Assignment6 - Noun Phrases in Fragment 4

Problem 6.1

Consider a Kripke model, where the worlds are the natural numbers (including 0) and *a* is accessible from *b* if $a \ge b$. Furthermore, let *A*, *B*, and *C* be propositional variables, where

- 1. *A* holds in a world *w* iff *w* is even,
- 2. *B* holds in *w* iff *w* is odd,
- 3. *C* only holds in world 5, and
- 4. *D* only holds in world 8.

Which of the following formulas are valid in this Kripke model?

1.
$$C \Rightarrow A$$

2. $C \Rightarrow B$
3. $C \Rightarrow D$
4. $C \Rightarrow \Box A$
5. $C \Rightarrow \Box B$
6. $C \Rightarrow \Box D$
7. $C \Rightarrow \Diamond A$
8. $C \Rightarrow \Diamond B$
9. $C \Rightarrow \Diamond D$
10. $C \Rightarrow \Diamond \Diamond D$
11. $C \Rightarrow \Diamond \Box D$
12. $C \Rightarrow \Box \Diamond D$
13. $C \Rightarrow \Box \Box D$
14. $\Diamond A$
15. $\Box A$
16. $\Diamond C$
17. $\Box C$
18. $\Diamond C \Rightarrow \Diamond D$

- 19. $\Diamond D \Rightarrow \Diamond C$
- 20. $\Box C \Rightarrow \Diamond D$
- 21. $\Diamond C \Rightarrow \Box D$

Problem 6.2

Objective: understand Kripke model

In *(propositional) modal logic*, there is a correspondence between *Kripke models* and the axioms of the logic. For example, if the accessibility relation is reflexive and transitive, then the the following axiom is valid (among others):

$\Box A \Rightarrow \Box \Box A$

1. Demonstrate that the axiom is not valid if the accessibility relation is not transitive.

Hint: Provide a *Kripke model* as a counterexample.

- 2. Demonstrate that the axiom must be valid for any Kripke model with a reflexive and transitive accessibility relation.
- 3. Is reflexivity necessary for the axiom to be valid or is transitivity alone sufficient?