: LBS 195 2024-01-20

The price to pay is that we need to pay for getting rid of the comprehension and extensionality
axioms is that we need a logic that systematically includes the λ-generated names we used in the
transformation as (generic) witnesses for the existential quantifier. Alonzo Church did just that
with his “simply typed λ-calculus” which we will introduce next.
This is all very nice, but what do we actually translate into?

9.3 Translation for Fragment 3

Translations for Fragment 3

� We will look at the new translation rules (the rest stay the same).

T1: [XNP, YVP]S ; VP ′(NP′), T3: [XVP , Yconj, ZVP]VP ; conj′(VP ′, VP ′),
T4: [XV t , YNP]VP ; V t′(NP′)

� The lexical insertion rules will give us two items each for is, and, and or, corre-
sponding to the two types we have given them.

word type term case
BEpred ι→ prop → ι→ prop λPι→prop P adjective
BEeq ι→ ι→ prop λXιYι X = Y verb
and prop → prop → prop V ! S-coord.
and ι→ prop → ι→ prop → ι→ prop λFι→propGι→propXι F (X) ∧G(X) VP -coord.
or prop → prop → prop ∨ S-coord.
or ι→ prop → ι→ prop → ι→ prop λFι→propGι→propXι F (X) ∨G(X) VP -coord.
didn′t ι→ prop → ι→ prop λPι→propXι ¬P X

Need to assume the logical connectives as constants of the λ-calculus.

� Note: With these definitions, it is easy to restrict ourselves to binary branching in
the syntax of the fragment.

Michael Kohlhase: LBS 196 2024-01-20

• Definition 9.3.1 (Translation of non-branching nodes). If φ is a non-branching node
with daughter ψ, then the translation φ′ of φ is given by the translation ψ′ of ψ.

• Definition 9.3.2 (Translation of branching nodes (Function Application)). If φ is a

122 CHAPTER 9. FRAGMENT 3: COMPLEX VERB PHRASES

branching node with daughters ψ and θ, where ψ′ is an expression of type α → β and θ′ is an
expression of type α, then φ′ = ψ′ θ′.

• Note on notation: We now have higher-order constants formed using words from the frag-
ment, which are not (or are not always) translations of the words from which they are formed.
We thus need some new notation to represent the translation of an expression from the frag-
ment. We will use the notation introduced above, i.e. john′ is the translation of the word John.
We will continue to use primes to indicate that something is an expression (e.g. john). Words
of the fragment of English should be either underlined or italicized.

Translation Example

� Example 9.3.3. Ethel howled and screamed to

(λFι→propGι→propXι F (X) ∧G(X)) howls screams ethel
→β (λGι→propXι howls(X) ∧G(X)) screams ethel
→β (λXι howls(X) ∧ screams(X)) ethel
→β howls(ethel) ∧ screams(ethel)

Michael Kohlhase: LBS 197 2024-01-20

Higher-Order Logic without Quantifiers (HOLNQ)

� Problem: Need a logic like PLnq, but with λ-terms to interpret F3 into.

� Idea: Re-use the syntactical framework of Λ→.

� Definition 9.3.4. Let HOLNQ be an instance of Λ→, with BT = {ι, prop},
∧∈Σprop→prop→prop, ¬∈Σprop→prop, and = ∈Σα→α→prop for all types α.

� Idea: To extend this to a semantics for HOLNQ, we only have to say something
about the base type prop, and the logical constants ¬prop→prop, ∧prop→prop→prop, and
=α→α→prop.

� Definition 9.3.5. We define the semantics of HOLNQ by setting

1. Dprop = {T,F}; the set of truth values

2. I(¬)∈D(prop→prop), is the function {F 7→T,T7→F}
3. I(∧)∈D(prop→prop→prop) is the function with I(∧)@⟨a, b⟩ = T, iff a = T and

b = T.

4. I(=)∈D(α→α→prop) is the identity relation on Dα.

Michael Kohlhase: LBS 198 2024-01-20

You may be worrying that we have changed our assumptions about the denotations of predicates.
When we were working with PLnq as our translation language, we assumed that one-place predicates
denote sets of individuals, that two-place predicates denote sets of pairs of individuals, and so on.
Now, we have adopted a new translation language, HOLNQ, which interprets all predicates as
functions of one kind or another.

The reason we can do this is that there is a systematic relation between the functions we now
assume as denotations, and the sets we used to assume as denotations. The functions in question

9.4. SIMPLY TYPED λ-CALCULUS 123

are the characteristic functions of the old sets, or are curried versions of such functions.
Recall that we have characterized sets extensionally, i.e. by saying what their members are. A

characteristic function of a set A is a function which “says” which objects are members of A. It
does this by giving one value (for our purposes, the value 1) for any argument which is a member
of A, and another value, (for our purposes, the value 0), for anything which is not a member of
the set.
Definition 9.3.6 (Characteristic function of a set). fS is the characteristic function of the
set S iff fS(a) = T if a∈S and fS(a) = F if a̸∈S.
Thus any function in D(ι→prop) will be the characteristic function of some set of individuals. So,
for example, the function we assign as denotation to the predicate run will return the value T
for some arguments and F for the rest. Those for which it returns T correspond exactly to the
individuals which belonged to the set run in our old way of doing things.

Now, consider functions in D(ι→ι→prop). Recall that these functions are equivalent to two-
place relations, i.e. functions from pairs of entities to truth values. So functions of this kind are
characteristic functions of sets of pairs of individuals.

In fact, any function which ultimately maps an argument to Dprop is a characteristic function of
some set. The fact that many of the denotations we are concerned with turn out to be characteristic
functions of sets will be very useful for us, as it will allow us to go backwards and forwards between
“set talk” and “function talk,” depending on which is easier to use for what we want to say.

9.4 Simply Typed λ-Calculus
In this section we will present a logic that can deal with functions – the simply typed λ-calculus.
It is a typed logic, so everything we write down is typed (even if we do not always write the types
down).

Simply typed λ-Calculus (Syntax)

� Definition 9.4.1. Signature ΣT =
⋃
α∈T Σα (includes countably infinite signatures

ΣSkα of Skolem contants).

� VT =
⋃
α∈T Vα, such that Vα are countably infinite.

� Definition 9.4.2. We call the set wff α(ΣT ,VT) defined by the rules

� Vα ∪ Σα ⊆ wff α(ΣT ,VT)

� If C∈wff α→β(ΣT ,VT) and A∈wff α(ΣT ,VT), then C A∈wff β(ΣT ,VT)

� If A∈wff α(ΣT ,VT), then λXβ A∈wff β→α(ΣT ,VT)

the set of well typed formulae of type α over the signature ΣT and use wff T (ΣT ,VT):=
⋃
α∈T wff α(ΣT ,VT)

for the set of all well-typed formulae.

� Definition 9.4.3. We will call all occurrences of the variable X in A bound in
λX A. Variables that are not bound in B are called free in B.

� Substitutions are well typed, i.e. σ(Xα)∈wff α(ΣT ,VT) and capture-avoiding.

� Definition 9.4.4 (Simply Typed λ-Calculus). The simply typed λ calculus Λ→

over a signature ΣT has the formulae wff T (ΣT ,VT) (they are called λ-terms) and
the following equalities:

� α conversion: (λX A) =α (λY [Y /X](A)).

� β conversion: (λX A) B=β [B/X](A).

124 CHAPTER 9. FRAGMENT 3: COMPLEX VERB PHRASES

� η conversion: (λX A X)=ηA if X ̸∈free(A).

Michael Kohlhase: LBS 199 2024-01-20

The intuitions about functional structure of λ-terms and about free and bound variables are
encoded into three transformation rules Λ→: The first rule (α-conversion) just says that we can
rename bound variables as we like. β conversion codifies the intuition behind function application
by replacing bound variables with argument. The equality relation induced by the η-reduction is
a special case of the extensionality principle for functions (f = g iff f(a) = g(a) for all possible
arguments a): If we apply both sides of the transformation to the same argument – say B and
then we arrive at the right hand side, since (λXα A X)B=βA B.
We will use a set of bracket elision rules that make the syntax of Λ→ more palatable. This makes Λ→
expressions look much more like regular mathematical notation, but hides the internal structure.
Readers should make sure that they can always reconstruct the brackets to make sense of the
syntactic notions below.

Simply typed λ-Calculus (Notations)

� Application is left-associative:

We abbreviate F A1 A2 . . . An with F(A1, . . .,An) eliding the brackets and
further with F An in a kind of vector notation.

� Andrews’ dot Notation: A stands for a left bracket whose partner is as far right
as is consistent with existing brackets; i.e. A B C abbreviates A (B C).

� Abstraction is right-associative:

We abbreviate λX1 λX2 · · ·λXn A · · · with λX1. . .Xn A eliding brackets, and
further to λXn A in a kind of vector notation.

� Outer brackets: Finally, we allow ourselves to elide outer brackets where they can
be inferred.

Michael Kohlhase: LBS 200 2024-01-20

Intuitively, λX A is the function f , such that f(B) will yield A, where all occurrences of the formal
parameter X are replaced by B.6 In this presentation of the simply typed λ-calculus we
build-in =α-equality and use capture-avoiding substitution directly. A clean introduction would
followed the steps in ?? by introducing substitutions with a substitutability condition like the one
in Definition 8.1.26, then establishing the soundness of =α conversion, and only then postulating
defining capture-avoiding substitution application as in ??. The development for Λ→ is directly
parallel to the one for PL1, so we leave it as an exercise to the reader and turn to the computational
properties of the λ-calculus.
Computationally, the λ-calculus obtains much of its power from the fact that two of its three

equalities can be oriented into a reduction system. Intuitively, we only use the equalities in one
direction, i.e. in one that makes the terms “simpler”. If this terminates (and is confluent), then
we can establish equality of two λ-terms by reducing them to normal forms and comparing them
structurally. This gives us a decision procedure for equality. Indeed, we have these properties in
Λ→ as we will see below.

=αβη-Equality (Overview)

6EdNote: rationalize the semantic macros for syntax!

9.4. SIMPLY TYPED λ-CALCULUS 125

� Definition 9.4.5. Reduction with
{

=β : (λX A) B→β [B/X](A)
=η : (λX A X)→ηA

under =α :
λX A
=α

λY [Y /X](A)

� Theorem 9.4.6. β-reduction is well-typed, terminating and confluent in the pres-
ence of α-conversion.

� Definition 9.4.7 (Normal Form). We call a λ-term A a normal form (in a
reduction system E), iff no rule (from E) can be applied to A.

� Corollary 9.4.8. =βη-reduction yields unique normal forms (up to =α-equivalence).

Michael Kohlhase: LBS 201 2024-01-20

We will now introduce some terminology to be able to talk about λ terms and their parts.

Syntactic Parts of λ-Terms

� Definition 9.4.9 (Parts of λ-Terms). We can always write a λ-term in the form
T = λX1. . .Xk HA1 . . .An, where H is not an application. We call

� H the syntactic head of T

� H(A1, . . .,An) the matrix of T, and

� λX1. . .Xk (or the sequence X1, . . ., Xk) the binder of T

� Definition 9.4.10.

Head reduction always has a unique β redex

(λXn λY A(B2, . . .,Bn))→h
β(λX

n [B1/Y](A)(B2, . . .,Bn))

� Theorem 9.4.11. The syntactic heads of β-normal forms are constant or variables.

� Definition 9.4.12. Let A be a λ-term, then the syntactic head of the β-normal
form of A is called the head symbol of A and written as head(A). We call a λ-term
a j-projection, iff its head is the jth bound variable.

� Definition 9.4.13. We call a λ-term a η long form, iff its matrix has base type.

� Definition 9.4.14. η Expansion makes η long forms

η
[
(λX1. . .Xn A)

]
:=(λX1. . .Xn λY 1. . .Y m A(Y 1, . . ., Y m))

� Definition 9.4.15. Long βη normal form, iff it is β normal and η-long.

Michael Kohlhase: LBS 202 2024-01-20

η long forms are structurally convenient since for them, the structure of the term is isomorphic
to the structure of its type (argument types correspond to binders): if we have a term A of type
αn → β in η-long form, where β∈BT , then A must be of the form λXn

α B, where B has type β.
Furthermore, the set of η-long forms is closed under β-equality, which allows us to treat the two
equality theories of Λ→ separately and thus reduce argumentational complexity.
The semantics of Λ→ is structured around the types. Like the models we discussed before, a model
(we call them “algebras”, since we do not have truth values in Λ→) is a pair ⟨D, I⟩, where D is the
universe of discourse and I is the interpretation of constants.

126 CHAPTER 9. FRAGMENT 3: COMPLEX VERB PHRASES

Semantics of Λ→

� Definition 9.4.16. We call a collection DT :={Dα|α∈T } a typed collection (of
sets) and a collection fT : DT →ET , a typed function, iff fα : Dα→Eα.

� Definition 9.4.17. A typed collection DT is called a frame, iff D(α→β) ⊆ Dα→Dβ

� Definition 9.4.18. Given a frame DT , and a typed function I : Σ→D, then we
call Iφ : wff T (ΣT ,VT)→D the value function induced by I, iff

� Iφ|VT
= φ, Iφ|ΣT

= I
� Iφ(A B) = Iφ(A)(Iφ(B))

� Iφ(λXα A) is that function f∈D(α→β), such that f(a) = I(φ,[a/X])(A) for all
a∈Dα

� Definition 9.4.19. We call a frame ⟨D, I⟩ comprehension closed or a ΣT -algebra,
iff Iφ : wff T (ΣT ,VT)→D is total. (every λ-term has a value)

Michael Kohlhase: LBS 203 2024-01-20

Excursion: We will discuss the semantics, computational properties, and a more modern presen-
tation of the λ calculus in??.

Domain Theory for F3

� Observation 1: We we can reuse the lexicon theories from F1

� Observation 2: We we can even reuse the grammar theory from F1, if we extend
it in the obvious way (Mmt has all we need)

Michael Kohlhase: LBS 204 2024-01-20

Chapter 10

Fragment 4: Noun Phrases and
Quantification

10.1 Overview/Summary so far

Where we started: A VP -less fragment and PLnq.:

PLnq Fragment of English
Syntax: Definition of wffs Syntax: Definition of allowable sentences
Semantics: Model theory SEMANTICS BY TRANSLATION

What we did:

• Tested the translation by testing predictions: semantic tests of entailment.

• More testing: syntactic tests of entailment. For this, we introduced the model generation
calculus. We can make this move from semantic proofs to syntactic ones safely, because we
know that PLnq is sound and complete.

• Moving beyond semantics: Used model generation to predict interpretations of semantically
under-determined sentence types.

Where we are now: A fragment with a VP and HOLNQ.: We expanded the fragment and
began to consider data which demonstrate the need for a VP in any adequate syntax of English,
and the need for connectives which connect VP s and other expression types. At this point, the
resources of PLnq no longer sufficed to provide adequate compositional translations of the fragment.
So we introduced a new translation language, HOLNQ. However, the general picture of the table
above does not change; only the translation language itself changes.
Some discoveries:

• The task of giving a semantics via translation for natural language includes as a subtask the
task of finding an adequate translation language.

• Given a typed language, function application is a powerful and very useful tool for modeling the
derivation of the interpretation of a complex expression from the interpretations of its parts and
their syntactic arrangement. To maintain a transparent interface between syntax and semantics,
binary branching is preferable. Happily, this is supported by syntactic evidence.

• Syntax and semantics interact: Syntax forces us to introduce VP . The assumption of composi-
tionality then forces us to translate and interpret this new category.

127

128 CHAPTER 10. FRAGMENT 4: NOUN PHRASES AND QUANTIFICATION

• We discovered that the “logical operators” of natural language can’t always be translated directly
by their formal counterparts. Their formal counterparts are all sentence connectives; but English
has versions of these connectives for other types of expressions. However, we can use the familiar
sentential connectives to derive appropriate translations for the differently-typed variants.

Some issues about translations: HOLNQ provides multiple syntactically and semantically
equivalent versions of many of its expressions. For example:

1. Let runs be an HOLNQ constant of type ι→ prop. Then runs = λX runs(X)

2. Let loves be an HOLNQ constant of type ι→ ι→ prop. Then loves = λX λY loves(X,Y)

3. Similarly, loves(a) = λY loves(a, Y)

4. And loves(jane, george) = (λX λY loves(X,Y)) jane(george)

Logically, both sides of the equations are considered equal, since =η-equality (remember (λX A X)→ηA,
if X ̸∈free(A)) is built into HOLNQ. In fact all the right-hand sides are =η-expansions of the left-
hand sides. So you can use both, as you choose in principle.

But practically, you like to know which to give when you are asked for a translation? The
answer depends on what you are using it for. Let’s introduce a distinction between reduced
translations and unreduced translations. An unreduced translation makes completely explicit the
type assignment of each expression and the mode of composition of the translations of complex
expressions, i.e. how the translation is derived from the translations of the parts. So, for example,
if you have just offered a translation for a lexical item (say, and as a V t connective), and now
want to demonstrate how this lexical item works in a sentence, give the unreduced translation of
the sentence in question and then demonstrate that it reduces to the desired reduced version.

The reduced translations have forms to which the deduction rules apply. So always use reduced
translations for input in model generation: here, we are assuming that we have got the translation
right, and that we know how to get it, and are interested in seeing what further deductions can
be performed.
Where we are going: We will continue to enhance the fragment both by introducing additional
types of expressions and by improving the syntactic analysis of the sentences we are dealing with.
This will require further enrichments of the translation language. Next steps:

• Analysis of NP.

• Treatment of adjectives.

• Quantification

10.2 Fragment 4

New Data (more Noun Phrases)

� We want to be able to deal with the following sentences (without the “the-NP”
trick)

1. Peter loved the cat., but not * Peter loved the the cat.

2. John killed a cat with a white tail.

3. Peter chased the gangster in the car.

4. Peter loves every cat.

5. Every man loves a woman.

10.2. FRAGMENT 4 129

Michael Kohlhase: LBS 205 2024-01-20

The first example sugests that we need a full and uniform treatment of determiners like the, a,
and every. The second and third introduce a new phenomenon: prepositional phrases like with a
hammer/mouse; these are essentially nominal phrases that modify the meaning of other phrases
via a preposition like with, in, on, at. These two show that the prepositional phrase can modify
the verb or the object.

New Grammar in Fragment 4 (Common Noun Phrases)

� To account for the syntax we extend the functionality of noun phrases.

� Definition 10.2.1. F4 adds the rules on the right to F3 (on the left):
S1: S→NP, VP+fin, S2: S→S, Sconj,
V 1: VP±fin→V i±fin,
V 2: VP±fin→V t±fin,CNP,
V 3: VP±fin→VP±fin,VPconj±fin,
V 4: VP+fin→BE=,NP,
V 5: VP+fin→BEpred,Adj,
V 6: VP+fin→didn′t, VP−fin, N1: NP→Npr,
N2: NP→Pron

N3: NP→DetCNP, N4: CNP→N ,
N5: CNP→PP, N6: CNP→Adj,
P1: PP→P ,NP, S3: Sconj→conj, S,
V 4: VPconj±fin→conj, VP±fin,
L1: P→with | of | . . .

� Definition 10.2.2. A common noun is a noun that describes a type, for example
woman, or philosophy rather than an individual, such as Amelia Earhart (proper
name).

Michael Kohlhase: LBS 206 2024-01-20

Note: Parentheses indicate optionality of a constituent. We assume appropriate lexical insertion
rules without specification.

Implementing Fragment 4 in GF (Grammar)

� The grammar of Fragment 4 only differs from that of Fragment 4 by

� common noun phrases: cat CNP; Npr; lincat CNP = NounPhraeType;

� prepositional phrases : cat PP; Det; Prep; lincat Npr, Det, Prep, PP = {s: Str}

� new grammar rules
useDet : Det -> CNP -> NP; -- every book
useNpr : Npr -> NP; -- Bertie
useN : N -> CNP; -- book
usePrep : Prep -> NP -> PP; -- with a book
usePP : PP -> CNP -> CNP; -- teacher with a book

� grammar rules for “special” words that might not belong into the lexicon

Abstract English
with_Prep
: Prep;
of_Prep : Prep;
the_Det : Det;
every_Det : Det;
a_Det : Det;

with_Prep
= mkPrep "with";
of_Prep = mkPrep "of";
the_Det = mkDet "the";
every_Det
= mkDet "every";
a_Det = mkDet "a";

Michael Kohlhase: LBS 207 2024-01-20

130 CHAPTER 10. FRAGMENT 4: NOUN PHRASES AND QUANTIFICATION

Implementing Fragment 4 in GF (Grammar)

� English Paradigms to deal with (common) noun phrases

� Another case for mkNP
mkNP : Str −> (Case => Str) −> NP

= \prefix,t −> lin NP { s = table { nom => prefix ++ t!nom;
acc => prefix ++ t!acc}};

mkNpr : Str −> Npr = \name −> lin Npr { s = name };
mkDet : Str −> Det = \every −> lin Det { s = every };
mkPrep : Str −> Prep = \p −> lin Prep { s = p };
mkPP : Str −> PP = \s −> lin PP { s = s };
mkCNP = overload {

mkCNP : Str −> CNP
= \book −> lin CNP { s = table { nom => book; acc => book } };

mkCNP : (Case => Str) −> Str −> CNP
= \t,suffix −> lin CNP { s = table { nom => (t!nom) ++ suffix;

acc => (t!acc) ++ suffix}};};

Michael Kohlhase: LBS 208 2024-01-20

If we assume that ∀X boy(X) ⇒ runs(X) is an adequate translation of Every boy runs, and
∃X boy(X) ∧ runs(X) one for Some boy runs, then we obtain the translations of the determiners
by straightforward =β-expansion.

� Translation of Determiners and Quantifiers

� Idea: We establish the semantics of quantifying determiners by =β-expansion.

1. assume that we are translating into a λ-calculus with quantifiers and that ∀X boy(X)⇒
runs(X) translates Every boy runs, and ∃X boy(X) ∧ runs(X) for Some boy
runs

2. ∀∀:=(λPι→propQι→prop (∀ P (X)⇒Q(X))) for every. (subset relation)

3. ∃∃:=(λPι→propQι→prop (∃ P (X) ∧Q(X))) for some. (nonempty intersection)

� Problem: Linguistic Quantifiers take two arguments (restriction and scope), logical
ones only one! (in logics, restriction is the universal set)

� We cannot treat the with regular quantifiers (new logical constant; see below)

� Definition 10.2.3. We translate the to τ :=(λPι→propQι→prop Q ι P), where ι is a
new operator that given a set returns its (unique) member.

� Example 10.2.4. This translates The pope spoke to τ(pope, speaks), which
=β-reduces to speaks(ι pope).

Michael Kohlhase: LBS 209 2024-01-20

Note that if we interpret objects of type ι → prop as sets, then the denotations of boy and run
are sets (of boys and running individuals). Then the denotation of every is a relation between
sets; more specifically the subset relation. As a consequence, All boys run is true if the set of boys
is a subset of the set of running individuals. For some the relation is the non-empty intersection
relation, some boy runs is true if the intersection of set of boys and the set of running individuals
is non-empty.

10.3. INFERENCE FOR FRAGMENT 4 131

Note that there is a mismatch in the “arity” of linguistic and logical notions of quantifiers here.
Linguistic quantifiers take two arguments, the restriction (in our example boy) and the predication
(run). The logical quantifiers only take one argument, the predication A in ∀X A. In a way, the
restriction is always the universal set. In our model, we have modeled the linguistic quantifiers by
adding the restriction with a connective (implication for the universal quantifier and conjunction
for the existential one).

10.3 Inference for Fragment 4

10.3.1 Quantifiers and Equality in Higher-Order Logic
There is a more elegant way to treat quantifiers in HOL→. It builds on the realization that
the λ-abstraction is the only variable binding operator we need, quantifiers are then modeled
as second-order logical constants. Note that we do not have to change the syntax of HOL→ to
introduce quantifiers; only the “lexicon”, i.e. the set of logical constants. Since Πα and σα are
logical constants, we need to fix their semantics.

Higher-Order Abstract Syntax

� Idea: In HOL→, we already have variable binder: λ, use that to treat quantifica-
tion.

� Definition 10.3.1. We assume logical constants Πα and σα of type α→ prop →
prop.

Regain quantifiers as abbreviations:

(∀Xα A):=Πα (λXα A) (∃Xα A):=σα (λXα A)

� Definition 10.3.2. We must fix the semantics of logical constants:

1. I(Πα)(p) = T, iff p(a) = T for all a∈Dα (i.e. if p is the universal set)

2. I(σα)(p) = T, iff p(a) = T for some a∈Dα (i.e. iff p is non-empty)

� With this, we re-obtain the semantics we have given for quantifiers above:

Iφ(∀Xι A) = Iφ(Πι (λXι A)) = I(Πι)(Iφ(λXι A)) = T

iff Iφ(λXι A)(a) = I([a/X],φ)(A) = T for all a∈Dα

Michael Kohlhase: LBS 210 2024-01-20

Equality

� Definition 10.3.3 (Leibniz equality). QαAαBα = ∀Pα→prop PA⇔ PB
(indiscernability)

� Note: ∀Pα→prop PA⇒ PB (get the other direction by instantiating P with Q,
where QX ⇔ (¬PX))

� Theorem 10.3.4. If M = ⟨D, I⟩ is a standard model, then Iφ(Qα) is the identity
relation on Dα.

132 CHAPTER 10. FRAGMENT 4: NOUN PHRASES AND QUANTIFICATION

� Definition 10.3.5 (Notation). We write A = B for QAB (A and B are equal,
iff there is no property P that can tell them apart.)

� Proof:

1. Iφ(QAB) = Iφ(∀P PA⇒ PB) = T, iff
I(φ,[r/P])(PA⇒ PB) = T for all r∈D(α→prop).

2. For A = B we have I(φ,[r/P])(PA) = r(Iφ(A)) = F or I(φ,[r/P])(PB) =
r(Iφ(B)) = T.

3. Thus Iφ(QAB) = T.
4. Let Iφ(A) ̸= Iφ(B) and r={Iφ(A)}∈D(α→prop) (exists in a standard model)
5. so r(Iφ(A)) = T and r(Iφ(B)) = F

6. Iφ(QAB) = F, as I(φ,[r/P])(PA ⇒ PB) = F, since I(φ,[r/P])(PA) =
r(Iφ(A)) = T and I(φ,[r/P])(PB) = r(Iφ(B)) = F.

Michael Kohlhase: LBS 212 2024-01-20

Alternative: HOL∞

� Definition 10.3.6. There is only one logical constant in HOL∞: qα∈Σα→α→prop
with I(qα)(a, b) = T, iff a = b.

We define the rest as below: Definitions (D) and Notations (N)

N Aα = Bα for qαAαBα

D T for qprop = qprop

D F for λXprop T = λXprop Xprop
D Πα for qα→prop (λXα T)
N ∀Xα A for Πα (λXα A)
D ∧ for λXprop λYprop (λGprop→prop→prop GTT = λGprop→prop→prop GXY)
N A ∧B for ∧ (Aprop) (Bprop)
D ⇒ for λXprop λYprop (X = X ∧ Y)
N A⇒B for ⇒ (Aprop) (Bprop)
D ¬ for qprop F
D ∨ for λXprop λYprop ¬(¬X ∧ ¬Y)
N A ∨B for ∨ (Aprop) (Bprop)
D ∃Xα Aprop for ¬(∀Xα ¬A)
N Aα ̸= Bα for ¬qα (Aα) (Bα)

� yield the intuitive meanings for connectives and quantifiers.

Michael Kohlhase: LBS 213 2024-01-20

In a way, this development of higher-order logic is more foundational, especially in the context
of Henkin semantics. There, ?? does not hold (see [And72] for details). Indeed the proof of ??
needs the existence of singletons, which can be shown to be equivalent to the existence of the
identity relation. In other words, Leibniz equality only denotes the equality relation, if we have an
equality relation in the models. However, the only way of enforcing this (remember that Henkin
models only guarantee functions that can be explicitly written down as λ-terms) is to add a logical
constant for equality to the signature.
We have managed to deal with the determiners every and some in a compositional fashion, using
the familiar first-order quantifiers. However, most natural language determiners cannot be treated
so straightforwardly. Consider the determiner most, as in:

10.3. INFERENCE FOR FRAGMENT 4 133

1. Most boys run.

There is clearly no simple way to translate this using ∀ or ∃ in any way familiar from first-order
logic. As we have no translation at hand, then, let us consider what the truth conditions of this
sentence are.

Generalized Quantifiers

� Problem: What about Most boys run.: linguistically most behaves exactly like
every or some.

� Idea: Most boys run is true just in case the number of boys who run is greater
than the number of boys who do not run.

#(Iφ(boy) ∩ Iφ(runs)) > #(Iφ(boy)\Iφ(runs))

� Definition 10.3.7. #(A)>#(B), iff there is no surjective function from B to A,
so we can define

most′:=(λAB ¬(∃F ∀X A(X) ∧ ¬B(X)⇒ (∃ A(Y) ∧B(Y) ∧X = F (Y))))

Michael Kohlhase: LBS 214 2024-01-20

The NP most boys thus must denote something which, combined with the denotation of a VP,
gives this statement. In other words, it is a function from sets (or, equivalently, from functions
in D(ι→prop)) to truth values which gives true just in case the argument stands in the relevant
relation to the denotation of boy. This function is itself a characteristic function of a set of sets,
namely:

{X|#(Iφ(boy), X)>#(Iφ(boy)\X)}

Note that this is just the same kind of object (a set of sets) as we postulated above for the
denotation of every boy.

Now we want to go a step further, and determine the contribution of the determiner most itself.
most must denote a function which combines with a CNP denotation (i.e. a set of individuals or,
equivalently, its characteristic function) to return a set of sets: just those sets which stand in the
appropriate relation to the argument.

The function most′ is the characteristic function of a set of pairs:

{⟨X,Y ⟩|#(X ∩ Y)>#(X\Y)}

Conclusion: most denotes a relation between sets, just as every and some do. In fact, all natural
language determiners have such a denotation. (The treatment of the definite article along these
lines raises some issues to which we will return.)

