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Basics

We have:

– Relations (subsets on their domain)

– Ordered pairs:

Definition

The ordered pair ⟨x , y⟩ is the set {{x , y},{x}}.

– Cartesian products A ×B

– Functions:

Definition

A function f ∶ A→ B is a relation f ⊆ A ×B such that
∀x ∈ A ∃!y ∈ B ⟨x , y⟩ ∈ f . We write f (a) for the unique b ∈ B such
that ⟨a,b⟩ ∈ f .

– The set ω of “natural numbers”, containing 0 ∶= ∅ and for
each n ∈ ω the set S(n) ∶= n ∪ {n}.
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Inductive Definitions

Theorem (Recursion Theorem for N)

For any g ∶ A→ B and h ∶ A × ω ×B → B, there is a unique
function f ∶ A × ω → B such that for all a ∈ A and n ∈ ω:

f (a,0) = g(a) and f (a,S(n)) = h(a,n, f (a,n))

Example

For all a,b,n ∈ ω we let g(a) = a and h(a,n,b) = S(b). Then the f
postulated by the recursion theorem satisfies f (a,0) = a and
f (a,S(n)) = h(a,n, f (a,n)) = S(f (a,n)) – i.e. f (a,n) is exactly
the function a + n.

Hence, we can inductively define addition, multiplication and
exponentiation on ω.
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Equivalence Relations

How do we get the other number spaces?

Definition

– An equivalence relation on a set A is a relation R ⊆ A ×A
such that R is reflexive, symmetric and transitive.

– Given an equivalence relation R ⊆ A ×A and a ∈ A, we call the
set [a]R ∶= {x ∈ A∣R(x , a)} the equivalence class of a.

– We call a set X ⊆ A such that ∀a ∈ A ∃!x ∈ X R(x , a) a
representative system of R.

Theorem

In ZF, the axiom of choice is equivalent to the statement that
every equivalence relation has a representative system

(In practice the axiom of choice is often not necessary to construct
a representative system)
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Definition

– Let ∼⊆ ω2 × ω2 such that
⟨a1, a2⟩ ∼ ⟨b1,b2⟩ ∶⇔ a1 + b2 = b1 + a2. Note that ∼ is an
equivalence relation.

– We define Z as any representative system of ∼.

Definition

– Let Z ∶= Z × (ω ∖ 0) and ∼⊆ (Z × Z)2 such that
⟨a1, a2⟩ ∼ ⟨b1,b2⟩ ∶⇔ a1 ⋅ b2 = b1 ⋅ a2. Note that ∼ is an
equivalence relation.

– We define Q as any representative system of ∼.

Definition

– Let QC be the set of Cauchy sequences over Q and
∼⊆ (QC) × (QC) such that (an) ∼ (bn) ∶⇔ limn↦∞ an − bn = 0.
Note that ∼ is an equivalence relation.

– We define R as any representative system of ∼.
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Counting Past Infinity
Remember: 0 = ∅, 1 = 0 ∪ {0} = {0}, 2 = 1 ∪ {1} = {0,1}, . . .
ω =The union of ”all those numbers” (smallest set containing ∅
and closed under S(x) = x ∪ {x})

...what if we just continue?

S(ω) = ω ∪ {ω} = {0,1,2, . . . , ω} = ω + 1

S(ω + 1) = {0,1, . . . , ω, ω + 1} = ω + 2, ω + 3, ω + 4, . . .

ω + ω = ⋃
n∈ω

(ω + n)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“limit”

= ω ⋅ 2, ω ⋅ 3, . . . , ω ⋅ ω = ω2, ω3, . . .

. . . , ωω, ωω
ω

, . . . ,⋃
n∈ω

ω
. .
.
ω

²
n times

= ε0, ε0 + 1, . . .

...we get Ordinal numbers! (Note that all of these here are
countable)
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Ordinal Numbers

Definition

A well-order < on S is a total order on S such that every subset of
S has a minimal element.
Equivalently: ...such that every element in S is either maximal or
has a unique successor.

⇒ We can ”count” well-ordered sets using a successor function
and ”limit steps” (such as ω, which is the ”limit” of the natural
numbers).

Definition

A set is called ordinal number if it is transitive (∈-closed) and
well-ordered by ∈. The (proper) class of all ordinal numbers is
called On (definable).
A set is called natural number if it is transitive and well-ordered
by both ∈ and ∈−1.
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Transfinite Induction

Theorem (Recursion Theorem for On)

For every F ∶ V→ V, there exists a unique G ∶ On→ V such that
∀α ∈ On G(α) = F(G ↾ α).

This allows for an induction/recursion principle on On:
Every ordinal α is either

1. α = ∅ or

2. α = β + 1 for some β ∈ On or

3. α is a limit ordinal ⋃β<α β.

