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0.1. PREFACE i

0.1 Preface

0.1.1 This Document

This document contains the course notes for the course “Logic-Based Natural Language Process-
ing” (Logik-Basierte Sprachverarbeitung) held at FAU Erlangen-Niirnberg in the Winter Semesters
2017/18 fI.

This course is a one-semester introductory course that provides an overview over logic-based
semantics of natural language. It follows the “method of fragments” introduced by Richard Mon-
tague, and builds a sequence of fragments of English with increasing coverage and a sequence of
logics that serve as target representation formats. The course can be seen as both a course on
semantics and as a course on applied logics.

As this course is predominantly about modeling natural language and not about the theoretical
aspects of the logics themselves, we give the discussion about these as a “suggested readings”
section part in ??. This material can safely be skipped (thus it is in the appendix), but contains
the missing parts of the “bridge” from logical forms to truth conditions and textual entailment.
Contents: The document mixes the slides presented in class with comments of the instructor to
give students a more complete background reference.

Caveat: This document is made available for the students of this course only. It is still an
early draft, and will develop over the course of the course. It will be developed further in coming
academic years.

Licensing:

This document is licensed under a Creative Commons license that requires attribution, forbids
commercial use, and allows derivative works as long as these are licensed under the same license.
Knowledge Representation Experiment: This document is also an experiment in knowl-
edge representation. Under the hood, it uses the ¢IEX package [Koh08; sTeX], a TEX/ITEX
extension for semantic markup, which allows to export the contents into active documents that
adapt to the reader and can be instrumented with services based on the explicitly represented
meaning of the documents.

Comments: Comments and extensions are always welcome, please send them to the author.

0.1.2 Acknowledgments

Materials: Some of the material in this course is based on a course “Formal Semantics of Natural
Language” held by the author jointly with Prof. Mandy Simons at Carnegie Mellon University in
2001.

ComSem Students: The course is based on a series of courses “Computational Natural Language
Semantics” held at Jacobs University Bremen and shares a lot of material with these. The following
students have submitted corrections and suggestions to this and earlier versions of the notes:
Bastian Laubner, Ceorgi Chulkov, Stefan Anca, Elena Digor, Xu He, and Frederik Schéfer.

LBS Students: The following students have submitted corrections and suggestions to this and
earlier versions of the notes: Maximilian Lattka, Frederik Schaefer, Navid Roux.



0.2 Recorded Syllabus

The recorded syllabus — a record the progress of the course in the WS 2023/24 — is in the course
page in the ALEA system at https://courses.voll-ki.fau.de/course-home/ai-1. The table
of contents in the LBS notes at https://courses.voll-ki.fau.de indicates the material covered
to date in yellow.

For the topics planned for this course, see 77.


https://courses.voll-ki.fau.de/course-home/ai-1
https://courses.voll-ki.fau.de

Contents

0.1 Preface . . . . . .
0.1.1 This Document . . . . . . ... .. L
0.1.2  Acknowledgments . . . . . . ... L L

0.2 Recorded Syllabus . . . . . . . ... L

1 Administrativa

2 An Introduction to Natural Language Semantics

2.1 Natural Language and its Meaning . . . . . . . .. ... .. ... .. .. ... ..
2.2 Natural Language Understanding as Engineering . . . . . . . .. .. .. ... ...
2.3 Looking at Natural Language . . . . . . . . . .. .. ... ... ... ...
2.4 A Taste of Language Philosophy . . . . . ... ... ... ... ... ........

2.4.1 Epistemology: The Philosphy of Science . . . . . .. ... ... ... ....

2.4.2 Meaning Theories . . . . . . . . . . L
2.5 Computational Semantics as a Natural Science . . . . . ... ... ... ... ...

3 Symbolic Systems for Semantics
3.1 The Grammatical Framework (GF) . . . . .. ... ... ... ... ......
3.1.1 Recap: (Context-Free) Grammars . . . . . .. .. ... ... ........
3.1.2 Afirst GF Grammar . . . . . . ...
3.1.3 Inflection and Casein GF . . . . . . ... ... ... ... ... . ... .
3.1.4 Engineering Resource Grammars in GF . . . . . ... ... ... ... ..
3.2 MMT: A Modular Framework for Representing Logics and Domains . . . . . . ..
3.2.1 Propositional Logic in MMT: A first Example . . . . . . .. ... ... ...
3.2.2  General Functionality of MMT . . . . . ... ... ... ... ... .
3.3 ELPI a Higher-Order Logic Programming Language . . . ... ... ... ... ..

I English as a Formal Language: The Method of Fragments

4 Logic as a Tool for Modeling NL Semantics
4.1 The Method of Fragments . . . . . . . . . . . . ... ... ... .. ...
4.2 What is Logic? . . . . . . . e
4.3 Using Logic to Model Meaning of Natural Language . . . . ... ... ... ....

5 Fragment 1
5.1 The First Fragment: Setting up the Basics . . . . . . .. ... ... ... .. ....
5.1.1 Natural Language Syntax (Fragment 1) . . . ... ... ... .. ......
5.1.2 Predicate Logic without Quantifiers . . . . . . ... ... ... ... ....
5.1.3 Natural Language Semantics via Translation . . .. .. ... ... .. ...
5.2 Testing Truth Conditions via Inference . . . . . . . . . ... ... .. .. ......

iii

13
16
19
20
22
27

29
29
29
31
34
38
41
41
47
50

53

55
55
o7
o8



iv CONTENTS

6 Fragment 1: The Grammatical Logical Framework 69
6.1 Implementing Fragment 1 in GF . . .. ... ... ... ... ... ......... 69
6.2 Implementing Fragmentl in GF and MMT . . . .. ... ... ... ........ 69
6.3 Implementing Natural Deduction in MMT . . . . . ... ... ... ... .. .. .. 74

7 Adding Context: Pronouns and World Knowledge s
7.1 Fragment 2: Pronouns and Anaphora . . . . ... ... ... ... ......... 77
7.2 A Tableau Calculus for PLNQ with Free Variables . . . . .. ... ... .. .... 79

7.2.1 Calculi for Automated Theorem Proving: Analytical Tableaux . . ... .. 79
7.2.1.1 Analytical Tableaux . . . . . . . . ... ... ... ... ..... 80

7.2.1.2  Practical Enhancements for Tableaux . . . .. .. ... ... ... 84

7.2.2 A Tableau Calculus for PLNQ with Free Variables . . . .. ... ... ... 86
7.2.3 Case Study: Peter loves Fido, even though he sometimes bites him . . . . . 88
7.2.4 The Computational Role of Ambiguities . . . . . ... ... ... ... ... 89

7.3 Tableaux and Model Generation . . . . .. .. ... ... .. ... ... ... 91
7.3.1 Tableau Branches and Herbrand Models . . . . . . . ... .. ... ... .. 91
7.3.2 Using Model Generation for Interpretation . . . ... ... ... ... ... 92
7.3.3 Adding Equality to PLNQ or Fragment 1 . . . . . . ... ... ... .... 96

8 Pronouns and World Knowledge in First-Order Logic 99

8.1 First-Order Logic . . . . . . . . . . . e 99
8.1.1 First-Order Logic: Syntax and Semantics . . . . .. ... ... ... .... 100
8.1.2  First-Order Substitutions . . . . . . . ... .. ... ... ... ... 104
8.1.3 Alpha-Renaming for First-Order Logic . . . . . . .. ... ... ... .... 107

8.2 First-Order Inference with Tableaux . . . . . . ... .. .. ... ... ...... 108
8.2.1 Free Variable Tableaux . . . . . ... .. ... ... ... ... ..., 108

8.3 Model Generation with Quantifiers . . . . . . . . . . .. ... ... 112

9 Fragment 3: Complex Verb Phrases 117
9.1 Fragment 3 (Handling Verb Phrases) . . . . . .. ... ... ... . ... ...... 117
9.2 Dealing with Functions in Logic and Language . . . . . .. ... ... ... .... 118
9.3 Translation for Fragment 3 . . . . . . . . .. ... Lo 121
9.4 Simply Typed A-Calculus . . . . . .. ... 123

10 Fragment 4: Noun Phrases and Quantification 127
10.1 Overview/Summary so far . . . . . . . . ... Lo Lo 127
10.2 Fragment 4 . . . . . .. 128
10.3 Inference for Fragment 4 . . . . . . . . . . .. L L 131

10.3.1 Quantifiers and Equality in Higher-Order Logic . . . . . . . . ... .. ... 131
10.3.2 Model Generation with Definite Descriptions . . . . . . . .. ... .. ... 134
10.3.3 Model Generation with Unique Name Assumptions . . . . . . . . ... . .. 136

10.4 Davidsonian Semantics: Treating Verb Modifiers . . . . . .. ... ... ... ... 138

11 Davidsonian Semantics: Treating Verb Modifiers 141

IT Topics in Semantics 143

12 Dynamic Approaches to NL Semantics 145
12.1 Discourse Representation Theory . . . . . . . . . ... .. ... ... ... ... . 145

12.2 Dynamic Model Generation . . . . . . . . .. . ... L 153



CONTENTS

13 Propositional Attitudes and Modalities
13.1 Introduction . . . . . . . .. L
13.2 Semantics for Modal Logics . . . . . . .. ... ... L
13.3 A Multiplicity of Modalities ~» Multimodal Logic . . . . . . . ... ... ... ...
13.4 Dynamic Logic for Imperative Programs . . . . . . .. .. .. ... ... ......

14 Some Issues in the Semantics of Tense

15 Conclusion
15.1 A Recap in Diagrams . . . . . . . . . . ...
15.2 Where to From Here . . . . . . . . . . . . . e

ITI Excursions

A Properties of Propositional Tableaux
A.1 Soundness and Termination of Tableaux . . . . . . . ... .. ... ... ......
A.2 Abstract Consistency and Model Existence . . . . . ... ... ... ... .....
A.3 A Completeness Proof for Propositional Tableaux . . . . . .. ... ... .. ....

B First-Order Unification
C Soundness and Completeness of First-Order Tableaux

D Properties of the Simply Typed )\ Calculus
D.1 Computational Properties of A-Calculus . . . . . . .. ... ... ... .......
D.1.1 Termination of S-reduction . . . . . . . . . ... ... ... ...
D.1.2 Confluence of fn Conversion . . . .. ... .. ... ... ... ...
D.2 The Semantics of the Simply Typed A-Calculus . . . . . .. ... .. ... ... ..
D.2.1 Soundness of the Simply Typed A-Calculus . . . . . ... ... ... ....
D.2.2 Completeness of afn-Equality . . . .. ... ... ... ... ... .....
D.3 Simply Typed A-Calculus via Inference Systems . . . . . . . ... ... ... ....

E Higher-Order Dynamics
E.1 Introduction. . . . . . . . . . . ..
E.2 Setting Up Higher-Order Dynamics . . . . . . .. .. ... ... .. ... ....
E.3 A Type System for Referent Dynamics . . . . . . .. ... ... ... ... .....
E.4 Modeling Higher-Order Dynamics . . . . . . . .. .. ... ... ... ....
E.5 Direct Semantics for Dynamic A Calculus . . . . .. ... . ... ... ... ....
E.6 Dynamic A Calculus outside Linguistics . . . . . . . ... ... .. ... ... ..

F Model Existence and Completeness for Modal Logic

159
159
162
166
167

173

195
195
197
202

205

211

215
215
215
219
222
222
224
226

231
231
233
236
240
241
243

245



vi

CONTENTS



CONTENTS

Elevator Pitch for LBS

> Mission: In this course we will

> explore how to model the meaning of natural language via transformation into
logical systems

> use logical inference there to unravel the missing pieces; the information that is
not linguistically realized, but is conveyed anyways.

> Warning: This course is only for you if you like logic, you are going to get lots
of it and we are going to build our own logics, usually a new one every week or
fortnight.

> Approach: We will do so in a hands-on fashion using the GLIF system, for-
malizing NL grammars, semantics construction, and inference systems in meta-
grammatical/logical systems: GF and MMT.

> Mixing Theory and Practice: Half of the lectures will be classroom-style teaching
of theory and half will be joint formalization.

Michael Kohlhase: LBS 1 2024-01-20
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Chapter 1

Administrativa

We will now go through the ground rules for the course. This is a kind of a social con-
tract between the instructor and the students. Both have to keep their side of the deal to make
the acquaintance with research in natural language semantics as efficient and painless as possi-
ble.

Prerequisites

> | will presuppose: the mandatory CS courses from Semester 1-4, in particular:
(or equivalent)

> Course "“Grundlagen der Logik in der Informatik” (GLOIN)

> Course “Algorithms and data structures”

> The following will help: (we recap if necessary)

> Al-1 (symbolic Al
> Ontologies in the semantic web (INF8

)
)
> Key Ingredients: Motivation, interest, curiosity, hard work (LBS is non-trivial)
)

> You can do this course if you want! (and we will help you

Michael Kohlhase: LBS 2 2024-01-20

LBS Lab (Dogfooding our own Techniques)

> General Plan: We use the thursday slot to get our hands dirty with actual GLIF
representations.

>> Responsible: Frederik Schaefer (jan.frederik.schaefer@fau.de) Room: 11.137
> Goal: Reinforce what was taught on tuesdays and have some fun.

> Homeworks will be small individual modeling/formalization problems  (but take
time to solve)

Group submission if and only if explicitly permitted.
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4 CHAPTER 1. ADMINISTRATIVA

> Admin: To keep things running smoothly

> Homeworks will be posted on course forum. (discussed in the lab)

> Submission via StudOn (details ~ course forum)
> Homework Discipline:

> start early! (many assignments need more than one evening's work)
> Don't start by sitting at a blank screen!

> Humans will be trying to understand the text/code/math when grading it.

Michael Kohlhase: LBS 3 2024-01-20

Now we come to a topic that is always interesting to the students: the grading scheme.

Grades

> Academic Assessment: so far: two parts (Portfolio Assessment)
> (20-30 min oral) or 90 min written exam at the end of the semester (50%)
> results of the LBS lab (50%)

This might not work with 50+ students, need to see how the course develops!

> If you have a suggestions, | will probably be happy with that as well.

Michael Kohlhase: LBS 4 2024-01-20

Actually, I do not really care what the grading scheme is, and so it is open to discussion. For all
I care we would not have grades at all; but students need them to graduate. Generally, I would
like to spend as little time as possible on the grades admin, to the extent that I can give grades
without going to jail or blushing too much.

Textbook, Handouts and Information, Forums, Videos

> (No) Textbook: Course notes at http://kwarc.info/teaching/LBS

> | mostly prepare them as we go along (semantically preloaded ~ research
resource)
> Please e-mail me any errors/shortcomings you notice. (improve for group)

>> For GLIF: Frederik's Master’s Thesis [Sch20]

> Classical Semantics/Pragmatics: (in the FAU Library)

> Primary reference for LBS: [CKG09] (in the FAU Library)

> also: [HHSO07; Birl3; Riel0; ZS13; Stal4; Sae03; Por04; Keall; Jac83; Crull;
Aril0]

> Computational Semantics: [BBO05; EU10]
> StudOn Forum: https://www.studon.fau.de/crs4625835.html for

> announcements, homeworks (my view on the forum)



http://kwarc.info/teaching/LBS
https://www.studon.fau.de/crs4625835.html

> questions, discussion among your fellow students (your forum too, use it!)

> Course Videos: at https://fau.tv/course/3647

Michael Kohlhase: LBS 5 2024-01-20

Do | need to attend the lectures

>> Attendance is not mandatory for the LBS lecture (official version)
> There are two ways of learning: (both are OK, your mileage may vary)
> Approach B: Read a book/papers (here: course notes)

> Approach I: come to the lectures, be involved, interrupt me whenever you have
a question.

The only advantage of | over B is that books/papers do not answer questions
> Approach S: come to the lectures and sleep does not work!

D> The closer you get to research, the more we need to discuss!

Michael Kohlhase: LBS 6 2024-01-20

Next we come to a special project that is going on in parallel to teaching the course. I am using the
course materials as a research object as well. This gives you an additional resource, but may affect
the shape of the coures materials (which now serve double purpose). Of course I can use all the
help on the research project I can get, so please give me feedback, report errors and shortcomings,
and suggest improvements.

Experiment: Learning Support with KWARC Technologies

> My research area: Deep representation formats for (mathematical) knowledge
> One Application: Learning support systems(represent knowledge to transport it)
>> Experiment: Start with this course (Drink my own medicine)

1. Re-represent the slide materials in OMDoc (Open Mathematical Documents)
2. Feed it into the ALeA system (http://courses.voll-ki.fau.de)
3. Try it on you all (to get feedback from you)

> Research tasks

> help me complete the material on the slides (what is missing/would help?

> | need to remember “what | say”, examples on the board. (take notes

)

)

> Benefits for you (so why should you help?)
> you will be mentioned in the acknowledgements (for all that is worth)

)

> you will help build better course materials (think of next-year's students

Michael Kohlhase: LBS 7 2024-01-20
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VolLL-KI Portal at https://courses.voll-ki.fau.de

> Portal for ALeA Courses: https://courses.voll-ki.fau.de

L

°9 ISy
{ = Y L
& BExa

IWGS -1 Logic-based Natural
Language Semantics

T

i

Artifical Intelligence - I

> Al-1 in ALeA: https://courses.voll-ki.fau.de/course-home/ai-1
> All details for the course.

> recorded syllabus (keep track of material covered in course)

& syllabus of the last semester (for over/preview)

> ALeA Status: The ALEA system is deployed at FAU for over 1000 students
taking six courses

> (some) students use the system actively (our logs tell us)

> reviews are mostly positive/enthusiastic (error reports pour in)

Michael Kohlhase: LBS 8 2024-01-20

The VoLL-KI course portal (and the AI-1) home page is the central entry point for working with
the ALeA system. You can get to all the components of the system, including two presentations
of the course contents (notes- and slides-centric ones), the flash cards, the localized forum, and
the quiz dashboard.


https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de/course-home/ai-1

Chapter 2

An Introduction to Natural
Language Semantics

In this chapter we will introduce the topic of this course and situate it in the larger field of
natural language understanding. But before we do that, let us briefly step back and marvel at the
wonders of natural language, perhaps one of the most human of abilities.

Fascination of (Natural) Language

> Definition 2.0.1. A natural language is any form of spoken or signed means
communication that has evolved naturally in humans through use and repetition
without conscious planning or premeditation.

> In other words: the language you use all day long, e.g. English, German, ...
> Why Should we care about natural language?:

> Even more so than thinking, language is a skill that only humans have.

> It is a miracle that we can express complex thoughts in a sentence in a matter
of seconds.

> It is no less miraculous that a child can learn tens of thousands of words and a
complex grammar in a matter of a few years.

Michael Kohlhase: LBS 9 2024-01-20

With this in mind, we will embark on the intellectual journey of building artificial systems that
can process (and possibly understand) natural language as well.
2.1 Natural Language and its Meaning

Before we embark on the journey into understanding the meaning of natural language, let us get
an overview over what the concept of “semantics” or “meaning” means in various disciplines.

What is Natural Language Semantics? A Difficult Question!

> Question: What is “Natural Language Semantics™?

> Definition 2.1.1 (Generic Answer). Semantics is the study of reference, meaning,




CHAPTER 2. AN INTRODUCTION TO NATURAL LANGUAGE SEMANTICS

or truth.

> Definition 2.1.2. A sign is anything that communicates a meaning that is not the
sign itself to the interpreter of the sign. The meaning can be intentional, as when
a word is uttered with a specific meaning, or unintentional, as when a symptom is
taken as a sign of a particular medical condition

Meaning is a relationship between signs and the objects they intend, express, or
signify.

> Definition 2.1.3. Reference is a relationship between objects in which one object
(the name) designates, or acts as a means by which to refer to — i.e. to connect to
or link to — another object (the referent).

> Definition 2.1.4. Truth is the property of being in accord with reality in a/the
mind-independent world. An object ascribed truth is called true, iff it is, and false,
if it is not.

> Definition 2.1.5. For natural language semantics, the signs are usually utterances
and names are usually phrases.

D> That is all very abstract and general, can we make this more concrete?

o> Different (academic) disciplines find different concretizations.

Michael Kohlhase: LBS 10 2024-01-20

What is (NL) Semantics? Answers from various Disciplines!

> Observation: Different (academic) disciplines specialize the notion of semantics
(of natural language) in different ways.

> Philosophy: has a long history of trying to answer it, e.g.

> Platon ~» cave allegory, Aristotle ~ Syllogisms.

> Frege/Russell ~ sense vs. referent. (Michael Kohlhase vs. Odysseus)

> Linguistics/Language Philosophy: We need semantics e.g. in translation
Der Geist ist willig aber das Fleisch ist schwach! vs.
Der Schnaps ist gut, aber der Braten ist verkocht! (meaning counts)

> Psychology/Cognition: Semantics = "what is in our brains” (~ mental models)
> Mathematics has driven much of modern logic in the quest for foundations.

> Logic as “foundation of mathematics” solved as far as possible

> In daily practice syntax and semantics are not differentiated (much).

> Logic@AI/CS tries to define meaning and compute with them. (applied
semantics)
> makes syntax explicit in a formal language (formulae, sentences)

> defines truth/validity by mapping sentences into “world" (interpretation)
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> gives rules of truth-preserving reasoning (inference)

Michael Kohlhase: LBS 11 2024-01-20

A good probe into the issues involved in natural language understanding is to look at translations
between natural language utterances — a task that arguably involves understanding the utterances
first.

Meaning of Natural Language; e.g. Machine Translation

> Idea: Machine Translation is very simple! (we have good lexica)
> Example 2.1.6. Peter liebt Maria. ~ Peter loves Mary.
> A\ this only works for simple examples!

> Example 2.1.7. Wirf der Kuh das Heu iiber den Zaun. + Throw the cow the
hay over the fence. (differing grammar; Google Translate)

> Example 2.1.8. A Grammar is not the only problem
> Der Geist ist willig, aber das Fleisch ist schwach!

> Der Schnaps ist gut, aber der Braten ist verkocht!

> Observation 2.1.9. We have to understand the meaning for high-quality transla-
tion!

EXANDER
(ORNBERG Michael Kohlhase: LBS 12 2024-01-20

If it is indeed the meaning of natural language, we should look further into how the form of the
utterances and their meaning interact.

Language and Information

> Observation: Humans use words (sentences, texts) in natural languages to rep-
resent and communicate information.

> But: What really counts is not the words themselves, but the meaning information
they carry.

> Example 2.1.10 (Word Meaning).

