Set Theory and the Foundation of Mathematics

1

June 19, 2018

Numbers

Basics

We have:

- Relations (subsets on their domain)
- Ordered pairs:

Definition

The ordered pair $\langle x, y \rangle$ is the set $\{\{x, y\}, \{x\}\}$.

- Cartesian products $A \times B$
- Functions:

Definition

A function $f : A \to B$ is a relation $f \subseteq A \times B$ such that $\forall x \in A \exists ! y \in B \langle x, y \rangle \in f$. We write f(a) for the unique $b \in B$ such that $\langle a, b \rangle \in f$.

- The set ω of "natural numbers", containing $0 := \emptyset$ and for each $n \in \omega$ the set $S(n) := n \cup \{n\}$.

Inductive Definitions

Theorem (Recursion Theorem for \mathbb{N})

For any $g : A \rightarrow B$ and $h : A \times \omega \times B \rightarrow B$, there is a unique function $f : A \times \omega \rightarrow B$ such that for all $a \in A$ and $n \in \omega$:

f(a,0) = g(a) and f(a,S(n)) = h(a,n,f(a,n))

Example

For all $a, b, n \in \omega$ we let g(a) = a and h(a, n, b) = S(b). Then the f postulated by the recursion theorem satisfies f(a, 0) = a and f(a, S(n)) = h(a, n, f(a, n)) = S(f(a, n)) - i.e. f(a, n) is exactly the function a + n.

Hence, we can inductively define addition, multiplication and exponentiation on $\omega.$

Equivalence Relations

How do we get the other number spaces?

Definition

- An **equivalence relation** on a set A is a relation $R \subseteq A \times A$ such that R is reflexive, symmetric and transitive.
- Given an equivalence relation $R \subseteq A \times A$ and $a \in A$, we call the set $[a]_R := \{x \in A | R(x, a)\}$ the **equivalence class** of *a*.
- We call a set $X \subseteq A$ such that $\forall a \in A \exists ! x \in X R(x, a)$ a representative system of R.

Theorem

In ZF, the axiom of choice is equivalent to the statement that every equivalence relation has a representative system

(In practice the axiom of choice is often not necessary to construct a representative system)

Numbers

Definition

- Let $\sim \subseteq \omega^2 \times \omega^2$ such that $\langle a_1, a_2 \rangle \sim \langle b_1, b_2 \rangle :\Leftrightarrow a_1 + b_2 = b_1 + a_2$. Note that \sim is an equivalence relation.
- We define $\ensuremath{\mathbb{Z}}$ as any representative system of \sim .

Definition

- Let $Z := \mathbb{Z} \times (\omega \setminus 0)$ and $\sim \subseteq (\mathbb{Z} \times Z)^2$ such that $\langle a_1, a_2 \rangle \sim \langle b_1, b_2 \rangle :\Leftrightarrow a_1 \cdot b_2 = b_1 \cdot a_2$. Note that \sim is an equivalence relation.
- We define ${\mathbb Q}$ as any representative system of $\sim.$

Definition

- Let \mathbb{Q}^C be the set of Cauchy sequences over \mathbb{Q} and $\sim \subseteq (\mathbb{Q}^C) \times (\mathbb{Q}^C)$ such that $(a_n) \sim (b_n) :\Leftrightarrow \lim_{n \to \infty} a_n b_n = 0$. Note that \sim is an equivalence relation.
- We define ${\mathbb R}$ as any representative system of $\sim.$

Counting Past Infinity

Remember: $0 = \emptyset$, $1 = 0 \cup \{0\} = \{0\}$, $2 = 1 \cup \{1\} = \{0, 1\}, \ldots$ ω =The union of "all those numbers" (smallest set containing \emptyset and closed under $S(x) = x \cup \{x\}$)

...what if we just continue?

 $S(\omega) = \omega \cup \{\omega\} = \{0, 1, 2, \dots, \omega\} = \omega + 1$ $S(\omega + 1) = \{0, 1, \dots, \omega, \omega + 1\} = \omega + 2, \omega + 3, \omega + 4, \dots$ $\omega + \omega = \bigcup_{\substack{n \in \omega \\ \\ \cdots \\ n \text{ ilmit''}}} (\omega + n) = \omega \cdot 2, \omega \cdot 3, \dots, \omega \cdot \omega = \omega^2, \omega^3, \dots$

 $\ldots we get \ {\bf Ordinal \ numbers}!$ (Note that all of these here are countable)

Ordinal Numbers

Definition

A **well-order** < on S is a total order on S such that every subset of S has a minimal element.

Equivalently: ...such that every element in S is either maximal or has a unique successor.

