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1 Foundations
Problem 1.1 (PLnq Models) 3 Points

Objective:
understand
first-order model
Objective: apply
interpretation

Consider the first-order signature

Σ
𝑓

0
= {𝑥}

Σ
𝑓

1
= {𝑓}

Σ𝑝1 = {𝑝}

the PLnq formula
𝜑 ∶= 𝑝(𝑥) ∧ ¬𝑝(𝑓(𝑥)) ∧ 𝑝(𝑓(𝑓(𝑥)))

and the first-order model ⟨𝒟, ℐ⟩ where

𝒟 = {𝑎, 𝑏}

ℐ(𝑥) = 𝑎

ℐ(𝑝) = {𝑎}

For which value of ℐ(𝑓) is 𝜑 true in ⟨𝒟, ℐ⟩?

Solution:
ℐ(𝑓) = {𝑎 ↦ 𝑏, 𝑏 ↦ 𝑎}

Problem 1.2 (Beta reduction) 3 Points
Objective: apply
beta reduction

Apply 𝛽-reduction to the following term until it is fully reduced to normal form:

(𝜆𝑥.𝑥 (𝜆𝑦.𝑧)) (𝜆𝑝.𝑝 𝑎 𝑏)

Solution:
(𝜆𝑥.𝑥 (𝜆𝑦.𝑧)) (𝜆𝑝.𝑝 𝑎 𝑏)

⇝𝛽 (𝜆𝑝.𝑝 𝑎 𝑏) (𝜆𝑦.𝑧)

⇝𝛽 (𝜆𝑦.𝑧) 𝑎 𝑏

⇝𝛽 𝑧 𝑏

Problem 1.3 (Simply Typed) 4 Points
Objective: apply
well typed formula

Consider the following untyped 𝜆 term:

𝑇 ∶= 𝜆𝑥.𝑎 (𝑥 𝑎)

We want to add types for 𝑥 and 𝑎 to get a simply typed 𝜆 term. Which of the following statements are
meaningful and true?
□ 𝑇 is well-typed, no matter what types we assign to 𝑥 and 𝑎
□ 𝑇 is well-typed if 𝑥 has type 𝛾 → 𝛽 and 𝑎 has type 𝛾
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□ 𝑇 is well-typed if 𝑥 has type (𝛾 → 𝛾) → 𝛾 and 𝑎 has type 𝛾
□✓ 𝑇 is well-typed if 𝑥 has type (𝛾 → 𝛾) → 𝛾 and 𝑎 has type 𝛾 → 𝛾

□✓ If we know the type of 𝑎, we can uniquely determine the type of 𝑥
□✓ If we know the type of 𝑥, we can uniquely determine the type of 𝑎
□ 𝑇 cannot be typed because the definition of 𝑥 is not a function
□ 𝑇 cannot be typed because the definition is recursive

2 The Method of Fragments
Problem 2.1 (Natural Language Semantics) 3 Points

Objective: under-
stand fragment

In themethod of A , we specify the syntax and semantics of increasingly complex B
of natural language. The syntax is specified in a C .

Blank A:
○✓ fragments
○ entailment relation
○ truth conditions

Blank B:
○✓ subsets
○ intersections
○ supersets

Blank C:
○ tableau machine
○✓ grammar
○ logic

Problem 2.2 (Overgenerating grammar)
Consider the following grammar with start symbol 𝐴:
𝐴1∶ 𝐴→𝐴, 𝖺𝗇𝖽, 𝐴,
𝐴2∶ 𝐴→𝐷,𝐸,
𝐵1∶ 𝐵→𝖩𝗈𝗁𝗇,
𝐵2∶ 𝐵→𝖬𝖺𝗋𝗒,
𝐶1∶ 𝐶→𝖽𝗈𝗀,
𝐶2∶ 𝐶→𝖼𝖺𝗍,
𝐷1∶ 𝐷→𝐵,
𝐷2∶ 𝐷→𝐶,
𝐷3∶ 𝐷→ 𝗍𝗁𝖾, 𝐷,
𝐸1∶ 𝐸→𝗌𝗅𝖾𝖾𝗉𝗌,

2 Points
Objective: under-
stand over-generate

1. Provide an example sentence that illustrates the over-generation of this grammar.

Solution: Many options, e.g.:
1. the the cat sleeps
2. cat sleeps
3. the John sleeps

2
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2 Points
Objective: apply
grammar

2. How can the grammar be fixed to avoid over-generation? State which rules should be removed
and what should be added. Your grammar should still cover all correct sentences from the orig-
inal grammar.