Ehe New fJork Times

)
NN

Newspaper ~»

> For questions/answers, it would be very useful to find out what words (sentences/-
texts) mean.

> Definition 2.1.11. Interpretation of natural language utterances: three problems
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schema abstraction ambiguity composition

semantic
intepretation ?@ i

language
utterance
Michael Kohlhase: LBS 13 2024-01-20

Let us support the last claim a couple of initial examples. We will come back to these phenomena
again and again over the course of the course and study them in detail.

Language and Information (Examples)

> Example 2.1.12 (Abstraction).

Car and automobile have the same meaning

> Example 2.1.13 (Ambiguity).

A bank can be a financial institution or a geographical featlre

> Example 2.1.14 (Composition).

X % Every student sleeps ~ Vx.student(z) = sleep(x)

Michael Kohlhase: LBS 14 2024-01-20

But there are other phenomena that we need to take into account when compute the meaning
of NL utterances.

Context Contributes to the Meaning of NL Utterances

> Observation: Not all information conveyed is linguistically realized in an utterance.
> Example 2.1.15. The lecture begins at 11:00 am. What lecture? Today?

> Definition 2.1.16. We call a piece ¢ of information linguistically realized in an
utterance U, iff, we can trace i to a fragment of U.

> Definition 2.1.17 (Possible Mechanism). Inferring the missing pieces from the
context and world knowledge:
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relevant
Utterance ————— Meaning ————— information
of utterance

We call this process pragmatic analysis.

Michael Kohlhase: LBS 15 2024-01-20

We will look at another example, that shows that the situation with pragmatic analysis is even
more complex than we thought. Understanding this is one of the prime objectives of the LBS
lecture.

Context Contributes to the Meaning of NL Utterances

> Example 2.1.18. It starts at eleven. What starts?
> Before we can resolve the time, we need to resolve the anaphor it.

> Possible Mechanism: More Inference!

. utterance- relevant
semantic op- , .
Utterance . specific  —— information
potential .
meaning of utterance
~+ Pragmatic analysis is quite complex! (prime topic of LBS)
%= Michael Kohlhase: LBS 16 2024-01-20

Example 2.1.18 is also a very good example for the claim Observation 2.1.9 that even for high-
quality (machine) translation we need semantics. ~We end this very high-level introduction with
a caveat.

Semantics is not a Cure-It-Alll

How many animals of each species did Moses take onto the ark?
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> Actually, it was Noah (But you understood the question anyways)

Michael Kohlhase: LBS 17 2024-01-20

But Semantics works in some cases

> The only thing that currently really helps is a restricted domain:
> |. e. a restricted vocabulary and world model.

> Demo:

DBPedia http://dbpedia.org/snorql/

Query: Soccer players, who are born in a country with more than 10 million in-
habitants, who played as goalkeeper for a club that has a stadium with more than
30.000 seats and the club country is different from the birth country

Michael Kohlhase: LBS 18 2024-01-20

But Semantics works in some cases

> Answer:
(is computed by DBPedia from a SPARQL query)



http://dbpedia.org/snorql/
https://goo.gl/2i3ng1

2.2. NATURAL LANGUAGE UNDERSTANDING AS ENGINEERING 13

SELECT distinct ?soccerplayer ?countryOfBirth ?team ?countryOfTeam ?stadiumcapacity
?soccerplayer a dbo:SoccerPlayer ;
dbo:position|dbp:position <http://dbpedia.org/resource/Goalkeeper_(association_football)> ;
dbo:birthPlace/dbo:country* ?countryOfBirth ;
#dbo:number 13 ;
dbo:team ?team .
?team dbo:capacity ?stadiumcapacity ; dbo:ground ?countryOfTeam .
?countryOfBirth a dbo:Country ; dbo:populationTotal ?population .
?countryOfTeam a dbo:Country .
FILTER (?countryOfTeam |= ?countryOfBirth)
FILTER (?stadiumcapacity > 30000)
FILTER (?population > 10000000)
} order by ?soccerplayer
Results: Browse Go! Reset
SPARQL results:
:Abdesslam_Benabdellah & :Algeria [/ :‘Wydad_Casablanca & :Morocco & 67000
:Airton_Moraes_Michellon & :Brazil &/ :FC_Red_Bull_Salzburg & :Austria &2 31000
:Alain_Gouaméné & :lvory_Coast i/ :Raja_Casablanca & :Morocco & 67000
:Allan_McGregor i :United_Kingdom (' :Besiktas_J.K. & Turkey 7 41903
:Anthony_Scribe &7 :France :FC_Dinamo_Thbilisi & :Georgia_(country) & 54549
:Brahim_Zaari & :Netherlands % :Raja_Casablanca & :Morocco & 67000
:Bréiner_Castillo & :Colombia :Deportivo_Téachira & ‘Venezuela & 38755
:Carlos_Luis_Morales &' :Ecuador :Club_Atlético_Independiente & :Argentina & 48069
:Carlos_Navarro_Montoya & :Colombia :Club_Atlético_Independiente & :Argentina & 48069
:Cristian_Mufioz & :Argentina [/ :Colo-Colo & :Chile & 47000
:Daniel_Ferreyra :Argentina [/ :FBC_Melgar & Peru & 60000
:David_Bi¢ik & :Czech_Republic ! :Karsiyaka_S.K. &7 Turkey & 51295
:David_Loria &7 :Kazakhstan ¢ :Kargiyaka_S.K. &/ Turkey & 51295
:Denys_Boyko & :Ukraine :Begiktas_J.K. & Turkey & 41903
:Eddie_Gustafsson £ :United_States 1 :FC_Red_Bull_Salzburg &7 :Austria 7 31000
:Emilian_Dolha & :Romania :Lech_Poznar & :Poland & 43269
:Eusebio_Acasuzo &7 :Peru &? :Club_Bolivar & :Bolivia & 42000
:Faryd_Mondragén & :Colombia & :Real_Zaragoza :Spain & 34596
:Faryd_Mondragon & :Colombia & :Club_Atlético_Independiente & :Argentina & 48069
:Federico_Vilar &7 :Argentina [ :Club_Atlas i :Mexico &7 54500
:Fernando_Martinuzzi i :Argentina [ :Real_Garcilaso ‘Peru 45000
:Féabio_André_da_Silva & :Portugal :Servette_FC & :Switzerland 30084
:Gerhard_Tremmel & :Germany :FC_Red_Bull_Salzburg & :Austria & 31000
:Gift_Muzadzi & :United_Kingdom £ :Lech_Poznar & :Poland & 43269
:Giinay_Guveng & :Germany [ :Begiktas_J.K. & Turkey & 41903
:Hugo_Marques :Portugal &/ :C.D._Primeiro_de_Agosto ? :Angola 48500
:Héctor Landazuri & :Colombia =/ iLa Paz F.C.& :Bolivia & 42000
EDRICH. ALEXANDER e
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Even if we can get a perfect grasp of the semanticss (aka. meanings) of NI utterances, their
structure and context dependency — we will try this in this lecture, but of course fail, since the
issues are much too involved and complex for just one lecture — then we still cannot account for
all the human mind does with language. But there is hope, for limited and well-understood
domains, we can to amazing things. This is what this course tries to show, both in theory as well
as in practice.

S

2.2 Natural Language Understanding as Engineering

Even though this course concentrates on computational aspects of natural language semantics,
it is useful to see it in the context of the field of natural language processing.

Language Technology

> Language Assistance:

> written language: Spell/grammar/style-checking,
> spoken language: dictation systems and screen readers,

> multilingual text: machine-supported text and dialog translation, elLearning.
> Information management:

> search and classification of documents, (e.g. Google/Bing)

> information extraction, question answering. (e.g. http://ask.com)
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> Dialog Systems/Interfaces:

> information systems: at airport, tele-banking, e-commerce, call centers,
> dialog interfaces for computers, robots, cars. (e.g. Siri/Alexa)
> Observation: The earlier technologies largely rely on pattern matching, the

latter ones need to compute the meaning of the input utterances, e.g. for database
lookups in information systems.
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The general context of LBS is natural language processing (NLP), and in particular natural lan-
guage understanding (NLU). The dual side of NLU: natural language generation (NLG) requires
similar foundations, but different techniques is less relevant for the purposes of this course.

What is Natural Language Processing?

> Generally: Studying of natural languages and development of systems that can
use/generate these.

> Definition 2.2.1. Natural language processing (NLP) is an engineering field at
the intersection of computer science, artificial intelligence, and linguistics which is
concerned with the interactions between computers and human (natural) languages.
Most challenges in NLP involve:

> Natural language understanding (NLU) that is, enabling computers to derive
meaning (representations) from human or natural language input.

> Natural language generation (NLG) which aims at generating natural language
or speech from meaning representation.

> For communication with/among humans we need both NLU and NLG.
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What is the State of the Art In NLU?

> Two avenues of attack for the problem: knowledge-based and statistical techniques
(they are complementary)

Deep Knowledge-based Not there yet
We are here cooperation?

Shallow | no-one wants this Statistical Methods

applications
Analysis T
vs. narrow wide
Coverage —

> We will cover foundational methods of deep processing in the course and a mixture
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of deep and shallow ones in the lab.
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On the last slide we have classified the two main approaches to NLU. In the last 10 years the
community has almost entirely concentrated on statistical- and machine-learning based methods,
because that has led to applications like google translate, Siri, and the likes. We will now borrow
an argument by Aarne Ranta to show that there are (still) interesting applications for knowledge-
based methods in NLP, even if they are less visible.

Environmental Niches for both Approaches to NLU

> Definition 2.2.2. There are two kinds of applications/tasks in NLU:
> Consumer tasks: consumer grade applications have tasks that must be fully
generic and wide coverage.  ( e.g. machine translation like Google Translate)

> Producer tasks: producer grade applications must be high-precision, but can be
domain-specific (e.g. multilingual documentation, machinery-control, program
verification, medical technology)

Precision
100% Producer Tasks

50% Consumer Tasks

103! Concepts  10°*! Concepts Coverage

> Example 2.2.3. Producing/managing machine manuals in multiple languages
across machine variants is a critical producer task for machine tool company.

> A producer domain | am interested in: mathematical /technical documents.
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An example of a producer task — indeed this is where the name comes from — is the case of a
machine tool manufacturer 7', which produces digitally programmed machine tools worth multiple
million Euro and sells them into dozens of countries. Thus 7" must also comprehensive machine
operation manuals, a non-trivial undertaking, since no two machines are identical and they must
be translated into many languages, leading to hundreds of documents. As those manual share a
lot of semantic content, their management should be supported by NLP techniques. It is critical
that these NLP maintain a high precision, operation errors can easily lead to very costly machine
damage and loss of production. On the other hand, the domain of these manuals is quite restricted.
A machine tool has a couple of hundred components only that can be described by a comple of
thousand attribute only.

Indeed companies like 7' employ high-precision NLP techniques like the ones we will cover
in this course successfully; they are just not so much in the public eye as the consumer tasks.

NLP for NLU: The Waterfall Model

> Definition 2.2.4 (The NLU Waterfall). NL understanding is often modeled as a
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simple linear process: the NLU waterfall consists of five consecutive steps:

0) speech processing: acoustic signal ~ word hypothesis graph
1) syntactic processing: word sequence ~ phrase structure
2) semantics construction: phrase structure ~ (quasi-)logical form

3) semantic/pragmatic analysis:
(quasi-)logical form ~ knowledge representation

4) problem solving: using the generated knowledge (application-specific)

> Definition 2.2.5. We call any formalization of an utterance as a logical formula
a logical form. A quasi-logical form (QLF) is a representation which can be turned
into a logical form by further computation.

> In this course: steps 1), 2) and 3).
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The waterfall model shown above is of course only an engineering-centric model of natural language
understanding and not to be confused with a cognitive model; i.e. an account of what happens in
human cognition. Indeed, there is a lot of evidence that this simple sequential processing model
is not adequate, but it is the simplest one to implement and can therefore serve as a background
reference to situating the processes we are interested in.

2.3 Looking at Natural Language

The next step will be to make some observations about natural language and its meaning, so that
we get an intuition of what problems we will have to overcome on the way to modeling natural
language.

Fun with Diamonds (are they real?) [Dav67b]

> Example 2.3.1. We study the truth conditions of adjectival complexes:

> This is a diamond. (& diamond)
> This is a blue diamond. (= diamond, = blue)
> This is a big diamond. (E diamond, |~ big)
> This is a fake diamond. (E —diamond)
> This is a fake blue diamond. (= blue?, = diamond?)
> Mary knows that this is a diamond. (E diamond)
> Mary believes that this is a diamond. (£ diamond)
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Logical analysis vs. conceptual analysis: These examples — mostly borrowed from David-
son:tam67 — help us to see the difference between “logical-analysis” and “conceptual-analysis”.
We observed that from This is a big diamond. we cannot conclude This is big. Now consider the
sentence Jane is a beautiful dancer. Similarly, it does not follow from this that Jane is beautiful,
but only that she dances beautifully. Now, what it is to be beautiful or to be a beautiful dancer
is a complicated matter. To say what these things are is a problem of conceptual analysis. The
job of semantics is to uncover the logical form of these sentences. Semantics should tell us that
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the two sentences have the same logical forms; and ensure that these logical forms make the right
predictions about the entailments and truth conditions of the sentences, specifically, that they
don’t entail that the object is big or that Jane is beautiful. But our semantics should provide a
distinct logical form for sentences of the type: This is a fake diamond. From which it follows that
the thing is fake, but not that it is a diamond.

Ambiguity: The dark side of Meaning

> Definition 2.3.2. We call an utterance ambiguous, iff it has multiple meanings,
which we call readings.

> Example 2.3.3. All of the following sentences are ambiguous:

> John went to the bank. (river or financial?)
> You should have seen the bull we got from the pope. (three readings!)
> I saw her duck. (animal or action?)
)

> John chased the gangster in the red sports car. (three-way too!
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One way to think about the examples of ambiguity on the previous slide is that they illustrate a
certain kind of indeterminacy in sentence meaning. But really what is indeterminate here is what
sentence is represented by the physical realization (the written sentence or the phonetic string).
The symbol duck just happens to be associated with two different things, the noun and the verb.
Figuring out how to interpret the sentence is a matter of deciding which item to select. Similarly
for the syntactic ambiguity represented by PP attachment. Once you, as interpreter, have selected
one of the options, the interpretation is actually fixed. (This doesn’t mean, by the way, that as
an interpreter you necessarily do select a particular one of the options, just that you can.) A
brief digression: Notice that this discussion is in part a discussion about compositionality,
and gives us an idea of what a non-compositional account of meaning could look like. The Radical
Pragmatic View is a non-compositional view: it allows the information content of a sentence to
be fixed by something that has no linguistic reflex.

To help clarify what is meant by compositionality, let me just mention a couple of other ways
in which a semantic account could fail to be compositional.

e Suppose your syntactic theory tells you that S has the structure [a[bc]] but your semantics
computes the meaning of S by first combining the meanings of @ and b and then combining the
result with the meaning of ¢. This is non-compositional.

e Recall the difference between:

1. Jane knows that George was late.

2. Jane believes that George was late.

Sentence 1. entails that George was late; sentence 2. doesn’t. We might try to account for
this by saying that in the environment of the verb believe, a clause doesn’t mean what it
usually means, but something else instead. Then the clause that George was late is assumed
to contribute different things to the informational content of different sentences. This is a
non-compositional account.

Quantifiers, Scope and Context

> Example 2.3.4. Every man loves a woman. (Keira Knightley or his mother!)
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> Example 2.3.5. Every car has a radio. (only one reading!)

> Example 2.3.6. Some student in every course sleeps in every class at least some
of the time. (how many readings?)

> Example 2.3.7. The president of the US is having an affair with an intern.
(2002 or 20007)

> Example 2.3.8. Everyone is here. (who is everyone?)

= \NDER
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Observation: If we look at the first sentence, then we see that it has two readings:
1. there is one woman who is loved by every man.
2. for each man there is one woman whom that man loves.

These correspond to distinct situations (or possible worlds) that make the sentence true.
Observation: For the second example we only get one reading: the analogue of 2. The reason
for this lies not in the logical structure of the sentence, but in concepts involved. We interpret
the meaning of the word has as the relation “has as physical part”, which in our world carries a
certain uniqueness condition: If a is a physical part of b, then it cannot be a physical part of c,
unless b is a physical part of ¢ or vice versa. This makes the structurally possible analogue to 1.
impossible in our world and we discard it.

Observation: In the examples above, we have seen that (in the worst case), we can have one
reading for every ordering of the quantificational phrases in the sentence. So, in the third example,
we have four of them, we would get 4! = 24 readings. It should be clear from introspection that
we (humans) do not entertain 12 readings when we understand and process this sentence. Our
models should account for such effects as well.

Context and Interpretation: It appears that the last two sentences have different informational
content on different occasions of use. Suppose I say Everyone is here. at the beginning of class.
Then I mean that everyone who is meant to be in the class is here. Suppose I say it later in the
day at a meeting; then I mean that everyone who is meant to be at the meeting is here. What
shall we say about this? Here are three different kinds of solution:

Radical Semantic View On every occasion of use, the sentence literally means that everyone
in the world is here, and so is strictly speaking false. An interpreter recognizes that the speaker
has said something false, and uses general principles to figure out what the speaker actually
meant.

Radical Pragmatic View What the semantics provides is in some sense incomplete. What the
sentence means is determined in part by the context of utterance and the speaker’s intentions.
The differences in meaning are entirely due to extra-linguistic facts which have no linguistic
reflex.

The Intermediate View The logical form of sentences with the quantifier every contains a slot
for information which is contributed by the context. So extra-linguistic information is required
to fix the meaning; but the contribution of this information is mediated by linguistic form.

More Context: Anaphora

> Example 2.3.9 (Anaphoric References).

> John is a bachelor. His wife is very nice. (Uh, what?, who?)

> John likes his dog Spiff even though he bites him sometimes. (who bites?)
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> John likes Spiff. Peter does too. (what to does Peter do?)
> John loves his wife. Peter does too. (whom does Peter love?)
> nJohn loves golf, and Mary too. (who does what?)

> Definition 2.3.10. A word or phrase is called anaphoric (or an anaphor), if its
interpretation depends upon another phrase in context. In a narrower sense, an
anaphor refers to an earlier phrase (its antecedent), while a cataphor to a later one
(its postcedent).

The process of determining the antecedent or postcedent of an anaphoric phrase is
called anaphor resolution.
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Context is Personal and keeps changing

> The king of America is rich. (true or false?)
> The king of America isn’t rich. (false or true?)
> If America had a king, the king of America would be rich. (true or false!)
> The king of Buganda is rich. (Where is Buganda?)

> ...Joe Smith. .. The CEO of Westinghouse announced budget cuts.
(CEO=J.S.))
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2.4 A Taste of Language Philosophy

We will now discuss some concerns from language philosophy as they pertain to the LBS course.
Note that this discussion is only intended to give our discussion on natural language semantics
some perspective; in particular, it is in no way a complete introduction to language philosophy, or
does the discussion there full justice.

We start out our tour through language philosophy with some examples — as linguists and philoso-
phers often to — to obtain an intuition of the phenomena we want to understand.

What is the Meaning of Natural Language Utterances?

> Question: What is the meaning of the word chair?

> Answer: ‘“the set of all chairs” (difficult to delineate, but more or less clear)
> Question: What is the meaning of the word Michael Kohlhase?

> Answer: The word refers to an object in the real world: the instructor of LBS.
>> Alternatively: The singleton with that object (as for “set of chairs” above)
> Question: What about Michael Kohlhase sits on a chair?

> Towards an Answer: We have to combine the two sets, via the meaning of “sits".
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> Question: What is the meaning of the word John F. Kennedy or Odysseus?

> Problem: There are no objects in the real worlds, so the meaning of both is ) and
thus equal ®.
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The main intuition we get is that meaning is more complicated than we may have thought in the
beginning.

2.4.1 Epistemology: The Philosphy of Science

We start out by looking at the foundations of epistemology, which sets the basis for modern
(empirical) science. Our presentation here is modeled on Karl Popper’s work on the theory of
science. Naturally, our account here is simplified to fit the occasion, see [Pop34; Pop59| for the
full story.

Note that like any foundational account of complex concepts like knowledge, belief, rationality,
and their justification, we have to base our philosophy on some concepts we take at face value.
Here these are natural and formal languages, worlds, situations, etc. which will stay very general
in the current foundational setting.

We will later instantiate these by more concrete notions as we go along in the LBS course.

Epistemology — Propositions & Observations

> Definition 2.4.1. Epistemology is the branch of philosophy concerned with study-
ing nature of knowledge, its justification, the rationality of belief, scientific theories
and predictions, and various related issues.

> Definition 2.4.2. A proposition is a sentence about the actual world or a class
of worlds deemed possible in a natural or formal language whose meaning can be
expressed as being true or false in a specific world.

> Definition 2.4.3. A belief is a proposition ¢ that an agent a holds true about a
class of worlds. This is a characterizing feature of the agent.

> Definition 2.4.4 (Belief - The JTB Account). Knowledge is justified, true belief.
> Problem: How can an agent justify a belief to obtain knowledge.

> Definition 2.4.5. Given a world w, the observed value (or just value, i.e. true
or false) of a proposition (in w) can be determined by observations, that is an
agent, the observer, either observes (experiences) that ¢ is true in w or conducts a
deliberate, systematic experiment that determines ¢ to be true in w.
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The crucial intuition here is that we express belief and possibly knowledge about the world using
language. But we can only access truth in the world by observation, a possibly flawed operation.
So we will never be able to ascertain the “true belief” part, and need to work all the harder on the
“justified” part.

Epistemology — Reproducibility & Phenomena
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> Problem: Observations are sometimes unreliable, e.g. observer o perceives ¢ to
be true, while it is false or vice versa.

>> ldea: Repeat the observations to raise the probability of getting them right.

> Definition 2.4.6. An observation ¢ is said to be reproducible, iff ¢ can observed
by different observers in different situations.

> Definition 2.4.7. A phenomenon ¢ is a proposition that is reproducibly observable
to be true in a class of worlds.

> Problem: We would like to verify a phenomenon ¢, i.e. observe ¢ in all worlds,
But relevant world classes are too large to make this practically feasible.

> Definition 2.4.8. A world w is a counterexample to a proposition ¢, if ¢ is
observably false in w.

> Intuition: The absence of counterexamples is the best we can hope for in general
for accepting phenomena.

> Intuition: The phenomena constitute the “world model” of an agent.
> Problem: It is impossible/inefficient (for an agent) to know all phenomena.