Back to every and some (set characterization)

� We can now give an explicit set characterization of every and some:

1. every denotes {⟨X,Y ⟩|X ⊆ Y }
2. some denotes {⟨X,Y ⟩|X ∩ Y ̸= ∅}

� The denotations can be given in equivalent function terms, as demonstrated above
with the denotation of most.

134 CHAPTER 10. FRAGMENT 4: NOUN PHRASES AND QUANTIFICATION

Michael Kohlhase: LBS 215 2024-01-20

10.3.2 Model Generation with Definite Descriptions

Semantics of Definite Descriptions

� Problem: We need a semantics for the determiner the, as in the boy runs

� Idea (Type): the boy behaves like a proper name (e.g. Peter), i.e. has type ι.
Applying the to a noun (type ι → prop) yields ι. So the has type α → prop → α,
i.e. it takes a set as argument.

� Idea (Semantics): the has the fixed semantics that this function returns the single
member of its argument if the argument is a singleton, and is otherwise undefined.
(new logical constant)

� Definition 10.3.8. We introduce a new logical constant ι. I(ι) is the function
f∈D(α→prop→α), such that f(s) = a, iff s∈D(α→prop) is the singleton {a}, and is
otherwise undefined. (remember that we can interpret predicates as sets)

� Axioms for ι:

∀Xα X = ι = X
∀P ,Q Q(ι P) ∧ (∀X,Y P (X) ∧ P (Y)⇒X = Y)⇒ (∀ P (Z)⇒Q(Z))

Michael Kohlhase: LBS 216 2024-01-20

Note: The first axiom is an equational characterization of ι. It uses the fact that the singleton
with member X can be written as = X (or λY = XY , which is =η-equivalent). The second
axiom says that if we have Q ι P and P is a singleton (i.e. all X,Y ∈P are identical), then Q holds
on any member of P . Surprisingly, these two axioms are equivalent in HOL→.

More Operators and Axioms for HOL→

� Definition 10.3.9. The unary conditional wα∈Σprop→α→α

w (Aprop)Bα means: “If A, then B”.

� Definition 10.3.10. The binary conditional ifα∈Σprop→α→α→α

if (Aprop) (Bα) (Cα) means: “if A, then B else C”.

� Definition 10.3.11. The description operator ια∈Σα→prop→α

if P is a singleton set, then ι (Pα→prop) is the (unique) element in P.

� Definition 10.3.12. The choice operator γα∈Σα→prop→α

if P is non-empty, then γ (Pα→prop) is an arbitrary element from P.

� Definition 10.3.13 (Axioms for these Operators).

� unary conditional: ∀φprop ∀Xα φ⇒w φX = X

� binary conditional: ∀φprop ∀Xα, Yα, Zα (φ⇒if φ X Y = X)∧(¬φ⇒if φ Z X =
X)

� description operator ∀Pα→prop (∃1Xα PX)⇒ (∀Yα PY ⇒ ι P = Y)

� choice operator ∀Pα→prop (∃Xα PX)⇒ (∀Yα PY ⇒ γ P = Y)

10.3. INFERENCE FOR FRAGMENT 4 135

� Idea: These operators ensure a much larger supply of functions in Henkin models.

Michael Kohlhase: LBS 217 2024-01-20

More on the Description Operator

� ι is a weak form of the choice operator. (only works on singletons)

� Alternative Axiom of Descriptions: ∀Xα ι
α = X = X.

� use that I [a/X](= X) = {a}
� we only need this for base types ̸= prop

� Define ιprop:= = (λXprop X) or ιprop:=(λGprop→prop G T) or ιprop:= = = T

� ι(α→β):=(λHα→β→propXα ι
β (λZβ (∃Fα→β H F ∧ F X = Z)))

Michael Kohlhase: LBS 218 2024-01-20

To obtain a model generation calculus for HOLNQ with descriptions, we could in principle add
one of these axioms to the world knowledge, and work with that. It is better to have a dedicated
inference rule, which we present here.

A Model Generation Rule for ι

� Definition 10.3.14.
P (c)

T

Q(ι P)
α H = {c, a1, . . . , an}

RM ι
Q(c)

α

(P (a1)⇒ c = a1)
T

...
(P (an)⇒ c = an)

T

� Intuition: If we have a member c of P and Q(ι P) is defined (it has truth value
α∈{T,F}), then P must be a singleton (i.e. all other members X of P are identical
to c) and Q must hold on c. So the rule RM ι forces it to be by making all other
members of P equal to c.

Michael Kohlhase: LBS 219 2024-01-20

Mary owned a lousy computer. The hard drive crashed.

136 CHAPTER 10. FRAGMENT 4: NOUN PHRASES AND QUANTIFICATION

(∀X computer(X)⇒ (∃Y harddrive(Y) ∧ partof(Y,X)))
T

(∃X computer(X) ∧ lousy(X) ∧ own(mary, X))
T

computer(c)T

lousy(c)T

own(mary, c)T

harddrive(c)T

partof(c, c)T
...
⊥

harddrive(d)T

partof(d, c)T

crashes(ι harddrive)T

crashes(d)T

(harddrive(mary)⇒ mary = d)
T

(harddrive(c)⇒ c = d)
T

Michael Kohlhase: LBS 220 2024-01-20

Definition 10.3.15. In this example, we have a case of what is called a bridging reference,
following H. Clark (1977): intuitively, we build an inferential bridge from the computer whose
existence is asserted in the first sentence to the hard drive invoked in the second.
By incorporating world knowledge into the tableau, we are able to model this kind of inference,
and provide the antecedent needed for interpreting the definite.
Now let us use the RM ι rule for interpreting The dog barks in a situation where there are two
dogs: Fido and Chester. Intuitively, this should lead to a closed tableau, since the uniqueness
presupposition is violated. Applying the rules, we get the following tableau.

Another Example The dog barks

� In a situation, where there are two dogs: Fido and Chester

dog(fido)T

dog(chester)T

bark(ι dog)

bark(fido)T

(dog(chester)⇒ chester = fido)T

dog(chester)F

⊥
chester = fidoT

(10.1)

� Note that none of our rules allows us to close the right branch, since we do not
know that Fido and Chester are distinct. Indeed, they could be the same dog
(with two different names). But we can eliminate this possibility by adopting a new
assumption.

Michael Kohlhase: LBS 221 2024-01-20

10.3.3 Model Generation with Unique Name Assumptions

Normally (i.e. in natural languages) we have the default assumption that names are unique. In
principle, we could do this by adding axioms of the form n = mF to the world knowledge for all
pairs of names n and m. Of course the cognitive plausibility of this approach is very questionable.
As a remedy, we can build a Unique-Name-Assumption (UNA) into the calculus itself.

10.3. INFERENCE FOR FRAGMENT 4 137

Model Generation with Unique Name Assumption (UNA)

� Problem: Names are unique usually in natural language

� Definition 10.3.16. The unique name assumption (UNA) makes the assumption
that names are unique (in the respective context)

� Idea: Add background knowledge of the form n = mF (n and m names)

� Better Idea: Build UNA into the calculus: partition the Herbrand base H = U∪W
into subsets U for constants with a UNA, and W without. (treat them differently)

� Definition 10.3.17 (Model Generation with UNA). We add the following two
rules to the RM calculus to deal with the unique name assumption.

a = bT

Aα a∈W b∈H

([b/a](A))
α RM subst

a = bT a, b∈U
⊥

RM una

Michael Kohlhase: LBS 222 2024-01-20

In effect we make the equality replacement rule directional; it only allows the substitution for a
constant without the unique name assumption. Finally, RM una mechanizes the unique name
assumption by allowing a branch to close if two different constants with unique names are claimed
to be equal. All the other rules in our model generation calculus stay the same. Note that with
RM una, we can close the right branch of tableau (10.1), in accord with our intuition about the
discourse.

Solving a Crime with Unique Names

� Example 10.3.18. Tony has observed (at most) two people. Tony observed a
murderer that had black hair. It turns out that Bill and Bob were the two people
Tony observed. Bill is blond, and Bob has black hair. (Who was the murderer.)
Let U = {Bill,Bob} and W = {murderer}:

(∀z observes(Tony, z)⇒ (z = Bill ∨ z = Bob))T

observes(Tony,Bill)T

observes(Tony,Bob)T

observes(Tony,murderer)T

black_hair(murderer)T

¬black_hair(Bill)T

black_hair(Bill)F

black_hair(Bob)T

(observes(Tony,murderer)⇒ (murderer = Bill ∨ murderer = Bob))T

(murderer = Bill ∨ murderer = Bob)T

murderer = BillT

black_hair(Bill)T

⊥

murderer = BobT

Michael Kohlhase: LBS 223 2024-01-20

138 CHAPTER 10. FRAGMENT 4: NOUN PHRASES AND QUANTIFICATION

Rabbits [Gardent & Konrad ’99]

� Interpret “the” as λPQ Qι P ∧ uniq(P)
where uniq:=(λP (∃X P (X) ∧ (∀Y P (Y)⇒X = Y)))
and ∀∀:=(λPQ (∀X P (X)⇒Q(X))).

� “the rabbit is cute”, has logical form uniq(rabbit) ∧ (rabbit ⊆ cute).

� RM generates { . . . , rabbit(c), cute(c)} in situations with at most 1 rabbit.
(special RM ∃ rule yields identification and accommodation (cnew))

+ At last an approach that takes world knowledge into account!

– tractable only for toy discourses/ontologies
The world cup final was watched on TV by 7 million people.
A rabbit is in the garden.
∀X human(x)∃Y human(X) ∧ father(X,Y) ∀X,Y father(X,Y)⇒X ̸= Y

Michael Kohlhase: LBS 224 2024-01-20

More than one Rabbit

� Problem: What about two rabbits?
Bugs and Bunny are rabbits. Bugs is in the hat. Jon removes the rabbit from
the hat.

� Idea: Uniqueness under Scope [Gardent & Konrad ’99]:

� refine the to λPRQ uniq(P ∩R ∧ ∀∀(P ∩R,Q))
where R is an “identifying property” (identified from the context and passed as
an arbument to the)

� here R is “being in the hat” (by world knowledge about removing)

� makes Bugs unique (in P ∩R) and the discourse acceptable.

� Idea: [Hobbs & Stickel&. . .]:

� use generic relation rel for “relatedness to context” for P 2.

?? Is there a general theory of relatedness?

Michael Kohlhase: LBS 225 2024-01-20

10.4 Davidsonian Semantics: Treating Verb Modifiers

Event semantics: Davidsonian Systems

� Problem: How to deal with argument structure of (action verbs) and their modi-
fiers

� John killed a cat with a hammer.

10.4. DAVIDSONIAN SEMANTICS: TREATING VERB MODIFIERS 139

� Idea: Just add an argument to kills for express the means

� Problem: But there may be more modifiers

1. Peter killed the cat in the bathroom with a hammer.

2. Peter killed the cat in the bathroom with a hammer at midnight.

So we would need a lot of different predicates for the verb killed. (impractical)

� Definition 10.4.1. In event semantics we extend the argument structure of (action)
verbs contains a ’hidden’ argument, the event argument, then treat modifiers as
predicates (often called roles) over events [Dav67a].

� Example 10.4.2.

1. ∃e ∃x, y bathroom(x) ∧ hammer(y) ∧ kill(e, peter, ι cat) ∧ in(e, x) ∧ with(e, y)

2. ∃e ∃x, y bathroom(x) ∧ hammer(y) ∧ kill(e, peter, ι cat) ∧ in(e, x) ∧ with(e, y) ∧ at(e, 24 : 00)

Michael Kohlhase: LBS 226 2024-01-20

Event semantics: Neo-Davidsonian Systems

� Idea: Take apart the Davidsonian predicates even further, add event participants
via thematic roles (from [Par90]).

� Definition 10.4.3. Neo-Davisonian semantics extends event semantics by adding
two standardized roles: the agent ag(e, s) and the patient pat(e, o) for the subject
s and direct object d of the event e.

� Example 10.4.4. Translate John killed a cat with a hammer. as
∃e ∃x hammer(x) ∧ killing(e) ∧ ag(e, peter) ∧ pat(e, ι cat) ∧ with(e, x)

� Further Elaboration: Events can be broken down into sub-events and modifiers
can predicate over sub-events.

� Example 10.4.5. The “process” of climbing Mt. Everest starts with the “event”
of (optimistically) leaving the base camp and culminates with the “achievement” of
reaching the summit (being completely exhausted).

� Note: This system can get by without functions, and only needs unary and binary
predicates. (well-suited for model generation)

Michael Kohlhase: LBS 227 2024-01-20

Event types and properties of events

� Example 10.4.6 (Problem). Some (temporal) modifiers are incompatible with
some events, e.g. in English progressive:

1. He is eating a sandwich and He is pushing the cart., but not

2. * He is being tall. or * He is finding a coin.

� Definition 10.4.7 (Types of Events). There are different types of events that go

140 CHAPTER 10. FRAGMENT 4: NOUN PHRASES AND QUANTIFICATION

with different temporal modifiers. [Ven57] distinguishes

1. states: e.g. know the answer, stand in the corner

2. processes: e.g. run, eat, eat apples, eat soup

3. accomplishments: e.g. run a mile, eat an apple, and

4. achievements: e.g. reach the summit

� Observations:

1. processes and accomplishments appear in the progressive (1),

2. states and achievements do not (2).

� Definition 10.4.8. The in test

1. states and activities, but not accomplishments and achievements are compatible
with for-adverbials

2. whereas the opposite holds for in-adverbials (5).

� Example 10.4.9.

1. run a mile in an hour vs. * run a mile for an hour, but

2. * reach the summit for an hour vs reach the summit in an hour

Michael Kohlhase: LBS 228 2024-01-20

Chapter 11

Davidsonian Semantics: Treating
Verb Modifiers

Event semantics: Davidsonian Systems

� Problem: How to deal with argument structure of (action verbs) and their modi-
fiers

� John killed a cat with a hammer.

� Idea: Just add an argument to kills for express the means

� Problem: But there may be more modifiers

1. Peter killed the cat in the bathroom with a hammer.

2. Peter killed the cat in the bathroom with a hammer at midnight.

So we would need a lot of different predicates for the verb killed. (impractical)

� Definition 11.0.1. In event semantics we extend the argument structure of (action)
verbs contains a ’hidden’ argument, the event argument, then treat modifiers as
predicates (often called roles) over events [Dav67a].

� Example 11.0.2.

1. ∃e ∃x, y bathroom(x) ∧ hammer(y) ∧ kill(e, peter, ι cat) ∧ in(e, x) ∧ with(e, y)

2. ∃e ∃x, y bathroom(x) ∧ hammer(y) ∧ kill(e, peter, ι cat) ∧ in(e, x) ∧ with(e, y) ∧ at(e, 24 : 00)

Michael Kohlhase: LBS 229 2024-01-20

Event semantics: Neo-Davidsonian Systems

� Idea: Take apart the Davidsonian predicates even further, add event participants
via thematic roles (from [Par90]).

� Definition 11.0.3. Neo-Davisonian semantics extends event semantics by adding
two standardized roles: the agent ag(e, s) and the patient pat(e, o) for the subject
s and direct object d of the event e.

141

142 CHAPTER 11. DAVIDSONIAN SEMANTICS: TREATING VERB MODIFIERS

� Example 11.0.4. Translate John killed a cat with a hammer. as
∃e ∃x hammer(x) ∧ killing(e) ∧ ag(e, peter) ∧ pat(e, ι cat) ∧ with(e, x)

� Further Elaboration: Events can be broken down into sub-events and modifiers
can predicate over sub-events.

� Example 11.0.5. The “process” of climbing Mt. Everest starts with the “event”
of (optimistically) leaving the base camp and culminates with the “achievement” of
reaching the summit (being completely exhausted).

� Note: This system can get by without functions, and only needs unary and binary
predicates. (well-suited for model generation)

Michael Kohlhase: LBS 230 2024-01-20

Event types and properties of events

� Example 11.0.6 (Problem). Some (temporal) modifiers are incompatible with
some events, e.g. in English progressive:

1. He is eating a sandwich and He is pushing the cart., but not

2. * He is being tall. or * He is finding a coin.

� Definition 11.0.7 (Types of Events). There are different types of events that go
with different temporal modifiers. [Ven57] distinguishes

1. states: e.g. know the answer, stand in the corner

2. processes: e.g. run, eat, eat apples, eat soup

3. accomplishments: e.g. run a mile, eat an apple, and

4. achievements: e.g. reach the summit

� Observations:

1. processes and accomplishments appear in the progressive (1),

2. states and achievements do not (2).

� Definition 11.0.8. The in test

1. states and activities, but not accomplishments and achievements are compatible
with for-adverbials

2. whereas the opposite holds for in-adverbials (5).

� Example 11.0.9.

1. run a mile in an hour vs. * run a mile for an hour, but

2. * reach the summit for an hour vs reach the summit in an hour

Michael Kohlhase: LBS 231 2024-01-20

Part II

Topics in Semantics

143

Chapter 12

Dynamic Approaches to NL
Semantics

In this chapter we tackle another level of language, the discourse level, where we look
especially at the role of cross-sentential anaphora. This is an aspect of natural language that
cannot (compositionally) be modeled in first-order logic, due to the strict scoping behavior of
quantifiers. This has led to the developments of dynamic variants of first-order logic: the “file
change semantics” [Hei82] by Irene Heim and (independently) “discourse representation theory”
(DRT [Kam81]) by Hans Kamp, which solve the problem by re-interpreting indefinites to introduce
representational objects – called discourse referents in DRT – that are not bound variables and
can therefore have a different scoping behavior. These approaches have been very influential in
the representation of discourse – i.e. multi-sentence – phenomena.

In this chapter, we will introduce dynamic logics taking DRT as a starting point since
it was adopted more widely than file change semantics and the later “dynamic predicate logics”
(DPL [GS91]). section 12.1 gives an introduction to dynamic language phenomena and how they
can be modeled in DRT. section 13.4 relates the linguistically motivated logics to modal logics used
for modeling imperative programs and draws conclusions about the role of language in cognition.
?? extends our primary inference system – model generation – to DRT and relates the concept
of discourse referents to Skolem constants. Dynamic model generation also establishes a natural
system of “direct deduction” for dynamic semantics. Finally, Appendix E discusses how dynamic
approaches to NL semantics can be combined with ideas Montague Semantics to arrive at a fully
compositional approach to discourse semantics.

12.1 Discourse Representation Theory
In this section we introduce Discourse Representation Theory as the most influential framework

for aproaching dynamic phenomena in natural language. We will only cover the basic ideas here
and leave the coverage of larger fragments of natural language to [KR93].
Let us look at some data about effects in natural languages that we cannot really explain with
our treatment of indefinite descriptions in Fragment 4 (see ??).

Anaphora and Indefinites revisited (Data)

� Observation: We have concentrated on single sentences so far; let’s do better.

� Definition 12.1.1. A discourse is a a unit of natural language longer than a single
sentence.

145

146 CHAPTER 12. DYNAMIC APPROACHES TO NL SEMANTICS

� New Data: discourses interact with anaphora.:

� Peter1 is sleeping. He1 is snoring. (normal anaphoric reference)

� A man1 is sleeping. He1 is snoring. (Scope of existential?)

� Peter has a car1. It1 is parked outside. (even if this worked)

� * Peter has no car1. It1 is parked outside. (what about negation?)

� There is a book1 that Peter does not own. It1 is a novel. (OK)

� * Peter does not own every book1. It1 is a novel. (equivalent in PL1)

� If a farmer1 owns a donkey2, he1 beats it2. (even inside sentences)

Michael Kohlhase: LBS 232 2024-01-20

In the first example, we can pick up the subject Peter of the first sentence with the anaphoric
reference He in the second. We gloss the intended anaphoric reference with the labels in upper and
lower indices. And indeed, we can resolve the anaphoric reference in the semantic representation
by translating He to (the translation of) Peter. Alternatively we can follow the lead of fragment 2
(see ??) and introduce variables for anaphora and adding a conjunct that equates the respective
variable with the translation of Peter. This is the general idea of anaphor resolution we will adopt
in this section.

Dynamic Effects in Natural Language

� Problem: E.g. Quantifier Scope

� * A man sleeps. He snores.

� (∃X man(X) ∧ sleeps(X)) ∧ snores(X)

� X is bound in the first conjunct, and free in the second.

� Problem: donkey sentence: If a farmer owns a donkey, he beats it.
∀X,Y farmer(X) ∧ donkey(Y) ∧ own(X,Y)⇒ beat(X,Y)

� Ideas:

� Composition of sentences by conjunction inside the scope of existential quanti-
fiers (non-compositional,
. . .)

� Extend the scope of quantifiers dynamically (DPL)

� Replace existential quantifiers by something else (DRT)

Michael Kohlhase: LBS 233 2024-01-20

Intuitively, the second example should work exactly the same – it should not matter, whether the
subject NP is given as a proper name or an indefinite description. The problem with the indefinite
descriptions is that they are translated into existential quantifiers and we cannot refer to the
bound variables see below. Note that this is not a failure of our envisioned treatment of anaphora,
but of our treatment of indefinite descriptions; they just do not generate the objects that can be
referred back to by anaphoric references (we will call them discourse referents). We will speak of
the “anaphoric potential” for this the set of referents that can be anaphorically referred to.
The second pair of examples is peculiar in the sense that if we had a solution for the indefinite

description in Peter has a car, we would need a solution that accounts for the fact that even
though Peter has a car puts a car referent into the anaphoric potential Peter has no car – which

12.1. DISCOURSE REPRESENTATION THEORY 147

we analyze compositionally as It is not the case that Peter has a car does not. The interesting
effect is that the negation closes the anaphoric potential and excludes the car referent that Peter
has a car introduced.
The third pair of sentences shows that we need more than PL1 to represent the meaning of quantifi-
cation in natural language while the sentence There is a book that peter does not own. induces a
book referent in the anaphoric potential, but the sentence Peter does not own every book does not,
even though their translations ∃x book(x) ∧ ¬own(peter, x) and ¬(∀x book(x) ⇒ own(peter, x))
are logically equivalent.
The last sentence is the famous donkey sentence that shows that the dynamic phenomena we have
seen above are not limited to inter-sentential anaphora.
The central idea of Discourse Representation Theory (DRT), is to eschew the first-order quantifi-
cation and the bound variables it induces altogether and introduce a new representational device:
discourse referents, and manage their visibility (called accessibility in DRT) explicitly.
We will introduce the traditional, visual “box notation” by example now before we turn to a
systematic definition based on a symbolic notation later.

Discourse Representation Theory (DRT)

� Definition 12.1.2. Discourse Representation Theory (DRT) is a logical system,
which uses discourse referents to model quantification and pronouns. DRT formu-
lae are called discourse representation structure (DRS); these introduce a set of
discourse referents and specify their meaning by conditions:

� atomic propositions,

� dynamic negations ¬¬D,

� dynamic implications D⇒⇒E, and

� dynamic disjunctions D∨∨E.

� Discourse referents e.g. in A student owns a book.

� are kept in a dynamic context (; accessibility)

� are declared e.g. in indefinite nominals

� specified in conditions via predicates

X,Y
student(X)
book(Y)
own(X,Y)

� Discourse representation structures (DRS)
A student owns a book. He reads it. If a farmer owns a donkey, he beats it.

X,Y ,R, S
student(X)
book(Y)
own(X,Y)
read(R,S)
X = R
Y = S

X, Y
farmer(X)
donkey(Y)
own(X,Y)

⇒⇒ beat(X,Y)

Michael Kohlhase: LBS 234 2024-01-20

These examples already show that there are three kinds of objects in DRT: The meaning of
sentences is given as DRSes, which are denoted as “file cards” that list the discourse referents (the
participants in the situation described in the DRS) at the top of the “card” and state a couple
of conditions on the discourse referents. The conditions can contain DRSes themselves, e.g. in
conditional conditions.
With this representational infrastructure in place we can now look at how we can construct dis-
course DRSes i.e. DRSes for whole discourses. The sentence composition problem was – after all

148 CHAPTER 12. DYNAMIC APPROACHES TO NL SEMANTICS

– the problem that led to the development of DRT since we could not compositionally solve it in
first-order logic.

Discourse DRS Construction

� Problem: How do we construct DRSes for multi-sentence discourses?

� Solution: We construct sentence DRSes individually and merge them (DRSes
and conditions separately)

� Example 12.1.3. A three-sentence discourse. (not quite Shakespeare)

Mary sees John. John kills a cat. Mary calls a cop. merge

see(mary, john)

U
cat(U)
kills(john, U)

V
policeman(V)
calls(mary, V)

U, V
see(mary, john)
cat(U)
kills(john, U)
policeman(V)
calls(mary, V)

� Sentence composition via the DRT Merge Operator ⊗. (acts on DRSes)

Michael Kohlhase: LBS 235 2024-01-20

Note that – in contrast to the “smuggling-in”-type solutions we would have to dream up for first-
order logic – sentence composition in DRT is compositional: We construct sentence DRSes1 and
merge them. We can even introduce a “logic operator” for this: the merge operator ⊗, which can
be thought of as the “full stop” punctuation operator.
Now we can have a look at anaphor resolution in DRT. This is usually considered as a separate
process – part of semantic-pragmatic analysis.

Anaphor Resolution in DRT

� Problem: How do we resolve anaphora in DRT?

� Solution: Two phases

� translate pronouns into discourse referents (semantics construction)

� identify (equate) coreferring discourse referents, (maybe) simplify
(semantic/pragmatic analysis)

� Example 12.1.4. A student owns a book. He reads it.

A student1 owns a book2. He1 reads it2 resolution simplify

X,Y ,R, S
student(X)
book(Y)
read(R,S)

X,Y ,R, S
student(X)
book(Y)
read(R,S)
X = R
Y = S

X, Y
student(X)
book(Y)
read(X,Y)

1We will not go into the sentence semantics construction process here

12.1. DISCOURSE REPRESENTATION THEORY 149

Michael Kohlhase: LBS 236 2024-01-20

We will sometime abbreviate the anaphor resolution process and directly use the simplified version
of the DRSes for brevity.
Using these examples, we can now give a more systematic introduction of DRT using a more
symbolic notation. Note that the grammar below over-generates, we still need to specify the
visibility of discourse referents.

DRT (Syntax)

� Definition 12.1.5. Given a set DR of discourse referents, discourse representation
structure (DRSes) are given by the following grammar:

conditions C::=p(a1, . . ., an) | C1 ∧ C2 | ¬¬D | D1∨∨D2 | D1⇒⇒D2

DRSes D::=δU1, . . ., Un C | D1 ⊗D2 | D1 ;;D2

� ⊗ and ;; are for sentence composition (⊗ from DRT, ;; from DPL)

� Example 12.1.6. δU, V farmer(U) ∧ donkey(V) ∧ own(U, V) ∧ beat(U, V)

� Definition 12.1.7. The meaning of ⊗ and ;; is given operationally by =τ Equality:

δX C1 ⊗ δY C2 →τ δX ,Y C1 ∧ C2

δX C1 ;; δY C2 →τ δX ,Y C1 ∧ C2

� Discourse referents used instead of bound variables.(specify scoping independently
of logic)

� Idea: Semantics inherited from first-order logic by a translation mapping.

Michael Kohlhase: LBS 237 2024-01-20

We can now define the notion of accessibility in DRT, which in turn determines the (predicted)
dynamic potential of a DRS: A discourse referent has to be accessible to be picked up by an
anaphoric reference.
We will follow the classical exposition and introduce accessibility as a derived concept induced by
a non-structural notion of sub-DRS.

Sub DRSes and Accessibility

� Problem: How can we formally define accessibility. (to make predictions)

� Idea: Make use of the structural properties of DRT.

� Definition 12.1.8. A referent is accessible in all sub DRS of the declaring DRS.

� If D = δU1, . . ., Un C, then any sub DRS of C is a sub DRS of D.

� If D = D1 ⊗D2, then D1 is a sub DRS of D2 and vice versa.

� If D = D1 ;;D2, then D2 is a sub DRS of D1.

� If C is of the form C1 ∧ C2, or ¬¬D, or D1∨∨D2, or D1⇒⇒D2, then any sub DRS
of the Ci, and the Di is a sub DRS of C.

� If D = D1⇒⇒D2, then D2 is a sub DRS of D1

150 CHAPTER 12. DYNAMIC APPROACHES TO NL SEMANTICS

� Definition 12.1.9 (Dynamic Potential). (which
referents can be picked up?) A referent U is in the dynamic potential of a DRS D,

iff it is accessible in D ⊗
p(U)

� Definition 12.1.10. We call a DRS static, iff the dynamic potential is empty, and
dynamic, if it is not.

Michael Kohlhase: LBS 238 2024-01-20

Sub DRSes and Accessibility

� Observation: Accessibility gives DRSes the flavor of binding structures. (with
non-standard scoping!)

� Idea: Apply the usual binding heuristics to DRT, e.g.

� reject DRSes with unbound discourse referents.

� Questions: if view of discourse referents as “nonstandard bound variables”

� what about renaming referents?

Michael Kohlhase: LBS 239 2024-01-20

The meaning of DRSes is (initially) given by a translation to PL1. This is a convenient way to
specify meaning, but as we will see, it has its costs, as we will see.

Translation from DRT to FOL

� Definition 12.1.11. For =τ -normal (fully merged) DRSes use the translation ·:

δU1, . . ., Un C = ∃U1, . . ., Un C
¬¬D = ¬D

D∨∨E = D ∨ E
D ∧ E = D ∧ E

(δU1, . . ., Un C1)⇒⇒(δV 1, . . ., V n C2) = ∀U1, . . ., Un C1 ⇒ (∃V 1, . . ., V n C2)

� Example 12.1.12.

X,Y
student(X)
book(Y)
own(X,Y)

= ∃X ∃Y student(X) ∧ book(Y) ∧ own(X,Y).

� Example 12.1.13.

(δU, V farmer(U) ∧ donkey(V) ∧ own(U, V))⇒⇒(δW stick(W) ∧ beatwith(U, V,W))
= ∀X,Y farmer(X) ∧ donkey(X) ∧ own(X,Y)⇒ (∃ stick(Z) ∧ beatwith(Z,X, Y))

� Consequence: Validity of DRSes can be checked by translation.

� Question: Why not use first-order logic directly?