 \Rightarrow We can "count" well-ordered sets using a successor function and "limit steps" (such as ω , which is the "limit" of the natural numbers).

Definition

A set is called **ordinal number** if it is transitive (ϵ -closed) and well-ordered by ϵ . The (proper) class of all ordinal numbers is called **On** (definable). A set is called **natural number** if it is transitive and well-ordered by both ϵ and ϵ^{-1} .

Transfinite Induction

Theorem (Recursion Theorem for **On**)

```
For every \mathbf{F} : \mathbf{V} \to \mathbf{V}, there exists a unique \mathbf{G} : \mathbf{On} \to \mathbf{V} such that \forall \alpha \in \mathbf{On} \mathbf{G}(\alpha) = \mathbf{F}(\mathbf{G} \upharpoonright \alpha).
```

This allows for an induction/recursion principle on ${\bf On}:$ Every ordinal α is either

```
1. \alpha = Ø or
```

2.
$$\alpha = \beta + 1$$
 for some $\beta \in \mathbf{On}$ or

3. α is a limit ordinal $\bigcup_{\beta < \alpha} \beta$.

Example

Define addition inductively on **On** by: $\alpha + 0 = \alpha$, $\alpha + S(\beta) = S(\alpha + \beta)$ and for limit numbers λ : $\alpha + \lambda = \bigcup_{\beta < \lambda} (\alpha + \beta)$

Y tho?

Theorem

Every well-order is isomorphic to an ordinal.

Theorem (Zermelo's Well-Ordering Theorem)

In ZF, the axiom of choice is equivalent to the statement that every set can be well-ordered.

 \Rightarrow Ordinal numbers form a "representative class" of all sets (under equivalent well-orders)

Note: We can never construct a well-order of e.g. the real numbers, but by the axiom of choice one has to exist. Without the axiom of choice, \mathbb{R} is not (necessarily) well-orderable.

Aside: The Axiom of Determinacy

Definition (Game)

Let $A \subseteq \omega^{\omega}$. Players P_A and P_B alternate in picking a natural number n_i , producing a sequence $r = (n_0, n_1, n_2, ...)$. Player P_A wins, iff $r \in A$. A strategy is a function $f : \omega^{<\omega} \to \mathbb{N}$. A winning strategy for player P is a strategy that guarantees a win for P.

Definition (Axiom of Determinacy)

AD is the statement that for every $A \subseteq \omega^{\omega}$, either Player P_A or P_B has a winning strategy for A. AD is equivalent to

$$(\exists r_0 \forall r_1 \exists r_2 \dots r \in A) \lor (\forall r_0 \exists r_1 \forall r_2 \exists r_3 \dots \neg r \in A)$$

Theorem

ZF+*AD* implies that \mathbb{R} is not well-orderable.

10

The Von Neumann Hierarchy

Definition (The Von Neumann Hierarchy)

Let

- $\mathbf{V}_0 := \emptyset$
- For any ordinal α we let $\mathbf{V}_{\alpha+1} \coloneqq \mathcal{P}(\mathbf{V}_{\alpha})$
- For any limit ordinal λ we let $\mathbf{V}_{\lambda} \coloneqq \bigcup_{\alpha < \lambda} \mathbf{V}_{\alpha}$

Theorem

In ZF^- (ZF without the axiom of foundation), the axiom of foundation is equivalent to $\mathbf{V} = \bigcup_{\alpha \in \mathbf{On}} V_{\alpha}$.

Definition

For any set x, we call the **degree** of x (deg(x)) the smallest $\alpha \in \mathbf{On}$ with $x \in \mathbf{V}_{\alpha}$ (definable).

Hereditarily Finite Sets

Ø

Cardinals

Remember, even $\omega^{\omega^{(1)}} = \varepsilon_0$ is countable; but we know uncountable sets exist:

Theorem (Cantor's Theorem)

For any set x, there is no bijective function $f : x \to \mathcal{P}(x)$

Also, by Zermelo's well-ordering theorem, even uncountable sets are well-orderable, and those well-orders are isomorphic to some ordinal number.

 \Rightarrow there are uncountable ordinals

Definition

- We call an ordinal α a **cardinal number**, if there is no $\beta < \alpha$ such that there exists a bijection $\beta \rightarrow \alpha$.
- Let x be any set. We call the (uniquely determined!) cardinal number |x| such that there is a bijection $x \rightarrow |x|$ the **cardinality** of x.