> Idea: An agent could retain only a small subset of known propositions, from this
all phenomena can be derived.
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We will pursue this last idea. The (small) subset of propositions from which the phenomena that
are relevant to an agent can be derived will become the beliefs of the agent. An agent will make
strive to justify these beliefs to succeed in the world. This is where our notion of knowledge comes
from.

Epistemology — Explanations & Hypotheses

> Definition 2.4.9. A proposition 1 follows from a proposition ¢, iff ¢ is true in any
world where ¢ is.

> Definition 2.4.10. An explanation of a phenomenon ¢ is a set ® of propositions,
such that ¢ follows from ®.

> Example 2.4.11. {¢} is a (rather useless) explanation for .
> Intuition: We prefer explanations @ that explain more than just (.

> Observation: This often coincides with explanations that are in some sense “sim-
pler’ or “more elementary” than . (~ Occam'’s
razor)

> Definition 2.4.12. A proposition is called falsifiable, iff counterexamples are the-
oretically possible and the observation of a reproducible series of counterexample is
practically feasible.

> Definition 2.4.13. A hypothesis is a proposed explanation of a phenomenon that
is falsifiable.
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We insist that a hypothesis be falsifiable, because we cannot hope to verify it and indeed the
absence of counterexamples is the best we can hope for. But if finding counterexamples is hopeless,
it is not even worth bothering with a hypothesis.

This gives rise to a very natural strategy of accumulating propositions to represent (what could)
knowledge about the world.

Epistemology — Scientific Theories

> Knowledge Strategy: Collect hypotheses about the world, drop those with coun-
terexamples and those that can be explained themselves.

> Definition 2.4.14. A hypothesis ¢ can be tested in world/situation w by observing
the value of ¢ in w. If the value is true, then we say that the observation o supports
@ or is evidence for . If it is false then o falsifies .

> Definition 2.4.15. A (scientific) theory for a set ® of phenomena is a set © of
hypotheses that

> has been tested extensively and rigorously without finding counterexamples, and

> is minimal in the sense that no subset of © explains ®.

> Definition 2.4.16. We call any proposition ¢ that follows from a theory ® a
prediction of ®.

> Note: To falsify a theory ®, it is sufficient to falsify any prediction. Any observation
of a prediction ¢ of ® supports ®.
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Indeed the epistemological approach described in this subsection has become the predominant one
in modern science. We will introduce both on very simple examples next.

2.4.2 Meaning Theories

If the meaning of natural language is indeed complicated, then we should really admit to that
and instead of directly answering the question, allow for multiple opinions and embark on a regime
of testing them against reality. We review some concepts from language philosophy towards that
end.

We now specialize the general epistemology for natural language the “world” we try to model
empirically.

Theories of Meaning

> The Central Question: What is the meaning of natural language?
> This is difficult to answer definitely, ...
> But we can form meaning theory that make predictions that we can test.

> Definition 2.4.17. A semantic meaning theory assigns semantic contents to ex-
pressions of a language.

> Definition 2.4.18. A foundational meaning theory tries to explain why language
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expressions have the meanings they have; e.g. in terms of mental states of individuals
and groups.

> It is important to keep these two notions apart.

> We will concentrate on semantic meaning theories in this course.
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In [Spel7], an excellent survey on meaning theories, the author likens the difference between
semantic and foundational theories of meaning to the differing tasks of an anthropologist trying
to fully document the table manner of a distant tribe (= semantic meaning theory) or to explain
why the table manners evolve (= foundational meaning theory).

Let us fortify our intuition about semantic meaning theories by showing one that can deal with
the meaning of names we started our subsection with.

The Meaning of Singular Terms

> Let's see a semantic meaning theory in action.

> Definition 2.4.19. A singular term is a phrase that purports to denote or designate
a particular individual person, place, or other object.

> Example 2.4.20. Michael Kohlhase and Odysseus are singular terms.

> Definition 2.4.21. In [Fre92], Gottlob Frege distinguishes between sense (Sinn)
and referent (Bedeutung) of singular terms.

> Example 2.4.22. Even though Odysseus does not have a referent, it has a very
real sense. (but what is a sense?)

> Example 2.4.23. The ancient greeks knew the planets Hesperos (the evening star)
and Phosphoros (the morning star). These words have different senses, but the —
as we now know — same referent: the planet Venus.

> Remark: Bertrand Russell views singular terms as disguised definite descriptions
— Hesperos as “the brightest heavenly body that sometimes rises in the evening”.
Frege's sense can often be conflated with Russell's descriptions. (there can be more
than one definite description)
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We think of Frege’s conceptualization as a semantic meaning theory, since it assigns semantic
content — the pair of sense and referent, whatever they might concretely be — to singular terms.

Cresswell's “Most Certain Principle” and Truth Conditions

> Problem: How can we test meaning theories in practice?
> Definition 2.4.24. Cresswell's (1982) most certain principle (MCP): [Cre82]

I'm going to begin by telling you what | think is the most certain thing | think
about meaning. Perhaps it's the only thing. It is this. If we have two sentences
A and B, and A is true and B is false, then A and B do not mean the same.

> Definition 2.4.25. The truth conditions of a sentence are the conditions of the
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world under which it is true. These conditions must be such that if all obtain, the
sentence is true, and if one doesn’t obtain, the sentence is false.

> Observation: Meaning determines truth conditions and vice versa.

> In Fregean terms The sense of a sentence (a thought) determines its referent (a
truth value).
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a

This principle sounds trivial — and indeed it is, if you think about it — but gives rise to the
notion of truth conditions, which form the most important way of finding out about the meaning
of sentences: the determinations of truth conditions.

Truth Conditions in Practice

> Idea: To test/determine the truth conditions of a sentence S in practice, we tell
little stories that describe situations/worlds that embed S.

> Example 2.4.26. Consider the ambiguous sentence from Example 2.3.3
John chased the gangster in the red sports car.
For each of three readings there is story = truth conditions
> John drives the red sports car and chases the gangster
> John chases the gangster who drives the red sports car
> John chases the gangster on the back seat of a (very very big) red sports car.

All of these stories correspond to different worlds, so by the MCP there must be at
least three readings!
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Compositionality

> Definition 2.4.27. A meaning theory T is compositional, iff the meaning of an
expression is a function of the meanings of its parts. We say that T' obeys the
compositionality principle or simply compositionality if it is.

> To compute the meaning of an expression, look up the meanings of the basic
expressions forming it and successively compute the meanings of larger parts until
a meaning for the whole expression is found.

> Example 2.4.28 (Compositionality at work in arithmetic). To compute the
value of (x 4+ y)/(z - u), look up the values of z, y, z, and u, then compute z +y
and z - u, and finally compute the value of the whole expression.

> Many philosophers and linguists hold that compositionality is at work in ordinary
language too.
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Why Compositionality is Attractive

> Compositionality gives a nice building block for a meaning theory:

> Example 2.4.29. [Expressions [are [built [from [words [that [combine [into
[[larger [and larger]] subexpressions]]]]]]]]]

> Consequence: To compute the meaning of an expression, look up the meanings
of its words and successively compute the meanings of larger parts until a meaning
for the whole expression is found.

> Compositionality explains how people can easily understand sentences they have
never heard before, even though there are an infinite number of sentences any given
person at any given time has not heard before.
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Compositionality and the Congruence Principle

> Given reasonable assumptions compositionality entails the

> Definition 2.4.30. The congruence principle states that whenever A is part of B
and A’ means just the same as A, replacing A by A’ in B will lead to a result that
means just the same as B.

> Example 2.4.31. Consider the following (complex) sentences:

1. blah blah blah such and such blah blah
2. blah blah blah so and so blah blah

If such and such and so and so mean the same thing, then 1. and 2. mean the
same too.

> Conversely: if 1. and 2. do not mean the same, then such and such and so and
so do not either.
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A Test for Synonymity

> Suppose we accept the most certain principle (difference in truth conditions implies
difference in meaning) and the congruence principle (replacing words by synonyms
results in a synonymous utterance). Then we have a diagnostics for synonymity:
Replacing utterances by synonyms preserves truth conditions, or equivalently

> Definition 2.4.32. The following is called the truth conditional synonymy test:

If replacing A by B in some sentence C' does not preserve truth conditions,
then A and B are not synonymous.

> We can use this as a test for the question of individuation: when are the meanings
of two words the same — when are they synonymous?
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> Example 2.4.33 (Unsurprising Results). The following sentences differ in truth
conditions.

1. The cat is on the mat.

2. The dog is on the mat.
Hence cat and dog are not synonymous. The converse holds for

1. John is a Greek.

2. John is a Hellene.
In this case there is no difference in truth conditions.

> But there might be another context that does give a difference.
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Contentious Cases of Synonymy Test

> Example 2.4.34 (Problem). The following sentences differ in truth values:
1. Mary believes that John is a Greek
2. Mary believes that John is a Hellene
So Greek is not synonymous to Hellene. The same holds in the classical example:

1. The Ancients knew that Hesperus was Hesperus
2. The Ancients knew that Hesperus was Phosphorus
In these cases most language users do perceive a difference in truth conditions while

some philosophers vehemently deny that the sentences under 1. could be true in
situations where the 2. sentences are false.

> It is important here of course that the context of substitution is within the scope
of a verb of propositional attitude. (maybe later!)
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A better Synonymy Test

> Definition 2.4.35 (Synonymy). The following is called the truth conditional
synonymy test:

If replacing A by B in some sentence C does not preserve truth conditions in
a compositional part of C, then A and B are not synonymous.
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Testing Truth Conditions with Logic
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> Definition 2.4.36. A logical language model M for a natural language L consists
of a logical system (£, K, =) and a function ¢ from L sentences to L-formulae.

> Problem: How do we find out whether M models L faithfully?
> ldea: Test truth conditions of sentences against the predictions M makes.

> Problem: The truth conditions for a sentence S in L can only be formulated and
verified by humans that speak L.

> In Practice: Truth conditions are expressed as “stories” that specify salient situa-
tions. Native speakers of L are asked to judge whether they make S true/false.

> Observation 2.4.37. A logical language model M:=(L, L, p) can be tested:

1. Select a sentence S and a situation W that makes S true.(according to humans)
2. Translate S in to an L-formula S":=p(S).

3. Express W as a set ® of L-formulae. (® = truth conditions)
4. M is supported if ® |=5', falsified if ® [~ S’.

> Corollary 2.4.38. A logical language model constitutes a semantic meaning theory.
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2.5 Computational Semantics as a Natural Science

Overview: Formal natural language semantics is an approach to the study of meaning in
natural language which utilizes the tools of logic and model theory. Computational semantics adds
to this the task of representing the role of inference in interpretation. By combining these two
different approaches to the study of linguistic interpretation, we hope to expose you (the students)
to the best of both worlds.

Computational Semantics as a Natural Science

> In a nutshell: Formal logic studies formal languages, their relation with the world
(in particular the truth conditions). Computational logic adds the question about
the computational behavior of the relevant aspects of the formal languages.

> This is almost the same as the task of natural language semantics!

> It is one of the key ideas that logics are good scientific models for natural languages,
since they simplify certain aspects so that they can be studied in isolation. In
particular, we can use the general scientific method of
1. observing
2. building formal theories for an aspect of reality,
3. deriving the consequences of the hypotheses about the world in the theories
4

. testing the predictions made by the theory against the real-world data. If the
theory predicts the data, then this supports the theory, if not, we refine the
theory, starting the process again at 2.
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Excursion: In natural sciences, this is established practice; e.g. astronomers observe the
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planets, and try to make predictions about the locations of the planets in the future. If you graph
the location over time, it appears as a complicated zig-zag line that is difficult to understand. In
1609 Johannes Kepler postulated the model that the planets revolve around the sun in ellipses,
where the sun is in one of the focal points. This model made it possible to predict the future
whereabouts of the planets with great accuracy by relatively simple mathematical computations.
Subsequent observations have confirmed this theory, since the predictions and observations match.

Later, the model was refined by Isaac Newton, by a theory of gravitation; it replaces the
Keplerian assumptions about the geometry of planetary orbits by simple assumptions about grav-
itational forces (gravitation decreases with the inverse square of the distance) which entail the
geometry.

Even later, the Newtonian theory of celestial mechanics was replaced by Einstein’s relativity
theory, which makes better predictions for great distances and high-speed objects.

All of these theories have in common, that they build a mathematical model of the physical
reality, which is simple and precise enough to compute/derive consequences of basic assumptions,
that can be tested against observations to validate or falsify the model/theory.

The study of natural language (and of course its meaning) is more complex than natural sciences,

where we only observe objects that exist independently of ourselves as observers. Language is an
inherently human activity, and deeply interdependent with human cognition (it is arguably one
of its motors and means of expression). On the other hand, language is used to communicate
about phenomena in the world around us, the world in us, and about hypothetical worlds we only
imagine.

Therefore, natural language semantics must necessarily be an intersective discipline and a
trans-disciplinary endeavour, combining methods, results and insights from various disciplines.

NL Semantics as an Intersective Discipline

N / Mathematics
INé g ry \
Psychology / (11//0 0g)y \

( C0gn1t101><—.>1/ World )

N/

Computer Science

/ L
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NG }
T—— \
N
Linguistics Philosophy
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Chapter 3

Symbolic Systems for Semantics

In this chapter, we introduce four symbolic systems for dealing with the semantics of languages
(both natural and formal); they form the basis of the GLIF system we will be using for modeling
natural language semantics in the LBS course. They will be combined to the GLIF (Grammatical
Logical, and Inferential Framework) later, when we actually use them on a first natural language
fragment.

3.1 The Grammatical Framework (GF)

In this section we give a hands-on introduction to the GF system, a comprehensive framework
for engineering natural language grammars and using them for symbolic machine translation. But
before we do that, let us recap the basics of context-free grammars. GF grammars are slightly
stronger, but most of intuitions still apply.

3.1.1 Recap: (Context-Free) Grammars

Phrase Structure Grammars (Motivation)

> Problem Recap: We do not have enough text data to build word sequence
language models «~ data sparsity.

> ldea: Categorize words into classes and then generalize “acceptable word se-
quences’ into “acceptable word class sequences” ~ phrase structure grammars.

> Advantage: We can get by with much less information.

> Example 3.1.1 (Generative Capacity). 10° structural rules over a lexicon of 10°
words generate most German sentences.

> Vervet monkeys, antelopes etc. use isolated symbols for sentences.
~» restricted set of communicable propositions, no generative capacity.

> Disadvantage: Grammars may over generalize or under generalize.

> The formal study of grammars was introduced by Noam Chomsky in 1957 [Cho65b].
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We fortify our intuition about these — admittedly very abstract — constructions by an example
and introduce some more vocabulary.

29
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Phrase Structure Grammars (cont.)

> Example 3.1.2. A simple phrase structure grammar G-

S — NPV
NP —  Article N
Article — the|alan
N — dog|teacher|...

Vi — sleeps|smells|...

Here S, is the start symbol, NP, VP, Article, N, and Vi are nonterminals.

> Definition 3.1.3. The subset of lexical rules, i.e. those whose body consists of a
single terminal is called its lexicon and the set of body symbols the alphabet. The
nonterminals in their heads are called lexical categories.

> Definition 3.1.4. The non-lexicon production rules are called structural, and the
nonterminals in the heads are called phrasal categories.
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Context-Free Parsing

> Recall: The sentences accepted by a grammar are defined “top-down” as those
the start symbol can be rewritten into.

> Definition 3.1.5. Bottom up parsing works by replacing any substring that matches
the body of a production rule with its head.

> Example 3.1.6. Using the Wumpus grammar (below), we get the following parse
trees in bottom up parsing:

S
AN
VP
AN
NP NP
| RN
Pronoun TransVerb  Article Noun
| | | |
I shoot the Wumpus

Traditional linear notation: Also write this as:

[S[N P[Pronoun I||[V P[TransVerb shoot][N P[Article the][Noun Wumpus]|]]

> Bottom up parsing algorithms tend to be more efficient than top-down ones.

> Efficient context-free parsing algorithms run in O(n3), run at several thousand
words/second for real grammars.




3.1. THE GRAMMATICAL FRAMEWORK (GF) 31

> Theorem 3.1.7. Context-free parsing = Boolean matrix multiplication!

> ~ unlikely to find faster practical algorithms. (details in [Lee02])
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We now come to a problem that is common to all natural languages: grammaticality is not easily
formalized by grammars — even though we know a lot about their syntactic structure, the set of
sentences perceived as grammatical by native speakers is not sufficiently regular to be described
by a small set of rules.

Grammaticality Judgments

> Problem: The formal language L(G) accepted by a grammar G may differ from
the natural language L,, it supposedly models.

> Definition 3.1.8. We say that a grammar G over-generates, iff it accepts strings
outside of L, (false positives) and under-generates, iff there are L, strings (false
negatives) that L(G) does not accept.

L, L
false false
positives negatives

~—=

> Adjusting L(G) to agree with L,, is an inductive learning problem!

> * the gold grab the wumpus
> * [ smell the wumpus the gold
> I give the wumpus the gold

> * I donate the wumpus the gold
> Intersubjective agreement somewhat reliable, independent of semantics!

> Real grammars (100-5000 rules) are insufficient even for “proper” English.
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3.1.2 A first GF Grammar

We now introduce the general setup of GF grammars by a very simple toy example and charac-
terize two types of grammars by their intent.

The Grammatical Framework (GF)

> Definition 3.1.9. Grammatical Framework (GF [Ran04; Ranll]) is a modular
formal framework and functional programming language for writing multilingual
grammars of natural languages.

> Definition 3.1.10. GF comes with the GF Resource Grammar Library, a reusable
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library for dealing with the morphology and syntax of a growing number of natural
languages. (currently > 30)

> Definition 3.1.11. A GF grammar consists of

> an abstract grammar that specifies well-formed abstract syntax trees (AST),
> a collection of concrete grammars for natural languages that specify how ASTs
can be linearized into (natural language) strings.

> Definition 3.1.12. Parsing is the dual to linearization, it transforms NL utterances
into abstract syntax trees.

> Definition 3.1.13. The Grammatical Framwork comes with an implementation;
the GF system that implements parsing, linearization, and by combination machine
translation.

(download/install from [GF])

SOWE RIGHTS RESERVED
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To introduce the syntax and operations of the GF system, and the underlying concepts, we will
look at a very simple example.

Hello World Example for GE (Syntactic)

> Example 3.1.14 (A Hello World Grammar).

abstract zero = {

concrete zeroEng of zero = {

flags startcat=0; lincat

cat S, NP, V2 = Str ;
S ; NP ; V2 ; lin

fun Spo Vp s o
spo : V2 -> NP -> NP -> S ; = s ++ vp ++ 0;
John, Mary : NP ; John = "John" ;
Love : V2 ; Mary = "Mary" ;

} Love = "loves" ;

Michael Kohlhase: LBS

> generate random sentences to test:
generate_random -number=10 | linearize -lang=Fre ~» Jean aime Marie

53

> Make a French grammar with John="Jean"; Mary="Marie"; Love=
> Parse a sentence in GF': parse "John loves Mary" ~» Love John Mary
> Linearize in GF: linearize Love John Mary ~» John loves Mary

> translate in GF': parse -lang=Eng "John Loves Mary" | linearize -lang=Fr

2024-01-20

aime";

w

SO RIBHTS RESERVED

The GF system can be downloaded from [GF| and can be started from the command line or as
an inferior process of a text editor. Grammars are loaded via import or short i. Then the GF

commands above can be issued to the shell.

Command sequences can also be combined into an GF script, a text file with one command
per line that can be loaded into GI at startup to initialize the interpreter by running it as

gf --run script.gfo.

In standard accounts of the NLU waterfall or the method of fragments, parsing of natural language



3.1. THE GRAMMATICAL FRAMEWORK (GF) 33

utterances into syntax trees is followed by a translation into a logical representation. One way of
implementing this is to linearize the syntax tree into the input language of an implementation of
a logic and read them into the system for further processing. We will now explore this using a
Prolog interpreter, in which it is easy to program inference procedures.

Translation to Logic

> ldea: Use logic as a “natural language” (to translate into)

> Example 3.1.15 (Hello Prolog). Linearize to Prolog terms:

concrete zeroPro of zero = {

lincat
S, NP, V2 = Str;

lin
spo = \vt,subj,obj -> vt ++ “(" ++ subj ++ ", " ++ obj ++ |"). "}
John = "john";
Mary = "mary";
Love = "loves",;

¥

D> Linearization in GF: linearize Love John Mary~ loves ( john , mary )

> Note: loves ( john , mary ) is not a quasi-logical forms, but a Prolog term
that can be read into an Prolog interpreter for pragmatic analysis.
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We will now introduce an important conceptual distinction on the intent of grammars.

Syntactic and Semantic Grammars

> Recall our interpretation pipeline

Syntax Quasi-Logical Form Logical Form
Semantics Pragmatic
Construction Analysis

Logic
Expression

Logic

T
(inferential)
Expression

Syntax \+(Compositional)’

Tree

parsing

NL Utterance
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Syntax Quasi-Logical Form Logical Form
Semantics Pragmatic
Construction Analysis

[

{compositional)

Logic
Expression

Logic

— s
(inferential)
Expression

parsing

> Definition 3.1.16. We call a grammar syntactic, iff the categories and constructors
are motivated by the syntactic structure of the utterance, and semantic, iff they are
motivated by the structure of the domain to be modeled.

> Grammar zero from Example 3.1.14 is syntactic.

> We will look at semantic versions next.
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Hello World Example for G (semantic)

> A semantic Hello World Grammar

abstract one = { concrete oneEng of one = {
flags startcat = 0; lincat
cat I = Str ;
I; -- Individuals 0 = Str ;
0; -- Statements lin
fun John = "John";
John, Mary : I; Mary = "Mary";
Love : I -> 1 -> 0; Love s 0 = s ++ "loves" ++ 0;
Ir }

> Instead of the “syntactic categories” S (sentence), NP (noun phrase), and V2 (tran-
sitive verb), we now have the semantic categories I (individual) and O (proposition).
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3.1.3 Inflection and Case in GF

We now extend the toy grammars from the last subsection with facilities for inflection and case.
Here we start to see the strenghts of a framework like GF': it provides representational primitves
that allow to do so with minimal pain. We use German — which has more inflection and cases
than English — as an example.