� Answer: Only translate at the end of a discourse (translation closes all dynamic
contexts: frequent re-translation).

12.1. DISCOURSE REPRESENTATION THEORY 151

Michael Kohlhase: LBS 240 2024-01-20

We can now test DRT as a logical system on the data and see whether it makes the right predictions
about the dynamic effects identified at the beginning of the section.

Properties of Dynamic Scope

� Idea: Test DRT on the data above for the dynamic phenomena

� Example 12.1.14 (Negation Closes Dynamic Potential).
Peter has no1 car. * It1 is parked outside.

¬¬
U

acar(U)
own(peter, U)

⊗
parked(U)

¬(∃U acar(U) ∧ own(peter, U)). . .

� Example 12.1.15 (Universal Quantification is Static).
Peter does not own every book1. * It1 is a novel.

¬¬ U

book(U)
⇒⇒

own(peter, U)

⊗
novel(U)

¬(∀U book(U)⇒own(peter, U)). . .

� Example 12.1.16 (Existential Quantification is Dynamic).
There is a book1 that Peter does not own. It1 is a novel.
V

book(V)
(¬own(peter, V))

⊗
novel(V)

∃U book(U) ∧ ¬own(peter, U) ∧ novel(U)

Michael Kohlhase: LBS 241 2024-01-20

Example 12.1.14 shows that dynamic negation closes off the dynamic potential. Indeed, the refer-
ent U is not accessible in the second argument of ⊗. Example 12.1.15 predicts the inaccessibility
of U for the same reason. In contrast to that, U is accessible in Example 12.1.16, since it is not
under the scope of a dynamic negation.
The examples above, and in particular the difference between Example 12.1.15 and Example 12.1.16
show that DRT forms a representational level above recall that we can translate down – PL1, which
serves as the semantic target language. Indeed DRT@ makes finer distinctions than PL1, and sup-
ports an incremental process of semantics construction: DRS construction for sentences followed
by DRS merging via =τ reduction.

DRT as a Representational Level

� DRT adds a level to the knowledge representation which provides anchors (the
discourse referents) for anaphora and the like.

� Propositional semantics by translation into PL1. (“+s” adds a sentence)

152 CHAPTER 12. DYNAMIC APPROACHES TO NL SEMANTICS

a
A

a,b
A
B

a,b,c
A
B
C

· · ·
· · ·

∃a.A ∃a, b.A ∧B ∃a, b, c.A ∧B ∧ C · · ·

+s +s +s

? ? ?

τ τ τ

Repn.
Layer

Logic
Layer

� Anaphor resolution works incrementally on the representational level.

Michael Kohlhase: LBS 242 2024-01-20

We will now introduce a “direct semantics” for DRT: a notion of “model” and an evaluation mapping
that interprets DRSes directly – i.e. not via a translation of first-order logic. The main idea is that
atomic conditions and conjunctions are interpreted largely like first-order formulae, while DRSes
are interpreted as sets of states that satisfy the conditions. A DRS is satisfied by a model, if that
set is non-empty.

A Direct Semantics for DRT (Dyn. Interpretation Iδφ)

� Definition 12.1.17. Let M = ⟨D, I⟩ be a first-order model, then a state is an
assignment from discourse referents into D.

� Definition 12.1.18. Let φ,ψ : DR→U be states, then we say that ψ extends φ on
X ⊆ DR (write φ[X]ψ), if φ(U) = ψ(U) for all U ̸∈X .

� Idea: Conditions as truth values; DRSes as pairs (X ,S) (S set of states)

� Definition 12.1.19 (Meaning of complex formulae).The value function Iφ for
DRT is defined with the help of a dynamic value function Iδφ on DRSs: For condi-
tions:

� Iφ(¬¬D) = T, if Iδφ(D)
2
= ∅.

� Iφ(D∨∨E) = T, if Iδφ(D)
2 ̸= ∅ or Iδφ(E)

2 ̸= ∅.

� Iφ(D⇒⇒E) = T, if for all ψ∈Iδφ(D)
2 there is a τ∈Iδφ(E)

2 with ψ[Iδφ(E)
1
]τ .

For DRSs D we set Iφ(D) = T, iff Iδφ(D)
2 ̸= ∅, and define

� Iδφ(δX C) = (X ,{ψ|φ[X]ψ and Iψ(C) = T}).

� Iδφ(D ⊗ E) = Iδφ(D ;; E) = (Iδφ(D)
1 ∪ Iδφ(E)

1
,Iδφ(D)

2 ∩ Iδφ(E)
2
)

Michael Kohlhase: LBS 243 2024-01-20

We use the dynamic value function Iδφ(D) for DRSs D that might be continued and (the static0
Iφ(D) for ones that are already final.
We can now fortify our intuition by computing the direct semantics of two sentences, which differ
in their dynamic potential. We start out with the simple Peter owns a car and then progress to
Peter owns no car.

12.2. DYNAMIC MODEL GENERATION 153

Examples (Computing Direct Semantics)

� Example 12.1.20. Peter owns a car

Iδφ(δU acar(U) ∧ own(peter, U))

= ({U},{ψ|φ[U]ψ and Iψ(acar(U) ∧ own(peter, U)) = T})
= ({U},{ψ|φ[U]ψ and Iψ(acar(U)) = T and Iψ(own(peter, U)) = T})
= ({U},{ψ|φ[U]ψ and ψ(U)∈I(acar) and (ψ(U),peter)∈I(own)})

The set of states [a/U], such that a is a car and is owned by Peter

� Example 12.1.21. For Peter owns no car we look at the condition:

Iφ(¬¬(δU acar(U) ∧ own(peter, U))) = T

⇔ Iδφ(δU acar(U) ∧ own(peter, U))
2
= ∅

⇔ ({U},{ψ|φ[X]ψ and ψ(U)∈I(acar) and (ψ(U),peter)∈I(own)})2 = ∅
⇔ {ψ|φ[X]ψ and ψ(U)∈I(acar) and (ψ(U),peter)∈I(own)} = ∅

i.e. iff there are no a, that are cars and that are owned by Peter.

Michael Kohlhase: LBS 244 2024-01-20

The first thing we see in Example 12.1.20 is that the dynamic potential can directly be read
off the direct interpretation of a DRS: it is the domain of the states in the first component. In
Example 12.1.21, the interpretation is of the form (∅,Iδφ(C)), where C is the condition we compute
the truth value of in Example 12.1.21.

12.2 Dynamic Model Generation

We will now establish a method for direct deduction on DRT, i.e. deduction at the representational
level of DRT, without having to translate – and retranslate – before deduction.

Deduction in Dynamic Logics

� Mechanize the dynamic entailment relation (with anaphora)

� Use dynamic deduction theorem to reduce (dynamic) entailment to (dynamic) sat-
isfiability

� Direct Deduction on DRT (or DPL) [Sau93; RG94; MR98]

(++) Specialized Calculi for dynamic representations

(– –) Needs lots of development until we have efficient implementations

� Translation approach (used in our experiment)

(–) Translate to FOL

(++) Use off-the-shelf theorem prover (in this case MathWeb)

Michael Kohlhase: LBS 245 2024-01-20

154 CHAPTER 12. DYNAMIC APPROACHES TO NL SEMANTICS

An Opportunity for Off-The-Shelf ATP?

� Pro: ATP is mature enough to tackle applications

� Current ATP are highly efficient reasoning tools.

� Full automation is needed for NLP. (ATP as an oracle)

� ATP as logic engines is one of the initial promises of the field.

� contra: ATP are general logic systems

1. NLP uses other representation formalisms (DRT, Feature Logic,. . .)

2. ATP optimized for mathematical (combinatorially complex) proofs.

3. ATP (often) do not terminate.

� Experiment: Use translation approach for 1. to test 2. and 3. [Bla+01] (Wow,
it works!)

Michael Kohlhase: LBS 246 2024-01-20

Excursion: Incrementality in Dynamic Calculi

� For applications, we need to be able to check for

� satisfiability (∃M M|=A), validity (∀M M|=A) and

� entailment (H |=A, iff M|=H implies M|=A for all M)

� Theorem 12.2.1 (Entailment Theorem). H,A |=B, iff H |=A⇒B. (e.g. for
first-order logic and DPL)

� Theorem 12.2.2 (Deduction Theorem). For most calculi C we have H,A⊢CB,
iff H⊢CA⇒B. (e.g. for ND1)

� Problem: Analogue H1 ⊗ · · · ⊗ Hn |= A is not equivalent to |= (H1 ⊗ · · · ⊗
Hn)⇒⇒A in DRT, as ⊗ symmetric.

� Thus the validity check cannot be used for entailment in DRT.

� Solution: Use sequential merge ;; (from DPL) for sentence composition.

Michael Kohlhase: LBS 247 2024-01-20

Model Generation for Dynamic Logics

� Problem: Translation approach is not incremental!

� For each check, the DRS for the whole discourse has to be translated.

� Can become infeasible, once discourses get large (e.g. novel).

� This applies for all other approaches for dynamic deduction too.

� Idea: Extend model generation techniques instead!

12.2. DYNAMIC MODEL GENERATION 155

� Remember: A DRS D is valid in M = ⟨D, I⟩, iff Iδ∅(D)
2 ̸= ∅.

� Find a model M and state φ, such that φ∈Iδ∅(D)
2.

� Adapt first-order model generation technology for that.

Michael Kohlhase: LBS 248 2024-01-20

Dynamic Herbrand Interpretation

� Definition 12.2.3. We call a model M = ⟨U , I, Iδ· ⟩ a dynamic Herbrand inter-
pretation, if ⟨U , I⟩ is a Herbrand model.

� Can represent M as a triple ⟨X ,S,B⟩, where B is the Herbrand base for ⟨U , I⟩.

� Definition 12.2.4. M is called finite, iff U is finite.

� Definition 12.2.5. M is minimal, iff for all M′ the following holds: (B(M)′ ⊆
B(M))⇒M = M′.

� Definition 12.2.6. M is domain minimal if for all M′ the following holds:

#(U(M))≤#(U(M)′)

Michael Kohlhase: LBS 249 2024-01-20

Dynamic Model Generation Calculus

� Definition 12.2.7. We use a tableau framework, extend by state information, and
rules for DRSes.

�

(δUA A)
T H = {a1, . . ., an} w ̸∈H new

[a1/U]

([a1/U](A))
T

∣∣∣ . . . ∣∣∣ [an/U]

([an/U](A))
T

∣∣∣ [w/U]

([w/U](A))
T

RM δ

� Mechanize ;; by adding representation of the second DRS at all leaves. (⇝
tableau machine)

� Treat conditions by DRT translation

¬¬D
¬¬D

D⇒⇒D′

D⇒⇒D′
D∨∨D′

D∨∨D′

Michael Kohlhase: LBS 250 2024-01-20

Example: Peter is a man. No man walks

� Example 12.2.8 (Model Generation). Peter is a man. No man walks

156 CHAPTER 12. DYNAMIC APPROACHES TO NL SEMANTICS

man(peter)

¬¬(δU man(U) ∧ walks(U))

(man(U) ∧ walks(U))
T

(∀X man(X) ∧ walks(X))
F

(man(peter) ∧ walks(peter))F

man(peter)F

⊥
walks(peter)F

Dynamic Herbrand interpretation: ⟨∅, ∅, {man(peter)T,walks(peter)F}⟩

Michael Kohlhase: LBS 251 2024-01-20

Example: Anaphor Resolution A man sleeps. He snores

� Example 12.2.9 (Anaphor Resolution). A man sleeps. He snores

δUMan man(U) ∧ sleeps(U)

[c1Man/UMan]

man(c1Man)
T

sleeps(c1Man)
T

δVMan snores(V)

[c1Man/VMan]

snores(c1Man)
T

minimal

[c2Man/VMan]

snores(c2Man)
T

deictic

Michael Kohlhase: LBS 252 2024-01-20

Anaphora with World Knowledge

� Example 12.2.10 (Anaphora with World Knowledge).

� Mary is married to Jeff. Her husband is not in town.

� δUF, VM U = mary ∧ married(U, V) ∧ V = jeff ;; δWM,W
′
F husband(W,W ′) ∧ ¬intown(W)

� World knowledge

� if a female X is married to a male Y , then Y is X’s only husband
� ∀XF, YM married(X,Y)⇒ husband(Y,X)∧ (∀Z husband(Z,X)⇒Z = Y)

� Model generation yields tableau, all branches contain

⟨{U, V ,W,W ′}, {[mary/U], [jeff/V], [jeff/W], [mary/W ′]},H⟩

with

H = {married(mary, jeff)T, husband(jeff,mary)T,¬intown(jeff)T}

12.2. DYNAMIC MODEL GENERATION 157

� they only differ in additional negative facts, e.g. married(mary,mary)F.

Michael Kohlhase: LBS 253 2024-01-20

Model Generation models Discourse Understanding

� Conforms with psycholinguistic findings:

� Zwaan& Radvansky [ZR98]: listeners not only represent logical form, but also
models containing referents.

� deVega [de 95]: online, incremental process.

� Singer [Sin94]: enriched by background knowledge.

� Glenberg et al. [GML87]: major function is to provide basis for anaphor resolu-
tion.

Michael Kohlhase: LBS 254 2024-01-20

The cost we had to pay for being able to deal with discourse phenomena is that we had
to abandon the compositional treatment of natural language we worked so hard to establish in
fragments 3 and 4. To have this, we would have to have a dynamic λ calculus that would allow
us to raise the respective operators to the functional level. Such a logical system is non-trivial,
since the interaction of structurally scoped λ-bound variables and dynamically bound discourse
referents is non-trivial. Excursion: We will discuss such a dynamic λ calculus in??.

158 CHAPTER 12. DYNAMIC APPROACHES TO NL SEMANTICS

Chapter 13

Propositional Attitudes and
Modalities

13.1 Introduction

Modalities and Propositional Attitudes

� Definition 13.1.1. Modality is a feature of language that allows for communicating
things about, or based on, situations which need not be actual.

� Definition 13.1.2. Modality is signaled by grammatical expressions (called moods)
that express a speaker’s general intentions and commitment to how believable, oblig-
atory, desirable, or actual an expressed proposition is.

� Example 13.1.3. Data on modalities (moods in red)

� A probably holds, (possibilistic)

� it has always been the case that A, (temporal)

� it is well-known that A, (epistemic)

� A is allowed/prohibited, (deontic)

� A is provable, (provability)

� A holds after the program P terminates, (program)

� A hods during the execution of P . (dito)

� it is necessary that A, (aletic)

� it is possible that A, (dito)

Michael Kohlhase: LBS 255 2024-01-20

Modeling Modalities and Propositional Attitudes

� Example 13.1.4. Again, the pattern from above:

� it is necessary that Peter knows logic (A = Peter knows logic)

� it is possible that John loves logic, (A = John loves logic)

159

160 CHAPTER 13. PROPOSITIONAL ATTITUDES AND MODALITIES

� Observation: All of the red parts above modify the clause/sentence A. We call
them modalities.

� Definition 13.1.5 (A related Concept from Philosophy). A propositional atti-
tude is a mental state held by an agent toward a proposition.

� Question: But how to model this in logic?

� Idea: New sentence-to-sentence operators for necessary and possible. (extend
existing logics with them.)

� Observation: A is necessary, iff ¬A is impossible.

� Definition 13.1.6. A modal logic is a logical system that has logical constants
that model modalities.

Michael Kohlhase: LBS 256 2024-01-20

Various logicians and philosophers looked at ways to use possible worlds, or similar theoretical
entities, to give a semantics for modal sentences (specifically, for a modal logic), including Descartes
and Leibniz. In the modern era, Carnap, Montague and Hintikka pursued formal developments
of this idea. But the semantics for modal logic which became the basis of all following work on
the topic was developed by Kripke 1963. This kind of semantics is often referred to as Kripke
semantics.

History of Modal Logic

� Aristoteles studies the logic of necessity and possibility

� Diodorus: temporal modalities

� possible: is true or will be

� necessary: is true and will never be false

� Clarence Irving Lewis 1918 [Lew18] (Systems S1, . . . , S5)

� strict implication I(A ∧B) (I for “impossible”)

� Kurt Gödel 1932: Modal logic of provability (S4) [Göd32]

� Saul Kripke 1959-63: Possible worlds semantics [Kri63]

� Vaugham Pratt 1976: Dynamic Program Logic [Pra76]

�
...

Michael Kohlhase: LBS 257 2024-01-20

Basic Modal Logics (ML0 and ML1)

� Definition 13.1.7. Propositional modal logic ML0 extends propositional logic with
two new logical constants: 2 for necessity and 3 for possibility. (3A = ¬(2¬A))

� Observation: Nothing hinges on the fact that we use propositional logic!

13.1. INTRODUCTION 161

� Definition 13.1.8. First-order modal logic ML1 extends first-order logic with two
new logical constants: 2 for necessity and 3 for possibility.

� Example 13.1.9. We interpret

1. Necessarily, every mortal will die. as 2(∀X mortal(X)⇒ willdie(X))

2. Possibly, something is immortal. as 3(∃X ¬mortal(X))

� Questions: What do 2 and 3 mean? How do they behave?

Michael Kohlhase: LBS 258 2024-01-20

Epistemic and Doxastic Modality

� Definition 13.1.10. Modal sentences can convey information about the speaker’s
state of knowledge (epistemic state) or belief (doxastic state).

� Example 13.1.11. We might paraphrase sentence (epposs) as (3):

1. A: Where’s John?

2. B: He might be in the library.

3. B′: It is consistent with the speaker’s knowledge that John is in the library.

� Definition 13.1.12. We way that a world w is an epistemic possibility for an agent
B if it could be consistent with B’s knowledge.

� Definition 13.1.13. An epistemic logic is one that models the epistemic state of
a speaker. Doxastic logic does the same for the doxastic state.

� Definition 13.1.14. In deontic modal logic, we interpret the accessibility relation
R as epistemic accessibility:

� With this R, represent B’s utterance as 3inlib(j).

� Similarly, represent John must be in the library. as 2inlib(j).

� Question: If R is epistemic accessibility, what properties should it have?

Michael Kohlhase: LBS 259 2024-01-20

To determine the properties of epistemic accessibility we ask ourselves, what statements involving
2 and 3 should be valid on the epistemic interpretation of the operators, and how do we fix the
accessibility relation to guarantee this?

Deontic modality

� Definition 13.1.15. Deontic modality is a modality that indicates how the world
ought to be according to certain norms, expectations, speaker desire, etc.

� Definition 13.1.16. Deontic modality has the following subcategories

� Commissive modality (the speaker’s commitment to do something, like a promise
or threat): e.g. I shall help you.

162 CHAPTER 13. PROPOSITIONAL ATTITUDES AND MODALITIES

� Directive modality (commands, requests, etc.): e.g. Come!, Let’s go!, You’ve
got to taste this curry!

� Volitive modality (wishes, desires, etc.): If only I were rich!

� Question: If we want to interpret 2runs(j) as It is required that John runs
(or, more idiomatically, as John must run), what formulae should be valid on this
interpretation of the operators? (This is for homework!)

Michael Kohlhase: LBS 260 2024-01-20

13.2 Semantics for Modal Logics
Basic Ideas: The fundamental intuition underlying the semantics for modality is that modal
statements are statements about how things might be, statements about possible states of affairs.
According to this intuition, sentence (Example 13.1.9.1) in Example 13.1.9 says that in every
possible state of affairs – every way that things might be – every mortal will die, while sentence
(Example 13.1.9.2) says that there is some possible state of affairs – some way that things might
be – in which something is mortal1. What is needed in order to express this intuition in a model
theory is some kind of entity which will stand for possible states of affairs, or ways things might
be. The entity which serves this purpose is the infamous possible world.

Semantics of ML0

� Definition 13.2.1. We use a set W of possible worlds, and a accessibility relation
R ⊆ W ×W: if R(v, w), then we say that w is accessible from v.

� Example 13.2.2. W = N with R = {⟨n, n+ 1⟩|n∈N}. (temporal logic)

� Definition 13.2.3. Variable assignment φ : V0×W→D0 assigns values to variables
in a given possible world.

� Definition 13.2.4. Value function I ·
· : W × wff0()→D0 (assigns values to

formulae in a possible world)

� Iwφ (V) = φ(w, V)

� Iwφ (¬A) = T, iff Iwφ (A) = F (∧ analogous)

� Iwφ (2A) = T, iff Iw′

φ (A) = T for all w′∈W with wRw′.

� Definition 13.2.5. We call a triple M:=⟨W,R, I⟩ a Kripke model.

Michael Kohlhase: LBS 261 2024-01-20

In Kripke semantics, the intuitions about the truth conditions of modals sentences are expressed
as follows:

• A sentence of the form 2A, where A is a proposition, is true at w iff A is true at every possible
world accessible from w.

• A sentence of the form 3A, where A is a proposition, is true at w iff A is true at some possible
world accessible from w.

You might notice that these truth conditions are parallel in certain ways to the truth conditions
for tensed sentence. In fact, the semantics of tense is itself a modal semantics which was developed
on analogy to Kripke’s modal semantics. Here are the relevant similarities:

1Note the impossibility of avoiding modal language in the paraphrase!

13.2. SEMANTICS FOR MODAL LOGICS 163

1. Relativization of evaluation A tensed sentence must be evaluated for truth relative to a
given time. A tensed sentence may be true at one time butg false at another. Similarly, we
must evaluate modal sentences relative to a possible world, for a modal sentence may be true
at one world (i.e. relative to one possible state of affairs) but false at another.

2. Truth depends on value of embedded formula at another world The truth of a tensed
sentence at a time t depends on the truth of the formula embedded under the tense operator
at some relevant time (possibly) different from t. Similarly, the truth of a modal sentence at
w depends on the truth of the formula embedded under the modal operator at some world or
worlds possibly different from w.

3. Accessibility You will notice that the world at which the embedded formula is to be evaluated
is required to be accessible from the world of evaluation. The accessibility relation on possible
worlds is a generalization of the ordering relation on times that we introduced in our temporal
semantics. (We will return to this momentarily).

It will be helpful to start by thinking again about the ordering relation on times introduced in
temporal models. This ordering relation is in fact one sort of accessibility relation.
Why did we need the ordering relation? We needed it in order to ensure that our temporal
semantics makes intuitively correct predictions about the truth conditions of tensed sentences and
about entailment relations between them. Here are two illustrative examples:

Accessibility Relations. E.g. for Temporal Modalities

� Example 13.2.6 (Temporal Worlds with Ordering). Let ⟨W, ◦, <,⊆⟩ an interval
time structure, then we can use ⟨W, <⟩ as a Kripke models. Then PAST becomes
a modal operator.

� Example 13.2.7. Suppose we have i < j and j < k. Then intuitively, if Jane
is laughing is true at i, then Jane laughed should be true at j and at k, i.e.
Iwφ (j)PAST(laughs(j)) and Iwφ (k)PAST(laughs(j)).
But this holds only if “<” is transitive. (which it is!)

� Example 13.2.8. Here is a clearly counter-intuitive claim: For any time i and any
sentence A, if Iwφ (i)PRES(A) then Iwφ (i)PAST(A).
(For example, the truth of Jane is at the finish line at i implies the truth of Jane
was at the finish line at i.)
But we would get this result if we allowed < to be reflexive. (< is irreflexive)

� Treating tense modally, we obtain reasonable truth conditions.

Michael Kohlhase: LBS 262 2024-01-20

Thus, by ordering the times in our model in accord with our intuitions about time, we can ensure
correct predictions about truth conditions and entailment relations for tensed sentences.

In the modal domain, we do not have intuitions about how possible worlds should be ordered.
But we do have intuitions about truth conditions and entailment relations among modal sentences.
So we need to set up an accessibility relation on the set of possible worlds in our model which, in
combination with the truth conditions for 2 and 3 given above, will produce intuitively correct
claims about entailment.
One of the prime occupations of modal logicians is to look at the sets of validities which are
obtained by imposing various different constraints on the accessibility relation. We will here
consider just two examples.
What must be, is:

164 CHAPTER 13. PROPOSITIONAL ATTITUDES AND MODALITIES

1. It seems intuitively correct that if it is necessarily the case that A, then A is true, i.e. that
wg(2A) = T implies that wg(A) = T or, more simply, that the following formula is valid:

2A⇒A

2. To guarantee this implication, we must ensure that any world w is among the world accessible
from w, i.e. we must make R reflexive.

3. Note that this also guarantees, among other things, that the following is valid: A⇒3A

Whatever is, is necessarily possible:

1. This also seems like a reasonable slogan. Hence, we want to guarantee the validity of:

A⇒23A

2. To do this, we must guarantee that if A is true at a some world w, then for every world w′

accessible from w, there is at least one A world accessible from w′. To do this, we can guarantee
that every world w is accessible from every world which is accessible from it, i.e. make R
symmetric.

Modal Axioms (Propositional Logic)

� Definition 13.2.9. Necessitation:
A

2A
N

� Definition 13.2.10 (Normal Modal Logics).

System Axioms Accessibility Relation
K 2(A⇒B)⇒ (2A⇒2B) general
T K + 2A⇒A reflexive
S4 T + 2A⇒22A reflexive + transitive
B T + 32A⇒A reflexive + symmetric
S5 S4 + 3A⇒23A equivalence relation

Michael Kohlhase: LBS 263 2024-01-20

K Theorems

� Observation 13.2.11. 2(A ∧B) |=2A ∧2B in K.

� Observation 13.2.12. A⇒B |=2A⇒2B in K.

� Observation 13.2.13. A⇒B |=3A⇒3B in K.

Michael Kohlhase: LBS 264 2024-01-20

Translation to First-Order Logic

� Question: Is modal logic more expressive than predicate logic?

� Answer: Very rarely! (usually can be translated)

13.2. SEMANTICS FOR MODAL LOGICS 165

� Definition 13.2.14. Translation τ from ML into PL1, (so that the diagram
commutes)

modal logic predicate logic

Kripke-Sem. Tarski-Sem.

IφIwφ
τ

τ

� Idea: Axiomatize Kripke models in PL1. (diagram is simple consequence)

� Definition 13.2.15. A logic morphism Θ: L→L′ is called

� correct, iff ∃M M |= Φ implies ∃M′ M′ |=′ Θ(Φ).

� complete, iff ∃M′ M′ |=′ Θ(Φ) implies ∃M M |= Φ.

Michael Kohlhase: LBS 265 2024-01-20

Modal Logic Translation (formal)

� Definition 13.2.16. The standard translation τw from modal logics to first-order
logic is given by the following process:

� Extend all function constants by a “world argument”: f∈Σfk+1 for every f∈Σfk
� for predicate constants accordingly.

� insert the “translation world” there: e.g. τw(f(a, b)) = f(w, a(w), b(w)).

� New predicate constant R for the accessibility relation.

� New constant s for the “start world”.

� τw(2A) = ∀w′ wRw′ ⇒ τw′(A).

� Use all axioms from the respective correspondence theory.

� Definition 13.2.17 (Alternative). Functional translations, if R associative:

� New function constant fR for the accessibility relation.

� Revise the standard translation by one of the following

� τw(2A) = ∀w′ w = fR(w′)⇒ τw(A). (naive solution)
� τfR(w)(2A) = τw(A) (better for mechanizing [Ohl88])

Michael Kohlhase: LBS 266 2024-01-20

Translation (continued)

� Theorem 13.2.18. τs : ML0→PL0 is correct and complete.

� Proof: show that ∃M M |= Φ iff ∃M′ M′ |= τs(Φ)

1. Let M = ⟨W,R, φ⟩ with M |= A

2. chose M = ⟨W, I ′⟩, such that I(p) = φ(p) : W→{T,F} and I(r) = R.
we prove M |=ψ τw(A)′ for ψ = IdW by structural induction over A.

166 CHAPTER 13. PROPOSITIONAL ATTITUDES AND MODALITIES

3. A = P
3.1. Iψ(τw(A)) = Iψ(p(w)) = I (p(w)) = φ(P,w) = T

4. A = ¬B, A = B ∧C trivial by IH.
5. A = 2B

5.1. Iψ(τw(A)) = Iψ(∀w r(w, v) ⇒ τv(B)) = T, if Iψ(r(w, v)) = F or
Iψ(τv(B)) = T for all v∈W.

5.2. M |=ψ τv′(B) so by IH M |=v B.
5.3. so M |=ψ τw(A)

′.

Michael Kohlhase: LBS 267 2024-01-20

Modal Logic (References)

� G. E. Hughes und M. M. Cresswell: A companion to Modal Logic, University
Paperbacks, Methuen (1984) [HC84].

� David Harel: Dynamic Logic, Handbook of Philosophical Logic, D. Gabbay, Hrsg.
Reidel (1984) [Har84].

� Johan van Benthem: Language in Action, Categories, Lambdas and Dynamic Logic,
North Holland (1991) [Ben91].

� Reinhard Muskens, Johan van Benthem, Albert Visser, Dynamics, in Handbook of
Logic and Language, Elsevier, (1995) [MBV95].

� Blackburn, DeRijke, Vedema: Modal Logic; 2001 [BRV01]. look at the chapter
“Guide to the literature” in the end.

Michael Kohlhase: LBS 268 2024-01-20

Excursion: We discuss a model existence theorem that can be the basis of completeness proofs
for modal logics in??.

13.3 A Multiplicity of Modalities ; Multimodal Logic
The epistemic and deontic modalities differ from alethic, or logical, modality in that they must
be relativized to an individual. Although we can choose to abstract away from this, it is clear
that what is possible relative to John’s set of beliefs may not be possible relative to Jane’s, or
that what is obligatory for Jane may not be obligatory for John. A theory of modality for natural
language must have a means of representing this relativization.

A Multiplicity of Modalities

� Epistemic (knowledge and belief) modalities must be relativized to an individual

� Peter knows that Trump is lying habitually.

� John believes that Peter knows that Trump is lying habitually.

� You must take the written drivers’ exam to be admitted to the practical test.

� Similarly, we find in natural language expressions of necessity and possibility relative
to many different kinds of things.

13.4. DYNAMIC LOGIC FOR IMPERATIVE PROGRAMS 167

� Consider the deontic (obligatory/permissible) modalities

� [Given the university’s rules] Jane can take that class.

� [Given her intellectual ability] Jane can take that class.