The Cardinal Hierarchy

Definition (\aleph)

- $lpha_0 \coloneqq \omega$
- For any ordinal $\alpha,$ let $\aleph_{\alpha+1}$ be the smallest cardinal number strictly larger than \aleph_α
- For any limit ordinal λ , let $\aleph_{\lambda} \coloneqq \bigcup_{\alpha < \lambda} \aleph_{\alpha}$

We know $|\mathbb{R}| = |\mathcal{P}(\omega)| =: 2^{\aleph_0}$ and $2^{\aleph_0} > \aleph_0$ - but how big is 2^{\aleph_0} (or \aleph_1 , for that matter)?

Definition (The Continuum Hypothesis)

The **Continuum Hypothesis** (CH) is the statement that $2^{\aleph_0} = \aleph_1$. The **Generalized Continuum Hypothesis** is the statement that $2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$ for every $\alpha \in \mathbf{On}$.

Theorem (Cohen, 1963)

Both CH and GCH are neither provable nor disprovable from ZFC

First-order Syntax in ZFC

- A (constant, function or relation) symbol is some/any set. A variable is some/any set. Let F_i, R_i be the sets of function/relation symbols of arity i and V the set of variables.
- A term is a finite sequence of symbols that obeys the recursive definition of a term, hence a set.
- A proposition is a finite sequence of symbols that obeys the recursive definition of a proposition, hence a set.

⇒ The relation $IsTerm_{V,F_0,F_1,...,F_n}(x)$ is definable in ZFC; and hence the set $T := T_{V,F_0,F_1,...,F_n}$ of all terms over $V, F_0,...$ ⇒ the relation $IsProposition_{T,R_1,...,R_m}(x)$ is definable in ZFC; and hence the set Prop of all propositions over $T, R_1,...,R_m$.

Proof Theory in ZFC

Let S be a set of axioms (i.e. propositions). A proof rule is a relation $R \subseteq \operatorname{Prop}^n \times \operatorname{Prop}$. A calculus C is a set of proof rules. We can define the provability relation:

Definition

A sequence of propositions $p = \langle \varphi_1, \ldots, \varphi_n \rangle$ is a *C*-**proof** iff for each φ_i :

- Either $\varphi_i \in S$ or
- there is some $R \in C$ with $R \subseteq \operatorname{Prop}^m \times \operatorname{Prop}$ and $\varphi_{j_1}, \ldots, \varphi_{j_m}$ such that each $j_k < i$ and $\langle \varphi_{j_1}, \ldots, \varphi_{j_m}, \varphi_i \rangle \in R$.

We say φ is *C*-provable from *S* (and write $S \vdash_C \varphi$) iff there is some *C*-proof $p = \langle \varphi_1, \dots, \varphi_n \rangle$ such that $\varphi_n = \varphi$.

 \Rightarrow we can talk about the provability of propositions in ZFC!

Model Theory

Semantics is rather straight-forward – The definition of a model is already based on sets: functions and relations are sets, hence models are sets. The relation $M \vDash \varphi$ is definable (using the usual recursive definition), as is the relation $M \vdash_C \varphi$, hence the completeness theorem becomes a theorem of ZFC!

Theorem (Compactness Theorem)

A set of propositions S has a model iff every finite subset of S has a model

Example

Let c a new constant and extend PA by the axioms

 $c \neq 0, c \neq 1, c \neq 2, \ldots$

 \Rightarrow PA has non-standard models.

Every set of propositions that has arbitrarily large finite models has an infinite model.

Logic in ZFC

Even worse:

Theorem (Löwenheim-Skolem)

If a set of propositions S has an infinite model, then it has a model in every infinite cardinality

Example

There are uncountable models of PA. There are countable models of the theory of real numbers.

Theorem (Tarski's Paradox)

If there is a model of ZFC (by Completeness: If ZFC is not contradictory), then there is a countable model of ZFC

 \Rightarrow We can not uniquely describe infinite models using the semantics of first-order logic! (Next best thing: κ -categoricity)

Requirements for Proof Theory

Note that for "embedding" syntax and proof theory in ZFC, all we need is:

- "Encodings" for all symbols (as sets)
- "Encodings" for finite sequences of sets (as sets) such that
- the definitions of "term", "proposition" and "proof" can be expressed (on the basis of sets).

 \Rightarrow We don't need "full" sets for that – e.g. natural numbers are already sufficient!

Encoding Sequences as Numbers

Definition

Let $\mathbb{P} = \{p_0, p_1, \ldots\}$ the set of prime numbers and $s = \langle s_0, \ldots, s_n \rangle \in \mathbb{N}^n$ a finite sequence of numbers. The **Gödel number** of *s* is the number

$$s^{r} := \prod_{i=0}^{n} p_i^{s_i}$$

By the uniqueness of prime factor decompositions, for any Gödel number *n* we can obtain the original unique sequence *s* with $n = {}^{r}s^{1}$ (i.e. $f \cdot {}^{r}$ is injective).