We first set up the example and test it for English

Towards Complex Linearizations (Setup/English)

> Extending our hello world grammar (the trivial bit) We add the determiner the as
an operator that turns a noun (N) into a noun phrase (NP)
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abstract two = { concrete twoEN of two = {

flags startcat=0; lincat

cat S, NP, V2, N = Str ;
S ; NP ; V2 ; N; lin

fun Spo Vp 8 O
spo : V2 -> NP -> NP -> S ; = s ++ vp ++ 0;
John, Mary : NP ; John = "John"
Love : V2 ; Mary = "Mary"
dog, mouse : N; Love = "loves"
the : N -> NP ; dog = "dog" ;

} mouse = "mouse"
the x = "the" ++ x;

> Idea: A noun phrase is a phrase that can be used wherever a proper name can be

used.

2024-01-20
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we test it with a German concrete grammar:

Towards Complex Linearizations (German)

> We try the same for German

abstract two = { concrete twoDEO of two = {
flags startcat=0; lincat S, NP, V2, N = Str
cat lin
S ; NP ; V2 ; N; Spo Vp s 0 = s ++ vp ++ Q;
fun John = "Johann" ;
spo : V2 -> NP -> NP -> S ; Mary = "Maria" ;
John, Mary : NP ; Love = "liebt" ;
Love : V2 ; dog = "Hund" ;
dog, mouse : N; mouse = "Maus" ;
the : N -> NP ; the x = "der" ++ x;
} }

> Let us test-drive this; as expected we obtain

two> 1 -lang=DEO spo Love John (the dog)
Johann liebt der Hund

> Problem: Johann liebt der Hund is not grammatical in German
~» We need to take (grammatical) gender into account to obtain the correct form

den of the determiner.

2024.01.20
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Adding Gender

> To add gender, we add a parameter and extend the type N to a record
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concrete twoDE1l of two = {

param

Gender = masc | fem | neut;
lincat

S, V2, NP = Str ;

N = {s : Str; gender : Gender};
lin

Spo Vp s 0 = s ++ vp ++ 0;

John = "Johann" ;

B

Mary = "Maria" ;

Love = "liebt" ;

dog = {s = "Hund"; gender = masc} ;
mouse = {s = "Maus" ; gender = fem} ;

the x = case x.gender of {masc => "der" ++ x.s;
fem => "die" ++ x.s;
neut => "das" ++ x.s} ;
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Adding Gender

> Let us test-drive this; as expected we obtain

two> 1 -lang=DEl1 spo Love (the mouse) Mary
Die Maus liebt Maria.

two> 1 -lang=DE1 spo Love Mary (the dog)
Maria liebt der Hund.

> We need to take into account case in German too.

Michael Kohlhase: LBS 60 2024-01-20

Adding Case

> To add case, we add a parameter, reinterpret type NP as a case-dependent table of
forms.

concrete twoDE2 of two = {
param
Gender = masc | fem | neut;

Case = nom | acc;
lincat

S, V2 = {s: Str} ;
N = {s : Str; gender : Gender};
NP = {s : Case => Str};
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Adding Case
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lin
spo vp subj obj = {s = subj.s!nom ++ vp.s ++ obj.sl!acc};
John = {s = table {nom => "Johann"; acc => "Johann'"}};
Mary = {s = table {nom => "Maria"; acc => "Maria'}};
Love = {s = "liebt"} ;
dog = {s = "Hund"; gender = masc} ;
> mouse = {s = "Maus" ; gender = fem} ;
the x = {s = table
{ nom => case x.gender of {masc => "der" ++ x.s;
fem => "die" ++ x.8;
neut => "das" ++ x.s};
acc => case x.gender of {masc => "den" ++ x.s;
fem => "die" ++ x.8;
neut => "das" ++ x.s}}};}

> Let us test-drive this; as expected we obtain

two> 1 -lang=DE2 spo Love Mary (the dog)
Maria liebt den Hund.
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Adding Operations (reusable components)

> We add operations (functions with A =) to get the final form.

concrete twoDE of two = {
param

Gender = masc | fem | neut;
Case = nom | acc;
oper
Noun : Type = {s : Str; gender : Gender};

mkPN : Str —> NP = \x —> lin NP {s = table {nom => x; acc => x}};
mkV2 : Str —> V2 = \x —> lin V2 {s = x};
mkN : Str —> Gender —> Noun = \x,g —> {s = x; gender = g};
mkXXX : Str —> Str —> Str —> Noun —> Str =
\ma,fe,ne,noun —> case noun.gender of {masc => ma ++ noun.s;
fem => fe ++ noun.s;
neut => ne ++ noun.s};
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Adding Operations (reusable components)

37
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lincat
S, V2 = {s: Str};
N = Noun;
NP = {s: Case => Str};
lin
spo vp subj obj = {s = subj.slnom ++ vp.s ++ obj.slacc};
John = mkPN "Johannes";
> Mary = mkPN "Maria";
Love = mkV2 "liebt";
dog = mkN "Hund" masc;
mouse = mkN "Maus" fem:;
the n = {s = table { nom => mkXXX "der" "die" "das" n;
acc => mkXXX "den" "die" "das" n}
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3.1.4 Engineering Resource Grammars in GF

After understanding the moving parts of GF' grammars, we can imagine that grammars that
cover large parts of the phenomena of a natural language will become quite large — if only because
for every word we need a declaration in the abstract grammar and a linearization in the concrete
grammar.

Therefore we will turn to GF functionalities for engineering practical grammars now. We do
what we mostly do in computer science: we modularize. The modularization functionality
presented in this subsection has been developed for the GF resource grammar library (RGL),
a giant shared abstract grammar together with ca. 40 concrete grammars for various natural
languages. For managing such a large project, modularity becomes crucial.

Modular Grammars (Abstract)

> We split the grammar into modules (resource + application grammar)
Monolithic Modular
abstract two = { abstract twoCat = {
flags startcat=0; catS; NP ; V2 ; N;}
cat ! ' Y
S;NP;V2;N; abstract twoGrammar = twoCat *x* {
fun fun
spo: V2 —> NP —> NP —> S ; spo: V2 —> NP —> NP —> S ;
John, Mary : NP ; the: N —> NP ; }
Love : V2;; abstract twolLex = twoCat ** {
dog, mouse : N; fon
the : N —> NP ; John, Mary : NP ;
¥ Love : V2 :

dog, mouse : N;}

abstract twoRG = twoGrammar,twolex;
+* {flags startcat=0;}

> Functionality is the same, but we can reuse the components
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Modular Grammars (Concrete English)
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> We split the grammar into modules (resource + application grammar)

Modular

the x = "the" ++ x;
}

resource twoParadigmsEN =
twoCatEN ** {oper

mkPN : Str —> StringType
=\x —> {s = x};

mkV2 : Str —> StringType
=\x—> {s =x};

mkN : Str —> StringType
—\x —> {s = x}}

Monolithic
concrete twoEN of two = {
lincat
S, NP, V2, N = Str;
lin
spovpso=s+4++4 vp ++ o;
John = "John" ;
Mary = "Mary" ;
Love = "loves" ;
dog = "dog";
mouse = "mouse” :

concrete twoCatEN of twoCat = {
oper StringType : Type = {s : Str};
lincat
S, NP, N, V2 = StringType ;}

concrete twoGrammarEN of twoGrammar =
twoCatEN s {
lin
Spo vp s O
= {s=s.s ++ vp.s ++ o.s};
the x = {s = "the" ++ x.s};}

concrete twolLexEN of twolex =
twoCatEN ** open twoParadigmsEN in {
lin
John = mkPN "John" ;
Mary = mkPN "Mary" ;
Love = mkV2 "foves" :
dog = mkN "dog" ;
mouse = mkN "mouse” ;}
concrete twoRGEN of twoRG =
twoGrammarEN,twolLexEN;

SOME RISHTS RESERVED

Michael Kohlhase: LBS 66 2024-01-20

Modular Grammars (Concrete German)

> We split the grammar into modules (resource + application grammar)

concrete twoCatDE of twoCat = {
param
Gender = masc | fem | neut;
Case = nom | acg;
oper
Noun : Type = {s : Str; gender : Gender};
NounPhrase : Type = {s: Case => Str};

lincat
S, V2 = {s: Str};
N = Noun;

NP = NounPhrase;}

resource twoParadigmsDE = twoCatDE *x {
oper

mkPN : Str —> NounPhrase = \x —> {s = table {nom => x; acc => x}};

mkV2 : Str —> V2 = \x —> lin V2 {s = x};

mkN : Str —> Gender —> Noun = \x,g —> {s = x; gender = g};

mkXXX : Str —> Str —> Str —> Noun —> Str =

\ma,fe,ne,noun —> case noun.gender of {masc => ma ++ noun.s;

fem => fe ++ noun.s;
neut => ne ++ noun.s};}

SOME RIGHTS RESERVED
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Modular Grammars (Concrete German)

> concrete twoGrammarDE of twoGrammar =
twoCatDE ** open twoParadigmsDE in {
lin
spo vp subj obj = {s = subj.s!nom ++ vp.s ++ obj.s!acc};
the n = {s = table { nom => mkXXX "der" "die" "das" n;
acc => mkXXX "den” "die" "das" n}};}

twoLexDE of twolex = twoCatDE ** open twoParadigmsDE in {

concrete
lin
John = mkPN "Johannes";
Mary = mkPN "Maria”;
Love = mkV2 "lzebt";

dog = mkN "Hund" masc;
mouse = mkN "Maus" fem;}

concrete twoRGDE of twoRG = twoGrammarDE, twolLexDE;

68 2024-01-20
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A Semantic Grammar

> We use logic-inspired categories instead of the syntactic ones

Syntactic Semantic
abstract two = { abstract three = {
flags startcat=0; flags startcat=0;
cat cat
S;NP;V2:N; I; O; P1; P2;
fun fun
spo: V2 —> NP —> NP —> S ; spo: P2 —>1—>1-—>0;
John, Mary : NP ; John, Mary : | ;
Love : V2 : Love : P2 ;
dog, mouse : N; dog, mouse : P1;
the : N —> NP ; the : P1 —> I;
}; }

6 20240120

Michael Kohlhase: LBS

A Semantic Grammar (Modular Development)

> We use logic-inspired categories instead of the syntactic ones
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Syntactic Semantic

concrete twoCatEN of twoCat = { concrete threeEN of three =
oper StringType : Type = {s : Str}; twolLexEN,twoGrammarEN sx
lincat open twoParadigmsEN in {

S, NP, N, V2 = StringType ;} lincat

concrete twoGrammarEN of twoGrammar = IOZ_NSP_;
It_woCatEN sk Pl =N:
m P2 = V2;

spo vp s 0 = {s= s.s ++ vp.s ++ o.s}; }

the x = {s = "the" ++ x.s};}
concrete threeDE of three =

concrete twolLexEN of twolex = o llex D ESWo ECramTar DEEEH
twoCatEN ** open twoParadigmsEN in { open twoF;aradigmsDE in {
lin .
John = mkPN "John" ; Imfit NP:
Mary = mkPN "Mary" ; 0= S"
Love = mkV2 "loves" ; Pl = N-:
dog = mkN "dog" ; P2 = Vo
mouse = mkN "mouse" ;} 1 '
concrete twoRGEN of twoRG =
twoGrammarEN,twolLexEN;
= Michael Kohlhase: LBS 70 2024-01-20

3.2 MMT: A Modular Framework for Representing Logics
and Domains

In 7?7 we have identified truth conditions as the main tool for establishing semantic meaning
theories for natural language.

In the LBS course, we want to make the establishment of meaning theories machine-supported.
To do this we need to have

1. A formal language that allows us to to describe situations/worlds,

2. an formal system that allows us to compute predictions, and

3. a software system that mechanizes it.

For the first two we will use the MM T language, and for the third the MmT system that implements
it.

3.2.1 Propositional Logic in MMT: A first Example

We will now introduce the MMT representation format and the MMT system by going over a
simple example very carefully: the syntax and a proof theory for propositional logic. Even though
the formal system itself is quite simple, it already teaches us many of the basic ideas and tricks of
meta-logical representation of formal systems in LF.

Implementing minimal PL” in M

> Recall: The language wffy(¥) of propositional logic (PL”) consists of propositions
built from propositional variables from V), and connectives from .

> We model wffy(3y) in a MMT theory (X0:={—, A} for the moment)

theory proplogMinimal : ur:?7LF =
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> theory is the MmT keyword for modules, the module delimiter || delimits them.
> A theory has a local name and a meta-theory (after the :)
Here it is LF (provides the logical constants —, type, A, II)

> MMT theories contain declarations of the form (name) : (type) |# (notation)

> declarations are delimited by the declaration delimiter |,

> declaration components by the object delimiter
> Example 3.2.1. A declaration for the type of propositions
prop : type |# o |

> the local name prop is the system identifier
> the type type declares prop to be a type (optional part)

> the notation definition o declares the notation for prop (can be used instead)
(optional part)
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Implementing minimal PL” in MMT (continued)

> Example 3.2.2. Declarations for the connectives — and A
not : o —o |# -1 prec 100 |

> the type o — o declares the constant not to be a unary function
> the notation definition =1 prec 100 establishes

> the function symbol = for not followed by argument 1.
> brackets are governed by the precedence 100 (binding strength)

and : o o0 —o |# 1 A2 prec 90|

> The type o — o — o declares the constant and to be a binary function (note
currying)
> the notation definition # 1 A 2 prec 90 establishes

> the infix function symbol A for and preceded by argument 1 and followed
by 2,
> brackets are governed by the precedence 90 (weaker than for not)

> Testing precedences: the MMT system accepts A : o [test : —A AA |
And —A A A is parsed as (—A) A A instead of = (A A A)

> All together now! PL’ Syntax as a Mmt theory:

theory proplogMinimal : ur:?7LF =
prop : type |# o |
not : o —o |# —1 prec 100 |
and : o o0 —o |# 1 A2 prec 90|
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Completing PLY by Definitions

> Building on this, we can define additional connectives: V, =, <

theory proplog : ur:7LF =
include 7proplogMinimal |
or : o 0 —o |[# 1 V2 prec 80 |= [a:0,b:0] =(— a A —b) |
= [a:o0,b:0] —a Vb |

implies : o -0 —o |# 1 = 2 prec 70

> include is the keyword for an inclusion declaration
here we include the theory proplogMinimal (notation: theory refs prefixed by

)

this makes all of its declarations available locally in theory proplog.

> new declaration components: definientia give a constant meaning by replace-
ment.

> [a:0,b:0] —a V b is the MMT notation for \ayb,.—a \V b, i.e. the function

that given two propositions a and b returns the proposition —a \V b.

> Note: types optional in lambdas (MMT system infers them from context)

> This completes the syntax (language of formulae) of PL".

> Observation: The declarations in proplog amount to a context-free grammar of
PLO.

20240120
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Describing Situations for Truth Conditions

> We want to derive the truth conditions e.g. for Peter loves Mary.

> Definition 3.2.3. A situation theory is an MMT theory that formalizes a situation.

> First Attempt: We provide declarations for the individuals and their relations.

theory worldl : ur:7LF =
include ?proplog |
individual : type |# (|
peter : ¢

mary : ¢
loves : ¢t —¢—o |

plm = loves peter mary | // just an abbreviation |

> Problem: We have not asserted that plm is true in worldl, ...
...only that the proposition plm exists.

Let's assert that plm is “provable” in theory world1l.

> ldea:

2024-01-20
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Asserting Truth by Declaring Provability in MMT Theories

> Observation: We can only assert existance in a theory by declarations.
> ldea 1: Use declarations to declare certain types to be inhabited = non-empty.
> Idea 2: A proposition A is “provable”, iff the “type of all proofs of A" is inhabited.

> Idea 3: We can express “the type of all proofs of A" as A
if we declare a suitable type constructor in MMT:

ded : prop —type |[# F1 ]

> All Together Now: We can assert that Peter loves Mary in theory worldl
plm_axiom : Fplm | // the type of proofs of plm is inhabited]
Note that in this interpretation the constant plm_axiom is a “proof of plm”

> Definition 3.2.4. This way of representing axioms (and eventually theorems) is
called the propositions as types paradigm.
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Asserting Truth in MMT theories (continued)

> We can make world1l happier by asserting Mary loves Peter.

mlp = loves mary peter |
mlp_axiom : Fmlp |

> Do Peter and Mary love each other in world1?
> We would have to have a proof of plm A mlp, which we don't.
> Observation: There should be one, given that we have proofs for plm and mlp!

> Observation: We need a proof constructor — a function constant that constructs
a proof of plm A mlp from those.

>> ldea: Let's just declare one: pc : Fplm —Fmlp —Fplm A mlp|

> We can generalize this to the inference rule of conjunction introduction
conjI : {A:0,B:0} FA —FB —FAA B
{A:0,B:0} is the MMT notation for IT from LF. (dependent

type constructor)
Read as “for arbitrary but fixed propositions A and B..." ...

A B
ANB

> ldea: This leads to a MMT formalization of the propositional natural deduction
calculus ND_0. (up next)
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Propositional Natural Deduction

OANI
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> Observation: With the ideas discussed above we can do almost all of the inference
rules of ND 0.

> Let’s start small with >, = {—, A}: here are the rules again.

Introduction Elimination
A B . ANB . ANB .
——ND OANT ND ONE, ——ND ONE,
A B - - " B -
[A]' [A)
C ﬁ.C 7 1 A
—=— == ND 01 ND 0—-F
—-A - A -

> The start of an MwmT theory:

theory proplog-ND : ur:7LF =
include 7proplogMinimal |
ded : prop —type |# F1 |
conjI : {A:0,B:0} FA —FB —AAB|
conjEl : {A:0,B:0} FAAB —F4|
conjEr : {A:0,B:0} FAAB —FB|
negE : {A:0} F—=—A —FA]
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Local Hypotheses in Natural Deduction

For N'D 01 we need a new idea for the representation of the 1
: [A]" [A]
local hypothesis A.
> A subproof P with a local hypothesis [A] allows to plug in a :
proof of A and complete it P to a full proof for C. C
Idea: Represent this as a function from - A to - C. —A

> In MMT we have:
negl : {A:0,C:0} (FA —»FC) — (FA —F-C) —F-4]

ND 0-1' takes proof transformers as arguments and returns a proof of ~A.

> With this idea, we can do the rest of the inference rules of ND 0, e.g.
implI: {a,b} (Fa —Fb) —F(a=Db) |
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Writing Proofs in MMT

> Recap: In MMT, we can write axioms as declarations ¢ : Fa using the proposi-
tions as types paradigm: the proof type a must be inhabited, since it has the proof
c of a as an inhabitant.
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> Observation: This can be extended to theorems, by giving denfinientia:
A declaration ¢ : Fa |= ® also ensures that Fa is inhabited, but using already
existing material ®.

> Example 3.2.5. Let’s try this on the well-known ND 0 proof

A ABJ! A A B!
! ND 0 A L—} ND 0N E
B A
ND OAT

B/ A ,
—ND 0 =T
AANB=BAnNA o

ac : {a,b} F((aAb)= (bA a))
_ = [a, bl ([p:F(aAb)] (p andEr) (p andEl) andI) implI |
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Writing Proofs in MMT (step by step)

> Example 3.2.6 (Continued).

NS A/B'  ac : {a,b} F((aAb)= (bAa))l
TJ\”DJ,) N Er " ND " ="[a, b] ([p:F(aADb)] 2
A7 (p andEr) 3
ND_OAg (p andE1) 4

BAA
— AP 0=l Ermehl) 5
ANB=BAA implI | 6

> Line 1: name and type (optional)
> Line 2: A-abstraction [a,b] corresponding to II-abstraction {a,b}
> Line 6: the proof is constructed by impI with one argument  (a subproof )

> But remember: implI: {a,b} (Fa —Fb) —F(a= Db)| takes three!
> ldea: add special postfix notation definition | # 3 impI (3— W)
> Justification: The MMT system can reconstruct implicit arguments

& Lines 2-5: Subproof ¥ with local hyp. [a A b]!, represented as Ap-term in Line
4

Idea: the (informal) function of the co-indexing is formalized by A-abstraction
> Line 5: result of W constructed by andI — notation definition |# 3 4 andI
> Line 3/4: two subproofs constructed from p by andEl/andEr.

> Observation 1: The postfix notations make the MmT proof term similar!

> Observation 2: But writing them is very tedious and complex still.
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Modular Representation in MMT
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> In particular we can always inter-define A and \/ via de-Morgan.
> Let's make this formal using views.
> Example 3.2.7. A modular development of the two variants of PL’
theory dednot : ur:?LF =
prop : type |# o |

ded : o —type |# F1 |
not : o —o |# 1|}

For some suitable proof expressions ® and W.

> Recall: We said that for PL”, it does not matter if ¥y = {—, A} or ¥y = {—, V}.

theory notand : ur:?LF = theory notor : ur:?LF =
include ?dednot | include ?dednot |
and : o o0 —o |[# 1 A2 or : o o —o |[# 1 V2]
andI : {a,b} Fa —+Fb — orIl : {a,b} ta —
F(aAb) I F(aVvb) |
orlr : {a,b} Fb —
F(avb) J
view and2or : 7notand -> 7notor = view or2and : 7notor -> 7notand
and = [a,b] —((-a) V or = [a,b] —((-a) A
(=) | (b)) |
andI = ¢ | andI = U |J
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3.2.2 General Functionality of MMT

We will use the OMDoC/MMT to represent both logical systems and the semantic domains
(universes of discourse) of the various fragments. The MMmT system implements the OMDoc /Myt

language, it can be used as

e a Java library that provides data structures and an API of logic oriented algorithms, and as

e a standalone knowledge-management service provider via web interfaces.

We will make use of both in the LBS course and give a brief overview in this subsection. For a

(math-themed) tutorial that introduces format and system in more detail see [OMT].

Representation language (MMT)

> Definition 3.2.8. MMT = module system for mathematical theories
> Formal syntax and semantics

> needed for mathematical interface language

> but how to avoid foundational commitment?

> Foundation-independence

cessing

> formalize exactly those, be parametric in the rest

> identify aspects of underlying language that are necessary for large scale pro-
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> observation: most large scale operations need the same aspects
> Module system

> preserve mathematical structure wherever possible

> formal semantics for modularity
> Web-scalable

> build on XML, OpenMath, OMDoc

> URI based logical identifiers for all declarations

> Implemented in the MMT system.
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The basic idea of the OMDoc/MMT format is that knowledge (originally mathematical knowl-
edge for which the format is designed, but also world knowledge of the semantic domains in the
fragments) can be represented modularly, using strong forms of inheritance to avoid duplicate for-
malization. This leads to the notion of a theory graph, where the nodes are theories that declare
language fragments and axiomatize knowledge about the objects in the domain of discourse. The
following theory graph is taken from [OMT].