� [Given her schedule] Jane can take that class.

� [Given my desires] I must meet Henry.

� [Given the requirements of our plan] I must meet Henry.

� [Given the way things are] I must meet Henry [every day and not know it].

� Many different sorts of modality, sentences are multiply ambiguous towards which
one.

Michael Kohlhase: LBS 269 2024-01-20

In a series of papers beginning with her 1978 dissertation (in German), Angelika Kratzer proposed
an account of the semantics of natural language which accommodates this ambiguity. (The am-
biguity is treated not as a semantic ambiguity, but as context dependency.) Kratzer’s account,
which is now the standard view in semantics and (well-informed) philosophy of language, adopts
central ingredients from Kripke semantics – the basic possible world framework and the notion
of an accessibility relation – but puts these together in a novel way. Kratzer’s account of modals
incorporates an account of natural language conditionals; this account has been influenced by,
and been influential for, the accounts of conditionals developed by David Lewis and Robert Stal-
naker. These also are now standardly accepted (at least by those who accept the possible worlds
framework).

Some references: [Kra12; Lew73; Sta68].

Multimodal Logics

� Definition 13.3.1. A multi modal logic provides operators for multiple modalities:
[1], [2], [3], . . . , ⟨1⟩, ⟨2⟩, . . .

� Definition 13.3.2. Multi modal Kripke models provide multiple accessibility rela-
tions R1,R2, . . .⊆W ×W.

� Definition 13.3.3. The value function in logic generalizes the clause for 2 in ML0

to

� Iwφ ([i]A) = T, iff Iw′

φ (A) = T for all w′∈W with wRiw
′.

� Example 13.3.4 (Epistemic Logic: talking about knowing/believing). [peter]⟨klaus⟩A
(Peter knows that Klaus considers A possible)

� Example 13.3.5 (Program Logic: talking about programs).

[X:=A][Y :=A]X = Y (after assignments, the values of X and Y are equal)

Michael Kohlhase: LBS 270 2024-01-20

We will now contrast DRT (see section 12.1) with a modal logic for modeling imperative programs
– incidentally also called “dynamic logic”. This will give us new insights into the nature of dynamic
phenomena in natural language.

13.4 Dynamic Logic for Imperative Programs

168 CHAPTER 13. PROPOSITIONAL ATTITUDES AND MODALITIES

Dynamic Program Logic (DL)

� Modal logics for argumentation about imperative, non-deterministic programs.

� Idea: Formalize the traditional argumentation about program correctness:
tracing the variable assignments (state) across program statements.

� Example 13.4.1 (Fibonacci).

Consider the following (imperative) program that computes Fib(X) as the value of
Z:
α:=⟨Y , Z⟩:=⟨1, 1⟩ ;while X ̸= 0 do ⟨X,Y , Z⟩:=⟨X − 1, Z, Y + Z⟩ end

� States for the “input” X = 4: ⟨4,_,_⟩, ⟨4, 1, 1⟩, ⟨3, 1, 2⟩, ⟨2, 2, 3⟩, ⟨1, 3, 5⟩, ⟨0, 5, 8⟩
� Correctness? For positive X, running α with input ⟨X,_,_⟩ we end with
⟨0, F (X−1), FX⟩

� Termination? α does not terminate on input ⟨ − 1,_,_⟩.

Michael Kohlhase: LBS 271 2024-01-20

Multi-Modal Logic fits well

� Observation: Multi modal logic fits well

� States as possible worlds, program statements as accessibility relations.

� Two syntactic categories: programs α and formulae A.

� Interpret [α]A as If α terminates, then A holds afterwards

� Interpret ⟨α⟩A as α terminates and A holds afterwards.

� Example 13.4.2. Assertions about Fibonacci number (α)

� ∀X,Y [α]Z = Fib(X)

� ∀X,Y (X≥0)⇒ ⟨α⟩Z = Fib(X)

Michael Kohlhase: LBS 272 2024-01-20

Levels of Description in Dynamic Logic

� Propositional dynamic logic (DL0) (independent of variable assignments)

� |= ([α]A ∧ [α]B)⇔ ([α](A ∧B))

� |= ([while A ∨B do α end]C)⇔ ([while A do α end ;while B do α ;while A do α end end]C)

� First-order program logic (DL1) (function, predicates uninterpreted)

� |= p(f(X))⇒ g(Y, f(X))⇒ ⟨(Z:=f(X))⟩p(Z, g(Y,Z))
� |= Z = Y ∧ (∀X f(g(X)) = X) ⇒ [while p(Y) do Y :=g(Y) end]⟨while Y ̸= Z do Y :=f(Y) end⟩T

� DL1 with interpreted functions, predicates (maybe some other time)

13.4. DYNAMIC LOGIC FOR IMPERATIVE PROGRAMS 169

� ∀X ⟨while X ̸= 1 do if even(X) thenX:=X
2

else X:=3X + 1 end⟩T

Michael Kohlhase: LBS 273 2024-01-20

DL0 Syntax

� Definition 13.4.3. Propositional dynamic logic (DL0) is PL0 extended by

� program variables Vπ = {α, β, γ, . . .},
� modalities [α], ⟨α⟩.
� program constructors Σπ = {;,∪, ∗, ?} (minimal set)

α ; β execute first α, then β sequence
α ∪ β execute (non-deterministically) either α or β distribution
∗α (non-deterministically) repeat α finitely often iteration
A? proceed if |= A, else error test

� Idea: Standard program primitives as derived concepts

Construct as
if A thenα else β (A? ; α) ∪ (¬A? ; β)
while A do α end ∗(A? ; α) ; ¬A?
repeat α until A end ∗(α ; ¬A?) ;A?

Michael Kohlhase: LBS 274 2024-01-20

DL0 Semantics

� Definition 13.4.4. A model for DL0 consists of a set W of possible worlds called
states for DL0.

� Definition 13.4.5. DL0 variable assignments come in two parts:

� φ : V0 ×W→D0 (for propositional variables)

� π : Vπ→P(W ×W) (maps program variables to accessibility relations)

� Definition 13.4.6. The meaning of complex formulae is given by the following
value function Iwφ,π : wff0(V0)→D0:

� Iwφ,π(V) = φ(w, V) for V ∈V0 and Iwφ,π(α) = π(α) for α∈Vπ.
� Iwφ,π(¬A) = T iff Iwφ,π(A) = F

� Iwφ,π([α]A) = T iff Iw′

φ,π(A) = T for all w′∈W with wIwφ,π(α)w′.

� Iwφ,π(α) = π(α). (program variable by assignment)

� Iwφ,π(α ; β) = Iwφ,π(β) ◦ Iwφ,π(α) (sequence by composition)

� Iwφ,π(α ∪ β) = Iwφ,π(α) ∪ Iwφ,π(β) (distribution by union)

� Iwφ,π(∗α) = Iwφ,π(α)
∗ (iteration by reflexive transitive closure)

� Iwφ,π(A?) = {⟨w,w⟩|Iwφ,π(A) = T} (test by subset of identity relation)

170 CHAPTER 13. PROPOSITIONAL ATTITUDES AND MODALITIES

Michael Kohlhase: LBS 275 2024-01-20

First-Order Program Logic (DL1)

� Observation: Imperative programs contain variables, constants, functions and
predicates (uninterpreted), but no program variables. The main operation is variable
assignment.

� Idea: Make a multi modal logic in the spirit of DL0 that features all of these for
a deeper understanding.

� Definition 13.4.7. First-order program logic (DL1) combines the features of PL1,
DL0 without program variables, with the following two assignment operators:

� nondeterministic assignment X:=?

� deterministic assignment X:=A

� Example 13.4.8. |= p(f(X))⇒ g(Y, f(X))⇒ ⟨Z:=f(X)⟩p(Z, g(Y,Z)) in DL1.

� Example 13.4.9. In DL1 we have
|= Z = Y ∧ (∀X p(f(g(X)) = X)) ⇒ [while p(Y) do Y :=g(Y) end]⟨while Y ̸= Z do Y :=f(Y) end⟩T

Michael Kohlhase: LBS 276 2024-01-20

DL1 Semantics

� Definition 13.4.10. Let M = ⟨D, I⟩ be a first-order model then the states
(possible worlds) are variable assignments: W = {φ|φ : Vι→D}

� Definition 13.4.11. For a set X of variables, write φ[X]ψ, iff φ(X) = ψ(X) for
all X ̸∈X .

� Definition 13.4.12. The meaning of complex formulae is given by the following
value function Iwφ : wff o(Σ,Vι)→D0

� Iwφ (A) = Iφ(A) if A term or atom.

� Iwφ (¬A) = T iff Iwφ (A) = F

�
...

� Iwφ (X:=?) = {⟨φ,ψ⟩|φ[X]ψ}
� Iwφ (X:=A) = {⟨φ,ψ⟩|φ[X]ψ and ψ(X) = Iφ(A)}.

� Observation 13.4.13 (Substitution and Quantification). We have

� Iφ([X:=A]B) = I(φ,[Iφ(A)/X])(B)

� ∀X A = [X:=?]A.

� Thus substitutions and quantification are definable in DL1.

Michael Kohlhase: LBS 277 2024-01-20

13.4. DYNAMIC LOGIC FOR IMPERATIVE PROGRAMS 171

Natural Language as Programming Languages

� Question: Why is dynamic program logic interesting in a natural language course?

� Answer: There are fundamental relations between dynamic (discourse) logics and
dynamic program logics.

� David Israel: “Natural languages are programming languages for mind ” [Isr93]

Michael Kohlhase: LBS 278 2024-01-20

172 CHAPTER 13. PROPOSITIONAL ATTITUDES AND MODALITIES

Chapter 14

Some Issues in the Semantics of
Tense

Tense as a Deictic Element

� Goal: capturing the truth conditions and the logical form of sentences of English.

� Clearly: the following three sentences have different truth conditions.

1. Jane saw George.

2. Jane sees George.

3. Jane will see George.

� Observation 14.0.1. Tense is a deictic element, i.e. its interpretation requires
reference to something outside the sentence itself.

� Remark: Often, in particular in the case of monoclausal sentences occurring in
isolation, as in our examples, this “something” is the speech time.

� Idea: make use of the reference time now:

� Jane saw George is true at a time iff Jane sees George was true at some point
in time before now.

� Jane will see George is true at a time iff Jane sees George will be true at some
point in time after now.

Michael Kohlhase: LBS 279 2024-01-20

A Simple Semantics for Tense

� Problem: the meaning of Jane saw George and Jane will see George is defined
in terms of Jane sees George.

; We need the truth conditions of the present tense sentence.

� Idea: Jane sees George is true at a time iff Jane sees George at that time.

� Implementation: Postulate tense operators as sentential operators (expressions
of type prop → prop). Interpret

173

174 CHAPTER 14. SOME ISSUES IN THE SEMANTICS OF TENSE

1. Jane saw George as PAST(see(g, j)),

2. Jane sees George as PRES(see(g, j)), and

3. Jane wil see George as FUT(see(g, j)).

Michael Kohlhase: LBS 280 2024-01-20

Some notes:

• Most treatments of the semantics of tense invoke some notion of a tenseless proposition/formula
for the base case, just like we do. The idea here is that markers of past, present and future all
operate on an underlying un-tensed expression, which can be evaluated for truth at a time.

• Note that we have made no attempt to show how these translations would be derived from the
natural language syntax. Giving a compositional semantics for tense is a complicated business
– for one thing, it requires us to first establish the syntax of tense – so we set this goal aside in
this brief presentation.

• Here, we have implicitly assumed that the English modal will is simply a tense marker. This is
indeed assumed by some. But others consider that it is no accident that will has the syntax of
other modals like can and must, and believe that will is also semantically a modal.

Models and Evaluation for a Tensed Language

� Problem: The interpretations of constants vary over time.

� Idea: Introduce times into our models, and let the interpretation function give
values of constants at a time. Relativize the valuation function to times

� Idea: We will consider temporal structures, where denotations are constant on
intervals.

� Definition 14.0.2. Let I ⊆ {[i,j]|i, j∈R} be a set of real intervals, then we call
⟨I, ◦, <,⊆⟩ an interval time structure, where for intervals i:=[il,il] and j:=[ll,jr]
we say that

� i and j overlap (written i ◦ j), iff ll≤ir,
� i precedes j (written i < j), iff ir≤ll, and

� i is contained in j (written i ⊆ j), iff ll≤il and ir≤jr.

� Definition 14.0.3. A temporal model is a triple ⟨D, I, I⟩, where

� D is a set called the domain,

� Iis a interval time structure, and

� I : I× ΣT →D an interpretation function.

Michael Kohlhase: LBS 281 2024-01-20

The ordering relation: The ordering relation < is needed to make sure that our models
represent temporal relations in an intuitively correct way. Whatever the truth may be about time,
as language users we have rather robust intuitions that time goes in one direction along a straight
line, so that every moment of time is either before, after or identical to any other moment; and no
moment of time is both before and after another moment. If we think of the set of times as the
set of natural numbers, then the ordering relation < is just the relation less than on that set.

175

Intervals: Although intuitively time is given by as a set of moments of time, we will adopt
here (following Cann, who follows various others) an interval semantics, in which expressions are
evaluated relative to intervals of time. Intervals are defined in terms of moments, as a continuous
set of moments ordered by <.
The new interpretation function: In models without times, the interpretation function I
assigned an extension to every constant. Now, we want it to assign an extension to each constant
relative to each interval in our interval time structure. I.e. the interpretation function associates
each constant with a pair consisting of an interval and an appropriate extension, interpreted as the
extension at that interval. This set of pairs is, of course, equivalent to a function from intervals
to extensions.

Interpretation rules for the temporal operators

� Definition 14.0.4. For the value function Ii(φ)· we only redefine the clause for
constants:

� Ii(φ)c:=I(i, c)
� Ii(φ)X:=φ(X)

� Ii(φ)FA:=Ii(φ)F(Ii(φ)A).

� Definition 14.0.5. We define the meaning of the tense operators

1. Ii(φ)PRES(Φ) = T, iff Ii(φ)Φ = T.

2. Ii(φ)PAST(Φ) = T iff there is an interval j∈I with j < i and Ij(φ)Φ = T.

3. Ii(φ)FUT(Φ) = T iff there is an interval j∈I with i < j and Ij(φ)Φ = T.

Michael Kohlhase: LBS 282 2024-01-20

Complex tenses in English

� How do we use this machinery to deal with complex tenses in English?

� Past of past (pluperfect): Jane had left (by the time I arrived).

� Future perfect: Jane will have left (by the time I arrive).

� Past progressive: Jane was going to leave (when I arrived).

� Perfective vs. imperfective

� Jane left.

� Jane was leaving.

� How do the truth conditions of these sentences differ? Standard observation: Per-
fective indicates a completed action, imperfective indicates an incomplete or ongoing
action. This becomes clearer when we look at the “creation predicates” like build a
house or write a book

� Jane built a house. entails: There was a house that Jane built.

� Jane was building a house. does not entail that there was a house that Jane
built.

Michael Kohlhase: LBS 283 2024-01-20

176 CHAPTER 14. SOME ISSUES IN THE SEMANTICS OF TENSE

Future readings of present tense

� New Data;

1. Jane leaves tomorrow.

2. Jane is leaving tomorrow.

3. ?? It rains tomorrow.

4. ?? It is raining tomorrow.

5. ?? The dog barks tomorrow.

6. ??The dog is barking tomorrow.

� Future readings of present tense appear to arise only when the event described is
planned, or planable, either by the subject of the sentence, the speaker, or a third
party.

Michael Kohlhase: LBS 284 2024-01-20

Sequence of Tense

� George said that Jane was laughing.

� Reading 1: George said “Jane is laughing.” I.e. saying and laughing co-occur.
So past tense in subordinate clause is past of utterance time, but not of main
clause reference time.

� Reading 2: George said “Jane was laughing.” I.e. laughing precedes saying.
So past tense in subordinate clause is past of utterance time and of main clause
reference time.

� George saw the woman who was laughing.

� How many readings?

� George will say that Jane is laughing.

� Reading 1: George will say “Jane is laughing.” Saying and laughing co-occur,
but both saying and laughing are future of utterance time. So present tense in
subordinate clause indicates futurity relative to utterance time, but not to main
clause reference time.

� Reading 2: Laughing overlaps utterance time and saying (by George). So present
tense in subordinate clause is present relative to utterance time and main clause
reference time.

Michael Kohlhase: LBS 285 2024-01-20

Sequence of Tense

� George will see the woman who is laughing.

� How many readings?

177

� Note that in all of the above cases, the predicate in the subordinate clause describes
an event that is extensive in time. Consider readings when subordinate event is
punctual.

� George said that Mary fell.

� Falling must precede George’s saying.

� George saw the woman who fell.

� Same three readings as before: falling must be past of utterance time, but could
be past, present or future relative to seeing (i.e main clause reference time).

� And just for fun, consider past under present. . . George will claim that Mary hit
Bill.

� Reading 1: hitting is past of utterance time (therefore past of main clause
reference time).

� Reading 2: hitting is future of utterance time, but past of main clause reference
time.

� And finally. . .

1. A week ago, John decided that in ten days at breakfast he would tell his
mother that they were having their last meal together. (Abusch 1988)

2. John said a week ago that in ten days he would buy a fish that was still alive.
(Ogihara 1996)

Michael Kohlhase: LBS 286 2024-01-20

Interpreting tense in Discourse

� Example 14.0.6 (Ordering and Overlap). A man walked into the bar. He sat
down and ordered a beer. He was wearing a nice jacket and expensive shoes,
but he asked me if I could spare a buck.

� Example 14.0.7 (Tense as anaphora?).

1. Said while driving down the NJ turnpike: I forgot to turn off the stove.

2. I didn’t turn off the stove.

Michael Kohlhase: LBS 287 2024-01-20

178 CHAPTER 14. SOME ISSUES IN THE SEMANTICS OF TENSE

Chapter 15

Conclusion

15.1 A Recap in Diagrams

NL Semantics as an Intersective Discipline

Michael Kohlhase: LBS 288 2024-01-20

A landscape of formal semantics

179

180 CHAPTER 15. CONCLUSION

Michael Kohlhase: LBS 289 2024-01-20

Modeling Natural Language Semantics

� Problem: Find formal (logic) system for the meaning of natural language.

� History of ideas

� Propositional logic [ancient Greeks like Aristotle]
* Every human is mortal

� First-Order Predicate logic [Frege ≤ 1900]
* I believe, that my audience already knows this.

� Modal logic [Lewis18, Kripke65]
* A man sleeps. He snores. ((∃X man(X) ∧ sleeps(X))) ∧ snores(X)

� Various dynamic approaches (e.g. DRT, DPL)
* Most men wear black

� Higher-order Logic, e.g. generalized quantifiers

� . . .

Michael Kohlhase: LBS 290 2024-01-20

A Semantic Processing Pipeline based on LF

15.2. WHERE TO FROM HERE 181

Syntax Quasi-Logical Form Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Pragmatic
Analysis

(inferential)

Michael Kohlhase: LBS 291 2024-01-20

Natural Language Semantics?

Comp Ling
NL

FL

M = ⟨D, I⟩

|=NL ⊆ NL×NL

⊢C ⊆ FL× FL

|= ⊆ FL× FL

Analysis

Iφ

induces?

induces

choose calculus C

|= ≡ ⊢C?

|=NL ≡ ⊢C?

Logic

Michael Kohlhase: LBS 292 2024-01-20

15.2 Where to From Here

Where to from here?

� We can continue the exploration of semantics in two different ways:

� Look around for additional logical/formal systems and see how they can be
applied to various linguistic problems. (the logician’s approach)

� Look around for additional linguistic forms and wonder about their truth condi-
tions, their logical forms, and how to represent them. (the linguist’s
approach)

� Here are some possibilities...

Michael Kohlhase: LBS 293 2024-01-20

Semantics of Plurals

182 CHAPTER 15. CONCLUSION

1. The dogs were barking.

2. Fido and Chester were barking. (What kind of an object do the subject NPs
denote?)

3. Fido and Chester were barking. They were hungry.

4. Jane and George came to see me. She was upset. (Sometimes we need to look
inside a plural!)

5. Jane and George have two children. (Each? Or together?)

6. Jane and George got married. (To each other? Or to other people?)

7. Jane and George met. (The predicate makes a difference to how we interpret the
plural)

Michael Kohlhase: LBS 294 2024-01-20

Reciprocals

� What’s required to make these true?

1. The men all shook hands with one another.

2. The boys are all sitting next to one another on the fence.

3. The students all learn from each other.

Michael Kohlhase: LBS 295 2024-01-20

Presuppositional expressions

� What are presuppositions?

� What expressions give rise to presuppositions?

� Are all apparent presuppositions really the same thing?

1. The window in that office is open.

2. The window in that office isn’t open.

3. George knows that Jane is in town.

4. George doesn’t know that Jane is in town.

5. It was / wasn’t George who upset Jane.

6. Jane stopped / didn’t stop laughing.

7. George is / isn’t late.

Michael Kohlhase: LBS 296 2024-01-20

Presupposition projection

15.2. WHERE TO FROM HERE 183

1. George doesn’t know that Jane is in town.

2. Either Jane isn’t in town or George doesn’t know that she is.

3. If Jane is in town, then George doesn’t know that she is.

4. Henry believes that George knows that Jane is in town.

Michael Kohlhase: LBS 297 2024-01-20

Conditionals

� What are the truth conditions of conditionals?

1. If Jane goes to the game, George will go.

� Intuitively, not made true by falsity of the antecedent or truth of consequent
independent of antecedent.

2. If John is late, he must have missed the bus.

� Generally agreed that conditionals are modal in nature. Note presence of modal in
consequent of each conditional above.

Michael Kohlhase: LBS 298 2024-01-20

Counterfactual conditionals

� And what about these??

1. If kangaroos didn’t have tails, they’d topple over. (David Lewis)

2. If Woodward and Bernstein hadn’t got on the Watergate trail, Nixon might
never have been caught.

3. If Woodward and Bernstein hadn’t got on the Watergate trail, Nixon would
have been caught by someone else.

� Counterfactuals undoubtedly modal, as their evaluation depends on which alterna-
tive world you put yourself in.

Michael Kohlhase: LBS 299 2024-01-20

Before and after

� These seem easy. But modality creeps in again...

1. Jane gave up linguistics after she finished her dissertation. (Did she finish?)

2. Jane gave up linguistics before she finished her dissertation. (Did she finish?
Did she start?)

Michael Kohlhase: LBS 300 2024-01-20

184 CHAPTER 15. CONCLUSION

Bibliography

[And02] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof. second. Kluwer Academic Publishers, 2002.

[And72] Peter B. Andrews. “General Models and Extensionality”. In: Journal of Symbolic Logic
37.2 (1972), pp. 395–397.

[Ari10] Mira Ariel. Defining Pragmatics. Research Surveys in Linguistics. Cambridge Univer-
sity Press, 2010.

[BB05] Patrick Blackburn and Johan Bos. Representation and Inference for Natural Language.
A First Course in Computational Semantics. CSLI, 2005.

[Ben91] Johan van Benthem. Language in Action, Categories, Lambdas and Dynamic Logic.
Vol. 130. Studies in Logic and Foundation of Mathematics. North Holland, 1991.

[Bir13] Betty J. Birner. Introduction to Pragmatics. Wiley-Blackwell, 2013.

[Bla+01] Patrick Blackburn et al. “Inference and Computational Semantics”. In: Computing
Meaning (Volume 2). Ed. by Harry Bunt et al. Kluwer Academic Publishers, 2001,
pp. 11–28.

[BRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. New York, NY,
USA: Cambridge University Press, 2001. isbn: 0-521-80200-8.

[Cho65a] Noam Chomsky. Aspects of the Theory of Syntax. MIT Press, 1965.

[Cho65b] Noam Chomsky. Syntactic structures. Den Haag: Mouton, 1965.

[Chu40] Alonzo Church. “A Formulation of the Simple Theory of Types”. In: Journal of Symbolic
Logic 5 (1940), pp. 56–68.

[CKG09] Ronnie Cann, Ruth Kempson, and Eleni Gregoromichelaki. Semantics – An Introduc-
tion to Meaning in Language. Cambridge University Press, 2009. isbn: 0521819628.

[Cre82] M. J. Cresswell. “The Autonomy of Semantics”. In: Processes, Beliefs, and Questions:
Essays on Formal Semantics of Natural Language and Natural Language Processing.
Ed. by Stanley Peters and Esa Saarinen. Springer, 1982, pp. 69–86. doi: 10.1007/978-
94-015-7668-0_2.

[Cru11] Alan Cruse. Meaning in Language: An Introduction to Semantics and Pragmatics. Ox-
ford Textbooks in Linguistics. 2011.

[Dav67a] Donald Davidson. “The logical form of action sentences”. In: The logic of decision and
action. Ed. by N. Rescher. Pittsburgh: Pittsburgh University Press, 1967, pp. 81–95.

[Dav67b] Donald Davidson. “Truth and Meaning”. In: Synthese 17 (1967).

[de 95] Manuel de Vega. “Backward updating of mental models during continuous reading of
narratives”. In: Journal of Experimental Psychology: Learning, Memory, and Cognition
21 (1995), pp. 373–385.

[DSP91] Mary Dalrymple, Stuart Shieber, and Fernando Pereira. “Ellipsis and Higher-Order
Unification”. In: Linguistics & Philosophy 14 (1991), pp. 399–452.

185

https://doi.org/10.1007/978-94-015-7668-0_2
https://doi.org/10.1007/978-94-015-7668-0_2

186 BIBLIOGRAPHY

[Eij97] Jan van Eijck. “Type Logic with States”. In: Logic Journal of the IGPL 5.5 (Sept.
1997).

[EU10] Jan van Eijck and Christina Unger. Computational Semantics with Functional Pro-
gramming. Cambridge University Press, 2010.

[Fre92] Gottlob Frege. “Über Sinn und Bedeutung”. In: Zeitschrift für Philosophie und philosophis-
che Kritik 100 (1892), pp. 25–50.

[GF] GF - Grammatical Framework. url: http://www.grammaticalframework.org (vis-
ited on 09/27/2017).

[GK96] Claire Gardent and Michael Kohlhase. “Focus and Higher–Order Unification”. In: Pro-
ceedings of the 16th International Conference on Computational Linguistics. Copen-
hagen, 1996, pp. 268–279. url: https://kwarc.info/kohlhase/papers/coling96.
pdf.

[GKL96] Claire Gardent, Michael Kohlhase, and Noor van Leusen. “Corrections and Higher-
Order Unification”. In: Proceedings of KONVENS’96. Bielefeld, Germany: De Gruyter,
1996, pp. 268–279. url: https://kwarc.info/kohlhase/papers/konvens96.pdf.

[GML87] A. M. Glenberg, M. Meyer, and K. Lindem. “Mental models contribute to foregrounding
during text comprehension”. In: Journal of Memory and Language 26 (1987), pp. 69–
83.

[Göd32] Kurt Gödel. “Zum Intuitionistischen Aussagenkalkül”. In: Anzeiger der Akademie der
Wissenschaften in Wien 69 (1932), pp. 65–66.

[GS90] Jeroen Groenendijk and Martin Stokhof. “Dynamic Montague Grammar”. In: Papers
from the Second Symposium on Logic and Language. Ed. by L. Kálmán and L. Pólos.
Akadémiai Kiadó, Budapest, 1990, pp. 3–48.

[GS91] Jeroen Groenendijk and Martin Stokhof. “Dynamic Predicate Logic”. In: Linguistics &
Philosophy 14 (1991), pp. 39–100.

[Har84] D. Harel. “Dynamic Logic”. In: Handbook of Philosophical Logic. Ed. by D. Gabbay
and F. Günthner. Vol. 2. Reidel, Dordrecht, 1984, pp. 497–604.

[HC84] G. E. Hughes and M. M. Cresswell. A companion to Modal Logic. University Paper-
backs. Methuen, 1984.

[Hei82] Irene Heim. “The Semantics of Definite and Indefinite Noun Phrases”. PhD thesis.
University of Massachusetts, 1982.

[HHS07] James R. Hurford, Brendan Heasley, and Michael B. Smith. Semantics: A coursebook.
2nd. Cambridge University Press, 2007.

[Hue80] Gérard Huet. “Confluent Reductions: Abstract Properties and Applications to Term
Rewriting Systems”. In: Journal of the ACM (JACM) 27.4 (1980), pp. 797–821.

[Isr93] David J. Israel. “The Very Idea of Dynamic Semantics”. In: Proceedings of the Ninth
Amsterdam Colloquium. 1993. url: https://arxiv.org/pdf/cmp-lg/9406026.pdf.

[Jac83] Ray Jackendoff. Semantics and Cognition. MIT Press, 1983.

[JL83] P. N. Johnson-Laird. Mental Models. Cambridge University Press, 1983.

[JLB91] P. N. Johnson-Laird and Ruth M. J. Byrne. Deduction. Lawrence Erlbaum Associates
Publishers, 1991.

[Kam81] Hans Kamp. “A Theory of Truth and Semantic Representation”. In: Formal Meth-
ods in the Study of Language. Ed. by J. Groenendijk, Th. Janssen, and M. Stokhof.
Amsterdam, Netherlands: Mathematisch Centrum Tracts, 1981, pp. 277–322.

[Kea11] Kate Kearns. Semantics. 2nd. Palgrave Macmillan, 2011.

http://www.grammaticalframework.org
https://kwarc.info/kohlhase/papers/coling96.pdf
https://kwarc.info/kohlhase/papers/coling96.pdf
https://kwarc.info/kohlhase/papers/konvens96.pdf
https://arxiv.org/pdf/cmp-lg/9406026.pdf

BIBLIOGRAPHY 187

[KKP96] Michael Kohlhase, Susanna Kuschert, and Manfred Pinkal. “A type-theoretic semantics
for λ-DRT”. In: Proceedings of the 10th Amsterdam Colloquium. Ed. by P. Dekker
and M. Stokhof. ILLC. Amsterdam, 1996, pp. 479–498. url: https://kwarc.info/
kohlhase/papers/amscoll95.pdf.

