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KRMT: Course Concept

» This course will teach you:
» Theory: foundations of mathematics, syntax/semantics/proof theory of multiple
logics, meta-logical frameworks.
» Practice: modular formalizations of math in theory graphs, development of logics,
inference systems and mechanizations.
» Anything others can do you can then do metal
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KRMT: Course Concept

» This course will teach you:
» Theory: foundations of mathematics, syntax/semantics/proof theory of multiple

logics, meta-logical frameworks.
» Practice: modular formalizations of math in theory graphs, development of logics,

inference systems and mechanizations.
» Anything others can do you can then do metal
» Teaching Concept: Small course with lectures/labs

» Theory: lectures with lots of discussions
> Practice: jointly formalizing math/logics

(~ tuesdays)
(~ wednesdays)
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KRMT: Course Concept

» This course will teach you:
» Theory: foundations of mathematics, syntax/semantics/proof theory of multiple
logics, meta-logical frameworks.
» Practice: modular formalizations of math in theory graphs, development of logics,
inference systems and mechanizations.
» Anything others can do you can then do metal
» Teaching Concept: Small course with lectures/labs

» Theory: lectures with lots of discussions (~ tuesdays)
> Practice: jointly formalizing math/logics (~ wednesdays)

» Course Goal:
Recruiting and grooming junior researchers for KWARC

»> Come do research with us, we have good supervision and fascinating topics!
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0.1 Administrativa
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Prerequisites for KRMT

» Content Prerequisites: the mandatory courses in CSOFAU; Sem 1-4, in

particular:
> course “Grundlagen der Logik in der Informatik” (GLOIN)
» CS Math courses “"Mathematik C1-4" (IngMath1-4) (our "domain™)

» algorithms and data structures

> Al-1 (“Artificial Intelligence I") (nice-to-have only)

» You can do this course if you want! (We will help you)

2023-04-25
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Prerequisites for KRMT

» Content Prerequisites: the mandatory courses in CSOFAU; Sem 1-4, in
particular:
> course “Grundlagen der Logik in der Informatik” (GLOIN)

» CS Math courses “"Mathematik C1-4" (IngMath1-4) (our "domain™)

» algorithms and data structures

> Al-1 (“Artificial Intelligence I") (nice-to-have only)
» Intuition: (take them with a kilo of salt)

» This is what | assume you know! (I have to assume something)

» In many cases, the dependency of KRMT on these is partial and “in spirit”.
» If you have not taken these (or do not remember),

» read up on them as needed! (preferred, do it in a group)
» We can cover them in class (if there are more of you)
» You can do this course if you want! (We will help you)
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Prerequisites for KRMT

» Content Prerequisites: the mandatory courses in CSOFAU; Sem 1-4, in
particular:
> course “Grundlagen der Logik in der Informatik” (GLOIN)

» CS Math courses “"Mathematik C1-4" (IngMath1-4) (our "domain™)

» algorithms and data structures

> Al-1 (“Artificial Intelligence I") (nice-to-have only)
» Intuition: (take them with a kilo of salt)

» This is what | assume you know! (I have to assume something)

» In many cases, the dependency of KRMT on these is partial and “in spirit”.
» If you have not taken these (or do not remember),

» read up on them as needed! (preferred, do it in a group)

» We can cover them in class (if there are more of you)

» The real Prerequisite: Motivation, Interest, Curiosity, hard work.  (KRMT is
non-trivial)

» You can do this course if you want! (We will help you)
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KRMT Lab (Dogfooding our own Techniques)

» Underlying Problem: There are about 20 deep results/insights/tricks
necessary to understand KRMT.
» The Good News: These are sufficient too, if you can apply them (non-trivial)

» Consequence: KRMT may be the course with the highest “pain-per-letter
ratio” (but it is wonderful when the pain goes away)
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KRMT Lab (Dogfooding our own Techniques)

» Underlying Problem: There are about 20 deep results/insights/tricks
necessary to understand KRMT.

» The Good News: These are sufficient too, if you can apply them (non-trivial)

» Consequence: KRMT may be the course with the highest “pain-per-letter
ratio” (but it is wonderful when the pain goes away)

» General Plan: We use the Wednesday slot to get our hands dirty with actual
MMT formalizations.

» Goal: Reinforce what was taught on Tuesdays and have some fun.

