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Preface

This Document
This document contains the course notes for the course “Logic-Based Natural Language Processing”
(Logik-Basierte Sprachverarbeitung) held at FAU Erlangen-Nürnberg in the Winter Semesters
2017/18 ff.

This course is a one-semester introductory course that provides an overview over logic-based
semantics of natural language. It follows the “method of fragments” introduced by Richard Mon-
tague, and builds a sequence of fragments of English with increasing coverage and a sequence of
logics that serve as target representation formats. The course can be seen as both a course on
semantics and as a course on applied logics.

As this course is predominantly about modeling natural language and not about the theoretical
aspects of the logics themselves, we give the discussion about these as a “suggested readings” section
part in . This material can safely be skipped (thus it is in the appendix), but contains the missing
parts of the “bridge” from logical forms to truth conditions and textual entailment.

Contents: The document mixes the slides presented in class with comments of the instructor
to give students a more complete background reference.

Caveat: This document is made available for the students of this course only. It is still an
early draft, and will develop over the course of the course. It will be developed further in coming
academic years.

Licensing:
This document is licensed under a Creative Commons license that requires attribution, forbids

commercial use, and allows derivative works as long as these are licensed under the same license.
Knowledge Representation Experiment:
This document is also an experiment in knowledge representation. Under the hood, it uses

the STEX package [Koh08; Koh21], a TEX/LATEX extension for semantic markup, which allows to
export the contents into active documents that adapt to the reader and can be instrumented with
services based on the explicitly represented meaning of the documents.

Comments: Comments and extensions are always welcome, please send them to the author.

Acknowledgments
Materials: Some of the material in this course is based on a course “Formal Semantics of Natural
Language” held by the author jointly with Prof. Mandy Simons at Carnegie Mellon University in
2001.

ComSem Students: The course is based on a series of courses “Computational Natural Language
Semantics” held at Jacobs University Bremen and shares a lot of material with these. The following
students have submitted corrections and suggestions to this and earlier versions of the notes:
Bastian Laubner, Ceorgi Chulkov, Stefan Anca, Elena Digor, Xu He, and Frederik Schäfer.

LBS Students: The following students have submitted corrections and suggestions to this and
earlier versions of the notes: Maximilian Lattka, Frederik Schaefer, Navid Roux.
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df

Recorded Syllabus for WS 2020/21
In this document, we record the progress of the course in the winter semester 2020/21 in the form
of a “recorded syllabus”, i.e. a syllabus that is created after the fact rather than before.

Recorded Syllabus Winter Semester 2020/21:

# date type what slide page
Here the syllabus of the Winter Semester 2020/21 for reference, the current year should be

similar. Recorded Syllabus Winter Semester 2020/21:

# date type what slide page
1 3. Nov Lec. Admin, NL Processing
2 5. Nov Lec. Language Philosophy, Examples
3 Nov 10. Lec. Epistemology, Examples
4 Nov 12. Lec. Method of Fragments, Fragment 1
5 Nov 17. Lab GF for Fragment1
6 Nov. 19. Lab Formalizing PLNQ in MMT
7 Nov. 24. Lab Semantics Construction by View
8 Nov. 26. Lab Formalizing ND in MMT
9 Dec. 1. Lecture Fragment 2 and Tableau Reasoning
10 Dec. 3. Lecture Model Generation and Interpretation
11 Dec. 8. Lecture Fragment 2 in FOL
12 Dec. 10. Lab FOL, ND rules in MMT
13 Dec. 15. Lab Derived ND rules, Church Numerals in MMT
14 Dec. 17. Lab Tableau rules in MMT
15 Dec. 22. Lab Fragment 3. (VPs)
16 Jan. 7. Lab Fragment 4. (Type-Raising for NPs)
17 Jan. 12. Lecture Higher-order logic, description, UNA
18 Jan. 14. Lecture/Lab Davidsonian Semantics
19 Jan. 19. Lecture Propositional Attitues & Modal Logics
20 Jan. 21. Lecture Multi-Modal Logics, DRT
21 Jan. 26. Lecture DRT, Tense, Dynamic Program Logic
22 Jan. 28. Lecture/Lab ELPI 4 Mogen
23 Feb. 2. Lecture/Lab Mogen 4 Negation
24 Feb. 4. Lecture/Lab Record Calculus for Complex Objects
25 Feb. 9. Lecture/Lab Record Calculus for Complex Objects
26 Jeb. 11. Lecture Tense

See also the course notes of last year available for reference at http://kwarc.info/teaching/
LBS/notes-WS2021.pdf.

http://kwarc.info/teaching/LBS/notes-WS2021.pdf
http://kwarc.info/teaching/LBS/notes-WS2021.pdf
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Chapter 1

Administrativa

We will now go through the ground rules for the course. This is a kind of a social contract
between the instructor and the students. Both have to keep their side of the deal to make the
acquaintance with research in natural language semantics as efficient and painless as possible.

Prerequisites

� I will presuppose: the mandatory CS courses from Semester 1-4, in particular: (or
equivalent)

� Course “Grundlagen der Logik in der Informatik” (GLOIN)

� Algorithms and data structures

� The following will help: (we recap if necessary)

� AI-1 (symbolic AI)

� Ontologies in the Semantic Web (INF8)

� Key Ingredients: Motivation, interest, curiosity, hard work (LBS is non-trivial)

� You can do this course if you want! (and we will help you)

©:MichaelKohlhase 1

LBS Lab (Dogfooding our own Techniques)

� General Plan: We use the thursday slot to get our hands dirty with actual GLIF
representations.

� Responsible: Frederik Schaefer (jan.frederik.schaefer@fau.de) Room: 11.137.

� Goal: Reinforce what was taught on tuesdays and have some fun.

� Homeworks will be small individual modeling/formalization problems (but take
time to solve)

Group submission if and only if explicitly permitted.

� Admin: To keep things running smoothly

1

jan.frederik.schaefer@fau.de


2 CHAPTER 1. ADMINISTRATIVA

� Homeworks will be posted on course forum. (discussed in the lab)

� No “submission”, but open development on a git repos. (details follow)

� Homework Discipline:

� start early! (many assignments need more than one evening’s work)

� Don’t start by sitting at a blank screen!

� Humans will be trying to understand the text/code/math when grading it.

©:MichaelKohlhase 2

Now we come to a topic that is always interesting to the students: the grading scheme.

Grades

� Academic Assessment: two parts (Portfolio Assessment)

� 20-30 min oral exam at the end of the semester (50%)

� results of the LBS lab (50%)

� If you have a better suggestion, then I will probably be happy with that as well.

©:MichaelKohlhase 3

Actually, I do not really care what the grading scheme is, and so it is open to discussion. For
all I care we would not have grades at all; but students need them to graduate. Generally, I would
like to spend as little time as possible on the grades admin, to the extent that I can give grades
without going to jail or blushing too much.

Textbook, Handouts and Information, Forums

� (No) Textbook: Course notes at http://kwarc.info/teaching/LBS

� I mostly prepare them as we go along (semantically preloaded ; research
resource)

� Please e-mail me any errors/shortcomings you notice. (improve for group)

� For GLIF: Frederik’s Master’s Thesis [Sch20]

� Classical Semantics/Pragmatics: (in the FAU Library)

� Primary reference for LBS: [CKG09] (in the FAU Library)

� also: [HHS07; Bir13; Rie10; ZS13; Sta14; Sae03; Por04; Kea11; Jac83; Cru11;
Ari10]

� Computational Sematics: [BB05; EU10]

� Course Forum: on StudOn: https://www.studon.fau.de/cat1664468.html
for

� announcements, homeworks, questions

� discussion among your fellow students

http://kwarc.info/teaching/LBS
https://www.studon.fau.de/cat1664468.html
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Next we come to a special project that is going on in parallel to teaching the course. I am
using the course materials as a research object as well. This gives you an additional resource, but
may affect the shape of the coures materials (which now serve double purpose). Of course I can
use all the help on the research project I can get, so please give me feedback, report errors and
shortcomings, and suggest improvements.

Experiment: E-Learning with KWARC Technologies

� My research area: deep representation formats for (mathematical) knowledge

� Application: E-learning systems (represent knowledge to transport it)

� Experiment: Start with this course (Drink my own medicine)

� Re-Represent the slide materials in OMDoc (Open Math Documents)

� (Eventually) feed it into the MathHub system (http://mathhub.info)

� Try it on you all (to get feedback from you)

� Tasks (Unfortunately, I cannot pay you for this; maybe later)

� help me complete the material on the slides (what is missing/would help?)

� I need to remember “what I say”, examples on the board. (take notes)

� Benefits for you (so why should you help?)

� you will be mentioned in the acknowledgements (for all that is worth)

� you will help build better course materials (think of next-year’s students)

©:MichaelKohlhase 5

http://mathhub.info
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Chapter 2

An Introduction to Natural
Language Semantics

In this Chapter we will introduce the topic of this course and situate it in the larger field of
natural language understanding. But before we do that, let us briefly step back and marvel at the
wonders of natural language, perhaps one of the most human of abilities.

Fascination of (Natural) Language

� Definition A natural language is any form of spoken or signed means communication
that has evolved naturally in humans through use and repetition without conscious
planning or premeditation.

� In other words: the language you use all day long, e.g. English, German, . . .

� Why Should we care about natural language?:

� Even more so than thinking, language is a skill that only humans have.

� It is a miracle that we can express complex thoughts in a sentence in a matter
of seconds.

� It is no less miraculous that a child can learn tens of thousands of words and a
complex grammar in a matter of a few years.

©:MichaelKohlhase 6

With this in mind, we will embark on the intellectual journey of building artificial systems that
can process (and possibly understand) natural language as well.

2.1 Natural Language and its Meaning
Before we embark on the journey into understanding the meaning of natural language, let us get
an overview over what the concept of “semantics” or “meaning” means in various disciplines.

What is Natural Language Semantics? A Difficult Question!

� Question: What is “Natural Language Semantics”?

� Definition Semantics is the study of reference, meaning, or truth.

5
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� Reference is a relationship between objects in which one object (the name)
designates, or acts as a means by which to connect to or link to, another object
(the referent).

� Meaning is a relationship between signs and the objects they intend, express, or
signify.

� Truth is the property of being in accord with fact or reality. Truth is typically
ascribed to things that aim to represent reality or otherwise correspond to it,
such as beliefs, propositions, and declarative sentences.

� Definition For natural language semantics, the signs are usually utterances and
names are usually phrases.

� That is all very abstract and general, can we make this more concrete?

� Different (academic) disciplines find different concretizations.

©:MichaelKohlhase 7

What is (NL) Semantics? Answers from various Disciplines!

� Observation: Different (academic) disciplines specialize the notion of nlssemantics
(of natural language) in different ways.

� Philosophy: has a long history of trying to answer it, e.g.

� Platon ; cave allegory, Aristotle ; Syllogisms.

� Frege/Russell ; sense vs. referent. (Michael Kohlhase vs. Odysseus)

� Linguistics/Language Philosophy: We need semantics e.g. in translation
Der Geist ist willig aber das Fleisch ist schwach! vs.
Der Schnaps ist gut, aber der Braten ist verkocht! (meaning counts)

� Psychology/Cognition: Semantics =̂ “what is in our brains” (; mental models)

� Mathematics has driven much of modern logic in the quest for foundations.

� Logic as “foundation of mathematics” solved as far as possible

� In daily practice syntax and semantics are not differentiated (much).

� Logic@AI/CS tries to define meaning and compute with them. (applied semantics)

� makes syntax explicit in a formal language (formulae, sentences)

� defines truth/validity by mapping sentences into “world” (interpretation)

� gives rules of truth-preserving reasoning (inference)

©:MichaelKohlhase 8

A good probe into the issues involved in natural language understanding is to look at trans-
lations between natural language utterances – a task that arguably involves understanding the
utterances first.

Meaning of Natural Language; e.g. Machine Translation
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� Idea: Machine Translation is very simple! (we have good lexica)

� Example Peter liebt Maria. ; Peter loves Mary.

� this only works for simple examples!

� Example Wirf der Kuh das Heu über den Zaun. ̸;Throw the cow the hay over
the fence. (differing grammar; Google Translate)

� Example Grammar is not the only problem

� Der Geist ist willig, aber das Fleisch ist schwach!

� Der Schnaps ist gut, aber der Braten ist verkocht!

� Assertion We have to understand the meaning for high-quality translation!

©:MichaelKohlhase 9

If it is indeed the meaning of natural language, we should look further into how the form of
the utterances and their meaning interact.

Language and Information

� Observation: Humans use words (sentences, texts) in natural languages to represent
and communicate information.

� But: What really counts is not the words themselves, but the meaning information
they carry.

� Example

Newspaper ;

� For questions/answers, it would be very useful to find out what words (sentences/-
texts) mean.

� Interpretation of natural language utterances: three problems

schema abstraction ambiguity composition

language
utterance

semantic
intepretation

©:MichaelKohlhase 10

Let us support the last claim a couple of initial examples. We will come back to these phe-
nomena again and again over the course of the course and study them in detail.

Language and Information (Examples)

� Example

https://goo.gl/4Wgqw5
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Car and automobile have the same meaning

� Example

A bank can be a financial institution or a geographical feature

� Example

Every student sleeps ; ∀x.student(x) ⇒ sleep(x)

©:MichaelKohlhase 11

But there are other phenomena that we need to take into account when compute the meaning
of NL utterances.

Context Contributes to the Meaning of NL Utterances

� Observation: Not all information conveyed is linguistically realized in an utterance.

� Example The lecture begins at 11:00 am. What lecture? Today?

� Definition We call a piece i of information linguistically realized in an utterance
U , iff, we can trace i to a fragment of U .

� Definition Inferring the missing pieces from the context and world knowledge:

Utterance Meaning
relevant

information
of utterance

Grammar

Lexicon

Inference

World knowledge

We call this process semantic/pragmatic analysis.

©:MichaelKohlhase 12

We will look at another example, that shows that the situation with semantic/pragmatic
analysis is even more complex than we thought. Understanding this is one of the prime objectives
of the LBS lecture.

Context Contributes to the Meaning of NL Utterances

� Example It starts at eleven. What starts?

� Before we can resolve the time, we need to resolve the anaphor it.

� Possible Mechanism: More Inference!
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Utterance
semantic
potential

utterance-
specific
meaning

relevant
information
of utterance

Grammar

Lexicon

Inference

World/Context Knowledge

; Semantic/pragmatic analysis is quite complex! (prime topic of LBS)

©:MichaelKohlhase 13

is also a very good example for the claim made above that even for high-quality (machine)
translation we need semantics. We end this very high-level introduction with a caveat.

Semantics is not a Cure-It-All!

How many animals of each species did Moses take onto the ark?

� Actually, it was Noah (But you understood the question anyways)

©:MichaelKohlhase 14

But Semantics works in some cases

� The only thing that currently really helps is a restricted domain:

� I. e. a restricted vocabulary and world model.

� Demo: DBPedia http://dbpedia.org/snorql/
Query: Soccer players, who are born in a country with more than 10 million in-
habitants, who played as goalkeeper for a club that has a stadium with more than
30.000 seats and the club country is different from the birth country

http://dbpedia.org/snorql/
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©:MichaelKohlhase 15

But Semantics works in some cases

� Answer: (is computed by DBPedia from a SPARQL Query)

©:MichaelKohlhase 16

Even if we can get a perfect grasp of the semantics (aka. meaning) of NL utterances, their
structure and context dependency – we will try this in this lecture, but of course fail, since the
issues are much too involved and complex for just one lecture – then we still cannot account for
all the human mind does with language. But there is hope, for limited and well-understood
domains, we can to amazing things. This is what this course tries to show, both in theory as well
as in practice.

2.2 Natural Language Understanding as Engineering
Even though this course concentrates on computational aspects of natural language semantics, it
is useful to see it in the context of the field of natural language processing.

Language Technology

� Language Assistance:

� written language: Spell/grammar/style-checking,

� spoken language: dictation systems and screen readers,

https://goo.gl/2i3ng1
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� multilingual text: machine-supported text and dialog translation, eLearning.

� Information management:

� search and classification of documents, (e.g. Google/Bing)

� information extraction, question answering. (e.g. http://ask.com)

� Dialog Systems/Interfaces:

� information systems: at airport, tele-banking, e-commerce, call centers,

� dialog interfaces for computers, robots, cars. (e.g. Siri/Alexa)

� Observation: The earlier technologies largely rely on pattern matching, the latter
ones need to compute the meaning of the input utterances, e.g. for database lookups
in information systems.

©:MichaelKohlhase 17

The general context of LBS is natural language processing (NLP), and in particular natural
language understanding (NLU) The dual side of NLU: natural language generation (NLG) requires
similar foundations, but different techniques is less relevant for the purposes of this course.

What is Natural Language Processing?

� Generally: Studying of natural languages and development of systems that can
use/generate these.

� Definition Natural language processing (NLP) is an engineering field at the inter-
section of computer science, artificial intelligence, and linguistics which is concerned
with the interactions between computers and human (natural) languages. Many
challenges in NLP involve

� natural language understanding (NLU) – that is, enabling computers to derive
meaning (representations) from human or natural language input.

� natural language generation (NLG) which aims at generating natural language
or speech from meaning representation.

� For communication with/among humans we need both NLU and NLG.

©:MichaelKohlhase 18

What is the State of the Art In NLU?

� Two avenues of attack for the problem: knowledge-based and statistical techniques
(they are complementary)

http://ask.com
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Deep Knowledge-based Not there yet
We are here cooperation?

Shallow no-one wants this Statistical Methods
applications

Analysis ↑
vs. narrow wide

Coverage →

� We will cover foundational methods of deep processing in the course and a mixture
of deep and shallow ones in the lab.

©:MichaelKohlhase 19

On the last slide we have classified the two main approaches to NLU. In the last 10 years the
community has almost entirely concentrated on statistical- and machine-learning based methods,
because that has led to applications like google translate, Siri, and the likes. We will now borrow
an argument by Aarne Ranta to show that there are (still) interesting applications for knowledge-
based methods in NLP, even if they are less visible.

Environmental Niches for both Approaches to NLU

� Definition There are two kinds of applications/tasks in NLU:

� Consumer task: consumer-grade applications have tasks that must be fully
generic and wide coverage. ( e.g. machine translation like Google Translate)

� Producer task: producer-grade applications must be high-precision, but can be
domain-specific (e.g. multilingual documentation, machinery-control, program
verification, medical technology)

Precision
100% Producer Tasks

50% Consumer Tasks

103±1 Concepts 106±1 Concepts Coverage

� Example Producing/managing machine manuals in multiple languages across ma-
chine variants is a critical producer task for machine tool company.

� A producer domain I am interested in: Mathematical/Technical documents.

©:MichaelKohlhase 20

An example of a producer task – indeed this is where the name comes from – is the case of a
machine tool manufacturer T , which produces digitally programmed machine tools worth multiple
million Euro and sells them into dozens of countries. Thus T must also comprehensive machine
operation manuals, a non-trivial undertaking, since no two machines are identical and they must
be translated into many languages, leading to hundreds of documents. As those manual share a
lot of semantic content, their management should be supported by NLP techniques. It is critical

https://translate.google.com/
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that these NLP maintain a high precision, operation errors can easily lead to very costly machine
damage and loss of production. On the other hand, the domain of these manuals is quite restricted.
A machine tool has a couple of hundred components only that can be described by a comple of
thousand attribute only.

Indeed companies like T employ high-precision NLP techniques like the ones we will cover in
this course successfully; they are just not so much in the public eye as the consumer tasks.

NLP for NLU: The Waterfall Model

� The NLU Waterfall: Understanding natural language (but also generation: other
way around)

0) speech processing: acoustic signal ; word hypothesis graph

1) syntactic processing: word sequence ; phrase structure

2) semantics construction: phrase structure ; (quasi-)logical form

3) semantic pragmatic analysis:
(quasi-)logical form ; knowledge representation

4) problem solving: using the generated knowledge (application-specific)

� In this course: steps 1), 2) and 3).
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The waterfall model shown above is of course only an engineering-centric model of natural
language understanding and not to be confused with a cognitive model; i.e. an account of what
happens in human cognition. Indeed, there is a lot of evidence that this simple sequential pro-
cessing model is not adequate, but it is the simplest one to implement and can therefore serve as
a background reference to situating the processes we are interested in.

2.3 A Taste of Language Philosophy
We will now discuss some concerns from language philosophy as they pertain to the LBS course.
Note that this discussion is only intended to give our discussion on natural language semantics
some perspective; in particular, it is in no way a complete introduction to language philosophy, or
does the discussion there full justice.

We start out our tour through language philosophy with some examples – as linguists and
philosophers often to – to obtain an intuition of the phenomena we want to understand.

What is the Meaning of Natural Language Utterances?

� Question: What is the meaning of the word chair?

� Answer: “the set of all chairs” (difficult to delineate, but more or less clear)

� Question: What is the meaning of the word Michael Kohlhase?

� Answer: The word refers to an object in the real world: the instructor of LBS.

� Alternatively: The singleton set with that object (as for “set of chairs” above)

� Question: What about Michael Kohlhase sits on a chair?

� Towards an Answer: We have to combine the two sets, via the meaning of “sits”.
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� Question: What is the meaning of the word John F. Kennedy or Odysseus?

� Problem: There are no objects in the real worlds, so the meaning of both is ∅ and
thus equal /.
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The main intuition we get is that meaning is more complicated than we may hav thought in
the beginning.

2.3.1 Epistemology: The Philosphy of Science
We start out by looking at the foundations of epistemology, which sets the basis for modern
(empirical) science. Our presentation here is modeled on Karl Popper’s work on the theory of
science. Naturally, our account here is simplified to fit the occasion, see [Pop34; Pop59] for the
full story.

Note that like any foundational account of complex concepts like knowledge, belief, rationality,
and their justification, we have to base our philosophy on some concepts we take at face value.
Here these are natural and formal languages, worlds, situations, etc. which will stay very general
in the current foundational setting.

We will later instantiate these by more concrete notions as we go along in the LBS course.

Epistemology – Propositions & Observations

� Definition Epistemology is the branch of philosophy concerned with studying nature
of knowledge, its justification, the rationality of belief, and various related issues.

� Definition A proposition is a sentence about the actual world or a class of worlds
deemed possible in a natural or formal language whose meaning can be expressed
as being true or false in a specific world.

� Definition A belief is a proposition φ that an agent a holds true about a class of
worlds. This is a characterizing feature of the agent.

� Definition Knowledge is justified, true belief.

� Problem: How can an agent justify a belief to obtain knowledge.

� Definition Given a world w, the observed value (or just value, i.e. true or false)
of a proposition (in w) can be determined by observations, that is an agent, the
observer, either experiences that φ is true in w or conducts a deliberate, systematic
experiment that determines φ to be true in w.
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The crucial intuition here is that we express belief – and possibly knowledge – about the
world using language. But we can only access truth in the word by observation, a possibly flawed
operation. So we will never be able to ascertain the “true belief” part, and need to work all the
harder on the “justified” part.

Epistemology – Reproducibility & Phenomena

� Problem: Observations are sometimes unreliable, e.g. observer o perceives φ to be
true, while it is false or vice versa.
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� Idea: Repeat the observations to raise the probability of getting them right.

� Definition An observation φ is said to be reproducible, iff φ can observed by
different observers in different situations.

� Definition A phenomenon φ is a proposition that is reproducibly observable to be
true in a class of world.

� Problem: We would like to verify a phenomenon, i.e. observe φ in all worlds, but
relevant world classes are too large to make this practically feasible.

� Definition A situation w is a counterexample to a proposition φ, if φ is observably
false in w.

� Intuition: The absence of counterexamples is the best we can hope for in general
for accepting phenomena.

� Intuition: The phenomena constitute the the “world model” of an agent.

� Problem: It is impossible/inefficient (for an agent) to know all phenomena.

� Idea: An agent could retain only a small subset of known propositions, from this
all phenomena can be derived.
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We will pursue this last idea. The (small) subset of propositions from which the phenomena
that are relevant to an agent can be derived will become the beliefs of the agent. An agent will
make strive to justify these beliefs to succeed in the world. This is where our notion of knowledge
comes from.

Epistemology – Explanations & Hypotheses

� Definition A proposition ψ follows from a proposition φ, iff ψ is true in any world
where φ is.

� Definition An explanation of a phenomenon φ is a set Φ of propositions, such that
φ follows from Φ.

� Example {φ} is a (rather useless) explanation for φ.

� Intuition: We prefer explanations Φ that explain more than just φ.

� Observation: This often coincides with explanations that are in some sense “simpler”
or “more elementary” than φ. (; Occam’s razor)

� Definition A proposition is called falsifiable, iff counterexamples are theoretically
possible and the observation of a reproducible series of counterexample is practically
feasible.

� Definition A hypothesis is a proposed explanation of a phenomenon that is falsifi-
able.
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We insist that a hypothesis be falsifiable, because we cannot hope to verify it and indeed the
absence of counterexamples is the best we can hope for. But if finding counterexamples is hopeless,
it is not even worth bothering with a hypothesis.
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This gives rise to a very natural strategy of accumulating propositions to represent (what
could) knowledge about the world.

Epistemology – Scientific Theories

� Knowledge Strategy: Collect hypotheses about the world, drop those with coun-
terexamples and those that can be explained themselves.

� Definition A hypothesis φ can be tested in world/situation w by observing the
value of φ in w. If the value is true, then we say that the observation o supports φ,
if it is false then o falsifies φ.

� Definition A (scientific) theory for a set Φ of phenomena is a set Θ of hypotheses
that

� has been tested extensively and rigorously without finding counterexamples, and

� is minimal in the sense that no subset of Θ explains Φ.

� Definition We call any proposition φ that follows from a theory Φ a prediction of
Φ.

� Note: To falsify a theory Φ, it is sufficient to falsify any prediction. Any observation
of a prediction φ of Φ supports Φ.
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Indeed the epistemological approach described in this Subsection has become the predominant
one in modern science.

2.3.2 Meaning Theories
If the meaning of natural language is indeed complicated, then we should really admit to that and
instead of directly answering the question, allow for multiple opinions and embark on a regime
of testing them against reality. We review some concepts from language philosophy towards that
end.

We now specialize the general epistemology for natural language – the “world” we try to model
empirically.

Theories of Meaning

� The Central Question: What is the meaning of natural language?

� This is difficult to answer definitely, . . .

� But we can form meaning theory that make predictions that we can test.

� Definition A a semantic meaning theory assigns semantic contents to expressions
of a language.

� Definition A foundational meaning theory tries to explain why language expressions
have the meanings they have; e.g. in terms of mental states of individuals and
groups.

� It is important to keep these two notions apart.

� We will concentrate on semantic meaning theories in this course.
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In [Spe17], an excellent survey on meaning theories, the author likens the difference between
semantic and foundational theories of meaning to the differing tasks of an anthropologist trying to
fully document the table manner of a distant tribe (semantic meaning theory) or to explain why
the table manners evolve (foundational meaning theory).

Let us fortify our intuition about semantic meaning theories by showing one that can deal with
the meaning of names we started our Subsection with.

The Meaning of Singular Terms

� Let’s see a semantic meaning theory in action.

� Definition A singular term is a phrase that purports to denote or designate a
particular individual person, place, or other object.

� Example Michael Kohlhase and Odysseus are singular terms.

� Definition In [Fre92], Gottlob Frege distinguishes between sense (Sinn) and referent
(Bedeutung) of singular terms.

� Example Even though Odysseus does not have a referent, it has a very real sense.
(but what is a sense?)

� Example The ancient greeks knew the planets Hesperos (the evening star) and
Phosphoros (the morning star). These words have different senses, but the – as we
now know – the same referent: the planet Venus.

� Remark: Bertrand Russell views singular terms as disguised definite descriptions
– Hesperos as “the brightest heavenly body that sometimes rises in the evening”.
Frege’s sense can often be conflated with Russell’s descriptions.(there can be more
than one definite description)

©:MichaelKohlhase 28

We think of Frege’s conceptualization as a semantic meaning theory, since it assignms semantic
content – the pair of sense and referent, whatever they might concretely be – to singular terms.

Cresswell’s “Most Certain Principle” and Truth Conditions

� Problem: How can we test meaning theories in practice?

� Definition Cresswell’s (1982) most certain principle (MCP): [Cre82]

I’m going to begin by telling you what I think is the most certain thing I
think about meaning. Perhaps it’s the only thing. It is this. If we have
two sentences A and B, and A is true and B is false, then A and B do
not mean the same.

� Definition The truth conditions of a sentence are the conditions of the world under
which it is true. These conditions must be such that if all obtain, the sentence is
true, and if one doesn’t obtain, the sentence is false.

� Observation: Meaning determines truth conditions and vice versa.
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� In Fregean terms the sense of a sentence (a thought) determines its referent (a
truth value).
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Compositionality

� Definition A meaning theory T is compositional, iff the meaning of an expression
is a function of the meanings of its parts. We say that T obeys the compositionality
principle or simply compositionality if it is.

� In order to compute the meaning of an expression, look up the meanings of the
basic expressions forming it and successively compute the meanings of larger parts
until a meaning for the whole expression is found.

� Example In order to compute the value of (x + y)/(z · u), look up the values of
x, y, z, and u, then compute x+ y and z · u, and finally compute the value of the
whole expression.

� Many philosophers and linguists hold that compositionality is at work in ordinary
language too.
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Why Compositionality is Attractive

� Compositionality gives a nice building block theory of meaning:

� Example [Expressions [are [built [from [words [that [combine [into [[larger [and
larger]] subexpressions]]]]]]]]]

� Consequence: In order to compute the meaning of an expression, look up the
meanings of its words and successively compute the meanings of larger parts until
a meaning for the whole expression is found.

� Compositionality explains how people can easily understand sentences they have
never heard before, even though there are an infinite number of sentences any given
person at any given time has not heard before.
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Compositionality and the Congruence Principle

� Given reasonable assumptions compositionality entails the

� Definition The congruence principle states that whenever A is part of B and A′

means just the same as A, replacing A by A′ in B will lead to a result that means
just the same as B.

� Example Consider the following (complex) sentences:

1. blah blah blah such and such blah blah
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2. blah blah blah so and so blah blah

If such and such and so and so mean the same thing, then 1. and 2. mean the
same too.

� Conversely: if 1. and 2. do not mean the same, then such and such and so and
so do not either.
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A Test for Synonymity

� Suppose we accept the most certain principle (difference in truth conditions implies
difference in meaning) and the congruence principle (replacing words by synonyms
results in a synonymous utterance). Then we have a diagnostics for synonymity:
Replacing utterances by synonyms preserves truth conditions, or equivalently

� Definition The following is called the truth conditional synonymy test:

If replacing A by B in some sentence C does not preserve truth conditions,
then A and B are not synonymous.

� We can use this as a test for the question of individuation: when are the meanings
of two words the same – when are they synonymous?

� Example The following sentences differ in truth conditions.

1. The cat is on the mat.

2. The dog is on the mat.

Hence cat and dog are not synonymous. The converse holds for

1. John is a Greek.

2. John is a Hellene.

In this case there is no difference in truth conditions.

� But there might be another context that does give a difference.
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Contentious Cases of Synonymy Test

� Example The following sentences differ in truth values:

1. Mary believes that John is a Greek

2. Mary believes that John is a Hellene

So Greek is not synonymous to Hellene. The same holds in the classical example:

1. The Ancients knew that Hesperus was Hesperus

2. The Ancients knew that Hesperus was Phosphorus
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In these cases most language users do perceive a difference in truth conditions while
some philosophers vehemently deny that the sentences under 1. could be true in
situations where the 2. sentences are false.

It is important here of course that the context of substitution is within the scope of
a verb of propositional attitude. (maybe later!)
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A better Synonymy Test

� Definition The following is called the truth conditional synonymy test:

If replacing A by B in some sentence C does not preserve truth conditions
in a compositional part of C, then A and B are not synonymous.
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Testing Truth Conditions with Logic

� Definition A logical language model M for a natural language L consists of a logic
L and a translation function φ from L sentences to L formulae.

� Problem: How do we find out whether M models L faithfully?

� Idea: Test truth conditions of sentences against the predictions M makes.

� Problem: The truth conditions for a sentence S in language L can only be formu-
lated and verified by humans that speak L

� In practice: Truth conditions are expressed as “stories” that specify salient worlds/si-
tuations. Native speakers of L are asked to judge whether they make S true/false.

� Idea: To test a logical language model M:=⟨L,L,φ⟩

� Select a sentence S and a situation W that makes S true. (according to
humans)

� Translate S in to a formula S′:=φ(S) in L.

� Express W as a set Φ of L-formulae. (Φ =̂ truth conditions)

� M is supported if Φ|=S′, falsified if Φ ̸|=S′.
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2.4 Computational Semantics as a Natural Science
Overview:

Formal natural language semantics is an approach to the study of meaning in natural language
which utilizes the tools of logic and model theory. Computational semantics adds to this the task
of representing the role of inference in interpretation. By combining these two different approaches
to the study of linguistic interpretation, we hope to expose you (the students) to the best of both
worlds.
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Computational Semantics as a Natural Science

� In a nutshell: Logic studies formal languages, their relation with the world (in
particular the truth condition). Computational logic adds the question about the
computational behavior of the relevant functions of the formal languages.

� This is almost the same as the task of natural language semantics!

� It is one of the key ideas that logics are good scientific models for natural languages,
since they simplify certain aspects so that they can be studied in isolation. In
particular, we can use the general scientific method of

1. observing

2. building formal theories for an aspect of reality,

3. deriving the consequences of the assumptions about the world in the theories

4. testing the predictions made by the model against the real-world data. If the
model predicts the data, then this confirms the model, if not, we refine the
model, starting the process again at 2.
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Excursion: In natural sciences, this is established practice; e.g. astronomers observe the plan-
ets, and try to make predictions about the locations of the planets in the future. If you graph
the location over time, it appears as a complicated zig-zag line that is difficult to understand. In
1609 Johannes Kepler postulated the model that the planets revolve around the sun in ellipses,
where the sun is in one of the focal points. This model made it possible to predict the future
whereabouts of the planets with great accuracy by relatively simple mathematical computations.
Subsequent observations have confirmed this theory, since the predictions and observations match.

Later, the model was refined by Isaac Newton, by a theory of gravitation; it replaces the
Keplerian assumptions about the geometry of planetary orbits by simple assumptions about grav-
itational forces (gravitation decreases with the inverse square of the distance) which entail the
geometry.

Even later, the Newtonian theory of celestial mechanics was replaced by Einstein’s relativity
theory, which makes better predictions for great distances and high-speed objects.

All of these theories have in common, that they build a mathematical model of the physical
reality, which is simple and precise enough to compute/derive consequences of basic assumptions,
that can be tested against observations to validate or falsify the model/theory.

The study of natural language (and of course its meaning) is more complex than natural sci-
ences, where we only observe objects that exist independently of ourselves as observers. Language
is an inherently human activity, and deeply interdependent with human cognition (it is arguably
one of its motors and means of expression). On the other hand, language is used to communicate
about phenomena in the world around us, the world in us, and about hypothetical worlds we only
imagine.

Therefore, natural language semantics must necessarily be an intersective discipline and a
trans-disciplinary endeavour, combining methods, results and insights from various disciplines.

NL Semantics as an Intersective Discipline
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2.5 Looking at Natural Language

The next step will be to make some observations about natural language and its meaning, so that
we get and intuition of what problems we will have to overcome on the way to modeling natural
language.

Fun with Diamonds (are they real?) [Dav67b]

� Example We study the truth conditions of adjectival complexes:

� This is a diamond. (|= diamond)

� This is a blue diamond. (|= diamond, |= blue)

� This is a big diamond. (|= diamond, ̸|= big)

� This is a fake diamond. (|= ¬diamond)
� This is a fake blue diamond. (|= blue?, |= diamond?)

� Mary knows that this is a diamond. (|= diamond)

� Mary believes that this is a diamond. (̸|= diamond)
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Logical analysis vs. conceptual analysis: These examples — mostly borrowed from David-
son:tam67 — help us to see the difference between "‘logical-analysis’ and "‘conceptual-analysis’.

We observed that from This is a big diamond. we cannot conclude This is big. Now consider the
sentence Jane is a beautiful dancer. Similarly, it does not follow from this that Jane is beautiful,
but only that she dances beautifully. Now, what it is to be beautiful or to be a beautiful dancer
is a complicated matter. To say what these things are is a problem of conceptual analysis. The
job of semantics is to uncover the logical form of these sentences. Semantics should tell us that
the two sentences have the same logical forms; and ensure that these logical forms make the right
predictions about the entailments and truth conditions of the sentences, specifically, that they
don’t entail that the object is big or that Jane is beautiful. But our semantics should provide a
distinct logical form for sentences of the type: This is a fake diamond. From which it follows that
the thing is fake, but not that it is a diamond.
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Ambiguity: The dark side of Meaning

� Definition We call an utterance ambiguous, iff it has multiple meanings, which we
call readings.

� Example All of the following sentences are ambiguous:

� John went to the bank. (river or financial?)

� You should have seen the bull we got from the pope. (three readings!)

� I saw her duck. (animal or action?)

� John chased the gangster in the red sports car. (three-way too!)
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One way to think about the examples of ambiguity on the previous slide is that they illustrate a
certain kind of indeterminacy in sentence meaning. But really what is indeterminate here is what
sentence is represented by the physical realization (the written sentence or the phonetic string).
The symbol duck just happens to be associated with two different things, the noun and the verb.
Figuring out how to interpret the sentence is a matter of deciding which item to select. Similarly
for the syntactic ambiguity represented by PP attachment. Once you, as interpreter, have selected
one of the options, the interpretation is actually fixed. (This doesn’t mean, by the way, that as an
interpreter you necessarily do select a particular one of the options, just that you can.) A brief
digression: Notice that this discussion is in part a discussion about compositionality, and gives us
an idea of what a non-compositional account of meaning could look like. The Radical Pragmatic
View is a non-compositional view: it allows the information content of a sentence to be fixed by
something that has no linguistic reflex.

To help clarify what is meant by compositionality, let me just mention a couple of other ways
in which a semantic account could fail to be compositional.

• Suppose your syntactic theory tells you that S has the structure [a[bc]] but your semantics
computes the meaning of S by first combining the meanings of a and b and then combining
the result with the meaning of c. This is non-compositional.

• Recall the difference between:

1. Jane knows that George was late.

2. Jane believes that George was late.

Sentence 1. entails that George was late; sentence 2. doesn’t. We might try to account for
this by saying that in the environment of the verb believe, a clause doesn’t mean what it
usually means, but something else instead. Then the clause that George was late is assumed
to contribute different things to the informational content of different sentences. This is a
non-compositional account.

Quantifiers, Scope and Context

� Example Every man loves a woman. (Keira Knightley or his mother!)

� Example Every car has a radio. (only one reading!)

� Example Some student in every course sleeps in every class at least some of the
time. (how many readings?)
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� Example The president of the US is having an affair with an intern. (2002 or
2000?)

� Example Everyone is here. (who is everyone?)
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Observation: If we look at the first sentence, then we see that it has two readings:

1. there is one woman who is loved by every man.

2. for each man there is one woman whom that man loves.

These correspond to distinct situations (or possible worlds) that make the sentence true.
Observation: For the second example we only get one reading: the analogue of 2. The reason

for this lies not in the logical structure of the sentence, but in concepts involved. We interpret
the meaning of the word has as the relation “has as physical part”, which in our world carries a
certain uniqueness condition: If a is a physical part of b, then it cannot be a physical part of c,
unless b is a physical part of c or vice versa. This makes the structurally possible analogue to 1.
impossible in our world and we discard it.

Observation: In the examples above, we have seen that (in the worst case), we can have one
reading for every ordering of the quantificational phrases in the sentence. So, in the third example,
we have four of them, we would get 4! = 12 readings. It should be clear from introspection that
we (humans) do not entertain 12 readings when we understand and process this sentence. Our
models should account for such effects as well.

Context and Interpretation: It appears that the last two sentences have different informational
content on different occasions of use. Suppose I say Everyone is here. at the beginning of class.
Then I mean that everyone who is meant to be in the class is here. Suppose I say it later in the
day at a meeting; then I mean that everyone who is meant to be at the meeting is here. What
shall we say about this? Here are three different kinds of solution:

Radical Semantic View On every occasion of use, the sentence literally means that everyone
in the world is here, and so is strictly speaking false. An interpreter recognizes that the
speaker has said something false, and uses general principles to figure out what the speaker
actually meant.

Radical Pragmatic View What the semantics provides is in some sense incomplete. What the
sentence means is determined in part by the context of utterance and the speaker’s intentions.
The differences in meaning are entirely due to extra-linguistic facts which have no linguistic
reflex.

The Intermediate View The logical form of sentences with the quantifier every contains a
slot for information which is contributed by the context. So extra-linguistic information is
required to fix the meaning; but the contribution of this information is mediated by linguistic
form.

More Context: Anaphora

� John is a bachelor. His wife is very nice. (Uh, what?, who?)

� John likes his dog Spiff even though he bites him sometimes. (who bites?)

� John likes Spiff. Peter does too. (what to does Peter do?)

� John loves his wife. Peter does too. (whom does Peter love?)

� John loves golf, and Mary too. (who does what?)
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Context is Personal and keeps changing

� The king of America is rich. (true or false?)

� The king of America isn’t rich. (false or true?)

� If America had a king, the king of America would be rich. (true or false!)

� The king of Buganda is rich. (Where is Buganda?)

� . . . Joe Smith. . . The CEO of Westinghouse announced budget cuts.
(CEO=J.S.!)
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Part I

English as a Formal Language: The
Method of Fragments
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Chapter 3

Logic as a Tool for Modeling NL
Semantics

In this Chapter we will briefly introduce formal logic and motivate how we will use it as a tool for
developing precise theories about natural language semantics.

We want to build a compositional, semantic meaning theory based on truth conditions, so that
we can directly model the truth conditional synonymy test. We will see how this works in detail
in after we have recapped the necessary concepts about logic.

3.1 The Method of Fragments
We will proceed by the “method of fragments”, introduced by Richard Montague in [Mon70],

where he insists on specifying a complete syntax and semantics for a specified subset (“fragment”)
of a language, rather than writing rules for the a single construction while making implicit as-
sumptions about the rest of the grammar. [Mon70]

In the present paper I shall accordingly present a precise treatment, culminating in a
theory of truth, of a formal language that I believe may be reasonably regarded as a
fragment of ordinary English. R. Montague 1970 [Mon70, p.188]

The first step in defining a fragment of natural language is to define which sentences we want
to consider. We will do this by means of a context-free grammar. This will do two things: act as
an oracle deciding which sentences (of natural language) are OK, and secondly to build up syntax
trees, which we will later use for semantics construction.

Natural Language Fragments

� Idea: Formalize a set (NL) sentences we want to study by a grammar.

� Definition A natural language fragment is the language of a context free grammar.

� Idea: Use non-terminals to classify NL phrases.

� Definition We call a non-terminal of a context-free grammar a syntactical category.
We distinguish two kinds of rules

structural rules: L : H→c1, . . . , cn with head H, label L, and a sequence of phrase
categories ci.

lexical rules: L : H→t1| . . . | tn, where the ti are terminals (i.e. NL phrases)

29
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We generically distinguish two parts of a grammar: the structural rules and the lexical rules,
because they are guided by differing intuitions. The former set of rules govern how NL phrases can
be composed to sentences (and later even to discourses). The latter rules are a simple represen-
tation of a lexicon, i.e. a structure which tells us about words (the terminal objects of language):
their syntactical categories, their meaning, etc.

Formal nlsNatural Language Semantics with Fragments

� Idea: We will follow the picture we have discussed before

Comp Ling
NL

L = wff (Σ)

M = ⟨D,I⟩

NL⊆NL×NL

⊢C⊆FL×FL

|=⊆FL×FL

Analysis

Iφ

induces

induces

formulae

|=≡⊢C?

NL≡⊢C?

Logic

Choose a target logic FL and specify a translation from syntax trees to formulae!
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Semantics by Translation

� Idea: We translate sentences by translating their syntax trees via tree node trans-
lation rules.

� Note: This makes the induced meaning theory compositional.

� Definition We represent a node α in a syntax tree with children β1, . . . , βn by
[X1β1

, . . . , Xnβn
]α and write a translation rule as

L : [X1β1
, . . . , Xnβn

]α ; Φ(X1
′, . . . , Xn

′)

if the translation of the node α can be computed from those of the βi via a semantical
function Φ.

� Definition For a natural language utterance A, we will use ⟨A⟩ for the result of
translating A.

� Definition For every word w in the fragment we assume a constant w′ in the logic
L and the “pseudo-rule” t1: w ; w′. (if no other translation rule applies)
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3.2 What is Logic?

What is Logic?

� Definition Logic =̂ formal languages, inference and their relation with the world

� Formal language FL: set of formulae (2 + 3/7, ∀x.x+ y = y + x)

� Formula: sequence/tree of symbols (x, y, f, g, p, 1, π,∈,¬, ,∀,∃)

� Model: things we understand (e.g. number theory)

� Interpretation: maps formulae into models ([[three plus five]] = 8)

� Validity: M|=A, iff [[A]] = T (five greater three is valid)

� Entailment: A|=B, iff M|=B for all M|=A. (generalize to H|=A)

� Inference: rules to transform (sets of) formulae (A,A⇒B⊢B)

� Syntax: formulae, inference (just a bunch of symbols)

� Semantics: models, interpr., validity, entailment (math. structures)

� Important Question: relation between syntax and semantics?
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So logic is the study of formal representations of objects in the real world, and the formal
statements that are true about them. The insistence on a formal language for representation is
actually something that simplifies life for us. Formal languages are something that is actually
easier to understand than e.g. natural languages. For instance it is usually decidable, whether a
string is a member of a formal language. For natural language this is much more difficult: there is
still no program that can reliably say whether a sentence is a grammatical sentence of the English
language.

We have already discussed the meaning mappings (under the monicker “semantics”). Meaning
mappings can be used in two ways, they can be used to understand a formal language, when we
use a mapping into “something we already understand”, or they are the mapping that legitimize a
representation in a formal language. We understand a formula (a member of a formal language)
A to be a representation of an object O, iff [[A]] = O.