Modular Representation of Math (MMT Example)

> Example 3.2.9 (Elementary Algebra and Arithmetics).

d: 1’

IntArith Ring
7, — 7S Z P9

L Lo N dom : )TG'm/o —Ga/o N _ a AbelGroup
om: +Z=p/NUn/N distl: Famfo (ya/o 2)=(z njo y) afo (zm/o z)

: z distr: k(ya/o z) mfo x=(y /o z) a/o (zmfo x)
P’( Tn
S— m

NatPlusTimes
NonGrpMon Group

- c:

:N—>N—N 2 < S| 1: =xz.y.woy=e
pase: Fn-0= ni: F3z: G.Vy: G.zoyFe inv: FVe: G.3ly: G.azoy=c
step: Fn-s(s

Wﬁ iy
e p SR B v
- J 0000 Monoid s
NatPlus fiop e: G B GVAR
+: N+ NN neutl: Fzoe=x
base: Fn+0=n, G — N neutr: Feozx=u
_step: Frta(m)=s(nim) = o - 7;\‘
’\‘ e 1
SemiGr

NatNums G N e

N, NF,0: N, s: N> NT ;

NN p=4 om+ _sssoc: F(woy)oz=vo(yos) ) [ Abelian

e—0 j > ¢ Froy=yox
9= e b= o
Y = A o W = g £ G, o:G—-G—G
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We will use the foundation-independence (bring-your-own logic) in this course, since the models
for the different fragments come with differing logics and foundational theories (together referred
to as “foundations”). Logics can be represented as theories in OMDoc/MMT— after all they just
introduce language fragments and specify their behavior — and are subject to the same modularity
and inheritance regime as domain theories. The only difference is that logics form the meta-
language of the domain theories — they provide the language used to talk about the domain — and
are thus connected to the domain theories by the meta relation. The next slide gives some details
on the construction.
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Representing Logics and Foundations as Theories

> Example 3.2.10. Logics and foundations represented as MMT theories

H—>CF + X%

folsem L, £oh q

N

T

g
N

mult
(Monoid)—>(CGroup)__ add

> Definition 3.2.11. Meta relation between theories special case of inclusion

> Uniform Meaning Space: morphisms between formalizations in different logics
become possible via meta-morphisms.

> Remark 3.2.12. Semantics of logics as views into foundations, e.g., folsem.
> Remark 3.2.13. Models represented as views into foundations (e.g. ZFC)

> Example 3.2.14. mod := {G — Z, 0 + +,e — 0} interprets Monoid in ZFC.
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In the next slide we show the MmT surface language which gives a human-oriented syntax to
the OMDoc/MwT format.

A MitM Theory in MMT Surface Language

> Example 3.2.15. A theory of Groups

> Declaration = theory group : base:?Logic =

name : type [= Def] [# notation] theory group_theory : base:?Logic =
include ?monoid/monoid_theory |

> Axioms = Declaration with type - F inverse: U— U] #1 - prec24 |

inverseproperty : FV[xI X o x-* = e |
> ModelsOf makes a record type from a
theory. group = ModelsOf group_theory |

> MitM Foundation: optimized for natural math formulation

> higher-order logic based on polymorphic A-calculus
> judgments-as-types paradigm: - F' = type of proofs of F’
> dependent types with predicate subtyping, e.g. {n}{’a € mat(n,n)|symm(a)’}

> (dependent) record types for reflecting theories
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Finally, we summarize the concepts and features of the OMDoc/MwmT.
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The MMT Module System

> Central notion: Theory graph with theory nodes and theory morphisms as edges.

> Definition 3.2.16. In MwT, a theory is a sequence of constant declarations op-
tionally with type declarations and definitions.

> MwmT employs the Curry/Howard isomorphism and treats

> axioms/conjectures as typed symbol declarations (propositions-as-types)
> inference rules as function types (proof transformers)
> theorems as definitions (proof terms for conjectures)

> Definition 3.2.17. MwmT has two kinds of theory morphisms

> structures instantiate theories in a new context (also called: definitional link,

import)

they import theory S into theory T (induces theory morphism S — T)
> views translate between existing theories (also called: postulated link, theorem

link)

Views transport theorem from source to target (framing).

> Together, structures and views allow a very high degree of re-use
> Definition 3.2.18. We call a statement ¢ induced in a theory T, iff there is

> a path of theory morphisms from a theory S to T with (joint) assignment o,

> such that ¢ = o(s) for some statement s in S.

> Definition 3.2.19. In MwmT, all induced statements have a canonical name, the
MMT URI.
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3.3 ELPI a Higher-Order Logic Programming Language

ELPI

> Definition 3.3.1. \Prolog, also written lambda Prolog, is a logic programming
language featuring polymorphic typing, modular programming, and higher-or-
der functionhigher-order programming.

> Definition 3.3.2. ELPI implements a variant of \Prolog enriched with constraint
handling rules.
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ELPI by example

> Intuition: ELPI almost works like Prolog, if we forget the advanced features
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> But: ELPI insists on types declarations for all objects it works with.

> Example 3.3.3 (A Member Predicate). Indeed in line 1 we see an ELPI type
declaration for the ismember predicate. As in Prolog, we use identifiers starting
with capital letters for variables. This makes ismember polymorphic in the type T.

1 type ismember T -> list T -> prop.
2> ismember X [X|_T].
3 ismember X [_H|T] :- ismember X T.

The recursive ismember predicate itself is just as we would write it in Prolog.

As always, we can test this with the queries

> ismember 2 [1,2,3] which succeeds and

> ismember 5 [1,2,3] which fails.
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Warning: If you have a functional programming background, you might have expected something
like
ismember X [] = false

ismember X [X|_T] = true
ismember X [_Y|T] = ismember X T

with an explicit failure case. But ELPI/Prolog works differently: It fails unless it finds a way
to make it true. For example, in our case ismember 1 [] fails because there is no rule that makes
it work.

You may have to brush up on these lovely Prolog tutorials if this baffles you.

Propositional Logic in ELPI

> Remember: we wanted to use ELPI to automate proof construction for our target
logics.

> Idea: Let's just start with PL” — this is really just like in M.

kind oo type. % propositions (prop and o are taken)
type neg oo -> oo.

type and oo -> oo -> oo.

type or oo -> oo -> oo0.

type impl oo -> oo -> oo.

type true oo.

type false oo.

type pvar int -> oo.

The declarations (and their ELP| syntax) should be quite obvious
the pvar function makes a countable collection of propositional variables.
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Predicates for Properties of Formulae

> Problem: We will need to know when a PL” formula is atomic later.

> Idea: It is easier to (first) specify whehter a formula is complex.

type complex oo -> prop.
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complex (neg _Y).
complex (and _X _Y).

And then we just make atomic to be “not complex”.

> Standard Method: In ELPI, we use negation as failure: To establish that a term
t is atomic we try to establish that it complex and if that succeeds, then we fail.
On the other hand, if the first clause of the atomic predicate fails, then the second
clause (automatically) succeeeds.
Together they switch orchestrate the switch of truth values needed for negation as
failure
type atomic oo -> prop.
atomic (X) :- complex(X),!,fail.
atomic (_X).

The trick now is to guard the fail with a cut operator !, a literal that forbids
the atomic predicate to backtrack after it failed. Otherwise the first clause would
succeed via the second clause ruining the effect.
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Chapter 4

Logic as a Tool for Modeling NL
Semantics

In this chapter we will briefly introduce formal logic and motivate how we will use it as a tool
for developing precise theories about natural language semantics.

We want to build a compositional, semantic meaning theory based on truth conditions, so that
we can directly model the truth conditional synonymy test. We will see how this works in detail
in section 4.3 after we have recapped the necessary concepts about logic.

4.1 The Method of Fragments

We will proceed by the “method of fragments”, introduced by Richard Montague in [Mon70], where
he insists on specifying a complete syntax and semantics for a specified subset (“fragment”) of a
natural language, rather than writing rules for the a single construction while making implicit
assumptions about the rest of the grammar. [MonT70]

In the present paper I shall accordingly present a precise treatment, culminating in a theory
of truth, of a formal language that I believe may be reasonably regarded as a fragment of
ordinary English. R. Montague 1970 [Mon70, p.188]

The first step in defining a fragment of natural language is to define which sentences we want to
consider. We will do this by means of a context-free grammar. This will do two things: act as
an oracle deciding which sentences (of natural language) are OK, and secondly to build up syntax
trees, which we will later use for semantics construction.

Natural Language Fragments

> Methodological Problem: How to organize the scientific method for natural
language?

> Delineation Problem: What is natural language, e.g. English?
Which Aspects do we want to study?

>> Idea: Formalize a set (NL) sentences we want to study by a grammar
~» Richard Montague's method of fragments (1972).

> Definition 4.1.1. The language L of a context-free grammar is called a fragment
of a natural language N, iff L C N.

95
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> Scientific Fiction: We can exhaust English with ever-increasing fragments, de-
velop a semantic meaning theory for each.

> ldea: Use nonterminals to classify NL phrases.

> Definition 4.1.2. We call a nonterminal symbol of a context-free grammar a
phrasal category. We distinguish two kinds of rules:

structural rules: £L: H—ecy,...,c, with head H, label £, and a sequence of phrasal
categories ¢;.
lexical rules: £: H—t1 | ... |, where the ¢; are terminals (i.e. NL phrases)

> Definition 4.1.3. In the method of fragments we use a CFG to parse sentences
from the fragment into an abstract syntax tree (AST) for further processing.
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We generically distinguish two parts of a grammar: the structuralrules and the lexical rules, be-
cause they are guided by differing intuitions. The former set of rules govern how NL phrases can be
composed to sentences (and later even to discourses). The latter rules are a simple representation
of a lexicon, i.e. a structure which tells us about words (the terminal objects of language): their
phrasal categories, their meaning, etc.

Formal Natural Language Semantics with Fragments

> Idea: We will follow the picture we have discussed before

e i )
M= D1 o NQUCES  r = CFL X FL
L Iip ': — Fc?
~
f_]-‘[,_\ choose calculus C Fe € FL X FL
Analysis P =t
induces?
NL oo L REEER }:./\ZI C NL x NLC
Comp Li Logi
omp mg) L ogic y

Choose a target logic 7L and specify a translation from syntax trees to formulae!
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Semantics by Translation

> Idea: We translate sentences by translating their syntax trees via tree node trans-
lation rules.

> Note: This makes the induced meaning theory compositional.

> Definition 4.1.4. We represent a node « in a syntax tree with children f1,..., 3,
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by [X14,,...,Xng,la and write a translation rule as
L: [X1517"'7Xn,3n}0¢’\/>q)<‘,1/ ...... Xn/>

if the translation of the node a can be computed from those of the 3; via a semantical
function .

> Definition 4.1.5. For a natural language utterance A, we will use (A) for the result
of translating A.

> Definition 4.1.6 (Default Rule). For every word w in the fragment we assume a
constant w’ in the logic £ and the “pseudo-rule” t1: w ~ w'. (if no other
translation rule applies)
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4.2 What is Logic?

What is Logic?
> Definition 4.2.1. Logic = formal languages, inference and their relation with the
world
> Formal language FL: set of formulae (2+43/7, Vex+y=y+ 1)
> Formula: sequence/tree of symbols (z,y, f,9,p,1,7,€,~,V,3)
> Model: things we understand (e.g. number theory)
> Interpretation: maps formulae into models ([three plus five]” = 8)
> Validity: M=A, iff [A]" =T (five greater three is valid)
> Entailment: A = B, iff M=B for all M|=A. (generalize to H = A)
> Inference: rules to transform (sets of) formulae (A,A = BFB)
> Syntax: formulae, inference (just a bunch of symbols)
> Semantics: models, interpr., validity, entailment (math. structures)
> Important Question: relation between syntax and semantics?
; = == Michael Kohlhase: LBS 94 2024-01-20

So logic is the study of formal representations of objects in the real world, and the formal
statements that are true about them. The insistence on a formal language for representation is
actually something that simplifies life for us. Formal languages are something that is actually
easier to understand than e.g. natural languages. For instance it is usually decidable, whether a
string is a member of a formal language. For natural language this is much more difficult: there is
still no program that can reliably say whether a sentence is a grammatical sentence of the English
language.

We have already discussed the meaning mappings (under the monicker “semantics”). Meaning
mappings can be used in two ways, they can be used to understand a formal language, when we
use a mapping into “something we already understand”, or they are the mapping that legitimize a
representation in a formal language. We understand a formula (a member of a formal language)
A to be a representation of an object O, iff [A] = O.

However, the game of representation only becomes really interesting, if we can do something with
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the representations. For this, we give ourselves a set of syntactic rules of how to manipulate the
formulae to reach new representations or facts about the world.

Consider, for instance, the case of calculating with numbers, a task that has changed from a
difficult job for highly paid specialists in Roman times to a task that is now feasible for young
children. What is the cause of this dramatic change? Of course the formalized reasoning procedures
for arithmetic that we use nowadays. These calculi consist of a set of rules that can be followed
purely syntactically, but nevertheless manipulate arithmetic expressions in a correct and fruitful
way. An essential prerequisite for syntactic manipulation is that the objects are given in a formal
language suitable for the problem. For example, the introduction of the decimal system has been
instrumental to the simplification of arithmetic mentioned above. When the arithmetical calculi
were sufficiently well-understood and in principle a mechanical procedure, and when the art of
clock-making was mature enough to design and build mechanical devices of an appropriate kind,
the invention of calculating machines for arithmetic by (1623), (1642), and (1671) was only a
natural consequence.

We will see that it is not only possible to calculate with numbers, but also with representations
of statements about the world (propositions). For this, we will use an extremely simple example; a
fragment of propositional logic (we restrict ourselves to only one connective) and a small calculus
that gives us a set of rules how to manipulate formulae.

In computational semantics, the picture is slightly more complicated than in Physics. Where
Physics considers mathematical models, we build logical models, which in turn employ the term
“model”. To sort this out, let us briefly recap the components of logics, we have seen so far.

Logics make good (scientific!) models for natural language, since they are mathematically precise
and relatively simple.

Formal languages simplify natural languages, in that problems of grammaticality no longer
arise. Well-formedness can in general be decided by a simple recursive procedure.

Semantic models simplify the real world by concentrating on (but not restricting itself to)
mathematically well-understood structures like sets or numbers. The induced semantic notions
of validity and logical consequence are precisely defined in terms of semantic models and allow
us to make predictions about truth conditions of natural language.

The only missing part is that we can conveniently compute the predictions made by the model.
The underlying problem is that the semantic notions like validity and semantic consequence are
defined with respect to all models, which are difficult to handle.

Therefore, logics typically have a third part, an inference system, or a calculus, which is a
syntactic counterpart to the semantic notions. Formally, a calculus is just a set of rules (called
inference rules) that transform (sets of) formulae (the assumptions) into other (sets of) formulae
(the conclusions). A sequence of rule applications that transform the empty set of assumptions
into a formula T, is called a proof of A. To make these assumptions clear, let us look at a very
simple example.

4.3 Using Logic to Model Meaning of Natural Language

Modeling Natural Language Semantics

> Problem: Find formal (logic) system for the meaning of natural language.

> History of ideas

1As we use the word “model” in two ways, we will sometimes explicitly label it by the attribute “scientific’ to
signify that a whole logic is used to model a natural language phenomenon and with the attribute “semantic” for
the mathematical structures that are used to give meaning to formal languages
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> Propositional logic [ancient Greeks like Aristotle]
* Every human is mortal

> First-Order Predicate logic [Frege < 1900]
* I believe, that my audience already knows this.

> Modal logic [Lewis18, Kripke65]
* A man sleeps. He snores. ((3X.man(X) A sleeps(X))) A snores(X)

> Various dynamic approaches (e.g. DRT, DPL)
* Most men wear black

> Higher-order Logic, e.g. generalized quantifiers

[

£ woen
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Let us now reconcider the role of all of this for natural language semantics. We have claimed
that the goal of the course is to provide you with a set of methods to determine the meaning of
natural language. If we look back, all we did was to establish translations from natural languages
into formal languages like first-order or higher-order logic (and that is all you will find ituisn most
semantics papers and textbooks). Now, we have just tried to convince you that these are actually
syntactic entities. So, where is the semantics?.

Natural Language Semantics?

e : 1
M=DTI) . induces = C FC x FC
\_ T E=Frc?
)
4 r \ choose calculus C fe C FL x FL
Analysis Pz = Fe?
induces? A
NL oo v ey e © NL X N
Comp Lin Logic
p g) L g )
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As we mentioned, the green area is the one generally covered by natural language semantics. In
the analysis process, the natural language utterance (viewed here as formulae of a language NL)
are translated to a formal language 7L (a set wff(, ) of well-formed formulae). We claim that this
is all that is needed to recapture the semantics even if this is not immediately obvious at first:
Theoretical Logic gives us the missing pieces.

Since FL is a formal language of a logical system, it comes with a notion of model and an value
function 7, that translates /L formulae into objects of that model. This induces a notion of logical
consequence? as explained in ??. It also comes with a calculus C acting on F£ formulae, which (if
we are lucky) is sound and complete (then the mappings in the upper rectangle commute).

What we are really interested in natural language semantics is the truth conditions and natural
consequence relations on natural language utterances, which we have denoted by . If the
calculus C of the logical system (FL. K, |=) is adequate (it might be a bit presumptious to say

2Relations on a set S are subsets of the Cartesian product of S, so we use R C S™ x S to signify that R is a
(n-ary) relation on X.
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sound and complete), then it is a model of the linguistic entailment relation =\z. Given that both
rectangles in the diagram commute, then we really have a model for truth conditions and logical
consequence for text/speech fragments, if we only specify the analysis mapping (the green part)
and the calculus.

Logic-Based Knowledge Representation for NLP

> Logic (and related formalisms) allow to integrate world knowledge

> explicitly (gives more understanding than statistical methods)
> transparently (symbolic methods are monotonic)
> systematically (we can prove theorems about our systems)

> Signal + World knowledge makes more powerful model
> Does not preclude the use of statistical methods to guide inference
> Problems with logic-based approaches

> Where does the world knowledge come from? (Ontology problem)

> How to guide search induced by log. calculi (combinatorial explosion)
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Chapter 5

Fragment 1

5.1 The First Fragment: Setting up the Basics

The first fragment will primarily be used for setting the stage, and introducing the method itself.
The coverage of the fragment is too small to do anything useful with it, but it will allow us to
discuss the salient features of the method, the particular setup of the grammars and semantics
before graduating to more useful fragments.

Fragment 1 Data (Sentences we want to cover)

> Fragment 1 Data: We delineate the intended fragment by giving examples

1. Ethel kicked the cat and Fiona laughted
2. Peter is the teacher

3. The teacher is happy

4. It is not the case that Bertie ran

5. It is not the case that Jo is happy

> We can later use these sentences as benchmark tests.
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5.1.1 Natural Language Syntax (Fragment 1)

Structural Grammar Rules

> Definition 5.1.1. 7, knows the following eight phrasal categories

S sentence NP | noun phrase
N noun Npr | proper name
Ve intransitive verb || V' | transitive verb
conj | connective Adj | adjective

> Definition 5.1.2. We have the following production rules in 7.
S1: S—NP, V7,
52: S—NP,V* NP,

61
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N1: NP— Ny,
N2: NP—the, NV,

S3: S—ltis not the case that, 5,
S4: S—S,conj, S,

S5: S—NP,is, NP,

S56: S—NP,is, Ad]
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Lexical insertion rules for Fragment 1

> Definition 5.1.3. We have the following lexical rules in Fragment 1.

L1: Ny —Prudence | Ethel | Chester | Jo | Bertie | Fiona,
L2: N—book | cake | cat | golfer | dog | lecturer | student | singer,
L3: V'—ran | laughed | sang | howled | screamed,
L4: V'—read | poisoned | ate | liked | loathed | kicked, L5: conj—and | or,
L6: Adj—happy | crazy | messy | disgusting | wealthy

> Note: We will adopt the convention that new lexical rules can be generated spon-
taneously as needed.
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ese rules represent a simple lexicon, they specify which words are accepte e grammar
Th 1 P t ple | , they specify which d pted by the g
and what their phrasal categories are.

Syntax Example: Jo poisoned the dog and Ethel laughed

> Observation 5.1.4. Jo poisoned the dog and Ethel laughed is a sentence of
fragment 1

> We can construct a syntax tree for it!

NP/ \NP

S

/
| A\ |

Npr Vvt N conj Npr Vi

Jb poisoned th.e dog aﬁd thel laughed
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5.1.2 Predicate Logic without Quantifiers

The next step will be to introduce the logical model we will use for Fragment 1: Predicate Logic
without Quantifiers. Syntactically, this logic is a fragment of first-order logic, but it’s expressivity
is equivalent to propositional logic. Therefore, we will introduce the syntax of full first-order logic
(with quantifiers since we will need if for Fragment 4 later), but for the semantics stick with a setup
without quantifiers. We will go into the semantic difficulties that they pose later (in section 9.1
and chapter 10).

Individuals and their Properties/Relations

> Observation: We want to talk about individuals like Stefan, Nicole, and Jochen
and their properties, e.g. being blond, or studying Al
and relationships, e.g. that Stefan loves Nicole.

> Idea: Re-use PL”, but replace propositional variables with something more expres-
sive! (instead of fancy variable name
trick)

> Definition 5.1.5. A first-order signature (3/, 7) consists of

&> 2/ =| Jpen 2] of function constants, where members of 3/ denote k-ary func-
tions on individuals,

> 2P:=(Jgen2) of predicate constants, where members of ¥} denote k-ary rela-
tions among individuals,

where E'}; and Y3} are pairwise disjoint, countable sets of symbols for each keNN.

> Definition 5.1.6. The formulae of PL"® are given by the following grammar

function constants  f*¥ ¢ Z',i
predicate constants pk S Zﬁ

terms t = f0 constant

| f*(t1,...,tx) application
formulae A = pF(ty,... 1) atomic

| -A negation

| A1 NAy conjunction
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P1"9 Semantics

> Definition 5.1.7. Domains Dy = {T,F} of truth values and D, # () of individuals.
> Definition 5.1.8. Interpretation 7 assigns values to constants, e.g.
> Z(=): Dog—Do; T—=F; F»T and Z(A) = . .. (as in PL

>7: Zé%D,, (interpret individual constants as individuals

>7: Z;Q%D,,k — D, (interpret function constants as functions)
>Z7: %2 —P(D,F) (interpret predicate constants as relations)

> Definition 5.1.9. The value function 7 assigns values to formulae:  (recursively
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> Z(f(AY, ..., AF)):=Z(f)(Z(AY),..., Z(A¥))
> Z(p(Al, ..., AF)):=T, iff (Z(Al),..., IT(A*))eZ(p)
> Z(-A) =Z(-)(Z(A)) and Z(A AB) = Z(A)(Z(A),Z(G))  (just as in PL")

> Definition 5.1.10. Model: M = (D,,Z) varies in D, and Z.