» How this works: we jointly develop key formalizations in class

» we discuss the pertinent issues, you dictate, we test in the system.
> what is left over becomes homework (the routine parts)
> we discuss problems, ... on the KRMT chat (details later)

» Caveat: Only by practical involvement will you be able to understand the
difficult theoretical issues/ideas! (so come and participate)
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Homeworks

| 2

>

>

Goal: Homework assignments/problems reinforce what was taught in
Lectures/Labs

Homeworks will be small individual formalization tasks (but take time to solve)
» group submission if and only if explicitly permitted.

Admin: To keep things running smoothly

» Homeworks will be posted on course forum. (discussed in the lab)
» No “submission”, but open development on a git repos. (details follow)
Homework Discipline:

» Start early! (many assignments need more than one evening's work)
» Don't start by sitting at a blank screen!

» Humans will be trying to understand the text/code/math when grading it.

» We can be flexible about deadlines (but deadlines help you)
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Grades (Academic Assessment)

» What we used so far: two parts (Portfolio Assessment)
»> 20-30 min oral exam at the end of the semester (50%)
> results of the KRMT lab (50%)
This will not work with 50+ students, need to see how the course develops!

» How about this: three parts (Portfolio Assessment)
»> 60 min written exam early October? (70%)
> results of the KRMT lab (30%)
> bonus project after the semester (10% bonus)

» If you have suggestions, | will probably be happy with that as well.
» Let's finalize this next week.

Kohlhace & Rabe: KRMT B
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Textbook, Handouts and Information, Forums, Chat

»> (No) Textbook: there is none!

» Course notes will be posted at http://kwarc.info/teaching/KRMT

> We mostly prepare/update them as we go along (semantically preloaded ~ research
resource)

> Please e-mail us any errors/shortcomings you notice. (improve for the group)
» The KRMT lab generally follows the MMT tutorial at
https://gl.mathhub.info/Tutorials/Mathematicians/blob/master/
tutorial/mmt-math-tutorial.pdf
» Announcements will be posted on the course forum
> https://www.studon.fau.de/frm5126852.html
» Check the forum frequently for (adopt/use it, this is for you!)
> announcements, homeworks, questions
» discussion among your fellow students

» We have to choose a chat venue (Matrix or StudOn)
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Do | need to attend the lectures

» Attendance is not mandatory for the KRMT lecture (official version)

» There are two ways of learning: (both are OK, your mileage may vary)

> Approach B: Read a book/papers
» Approach |: come to the lectures, be involved, interrupt me whenever you have a
question.

The only advantage of | over B is that books/papers do not answer questions
» Approach S: come to the lectures and sleep does not work!

» The closer you get to research, the more we need to discuss!
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Experiment: Learning Support with KWARC Technologies

» My research area: Deep representation formats for (mathematical) knowledge

» One Application: Learning support systems (represent knowledge to transport

it)

»> Experiment: Start with this course (Drink my own medicine)
1. Re-Represent the slide materials in OMDoc (Open Mathematical Documents)
2. Feed it into the ALeA system (http://courses.voll-ki.fau.de)
3. Try it on you all (to get feedback from you)

» Tasks (I cannot pay you for this)
» help me complete the material on the slides (what is missing/would help?)
» | need to remember “what | say”, examples on the board. (take notes)

» Benefits for you (so why should you help?)
> you will be mentioned in the acknowledgements (for all that is worth)
» you will help build better course materials (think of next-year's students)
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Vol L-KI Portal at https://courses.voll-ki.fau.de

» Idea: Provide HTML versions of the slides/notes and embed learning support
services into them. (for pre/postparation of lectures)

Current semester (WS 22/23)

- V‘”"L

?:&

Artificial Intelligence - I IWGS -1 Logic-based Natural

» Definition 1.1. Call a document active, iff it is interactive and adapts to
specific information needs of the readers. (course notes on steroids)
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Vol L-KI Portal at https://courses.voll-ki.fau.de

» ldea: Provide HTML versions of the slides/notes and embed learning support
services into them. (for pre/postparation of lectures)

» Definition 1.4. Call a document active, iff it is interactive and adapts to
specific information needs of the readers. (course notes on steroids)

» Example 1.5 (Definition on Hover). When we hover on a (cyan) term
reference, hovering shows us the definition. (even works recursively)

[> Definition 0.1. A heuristic is an evaluation function & on states that estimates |

Af nnnt fram . ba tha manrant ~anl ababa

[> Definition 0.1. An evaluation function assigns a desirability value to each node of the search
tree.