[Koh08] Michael Kohlhase. “Using LATEX as a Semantic Markup Format”. In: Mathematics in
Computer Science 2.2 (2008), pp. 279–304. url: https://kwarc.info/kohlhase/
papers/mcs08-stex.pdf.

[Kon04] Karsten Konrad. Model Generation for Natural Language Interpretation and Analysis.
Vol. 2953. LNCS. Springer, 2004. isbn: 3-540-21069-5. doi: 10.1007/b95744.

[Kow97] Robert Kowalski. “Algorithm = Logic + Control”. In: Communications of the Associ-
ation for Computing Machinery 22 (1997), pp. 424–436.

[KR93] Hans Kamp and Uwe Reyle. From Discourse to Logic: Introduction to Model-Theoretic
Semantics of Natural Language, Formal Logic and Discourse Representation Theory.
Dordrecht: Kluwer, 1993.

[Kra12] Angelika Kratzer. Modals and Conditionals. New and Revised Perspectives. Oxford
Studies in Theoretical Linguistics. Oxford University Press, 2012.

[Kri63] Saul Kripke. “Semantical Considerations on Modal Logic”. In: Acta Philosophica Fen-
nica (1963), pp. 83–94.

[Lee02] Lillian Lee. “Fast context-free grammar parsing requires fast Boolean matrix multipli-
cation”. In: Journal of the ACM 49.1 (2002), pp. 1–15.

[Lew18] Clarence Irving Lewis. A Survey of Symbolic Logic. University of California Press, 1918.
url: http://hdl.handle.net/2027/hvd.32044014355028.

[Lew73] David K. Lewis. Counterfactuals. Blackwell Publishers, 1973.

[MBV95] Reinhard Muskens, Johan van Benthem, and Albert Visser. “Dynamics”. In: ed. by
Johan van Benthem and Ter Meulen. Elsevier Science B.V., 1995.

[Mon70] R. Montague. “English as a Formal Language”. In: Reprinted in [Tho74], 188–221.
Edizioni di Communita, Milan, 1970, pp. 189–224.

[Mon74] Richard Montague. “The Proper Treatment of Quantification in Ordinary English”. In:
Formal Philosophy. Selected Papers. Ed. by R. Thomason. New Haven: Yale University
Press, 1974.

[MR98] C. Monz and M. de Rijke. “A Resolution Calculus for Dynamic Semantics”. In: Logics
in Artificial Intelligence. European Workshop JELIA ’98. LNAI 1489. Springer Verlag,
1998.

[Mus96] Reinhard Muskens. “Combining Montague Semantics and Discourse Representation”.
In: Linguistics & Philosophy 14 (1996), pp. 143 –186.

[Ohl88] Hans Jürgen Ohlbach. “A Resolution Calculus for Modal Logics”. PhD thesis. Univer-
sität Kaiserslautern, 1988.

[OMT] Michael Kohlhase and Dennis Müller. OMDoc/MMT Tutorial for Mathematicians. url:
https://gl.mathhub.info/Tutorials/Mathematicians/blob/master/tutorial/
mmt-math-tutorial.pdf (visited on 10/07/2017).

[Par90] Terence Parsons. Events in the Semantics of English: A Study in Subatomic Semantics.
Vol. 19. Current Studies in Linguistics. MIT Press, 1990.

[Pin96] Manfred Pinkal. “Radical underspecification”. In: Proceedings of the 10th Amsterdam
Colloquium. Ed. by P. Dekker and M. Stokhof. ILLC. Amsterdam, 1996, pp. 587–606.

[Pop34] Karl Popper. Logik der Forschung. Springer Verlag, 1934.

[Pop59] Karl Popper. Logic of Scientific Discovery. Basic Books, 1959.

[Por04] Paul Portner. What is Meaning? Fundamentals of Formal Semantics. Blackwell, 2004.

https://kwarc.info/kohlhase/papers/amscoll95.pdf
https://kwarc.info/kohlhase/papers/amscoll95.pdf
https://kwarc.info/kohlhase/papers/mcs08-stex.pdf
https://kwarc.info/kohlhase/papers/mcs08-stex.pdf
https://doi.org/10.1007/b95744
http://hdl.handle.net/2027/hvd.32044014355028
https://gl.mathhub.info/Tutorials/Mathematicians/blob/master/tutorial/mmt-math-tutorial.pdf
https://gl.mathhub.info/Tutorials/Mathematicians/blob/master/tutorial/mmt-math-tutorial.pdf

188 BIBLIOGRAPHY

[Pra76] V. Pratt. “Semantical considerations of Floyd-Hoare logic”. In: Proceedings of the 17th

Symposium on Foundations of Computer Science. 1976, pp. 109–121.

[Pul94] Stephen G. Pulman. Higher Order Unification and the Interpretation of Focus. Tech.
rep. CRC-049. SRI Cambridge, UK, 1994.

[Ran04] Aarne Ranta. “Grammatical Framework — A Type-Theoretical Grammar Formalism”.
In: Journal of Functional Programming 14.2 (2004), pp. 145–189.

[Ran11] Aarne Ranta. Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, 2011. isbn: 1-57586-626-9.

[RG94] Uwe Reyle and Dov M. Gabbay. “Direct Deductive computation on Discourse Repre-
sentation Structures”. In: Linguistics & Philosophy 17 (1994), pp. 343–390.

[Rie10] Nick Riemer. Introducing Semantics. Cambridge Introductions to Language and Lin-
guistics. Cambridge University Press, 2010.

[Rus91] Stuart J. Russell. “An Architecture for Bounded Rationality”. In: SIGART Bulletin 2.4
(1991), pp. 146–150.

[Sae03] John I. Saeed. Semantics. 2nd. Blackwell, 2003.

[Sau93] Werner Saurer. “A Natural Deduction System for Discourse Representation Theory”.
In: Journal of Philosophical Logic 22 (1993).

[Sch20] Jan Frederik Schaefer. “Prototyping NLU Pipelines – A Type-Theoretical Framework”.
Master’s Thesis. Informatik, FAU Erlangen-Nürnberg, 2020. url: https://gl.kwarc.
info/supervision/MSc-archive/blob/master/2020/Schaefer_Jan_Frederik.
pdf.

[Sin94] M. Singer. “Discourse Inference Processes”. In: Handbook of Psycholinguistics. Ed. by
M. A. Gernsbacher. Academic Press, 1994, pp. 479–515.

[Smu63] Raymond M. Smullyan. “A Unifying Principle for Quantification Theory”. In: Proc.
Nat. Acad Sciences 49 (1963), pp. 828–832.

[Spe17] Jeff Speaks. “Theories of Meaning”. In: The Stanford Encyclopedia of Philosophy. Ed.
by Edward N. Zalta. Fall 2017. Metaphysics Research Lab, Stanford University, 2017.
url: https://plato.stanford.edu/archives/fall2017/entries/meaning/.

[Sta14] Robert Stalnaker. Context. Oxford University Press, 2014.

[Sta68] Robert C. Stalnaker. “A Theory of Conditionals”. In: Studies in Logical Theory, Amer-
ican Philosophical Quarterly. Blackwell Publishers, 1968, pp. 98–112.

[Sta85] Rick Statman. “Logical relations and the typed lambda calculus”. In: Information and
Computation 65 (1985).

[sTeX] sTeX: A semantic Extension of TeX/LaTeX. url: https://github.com/sLaTeX/sTeX
(visited on 05/11/2020).

[Tho74] R. Thomason, ed. Formal Philosophy: selected Papers of Richard Montague. Yale Uni-
versity Press, New Haven, CT, 1974.

[Ven57] Zeno Vendler. “Verbs and times”. In: Philosophical Review 56 (1957), pp. 143–160.

[Zee89] Henk Zeevat. “A Compositional Approach to DRT”. In: Linguistics & Philosophy 12
(1989), pp. 95–131.

[ZR98] R. A. Zwaan and G. A. Radvansky. “Situation models in language comprehension and
memory”. In: Psychological Bulletin 123 (1998), pp. 162–185.

[ZS13] Thomas Ede Zimmermann and Wolfgang Sternefeld. Introduction to Semantics. de
Gruyter Mouton, 2013.

https://gl.kwarc.info/supervision/MSc-archive/blob/master/2020/Schaefer_Jan_Frederik.pdf
https://gl.kwarc.info/supervision/MSc-archive/blob/master/2020/Schaefer_Jan_Frederik.pdf
https://gl.kwarc.info/supervision/MSc-archive/blob/master/2020/Schaefer_Jan_Frederik.pdf
https://plato.stanford.edu/archives/fall2017/entries/meaning/
https://github.com/sLaTeX/sTeX

Index

*, 79

Blaise Pascal, 58

Gottfried Wilhelm Leibniz, 58

Wilhelm Schickard, 58

189

190 INDEX

Part III

Excursions

191

193

As this course is predominantly about modeling natural language and not about the theoretical
aspects of the logics themselves, we give the discussion about these as a “suggested readings”
section part here.

194

Appendix A

Properties of Propositional Tableaux

A.1 Soundness and Termination of Tableaux

As always we need to convince ourselves that the calculus is sound, otherwise, tableau proofs
do not guarantee validity, which we are after. Since we are now in a refutation setting we cannot
just show that the inference rules preserve validity: we care about unsatisfiability (which is the
dual notion to validity), as we want to show the initial labeled formula to be unsatisfiable. Before
we can do this, we have to ask ourselves, what it means to be (un)-satisfiable for a labeled formula
or a tableau.

Soundness (Tableau)

� Idea: A test calculus is refutation sound, iff its inference rules preserve satisfiability
and the goal formulae are unsatisfiable.

� Definition A.1.1. A labeled formula Aα is valid under φ, iff Iφ(A) = α.

� Definition A.1.2. A tableau T is satisfiable, iff there is a satisfiable branch P in
T , i.e. if the set of formulae on P is satisfiable.

� Lemma A.1.3. T0 rules transform satisfiable tableaux into satisfiable ones.

� Theorem A.1.4 (Soundness). T0 is sound, i.e. Φ ⊆ wff0(V0) valid, if there is a
closed tableau T for ΦF.

� Proof: by contradiction

1. Suppose Φ isfalsifiable =̂ not valid.
2. Then the initial tableau is satisfiable, (ΦF satisfiable)
3. so T is satisfiable, by Lemma C.0.3.
4. Thus there is a satisfiable branch (by definition)
5. but all branches are closed (T closed)

� Theorem A.1.5 (Completeness). T0 is complete, i.e. if Φ ⊆ wff0(V0) is valid,
then there is a closed tableau T for ΦF.

Proof sketch: Proof difficult/interesting; see Corollary A.3.2

Michael Kohlhase: LBS 301 2024-01-20

Thus we only have to prove Lemma C.0.3, this is relatively easy to do. For instance for the first

195

196 APPENDIX A. PROPERTIES OF PROPOSITIONAL TABLEAUX

rule: if we have a tableau that contains (A ∧B)
T and is satisfiable, then it must have a satisfiable

branch. If (A ∧B)
T is not on this branch, the tableau extension will not change satisfiability,

so we can assume that it is on the satisfiable branch and thus Iφ(A ∧B) = T for some variable
assignment φ. Thus Iφ(A) = T and Iφ(B) = T, so after the extension (which adds the formulae
AT and BT to the branch), the branch is still satisfiable. The cases for the other rules are
similar.

The next result is a very important one, it shows that there is a procedure (the tableau
procedure) that will always terminate and answer the question whether a given propositional
formula is valid or not. This is very important, since other logics (like the often-studied first-order
logic) does not enjoy this property.

� Termination for Tableaux

� Lemma A.1.6. T0 terminates, i.e. every T0 tableau becomes saturated after finitely
many rule applications.

� Proof: By examining the rules wrt. a measure µ

1. Let us call a labeled formulae Aα worked off in a tableau T , if a T0 rule has already
been applied to it.

2. It is easy to see that applying rules to worked off formulae will only add formulae that
are already present in its branch.

3. Let µ(T) be the number of connectives in labeled formulae in T that are not worked
off.

4. Then each rule application to a labeled formula in T that is not worked off reduces
µ(T) by at least one. (inspect the rules)

5. At some point the tableau only contains worked off formulae and literals.
6. Since there are only finitely many literals in T , so we can only apply T0⊥ a finite

number of times.

� Corollary A.1.7. T0 induces a decision procedure for validity in PL0.

Proof: We combine the results so far

� 1. By Lemma A.1.6 it is decidable whether ⊢T0A

2. By soundness (Theorem C.0.4) and completeness (Theorem C.0.5), ⊢T0A iff A is
valid.

Michael Kohlhase: LBS 302 2024-01-20

Note: The proof above only works for the “base T0” because (only) there the rules do not “copy”.
A rule like

A⇔BT

AT

BT

∣∣∣∣ AF

BF

does, and in particular the number of non-worked-off variables below the line is larger than above
the line. For such rules, we would have a more intricate version of µ which – instead of returning
a natural number – returns a more complex object; a multiset of numbers. would work here. In
our proof we are just assuming that the defined connectives have already eliminated. The
tableau calculus basically computes the disjunctive normal form: every branch is a disjunct that
is a conjunction of literals. The method relies on the fact that a DNF is unsatisfiable, iff each
literal is, i.e. iff each branch contains a contradiction in form of a pair of opposite literals.
For proving completeness of tableaux we will use the abstract consistency method introduced by

Raymond Smullyan — a famous logician who also wrote many books on recreational mathematics
and logic (most notably one is titled “What is the name of this book?”) which you may like.

A.2. ABSTRACT CONSISTENCY AND MODEL EXISTENCE 197

A.2 Abstract Consistency and Model Existence

We will now come to an important tool in the theoretical study of reasoning calculi: the “abstract
consistency”/“model existence” method. This method for analyzing calculi was developed by Jaako
Hintikka, Raymond Smullyan, and Peter Andrews in 1950-1970 as an encapsulation of similar
constructions that were used in completeness arguments in the decades before. The basis for
this method is Smullyan’s Observation [Smu63] that completeness proofs based on Hintikka sets
only certain properties of consistency and that with little effort one can obtain a generalization
“Smullyan’s Unifying Principle”.
The basic intuition for this method is the following: typically, a logical system L = ⟨L,K, |=⟩ has
multiple calculi, human-oriented ones like the natural deduction calculi and machine-oriented ones
like the automated theorem proving calculi. All of these need to be analyzed for completeness (as
a basic quality assurance measure).

A completeness proof for a calculus C for S typically comes in two parts: one analyzes C-
consistency (sets that cannot be refuted in C), and the other construct K-models for C-consistent
sets.

In this situtation the “abstract consistency”/“model existence” method encapsulates the model
construction process into a meta-theorem: the “model existence” theorem. This provides a set of
syntactic (“abstract consistency”) conditions for calculi that are sufficient to construct models.

With the model existence theorem it suffices to show that C-consistency is an abstract consis-
tency property (a purely syntactic task that can be done by a C-proof transformation argument)
to obtain a completeness result for C.

Model Existence (Overview)

� Definition: Abstract consistency

� Definition: Hintikka set (maximally abstract consistent)

� Theorem: Hintikka sets are satisfiable

� Theorem: If Φ is abstract consistent, then Φ can be extended to a Hintikka set.

� Corollary: If Φ is abstract consistent, then Φ is satisfiable.

� Application: Let C be a calculus, if Φ is C-consistent, then Φ is abstract consistent.

� Corollary: C is complete.

Michael Kohlhase: LBS 303 2024-01-20

The proof of the model existence theorem goes via the notion of a Hintikka set, a set of
formulae with very strong syntactic closure properties, which allow to read off models. Jaako
Hintikka’s original idea for completeness proofs was that for every complete calculus C and every
C-consistent set one can induce a Hintikka set, from which a model can be constructed. This can
be considered as a first model existence theorem. However, the process of obtaining a Hintikka set
for a C-consistent set Φ of sentences usually involves complicated calculus dependent constructions.

In this situation, Raymond Smullyan was able to formulate the sufficient conditions for the
existence of Hintikka sets in the form of “abstract consistency properties” by isolating the calculus
independent parts of the Hintikka set construction. His technique allows to reformulate Hintikka
sets as maximal elements of abstract consistency classes and interpret the Hintikka set construction
as a maximizing limit process.
To carry out the “model-existence”/“abstract consistency” method, we will first have to look at

the notion of consistency.
Consistency and refutability are very important notions when studying the completeness for

198 APPENDIX A. PROPERTIES OF PROPOSITIONAL TABLEAUX

calculi; they form syntactic counterparts of satisfiability.

Consistency

� Let C be a calculus,. . .

� Definition A.2.1. Let C be a calculus, then a formula set Φ is called C-, if there
is a refutation, i.e. a derivation of a contradiction from Φ. The act of finding a
refutation for Φ is called refuting Φ.

� Definition A.2.2. We call a pair of formulae A and ¬A a contradiction.

� So a set Φ is C-refutable, if C canderive a contradiction from it.

� Definition A.2.3. Let C be a calculus, then a formula set Φ is called C-, iff there
is a formula B, that is not derivable from Φ in C.

� Definition A.2.4. We call a calculus C reasonable, iff implication elimination and
conjunction introduction are admissible in C and A ∧ ¬A⇒B is a C-theorem.

� Theorem A.2.5. C-inconsistency and C-refutability coincide for reasonable calculi.

Michael Kohlhase: LBS 304 2024-01-20

It is very important to distinguish the syntactic C-refutability and C-consistency from satisfiability,
which is a property of formulae that is at the heart of semantics. Note that the former have the
calculus (a syntactic device) as a parameter, while the latter does not. In fact we should actually
say S-satisfiability, where ⟨L,K, |=⟩ is the current logical system.

Even the word “contradiction” has a syntactical flavor to it, it translates to “saying against
each other” from its Latin root.

Abstract Consistency

� Definition A.2.6. Let ∇ be a collection of sets. We call ∇ closed under subsets,
iff for each Φ∈∇, all subsets Ψ ⊆ Φ are elements of ∇.

� Definition A.2.7 (Notation). We will use Φ∗A for Φ ∪ {A}.

� Definition A.2.8. A collection ∇ of sets of propositional formulae is called an
abstract consistency class, iff it is closed under subsets, and for each Φ∈∇

∇c) P ̸∈Φ or ¬P ̸∈Φ for P∈V0

∇¬) ¬¬A∈Φ implies Φ∗A∈∇
∇∨) A ∨B∈Φ implies Φ∗A∈∇ or Φ∗B∈∇
∇∧) ¬(A ∨B)∈Φ implies Φ ∪ {¬A,¬B}∈∇

� Example A.2.9. The empty set is an abstract consistency class

� Example A.2.10. The set {∅, {Q}, {P∨Q}, {P∨Q,Q}} is an abstract consistency
class

� Example A.2.11. The family of satisfiable sets is an abstract consistency class.

Michael Kohlhase: LBS 305 2024-01-20

So a family of sets (we call it a family, so that we do not have to say “set of sets” and we can

A.2. ABSTRACT CONSISTENCY AND MODEL EXISTENCE 199

distinguish the levels) is an abstract consistency class, iff it fulfills five simple conditions, of which
the last three are closure conditions.

Think of an abstract consistency class as a family of “consistent” sets (e.g. C-consistent for some
calculus C), then the properties make perfect sense: They are naturally closed under subsets — if
we cannot derive a contradiction from a large set, we certainly cannot from a subset, furthermore,

∇c) If both P∈Φ and ¬P∈Φ, then Φ cannot be “consistent”.

∇¬) If we cannot derive a contradiction from Φ with ¬¬A∈Φ then we cannot from Φ∗A, since they
are logically equivalent.

The other two conditions are motivated similarly. We will carry out the proof here, since it
gives us practice in dealing with the abstract consistency properties.
The main result here is that abstract consistency classes can be extended to compact ones. The

proof is quite tedious, but relatively straightforward. It allows us to assume that all abstract
consistency classes are compact in the first place (otherwise we pass to the compact extension).
Actually we are after abstract consistency classes that have an even stronger property than just

being closed under subsets. This will allow us to carry out a limit construction in the Hintikka
set extension argument later.

Compact Collections

� Definition A.2.12. We call a collection ∇ of sets compact, iff for any set Φ we
have
Φ∈∇, iff Ψ∈∇ for every finite subset Ψ of Φ.

� Lemma A.2.13. If ∇ is compact, then ∇ is closed under subsets.

� Proof:

1. Suppose S ⊆ T and T∈∇.
2. Every finite subset A of S is a finite subset of T .
3. As ∇ is compact, we know that A∈∇.
4. Thus S∈∇.

Michael Kohlhase: LBS 306 2024-01-20

The property of being closed under subsets is a “downwards-oriented” property: We go from large
sets to small sets, compactness (the interesting direction anyways) is also an “upwards-oriented”
property. We can go from small (finite) sets to large (infinite) sets. The main application for the
compactness condition will be to show that infinite sets of formulae are in a collection ∇ by testing
all their finite subsets (which is much simpler).

Compact Abstract Consistency Classes

� Lemma A.2.14. Any abstract consistency class can be extended to a compact
one.

� Proof:

1. We choose ∇′:={Φ ⊆ wff0(V0)|every finite subset of Φ is in ∇}.
2. Now suppose that Φ∈∇. ∇ is closed under subsets, so every finite subset of
Φ is in ∇ and thus Φ∈∇′. Hence ∇ ⊆ ∇′.

3. Next let us show that each ∇ is compact.’
3.1. Suppose Φ∈∇′ and Ψ is an arbitrary finite subset of Φ.
3.2. By definition of ∇′ all finite subsets of Φ are in ∇ and therefore Ψ∈∇′.

200 APPENDIX A. PROPERTIES OF PROPOSITIONAL TABLEAUX

3.3. Thus all finite subsets of Φ are in ∇′ whenever Φ is in ∇′.
3.4. On the other hand, suppose all finite subsets of Φ are in ∇′.
3.5. Then by the definition of ∇′ the finite subsets of Φ are also in ∇, so Φ∈∇′.

Thus ∇′ is compact.
4. Note that ∇′ is closed under subsets by the Lemma above.
5. Now we show that if ∇ satisfies ∇∗, then ∇ satisfies ∇∗.’

5.1. To show ∇c, let Φ∈∇′ and suppose there is an atom A, such that {A,¬A} ⊆
Φ. Then {A,¬A}∈∇ contradicting ∇c.

5.2. To show ∇¬, let Φ∈∇′ and ¬¬A∈Φ, then Φ∗A∈∇′.
5.2.1. Let Ψ be any finite subset of Φ∗A, and Θ:=(Ψ\{A})∗¬¬A.
5.2.2. Θ is a finite subset of Φ, so Θ∈∇.
5.2.3. Since ∇ is an abstract consistency class and ¬¬A∈Θ, we get Θ∗A∈∇

by ∇¬.
5.2.4. We know that Ψ ⊆ Θ∗A and ∇ is closed under subsets, so Ψ∈∇.
5.2.5. Thus every finite subset Ψ of Φ∗A is in ∇ and therefore by definition

Φ∗A∈∇′.
5.3. the other cases are analogous to ∇¬.

Michael Kohlhase: LBS 308 2024-01-20

Hintikka sets are sets of sentences with very strong analytic closure conditions. These are motivated
as maximally consistent sets i.e. sets that already contain everything that can be consistently
added to them.

∇-Hintikka Set

� Definition A.2.15. Let ∇ be an abstract consistency class, then we call a set
H∈∇ a ∇ Hintikka Set, iff H is maximal in ∇, i.e. for all A with H∗A∈∇ we
already have A∈H.

� Theorem A.2.16 (Hintikka Properties). Let ∇ be an abstract consistency class
and H be a ∇-Hintikka set, then

Hc) For all A∈wff0(V0) we have A ̸∈H or ¬A ̸∈H
H¬) If ¬¬A∈H then A∈H
H∨) If A ∨B∈H then A∈H or B∈H
H∧) If ¬(A ∨B)∈H then ¬A,¬B∈H

Michael Kohlhase: LBS 309 2024-01-20

∇-Hintikka Set

� Proof:

We prove the properties in turn
1. Hc by induction on the structure of A

1.1. A∈V0 Then A ̸∈H or ¬A ̸∈H by ∇c.
1.2. A = ¬B

1.2.1. Let us assume that ¬B∈H and ¬¬B∈H,
1.2.2. then H∗B∈∇ by ∇¬, and therefore B∈H by maximality.

A.2. ABSTRACT CONSISTENCY AND MODEL EXISTENCE 201

1.2.3. So both B and ¬B are in H, which contradicts the induction hy-
pothesis.

1.3. A = B ∨C similar to the previous case
2. We prove H¬ by maximality of H in ∇.

2.1. If ¬¬A∈H, then H∗A∈∇ by ∇¬.
2.2. The maximality of H now gives us that A∈H.

Proof sketch: other H∗ are similar

Michael Kohlhase: LBS 310 2024-01-20

The following theorem is one of the main results in the “abstract consistency”/”model existence”
method. For any abstract consistent set Φ it allows us to construct a Hintikka set H with Φ∈H.

Extension Theorem

� Theorem A.2.17. If ∇ is an abstract consistency class and Φ∈∇, then there is a
∇-Hintikka set H with Φ ⊆ H.

� Proof:

1. Wlog. we assume that ∇ is compact (otherwise pass to compact extension)
2. We choose an enumeration A1, . . . of the set wff0(V0)

3. and construct a sequence of sets Hi with H0:=Φ and

Hn+1:=

{
Hn if Hn∗An ̸∈∇

Hn∗An if Hn∗An∈∇

4. Note that all Hi∈∇, choose H:=
⋃
i∈NHi

5. Ψ ⊆ H finite implies there is a j∈N such that Ψ ⊆ Hj ,
6. so Ψ∈∇ as ∇ is closed under subsets and H∈∇ as ∇ is compact.
7. Let H∗B∈∇, then there is a j∈N with B = Aj , so that B∈Hj+1 and Hj+1 ⊆
H

8. Thus H is ∇-maximal

Michael Kohlhase: LBS 311 2024-01-20

Note that the construction in the proof above is non-trivial in two respects. First, the limit
construction for H is not executed in our original abstract consistency class ∇, but in a suitably
extended one to make it compact — the original would not have contained H in general. Second,
the set H is not unique for Φ, but depends on the choice of the enumeration of wff0(V0). If we pick a
different enumeration, we will end up with a different H. Say if A and ¬A are both ∇-consistent7
with Φ, then depending on which one is first in the enumeration H, will contain that one; with all
the consequences for subsequent choices in the construction process.

Valuation

� Definition A.2.18. A function ν : wff0(V0)→Do is called a valuation, iff

� ν(¬A) = T, iff ν(A) = F

� ν(A ∧B) = T, iff ν(A) = T and ν(B) = T

7EdNote: introduce this above

202 APPENDIX A. PROPERTIES OF PROPOSITIONAL TABLEAUX

� Lemma A.2.19. If ν : wff0(V0)→Do is a valuation and Φ ⊆ wff0(V0) with ν(Φ) =
{T}, then Φ is satisfiable.

� Proof sketch: ν|V0
: V0→Do is a satisfying variable assignment.

� Lemma A.2.20. If φ : V0→Do is a variable assignment, then Iφ : wff0(V0)→Do is
a valuation.

Michael Kohlhase: LBS 312 2024-01-20

Now, we only have to put the pieces together to obtain the model existence theorem we are after.

Model Existence

� Lemma A.2.21 (Hintikka-Lemma). If ∇ is an abstract consistency class and H
a ∇-Hintikka set, then H is satisfiable.

� Proof:

1. We define ν(A):=T, iff A∈H
2. then ν is a valuation by the Hintikka properties
3. and thus ν|V0

is a satisfying assignment.

� Theorem A.2.22 (Model Existence). If ∇ is an abstract consistency class and
Φ∈∇, then Φ is satisfiable.

Proof:

� 1. There is a ∇-Hintikka set H with Φ ⊆ H (Extension Theorem)
2. We know that H is satisfiable. (Hintikka-Lemma)
3. In particular, Φ ⊆ H is satisfiable.

Michael Kohlhase: LBS 313 2024-01-20

A.3 A Completeness Proof for Propositional Tableaux
With the model existence proof we have introduced in the last section, the completeness proof for
first-order natural deduction is rather simple, we only have to check that Tableaux-consistency is
an abstract consistency property.
We encapsulate all of the technical difficulties of the problem in a technical Lemma. From that,
the completeness proof is just an application of the high-level theorems we have just proven.

Abstract Completeness for T0

� Lemma A.3.1. {Φ|ΦT has no closed tableau} is an abstract consistency class.

� Proof: Let’s call the set above ∇
We have to convince ourselves of the abstract consistency properties
1. ∇cP ,¬P∈Φ implies P F, PT∈ΦT.
2. ∇¬Let ¬¬A∈Φ.

2.1. For the proof of the contrapositive we assume that Φ∗A has a closed
tableau T and show that already Φ has one:

2.2. applying each of T0¬T and T0¬F once allows to extend any tableau with
¬¬Bα by Bα.

A.3. A COMPLETENESS PROOF FOR PROPOSITIONAL TABLEAUX 203

2.3. any path in T that is closed with ¬¬Aα, can be closed by Aα.
3. ∇∨Suppose A ∨B∈Φ and both Φ∗A and Φ∗B have closed tableaux

3.1. consider the tableaux:

ΦT

AT

Rest1

ΦT

BT

Rest2

ΨT

(A ∨B)
T

AT

Rest1
BT

Rest2

4. ∇∧suppose, ¬(A ∨B)∈Φ and Φ{¬A,¬B} have closed tableau T .
4.1. We consider

ΦT

AF

BF

Rest

ΨT

(A ∨B)
F

AF

BF

Rest

where Φ = Ψ∗¬(A ∨B).

Michael Kohlhase: LBS 315 2024-01-20

Observation: If we look at the completeness proof below, we see that the Lemma above is the
only place where we had to deal with specific properties of the T0.

So if we want to prove completeness of any other calculus with respect to propositional logic,
then we only need to prove an analogon to this lemma and can use the rest of the machinery we
have already established “off the shelf”.

This is one great advantage of the “abstract consistency method”; the other is that the method
can be extended transparently to other logics.

Completeness of T0

� Corollary A.3.2. T0 is complete.