However, the game of representation only becomes really interesting, if we can do something
with the representations. For this, we give ourselves a set of syntactic rules of how to manipulate
the formulae to reach new representations or facts about the world.

Consider, for instance, the case of calculating with numbers, a task that has changed from a
difficult job for highly paid specialists in Roman times to a task that is now feasible for young
children. What is the cause of this dramatic change? Of course the formalized reasoning procedures
for arithmetics that we use nowadays. These calculi consist of a set of rules that can be followed
purely syntactically, but nevertheless manipulate arithmetic expressions in a correct and fruitful
way. An essential prerequisite for syntactic manipulation is that the objects are given in a formal
language suitable for the problem. For example, the introduction of the decimal system has been
instrumental to the simplification of arithmetic mentioned above. When the arithmetical calculi
were sufficiently well-understood and in principle a mechanical procedure, and when the art of
clock-making was mature enough to design and build mechanical devices of an appropriate kind,
the invention of calculating machines for arithmetic by (1623), (1642), and (1671) was only a
natural consequence.

We will see that it is not only possible to calculate with numbers, but also with representations
of statements about the world (propositions). For this, we will use an extremely simple example; a
fragment of propositional logic (we restrict ourselves to only one connective) and a small calculus
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that gives us a set of rules how to manipulate formulae.
In computational semantics, the picture is slightly more complicated than in Physics. Where

Physics considers mathematical models, we build logical models, which in turn employ the term
“model”. To sort this out, let us briefly recap the components of logics, we have seen so far.

Logics make good (scientific1) models for natural language, since they are mathematically
precise and relatively simple.

Formal languages simplify natural languages, in that problems of grammaticality no longer
arise. Well-formedness can in general be decided by a simple recursive procedure.

Semantic models simplify the real world by concentrating on (but not restricting itself to) math-
ematically well-understood structures like sets or numbers. The induced semantic notions of
validity and logical consequence are precisely defined in terms of semantic models and allow
us to make predictions about truth conditions of natural language.

The only missing part is that we can conveniently compute the predictions made by the model.
The underlying problem is that the semantic notions like validity and semantic consequence are
defined with respect to all models, which are difficult to handle.

Therefore, logics typically have a third part, an inference system, or a calculus, which is a
syntactic counterpart to the semantic notions. Formally, a calculus is just a set of rules (called
inference rules) that transform (sets of) formulae (the assumptions) into other (sets of) formulae
(the conclusions). A sequence of rule applications that transform the empty set of assumptions
into a formula T, is called a proof of A. To make these assumptions clear, let us look at a very
simple example.

3.3 Formal Systems
To prepare the ground for the particular developments coming up, let us spend some time on
recapitulating the basic concerns of formal systems.

3.3.1 Logical Systems
The notion of a logical system is at the basis of the field of logic. In its most abstract form, a logical
system consists of a formal language, a class of models, and a satisfaction relation between models
and expressions of the formal language. The satisfaction relation tells us when an expression is
deemed true in this model.

Logical Systems

� Definition A logical system is a triple S:=⟨L,K,|=⟩, where L is a formal language,
K is a set and |=⊆K×L. Members of L are called formulas of S, members of K
models for S, and |= the satisfaction relation.

� Example
⟨wffo(Vo),K, |=⟩ is a logical system, if we define K:=(Vo⇀Do) (the set of variable
assignments) and φ |= A:≡Iφ(A) = T.

� Definition Let S:=⟨L,K,|=⟩ be a logical system, M∈K be a model and A∈L a
formula, then we say that A is

� satisfied by M, iff M|=A.

� falsified by M, iff M̸|=A.

1As we use the word “model” in two ways, we will sometimes explicitly label it by the attribute “scientific” to
signify that a whole logic is used to model a natural language phenomenon and with the attribute “semantic” for
the mathematical structures that are used to give meaning to eqdefsormal-language?formal-language
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� satisfiable in K, iff M|=A for some model M∈K.

� valid in K (write |=M), iff M|=A for all models M∈K.

� falsifiable in K, iff M̸|=A for some M∈K.

� unsatisfiable in K, iff M̸|=A for all M∈K.
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Entailment

� Definition Let S:=⟨L,K,|=⟩ be a logical system, then we define the entailment
relation |=⊆P(L)×L. We say that a set H⊆L of formulae entailment B (written
H|=B), iff we have M|=B for all A∈H and models M∈K with M|=A.

� Assertion If A|=B and M|=A, then M|=B.

� Assertion If H|=B and H⊆K, then K|=B.
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First-Order Logic as a Logical System

� Example Let

� L:=wff o(Σ), K be the class of first-order models and

� M|=A:≡Iφ(A) = T

then ⟨L,K,|=⟩ is a logical system in the sense of the definition above.

� Note that central notions like the entailment relation (which is central for under-
standing reasoning processes) can be defined independently of the concrete composi-
tional setup we have used for first-order logic, and only need the general assumptions
about logical systems.
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Let us now turn to the syntactical counterpart of the entailment relation: derivability in a
calculus. Again, we take care to define the concepts at the general level of logical systems.

3.3.2 Calculi, Derivations, and Proofs
The intuition of a calculus is that it provides a set of syntactic rules that allow to reason by

considering the form of propositions alone. Such rules are called inference rules, and they can be
strung together to derivations — which can alternatively be viewed either as sequences of formulae
where all formulae are justified by prior formulae or as trees of inference rule applications. But we
can also define a calculus in the more general setting of logical systems as an arbitrary relation on
formulae with some general properties. That allows us to abstract away from the homomorphic
setup of logics and calculi and concentrate on the basics.

Derivation Relations and Inference Rules
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� Definition Let S:=⟨L,K,|=⟩ be a logical system, then we call a relation ⊢⊆P(L)×L
a derivation relation for S, if it

� is proof reflexive, i.e. H⊢A, if A∈H;

� is proof transitive, i.e. if H⊢A and H∪{A}′⊢B, then H∪H′⊢B;

� monotonic (or admits weakening), i.e. H⊢A and H⊆H′ imply H′⊢A.

� Definition We call ⟨L,K,|=,⊢⟩ a formal system, iff S:=⟨L,K,|=⟩ is a logical system,
and ⊢ a derivation relation for S.

� Definition Let L be the formal language of a logical system, then an inference rule
over L is a decidable n+1-ary relation on L. Inference rules as traditionally written
as

A1 · · · An

C
N

where A1, . . . ,An and C are formula schemata for L and N is a name.

The Ai are called assumption, and C is called conclusion.

� Definition An inference rule without assumptions is called an axiom.

� Definition Let S:=⟨L,K,|=⟩ be a logical system, then we call a set C of inference
rules over L a calculus for S.
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With formula schemata we mean representations of sets of formulae, we use boldface uppercase
letters as (meta)-variables for formulae, for instance the formula schema A⇒B represents the set
of formulae whose head is ⇒.

Derivations and Proofs

� Definition Let S:=⟨L,K, |=⟩ be a logical system and C a calculus for S, then a
C-derivation of a formula C∈L from a set H⊆L of hypotheses (write H⊢CC) is a
sequence A1, . . . ,Am of L-formulae, such that

� Am = C, (derivation culminates in C)

� for all 1≤i≤m, either Ai∈H, or (hypothesis)

� there is an inference rule
Al1 · · · Alk

Ai
in C with lj < i for all j≤k. (rule

application)

� Observation: We can also see a derivation as a tree, where the Alj are the children
of the node Ak.

� Example

In the propositional Hilbert calculus H0 we have
the derivation P⊢H0Q⇒P : the sequence is
P⇒Q⇒P ,P ,Q⇒P and the corresponding tree
on the right.

K
P⇒Q⇒P P

MP
Q⇒P
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Inference rules are relations on formulae represented by formula schemata (where boldface,
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uppercase letters are used as meta-variables for formulae). For instance, in the inference rule
A⇒B A

B
was applied in a situation, where the meta-variables A and B were instantiated by the

formulae P and Q⇒P .
As axioms do not have assumptions, they can be added to a derivation at any time. This is

just what we did with the axioms in .

Formal Systems

� Assertion Let S:=⟨L,K,|=⟩ be a logical system and C a calculus for S, then the
C-derivation relation ⊢D defined above is a derivation relation in the sense of the
definition above.

� Therefore we will sometimes also call ⟨L,K,|=,C⟩ a formal system, iff S:=⟨L,K,|=⟩
is a logical system, and C a calculus for S.

� Definition Let C be a calculus, then a C-derivation ∅⊢CA is called a proof of A
and if one exists (write ⊢CA) then A is called a C-theorem.

� Definition An inference rule I is called admissible in C, if the extension of C by I
does not yield new theorems.

� Definition An inference rule
A1 · · · An

C
is called derivable in C, if there is a

C-derivation {A1, . . . ,An}⊢CC.

� Assertion Derivable inference rules are admissible, but not the other way around.
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The notion of a formal system encapsulates the most general way we can conceptualize a system
with a calculus, i.e. a system in which we can do “formal reasoning”. We will now fortify our
intuitions about formal systems, calculi and models using a very simple example – indeed maybe
the smallest example of a full formal system we can imagine. We use ist mostly because it is nice
and small – it will easily fit into your pocket to carry around – not because it is an otherwise
beautiful or useful formal system.

A Simple Formal System: Prop. Logic with Hilbert-Calculus

� Formulae: built from propositional variables: P ,Q,R. . . and implication: ⇒

� Semantics: Iφ(P ) = φ(P ) and Iφ(A⇒B) = T, iff Iφ(A) = F or Iφ(B) = T.

� Definition The Hilbert calculus H0 consists of the inference rules:

P⇒Q⇒P
K

P⇒Q⇒R⇒P⇒Q⇒P⇒R
S

A⇒B A

B
MP

A

[B/X]A
Subst

� Example A H0 theorem C⇒C and proof

Proof: We show that ∅⊢H0C⇒C

P.1 C⇒C⇒C⇒C⇒C⇒C⇒C⇒C⇒C (S with [C/P ],[C⇒C/Q],[C/R])
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P.1 C⇒C⇒C⇒C (K with [C/P ],[C⇒C/Q])

P.1 C⇒C⇒C⇒C⇒C (MP on P.1 and P.2)

P.1 C⇒C⇒C (K with [C/P ],[C/Q])

P.1 C⇒C (MP on P.3 and P.4)
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This is indeed a very simple formal system, but it has all the required parts:

• A formal language: expressions built up from variables and implications.

• A semantics: given by the obvious interpretation function

• A calculus: given by the two axioms and the two inference rules.

The calculus gives us a set of rules with which we can derive new formulae from old ones. The
axioms are very simple rules, they allow us to derive these two formulae in any situation. The
inference rules are slightly more complicated: we read the formulae above the horizontal line as
assumptions and the (single) formula below as the conclusion. An inference rule allows us to derive
the conclusion, if we have already derived the assumptions.

Now, we can use these inference rules to perform a proof. A proof is a sequence of formulae that
can be derived from each other. The representation of the proof in the slide is slightly compactified
to fit onto the slide: We will make it more explicit here. We first start out by deriving the formula

P⇒Q⇒R⇒P⇒Q⇒P⇒R (3.1)

which we can always do, since we have an axiom for this formula, then we apply the rule subst,
where A is this result, B is C, and X is the variable P to obtain

C⇒Q⇒R⇒C⇒Q⇒C⇒R (3.2)

Next we apply the rule Subst to this where B is C⇒C and X is the variable Q this time to obtain

C⇒C⇒C⇒R⇒C⇒C⇒C⇒C⇒R (3.3)

And again, we apply the rule subst this time, B is C and X is the variable R yielding the first
formula in our proof on the slide. To conserve space, we have combined these three steps into one
in the slide. The next steps are done in exactly the same way.

3.3.3 Properties of Calculi
In general formulae can be used to represent facts about the world as propositions; they have a
semantics that is a mapping of formulae into the real world (propositions are mapped to truth
values.) We have seen two relations on formulae: the entailment relation and the deduction
relation. The first one is defined purely in terms of the semantics, the second one is given by a
calculus, i.e. purely syntactically. Is there any relation between these relations?

Soundness and Completeness

� modulesImporting module: http://mathhub.info/smglom/logic?derivation modules-
Importing module: http://mathhub.info/smglom/logic?entailment

Definition Let S:=⟨L,K,|=⟩ be a logical system, then we call a calculus C for S

� sound (or correct), iff H|=A, whenever H⊢CA, and

� complete, iff H⊢CA, whenever H|=A.
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� Goal: Find calculi C, such that ⊢CA iff |=A (provability and validity coincide)

� To TRUTH through PROOF (CALCULEMUS [Leibniz ∼1680])

�
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Ideally, both relations would be the same, then the calculus would allow us to infer all facts
that can be represented in the given formal language and that are true in the real world, and only
those. In other words, our representation and inference is faithful to the world.

A consequence of this is that we can rely on purely syntactical means to make predictions
about the world. Computers rely on formal representations of the world; if we want to solve a
problem on our computer, we first represent it in the computer (as data structures, which can be
seen as a formal language) and do syntactic manipulations on these structures (a form of calculus).
Now, if the provability relation induced by the calculus and the validity relation coincide (this will
be quite difficult to establish in general), then the solutions of the program will be correct, and we
will find all possible ones. Of course, the logics we have studied so far are very simple, and not
able to express interesting facts about the world, but we will study them as a simple example of
the fundamental problem of Computer Science: How do the formal representations correlate with
the real world.

Within the world of logics, one can derive new propositions (the conclusions, here: Socrates
is mortal) from given ones (the premises, here: Every human is mortal and Sokrates is human).
Such derivations are proofs.

In particular, logics can describe the internal structure of real-life facts; e.g. individual things,
actions, properties. A famous example, which is in fact as old as it appears, is illustrated in the
slide below.

The miracle of logics

� Purely formal derivations are true in the real world!
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If a logic is correct, the conclusions one can prove are true (= hold in the real world) whenever
the premises are true. This is a miraculous fact (think about it!)

3.4 Using Logic to Model Meaning of Natural Language

Modeling Natural Language Semantics

� Problem: Find formal (logic) system for the meaning of natural language.

� History of ideas

� Propositional logic [ancient Greeks like Aristotle]
* Every human is mortal

� First-Order Predicate logic [Frege ≤ 1900]
* I believe, that my audience already knows this.

� Modal logic [Lewis18, Kripke65]
* A man sleeps. He snores. ((∃Xman(X)∧sleeps(X)))∧snores(X)

� Various dynamic approaches (e.g. DRT, DPL)
* Most men wear black

� Higher-order Logic, e.g. generalized quantifiers

� . . .

©:MichaelKohlhase 57

Let us now reconcider the role of all of this for natural language semantics. We have claimed
that the goal of the course is to provide you with a set of methods to determine the meaning of
natural language. If we look back, all we did was to establish translations from natural languages
into formal languages like first-order or higher-order logic (and that is all you will find in most
semantics papers and textbooks). Now, we have just tried to convince you that these are actually
syntactic entities. So, where is the semantics?.
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Natural Language Semantics?

Comp Ling
NL

L = wff (Σ)

M = ⟨D,I⟩

NL⊆NL×NL

⊢C⊆FL×FL

|=⊆FL×FL

Analysis

Iφ

induces

induces

formulae

|=≡⊢C?

NL≡⊢C?

Logic
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As we mentioned, the green area is the one generally covered by natural language semantics.
In the analysis process, the nlunatural language utterance (viewed here as formulae of a language
NL) are translated to a formal language FL (a set wff (Σ) of well-formed formulae). We claim
that this is all that is needed to recapture the semantics even if this is not immediately obvious
at first: Theoretical Logic gives us the missing pieces.

Since FL is a formal language of a logical systems, it comes with a notion of model and an
interpretation function Iφ that translates FL formulae into objects of that model. This induces
a notion of logical consequence2 as explained in . It also comes with a calculus C acting on
FL-formulae, which (if we are lucky) is correct and complete (then the mappings in the upper
rectangle commute).

What we are really interested in in natural language semantics is the truth conditions and
natural consequence relations on natural language utterances, which we have denoted by NL. If
the calculus C of the logical system ⟨FL,K,|=⟩ is adequate (it might be a bit presumptious to say
sound and complete), then it is a model of the relation NL. Given that both rectangles in the
diagram commute, then we really have a model for truth-conditions and logical consequence for
nlunatural lanaugage utterances, if we only specify the analysis mapping (the green part) and the
calculus.

Logic-Based Knowledge Representation for NLP

� Logic (and related formalisms) allow to integrate world knowledge

� explicitly (gives more understanding than statistical methods)

� transparently (symbolic methods are monotonic)

� systematically (we can prove theorems about our systems)

� Signal + World knowledge makes more powerful model

� Does not preclude the use of statistical methods to guide inference

� Problems with logic-based approaches

� Where does the world knowledge come from? (Ontology problem)

2Relations on a set S are subsets of the cartesian product of S, so we use R∈S∗S to signify that R is a (n-ary)
relation on X.



40 CHAPTER 3. LOGIC AS A TOOL FOR MODELING NL SEMANTICS

� How to guide search induced by log. calculi (combinatorial explosion)
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Chapter 4

Fragment 1

4.1 The First Fragment: Setting up the Basics
The first fragment will primarily be used for setting the stage, and introducing the method itself.
The coverage of the fragment is too small to do anything useful with it, but it will allow us to
discuss the salient features of the method, the particular setup of the grammars and semantics
before graduating to more useful fragments.

4.1.1 Natural Language Syntax (Fragment 1)

Structural Grammar Rules

� Definition Fragment 1 knows the following eight syntactical categories

S sentence NP noun phrase
N noun Npr proper name
V i intransitive verb V t transitive verb
conj connective Adj adjective

� Definition We have the following grammar rules in fragment 1.

S1: S→NP, V i, S2: S→NP, V t,NP, N1: NP→Npr, N2: NP→the, N ,
S3: S→It is not the case that, S, S4: S→S, conj, S, S5: S→NP, is,NP,

S6: S→NP, is,Adj
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Lexical insertion rules for Fragment 1

� Definition We have the following lexical insertion rules in Fragment 1.

L1: Npr→Prudence| Ethel| Chester| Jo| Bertie| Fiona,
L2: N→book| cake| cat| golfer| dog| lecturer| student| singer,

L3: V i→ran| laughed| sang| howled| screamed,
L4: V t→read| poisoned| ate| liked| loathed| kicked, L5: conj→and| or,

L6: Adj→happy| crazy| messy| disgusting| wealthy

41
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� Note: We will adopt the convention that new lexical insertion rules can be generated
spontaneously as needed.
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These rules represent a simple lexicon, they specify which words are accepted by the grammar
and what their syntactical categories are.

Syntax Example: Jo poisoned the dog and Ethel laughed

� Assertion Jo poisoned the dog and Ethel laughed is a sentence of fragment 1

� We can construct a syntax tree for it!

Jo poisoned the dog and Ethel laughed

Npr V t N conj Npr V i

NP NP NP

S S

S
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4.1.2 Predicate Logic without Quantifiers
The next step will be to introduce the logical model we will use for Fragment 1: Predicate Logic
without Quantifiers. Syntactically, this logic is a fragment of first-order logic, but it’s expressivity
is equivalent to propositional logic. Therefore, we will introduce the syntax of full first-order logic
(with quantifiers since we will need if for Fragment 4 later), but for the semantics stick with a
setup without quantifiers. We will go into the semantic difficulties that they pose later (in ).

PLNQ Signature

� A The Signature of PLNQ is made up from the following elements:

� A set of individual constants a, b, c . . .

� A set of 1-place predicate constants P,Q, P 1, Q1, P 2, Q2, . . .

� A set of 2-place predicate constants R,S,R1, S1, R2, S2, . . .

� A one-place sentential operator ¬.

� A set of two place sentential connectives including ∧, ∨, and ⇒
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PLNQ Syntax

� If p is an n-place predicate and t1,. . . ,tn are individual constants, then p(t1, . . . , tn)
is a sentence.

� If Φ is a sentence, then so is ¬Φ.

� If Φ and Ψ are both sentences, then so are: Φ∧Ψ, Φ∨Ψ, and Φ⇒Ψ.

� Nothing else is a sentence of PLNQ!

� Parentheses are added only for purposes of disambiguation, so external parentheses
may be omitted.
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Semantic Models for PLNQ: What the semantics of PLNQ will do is allow us to determine, for
any given sentence of the language, whether it is true or false. Now, in general, to know whether
a sentence in a language is true or false, we need to know what the world is like. The same is true
for PLNQ. But to make life easier, we don’t worry about the real world; we define a situation, a
little piece of the world, and evaluate our sentences relative to this situation. We do this using a
structure called a model.

What we need to know about the world is:

• What objects there are in the world.

• Which predicates are true of which objects, and which objects stand in which relations to
each other.

Definition: A model for PLNQ is an ordered pair ⟨D,I⟩ where:

• D is the domain, which specifies what objects there are in the model. (All kinds of things
can be objects.)

• I is an interpretation function. (Can uses the terms “denotation assignment function” and
“naming function.”)

An interpretation function for a language is a function whose arguments are the non-logical
constants of the language, and which give back as value a denotation or reference for the constant.
Specifically:

• To an individual constant, the interpretation function assigns an object from the model. I.e.
the interpretation function tells us which objects from the model are named by each of the
constants. (Note that the interpretation function can assign the same object to more than
one constant; but to each constant, it can assign at most one object as value.)

• To a one-place predicate, the interpretation function assigns a set of objects from the model.
Intuitively, these objects are the objects in the model of which the predicate is true.

• To a two-place predicate, the interpretation function assigns a set of pairs of objects from
the model. Intuitively, these pairs are the pairs of which the predicate is true. (Generalizing:
To an n-place predicate, the interpretation function assigns a set of n-tuples of objects from
the model.)

Example Let L:={a,b,c,d,e,P ,Q,R,S}, we set the domain D:={♣,♠,♡,♢}, and the interpreta-
tion function I by setting

• a7→♣, b 7→♠, c7→♡, d 7→♢, and e 7→♢ for individual constants,
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• P 7→{♣,♠} and Q7→{♠,♢}, for unary predicate constants.

• R 7→{⟨♡,♢⟩,⟨♢,♡⟩}, and

• S 7→{⟨♢,♠⟩,⟨♠,♣⟩} for binary predicate constants.

The valuation function, [[·]]M , fixes the value (for our purposes, the truth value) of sentences of
the language relative to a given model. The valuation function, as you’ll notice, is not itself part
of the model. The valuation function is the same for any model for a language based on PLNQ.

Definition: Let ⟨D,I⟩ be a model for a language L⊆PLNQ.

1. For any non-logical constant c of L, Iφ(c) = I(c).

2. Atomic formulas: Let P be an n-place predicate constant, and t1, . . . , tn be individual con-
stants. Then Iφ(P (t1, . . . , tn)) = T iff ⟨Iφ(t1), . . . ,Iφ(tn)⟩∈I(P ).

3. Complex formulas: Let φ and ψ be sentences. Then:

(a) Iφ(¬A) = T iff Iφ(A) = F.

(b) Iφ(A∧B) = T iff Iφ(A) = T and Iφ(B) = T.

(c) Iφ(A∨B) = T iff Iφ(A) = T or Iφ(B) = T.

(d) Iφ(A⇒B) = T iff Iφ(A) = F or Iφ(B) = T.

PLNQ: Predicate Logic without variables and functions

� Idea: Study the fragment of first-order Logic without quantifiers and function con-
stants.

� Definition universes Do = {T,F} of truth values and Dι ̸=∅ of individuals

� Definition interpretation I assigns values to constants, e.g.

� I(¬) : Do→Do;T7→F;F 7→T and I(∧) = . . . (as in PL0)

� I : Σf 0→Dι (interpret individual constants as individuals)

� I : Σpk→P(Dι
k) (interpret predicates as arbitrary relations)

� Definition The value function Iφ : wff o(Σ)→Do assigns values to formulae
(recursively)

� e.g. I(¬A) = I(¬)(I(A)) (just as in PL0)

� I(p(A1, . . . ,Ak)):=T, iff ⟨I(A1), . . . ,I(Ak)⟩∈I(p)

� Definition Model: M = ⟨Dι,I⟩ varies in Dι and I.

� Assertion PLNQ is isomorphic to PL0 (interpret atoms as prop. variables)
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Now that we have the target logic we can complete the analysis arrow in slide ??. We do this
again, by giving transformation rules.

4.1.3 Natural Language Semantics via Translation
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Translation rules for non-basic expressions (NP and S)

� Definition We have the following translation rules for internal nodes of the syntax
tree

T1: [XNP, YV i ]S ; Y ′(X ′)
T2: [XNP, YV t , ZNP]S ; Y ′(X ′, Z ′)

T3: [XNpr ]NP ; X ′

T4: [the, XN ]NP ; theX ′

T5: [It is not the case thatXS ]S ; (¬X ′)
T6: [XS , Yconj, ZS ]S ; Y ′(X ′, Z ′)
T7: [XNP, is, YNP]S ; X ′ = Y ′

T8: [XNP, is, YAdj]S ; Y ′(X ′)

Read e.g. [Y, Z]X as a node with label X in the syntax tree with daughters X and
Y . Read X ′ as the translation of X via these rules.

� Note that we have exactly one translation per syntax rule.
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Translation rule for basic lexical items

� Definition The target logic for F1 is PLNQ, the fragment of PL1 without quantifiers.

� Lexical Translation Rules for F1 Categories:

� If w is a proper name, then (w′)∈Σf 0. (individual constant)

� If w is an intransitive verb, then (w′)∈Σp1. (one-place predicate)

� If w is a transitive verb, (w′)∈Σp2. (two-place predicate)

� If w is a noun phrase, then (w′)∈Σf 0. (individual constant)

� Semantics by Translation: We translate sentences by translating their syntax trees
via tree node translation rules.

� For any non-logical word w, we have the “pseudo-rule” t1: w ; w′.

� Note: This rule does not apply to the syncategorematic items is and the.

� Translations for logical connectives

t2: and ; ∧, t3: or ; ∨, t4: it is not the case that ; ¬
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Translation Example

� Assertion Jo poisoned the dog and Ethel laughed is a sentence of fragment 1

� We can construct a syntax tree for it!
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Jo poisoned the dog and Ethel laughed

Npr V t N conj Npr V i

NP NP NP

S S

S

Jo′poisoned′ V ! Ethel′laughed′

Jo′ thedog′ Ethel′

poisoned′(Jo′, thedog′) laughed′(Ethel′)

∧poisoned′(Jo′, thedog′), laughed′(Ethel′)
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4.2 Testing Truth Conditions via Inference

Testing Truth Conditions in PLNQ

� Idea 1: To test our language model (F1)

� Select a sentence S and a situation W that makes S true. (according to
humans)

� Translate S in to a formula S′ in PLNQ.

� Express W as a set Φ of formulae in PLNQ (Φ =̂ truth conditions)

� Our language model is supported if Φ|=S′, falsified if Φ ̸|=S′.

� Example

� We claimed that we have three readings above
R1:=(c(j,g)∧in(j,s)), R2:=(c(j,g)∧in(g,s)), and R3:=(c(j,g)∧in(j,s)∧in(g,s))

� So there must be three distinct situations W that make S true

1. John is in the red sports car, but the gangster isn’t
W1:=(c(j,g)∧in(j,s)∧¬in(g,s)), so W1|=R1, but W1 ̸|=R2 and W1 ̸|=R3

2. The gangster is in the red sports car, but John isn’t
W2:=(c(j,g)∧in(j,s)∧¬in(g,s)), so W2|=R2, but W2 ̸|=R1 and W2 ̸|=R3

3. Both are in the red sports car
=̂ they run around on the back seat of a very big sports car
W3:=(c(j,g)∧in(j,s)∧in(g,s)), so W3|=R3, but W3 ̸|=R1 and W3 ̸|=R1

� Idea 2: Use a calculus to model |=, e.g. ND0
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Rather than using a minimal set of inference rules, the natural deduction calculus provides
two/three inference rules for every logical constant, one “introduction rule” (an inference rule that
derives a formula with that symbol at the head) and one “elimination rule” (an inference rule that
acts on a formula with this head and derives a set of subformulae).

Calculi: Natural Deduction (ND0; Gentzen [Gen34])

� Idea: ND0 tries to mimic human theorem proving behavior (non-minimal)
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� Definition The propositional natural deduction calculus ND0 has rules for the
introduction and elimination of connectives

Introduction Elimination Axiom
A B

A∧B
∧I A∧B

A
∧El

A∧B
B

∧Er

A∨¬A
TND

[A]1

B

A⇒B
⇒I1 A⇒B A

B
⇒E

� TND is used only in classical logic (otherwise constructive/intuitionistic)
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The most characteristic rule in the natural deduction calculus is the ⇒I rule. It corresponds
to the mathematical way of proving an implication A⇒B: We assume that A is true and show B
from this assumption. When we can do this we discharge (get rid of) the assumption and conclude
A⇒B. This mode of reasoning is called hypothetical reasoning. Note that the local hypothesis is
discharged by the rule ⇒I , i.e. it cannot be used in any other part of the proof. As the ⇒I rules
may be nested, we decorate both the rule and the corresponding assumption with a marker (here
the number 1).

Let us now consider an example of hypothetical reasoning in action.

Natural Deduction: Examples

� Example

[(A∧B)]1

∧Er
B

[(A∧B)]1

∧El
A

∧I
B)∧A

⇒I1
A∧B⇒B)∧A

[A]
1

[B]
2

A
⇒I2

B⇒A
⇒I1

A⇒B⇒A
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Here we see reasoning with local hypotheses at work. In the left example, we assume the
formula A∧B and can use it in the proof until it is discharged by the rule ∧El on the bottom
– therefore we decorate the hypothesis and the rule by corresponding numbers (here the label
“1”). Note the assumption A∧B is local to the proof fragment delineated by the corresponding
hypothesis and the discharging rule, i.e. even if this proof is only a fragment of a larger proof,
then we cannot use its hypothesis anywhere else. Note also that we can use as many copies of the
local hypothesis as we need; they are all discharged at the same time.

In the right example we see that local hypotheses can be nested as long as hypotheses are
kept local. In particular, we may not use the hypothesis B after the ⇒I2, e.g. to continue with a
⇒E. Another characteristic of the natural deduction calculus is that it has inference rules
(introduction and elimination rules) for all connectives. So we extend the set of rules from for
disjunction, negation and falsity.
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More Rules for Natural Deduction

� Definition ND0 has the following additional rules for the remaining connectives.

A

A∨B
∨Il

B

A∨B
∨Ir

A∨B

[A]
1

...
C

[B]
1

...
C

C
∨E1

[A]
1

...
C

[A]
1

...
¬C

¬A
¬I1 ¬¬A

A
¬E

¬A A

F
FI

F

A
FE
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Fragment 1

� Fragment F1 of English (defined by grammar + lexicon)

� Logic PLNQ (serves as a mathematical model for F1)

� Formal Language (individuals, predicates, ¬,∧,∨,⇒)

� Semantics Iφ defined recursively on formula structure
(; validity, entailment)

� Tableau calculus for validity and entailment (Calculemus!)

� Analysis function F1 ; PLNQ (Translation)

� Test the model by checking predictions (calculate truth conditions)

� Coverage: Extremely Boring! (accounts for 0 examples from the intro) but the
conceptual setup is fascinating
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Summary: The Interpretation Process

� Interpretation Process:
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Syntax Quasi-Logical Form Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Pragmatic
Analysis

(inferential)

©:MichaelKohlhase 74



50 CHAPTER 4. FRAGMENT 1



Chapter 5

Fragment 1: The Grammatical
Logical Framework

Now that we have introduced the “Method of Fragments” in theory, let see how we can implement
it in a contemporary grammatical and logical framework. For the implementation of the semantics
construction, we use GF, the “grammatical framework”. For the implementation of the logic we
will use the MMT system.

In this Chapter we develop and implement a toy/tutorial language fragment chosen mostly for
didactical reasons to introduce the two systems. The code for all the examples can be found at
https://gl.mathhub.info/Teaching/LBS/tree/master/source/tutorial.

5.1 Implementing Fragment 1 in GF

The Grammatical Framework (GF)

� Definition Grammatical Framework (GF [Ran04; Ran11]) is a modular formal
framework and functional programming language for writing multilingual grammars
of natural languages.

� Definition GF comes with the GF Resource Grammar Library, a reusable library for
dealing with the morphology and syntax of a growing number of natural languages.
(currently > 30)

� Definition A GF grammar consists of

� an abstract grammar that specifies well-formed abstract syntax treess (AST),

� a collection of concrete grammars for natural languages that specify how ASTs
can be linearized into (natural language) strings.

� Definition Parsing is the dual to linearization, it transforms NL utterances into
abstract syntax trees.

� Definition The Grammatical Framwork comes with an implementation; the GF sys-
tem that implements parsing, linearization, and – by combination – NL translation.
(download/install from [GF])
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https://gl.mathhub.info/Teaching/LBS/tree/master/source/tutorial
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To introduce the syntax and operations of the GF system, and the underlying concepts, we
will look at a very simple example.

Hello World Example for GF (Syntactic)

� Example

abstract zero = {
flags startcat=O;
cat

S ; NP ; V2 ;
fun

spo : V2 −> NP −> NP −> S ;
John, Mary : NP ;
Love : V2 ;

}

concrete zeroEng of zero = {
lincat

S, NP, V2 = Str ;
lin

spo vp s o = s ++ vp ++ o;
John = "John" ;
Mary = "Mary" ;
Love = "loves" ;

}

� Make a French grammar with John="Jean"; Mary="Marie"; Love="aime";

� parse a sentence in gf: parse "John loves Mary" ; Love John Mary

� linearize in gf: linearize Love John Mary ; John loves Mary

� translate in in gf: parse −lang=Eng "John Loves Mary"| linearize −lang=Fre

� generate random sentences to test:
generate_random −number=10 | linearize −lang=Fre ; Jean aime Marie
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The GF system can be downloaded from [GF] and can be started from the command line or
as an inferior process of a text editor. Grammars are loaded via import or short i. Then the gf
commands above can be issued to the REPL shell.

Command sequences can also be combined into an GF script, a text file with one com-
mand per line that can be loaded into gf at startup to initialize the interpreter by running it
as gf −−run script.gfo.

When we introduced the “method of fragments”, we anticipated that after parsing the natural
language utterances into syntax trees, we would translate them into a logical representation. One
way of implementing this is to linearize the syntax trees into the input language of an implemen-
tation of a logic and read them into the system for further processing. We will now explore this
using a ProLog interpreter, in which it is easy to program inference procedures.

Translation to Logic

� Idea: Use logic as a “natural language” (to translate into)

� Example Linearize to ProLog terms:
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concrete zeroPro of zero = {
lincat

S , NP , V2 = Str;
lin

spo = \vt,subj,obj −> vt ++ "(" ++ subj ++ "," ++ obj ++ ").";
John = "john";
Mary = "mary";
Love = "loves";

}

� linearize in gf: linearize Love John Mary ; loves ( john , mary )

� Note: loves ( john , mary ) is not a quasi-logical form, but a ProLog term that can
be read into an ProLog interpreter for pragmatic analysis.
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We will now introduce an important conceptual distinction on the intent of grammars.

Syntactic and Semantic Grammars

� Recall our interpretation pipeline

Syntax Quasi-Logical Form Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Pragmatic
Analysis

(inferential)

Syntax Quasi-Logical Form Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Pragmatic
Analysis

(inferential)

� Definition We call a grammar syntactic, iff the categories and constructors are
motivated by the linguistic structure of the utterance, and semantic, iff they are
motivated by the structure of the domain to be modeled.

� Grammar zero from is syntactic.

� We will look at semantic versions next.
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Hello World Example for GF (semantic)

� A semantic Hello World Grammar

abstract one = {
flags startcat = O;
cat

I; −− Individuals
O; −− Statements

fun
John, Mary : I;
Love : I −> I −> O;

}

concrete oneEng of one = {
lincat

I = Str ;
O = Str ;

lin
John = "John";
Mary = "Mary";
Love s o = s ++ "loves" ++ o;

}

� Instead of the “syntactic categories” S (sentence), NP (noun phrase), and V2 (tran-
sitive verb), we now have the semantic categories I (individual) and O (proposition).
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Implementing Fragment 1 in GF

� The grammar of Fragment 1 only differs trivially from Hello World grammar two.gf
from slide ??.

� Verbs: V t =̂ V2, V i =̂ cat V; fun sp : NP −> V −> S;

� Negation: fun not : S −> S; lin not a = mkS ("it is not the case that"++ a.s);

� the: fun the : N −> NP; lin the n = mkNP ("the"++ n.s);

� conjunction: fun and : S −> S −> S; lin and a b = mkS (a.s ++ "and"++ b.s);
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5.2 MMT: A Modular Framework for Representing Logics
and Domains

We will use the OMDoc/MMT to represent both logical systems and the semantic domains
(universes of discourse) of the various fragments. The MMT implements the OMDoc/MMT lan-
guage, it can be used as

• a Java library that provides data structures and an API of logic-oriented algorithms, and as

• a standalone knowledge-management service provider via web interfaces.

We will make use of both in the LBS course and give a brief overview in this Section. For a
(math-themed) tutorial that introduces format and system in more detail see [OMT].

Representation language (MMT)
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� Definition MMT = module system for mathematical theories

� Formal syntax and semantics

� needed for mathematical interface language

� but how to avoid foundational commitment?

� Foundation-independence

� identify aspects of underlying language that are necessary for large scale pro-
cessing

� formalize exactly those, be parametric in the rest

� observation: most large scale operations need the same aspects

� Module system

� preserve mathematical structure wherever possible

� formal semantics for modularity

� Web-scalable

� build on XML, OpenMath, OMDoc

� URI-based logical identifiers for all declarations

� Implemented in the MMT API system.
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The basic idea of the OMDoc/MMT format is that knowledge (originally mathematical knowl-
edge for which the format is designed, but also world knowledge of the semantic domains in the
fragments) can be represented modularly, using strong forms of inheritance to avoid duplicate for-
malization. This leads to the notion of a theory graph, where the nodes are theories that declare
language fragments and axiomatize knowledge about the objects in the domain of discourse. The
following theory graph is taken from [OMT].

Modular Representation of Math (MMT Example)

� Example
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Magma
G, ◦ : G → G → G

Abelian

c : ⊢x◦y=y◦x

SemiGrp

assoc : ⊢(x◦y)◦z=x◦(y◦z)

Monoid
e : G
neutl : ⊢x◦e=x

neutr : ⊢e◦x=x

Group
i : =λx.ιy.x◦y=e

inv : ⊢∀x : G.∃1y : G.x◦y=e

NonGrpMon

ni : ⊢∃x : G.∀y : G.x◦y ̸=e

AbelGroup

Ring
dom : ⊢G m/◦=G a/◦
distl : ⊢x m/◦ (y a/◦ z)=(x m/◦ y) a/◦ (x m/◦ z)

distr : ⊢(y a/◦ z) m/◦ x=(y m/◦ x) a/◦ (z m/◦ x)

NatNums
N, N+, 0: N, s : N → N+

P3,. . . ,P5

NatPlus
+: N → N → N
base : n+0=n,
step : n+s(m)=s(n+m)

NatPlusTimes
· : N → N → N
base : n·0=0,
stepn·s(m)=n·m+n

IntArith
Z, − : Z → Z
dom : ⊢Z=p/N∪n/N+

dneg : ⊢−−z=z

φ =

 G 7→ N
◦ 7→ ·
e 7→ 1


ψ =

 G 7→ N
◦ 7→ +
e 7→ 0


ψ′ =

{
i 7→ −
g 7→ f

}
ϑ =

{
m 7→ e
a 7→ c

}

p n

e :φ

f :ψ

d :ψ′

g

c :φ

ng

a

m

i : ϑ

s : {x◦y 7→y◦x}
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We will use the foundation-independence (bring-your-own logic) in this course, since the models
for the different fragments come with differing logics and foundational theories (together referred
to as “foundations”). Logics can be represented as theories in OMDoc/MMT – after all they just
introduce language fragments and specify their behavior – and are subject to the same modularity
and inheritance regime as domain theories. The only difference is that logics form the meta-
language of the domain theories – they provide the language used to talk about the domain – and
are thus connected to the domain theories by the meta relation. The next slide gives some details
on the construction.

Representing Logics and Foundations as Theories

� Example Logics and foundations represented as MMT theories

LF LF+ X

FOL HOL

Monoid CGroup Ring

ZFC

f2h

add

mult

folsem

mod

� Definition Meta relation between theories – special case of inclusion

� Uniform Meaning Space: morphisms between formalizations in different logics be-
come possible via meta-morphisms.

� Assertion Semantics of logics as views into foundations, e.g., folsem.

� Assertion Models represented as views into foundations (e.g. ZFC)

� Example mod := {G 7→ Z, ◦ 7→ +, e 7→ 0} interprets Monoid in ZFC.
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In the next slide we show the MMT surface language which gives a human-oriented syntax to
the OMDoc/MMT format.

A MitM Theory in MMT Surface Language

� Example A theory of Groups
� Declaration =̂

name : type [= Def] [# notation]

� Axioms =̂ Declaration with type ⊢ F

� ModelsOf makes a record type from a
theory.

� MitM Foundation: optimized for natural math formulation

� higher-order logic based on polymorphic λ-calculus

� judgements-as-types paradigm: ⊢ F =̂ type of proofs of F

� dependent types with predicate subtyping, e.g. {n}{′a ∈ mat(n, n)|symm(a)′}
� (dependent) record types for reflecting theories
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Finally, we summarize the concepts and features of the OMDoc/MMT.

The MMT Module System

� Central notion: theory graph with theory nodes and theory morphisms as edges

� Definition In MMT, a theory is a sequence of constant declarations – optionally
with type declarations and definitions

� MMT employs the Curry/Howard isomorphism and treats

� axioms/conjectures as typed symbol declarations (propositions-as-types)

� inference rules as function types (proof transformers)

� theorems as definitions (proof terms for conjectures)

� Definition MMT had two kinds of theory morphisms

� structures instantiate theories in a new context (also called: definitional link,
import)
they import of theory S into theory T induces theory morphism S → T

� views translate between existing theories (also called: postulated link, theorem
link)
views transport theorems from source to target (framing).

� Together, structures and views allow a very high degree of re-use

� Definition We call a statement t induced in a theory T , iff there is

� a path of theory morphisms from a theory S to T with (joint) assignment σ,

� such that t = σ(s) for some statement s in S.
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� Definition In MMT, all induced statements have a canonical name, the MMT URI.
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5.3 Implementing Fragment1 in GF and MMT

Implementing PLNQ in MMT

� Implement PLNQ with meta-theory LF (provides →, type, λ, Π)

� We start with a minimal propositional logic (o, ¬, ∧ suffice)

theory proplogMinimal : ur:?LF =
proposition : type || # o ||||
not : o → o || # ¬1 prec 100 ||||
and : o → o → o || # 1 ∧ 2 prec 90||||

||||||||

� Building on this, we can define additional connectives: ∨, ⇒, ⇔
theory proplog : ur:?LF =

include ?proplogMinimal ||||
or : o → o → o || # 1 ∨ 2 prec 80 || = [a,b] ¬(¬ a ∧ ¬b) ||||
implies : o → o → o || # 1 ⇒ 2 prec 70 || = [a,b] ¬a ∨ b ||||
iff : o → o → o || # 1 ⇔ 2 prec 60 || = [a,b] (a ⇒ b) ∧ (b ⇒ a) ||||

||||||||

� Finally, we add a type of individuals ι and equality .
= as primitives

theory plnq : ur:?LF =
include ?proplog ||||
individual : type || # ι ||||
equality : ι→ ι→ o || # 1 .

=2 ||||
||||||||
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Discourse Domain Theories for F1 (Lexicon)

� A “lexicon theory” (only selected constants here)

theory plnqFrag1 : ?plnq =
ethel : ι || # ethel’ ||||
prudence : ι || # prudence’ ||||
dog : ι || # dog’ ||||
poison : ι→ ι→ o || # poison’ 1 2 ||||
laugh : ι→ o || # laugh’ 1 ||||

||||||||

declares one logical constant for each from abstract GF grammar.

� Enough to interpret Prudence poisoned the dog and Ethel laughed from above.

ex : || o = poison’ prudence’ dog’ ∧ laugh’ ethel’ ||||
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Representing Multiple Readings

� We can even represent the three readings of John chased the gangster in the red
sports car from above.

theory sportscar : ?plnq =
john : ι |||| gangster : ι |||| sportscar : ι |||| red : ι→ o ||||
chased : ι→ ι→ o |||| in : ι→ ι→ o ||||
jcgirs1 : o || = chased john gangster ∧ in sportscar gangster ∧ red sportscar ||||
jcgirs2 : o || = chased john gangster ∧ in sportscar john ∧ red sportscar ||||
jcgirs3 : o || = chased john gangster ∧ in sportscar john ∧

in sportscar gangster ∧ red sportscar ||||
||||||||

� Problem: Can we systematically generate terms like jcgirs1, jcgirs2, and jcgirs3?

� Idea: Use the ASTs from GF in MMT.
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Embedding GF into MMT

� Observation: GF provides Java bindings and MMT is programed in Scala, which
compiles into the Java virtual machine.

� Idea: Use GF as a sophisticated NL-parser/generator for MMT

; MMT with a natural language front-end.

; GF with a multi-logic back-end

� Definition The GF/MMT integration mapping interprets GF abstract syntax trees
as MMT terms.

� Observation: This fits very well with our interpretation process in LBS

Syntax Quasi-Logical Form Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Pragmatic
Analysis

(inferential)

� Implementation: transform GF (Java) data structures to MMT (Scala) ones in
MMT.
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GF Abstract syntax trees as MMT Terms

� Idea: Make the GF/MMT integration mapping (essentially) the identity.

� Prerequisite: MMT theory isomorphic to GF grammar (declarations aligned)

� Recall: ASTs in GF are essentially terms.

� Indeed: GF abstract grammars are essentially MMT theories.