Example

Define addition inductively on On by: α + 0 = α,
α + S(β) = S(α + β) and for limit numbers λ: α + λ = ⋃β<λ(α + β)



Ordinals and Transfinite Recursion 9

Y tho?

Theorem

Every well-order is isomorphic to an ordinal.

Theorem (Zermelo’s Well-Ordering Theorem)

In ZF, the axiom of choice is equivalent to the statement that
every set can be well-ordered.

⇒ Ordinal numbers form a “representative class” of all sets (under
equivalent well-orders)
Note: We can never construct a well-order of e.g. the real
numbers, but by the axiom of choice one has to exist. Without the
axiom of choice, R is not (necessarily) well-orderable.
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Aside: The Axiom of Determinacy

Definition (Game)

Let A ⊆ ωω. Players PA and PB alternate in picking a natural
number ni , producing a sequence r = (n0,n1,n2, . . .). Player PA

wins, iff r ∈ A . A strategy is a function f ∶ ω<ω → N. A winning
strategy for player P is a strategy that guarantees a win for P.

Definition (Axiom of Determinacy)

AD is the statement that for every A ⊆ ωω, either Player PA or PB

has a winning strategy for A.
AD is equivalent to

(∃r0∀r1∃r2 . . . r ∈ A) ∨ (∀r0∃r1∀r2∃r3 . . .¬r ∈ A)

Theorem

ZF+AD implies that R is not well-orderable.
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The Von Neumann Hierarchy

Definition (The Von Neumann Hierarchy)

Let

– V0 ∶= ∅
– For any ordinal α we let Vα+1 ∶= P(Vα)
– For any limit ordinal λ we let Vλ ∶= ⋃α<λ Vα

Theorem

In ZF− (ZF without the axiom of foundation), the axiom of
foundation is equivalent to V = ⋃α∈On Vα.

Definition

For any set x , we call the degree of x (deg(x)) the smallest
α ∈ On with x ∈ Vα (definable).
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Cardinals

Remember, even ωω
. .
.

= ε0 is countable; but we know uncountable
sets exist:

Theorem (Cantor’s Theorem)

For any set x , there is no bijective function f ∶ x → P(x)

Also, by Zermelo’s well-ordering theorem, even uncountable sets
are well-orderable, and those well-orders are isomorphic to some
ordinal number.
⇒ there are uncountable ordinals

Definition

– We call an ordinal α a cardinal number, if there is no β < α
such that there exists a bijection β → α.

– Let x be any set. We call the (uniquely determined!) cardinal
number ∣x ∣ such that there is a bijection x → ∣x ∣ the
cardinality of x .
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The Cardinal Hierarchy

Definition (ℵ)

– ℵ0 ∶= ω
– For any ordinal α, let ℵα+1 be the smallest cardinal number

strictly larger than ℵα
– For any limit ordinal λ, let ℵλ ∶= ⋃α<λ ℵα

We know ∣R∣ = ∣P(ω)∣ =∶ 2ℵ0 and 2ℵ0 > ℵ0 - but how big is 2ℵ0 (or
ℵ1, for that matter)?

Definition (The Continuum Hypothesis)

The Continuum Hypothesis (CH) is the statement that 2ℵ0 = ℵ1.
The Generalized Continuum Hypothesis is the statement that
2ℵα = ℵα+1 for every α ∈ On.

Theorem (Cohen, 1963)

Both CH and GCH are neither provable nor disprovable from ZFC



Logic in ZFC 15

First-order Syntax in ZFC

– A (constant, function or relation) symbol is some/any set. A
variable is some/any set. Let Fi ,Ri be the sets of
function/relation symbols of arity i and V the set of variables.

– A term is a finite sequence of symbols that obeys the
recursive definition of a term, hence a set.

– A proposition is a finite sequence of symbols that obeys the
recursive definition of a proposition, hence a set.

⇒ The relation IsTermV ,F0,F1,...,Fn(x) is definable in ZFC; and
hence the set T ∶= TV ,F0,F1,...,Fn of all terms over V ,F0, . . ..
⇒ the relation IsPropositionT ,R1,...,Rm

(x) is definable in ZFC;
and hence the set Prop of all propositions over T ,R1, . . .Rm.
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Proof Theory in ZFC

Let S be a set of axioms (i.e. propositions). A proof rule is a
relation R ⊆ Propn × Prop. A calculus C is a set of proof rules.
We can define the provability relation:

Definition

A sequence of propositions p = ⟨ϕ1, . . . , ϕn⟩ is a C -proof iff for
each ϕi :

– Either ϕi ∈ S or

– there is some R ∈ C with R ⊆ Propm × Prop and ϕj1 , . . . ϕjm

such that each jk < i and ⟨ϕj1 , . . . , ϕjm , ϕi ⟩ ∈ R.