> Theorem 5.1.11. PI'% js isomorphic to P’ (interpret atoms as prop. variables)
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A Model for P

> Example 5.1.12. Let L:={a.,b,c,d,e, P,Q, R, S}, we set the universe D:={d, #, U,
and specify the interpretation function 7 by setting

> ar—é, b—#, ¢, d—<, and e+ for constants,
> P—{&, &} and Q—{. O}, for unary predicate constants.
> R—>{(0,0), (0, V) }, and S—{({, ), (M, &)} for binary predicate constants.

> Example 5.1.13 (Computing Meaning in this Model).
Z(R(a,b) AN P(c)) =T, iff
Z(R(a,b)) =T and Z(P(c)) =T, iff
< (a),Z(b))eZ(R) and Z(c)€Z(P), iff
(©,0),(0,0)} and Vec{&, &}
P(c)) =F.

> (b, #){

Michael Kohlhase: LBS 104 2024-01-20

P10 and PL” are Isomorphic

> Observation: For every choice of ¥ of signature, the set Ay of atomic P
formulae is countable, so there is a V. C V) and a bijection Oy : As—Vs.

Os, can be extended to formulae as P1" and PL” share connectives.

> Lemma 5.1.14. For every model M = (D,.T), there is a variable assignment p a4,
such thatZ,,, (A) =T7(A).

> Proof sketch: We just define o aq(X):=7 (05" (X))

> Lemma 5.1.15. For every variable assignment v: Vs—{T,F} there is a model
MY = (DY, T¥), such that 7,,(A) = ¥ (A).

> Proof sketch: see next slide

> Corollary 5.1.16. PI"? is isomorphic to P, i.e. the following diagram commutes:
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— MY ,
ooy 2 M TR

zwﬁ szo

0
PEY(E) ———— PL(Az)

> Note: This constellation with a language isomorphism and a corresponding model
isomorphism (in converse direction) is typical for a logic isomorphism.
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Valuation and Satisfiability

> Lemma 5.1.17. For every variable assignment ¢ : Vs—{T,F} there is a model
MY = (DY, T%), such that 7,(A) = ¥ (A).

> Proof: We construct MY = (DY 7%) and show that it works as desired.

1. Let D¥ be the set of PI" terms over ¥, and
> T%(f): D’uzwkxAl.....Akwf( L Ay) for fex!
> % (p):={(A1, ..., Ap)|(0, 'p(Ay,. Ak =T} for pe¥?.
2. We show 7%(A) = A for terms A by induction on A
21.I1f A=c then 7¥(A) =T%(c) =c= A
22.1f A= f(Aq,..., A,,) then
TY(A) = T9(f)(Z(A1), ... I(An)) = T(f)(Ar,. .., Ay) = A.
3. For a PI"@ formula A we show that 7% (A) Iw(A) by induction on A.
3.1 0F A =p(Ay.....Ay), then T¥(A) = 7% (p)(Z(Aq)..... T(A,)) = T, iff
(Ar,. o Ap)ET¥(p), iff (0, A) =T, so Iw(A) Ty (A) as desired.
32.1f A = B, then 7¥(A) = T, iff 7¥(B) = F, iff 7¥(B) = 7,(B), iff
TY(A) =Ty(A).
3.3.If A =B A C then we argue similarly
4. Hence 7% (A) = Z,(A) for all PI" formulae and we have concluded the proof.
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Now that we have the target logic we can complete the analysis arrow in slide 93. We do this
again, by giving transformation rules.

5.1.3 Natural Language Semantics via Translation

Translation rules for non-basic expressions (NP and 5)

> Definition 5.1.18. We have the following translation rules for non-leaf node of the
abstract syntax tree

T1: [XNP,Y\ }g‘ i Y/(X )

T2: [Xnp, Yo, Znpls ~ Y'(X', Z')

T3: Xy, lnp ~ X/

T4: [the X\ }Np ~ theX'’

T5: [It is not the case thatXs]g ~ (=X)
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T6: [Xs,Yeonj, Zsls ~ Y'(X', Z)

TT7: [)(Np7 iS7 YNP}S ~ X' =Y’

T8: P(Np7 iS, YAdﬂg i Y/(X/)

Read e.g. [Y,Z]|x as a node with label X in the syntax tree with children X and
Y. Read X’ as the translation of X via these rules.

> Note that we have exactly one translation per syntax rule.
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Translation rule for basic lexical items

> Definition 5.1.19. The target logic for 7, is PI"9, the fragment of PL' without
quantifiers.

> Lexical Translation Rules for 7, Categories:

> If w is a proper name, then w'e ¥}/ (individual constant)
> If w is an intransitive verb, then w'e Y. (one-place predicate)
> If w is a transitive verb, w'e. (two-place predicate)
> If w is a noun phrase, then w'cY)). (individual constant)

> Semantics by Translation: We translate sentences by translating their syntax
trees via tree node translation rules.

> For any non-logical word w, we have the “pseudo-rule” t1: w ~ w'.
> Note: This rule does not apply to the syncategorematic items is and the.

> Translations for logical connectives

t2: and ~ A, t3: or~ V/, t4: it is not the case that ~ —
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Translation Example

> Observation 5.1.20. Jo poisoned the dog and Ethel laughed is a sentence of
Fragment 1

> We can construct a syntax tree for it!
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5.2

TESTING TRUTH CONDITIONS VIA INFERENCE

S poisoned' (Jo',thedog’) N laughed' (Ethel’)

laughed' (Ethel")

S poisoned’ (Jo', thedog')

NN A TN

NP NP Jo' thedog’ Ethel’
Npr Vit . N conj Np Vi Jo'  poisoned’ A Ethel’ laughed’

Jo poisonedthe dog and Ethel laughed
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Testing Truth Conditions via Inference

Testing Truth Conditions in P

>> Idea 1: To test our language model (F;)

> Select a sentence S and a situation W that makes S true. (according to
humans)

> Translate S in to a formula S’ in P19,

> Express W as a set ® of formulae in P19 (® = truth conditions)

> Our language model is supported if ® =57, falsified if ® [~ 5.
> Example 5.2.1 (John chased the gangster in the red sports car).

> We claimed that we have three readings Example 2.3.3
Ri:=c(j,g) Nin(j,s), Re:=c(j,g) Nin(g,s), and R3:=c(j,g) Nin(j,s) Nin(g,s)
> So there must be three distinct situations W that make S true
1. John is in the red sports car, but the gangster isn’t
Wi:=c(j,g) Nin(j,s) A —in(g, s), so Wi = Ry, but Wi [~ Ry and W1 |~ R3
2. The gangster is in the red sports car, but John isn’t
Wai=c(j.g) Nin(j,s) N —in(g. s), so Wa = Ra, but W = Ry and Ws [~ Rs

3. Both are in the red sports car
= they run around on the back seat of a very big sports car
Ws:=c(j,g) Nin(j,s) Nin(g,s), so Wz = Rs, but W3 [~ Ry and W3 [~ Ry

> Idea 2:  Use a calculus to model =, e.g. ND 0
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Fragment 1
> Fragment 7 of English (defined by grammar + lexicon)
> Logic PI™ (serves as a mathematical model for F;)

> Formal Language (individuals, predicates, =, A, V, =)
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> Semantics 7, defined recursively on formula structure

(~ validity, entailment)

> Tableau calculus for validity and entailment (CaLcuLEMUS!)

> Analysis function 7| ~» P (Translation)
> Test the model by checking predictions (calculate truth conditions)

> Coverage: Extremely Boring! (accounts for 0 examples from the intro) but the
conceptual setup is fascinating
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Summary: The Interpretation Process

> Interpretation Process:

Syntax Quasi-Logical Form Logical Form
Semantics Pragmatic
Construction Analysis

Logic
Expression

Logic
Expression

Syntax \{Compositional}

e T
(inferential)
Tree

parsing

NL Utterance
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Chapter 6

Fragment 1: The Grammatical
Logical Framework

Now that we have introduced the “Method of Fragments” in theory, let see how we can implement
it in a contemporary grammatical and logical framework. For the implementation of the semantics
construction, we use GF, the “grammatical framework”. For the implementation of the logic we

will use the MMT system.

In this chapter we develop and implement a toy/tutorial language fragment chosen mostly for
didactical reasons to introduce the two systems. The code for all the examples can be found at

https://gl.mathhub.info/Teaching/LBS/tree/master/source/tutorial.

6.1 Implementing Fragment 1 in GF

Implementing Fragment 1 in GF

from slide 65.

> Verbs: V' Z2V2, V' = cat V; fun sp : NP -> V -> S;

> the: fun the : N -> NP; lin the n = mkNP ("the'++ n.s);
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> The grammar of Fragment 1 only differs trivially from Hello World grammar two . gf

> Negation: fun not : S -> S; lin not a = mkS ("<t ¢s not the case t

> conjunction: fun and : S -> S -> S; lin and a b = mkS (a.s ++ "and"

bat"++ a.s);

-+ b.s);

6.2 Implementing Fragmentl in GF and MMT

Discourse Domain Theories for /7 (Lexicon)

theory plngFragl : 7plnqg =
ethel : ¢|# ethel’ |
prudence : ¢|# prudence’ |
dog : ¢|# dog’ |

69

> A “lexicon theory” (only selected constants here)
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poison : ¢ —¢—o |# poison’ 1 2 |
laugh : ¢ —o |# laugh’ 1 |
|

declares one logical constant for each from abstract GF grammar.

> Enough to interpret Prudence poisoned the dog and Ethel laughed from above.

ex : |o = poison’ prudence’ dog’ A laugh’ ethel’ |

Michael Kohlhase: LBS 114 2024-01-20

Representing Multiple Readings

> We can even represent the three readings of John chased the gangster in the red
sports car from Example 2.3.3.

theory sportscar : ?plnq =
john : ¢]|gangster : (|sportscar : ¢]red : ¢t —o |
chased : ¢t ¢t —o |in : ¢t —>¢—o |
jcgirsl : o |= chased john gangster A in sportscar gangster A red

sportscar |

jcgirs2 : o |= chased john gangster A in sportscar john A red spotscar |

I

jcgirs3 : o chased john gangster A in sportscar john A

in sportscar gangster A red sportscar |

> Problem: Can we systematically generate terms like jcgirsl, jcgirs2, and
jcgirs3d?

> ldea: Use the ASTs from GF in MMmT.
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Embedding GE' into MMT

> Observation: The GF system provides Java bindings and MMT is programed in
Scala, which compiles into the Java virtual machine.

> Idea: Use GF as a sophisticated NL-parser/generator for MwmT

~» MMT with a natural language front-end.

~» GF with a multi-logic back-end

> Definition 6.2.1. The MMT integration mapping interprets GF abstract syntax
trees as MMT terms.

> Observation: This fits very well with our interpretation process in LBS
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parsing

ones in MMT.
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Syntax Quasi-Logical Form Logical Form
Semantics Pragmatic
Construction Analysis
m Logic (inferential) Logic
Expression Expression

> Implementation: transform GF system (Java) data structures to MMT (Scala)

SOME RIGHTS RESERVED

2024-01-20

GF' Abstract syntax trees as MMT Terms

> Prerequisite:
> Recall: ASTs in GF are essentially terms.
> Indeed:

> Example 6.2.2. Syntactic categories of 7

theory FraglCatMMT : ur:7LF =
S : type |
Conj : type |
NP : type |
Npr : type |
N : type |
Vi : type |
Vt : type |
|
The F, lexicon
theory FraglLexMMT : ur:7LF =

include 7 FraglCatMMT

MwMmT theory isomorphic to GF grammar

> ldea: Make the MMT integration mapping (essentially) the identity.

(declarations aligned)

GF abstract grammars are essentially MMT theories.

(Syntactic categories = types)

(words = constants)

ethel :

dog : N
poison :
laugh :

prudence :

Npr |
Npr |
|

vt |
Vi |

and : Conj |

The structural rules of 7

theory FraglRulesMMT : ur:7LF =
include ? FraglCatMMT
sl : NP —-Vi =S |
s2 : NP -Vt = NP =S |
nl : Npr —NP |
n2 : N —NP |
s3 : 8 =S|
s4 : S -Conj S =S|
sb : NP - NP —S |

(functions = functions)

71



72

CHAPTER 6. FRAGMENT 1: THE GRAMMATICAL LOGICAL FRAMEWORK

s6 : NP —Adj —S |
|
putting it all together

theory FraglLexMMT : ur:?LF =
include ? FragiLexMMT
include 7 FraglRulesMMT

D'Observation: GF grammars and MMT theories best when organized modularly.
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Semantics Construction as an MMT View

> Observation 6.2.3. We can express semantics construction as an MMT view

1
I .
Syntax ! Logic
|
Concrete = : "k h 6&7 e
t < Grammar "1 Theory : (p(t)
Syntax y N Logic
Tree ' Expression

1

parsing |

NL Utterance GF \ MMT

> Example 6.2.4. Syntactic categories ~ P19 types
view FragliCatSem : 7FraglCatMMT -> 7plnqgFragl =

S =o]|
NP = (|

Vi =1—0|
Vt = v —t—o |
Npr = ¢|

N =]

Conj = o o —o |

Lexicon ~ mapping into P["9 terms

view FragllexSem : ?FraglCatMMT -> 7plnqFragl =
include 7FragliCatSem

ethel = ethel’ |
prudence = prudence’ |
dog = dog’ |

poison = poison |
laugh = laugh |

and = and |

Structural rules ~ defining functions via A-terms

view FraglRulesSem : ?FraglCatMMT -> 7plnqgFragl =
include 7FraglCatSem
sl = [n, vl] vao]|
s2 = [n1,v,n2] v nl n2 |
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nl = [n] n |
n2 = [n] n |

s3 = [s] —s |

s4 = [a,c,b] c ab]|
s5 = [n1,n2] nl =n2 |
s6 = [n,al a s |

putting it all together

view FraglSem : 7FraglCatMMT -> 7plnqgFragl =
include 7FragllexSem
include 7FraglRulesSem
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Montague-Style Processing of /; in GLF

> Example 6.2.5. Prudence poisoned the dog and Ethel laughed

> Parsing with GF
> parse -lang=Eng "Prudence poisons the dog and Ethel laughs"
> s4 (s2 (nl prudence) poison (n2 dog)) and (sl (nl ethel) laugh
> Semantics construction via GLF: GF parsing + MMT view

> parse -lang=Eng "Ethel poisons the dog and Prudence laughs" «cq
struct|

> poison’ prudence’ A dog’ laugh’ ethel’
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Montague-Style Analysis of /| in GF and MMT

> Recap: We have realized the green part of

([ M-—p7T induces )
\ Lo E=Fc?
f_]__c_\j choose calculus C A
Analysis e = Fe?
NL induces? > e € NE x NE
Comp Ling) N Logic y

> The GF grammar for 7 defines the fragment NL.
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> The MMT implementation of PL" is FL.

> The MMT view implements the compositional translation function for 7
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Implementing Natural Deduction in MMT

Implementing Calculi in MMT (Judgments as Types)

> Idea: Represent proofs and derivations as expressions in theory of “proofs” .
> Concretely: For any proposition A, introduce - A for the type of proofs of A.

> Any term of type = A = a proof of A
> A is provable = F A is nonempty
> inference rules are proof constructors (functions)
> a declaration ¢ : FA makes —A non-empty ~ ¢ : FA = an axiom
> a definition ¢ : FA | = P does as well but also exhibits a “proof” P
~ ¢ : FA |= P = a theorem
> in MMT: we introduce a (proof) type constructor ded a type F A.

theory plONDminimal : ur:7LF =
include ?proplogMinimal |
ded : o —type |# F1 prec 10 |role Judgment |
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Implementing Calculi in MyT (MVD 0 Rules)

> Recap: We only need the A'D 0 rules for negation and conjunction:

A" [A]'

AB A\B A\B . ¢
2 ZND OAT ZLEAND OAE SEEAD OAE,
=S NDOAT SEENDOAE SE=AND 0

> The ND Rules:

notE : {A} F——A —FA [# —E 2 |

notI : {A,Q} (FA =-FQ) — (FA —=F-Q) —F-A |# -1 3 4|
andI : {A,B} FA —-FB —FAAB |[# AT 3 4|

andEl : {A,B} FAAB —FA |# AELl 3|

andEr : {A,B} FAAB —FB |# AEr 3|

Inference rules as and hypothetical derivations as proof-to-proof functions.

Il

ﬁﬁA

./\737 0—F
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> Derived ND Rules: All other inference rules of VD 0 can be written down
similarly. What is more, as they are derivable from those above, they can become
MwmT definitions.
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Implementing Calculi in MMT (a proof)

> Example 6.3.1. We can now write down the proof for the commutativity of V!

A ABI! A ABI!
ANBE o on 2B on
A

B 2
ND ONI

B)ANA

ND 0 =1
ANB=B))A

from 7?7 as the MMT declaration
andcomm {A,B} FAAB =BAA |= = I([x] AT (AEr x) (AEl x)) |
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Chapter 7

Adding Context: Pronouns and
World Knowledge

In this chapter we will extend the model generation system by facilities for dealing with world
knowledge and pronouns. We want to cover discourses like Peter loves Fido. Even though he
bites him sometimes. As we already observed there, we crucially need a notion of context which
determines the meaning of the pronoun. Furthermore, the example shows us that we will need
to take into account world knowledge as A way to integrate world knowledge to filter out one

interpretation, i.e. Humans don’t bite dogs.

7.1 Fragment 2: Pronouns and Anaphora

Fragment 2 (F, = 7| 4+ Pronouns)

> Want to cover: Peter loves Fido. He bites him. (almost intro)

> We need: Translation and interpretation for he, she, him,....

> Also: A way to integrate world knowledge to filter out one interpretation (i.e.
Humans don’t bite dogs.)

> Idea: Integrate variables into PI (work backwards from that)

> Logical System: PL‘(;Q = P19 + variables (Translate pronouns to variables)
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New Grammar in 7, (Pronouns)

> Definition 7.1.1. We have the following structural grammar rules in 75

S1: S—NP, V7,
S2: S—NP, V! NP,
N1: NP—=N,,
N2: NP—Pron,
N3: NP—the, V,

7
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S3: S—it is not the case that, .5,
S4: S—5,conj, S,
S5: S—NP,is, NP,
S6: S—NP,is, Adj

and one additional lexical rule:

L7: Pron—he | she | it | we | they
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Translation for 7, (first attempt)

> Idea: Pronouns are translated into new variables (so far)

> The syntax/semantic trees for Peter loves Fido and he bites him. are straightforward
(almost intro)

loves'(Peter’ A Fido') A bites' (X NY)

I PR

S S loves' (Peter’, Fido') bites'(X,Y)
NP NP NP NP Peter’ Fido' X Y
Nor vt N conj Pron V' Pron Peter’ loves' Fido' / X bites' Y
Peter loves Fido and he bites him Peter loves Fido and he bites him
Michael Kohlhase: LBS 126 2024-01-20

Predicate Logic with Variables (but no Quantifiers)

> Definition 7.1.2 (Logical System PLKQ). PLKQ::PL““' + variables

> Definition 7.1.3 (PLY, Syntax).

Category V = {X,Y,Z, X' X2 ...} of variables (allow variables wherever
individual constants were allowed)

> Definition 7.1.4 (PL\, Semantics). Model M = (D, 7) (need to evaluate
variables)

> variable assignment: ¢: V,—U
> value function: Z,(X) = o(X) (defined like Z elsewhere)

> call a PLKQ formula A valid in M under ¢, iff Z,(A) =T,
> call it satisfiable in M, iff there is a variable assignment ¢, such that Z,(A) = T
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Implementing Fragment 2 in GF

> The grammar of Fragment 2 only differs from that of Fragment 1 by

> Pronouns: Pron = cat Pron; fun usePron : Pron -> NP; he,she,it : Prpn;,
> Case: for distinguishing he/him in English.

param Case = nom | acc;
oper
NounPhraseType : Type = { s : Case => Str };
PronounType : Type = { s : Case => Str };
lincat
NP = NounPhraseType;
Pron = PronounType;

> English Paradigms to deal with case

mkNP = overload {
mkNP : Str —> NP =
\name —> lin NP { s = table { nom => name; acc => name } };
mkNP : (Case => Str) —> NP = \caseTable —> lin NP { s = caseTable };};
mkPron : (she : Str) —> (her : Str) —> Pron =
\she,her —> lin Pron {s = table {nom => she; acc => her}};
he = mkPron "he" "him" ; she = mkPron "she" "her";it = mkPron "it" "jt":
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7.2 A Tableau Calculus for PLNQ with Free Variables

The main idea here is to extend the fragment of first-order logic we use as a model for natural
language to include free variables, and assume that pronouns like he, she, it, and they are translated
to distinct free variables i.e. every occurrance of a pronoun to a new variable. Note that we do
not allow quantifiers yet that will come in !, as quantifiers will pose new problems, and we can
already solve some linguistically interesting problems without them.

To allow for world knowledge, we generalize the notion of an initial tableau 2. Instead of allowing
only the initial signed formula at the root node, we allow a linear tree whose nodes are labeled
with signed formulae representing the world knowledge. As the world knowledge resides in the
initial tableau (intuitively before all input), we will also speak of background knowledge.

We will use free variables for two purposes in our new fragment. Free variables in the input will
stand for pronouns, their value will be determined by random instantiation. Free variables in the
world knowledge allow us to express schematic knowledge. For instance, if we want to express
Humans don’t bite dogs., then we can do this by the formula human(X) Adog(Y )= —bites(X,Y).
Of course we will have to extend our tableau calculus with new inference rules for the new language
capabilities.

7.2.1 Calculi for Automated Theorem Proving: Analytical Tableaux

In this section we will introduce tableau calculi for propositional logics. To make the reasoning
procedure more interesting, we will use first-order predicate logic without variables, function sym-
bols and quantifiers as a basis. This logic (we will call it PI??) allows us express simple natural
language sentences and to re-use our grammar for experimentation, without introducing the whole
complications of first-order inference.

1EDpNoOTE: crossref
2EpNoTE: crossref

EdN:1

EdN:2
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The logic PI' is equivalent to propositional logic in expressivity: atomic formulae take the role
of propositional variables.