� Example Syntactic categories of F1 (Syntactic categories =̂ types)

theory Frag1CatMMT : ur:?LF =
S : type ||||
Conj : type ||||
NP : type ||||
Npr : type ||||
N : type ||||
Vi : type ||||
Vt : type ||||

||||||||

The F1 lexicon (words =̂ constants)

theory Frag1LexMMT : ur:?LF =
include ? Frag1CatMMT
ethel : Npr ||||
prudence : Npr ||||
dog : N ||||
poison : Vt ||||
laugh : Vi ||||
and : Conj ||||

||||||||

The structural rules of F1 (functions =̂ functions)

theory Frag1RulesMMT : ur:?LF =
include ? Frag1CatMMT
s1 : NP → Vi → S ||||
s2 : NP → Vt → NP → S ||||
n1 : Npr → NP ||||
n2 : N → NP ||||
s3 : S → S ||||
s4 : S → Conj → S → S ||||
s5 : NP → NP → S ||||
s6 : NP → Adj → S ||||

||||||||

putting it all together

theory Frag1LexMMT : ur:?LF =
include ? Frag1LexMMT
include ? Frag1RulesMMT

||||||||
� Observation: GF grammars and MMT theories best when organized modularly.
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Semantics Construction as an MMT View

� Assertion We can express semantics construction as an MMT view

Syntax Logic

NL Utterance

t
Syntax
Tree

parsing

φ(t)
Logic

Expression

Concrete
Grammar

CG
Theory PLNQ

=̂ φ

GF MMT

� Example Syntactic categories ; PLNQ types

view Frag1CatSem : ?Frag1CatMMT −> ?plnqFrag1 =
S = o ||||
NP = ι ||||
Vi = ι→ o ||||
Vt = ι→ ι→ o ||||
Npr = ι ||||
N = ι ||||
Conj = o → o → o ||||

||||||||

Lexicon ; mapping into PLNQ terms

view Frag1LexSem : ?Frag1CatMMT −> ?plnqFrag1 =
include ?Frag1CatSem
ethel = ethel’ ||||
prudence = prudence’ ||||
dog = dog’ ||||
poison = poison ||||
laugh = laugh ||||
and = and ||||

||||||||

Structural rules ; defining functions via λ-terms

view Frag1RulesSem : ?Frag1CatMMT −> ?plnqFrag1 =
include ?Frag1CatSem
s1 = [n, v] v n ||||
s2 = [n1,v,n2] v n1 n2 ||||
n1 = [n] n ||||
n2 = [n] n ||||
s3 = [s] ¬s ||||
s4 = [a,c,b] c a b ||||
s5 = [n1,n2] n1 .

=n2 ||||
s6 = [n,a] a s ||||

||||||||

putting it all together
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view Frag1Sem : ?Frag1CatMMT −> ?plnqFrag1 =
include ?Frag1LexSem
include ?Frag1RulesSem

||||||||
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Montague-Style Processing of F1 in GLF

� Example Prudence poisoned the dog and Ethel laughed

� Parsing with GF

� parse −lang=Eng "Prudence poisons the dog and Ethel laughs"
� s4 (s2 (n1 prudence) poison (n2 dog)) and (s1 (n1 ethel) laugh)

� Semantics construction via GLF: GF parsing + MMT view

� parse −lang=Eng "Ethel poisons the dog and Prudence laughs" construct|
� poison’ prudence’ ∧ dog’ laugh’ ethel’
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Montague-Style Analysis of F1 in GF and MMT

� Recap: We have realized the green part of

Comp Ling
NL

L = wff (Σ)

M = ⟨D,I⟩

NL⊆NL×NL

⊢C⊆FL×FL

|=⊆FL×FL

Analysis

Iφ

induces

induces

formulae

|=≡⊢C?

NL≡⊢C?

Logic

� The GF grammar for F1 defines the fragment NL.

� The MMT implementation of PLNQ is FL.

� The MMT view implements the compositional translation function for F1
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5.4 Implementing Natural Deduction in MMT
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Implementing Calculi in MMT (Judgments as Types)

� Idea: Represent proofs and derivations as expressions in theory of “proofs” .

� Concretely: For any proposition A, introduce ⊢ A for the type of proofs of A.

� Any term of type ⊢ A =̂ a proof of A

� A is provable =̂ ⊢ A is nonempty

� inference rules are proof constructor (functions)

� a declaration c : ⊢A makes ¬A non-empty ; c : ⊢A =̂ an axiom

� a definition c : ⊢A || = P does as well but also exhibits a “proof” P
; c : ⊢A || = P =̂ a theorem

� in MMT: we introduce a (proof) type constructor ded a type ⊢ A.

theory pl0NDminimal : ur:?LF =
include ?proplogMinimal ||||
ded : o → type || # ⊢1 prec 10 || role Judgment ||||

the role Judgment specifies ?????
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Implementing Calculi in MMT (ND0 Rules)

� Recap: We only need the ND0 rules for negation and conjunction:

A B

A∧B
∧I A∧B

A
∧El

A∧B
B

∧Er

[A]
1

...
C

[A]
1

...
¬C

¬A
¬I1 ¬¬A

A
¬E

� The ND Rules:
notE : {A} ⊢¬¬A → ⊢A || # ¬E 2 ||||
notI : {A,Q} (⊢A → ⊢Q) → (⊢A → ⊢¬Q) → ⊢¬A || # ¬I 3 4 ||||
andI : {A,B} ⊢A → ⊢B → ⊢A∧ B || # ∧ I 3 4 ||||
andEl : {A,B} ⊢A∧ B → ⊢A || # ∧ El 3 ||||
andEr : {A,B} ⊢A∧ B → ⊢B || # ∧ Er 3 ||||

Inference rules as and hypothetical derivations as proof-to-proof functions.

� Derived ND Rules: All other inference rules of ND0 can be written down similarly.
What is more, as they can be they derived from those above, they can become
MMT definitions.
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Implementing Calculi in MMT (a proof)
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� Example We can now write down the proof for the commutativity of V !

[(A∧B)]1

∧Er
B

[(A∧B)]1

∧El
A

∧I
B)∧A

⇒I1
A∧B⇒B)∧A

from above as the MMT declaration
andcomm {A,B} ⊢A∧ B ⇒ B∧ A || = ⇒ I([x] ∧ I (∧ Er x) (∧ El x)) ||||
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Chapter 6

Adding Context: Pronouns and
World Knowledge

In this Chapter we will extend the model generation system by facilities for dealing with world
knowledge and pronouns. We want to cover discourses like Peter loves Fido. Even though he
bites him sometimes. As we already observed there, we crucially need a notion of context which
determines the meaning of the pronoun. Furthermore, the example shows us that we will need
to take into account world knowledge as A way to integrate world knowledge to filter out one
interpretation, i.e. Humans don’t bite dogs.

6.1 Fragment 2: Pronouns and Anaphora

Fragment 2 (F2 =̂ F1 + Pronouns)

� Want to cover: Peter loves Fido. He bites him. (almost intro)

� We need: Translation and interpretation for he, she, him,. . . .

� Also: A way to integrate world knowledge to filter out one interpretation (i.e.
Humans don’t bite dogs.)

� Idea: Integrate variables into PLNQ (work backwards from that)

� Logical System: PLNQ
V = PLNQ + variables (Translate pronouns to variables)
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New Grammar in F2 (Pronouns)

� Definition We have the following structural grammar rules in F2

S1: S→NP, V i,
S2: S→NP, V t,NP,
N1: NP→Npr,
N2: NP→Pron,
N3: NP→the, N ,

65
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S3: S→it is not the case that, S,
S4: S→S, conj, S,
S5: S→NP, is,NP,
S6: S→NP, is,Adj

and one additional lexical rule:

L7: Npr→he| she| it| we| they
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Translation for F2 (first attempt)

� Idea: Pronouns are translated into new variables (so far)

� The syntax/semantic trees for Peter loves Fido and he bites him. are straightforward.
(almost intro)

Peter loves Fido and he bites him

Npr V t N conj Pron V t Pron

NP NP NP NP

S S

S

Peter loves Fido and he bites him

Peter′ loves′ Fido′ ∧ X bites′ Y

Peter′ Fido′ X Y

loves′(Peter′, F ido′) bites′(X,Y )

loves′(Peter′∧Fido′)∧bites′(X∧Y )
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Predicate Logic with Variables (but no Quantifiers)

� Logical System PLNQ
V : PLNQ

V :=PLNQ + variables

� Definition category V = {X,Y ,Z,X1,X2, . . .} of variables (allow variables
wherever individual constants were allowed)

� Definition Model M = ⟨D,I⟩ (need to evaluate variables)

� variable assignment: φ : Vι→D
� evaluation function: Iφ(X) = φ(X) (defined like I elsewhere)

� call A∈wff o(Σ,VT ) valid in M under φ, iff Iφ(A) = T,

� call A∈wff o(Σ,VT ) satisfiable in M, iff there is a variable assignment φ, such
that Iφ(A) = T

©:MichaelKohlhase 100

Implementing Fragment 2 in GF
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� The grammar of Fragment 2 only differs from that of Fragment 1 by

� Pronouns: Pron =̂ cat Pron; fun usePron : Pron −> NP; he,she,it : Pron;,

� Case: for distinguishing he/him in English.

param Case = nom | acc;
oper

NounPhraseType : Type = { s : Case => Str };
PronounType : Type = { s : Case => Str };

lincat
NP = NounPhraseType;
Pron = PronounType;

� English Paradigms to deal with case

mkNP = overload {
mkNP : Str −> NP =

\name −> lin NP { s = table { nom => name; acc => name } };
mkNP : (Case => Str) −> NP = \caseTable −> lin NP { s = caseTable };};
mkPron : (she : Str) −> (her : Str) −> Pron =

\she,her −> lin Pron {s = table {nom => she; acc => her}};
he = mkPron "he" "him" ; she = mkPron "she" "her";it = mkPron "it" "it";
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6.2 A Tableau Calculus for PLNQ with Free Variables

The main idea here is to extend the fragment of first-order logic we use as a model for natural
language to include free variables, and assume that pronouns like he, she, it, and they are translated
to distinct free variables – i.e. every occurrance of a pronoun to a new variable. Note that we do
not allow quantifiers yet – that will come in , as quantifiers will pose new problems, and we can
already solve some linguistically interesting problems without them.

To allow for world knowledge, we generalize the notion of an initial tableau . Instead of allowing
only the initial signed formula at the root node, we allow a linear tree whose nodes are labeled
with signed formulae representing the world knowledge. As the world knowledge resides in the
initial tableau (intuitively before all input), we will also speak of background knowledge.

We will use free variables for two purposes in our new fragment. Free variables in the input
will stand for pronouns, their value will be determined by random instantiation. Free variables in
the world knowledge allow us to express schematic knowledge. For instance, if we want to express
Humans don’t bite dogs., then we can do this by the formula human(X)∧dog(Y )⇒¬bites(X,Y ).

Of course we will have to extend our tableau calculus with new inference rules for the new
language capabilities.

6.2.1 Calculi for Automated Theorem Proving: Analytical Tableaux

In this section we will introduce tableau calculi for propositional logics. To make the reasoning
procedure more interesting, we will use first-order predicate logic without variables, function sym-
bols and quantifiers as a basis. This logic (we will call it PLNQ) allows us express simple natural
language sentences and to re-use our grammar for experimentation, without introducing the whole
complications of first-order inference.

The logic PLNQ is equivalent to propositional logic in expressivity: atomic formulae take the
role of propositional variables.

Instead of deducing new formulae from axioms (and hypotheses) and hoping to arrive at the
desired theorem, we try to deduce a contradiction from the negation of the theorem. Indeed,
a formula A is valid, iff ¬A is unsatisfiable, so if we derive a contradiction from ¬A, then we
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have proven A. The advantage of such “test-calculi” (also called negative calculi) is easy to see.
Instead of finding a proof that ends in A, we have to find any of a broad class of contradictions.
This makes the calculi that we will discuss now easier to control and therefore more suited for
mechanization.

6.2.1.1 Analytical Tableaux

Before we can start, we will need to recap some nomenclature on formulae.

Recap: Atoms and Literals

� Definition We call a formula atomic, or an atom, iff it does not contain connectives.
We call a formula complex, iff it is not atomic.

� Definition We call a pair Aα a labeled formula, if α∈{T,F}. A labeled atom Aα

is called a (positive if α=T, else negative) literal.

� Intuition: To satisfy a formula, we make it “true”. To satisfy a labeled formula Aα,
it must have the truth value α.

� Definition For a literal Aα, we call the literal Aβ with α ̸=β the opposite literal
(or partner literal).

� Definition Let Φ be a set of formulae, then we use Φα:={Aα|A∈Φ}.
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The idea about literals is that they are atoms (the simplest formulae) that carry around their
intended truth value.

Now we will also review some propositional identities that will be useful later on. Some of
them we have already seen, and some are new. All of them can be proven by simple truth table
arguments.

Alternative Definition: Literals

� Note: Literals are often defined without recurring to labeled formulae:

� Definition A literal is an atoms A (positive literal) or negated atoms ¬A (negative
literal). A and ¬A are opposite literals

� Note: This notion of literal is equivalent to the labeled formula-notion of literal,
but does not generalize as well to logics with more truth values.
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Test Calculi: Tableaux and Model Generation

� Idea: A tableau calculus is a test calculus that

� analyzes a labeled formula in a tree to determine satisfiability,

� its branches correspond to valuations (; models).

� Example Tableau calculi try to construct models for labeled formulae:
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Tableau Refutation (Validity) Model generation (Satisfiability)
|=P∧Q⇒Q∧P |=P∧(Q∨¬R)∧¬Q

(P∧Q⇒Q∧P )F

(P∧Q)T

(Q∧P )F

PT

QT

P F

⊥
QF

⊥

(P∧Q∨¬R∧¬Q)T

(P∧Q∨¬R)T

¬QT

QF

PT

(Q∨¬R)T

QT

⊥
¬RT

RF

No Model Herbrand Model {PT,QF,RF}
φ:={P 7→ T,Q 7→ F,R 7→ F}

� Algorithm: Fully expand all possible tableaux, (no rule can be applied)

� Satisfiable, iff there are open branches (correspond to models)
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Tableau calculi develop a formula in a tree-shaped arrangement that represents a case analysis
on when a formula can be made true (or false). Therefore the formulae are decorated with
exponents that hold the intended truth value.

On the left we have a refutation tableau that analyzes a negated formula (it is decorated with
the intended truth value F). Both branches contain an elementary contradiction ⊥.

On the right we have a model generation tableau, which analyzes a positive formula (it is
decorated with the intended truth value T. This tableau uses the same rules as the refutation
tableau, but makes a case analysis of when this formula can be satisfied. In this case we have a
closed branch and an open one, which corresponds a model).

Now that we have seen the examples, we can write down the tableau rules formally.

Analytical Tableaux (Formal Treatment of T0)

� Idea: A test calculus where

� A labeled formula is analyzed in a tree to determine satisfiability,

� branches correspond to valuations (models)

� Definition The propositional tableau calculus T0 has two inference rules per con-
nective (one for each possible
label)

(A∧B)T

AT

BT

T0∧
(A∧B)F

AF
∣∣∣ BF

T0∨
¬AT

AF
T0¬T ¬AF

AT
T0¬F

Aα

Aβ α ̸= β

⊥
T0⊥

Use rules exhaustively as long as they contribute new material (; termination)

� Definition We call any tree (
∣∣∣ introduces branches) produced by the ProbTabCalc

inference rules from a set Φ of labeled formulae a tableau for Φ.

� Definition Call a tableau saturated, iff no rule applies, and a branch closed, iff it
ends in ⊥, else open.
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� Idea: Open branches in saturated tableaux yield models.

� Definition A is a T0-theorem (⊢T0
A), iff there is a closed tableau with AF at the

root.

Φ⊆wffo(Vo) derivation relation A in T0 (Φ⊢T0
A), iff there is a closed tableau

starting with AF and ΦT.
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These inference rules act on tableaux have to be read as follows: if the formulae over the line
appear in a tableau branch, then the branch can be extended by the formulae or branches below
the line. There are two rules for each primary connective, and a branch closing rule that adds the
special symbol ⊥ (for unsatisfiability) to a branch.

We use the tableau rules with the convention that they are only applied, if they contribute
new material to the branch. This ensures termination of the tableau procedure for propositional
logic (every rule eliminates one primary connective).

Definition We will call a closed tableau with the signed formula Aα at the root a tableau
refutation for Aα.

The saturated tableau represents a full case analysis of what is necessary to give A the truth
value α; since all branches are closed (contain contradictions) this is impossible.

Definition We will call a tableau refutation for AF a tableau proof for A, since it refutes the
possibility of finding a model where A evaluates to F. Thus A must evaluate to T in all models,
which is just our definition of validity.

Thus the tableau procedure can be used as a calculus for propositional logic. In contrast to the
propositional Hilbert calculus it does not prove a theorem A by deriving it from a set of axioms,
but it proves it by refuting its negation. Such calculi are called negative or test calculi. Generally
negative calculi have computational advantages over positive ones, since they have a built-in sense
of direction.

We have rules for all the necessary connectives (we restrict ourselves to ∧ and ¬, since the
others can be expressed in terms of these two via the propositional identities above. For instance,
we can write A∨B as ¬(¬A∧¬B), and A⇒B as ¬A∨B,. . . .)

We now look at a formulation of propositional logic with fancy variable names. Note that
loves(mary, bill) is just a variable name like P or X, which we have used earlier.

A Valid Real-World Example

� Example If Mary loves Bill and John loves Mary, then John loves Mary

(loves(mary, bill)∧loves(john,mary)⇒loves(john,mary))F

¬(¬¬(loves(mary, bill)∧loves(john,mary))∧¬loves(john,mary))F

(¬¬(loves(mary, bill)∧loves(john,mary))∧¬loves(john,mary))T

¬¬(loves(mary, bill)∧loves(john,mary))T

¬(loves(mary, bill)∧loves(john,mary))F

(loves(mary, bill)∧loves(john,mary))T

¬loves(john,mary)T

loves(mary, bill)T

loves(john,mary)T

loves(john,mary)F
⊥

This is a closed tableau, so the loves(mary, bill)∧loves(john,mary)⇒loves(john,mary)
is a T0-theorem.
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As we will see, T0 is sound and complete, so

loves(mary, bill)∧loves(john,mary)⇒loves(john,mary)

is valid.
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We could have used the unsatisfiability theorem () here to show that If Mary loves Bill and
John loves Mary entails John loves Mary. But there is a better way to show entailment: we
directly use derivability in T0

Deriving Entailment in T0
� Example Mary loves Bill and John loves Mary together entail that John loves

Mary
loves(mary, bill)T

loves(john,mary)T

loves(john,mary)F
⊥

This is a closed tableau, so the {loves(mary, bill),loves(john,mary)}⊢T0
loves(john,mary),

again, as T0 is sound and complete we have

{loves(mary, bill),loves(john,mary)}|=loves(john,mary)
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Note: We can also use the tableau calculus to try and show entailment (and fail). The nice
thing is that the failed proof, we can see what went wrong.

A Falsifiable Real-World Example

� Example * If Mary loves Bill or John loves Mary, then John loves Mary
Try proving the implication (this fails)

(loves(mary, bill)∨loves(john,mary)⇒loves(john,mary))F

¬(¬¬(loves(mary, bill)∨loves(john,mary))∧¬loves(john,mary))F

(¬¬(loves(mary, bill)∨loves(john,mary))∧¬loves(john,mary))T

¬loves(john,mary)T

loves(john,mary)F

¬¬(loves(mary, bill)∨loves(john,mary))T

¬(loves(mary, bill)∨loves(john,mary))F

(loves(mary, bill)∨loves(john,mary))T

loves(mary, bill)T loves(john,mary)T
⊥

Indeed we can make Iφ(loves(mary, bill)) = T but Iφ(loves(john,mary)) = F.
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Obviously, the tableau above is saturated, but not closed, so it is not a tableau proof for our
initial entailment conjecture. We have marked the literal on the open branch green, since they
allow us to read of the conditions of the situation, in which the entailment fails to hold. As we
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intuitively argued above, this is the situation, where Mary loves Bill. In particular, the open
branch gives us a variable assignment (marked in green) that satisfies the initial formula. In this
case, Mary loves Bill, which is a situation, where the entailment fails.

Again, the derivability version is much simpler:

Testing for Entailment in T0
� Example Does Mary loves Bill or John loves Mary entail that John loves Mary?

(loves(mary, bill)∨loves(john,mary))T

loves(john,mary)F

loves(mary, bill)T loves(john,mary)T
⊥

This saturated tableau has an open branch that shows that the interpretation with
Iφ(loves(mary, bill)) = T but Iφ(loves(john,mary)) = F falsifies the derivabili-
ty/entailment conjecture.
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6.2.1.2 Practical Enhancements for Tableaux

Propositional Identities

� Definition Let T and F be new logical constants with I(T ) = T and I(F ) = F
for all assignments φ.

� We have the following identities:

Name for ∧ for ∨
Idenpotence φ∧φ = φ φ∨φ = φ
Identity φ∧T = φ φ∨F = φ
Absorption I φ∧F = F φ∨T = T
Commutativity φ∧ψ = ψ∧φ φ∨ψ = ψ∨φ
Associativity φ∧ψ∧θ = φ∧ψ∧θ φ∨ψ∨θ = φ∨ψ∨θ
Distributivity φ∧(ψ∨θ) = φ∧ψ∨φ∧θ φ∨ψ∧θ = (φ∨ψ)∧(φ∨θ)
Absorption II φ∧(φ∨θ) = φ φ∨φ∧θ = φ
De Morgan’s Laws ¬(φ∧ψ) = ¬φ∨¬ψ ¬(φ∨ψ) = ¬φ∧¬ψ
Double negation ¬¬φ = φ
Definitions φ⇒ψ = ¬φ∨ψ φ⇔ψ = (φ⇒ψ)∧(ψ⇒φ)
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we have seen in the examples above that while it is possible to get by with only the connectives
∨ and ¬, it is a bit unnatural and tedious, since we need to eliminate the other connectives first.
in this section, we will make the calculus less frugal by adding rules for the other connectives,
without losing the advantage of dealing with a small calculus, which is good making statements
about the calculus.

the main idea is to add the new rules as derived rules, i.e. inference rules that only abbreviate
deductions in the original calculus. generally, adding derived inference rules does not change the
derivability relation of the calculus, and is therefore a safe thing to do. In particular, we will add
the following rules to our tableau system.

We will convince ourselves that the first rule is a derived rule, and leave the other ones as an
exercise.
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Derived Rules of Inference

� Definition Let C be a calculus, a rule of inference
A1 · · · An

C
is called a derived

rule in C, iff there is a C-proof of A1, . . . ,An⊢CC.

� Definition We have the following derived rules of inference

(A⇒B)T

AF
∣∣∣ BT

(A⇒B)F

AT

BF

AT

(A⇒B)T

BT

(A∨B)T

AT
∣∣∣ BT

(A∨B)F

AF

BF

A⇔BT

AT

BT

∣∣∣∣ AF

BF

A⇔BF

AT

BF

∣∣∣∣ AF

BT

AT

(A⇒B)T

(¬A∨B)T

¬(¬¬A∧¬B)T

(¬¬A∧¬B)F

¬¬AF

¬AT

AF

⊥

¬BF

BT
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With these derived rules, theorem proving becomes quite efficient. With these rules, the tableau
() would have the following simpler form:

Tableaux with derived Rules (example) Example

(loves(mary, bill)∧loves(john,mary)⇒loves(john,mary))F

(loves(mary, bill)∧loves(john,mary))T

loves(john,mary)F

loves(mary, bill)T

loves(john,mary)T
⊥
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Another thing that was awkward in () was that we used a proof for an implication to prove
logical consequence. Such tests are necessary for instance, if we want to check consistency or
informativity of new sentences. Consider for instance a discourse ∆ = D1, . . . ,Dn, where n is
large. To test whether a hypothesis H is a consequence of ∆ (∆ |= H) we need to show that
C:=(D1∧ . . .∧Dn⇒H) is valid, which is quite tedious, since C is a rather large formula, e.g. if
∆ is a 300 page novel. Moreover, if we want to test entailment of the form (∆|=H) often, – for
instance to test the informativity and consistency of every new sentence H, then successive ∆s will
overlap quite significantly, and we will be doing the same inferences all over again; the entailment
check is not incremental.

Fortunately, it is very simple to get an incremental procedure for entailment checking in the
model-generation-based setting: To test whether ∆ |= H, where we have interpreted ∆ in a
model generation tableau T , just check whether the tableau closes, if we add ¬H to the open
branches. Indeed, if the tableau closes, then ∆∧¬H is unsatisfiable, so ¬(∆∧¬H) is valid, but
this is equivalent to ∆⇒H, which is what we wanted to show.

Example
Consider for instance the following entailment in natural language.

Mary loves Bill. John loves Mary |= John loves Mary
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We obtain the tableau
loves(mary,bill)T
loves(john,mary)T

(¬loves(john,mary))T
loves(john,mary)F

⊥

which shows us that the conjectured entailment relation really holds.
Excursion: We will discuss the properties of propositional tableaux intheappendix.

6.2.2 A Tableau Calculus for PLNQ with Free Variables

A Tableau Calculus for PLNQ
V

� Definition T p
V = T0 + new tableau rules for formulae with variables

...
Aα

...

c∈H

([c/X]A)α
T p
V WK

...
Aα

H = {a1, . . . ,an}
free(A) = {X1, . . . ,Xm}

(σ1A)α
∣∣∣ . . . ∣∣∣ (σnmA)α

T p
V Ana

H is the set of ind. constants in the branch above (Herbrand Base) and the
σi are substitutions that instantiate the Xj with any combinations of the ak (there
are nm of them).

� the first rule is used for world knowledge (up in the branch)

� the second rule is used for input sentences · · ·
this rule has to be applied eagerly (while they are still at the leaf)
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Let us look at two examples: To understand the role of background knowledge we interpret
Peter snores with respect to the knowledge that Only sleeping people snore.

Some Examples in F2

� Example (Only sleeping people snore)

(snores(X)⇒sleeps(X))T

snores(peter)T

(snores(peter)⇒sleeps(peter))T

sleeps(peter)T
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� Example (who snores?)

sleeps(peter)T

walks(john)T

snores(X)T

snores(peter)T snores(john)T
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The background knowledge is represented in the schematic formula in the first line of the
tableau. Upon receiving the input, the tableau instantiates the schema to line three and uses the
chaining rule from the derived tableaux rules to derive the fact that Peter must sleep.

The third input formula contains a free variable, which is instantiated by all constants in the
Herbrand base (two in our case). This gives rise to two models that correspond to the two readings
of the discourse.

Let us now look at an example with more realistic background knowledge. Say we know that
birds fly, if they are not penguins. Furthermore, eagles and penguins are birds, but eagles are
not penguins. Then we can answer the classic question Does Tweety fly? by the following two
tableaux.

Does Tweety fly? The everlasting Question in AI

� Example

Tweety is a bird Tweety is an eagle

(bird(X)⇒flies(X)∨penguin(X))T

(penguin(X)⇒¬flies(X))T

bird(tweety)T

(flies(tweety)∨penguin(tweety))T

flies(tweety)T penguin(tweety)T

(¬flies(tweety))T

flies(tweety)F

(bird(X)⇒flies(X)∨penguin(X))T

(eagle(X)⇒bird(X))T

(penguin(X)⇒¬eagle(X))T

(penguin(X)⇒¬flies(X))T

eagle(tweety)T

bird(tweety)T

(flies(tweety)∨penguin(tweety))T

flies(tweety)T penguin(tweety)T

(¬eagle(tweety))T

eagle(tweety)F
⊥

� For the second we need to add more world knowledge.
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6.2.3 Case Study: Peter loves Fido, even though he sometimes bites
him

Let us now return to the motivating example from the introduction, and see how our system fares
with it (this allows us to test our computational/linguistic theory). We will do this in a completely
naive manner and see what comes out.

The first problem we run into immediately is that we do not know how to cope with even
though and sometimes, so we simplify the discourse to Peter loves Fido and he bites him..



76 CHAPTER 6. ADDING CONTEXT: PRONOUNS AND WORLD KNOWLEDGE

Finally: Peter loves Fido. He bites him.

� Let’s try it naively (worry about the problems later.)

l(p, f)T

b(X,Y )T

b(p, p)T b(p, f)T b(f, p)T b(f, f)T

� Problem: We get four readings instead of one!

� Idea: We have not specified enough world knowledge
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The next problem is obvious: We get four readings instead of one (or two)! What has happened?
If we look at the models, we see that we did not even specify the background knowledge that was
supposed filter out the one intended reading.

We try again with the additional knowledge that Nobody bites himself and Humans do not
bite dogs.

Peter and Fido with World Knowledge

� Nobody bites himself, humans do not bite dogs.

d(f)T

m(p)T

b(X,X)F

(d(X)∧m(Y )⇒¬b(Y,X))T

l(p, f)T

b(X,Y )T

b(p, p)T

b(p, p)F

⊥

b(p, f)T

(d(f)∧m(p)⇒¬b(p, f))T
b(p, f)F

⊥

b(f, p)T b(f, f)T

b(f, f)F

⊥

� Observation: Pronoun resolution introduces ambiguities.

� Pragmatics: Use world knowledge to filter out impossible readings.
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We observe that our extended tableau calculus was indeed able to handle this example, if we
only give it enough background knowledge to act upon.

But the world knowledge we can express in PLNQ
V is very limited. We can say that humans

do not bite dogs, but we cannot provide the background knowledge to understand a sentence like
Peter was late for class today, the car had a flat tire., which needs knowledge like Every car has
wheels, which have a tire. and if a tire is flat, the car breaks down., which is outside the realm of
PLNQ

V .

6.2.4 The Computational Role of Ambiguities
In the case study, we have seen that pronoun resolution introduces ambiguities, and we can use
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world knowledge to filter out impossible readings. Generally in the traditional waterfall model of
language processing – which posits that NL understanding is a process that analyzes the input in
stages: syntax, semantics composition, pragmatics – every processing stage introduces ambiguities
that need to be resolved in this stage or later.

The computational Role of Ambiguities

� Observation: (in the traditional waterfall model)
Every processing stage introduces ambiguities that need to be resolved.

� Syntax: e.g. Peter chased the man in the red sports car (attachment)

� Semantics: e.g. Peter went to the bank (lexical)

� Pragmatics: e.g. Two men carried two bags (collective vs. distributive)

� Question: Where does pronoun-ambiguity belong? (much less clear)

� Answer: we have freedom to choose

1. resolve the pronouns in the syntax (generic waterfall model)

; multiple syntactic representations (pragmatics as filter)

2. resolve the pronouns in the pragmatics (our model here)

; need underspecified syntactic representations (e.g. variables)
; pragmatics needs ambiguity treatment (e.g. tableaux)
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For pronoun ambiguities, this is much less clear. In a way we have the freedom to choose. We
can

1. resolve the pronouns in the syntax as in the generic waterfall model, then we arrive at
multiple syntactic representations, and can use pragmatics as filter to get rid of unwanted
readings

2. resolve the pronouns in the pragmatics (our model here) then we need underspecified syntac-
tic representations (e.g. variables) and pragmatics needs ambiguity treatment (in our case
the tableaux).

We will continue to explore the second alternative in more detail, and refine the approach. One
of the advantages of treating the anaphoric ambiguities in the syntax is that syntactic agreement
information like gender can be used to disambiguate. Say that we vary the example from section ??
to Peter loves Mary. She loves him..

Translation for F2 Reconsidered

� Idea: Pronouns are translated into new variables (so far)

� Problem: Peter loves Mary. She loves him.

loves(peter,mary)T

loves(X,Y )T

loves(peter, peter)T loves(peter,mary)T loves(mary, peter)T loves(mary,mary)T

� Idea: attach world knowledge to pronouns (just as with Peter and Fido)
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� use the world knowledge to distinguish (linguistic) gender by predicates masc and fem

� Idea: attach world knowledge to pronouns (just as with Peter and Fido)

� Problem: properties of

� proper names are given in the model,

� pronouns must be given by the syntax/semantics interface

� In particular: How to generate loves(X,Y )∧masc(X)∧fem(Y ) compositionally?
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The tableau (over)-generates the full set of pronoun readings. At first glance it seems that we
can fix this just like we did in section ?? by attaching world knowledge to pronouns, just as with
Peter and Fido. Then we could use the world knowledge to distinguish gender by predicates, say
masc and fem.

But if we look at the whole picture of building a system, we can see that this idea will not
work. The problem is that properties of proper names like Fido are given in the background
knowledge, whereas the relevant properties of pronouns must be given by the syntax/semantics
interface. Concretely, we would need to generate loves(X,Y )∧masc(X)∧fem(Y ) for She loves him.
How can we do such a thing compositionally?

Again we basically have two options, we can either design a clever syntax/semantics interface,
or we can follow the lead of Montague semantics and extend the logic, so that compositionality
becomes simpler to achieve. We will explore the latter option in the next section. The problem
we stumbled across in the last section is how to associate certain properties (in this case agreement
information) with variables compositionally. Fortunately, there is a ready-made logical theory for
it. Sorted first-order logic. Actually there are various sorted first-order logics, but we will only
need the simplest one for our application at the moment.

Sorted first-order logic extends the language with a set S of ofsorts A,B,C, . . ., which are just
special symbols that are attached to all terms in the language.

Syntactically, all constants, and variables are assigned sorts, which are annotated in the lower
index, if they are not clear from the context. Semantically, the universe Dι is subdivided into
subsets DA⊆Dι, which denote the objects of sort A; furthermore, the interpretation function I
and variable assignment φ have to be well sorted. Finally, on the calculus level, the only change
we have to make is to restrict instantiation to well-sorted substitutions:

Sorts refine World Categories

� Definition (in our case PL1
S) assume a set of ofsorts S:={A,B,C, . . .},

annotate every syntactic and semantic structure with them. Make all constructions
and operations well-worted:

� Syntax: variables and constants are sorted XA, YB, Z
1
C1
. . ., aA, bA, . . .

� Semantics: subdivide the Universe Dι into subsets DA⊆Dι

Interpretation I and variable assignment φ have to be well-sorted. (I(aA)),φ((XA))∈DA.

� Calculus: substitutions must be well-sorted [aA/XA] OK, [aA/XB] not.

� Observation: Sorts do not add expressivity in principle (just practically)

� TranslateR(XA)∧¬P (ZC) to RA(X)∧RC(Z)⇒R(X)∧¬P (Z)⇒ in world knowl-
edge.

� Translate R(XA)∧¬P (ZC) to RA(X)∧RC(Z)∧R(X∧Y )∧¬P (Z) in input.
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� Meaning is preserved, but translation is compositional!
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6.3 Tableaux and Model Generation

6.3.1 Tableau Branches and Herbrand Models
We have claimed above that the set of literals in open saturated tableau branches corresponds to
a models. To gain an intuition, we will study our example above,

Model Generation and Interpretation

� Example In we claimed that

H:={loves(john,mary)F,loves(mary, bill)T}

constitutes a model

(loves(mary, bill)∨loves(john,mary))T

loves(john,mary)F

loves(mary, bill)T loves(john,mary)T
⊥

� Recap: A model M is a pair ⟨D,I⟩, where D is a set of individuals, and I is an
interpretation function.

� Problem: Find D and I
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So the first task is to find a domain D of interpretation. Our formula mentions Mary, John,
and Bill, which we assume to refer to distinct individuals so we need (at least) three individuals
in the domain; so let us take D:={A,B,C} and fix I(mary) = A, I(bill) = B, I(john) = C.

So the only task is to find a suitable interpretation for the predicate loves that makes loves(john,mary)
false and loves(mary, bill) true. This is simple: we just take I(loves) = {⟨A,B⟩}. Indeed we have

Iφ(loves(mary, bill)∨loves(john,mary)) = T

but Iφ(loves(john,mary)) = F according to the rules in.

Model Generation and Models

� Idea: Choose the Universe D as the set Σf0 of constants, choose I(=)IdΣf
0
, interpret

p∈Σpk via I(p):={⟨a1, . . . ,ak⟩|p(a1, . . . ,ak)∈H}.

� Definition We call a model a Herbrand model, iff D = Σf0 and I = IdΣf
0
.

� Assertion Let H be a set of atomic formulae, then setting

I(p):={⟨a1, . . . ,ak⟩|p(a1, . . . ,ak)∈H}

yields a Herbrand Model that satisfies H. (proof trivial)
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� Assertion Let H be a consistent (i.e. ∇c holds) set of atomic formulae, then there
is a Herbrand Model that satisfies H. (take HT)
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In particular, the literals of an open saturated tableau branch B are a Herbrand model H, as
we have convinced ourselves above. By inspection of the inference rules above, we can further
convince ourselves, that H satisfies all formulae on B. We must only check that if H satisfies the
succedents of the rule, then it satisfies the antecedent (which is immediate from the semantics of
the principal connectives).

In particular, H is a model for the root formula of the tableau, which is on B by construction.
So the tableau procedure is also a procedure that generates explicit (Herbrand) models for the root
literal of the tableau. Every branch of the tableau corresponds to a (possibly) different Herbrand
model. We will use this observation in the next section in an application to natural language
semantics.

6.3.2 Using Model Generation for Interpretation
We will now use model generation directly as a tool for discourse interpretation.

Using Model Generation for Interpretation

� Definition Mental model theory [JL83; JLB91] posits that humans form mental
models of the world, i.e. (neural) representations of possible states of the world that
are consistent with the perceptions up to date and use them to reason about the
world.

� So communication by natural language is a process of transporting parts of the
mental model of the speaker into the mental model of the hearer.

� Therefore the NL interpretation process on the part of the hearer is a process of
integrating the meaning of the utterances of the speaker into his mental model.

� Idea: We can model discourse understanding as a process of generating Herbrand
models for the logical form of an utterance in a discourse by a tableau-based pro-
cedure.

� Advantage: Capturing ambiguity by generating multiple models for input logical
forms.
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Tableau Machine

� Definition The tableau machine is an inferential cognitive model for incremen-
tal NLUnatural language understanding that implements mental model theory via
tableau-based generation.

It iterates the following process for every input sentence staring with the empty
tableau:

1. add the logical form of the input sentence Si to the selected branch,
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2. perform tableau inferences below Si until saturated or some resource criterion
is met

3. if there are open branches choose a “preferred branch”, otherwise backtrack
to previous tableau for Sj with j < i and open branches, then re-process
Sj+1, . . . , Si if possible, else fail.

The output is application dependent; some choices are

� the Herbrand model for the preferred branch ; preferred interpretation;

� the literals augmented with all non-expanded formulae
(from the discourse); (resource-bound was reached)

� machine answers user queries (preferred model |= query?)

� model generation mode (guided by resources and strategies)

� theorem proving mode (2 for side conditions; using tableau rules)
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Concretely, we treat discourse understanding as an online process that receives as input the
logical forms of the sentences of the discourse one by one, and maintains a tableau that represents
the current set of alternative models for the discourse. Since we are interested in the internal
state of the machine (the current tableau), we do not specify the output of the tableau machine.
We also assume that the tableau machine has a mechanism for choosing a preferred model from
a set of open branches and that it maintains a set of deferred branches that can be re-visited, if
extension of the preferred model fails.

Upon input, the tableau machine will append the given logical form as a leaf to the preferred
branch. (We will mark input logical forms in our tableaux by enclosing them in a box.) The
machine then saturates the current tableau branch, exploring the set of possible models for the
sequence of input sentences. If the subtableau generated by this saturation process contains open
branches, then the machine chooses one of them as the preferred model, marks some of the other
open branches as deferred, and waits for further input. If the saturation yields a closed sub-tableau,
then the machine backtracks, i.e. selects a new preferred branch from the deferred ones, appends
the input logical form to it, saturates, and tries to choose a preferred branch. Backtracking
is repeated until successful, or until some termination criterion is met, in which case discourse
processing fails altogether.

The Tableau Machine in Action

� Example The tableau machine in action on two sentences.
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initialize tableau
Background
Knowledgeinput sentence

Sentence 1

saturate tableau

⊥ 2 ⊥ 2

choose branch

Sentence 2

⊥ ⊥ ⊥ ⊥

reject branchre-add sentence

Sentence 2

⊥ 2 ⊥ ⊥
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Two Readings

� Example Peter loves Mary and Mary sleeps or Peter snores (syntactically
ambiguous)

Reading 1 loves(peter,mary)∧(sleeps(mary)∨snores(peter))

Reading 2 loves(peter,mary)∧sleeps(mary)∨snores(peter)

� Let us first consider the first reading in . Let us furthermore assume that we start
out with the empty tableau, even though this is cognitively implausible, since it
simplifies the presentation.

loves(peter,mary)∧(sleeps(mary)∨snores(peter))
loves(peter,mary)T

(sleeps(mary)∨snores(peter))T

sleeps(mary)T snores(peter)T

� Observation: We have two models, so we have a case of semantical ambiguity.
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We see that model generation gives us two models; in both Peter loves Mary, in the first, Mary
sleeps, and in the second one Peter snores. If we get a logically different input, e.g. the second
reading in , then we obtain different models.

The other Reading
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loves(peter,mary)∧sleeps(mary)∨snores(peter)
(loves(peter,mary)∧sleeps(mary))T

loves(peter,mary)T

sleeps(mary)T

snores(peter)T
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In a discourse understanding system, both readings have to considered in parallel, since they
pertain to a genuine ambiguity. The strength of our tableau-based procedure is that it keeps the
different readings around, so they can be acted upon later.

Note furthermore, that the overall (syntactical and semantic ambiguity) is not as bad as it
looks: the left models of both readings are identical, so we only have three semantic readings not
four.

Continuing the Discourse

� Example Peter does not love Mary
then the second tableau would be extended to

loves(peter,mary)∧sleeps(mary)∨snores(peter)
(loves(peter,mary)∧sleeps(mary))T

loves(peter,mary)T

sleeps(mary)T

¬loves(peter,mary)
loves(peter,mary)F

⊥

snores(peter)T

¬loves(peter,mary)

and the first tableau closes altogether.

� In effect the choice of models has been reduced to one, which constitutes the
intuitively correct reading of the discourse
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Model Generation models Discourse Understanding

� Conforms with psycholinguistic findings:

� Zwaan& Radvansky [ZR98]: listeners not only represent logical form, but also
models containing referents

� deVega [de 95]: online, incremental process

� Singer [Sin94]: enriched by background knowledge

� Glenberg et al. [GML87]: major function is to provide basis for anaphor resolution
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Towards a Performance Model for NLU
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� Problem: The tableau machine is only a competence model.

� Definition A competence model is a meaning theory that delineates a space of
possible discourses. A performance model delineates the discourses actually used in
communication. (after [Cho65])

� Idea: We need to guide the tableau machine in which inferences and branch choices
it performs.

� Idea: Each tableau rule comes with rule costs.

� Here: each sentence in the discourse has a fixed inference budget.
Expansion until budget used up.

� Ultimately we want bounded optimization regime [Rus91]:
Expansion as long as expected gain in model quality outweighs proof costs

� Effect: Expensive rules are rarely applied. (only if the promise great rewards)

� : Finding appropriate values for rule costs and model quality is an open problem.
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6.3.3 Adding Equality to PLNQ or Fragment 1
We will now extend PLNQ by equality, which is a very important relation in natural language.

Generally, extending a logic with a new logical constant – equality is counted as a logical constant,
since it semantics is fixed in all models – involves extending all three components of the logical
system: the language, semantics, and the calculus.

PLNQ
=: Adding Equality to PLNQ

� Syntax: Just another binary predicate constant =

� Semantics: fixed as Iφ(a = b) = T, iff Iφ(a) = Iφ(b). (logical symbol)

� Definition add two additional inference rules (a positive and a negative) to T0

a∈H
a = aT

T =
NQsym

a = bT

A [a]
α
p

[b/p]Aα
T =
NQrep

where

� H =̂ the Herbrand Base, i.e. the set of constants occurring on the branch

� we write C [A]p to indicate that C|p = A (C has subterm A at position p).

� [A/p]C is obtained from C by replacing the subterm at position p with A.
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If we simplify the translation of definite descriptions, so that the phrase the teacher is translates
to a concrete individual constant, then we can interpret (??) as (??).

Reading Comprehension Example: Mini TOEFL test
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� Example If you hear/read Mary is the teacher. Peter likes the teacher., do you
know whether Peter likes Mary?

� Idea: Interpret via tablau machine (interpretation mode) and test entailment in
theorem proving mode.

� Interpretation: Feed Φ1:=mary = the_teacher and Φ2:=likes(peter, the_teacher)
to the tableau machine in turn.
Model generation tableau (nothing to do on these inputs)

mary = the_teacherT

likes(peter, the_teacher)T

� Entailment Test: label φ:=likes(peter,mary) with F and saturate the tableau.

mary = the_teacherT

likes(peter, the_teacher)T

likes(peter,mary)F

likes(peter, the_teacher)F
⊥

Indeed, it closes, so Φ1,Φ2|=φ.
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Chapter 7

Pronouns and World Knowledge in
First-Order Logic

7.1 First-Order Logic
First-order logic is the most widely used formal system for modelling knowledge and inference
processes. It strikes a very good bargain in the trade-off between expressivity and conceptual
and computational complexity. To many people first-order logic is “the logic”, i.e. the only logic
worth considering, its applications range from the foundations of mathematics to natural language
semantics.

First-Order Predicate Logic (PL1)

� Coverage: We can talk about (All humans are mortal)

� individual things and denote them by variables or constants

� properties of individuals, (e.g. being human or mortal)

� relations of individuals, (e.g. sibling_of relationship)

� functions on individuals, (e.g. the father_of function)

We can also state the existence of an individual with a certain property, or the
universality of a property.

� But we cannot state assertions like

� There is a surjective function from the natural numbers into the reals.

� First-Order Predicate Logic has many good properties (complete calculi,
compactness, unitary, linear unification,. . . )

� But too weak for formalizing: (at least directly)

� natural numbers, torsion groups, calculus, . . .