Gödelization

Definition

- Let P any recursively enumerable superset of the Peano axioms (with countably many additional symbols).
- For any symbol σ , let $\lceil \sigma \rceil \in \mathbb{N}$ any (unique!) number.
- For any proposition (with free variables) $\varphi = \sigma_0 \dots \sigma_n$, let ${}^r \varphi^{\neg} := {}^r \langle {}^r \sigma_0 {}^{\neg}, \dots, {}^r \sigma_n {}^{\neg} \rangle^{\neg}$.
- For any sequence of propositions $p = \langle \varphi_1, \dots, \varphi_n \rangle$, let $p' := \langle \varphi_1, \dots, \varphi_n \rangle$

Theorem

- The property IsProposition(n) stating that n is the Gödel number of a well-formed proposition is definable in P.
- The property IsProof(p, n) that p is a Gödel number of a proof from P of the proposition with Gödel number n is definable in P. Hence, the predicate
 Prov(x) := ∃p IsProof(p,x) is definable in P.

Theorem (Loeb Axioms)

L1 If
$$P \vdash \varphi$$
, then $P \vdash \operatorname{Prov}(\ulcorner \varphi \urcorner)$
L2 If $P \vdash \operatorname{Prov}(\ulcorner \varphi \urcorner) \land \operatorname{Prov}(\ulcorner \varphi \Rightarrow \psi \urcorner)$, then $P \vdash \operatorname{Prov}(\ulcorner \psi \urcorner)$
L3 If $P \vdash \operatorname{Prov}(\ulcorner \varphi \urcorner)$, then $P \vdash \operatorname{Prov}(\ulcorner \operatorname{Prov}(\ulcorner \varphi \urcorner) \urcorner)$
L4 If $P \vdash \varphi \Rightarrow \psi$, then $P \vdash \operatorname{Prov}(\ulcorner \varphi \urcorner) \Rightarrow \operatorname{Prov}(\ulcorner \psi \urcorner)$

The Gödel Sentence

Definition (Gödel Sentence)

- Let sub: $\mathbb{N}^2 \to \mathbb{N}$ the function such that $\operatorname{sub}(\ulcorner\varphi(x)\urcorner, n) = \ulcorner\varphi(n)\urcorner$. Then sub is definable in P.
- Define the proposition $G(x) \coloneqq \neg \operatorname{Prov}(\operatorname{sub}(x, x))$ and $\mathcal{G} \coloneqq G({}^{r}G(x){}^{\gamma})$

Then:

$$\mathcal{G} = G({}^{\mathsf{r}}G(x)^{\mathsf{r}}) = \neg \operatorname{Prov}({}^{\mathsf{r}}G({}^{\mathsf{r}}G(x)^{\mathsf{r}})^{\mathsf{r}}) = \neg \operatorname{Prov}({}^{\mathsf{r}}\mathcal{G}^{\mathsf{r}})$$

We constructed a sentence that asserts its own non-provability!

Definition

We define the proposition $Con_P := \neg Prov([0 \neq 0])$ expressing that P is consistent.

Theorem (Gödel's Incompleteness Theorems)

- P is either inconsistent or incomplete, i.e. there is some sentence φ such that P ∉ φ and P ∉ ¬φ.
- 2. If P is consistent, then $P \not\models Con_P$.

The existence of ω proves (in ZFC) that *PA* has a model and hence is consistent; however, we can do the same proof for *ZFC* as with every other sufficiently powerful set of axioms.

 \Rightarrow Every plausible foundation for Mathematics is subject to Gödel's theorems!

Non-standard Proofs

If $P \vdash G$, then by Loeb $P \vdash Prov({}^{r}G^{1})$ and $P \vdash \neg Prov({}^{r}G^{1})$, contradiction.

But $P \vdash \neg \mathcal{G} \equiv \operatorname{Prov}(\ulcorner \mathcal{G}\urcorner)$ does not imply $P \vdash \mathcal{G}$ outright.

⇒ The Gödel number of the proof could be a non-standard number.

 \Rightarrow have an "infinite" prime factor decomposition, encode an "infinitely long" proof.

- \Rightarrow In ZFC: The set of proofs contains "infinite" elements that are all (in ZFC) provably finite \Rightarrow a non-standard number in ω
- ⇒ If $P \vdash \neg G$, then no **standard models** can exist (ω -incosistency)

Gödel's Constructible Universe

What's the "smallest" class of sets we could want in ZF (excluding "non-standard" or otherwise "uncomputable" sets)?