Instead of deducing new formulae from axioms (and hypotheses) and hoping to arrive at the
desired theorem, we try to deduce a contradiction from the negation of the theorem. Indeed,
a formula A is valid, iff —A is unsatisfiable, so if we derive a contradiction from —A, then we
have proven A. The advantage of such “test-calculi” (also called negative calculi) is easy to see.
Instead of finding a proof that ends in A, we have to find any of a broad class of contradictions.
This makes the calculi that we will discuss now easier to control and therefore more suited for
mechanization.

7.2.1.1 Analytical Tableaux

Before we can start, we will need to recap some nomenclature on formulae.

Recap: Atoms and Literals

> Definition 7.2.1. A formula is called atomic (or an atom) if it does not contain
logical constants, else it is called complex.

> Definition 7.2.2. We call a pair A“ of a formula and a truth value ac{T,F} a
labeled formula. For a set ® of formulae we use *:={ A%/ Acd}.

> Definition 7.2.3. A labeled atom A is called a (positive if & = T, else negative)
literal.

> Intuition: To satisfy a formula, we make it “true”. To satisfy a labeled formula
A%, it must have the truth value a.

t> Definition 7.2.4. For a literal A%, we call the literal A? with o # 3 the opposite
literal (or partner literal).
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The idea about literals is that they are atoms (the simplest formulae) that carry around their
intended truth value.

Alternative Definition: Literals

> Note: Literals are often defined without recurring to labeled formulae:

> Definition 7.2.5. A literal is an atom A (positive literal) or negated atom —A
(negative literal). A and —A are opposite literals.

> Note: This notion of literal is equivalent to the labeled formulae-notion of literal,
but does not generalize as well to logics with more than two truth values.
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Test Calculi: Tableaux and Model Generation

> ldea: A tableau calculus is a test calculus that

> analyzes a labeled formulae in a tree to determine satisfiability,

> its branches correspond to valuations (~ models).
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> Example 7.2.6.Tableau calculi try to construct models for labeled formulae:

Tableau refutation (Validity) | Model generation (Satisfiability)
P Q—>Q/\P =P/ (QV-R) A -Q
<
(PAQ=QANP) (P(Ap<f (vQﬁvRi}/;);TQ)
(PAQ) o7
@QnP)F o
T
PT pT
vV-R)"
]jf QLF (g_r “R)T
1L | RF
No Model Herbrand Model {P". Q" R"}
p:={P—T,Q—F, R—F}

> Idea: Open branches in saturated tableaux yield models.
> Algorithm: Fully expand all possible tableaux, (no rule can be applied)

> Satisfiable, iff there are open branches (correspond to models)
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Tableau calculi develop a formula in a tree-shaped arrangement that represents a case analysis on
when a formula can be made true (or false). Therefore the formulae are decorated with exponents
that hold the intended truth value.

On the left we have a refutation tableau that analyzes a negated formula (it is decorated with the
intended truth value F). Both branches contain an elementary contradiction L.

On the right we have a model generation tableau, which analyzes a positive formula (it is
decorated with the intended truth value T. This tableau uses the same rules as the refutation
tableau, but makes a case analysis of when this formula can be satisfied. In this case we have a
closed branch and an open one, which corresponds a model).

Now that we have seen the examples, we can write down the tableau rules formally.

Analytical Tableaux (Formal Treatment of 7j)

> ldea: A test calculus where

> A labeled formula is analyzed in a tree to determine satisfiability,

> branches correspond to valuations (models)

> Definition 7.2.7. The propositional tableau calculus 7 has two inference rules per

connective (one for each possible label)
AOL
(AAB)_ (AABY AT AT, ap o7f
=L 7on Tov T S S
A AF | BF A A 1
BT
Use rules exhaustively as long as they contribute new material (~ termination)

> Definition 7.2.8. We call any tree ( ‘ introduces branches) produced by the 7,

inference rules from a set ® of labeled formulae a tableau for ®.
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> Definition 7.2.9. Call a tableau saturated, iff no rule adds new material and a
branch closed, iff it ends in |, else open. A tableau is closed, iff all of its branches
are.

= \NDER
£ BERG Michael Kohlhase: LBS 132 2024-01-20

These inference rules act on tableaux have to be read as follows: if the formulae over the line
appear in a tableau branch, then the branch can be extended by the formulae or branches below
the line. There are two rules for each primary connective, and a branch closing rule that adds the
special symbol L (for unsatisfiability) to a branch.

We use the tableau rules with the convention that they are only applied, if they contribute new
material to the branch. This ensures termination of the tableau procedure for propositional logic
(every rule eliminates one primary connective).

Definition 7.2.10. We will call a closed tableau with the labeled formula A® at the root a
tableau refutation for A%.

The saturated tableau represents a full case analysis of what is necessary to give A the truth value
«a; since all branches are closed (contain contradictions) this is impossible.

Analytical Tableaux (7 continued)

> Definition 7.2.11 (7,;-Theorem/Derivability). A is a 7j-theorem (-7, A), iff
there is a closed tableau with A" at the root.

® C wffy(Vy) derives A in Ty (@7, A), iff there is a closed tableau starting with A"
and ®". The tableau with only a branch of A" and ®" is called initial for ®, A.
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Definition 7.2.12. We will call a tableau refutation for A" a tableau proof for A, since it refutes
the possibility of finding a model where A evaluates to F. Thus A must evaluate to T in all
models, which is just our definition of validity.

Thus the tableau procedure can be used as a calculus for propositional logic. In contrast to the
propositional Hilbert calculus it does not prove a theorem A by deriving it from a set of axioms,
but it proves it by refuting its negation. Such calculi are called negative or test calculi. Generally
negative calculi have computational advantages over positive ones, since they have a built-in sense
of direction.

We have rules for all the necessary connectives (we restrict ourselves to A and —, since the others
can be expressed in terms of these two via the propositional identities above. For instance, we can
write AV B as +(-AA—-B),and A= Bas “AVB,....)

We now look at a formulation of propositional logic with fancy variable names. Note that
loves(mary, bill) is just a variable name like P or X, which we have used earlier.

A Valid Real-World Example
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> Example 7.2.13. If Mary loves Bill and John loves Mary, then John loves Mary

(loves(mary, bill) A loves(john, mary) = loves(john, mary))F
= (== (loves(mary, bill) A loves(john, mary)) A —loves(john, mary)
(=—(loves(mary, bill) A loves(john, mary)) A —loves(john, mary))
——(loves(mary, bill) A loves(john, mary))T
—(loves(mary, bill) A loves(john, mary))"
(loves(mary, bill) A loves(john, mary))T
—loves(john, mary)
loves(mary, biII)T
. T
loves(john, mary)
loves(john, mary)F

F
T

This is a closed tableau, so the loves(mary, bill) Aloves(john, mary)=-loves(john, mary)
is a 7Tp-theorem.

As we will see, 7 is sound and complete, so

loves(mary, bill) A loves(john, mary) = loves(john, mary)

is valid.
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We could have used the unsatisfiability theorem (?7?) here to show that If Mary loves Bill and John
loves Mary entails John loves Mary. But there is a better way to show entailment: we directly
use derivability in 7.

Deriving Entailment in 7

> Example 7.2.14. Mary loves Bill and John loves Mary together entail that John
loves Mary
loves(mary, bill) "
. T
loves(john, mary)
: F
loves(john, mary)

This is a closed tableau, so {loves(mary, bill), loves(john, mary) }-7. loves(john, mary).

Again, as 7 is sound and complete we have

{loves(mary, bill), loves(john, mary)} = loves(john, mary)
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Note: We can also use the tableau calculus to try and show entailment (and fail). The nice thing
is that the failed proof, we can see what went wrong.

A Falsifiable Real-World Example

> Example 7.2.15. * If Mary loves Bill or John loves Mary, then John loves Mary
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Try proving the implication (this fails)

((loves(mary, bill) \ loves(john, mary)) = loves(john, mary))"

—(——(loves(mary, bill) V loves(john, mary)) A —loves(john, mary)

(== (loves(mary, bill) VV loves(john, mary)) A —loves(john, mary))
—loves(john, mary)"

.
)

loves(john, mary)F
——(loves(mary, bill) V loves(john, mary)
—(loves(mary, bill) V loves(john, mary))"
(loves(mary, bill) \ loves(john, mary))"
loves(mary, bill)T loves(john, mary)T
1

T

Indeed we can make 7, (loves(mary, bill)) = T but Z (loves(john, mary)) = F.
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Obviously, the tableau above is saturated, but not closed, so it is not a tableau proof for our initial
entailment conjecture. We have marked the literal on the open branch green, since they allow us
to read of the conditions of the situation, in which the entailment fails to hold. As we intuitively
argued above, this is the situation, where Mary loves Bill. In particular, the open branch gives us
a variable assignment (marked in green) that satisfies the initial formula. In this case, Mary loves
Bill, which is a situation, where the entailment fails.

Again, the derivability version is much simpler:

Testing for Entailment in 7

> Example 7.2.16. Does Mary loves Bill or John loves Mary entail that John loves
Mary?
(loves(mary, bill) V loves(john, mary))"
loves(john, mary)F

loves(mary, bill)T loves(john, mary)T

This saturated tableau has an open branch that shows that the interpretation with
7, (loves(mary, bill)) = T but Z,(loves(john, mary)) = F falsifies the derivability /en-
tailment conjecture.
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We have seen in the examples above that while it is possible to get by with only the connectives
V and —, it is a bit unnatural and tedious, since we need to eliminate the other connectives first.
In this subsection, we will make the calculus less frugal by adding rules for the other connectives,
without losing the advantage of dealing with a small calculus, which is good making statements
about the calculus itself.

7.2.1.2 Practical Enhancements for Tableaux

The main idea here is to add the new rules as derivable inference rules, i.e. rules that only
abbreviate derivations in the original calculus. Generally, adding derivable inference rules does
not change the derivation relation of the calculus, and is therefore a safe thing to do. In particular,
we will add the following rules to our tableau calculus.
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We will convince ourselves that the first rule is derivable, and leave the other ones as an exercise.

Derived Rules of Inference

. A
> Definition 7.2.17. An inference rule % is called derivable (or a derived

rule) in a calculus C, if there is a C derivation Aq,..., A,cC.

> Definition 7.2.18. We have the following derivable inference rules in 7:

AT AT
(A-=B)' (A=Bf (A=B)" (A:sB)TT
AF ‘ BT AT BT (ﬁA V B)
BF (A A-B)"
. . . ; (~+-A A -B)"
(AvB)' (AVB) A=B A =B ~AF | -BF
AT ’ BT AF AT | AF AT | AF -AT | BT
B B' | BF BF | BT AF
1
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With these derived rules, theorem proving becomes quite efficient. With these rules, the tableau
(Example 7.2.13) would have the following simpler form:

Tableaux with derived Rules (example)
Example 7.2.19.

(loves(mary, bill) A loves(john, mary) = loves(john, mary))"

(loves(mary, bill) A loves(john, mary))T
loves(john, mary)"
loves(mary, bill)T

. T
loves(john, mary)
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Another thing that was awkward in (Example 7.2.13) was that we used a proof for an implication
to prove logical consequence. Such tests are necessary for instance, if we want to check consistency
or informativity of new sentences®. Consider for instance a discourse A = D',... D™, where n
is large. To test whether a hypothesis # is a consequence of A (A = H) we need to show that
C:=D! A ... A D" = H is valid, which is quite tedious, since C is a rather large formula, e.g. if
A is a 300 page novel. Moreover, if we want to test entailment of the form (A =H) often, — for
instance to test the informativity and consistency of every new sentence H, then successive As will
overlap quite significantly, and we will be doing the same inferences all over again; the entailment
check is not incremental.

incremental procedure for entailment checking in the model generation based setting: To test
whether A |=H, where we have interpreted A in a model generation tableau T, just check whether
the tableau closes, if we add —H to the open branches. Indeed, if the tableau closes, then A A —H

SEDpNoOTE: add reference to presupposition stuff

EdN:3
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is unsatisfiable, so =(A A —=H) is valid, but this is equivalent to A = H, which is what we wanted
to show.
Example 7.2.20. Consider for instance the following entailment in natural language.

Mary loves Bill. John loves Mary |= John loves Mary
EdN:4 4 We obtain the tableau
G T
loves(mary, bill)
) - T
loves(john, mary)
—loves(john, meu'y)T

. F
loves(john, mary)

which shows us that the conjectured entailment relation really holds.
Excursion: We will discuss the properties of propositional tableaux in??.

7.2.2 A Tableau Calculus for PLNQ with Free Variables

A Tableau Calculus for PLKQ

> Definition 7.2.21 (Tableau Calculus for PLY). 7/ = 7, + new tableau rules
for formulae with variables

A* ceH : H={a,..., an}

free(A) = {X1,..., X}
— TP WK TE Ana
(e/X](A)™ Y (1 (A)° |- | () (8))° Y
‘H is the set of ind. constants in the branch above (Herbrand Base)

and the o; are substitutions that instantiate the X'; with any combinations of the
a, (there are n™ of them).

> the first rule is used for world knowledge (up in the branch)
> the second rule is used for input logical forms I:'
this rule has to be applied eagerly (while they are still at the leaf)
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Let us look at two examples: To understand the role of background knowledge we interpret Peter
snores with respect to the knowledge that Only sleeping people snore.

Some Examples in F5

4EDNOTE: need to mark up the embedding of NL strings into Math
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> Example 7.2.22 (Peter snores). (Only sleeping people snore)

(snores(X) = sleeps(X))"

(snores(peter)T)

(snores(peter) = sleeps(peter))"
sleeps(peter)T

> Example 7.2.23 (Peter sleeps. John walks. He snores). (who snores?)

(sleeps(peter)T)
(vvalks(john)T)

(snores(X)T)

snores(peter) ' ‘ snores(john)"

Michael Kohlhase: LBS 141 2024-01-20

The background knowledge is represented in the schematic formula in the first line of the tableau.
Upon receiving the input, the tableau instantiates the schema to line three and uses the chaining
rule from Definition 7.2.18 to derive the fact that Peter must sleep.

The third input formula contains a free variable, which is instantiated by all constants in the
Herbrand base (two in our case). This gives rise to two models that correspond to the two
readings of the discourse.

Let us now look at an example with more realistic background knowledge. Say we know that
birds fly, if they are not penguins. Furthermore, eagles and penguins are birds, but eagles are
not penguins. Then we can answer the classic question Does Tweety fly? by the following two
tableaux.

Does Tweety fly? The everlasting Question in Al

> Example 7.2.24.

Tweety is a bird Tweety is an eagle
(bird(X) = (flies(X) V penguin(X)))"|
(eagle(X) = bird(X))"

(bird(X) = (flies(X) Vv penguin(X)))T (penguin(X) = ﬁeagle(X))T
(penguin(X) = —flies(X))" (penguin(X) = —flies(X))"
(bird(tweety) ") (eagle(tweety) ")
(flies(tweety) V penguin(tweety)) " bird (tweety) "

flies(tweety) " penguin(tvveety)T (flies(tweety) \ penguin(tweety))"
—flies(tweety) " fli ! i !

y ies(tweety) | penguin(tweety)
flies(tweety)" (—eagle(tweety))"

eagle(tweety)F
1L

> For the second we need to add more world knowledge.
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7.2.3 Case Study: Peter loves Fido, even though he sometimes bites
him

Let us now return to the motivating example from the introduction, and see how our system fares

with it (this allows us to test our computational /linguistic theory). We will do this in a completely

naive manner and see what comes out.

The first problem we run into immediately is that we do not know how to cope with even though
and sometimes, so we simplify the discourse to Peter loves Fido and he bites him..

Finally: Peter loves Fido. He bites him.

> Let's try it naively (worry about the problems later.)
Up. ")
(b(X,Y)")
bp.p)" | oo )" [0(f.0) " | 005"

> Problem: We get four readings instead of onel!

> Idea: We have not specified enough world knowledge
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The next problem is obvious: We get four readings instead of one (or two)! What has happened?
If we look at the models, we see that we did not even specify the background knowledge that was
supposed filter out the one intended reading.

We try again with the additional knowledge that Nobody bites himself and Humans do not bite
dogs.

Peter and Fido with World Knowledge

> Nobody bites himself, humans do not bite dogs.

aif)’
m(p)T
b(X, X)"

(d(X) Am(Y) = (Y, X))
(Up, )"
(b(X,Y)")
b(p,p)" b(p, )" b(f.p)" | o(f )"
b(p,p)" | (d(f) Am(p) = ~b(p, f))" b(f. )"
+ b(pif)F -

> Observation: Pronoun resolution introduces ambiguities.

> Pragmatics: Use world knowledge to filter out impossible readings.
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We observe that our extended tableau calculus was indeed able to handle this example, if we only
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give it enough background knowledge to act upon.

But the world knowledge we can express in PLEQ is very limited. We can say that humans
do not bite dogs, but we cannot provide the background knowledge to understand a sentence like
Peter was late for class today, the car had a flat tire., which needs knowledge like Every car has
Whgels, which have a tire. and if a tire is flat, the car breaks down., which is outside the realm of
PLYq-

7.2.4 The Computational Role of Ambiguities

In the case study, we have seen that pronoun resolution introduces ambiguities, and we can use
world knowledge to filter out impossible readings. Generally in the traditional waterfall model of
language processing — which posits that NL understanding is a process that analyzes the input in
stages: syntax, semantics composition, pragmatics — every processing stage introduces ambiguities
that need to be resolved in this stage or later.

The computational Role of Ambiguities

> Observation: (in the traditional waterfall model)
Every processing stage introduces ambiguities that need to be resolved.

> Syntax: e.g. Peter chased the man in the red sports car (attachment)
> Semantics: e.g. Peter went to the bank (lexical)
> Pragmatics: e.g. Two men carried two bags (collective vs. distributive)
> Question: Where does pronoun-ambiguity belong? (much less clear)

> Answer: we have freedom to choose

1. resolve the pronouns in the syntax (generic waterfall model)
~ multiple syntactic representations (pragmatics as filter)
2. resolve the pronouns in the pragmatics (our model here)
~ need underspecified syntactic representations (e.g. variables)
~» pragmatics needs ambiguity treatment (e.g. tableaux)

ALEXANDER
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For pronoun ambiguities, this is much less clear. In a way we have the freedom to choose. We can

1. resolve the pronouns in the syntax as in the generic waterfall model, then we arrive at multiple
syntactic representations, and can use pragmatics as filter to get rid of unwanted readings

2. resolve the pronouns in the pragmatics (our model here) then we need underspecified syntactic
representations (e.g. variables) and pragmatics needs ambiguity treatment (in our case the
tableaux).

We will continue to explore the second alternative in more detail, and refine the approach. One
of the advantages of treating the anaphoric ambiguities in the syntax is that syntactic agree-
ment information like gender can be used to disambiguate. Say that we vary the example from
subsection 7.2.3 to Peter loves Mary. She loves him..

Translation for /5 Reconsidered
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>> ldea: Pronouns are translated into new variables (so far)

> Problem: Peter loves Mary. She loves him.

(loves(peter, mary) ")

(loves(X,Y)")

loves(peter, pe‘cer)T ‘ loves(peter, mary)T ‘ loves(mary, peter)T ‘ loves(mary, mary)T

> ldea: attach world knowledge to pronouns (just as with Peter and Fido)

> use the world knowledge to distinguish (linguistic) gender by predicates masc and fem
> Idea: attach world knowledge to pronouns (just as with Peter and Fido)
> Problem: properties of

> proper names are given in the model,

> pronouns must be given by the syntax/semantics interface

> In particular: How to generate loves(X, Y ) Amasc(X)Afem(Y') compositionally?
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The tableau (over)-generates the full set of pronoun readings. At first glance it seems that we
can fix this just like we did in subsection 7.2.3 by attaching world knowledge to pronouns, just as
with Peter and Fido. Then we could use the world knowledge to distinguish gender by predicates,
say masc and fem.

But if we look at the whole picture of building a system, we can see that this idea will not
work. The problem is that properties of proper names like Fido are given in the background
knowledge, whereas the relevant properties of pronouns must be given by the syntax/semantics
interface. Concretely, we would need to generate loves(X,Y) A masc(X) A fem(Y') for She loves
him. How can we do such a thing compositionally?

Again we basically have two options, we can either design a clever syntax/semantics interface,
or we can follow the lead of Montague semantics and extend the logic, so that compositionality
becomes simpler to achieve. We will explore the latter option in the next section. The
problem we stumbled across in the last section is how to associate certain properties (in this case
agreement information) with variables compositionally. Fortunately, there is a ready-made logical
theory for it. Sorted first-order logic. Actually there are various sorted first-order logics, but we
will only need the simplest one for our application at the moment.

Sorted first-order logic extends the language with a set S of sorts A, B, C, ..., which are just special
symbols that are attached to all terms in the language.

Syntactically, all constants, and variables are assigned sorts, which are annotated in the lower
index, if they are not clear from the context. Semantically, the universe D, is subdivided into
subsets D, C D,, which denote the objects of sort A; furthermore, the interpretation function Z
and variable assignment ¢ have to be well sorted. Finally, on the calculus level, the only change
we have to make is to restrict instantiation to well-sorted substitutions:

Sorts refine World Categories

> Definition 7.2.25 (Sorted Logics). (in our
case PL%) assume a set of sorts S:={A.B,C, ...}, annotate every syntactic and
semantic structure with them. Make all constructions and operations well worted:
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> Syntax: variables and constants are sorted X, Yg, Z%l e G, ba, ..

> Semantics: subdivide the Universe D, into subsets D, C D,
Interpretation 7 and variable assignment ¢ have to be well-sorted. Z(ay ), (X )ET}a.

> calculus: substitutions must be well sorted [ay /X, ] OK, [as/Xg] not.

> Observation:  Sorts do not add expressivity in principle  (just practically) For
every sort A, we introduce a first-order predicate %, and

> Translate R(Xy) A =P(Zc) to Ru(X) A Re(Z) = R(X) A —=P(Z) in world
knowledge.
> Translate R(X,) A “P(Z¢) to Ry(X) ANRe(Z)ANR(X,Y)A—P(Z) in input.

> Meaning is preserved, but translation is non-compositional!
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7.3 Tableaux and Model Generation
7.3.1 Tableau Branches and Herbrand Models

We have claimed above that the set of literals in open saturated tableau branches corresponds
to a model. To gain an intuition, we will study our example above,

Model Generation and Interpretation

> Example 7.3.1 (from above). In Example 7.2.16 we claimed that
H:={loves(john, mary)", loves(mary, bill) "}
constitutes a model
(loves(mary, bill) \/ loves(john, mary))T
loves(john, mary)F

loves(mary, bill)" | loves(john, mary)"
1

> Recap: A model M is a pair (U,Z), where D is a set of individuals, and 7 is an
interpretation function.