� generalized quantifiers (most, few,. . . )
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We will now introduce the syntax and semantics of first-order logic. This introduction differs
from what we commonly see in undergraduate textbooks on logic in the treatment of substitutions
in the presence of bound variables. These treatments are non-syntactic, in that they take the

87
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renaming of bound variables (α-equivalence) as a basic concept and directly introduce capture-
avoiding substitutions based on this. But there is a conceptual and technical circularity in this
approach, since a careful definition of α-equivalence needs substitutions.

In this Section we follow Peter Andrews’ lead from [And02] and break the circularity by intro-
ducing syntactic substitutions, show a substitution value lemma with a substitutability condition,
use that for a soundness proof of α-renaming, and only then introduce capture-avoiding substitu-
tions on this basis. This can be done for any logic with bound variables, we go through the details
for first-order logic here as an example.

7.1.1 First-Order Logic: Syntax and Semantics

The syntax and semantics of first-order logic is systematically organized in two distinct layers: one
for truth values (like in propositional logic) and one for individuals (the new, distinctive feature
of first-order logic).

The first step of defining a formal language is to specify the alphabet, here the first-order
signatures and their components.

PL1 Syntax (Signature and Variables)

� Definition First order logic (PL1), is a formal logical system extensively used in
mathematics, philosophy, linguistics, and computer science. It combines proposi-
tional logic with the ability to quantify over individuals.

� PL1 talks about two kinds of objects: (so we have two kinds of symbols)

� truth values; sometimes annotated by type o (like in PL0)

� individuals; sometimes annotated by type ι (numbers, foxes, Pokémon,. . . )

� Definition A first order signature consists of (all disjoint; k∈N)

� connectives: Σo = {T ,F ,¬,∨,∧,⇒,⇔, . . .} (functions on truth values)

� function constants: Σf k = {f,g,h, . . .} (functions on individuals)

� predicate constants: Σpk = {p,q,r, . . .} (relations among inds.)

� (Skolem constants: Σskk = {f1k ,f2k , . . .}) (witness constructors; countably ∞)

� We take Σι to be all of these together: Σι:=(Σf∪Σp∪Σsk), where Σ∗:=
⋃
k∈NΣ

∗
k

and define Σ:=(Σι∪Σo).

� Definition We assume a set of individual variables: Vι:={Xι,Yι,Zι,X
1
ι ,X

2
ι , . . .}

(countably ∞)
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We make the deliberate, but non-standard design choice here to include Skolem constants into
the signature from the start. These are used in inference systems to give names to objects and
construct witnesses. Other than the fact that they are usually introduced by need, they work
exactly like regular constants, which makes the inclusion rather painless. As we can never predict
how many Skolem constants we are going to need, we give ourselves countably infinitely many for
every arity. Our supply of individual variables is countably infinite for the same reason.

The formulae of first-order logic is built up from the signature and variables as terms (to repre-
sent individuals) and propositions (to represent propositions). The latter include the propositional
connectives, but also quantifiers.



7.1. FIRST-ORDER LOGIC 89

PL1 Syntax (Formulae)

� Definition Term: A∈wff ι(Σι) (denote individuals: type ι)

� Vι⊆wff ι(Σι),

� if f∈Σf k and Ai∈wff ι(Σι) for i≤k, then f(A1, . . . ,Ak)∈wff ι(Σι).

� Definition Proposition: A∈wff o(Σ) (denote truth values: type o)

� if p∈Σpk and Ai∈wff ι(Σι) for i≤k, then p(A1, . . . ,Ak)∈wff o(Σ),

� if A,B∈wff o(Σ) and X∈Vι, then T ,(A∧B),(¬A),(∀XA)∈wff o(Σ). ∀ is a
binding operator called the universal quantifier.

� Definition We define the connectives F ,∨,⇒,⇔ via the abbreviations A∨B:=¬(¬A∧¬B),
A⇒B:=¬A∨B, A⇔B:=(A⇒B)∧(B⇒A), and F :=¬T . We will use them like
the primary connectives ∧ and ¬

� Definition We use ∃XA as an abbreviation for ¬(∀X ¬A). ∃ is a binding operator
called the existential quantifier.

� Definition Call formulae without connectives or quantifiers atomic else complex.
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Note: that we only need e.g. conjunction, negation, and universal quantification, all other
logical constants can be defined from them (as we will see when we have fixed their interpreta-
tions).

Alternative Notations for Quantifiers

Here Elsewhere
∀xA

∧
xA (x)A

∃xA
∨
xA
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The introduction of quantifiers to first-order logic brings a new phenomenon: variables that are
under the scope of a quantifiers will behave very differently from the ones that are not. Therefore
we build up a vocabulary that distinguishes the two.

Free and Bound Variables

� Definition We call an occurrence of a variable X bound in a formula A, iff it occurs
in a sub-formula ∀XB of A. We call a variable occurrence free otherwise.

For a formula A, we will use BVar(A) (and free(A)) for the set of bound (free)
variables of A, i.e. variables that have a free/bound occurrence in A.

� Definition We define the set free(A) of frees variable of a formula A:
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free(X):={X}
free(f(A1, . . . ,An)):=

⋃
1≤i≤nfree(Ai)

free(p(A1, . . . ,An)):=
⋃

1≤i≤nfree(Ai)

free(¬A):=free(A)
free(A∧B):=(free(A)∪free(B))
free(∀XA):=(free(A)\{X})

� Definition We call a formula A closed or ground, iff free(A) = ∅. We call a closed
proposition a sentence, and denote the set of all ground terms with cwff ι(Σι) and
the set of sentences with cwff o(Σι).
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We will be mainly interested in (sets of) sentences – i.e. closed propositions – as the represen-
tations of meaningful statements about individuals. Indeed, we will see below that free variables
do not gives us expressivity, since they behave like constants and could be replaced by them in all
situations, except the recursive definition of quantified formulae. Indeed in all situations where
variables occur freely, they have the character of meta-variables, i.e. syntactic placeholders that
can be instantiated with terms when needed in an inference calculus.

The semantics of first-order logic is a Tarski-style set-theoretic semantics where the atomic
syntactic entities are interpreted by mapping them into a well-understood structure, a first-order
universe that is just an arbitrary set.

Semantics of PL1 (Models)

� Definition

� Definition We inherit the universe Do = {T,F} of truth values from PL0 and assume
an arbitrary universe Dι ̸=∅ of individuals (this choice is a parameter to the
semantics)

� Definition An interpretation I assigns values to constants, e.g.

� I(¬) : Do→Do with T7→F, F 7→T, and I(∧) = . . . (as in PL0)

� I : Σf k→Dι
k→Dι (interpret function symbols as arbitrary functions)

� I : Σpk→P(Dι
k) (interpret predicates as arbitrary relations)

� Definition A variable assignment φ : Vι→Dι maps variables into the universe.

� Definition A model M = ⟨Dι,I⟩ of PL1 consists of a universe Dι and an interpre-
tation I.
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We do not have to make the universe of truth values part of the model, since it is always the
same; we determine the model by choosing a universe and an interpretation function.

Given a first-order model, we can define the evaluation function as a homomorphism over the
construction of formulae.

Semantics of PL1 (Evaluation)

� Definition Given a model ⟨D,I⟩, the value function Iφ is recursively defined:(two
parts: terms & propositions)
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� Iφ : wff ι(Σι)→Dι assigns values to terms.

� Iφ(X):=φ(X) and
� Iφ(f(A1, . . . ,Ak)):=I(f)(Iφ(A1), . . . , Iφ(Ak))

� Iφ : wff o(Σ)→Do assigns values to formulae:

� Iφ(T ) = I(T ) = T,
� Iφ(¬A) = I(¬)(Iφ(A))

� Iφ(A∧B) = I(∧)(Iφ(A), Iφ(B)) (just as in PL0)
� Iφ(p(A1, . . . ,Ak)):=T, iff ⟨Iφ(A1), . . . ,Iφ(Ak)⟩∈I(p)
� Iφ(∀XA):=T, iff I(φ,[a/X])(A) = T for all a∈Dι.

� Definition Let φ be a variable assignment and a∈Dι, then we denote with φ,[a/X]
the extended assignment {(Y ,b)∈φ|Y ̸=X}∪{(X,a)}. (φ,[a/X] coincides with φ
off X, and gives the result a there)
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The only new (and interesting) case in this definition is the quantifier case, there we define the
value of a quantified formula by the value of its scope – but with an extended variable assignment.
Note that by passing to the scope A of ∀xA, the occurrences of the variable x in A that were bound
in ∀xA become free and are amenable to evaluation by the variable assignment ψ:=(φ,[a/X]).
Note that as an extension of φ, the assignment ψ supplies exactly the right value for x in A.
This variability of the variable assignment in the definition value function justifies the somewhat
complex setup of first-order evaluation, where we have the (static) interpretation function for the
symbols from the signature and the (dynamic) variable assignment for the variables.

Note furthermore, that the value Iφ(∃xA) of ∃xA, which we have defined to be ¬(∀x¬A) is
true, iff it is not the case that Iφ(∀x¬A) = Iψ(¬A) = F for all a∈Dι and ψ:=(φ,[a/X]). This is
the case, iff Iψ(A) = T for some a∈Dι. So our definition of the existential quantifier yields the
appropriate semantics.

Semantics Computation: Example

� Example We define an instance of first-order logic:

� Signature: Let Σf 0:={j,m}, Σf 1:={f}, and Σp2:={o}
� Universe: Dι:={J,M}
� Interpretation: I(j):=J , I(m):=M , I(f)(J):=M , I(f)(M):=M , and I(o):={(M,J)}.

Then ∀X o(f(X),X) is a sentence and with ψ:=(φ,[a/X]) for a∈Dι we have

Iφ(∀X o(f(X),X)) = T iff Iψ(o(f(X),X)) = T for all a∈Dι

iff (Iψ(f(X)),Iψ(X))∈I(o) for all a∈{J,M}
iff (I(f)(Iψ(X)),ψ(X))∈{(M,J)} for all a∈{J,M}
iff (I(f)(ψ(X)),a)=(M,J) for all a∈{J,M}
iff I(f)(a)=M and a=J for all a∈{J,M}

But a̸=J for a=M , so Iφ(∀X o(f(X),X)) = F in the model ⟨Dι,I⟩.
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7.1.2 First-Order Substitutions

We will now turn our attention to substitutions, special formula-to-formula mappings that oper-
ationalize the intuition that (individual) variables stand for arbitrary terms.

Substitutions on Terms

� Intuition: If B is a term and X is a variable, then we denote the result of system-
atically replacing all occurrences of X in a term A by B with [B/X]A.

� Problem: What about ([Z/Y ],[Y /X])X, is that Y or Z?

� Folklore: ([Z/Y ],[Y /X])X = Y , but [Z/Y ][Y /X]X = Z of course. (Parallel
application)

� Definition We call σ : wff ι(Σι)→wff ι(Σι) a substitution, iff σf(A1, . . . ,An) =
f(σA1, . . . , σAn) and the support supp(σ):={X|σX ̸= X} of σ is finite.

� Assertion Note that a substitution σ is determined by its values on variables alone,
thus we can write σ as σ|Vι

= {[σX/X]|X∈supp(σ)}.

� Notation: We denote the substitution σ with supp(σ) = {xi|1≤i≤n} and σxi = Ai

by [A1/x
1].

� Example [a/x],[f(b)/y],[a/z] instantiates g(x, y, h(z)) to g(a, f(b), h(a)).

� Definition We call intro(σ):=
⋃
X∈supp(σ)free(σX) the set of variables introduced

by σ.
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The extension of a substitution is an important operation, which you will run into from time
to time. Given a substitution σ, a variable x, and an expression A, σ,[A/x] extends σ with a
new value for x. The intuition is that the values right of the comma overwrite the pairs in the
substitution on the left, which already has a value for x, even though the representation of σ may
not show it.

Substitution Extension

� Definition Let σ be a substitution, then we denote with σ,[A/X] the function
{(Y ,B)∈σ|Y ̸= X}∪{(X,A)}. (σ,[A/X] coincides with σ off X, and gives the
result A there.)

� Note: If σ is a substitution, then σ,[A/X] is also a substitution.

� Definition If σ is a substitution, then we call σ,[A/X] the extension of σ by [A/X].

� We also need the dual operation: removing a variable from the support:

� Definition We can discharge a variableX from a substitution σ by σ−X :=σ,[X/X].

©:MichaelKohlhase 142

Note that the use of the comma notation for substitutions defined in is consistent with sub-
stitution extension. We can view a substitution [a/x],[f(b)/y] as the extension of the empty
substitution (the identity function on variables) by [f(b)/y] and then by [a/x]. Note furthermore,
that substitution extension is not commutative in general.
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For first-order substitutions we need to extend the substitutions defined on terms to act on
propositions. This is technically more involved, since we have to take care of bound variables.

Substitutions on Propositions

� Problem: We want to extend substitutions to propositions, in particular to quanti-
fied formulae: What is σ(∀XA)?

� Idea: σ should not instantiate bound variables. ([A/X](∀XB) = ∀AB′

ill-formed)

� Definition (σ∀XA):=(∀X (σ−X)A).

� Problem: This can lead to variable capture: [f(X)/Y ](∀X p(X,Y )) would evaluate
to ∀X p(X, f(X)), where the second occurrence of X is bound after instantiation,
whereas it was free before.

� Definition Let B∈wff ι(Σι) and A∈wff o(Σ), then we call B substitutable for X
in A, iff A has no occurrence of X in a subterm ∀Y C with Y ∈free(B).

� Solution: Forbid substitution [B/X]A, when B is not substitutable for X in A.

� Better Solution: Rename away the bound variable X in ∀X p(X,Y ) before applying
the substitution. (see alphabetic renaming later.)
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Here we come to a conceptual problem of most introductions to first-order logic: they directly
define substitutions to be capture-avoiding by stipulating that bound variables are renamed in
the to ensure subsitutability. But at this time, we have not even defined alphabetic renaming
yet, and cannot formally do that without having a notion of substitution. So we will refrain from
introducing capture-avoiding substitutions until we have done our homework.

We now introduce a central tool for reasoning about the semantics of substitutions: the
“substitution-value Lemma”, which relates the process of instantiation to (semantic) evaluation.
This result will be the motor of all soundness proofs on axioms and inference rules acting on vari-
ables via substitutions. In fact, any logic with variables and substitutions will have (to have) some
form of a substitution-value Lemma to get the meta-theory going, so it is usually the first target
in any development of such a logic. We establish the substitution-value Lemma for first-order
logic in two steps, first on terms, where it is very simple, and then on propositions, where we have
to take special care of substitutability.

Substitution Value Lemma for Terms

� Assertion Let A and B be terms, then Iφ([B/X]A) = Iψ(A), where ψ =
φ, [Iφ(B)/X].

� Proof: by induction on the depth of A:

P.1.1 depth=0:

P.1.1.1 Then A is a variable (say Y ), or constant, so we have three cases

P.1.1.1.1 A = Y = X: then Iφ([B/X]A) = Iφ([B/X]X) = Iφ(B) = ψ(X) =
Iψ(X) = Iψ(A).
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P.1.1.1.1 A = Y ̸= X: then Iφ([B/X]A) = Iφ([B/X]Y ) = Iφ(Y ) = φ(Y ) =
ψ(Y ) = Iψ(Y ) = Iψ(A).

P.1.1.1.1 A is a constant: analogous to the preceding case (Y ̸= X)

P.1.1.1 This completes the base case (depth = 0).

P.1.1 depth> 0: then A = f(A1, . . . ,An) and we have

Iφ([B/X]A) = I(f)(Iφ([B/X]A1), . . . , Iφ([B/X]An))

= I(f)(Iψ(A1), . . . , Iψ(An))

= Iψ(A).

by inductive hypothesis

P.1.1.1 This completes the inductive case, and we have proven the assertion
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We now come to the case of propositions. Note that we have the additional assumption of
substitutability here.

Substitution Value Lemma for Propositions

� Assertion Let B∈wff ι(Σι) be substitutable forX in A∈wff o(Σ), then Iφ([B/X]A) =
Iψ(A), where ψ = φ,[Iφ(B)/X].

� Proof: by induction on the number n of connectives and quantifiers in A

P.1.1 n = 0: then A is an atomic proposition, and we can argue like in the inductive
case of the substitution value lemma for terms.

P.1.1 n>0 and A = ¬B or A = C ◦D: Here we argue like in the inductive case
of the term lemma as well.

P.1.1 n>0 and A = ∀XC: then Iψ(A) = Iψ(∀XC) = T, iff I(ψ,[a/X])(C) =
I(φ,[a/X])(C) = T, for all a∈Dι, which is the case, iff Iφ(∀XC) = Iφ([B/X]A) =
T.

P.1.1 n>0 and A = ∀Y C where X ̸= Y : then Iψ(A) = Iψ(∀Y C) = T, iff
I(ψ,[a/Y ])(C) = I(φ,[a/Y ])([B/X]C) = T, by inductive hypothesis. So
Iψ(A) = Iφ(∀Y [B/X]C) = Iφ([B/X](∀Y C)) = Iφ([B/X]A)
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To understand the proof fully, you should look out where the substitutability is actually used.
Armed with the substitution value lemma, we can now define alphabetic renaming and show it to
be sound with respect to the semantics we defined above. And this soundness result will justify
the definition of capture-avoiding substitution we will use in the rest of the course.

7.1.3 Alpha-Renaming for First-Order Logic

Armed with the substitution value lemma we can now prove one of the main representational facts
for first-order logic: the names of bound variables do not matter; they can be renamed at liberty
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without changing the meaning of a formula.

Alphabetic Renaming

� Assertion Bound variables can be renamed: If Y is substitutable for X in A, then
Iφ(∀XA) = Iφ(∀Y [Y /X]A)

� Proof: by the definitions:

P.1 Iφ(∀XA) = T, iff

P.1 I(φ,[a/X])(A) = T for all a∈Dι, iff

P.1 I(φ,[a/Y ])([Y /X]A) = T for all a∈Dι, iff (by substitution value lemma)

P.1 Iφ(∀Y [Y /X]A) = T.

� Definition We call two formulae A and B alphabetical variants (or α-equal; write
A=αB), iff A = ∀XC and B = ∀Y [Y /X]C for some variables X and Y .
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We have seen that naive substitutions can lead to variable capture. As a consequence, we
always have to presuppose that all instantiations respect a substitutability condition, which is
quite tedious. We will now come up with an improved definition of substitution application for
first-order logic that does not have this problem.

Avoiding Variable Capture by Built-in α-renaming

� Idea: Given alphabetic renaming, consider alphabetical variants as identical!

� So: Bound variable names in formulae are just a representational device. (we
rename bound variables wherever necessary)

� Formally: Take cwff o(Σι) (new) to be the quotient set of cwff o(Σι) (old) modulo
=α. (formulae as syntactic representatives of equivalence classes)

� Definition Let σ be a substitution, A a formula, and A′ an alphabetical variant
of A, such that intro(σ)∩BVar(A) = ∅. Then A=α = A′

=α
and we can define

(σA=α
):=(σA′)=α

.

� Notation: After we have understood the quotient construction, we will neglect
making it explicit and write formulae and substitutions with the understanding that
they act on quotients.

� Alternative: Replace variables with numbers in formulae (de Bruijn indices).
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Undecidability of First-Order Logic

� Assertion Validity in first order logic is undecidable.

� Proof: We prove this by contradiction

P.1 Let us assume that there is a
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7.2 First-Order Inference with Tableaux
We will now extend the propositional tableau techniques to first-order logic. We only have to add
two new rules for the universal quantifiers (in positive and negative polarity).

First-Order Standard Tableaux (T1)

� Definition The standard tableau calculus (T1) extends T0 (propositional tableau
calculus) with the following quantifier rules:

(∀XA)T C∈cwff ι(Σι)

([C/X]A)T
T1 ∀

(∀XA)F c∈Σsk0 new
([c/X]A)F

T1 ∃

� Problem: The rule T1 ∀ displays a case of “don’t know indeterminism”: to find a
refutation we have to guess a formula C from the (usually infinite) set cwff ι(Σι).

For proof search, this means that we have to systematically try all, so T1 ∀ is infinitely
branching in general.
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The rule T1 ∀ operationalizes the intuition that a universally quantified formula is true, iff all
of the instances of the scope are. To understand the T1 ∃ rule, we have to keep in mind that
∃XA abbreviates ¬(∀X ¬A), so that we have to read (∀XA)F existentially — i.e. as (∃X ¬A)T,
stating that there is an object with property ¬A. In this situation, we can simply give this
object a name: c, which we take from our (infinite) set of witness constants Σsk0 , which we have
given ourselves expressly for this purpose when we defined first-order syntax. In other words
([c/X]¬A)T = ([c/X]A)F holds, and this is just the conclusion of the T1 ∃ rule.

Note that the T1 ∀ rule is computationally extremely inefficient: we have to guess an (i.e. in
a search setting to systematically consider all) instance C∈wff ι(Σι) for X. This makes the rule
infinitely branching.

7.2.1 Free Variable Tableaux
In the next calculus we will try to remedy the computational inefficiency of the T1 ∀ rule. We

do this by delaying the choice in the universal rule.

Free variable Tableaux (T f
1 )

� Definition The free variable tableau calculus (T f1 ) extends T0 (propositional tableau
calculus) with the quantifier rules:

(∀XA)T Y new
([Y /X]A)T

T f
1 ∀ (∀XA)F free(∀XA) = {X1, . . . ,Xk} f∈Σsk

k new
([f(X1, . . . , Xk)/X]A)F

T f
1 ∃

and generalizes its cut rule T0⊥ to:

Aα

Bβ α ̸= β σA = σB

⊥ : σ
T f1 ⊥
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T f1 ⊥ instantiates the whole tableau by σ.

� Advantage: No guessing necessary in T f1 ∀-rule!

� New Problem: find suitable substitution (most general unifier) (later)
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Metavariables: Instead of guessing a concrete instance for the universally quantified variable
as in the T1 ∀ rule, T f1 ∀ instantiates it with a new meta-variable Y , which will be instantiated by
need in the course of the derivation.

Skolem terms as witnesses: The introduction of meta-variables makes is necessary to extend
the treatment of witnesses in the existential rule. Intuitively, we cannot simply invent a new name,
since the meaning of the body A may contain meta-variables introduced by the T f1 ∀ rule. As we
do not know their values yet, the witness for the existential statement in the antecedent of the
T f1 ∃ rule needs to depend on that. So witness it using a witness term, concretely by applying a
Skolem function to the meta-variables in A.

Instantiating Metavariables: Finally, the T f1 ⊥ rule completes the treatment of meta-variables,
it allows to instantiate the whole tableau in a way that the current branch closes. This leaves us
with the problem of finding substitutions that make two terms equal.

Free variable Tableaux (T f
1 ): Derived Rules

� Definition Derived quantifier rules in T f1 :

(∃XA)T free(∀XA) = {X1, . . . ,Xk} f∈Σskk new
([f(X1, . . . , Xk)/X]A)T

(∃XA)F Y new
([Y /X]A)F
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We now come to some issues (and clarifications) pertaining to implementing proof search for
free variable tableaux. They all have to do with the – often overlooked – fact that T f1 ⊥ instantiates
the whole tableau.

The first question one may ask for implementation is whether we expect a terminating proof
search; after all, T0 terminated. We will see that the situation for T f1 is different.

Termination and Multiplicity in Tableaux

� Recall: In T0, all rules only needed to be applied once.
; T0 terminates and thus induces a decision procedure for PL0.

� Assertion All T f1 rules except T f1 ∀ only need to be applied once.

� Example A tableau proof for p(a)∨p(b)⇒(∃xp(x)).
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Start, close left branch use T f1 ∀ again (right branch)

(p(a)∨p(b)⇒(∃xp(x)))F
(p(a)∨p(b))T
(∃xp(x))F
(∀x¬p(x))T

¬p(y)T

p(y)
F

p(a)
T

⊥ : [a/y]
p(b)

T

(p(a)∨p(b)⇒(∃xp(x)))F
(p(a)∨p(b))T
(∃xp(x))F
(∀x¬p(x))T

¬p(a)T

p(a)
F

p(a)
T

⊥ : [a/y]
p(b)

T

¬p(z)T

p(z)
F

⊥ : [b/z]

After we have used up p(y)
F by applying [a/y] in T f1 ⊥, we have to get a new

instance p(z)F via T f1 ∀.

� Definition Let T be a tableau for A, and a positive occurrence of ∀xB in A, then
we call the number of applications of T f1 ∀ to ∀xB its multiplicity.

� Assertion Given a prescribed multiplicity for each positive ∀, saturation with T f1
terminates.

� ProofSketch: All T f1 rules reduce the number of connectives and negative ∀ or the
multiplicity of positive ∀.

� Assertion T f1 is only complete with unbounded multiplicities.

� ProofSketch: Replace p(a)∨p(b) with p(a1)∨ . . .∨p(an) in .

� Remark: Otherwise validity in PL1 would be decidable.

� Implementation: We need an iterative multiplicity-deepening process.
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The other thing we need to realize is that there may be multiple ways we can use T f1 ⊥ to close
a branch in a tableau, and – as T f1 ⊥ instantiates the whole tableau and not just the branch itself
– this choice matters.

Treating T f
1 ⊥

� Recall: The T f1 ⊥ rule instantiates the whole tableau.

� Problem: There may be more than one T f1 ⊥ opportunity on a branch.

� Example Choosing which matters – this tableau does not close!

(∃x (p(a)∧p(b)⇒p(x))∧(q(b)⇒q(x)))F

(p(a)∧p(b)⇒p(y)∧(q(b)⇒q(y)))F

(p(a)⇒p(b)⇒p(y))F

p(a)
T

p(b)
T

p(y)
F

⊥ : [a/y]

(q(b)⇒q(y))F

q(b)
T

q(y)
F



7.2. FIRST-ORDER INFERENCE WITH TABLEAUX 99

choosing the other T f1 ⊥ in the left branch allows closure.

� Idea: Two ways of systematic proof search in T f1 :

� backtracking search over T f1 ⊥ opportunities

� saturate without T f1 ⊥ and find spanning matings (next slide)

©:MichaelKohlhase 153

The method of spanning matings follows the intuition that if we do not have good information
on how to decide for a pair of opposite literals on a branch to use in T f1 ⊥, we delay the choice
by initially disregarding the rule altogether during saturation and then – in a later phase– looking
for a configuration of cuts that have a joint overall unifier. The big advantage of this is that we
only need to know that one exists, we do not need to compute or apply it, which would lead to
exponential blow-up as we have seen above.

Spanning Matings for T f
1 ⊥

� Assertion T f1 without T f1 ⊥ is terminating and confluent for given multiplicities.

� Idea: Saturate without T f1 ⊥ and treat all cuts at the same time (later).

� Definition Let T be a T f1 tableau, then we call a unification problem E :=(A1=
?B1∧ . . .∧An=

?Bn)
a mating for T , iff AT

i and BF
i occur in the same branch in T .

We say that E is a spanning mating, if E is unifiable and every branch B of T
contains AT

i and BF
i for some i.

� Assertion A T f1 -tableau with a spanning mating induces a closed T1-tableau.

� ProofSketch: Just apply the unifier of the spanning mating.

� Idea: Existence is sufficient, we do not need to compute the unifier.

� Implementation: Saturate without T f1 ⊥, backtracking search for spanning matings
with DU , adding pairs incrementally.
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Excursion: We will cover first-order unification intheappendix.
The method of spanning matings follows the intuition that if we do not have good information

on how to decide for a pair of opposite literals on a branch to use in T f1 ⊥, we delay the choice
by initially disregarding the rule altogether during saturation and then – in a later phase– looking
for a configuration of cuts that have a joint overall unifier. The big advantage of this is that we
only need to know that one exists, we do not need to compute or apply it, which would lead to
exponential blow-up as we have seen above.

Spanning Matings for T f
1 ⊥

� Assertion T f1 without T f1 ⊥ is terminating and confluent for given multiplicities.

� Idea: Saturate without T f1 ⊥ and treat all cuts at the same time (later).

� Definition Let T be a T f1 tableau, then we call a unification problem E :=(A1=
?B1∧ . . .∧An=

?Bn)
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a mating for T , iff AT
i and BF

i occur in the same branch in T .

We say that E is a spanning mating, if E is unifiable and every branch B of T
contains AT

i and BF
i for some i.

� Assertion A T f1 -tableau with a spanning mating induces a closed T1-tableau.

� ProofSketch: Just apply the unifier of the spanning mating.

� Idea: Existence is sufficient, we do not need to compute the unifier.

� Implementation: Saturate without T f1 ⊥, backtracking search for spanning matings
with DU , adding pairs incrementally.
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Excursion: We discuss soundness and completenss of first-order tableaux intheappendix.

7.3 Model Generation with Quantifiers
Since we have introduced new logical constants, we have to extend the model generation calculus
by rules for these. To keep the calculus simple, we will treat ∃XA as an abbreviation of ¬(∀X ¬A).
Thus we only have to treat the universal quantifier in the rules.

Model Generation (The RM Calculus [Kon04])

� Idea: Try to generate domain-minimal (i.e. fewest individuals) models (for NL
interpretation)

� Problem: Even one function symbol makes Herbrand base infinite (solution: leave
them out)

� Definition Add ground quantifier rules to these

(∀XA)T c∈H
([c/X]A)T

RM ∀ (∀XA)F H = {a1, . . . ,an} w ̸∈H new
([a1/X]A)F . . . ([an/X]A)F ([w/X]A)F

RM ∃

� RM ∃ rule introduces new witness constant w to Herbrand base H of branch

� Apply RM ∀ exhaustively (for new w reapply all RM ∀ rules on branch!)
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The rule RM ∀ allows to instantiate the scope of the quantifier with all the instances of the
Herbrand base, whereas the rule RM ∃ makes a case distinction between the cases that the scope
holds for one of the already known individuals (those in the Herbrand base) or a currently unknown
one (for which it introduces a witness constant w∈Σsk0 ).

Note that in order to have a complete calculus, it is necessary to apply the RM ∀ rule to all
universal formulae in the tree with the new constant w. With this strategy, we arrive at a complete
calculus for (finite) satisfiability in first-order logic, i.e. if a formula has a (finite) Model, then
this calculus will find it. Note that this calculus (in this simple form) does not necessarily find
minimal models.

Generating infinite models (Natural Numbers)



7.3. MODEL GENERATION WITH QUANTIFIERS 101

� We have to re-apply the RM ∀ rule for any new constant

� Example This leads to the generation of infinite models

(∀x¬x > x∧ . . .)T
N(0)T

(∀xN(x)⇒(∃y y > x))T

(N(0)⇒∃y y > 0)T

N(0)F

⊥
(∃y y > 0)T

0 > 0T

0 > 0F

⊥

1 > 0T

(N(1)⇒∃y y > 1)T

N(1)F

...
⊥

(∃y y > 1)T

0 > 1T

...
⊥

1 > 1T

1 > 1F

⊥

2 > 1T

...

©:MichaelKohlhase 157

The rules RM ∀ and RM ∃ may remind you of the rules we introduced for PLNQ
V . In fact the

rules mainly differ in their scoping behavior. We will use RM ∀ as a drop-in replacement for the
world-knowledge rule T p

V WK, and express world knowledge as universally quantified sentences.
The rules T p

V Ana and RM ∃ differ in that the first may only be applied to input formulae and
does not introduce a witness constant. (It should not, since variables here are anaphoric). We
need the rule RM ∃ to deal with rule-like world knowledge.

Example: Peter is a man. No man walks

without sorts with sort Male

man(peter)

¬(∃Xman(X)∧walks(X))

(∃Xman(X)∧walks(X))F

(man(peter)∧walks(peter))F

man(peter)F
⊥

walks(peter)F

man(peter)

¬(∃XMale walks(X))

(∃XMale walks(X))F

walks(peter)F

problem: 1000 women
⇒

1000 closed branches

� Herbrand-model
{man(peter)T,walks(peter)F}
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Anaphor resolution A man sleeps. He snores
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�

∃X sleeps(X)

sleeps(c1Man)
T

∃YMan snores(Y )

snores(c1Man)
T

minimal
snores(c2Man)

T

deictic

In a situation without men (but maybe thousands of women)
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Anaphora with World Knowledge

� Example Mary is married to Jeff. Her husband is not in town. (slightly outside
F2) In PL1: married(mary, jeff), and

∃WMale,W
′
Female husband(W,W ′)∧¬intown(W )

� World knowledge

� If woman X is married to man Y , then Y is the only husband of X.

� ∀XFemale,YMale married(X,Y )⇒husband(Y,X)∧(∀Z husband(Z,X)⇒(Z=Y ))

� Model generation gives tableau where all open branches contain

{married(mary, jeff)T,husband(jeff,mary)T,intown(jeff)F}

� Differences: additional negative facts e.g. married(mary,mary)F.
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A branch without world knowledge
married(mary, jeff)T

(∃ZMale,Z
′
Female husband(Z,Z′)∧¬intown(Z))T

(∃Z′ husband(c1Male, Z
′)∧¬intown(c1Male))

T

(husband(c1Male,mary)∧¬intown(c1Male))
T

husband(c1Male,mary)T

¬intown(c1Male)
T

intown(c1Male)
F

� Problem: Bigamy

� c1Male and jeff husbands
of Mary!
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Chapter 8

Fragment 3: Complex Verb Phrases

8.1 Fragment 3 (Handling Verb Phrases)

New Data (Verb Phrases)

� Ethel howled and screamed.

� Ethel kicked the dog and poisoned the cat.

� Fiona liked Jo and loathed Ethel and tolerated Prudence.

� Fiona kicked the cat and laughed.

� Prudence kicked and scratched Ethel.

� Bertie didn’t laugh.

� Bertie didn’t laugh and didn’t scream.

� Bertie didn’t laugh or scream.

� Bertie didn’t laugh or kick the dog.

� * Bertie didn’t didn’t laugh.
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New Grammar in Fragment 3 (Verb Phrases)

� To account for the syntax we come up with the concept of a verb-phrase (VP)

� Definition F3 has the following rules:

103
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S1. S → NPVP+fin

S2. S → SconjS
V1. VP±fin → V i

±fin

V2. VP±fin → V t
±fin,NP

V3. VP±fin → VP±fin, conj, VP±fin

V4. VP+fin → BE=,NP
V5. VP+fin → BEpred,Adj.
V6. VP+fin → didn’t VP−fin

N1. NP → Npr
N2. NP → Pron
N3. NP → the N

L8. BE= → {is}
L9. BEpred → {is}
L10. V i

−fin → {run, laugh, sing,. . . }
L11. V t

−fin → {read, poison,eat,. . . }

� Limitations of F3:

� The rule for didn’t over-generates: * John didn’t didn’t run (need tense for
that)

� F3 does not allow coordination of transitive verbs (problematic anyways)
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The main extension of the fragment is the introduction of the new category VP , we have
to interpret. Intuitively, VP s denote functions that can be applied to the NP meanings (rule
1). Complex VP functions can be constructed from simpler ones by NL connectives acting as
functional operators.

Given the discussion above, we have to deal with various kinds of functions in the semantics.
NP meanings are individuals, VP meanings are functions from individuals to individuals, and conj
meanings are functionals that map functions to functions. It is a tradition in logic to distinguish
such objects (individuals and functions of various kinds) by assigning them types.

Implementing Fragment 3 in GF

� The grammar of Fragment 3 only differs from that of Fragment 2 by

� Verb phrases: cat VP; VPf; infinite and finite verb phrases – finite verb phrase

� Verb Form: to distinguish howl and howled in English

param VForm = VInf | VPast;
oper VerbType : Type = {s : VForm => Str };

� English Paradigms to deal with verb forms.
mkVP = overload {

mkVP : (v : VForm => Str) −> VP = \v −> lin VP {s = v};
mkVP : (v : VForm => Str) −> Str −> VP =

\v,str −> lin VP {s = table{VInf => v!VInf ++ str; VPast => v!VPast ++ str}};
mkVP : (v : VForm => Str) −> Str −> (v : VForm => Str) −> VP =

\v1,str,v2 −> lin VP {s = table{VInf => v1!VInf ++ str ++ v2!VInf;
VPast => v1!VPast ++ str ++ v2!VPast}};};

mkVPf : Str −> VPf = \str −> lin VPf {s = str};
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8.2 Dealing with Functions in Logic and Language

So we need to have a logic that can deal with functions and functionals (i.e. functions that
construct new functions from existing ones) natively. This goes beyond the realm of first-order
logic we have studied so far. We need two things from this logic:
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1. a way of distinguishing the respective individuals, functions and functionals, and

2. a way of constructing functions from individuals and other functions.

There are standard ways of achieving both, which we will combine in the following to get the
“simply typed lambda calculus” which will be the workhorse logic for F3.

The standard way for distinguishing objects of different levels is by introducing types, here we
can get by with a very simple type system that only distinguishes functions from their arguments

Types

� Types are semantic annotations for terms that prevent antinomies

� Definition Given a set BT of base types, construct function types: α→β is the
type of functions with domain type α and range type β. We call the closure T of
BT under function types the set of types over BT .

� Definition We will use ι for the type ofindividuals and o for the type of truth
values.

� Right Associativity: The type constructor is used as a right-associative operator,
i.e. we use α→β→γ as an abbreviation for α→β→γ

� Vector Notation: We will use a kind of vector notation for function types, abbrevi-
ating α1→ . . .→αn→β with αn→β.
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Syntactical Categories and Types

� Now, we can assign types to syntactical categories.

Cat Type Intuition
S o truth value

NP ι individual
Npr ι individuals
VP ι→o property
V i ι→o unary predicate
V t ι→ι→o binary relation

� For the category conj, we cannot get by with a single type. Depending on where it
is used, we need the types

� o→o→o for S-coordination in rule S2: S→S, conj, S

� ι→o→ι→o→ι→o for VP -coordination in V 3: VP→VP , conj, VP .

� Note: Computational Linguistics, often uses a different notation for types: e
(entiry) for ι, t (truth value) for o, and ⟨α,β⟩ for α→β (no bracket elision
convention).
So the type for VP -coordination has the form ⟨⟨e,t⟩,⟨⟨e,t⟩,⟨e,t⟩⟩⟩
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For a logic which can really deal with functions, we have to have two properties, which we
can already read off the language of mathematics (as the discipine that deals with functions and
funcitonals professionally): We

1. need to be able to construct functions from expressions with variables, as in f(x) = 3x2 +
7x+ 5, and

2. consider two functions the same, iff they return the same values on the same arguments.

In a logical system (let us for the moment assume a first-order logic with types that can quantify
over functions) this gives rise to the following axioms:

Comprehension ∃Fα→β ∀XαF X = Aβ

Extensionality ∀Fα→β ∀Gα→β (∀XαFX = GX)⇒F = G

The comprehension axioms are computationally very problematic. First, we observe that they
are equality axioms, and thus are needed to show that two objects of PLΩ are equal. Second
we observe that there are countably infinitely many of them (they are parametric in the term A,
the type α and the variable name), which makes dealing with them difficult in practice. Finally,
axioms with both existential and universal quantifiers are always difficult to reason with.

Therefore we would like to have a formulation of higher-order logic without comprehension
axioms. In the next slide we take a close look at the comprehension axioms and transform them
into a form without quantifiers, which will turn out useful.

From Comprehension to β-Conversion

� ∃Fα→β ∀XαFX = Aβ for arbitrary variable Xα and term A∈wff β(Σ,VT )
(for each term A and each variableX there is a function f∈D(α→β), with f(φ(X)) =
Iφ(A))

� schematic in α, β, Xα and Aβ , very inconvenient for deduction

� Transformation in HΩ

� ∃Fα→β ∀XαFX = Aβ

� ∀Xα (λXαA)X = Aβ (∃E)
Call the function F whose existence is guaranteed “(λXαA)”

� (λXαA)B = [B/X]Aβ (∀E), in particular for B∈wff α(Σ,VT ).

� Definition Axiom of β-equality: (λXαA) B = [B/X]Aβ

� new formulae (λ-calculus [Church 1940])
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In a similar way we can treat (functional) extensionality.

From Extensionality to η-Conversion

� Definition Extensionality Axiom: ∀Fα→β ∀Gα→β (∀XαFX = GX)⇒F = G

� Idea: Maybe we can get by with a simplified equality schema here as well.

� Definition We say that A and λXαA X are η-equal, (write Aα→β=η(λXαA X)),
iff X ̸∈free(A).
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� Assertion η-equality and Extensionality are equivalent

� Proof: We show that η-equality is special case of extensionality; the converse
entailment is trivial

P.1 Let ∀XαAX = BX, thus AX = BX with ∀E
P.1 λXαAX = λXαBX, therefore A = B with η

P.1 Hence ∀Fα→β ∀Gα→β (∀XαFX = GX)⇒F = G by twice ∀I.

� Axiom of truth values: ∀Fo ∀GoFG⇔F = G unsolved.
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The price to pay is that we need to pay for getting rid of the comprehension and extensionality
axioms is that we need a logic that systematically includes the λ-generated names we used in the
transformation as (generic) witnesses for the existential quantifier. Alonzo Church did just that
with his “simply typed λ-calculus” which we will introduce next.

This is all very nice, but what do we actually translate into?

8.3 Translation for Fragment 3

Translations for Fragment 3

� We will look at the new translation rules (the rest stay the same).

T1: [XNP, YVP ]S ; VP ′(NP′), T3: [XVP , Yconj, ZVP ]VP ; conj′(VP ′, VP ′),
T4: [XV t , YNP]VP ; V t

′
(NP′)

� The lexical insertion rules will give us two items each for is, and, and or, corre-
sponding to the two types we have given them.

word type term case
BEpred ι→o→ι→o λPι→oP adjective
BEeq ι→ι→o λXιYιX = Y verb
and o→o→o V ! S-coord.
and ι→o→ι→o→ι→o λFι→oGι→oXιF (X)∧G(X) VP -coord.
or o→o→o ∨ S-coord.
or ι→o→ι→o→ι→o λFι→oGι→oXιF (X)∨G(X) VP -coord.
didn′t ι→o→ι→o λPι→oXι¬P X

Need to assume the logical connectives as constants of the λ-calculus.

� Note: With these definitions, it is easy to restrict ourselves to binary branching in
the syntax of the fragment.
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• Definition If φ is a non-branching node with daughter ψ, then the translation φ′ of φ is
given by the translation ψ′ of ψ.

• Definition If φ is a branching node with daughters ψ and θ, where ψ′ is an expression of
type α→β and θ′ is an expression of type α, then φ′ = ψ′ θ′.
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• Note on notation: We now have higher-order constants formed using words from the frag-
ment, which are not (or are not always) translations of the words from which they are
formed. We thus need some new notation to represent the translation of an expression from
the fragment. We will use the notation introduced above, i.e. john′ is the translation of the
word John. We will continue to use primes to indicate that something is an expression (e.g.
john). Words of the fragment of English should be either underlined or italicized.

Translation Example

� Example Ethel howled and screamed to

(λFι→oGι→oXιF (X)∧G(X)) howls screams ethel
→β (λGι→oXι howls(X)∧G(X)) screams ethel
→β (λXι howls(X)∧screams(X)) ethel
→β howls(ethel)∧screams(ethel)
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Higher-Order Logic without Quantifiers (HOLNQ)

� Problem: Need a logic like PLNQ, but with λ-terms to interpret F3 into.

� Idea: Re-use the syntactical framework of Λ→.

� Definition Let HOLNQ be an instance of Λ→, with BT = {ι,o}, ∧∈Σo→o→o,
¬∈Σo→o, and = ∈Σα→α→o for all types α.

� Idea: To extend this to a semantics for HOLNQ, we only have to say something
about the base type o, and the logical constants ¬o→o, ∧o→o→o, and =α→α→o.

� Definition We define the semantics of HOLNQ by setting

1. Do = {T,F}; the set of truth values

2. (I(¬))∈D(o→o), is the function {F 7→T,T7→F}
3. (I(∧))∈D(o→o→o) is the function with I(∧)@⟨a,b⟩ = T, iff a = T and b = T.

4. (I(=))∈D(α→α→o) is the identity relation on Dα.
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You may be worrying that we have changed our assumptions about the denotations of predi-
cates. When we were working with PLNQ as our translation language, we assumed that one-place
predicates denote sets of individuals, that two-place predicates denote sets of pairs of individu-
als, and so on. Now, we have adopted a new translation language, HOLNQ, which interprets all
predicates as functions of one kind or another.

The reason we can do this is that there is a systematic relation between the functions we now
assume as denotations, and the sets we used to assume as denotations. The functions in question
are the characteristic functions of the old sets, or are curried versions of such functions.

Recall that we have characterized sets extensionally, i.e. by saying what their members are. A
characteristic function of a set A is a function which “says” which objects are members of A. It
does this by giving one value (for our purposes, the value 1) for any argument which is a member
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of A, and another value, (for our purposes, the value 0), for anything which is not a member of
the set.

Definition fS is the characteristic function of the set S iff fS(a) = T if a∈S and fS(a) = F if
a̸∈S.

Thus any function in D(ι→o) will be the characteristic function of some set of individuals. So,
for example, the function we assign as denotation to the predicate run will return the value T
for some arguments and F for the rest. Those for which it returns T correspond exactly to the
individuals which belonged to the set run in our old way of doing things.

Now, consider functions in D(ι→ι→o). Recall that these functions are equivalent to two-place
relations, i.e. functions from pairs of entities to truth values. So functions of this kind are
characteristic functions of sets of pairs of individuals.

In fact, any function which ultimately maps an argument to Do is a characteristic function of
some set. The fact that many of the denotations we are concerned with turn out to be characteristic
functions of sets will be very useful for us, as it will allow us to go backwards and forwards between
“set talk” and “function talk,” depending on which is easier to use for what we want to say.

8.4 Simply Typed λ-Calculus
In this section we will present a logic that can deal with functions – the simply typed λ-calculus.
It is a typed logic, so everything we write down is typed (even if we do not always write the types
down).

Simply typed λ-Calculus (Syntax)

� Definition Signature Σ =
⋃
α∈T Σα (includes countably infinite Signatures ΣSkα of

Skolem contants).