� Proof: by contradiction

1. We assume that A∈wff0(V0) is valid, but there is no closed tableau for AF.
2. We have {¬A}∈∇ as ¬AT = AF.
3. so ¬A is satisfiable by the model existence theorem (which is applicable as ∇

is an abstract consistency class by our Lemma above)
4. this contradicts our assumption that A is valid.

Michael Kohlhase: LBS 316 2024-01-20

204 APPENDIX A. PROPERTIES OF PROPOSITIONAL TABLEAUX

Appendix B

First-Order Unification

We will now look into the problem of finding a substitution σ that make two terms equal (we
say it unifies them) in more detail. The presentation of the unification algorithm we give here
“transformation-based” this has been a very influential way to treat certain algorithms in theoret-
ical computer science.
A transformation-based view of algorithms: The “transformation-based” view of algorithms
divides two concerns in presenting and reasoning about algorithms according to Kowalski’s slogan
[Kow97]

algorithm = logic + control

The computational paradigm highlighted by this quote is that (many) algorithms can be thought
of as manipulating representations of the problem at hand and transforming them into a form
that makes it simple to read off solutions. Given this, we can simplify thinking and reasoning
about such algorithms by separating out their “logical” part, which deals with is concerned with
how the problem representations can be manipulated in principle from the “control” part, which
is concerned with questions about when to apply which transformations.

It turns out that many questions about the algorithms can already be answered on the “logic”
level, and that the “logical” analysis of the algorithm can already give strong hints as to how to
optimize control.
In fact we will only concern ourselves with the “logical” analysis of unification here.

The first step towards a theory of unification is to take a closer look at the problem itself. A first
set of examples show that we have multiple solutions to the problem of finding substitutions that
make two terms equal. But we also see that these are related in a systematic way.

Unification (Definitions)

� Definition B.0.1. For given terms A and B, unification is the problem of finding
a substitution σ, such that σ(A) = σ(B).

� Notation: We write term pairs as A=?B e.g. f(X)=?f(g(Y)).

� Definition B.0.2. Solutions (e.g. [g(a)/X], [a/Y], [g(g(a))/X], [g(a)/Y], or
[g(Z)/X], [Z/Y]) are called unifiers, U(A=?B):={σ|σ(A) = σ(B)}.

� Idea: Find representatives in U(A=?B), that generate the set of solutions.

� Definition B.0.3. Let σ and θ be substitutions and W ⊆ Vι, we say that a sub-
stitution σ is more general than θ (on W ; write σ≤θ[W]), iff there is a substitution
ρ, such that θ=(ρ ◦ σ)[W], where σ=ρ[W], iff σ(X) = ρ(X) for all X∈W .

205

206 APPENDIX B. FIRST-ORDER UNIFICATION

� Definition B.0.4. σ is called a most general unifier (mgu) of A and B, iff it is
minimal in U(A=?B) wrt. ≤[(free(A) ∪ free(B))].

Michael Kohlhase: LBS 317 2024-01-20

The idea behind a most general unifier is that all other unifiers can be obtained from it by (further)
instantiation. In an automated theorem proving setting, this means that using most general
unifiers is the least committed choice — any other choice of unifiers (that would be necessary for
completeness) can later be obtained by other substitutions.
Note that there is a subtlety in the definition of the ordering on substitutions: we only compare
on a subset of the variables. The reason for this is that we have defined substitutions to be total
on (the infinite set of) variables for flexibility, but in the applications (see the definition of most
general unifiers), we are only interested in a subset of variables: the ones that occur in the initial
problem formulation. Intuitively, we do not care what the unifiers do off that set. If we did
not have the restriction to the set W of variables, the ordering relation on substitutions would
become much too fine-grained to be useful (i.e. to guarantee unique most general unifiers in our
case).

Now that we have defined the problem, we can turn to the unification algorithm itself. We
will define it in a way that is very similar to logic programming: we first define a calculus that
generates “solved forms” (formulae from which we can read off the solution) and reason about
control later. In this case we will reason that control does not matter.

Unification Problems (=̂ Equational Systems)

� Idea: Unification is equation solving.

� Definition B.0.5. We call a formula A1=?B1 ∧ . . . ∧ An=?Bn an unification
problem iff Ai,Bi∈wff ι(Σι,Vι).

� Note: We consider unification problems as sets of equations (∧ is ACI), and
equations as two-element multisets (=? is C).

� Definition B.0.6. A substitution is called a unifier for a unification problem E (and
thus D unifiable), iff it is a (simultaneous) unifier for all pairs in E .

Michael Kohlhase: LBS 318 2024-01-20

In principle, unification problems are sets of equations, which we write as conjunctions, since all of
them have to be solved for finding a unifier. Note that it is not a problem for the “logical view” that
the representation as conjunctions induces an order, since we know that conjunction is associative,
commutative and idempotent, i.e. that conjuncts do not have an intrinsic order or multiplicity,
if we consider two equational problems as equal, if they are equivalent as propositional formulae.
In the same way, we will abstract from the order in equations, since we know that the equality
relation is symmetric. Of course we would have to deal with this somehow in the implementation
(typically, we would implement equational problems as lists of pairs), but that belongs into the
“control” aspect of the algorithm, which we are abstracting from at the moment.

Solved forms and Most General Unifiers

� Definition B.0.7. We call a pair A=?B solved in a unification problem E , iff
A = X, E = X=?A ∧ E , and X ̸∈(free(A) ∪ free(E)). We call an unification
problem E a solved form, iff all its pairs are solved.

207

� Lemma B.0.8. Solved forms are of the form X1=?B1 ∧ . . . ∧Xn=?Bn where the
Xi are distinct and Xi ̸∈free(Bj).

� Definition B.0.9. Any substitution σ = [B1/X1], . . . ,[Bn/Xn] induces a solved
unification problem Eσ:=(X1=?B1 ∧ . . . ∧Xn=?Bn).

� Lemma B.0.10. If E = X1=?B1 ∧ . . .∧Xn=?Bn is a solved form, then E has the
unique most general unifier σE :=[B1/X1], . . . ,[Bn/Xn].

� Proof: Let θ∈U(E)
1. then θ(Xi) = θ(Bi) = θ ◦ σE(X

i)

2. and thus θ=(θ ◦ σE)[supp(σ)].

� Note: We can rename the introduced variables in most general unifiers!

Michael Kohlhase: LBS 319 2024-01-20

It is essential to our “logical” analysis of the unification algorithm that we arrive at unification prob-
lems whose unifiers we can read off easily. Solved forms serve that need perfectly as Lemma B.0.10
shows.
Given the idea that unification problems can be expressed as formulae, we can express the algo-
rithm in three simple rules that transform unification problems into solved forms (or unsolvable
ones).

Unification Algorithm

� Definition B.0.11. The inference system U consists of the following rules:

E ∧ f(A1, . . .,An)=?f(B1, . . .,Bn)

E ∧A1=?B1 ∧ . . . ∧An=?Bn
Udec

E ∧A=?A

E
Utriv

E ∧X=?A X ̸∈free(A) X∈free(E)
[A/X](E) ∧X=?A

Uelim

� Lemma B.0.12. U is correct: E⊢UF implies U(F) ⊆ U(E).

� Lemma B.0.13. U is complete: E⊢UF implies U(E) ⊆ U(F).

� Lemma B.0.14. U is confluent: the order of derivations does not matter.

� Corollary B.0.15. First-order unification is unitary: i.e. most general unifiers are
unique up to renaming of introduced variables.

� Proof sketch: U is trivially branching.

Michael Kohlhase: LBS 320 2024-01-20

The decomposition rule Udec is completely straightforward, but note that it transforms one unifi-
cation pair into multiple argument pairs; this is the reason, why we have to directly use unification
problems with multiple pairs in U .

Note furthermore, that we could have restricted the Utriv rule to variable-variable pairs, since
for any other pair, we can decompose until only variables are left. Here we observe, that constant-
constant pairs can be decomposed with the Udec rule in the somewhat degenerate case without
arguments.

Finally, we observe that the first of the two variable conditions in Uelim (the “occurs-in-check”)
makes sure that we only apply the transformation to unifiable unification problems, whereas the

208 APPENDIX B. FIRST-ORDER UNIFICATION

second one is a termination condition that prevents the rule to be applied twice.

The notion of completeness and correctness is a bit different than that for calculi that we
compare to the entailment relation. We can think of the “logical system of unifiability” with
the model class of sets of substitutions, where a set satisfies an equational problem E , iff all of
its members are unifiers. This view induces the soundness and completeness notions presented
above.
The three meta-properties above are relatively trivial, but somewhat tedious to prove, so we leave
the proofs as an exercise to the reader.
We now fortify our intuition about the unification calculus by two examples. Note that we only
need to pursue one possible U derivation since we have confluence.

Unification Examples

� Example B.0.16. Two similar unification problems:

f(g(X,X), h(a))=?f(g(a, Z), h(Z))
Udec

g(X,X)=?g(a, Z) ∧ h(a)=?h(Z)
Udec

X=?a ∧X=?Z ∧ h(a)=?h(Z)
Udec

X=?a ∧X=?Z ∧ a=?Z
Uelim

X=?a ∧ a=?Z ∧ a=?Z
Uelim

X=?a ∧ Z=?a ∧ a=?a
Utriv

X=?a ∧ Z=?a

f(g(X,X), h(a))=?f(g(b, Z), h(Z))
Udec

g(X,X)=?g(b, Z) ∧ h(a)=?h(Z)
Udec

X=?b ∧X=?Z ∧ h(a)=?h(Z)
Udec

X=?b ∧X=?Z ∧ a=?Z
Uelim

X=?b ∧ b=?Z ∧ a=?Z
Uelim

X=?b ∧ Z=?b ∧ a=?b

MGU: [a/X], [a/Z] a=?b not unifiable

Michael Kohlhase: LBS 321 2024-01-20

We will now convince ourselves that there cannot be any infinite sequences of transformations in
U . Termination is an important property for an algorithm.

The proof we present here is very typical for termination proofs. We map unification problems
into a partially ordered set ⟨S,≺⟩ where we know that there cannot be any infinitely descending
sequences (we think of this as measuring the unification problems). Then we show that all trans-
formations in U strictly decrease the measure of the unification problems and argue that if there
were an infinite transformation in U , then there would be an infinite descending chain in S, which
contradicts our choice of ⟨S,≺⟩.

The crucial step in coming up with such proofs is finding the right partially ordered set.
Fortunately, there are some tools we can make use of. We know that ⟨N, <⟩ is terminating, and
there are some ways of lifting component orderings to complex structures. For instance it is well-
known that the lexicographic ordering lifts a terminating ordering to a terminating ordering on
finite dimensional Cartesian spaces. We show a similar, but less known construction with multisets
for our proof.

Unification (Termination)

� Definition B.0.17. Let S and T be multisets and ≤ a partial ordering on S ∪ T .
Then we define S ≺m S, iff S = C ⊎ T ′ and T = C ⊎ {t}, where s≤t for all s∈S′.

209

We call ≤m the multiset ordering induced by ≤.

� Definition B.0.18. We call a variable X solved in an unification problem E , iff E
contains a solved pair X=?A.

� Lemma B.0.19. If ≺ is linear/terminating on S, then ≺m is linear/terminating on
P(S).

� Lemma B.0.20. U is terminating. (any U-derivation is finite)

� Proof: We prove termination by mapping U transformation into a Noetherian space.

1. Let µ(E):=⟨n,N⟩, where
� n is the number of unsolved variables in E
� N is the multiset of term depths in E

2. The lexicographic order ≺ on pairs µ(E) is decreased by all inference rules.
2.1. Udec and Utriv decrease the multiset of term depths without increasing

the unsolved variables.
2.2. Uelim decreases the number of unsolved variables (by one), but may in-

crease term depths.

Michael Kohlhase: LBS 322 2024-01-20

But it is very simple to create terminating calculi, e.g. by having no inference rules. So there
is one more step to go to turn the termination result into a decidability result: we must make sure
that we have enough inference rules so that any unification problem is transformed into solved
form if it is unifiable.

First-Order Unification is Decidable

� Definition B.0.21. We call an equational problem E U-reducible, iff there is a
U-step E⊢UF from E .

� Lemma B.0.22. If E is unifiable but not solved, then it is U-reducible.

� Proof: We assume that E is unifiable but unsolved and show the U rule that applies.

1. There is an unsolved pair A=?B in E = E ∧A=?B′.
we have two cases
2. A, B̸∈Vι

2.1. then A = f(A1 . . .An) and B = f(B1 . . .Bn), and thus Udec is appli-
cable

3. A = X∈free(E)
3.1. then Uelim (if B ̸= X) or Utriv (if B = X) is applicable.

� Corollary B.0.23. First-order unification is decidable in PL1.

Proof:

� 1. U-irreducible unification problems can be reached in finite time by Lemma B.0.20.
2. They are either solved or unsolvable by Lemma B.0.22, so they provide the

answer.

Michael Kohlhase: LBS 323 2024-01-20

210 APPENDIX B. FIRST-ORDER UNIFICATION

Appendix C

Soundness and Completeness of
First-Order Tableaux

For the soundness result, we recap the definition of soundness for test calculi from the proposi-
tional case.

Soundness (Tableau)

� Idea: A test calculus is refutation sound, iff its inference rules preserve satisfiability
and the goal formulae are unsatisfiable.

� Definition C.0.1. A labeled formula Aα is valid under φ, iff Iφ(A) = α.

� Definition C.0.2. A tableau T is satisfiable, iff there is a satisfiable branch P in
T , i.e. if the set of formulae on P is satisfiable.

� Lemma C.0.3. T0 rules transform satisfiable tableaux into satisfiable ones.

� Theorem C.0.4 (Soundness). T0 is sound, i.e. Φ ⊆ wff0(V0) valid, if there is a
closed tableau T for ΦF.

� Proof: by contradiction

1. Suppose Φ isfalsifiable =̂ not valid.
2. Then the initial tableau is satisfiable, (ΦF satisfiable)
3. so T is satisfiable, by Lemma C.0.3.
4. Thus there is a satisfiable branch (by definition)
5. but all branches are closed (T closed)

� Theorem C.0.5 (Completeness). T0 is complete, i.e. if Φ ⊆ wff0(V0) is valid,
then there is a closed tableau T for ΦF.

Proof sketch: Proof difficult/interesting; see Corollary A.3.2

Michael Kohlhase: LBS 324 2024-01-20

Thus we only have to prove Lemma C.0.3, this is relatively easy to do. For instance for the first
rule: if we have a tableau that contains (A ∧B)

T and is satisfiable, then it must have a satisfiable
branch. If (A ∧B)

T is not on this branch, the tableau extension will not change satisfiability,
so we can assume that it is on the satisfiable branch and thus Iφ(A ∧B) = T for some variable
assignment φ. Thus Iφ(A) = T and Iφ(B) = T, so after the extension (which adds the formulae
AT and BT to the branch), the branch is still satisfiable. The cases for the other rules are

211

212 APPENDIX C. SOUNDNESS AND COMPLETENESS OF FIRST-ORDER TABLEAUX

similar. The soundness of the first-order free-variable tableaux calculus can be established a
simple induction over the size of the tableau.

� Soundness of T f
1

� Lemma C.0.6. Tableau rules transform satisfiable tableaux into satisfiable ones.

� Proof:

we examine the tableau rules in turn
1. propositional rules as in propositional tableaux
2. T f1 ∃ by ??

3. T f1 ⊥ by Lemma 8.1.28 (substitution value lemma)

4. T f1 ∀
4.1. Iφ(∀X A) = T, iff Iψ(A) = T for all a∈Dι
4.2. so in particular for some a∈Dι ̸= ∅.

� Corollary C.0.7. T f1 is correct.

Michael Kohlhase: LBS 325 2024-01-20

The only interesting steps are the cut rule, which can be directly handled by the substitution
value lemma, and the rule for the existential quantifier, which we do in a separate lemma.

Soundness of T f
1 ∃

� Lemma C.0.8. T f1 ∃ transforms satisfiable tableaux into satisfiable ones.

� Proof: Let T ′ be obtained by applying T f1 ∃ to (∀X A)
F in T , extending it with

([f(X1, . . ., Xk)/X](A))
F, where W :=free(∀X A) = {X1, . . ., Xk}

1. Let T be satisfiable in M:=⟨D, I⟩, then Iφ(∀X A) = F.
We need to find a model M′ that satisfies T ′ (find interpretation for f)
2. By definition I(φ,[a/X])(A) = F for some a∈D (depends on φ|W)
3. Let g : Dk→D be defined by g(a1, . . ., ak):=a, if φ(Xi) = ai
4. choose M = ⟨D, I ′⟩′ with I ′:=I,[g/f], then by subst. value lemma

I ′
φ([f(X

1, . . ., Xk)/X](A)) = I ′
(φ,[I′

φ(f(X1,...,Xk))/X])(A)

= I ′
(φ,[a/X])(A) = F

5. So ([f(X1, . . ., Xk)/X](A))
F satisfiable in M′

Michael Kohlhase: LBS 326 2024-01-20

This proof is paradigmatic for soundness proofs for calculi with Skolemization. We use the axiom
of choice at the meta-level to choose a meaning for the Skolem function symbol. Armed with
the Model Existence Theorem for first-order logic (??), the completeness of first-order tableaux is
similarly straightforward. We just have to show that the collection of tableau-irrefutable sentences
is an abstract consistency class, which is a simple proof-transformation exercise in all but the
universal quantifier case, which we postpone to its own Lemma (Theorem C.0.10).

213

Completeness of (T f
1)

� Theorem C.0.9. T f1 is refutation complete.

� Proof: We show that ∇:={Φ|ΦT has no closed Tableau} is an abstract consistency
class

1. as for propositional case.
2. by the lifting lemma below
3. Let T be a closed tableau for ¬(∀X A)∈Φ and ΦT∗([c/X](A))

F∈∇.

ΨT

(∀X A)
F

([c/X](A))
F

Rest

ΨT

(∀X A)
F

([f(X1, . . ., Xk)/X](A))
F

[f(X1, . . ., Xk)/c](Rest)

Michael Kohlhase: LBS 327 2024-01-20

So we only have to treat the case for the universal quantifier. This is what we usually call a
“lifting argument”, since we have to transform (“lift”) a proof for a formula θ(A) to one for A. In
the case of tableaux we do that by an induction on the tableau refutation for θ(A) which creates
a tableau-isomorphism to a tableau refutation for A.

Tableau-Lifting

� Theorem C.0.10. If Tθ is a closed tableau for a set θ(Φ) of formulae, then there
is a closed tableau T for Φ.

� Proof: by induction over the structure of Tθ we build an isomorphic tableau T , and
a tableau-isomorphism ω : T →Tθ, such that ω(A) = θ(A).

only the tableau-substitution rule is interesting.
1. Let (θ(Ai))

T and (θ(Bi))
F cut formulae in the branch Θiθ of Tθ

2. there is a joint unifier σ of (θ(A1))=
?(θ(B1)) ∧ . . . ∧ (θ(An))=

?(θ(Bn))

3. thus σ ◦ θ is a unifier of A and B

4. hence there is a most general unifier ρ of A1=
?B1 ∧ . . . ∧An=

?Bn

5. so Θ is closed.

Michael Kohlhase: LBS 328 2024-01-20

Again, the “lifting lemma for tableaux” is paradigmatic for lifting lemmata for other refutation
calculi.

214 APPENDIX C. SOUNDNESS AND COMPLETENESS OF FIRST-ORDER TABLEAUX

Appendix D

Properties of the Simply Typed λ
Calculus

D.1 Computational Properties of λ-Calculus
As we have seen above, the main contribution of the λ-calculus is that it casts the comprehension
and (functional) extensionality axioms in a way that is more amenable to automation in reasoning
systems, since they can be oriented into a confluent and terminating reduction system. In this
section we prove the respective properties. We start out with termination, since we will need it
later in the proof of confluence.

D.1.1 Termination of β-reduction

We will use the termination of =β reduction to present a very powerful proof method, called
the “logical relations method”, which is one of the basic proof methods in the repertoire of a proof
theorist, since it can be extended to many situations, where other proof methods have no chance
of succeeding.
Before we start into the termination proof, we convince ourselves that a straightforward induction
over the structure of expressions will not work, and we need something more powerful.

Termination of β-Reduction

� only holds for the typed case
(λX XX) (λX XX)→β(λX XX) (λX XX)

� Theorem D.1.1 (Typed β-Reduction terminates). For all A∈wff α(ΣT ,VT),
the chain of reductions from A is finite.

� proof attempts:

� Induction on the structure A must fail, since this would also work for the untyped
case.

� Induction on the type of A must fail, since β-reduction conserves types.

� combined induction on both: Logical Relations [Tait 1967]

Michael Kohlhase: LBS 329 2024-01-20

215

216 APPENDIX D. PROPERTIES OF THE SIMPLY TYPED λ CALCULUS

The overall shape of the proof is that we reason about two relations: SR and LR between
λ-terms and their types. The first is the one that we are interested in, LR(A, α) essentially states
the property that =βη reduction terminates at A. Whenever the proof needs to argue by induction
on types it uses the “logical relation” LR, which is more “semantic” in flavor. It coincides with SR
on base types, but is defined via a functionality property.

Relations SR and LR

� Definition D.1.2. A is called strongly reducing at type α (write SR(A, α)), iff
each chain β-reductions from A terminates.

� Definition D.1.3. We define a logical relation LR inductively on the structure of
the type

� α base type: LR(A, α), iff SR(A, α)

� LR(C, α→ β), iff LR(C A, β) for all A∈wff α(ΣT ,VT) with LR(A, α).

� Proof: Termination Proof

1. LR ⊆ SR (?? b))
2. A∈wff α(ΣT ,VT) implies LR(A, α) (?? with σ = ∅)
3. thus SR(A, α).

� Lemma D.1.4 (SR is closed under subterms). If SR(A, α) and Bβ is a subterm
of A, then SR(B, β).

Proof sketch: Every infinite β reduction from B would be one from A.

Michael Kohlhase: LBS 330 2024-01-20

The termination proof proceeds in two steps, the first one shows that LR is a sub-relation of
SR, and the second that LR is total on λ-terms. Togther they give the termination result.
The next result proves two important technical side results for the termination proofs in a joint
induction over the structure of the types involved. The name “rollercoaster lemma” alludes to the
fact that the argument starts with base type, where things are simple, and iterates through the
two parts each leveraging the proof of the other to higher and higher types.

� LR ⊆ SR (Rollercoaster Lemma)

� Lemma D.1.5 (Rollercoaster Lemma).

a) If h is a constant or variable of type αn → α and SR(Ai, αi), then LR(h An, α).

b) LR(A, α) implies SR(A, α).

� Proof: we prove both assertions by simultaneous induction on α
1. α base type

1.1. a)
1.1.1. h An is strongly reducing, since the Ai are (brackets!)
1.1.2. so LR(h An, α) as α is a base type (SR = LR)

1.2. b)by definition
2. α = β → γ

2.1. a)

D.1. COMPUTATIONAL PROPERTIES OF λ-CALCULUS 217

2.1.1. Let LR(B, β).
2.1.2. by IH b) we have SR(B, β), and LR((h An) B, γ) by IH a)
2.1.3. so LR(h An, α) by definition.

2.2. b)
2.2.1. Let LR(A, α) and Xβ /∈ free(A).
2.2.2. LR(X,β) by IH a) with n = 0, thus LR(A X, γ) by definition.
2.2.3. By IH b) we have SR(AX, γ) and by ?? SR(A, α).

Michael Kohlhase: LBS 331 2024-01-20

The part of the rollercoaster lemma we are really interested in is part b). But part a) will become
very important for the case where n = 0; here it states that constants and variables are LR.

The next step in the proof is to show that all well-formed formulae are LR. For that we need
to prove closure of LR under =β expansion

β-Expansion Lemma

� Lemma D.1.6. If LR([B/X](A), α) and LR(B, β) forXβ ̸∈free(B), then LR((λXα A) B, α).

� Proof:

1. Let α = γi → δ where δ base type and LR(Ci, γi)

2. It is sufficient to show that SR((λX A) B C, δ), as δ base type
3. We have LR(([B/X](A)) C, δ) by hypothesis and definition of LR.
4. thus SR(([B/X](A)) C, δ), as δ base type.
5. in particular SR([B/X](A), α) and SR(Ci, γi) (subterms)
6. SR(B, β) by hypothesis and ??
7. So an infinite reduction from (λX A) B C cannot solely consist of redexes

from [B/X](A) and the Ci.
8. so an infinite reduction from (λX A) B C must have the form

(λX A) B C →∗
β (λX A′) B′ C′

→1
β ([B′/X](A′)) C′

→∗
β . . .

where A→∗
βA

′, B→∗
βB

′ and Ci→∗
βC

i′

9. so we have [B/X](A)→∗
β [B

′/X](A′)

10. so we have the infinite reduction

([B/X](A)) C →∗
β ([B′/X](A′)) C′

→∗
β . . .

which contradicts our assumption

� Lemma D.1.7 (LR is closed under β-expansion). If C→βD and LR(D, α), so
is LR(C, α).

Michael Kohlhase: LBS 332 2024-01-20

Note that this Lemma is one of the few places in the termination proof, where we actually look
at the properties of β reduction.
We now prove that every well-formed formula is related to its type by LR. But we cannot prove
this by a direct induction. In this case we have to strengthen the statement of the theorem – and

218 APPENDIX D. PROPERTIES OF THE SIMPLY TYPED λ CALCULUS

thus the induction hypothesis, so that we can make the step cases go through. This is common for
non-trivial induction proofs. Here we show instead that every instance of a well-formed formula is
related to its type by LR; we will later only use this result for the cases of the empty substitution,
but the stronger assertion allows a direct induction proof.

A∈wff α(ΣT ,VT) implies LR(A, α)

� Definition D.1.8. We write LR(σ) if LR(σ(Xα), α) for all X∈supp(σ).

� Theorem D.1.9. If A∈wff α(ΣT ,VT), then LR(σ(A), α) for any substitution σ
with LR(σ).

� Proof: by induction on the structure of A

1. A = Xα ∈ supp(σ)
1.1. then LR(σ(A), α) by assumption

2. A = X /∈ supp(σ)
2.1. then σ(A) = A and LR(A, α) by ?? with n = 0.

3. A∈ΣT
3.1. then σ(A) = A as above

4. A = BC
4.1. by IH LR(σ(B), γ → α) and LR(σ(C), γ)

4.2. so LR((σ(B)) (σ(C)), α) by definition of LR.
5. A = λXβ Cγ

5.1. Let LR(B, β) and θ:=σ,[B/X], then θ meets the conditions of the IH.
5.2. Moreover (σ(λXβ Cγ)) B→βσ,[B/X](C) = θ(C).
5.3. Now, LR(θ(C), γ) by IH and thus LR((σ(A)) B, γ) by ??.
5.4. So LR(σ(A), α) by definition of LR.

Michael Kohlhase: LBS 333 2024-01-20

In contrast to the proof of the roller coaster Lemma above, we prove the assertion here by an
induction on the structure of the λ-terms involved. For the base cases, we can directly argue
with the first assertion from ??, and the application case is immediate from the definition of LR.
Indeed, we defined the auxiliary relation LR exclusively that the application case – which cannot
be proven by a direct structural induction; remember that we needed induction on types in ??–
becomes easy.

The last case on λ-abstraction reveals why we had to strengthen the induction hypothesis: β
reduction introduces a substitution which may increase the size of the subterm, which in turn
keeps us from applying the induction hypothesis. Formulating the assertion directly under all
possible LR substitutions unblocks us here.

This was the last result we needed to complete the proof of termiation of =β-reduction.
Remark:

If we are only interested in the termination of head reductions, we can get by with a much
simpler version of this lemma, that basically relies on the uniqueness of head =β reduction.

Closure under Head β-Expansion (weakly reducing)

� Lemma D.1.10 (LR is closed under head β-expansion). If C→h
βD and LR(D, α),

so is LR(C, α).

� Proof: by induction over the structure of α

D.1. COMPUTATIONAL PROPERTIES OF λ-CALCULUS 219

1. α base type
1.1. we have SR(D, α) by definition
1.2. so SR(C, α), since head reduction is unique
1.3. and thus LR(C, α).

2. α = β → γ
2.1. Let LR(B, β), by definition we have LR(DB, γ).
2.2. but C B→h

βD B, so LR(CB, γ) by IH
2.3. and LR(C, α) by definition.

� Note: This result only holds for weak reduction (any chain of β head reductions
terminates) for strong reduction we need a stronger Lemma.

Michael Kohlhase: LBS 334 2024-01-20

For the termination proof of head =β-reduction we would just use the same proof as above, just
for a variant of SR, where SR(A, α) that only requires that the head reduction sequence out of A
terminates. Note that almost all of the proof except ?? (which holds by the same argument) is
invariant under this change. Indeed Rick Statman uses this observation in [Sta85] to give a set of
conditions when logical relations proofs work.

D.1.2 Confluence of βη Conversion

We now turn to the confluence for =βη, i.e. that the order of reductions is irrelevant. This
entails the uniqueness of =βη normal forms, which is very useful.
Intuitively confluence of a relation R means that “anything that flows apart will come together
again.” – and as a consequence normal forms are unique if they exist. But there is more than one
way of formalizing that intuition.

Confluence

� Definition D.1.11 (Confluence). Let R ⊆ A2 be a relation on a set A, then we
say that

� has a diamond property, iff for every a, b, c∈A with a→1
Rb a→1

Rc there is a d∈A
with b→1

Rd and c→1
Rd.

� is confluent, iff for every a, b, c∈A with a→∗
Rb a→∗

Rc there is a d∈A with b→∗
Rd

and c→∗
Rd.

� weakly confluent iff for every a, b, c∈A with a→1
Rb a→1

Rc there is a d∈A with
b→∗

Rd and c→∗
Rd.

diamond confluent weakly
property confluent

a

b c

d

a

b c

d

* *

* *

a

b c

d* *

220 APPENDIX D. PROPERTIES OF THE SIMPLY TYPED λ CALCULUS

Michael Kohlhase: LBS 335 2024-01-20

The diamond property is very simple, but not many reduction relations enjoy it. Confluence is
the notion that directly gives us unique normal forms, but is difficult to prove via a digram chase,
while weak confluence is amenable to this, does not directly give us confluence.
We will now relate the three notions of confluence with each other: the diamond property (some-
times also called strong confluence) is stronger than confluence, which is stronger than weak
confluence

Relating the notions of confluence

� Observation D.1.12. If a rewrite relation has a diamond property, then it is weakly
confluent.