We say ϕ is C -provable from S (and write S ⊢C ϕ) iff there is
some C -proof p = ⟨ϕ1, . . . , ϕn⟩ such that ϕn = ϕ.

⇒ we can talk about the provability of propositions in ZFC!
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Model Theory

Semantics is rather straight-forward – The definition of a model is
already based on sets: functions and relations are sets, hence
models are sets. The relation M ⊧ ϕ is definable (using the usual
recursive definition), as is the relation M ⊢C ϕ, hence the
completeness theorem becomes a theorem of ZFC!

Theorem (Compactness Theorem)

A set of propositions S has a model iff every finite subset of S has
a model

Example

Let c a new constant and extend PA by the axioms
c ≠ 0, c ≠ 1, c ≠ 2, . . ..
⇒ PA has non-standard models.
Every set of propositions that has arbitrarily large finite models has
an infinite model.
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Even worse:

Theorem (Löwenheim-Skolem)

If a set of propositions S has an infinite model, then it has a model
in every infinite cardinality

Example

There are uncountable models of PA. There are countable models
of the theory of real numbers.

Theorem (Tarski’s Paradox)

If there is a model of ZFC (by Completeness: If ZFC is not
contradictory), then there is a countable model of ZFC

⇒ We can not uniquely describe infinite models using the
semantics of first-order logic!
(Next best thing: κ-categoricity)
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Requirements for Proof Theory

Note that for “embedding” syntax and proof theory in ZFC, all we
need is:

– “Encodings” for all symbols (as sets)

– “Encodings” for finite sequences of sets (as sets) such that

– the definitions of “term”, “proposition” and “proof” can be
expressed (on the basis of sets).

⇒ We don’t need “full” sets for that – e.g. natural numbers are
already sufficient!



Incompleteness 20

Encoding Sequences as Numbers

Definition

Let P = {p0,p1, . . .} the set of prime numbers and
s = ⟨s0, . . . , sn⟩ ∈ Nn a finite sequence of numbers. The Gödel
number of s is the number

⌜s⌝ ∶=
n

∏
i=0

psii

By the uniqueness of prime factor decompositions, for any Gödel
number n we can obtain the original unique sequence s with
n = ⌜s⌝ (i.e. ⌜⋅⌝ is injective).
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Gödelization

Definition

– Let P any recursively enumerable superset of the Peano
axioms (with countably many additional symbols).

– For any symbol σ, let ⌜σ⌝ ∈ N any (unique!) number.

– For any proposition (with free variables) ϕ = σ0 . . . σn, let
⌜ϕ⌝ ∶= ⌜⟨⌜σ0⌝, . . . , ⌜σn⌝⟩⌝.

– For any sequence of propositions p = ⟨ϕ1, . . . , ϕn⟩, let
⌜p⌝ ∶= ⌜⟨⌜ϕ1⌝, . . . , ⌜ϕn⌝⟩⌝
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Theorem

– The property IsProposition(n) stating that n is the Gödel
number of a well-formed proposition is definable in P.

– The property IsProof(p,n) that p is a Gödel number of a
proof from P of the proposition with Gödel number n is
definable in P. Hence, the predicate
Prov(x) ∶= ∃p IsProof(p, x) is definable in P.

Theorem (Loeb Axioms)

L1 If P ⊢ ϕ, then P ⊢ Prov(⌜ϕ⌝)
L2 If P ⊢ Prov(⌜ϕ⌝) ∧ Prov(⌜ϕ⇒ ψ⌝), then P ⊢ Prov(⌜ψ⌝)
L3 If P ⊢ Prov(⌜ϕ⌝), then P ⊢ Prov(⌜Prov(⌜ϕ⌝)⌝)
L4 If P ⊢ ϕ⇒ ψ, then P ⊢ Prov(⌜ϕ⌝)⇒ Prov(⌜ψ⌝)
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The Gödel Sentence

Definition (Gödel Sentence)

– Let sub ∶ N2 → N the function such that
sub(⌜ϕ(x)⌝,n) = ⌜ϕ(n)⌝. Then sub is definable in P.

– Define the proposition G(x) ∶= ¬Prov(sub(x , x)) and
G ∶= G(⌜G(x)⌝)

Then:

G = G(⌜G(x)⌝) = ¬Prov(⌜G(⌜G(x)⌝)⌝) = ¬Prov(⌜G⌝)

We constructed a sentence that asserts its own non-provability!
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Definition

We define the proposition ConP ∶= ¬Prov(⌜0 ≠ 0⌝) expressing that
P is consistent.