� VT =
⋃
α∈T Vα, such that Vα are countably infinite

� Definition We call the set wff α(Σ,VT ) defined by the rules

� Vα∪Σα⊆wff α(Σ,VT )

� If C∈wff (α→β)(Σ,VT ) and A∈wff α(Σ,VT ), then (C A)∈wff β(Σ,VT )

� If A∈wff α(Σ,VT ), then (λXβA)∈wff (β→α)(Σ,VT )

the set of well typed formulae of type α over the signature Σ and use wff T (Σ,VT ):=
⋃
α∈T wff α(Σ,VT )

for the set of all well-typed formulae.

� Definition We will call all occurrences of the variable X in A bound in λXA.
Variables that are not bound in B are called free in B.

� Substitutions are well-typed, i.e. (σXα)∈wff α(Σ,VT ) and capture-avoiding.

� Definition The simply typed λ-calculus Λ→ over a signature Σ has the formulae
wff T (Σ,VT ) (they are called λ-terms) and the following equalities:

� α conversion: (λXA)=α(λY [Y /X]A).

� β conversion: (λXA) B=β [B/X]A.

� η conversion: (λXA X)=ηA if X ̸∈free(A).
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The intuitions about functional structure of λ-terms and about free and bound variables are
encoded into three transformation rules Λ→: The first rule (α-conversion) just says that we can



110 CHAPTER 8. FRAGMENT 3: COMPLEX VERB PHRASES

rename bound variables as we like. β-conversion codifies the intuition behind function application
by replacing bound variables with argument. The equality relation induced by the η-reduction is
a special case of the extensionality principle for functions (f = g iff f(a) = g(a) for all possible
arguments a): If we apply both sides of the transformation to the same argument – say B and
then we arrive at the right hand side, since (λXαA X)B=βA B.

We will use a set of bracket elision rules that make the syntax of Λ→ more palatable. This
makes Λ→ expressions look much more like regular mathematical notation, but hides the internal
structure. Readers should make sure that they can always reconstruct the brackets to make sense
of the syntactic notions below.

Simply typed λ-Calculus (Notations)

� Application is left-associative: We abbreviate F A1 A2 . . . An with F(A1, . . . ,An)
eliding the brackets and further with F An in a kind of vector notation.

� Andrews’ dot Notation: A stands for a left bracket whose partner is as far right
as is consistent with existing brackets; i.e. A B C abbreviates A (B C).

� Abstraction is right-associative: We abbreviate λX1 λX2 · · ·λXnA · · · with λX1, . . . , XnA
eliding brackets, and further to λXnA in a kind of vector notation.

� Outer brackets: Finally, we allow ourselves to elide outer brackets where they can
be inferred.
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Intuitively, λXA is the function f , such that f(B) will yield A, where all occurrences of the
formal parameter X are replaced by B. In this presentation of the simply typed λ-calculus
we build-in =α-equality and use capture-avoiding substitutions directly. A clean introduction
would followed the steps in by introducing substitutions with a substitutability condition like
the one in , then establishing the soundness of =α conversion, and only then postulating defining
capture-avoiding substitution application as in . The development for Λ→ is directly parallel to the
one for PL1, so we leave it as an exercise to the reader and turn to the computational properties
of the λ-calculus.

Computationally, the λ-calculus obtains much of its power from the fact that two of its three
equalities can be oriented into a reduction system. Intuitively, we only use the equalities in one
direction, i.e. in one that makes the terms “simpler”. If this terminates (and is confluent), then
we can establish equality of two λ-terms by reducing them to normal forms and comparing them
structurally. This gives us a decision procedure for equality. Indeed, we have these properties in
Λ→ as we will see below.

=αβη-Equality (Overview)

� reduction with
{

=β : (λXA) B→β [B/X]A
=η : (λXA X)→ηA

under =α :
λXA
=α

λY [Y /X]A

� Assertion β-reduction is well-typed, terminating and confluent in the presence of
α-conversion.

� Definition We call a λ-term A a normal form (in a reduction system E), iff no rule
(from E) can be applied to A.

� Assertion =βη-reduction yields unique normal forms (up to =α-equivalence).
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We will now introduce some terminology to be able to talk about λ-terms and their parts.

Syntactic Parts of λ-Terms

� Definition We can always write a λ-term in the form T = λX1, . . . , XkHA1 . . .An,
where H is not an application. We call

� H the syntactic head of T

� H(A1, . . . ,An) the matrix of T, and

� λX1, . . . , Xk (or the sequence X1, . . . ,Xk) the binder of T

� Definition Head reduction always has a unique β redex

(λXn (λY A)(B1, . . . ,Bn))→h
β(λX

n ([B1/Y ]A)(B2, . . . ,Bn))

� Assertion The syntactic heads of β-normal forms are constant or variables.

� Definition Let A be a λ-term, then the syntactic head of the β-normal form of
A is called the head symbol of A and written as head(A). We call a λ-term a
j-projection, iff its head is the jth bound variable.

� Definition We call a λ-term a η-long form, iff its matrix has base type.

� Definition η-Expansion makes η-long forms

η
[
(λX1, . . . , XnA)

]
:=(λX1, . . . , Xn λY 1, . . . , Y mA(Y 1, . . . ,Y m))

� Definition Long βη-normal form, iff it is β-normal and η-long.
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η long forms are structurally convenient since for them, the structure of the term is isomorphic
to the structure of its type (argument types correspond to binders): if we have a term A of type
αn→β in η-long form, where β∈BT , then A must be of the form λXn

αB, where B has type β.
Furthermore, the set of η-long forms is closed under β-equality, which allows us to treat the two
equality theories of Λ→ separately and thus reduce argumentational complexity.

The semantics of Λ→ is structured around the types. Like the models we discussed before, a
model (we call them “algebras”, since we do not have truth values in Λ→) is a pair ⟨D,I⟩, where D
is the universe of discourse and I is the interpretation of constants.

Semantics of Λ→

� Definition We call a collection DT :={Dα|α∈T } a typed collection (of sets) and a
collection fT : DT →ET , a typed function, iff fα : Dα→Eα.

� Definition A typed collection DT is called a frame, iff D(α→β)⊆Dα→Dβ

� Definition Given a frame DT , and a typed function I : Σ→D, then we call Iφ : wff T (Σ,VT )→D
the value function induced by I, iff

� Iφ|VT
= φ, Iφ|Σ = I

� Iφ(A B) = Iφ(A)(Iφ(B))
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� Iφ(λXαA) is that function f∈D(α→β), such that f(a) = I(φ,[a/X])(A) for all
a∈Dα

� Definition We call a frame ⟨D,I⟩ comprehension closed or a Σ-algebra, iff Iφ : wff T (Σ,VT )→D
is total. (every λ-term has a value)
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Excursion: We will discuss the semantics, computational properties, and a more modern pre-
sentation of the λ calculus intheappendix.

Domain Theory for F3

� Observation 1: We we can reuse the lexicon theories from F1

� Observation 2: We we can even reuse the grammar theory from F1, if we extend
it in the obvious way (MMT has all we need)
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Chapter 9

Fragment 4: Noun Phrases and
Quantification

9.1 Overview/Summary so far

Where we started: A VP -less fragment and PLNQ.:

PLNQ Fragment of English
Syntax: Definition of wffs Syntax: Definition of allowable sentences
Semantics: Model theory SEMANTICS BY TRANSLATION

What we did:

• Tested the translation by testing predictions: semantic tests of entailment.

• More testing: syntactic tests of entailment. For this, we introduced the model generation
calculus. We can make this move from semantic proofs to syntactic ones safely, because we
know that PLNQ is sound and complete.

• Moving beyond semantics: Used model generation to predict interpretations of semantically
under-determined sentence types.

Where we are now: A fragment with a VP andHOLNQ.: We expanded the fragment and began
to consider data which demonstrate the need for a VP in any adequate syntax of English, and the
need for connectives which connect VP s and other expression types. At this point, the resources
of PLNQ no longer sufficed to provide adequate compositional translations of the fragment. So we
introduced a new translation language, HOLNQ. However, the general picture of the table above
does not change; only the translation language itself changes.

Some discoveries:

• The task of giving a semantics via translation for natural language includes as a subtask the
task of finding an adequate translation language.

• Given a typed language, function application is a powerful and very useful tool for modeling
the derivation of the interpretation of a complex expression from the interpretations of
its parts and their syntactic arrangement. To maintain a transparent interface between
syntax and semantics, binary branching is preferable. Happily, this is supported by syntactic
evidence.

• Syntax and semantics interact: Syntax forces us to introduce VP . The assumption of com-
positionality then forces us to translate and interpret this new category.

113
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• We discovered that the “logical operators” of natural language can’t always be translated
directly by their formal counterparts. Their formal counterparts are all sentence connectives;
but English has versions of these connectives for other types of expressions. However, we can
use the familiar sentential connectives to derive appropriate translations for the differently-
typed variants.

Some issues about translations: HOLNQ provides multiple syntactically and semantically
equivalent versions of many of its expressions. For example:

1. Let runs be an HOLNQ constant of type ι→o. Then runs = λX runs(X)

2. Let loves be an HOLNQ constant of type ι→ι→o. Then loves = λX λY loves(X,Y )

3. Similarly, loves(a) = λY loves(a, Y )

4. And loves(jane, george) = (λX λY loves(X,Y )) jane(george)

Logically, both sides of the equations are considered equal, since =η-equality (remember (λXA X)→ηA,
if X ̸∈free(A)) is built into HOLNQ. In fact all the right-hand sides are =η-expansions of the left-
hand sides. So you can use both, as you choose in principle.

But practically, you like to know which to give when you are asked for a translation? The
answer depends on what you are using it for. Let’s introduce a distinction between reduced
translations and unreduced translations. An unreduced translation makes completely explicit the
type assignment of each expression and the mode of composition of the translations of complex
expressions, i.e. how the translation is derived from the translations of the parts. So, for example,
if you have just offered a translation for a lexical item (say, and as a V t connective), and now
want to demonstrate how this lexical item works in a sentence, give the unreduced translation of
the sentence in question and then demonstrate that it reduces to the desired reduced version.

The reduced translations have forms to which the deduction rules apply. So always use reduced
translations for input in model generation: here, we are assuming that we have got the translation
right, and that we know how to get it, and are interested in seeing what further deductions can
be performed.

Where we are going: We will continue to enhance the fragment both by introducing additional
types of expressions and by improving the syntactic analysis of the sentences we are dealing with.
This will require further enrichments of the translation language. Next steps:

• Analysis of NP.

• Treatment of adjectives.

• Quantification

9.2 Fragment 4

New Data (more Noun Phrases)

� We want to be able to deal with the following sentences (without the “the-NP”
trick)

1. Peter loved the cat., but not * Peter loved the the cat.

2. John killed a cat with a white tail.

3. Peter chased the gangster in the car.

4. Peter loves every cat.

5. Every man loves a woman.
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The first example sugests that we need a full and uniform treatment of determiners like the, a,
and every. The second and third introduce a new phenomenon: prepositional phrases like with a
hammer/mouse; these are essentially nominal phrases that modify the meaning of other phrases
via a preposition like with, in, on, at. These two show that the prepositional phrase can modify
the verb or the object.

New Grammar in Fragment 4 (Common Noun Phrases)

� To account for the syntax we extend the functionality of noun phrases.

� Definition F4 adds the rules on the right to F3 (on the left):
S1: S→NP, VP+fin, S2: S→S, Sconj,
V 1: VP±fin→V i

±fin,
V 2: VP±fin→V t

±fin,CNP,
V 3: VP±fin→VP±fin,VPconj±fin,
V 4: VP+fin→BE=,NP,
V 5: VP+fin→BEpred,Adj,
V 6: VP+fin→didn′t, VP−fin, N1: NP→Npr,
N2: NP→Pron

N3: NP→DetCNP, N4: CNP→N ,
N5: CNP→PP, N6: CNP→Adj,
P1: PP→P ,NP, S3: Sconj→conj, S,
V 4: VPconj±fin→conj, VP±fin,
L1: P→with| of| . . .

� Definition A common noun is a noun that describes a type, for example woman,
or philosophy rather than an individual, such as Amelia Earhart (proper name).
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Note: Parentheses indicate optionality of a constituent. We assume appropriate lexical inser-
tion rules without specification.

Implementing Fragment 4 in GF (Grammar)

� The grammar of Fragment 4 only differs from that of Fragment 4 by

� common noun phrases: cat CNP; Npr; lincat CNP = NounPhraeType;

� prepositional phrases : cat PP; Det; Prep; lincat Npr, Det, Prep, PP = {s: Str}

� new grammar rules

useDet : Det −> CNP −> NP; −− every book
useNpr : Npr −> NP; −− Bertie
useN : N −> CNP; −− book
usePrep : Prep −> NP −> PP; −− with a book
usePP : PP −> CNP −> CNP; −− teacher with a book

� grammar rules for “special” words that might not belong into the lexicon

Abstract English
with_Prep : Prep;
of_Prep : Prep;
the_Det : Det;
every_Det : Det;
a_Det : Det;

with_Prep = mkPrep "with";
of_Prep = mkPrep "of";
the_Det = mkDet "the";
every_Det = mkDet "every";
a_Det = mkDet "a";
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Implementing Fragment 4 in GF (Grammar)

� English Paradigms to deal with (common) noun phrases

� Another case for mkNP
mkNP : Str −> (Case => Str) −> NP

= \prefix,t −> lin NP { s = table { nom => prefix ++ t!nom;
acc => prefix ++ t!acc}};

mkNpr : Str −> Npr = \name −> lin Npr { s = name };
mkDet : Str −> Det = \every −> lin Det { s = every };
mkPrep : Str −> Prep = \p −> lin Prep { s = p };
mkPP : Str −> PP = \s −> lin PP { s = s };
mkCNP = overload {

mkCNP : Str −> CNP
= \book −> lin CNP { s = table { nom => book; acc => book } };

mkCNP : (Case => Str) −> Str −> CNP
= \t,suffix −> lin CNP { s = table { nom => (t!nom) ++ suffix;

acc => (t!acc) ++ suffix}};};
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If we assume that ∀X boy(X)⇒runs(X) is an adequate translation of Every boy runs, and
∃X boy(X)∧runs(X) one for Some boy runs, then we obtain the translations of the determiners
by straightforward =β-expansion.

� Translation of Determiners and Quantifiers

� Idea: We establish the semantics of quantifying determiners by =β-expansion.

1. assume that we are translating into a λ-calculus with quantifiers and that
∀X boy(X)⇒runs(X) translates Every boy runs, and ∃X boy(X)∧runs(X)
for Some boy runs

2. ∀∀:=(λPι→oQι→o (∀XP (X)⇒Q(X))) for every (subset relation)

3. ∃∃:=(λPι→oQι→o (∃XP (X)∧Q(X))) for some (nonempty intersection)

� Problem: Linguistic Quantifiers take two arguments (restriction and scope), logical
ones only one! (in logics, restriction is the universal set)

� We cannot treat the with regular quantifiers (new logical constant; see below)

� Definition We translate the to τ :=(λPι→oQι→oQ ι P ), where ι ! is a new operator
that given a set returns its (unique) member.

� Example This translates The pope spoke to τ(pope, speaks), which =β-reduces
to speaks(ι pope).
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Note that if we interpret objects of type ι→o as sets, then the denotations of boy and run are
sets (of boys and running individuals). Then the denotation of every is a relation between sets;
more specifically the subset relation. As a consequence, All boys run is true if the set of boys is
a subset of the set of running individuals. For some the relation is the non-empty intersection
relation, some boy runs is true if the intersection of set of boys and the set of running individuals
is non-empty.

Note that there is a mismatch in the “arity” of linguistic and logical notions of quantifiers here.
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Linguistic quantifiers take two arguments, the restriction (in our example boy) and the predication
(run). The logical quantifiers only take one argument, the predication A in ∀XA. In a way, the
restriction is always the universal set. In our model, we have modeled the linguistic quantifiers by
adding the restriction with a connective (implication for the universal quantifier and conjunction
for the existential one).

9.3 Inference for Fragment 4

9.3.1 Quantifiers and Equality in Higher-Order Logic
There is a more elegant way to treat quantifiers in HOL→. It builds on the realization that
the λ-abstraction is the only variable binding operator we need, quantifiers are then modeled
as second-order logical constants. Note that we do not have to change the syntax of HOL→ to
introduce quantifiers; only the “lexicon”, i.e. the set of logical constants. Since Πα and σα are
logical constants, we need to fix their semantics.

Higher-Order Abstract Syntax

� Idea: In HOL→, we already have variable binder: λ, use that to treat quantification.

� Definition We assume logical constants Πα and σα of type α→o→o.

Regain quantifiers as abbreviations:

(∀XαA):=Πα λXαA (∃XαA):=σα λXαA

� Definition We must fix the semantics of logical constants:

1. I(Πα)(p) = T, iff p(a) = T for all a∈Dα (i.e. if p is the universal set)

2. I(σα)(p) = T, iff p(a) = T for some a∈Dα (i.e. iff p is non-empty)

� With this, we re-obtain the semantics we have given for quantifiers above:

Iφ(∀XιA) = Iφ(Πι λXιA) = I(Πι)(Iφ(λXιA)) = T

iff Iφ(λXιA)(a) = I([a/X],φ)(A) = T for all a∈Dα
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Equality

� Definition QαAαBα = ∀Pα→oPA⇔PB (indiscernability)

� Note: ∀Pα→oPA⇒PB (get the other direction by instantiating P with Q, where
QX⇔(¬PX))

� Assertion If M = ⟨D,I⟩ is a standard model, then Iφ(Qα) is the identity relation
on Dα.

� Notation: We write A = B for QAB (A and B are equal, iff there is no property
P that can tell them apart.)

� Proof:
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P.1 Iφ(QAB) = Iφ(∀P PA⇒PB) = T, iff
I(φ,[r/P ])(PA⇒PB) = T for all r∈D(α→o).

P.1 For A = B we have I(φ,[r/P ])(PA) = r(Iφ(A)) = F or I(φ,[r/P ])(PB) =
r(Iφ(B)) = T.

P.1 Thus Iφ(QAB) = T.

P.1 Let Iφ(A) ̸= Iφ(B) and r={Iφ(A)}∈D(α→o) (exists in a standard model)

P.1 so r(Iφ(A)) = T and r(Iφ(B)) = F

P.1 Iφ(QAB) = F, as I(φ,[r/P ])(PA⇒PB) = F, since I(φ,[r/P ])(PA) = r(Iφ(A)) =
T and I(φ,[r/P ])(PB) = r(Iφ(B)) = F.
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Alternative: HOL∞

� only one logical constant (qα)∈Σα→α→o with I(qα)(a, b) = T, iff a = b.

� Definitions (D) and Notations (N)

N Aα=Bα for qαAαBα

D T for qo=qo

D F for λXo T=λXoXo

D Πα for q(α→o) λXα T
N ∀XαA for Πα λXαA
D ∧ for λXo λYo (λGo→o→oGTT=λGo→o→oGXY )
N A∧B for ∧ Ao Bo

D ⇒ for λXo λYo (X=X∧Y )
N A⇒B for ⇒ Ao Bo

D ¬ for qo F
D ∨ for λXo λYo¬(¬X∧¬Y )
N A∨B for ∨ Ao Bo

D ∃XαAo for ¬(∀Xα¬A)
N Aα ̸= Bα for ¬qα Aα Bα

� yield the intuitive meanings for connectives and quantifiers.
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In a way, this development of higher-order logic is more foundational, especially in the context
of Henkin semantics. There, does not hold (see [And72] for details). Indeed the proof of needs
the existence of “singleton sets”, which can be shown to be equivalent to the existence of the
identity relation. In other words, Leibniz equality only denotes the equality relation, if we have an
equality relation in the models. However, the only way of enforcing this (remember that Henkin
models only guarantee functions that can be explicitly written down as λ-terms) is to add a logical
constant for equality to the signature.

We have managed to deal with the determiners every and some in a compositional fashion,
using the familiar first order quantifiers. However, most natural language determiners cannot be
treated so straightforwardly. Consider the determiner most, as in:

1. Most boys run.

There is clearly no simple way to translate this using ∀ or ∃ in any way familiar from first order
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logic. As we have no translation at hand, then, let us consider what the truth conditions of this
sentence are.

Generalized Quantifiers

� Problem: What about Most boys run.: linguistically most behaves exactly like
every or some.

� Idea: Most boys run is true just in case the number of boys who run is greater
than the number of boys who do not run.

#(Iφ(boy)∩Iφ(runs)) > #(Iφ(boy)\Iφ(runs))

� Definition #(A)>#(B), iff there is no surjective function from B to A, so we can
define

most′:=(λAB¬(∃F ∀XA(X)∧¬B(X)⇒(∃Y A(Y )∧B(Y )∧X = F (Y ))))
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The NP most boys thus must denote something which, combined with the denotation of a VP,
gives this statement. In other words, it is a function from sets (or, equivalently, from functions in
D(ι→o)) to truth values which gives true just in case the argument stands in the relevant relation
to the denotation of boy. This function is itself a characteristic function of a set of sets, namely:

{X|#(Iφ(boy), X)>#(Iφ(boy)\X)}

Note that this is just the same kind of object (a set of sets) as we postulated above for the
denotation of every boy.

Now we want to go a step further, and determine the contribution of the determiner most itself.
most must denote a function which combines with a CNP denotation (i.e. a set of individuals or,
equivalently, its characteristic function) to return a set of sets: just those sets which stand in the
appropriate relation to the argument.

The function most′ is the characteristic function of a set of pairs:

{⟨X,Y ⟩|#(X∩Y )>#(X\Y )}

Conclusion: most denotes a relation between sets, just as every and some do. In fact, all natural
language determiners have such a denotation. (The treatment of the definite article along these
lines raises some issues to which we will return.)

Back to every and some (set characterization)

� We can now give an explicit set characterization of every and some:

1. every denotes {⟨X,Y ⟩|X⊆Y }
2. some denotes {⟨X,Y ⟩|X∩Y ̸= ∅}

� The denotations can be given in equivalent function terms, as demonstrated above
with the denotation of most.
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9.3.2 Model Generation with Definite Descriptions
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Semantics of Definite Descriptions

� Problem: We need a semantics for the determiner the, as in the boy runs

� Idea (Type): the boy behaves like a proper name (e.g. Peter), i.e. has type ι.
Applying the to a noun (type ι→o) yields ι. So the has type α→o→α, i.e. it takes
a set as argument.

� Idea (Semantics): the has the fixed semantics that this function returns the single
member of its argument if the argument is a singleton, and is otherwise undefined.
(new logical constant)

� Definition We introduce a new logical constant ι !. I(ι !) is the function f∈D(α→o→α),
such that f(s) = a, iff s∈D(α→o) is the singleton set {a}, and is otherwise undefined.
(remember that we can interpret predicates as sets)

� Axioms for ι !:
∀XαX = ι = X

∀P ,Q ∧Q(ι P ), (∀X,Y P (X)∧P (Y )⇒X = Y )⇒(∀Z P (Z)⇒Q(Z))
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Note: The first axiom is an equational characterization of ι !. It uses the fact that the singleton
set with member X can be written as = X (or λY = XY , which is =η-equivalent). The second
axiom says that if we have Q ι P and P is a singleton (i.e. all X,Y ∈P are identical), then Q holds
on any member of P . Surprisingly, these two axioms are equivalent in HOL→.

More Operators and Axioms for HOL→

� Definition The unary conditional (wα)∈Σo→α→α

w AoBα means: “If A, then B”.

� Definition The binary conditional (ifα)∈Σo→α→α→α

if Ao Bα Cα means: “if A, then B else C”.

� Definition The description operator (ια)∈Σα→o→α

if P is a singleton set, then ι Pα→o is the (unique) element in P.

� Definition The choice operator (γα)∈Σα→o→α

if P is non-empty, then γ Pα→o is an arbitrary element from P.

� Definition

� unary conditional: ∀φo ∀Xαφ⇒w φX = X

� binary conditional: ∀φo ∀Xα,Yα,Zα (φ⇒if φ X Y = X)∧(¬φ⇒if φ Z X =
X)

� description operator ∀Pα→o (∃1XαPX)⇒(∀YαPY⇒ι P = Y )

� choice operator ∀Pα→o (∃XαPX)⇒(∀YαPY⇒γ P = Y )

� Idea: These operators ensure a much larger supply of functions in Henkin models.
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More on the Description Operator

� ι ! is a weak form of the choice operator (only works on singleton sets)

� Alternative Axiom of Descriptions: ∀Xα ι
α = X = X.

� use that I [a/X](= X) = {a}
� we only need this for base types ̸= o

� Define ιo:= = λXoX or ιo:=(λGo→oG T ) or ιo:= = = T

� ι(α→β):=(λHα→β→oXα ι
β λZβ (∃Fα→βH F∧F X = Z))
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To obtain a model generation calculus for HOLNQ with descriptions, we could in principle add
one of these axioms to the world knowledge, and work with that. It is better to have a dedicated
inference rule, which we present here.

A Model Generation Rule for ι !

�
P (c)T

Q(ι P )α
H = {c,a1, . . . ,an}

RM ι
Q(c)α

(P (a1)⇒c = a1)
T

...
(P (an)⇒c = an)

T

� Intuition: If we have a member c of P and Q(ι P ) is defined (it has truth value
α∈{T,F}), then P must be a singleton (i.e. all other members X of P are identical
to c) and Q must hold on c. So the rule RM ι forces it to be by making all other
members of P equal to c.
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Mary owned a lousy computer. The hard drive crashed.

(∀X computer(X)⇒(∃Y harddrive(Y )∧partof(Y,X)))T

(∃X computer(X)∧lousy(X)∧own(mary, X))T

computer(c)T

lousy(c)T

own(mary, c)T

harddrive(c)T

partof(c, c)T
...
⊥

harddrive(d)T

partof(d, c)T

crashes(ι harddrive)T

crashes(d)T

(harddrive(mary)⇒mary = d)T

(harddrive(c)⇒c = d)T
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Definition In this example, we have a case of what is called a bridging reference, following
H. Clark (1977): intuitively, we build an inferential bridge from the computer whose existence is
asserted in the first sentence to the hard drive invoked in the second.

By incorporating world knowledge into the tableau, we are able to model this kind of inference,
and provide the antecedent needed for interpreting the definite.

Now let us use the RM ι rule for interpreting The dog barks in a situation where there are
two dogs: Fido and Chester. Intuitively, this should lead to a closed tableau, since the uniqueness
presupposition is violated. Applying the rules, we get the following tableau.

Another Example The dog barks

� In a situation, where there are two dogs: Fido and Chester

dog(fido)T

dog(chester)T

bark(ι dog)
bark(fido)T

(dog(chester)⇒chester = fido)T

dog(chester)F
⊥

chester = fidoT

(9.1)

� Note that none of our rules allows us to close the right branch, since we do not
know that Fido and Chester are distinct. Indeed, they could be the same dog
(with two different names). But we can eliminate this possibility by adopting a new
assumption.
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9.3.3 Model Generation with Unique Name Assumptions
Normally (i.e. in natural languages) we have the default assumption that names are unique. In
principle, we could do this by adding axioms of the form n = mF to the world knowledge for all
pairs of names n and m. Of course the cognitive plausibility of this approach is very questionable.
As a remedy, we can build a Unique-Name-Assumption (UNA) into the calculus itself.

Model Generation with Unique Name Assumption (UNA)

� Problem: Names are unique (usually in natural language)

� Idea: Add background knowledge of the form n = mF (n and m names)

� Better Idea: Build UNA into the calculus: partition the Herbrand base H = U∪W
into subsets U for constants with a unique name assumption, and W without.
(treat them differently)

� Definition We add the following two rules to the RM calculus to deal with the
unique name assumption.

a = bT

Aα a∈W b∈H

([b/a]A)α
RM subst

a = bT a,b∈U
⊥

RM una
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In effect we make the T0 subst rule directional; it only allows the substitution for a constant
without the unique name assumption. Finally, RM una mechanizes the unique name assumption
by allowing a branch to close if two different constants with unique names are claimed to be equal.
All the other rules in our model generation calculus stay the same. Note that with RM una, we
can close the right branch of tableau (9.1), in accord with our intuition about the discourse.

Solving a Crime with Unique Names

� Example Tony has observed (at most) two people. Tony observed a murderer that
had black hair. It turns out that Bill and Bob were the two people Tony observed.
Bill is blond, and Bob has black hair. (Who was the murderer.) Let
U = {Bill,Bob} and W = {murderer}:

(∀z observes(Tony, z)⇒z = Bill∨z = Bob)T

observes(Tony,Bill)T

observes(Tony,Bob)T

observes(Tony,murderer)T

black_hair(murderer)T

¬black_hair(Bill)T

black_hair(Bill)F

black_hair(Bob)T

(observes(Tony,murderer)⇒murderer = Bill∨murderer = Bob)T

(murderer = Bill∨murderer = Bob)T

murderer = BillT

black_hair(Bill)T
⊥

murderer = BobT

©:MichaelKohlhase 195

Rabbits [Gardent & Konrad ’99]

� Interpret “the” as λPQQι P∧uniq(P )
where uniq:=(λP ∃XP (X)∧(∀Y P (Y )⇒X = Y ))
and ∀∀:=(λPQ∀XP (X)⇒Q(X)).

� “the rabbit is cute”, has logical form uniq(rabbit)∧(rabbit⊆cute).

� RM generates { . . . ,rabbit(c),cute(c)} in situations with at most 1 rabbit.(special
RM ∃ rule yields identification and accommodation (cnew))

+ At last an approach that takes world knowledge into account!

– tractable only for toy discourses/ontologies
The world cup final was watched on TV by 7 million people.
A rabbit is in the garden.
∀X human(x)∃Y human(X)∧father(X,Y ) ∀X,Y father(X,Y )⇒X ̸= Y
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More than one Rabbit

� Problem: What about two rabbits?
Bugs and Bunny are rabbits. Bugs is in the hat. Jon removes the rabbit from
the hat.

� Idea: Uniqueness under Scope [Gardent & Konrad ’99]:

� refine the to λPRQuniq(P∩R∧∀∀(P∩R,Q))
where R is an “identifying property” (identified from the context and passed as
an arbument to the)

� here R is “being in the hat” (by world knowledge about removing)

� makes Bugs unique (in P∩R) and the discourse acceptable.

� Idea [Hobbs & Stickel&. . . ]:

� use generic relation rel for “relatedness to context” for P 2.

?? Is there a general theory of relatedness?
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9.4 Davidsonian Semantics: Treating Verb Modifiers

Event semantics: Davidsonian Systems

� Problem: How to deal with argument structure of (action verbs) and their modifiers

� John killed a cat with a hammer.

� Idea: Just add an argument to kills for express the means

� Problem: But there may be more modifiers

1. Peter killed the cat in the bathroom with a hammer.

2. Peter killed the cat in the bathroom with a hammer at midnight.

So we would need a lot of different predicates for the verb killed. (impractical)

� Idea: Extend the argument structure of (action) verbs contains a ’hidden’ argument,
the event argument, then tread modifiers as predicates over events [Dav67a].

� Example

1. ∃e∃x,y bathroom(x)∧hammer(y)∧kill(e, peter, ι cat)∧in(e, x)∧with(e, y)

2. ∃e∃x,y bathroom(x)∧hammer(y)∧kill(e, peter, ι cat)∧in(e, x)∧with(e, y)∧at(e, 24 : 00)
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Event semantics: Neo-Davidsonian Systems

� Idea: Take apart the Davidsonian predicates even further, add event participants
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via thematic roles (from [Par90]).

� Example Translate John killed a cat with a hammer. as
∃e∃xhammer(x)∧killing(e)∧ag(e, peter)∧pat(e, ι cat)∧with(e, x)

� Further Elaboration: Events can be broken down into sub-events and modifiers can
predicate over sub-events.

� Example The “process” of climbing Mt. Everest starts with the “event” of (opti-
mistically) leaving the base camp and culminates with the “achievement” of reaching
the summit (being completely exhausted).

� Note: This system can get by without functions, and only needs unary and binary
predicates. (well-suited for model generation)
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Event types and properties of events

� Example Some (temporal) modifiers are incompatible with some events, e.g. in
English progressive:

1. He is eating a sandwich and He is pushing the cart., but not

2. * He is being tall. or * He is finding a coin.

� Definition There are different types of events that go with different temporal
modifiers. [Ven57] distinguishes

1. states: e.g. know the answer, stand in the corner

2. processes: e.g. run, eat, eat apples, eat soup

3. accomplishments: e.g. run a mile, eat an apple, and

4. achievements: e.g. reach the summit

� Observations:

1. processes and accomplishments appear in the progressive (1),

2. states and achievements do not (2).

� The for/in Test:

1. states and activities, but not accomplishments and achievements are compat-
ible with for-adverbials

2. whereas the opposite holds for in-adverbials (5).

� Example

1. run a mile in an hour vs. * run a mile for an hour, but

2. * reach the summit for an hour vs reach the summit in an hour
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Chapter 10

Dynamic Approaches to NL
Semantics

In this Chapter we tackle another level of language, the discourse level, where we look especially at
the role of cross-sentential anaphora. This is an aspect of natural language that cannot (composi-
tionally) be modeled in first-order logic, due to the strict scoping behavior of quantifiers. This has
led to the developments of dynamic variants of first-order logic: the “file change semantics” [Hei82]
by Irene Heim and (independently) “discourse representation theory” (DRT [Kam81]) by Hans
Kamp, which solve the problem by re-interpreting indefinites to introduce representational ob-
jects – called “discourse referents in DRT” – that are not quantificationally bound variables and
can therefore have a different scoping behavior. These approaches have been very influential in
the representation of discourse – i.e. multi-sentence – phenomena.

In this Chapter, we will introduce discourse logics taking DRT as a starting point since it
was adopted more widely than file change semantics and the later “dynamic predicate logics”
(DPL [GS91]). gives an introduction to dynamic language phenomena and how they can be
modeled in DRT. relates the linguistically motivated logics to modal logics used for modeling
imperative programs and draws conclusions about the role of language in cognition. extends
our primary inference system – model generation – to DRT and relates the concept of discourse
referents to Skolem constants. Dynamic model generation also establishes a natural system of
“direct deduction” for dynamic semantics. Finally discusses how dynamic approaches to NL
semantics can be combined with ideas Montague Semantics to arrive at a fully compositional
approach to discourse semantics.

10.1 Discourse Representation Theory
In this Section we introduce Discourse Representation Theory as the most influential framework

for aproaching dynamic phenomena in natural language. We will only cover the basic ideas here
and leave the coverage of larger fragments of natural language to [KR93].

Let us look at some data about effects in natural languages that we cannot really explain with
our treatment of indefinite descriptions in fragment 4 (see aboveabove).

Anaphora and Indefinites revisited (Data)

� Peter1 is sleeping. He1 is snoring. (normal anaphoric reference)

� A man1 is sleeping. He1 is snoring. (Scope of existential?)

� Peter has a car1. It1 is parked outside. (even if this worked)
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� * Peter has no car1. It1 is parked outside. (what about negation?)

� There is a book1 that Peter does not own. It1 is a novel. (OK)

� * Peter does not own every book1. It1 is a novel. (equivalent in PL1)

� If a farmer1 owns a donkey2, he1 beats it2. (even inside sentences)
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In the first example, we can pick up the subject Peter of the first sentence with the anaphoric
reference He in the second. We gloss the intended anaphoric reference with the labels in upper and
lower indices. And indeed, we can resolve the anaphoric reference in the semantic representation
by translating He to (the translation of) Peter. Alternatively we can follow the lead of fragment
2 (see ) and introduce variables for anaphora and adding a conjunct that equates the respective
variable with the translation of Peter. This is the general idea of anaphora resolution we will
adopt in this Section.

Dynamic Effects in Natural Language

� Problem: E.g. Quantifier Scope

� * A man sleeps. He snores.

� (∃Xman(X)∧sleeps(X))∧snores(X)

� X is bound in the first conjunct, and free in the second.

� Problem: Donkey sentence: If a farmer owns a donkey, he beats it.
∀X,Y farmer(X)∧donkey(Y )∧own(X,Y )⇒beat(X,Y )

� Ideas:

� Composition of sentences by conjunction inside the scope of existential quantifiers
(non-compositional, . . . )

� Extend the scope of quantifiers dynamically (DPL)

� Replace existential quantifiers by something else (DRT)
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Intuitively, the second example should work exactly the same – it should not matter, whether
the subject NP is given as a proper name or an indefinite description. The problem with the
indefinite descriptions is that that they are translated into existential quantifiers and we cannot
refer to the bound variables – see below. Note that this is not a failure of our envisioned treatment
of anaphora, but of our treatment of indefinite descriptions; they just do not generate the objects
that can be referred back to by anaphoric references (we will call them “referents”). We will speak
of the “anaphoric potential” for this the set of referents that can be anaphorically referred to.

The second pair of examples is peculiar in the sense that if we had a solution for the indefinite
description in Peter has a car, we would need a solution that accounts for the fact that even
though Peter has a car puts a car referent into the anaphoric potential Peter has no car – which
we analyze compositionally as It is not the case that Peter has a car does not. The interesting
effect is that the negation closes the anaphoric potential and excludes the car referent that Peter
has a car introduced.

The third pair of sentences shows that we need more than PL1 to represent the meaning of quan-
tification in natural language while the sentence There is a book that peter does not own. induces a
book referent in the anaphoric potential, but the sentence Peter does not own every book does not,
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even though their translations ∃x ∧book(x),¬own(peter, x) and ¬(∀xbook(x)⇒own(peter, x)) are
logically equivalent.

The last sentence is the famous “donkey sentence” that shows that the dynamic phenomena we
have seen above are not limited to inter-sentential anaphora.

The central idea of Discourse Representation Theory (DRT), is to eschew the first-order quan-
tification and the bound variables it induces altogether and introduce a new representational
device: discourse referents, and manage their visibility (called accessibility in DRT) explicitly.

We will introduce the traditional, visual “box notation” by example now before we turn to a
systematic definition based on a symbolic notation later.

Discourse Representation Theory (DRT)

� Definition Discourse Representation Theory (DRT) is a logical system, which uses
discourse referents to model quantification and pronouns. DRT formulae are called
discourse representation structures (DRS); these introduce a set of discourse refer-
ents and specify their meaning by conditions.

� Discourse referents e.g. in A student owns a book.

� are kept in a dynamic context (;
accessibility)

� are declared e.g. in indefinite nominals

� specified in conditions via predicates

X,Y
student(X)
book(Y )
own(X,Y )

� Discourse representation structures (DRS)
A student owns a book. He reads it. If a farmer owns a donkey, he beats it.

X,Y,R, S
student(X)
book(Y )
own(X,Y )
read(R,S)
X = R
Y = S

X, Y
farmer(X)
donkey(Y )
own(X,Y )

⇒⇒ beat(X,Y )
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These examples already show that there are three kinds of objects in DRT: The meaning of
sentences is given as DRSes, which are denoted as “file cards” that list the discourse referents (the
participants in the situation described in the DRS) at the top of the “card” and state a couple
of conditions on the discourse referents. The conditions can contain DRSes themselves, e.g. in
conditional conditions.

With this representational infrastructure in place we can now look at how we can construct
discourse DRSes – i.e. DRSes for whole discourses. The sentence composition problem was – after
all – the problem that led to the development of DRT since we could not compositionally solve it
in first-order logic.

Discourse DRS Construction

� Problem: How do we construct DRSes for multi-sentence discourses?

� Solution: We construct sentence DRSes individually and merge them (DRSes and
conditions separately)
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� Example A three-sentence discourse. (not quite Shakespeare)

Mary sees John. John kills a cat. Mary calls a cop. merge

see(mary, john)

U
cat(U)
kills(john, U)

V
policeman(V )
calls(mary, V )

U, V
see(mary, john)
cat(U)
kills(john, U)
policeman(V )
calls(mary, V )

� Sentence composition via the DRT Merge Operator ⊗. (acts on DRSes)
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Note that – in contrast to the “smuggling-in”-type solutions we would have to dream up for
first-order logic – sentence composition in DRT is compositional: We construct sentence DRSes1
and merge them. We can even introduce a “logic operator” for this: the merge operator ⊗, which
can be thought of as the “full stop” punctuation operator.

Now we can have a look at anaphor resolution in DRT. This is usually considered as a separate
process – part of semantic-pragmatic analysis. As we have seen, anaphora are

Anaphor Resolution in DRT

� Problem: How do we resolve anaphora in DRT?

� Solution: Two phases

� translate pronouns into discourse referents (semantics construction)

� identify (equate) coreferring discourse referents, (maybe) simplify
(semantic/pragmatic analysis)

� Example A student owns a book. He reads it.

A student1 owns a book2. He1 reads it2 resolution simplify

X,Y,R, S
student(X)
book(Y )
read(R,S)

X,Y,R, S
student(X)
book(Y )
read(R,S)
X = R
Y = S

X, Y
student(X)
book(Y )
read(X,Y )
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We will sometime abbreviate the anaphor resolution process and directly use the simplified
version of the DRSes for brevity.

Using these examples, we can now give a more systematic introduction of DRT using a more
symbolic notation. Note that the grammar below over-generates, we still need to specify the
visibility of discourse referents.

1We will not go into the sentence semantics construction process here
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DRT (Syntax)

� Definition Given a set DR of discourse referents, discourse representation structures
(DRSes) are given by the following grammar:

conditions C:==p(a1, . . . , an)|C1∧C2|¬¬D|D1∨∨D2|D1⇒⇒D2

DRSes D:==δU1, . . . ,Un C|D1⊗D2|D1 ;;D2

� ⊗ and ;; are for sentence composition (⊗ from DRT, ;; from DPL)

� Example δU,V farmer(U)∧donkey(V )∧own(U, V )∧beat(U, V )

� Definition The meaning of ⊗ and ;; is given operationally by =τ -Equality:

δX C1⊗δY C2 →τ δX ,Y C1∧C2
δX C1 ;; δY C2 →τ δX ,Y C1∧C2

� Discourse referents used instead of bound variables (specify scoping independently
of logic)

� Idea: Semantics inherited from first-order logic by a translation mapping.
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We can now define the notion of accessibility in DRT, which in turn determines the (predicted)
dynamic potential of a DRS: A discourse referent has to be accessible in order to be picked up by
an anaphoric reference.

We will follow the classical exposition and introduce accessibility as a derived concept induced
by a non-structural notion of sub-DRS.

Sub-DRSes and Accessibility

� Problem: How can we formally define accessibility. (to make predictions)

� Idea: Make use of the structural properties of DRT.

� Definition A referent is accessible in all sub DRS of the declaring DRS.

� If D = δU1, . . . ,Un C, then any sub DRS of C is a sub DRS of D.

� If D = D1⊗D2, then D1 is a sub DRS of D2 and vice versa.

� If D = D1 ;;D2, then D2 is a sub DRS of D1.

� If C is of the form C1∧C2, or ¬¬D, or D1∨∨D2, or D1⇒⇒D2, then any sub DRS
of the Ci, and the Di is a sub DRS of C.

� If D = D1⇒⇒D2, then D2 is a sub DRS of D1

� Definition (which referents can be picked up?) A referent U is in the dynamic

potential of a DRS D, iff it is accessible in D⊗ p(U)
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� Definition We call a DRS static, iff the dynamic potential is empty, and dynamic,
if it is not.
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Sub-DRSes and Accessibility

� Observation: Accessibility gives DRSes the flavor of binding structures. (with
non-standard scoping!)

� Idea: Apply the usual heuristics binding heuristics to DRT, e.g.

� reject DRSes with unbound discourse referents.

� Questions: if view of discourse referents as “nonstandard bound variables”

� what about renaming referents?
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The meaning of DRSes is (initially) given by a translation to PL1. This is a convenient way to
specify meaning, but as we will see, it has its costs, as we will see.

Translation from DRT to FOL

� Definition For =τ -normal (fully merged) DRSes use the translation ·:

(δU1, . . . ,Un C) = ∃U1, . . . , Un C

(¬¬D) = ¬D

(D∨∨E) = D∨E

(D∧E) = D∧E

(δU1, . . . ,Un C1⇒⇒(δV 1, . . . ,Vm C2)) = ∀U1, . . . , Un C1⇒(∃V 1, . . . , V l C2)

� Example

X,Y
student(X)
book(Y )
own(X,Y )

= ∃X ∃Y student(X)∧book(Y )∧own(X,Y ).

� Example

(δU,V farmer(U)∧donkey(V )∧own(U, V )⇒⇒(δW stick(W )∧beatwith(U, V,W )))
= ∀X,Y farmer(X)∧donkey(X)∧own(X,Y )⇒(∃Z stick(W )∧beatwith(U, V,W ))

� Consequence: Validity of DRSes can be checked by translation.

� Question: Why not use first-order logic directly?

� Answer: Only translate at the end of a discourse (translation closes all dynamic
contexts: frequent re-translation).
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We can now test DRT as a logical system on the data and see whether it makes the right
predictions about the dynamic effects identified at the beginning of the Section.
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Properties of Dynamic Scope

� Idea: Test DRT on the data above for the dynamic phenomena

� Example
Peter has no1 car. * It1 is parked outside.

¬¬

U

acar(U)
own(peter, U)

⊗ parked(U) ¬(∃U acar(U)∧own(peter, U)). . .

� Example
Peter does not own every book1. * It1 is a novel.

¬¬
U

book(U) ⇒⇒ own(peter, U) ⊗ novel(U) ¬(∀U book(U)⇒own(peter, U)). . .

� Example
There is a book1 that Peter does not own. It1 is a novel.
V

book(V )
¬own(peter, V )

⊗ novel(V ) ∃U book(U)∧¬own(peter, U)∧novel(U)

©:MichaelKohlhase 210

shows that negation closes off the dynamic potential. Indeed, the referent U is not accessible
in the second argument of ⊗. predicts the in-accessibility of U for the same reason. In contrast
to that, U is accessible in , since it is not under the scope of a dynamic negation.

The examples above, and in particular the difference between and show that DRT forms a
representational level above – recall that we can translate down – PL1, which serves as the semantic
target language. Indeed DRT@ makes finer distinctions than PL1, and supports an incremental
process of semantics construction: DRS construction for sentences followed by DRS merging via
=τ -reduction.