Solution: Remove 𝐷3 and replace 𝐷2 with 𝐷2∶ 𝐷→ 𝗍𝗁𝖾, 𝐶,

Problem 2.3 (Or-Fragment) Objective: create
grammar

Objective:
create semantics
construction

Consider the following grammar with start symbol 𝑆 on the left and and the semantics construction
rules on the right:

𝑆1∶ 𝑆→NP,𝑉𝑃,
𝑁1∶ NP→𝖩𝗈𝗁𝗇,
𝑁2∶ NP→𝖬𝖺𝗋𝗒,
𝑉1∶ 𝑉𝑃→𝗌𝗅𝖾𝖾𝗉𝗌,
𝑉2∶ 𝑉𝑃→ 𝗋𝗎𝗇𝗌,

𝑇1∶ [𝑋NP, 𝑌𝑉𝑃]𝑆 ⇝ 𝑌′(𝑋′)

𝑇2∶ [𝖩𝗈𝗁𝗇]NP ⇝ 𝑗

𝑇3∶ [𝖬𝖺𝗋𝗒]NP ⇝ 𝑚

𝑇4∶ [𝗌𝗅𝖾𝖾𝗉𝗌]𝑉𝑃⇝ 𝑠

𝑇5∶ [𝗋𝗎𝗇𝗌]𝑉𝑃⇝ 𝑟

3 Points1. Extend the grammar and the semantics construction rules so that sentences like John runs or
Mary sleeps are supported.

Solution:
𝑆2∶ 𝑆→𝑆, 𝗈𝗋, 𝑆

𝑇6∶ [𝑋𝑆 , 𝗈𝗋, 𝑌𝑆]𝑆 ⇝ (𝑋′ ∨ 𝑌′)

3 Points2. Extend the grammar and the semantics construction rules so that sentences like John runs or
sleeps are supported.

Solution:
𝑉3∶ 𝑉𝑃→𝑉𝑃, 𝗈𝗋, 𝑉𝑃

𝑇7∶ [𝑋𝑉𝑃, 𝗈𝗋, 𝑌𝑉𝑃]𝑉𝑃⇝ (𝜆𝑡.𝑋′(𝑡) ∨ 𝑌′(𝑡))

2 Points
Objective: apply
type raising

3. To support sentences like John or Mary runs, we need type raising. If we have a type raised
semantics construction, what should be the meaning of John or Mary? (i.e. what should be the
result of the semantics construction?)

Solution:
𝜆𝑝.𝑝(𝑗) ∨ 𝑝(𝑚)

Problem 2.4 (The meaning of “Only”)
Consider the following two sentences:

1. Only Peter runs.

2. Only dogs bark.

3



FAU:LBSexam:WS2425:442 2 THEMETHOD OF FRAGMENTS

4 Points
Objective: apply
PREDLOG

1. For both sentences, write down the interpretation as a first-order formula

Solution:

1. runs(peter) ∧ (∀𝑥.¬𝑥 = peter ⇒ ¬runs(𝑥))

2. (∀𝑥.dog(𝑥) ⇒ bark(𝑥)) ∧ (∀𝑦.¬dog(𝑦) ⇒ ¬bark(𝑦))

3 Points
Objective: apply
beta expansion

2. Theword only is handled differently in the two cases above, for both cases give the interpretation
as a HOL→ formula. Give the types of the bound variables:

Solution:

1. 𝜆𝑃.𝜆𝑄.𝑄(𝑥) ∧ (∀𝑥.¬𝑥 = 𝑃 ⇒ ¬𝑄(𝑥))

Types: 𝑃, 𝑥 ∶ 𝜄 and 𝑄 ∶ 𝜄 → 𝑜

2. 𝜆𝑃.𝜆𝑄.(∀𝑥.𝑃(𝑥) ⇒ 𝑄(𝑥)) ∧ (∀𝑦.¬𝑃(𝑦) ⇒ ¬𝑄(𝑦)).
Types: 𝑃,𝑄 ∶ 𝜄 → 𝑜 and 𝑥, 𝑦 ∶ 𝜄.