[> Definition 0.2. Given a heuristic h, greedy search is the strategy where the
fringe is organized as a queue sorted by decreasing h-value.

When we click on the hover popup, we get even more information!
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Vol L-KI Portal at https://courses.voll-ki.fau.de

» Idea: Provide HTML versions of the slides/notes and embed learning support
services into them. (for pre/postparation of lectures)

» Definition 1.7. Call a document active, iff it is interactive and adapts to
specific information needs of the readers. (course notes on steroids)

» Example 1.8 (Definition on Hover). When we hover on a (cyan) term
reference, hovering shows us the definition. (even works recursively)
When we click on the hover popup, we get even more information!

» Example 1.9 (Guided Tour). A guided tour for a concept ¢ assembles
definitions/etc. into a self-contained mini-course culminating at c.

X Guided Tour Problem Formulation | 1unpERSTAND |
Problem Formulation Problem Formulation ) The Math of Problem Formulation: Search Problems

The Math of Problem
Formulation: Search
Problems Problem Formulation

Age.ms and [> Definition 0.1. A problem formulation models a situation using states and
Environments actions at an appropriate level of abstraction. (do not model things like “put

. on my left sock”, etc.)
Modeling Agents

Mathematically and D> it describes the initial state  (we are in Arad)

Computationally > it also limits the objectives by specifying goal states. (excludes,
N e.g. to stay another couple of weeks.)

Environment types
A solution is a sequence of actions that leads from the initial state to a goal
Problem Solving: Introduction state.

Brahlam enluina
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Vol L-KI Portal at https://courses.voll-ki.fau.de

» Idea: Provide HTML versions of the slides/notes and embed learning support
services into them. (for pre/postparation of lectures)

» Definition 1.10. Call a document active, iff it is interactive and adapts to
specific information needs of the readers. (course notes on steroids)

» Example 1.11 (Definition on Hover). When we hover on a (cyan) term
reference, hovering shows us the definition. (even works recursively)
When we click on the hover popup, we get even more information!

» Example 1.12 (Guided Tour). A guided tour for a concept ¢ assembles
definitions/etc. into a self-contained mini-course culminating at c.

» Status: The AlLeA system is deployed at FAU for over 1000 students taking six
courses

> (some) students use the system actively (our logs tell us)
> reviews are mostly positive/enthusiastic (error reports pour in)
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AlLeA= Data-Driven & Al-enabled Learning Assistance

» Ingredient 1: Domain model =
knowledge/theory graph

MDP |

e[

utility

A theory graph provides (modular representation of the domain)
» symbols with URIs for all concepts, objects, and relations

» definitions, notations, and verbalizations for all symbols

» “object-oriented inheritance” and views between theories.
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AlLeA= Data-Driven & Al-enabled Learning Assistance

» Ingredient 1: Domain model =
knowledge/theory graph

» Ingredient 2: Learner model =
adding competency estimations

MDP |

e[l

utility

The learner model is a function from learner IDs x symbol URIs to competency

values
» competency comes in six cognitive dimensions: remember, understand,

analyze, evaluate, apply, and create.
» ALeA logs all learner interactions
» each interaction updates the learner model function.

(keeps data learner-private)
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AlLeA= Data-Driven & Al-enabled Learning Assistance

» Ingredient 1: Domain model =
knowledge/theory graph

MDP |

» Ingredient 2: Learner model =
adding competency estimations

> Ingredient 3: A collection of
ready-formulated learning objects

e[
utility

Learning objects are the text fragments learners see and interact with; they are
structured by

» didactic relations, e.g. tasks have prerequisites and learning objectives

» rhetoric relations, e.g. introduction, elaboration, and transition
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AlLeA= Data-Driven & Al-enabled Learning Assistance

» Ingredient 1: Domain model =
knowledge/theory graph

> Ingredient 2: Learner model =
adding competency estimations

> Ingredient 3: A collection of
ready-formulated learning objects

> Ingredient 4: Educational dialogue
planner ~ guided tours

The dialogue planner assembles learning objects into active course materials using
» the domain model and didactic relations to determine the order of LOs

» the learner model to determine what to show

» the rhetoric relations to make the dialogue coherent
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New Feature: Drilling with Flashcards

» Flashcards challenge you with a task (term/problem) on the front. ..

o 2 @ >¢men]

weight space

Assess Your (2

o 2 @ > [vina

[> Definition 0.1. The weight space is the
space of all possible combinations of weights.