DRT as a Representational Level

� DRT adds a level to the knowledge representation which provides anchors (the
discourse referents) for anaphors and the like.

� Propositional semantics by translation into PL1. (“+s” adds a sentence)
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a
A

a,b
A
B

a,b,c
A
B
C

· · ·
· · ·

∃a.A ∃a, b.A ∧B ∃a, b, c.A ∧B ∧ C · · ·

+s +s +s

? ? ?

τ τ τ

Repn.
Layer

Logic
Layer

� Anaphor resolution works incrementally on the representational level.
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We will now introduce a “direct semantics” for DRT: a notion of “model” and an evaluation
mapping that interprets DRSes directly – i.e. not via a translation of first-order logic. The main
idea is that atomic conditions and conjunctions are interpreted largely like first-order formulae,
while DRSes are interpreted as sets of assignments to discourse referents that satisfy the conditions.
A DRS is satisfied by a model, if that set is non-empty.

A Direct Semantics for DRT (Dyn. Interpretation Iδφ())

� Definition Let M = ⟨U ,I⟩ be a first-order model and φ,ψ : DR→U be referent
assignments, then we say that ψ extends φ on X⊆DR (write φ[X ]ψ), if φ(U) =
ψ(U) for all U ̸∈X .

� Idea: Conditions as truth values; DRSes as pairs (X ,S) (S set of states)

� Definition

� Iδφ(p(a1, . . . , an)) = T, iff ⟨Iδφ(a1), . . . ,Iδφ(an)⟩∈Iδ(p). (as always)

� Iδφ(A∧B) = T, iff Iδφ(A) = T and Iδφ(B) = T. (dito)

� Iδφ(¬¬D) = T, if Iδφ(D)2 = ∅.
� Iδφ(D∨∨E) = T, if Iδφ(D)2 ̸= ∅ or Iδφ(E)2 ̸= ∅.
� Iδφ(D⇒⇒E) = T, if for all ψ∈Iδφ(D)2 there is a τ∈Iδφ(E)2 with ψ[Iδφ(E)1]τ .
� Iδφ(δX C) = (X ,{ψ|φ[X ]ψ and Iδψ(C) = T}).
� Iδφ(D⊗E) = Iδφ(D ;; E) = (Iδφ(D)1∪Iδφ(E)1,Iδφ(D)2∩Iδφ(E)2)
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We can now fortify our intuition by computing the direct semantics of two sentences, which
differ in their dynamic potential. We start out with the simple Peter owns a car and then progress
to Peter owns no car.

Examples (Computing Direct Semantics)
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� Example Peter owns a car

Iδφ(δU acar(U)∧own(peter, U))

= ({U},{ψ|φ[U ]ψ and Iδψ(acar(U)∧own(peter, U)) = T})
= ({U},{ψ|φ[U ]ψ and Iδψ(acar(U)) = T and Iδψ(own(peter, U)) = T})
= ({U},{ψ|φ[U ]ψ and ψ(U)∈Iδ(acar) and (ψ(U),peter)∈Iδ(own)})

The set of states [a/U ], such that a is a car and is owned by Peter

� Example For Peter owns no car we look at the condition:

Iδφ(¬¬(δU acar(U)∧own(peter, U))) = T

⇔ Iδφ(δU acar(U)∧own(peter, U))2 = ∅
⇔ ({U},{ψ|φ[X ]ψ and ψ(U)∈Iδ(acar) and (ψ(U),peter)∈Iδ(own)})2 = ∅
⇔ {ψ|φ[X ]ψ and ψ(U)∈Iδ(acar) and (ψ(U),peter)∈Iδ(own)} = ∅

i.e. iff there are no a, that are cars and that are owned by Peter.
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The first thing we see in is that the dynamic potential can directly be read off the direct
interpretation of a DRS: it is the domain of the states in the first component. In , the interpretation
is of the form (∅,Iδφ(C)), where C is the condition we compute the truth value of in .

10.2 Dynamic Model Generation
We will now establish a method for direct deduction on DRT, i.e. deduction at the representational
level of DRT, without having to translate – and retranslate – before deduction.

Deduction in Dynamic Logics

� Mechanize the dynamic entailment relation (with anaphora)

� Use dynamic deduction theorem to reduce (dynamic) entailment to (dynamic) sat-
isfiability

� Direct Deduction on DRT (or DPL) [Sau93; RG94; MR98]

(++) Specialized Calculi for dynamic representations

(– –) Needs lots of development until we have efficient implementations

� Translation approach (used in our experiment)

(–) Translate to FOL

(++) Use off-the-shelf theorem prover (in this case MathWeb)
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An Opportunity for Off-The-Shelf ATP?

� Pro: ATP is mature enough to tackle applications
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� Current ATP are highly efficient reasoning tools

� Full automation is needed for NL processing (ATP as an oracle)

� ATP as logic engines is one of the initial promises of the field

� contra: ATP are general logic systems

1. NLP uses other representation formalisms (DRT, Feature Logic,. . . )

2. ATP optimized for mathematical (combinatorially complex) proofs

3. ATP (often) do not terminate

� Experiment: Use translation approach for 1. to test 2. and 3. [Bla+01] (Wow, it
works!)
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Excursion: Incrementality in Dynamic Calculi

� For applications, we need to be able to check for

� consistency (∃MM |= A), validity (∀MM |= A) and

� entailment (H |= A, iff M |= H implies M |= A for all M)

� Deduction Theorem: H |= A, iff |= H⇒A. (valid for first-order Logic and DPL)

� Problem: Analogue H1⊗ · · ·⊗Hn |= A is not equivalent to |= (H1⊗ · · ·⊗Hn)⇒⇒A
in DRT, since ⊗ symmetric.

� Thus: validity check cannot be used for entailment in DRT.

� Solution: Use sequential merge ;; (from DPL) for sentence composition
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Model Generation for Dynamic Logics

� Problem: Translation approach is not incremental

� For each check, the DRS for the whole discourse has to be translated

� Can become infeasible, once discourses get large (e.g. novel)

� This applies for all other approaches for dynamic deduction too

� Idea: Extend model generation techniques instead!

� Remember: A DRS D is valid in M = ⟨D,Iδ⟩, iff Iδ∅(D2) ̸=∅
� Find a model M and state φ, such that φ∈Iδ∅(D2).

� Adapt first-order model generation technology for that

©:MichaelKohlhase 217



10.2. DYNAMIC MODEL GENERATION 139

Dynamic Herbrand Interpretation

� Definition We call a dynamic interpretation M = ⟨U ,I,Iδφ⟩ a dynamic Herbrand
interpretation, if ⟨U ,I⟩ is a Herbrand model.

� Can represent M as a triple ⟨X ,S,B⟩, where B is the Herbrand base for ⟨U ,I⟩.

� Definition M is called finite, iff U is finite.

� Definition M is minimal, iff for all M′ the following holds: (B(M)′⊆B(M))⇒M =
M′.

� Definition M is domain minimal if for all M′ the following holds:

#(U(M))≤#(U(M)′)
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Sorted DRT=̂ DRT++ (Syntax)

� Two syntactic categories
Conditions C→p(a1, . . . , an)|C1∧C2|¬¬D|D1∨∨D2|(D1⇒⇒D2)
DRSes D→(δU1

A1
, . . . ,UnAn

C)|(D1)D2|(D1)D2

� Example δUH,VN farmer(U)∧donkey(V )∧own(U, V )∧beat(U, V )

� =τ -Equality:

δX C1⊗δY C2 →τ δX ,Y C1∧C2
δX C1 ;; δY C2 →τ δX ,Y C1∧C2

� Discourse Referents used instead of bound variables
(specify scoping independently of logic)

� Idea: Semantics by mapping into sorted first-order Logic
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Dynamic Model Generation Calculus

� Use a tableau framework, extend by state information and rules for DRSes.

(δUAA)T H = {a1, . . . ,an} w ̸∈H new
[a1/U ]

¬([a1/U ]A)T

∣∣∣ . . . ∣∣∣ [an/U ]
¬([an/U ]A)T

∣∣∣ [w/U ]
¬([w/U ]A)T

RM δ

� Mechanize ;; by adding representation at all leaves
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� Treat conditions by translation

¬¬D
(¬¬D)

D⇒⇒D′

(D⇒⇒D′)

D∨∨D′

(D∨∨D′)
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Example: Peter is a man. No man walks

without sorts with sort Male

man(peter)

¬¬(δU man(U)∧walks(U))

(∀Xman(X)∧walks(X))F

(man(peter)∧walks(peter))F

man(peter)F
⊥

walks(peter)F

man(peter)

¬¬(δUMale walks(U))

(∃XMale walks(X))F

walks(peter)F

problem: 1000 men
⇒

1000 closed branches

� Dynamic Herbrand Interpretation:

⟨{UA},{[peter/UA]},{man(peter)T,walks(peter)F}⟩
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Example: Anaphora Resolution
A man sleeps. He snores

δUMan man(U)∧sleeps(U)

[c1Man/UMan]
man(c1Man)

T

sleeps(c1Man)
T

δVMan snores(V )

[c1Man/VMan]
snores(c1Man)

T

minimal

[c2Man/VMan]
snores(c2Man)

T

deictic
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Anaphora with World Knowledge

� Mary is married to Jeff. Her husband is not in town.

� δUF,VMU = mary∧married(U, V )∧V = jeff ;; δWM,W
′
F husband(W,W ′)∧¬intown(W )

� World knowledge
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� if a female X is married to a male Y , then Y is X’s only husband

� ∀XF,YM married(X,Y )⇒husband(Y,X)∧(∀Z husband(Z,X)⇒Z = Y )

� Model generation yields tableau, all branches contain

⟨{U,V ,W,W ′},{[mary/U ],[jeff/V ],[jeff/W ],[mary/W ′]},H⟩

with
H = {married(mary, jeff)T,husband(jeff,mary)T,¬intown(jeff)T}

� they only differ in additional negative facts, e.g. married(mary,mary)F.
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Model Generation models Discourse Understanding

� Conforms with psycholinguistic findings:

� Zwaan& Radvansky [ZR98]: listeners not only represent logical form, but also
models containing referents

� deVega [de 95]: online, incremental process

� Singer [Sin94]: enriched by background knowledge

� Glenberg et al. [GML87]: major function is to provide basis for anaphor resolution
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The cost we had to pay for being able to deal with discourse phenomena is that we had
to abandon the compositional treatment of natural language we worked so hard to establish in
fragments 3 and 4. To have this, we would have to have a dynamic λ calculus that would allow
us to raise the respective operators to the functional level. Such a logical system is non-trivial,
since the interaction of structurally scoped λ-bound variables and dynamically bound discourse
referents is non-trivial. Excursion: We will discuss such a dynamic λ calculus intheappendix.
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Chapter 11

Propositional Attitudes and
Modalities

11.1 Introduction

Modalities and Propositional Attitudes

� Definition Modality is a feature of language that allows for communicating things
about, or based on, situations which need not be actual.

� Definition Modality is signaled by grammatical expressions (called moods) that
express a speaker’s general intentions and commitment to how believable, obligatory,
desirable, or actual an expressed proposition is.

� Example Data on modalities (moods in red)

� A probably holds, (possibilistic)

� it has always been the case that A, (temporal)

� it is well-known that A, (epistemic)

� A is allowed/prohibited, (deontic)

� A is provable, (provability)

� A holds after the program P terminates, (program)

� A hods during the execution of P . (dito)

� it is necessary that A, (aletic)

� it is possible that A, (dito)
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Modeling Modalities and Propositional Attitudes

� Example Again, the pattern from above:

� it is necessary that Peter knows logic (A = Peter knows logic)

� it is possible that John loves logic, (A = John loves logic)

143
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� Observation: All of the red parts above modify the clause/sentence A. We call
them modalities.

� Definition
A propositional attitude is a mental state held by an agent toward a proposition.

� Question: But how to model this in logic?

� Idea: New sentence-to-sentence operators for necessary and possible. (extend
existing logics with them.)

� Observation: A is necessary, iff ¬A is impossible.

� Definition A modal logic is a logical system that has logical constants that model
modalities.
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Various logicians and philosophers looked at ways to use possible worlds, or similar theoretical
entities, to give a semantics for modal sentences (specifically, for a modal logic), including Descartes
and Leibniz. In the modern era, Carnap, Montague and Hintikka pursued formal developments
of this idea. But the semantics for modal logic which became the basis of all following work on
the topic was developed by Kripke 1963. This kind of semantics is often referred to as Kripke
semantics.

History of Modal Logic

� Aristoteles studies the logic of necessity and possibility

� Diodorus: temporal modalities

� possible: is true or will be

� necessary: is true and will never be false

� Clarence Irving Lewis 1918 [Lew18] (Systems S1, . . . , S5)

� strict implication I(A∧B) (I for “impossible”)

� Kurt Gödel 1932: Modal logic of provability (S4) [Göd32]

� Saul Kripke 1959-63: Possible Worlds Semantics [Kri63]

� Vaugham Pratt 1976: Dynamic Logic [Pra76]

�
...
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Basic Modal Logics (ML0 and ML1)

� Definition Propositional modal logic ML0 extends propositional logic with two new
logical constants: 2 for necessity and 3 for possibility. (3A = ¬(2¬A))

� Observation: Nothing hinges on the fact that we use propositional logic!

� Definition First-order modal logic ML1 extends first-order logic with two new logical



11.1. INTRODUCTION 145

constants: 2 for necessity and 3 for possibility.

� Example We interpret

1. Necessarily, every mortal will die. as 2(∀Xmortal(X)⇒willdie(X))

2. Possibly, something is immortal. as 3(∃X ¬mortal(X))

� Questions: What do 2 and 3 mean? How do they behave?
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Epistemic and Doxastic Modality

� Definition Modal sentences can convey information about the speaker’s state of
knowledge (epistemic state) or belief (doxastic state).

� Example We might paraphrase sentence (epposs) as (3):

1. A: Where’s John?

2. B: He might be in the library.

3. B′: It is consistent with the speaker’s knowledge that John is in the library.

� Definition We way that a world w is an epistemic possibility for an agent B if it
could be consistent with B’s knowledge.

� Definition An epistemic logic is one that models the epistemic state of a speaker.
Doxastic logic does the same for the doxastic state.

� Definition In deontic modal logic, we interpret the accessibility relation R as epis-
temic accessibility:

� With this R, represent B’s utterance as 3inlib(j).

� Similarly, represent John must be in the library. as 2inlib(j).

� Question: If R is epistemic accessibility, what properties should it have?
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To determine the properties of epistemic accessibility we ask ourselves, what statements involving
2 and 3 should be valid on the epistemic interpretation of the operators, and how do we fix the
accessibility relation to guarantee this?

Deontic modality

� Definition Deontic modality is a modality that indicates how the world ought to
be according to certain norms, expectations, speaker desire, etc.

� Definition Deontic modality has the following subcategories

� Commissive modality (the speaker’s commitment to do something, like a promise
or threat): e.g. I shall help you.

� Directive modality (commands, requests, etc.): e.g. Come!, Let’s go!, You’ve
got to taste this curry!
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� Volitive modality (wishes, desires, etc.): If only I were rich!

� Question: If we want to interpret 2runs(j) as It is required that John runs (or,
more idiomatically, as John must run), then what interpretation should we give to
the accessibility relation?

What formulae should be valid on this interpretation of the operators? (This is for
homework!)
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11.2 Semantics for Modal Logics

Basic Ideas: The fundamental intuition underlying the semantics for modality is that modal
statements are statements about how things might be, statements about possible states of affairs.
According to this intuition, sentence (.1) in says that in every possible state of affairs – every way
that things might be – every mortal will die, while sentence (.2) says that there is some possible
state of affairs – some way that things might be – in which something is mortal1. What is needed
in order to express this intuition in a model theory is some kind of entity which will stand for
possible states of affairs, or ways things might be. The entity which serves this purpose is the
infamous possible world.

Semantics of ML0

� Definition We use a set W of possible worlds, and a accessibility relation R⊆W×W.

� Example W = N with R = {⟨n,n+ 1⟩|n∈N}. (temporal logic)

� Definition Variable assignment φ : Vo×W→Do assigns values to propositional vari-
ables in a given world.

� Definition Value function Iwφ : wffo(Vo)→Do(assigns values to formulae in world)

� Iwφ (V ) = φ(w, V )

� Iwφ (¬A) = T, iff Iwφ (A) = F

� Iwφ (2A) = T, iff Iw′

φ (A) = T for all w′∈W with wRw′.

� Definition We call a triple M:=⟨W,R,I⟩ a Kripke model.
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In Kripke semantics, the intuitions about the truth conditions of modals sentences are expressed
as follows:

• A sentence of the form 2A, where A is a well-formed formula of type o, is true at w iff A
is true at every possible world accessible from w.

• A sentence of the form 3A, where A is a well-formed formula of type o, is true at w iff A
is true at some possible world accessible from w.

You might notice that these truth conditions are parallel in certain ways to the truth conditions
for tensed sentence. In fact, the semantics of tense is itself a modal semantics which was developed
on analogy to Kripke’s modal semantics. Here are the relevant similarities:

1Note the impossibility of avoiding modal language in the paraphrase!
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Relativization of evaluation A tensed sentence must be evaluated for truth relative to a given
time. A tensed sentence may be true at one time butg false at another. Similarly, we must
evaluate modal sentences relative to a possible world, for a modal sentence may be true at
one world (i.e. relative to one possible state of affairs) but false at another.

Truth depends on value of embedded formula at another world The truth of a tensed
sentence at a time t depends on the truth of the formula embedded under the tense op-
erator at some relevant time (possibly) different from t. Similarly, the truth of a modal
sentence at w depends on the truth of the formula embedded under the modal operator at
some world or worlds possibly different from w.

Accessibility You will notice that the world at which the embedded formula is to be evaluated is
required to be accessible from the world of evaluation. The accessibility relation on possible
worlds is a generalization of the ordering relation on times that we introduced in our temporal
semantics. (We will return to this momentarily).

It will be helpful to start by thinking again about the ordering relation on times introduced in
temporal models. This ordering relation is in fact one sort of accessibility relation.

Why did we need the ordering relation? We needed it in order to ensure that our temporal
semantics makes intuitively correct predictions about the truth conditions of tensed sentences and
about entailment relations between them. Here are two illustrative examples:

Accessibility Relations. E.g. for Temporal Modalities

� Example Let ⟨W,◦,<,⊆⟩ an interval time structure, then we can use ⟨W,<⟩ as a
Kripke models. Then PAST becomes a modal operator.

� Example Suppose we have i<j and j<k. Then intuitively, if Jane is laughing is
true at i, then Jane laughed should be true at j and at k, i.e. Ijφ(PAST(laughs(j)))
and Ikφ(PAST(laughs(j))).
But this holds only if “<” is transitive. (which it is!)

� Example Here is a clearly counter-intuitive claim: For any time i and any sentence
A, if Iiφ(PRES(A)) then Iiφ(PAST(A)).
(For example, the truth of Jane is at the finish line at i implies the truth of Jane
was at the finish line at i.)
But we would get this result if we allowed < to be reflexive. (< is irreflexive)

� Treating tense modally, we obtain reasonable truth conditions.
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Thus, by ordering the times in our model in accord with our intuitions about time, we can
ensure correct predictions about truth conditions and entailment relations for tensed sentences.

In the modal domain, we do not have intuitions about how possible worlds should be ordered.
But we do have intuitions about truth conditions and entailment relations among modal sentences.
So we need to set up an accessibility relation on the set of possible worlds in our model which, in
combination with the truth conditions for 2 and 3 given above, will produce intuitively correct
claims about entailment.

One of the prime occupations of modal logicians is to look at the sets of validities which
are obtained by imposing various different constraints on the accessibility relation. We will here
consider just two examples.

What must be, is:

1. It seems intuitively correct that if it is necessarily the case that A, then A is true, i.e. that
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wg(2A) = T implies that wg(A) = T or, more simply, that the following formula is valid:

2A⇒A

2. To guarantee this implication, we must ensure that any world w is among the worlds acces-
sible from w, i.e. we must make R reflexive.

3. Note that this also guarantees, among other things, that the following is valid: A =⇒ 3A

Whatever is, is necessarily possible:

1. This also seems like a reasonable slogan. Hence, we want to guarantee the validity of:

A =⇒ 23A

2. To do this, we must guarantee that if A is true at a some world w, then for every world
w′ accessible from w, there is at least one A world accessible from w′. To do this, we can
guarantee that every world w is accessible from every world which is accessible from it, i.e.
make R symmetric.

Modal Axioms (Propositional Logic)

� Definition Necessitation:
A

2A
N

� Definition

System Axioms Accessibility Relation
K 2(A⇒B)⇒2A⇒2B general
T K + 2A⇒A reflexive
S4 T + 2A⇒22A reflexive + transitive
B T + 32A⇒A reflexive + symmetric
S5 S4 + 3A⇒23A equivalence relation

©:MichaelKohlhase 233

K Theorems

� Assertion (2A∧B)|=(2A∧2B) in K.

� Assertion (A⇒B)|=(2A⇒2B) in K.

� Assertion (A⇒B)|=(3A⇒3B) in K.
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Translation to First-Order Logic

� Question: Is modal logic more expressive than predicate logic?

� Answer: Very rarely! (usually can be translated)

� Definition Translation τ from ML into PL1, (so that the diagram commutes)
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modal logic predicate logic

Kripke-Sem. Tarski-Sem.

Iφ()Iwφ
τ

τ

� Idea: Axiomatize Kripke-Semantics in PL1. (diagram is simple consequence)

� Definition A logic morphism Θ: L→L′ is called

� correct, iff ∃MM |= Φ implies ∃M′M′ |=′ Θ(Φ).

� complete, iff ∃M′M′ |=′ Θ(Φ) implies ∃MM |= Φ.
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Modal Logic Translation (formal)

� Definition The standard translation τw from modal logics to first-order logic is
given by the following process:

� Extend all functions/predicates by a “world argument”: f∈Σk+1 for every f∈Σk.
� insert the “translation world” there: e.g. τw(f(a, b)) = f(w, a(w), b(w)).

� New relation constant R for the accessibility relation.

� New constant s for the “start world”.

� τw(2A) = ∀w′wRw′⇒τw′(A).

� Use all axioms from the respective correspondence theory.

� Definition Functional translation, if R associative:

� new function constant fR for the accessibility relation.

� revise the standard translation by one of the following

� τw(2A) = ∀w′w = fR(w′)⇒τw(A). (naive solution)
� τfR(w)(2A) = τw(A) (better for mechanizing [Ohl88])
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Translation (continued)

� Assertion τs : ML0→PL0 is correct and complete.

� Proof: show that ∃MM |= Φ iff ∃M′M′ |= (τs(Φ))

P.1 Let M = ⟨W,R,φ⟩ with M |= A

P.1 chose M = ⟨W,I ′⟩, such that I(p) = φ(p) : W→{T,F} and I(r) = R.

P.1 we prove M |=ψ τw(A)′ for ψ = IdW by structural induction over A.

P.1.1 A = P : Iψ(τw(A)) = Iψ(p(w)) = I (p(w)) = φ(P,w) = T

P.1.1 A = ¬B, A = B∧C: trivial by IH.
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P.1.1 A = 2B:

P.1.1.1 Iψ(τw(A)) = Iψ(∀wr(w,v)⇒τv(B)) = T, if Iψ(r(w,v)) = F or Iψ(τv(B)) =
T for all v∈W.

P.1.1.1 M |=ψ τv′(B) so by IH M |=v B.

P.1.1.1 so M |=ψ τw(A)′.
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Modal Logic (References)

� G. E. Hughes und M. M. Cresswell: A companion to Modal Logic, University
Paperbacks, Methuen (1984) [HC84].

� David Harel: Dynamic Logic, Handbook of Philosophical Logic, D. Gabbay, Hrsg.
Reidel (1984) [Har84].

� Johan van Benthem: Language in Action, Categories, Lambdas and Dynamic Logic,
North Holland (1991) [Ben91].

� Reinhard Muskens, Johan van Benthem, Albert Visser, Dynamics, in Handbook of
Logic and Language, Elsevier, (1995) [MBV95].

� Blackburn, DeRijke, Vedema: Modal Logic; 2001 [BRV01]. look at the chapter
“Guide to the literature” in the end.
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Excursion: We discuss a model existence theorem that can be the basis of completenss of modal
logics intheappendix.

11.3 A Multiplicity of Modalities ; Multimodal Logic
The epistemic and deontic modalities differ from alethic, or logical, modality in that they must
be relativized to an individual. Although we can choose to abstract away from this, it is clear
that what is possible relative to John’s set of beliefs may not be possible relative to Jane’s, or
that what is obligatory for Jane may not be obligatory for John. A theory of modality for natural
language must have a means of representing this relativization.

A Multiplicity of Modalities

� Epistemic (knowledge and belief) modalities must be relativized to an individual

� Peter knows that Trump is lying habitually.

� John believes that Peter knows that Trump is lying habitually.

� You must take the written drivers’ exam to be admitted to the practical test.

� Similarly, we find in natural language expressions of necessity and possibility relative
to many different kinds of things.

� Consider the deontic (obligatory/permissible) modalities
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� [Given the university’s rules] Jane can take that class.

� [Given her intellectual ability] Jane can take that class.

� [Given her schedule] Jane can take that class.

� [Given my desires] I must meet Henry.

� [Given the requirements of our plan] I must meet Henry.

� [Given the way things are] I must meet Henry [every day and not know it].

� Many different sorts of modality, sentences are multiply ambiguous towards which
one.
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In a series of papers beginning with her 1978 dissertation (in German), Angelika Kratzer
proposed an account of the semantics of natural language which accommodates this ambiguity.
(The ambiguity is treated not as a semantic ambiguity, but as context dependency.) Kratzer’s
account, which is now the standard view in semantics and (well-informed) philosophy of language,
adopts central ingredients from Kripke semantics – the basic possible world framework and the
notion of an accessibility relation – but puts these together in a novel way. Kratzer’s account of
modals incorporates an account of natural language conditionals; this account has been influenced
by, and been influential for, the accounts of conditionals developed by David Lewis and Robert
Stalnaker. These also are now standardly accepted (at least by those who accept the possible
worlds framework).

Some references: [Kra12; Lew73; Sta68].

Multimodal Logics

� Definition A multi-modal logic provides operators for multiple modalities: [1], [2], [3], . . . , ⟨1⟩, ⟨2⟩, . . .

� Definition Multi-modal Kripke models provide multiple accessibility relations R1,R2, . . .⊆W×W.

� Definition The value function in logic generalizes the clause for 2 in ML0 to

� Iwφ ([i]A) = T, iff Iw′

φ (A) = T for all w′∈W with wRiw
′.

� Example
[peter]⟨klaus⟩A (Peter knows that Klaus considers A possible)

� Example

[X:=A][Y :=A]X = Y (after assignments, the values of X and Y are equal)
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We will now contrast DRT (see ) with a modal logic for modeling imperative programs –
incidentally also called “dynamic logic”. This will give us new insights into the nature of dynamic
phenomena in natural language.

11.4 Dynamic Logic for Imperative Programs

Dynamic Program Logic (DL)
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� Modal logics for argumentation about imperative, non-deterministic programs.

� Idea: Formalize the traditional argumentation about program correctness:
tracing the variable assignments (state) across program statements.

� Example

Consider the following (imperative) program that computes Fib(X) as the value of
Z:
α:=⟨Y ,Z⟩:=⟨1,1⟩;while X ̸= 0 do ⟨X,Y ,Z⟩:=⟨X − 1,Z,Y + Z⟩ end

� States for the “input” X = 4: ⟨4,_,_⟩, ⟨4,1,1⟩, ⟨3,1,2⟩, ⟨2,2,3⟩, ⟨1,3,5⟩, ⟨0,5,8⟩
� Correctness? For positive X, running α with input ⟨X,_,_⟩ we end with
⟨0,F (X−1),FX⟩

� Termination? α does not terminate on input ⟨ − 1,_,_⟩.
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Multi-Modal Logic fits well

� Observation: Multi-modal logic fits well

� States as possible worlds, program statements as accessibility relation

� Two syntactic categories: programs α and formulae A.

� Interpret [α]A as If α terminates, then A holds afterwards

� Interpret ⟨α⟩A as α terminates and A holds afterwards.

� Example Assertions about Fibonacci numbers (α)

� ∀X,Y [α]Z = Fib(X)

� ∀X,Y (X≥0)⇒⟨α⟩Z = Fib(X)
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Levels of Description in Dynamic Logic

� Propositional dynamic logic (DL0) (independent of variable assignments)

� |= ([α]A∧[α]B)⇔([α](A∧B))

� |= ([while A∨B do α end]C)⇔([while A do α end;while B do α;while A do α end end]C)

� First order program logic (DL1) (function, predicates uninterpreted)

� |= p(f(X))⇒g(Y, f(X))⇒⟨(Z:=f(X))⟩p(Z, g(Y,Z))
� |= Z = Y ∧(∀Xf(g(X)) = X)⇒[while p(Y ) do Y :=g(Y ) end]⟨while Y ̸= Z do Y :=f(Y ) end⟩T

� DL1 with interpreted functions, predicates (maybe some other time)

� ∀X ⟨while X ̸= 1 do if even(X) then X:=X
2

else X:=3X + 1 end⟩T
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DL0 Syntax

� Definition Propositional dynamic logic (DL0) is PL0 extended by

� program variables Vπ = {α,β,γ, . . .},
� modalities [α], ⟨α⟩.
� program constructors Σπ = {;,∪,∗,?} (minimal set)

α;β execute first α, then β sequence
α∪β execute (non-deterministically) either α or β distribution
∗α (non-deterministically) repeat α finitely often iteration
A? proceed if |= A, else error test

� Idea: Standard program primitives as derived concepts

Construct as
if A then α else β (A?;α)∪(¬A?;β)
while A do α end ∗(A?;α);¬A?
repeat α until A end ∗(α;¬A?);A?
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DL0 Semantics

� Definition A model for DL0 consists of a set W of possible worlds called states for
DL0.

� Definition DL0 variable assignments come in two parts:

� φ : Vo×W→{T,F} (for propositional variables)

� π : Vπ→P(W×W) (maps program variables to accessibility relations)

� Definition The meaning of complex formulae is given by the following value function
Iwφ : wffo(Vo)→Do:

� Iwφ,π(V ) = φw, V ( for V ∈Vo and Iwφ,π(α) = π(α) for α∈Vπ.
� Iwφ,π(¬A) = T iff Iwφ,π(A) = F

� Iwφ,π([α]A) = T iff Iw′

φ,π(A) = T for all w′∈W with wIwφ,π(α)w′.

� Iwφ,π(α;β) = Iwφ,π(α)◦Iwφ,π(β) (sequence)

� Iwφ,π(α∪β) = Iwφ,π(α)∪Iwφ,π(β) (choice)

� Iwφ,π(∗α) = Iwφ,π(α)
∗ (transitive closure)

� Iwφ,π(A?) = {⟨w,w⟩|Iwφ,π(A) = T} (test)
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First-Order Program Logic (DL1)
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� Observation: Imperative programs contain variables, constants, functions and pred-
icates (uninterpreted), but no program variables. The main operation is variable
assignment.

� Idea: Make a multi modal logic in the spirit of DL0 that features all of these for a
deeper understanding.

� Definition First order program logic (DL1) combines the features of PL1, DL0 without
program variables, with the following two assignment operators:

� nondeterministic assignment X:=?

� deterministic assignment X:=A

� Example |= p(f(X))⇒g(Y, f(X))⇒⟨Z:=f(X)⟩p(Z, g(Y,Z)) in DL1.

� Example In DL1 we have
|= Z = Y ∧(∀Xp(f(g(X)) = X))⇒[while p(Y ) do Y :=g(Y ) end]⟨while Y ̸= Z do Y :=f(Y ) end⟩T
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DL1 Semantics

� Definition Let M = ⟨D,I⟩ be a first-order model then we take the States (possible
worlds) are variable assignments: W = {φ|φ : Vι→D}

� Definition For a set X of variables, write φ[X ]ψ, iff φ(X) = ψ(X) for all X ̸∈X .

� Definition The meaning of complex formulae is given by the following value function
Iwφ : wff o(Σ)→Do

� Iwφ (A) = Iφ(A) if A term or atom.

� Iwφ (¬A) = T iff Iwφ (A) = F

�
...

� Iwφ (X:=?) = {⟨φ,ψ⟩|φ[X]ψ}
� Iwφ (X:=A) = {⟨φ,ψ⟩|φ[X]ψ and ψ(X) = Iφ(A)}.

� Assertion We have

� Iφ([X:=A]B) = I(φ,[Iφ(A)/X])(B)

� ∀XA = [X:=?]A.

� Thus substitution and quantification are definable in DL1.

©:MichaelKohlhase 247

Natural Language as Programming Langauges

� Question: Why is dynamic program logic interesting in a natural langauage course?

� Answer: There are fundamental relations between dynamic (discourse) logics and
dynamic program logics
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� David Israel: “Natural languages are programming languages for mind ” [Isr93]
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Chapter 12

Some Issues in the Semantics of
Tense

Tense as a Deictic Element

� Goal: capturing the truth conditions and the logical form of sentences of English.

� Clearly: the following three sentences have different truth conditions.

1. Jane saw George.

2. Jane sees George.

3. Jane will see George.

� Assertion Tense is a deictic element, i.e. its interpretation requires reference to
something outside the sentence itself.

� Remark: Often, in particular in the case of monoclausal sentences occurring in
isolation, as in our examples, this “something” is the speech time.

� Idea: make use of the reference time now:

� Jane saw George is true at a time iff Jane sees George was true at some point
in time before now.

� Jane will see George is true at a time iff Jane sees George will be true at some
point in time after now.
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A Simple Semantics for Tense

� Problem: the meaning of Jane saw George and Jane will see George is defined in
terms of Jane sees George.

; We need the truth conditions of the present tense sentence.

� Idea: Jane sees George is true at a time iff Jane sees George at that time.

� Implementation: Postulate tense operators as sentential operators (expressions of
type o→o). Interpret

157
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1. Jane saw George as PAST(see(g, j))

2. Jane sees George as PRES(see(g, j))

3. Jane wil see George as FUT(see(g, j))
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Some notes:

• Most treatments of the semantics of tense invoke some notion of a tenseless proposition/for-
mula for the base case, just like we do. The idea here is that markers of past, present and
future all operate on an underlying un-tensed expression, which can be evaluated for truth
at a time.

• Note that we have made no attempt to show how these translations would be derived from
the natural language syntax. Giving a compositional semantics for tense is a complicated
business – for one thing, it requires us to first establish the syntax of tense – so we set this
goal aside in this brief presentation.

• Here, we have implicitly assumed that the English modal will is simply a tense marker. This
is indeed assumed by some. But others consider that it is no accident that will has the
syntax of other modals like can and must, and believe that will is also semantically a modal.

Models and Evaluation for a Tensed Language

� Problem: The interpretations of constants vary over time.

� Idea: Introduce times into our models, and let the interpretation function give
values of constants at a time. Relativize the valuation function to times

� Idea: We will consider temporal structures, where denotations are constant on
intervals.

� Definition Let I⊆{[i,j]|i,j∈R} be a set of real intervals, then we call ⟨I,◦,<,⊆⟩
an interval time structure, where for intervals i:=[il,ir] and j:=[jl,jr] we say that

� i and j overlap (written i◦j), iff jl≤ir,
� i precedes j (written i<j), iff ir≤jl, and

� i is contained in j (written i⊆j), iff jl≤il and ir≤jr.

� Definition A temporal model is a quadruple ⟨D,I,I⟩ where D is a domain, I is a
interval time structure, and I : I×Σ→D an interpretation function.
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The ordering relation: The ordering relation< is needed to make sure that our models represent
temporal relations in an intuitively correct way. Whatever the truth may be about time, as
language users we have rather robust intuitions that time goes in one direction along a straight
line, so that every moment of time is either before, after or identical to any other moment; and no
moment of time is both before and after another moment. If we think of the set of times as the
set of natural numbers, then the ordering relation < is just the relation less than on that set.

Intervals: Although intuitively time is given by as a set of moments of time, we will adopt
here (following Cann, who follows various others) an interval semantics, in which expressions are
evaluated relative to intervals of time. Intervals are defined in terms of moments, as a continuous
set of moments ordered by <.
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The new interpretation function: In models without times, the interpretation function I as-
signed an extension to every constant. Now, we want it to assign an extension to each constant
relative to each interval in our interval time structure. I.e. the interpretation function associates
each constant with a pair consisting of an interval and an appropriate extension, interpreted as the
extension at that interval. This set of pairs is, of course, equivalent to a function from intervals
to extensions.

Interpretation rules for the temporal operators

� Definition For the evaluation function Iiφ(·) we only redefine the clause for con-
stants:

� Iiφ(c):=I(i, c)

� Iiφ(X):=φ(X)

� Iiφ(FA):=Iiφ(F)(Iiφ(A)).

� Definition We define the meaning of the tense operators

1. Iiφ(PRES(Φ)) = T, iff Iiφ(Φ) = T.

2. Iiφ(PAST(Φ)) = T iff there is an interval j∈I with j<i and Ijφ(Φ) = T.

3. Iiφ(FUT(Φ)) = T iff there is an interval j∈I with i<j and Ijφ(Φ) = T.
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Complex tenses in English

� How do we use this machinery to deal with complex tenses in English?

� Past of past (pluperfect): Jane had left (by the time I arrived).

� Future perfect: Jane will have left (by the time I arrive).

� Past progressive: Jane was going to leave (when I arrived).

� Perfective vs. imperfective

� Jane left.

� Jane was leaving.

� How do the truth conditions of these sentences differ? Standard observation: Per-
fective indicates a completed action, imperfective indicates an incomplete or ongoing
action. This becomes clearer when we look at the “creation predicates” like build a
house or write a book

� Jane built a house. entails: There was a house that Jane built.

� Jane was building a house. does not entail that there was a house that Jane
built.
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Future readings of present tense
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� New Data;

1. Jane leaves tomorrow.

2. Jane is leaving tomorrow.

3. ?? It rains tomorrow.

4. ?? It is raining tomorrow.

5. ?? The dog barks tomorrow.

6. ??The dog is barking tomorrow.

� Future readings of present tense appear to arise only when the event described is
planned, or planable, either by the subject of the sentence, the speaker, or a third
party.
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Sequence of Tense

� George said that Jane was laughing.

� Reading 1: George said “Jane is laughing.” I.e. saying and laughing co-occur.
So past tense in subordinate clause is past of utterance time, but not of main
clause reference time.

� Reading 2: George said “Jane was laughing.” I.e. laughing precedes saying.
So past tense in subordinate clause is past of utterance time and of main clause
reference time.

� George saw the woman who was laughing.

� How many readings?

� George will say that Jane is laughing.

� Reading 1: George will say “Jane is laughing.” Saying and laughing co-occur,
but both saying and laughing are future of utterance time. So present tense in
subordinate clause indicates futurity relative to utterance time, but not to main
clause reference time.

� Reading 2: Laughing overlaps utterance time and saying (by George). So present
tense in subordinate clause is present relative to utterance time and main clause
reference time.
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Sequence of Tense

� George will see the woman who is laughing.

� How many readings?

� Note that in all of the above cases, the predicate in the subordinate clause describes
an event that is extensive in time. Consider readings when subordinate event is
punctual.
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� George said that Mary fell.

� Falling must precede George’s saying.

� George saw the woman who fell.

� Same three readings as before: falling must be past of utterance time, but could
be past, present or future relative to seeing (i.e main clause reference time).

� And just for fun, consider past under present. . . George will claim that Mary hit
Bill.

� Reading 1: hitting is past of utterance time (therefore past of main clause
reference time).

� Reading 2: hitting is future of utterance time, but past of main clause reference
time.

� And finally. . .

1. A week ago, John decided that in ten days at breakfast he would tell his
mother that they were having their last meal together. Abusch 1988

2. John said a week ago that in ten days he would buy a fish that was still
alive. Ogihara 1996
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Interpreting tense in discourse

� Example A man walked into the bar. He sat down and ordered a beer. He was
wearing a nice jacket and expensive shoes, but he asked me if I could spare a
buck.

� Example

1. Said while driving down the NJ turnpike: I forgot to turn off the stove.

2. I didn’t turn off the stove.
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Part III

Conclusion

163
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NL Semantics as an Intersective Discipline
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A landscape of formal semantics

©:MichaelKohlhase 259



166

Modeling Natural Language Semantics

� Problem: Find formal (logic) system for the meaning of natural language.

� History of ideas

� Propositional logic [ancient Greeks like Aristotle]
* Every human is mortal

� First-Order Predicate logic [Frege ≤ 1900]
* I believe, that my audience already knows this.

� Modal logic [Lewis18, Kripke65]
* A man sleeps. He snores. ((∃Xman(X)∧sleeps(X)))∧snores(X)

� Various dynamic approaches (e.g. DRT, DPL)
* Most men wear black

� Higher-order Logic, e.g. generalized quantifiers

� . . .
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We will now introduce an important conceptual distinction on the intent of grammars.

Syntactic and Semantic Grammars

� Recall our interpretation pipeline

Syntax Quasi-Logical Form Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Pragmatic
Analysis

(inferential)

Syntax Quasi-Logical Form Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Pragmatic
Analysis

(inferential)

� Definition We call a grammar syntactic, iff the categories and constructors are
motivated by the linguistic structure of the utterance, and semantic, iff they are
motivated by the structure of the domain to be modeled.



167

� Grammar zero from is syntactic.

� We will look at semantic versions next.
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Let us now reconcider the role of all of this for natural language semantics. We have claimed
that the goal of the course is to provide you with a set of methods to determine the meaning of
natural language. If we look back, all we did was to establish translations from natural languages
into formal languages like first-order or higher-order logic (and that is all you will find in most
semantics papers and textbooks). Now, we have just tried to convince you that these are actually
syntactic entities. So, where is the semantics?.

Natural Language Semantics?

Comp Ling
NL

L = wff (Σ)

M = ⟨D,I⟩

NL⊆NL×NL

⊢C⊆FL×FL

|=⊆FL×FL

Analysis

Iφ

induces

induces

formulae

|=≡⊢C?

NL≡⊢C?

Logic

©:MichaelKohlhase 262

As we mentioned, the green area is the one generally covered by natural language semantics.
In the analysis process, the nlunatural language utterance (viewed here as formulae of a language
NL) are translated to a formal language FL (a set wff (Σ) of well-formed formulae). We claim
that this is all that is needed to recapture the semantics even if this is not immediately obvious
at first: Theoretical Logic gives us the missing pieces.

Since FL is a formal language of a logical systems, it comes with a notion of model and an
interpretation function Iφ that translates FL formulae into objects of that model. This induces
a notion of logical consequence1 as explained in . It also comes with a calculus C acting on
FL-formulae, which (if we are lucky) is correct and complete (then the mappings in the upper
rectangle commute).

What we are really interested in in natural language semantics is the truth conditions and
natural consequence relations on natural language utterances, which we have denoted by NL. If
the calculus C of the logical system ⟨FL,K,|=⟩ is adequate (it might be a bit presumptious to say
sound and complete), then it is a model of the relation NL. Given that both rectangles in the
diagram commute, then we really have a model for truth-conditions and logical consequence for
nlunatural lanaugage utterances, if we only specify the analysis mapping (the green part) and the
calculus.

Where to from here?

1Relations on a set S are subsets of the cartesian product of S, so we use R∈S∗S to signify that R is a (n-ary)
relation on X.
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� We can continue the exploration of semantics in two different ways:

� Look around for additional logical systems and see how they can be applied to
various linguistic problems. (The logician’s approach)

� Look around for additional linguistic forms and wonder about their truth condi-
tions, their logical forms, and how to represent them. (The linguist’s
approach)

� Here are some possibilities...

©:MichaelKohlhase 263

Semantics of Plurals

1. The dogs were barking.

2. Fido and Chester were barking. (What kind of an object do the subject NPs
denote?)

3. Fido and Chester were barking. They were hungry.

4. Jane and George came to see me. She was upset. (Sometimes we need to look
inside a plural!)

5. Jane and George have two children. (Each? Or together?)

6. Jane and George got married. (To each other? Or to other people?)

7. Jane and George met. (The predicate makes a difference to how we interpret
the plural)
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Reciprocals

� What’s required to make these true?

1. The men all shook hands with one another.

2. The boys are all sitting next to one another on the fence.

3. The students all learn from each other.
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Presuppositional expressions

� What are presuppositions?

� What expressions give rise to presuppositions?

� Are all apparent presuppositions really the same thing?

1. The window in that office is open.
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2. The window in that office isn’t open.

3. George knows that Jane is in town.

4. George doesn’t know that Jane is in town.

5. It was / wasn’t George who upset Jane.

6. Jane stopped / didn’t stop laughing.

7. George is / isn’t late.
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Presupposition projection

1. George doesn’t know that Jane is in town.

2. Either Jane isn’t in town or George doesn’t know that she is.

3. If Jane is in town, then George doesn’t know that she is.

4. Henry believes that George knows that Jane is in town.
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Conditionals

� What are the truth conditions of conditionals?

1. If Jane goes to the game, George will go.

� Intuitively, not made true by falsity of the antecedent or truth of consequent
independent of antecedent.

2. If John is late, he must have missed the bus.

� Generally agreed that conditionals are modal in nature. Note presence of modal in
consequent of each conditional above.
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Counterfactual conditionals

� And what about these??

1. If kangaroos didn’t have tails, they’d topple over. (David Lewis)

2. If Woodward and Bernstein hadn’t got on the Watergate trail, Nixon might
never have been caught.

3. If Woodward and Bernstein hadn’t got on the Watergate trail, Nixon would
have been caught by someone else.

� Counterfactuals undoubtedly modal, as their evaluation depends on which alterna-
tive world you put yourself in.
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Before and after

� These seem easy. But modality creeps in again...