Theorem (Gödel’s Incompleteness Theorems)

1. P is either inconsistent or incomplete, i.e. there is some
sentence ϕ such that P /⊢ ϕ and P /⊢ ¬ϕ.

2. If P is consistent, then P /⊢ ConP .

The existence of ω proves (in ZFC) that PA has a model and
hence is consistent; however, we can do the same proof for ZFC as
with every other sufficiently powerful set of axioms.
⇒ Every plausible foundation for Mathematics is subject to
Gödel’s theorems!
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Non-standard Proofs

If P ⊢ G, then by Loeb P ⊢ Prov(⌜G⌝) and P ⊢ ¬Prov(⌜G⌝),
contradiction.
But P ⊢ ¬G ≡ Prov(⌜G⌝) does not imply P ⊢ G outright.

⇒ The Gödel number of the proof could be a non-standard
number.
⇒ have an “infinite” prime factor decomposition, encode an
“infinitely long” proof.

⇒ In ZFC: The set of proofs contains “infinite” elements that
are all (in ZFC) provably finite ⇒ a non-standard number in ω

⇒ If P ⊢ ¬G, then no standard models can exist
(ω-incosistency)
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Gödel’s Constructible Universe

What’s the “smallest” class of sets we could want in ZF (excluding
“non-standard” or otherwise “uncomputable” sets)?

Definition

For any set X , we let Def(X ) ∶=
{{y ∈ X ∣(X , ∈) ⊧ ϕ(y)}∣ϕ is a predicate defined over X} ⊆ P(X )
Let L0 ∶= ∅, Lα+1 ∶= Def(Lα) and Lλ ∶= ⋃α<λ Lα and L ∶= ⋃α∈On Lα.

In ZF, L is a model of ZFC+GCH.
⇒ If ZF is consistent, then so is ZFC+GCH!
⇒ We need to “add” undefinable (and hence uncomputable) and
“unnecessary” sets to make either of them false. (Cohen 1963
“Forcing”: we can “adjoin” sets to an existing (inner, countable)
universe of sets.)
Fun fact: L is even definably well-orderable from within L.
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Cofinality

ℵ0 is defined as ∶= ω, but natural numbers are also cardinal
numbers. If we let ℵ′0 ∶= 0, then ℵ′ω = ω (Note that ℵ′α = ℵα for
α ≥ ω2).
Does the ℵ-function have (more) fixed points? i.e. is there a
cardinal κ > ω such that ℵκ = κ? How could we
find/reach/construct such a cardinal?

Definition

– A subset A ⊆ X with X well-ordered is called cofinite in X , if
for every x ∈ X there is some a ∈ A with x ≤ a.

– Equivalently on cardinals: A subset A ⊆ ℵα is called cofinite
in ℵα, if ℵα = ⋃A.

– The cofinality of a (ordinal/) cardinal κ is the smallest
(ordinal/) cardinality cf(κ) such that there is some A ⊆ κ with
A cofinite in κ and (A is well-ordered by cf(A) /) ∣A∣ = cf(κ).
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Cofinality ≅ “How many smaller (ordinals/) cardinals do I need to
construct/approach κ from below?”

Definition

A cardinal number κ is called singular, if cf(κ) < κ and regular if
cf(κ) = κ.

Example

– Every successor ordinal has cofinality 1.

– Every successor cardinal is regular (the union of at most κ
many sets with cardinality at most κ is at most κ ⋅ κ = κ).

– If ℵλ is a limit cardinal, then ℵλ = ⋃{ℵi ∣ i ≤ λ}, hence
cf(ℵλ) ≤ ∣λ∣, hence ℵλ is singular, if not a fixed point.

⇒ If ℵκ = κ, then κ is a regular limit cardinal, and conversely.
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Large Cardinals

So are there regular limit cardinals?

Definition

– A (uncountable) regular limit cardinal is called (weakly)
inaccessible.

– A weakly inaccessible cardinal κ such that 2α < κ for all α < κ
is called strongly inaccessible (under GCH equivalent).

Theorem

– If κ > ω is weakly inaccessible, then Lκ ⊧ZFC.

– If κ > ω is strongly inaccessible, then Vκ ⊧ZF.

⇒ by the second incompleteness theorem, the existence of
inaccessible cardinals is unprovable.

In ZFC, the statement ConZFC is “almost equivalent” to the
existence of an inaccessible cardinal.
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Grothendieck Universes

Are large cardinals reasonable?

Note: The axiom of Infinity posits an “inaccessible” cardinal!

– Vω ⊧ ZFCFIN

– ω is a regular limit cardinal

– If ℵ′0 ∶= 0, then ℵ′ω = ω is a fixed point

⇒ The jump from “normal” sets to large cardinals is “equivalent”
to the jump from finite sets to infinite sets (“strong infinity
axioms”)

Definition

– A set U is called Grothendieck Universe, if U is transitive
and closed under pair sets, powersets and unions.

– The Grothendieck axiom states that every set lives in a
Grothendieck universe.
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