Problem 2.5 (Tableau Machine) Objective: apply
tableau machine
Objective: apply
description operator

Objective: apply
reading

Consider the sentence
The dog chased the cat. It climbed up the tree.

4 Points1. Construct a model generation tableau to represent the following discourse, incorporating only
information contained in the sentences. Make sure that you use a suitable (compositional)
representation of definite descriptions.

Solution:

𝑐ℎ𝑎𝑠𝑒(𝜄 dog, 𝜄 cat)

𝑐𝑙𝑖𝑚𝑏(𝑋, 𝜄 tree)

𝑐𝑙𝑖𝑚𝑏(𝜄 dog, 𝜄 tree)
𝖳

𝑐𝑙𝑖𝑚𝑏(𝜄 cat, 𝜄 tree)
𝖳

𝑐𝑙𝑖𝑚𝑏(𝜄 tree, 𝜄 tree)
𝖳

1 Points2. How many possible readings are predicted?

Solution: Three (no branch closes)

3 Points3. Nowmodify the tableau by including a representation of the world knowledge that the dog does
not climb up anything.

Solution:
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¬𝑐𝑙𝑖𝑚𝑏(𝜄 dog, 𝑌)
𝖳

𝑐ℎ𝑎𝑠𝑒(𝜄 dog, 𝜄 cat)

𝑐𝑙𝑖𝑚𝑏(𝑋, 𝜄 tree)

𝑐𝑙𝑖𝑚𝑏(𝜄 dog, 𝜄 tree)
𝖳

¬𝑐𝑙𝑖𝑚𝑏(𝜄 dog, 𝜄 tree)
𝖳

𝑐𝑙𝑖𝑚𝑏(𝜄 dog, 𝜄 tree)
𝖥

⊥

𝑐𝑙𝑖𝑚𝑏(𝜄 cat, 𝜄 tree)
𝖳

𝑐𝑙𝑖𝑚𝑏(𝜄 tree, 𝜄 tree)
𝖳

2 Points4. How would the tableau machine for natural language understanding deal with the situation
where we have multiple open branches?

Solution: It would choose a preferred branch and focus on the reading/model it represents by
adding new information to that branch and saturating the subtableau – backtracking on the
branch choice if the new subtableau closes.

2 Points5. Finally, what do we have to add as world knowledge (based on the concept that trees are plants;
do not just state that “trees – like dogs above – do not climb anything) to make sure that we only
get one reading as intuitively expected.
You do not have to draw the tableau, just state the world knowledge.

Solution:

1. Trees are plants.
2. Plants cannot move.
3. If something cannot move, it cannot climb.

3 Topics in Semantics
Problem 3.1 (DRT Representation and Semantics) Objective: apply

anaphoric potential

Objective: apply
direct semantics
Objective: apply
DRT translation

Consider the following discourses:

1. If a farmer1 owns a donkey2, he1 beats it2 with a stick.

2. Aman hit Mary, or a man bit Mary. She is crying.

3 Points1. Represent them in DRT1.

Solution:

1. 𝐷1 ∶=
𝑋,𝑌

farmer(𝑋)

donkey(𝑌)

own(𝑋, 𝑌)

⇒⇒

𝑍

stick(𝑍)

beatwith(𝑋, 𝑌, 𝑍)

1You can use top-level discourse referents for Mary, or more simply just an individual constant. In the second case, you have
to be a bit imaginative to resolve the anaphor.
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2. The following two representations are OK:

• 𝐷2 ∶= (
𝑋

beat(𝑋,𝑀) ∨∨ bites(𝑋,𝑀)
⊗

𝑌

cries(𝑌)

𝑌 = 𝑀

),

• or the already-merged version 𝐷3 ∶=

𝑋,𝑌

beat(𝑋,𝑀) ∨∨ bites(𝑋,𝑀)

cries(𝑌)

𝑌 = 𝑀

.