1. Jane gave up linguistics after she finished her dissertation. (Did she
finish?)

2. Jane gave up linguistics before she finished her dissertation. (Did she
finish? Did she start?)
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As this course is predominantly about modeling natural language and not about the theoretical
aspects of the logics themselves, we give the discussion about these as a “suggested readings” section
part here.
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Appendix A

Properties of Propositional Tableaux

A.1 Soundness and Termination of Tableaux

As always we need to convince ourselves that the calculus is sound, otherwise, tableau proofs do
not guarantee validity, which we are after. Since we are now in a refutation setting we cannot just
show that the inference rules preserve validity: we care about unsatisfiability (which is the dual
notion to validity), as we want to show the initial labeled formula to be unsatisfiable. Before we
can do this, we have to ask ourselves, what it means to be (un)-satisfiable for a labeled formula
or a tableau.

Soundness (Tableau)

� Idea: A test calculus is sound, iff it preserves satisfiability and the goal formulae
are unsatisfiable.

� Definition A labeled formula Aα is valid under φ, iff Iφ(A) = α.

� Definition A tableau T is satisfiable, iff there is a satisfiable branch P in T , i.e. if
the set of formulae in P is satisfiable.

� Assertion Tableau rules transform satisfiable tableaux into satisfiable ones.

� Assertion A set Φ of propositional formulae is valid, if there is a closed tableau T
for ΦF.

� Proof: by contradiction: Suppose Φ is not valid.

P.1 then the initial tableau is satisfiable (ΦF satisfiable)

P.1 so T is satisfiable, by our Lemma.

P.1 there is a satisfiable branch (by definition)

P.1 but all branches are closed (T closed)
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Thus we only have to prove , this is relatively easy to do. For instance for the first rule: if
we have a tableau that contains (A∧B)T and is satisfiable, then it must have a satisfiable branch.
If (A∧B)T is not on this branch, the tableau extension will not change satisfiability, so we can
assume that it is on the satisfiable branch and thus Iφ(A∧B) = T for some variable assignment
φ. Thus Iφ(A) = T and Iφ(B) = T, so after the extension (which adds the formulae AT and BT

to the branch), the branch is still satisfiable. The cases for the other rules are similar.
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The next result is a very important one, it shows that there is a procedure (the tableau
procedure) that will always terminate and answer the question whether a given propositional
formula is valid or not. This is very important, since other logics (like the often-studied first-order
logic) does not enjoy this property.

Termination for Tableaux

� Assertion The tableau procedure terminates, i.e. after a finite set of rule applica-
tions, it reaches a tableau, so that applying the tableau rules will only add labeled
formulae that are already present on the branch.

� Definition Let us call a labeled formulae Aα worked off in a tableau T , if a tableau
rule has already been applied to it.

� Proof:

P.1 It is easy to see that applying rules to worked off formulae will only add formulae
that are already present in its branch.

P.1 Let µ(T ) be the number of connectives in labeled formulae in T that are not
worked off.

P.1 Then each rule application to a labeled formula in T that is not worked off
reduces µ(T ) by at least one. (inspect the rules)

P.1 At some point the tableau only contains worked off formulae and literals.

P.1 Since there are only finitely many literals in T , so we can only apply the tableau
cut rule a finite number of times.
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The tableau calculus basically computes the disjunctive normal form: every branch is a disjunct
that is a conjunct of literals. The method relies on the fact that a DNF is unsatisfiable, iff each
literal is, i.e. iff each branch contains a contradiction in form of a pair of opposite literals. For
proving completeness of tableaux we will use the abstract consistency method introduced by
Raymond Smullyan — a famous logician who also wrote many books on recreational mathematics
and logic (most notably one is titled “What is the name of this book?”) which you may like.

A.2 Abstract Consistency and Model Existence

We will now come to an important tool in the theoretical study of reasoning calculi: the “abstract
consistency”/“model existence” method. This method for analyzing calculi was developed by Jaako
Hintikka, Raymond Smullyan, and Peter Andrews in 1950-1970 as an encapsulation of similar
constructions that were used in completeness arguments in the decades before. The basis for
this method is Smullyan’s Observation [Smu63] that completeness proofs based on Hintikka sets
only certain properties of consistency and that with little effort one can obtain a generalization
“Smullyan’s Unifying Principle”.

The basic intuition for this method is the following: typically, a logical system S = ⟨L,K,|=⟩
has multiple calculi, human-oriented ones like the natural deduction calculi and machine-oriented
ones like the automated theorem proving calculi. All of these need to be analyzed for completeness
(as a basic quality assurance measure).

A completeness proof for a calculus C for S typically comes in two parts: one analyzes C-
consistency (sets that cannot be refuted in C), and the other construct K-models for C-consistent
sets.

In this situtation the “abstract consistency”/“model existence” method encapsulates the model
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construction process into a meta-theorem: the “model existence” theorem. This provides a set of
syntactic (“abstract consistency”) conditions for calculi that are sufficient to construct models.

With the model existence theorem it suffices to show that C-consistency is an abstract consis-
tency property (a purely syntactic task that can be done by a C-proof transformation argument)
to obtain a completeness result for C.

Model Existence (Overview)

� Definition: Abstract consistency

� Definition: Hintikka set (maximally abstract consistent)

� Theorem: Hintikka sets are satisfiable

� Theorem: If Φ is abstract consistent, then Φ can be extended to a Hintikka set.

� Corollary: If Φ is abstract consistent, then Φ is satisfiable

� Application: Let C be a calculus, if Φ is C-consistent, then Φ is abstract consistent.

� Corollary: C is complete.
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The proof of the model existence theorem goes via the notion of a Hintikka set, a set of formulae
with very strong syntactic closure properties, which allow to read off models. Jaako Hintikka’s
original idea for completeness proofs was that for every complete calculus C and every C-consistent
set one can induce a Hintikka set, from which a model can be constructed. This can be considered
as a first model existence theorem. However, the process of obtaining a Hintikka set for a set
C-consistent set Φ of sentences usually involves complicated calculus-dependent constructions.

In this situation, Raymond Smullyan was able to formulate the sufficient conditions for the
existence of Hintikka sets in the form of “abstract consistency properties” by isolating the calculus-
independent parts of the Hintikka set construction. His technique allows to reformulate Hintikka
sets as maximal elements of abstract consistency classes and interpret the Hintikka set construction
as a maximizing limit process. To carry out the “model-existence”/“abstract consistency”
method, we will first have to look at the notion of consistency.

Consistency and refutability are very important notions when studying the completeness for
calculi; they form syntactic counterparts of satisfiability.

Consistency

� Let C be a calculus

� Definition Φ is called C-refutable, if there is a formula B, such that Φ⊢CB and
Φ⊢C¬B.

� Definition We call a pair of formulae A and ¬A a contradiction.

� So a set Φ is C-refutable, if C can derive a contradiction from it.

� Definition Φ is called C-consistent, iff there is a formula B, that is not derivable
from Φ in C.

� Definition We call a calculus C reasonable, iff implication elimination and conjunc-
tion introduction are admissible in C and A∧¬A⇒B is a C-theorem.
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� Assertion C-inconsistency and C-refutability coincide for reasonable calculi.
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It is very important to distinguish the syntactic C-refutability and C-consistency from satisfi-
ability, which is a property of formulae that is at the heart of semantics. Note that the former
specify the calculus (a syntactic device) while the latter does not. In fact we should actually say
S-satisfiability, where S = ⟨L,K,|=⟩ is the current logical system.

Even the word “contradiction” has a syntactical flavor to it, it translates to “saying against
each other” from its latin root.

Abstract Consistency

� Definition Let ∇ be a family of sets. We call ∇ closed under subsets, iff for each
Φ∈∇, all subsets Ψ⊆Φ are elements of ∇.

� Notation: We will use Φ∗A for Φ∪{A}.

� Definition A family ∇ of sets of propositional formulae is called an abstract con-
sistency class, iff it is closed under subsets, and for each Φ∈∇

∇c) P ̸∈Φ or (¬P )̸∈Φ for P∈Vo
∇¬) (¬¬A)∈Φ implies (Φ∗A)∈∇
∇∨) (A∨B)∈Φ implies (Φ∗A)∈∇ or (Φ∗B)∈∇
∇∧) (¬A∨B)∈Φ implies (Φ∪{¬A,¬B})∈∇

� Example The empty set is an abstract consistency class

� Example The set {∅,{Q},{P∨Q},{P∨Q,Q}} is an abstract consistency class

� Example The family of satisfiable sets is an abstract consistency class.
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So a family of sets (we call it a family, so that we do not have to say “set of sets” and we can
distinguish the levels) is an abstract consistency class, iff if fulfills five simple conditions, of which
the last three are closure conditions.

Think of an abstract consistency class as a family of “consistent” sets (e.g. C-consistent for some
calculus C), then the properties make perfect sense: They are naturally closed under subsets — if
we cannot derive a contradiction from a large set, we certainly cannot from a subset, furthermore,

∇c) If both P∈Φ and (¬P )∈Φ, then Φ cannot be “consistent”.

∇¬) If we cannot derive a contradiction from Φ with (¬¬A)∈Φ then we cannot from Φ∗A, since
they are logically equivalent.

The other two conditions are motivated similarly. We will carry out the proof here, since it
gives us practice in dealing with the abstract consistency properties.

The main result here is that abstract consistency classes can be extended to compact ones.
The proof is quite tedious, but relatively straightforward. It allows us to assume that all abstract
consistency classes are compact in the first place (otherwise we pass to the compact extension).

Actually we are after abstract consistency classes that have an even stronger property than
just being closed under subsets. This will allow us to carry out a limit construction in the Hintikka
set extension argument later.
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Compact Collections

� Definition We call a collection ∇ of sets compact, iff for any set Φ we have
Φ∈∇, iff Ψ∈∇ for every finite subset Ψ of Φ.

� Assertion If ∇ is compact, then ∇ is closed under subsets.

� Proof:

P.1 Suppose S⊆T and T∈∇.

P.1 Every finite subset A of S is a finite subset of T .

P.1 As ∇ is compact, we know that A∈∇.

P.1 Thus S∈∇.
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The property of being closed under subsets is a “downwards-oriented” property: We go from
large sets to small sets, compactness (the interesting direction anyways) is also an “upwards-
oriented” property. We can go from small (finite) sets to large (infinite) sets. The main application
for the compactness condition will be to show that infinite sets of formulae are in a family ∇ by
testing all their finite subsets (which is much simpler).

Compact Abstract Consistency Classes

� Assertion Any abstract consistency class can be extended to a compact one.

� Proof:

P.1 We choose ∇′:={Φ⊆wffo(Vo)|every finite subset of Φ is in ∇}.
P.1 Now suppose that Φ∈∇. ∇ is closed under subsets, so every finite subset of Φ

is in ∇ and thus Φ∈∇′. Hence ∇⊆∇′.

P.1 Next let us show that each ∇ is compact.’

P.1.1 Suppose Φ∈∇′ and Ψ is an arbitrary finite subset of Φ.

P.1.1 By definition of ∇′ all finite subsets of Φ are in ∇ and therefore Ψ∈∇′.

P.1.1 Thus all finite subsets of Φ are in ∇′ whenever Φ is in ∇′.

P.1.1 On the other hand, suppose all finite subsets of Φ are in ∇′.

P.1.1 Then by the definition of ∇′ the finite subsets of Φ are also in ∇, so Φ∈∇′.
Thus ∇′ is compact.

P.1 Note that ∇′ is closed under subsets by the Lemma above.

P.1 Now we show that if ∇ satisfies ∇∗, then ∇ satisfies ∇∗.’

P.1.1 To show ∇c, let Φ∈∇′ and suppose there is an atom A, such that {A,¬A}⊆Φ.
Then {A,¬A}∈∇ contradicting ∇c.

P.1.1 To show ∇¬, let Φ∈∇′ and (¬¬A)∈Φ, then (Φ∗A)∈∇′.

P.1.1.1 Let Ψ be any finite subset of Φ∗A, and Θ:=(Ψ\{A}∗¬¬A).

P.1.1.1 Θ is a finite subset of Φ, so Θ∈∇.

P.1.1.1 Since ∇ is an abstract consistency class and (¬¬A)∈Θ, we get (Θ∗A)∈∇
by ∇¬.
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P.1.1.1 We know that Ψ⊆Θ∗A and ∇ is closed under subsets, so Ψ∈∇.

P.1.1.1 Thus every finite subset Ψ of Φ∗A is in ∇ and therefore by definition
(Φ∗A)∈∇′.

P.1.1 the other cases are analogous to ∇¬.
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Hintikka sets are sets of sentences with very strong analytic closure conditions. These are
motivated as maximally consistent sets i.e. sets that already contain everything that can be
consistently added to them.

∇-Hintikka Set

� Definition Let ∇ be an abstract consistency class, then we call a set H∈∇ a ∇-
Hintikka Set, iff H is maximal in ∇, i.e. for all A with (H∗A)∈∇ we already have
A∈H.

� Assertion Let ∇ be an abstract consistency class and H be a ∇-Hintikka set, then

Hc) For all A∈wffo(Vo) we have A ̸∈H or (¬A) ̸∈H
H¬) If (¬¬A)∈H then A∈H
H∨) If (A∨B)∈H then A∈H or B∈H
H∧) If (¬A∨B)∈H then (¬A),(¬B)∈H
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∇-Hintikka Set

� Proof:

P.1 We prove the properties in turn

P.1.1 Hc: by induction on the structure of A

P.1.1.1.1 A∈Vo: Then A ̸∈H or (¬A) ̸∈H by ∇c.

P.1.1.1.1 A = ¬B:

P.1.1.1.1.1 Let us assume that (¬B)∈H and (¬¬B)∈H,

P.1.1.1.1.1 then (H∗B)∈∇ by ∇¬, and therefore B∈H by maximality.

P.1.1.1.1.1 So both B and ¬B are in H, which contradicts the inductive hypoth-
esis.

P.1.1.1.1 A = B∨C: similar to the previous case:

P.1.1 We prove H¬ by maximality of H in ∇.:

P.1.1.1 If (¬¬A)∈H, then (H∗A)∈∇ by ∇¬.

P.1.1.1 The maximality of H now gives us that A∈H.
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P.1.1 other H∗ are similar:
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The following theorem is one of the main results in the “abstract consistency”/”model existence”
method. For any abstract consistent set Φ it allows us to construct a Hintikka set H with Φ∈H.

Extension Theorem

� Assertion If ∇ is an abstract consistency class and Φ∈∇, then there is a ∇-Hintikka
set H with Φ⊆H.

� Proof:

P.1 Wlog. we assume that ∇ is compact (otherwise pass to compact extension)

P.1 We choose an enumeration A1,A2, . . . of the set wffo(Vo)
P.1 and construct a sequence of sets Hi with H0:=Φ and

Hn+1:=

 Hn if Hn∗An ̸∈∇
Hn∗An if Hn∗An∈∇

P.1 Note that all Hi∈∇, choose H:=
⋃
i∈NH

i

P.1 Ψ⊆H finite implies there is a j∈N such that Ψ⊆Hj ,

P.1 so Ψ∈∇ as ∇ closed under subsets and H∈∇ as ∇ is compact.

P.1 Let (H∗B)∈∇, then there is a j∈N with B = Aj , so that B∈Hj+1 and
Hj+1⊆H

P.1 Thus H is ∇-maximal
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Note that the construction in the proof above is non-trivial in two respects. First, the limit
construction for H is not executed in our original abstract consistency class ∇, but in a suitably
extended one to make it compact — the original would not have contained H in general. Second,
the set H is not unique for Φ, but depends on the choice of the enumeration of wffo(Vo). If we pick
a different enumeration, we will end up with a different H. Say if A and ¬A are both ∇-consistent
with Φ, then depending on which one is first in the enumeration H, will contain that one; with all
the consequences for subsequent choices in the construction process.

Valuation

� Definition A function ν : wffo(Vo)→Do is called a valuation, iff

� ν(¬A) = T, iff ν(A) = F

� ν(A∨B) = T, iff ν(A) = T or ν(B) = T

� Assertion If ν : wffo(Vo)→Do is a valuation and Φ⊆wffo(Vo) with ν(Φ) = {T},
then Φ is satisfiable.

� ProofSketch: ν|Vo
: Vo→Do is a satisfying variable assignment.
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� Assertion If φ : Vo→Do is a variable assignment, then Iφ : wffo(Vo)→Do is a
valuation.
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Now, we only have to put the pieces together to obtain the model existence theorem we are
after.

Model Existence

� Assertion If ∇ is an abstract consistency class and H a ∇-Hintikka set, then H is
satisfiable.

� Proof:

P.1 We define ν(A):=T, iff A∈H
P.1 then ν is a valuation by the Hintikka properties

P.1 and thus ν|Vo
is a satisfying assignment.

� Assertion If ∇ is an abstract consistency class and Φ∈∇, then Φ is satisfiable.

� Proof:

P.1 There is a ∇-Hintikka set H with Φ⊆H (Extension Theorem)

P.1 We know that H is satisfiable. (Hintikka-Lemma)

P.1 In particular, Φ⊆H is satisfiable.
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A.3 A Completeness Proof for Propositional Tableaux
With the model existence proof we have introduced in the last section, the completeness proof for
first-order natural deduction is rather simple, we only have to check that Tableaux-consistency is
an abstract consistency property.

We encapsulate all of the technical difficulties of the problem in a technical Lemma. From that,
the completeness proof is just an application of the high-level theorems we have just proven.

Abstract Completeness for T0
� Assertion {Φ|ΦT has no closed Tableau} is an abstract consistency class.

� Proof: Let’s call the set above ∇

P.1 We have to convince ourselves of the abstract consistency properties

P.1.1 ∇c: P ,(¬P )∈Φ implies (P F),(PT)∈ΦT.

P.1.1 ∇¬: Let (¬¬A)∈Φ.

P.1.1.1 For the proof of the contrapositive we assume that Φ∗A has a closed
tableau T and show that already Φ has one:

P.1.1.1 applying each of T0¬T and T0¬F once allows to extend any tableau with
¬¬Bα by Bα.
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P.1.1.1 any path in T that is closed with ¬¬Aα, can be closed by Aα.

P.1.1 ∇∨: Suppose (A∨B)∈Φ and both Φ∗A and Φ∗B have closed tableaux

P.1.1.1 consider the tableaux:

ΦT

AT

Rest1

ΦT

BT

Rest2

ΨT

(A∨B)T

AT

Rest1
BT

Rest2

P.1.1 ∇∧: suppose, (¬A∨B)∈Φ and Φ{¬A,¬B} have closed tableau T .

P.1.1.1 We consider

ΦT

AF

BF

Rest

ΨT

(A∨B)F

AF

BF

Rest

where Φ = Ψ∗¬(A∨B).
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Observation: If we look at the completeness proof below, we see that the Lemma above is the
only place where we had to deal with specific properties of the tableau calculus.

So if we want to prove completeness of any other calculus with respect to propositional logic,
then we only need to prove an analogon to this lemma and can use the rest of the machinery we
have already established “off the shelf”.

This is one great advantage of the “abstract consistency method”; the other is that the method
can be extended transparently to other logics.

Completeness of T0
� Assertion T0 is complete.

� Proof: by contradiction

P.1 We assume that A∈wffo(Vo) is valid, but there is no closed tableau for AF.

P.1 We have {¬A}∈∇ as ¬AT = AF.

P.1 so ¬A is satisfiable by the model existence theorem (which is applicable as ∇
is an abstract consistency class by our Lemma above)

P.1 this contradicts our assumption that A is valid.
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Appendix B

First-Order Unification

We will now look into the problem of finding a substitution σ that make two terms equal (we
say it unifies them) in more detail. The presentation of the unification algorithm we give here
“transformation-based” this has been a very influential way to treat certain algorithms in theoret-
ical computer science.

A transformation-based view of algorithms: The “transformation-based” view of algorithms
divides two concerns in presenting and reasoning about algorithms according to Kowalski’s slogan

computation = logic + control

The computational paradigm highlighted by this quote is that (many) algorithms can be thought
of as manipulating representations of the problem at hand and transforming them into a form
that makes it simple to read off solutions. Given this, we can simplify thinking and reasoning
about such algorithms by separating out their “logical” part, which deals with is concerned with
how the problem representations can be manipulated in principle from the “control” part, which
is concerned with questions about when to apply which transformations.

It turns out that many questions about the algorithms can already be answered on the “logic”
level, and that the “logical” analysis of the algorithm can already give strong hints as to how to
optimize control.

In fact we will only concern ourselves with the “logical” analysis of unification here.
The first step towards a theory of unification is to take a closer look at the problem itself. A

first set of examples show that we have multiple solutions to the problem of finding substitutions
that make two terms equal. But we also see that these are related in a systematic way.

Unification (Definitions)

� Definition For given terms A and B, unification is the problem of finding a sub-
stitution σ find, such that σA = σB.

� Notation: We write term pairs as A=?B e.g. f(X)=?f(g(Y )).

� Definition Solutions (e.g. [g(a)/X],[a/Y ], [g(g(a))/X],[g(a)/Y ], or [g(Z)/X],[Z/Y ])
are called unifiers, U(A=?B):={σ|σA = σB}.

� Idea: Find representatives in U(A=?B), that generate the set of solutions.

� Definition Let σ and θ be substitutions and W⊆Vι, we say that a substitution σ
is more general than θ (on W ; write σ≤θ[W ]), iff there is a substitution ρ, such
that θ=(ρ◦σ)[W ], where σ=ρ[W ], iff σX = ρX for all X∈W .
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� Definition σ is called a most general unifier of A and B, iff it is minimal in
U(A=?B) wrt. ≤[(free(A)∪free(B))].
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The idea behind a most general unifier is that all other unifiers can be obtained from it by (fur-
ther) instantiation. In an automated theorem proving setting, this means that using most general
unifiers is the least committed choice — any other choice of unifiers (that would be necessary for
completeness) can later be obtained by other substitutions.

Note that there is a subtlety in the definition of the ordering on substitutions: we only compare
on a subset of the variables. The reason for this is that we have defined substitutions to be total
on (the infinite set of) variables for flexibility, but in the applications (see the definition of a most
general unifiers), we are only interested in a subset of variables: the ones that occur in the initial
problem formulation. Intuitively, we do not care what the unifiers do off that set. If we did
not have the restriction to the set W of variables, the ordering relation on substitutions would
become much too fine-grained to be useful (i.e. to guarantee unique most general unifiers in our
case). Now that we have defined the problem, we can turn to the unification algorithm itself.
We will define it in a way that is very similar to logic programming: we first define a calculus
that generates “solved forms” (formulae from which we can read off the solution) and reason about
control later. In this case we will reason that control does not matter.

Unification (Equational Systems)

� Idea: Unification is equation solving.

� Definition We call a formula A1=?B1∧ . . .∧An=?Bn an equational system iff
Ai,Bi∈wff ι(Σι,Vι).

� We consider equational systems as sets of equations (∧ is ACI), and equations as
two-element multisets (=? is C).
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In principle, unification problems are sets of equations, which we write as conjunctions, since
all of them have to be solved for finding a unifier. Note that it is not a problem for the “logical
view” that the representation as conjunctions induces an order, since we know that conjunction
is associative, commutative and idempotent, i.e. that conjuncts do not have an intrinsic order or
multiplicity, if we consider two equational problems as equal, if they are equivalent as propositional
formulae. In the same way, we will abstract from the order in equations, since we know that
the equality relation is symmetric. Of course we would have to deal with this somehow in the
implementation (typically, we would implement equational problems as lists of pairs), but that
belongs into the “control” aspect of the algorithm, which we are abstracting from at the moment.

Solved forms and Most General Unifiers

� Definition We call a pair A=?B solved in a unification problem E , iff A = X,
E = X=?A∧E , and X ̸∈(free(A)∪free(E)). We call an unification problem E a
solved form, iff all its pairs are solved.

� Assertion Solved forms are of the form X1=?B1∧ . . .∧Xn=?Bn where the Xi are
distinct and Xi ̸∈free(Bj).

� Definition Any substitution σ = [B1/X1] induces a solved unification problem
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Eσ:=(X1=?B1∧ . . .∧Xn=?Bn).

� Assertion If E = X1=?B1∧ . . .∧Xn=?Bn is a solved form, then E has the unique
most general unifier σE :=[B1/X1].

� Proof: Let θ∈U(E)

P.1 then θXi = θBi = (θ◦σE)X
i

P.1 and thus θ=(θ◦σE)[supp(σ)].

� Note: we can rename the introduced variables in most general unifiers!
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It is essential to our “logical” analysis of the unification algorithm that we arrive at equational
problems whose unifiers we can read off easily. Solved forms serve that need perfectly as shows.

Given the idea that unification problems can be expressed as formulae, we can express the
algorithm in three simple rules that transform unification problems into solved forms (or unsolvable
ones).

Unification Algorithm

� Definition The inference system U consists of the following rules:

E∧f(A1, . . . ,An)=?f(B1, . . . ,Bn)

E∧A1=?B1∧ . . .∧An=?Bn
Udec

E∧A=?A

E
Utriv

E∧X=?A X ̸∈free(A) X∈free(E)
[A/X]E∧X=?A

Uelim

� Assertion U is correct: E⊢UF implies U(F)⊆U(E).

� Assertion U is complete: E⊢UF implies U(E)⊆U(F).

� Assertion U is confluent: the order of derivations does not matter.

� Assertion First-Order Unification is unitary: i.e. most general unifiers are unique
up to renaming of introduced variables.

� ProofSketch: the inference system U is trivially branching
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The decomposition rule Udec is completely straightforward, but note that it transforms one
unification pair into multiple argument pairs; this is the reason, why we have to directly use
unification problems with multiple pairs in U .

Note furthermore, that we could have restricted the Utriv rule to variable-variable pairs, since
for any other pair, we can decompose until only variables are left. Here we observe, that constant-
constant pairs can be decomposed with the Udec rule in the somewhat degenerate case without
arguments.

Finally, we observe that the first of the two variable conditions in Uelim (the “occurs-in-check”)
makes sure that we only apply the transformation to unifiable unification problems, whereas the
second one is a termination condition that prevents the rule to be applied twice.

The notion of completeness and correctness is a bit different than that for calculi that we
compare to the entailment relation. We can think of the “logical system of unifiability” with
the model class of sets of substitutions, where a set satisfies an equational problem E , iff all of
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its members are unifiers. This view induces the soundness and completeness notions presented
above.

The three meta-properties above are relatively trivial, but somewhat tedious to prove, so we
leave the proofs as an exercise to the reader.

We now fortify our intuition about the unification calculus by two examples. Note that we
only need to pursue one possible U derivation since we have confluence.

Unification Examples

� Example Two similar unification problems:

f(g(X,X), h(a))=?f(g(a, Z), h(Z))
Udec

g(X,X)=?g(a, Z)∧h(a)=?h(Z)
Udec

X=?a∧X=?Z∧h(a)=?h(Z)
Udec

X=?a∧X=?Z∧a=?Z
Uelim

X=?a∧a=?Z∧a=?Z
Uelim

X=?a∧Z=?a∧a=?a
Utriv

X=?a∧Z=?a

f(g(X,X), h(a))=?f(g(b, Z), h(Z))
Udec

g(X,X)=?g(b, Z)∧h(a)=?h(Z)
Udec

X=?b∧X=?Z∧h(a)=?h(Z)
Udec

X=?b∧X=?Z∧a=?Z
Uelim

X=?b∧b=?Z∧a=?Z
Uelim

X=?b∧Z=?b∧a=?b

MGU: [a/X],[a/Z] a=?b not unifiable
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We will now convince ourselves that there cannot be any infinite sequences of transformations
in U . Termination is an important property for an algorithm.

The proof we present here is very typical for termination proofs. We map unification problems
into a partially ordered set ⟨S, ≺⟩ where we know that there cannot be any infinitely descending
sequences (we think of this as measuring the unification problems). Then we show that all trans-
formations in U strictly decrease the measure of the unification problems and argue that if there
were an infinite transformation in U , then there would be an infinite descending chain in S, which
contradicts our choice of ⟨S, ≺⟩.

The crucial step in in coming up with such proofs is finding the right partially ordered set.
Fortunately, there are some tools we can make use of. We know that ⟨N,<⟩ is terminating, and
there are some ways of lifting component orderings to complex structures. For instance it is well-
known that the lexicographic ordering lifts a terminating ordering to a terminating ordering on
finite-dimensional Cartesian spaces. We show a similar, but less known construction with multisets
for our proof.

Unification (Termination)

� Definition Let S and T be multisets and ≺ a partial ordering on S∪T . Then we
define S ≺m S, iff S = C⊎T ′ and T = C⊎{t}, where s≺t for all s∈S′. We call
≺m the multiset ordering induced by ≺.

� Assertion If ≺ is linear/terminating on S, then ≺m is linear/terminating on P(S).

� Assertion U is terminating. (any U-derivation is finite)

� Proof: We prove termination by mapping U transformation into a Noetherian space.
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P.1 Let µ(E):=⟨n,N⟩, where

� n is the number of unsolved variables in E
� N is the multiset of term depths in E

P.1 The lexicographic order ≺ on pairs µ(E) is decreased by all inference rules.

P.1.1 Udec and Utriv decrease the multiset of term depths without increasing the
unsolved variables

P.1.1 Uelim decreases the number of unsolved variables (by one), but may increase
term depths.
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But it is very simple to create terminating calculi, e.g. by having no inference rules. So there
is one more step to go to turn the termination result into a decidability result: we must make sure
that we have enough inference rules so that any unification problem is transformed into solved
form if it is unifiable.

First-Order Unification is Decidable

� Definition We call an equational problem E U-reducible, iff there is a U-step E⊢UF
from E .

� Assertion If E is unifiable but not solved, then it is U-reducible.

� Proof: We assume that E is unifiable but unsolved and show the U rule that applies.

P.1 There is an unsolved pair A=?B in E = E∧A=?B′.

P.1 we have two cases

P.1.1 A, B̸∈Vι: then A = f(A1 . . .An) and B = f(B1 . . .Bn), and thus Udec is
applicable

P.1.1 A = X∈free(E): then Uelim (if B ̸= X) or Utriv (if B = X) is applicable.

� Assertion First-order unification is decidable in PL1.

� Proof:

P.1 U-irreducible sets of equations can be obtained in finite time by termination.

P.1 They are either solved or unsolvable by , so they provide the answer.
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Appendix C

Soundness and Completeness of
First-Order Tableaux

For the soundness result, we recap the definition of soundness for test calculi from the propositional
case.

Soundness (Tableau)

� Idea: A test calculus is sound, iff it preserves satisfiability and the goal formulae
are unsatisfiable.

� Definition A labeled formula Aα is valid under φ, iff Iφ(A) = α.

� Definition A tableau T is satisfiable, iff there is a satisfiable branch P in T , i.e. if
the set of formulae in P is satisfiable.

� Assertion Tableau rules transform satisfiable tableaux into satisfiable ones.

� Assertion A set Φ of propositional formulae is valid, if there is a closed tableau T
for ΦF.

� Proof: by contradiction: Suppose Φ is not valid.

P.1 then the initial tableau is satisfiable (ΦF satisfiable)

P.1 so T is satisfiable, by our Lemma.

P.1 there is a satisfiable branch (by definition)

P.1 but all branches are closed (T closed)
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Thus we only have to prove , this is relatively easy to do. For instance for the first rule: if
we have a tableau that contains (A∧B)T and is satisfiable, then it must have a satisfiable branch.
If (A∧B)T is not on this branch, the tableau extension will not change satisfiability, so we can
assume that it is on the satisfiable branch and thus Iφ(A∧B) = T for some variable assignment
φ. Thus Iφ(A) = T and Iφ(B) = T, so after the extension (which adds the formulae AT and BT

to the branch), the branch is still satisfiable. The cases for the other rules are similar. The
soundness of the first-order free-variable tableaux calculus can be established a simple induction
over the size of the tableau.
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Soundness of T f
1

� Assertion Tableau rules transform satisfiable tableaux into satisfiable ones.

� Proof:

P.1 we examine the tableau rules in turn

P.1.1 propositional rules: as in propositional tableaux

P.1.1 T f1 ∃: by

P.1.1 T f1 ⊥: by (substitution value lemma)

P.1.1 T f1 ∀:

P.1.1.1 Iφ(∀XA) = T, iff Iψ(A) = T for all a∈Dι

P.1.1.1 so in particular for some a∈Dι ̸= ∅.

� Assertion T f1 is correct.
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The only interesting steps are the cut rule, which can be directly handled by the substitution
value lemma, and the rule for the existential quantifier, which we do in a separate lemma.

Soundness of T f
1 ∃

� Assertion T f1 ∃ transforms satisfiable tableaux into satisfiable ones.

� Proof: Let T ′ be obtained by applying T f1 ∃ to (∀XA)F in T , extending it with
([f(X1, . . . , Xn)/X]A)F, where W :=free(∀XA) = {X1, . . . ,Xk}

P.1 Let T be satisfiable in M:=⟨D,I⟩, then Iφ(∀XA) = F.

P.1 We need to find a model M′ that satisfies T ′ (find interpretation for f)

P.1 By definition I(φ,[a/X])(A) = F for some a∈D (depends on φ|W )

P.1 Let g : Dk→D be defined by g(a1, . . . ,ak):=a, if φ(Xi) = ai

P.1 choose M = ⟨D,I ′⟩′ with I ′:=(I,[g/f ]), then by subst. value lemma

I ′
φ([f(X

1, . . . , Xk)/X]A) = I ′
(φ,[I′

φ(f(X1,...,Xk))/X])(A)

= I ′
(φ,[a/X])(A) = F

P.1 So ([f(X1, . . . , Xk)/X]A)F satisfiable in M′
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This proof is paradigmatic for soundness proofs for calculi with Skolemization. We use the
axiom of choice at the meta-level to choose a meaning for the Skolem function symbol.

Armed with the Model Existence Theorem for first-order logic (), the completeness of first-
order tableaux is similarly straightforward. We just have to show that the collection of tableau-
irrefutable sentences is an abstract consistency class, which is a simple proof-transformation ex-
ercise in all but the universal quantifier case, which we postpone to its own Lemma ().
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Completeness of (T f
1 )

� Assertion T f1 is refutation complete.

� Proof: We show that ∇:={Φ|ΦT has no closed Tableau} is an abstract consis-
tency class

P.1 (∇c, ∇¬, ∇∨, and ∇∧) as for propositional case.

P.1 (∇∀) by the lifting lemma below

P.1 (∇∃) Let T be a closed tableau for (¬∀XA)∈Φ and (ΦT∗([c/X]A)F)∈∇.

ΨT

(∀XA)F

([c/X]A)F

Rest

ΨT

(∀XA)F

([f(X1, . . . , Xk)/X]A)F

[f(X1, . . . , Xk)/c]Rest

©:MichaelKohlhase 295

So we only have to treat the case for the universal quantifier. This is what we usually call a
“lifting argument”, since we have to transform (“lift”) a proof for a formula θA to one for A. In
the case of tableaux we do that by an induction on the tableau refutation for θA which creates a
tableau-isomorphism to a tableau refutation for A.

Tableau-Lifting

� Assertion If Tθ is a closed tableau for a st θΦ of formulae, then there is a closed
tableau T for Φ.

� Proof: by induction over the structure of Tθ we build an isomorphic tableau T , and
a tableau-isomorphism ω : T →Tθ, such that ω(A) = θA.

P.1 only the tableau-substitution rule is interesting.

P.1 Let (θAi)T and (θBi)F cut formulae in the branch Θiθ of Tθ
P.1 there is a joint unifier σ of (θA1)=?(θB1)∧ . . .∧(θAn)=?(θBn)

P.1 thus σ◦θ is a unifier of A and B

P.1 hence there is a most general unifier ρ of A1=?B1∧ . . .∧An=?Bn

P.1 so Θ is closed

©:MichaelKohlhase 296

Again, the “lifting lemma for tableaux” is paradigmatic for lifting lemmata for other refutation
calculi.
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Appendix D

Properties of the Simply Typed λ
Calculus

D.1 Computational Properties of λ-Calculus
As we have seen above, the main contribution of the λ-calculus is that it casts the comprehension
and (functional) extensionality axioms in a way that is more amenable to automation in reasoning
systems, since they can be oriented into a confluent and terminating reduction system. In this
Section we prove the respective properties. We start out with termination, since we will need it
later in the proof of confluence.

D.1.1 Termination of β-reduction
We will use the termination of =β reduction to present a very powerful proof method, called the
“logical relations method”, which is one of the basic proof methods in the repertoire of a proof
theorist, since it can be extended to many situations, where other proof methods have no chance
of succeeding.

Before we start into the termination proof, we convince ourselves that a straightforward in-
duction over the structure of expressions will not work, and we need something more powerful.

Termination of β-Reduction

� only holds for the typed case
(λXXX) λXXX→β(λXXX) λXXX

� Assertion For all A∈wff α(Σ,VT ), the chain of reductions from A is finite.

� proof attempts:

� Induction on the structure A must fail, since this would also work for the untyped
case.

� Induction on the type of A must fail, since β-reduction conserves types.

� combined induction on both: Logical Relations [Tait 1967]
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The overall shape of the proof is that we reason about two relations: SR and LR between
λ-terms and their types. The first is the one that we are interested in, LR(A, α) essentially states
the property that =βη reduction terminates at A. Whenever the proof needs to argue by induction
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on types it uses the “logical relation” LR, which is more “semantic” in flavor. It coincides with SR
on base types, but is defined via a functionality property.

Relations SR and LR

� Definition A is called strongly reducing at type α (write SR(A, α)), iff each chain
β-reductions from A terminates.

� Definition We define a logical relation LR inductively on the structure of the type

� α base type: LR(A, α), iff SR(A, α)

� LR(C, α→β), iff LR(C A, β) for all A∈wff α(Σ,VT ) with LR(A, α).

Proof: Termination Proof

� P.1 LR⊆SR (Rolercoaster Lemma b))

A∈wff α(Σ,VT ) implies LR(A, α) (Substitution Theorem with σ = ∅)

thus SR(A, α).

P.1 P.1� Assertion If SR(A, α) and Bβ is a subterm of A, then SR(B, β).

� Proof Idea: Every infinite β-reduction from B would be one from A.
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The termination proof proceeds in two steps, the first one shows that LR is a sub-relation of
SR, and the second that LR is total on λ-terms. Togther they give the termination result.

The next result proves two important technical side results for the termination proofs in a joint
induction over the structure of the types involved. The name “rollercoaster lemma” alludes to the
fact that the argument starts with base type, where things are simple, and iterates through the
two parts each leveraging the proof of the other to higher and higher types.

LR⊆SR (Rollercoaster Lemma)

� Assertion

a) If h is a constant or variable of type αn→α and SR(Ai, αi), then LR(h An, α).

b) LR(A, α) implies SR(A, α).

Proof: we prove both assertions by simultaneous induction on α

� P.1.1 α base type:

P.1.1.1.1 a): h An is strongly reducing, since the Ai are (brackets!)

P.1.1.1.1.1 so LR(h An, α) as α is a base type (SR = LR)

P.1.1.1.1 b): by definition

α = β→γ:

P.1.1P.1.1.1.1 a): Let LR(B, β).

P.1.1.1.1.1 by IH b) we have SR(B, β), and LR((h An) B, γ) by IH a)

P.1.1.1.1.1 so LR(h An, α) by definition.
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P.1.1.1.1 b): Let LR(A, α) and Xβ /∈ free(A).

P.1.1.1.1.1 LR(X,β) by IH a) with n = 0, thus LR(A X, γ) by definition.

P.1.1.1.1.1 By IH b) we have SR(AX, γ) and by SR(A, α).
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The part of the rollercoaster lemma we are really interested in is part b). But part a) will
become very important for the case where n = 0; here it states that constants and variables are
LR.

The next step in the proof is to show that all well-formed formulae are LR. For that we need
to prove closure of LR under =β expansion

β-Expansion Lemma

� Assertion If LR([B/X]A, α) and LR(B, β) for (Xβ )̸∈free(B), then LR((λXαA) B, α).

� Proof:

P.1 Let α = γi→δ where δ base type and LR(Ci, γi)

P.1 It is sufficient to show that SR((λXA) B C, δ), as δ base type

P.1 We have LR(([B/X]A) C, δ) by hypothesis and definition of LR.

P.1 thus SR(([B/X]A) C, δ), as δ base type.

P.1 in particular SR([B/X]A, α) and SR(Ci, γi) (subterms)

P.1 SR(B, β) by hypothesis and

P.1 So an infinite reduction from (λXA) B C cannot solely consist of redexes
from [B/X]A and the Ci.

P.1 so an infinite reduction from (λXA) B C must have the form

(λXA) B C →∗
β (λXA′) B′ C′

→1
β ([B′/X]A′) C′

→∗
β . . .

where A→∗
βA

′, B→∗
βB

′ and Ci→∗
βC

i′

P.1 so we have [B/X]A→∗
β [B

′/X]A′

P.1 so we have the infinite reduction

([B/X]A) C →∗
β ([B′/X]A′) C′

→∗
β . . .

which contradicts our assumption

� Assertion
If C→βD and LR(D, α), so is LR(C, α).
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Note that this Lemma is one of the few places in the termination proof, where we actually look
at the properties of β reduction.

We now prove that every well-formed formula is related to its type by LR. But we cannot prove
this by a direct induction. In this case we have to strengthen the statement of the theorem – and
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thus the inductive hypothesis, so that we can make the step cases go through. This is common for
non-trivial induction proofs. Here we show instead that every instance of a well-formed formula is
related to its type by LR; we will later only use this result for the cases of the empty substitution,
but the stronger assertion allows a direct induction proof.

A∈wff α(Σ,VT ) implies LR(A, α)

� Definition We write LR(σ) if LR(σXα, α) for all X∈supp(σ).

� Assertion If A∈wff α(Σ,VT ), then LR(σA, α) for any substitution σ with LR(σ).

� Proof: by induction on the structure of A

P.1.1 A = Xα ∈ supp(σ): then LR(σA, α) by assumption

P.1.1 A = X /∈ supp(σ): then σA = A and LR(A, α) by with n = 0.

P.1.1 A∈Σ: then σA = A as above

P.1.1 A = BC: by IH LR(σB, (γ→α)) and LR(σC, γ)

P.1.1.1 so LR((σB) σC, α) by definition of LR.

P.1.1 A = λXβCγ : Let LR(B, β) and θ:=(σ,[B/X]), then θ meets the conditions
of the IH.

P.1.1.1 Moreover (σλXβCγ) B→β(σ,[B/X])C = θC.

P.1.1.1 Now, LR(θC, γ) by IH and thus LR((σA) B, γ) by .

P.1.1.1 So LR(σA, α) by definition of LR.
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In contrast to the proof of the roller coaster Lemma above, we prove the assertion here by an
induction on the structure of the λ-terms involved. For the base cases, we can directly argue with
the first assertion from , and the application case is immediate from the definition of LR. Indeed,
we defined the auxiliary relation LR exclusively that the application case – which cannot be proven
by a direct structural induction; remember that we needed induction on types in – becomes easy.

The last case on λ-abstraction reveals why we had to strengthen the inductive hypothesis: β
reduction introduces a substitution which may increase the size of the subterm, which in turn
keeps us from applying the inductive hypothesis. Formulating the assertion directly under all
possible LR substitutions unblocks us here.

This was the last result we needed to complete the proof of termiation of =β-reduction.
Remark:
If we are only interested in the termination of head reductions, we can get by with a much

simpler version of this lemma, that basically relies on the uniqueness of head =β reduction.

Closure under Head β-Expansion (weakly reducing)

� Assertion If C→h
βD and LR(D, α), so is LR(C, α).

� Proof: by induction over the structure of α

P.1.1 α base type:

P.1.1.1 we have SR(D, α) by definition
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P.1.1.1 so SR(C, α), since head reduction is unique

P.1.1.1 and thus LR(C, α).

P.1.1 α = β→γ:

P.1.1.1 Let LR(B, β), by definition we have LR(DB, γ).

P.1.1.1 but C B→h
βD B, so LR(CB, γ) by IH

P.1.1.1 and LR(C, α) by definition.

� Note: This result only holds for weak reduction (any chain of β head reductions
terminates) for strong reduction we need a stronger Lemma.
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For the termination proof of head =β-reduction we would just use the same proof as above,
just for a variant of SR, where SR(A, α) that only requires that the head reduction sequence out
of A terminates. Note that almost all of the proof except (which holds by the same argument) is
invariant under this change. Indeed Rick Statman uses this observation in [Sta85] to give a set of
conditions when logical relations proofs work.

D.1.2 Confluence of βη Conversion
We now turn to the confluence for =βη, i.e. that the order of reductions is irrelevant. This entails
the uniqueness of =βη normal forms, which is very useful.

Intuitively confluence of a relation R means that “anything that flows apart will come together
again.” – and as a consequence normal forms are unique if they exist. But there is more than one
way of formalizing that intuition.

Confluence

� Definition Let R⊆A2 be a relation on a set A, then we say that

� has a diamond property, iff for every a,b,c∈A with a→1
Rb a→1

Rc there is a
d∈A with b→1

Rd and c→1
Rd.

� is confluent, iff for every a,b,c∈A with a→∗
Rb a→∗

Rc there is a d∈A with
b→∗

Rd and c→∗
Rd.

� weakly confluent iff for every a,b,c∈A with a→1
Rb a→1

Rc there is a d∈A with
b→∗

Rd and c→∗
Rd.

diamond confluent weakly
property confluent

a

b c

d

a

b c

d

* *

* *

a

b c

d* *
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The diamond property is very simple, but not many reduction relations enjoy it. Confluence is
the notion that that directly gives us unique normal forms, but is difficult to prove via a digram
chase, while weak confluence is amenable to this, does not directly give us confluence.

We will now relate the three notions of confluence with each other: the diamond property
(sometimes also called strong confluence) is stronger than confluence, which is stronger than weak
confluence

Relating the notions of confluence

� Assertion If a rewrite relation has a diamond property, then it is weakly confluent.

� Assertion If a rewrite relation has a diamond property, then it is confluent.

� Proof Idea: by a tiling argument, composing 1×1 diamonds to an n×m diamond.

� Assertion If a rewrite relation is terminating and weakly confluent, then it is also
confluent.
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Note that Newman’s Lemma cannot be proven by a tiling argument since we cannot control
the growth of the tiles. There is a nifty proof by Gérard Huet [Hue80] that is worth looking at.