� Theorem D.1.13. If a rewrite relation has a diamond property, then it is confluent.

� Proof sketch: by a tiling argument, composing 1×1 diamonds to an n×m diamond.

� Theorem D.1.14 (Newman’s Lemma). If a rewrite relation is terminating and
weakly confluent, then it is also confluent.

Michael Kohlhase: LBS 336 2024-01-20

Note that Newman’s Lemma cannot be proven by a tiling argument since we cannot control the
growth of the tiles. There is a nifty proof by Gérard Huet [Hue80] that is worth looking at.

After this excursion into the general theory of reduction relations, we come back to the case
at hand: showing the confluence of =βη-reduction.
→∗
η is very well-behaved – i.e. confluent and terminating

η-Reduction ist terminating and confluent

� Lemma D.1.15. η-Reduction ist terminating

� Proof sketch: by a simple counting argument

� Lemma D.1.16. η-reduction is confluent.

� Proof sketch: We show that η-reduction has the diamond property by diagram
chase over

λX A X

A λX A′ X

A’

where A→ηA
′. Then the assertion follows by ??.

Michael Kohlhase: LBS 337 2024-01-20

For =β-reduction the situation is a bit more involved, but a simple diagram chase is still sufficient
to prove weak confluence, which gives us confluence via ??

D.1. COMPUTATIONAL PROPERTIES OF λ-CALCULUS 221

=β is confluent

� Lemma D.1.17. =β-Reduction is weakly confluent.

� Proof sketch: by diagram chase over

(λX A) B

(λX A′) B (λX A) B′ [B/X](A)

(λX A′) B′ [B′/X](A)

[B′/X](A′)

*

� Corollary D.1.18. =β-Reduction is confluent.

Proof sketch: by Newman’s Lemma.

Michael Kohlhase: LBS 338 2024-01-20

There is one reduction in the diagram in the proof of ?? which (note that B can occur multiple
times in [B/X](A)) is not necessary single-step. The diamond property is broken by the outer
two reductions in the diagram as well.

We have shown that the =β and =η reduction relations are terminating and confluent and
terminating individually, now, we have to show that =βη is a well. For that we introduce a new
concept.

� Commuting Relations
� Definition D.1.19. Let A be a set, then we say that rela-

tions R∈A2 and S∈A2 commute, if X→RY and X→SZ
entail the existence of a W∈A with Y→SW and Z→RW .

� Observation D.1.20. If R and S commute, then →R
and →S do as well.

X

Y Z

W

R S

S R

� Observation D.1.21. R is confluent, if R commutes with itself.

� Lemma D.1.22. If R and S are terminating and confluent relations such that →∗
R

and →∗
S commute, then →∗

R∪S is confluent.

� Proof sketch: As R and S commute, we can reorder any reduction sequence so
that all R-reductions precede all S-reductions. As R is terminating and confluent,
the R-part ends in a unique normal form, and as S is normalizing it must lead to a
unique normal form as well.

Michael Kohlhase: LBS 339 2024-01-20

This directly gives us our goal.

→∗
βη is confluent

222 APPENDIX D. PROPERTIES OF THE SIMPLY TYPED λ CALCULUS

� Lemma D.1.23. →∗
β and →∗

η commute.

� Proof sketch: diagram chase

Michael Kohlhase: LBS 340 2024-01-20

D.2 The Semantics of the Simply Typed λ-Calculus
The semantics of Λ→ is structured around the types. Like the models we discussed before, a model
(we call them “algebras”, since we do not have truth values in Λ→) is a pair ⟨D, I⟩, where D is the
universe of discourse and I is the interpretation of constants.

Semantics of Λ→

� Definition D.2.1. We call a collection DT :={Dα|α∈T } a typed collection (of
sets) and a collection fT : DT →ET , a typed function, iff fα : Dα→Eα.

� Definition D.2.2. A typed collection DT is called a frame, iff D(α→β) ⊆ Dα→Dβ

� Definition D.2.3. Given a frame DT , and a typed function I : Σ→D, then we call
Iφ : wff T (ΣT ,VT)→D the value function induced by I, iff

� Iφ|VT
= φ, Iφ|ΣT

= I
� Iφ(A B) = Iφ(A)(Iφ(B))

� Iφ(λXα A) is that function f∈D(α→β), such that f(a) = I(φ,[a/X])(A) for all
a∈Dα

� Definition D.2.4. We call a frame ⟨D, I⟩ comprehension closed or a ΣT -algebra,
iff Iφ : wff T (ΣT ,VT)→D is total. (every λ-term has a value)

Michael Kohlhase: LBS 341 2024-01-20

D.2.1 Soundness of the Simply Typed λ-Calculus
We will now show is that =αβη-reduction does not change the value of formulae, i.e. if A=αβηB,

then Iφ(A) = Iφ(B), for all D and φ. We say that the reductions are sound. As always, the main
tool for proving soundess is a substitution value lemma. It works just as always and verifies that
we the definitions are in our semantics plausible.

Substitution Value Lemma for λ-Terms

� Lemma D.2.5 (Substitution Value Lemma). Let A and B be terms, then
Iφ([B/X](A)) = Iψ(A), where ψ = φ,[Iφ(B)/X]

� Proof: by induction on the depth of A

we have five cases
1. A = X

1.1. Then Iφ([B/X](A)) = Iφ([B/X](X)) = Iφ(B) = ψ(X) = Iψ(X) =
Iψ(A).

2. A = Y ̸= X and Y ∈VT
2.1. then Iφ([B/X](A)) = Iφ([B/X](Y)) = Iφ(Y) = φ(Y) = ψ(Y) =

Iψ(Y) = Iψ(A).

D.2. THE SEMANTICS OF THE SIMPLY TYPED λ-CALCULUS 223

3. A∈ΣT
3.1. This is analogous to the last case.

4. A = C D
4.1. then Iφ([B/X](A)) = Iφ([B/X](C D)) = Iφ(([B/X](C)) ([B/X](D))) =

Iφ([B/X](C))(Iφ([B/X](D))) = Iψ(C)(Iψ(D)) = Iψ(C D) = Iψ(A)

5. A = λYα C
5.1. We can assume that X ̸= Y and Y /∈ free(B)

5.2. Thus for all a∈Dα we have Iφ([B/X](A))(a) = Iφ([B/X](λY C))(a) =
Iφ(λY [B/X](C))(a) = I(φ,[a/Y])([B/X](C)) = I(ψ,[a/Y])(C) = Iψ(λY C)(a) =
Iψ(A)(a)

Michael Kohlhase: LBS 343 2024-01-20

Soundness of αβη-Equality

� Theorem D.2.6. Let A:=⟨D, I⟩ be a ΣT -algebra and Y ̸∈free(A), then Iφ(λX A) =
Iφ(λY [Y /X]A) for all assignments φ.

� Proof: by substitution value lemma

Iφ(λY [Y /X]A)@a = I(φ,[a/Y])([Y /X](A))

= I(φ,[a/X])(A)

= Iφ(λX A)@a

� Theorem D.2.7. If A:=⟨D, I⟩ is a ΣT -algebra and X not bound in A, then
Iφ((λX A) B) = Iφ([B/X](A)).

Proof: by substitution value lemma again

�

Iφ((λX A) B) = Iφ(λX A)@Iφ(B)

= I(φ,[Iφ(B)/X])(A)

= Iφ([B/X](A))

Michael Kohlhase: LBS 344 2024-01-20

Soundness of αβη (continued)

� Theorem D.2.8. If X ̸∈free(A), then Iφ(λX A X) = Iφ(A) for all φ.

� Proof: by calculation

Iφ(λX A X)@a = I(φ,[a/X])(A X)

= I(φ,[a/X])(A)@I(φ,[a/X])(X)

= Iφ(A)@I(φ,[a/X])(X) as X ̸∈free(A).
= Iφ(A)@a

224 APPENDIX D. PROPERTIES OF THE SIMPLY TYPED λ CALCULUS

� Theorem D.2.9. αβη-equality is sound wrt. ΣT -algebras. (if A=αβηB, then
Iφ(A) = Iφ(B) for all assignments φ)

Michael Kohlhase: LBS 345 2024-01-20

D.2.2 Completeness of αβη-Equality
We will now show is that =αβη-equality is complete for the semantics we defined, i.e. that

whenever Iφ(A) = Iφ(B) for all variable assignments φ, then A=αβηB. We will prove this by
a model existence argument: we will construct a model M:=⟨D, I⟩ such that if A ̸=αβηB then
Iφ(A) ̸= Iφ(B) for some φ.

As in other completeness proofs, the model we will construct is a “ground term model”, i.e. a
model where the carrier (the frame in our case) consists of ground terms. But in the λ-calculus,
we have to do more work, as we have a non-trivial built-in equality theory; we will construct the
“ground term model” from sets of normal forms. So we first fix some notations for them.

Normal Forms in the simply typed λ-calculus

� Definition D.2.10. We call a term A∈wff T (ΣT ,VT) a β normal form iff there is
no B∈wff T (ΣT ,VT) with A→βB.

We call N a β normal form of A, iff N is a β-normal form and A→βN.

We denote the set of β-normal forms with wffT (ΣT ,VT)
y
βη

.

� We have just proved that βη-reduction is terminating and confluent, so we have

� Corollary D.2.11 (Normal Forms). Every A∈wff T (ΣT ,VT) has a unique β
normal form (βη, long βη normal form), which we denote by A↓β (A↓βη A↓βηl)

Michael Kohlhase: LBS 346 2024-01-20

The term frames will be a quotient spaces over the equality relations of the λ-calculus, so we
introduce this construction generally.

Frames and Quotients

� Definition D.2.12. Let D be a frame and ∼ a typed equivalence relation on D,
then we call ∼ a congruence on D, iff f ∼ f ′ and g ∼ g′ imply f(g) ∼ f ′(g′).

� Definition D.2.13. We call a congruence ∼ functional, iff for all f, g∈D(α→β) the
fact that f(a) ∼ g(a) holds for all a∈Dα implies that f ∼ g.

� Example D.2.14. =β (=βη) is a (functional) congruence on cwff T (ΣT) by defi-
nition.

� Theorem D.2.15. Let DT be a ΣT -frame and ∼ a functional congruence on D,
then the quotient space D/ ∼ is a ΣT -frame.

� Proof:

1. D/ ∼= {[f]∼|f∈D}, define [f]∼([a]∼):=[f(a)]∼.
2. This only depends on equivalence classes: Let f ′∈[f]∼ and a′∈[a]∼.
3. Then [f(a)]∼ = [f ′(a)]∼ = [f ′(a′)]∼ = [f(a′)]∼

D.2. THE SEMANTICS OF THE SIMPLY TYPED λ-CALCULUS 225

4. To see that we have [f]∼ = [g]∼, iff f ∼ g, iff f(a) = g(a) since ∼ is
functional.

5. This is the case iff [f(a)]∼ = [g(a)]∼, iff [f]∼([a]∼) = [g]∼([a]∼) for all a∈Dα

and thus for all [a]∼∈D/ ∼.

Michael Kohlhase: LBS 347 2024-01-20

To apply this result, we have to establish that =βη-equality is a functional congruence.
We first establish =βη as a functional congruence on wff T (ΣT ,VT) and then specialize this result
to show that is is also functional on cwff T (ΣT) by a grounding argument.

βη-Equivalence as a Functional Congruence

� Lemma D.2.16. βη-equality is a functional congruence on wff T (ΣT ,VT).

� Proof: Let A C=βηB C for all C and X∈(Vγ\(free(A) ∪ free(B))).

1. then (in particular) A X=βηB X, and
2. (λX A X)=βη(λX B X), since βη-equality acts on subterms.
3. By definition we have A=η(λXα A X)=βη(λXα B X)=ηB.

� Definition D.2.17. We call an injective substitution σ : free(C)→ΣT a grounding
substitution for C∈wff T (ΣT ,VT), iff no σ(X) occurs in C.

� Observation: They always exist, since all Σα are infinite and free(C) is finite.

� Theorem D.2.18. βη-equality is a functional congruence on cwff T (ΣT).

� Proof: We use ??

1. Let A,B∈cwff (α→β)(ΣT), such that A ̸=βηB.
2. As βη is functional on wff T (ΣT ,VT), there must be a C with A C̸=βηB C.
3. Now let C′:=σ(C), for a grounding substitution σ.
4. Any βη conversion sequence for A C′ ̸=βηB C′ induces one for A C̸=βηB C.
5. Thus we have shown that A ̸=βηB entails A C′ ̸=βηB C′.

Michael Kohlhase: LBS 348 2024-01-20

Note that: the result for cwff T (ΣT) is sharp. For instance, if ΣT = {cι}, then (λX X)̸=βη(λX c),
but (λX X) c=βηc=βη(λX c) c, as {c} = cwff ι(ΣT) (it is a relatively simple exercise to extend
this problem to more than one constant). The problem here is that we do not have a constant
dι that would help distinguish the two functions. In wff T (ΣT ,VT) we could always have used a
variable.

This completes the preparation and we can define the notion of a term algebra, i.e. a ΣT -
algebra whose frame is made of =βη-normal λ-terms.

A Herbrand Model for Λ→

� Definition D.2.19. We call Tβη:=⟨cwffT (ΣT)
y
βη
, Iβη⟩ the Σ term algebra, if

Iβη = IdΣT .

� The name “term algebra” in the previous definition is justified by the following

� Theorem D.2.20. Tβη is a ΣT -algebra

226 APPENDIX D. PROPERTIES OF THE SIMPLY TYPED λ CALCULUS

� Proof: We use the work we did above

1. Note that cwffT (ΣT)
y
βη

= cwff T (ΣT)/=βη and thus a ΣT -frame by ??
and ??.

2. So we only have to show that the value function Iβη = IdΣT is total.
3. Let φ be an assignment into cwffT (ΣT)

y
βη

.
4. Note that σ:= φ|free(A) is a substitution, since free(A) is finite.
5. A simple induction on the structure of A shows that Iβηφ(A) = (σ(A))

y
βη

.
6. So the value function is total since substitution application is.

Michael Kohlhase: LBS 349 2024-01-20

And as always, once we have a term model, showing completeness is a rather simple exercise.
We can see that αβη-equality is complete for the class of ΣT -algebras, i.e. if the equation A = B
is valid, then A=αβηB. Thus αβη equivalence fully characterizes equality in the class of all
ΣT -algebras.

Completetness of αβη-Equality

� Theorem D.2.21. A = B is valid in the class of ΣT -algebras, iff A=αβηB.

� Proof: For A, B closed this is a simple consequence of the fact that Tβη is a
ΣT -algebra.

1. If A = B is valid in all ΣT -algebras, it must be in Tβη and in particular
A↓βη = Iβη(A) = Iβη(B) = B↓βη and therefore A=αβηB.

If the equation has free variables, then the argument is more subtle.
2. Let σ be a grounding substitution for A and B and φ the induced variable

assignment.
3. Thus Iβηφ(A) = Iβηφ(B) is the βη-normal form of σ(A) and σ(B).
4. Since φ is a structure preserving homomorphism on well-formed formulae,
φ−1(Iβηφ(A)) is the is the βη-normal form of both A and B and thus
A=αβηB.

Michael Kohlhase: LBS 350 2024-01-20

?? and ?? complete our study of the semantics of the simply-typed λ-calculus by showing that
it is an adequate logic for modeling (the equality) of functions and their applications.

D.3 Simply Typed λ-Calculus via Inference Systems
Now, we will look at the simply typed λ-calculus again, but this time, we will present it as an

inference system for well-typedness jugdments. This more modern way of developing type theories
is known to scale better to new concepts.

Simply Typed λ-Calculus as an Inference System: Terms

� Idea: Develop the λ-calculus in two steps

� A context-free grammar for “raw λ-terms” (for the structure)

� Identify the well-typed λ-terms in that (cook them until well-typed)

D.3. SIMPLY TYPED λ-CALCULUS VIA INFERENCE SYSTEMS 227

� Definition D.3.1. A grammar for the raw terms of the simply typed λ-calculus:

α ::= c | α→ α
Σ ::= · | Σ,[c : type] | Σ,[c:α]
Γ ::= · | Γ,[x:α]
A ::= c |X |A1 A2 | λXα A

� Then: Define all the operations that are possible at the “raw terms level”, e.g.
realize that signatures and contexts are partial functions to types.

Michael Kohlhase: LBS 351 2024-01-20

Simply Typed λ-Calculus as an Inference System: Judgments

� Definition D.3.2. Judgments make statements about complex properties of the
syntactic entities defined by the grammar.

� Definition D.3.3. Judgments for the simply typed λ-calculus

⊢ Σ : sig Σ is a well-formed signature
Σ ⊢ α : type α is a well-formed type given the type assumptions in Σ
Σ ⊢ Γ : ctx Γ is a well-formed context given the type assumptions in Σ
Γ⊢ΣA : α A has type α given the type assumptions in Σ and Γ

Michael Kohlhase: LBS 352 2024-01-20

Simply Typed λ-Calculus as an Inference System: Rules

� Definition D.3.4. A∈wff α(ΣT ,VT), iff Γ⊢ΣA : α derivable in

Σ ⊢ Γ : ctx Γ(X) = α

Γ⊢ΣX : α
wff var

Σ ⊢ Γ : ctx Σ(c) = α

Γ⊢Σc : α
wff const

Γ⊢ΣA : β → α Γ⊢ΣB : β

Γ⊢ΣA B : α
wff app

Γ, [X:β]⊢ΣA : α

Γ⊢ΣλXβ A : β → α
wff abs

� Oops: this looks surprisingly like a natural deduction calculus. (; Curry Howard
Isomorphism)

� To be complete, we need rules for well-formed signatures, types and contexts

� Definition D.3.5.

⊢ · : sig
sig empty

⊢ Σ : sig
⊢ (Σ,[α : type]) : sig

sig type

⊢ Σ : sig Σ ⊢ α : type
⊢ (Σ,[c:α]) : sig

sig const

Σ ⊢ α : type Σ ⊢ β : type
Σ ⊢ (α→ β) : type

typ fn
⊢ Σ : sig Σ(α) = type

Σ ⊢ α : type
typ start

⊢ Σ : sig
Σ ⊢ · : ctx

ctx empty
Σ ⊢ Γ : ctx Σ ⊢ α : type

Σ ⊢ (Γ,[X:α]) : ctx
ctx var

228 APPENDIX D. PROPERTIES OF THE SIMPLY TYPED λ CALCULUS

Michael Kohlhase: LBS 353 2024-01-20

Example: A Well-Formed Signature

� Let Σ:=[α : type],[f :α→α→ α], then Σ is a well-formed signature, since we have
derivations A and B

⊢ · : sig
sig type

⊢ [α : type] : sig

A [α : type](α) = type
typ start

[α : type] ⊢ α : type

and with these we can construct the derivation C

A

B
B B

typ fn
[α : type] ⊢ (α→ α) : type

typ fn
[α : type] ⊢ (α→ α→ α) : type

sig const
⊢ Σ : sig

Michael Kohlhase: LBS 354 2024-01-20

Example: A Well-Formed λ-Term

� using Σ from above, we can show that Γ:=[X:α] is a well-formed context:

C
ctx empty

Σ ⊢ · : ctx

C Σ(α) = type
typ start

Σ ⊢ α : type
ctx var

Σ ⊢ Γ : ctx

We call this derivation G and use it to show that

� λXα f X X is well-typed and has type α→ α in Σ. This is witnessed by the type
derivation

C Σ(f) = α→ α→ α
wff const

Γ⊢Σf : α→ α→ α

G
wff var

Γ⊢ΣX : α
wff app

Γ⊢Σf X : α→ α

G
wff var

Γ⊢ΣX : α
wff app

Γ⊢Σf X X : α
wff abs

·⊢ΣλXα f X X : α→ α

Michael Kohlhase: LBS 355 2024-01-20

D.3. SIMPLY TYPED λ-CALCULUS VIA INFERENCE SYSTEMS 229

βη-Equality by Inference Rules: One-Step Reduction

� Definition D.3.6. One-step Reduction (+∈{α, β, η})

Γ,[X:β]⊢ΣA : α Γ⊢ΣB : β

Γ ⊢Σ (λX A) B→1
β [B/X](A)

wffβ top

Γ⊢ΣA : β → α X ̸∈dom(Γ)

Γ ⊢Σ λX A X→1
ηA

wffη top

Γ ⊢Σ A→1
+B Γ⊢ΣA C : α

Γ ⊢Σ A C→1
+B C

tr appfn

Γ ⊢Σ A→1
+B Γ⊢ΣC A : α

Γ ⊢Σ C A→1
+C B

tr apparg

Γ,[X:α] ⊢Σ A→1
+B

Γ ⊢Σ λX A→1
+λX B

tr abs

Michael Kohlhase: LBS 356 2024-01-20

βη-Equality by Inference Rules: Multi-Step Reduction

� Definition D.3.7. Multi-Step-Reduction (+∈{α, β, η})

Γ ⊢Σ A→1
+B

Γ ⊢Σ A→∗
+B

msstart
Γ⊢ΣA : α

Γ ⊢Σ A→∗
+A

msref

Γ ⊢Σ A→∗
+B Γ ⊢Σ B→∗

+C

Γ ⊢Σ A→∗
+C

ms trans

� Congruence Relation
Γ ⊢Σ A→∗

+B

Γ ⊢Σ A =+ B
eq start

Γ ⊢Σ A =+ B

Γ ⊢Σ B =+ A
eq sym

Γ ⊢Σ A =+ B Γ ⊢Σ B =+ C

Γ ⊢Σ A =+ C
eq trans

Michael Kohlhase: LBS 357 2024-01-20

Type Computation: Manage Types Algorithmically

� Questions:

type check: Is Γ⊢ΣA : α?

type inference: are there Γ, α, such that Γ⊢ΣA : α?

type reconstruction the above without type annota-
tions at bound variables?

� prenex fragment makes problems decidable (see Curry Howard)

� Algorithm (Hindley & Milner):

� invert inference rules

230 APPENDIX D. PROPERTIES OF THE SIMPLY TYPED λ CALCULUS

� first-order unification,

� universal generalization, minimization

Michael Kohlhase: LBS 358 2024-01-20

Example Computation
rule tree constraint

[X:α]

Γ, [X:β]

Γ, [X:β]⊢ΣX : α Γ⊢ΣλX X : β → α
Γ⊢ΣλX X(λZ W) : α

[W :δ]∈Γ, [Z:γ]

Γ, [Z:γ]⊢ΣW : δ

Γ⊢ΣλZ W : β

α = β,
[W :δ]∈Γ,
β = γ → δ

� unification: α = β = γ → δ,

� minimization: Γ = [W :δ]

� Solution: [W :δ]]⊢ΣλX X(λZ W) : ∀γ γ → δ

Michael Kohlhase: LBS 359 2024-01-20

Appendix E

Higher-Order Dynamics

In this chapter we will develop a typed λ calculus that extend DRT-like dynamic logics like the
simply typed λ calculus extends first-order logic.

E.1 Introduction
We start out our development of a Montague-like compositional treatment of dynamic semantics
construction by naively “adding λs” to DRT and deriving requirements from that.

Making Montague Semantics Dynamic

� Example E.1.1. A man sleeps.

a_man = λQ (
U
man(U)

⊗Q(U))

sleep = λX sleeps(X)
Application and β-reduction:

a_man_sleep = a_man(sleep)

→β
U
man(U)

⊗ sleeps(U)
→τ

U
man(U)
sleeps(U)

Michael Kohlhase: LBS 360 2024-01-20

At the sentence level we just disregard that we have no idea how to interpret λ-abstractions over
DRSes and just proceed as in the static (first-order) case. Somewhat surprisingly, this works
rather well, so we just continue at the discourse level.

Coherent Text (Capturing Discourse Referents)

� Example E.1.2. A man1 sleeps. He1 snores.

231

232 APPENDIX E. HIGHER-ORDER DYNAMICS

(λPQ (P ⊗Q)) a_man_sleep he_snore

→=β

λQ U
man(U)
sleeps(U)

⊗Q

snores(U)

→τ

U
man(U)
sleeps(U)

⊗ snores(U)
→τ

U
man(U)
sleeps(U)
snores(U)

� Example E.1.3 (Linear notation).(λQ (δU man(U) ∧ sleeps(U) ∧Q(U))) he_snore −→βτ

δU man(U) ∧ sleeps(U) ∧ snores(U)

Michael Kohlhase: LBS 361 2024-01-20

Here we have our first surprise: the second =β reduction seems to variable capturecapture the
discourse referent U : intuitively it is “free” in δU snores(U) and after =β reduction it is under
the influence of a δ declaration. In the λ-calculus tradition variable capture is the great taboo,
whereas in our example, referent capture seems to drive/enable anaphor resolution.
Considerations like the ones above have driven the development of many logical systems attempting
the compositional treatment of dynamic logics. All were more or less severely flawed.

Compositional Discourse Representation Theories

� Many logical systems

� Compositional DRT (Zeevat, 1989 [Zee89])

� Dynamic Montague Grammar (DMG Gronendijk/Stokhof 1990 [GS90])

� CDRT (Muskens 1993/96 [Mus96])

� λ-DRT (Kohlhase/Kuschert/Pinkal 1995 [KKP96])

� TLS (van Eijck 1996 [Eij97])

� Problem: Difficult to tell the differences or make predictions!

� One Answer: Dynamic λ-calculus [Kohlhase&Kuschert&Müller’96,98]

� Augment type system by information on referents: a meta-logic that models
different forms of accessibility as a parameter.

Michael Kohlhase: LBS 362 2024-01-20

Here we will look at a system that makes the referent capture the central mechanism using an
elaborate type system to describe referent visibility and thus accessibility. This generalization
allows to understand and model the interplay of λ-bound variables and discourse referents without
being distracted by linguistic modeling questions (which are relegated to giving appropriate types
to the operators).
Another strong motivation for a higher-order treatment of dynamic logics is that maybe the
computational semantic analysis methods based on higher-order features (mostly higher-order
unification) can be analogously transferred to the dynamic setting.

E.2. SETTING UP HIGHER-ORDER DYNAMICS 233

Motivation for the Future

� Higher-Order Unification Analyses of

� Ellipsis (Dalrymple/Shieber/Pereira 1991 [DSP91])

� Focus (Pulman 1994 [Pul94], Gardent/Kohlhase 1996 [GK96])

� Corrections (Gardent/Kohlhase/van Leusen 1996 [GKL96])

� Underspecification (Pinkal 1995 [Pin96])

� are based on static type theory [Mon74]

� Higher-Order Dynamic Unification needed for dynamic variants of these

Michael Kohlhase: LBS 363 2024-01-20

To set the stage for the development of a higher-order system for dynamic logic, let us remind
ourselves of the setup of the static system

Recap: Simple Type Theory

� Structural layer: simply typed λ-calculus

� types, well-formed formulae, λ-abstraction

� Theory: αβη-conversion, Operational: Higher-Order Unification

� Logical layer: higher-order logic

� special types ι, prop

� logical constants ∧prop→prop→prop,⇒,∀, . . . with fixed semantics

� Theory: logical theory, Operational: higher-order theorem proving

� Goal: Develop two-layered approach to compositional discourse theories.

� Application: Dynamic Higher-Order Unification (DHOU) with structural layer
only.

Michael Kohlhase: LBS 364 2024-01-20

This separation of concerns: structural properties of functions vs. a propositional reasoning
level has been very influential in modeling static, intra-sentential properties of natural language,
therefore we want to have a similar system for dynamic logics as well. We will use this as a guiding
intuition below.

E.2 Setting Up Higher-Order Dynamics
To understand what primitives a language for higher-order dynamics should provide, we will

analyze one of the attempts – λ-DRT – to higher-order dynamics
λ-DRT is a relatively straightforward (and naive) attempt to “sprinkle λs over DRT” and give
that a semantics. This is mirrored in the type system, which had a primitive types for DRSes and
“intensions” (mappings from states to objects). To make this work we had to introduce “intensional
closure”, a semantic device akin to type raising that had been in the folklore for some time. We
will not go into intensions and closure here, since this did not lead to a solution and refer the
reader to [KKP96] and the references there.

234 APPENDIX E. HIGHER-ORDER DYNAMICS

Recap: λ-DRT (simplified)

� Definition E.2.1 (Types). ι (individuals), prop (conditions), t (DRSes), α → β
(functions), s→ α (intensions)

� Syntax: if Uι a referent and A an expression of type prop, then δUι A a DRS
(type t).

� Definition E.2.2. =αβη-reduction for the λ-calculus part, and further:

� (δX A⊗ δY B)→τ (δX ∪ Y A ∧B)

� ∨∧A →µ A

� Observations:

� complex interaction of λ and δ

� alphabetical change for δ-bound “variables” (referents)?

� need intensional closure for =βη-reduction to be correct

Michael Kohlhase: LBS 365 2024-01-20

In hindsight, the contribution of λ-DRT was less the proposed semantics – this never quite worked
beyond correctness of =αβη equality – but the logical questions about types, reductions, and the
role of states it raised, and which led to further investigations.
We will now look at the general framework of “a λ-calculus with discourse referents and δ-binding”
from a logic-first perspective and try to answer the questions this raises. The questions of modeling
dynamic phenomena of natural language take a back seat for the moment.

Finding the right Dynamic Primitives

� Need to understand merge reduction: (→τ -reduction)

� Why do we have (δU A⊗B)→τ (δU A ∧B)

� but not ((δU A)⇒⇒B)→τ (δU A⇒⇒B)

� and Referent Scoping: (ρ-equivalence)

� When are the meanings of C [(δU A)]π and C [(δV [V /U](A))]π equal?

� OK for C = ¬¬ and C = λP (δW A⇒⇒P)

� Not for C = λP P and C = λP P ∧ ¬¬P .