> Problem: Find U and 7
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So the first task is to find a domain D of interpretation. Our formula mentions Mary, John, and
Bill, which we assume to refer to distinct individuals so we need (at least) three individuals in the
domain; so let us take U:={A, B,C'} and fix Z(mary) = A, Z(bill) = B, Z(john) = C.

So the only task is to find a suitable interpretation for the predicate loves that makes loves(john, mary)
false and loves(mary, bill) true. This is simple: we just take Z(loves) = {(A, B)}. Indeed we have

Z,(loves(mary, bill) V loves(john, mary)) = T

but 7, (loves(john, mary)) = F according to the rules in®.

SEpNoTE: crossref
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Model Generation and Models

> ldea: Choose the universe UU as the set L(/) of constants, choose Z(=)ld,., inter-
0
pret pe>y via Z(p):={ (a1, ..., ax)|p(ar, ..., ax)cH}.
> Definition 7.3.2. We call a model a Herbrand model, iff U = Xg and 7 = Idy.;.
“0
> Lemma 7.3.3.

Let H be a set of atomic propositions, then setting

Z(p):={{a1.....ap)lp(ox, ..., ax)EH}
yields a Herbrand Model that satisfies H. (proof trivial)

> Corollary 7.3.4. Let H be a consistent (i.e. \. holds) set of atomic propositions,
then there is a Herbrand Model that satisfies H. (take H')
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In particular, the literals of an open saturated tableau branch B are a Herbrand model H, as
we have convinced ourselves above. By inspection of the inference rules above, we can further
convince ourselves, that H satisfies all formulae on B. We must only check that if H satisfies the
succedents of the rule, then it satisfies the antecedent (which is immediate from the semantics of
the principal connectives).

In particular, H is a model for the root formula of the tableau, which is on B by construction.
So the tableau procedure is also a procedure that generates explicit (Herbrand) models for the root
literal of the tableau. Every branch of the tableau corresponds to a (possibly) different Herbrand
model. We will use this observation in the next section in an application to natural language
semantics.

7.3.2 Using Model Generation for Interpretation

We will now use model generation directly as a tool for discourse interpretation.

Using Model Generation for Interpretation

> Definition 7.3.5. Mental model theory [JL83; JLB91] posits that humans form
mental models of the world, i.e. (neural) representations of possible states of the
world that are consistent with the perceptions up to date and use them to reason
about the world.

> So communication by natural language is a process of transporting parts of the
mental model of the speaker into the mental model of the hearer.

> Therefore the NL interpretation process on the part of the hearer is a process of
integrating the meaning of the utterances of the speaker into his mental model.

> ldea:  We can model discourse understanding as a process of generating Herbrand
models for the logical form of an utterance in a discourse by a tableau based model
generation procedure.

> Advantage: Capturing ambiguity by generating multiple models for input logical
forms.
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Tableau Machine

> Definition 7.3.6. The tableau machine is an inferential cognitive model for incre-
mental natural language understanding that implements mental model theory via
tableau based model generation over a sequence of input sentences.

It iterates the following process for every input sentence staring with the empty
tableau:
1. add the logical form of the input sentence S; to the selected branch,

2. perform tableau inferences below S; until saturated or some resource criterion is
met

3. if there are open branches choose a “preferred branch”, otherwise backtrack to
previous tableau for S; with j < i and open branches, then re-process S;;1,...,5;
if possible, else fail.

The output is application dependent; some choices are

> the Herbrand model for the preferred branch ~» preferred interpretation;

> the literals augmented with all non expanded formulae

(from the discourse); (resource-bound was reached)

> machine answers user queries (preferred model = query?)

> model generation mode (guided by resources and strategies)
> theorem proving mode (O for side conditions; using tableau rules)
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Concretely, we treat discourse understanding as an online process that receives as input the logical
forms of the sentences of the discourse one by one, and maintains a tableau that represents the
current set of alternative models for the discourse. Since we are interested in the internal state of
the machine (the current tableau), we do not specify the output of the tableau machine. We also
assume that the tableau machine has a mechanism for choosing a preferred model from a set of
open branches and that it maintains a set of deferred branches that can be re-visited, if extension
of the preferred model fails.

Upon input, the tableau machine will append the given logical form as a leaf to the preferred
branch. (We will mark input logical forms in our tableaux by enclosing them in a box.) The
machine then saturates the current tableau branch, exploring the set of possible models for the
sequence of input sentences. If the subtableau generated by this saturation process contains open
branches, then the machine chooses one of them as the preferred model, marks some of the other
open branches as deferred, and waits for further input. If the saturation yields a closed sub-tableau,
then the machine backtracks, i.e. selects a new preferred branch from the deferred ones, appends
the input logical form to it, saturates, and tries to choose a preferred branch. Backtracking
is repeated until successful, or until some termination criterion is met, in which case discourse
processing fails altogether.

The Tableau Machine in Action

> Example 7.3.7. The tableau machine in action on two sentences.
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Background
Knowledge

Sentence 1

1 0 1L 0O

Sentence 2 Sentence 2
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Two (Syntactical) Readings

> Example 7.3.8. Peter loves Mary and Mary sleeps or Peter snores(syntactically
ambiguous)
Reading 1 loves(peter, mary) A (sleeps(mary) V snores(peter))
Reading 2 loves(peter, mary) A sleeps(mary) V snores(peter)

> Let us first consider the first reading in Example 7.3.8. Let us furthermore assume

that we start out with the empty tableau, even though this is cognitively implausible,
since it simplifies the presentation.

‘ loves(peter, mary) A (sleeps(mary) V snores(peter)) ‘

-
loves(peter, mary)
(sleeps(mary) V snores(peter)) "
T T
sleeps(mary) ‘snores(peter)

> Observation: We have two models, so we have a case of semantical ambiguity.
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We see that model generation gives us two models; in both Peter loves Mary, in the first, Mary
sleeps, and in the second one Peter snores. If we get a logically different input, e.g. the second
reading in Example 7.3.8, then we obtain different models.

The other (Syntactical) Reading
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‘ loves(peter, mary) A sleeps(mary) V snores(peter) ‘

(loves(peter, mary) A sleeps(mary))T snores(peter)T
loves(peter, mary)T
2
sleeps(mary)
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In a discourse understanding system, both readings have to considered in parallel, since they
pertain to a genuine ambiguity. The strength of our tableau-based procedure is that it keeps the
different readings around, so they can be acted upon later.
Note furthermore, that the overall (syntactical and semantic) ambiguity is not as bad as it looks:
the left models of both readings are identical, so we only have three semantic readings not four.

Continuing the Discourse

> Example 7.3.9. Peter does not love Mary
then the second tableau would be extended to

‘ loves(peter, mary) A sleeps(mary) V snores(peter) ‘

(loves(peter, mary) A sleeps(mary))T snores(peter)T

loves(peter, mary) ‘ —loves(peter, mary) ‘
sleeps(mary)T

‘ﬁloves(peter, mary) ‘

loves(peter, mary)F

and the first tableau closes altogether.

> In effect the choice of models has been reduced to one, which constitutes the
intuitively correct reading of the discourse
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Model Generation models Discourse Understanding

> Conforms with psycholinguistic findings:
> Zwaan& Radvansky [ZR98]: listeners not only represent logical form, but also
models containing referents.
> deVega [de 95]: online, incremental process.

> Singer [Sin94]: enriched by background knowledge.

> Glenberg et al. [GML87]: major function is to provide basis for anaphor resolu-
tion.
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Towards a Performance Model for NLU
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> Problem: The tableau machine is only a competence model.

> Definition 7.3.10. A competence model is a meaning theory that delineates a space
of possible discourses. A performance model delineates the discourses actually used
in communication. (after [Cho65a])

>> ldea: We need to guide the tableau machine in which inferences and branch
choices it performs.

> ldea: Each tableau rule comes with rule costs.

> Here: each sentence in the discourse has a fixed inference budget.
Expansion until budget used up.

> Ultimately we want bounded optimization regime [Rus91]:
Expansion as long as expected gain in model quality outweighs proof costs

> Effect: Expensive rules are rarely applied. (only if the promise great rewards)

> 2 Finding appropriate values for rule costs and model quality is an open problem.
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7.3.3 Adding Equality to PLNQ or Fragment 1

We will now extend PI'? by equality, which is a very important relation in natural language.
Generally, extending a logic with a new logical constant equality is counted as a logical constant,
since it semantics is fixed in all models involves extending all three components of the logical
system: the language, semantics, and the calculus.

PLng ™ =: Adding Equality to P

o> Syntax: Just another binary predicate constant =
> Semantics: Fixed as Z,(a =b) =T, iff Z,(a) = Z,(b). (logical constant)

> Definition 7.3.11 (Tableau Calculus 7). Add two additional inference rules
(a positive and a negative) to 7Ty

a=b"
acH Ala *
HTATQSYm WW\@'EP

where

> H = the Herbrand Base, i.e. the set of constants occurring on the branch
> we write C[A] to indicate that C|, = A (C has subterm A at position p).
> [A/p|C is obtained from C by replacing the subterm at position p with A.

CLZCLF

: With 7ygsym we

can conjure a a = a' from thin air which can then be used to close the a = a'.

> Note: We could have equivalently written 7 ,sym as

> So, ... Tygsym and Tyqrep follow the pattern of having a T and a F rule per
logical constant.
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If we simplify the translation of definite descriptions, so that the phrase the teacher translates to
a concrete individual constant, then we can interpret (??) as (?7).
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Reading Comprehension Example: Mini TOEFL test

> Example 7.3.12 (Reading Comprehension). If you hear/read Mary is the
teacher. Peter likes the teacher., do you know whether Peter likes Mary?

> Idea: Interpret via tableau machine (interpretation mode) and test entailment in
theorem proving mode.

> Interpretation: Feed ®;:=mary = the teacher and ®5:=likes(peter, the teacher)
to the tableau machine in turn.
Model generation tableau (nothing to do on these inputs)

mary = theiteacherT

likes(peter, the teacher)’

> Entailment Test: label p:=likes(peter, mary) with F and saturate the tableau.

mary = the teacher’

)T

likes(peter, the teacher

likes(peter, mary)F

likes(peter, the _teacher)"
1L

Indeed, it closes, so @1, 5 = .
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Chapter 8

Pronouns and World Knowledge in
First-Order Logic

8.1 First-Order Logic

First-order logic is the most widely used formal systems for modelling knowledge and inference
processes. It strikes a very good bargain in the trade-off between expressivity and conceptual
and computational complexity. To many people first-order logic is “the logic”, i.e. the only logic
worth considering, its applications range from the foundations of mathematics to natural language
semantics.

First-Order Predicate Logic (PL')

>> Coverage: We can talk about (All humans are mortal)

> individual things and denote them by variables or constants

> properties of individuals, (e.g. being human or mortal)
> relations of individuals, (e.g. sibling of relationship)
> functions on individuals, (e.g. the father of function)

We can also state the existence of an individual with a certain property, or the
universality of a property.

> But we cannot state assertions like
> There is a surjective function from the natural numbers into the reals.

> First-Order Predicate Logic has many good properties (complete caleuli,
compactness, unitary, linear unification,. . .)

> But too weak for formalizing: (at least directly)

> natural numbers, torsion groups, calculus, ...

> generalized quantifiers (most, few,...)

Michael Kohlhase: LBS 160 2024-01-20

We will now introduce the syntax and semantics of first-order logic. This introduction differs
from what we commonly see in undergraduate textbooks on logic in the treatment of substitutions
in the presence of bound variables. These treatments are non syntactic, in that they take the

99
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renaming of bound variables (« equivalence) as a basic concept and directly introduce capture-
avoiding substitutions based on this. But there is a conceptual and technical circularity in this
approach, since a careful definition of a-equivalence needs substitutions.

In this section we follow Peter Andrews’ lead from [And02] and break the circularity by intro-
ducing syntactic substitutions, show a substitution value lemma with a substitutability condition,
use that for a soundness proof of o renaming, and only then introduce capture-avoiding substitu-
tions on this basis. This can be done for any logic with bound variables, we go through the details
for first-order logic here as an example.

8.1.1 First-Order Logic: Syntax and Semantics

The syntax and semantics of first-order logic is systematically organized in two distinct layers:
one for truth values (like in propositional logic) and one for individuals (the new, distinctive feature
of first-order logic).

The first step of defining a formal language is to specify the alphabet, here the first-order signatures
and their components.

P! Syntax (Signature and Variables)

> Definition 8.1.1. First-order logic (PL"), is a formal system extensively used in
mathematics, philosophy, linguistics, and computer science. It combines proposi-
tional logic with the ability to quantify over individuals.

> PL' talks about two kinds of objects: (so we have two kinds of symbols)

& truth values by reusing PL

> individuals, e.g. numbers, foxes, Pokémon,. ..

> Definition 8.1.2. A first-order signature consists of (all disjoint; keN)
> connectives: Yo = {71, F,—,V,A\,=, <, ...} (functions on truth values)
> function constants: LIQ ={f,9.h,...} (k-ary functions on individuals)
> predicate constants: ¥} = {p,q,7,...} (k-ary relations among individuals.)
> (Skolem constants: ¥3F = {fi f2...}) (witness constructors; countably oo)

> We take 3, to be all of these together: >,:=>/ U7 U3*" and define :=>, U
0.

> Definition 8.1.3. We assume a set of individual variables: V,:={X Y. Z, .. }.
(countably o0)
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We make the deliberate, but non-standard design choice here to include Skolem constants into
the signature from the start. These are used in inference systems to give names to objects and
construct witnesses. Other than the fact that they are usually introduced by need, they work
exactly like regular constants, which makes the inclusion rather painless. As we can never predict
how many Skolem constants we are going to need, we give ourselves countably infinitely many for
every arity. Our supply of individual variables is countably infinite for the same reason.

The formulae of first-order logic are built up from the signature and variables as terms (to represent
individuals) and propositions (to represent proposition). The latter include the connectives from
PIY, but also quantifiers.
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P! Syntax (Formulae)

> Definition 8.1.4. Terms: Acuwff,(31,V),) (denote individuals)
> V/, g /“;'[T/,(E'l ) V,,),
> if fEZ‘,: and Afcuff,(2,V),) for i<k, then f(AY, .. AR)cuf, (3,,)),).
> Definition 8.1.5. Propositions: Acuff (¥, V,): (denote truth values)
> if pe¥f and Alewf,(31,V),) for i<k, then p(Al, .. AF)ewf (31,V,),
> if A, Beuwff (21,V,) and X€V,, then T, A ANB, A VX.Acuf (X1,V,).
V' is a binding operator called the universal quantifier.

> Definition 8.1.6. We define the connectives I,V/, =, < via the abbreviations
AVB=(-AAN-B),A=B=AVB A< B=A=B)A(B=A), and
F:==T. We will use them like the primary connectives A and —

> Definition 8.1.7. We use 5X.A as an abbreviation for —=(V.X.—A). Jis a binding
operator called the existential quantifier.

> Definition 8.1.8. Call formulae without connectives or quantifiers atomic else
complex.

Michael Kohlhase: LBS 162 2024-01-20
Note: We only need e.g. conjunction, negation, and universal quantifier, all other log-

ical constants can be defined from them (as we will see when we have fixed their interpreta-
tions).

Alternative Notations for Quantifiers

Here ‘ Elsewhere
Ve. A | \z.A (2)A
Jr.A | \x.A
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The introduction of quantifiers to first-order logic brings a new phenomenon: variables that are
under the scope of a quantifiers will behave very differently from the ones that are not. Therefore
we build up a vocabulary that distinguishes the two.

Free and Bound Variables

> Definition 8.1.9. We call an occurrence of a variable X bound in a formula A, iff
it occurs in a sub-formula VX.B of A. We call a variable occurrence free otherwise.

For a formula A, we will use BVar(A) (and free(A)) for the set of bound (free)
variables of A, i.e. variables that have a free/bound occurrence in A.

> Definition 8.1.10. We define the set free(A) of frees variable of a formula A:
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free(X):={X}
free(f(A1,...,An)):=Ui<i<nfree(A;)
free(p(A1,..., An)):=Ui<i<nfree(A;)
free(—A):=free(A)

free(A A B):=free(A) U free(B)
free(VX.A):=free(A)\{ X}

> Definition 8.1.11. We call a formula A closed or ground, iff free(A) = (). We
call a closed proposition a sentence, and denote the set of all ground terms with
cuwff ,(31) and the set of sentences with cuff ().
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We will be mainly interested in (sets of) sentences —i.e. closed propositions — as the representations
of meaningful statements about individuals. Indeed, we will see below that free variables do
not gives us expressivity, since they behave like constants and could be replaced by them in all
situations, except the recursive definition of quantified formulae. Indeed in all situations where
variables occur freely, they have the character of meta variables, i.e. syntactic placeholders that
can be instantiated with terms when needed in an inference calculus.

The semantics of first-order logic is a Tarski-style set-theoretic semantics where the atomic syn-
tactic entities are interpreted by mapping them into a well-understood structure, a first-order
universe that is just an arbitrary set.

Semantics of PL' (Models)

> Definition 8.1.12. We inherit the domain Dy = {T,F} of truth values from PL”
and assume an arbitrary domain D, # () of individuals. (this choice is a parameter
to the semantics)

> Definition 8.1.13. An interpretation 7 assigns values to constants, e.g.

> Z(—): Dy—Dy with T—F, Fi»T, and Z(A) = ... (as in PL%)
>1: Z',Z%’D,k — D, (interpret function symbols as arbitrary functions)
>7: ZZ%P(D/’C) (interpret predicates as arbitrary relations)

> Definition 8.1.14. A variable assignment ¢: V,—D, maps variables into the do-
main.

> Definition 8.1.15. A model M = (D,,Z) of PL' consists of a domain D, and an
interpretation Z.
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We do not have to make the domain of truth values part of the model, since it is always the same;
we determine the model by choosing a domain and an interpretation functiong.

Given a first-order model, we can define the evaluation function as a homomorphism over the
construction of formulae.

Semantics of PL' (Evaluation)

> Definition 8.1.16. Given a model (D,Z), the value function 7, is recursively
defined: (two parts: terms & propositions)
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ot wif ,(31,V,)—=D, assigns values to terms.

T,(X):=p(X) and
Zo(f(A1, .o Ag))=I(f)(Zp (A1), - .. Lo (Ak))
u[]o(ul, )%’DU assigns values to formulae:
(T (T) =T,
To(mA Z(=)(Zy(A)) )
To(A N B) T(M(Zy(A), I,(B)) (just as in PL”)
To(p(As, .. A))=T, ff (Zp(A1), . Ty(Ax))EZ(p)
T,(VX. A) T, iff Ty pa/x))(A) =T for all acD,.

> Definition 8.1.17 (Assignment Extension). Let ¢ be a variable assignment into
D and acD, then ¢.la/X] is called the extension of ¢ with [a/X] and is defined
as {(Y.a)eplY # X} U{(X.,a)}: ¢.Ja/X]| coincides with ¢ off X, and gives the
result a there.
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The only new (and interesting) case in this definition is the quantifier case, there we define the
value of a quantified formula by the value of its scope — but with an extension of the incoming
variable assignment. Note that by passing to the scope A of Vx.A, the occurrences of the variable
z in A that were bound in Vx.A become free and are amenable to evaluation by the variable
assignment ¥:=¢.[a/X|. Note that as an extension of p, the assignment v supplies exactly the
right value for z in A. This variability of the variable assignment in the definition of the value
function justifies the somewhat complex setup of first-order evaluation, where we have the (static)
interpretation function for the symbols from the signature and the (dynamic) variable assignment
for the variables.

Note furthermore, that the value Z,(3z.A) of 3z.A, which we have defined to be —=(Vz.—A) is
true, iff it is not the case that 7, (Va.—~A) = Z,(—A) = F for all acD, and ¢:=¢,[a/X]. This is
the case, iff 7,,(A) = T for some acD,. So our definition of the existential quantifier yields the
appropriate semantics.

Semantics Computation: Example

> Example 8.1.18. We define an instance of first-order logic:

> Signature: Let X‘/‘::{j,m}, X'/'::{f}, and ¥5:={o}
> Universe: D,:={J. M}
> Interpretation: Z(j):=J, Z(m):=M, Z(f)(J):=M,Z(f)(M):=M, and Z(0):={(M ,J)}.

Then VX.o(f(X),X) is a sentence and with 1:=p,[a/X] for acD, we have

To(VX.0(f(X), X)) =T iff Zylo(f(X),X)) =T forall acD,
),

iff  (Zy(f(X)).Zy(X))eZ(o) for all ac{J, M}
iff  (Z(f)(Zy(X))(X))e{(M,J)} forall ac{J, M}
iff  (Z(f)(¥(X)),a) = (M.J) for all ac{J. M}
ifft Z(f)(a) = M and a = J for all ac{J, M}

Buta # J fora= M, so Z,(VX.o(f(X),X)) = F in the model (D,, 7).

Michael Kohlhase: LBS 167 2024-01-20
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8.1.2 First-Order Substitutions

We will now turn our attention to substitutions, special formula-to-formula mappings that
operationalize the intuition that (individual) variables stand for arbitrary terms.

Substitutions on Terms

> Intuition: If B is a term and X is a variable, then we denote the result of
systematically replacing all occurrences of X in a term A by B with [B/X]|(A).

> Problem: What about [Z/Y].[Y/X|(X), is that Y or Z7

> Folklore: [Z/Y].[Y/X|(X)=Y, but [Z/Y]([Y/X](X)) = Z of course.
(Parallel application)

> Definition 8.1.19. Let wfe(X, V) be an expression language, then we call o: V—ufe(E, V)
a substitution, iff the support supp(o):={X|(X ,A)co, X # A} of o is finite. We
denote the empty substitution with e.

> Definition 8.1.20 (Substitution Application). We define substitution application
by
> o(c) = ¢ for ceX
>o(X)=A,iff AcV and (X A)co.
o o(f(A1,. . An) = f(o(A), ... o(An)),
s o(3X.A)=3X.0 x(A).
> Example 8.1.21. [a/z], [f(D)/y], [a/z] instantiates g(x,y, h(2)) to g(a, f (D), h(a)).

o> Definition 8.1.22. Let o be a substitution then we call intro(o):=( ) x csupp(o) free(o(N))
the set of variab