Loss minimization in a weight space is called
weight fitting.

Assess Your
Comptence: [fof

1do not understand major parts

...and the definition/answer is on the back.

» Self-assessment updates the learner model

(before/after)

» Bonus: Flashcards can be generated from existing semantic markup
(educational equivalent to free beer)

EAiE
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0.2 Overview over the Course
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Plot of this Course

» Today: Motivation, Admin, and find out what you already know

» What is logic, knowledge representation
» What is mathematical /technical knowledge
» how can you get involved with research at KWARC

oA s
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0.2.1 Introduction & Motivation
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Knowledge-Representation and -Processing

» Definition 2.1 (True and Justified Belief). Knowledge is a body of facts,
theories, and rules available to persons or groups that are so well justified that
their validity/is assumed.

» Definition 2.2. Knowledge representation formulates knowledge in a formal
language so that new knowledge can be induced by inferred via rule systems
(inference).

» Definition 2.3. We call an information system knowledge based, if a large part
of its behaviour is based on inference on represented knowledge.

» Definition 2.4. The field of knowledge processing studies knowledge based
systems, in particular
> compilation and structuring of explicit/implicit knowledge (knowledge acquisition)
» formalization and mapping to realization in computers (knowledge representation)
» processing for problem solving (inference)
> presentation of knowledge (information visualization)

» knowledge representation and processing are subfields of symbolic artificial
intelligence.
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Mathematical Knowledge (Representation and -Processing)

» KWARC (my research group) develops foundations, methods, and applications
for the representation and processing of mathematical knowledge
» Mathematics plays a fundamental role in Science and Technology (practice with

maths, apply in STEM)
» mathematical knowledge is rich in content, sophisticated in structure, and explicitly

represented . ..
> ..., and we know exactly what we are talking about  (in contrast to economics or

love)

2023-04-25
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Mathematical Knowledge (Representation and -Processing)

» KWARC (my research group) develops foundations, methods, and applications
for the representation and processing of mathematical knowledge
» Mathematics plays a fundamental role in Science and Technology (practice with
maths, apply in STEM)
» mathematical knowledge is rich in content, sophisticated in structure, and explicitly
represented . ..
> ..., and we know exactly what we are talking about  (in contrast to economics or

love)
» Working Definition: Everything we understand well is “mathematics” (e.g. CS,
Physics, ...)
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Mathematical Knowledge (Representation and -Processing)

» KWARC (my research group) develops foundations, methods, and applications
for the representation and processing of mathematical knowledge
» Mathematics plays a fundamental role in Science and Technology (practice with
maths, apply in STEM)
» mathematical knowledge is rich in content, sophisticated in structure, and explicitly
represented . ..
> ..., and we know exactly what we are talking about  (in contrast to economics or

love)
» Working Definition: Everything we understand well is “mathematics” (e.g. CS,
Physics, ...)
» There is a lot of mathematical knowledge

» 120,000 Articles are published in pure/applied mathematics (3.5 millions so far)
» 50 Millionen science articles in 2010 [Jin10] with a doubling time of

8-15 years [LI10]
» 1 M Technical Reports on http://ntrs.nasa.gov/ (e.g. the Apollo reports)
» a Boeing-Ingenieur tells of a similar collection (but in Word 3,4,5,...)
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About Humans and Computers in Mathematics

» Computers and Humans have complementary strengths.
» Computers can handle large data and computations flawlessly at enormous speeds.
» Humans can sense the environment, react to unforeseen circumstances, use their
intuitions to guide them through only partially understood situations, and can do
meta-judgments (moral, practical, ...)
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About Humans and Computers in Mathematics

» Computers and Humans have complementary strengths.

» Computers can handle large data and computations flawlessly at enormous speeds.

» Humans can sense the environment, react to unforeseen circumstances, use their
intuitions to guide them through only partially understood situations, and can do
meta-judgments (moral, practical, ...)

» In mathematics: we exploit this, we

> let humans explore mathematical theories and come up with novel insights/proofs,

> delegate symbolic/numeric computation and typesetting of documents to computers.