� Observation: There must be a difference of ⊗,¬¬, λP (δW A⇒⇒P), λP P ∧¬¬P
wrt. the behavior on referents

� Intuitively: ⊗, λP (δW A⇒⇒P) transport U , while ¬¬, λP P ∧ ¬¬P do not

� Idea: Model this in the types (rest of the talk/lecture)

Michael Kohlhase: LBS 366 2024-01-20

A particularly interesting phenomenon is that of referent capture as the motor or anaphor resolu-
tion, which have already encountered Example 12.1.4.

E.2. SETTING UP HIGHER-ORDER DYNAMICS 235

Variable/Referent Capture

� Example E.2.3 (Anaphor Resolution Revisited). Let us revisit Example 12.1.4

A student1 owns a book2.
He1 reads it2

anaphor resolution simplify

X,Y
student(X)
book(Y)

⊗
R,S
read(R
S)

X,Y
student(X)
book(Y)

⊗

R,S
read(R
S)
R = X
S = Y

X, Y
student(X)
book(Y)
read(X
Y)

� Example E.2.4. (λP
U
(¬¬P))

r(U)
(functor has dynamic binding power)

� Definition E.2.5. We call this referent capture.

� Note: Referent capture

� is the motor of dynamicity

� is a structural property

� Idea: Code the information for referent capture in the type system.

Michael Kohlhase: LBS 367 2024-01-20

In Example E.2.3 we see that with the act of anaphor resolution, the discourse referents induced by
the anaphoric pronouns get placed under the influence of the dynamic binding in the first DRS –
which is OK from an accessibility point of view, but from a λ-calculus perspective this constitutes
a capturing event, since the binding relation changes. This becomes especially obvious, if we look
at the simplified form, where the discourse referents introduced in the translation of the pronouns
have been eliminated altogether.
In Example E.2.4 we see that a capturing situation can occur even more explicitly, if we allow λs
– and =αβη equality – in the logic. We have to deal with this, and again, we choose to model it
in the type system.
With the intuitions sharpened by the examples above, we will now start to design a type system
that can take information about referents into account. In particular we are interested in the
capturing behavior identified above. Therefore we introduce information about the “capturing
status” of discourse referents in the respective expressions into the types.

Types in DLC

� Requirements: In the types we need information about

� δ-bound referents (they do the capturing)

� free referents (they are liable to be captured)

� Definition E.2.6. New type (moded type) Γ#α where

� mode Γ = V −, U+, . . . (V is a free and U a capturing referent)

� term type α (type in the old sense)

236 APPENDIX E. HIGHER-ORDER DYNAMICS

� What about functional types? (Look at example)

Michael Kohlhase: LBS 368 2024-01-20

To see how our type system for DLC fares in real life, we see whether we can capture the referent
dynamics of λ-DRT. Maybe this also tells us what we still need to improve.

Rational Reconstruction of λ-DRT (First Version)

� Two-level approach

� model structural properties (e.g. accessibility relation) in the types

� leave logical properties (e.g. negation flips truth values) for later

� Types: ι, prop, α→ β only. Γ#prop is a DRS.

� Idea: Use mode constructors ↓ and ⊎ to describe the accessibility relation.

� Definition E.2.7. ↓ closes off the dynamic binding potential and makes the refer-
ents classically bound
(↓U+, V + = U◦, V ◦)

� Definition E.2.8. The prioritized union operator combines two modes by letting
+ overwrite −. (U+, V − ⊎ U−, V + = U+, V +)

� Example E.2.9 (DRT Operators). Types of DRT connectives (indexed by Γ,∆):

� ¬¬ has type Γ#prop →↓Γ#prop (intuitively like t→ prop)

� ⊗ has type Γ#prop →∆#prop → Γ ⊎∆#prop (intuitively like t→ t→ t)

� ∨∨ has type Γ#prop →∆#prop →↓Γ ⊎↓∆#prop

� ⇒⇒ has type Γ#prop →∆#prop →↓(Γ ⊎↓∆)#prop

Michael Kohlhase: LBS 369 2024-01-20

We can already see with the experiment of modeling the DRT operators that the envisioned type
system gives us a way of specifying accessibility and how the dynamic operators handle discourse
referents. So we indeed have the beginning of a structural level for higher-order dynamics, and at
the same time a meta-logic flavor, since we can specify other dynamic logics in a λ-calculus.

E.3 A Type System for Referent Dynamics
We will now take the ideas above as the basis for a type system for DLC.

The types above have the decided disadvantage that they mix mode information with information
about the order of the operators. They also need free mode variables, which turns out to be a
problem for designing the semantics. Instead, we will employ two-dimensional types, where the
mode part is a function on modes and the other a normal simple type.

Types in DLC (Final Version)

� Problem: A type like Γ#prop → Γ−#prop mixes mode information with simple
type information.

E.3. A TYPE SYSTEM FOR REFERENT DYNAMICS 237

� Alternative formulation: ↓#prop → prop (use a mode operator for the mode
part)

� Definition E.3.1. DLC types are pairs A#α, where

� A is a mode specifier, α is a simple type; A is functional, iff α is.

� Idea: Use the simply typed λ-calculus for mode specifiers

� Other connectives (new version)

� ¬¬ gets type λF ↓F#prop → prop

� ⊗ gets type ⊎#prop → prop → prop

� ∨∨ gets type λFG (↓F ⊎↓G)#prop → prop → prop

� ⇒⇒ gets type λFG ↓(F ⊎↓G)#prop → prop → prop

Michael Kohlhase: LBS 370 2024-01-20

With this idea, we can re-interpret the DRT types from Example E.2.9.

A λ-Calculus for Mode Specifiers

� Definition E.3.2. New base type µ for modes; α̃ is α with ι, prop replaced by µ.

� mode specifiers A,B,C are simply typed λ-terms built up from mode variables
F,G, F 1, . . . and

� Definition E.3.3 (Mode constants).

� the empty mode ∅ of type µ

� the elementary modes U+, U− and U◦ of type µ for all referents U∈R
� the mode functions ·+, ·−, ↓·, +·, and −· of type µ→ µ, and

� the mode function ⊎ of type µ→ µ→ µ.

� Definition E.3.4. Theory of mode equality specifies the meaning of mode constants
(e.g. (U+, V −,W− ⊎ U−, V +)→µU

+, V +,W−)

Michael Kohlhase: LBS 371 2024-01-20

Summary: DLC Grammar

� We summarize the setup in the following context-free grammar

α::=ι | o | α1 → α2 simple types
γ::=µ | γ1 → γ2 mode types
B::=∅ | U+ | U− | U◦ | B1,B2 | B1 ⊎ B2 | ↓B basic modes
M::=B |M1M2 | λFγ M modes (typed via mode types γ)
τ::=M#α DLC types
M::=U | c |M1M2 | λXτ M | δU M DLC terms (typed via DLC types τ)

� But not all of these raw terms can be given a meaning ; only use those that can

238 APPENDIX E. HIGHER-ORDER DYNAMICS

be shown to be well-typed. (up next)

Michael Kohlhase: LBS 372 2024-01-20

Type Inference for DLC (two dimensions)

� Definition E.3.5. The type inference system for DLC consists of the following
rules:

c∈Σα
A⊢Σc : α

A(X) = F#α A(F) = α̃

A⊢ΣX : F#α

U∈Rα,A(U) = ∅#α
A⊢ΣU : U−#α

A, [X:F#β], [F :β̃]⊢ΣA : A#α
A⊢ΣλXF#β A : λF A#β → α

A⊢ΣA : A#β → γ A⊢ΣB : B#β
A⊢ΣA B : A(B)#γ

A⊢ΣA : A#α A⊢ΣA=βηµB
A⊢ΣA : B#α

A⊢ΣA : λF A#α A⊢ΣA : µ

A⊢ΣδUβ A : λF (U+ ⊎ A)#α

where A is a variable context mapping variables and referents to types

Michael Kohlhase: LBS 373 2024-01-20

Example (Identity)

� We have the following type derivation for the identity.

[F :α̃], [X:F#α]⊢ΣX : F#α

⊢ΣλXF#α X : λF
α̃
F#α→ α

� (λXF#α→α X) (λXG#α X) has type

A⊢Σ(λFµ→µ F) (λGµ G)#α→ α=βηµλGµ G#α→ α

� Theorem E.3.6 (Principal Types). For any given variable context A and for-
mula A, there is at most one type A#α (up to mode βηµ-equality) such that
A⊢ΣA : A#α is derivable in DLC.

Michael Kohlhase: LBS 374 2024-01-20

Linguistic Example

� Example E.3.7. No man sleeps.

E.3. A TYPE SYSTEM FOR REFERENT DYNAMICS 239

Assume U∈Rι and man, sleeps∈RλF F#ι→prop.

...

A⊢Σman(U) : U−#prop

A⊢ΣδU man(U) : U+#prop

...

A⊢Σsleeps(U) : U−#prop

A⊢ΣδU man(U) ∧ sleeps(U) : U+ ⊎ U−#prop

A⊢Σ¬¬(δU man(U) ∧ sleeps(U)) : ↓(U+ ⊎ U−)#prop

A⊢Σ¬¬(δU man(U) ∧ sleeps(U)) : U◦#prop

Michael Kohlhase: LBS 375 2024-01-20

A Further (Tricky) Example: A¬¬:=(λX X ∧ ¬¬X)

� a referent declaration in the argument of A¬¬ will be copied, and the two occurrences
will have a different status
A¬¬ (δU man(U))→β(δU man(U) ∧ ¬¬(δU man(U)))

� assuming A(X) = F#prop gives

A⊢ΣX : F#prop

A⊢ΣX : F#prop

A⊢Σ¬¬X : ↓F#prop

A⊢ΣX ∧ ¬¬X : F ⊎↓F#prop

A⊢ΣλX X ∧ ¬¬X : λF (F ⊎↓F)#prop → prop

� thus, assuming A⊢ΣδU man(U) : U+#prop, we derive

A⊢ΣA¬¬ (δU man(U)) : U+, U◦#prop

Michael Kohlhase: LBS 376 2024-01-20

A Further Example: Generalized Coordination

� We may define a generalised and:
λR1. . .Rn λX1. . .Xm (R1 X1 . . . Xm ⊗ . . .⊗Rn X1 . . . Xm)
with type
λF 1. . .Fn (F 1 ⊎ . . . ⊎ Fn)#βm → prop → βm → prop

� thus from john:=(λP (δU U = j ⊗ P (U)))
and mary:=(λP (δV V = m⊗ P (V)))

� we get johnandmary = λP (δU U = j ⊗ P (U)⊗ δV V = m⊗ P (V))

240 APPENDIX E. HIGHER-ORDER DYNAMICS

� combine this with own a donkey:

λX (δW donkey(W)⊗own(W,X)⊗δU U = j⊗δW donkey(W)⊗own(W,U)⊗δV V = m⊗δW donkey(W)⊗own(W,V))

Michael Kohlhase: LBS 377 2024-01-20

E.4 Modeling Higher-Order Dynamics

Discourse Variants =δ

� Definition E.4.1. We capture “referent renaming” in an equality judgment =δ.

� The order and multiplicity of introduction of discourse referents is irrelevant

� δU δV A=δδV δU A

� δU δU A=δδU A.

� This is needed to model DRT, where discourse referents appear in sets.

� functional and dynamic binding can be interchanged

� λX (δU A)=δδU λX A

� This is useful for convenient =η-long-forms (DHOU).

Michael Kohlhase: LBS 378 2024-01-20

Renaming of Discourse Referents?

� Consider A:=(λXY Y) (δU U)

� δU cannot have any effect on the environment, since it can be deleted by =β-
reduction.

� A has type λF F#α→ α (U does not occur in it).

� Idea: Allow to rename U in A, if “A is independent of U ”

� Similar effect for B:=¬¬(δU man(U)), this should equal ¬¬(δV man(V))

� Definition E.4.2. ρ renaming is induced by the following inference rule:

V ∈Rβ fresh Uβ ̸∈DP (A)

A=ρCVU (A)

Where CVU (A) is the result of replacing all referents U by V .

Michael Kohlhase: LBS 379 2024-01-20

Dynamic Potential

� The binding effect of an expression A can be read off its modality A

E.5. DIRECT SEMANTICS FOR DYNAMIC λ CALCULUS 241

� A modality A may be simplified by βηµ-reduction (where µ-equality reflects the
semantics of the mode functions, e.g. U+ ⊎ U− =µ U

+).

� Definition E.4.3. The dynamic binding potential of A:
DP (A):={U |U+∈occ(A′) or U−∈occ(A′)}, where A′ is the βηµ-normal form of
A.

� Definition E.4.4. If U ̸∈DP (A), then U is called independent of A.

Michael Kohlhase: LBS 380 2024-01-20

Some Examples for Dynamic Potential

� Example E.4.5.

Formula Modality DP
δU P U+ {U}
λP (δU P) λF (U+ ⊎ F) {U}
¬¬(δU man(U)) U◦ ∅
λP ¬¬(δU P) λF ↓(U+), F {U}
λX U λF U− {U}
(λX X) U (λF F) U− {U}
λP man(U) ∧ P λF (F ⊎ U−) {U}
λP P λF F ∅
λXY Y λFG G ∅
(λXY Y) (δU U) λG G ∅
λP P (λQ ¬¬(δU Q)) (λR (δU R)) {U}

Michael Kohlhase: LBS 381 2024-01-20

Reductions

� βη-reduction:
(λX A) B→β [B/X](A)

and
X ̸∈free(A)

(λX A X)→ηA

� Definition E.4.6. Dynamic Reduction:
A⊢ΣA : A#α U+∈Trans(A)

A (δU B)→τ (δU A B)

� Example E.4.7. Merge-Reduction (δU A⊗ δV B)→τ (δU δV (A⊗B))

� Intuition: The merge operator is just dynamic conjunction!

� Observation: Sequential merge ;; of type
→
⊎ #prop → prop → prop does not

transport V in the second argument.

Michael Kohlhase: LBS 382 2024-01-20

E.5 Direct Semantics for Dynamic λ Calculus

Higher-Order Dynamic Semantics (Static Model)

242 APPENDIX E. HIGHER-ORDER DYNAMICS

� Frame D = {Dα|α∈T }

� Dµ is the set of modes (mappings from variables to signs)

� Dprop is the set of truth values {T,F}.
� Dι is an arbitrary universe of individuals.

� D(α→β) ⊆ Dα →Dβ

� Interpretation I of constants, assignment φ of variables.

� Iφ(c) = I(c), for a constant c

� Iφ(X) = φ(X), for a variable X

� Iφ(A B) = Iφ(A)(Iφ(B)))

� Iφ(λX B)(a) = I(φ,[a/X])(B).

Michael Kohlhase: LBS 383 2024-01-20

Dynamic Semantics (Frames)

� Two approaches: “Dynamic” (Amsterdam) and “Static” (Saarbrücken)

� Will show that they are equivalent (later)

� Use the static semantics for DLC now.

� What is the denotation of a dynamic object?

� “Static Semantics”: essentially a set of states (considers only type prop)
(equivalently function from states to Dprop: characteristic function)

� generalize this to arbitrary base type:
DΓ
α = BΓ →Dα, where BΓ is the set of Γ-states

� Γ-states: well-typed referent assignments s : Dom±(Γ)→D
s|∆ is s coerced into a ∆-state.

� For expressions of functional type: DΦ
(α→β) =

⋃
Ψ∈D

α̃

DΨ
α →DΦ(Ψ)

β

Michael Kohlhase: LBS 384 2024-01-20

Dynamic Semantics (Evaluation)

� Standard Tool: Intensionalization (guards variables by delaying evaluation of
current state)

� Idea: Ideal for semantics of variable capture

� guard all referents

� make this part of the semantics (thus implicit in syntax)

� Evaluation of variables and referents

E.6. DYNAMIC λ CALCULUS OUTSIDE LINGUISTICS 243

� If X∈V, then Iφ(X) = φ(X)

� If U∈R, then Iφ(U) = Λs∈BU− s(U) (implicit intensionalization!)

� Iφ(δU BB#β) = Λs∈B(Iφ(Bµ)⊎U+) Iφ(B)s|Iφ(Bµ).
� Iφ(B C) = Iφ(B)(Iφ(C)).

� Iφ(λXγ B) = ΛΦa∈DΦ
γ I(φ,[a/X])(B)

� Referent names crucial in dynamic objects

� Well actually: Iφ(δU B(ΛFn Bµ#β)
) = Λan Λs∈B(Iφ(Bµ)⊎U+) Iφ(B)s|Iφ(Bµ).

Michael Kohlhase: LBS 385 2024-01-20

Metatheoretic Results

� Theorem E.5.1 (Normalization). βητ -Reduction is terminating and confluent
(modulo αρδ).

� Theorem E.5.2 (Substitution is type-preserving). IfX ̸∈dom(A), then A, [X:F#β]⊢ΣA : A#α
and A⊢ΣB : B#β imply

A⊢Σ[B/X](A) : [B/F](A)#α

� Theorem E.5.3 (Subject Reduction). If A⊢ΣA : A#α and A⊢ΣA=βητB, then
A⊢ΣB : A#α.

� Theorem E.5.4 (Soundness of Reduction). If A⊢ΣA=αβδητρB, then Iφ(A) =
Iφ(B).

� If Iφ(A) = Iφ(B), then A⊢ΣA=αβδητρB (just needs formalisation of equality of
logical operators.)

Michael Kohlhase: LBS 386 2024-01-20

E.6 Dynamic λ Calculus outside Linguistics

Conclusion

� Basis for compositional discourse theories

� two-layered approach (only use theorem proving where necessary)

� functional and dynamic information can be captured structurally

� comprehensive equality theory (interaction of func. and dyn. part)

� In particular

� new dynamic primitives (explain others)

� simple semantics (compared to other systems)

244 APPENDIX E. HIGHER-ORDER DYNAMICS

� This leads to

� dynamification of existing linguistic analyses (DHOU)

� rigorous comparison of different dynamic systems (Meta-Logic)

Michael Kohlhase: LBS 387 2024-01-20

Future Directions

� Generalize DLC to a true mode calculus:

� turn δ into a logical constant δU : (use type declaration and application)

A⊢ΣA : A#α
A⊢ΣδUβ A : U+ ⊎ Aµ#α

⊢ΣδU : λF (U+ ⊎ F)#α→ α A⊢ΣA : A#α
A⊢ΣδU A : U+ ⊎ Aµ#α

� this allows for more than one δ-like operator

� Better still (?) go for a dependent type discipline (implement in LF?)

� δ of type λUF (U+ ⊎ F)#α→ α yields δ(U)=̂δU

Michael Kohlhase: LBS 388 2024-01-20

Use DLC as a model for Programming

� Remember dynamic binding in Lisp? ((lambda (F) (let ((U 1)) (F 1)))(lambda (X) (+ X U))→
2 ((lambda (F) (let ((U 0)) (F 1)))(lambda (X) (+ X U))→ 1

� Ever wanted to determine the \$PRINTERenvironment variable in a Java applet?
(sorry forbidden, since the semantics of dynamic binding are unclear.)

� DLC is ideal for that (about time too!)

� Example E.6.1 (LISP). give letU the type λF F ⇑◦
U , where (A, U−)⇑◦

U= A, U◦.
(no need for U+ in Lisp)

� Example E.6.2 (Java). If you want to keep your $EDITOR variable private
(pirated?) only allow applets of type A#α, where $EDITOR̸∈DP (A).

� It is going to be a lot of fun!

Michael Kohlhase: LBS 389 2024-01-20

Appendix F

Model Existence and Completeness
for Modal Logic

Abstract Consistency for ML0

� Definition F.0.1. If Φ is a set of propositions, then

2−(Φ):={A|2A∈Φ}

� Definition F.0.2. A collection ∇ of sets of ML0-formulae is called abstract consis-
tency class for ML0, it if is closed under subsets and for all Φ∈∇ we have

∇c) P ̸∈Φ or ¬P ̸∈Φ for P∈V0

...

∇∧) ¬(A ∨B)∈Φ implies Φ ∪ {¬A,¬B}∈∇
∇2) 3A∈Φ implies 2−(Φ)∗A∈∇

Michael Kohlhase: LBS 390 2024-01-20

∇-Hintikka Set

� Definition F.0.3. If ∇ is an abstract consistency class for ML0, then we call H a
∇-Hintikka set, if H maximal in ∇, i.e. for all A with H∗A∈∇ we already have
A∈H.

� Theorem F.0.4 (Extension Theorem). If ∇ is an abstract consistency class for
ML and Φ∈∇, then there is a ∇-Hintikka set H with Φ ⊆ H.

Proof:

1. chose an enumeration A1,A2. . . of wff0(V0)

2. construct sequence of sets Hi with H0:=Φ and
� Hn+1:=Hn, if Hn∗An ̸∈∇
� Hn+1:=Hn∗An, if Hn∗An∈∇

3. All Hi∈∇, so choose H:=
⋃
i∈NHi

245

246 APPENDIX F. MODEL EXISTENCE AND COMPLETENESS FOR MODAL LOGIC

4. Ψ ⊆ H finite implies that there is a j∈N with Ψ ⊆ Hj , so Ψ∈∇ as ∇ closed
under subsets.

5. H∈∇ since ∇ compact.
6. let H∗B∈∇, then there is a j∈N with B = Aj

7. B∈Hj+1 ⊆ H, so H ∇-maximal.

Michael Kohlhase: LBS 391 2024-01-20

Canonical ∇-Model

� Definition F.0.5. If ∇ is an abstract consistency class, for ML0, then we call
M∇:=⟨W∇,R∇, φ∇⟩ the canonical ∇ model, iff

� W∇ = {H|H∈∇maximal}
� R∇(v, w) iff 2−(v) ⊆ w

� φ(P ,w) = T iff P∈w

� Lemma F.0.6. If w∈W∇ and 3A∈w, then there is a w′∈W∇ with R∇(w,w′)
and A∈w′.

� Proof: Let 3A∈w
1. thus 2−(w)∗A∈∇
2. by the extension theorem there is a w′∈W∇ with 2−(w)∗A ⊆ w′

3. so 2−(w) ⊆ w′ and thus R∇(w,w′).
4. on the other and we have A∈w′.

Michael Kohlhase: LBS 392 2024-01-20

Model existence for ML0

� Lemma F.0.7. If w∈W∇, then Iwφ∇
(A) = T iff A∈w.

� Proof: Induction on the structure of A

1. If A is a variable then we get the assertion by the definition of φ∇.
2. If A = ¬B and A∈w then B̸∈w, thus Iwφ∇(B) = F, and thus Iwφ∇(A) = T.
3. A = B ∧C analog
4. A = 2B

4.1. Let A∈w and wR∇w
′

4.2. thus 2−(w) ⊆ w′ and thus B∈w′

4.3. so (IH) Iw′

φ∇
(B) = T for any such w′.

4.4. and finally Iwφ∇
(A) = T

5. A = 3B
5.1. Let A ̸∈w
5.2. so ¬A = 3¬B /∈ w

5.3. and thus ¬B∈w′ for some wR∇w
′ by (Lemma1)

5.4. so B∈w′ and thus Iw′

φ∇
(B) = T by IH and finally Iwφ∇

(A) = T.

247

� Theorem F.0.8 (Model existence). If ∇ is an abstract consistency class for ML0

and Φ∈∇, then there is a world w∈W∇ with M∇ |=w Φ.

Proof:

� 1. there is a ∇-Hintikka set H = w with w∈W∇ and Φ ⊆ H.
2. by Lemma 2 we have Iwφ (A) = T for all A∈Φ.

Michael Kohlhase: LBS 393 2024-01-20

Completeness

� Theorem F.0.9. K-consistency is an abstract consistency class for ML0

� Proof: Let 3A∈Φ
1. To show: 2−(Φ)∗A is K-consistent if Φ is K-consistent
2. converse: Φ is K-inconsistent if 2−(Φ)∗A K-inconsistent.
3. There is a finite subset Ψ ⊆ 2−(Φ) with Ψ⊢K(¬A)

4. (2Ψ)⊢K(2¬A) (distributivity of 2)
5. Φ⊢K(2¬A) = ¬(3A) since 2Ψ ⊆ Φ

6. thus Φ is K-inconsistent.

� Corollary F.0.10. K is complete wrt. Kripke models

Michael Kohlhase: LBS 394 2024-01-20

Further Completeness Theorems

� Theorem F.0.11. T-consistency is an abstract consistency class for ML0 and RT
is reflexive.

� Proof: Let A∈2−(w)

1. then 2A∈w by definition
2. with T (2A⇒A) and Modus Ponens we have A∈w.
3. Thus 2−(w) ⊆ w and wRTw for all w∈WT.

� Theorem F.0.12. S4-consistency is an abstract consistency class for ML0 and RS4
is transitive.

Proof: Let w1RS4w2RS4w3 and 2A∈w.

� 1. by S4 (2A⇒22A) and Modus Ponens we have 22A∈w1.
2. and thus 2A∈w2 = 2−(w1) and A∈w3 = 2−(w2).
3. Thus 2−(w1) ⊆ w3 and w1RS4w3.

� Corollary F.0.13. T (S4) is complete wrt. reflexive (reflexive transitive) Kripke-
models

Michael Kohlhase: LBS 395 2024-01-20

	0.1 Preface
	0.1.1 This Document
	0.1.2 Acknowledgments

	0.2 Recorded Syllabus
	1 Administrativa
	2 An Introduction to Natural Language Semantics
	2.1 Natural Language and its Meaning
	2.2 Natural Language Understanding as Engineering
	2.3 Looking at Natural Language
	2.4 A Taste of Language Philosophy
	2.4.1 Epistemology: The Philosphy of Science
	2.4.2 Meaning Theories

	2.5 Computational Semantics as a Natural Science

	3 Symbolic Systems for Semantics
	3.1 The Grammatical Framework (GF)
	3.1.1 Recap: (Context-Free) Grammars
	3.1.2 A first GF Grammar
	3.1.3 Inflection and Case in GF
	3.1.4 Engineering Resource Grammars in GF

	3.2 MMT: A Modular Framework for Representing Logics and Domains
	3.2.1 Propositional Logic in MMT: A first Example
	3.2.2 General Functionality of MMT

	3.3 ELPI a Higher-Order Logic Programming Language

	I English as a Formal Language: The Method of Fragments
	4 Logic as a Tool for Modeling NL Semantics
	4.1 The Method of Fragments
	4.2 What is Logic?
	4.3 Using Logic to Model Meaning of Natural Language

	5 Fragment 1
	5.1 The First Fragment: Setting up the Basics
	5.1.1 Natural Language Syntax (Fragment 1)
	5.1.2 Predicate Logic without Quantifiers
	5.1.3 Natural Language Semantics via Translation

	5.2 Testing Truth Conditions via Inference

	6 Fragment 1: The Grammatical Logical Framework
	6.1 Implementing Fragment 1 in GF
	6.2 Implementing Fragment1 in GF and MMT
	6.3 Implementing Natural Deduction in MMT

	7 Adding Context: Pronouns and World Knowledge
	7.1 Fragment 2: Pronouns and Anaphora
	7.2 A Tableau Calculus for PLNQ with Free Variables
	7.2.1 Calculi for Automated Theorem Proving: Analytical Tableaux
	7.2.1.1 Analytical Tableaux
	7.2.1.2 Practical Enhancements for Tableaux

	7.2.2 A Tableau Calculus for PLNQ with Free Variables
	7.2.3 Case Study: Peter loves Fido, even though he sometimes bites him
	7.2.4 The Computational Role of Ambiguities

	7.3 Tableaux and Model Generation
	7.3.1 Tableau Branches and Herbrand Models
	7.3.2 Using Model Generation for Interpretation
	7.3.3 Adding Equality to PLNQ or Fragment 1

	8 Pronouns and World Knowledge in First-Order Logic
	8.1 First-Order Logic
	8.1.1 First-Order Logic: Syntax and Semantics
	8.1.2 First-Order Substitutions
	8.1.3 Alpha-Renaming for First-Order Logic

	8.2 First-Order Inference with Tableaux
	8.2.1 Free Variable Tableaux

	8.3 Model Generation with Quantifiers

	9 Fragment 3: Complex Verb Phrases
	9.1 Fragment 3 (Handling Verb Phrases)
	9.2 Dealing with Functions in Logic and Language
	9.3 Translation for Fragment 3
	9.4 Simply Typed -Calculus

	10 Fragment 4: Noun Phrases and Quantification
	10.1 Overview/Summary so far
	10.2 Fragment 4
	10.3 Inference for Fragment 4
	10.3.1 Quantifiers and Equality in Higher-Order Logic
	10.3.2 Model Generation with Definite Descriptions
	10.3.3 Model Generation with Unique Name Assumptions

	10.4 Davidsonian Semantics: Treating Verb Modifiers

	11 Davidsonian Semantics: Treating Verb Modifiers

	II Topics in Semantics
	12 Dynamic Approaches to NL Semantics
	12.1 Discourse Representation Theory
	12.2 Dynamic Model Generation

	13 Propositional Attitudes and Modalities
	13.1 Introduction
	13.2 Semantics for Modal Logics
	13.3 A Multiplicity of Modalities Multimodal Logic
	13.4 Dynamic Logic for Imperative Programs

	14 Some Issues in the Semantics of Tense
	15 Conclusion
	15.1 A Recap in Diagrams
	15.2 Where to From Here

	III Excursions
	A Properties of Propositional Tableaux
	A.1 Soundness and Termination of Tableaux
	A.2 Abstract Consistency and Model Existence
	A.3 A Completeness Proof for Propositional Tableaux

	B First-Order Unification
	C Soundness and Completeness of First-Order Tableaux
	D Properties of the Simply Typed Calculus
	D.1 Computational Properties of -Calculus
	D.1.1 Termination of -reduction
	D.1.2 Confluence of Conversion

	D.2 The Semantics of the Simply Typed -Calculus
	D.2.1 Soundness of the Simply Typed -Calculus
	D.2.2 Completeness of -Equality

	D.3 Simply Typed -Calculus via Inference Systems

	E Higher-Order Dynamics
	E.1 Introduction
	E.2 Setting Up Higher-Order Dynamics
	E.3 A Type System for Referent Dynamics
	E.4 Modeling Higher-Order Dynamics
	E.5 Direct Semantics for Dynamic Calculus
	E.6 Dynamic Calculus outside Linguistics

	F Model Existence and Completeness for Modal Logic