After this excursion into the general theory of reduction relations, we come back to the case
at hand: showing the confluence of =βη-reduction.

→∗
η is very well-behaved – i.e. confluent and terminating

η-Reduction ist terminating and confluent

� Assertion η-Reduction ist terminating

� Proof: by a simple counting argument

� Assertion η-reduction is confluent.

� Proof Idea: We show that η-reduction has the diamond property by diagram chase
over

λXA X

A λXA′ X

A’

where A→ηA
′. Then the assertion follows by .
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For =β-reduction the situation is a bit more involved, but a simple diagram chase is still
sufficient to prove weak confluence, which gives us confluence via
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=β is confluent

� Assertion =β-Reduction is weakly confluent.

� Proof Idea: by diagram chase over

(λXA) B

(λXA′) B (λXA) B′ [B/X]A

(λXA′) B′ [B′/X]A

[B′/X]A′

*

� Assertion =β-Reduction is confluent.

� Proof Idea: by Newman’s Lemma.
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There is one reduction in the diagram in the proof of which (note that B can occur multiple
times in [B/X]A) is not necessary single-step. The diamond property is broken by the outer two
reductions in the diagram as well.

We have shown that the =β and =η reduction relations are terminating and confluent and
terminating individually, now, we have to show that =βη is a well. For that we introduce a new
concept.

Commuting Relations
� Definition Let A be a set, then we say that relations
R∈A2 and S∈A2 commute, if X→RY and X→SZ entail
the existence of a W∈A with Y→SW and Z→RW .

� Assertion If R and S commute, then →R and →S do as
well.

X

Y Z

W

R S

S R

� Assertion R is confluent, if R commutes with itself.

� Assertion If R and S are terminating and confluent relations such that →∗
R and

→∗
S commute, then →∗

R∪S is confluent.

� ProofSketch: As R and S commute, we can reorder any reduction sequence so
that all R-reductions precede all S-reductions. As R is terminating and confluent,
the R-part ends in a unique normal form, and as S is normalizing it must lead to a
unique normal form as well.
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This directly gives us our goal.
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→∗
βη is confluent

� Assertion →∗
β and →∗

η commute.

� ProofSketch: diagram chase
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D.2 The Semantics of the Simply Typed λ-Calculus
The semantics of Λ→ is structured around the types. Like the models we discussed before, a model
(we call them “algebras”, since we do not have truth values in Λ→) is a pair ⟨D,I⟩, where D is the
universe of discourse and I is the interpretation of constants.

Semantics of Λ→

� Definition We call a collection DT :={Dα|α∈T } a typed collection (of sets) and a
collection fT : DT →ET , a typed function, iff fα : Dα→Eα.

� Definition A typed collection DT is called a frame, iff D(α→β)⊆Dα→Dβ

� Definition Given a frame DT , and a typed function I : Σ→D, then we call Iφ : wff T (Σ,VT )→D
the value function induced by I, iff

� Iφ|VT
= φ, Iφ|Σ = I

� Iφ(A B) = Iφ(A)(Iφ(B))

� Iφ(λXαA) is that function f∈D(α→β), such that f(a) = I(φ,[a/X])(A) for all
a∈Dα

� Definition We call a frame ⟨D,I⟩ comprehension closed or a Σ-algebra, iff Iφ : wff T (Σ,VT )→D
is total. (every λ-term has a value)
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D.2.1 Soundness of the Simply Typed λ-Calculus
We will now show is that =αβη-reduction does not change the value of formulae, i.e. if A=αβηB,
then Iφ(A) = Iφ(B), for all D and φ. We say that the reductions are sound. As always, the main
tool for proving soundess is a substitution value lemma. It works just as always and verifies that
we the definitions are in our semantics plausible.

Substitution Value Lemma for λ-Terms

� Assertion Let A and B be terms, then Iφ([B/X]A) = Iψ(A), where ψ =
φ,[Iφ(B)/X]

� Proof: by induction on the depth of A

P.1 we have five cases

P.1.1 A = X: Then Iφ([B/X]A) = Iφ([B/X]X) = Iφ(B) = ψ(X) = Iψ(X) =
Iψ(A).
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P.1.1 A = Y ̸= X and Y ∈VT : then Iφ([B/X]A) = Iφ([B/X]Y ) = Iφ(Y ) =
φ(Y ) = ψ(Y ) = Iψ(Y ) = Iψ(A).

P.1.1 A∈Σ: This is analogous to the last case.

P.1.1 A = C D: then Iφ([B/X]A) = Iφ([B/X]C D) = Iφ(([B/X]C) [B/X]D) =
Iφ([B/X]C)(Iφ([B/X]D)) = Iψ(C)(Iψ(D)) = Iψ(C D) = Iψ(A)

P.1.1 A = λYαC:

P.1.1.1 We can assume that X ̸= Y and Y /∈ free(B)

P.1.1.1 Thus for all a∈Dα we have Iφ([B/X]A)(a) = Iφ([B/X](λY C))(a) =
Iφ(λY [B/X]C)(a) = I(φ,[a/Y ])([B/X]C) = I(ψ,[a/Y ])(C) = Iψ(λY C)(a) =
Iψ(A)(a)
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Soundness of αβη-Equality

� Assertion Let A:=⟨D,I⟩ be a Σ-algebra and Y ̸∈free(A), then Iφ(λXA) =
Iφ(λY [Y /X]A) for all assignments φ.

� Proof: by substitution value lemma

Iφ(λY [Y /X]A)@a = I(φ,[a/Y ])([Y /X]A)
= I(φ,[a/X])(A)
= Iφ(λXA)@a

� Assertion If A:=⟨D,I⟩ is a Σ-algebra andX not bound in A, then Iφ((λXA) B) =
Iφ([B/X]A).

� Proof: by substitution value lemma again

Iφ((λXA) B) = Iφ(λXA)@Iφ(B)
= I(φ,[Iφ(B)/X])(A)
= Iφ([B/X]A)
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Soundness of αβη (continued)

� Assertion If X ̸∈free(A), then Iφ(λXA X) = Iφ(A) for all φ.

� Proof: by calculation

Iφ(λXA X)@a = I(φ,[a/X])(A X)
= I(φ,[a/X])(A)@I(φ,[a/X])(X)
= Iφ(A)@I(φ,[a/X])(X) as X ̸∈free(A).
= Iφ(A)@a
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� Assertion αβη-equality is sound wrt. Σ-algebras. (if A=αβηB, then Iφ(A) =
Iφ(B) for all assignments φ)
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D.2.2 Completeness of αβη-Equality
We will now show is that =αβη-equality is complete for the semantics we defined, i.e. that whenever
Iφ(A) = Iφ(B) for all variable assignments φ, then A=αβηB. We will prove this by a model
existence argument: we will construct a model M:=⟨D,I⟩ such that if A ̸=αβηB then Iφ(A) ̸=
Iφ(B) for some φ.

As in other completeness proofs, the model we will construct is a “ground term model”, i.e. a
model where the carrier (the frame in our case) consists of ground terms. But in the λ-calculus,
we have to do more work, as we have a non-trivial built-in equality theory; we will construct the
“ground term model” from sets of normal forms. So we first fix some notations for them.

Normal Forms in the simply typed λ-calculus

� Definition We call a term A∈wff T (Σ,VT ) a β normal form iff there is no
B∈wff T (Σ,VT ) with A→βB.

We call N a β normal form of A, iff N is a β-normal form and A→βN.

We denote the set of β-normal forms with wffT (Σ,VT )
y
βη

.

� We have just proved that βη-reduction is terminating and confluent, so we have

� Assertion Every A∈wff T (Σ,VT ) has a unique β normal form (βη, long βη normal
form), which we denote by A↓β (A↓βη A↓lβη)
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The term frames will be a quotient spaces over the equality relations of the λ-calculus, so we
introduce this construction generally.

Frames and Quotients

� Definition Let D be a frame and ∼ a typed equivalence relation on D, then we
call ∼ a congruence on D, iff f ∼ f ′ and g ∼ g′ imply f(g) ∼ f ′(g′).

� Definition We call a congruence ∼ functional, iff for all f,g∈D(α→β) the fact that
f(a) ∼ g(a) holds for all a∈Dα implies that f ∼ g.

� Example =β (=βη) is a (functional) congruence on cwff T (Σ) by definition.

� Assertion Let D be a Σ-frame and ∼ a functional congruence on D, then the
quotient space D/ ∼ is a Σ-frame.

� Proof:

P.1 D/ ∼= {f∼|f∈D}, define f∼(a∼):=f(a)∼.

P.1 This only depends on equivalence classes: Let f ′∈f∼ and a′∈a∼.

P.1 Then f(a)∼ = f ′(a)∼ = f ′(a′)∼ = f(a′)∼

P.1 To see that we have f∼ = g∼, iff f ∼ g, iff f(a) = g(a) since ∼ is functional.
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P.1 This is the case iff f(a)∼ = g(a)∼, iff f∼(a∼) = g∼(a∼) for all a∈Dα and
thus for all (a∼)∈D/ ∼.
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To apply this result, we have to establish that =βη-equality is a functional congruence.
We first establish =βη as a functional congruence on wff T (Σ,VT ) and then specialize this

result to show that is is also functional on cwff T (Σ) by a grounding argument.

βη-Equivalence as a Functional Congruence

� Assertion βη-equality is a functional congruence on wff T (Σ,VT ).

� Proof: Let A C=βηB C for all C and X∈(Vγ\free(A)∪free(B)).

P.1 then (in particular) A X=βηB X, and

P.1 (λXA X)=βη(λXB X), since βη-equality acts on subterms.

P.1 By definition we have A=η(λXαA X)=βη(λXαB X)=ηB.

� Definition We call an injective substitution σ : free(C)→Σ a grounding substitution
for C∈wff T (Σ,VT ), iff no σX occurs in C.

� Observation: They always exist, since all Σα are infinite and free(C) is finite.

� Assertion βη-equality is a functional congruence on cwff T (Σ).

� Proof: We use

P.1 Let A,B∈cwff (α→β)(Σ), such that A ̸=βηB.

P.1 As βη is functional on wff T (Σ,VT ), there must be a C with A C̸=βηB C.

P.1 Now let C′:=(σC), for a grounding substitution σ.

P.1 Any βη conversion sequence for A C′ ̸=βηB C′ induces one for A C̸=βηB C.

P.1 Thus we have shown that A ̸=βηB entails A C′ ̸=βηB C′.
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Note that: the result for cwff T (Σ) is sharp. For instance, if Σ = {cι}, then (λXX) ̸=βη(λX c),
but (λXX) c=βηc=βη(λX c) c, as {c} = cwff ι(Σ) (it is a relatively simple exercise to extend
this problem to more than one constant). The problem here is that we do not have a constant
dι that would help distinguish the two functions. In wff T (Σ,VT ) we could always have used a
variable. This completes the preparation and we can define the notion of a term algebra,
i.e. a Σ-algebra whose frame is made of =βη-normal λ-terms.

A Herbrand Model for Λ→

� Definition We call Tβη:=⟨cwffT (Σ)
y
βη
,Iβη⟩ the Σ term algebra, if Iβη = IdΣ.

� The name “term algebra” in the previous definition is justified by the following

� Assertion Tβη is a Σ-algebra

� Proof: We use the work we did above
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P.1 Note that cwffT (Σ)
y
βη

= cwff T (Σ)/=βη and thus a Σ-frame by and .

P.1 So we only have to show that the value function Iβη = IdΣ is total.

P.1 Let φ be an assignment into cwffT (Σ)
y
βη

.

P.1 Note that σ:=(φ|free(A)) is a substitution, since free(A) is finite.

P.1 A simple induction on the structure of A shows that Iβηφ(A) = (σA)
y
βη

.

P.1 So the value function is total since substitution application is.
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And as always, once we have a term model, showing completeness is a rather simple exercise.
We can see that αβη-equality is complete for the class of Σ-algebras, i.e. if the equation

A = B is valid, then A=αβηB. Thus αβη equivalence fully characterizes equality in the class of
all Σ-algebras.

Completetness of αβη-Equality

� Assertion A = B is valid in the class of Σ-algebras, iff A=αβηB.

� Proof: For A, B closed this is a simple consequence of the fact that Tβη is a
Σ-algebra.

P.1 If A = B is valid in all Σ-algebras, it must be in Tβη and in particular A↓βη =
IIβη (A) = IIβη (B) = B↓βη and therefore A=αβηB.

P.1 If the equation has free variables, then the argument is more subtle.

P.1 Let σ be a grounding substitution for A and B and φ the induced variable
assignment.

P.1 Thus Iβηφ(A) = Iβηφ(B) is the βη-normal form of σA and σB.

P.1 Since φ is a structure preserving homomorphism on well-formed formulae,
(φ−1)(Iβηφ(A)) is the is the βη-normal form of both A and B and thus
A=αβηB.
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complete our study of the sematnics of the simply-typed λ-calculus by showing that it is an
adequate logic for modeling (the equality) of functions and their applications.

D.3 Simply Typed λ-Calculus via Inference Systems
Now, we will look at the simply typed λ-calculus again, but this time, we will present it as an
inference system for well-typedness jugdments. This more modern way of developing type theories
is known to scale better to new concepts.

Simply Typed λ-Calculus as an Inference System: Terms

� Idea: Develop the λ-calculus in two steps

� A context-free grammar for “raw λ-terms” (for the structure)

� Identify the well-typed λ-terms in that (cook them until well-typed)
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� Definition A grammar for the raw terms of the simply typed λ-calculus:

α :== c|α→α
Σ :== ·|Σ,[c : type]|Σ,[c:α]
Γ :== ·|Γ,[x:α]
A :== c|X|A1 A2|λXαA

� Then: Define all the operations that are possible at the “raw terms level”, e.g.
realize that signatures and contexts are partial functions to types.
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Simply Typed λ-Calculus as an Inference System: Judgments

� Definition Judgments make statements about complex properties of the syntactic
entities defined by the grammar.

� Definition Judgments for the simply typed λ-calculus

⊢ Σ : sig Σ is a well-formed signature
Σ ⊢ α : type α is a well-formed type given the type assumptions in Σ
Σ ⊢ Γ : ctx Γ is a well-formed context given the type assumptions in Σ
Γ⊢ΣA : α A has type α given the type assumptions in Σ and Γ
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Simply Typed λ-Calculus as an Inference System: Rules

� A∈wff α(Σ,VT ), iff Γ⊢ΣA : α derivable in

Σ ⊢ Γ : ctx Γ(X) = α

Γ⊢ΣX : α
wff var

Σ ⊢ Γ : ctx Σ(c) = α

Γ⊢Σc : α
wff const

Γ⊢ΣA : β→α Γ⊢ΣB : β

Γ⊢ΣA B : α
wff app

Γ,[X:β]⊢ΣA : α

Γ⊢ΣλXβA : β→α
wff abs

� Oops: this looks surprisingly like a natural deduction calculus. (; Curry Howard
Isomorphism)

� To be complete, we need rules for well-formed signatures, types and contexts

⊢ · : sig
sig empty

⊢ Σ : sig
⊢ (Σ,[α : type]) : sig

sig type

⊢ Σ : sig Σ ⊢ α : type
⊢ (Σ,[c:α]) : sig

sig const

Σ ⊢ α : type Σ ⊢ β : type
Σ ⊢ (α→β) : type

typ fn
⊢ Σ : sig Σ(α) = type

Σ ⊢ α : type
typ start

⊢ Σ : sig
Σ ⊢ · : ctx

ctx empty
Σ ⊢ Γ : ctx Σ ⊢ α : type

Σ ⊢ (Γ,[X:α]) : ctx
ctx var
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Example: A Well-Formed Signature

� Let Σ:=([α : type],[f :α→α→α]), then Σ is a well-formed signature, since we have
derivations A and B

⊢ · : sig
sig type

⊢ [α : type] : sig

A [α : type](α) = type
typ start

[α : type] ⊢ α : type

and with these we can construct the derivation C

A

B
B B

typ fn
[α : type] ⊢ (α→α) : type

typ fn
[α : type] ⊢ (α→α→α) : type

sig const
⊢ Σ : sig

©:MichaelKohlhase 321

Example: A Well-Formed λ-Term

� using Σ from above, we can show that Γ:=[X:α] is a well-formed context:

C
ctx empty

Σ ⊢ · : ctx

C Σ(α) = type
typ start

Σ ⊢ α : type
ctx var

Σ ⊢ Γ : ctx

We call this derivation G and use it to show that

� λXα f X X is well-typed and has type α→α in Σ. This is witnessed by the type
derivation

C Σ(f) = α→α→α
wff const

Γ⊢Σf : α→α→α

G
wff var

Γ⊢ΣX : α
wff app

Γ⊢Σf X : α→α

G
wff var

Γ⊢ΣX : α
wff app

Γ⊢Σf X X : α
wff abs

·⊢ΣλXα f X X : α→α
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βη-Equality by Inference Rules: One-Step Reduction

� One-step Reduction (+∈{α,β,η})

Γ,[X:β]⊢ΣA : α Γ⊢ΣB : β

Γ ⊢Σ (λXA) B→1
β [B/X]A

wffβ top

Γ⊢ΣA : β→α X ̸∈dom(Γ)

Γ ⊢Σ λXA X→1
ηA

wffη top

Γ ⊢Σ A→1
+B Γ⊢ΣA C : α

Γ ⊢Σ A C→1
+B C

tr appfn

Γ ⊢Σ A→1
+B Γ⊢ΣC A : α

Γ ⊢Σ C A→1
+C B

tr apparg

Γ,[X:α] ⊢Σ A→1
+B

Γ ⊢Σ λXA→1
+λXB

tr abs
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βη-Equality by Inference Rules: Multi-Step Reduction

� Multi-Step-Reduction (+∈{α,β,η})

Γ ⊢Σ A→1
+B

Γ ⊢Σ A→∗
+B

msstart
Γ⊢ΣA : α

Γ ⊢Σ A→∗
+A

msref

Γ ⊢Σ A→∗
+B Γ ⊢Σ B→∗

+C

Γ ⊢Σ A→∗
+C

ms trans

� Congruence Relation
Γ ⊢Σ A→∗

+B

Γ ⊢Σ A =+ B
eq start

Γ ⊢Σ A =+ B

Γ ⊢Σ B =+ A
eq sym

Γ ⊢Σ A =+ B Γ ⊢Σ B =+ C

Γ ⊢Σ A =+ C
eq trans
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Appendix E

Higher-Order Dynamics

In this Chapter we will develop a typed λ calculus that extend DRT-like dynamic logics like the
simply typed λ calculus extends first-order logic.

E.1 Introduction
We start out our development of a Montague-like compositional treatment of dynamic seman-

tics construction by naively “adding λs” to DRT and deriving requirements from that.

Making Montague Semantics Dynamic

� Example A man sleeps.

a_man = λQ (
U
man(U) ⊗Q(U))

sleep = λX sleeps(X)

Application and β-reduction:

a_man_sleep = a_man(sleep)

→β

U
man(U) ⊗ sleeps(U) →τ

U
man(U)
sleeps(U)
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At the sentence level we just disregard that we have no idea how to interpret λ-abstractions
over DRSes and just proceed as in the static (first-order) case. Somewhat surprisingly, this works
rather well, so we just continue at the discourse level.

Coherent Text (Capturing Discourse Referents)

� Example A man1 sleeps. He1 snores.

215
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(λPQP⊗Q) a_man_sleep he_snore

→=β

λQ
U
man(U)
sleeps(U)

⊗Q

 snores(U)

→τ

U
man(U)
sleeps(U)

⊗ snores(U) →τ

U
man(U)
sleeps(U)
snores(U)

� Example
(λQδUman(U)∧sleeps(U)∧Q(U)) he_snore −→βτ δUman(U)∧sleeps(U)∧snores(U)
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Here we have our first surprise: the second =β reduction seems to capture the discourse referent
U : intuitively it is “free” in δU snores(U) and after =β reduction it is under the influence of a δ
declaration. In the λ-calculus tradition variable capture is the great taboo, whereas in our example,
it seems to drive/enable anaphor resolution.

Considerations like the ones above have driven the development of many logical systems at-
tempting the compositional treatment of dynamic logics. All were more or less severely flawed.

Compositional Discourse Representation Theories

� Many logical systems

� Compositional DRT (Zeevat, 1989 [Zee89])

� Dynamic Montague Grammar (DMG Gronendijk/Stokhof 1990 [GS90])

� CDRT (Muskens 1993/96 [Mus96])

� λ-DRT (Kohlhase/Kuschert/Pinkal 1995 [KKP96])

� TLS (van Eijck 1996 [Eij97])

� Problem: Difficult to tell the differences or make predictions!

� One Answer: Dynamic λ-calculus [Kohlhase&Kuschert&Müller’96,98]

� Augment type system by information on referents: a meta-logic that models
different forms of accessibility as a parameter.
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Here we will look at a system that makes the referent capture the central mechanism using
an elaborate type system to describe referent visibility and thus accessibility. This generalization
allows to understand and model the interplay of λ-bound variables and discourse referents without
being distracted by linguistic modeling questions (which are relegated to giving appropriate types
to the operators).

Another strong motivation for a higher-order treatment of dynamic logics is that maybe the
computational semantic analysis methods based on higher-order features (mostly higher-order
unification) can be analogously transferred to the dynamic setting.
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Motivation for the Future

� Higher-Order Unification Analyses of

� Ellipsis (Dalrymple/Shieber/Pereira 1991 [DSP91])

� Focus (Pulman 1994 [Pul94], Gardent/Kohlhase 1996 [GK96])

� Corrections (Gardent/Kohlhase/van Leusen 1996 [GKL96])

� Underspecification (Pinkal 1995 [Pin96])

� are based on static type theory [Mon74]

� Higher-Order Dynamic Unification needed for dynamic variants of these
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To set the stage for the development of a higher-order system for dynamic logic, let us remind
ourselves of the setup of the static system

Recap: Simple Type Theory

� Structural layer: simply typed λ-calculus

� types, well-formed formulae, λ-abstraction

� Theory: αβη-conversion, Operational: Higher-Order Unification

� Logical layer: higher-order logic

� special types ι, o

� logical constants ∧o→o→o,⇒,∀, . . . with fixed semantics

� Theory: logical theory, Operational: higher-order theorem proving

� Goal: Develop two-layered approach to compositional discourse theories.

� Application: Dynamic Higher-Order Unification (DHOU) with structural layer only.
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This separation of concerns: structural properties of functions vs. a propositional reasoning
level has been very influential in modeling static, intra-sentential properties of natural language,
therefore we want to have a similar system for dynamic logics as well. We will use this as a guiding
intuition below.

E.2 Setting Up Higher-Order Dynamics

To understand what primitives a language for higher-order dynamics should provide, we will
analyze one of the attempts – λ-DRT – to higher-order dynamics

λ-DRT is a relatively straightforward (and naive) attempt to “sprinkle λs over DRT” and give
that a semantics. This is mirrored in the type system, which had a primitive types for DRSes and
“intensions” (mappings from states to objects). To make this work we had to introduce “intensional
closure”, a semantic device akin to type raising that had been in the folklore for some time. We
will not go into intensions and closure here, since this did not lead to a solution and refer the
reader to [KKP96] and the references there.
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Recap: λ-DRT (simplified)

� Types: ι (individuals), o (conditions), t (DRSes), α→β (functions), s→α (inten-
sions)

� Syntax: if Uι a referent and A an expression of type o, then δUιA a DRS (type
t).

� =αβη-reduction for the λ-calculus part, and further:

� (δX A⊗δYB)→τ (δX∪YA∧B)

� ∨∧A →µ A

� Observations:

� complex interaction of λ and δ

� alphabetical change for δ-bound “variables” (referents)?

� need intensional closure for =βη-reduction to be correct
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In hindsight, the contribution of λ-DRT was less the proposed semantics – this never quite
worked beyond correctness of =αβη equality – but the logical questions about types, reductions,
and the role of states it raised, and which led to further investigations.

We will now look at the general framework of “a λ-calculus with discourse referents and δ-
binding” from a logic-first perspective and try to answer the questions this raises. The questions
of modeling dynamic phenomena of natural language take a back-seat for the moment.

Finding the right Dynamic Primitives

� Need to understand Merge Reduction: (→τ -reduction)

� Why do we have (δUA⊗B)→τ (δUA∧B)

� but not (δUA⇒⇒B)→τ (δUA⇒⇒B)

� and Referent Scoping: (ρ-equivalence)

� When are the meanings of C [(δUA)]π and C [(δV [V /U ]A)]π equal?

� OK for C = ¬¬ and C = λP (δW A⇒⇒P )

� Not for C = λP P and C = λP P∧¬¬P .

� Observation: There must be a difference of ⊗,¬¬, λP (δW A⇒⇒P ), λP P∧¬¬P wrt.
the behavior on referents

� Intuitively: ⊗, λP (δW A⇒⇒P ) transport U , while ¬¬, λP P∧¬¬P do not

� Idea: Model this in the types (rest of the talk/lecture)
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A particularly interesting phenomenon is that of referent capture as the motor or anaphor
resolution, which have already encountered aboveabove.
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Variable/Referent Capture

� Example Let us revisit

A student1 owns a book2.
He1 reads it2

anaphor resolution simplify

X,Y
student(X)
book(Y )

⊗
R,S
read(R,S)

X,Y
student(X)
book(Y )

⊗

R,S
read(R,S)
R = X
S = Y

X, Y
student(X)
book(Y )
read(X,Y )

� Example (λP
U
¬¬ P ) r(U) (functor has dynamic binding power)

� Variable capture (or rather referent capture)

� is the motor of dynamicity

� is a structural property

� Idea: Code the information for referent capture in the type system
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In we see that with the act of anaphor resolution, the discourse referents induced by the
anaphoric pronouns get placed under the influence of the dynamic binding in the first DRS –
which is OK from an accessibility point of view, but from a λ-calculus perspective this constitutes
a capturing event, since the binding relation changes. This becomes especially obvious, if we look
at the simplified form, where the discourse referents introduced in the translation of the pronouns
have been eliminated altogether.

In we see that a capturing situation can occur even more explicitly, if we allow λs – and =αβη
equality – in the logic. We have to deal with this, and again, we choose to model it in the type
system.

With the intuitions sharpened by the examples above, we will now start to design a type
system that can take information about referents into account. In particular we are interested in
the capturing behavior identified above. Therefore we introduce information about the “capturing
status” of discourse referents in the respective expressions into the types.

Types in DLC

� Requirements: In the types we need information about

� δ-bound referents (they do the capturing)

� free referents (they are liable to be captured)

� Definition New type (moded type) Γ#α where

� mode Γ = V −, U+, . . . (V is a free and U a capturing referent)

� term type α (type in the old sense)

� What about functional types? (Look at example)
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To see how our type system for DLC fares in real life, we see whether we can capture the
referent dynamics of λ-DRT. Maybe this also tells us what we still need to improve.

Rational Reconstruction of λ-DRT (First Version)

� Two-level approach

� model structural properties (e.g. accessibility relation) in the types

� leave logical properties (e.g. negation flips truth values) for later

� Types: ι, o, α→β only. Γ#o is a DRS.

� Idea: Use mode constructors ↓ and ⊎ to describe the accessibility relation.

� Definition ↓ closes off the anaphoric potential and makes the referents classically
bound (↓U+, V + = U◦, V ◦)

� Definition The prioritized union operator combines two modes by letting + over-
write −.
(U+, V −⊎U−, V + = U+, V +)

� Example Types of DRT connectives (indexed by Γ,∆):

� ¬¬ has type Γ#o→↓Γ#o (intuitively like t→o)

� ⊗ has type Γ#o→∆#o→Γ⊎∆#o (intuitively like t→t→t)

� ∨∨ has type Γ#o→∆#o→↓Γ⊎↓∆#o

� ⇒⇒ has type Γ#o→∆#o→↓(Γ⊎↓∆)#o
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We can already see with the experiment of modeling the DRT operators that the envisioned type
system gives us a way of specifying accessibility and how the dynamic operators handle discourse
referents. So we indeed have the beginning of a structural level for higher-order dynamics, and at
the same time a meta-logic flavor, since we can specify other dynamic logics in a λ-calculus.

E.3 A Type System for Referent Dynamics
We will now take the ideas above as the basis for a type system for DLC.

The types above have the decided disadvantage that they mix mode information with infor-
mation about the order of the operators. They also need free mode variables, which turns out to
be a problem for designing the semantics. Instead, we will employ two-dimensional types, where
the mode part is a function on modes and the other a normal simple type.

Types in DLC (Final Version)

� Problem: A type like Γ#o→Γ−#o mixes mode information with simple type infor-
mation.

� Alternative formulation: ↓#o→o (use a mode operator for the mode part)

� Definition DLC types are pairs A#α, where
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� A is a mode specifier, α is a simple type; A is functional, iff α is.

� Idea: Use the simply typed λ-calculus for mode specifiers

� Other connectives (new version)

� ¬¬ gets type λF ↓F#o→o

� ⊗ gets type ⊎#o→o→o

� ∨∨ gets type λFG (↓F⊎↓G)#o→o→o

� ⇒⇒ gets type λFG↓(F⊎↓G)#o→o→o
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With this idea, we can re-interpret the DRT types from

A λ-Calculus for Mode Specifiers

� Definition New base type µ for modes; α̃ is α with ι, o replaced by µ.

� mode specifiers A,B,C are simply typed λ-terms built up from mode variables
F,G, F 1, . . . and

� Definition

� the empty mode ∅ of type µ

� the elementary modes U+, U− and U◦ of type µ for all referents U∈R
� the mode functions ·+, ·−, ↓·, +·, and −· of type µ→µ, and

� the mode function ⊎ of type µ→µ→µ.

� Definition Theory of mode equality specifies the meaning of mode constants
(e.g. (U+, V −,W−⊎U−, V +)→µU

+, V +,W−)
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Summary: DLC Grammar

� We summarize the setup in the following context-free grammar

α:==ι|o|α1 → α2 simple types
γ:==µ|γ1 → γ2 mode types
B:==∅|U+|U−|U◦|B1,B2|B1⊎B2|↓B basic modes
M:==B|M1M2|λFγM modes (typed via mode types γ)
τ :==M#α DLC types
M:==U |c|M1M2|λXτ M|δUM DLC terms (typed via DLC types τ)

� But not all of these raw terms can be given a meaning ; only use those that can
be shown to be well-typed. (up next)
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Type Inference for DLC (two dimensions)

� Definition The type inference system for DLC consists of the following rules:

c∈Σα
A⊢Σc : α

A(X) = F#α A(F ) = α̃

A⊢ΣX : F#α

U∈Rα A(U) = ∅#α
A⊢ΣU : U−#α

A,[X:F#β],[F :β̃]⊢ΣA : A#α
A⊢ΣλXF#βA : λF A#β→α

A⊢ΣA : A#β→γ A⊢ΣB : B#β
A⊢ΣA B : A(B)#γ

A⊢ΣA : A#α A⊢ΣA=βηµB
A⊢ΣA : B#α

A⊢ΣA : λF A#α A⊢ΣA : µ

A⊢ΣδUβA : λF (U+⊎A)#α

where A is a variable context mapping variables and referents to types
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Example (Identity)

� We have the following type derivation for the identity.

[F :α̃],[X:F#α]⊢ΣX : F#α

⊢ΣλXF#αX : λFα̃F#α→α

� (λXF#α→αX) λXG#αX has type

A⊢Σ(λFµ→µF ) λGµG#α→α=βηµλGµG#α→α

� Assertion For any given variable context A and formula A, there is at most one
type A#α (up to mode βηµ-equality) such that A⊢ΣA : A#α is derivable in DLC.
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Linguistic Example

� Example No man sleeps.
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Assume U∈Rι and man,sleeps∈RλF F#ι→o.

...

A⊢Σman(U) : U−#o

A⊢ΣδU man(U) : U+#o

...

A⊢Σsleeps(U) : U−#o

A⊢ΣδU man(U)∧sleeps(U) : U+⊎U−#o

A⊢Σ¬¬(δU man(U)∧sleeps(U)) : ↓(U+⊎U−)#o

A⊢Σ¬¬(δU man(U)∧sleeps(U)) : U◦#o
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A Further (Tricky) Example: A¬¬:=(λXX∧¬¬X)

� a referent declaration in the argument of A¬¬ will be copied, and the two occurrences
will have a different status
A¬¬ δU man(U)→β(δU man(U)∧¬¬(δU man(U)))

� assuming A(X) = F#o gives

A⊢ΣX : F#o

A⊢ΣX : F#o

A⊢Σ¬¬X : ↓F#o

A⊢ΣX∧¬¬X : F⊎↓F#o

A⊢ΣλXX∧¬¬X : λF (F⊎↓F )#o→o

� thus, assuming A⊢ΣδU man(U) : U+#o, we derive

A⊢ΣA¬¬ δU man(U) : U+, U◦#o
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A Further Example: Generalized Coordination

� We may define a generalised and:
λR1 . . . Rn λX1 . . . Xm (R1 X1 . . . Xm⊗ . . .⊗Rn X1 . . . Xm)
with type
λF 1 . . . Fn (F 1⊎ . . .⊎Fn)#βm→o→βm→o

� thus from john:=(λP δU U = j⊗P (U))
and mary:=(λP δV V = m⊗P (V ))

� we get johnandmary = λP (δU U = j⊗P (U)⊗δV V = m⊗P (V ))
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� combine this with own a donkey:

λX (δW donkey(W )⊗own(W,X)⊗δU U = j⊗δW donkey(W )⊗own(W,U)⊗δV V = m⊗δW donkey(W )⊗own(W,V ))
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E.4 Modeling Higher-Order Dynamics

Discourse Variants =δ

� The order and multiplicity of introduction of discourse referents is irrelevant

� δU δV A=δδV δUA

� δU δUA=δδUA.

� This is needed to model DRT, where discourse referents appear in sets.

� functional and dynamic binding can be interchanged

� λX (δUA)=δδU λXA

� This is useful for convenient =η-long-forms (DHOU).

©:MichaelKohlhase 343

Renaming of Discourse Referents?

� Consider A:=(λXY Y ) δU U

� δU cannot have any effect on the environment, since it can be deleted by =β-
reduction.

� A has type λF F#α→α (U does not occur in it).

� Idea: Allow to rename U in A, if “A is independent of U ”

� Similar effect for B:=¬¬(δU man(U)), this should equal ¬¬(δV man(V ))

� Definition ρ-renaming is induced by the following inference rule:

V ∈Rβ fresh (Uβ )̸∈DP (A)

A=ρCVU (A)

Where CVU (A) is the result of replacing all referents U by V .
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Dynamic Potential

� The binding effect of an expression A can be read off its modality A

� A modality A may be simplified by βηµ-reduction (where µ-equality reflects the
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semantics of the mode functions, e.g. U+ ⊎ U− =µ U
+).

� Definition The dynamic binding potential of A:
DP (A):={U |(U+)∈occ(A′) or (U−)∈occ(A′)}, where A′ is the βηµ-normal form
of A.

� Definition If U ̸∈DP (A), then U is called independent of A.
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Some Examples for Dynamic Potential

� Example
Formula Modality DP
δU P U+ {U}
λP (δU P ) λF (U+⊎F ) {U}
¬¬(δU man(U)) U◦ ∅
λP ¬¬(δU P ) λF ↓(U+), F {U}
λX U λF U− {U}
(λXX) U (λF F ) U− {U}
λP man(U)∧P λF (F⊎U−) {U}
λP P λF F ∅
λXY Y λFGG ∅
(λXY Y ) δU U λGG ∅
λP P λQ¬¬(δU Q) λR (δU R) {U}
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Reductions

� βη-reduction:
(λXA) B→β [B/X]A

and
X ̸∈free(A)

(λXA X)→ηA

� Dynamic Reduction:
A⊢ΣA : A#α (U+)∈Trans(A)

A δUB→τ (δUA B)

� Example Merge-Reduction (δUA⊗δV B)→τ (δU δV (A⊗B))

� Intuition: The merge operator is just dynamic conjunction!

� Observation: Sequential merge ;; of type
→
⊎ #o→o→o does not transport V in the

second argument.
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E.5 Direct Semantics for Dynamic λ Calculus

Higher-Order Dynamic Semantics (Static Model)
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� Frame D = {Dα|α∈T }

� Dµ is the set of modes (mappings from variables to signs)

� Do is the set of truth values {T,F}.
� Dι is an arbitrary universe of individuals.

� D(α→β)⊆Dα→Dβ

� Interpretation I of constants, assignment φ of variables.

� Iφ(c) = I(c), for a constant c

� Iφ(X) = φ(X), for a variable X

� Iφ(A B) = Iφ(A)(Iφ(B)))

� Iφ(λXB)(a) = I(φ,[a/X])(B).
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Dynamic Semantics (Frames)

� Two approaches: “Dynamic” (Amsterdam ) and “Static” (Saarbrücken)

� Will show that they are equivalent (later)

� Use the static semantics for DLC now.

� What is the denotation of a dynamic object?

� “Static Semantics”: essentially a set of states (considers only type o)
(equivalently function from states to Do: characteristic function)

� generalize this to arbitrary base type:
DΓ
α = BΓ→Dα, where BΓ is the set of Γ-states

� Γ-states: well-typed referent assignments s : Dom±(Γ)→D
s|∆ is s coerced into a ∆-state.

� For expressions of functional type: DΦ
(α→β) =

⋃
Ψ∈Dα̃

DΨ
α→DΦ(Ψ)

β

©:MichaelKohlhase 349

Dynamic Semantics (Evaluation)

� Standard Tool: Intensionalization (guards variables by delaying evaluation of
current state)

� Idea: Ideal for semantics of variable capture

� guard all referents

� make this part of the semantics (thus implicit in syntax)

� Evaluation of variables and referents

� If X∈V, then Iφ(X) = φ(X)
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� If U∈R, then Iφ(U) = Λs∈BU− s(U) (implicit intensionalization!)

� Iφ(δUBB#β) = Λs∈B(Iφ(Bµ)⊎U+) Iφ(B)s|Iφ(Bµ).
� Iφ(B C) = Iφ(B)(Iφ(C)).

� Iφ(λXγB) = ΛΦa∈DΦ
γ I(φ,[a/X])(B)

� Referent names crucial in dynamic objects

� Well actually: Iφ(δU B(ΛFn Bµ#β)
) = ΛanΛs∈B(Iφ(Bµ)⊎U+) Iφ(B)s|Iφ(Bµ).
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Metatheoretic Results

� Assertion βητ -Reduction is terminating and confluent (modulo αρδ).

� Assertion If X ̸∈dom(A), then A,[X:F#β]⊢ΣA : A#α and A⊢ΣB : B#β imply

A⊢Σ[B/X]A : [B/F ]A#α

� Assertion If A⊢ΣA : A#α and A⊢ΣA=βητB, then A⊢ΣB : A#α.

� Assertion If A⊢ΣA=αβδητρB, then Iφ(A) = Iφ(B).

� Assertion If Iφ(A) = Iφ(B), then A⊢ΣA=αβδητρB (just needs formalisation of
equality of logical operators.)
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E.6 Dynamic λ Calculus outside Linguistics

Conclusion

� Basis for compositional discourse theories

� two-layered approach (only use theorem proving where necessary)

� functional and dynamic information can be captured structurally

� comprehensive equality theory (interaction of func. and dyn. part)

� In particular

� new dynamic primitives (explain others)

� simple semantics (compared to other systems)

� This leads to

� dynamification of existing linguistic analyses (DHOU)

� rigorous comparison of different dynamic systems (Meta-Logic)
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Future Directions

� Generalize DLC to a true mode calculus:

� turn δ into a logical constant δU : (use type declaration and application)

A⊢ΣA : A#α
A⊢ΣδUβA : U+⊎Aµ#α

⊢ΣδU : λF (U+⊎F )#α→α A⊢ΣA : A#α
A⊢ΣδU A : U+⊎Aµ#α

� this allows for more than one δ-like operator

� Better still (?) go for a dependent type discipline (implement in LF?)

� δ of type λUF (U+⊎F )#α→α yields δ(U)=̂δU
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Use DLC as a model for Programming

� Remember dynamic binding in Lisp? ((lambda (F) (let ((U 1)) (F 1)))(lambda (X) (+ X U))→
2 ((lambda (F) (let ((U 0)) (F 1)))(lambda (X) (+ X U))→ 1

� Ever wanted to determine the \$PRINTERenvironment variable in a Java applet?
(sorry forbidden, since the semantics of dynamic binding are unclear.)

� DLC is ideal for that (about time too!)

� Example give letU the type λF F ⇑◦
U , where (A, U−)⇑◦

U= A, U◦. (no need for
U+ in Lisp)

� Example If you want to keep your $EDITOR variable private(pirated?) only allow
applets of type A#α, where $EDITOR̸∈DP (A).

� It is going to be a lot of fun!
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Appendix F

Model Existence and Completeness
for Modal Logic

Abstract Consistency for ML0

� Definition If Φ is a set of propositions, then

2−(Φ):={A|(2A)∈Φ}

� Definition A family ∇ of sets of ML0-formulae is called abstract consistency class
for ML0, it if is closed under subsets and for all Φ∈∇ we have

∇c) P ̸∈Φ or (¬P )̸∈Φ for P∈Vo
...

∇∧) (¬A∨B)∈Φ implies (Φ∪{¬A,¬B})∈∇
∇2) (3A)∈Φ implies (2−(Φ)∗A)∈∇
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∇-Hintikka Set

� Definition If ∇ abstract consistency class for ML0, then we call H a ∇-Hintikka
set, if H maximal in ∇, i.e. for all A with (H∗A)∈∇ we already have A∈H.

� Assertion If ∇ is an abstract consistency class for ML and Φ∈∇, then there is a
∇-Hintikka set H with Φ⊆H.

Proof:

P.1 chose an enumeration A1,A2, . . . of wffo(Vo)
P.1 construct sequence of sets Hi with H0:=Φ and

� Hn+1:=Hn, if (Hn∗An)̸∈∇
� Hn+1:=(Hn∗An), if (Hn∗An)∈∇

P.1 All Hi∈∇, so choose H:=
⋃
i∈NH

i

229
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P.1 Ψ⊆H finite implies that there is a j∈N with Ψ⊆Hj , so Ψ∈∇ as ∇ closed
under subsets.

P.1 H∈∇ since ∇ compact.

P.1 let (H∗B)∈∇, then there is a j∈N with B = Aj

P.1 B∈Hj+1 ⊆ H, so H ∇-maximal.
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Canonical ∇-Model

� Definition If ∇ is an abstract consistency class, for ML0, then we call M∇:=⟨W∇,R∇,φ∇⟩
the canonical ∇-model, iff

� W∇ = {H|H∈∇maximal}
� R∇(v,w) iff 2−(v)⊆w
� φ(P ,w) = T iff P∈w

� Assertion If w∈W∇ and (3A)∈w, then there is a w′∈W∇ with R∇(w,w′) and
A∈w′.

� Proof: Let (3A)∈w

P.1 thus (2−(w)∗A)∈∇
P.1 by the extension theorem there is a w′∈W∇ with 2−(w)∗A⊆w′

P.1 so 2−(w)⊆w′ and thus R∇(w,w′).

P.1 on the other and we have A∈w′.
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Model existence for ML0

� Assertion If w∈W∇, then Iwφ∇
(A) = T iff A∈w.

� Proof: Induction on the structure of A

P.1.1 If A is a variable: then we get the assertion by the definition of φ∇.

P.1.1 If A = ¬B and A∈w: then B̸∈w, thus Iwφ∇
(B) = F, and thus Iwφ∇

(A) = T.

P.1.1 A = B∧C: analog

P.1.1 A = 2B:

P.1.1.1 Let A∈w and wR∇w
′

P.1.1.1 thus 2−(w)⊆w′ and thus B∈w′

P.1.1.1 so (IH) Iw′

φ∇
(B) = T for any such w′.

P.1.1.1 and finally Iwφ∇
(A) = T

P.1.1 A = 3B:
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P.1.1.1 Let A ̸∈w
P.1.1.1 so ¬A = 3¬B /∈ w

P.1.1.1 and thus (¬B)∈w′ for some wR∇w
′ by (Lemma1)

P.1.1.1 so B∈w′ and thus Iw′

φ∇
(B) = T by IH and finally Iwφ∇

(A) = T.

� Assertion If ∇ is an abstract consistency class for ML0 and Φ∈∇, then there is a
world w∈W∇ with M∇ |=w Φ.

� Proof:

P.1 there is a ∇-Hintikka set H = w with w∈W∇ and Φ⊆H.

P.1 by Lemma 2 we have Iwφ (A) = T for all A∈Φ.
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Completeness

� Assertion K-consistency is an abstract consistency class for ML0

� Proof: Let (3A)∈Φ

P.1 To show: 2−(Φ)∗A is K-consistent if Φ is K-consistent

P.1 converse: Φ is K-inconsistent if 2−(Φ)∗A K-inconsistent.

P.1 There is a finite subset Ψ⊆2−(Φ) with Ψ⊢K(¬A)

P.1 (2Ψ)⊢K(2¬A) (distributivity of 2)

P.1 Φ⊢K(2¬A) = ¬(3A) since 2Ψ⊆Φ

P.1 thus Φ is K-inconsistent.

� Assertion K is complete wrt. Kripke models
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Further Completeness Theorems

� Assertion T-consistency is an abstract consistency class for ML0 and RT is reflexive.

� Proof: Let A∈2−(w)

P.1 then (2A)∈w by definition

P.1 with T (2A⇒A) and Modus Ponens we have A∈w.

P.1 Thus 2−(w)⊆w and wRTw for all w∈WT.

� Assertion S4-consistency is an abstract consistency class for ML0 and RS4 is tran-
sitive.

� Proof: Let w1RS4w2RS4w3 and (2A)∈w.
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P.1 by S4 (2A⇒22A) and Modus Ponens we have (22A)∈w1.

P.1 and thus (2A)∈w2 = 2−(w1) and A∈w3 = 2−(w2).

P.1 Thus 2−(w1)⊆w3 and w1RS4w3.

� Assertion T (S4) is complete wrt. reflexive (reflexive transitive) Kripke-models
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