3 Points2. Compute the translations to first-order logic

Solution:

1. ∀𝑋,𝑌.farmer(𝑋) ∧ donkey(𝑌) ∧ own(𝑋, 𝑌) ⇒ (∃𝑍.beatwith(𝑋, 𝑌, 𝑍))

2. ∃𝑋,𝑌.(beat(𝑋,𝑀) ∨ bites(𝑋,𝑀)) ∧ cries(𝑌) ∧ 𝑌 = 𝑀.

3 Points3. Compute the direct semantics for them. What is the anaphoric potential?

Solution:

1. ℐ𝛿𝜑(𝐷1) = (∅,{𝜓 |

𝜓[𝑋, 𝑌]𝜑, 𝜓(𝑋) ∈ ℐ(farmer), 𝜓(𝑌) ∈ ℐ(donkey),
(𝜓(𝑋),𝜓(𝑌)) ∈ ℐ(own), and there is a 𝜌[𝑍]𝜓 with
𝜌(𝑍) ∈ ℐ(stick) and ⟨𝜌(𝑋), 𝜌(𝑌), 𝜌(𝑍)⟩ ∈ ℐ(beatwith)

})

2. We have only defined direct semantics for⊗-reduced DRSes, so we only treat 𝐷3:

ℐ
𝛿
𝜑(𝐷3) = ({𝑋, 𝑌},{𝜓 |

𝜓[𝑋, 𝑌]𝜑 and
((𝜑(𝑋),ℐ(𝑀)) ∈ ℐ(beat) or (𝜓(𝑋),ℐ(𝑀)) ∈ ℐ(bites))
and 𝜓(𝑌) ∈ ℐ(cries) and 𝜑(𝑌) = ℐ(𝑀)

})

Problem 3.2 (Compositionality, Congruence, and Propositional Attitudes) 4 Points
Objective: under-
stand compositional

Objective: apply
congruence
principle

Define the compositionality and congruence principles in general.
Discuss whether they hold when modeling propositional attitudes in natural language via modal log-
ics; give counter-examples if one does not hold.

Solution: The compositionality principle states that themeaning of a complex expression is a function
of the meanings of its sub-expressions, i.e. it only depends on those.
The congruence principle states thatwhenever𝐴 is part of𝐵 and𝐴′means just the same as𝐴, replacing
𝐴 by 𝐴′ in 𝐵 will lead to a result that means just the same as 𝐵.
Modal logics are prominent meaning theories for propositional attitudes in natural language, most
are compositional, but not do not obey congruence. The most prominent counter-example is that the
ancient Greeks did not believe (a propositional attitude) that the morning star is the evening star even
though the meaning of both is the planet Venus (as we now know).

Problem 3.3 (Repeat in DPL1)
Consider the following program 𝛼 written in pseudocode

6
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var X = 0; var Y = 10
repeat X:=X+1; Y:=Y-1 until X=Y

3 Points
Objective: create
first-order program
logic

1. Write 𝛼 in the internal programming language of DL1.

Solution: 𝑋∶=0 ; 𝑌∶=10 ; ∗(𝑋∶=𝑋 − 1 ; 𝑌∶=𝑌 + 1 ; ¬(𝑋 = 𝑌)?) ; (𝑋 = 𝑌)?

1 Points
Objective: apply
MMnecessary

2. State the partial correctness of 𝛼 with respect to the specification that 𝑋 and 𝑌 are equal after
running 𝛼 in DL1.

Solution: [𝛼]𝑋 = 𝑌.

1 Points
Objective: apply
MMpossible

3. State the termination of 𝛼 in DL1.

Solution: ⟨𝛼⟩𝑇.

2 Points
Objective: analyze
first-order program
logic

4. Is DL1 sufficient to fully represent the intended semantics of the program 𝛼 and thus prove or
refute partial correctness? If not, what do we additionally need?

Solution: No, it is not. We can fully represent the program semantics, but in first-order logic,
we cannot fix the semantics of equality, addition, and subtraction. We could pass to “DL1 with
interpreted function and predicate symbols” mentioned in the course, or add an axiomatization
𝒜 of these as a precondition to the statement: 𝒜⇒ [𝛼]𝑋 = 𝑌.
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