Definition

For any set X, we let Def(X) := $\{\{y \in X | (X, \epsilon) \models \varphi(y)\} | \varphi \text{ is a predicate defined over } X\} \subseteq \mathcal{P}(X)$ Let $\mathbf{L}_0 := \emptyset$, $\mathbf{L}_{\alpha+1} := \text{Def}(\mathcal{L}_\alpha)$ and $\mathbf{L}_\lambda := \bigcup_{\alpha \in \Lambda} \mathbf{L}_\alpha$ and $\mathbf{L} := \bigcup_{\alpha \in \mathbf{On}} \mathbf{L}_\alpha$.

In ZF, **L** is a model of ZFC+GCH.

 \Rightarrow If ZF is consistent, then so is ZFC+GCH!

 \Rightarrow We need to "add" undefinable (and hence uncomputable) and "unnecessary" sets to make either of them false. (Cohen 1963 "Forcing": we can "adjoin" sets to an existing (inner, countable) universe of sets.)

Fun fact: L is even definably well-orderable from within L.

Cofinality

 \aleph_0 is defined as := ω , but natural numbers are also cardinal numbers. If we let $\aleph'_0 := 0$, then $\aleph'_\omega = \omega$ (Note that $\aleph'_\alpha = \aleph_\alpha$ for $\alpha \ge \omega^2$). Does the \aleph -function have (more) fixed points? i.e. is there a cardinal $\kappa > \omega$ such that $\aleph_\kappa = \kappa$? How could we find/reach/construct such a cardinal?

Definition

- A subset $A \subseteq X$ with X well-ordered is called **cofinite** in X, if for every $x \in X$ there is some $a \in A$ with $x \leq a$.
- Equivalently on cardinals: A subset A ⊆ ℵ_α is called cofinite in ℵ_α, if ℵ_α = ∪ A.
- The **cofinality** of a (ordinal/) cardinal κ is the smallest (ordinal/) cardinality $cf(\kappa)$ such that there is some $A \subseteq \kappa$ with A cofinite in κ and (A is well-ordered by cf(A) /) $|A| = cf(\kappa)$.

Cofinality \cong "How many smaller (ordinals/) cardinals do I need to construct/approach κ from below?"

Definition

A cardinal number κ is called **singular**, if $cf(\kappa) < \kappa$ and **regular** if $cf(\kappa) = \kappa$.

Example

- Every successor ordinal has cofinality 1.
- Every successor cardinal is regular (the union of at most κ many sets with cardinality at most κ is at most $\kappa \cdot \kappa = \kappa$).
- If \aleph_{λ} is a limit cardinal, then $\aleph_{\lambda} = \bigcup \{\aleph_i \mid i \leq \lambda\}$, hence $cf(\aleph_{\lambda}) \leq |\lambda|$, hence \aleph_{λ} is singular, if not a fixed point.

 \Rightarrow If $\aleph_{\kappa} = \kappa$, then κ is a regular limit cardinal, and conversely.

Large Cardinals

So are there regular limit cardinals?

Definition

- A (uncountable) regular limit cardinal is called (weakly) inaccessible.
- A weakly inaccessible cardinal κ such that $2^{\alpha} < \kappa$ for all $\alpha < \kappa$ is called **strongly inaccessible** (under GCH equivalent).

Theorem

- If $\kappa > \omega$ is weakly inaccessible, then $\mathbf{L}_{\kappa} \models ZFC$.
- If $\kappa > \omega$ is strongly inaccessible, then $\mathbf{V}_{\kappa} \models ZF$.
- ⇒ by the second incompleteness theorem, the existence of inaccessible cardinals is unprovable.

In ZFC, the statement ${\tt Con}_{\tt ZFC}$ is "almost equivalent" to the existence of an inaccessible cardinal.

Grothendieck Universes

Are large cardinals reasonable?

Note: The axiom of Infinity posits an "inaccessible" cardinal!

- $\mathbf{V}_{\omega} \models ZFC^{FIN}$
- ω is a regular limit cardinal
- If $\aleph_0' \coloneqq 0$, then $\aleph_\omega' = \omega$ is a fixed point

 \Rightarrow The jump from "normal" sets to large cardinals is "equivalent" to the jump from finite sets to infinite sets ("strong infinity axioms")

Definition

- A set U is called **Grothendieck Universe**, if U is transitive and closed under pair sets, powersets and unions.
- The Grothendieck axiom states that every set lives in a Grothendieck universe.