> (sometimes) delegate proof checking and search for trivial proofs to computers

oA s
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About Humans and Computers in Mathematics

» Computers and Humans have complementary strengths.
» Computers can handle large data and computations flawlessly at enormous speeds.
» Humans can sense the environment, react to unforeseen circumstances, use their
intuitions to guide them through only partially understood situations, and can do
meta-judgments (moral, practical, ...)
» In mathematics: we exploit this, we
> let humans explore mathematical theories and come up with novel insights/proofs,
> delegate symbolic/numeric computation and typesetting of documents to computers.
> (sometimes) delegate proof checking and search for trivial proofs to computers
» Overlooked Opportunity: management of existing mathematical knowledge
> cataloguing, retrieval, refactoring, plausibilization, change propagation and in some
cases even application do not require (human) insights and intuition
> can even be automated in the near future given suitable representation formats and

algorithms.
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About Humans and Computers in Mathematics

» Computers and Humans have complementary strengths.
» Computers can handle large data and computations flawlessly at enormous speeds.
» Humans can sense the environment, react to unforeseen circumstances, use their
intuitions to guide them through only partially understood situations, and can do
meta-judgments (moral, practical, ...)
» In mathematics: we exploit this, we

> let humans explore mathematical theories and come up with novel insights/proofs,
> delegate symbolic/numeric computation and typesetting of documents to computers.
> (sometimes) delegate proof checking and search for trivial proofs to computers

» Overlooked Opportunity: management of existing mathematical knowledge

> cataloguing, retrieval, refactoring, plausibilization, change propagation and in some
cases even application do not require (human) insights and intuition

> can even be automated in the near future given suitable representation formats and
algorithms.

» Math. Knowledge Management (MKM): s the discipline that studies this.
» Application: Scaling Math beyond the One-Brain-Barrier
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The One-Brain-Barrier

» Observation 2.5. More than 10° math articles published annually in Math.

» Observation 2.6. The libraries of Mizar, Coq, Isabelle,. .. have ~ 10°
statements—+proofs each. (but are mutually incompatible)

» Consequence: Humans lack overview over — let alone working knowledge in —
all of math/formalizations. (Leonardo da Vinci was said to be the last who had)

» Dire Consequences: Duplication of work and missed opportunities for the
application of mathematical /formal results.
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The One-Brain-Barrier

» Observation 2.7. More than 10° math articles published annually in Math.

» Observation 2.8. The libraries of Mizar, Coq, Isabelle,. .. have ~ 10°
statements—+proofs each. (but are mutually incompatible)

» Consequence: Humans lack overview over — let alone working knowledge in —
all of math/formalizations. (Leonardo da Vinci was said to be the last who had)

» Dire Consequences: Duplication of work and missed opportunities for the
application of mathematical /formal results.

» Problem: Math Information systems like arXiv.org, Zentralblatt Math,
MathSciNet, etc. do not help (only make documents available)

» Fundamenal Problem: The One Brain Barrier (OBB)

» To become productive, math must pass through a brain
» Human brains have limited capacity (compared to knowledge available online)
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The One-Brain-Barrier

» Observation 2.9. More than 10° math articles published annually in Math.

» Observation 2.10. The libraries of Mizar, Coq, Isabelle,. .. have ~ 10°
statements—+proofs each. (but are mutually incompatible)

» Consequence: Humans lack overview over — let alone working knowledge in —
all of math/formalizations. (Leonardo da Vinci was said to be the last who had)

» Dire Consequences: Duplication of work and missed opportunities for the
application of mathematical /formal results.

» Problem: Math Information systems like arXiv.org, Zentralblatt Math,
MathSciNet, etc. do not help (only make documents available)

» Fundamenal Problem: The One Brain Barrier (OBB)

» To become productive, math must pass through a brain
» Human brains have limited capacity (compared to knowledge available online)

» Idea: enlist computers (large is what they are good at)

» Prerequisite: make math knowledge machine-actionable &
foundation-independent (use MKM)

Kohlhace & Rabe: KRMT 16 2023-04-25



arXiv.org

0.2.2 Mathematical Formula Search
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More Mathematics on the Web

VVVVYyVYVYVYVYYVYY

The Connexions project (http://cnx.org)
Wolfram Inc. (http://functions.wolfram.com)
Eric Weisstein's MathWorld (http://mathworld.wolfram.com)
Digital Library of Mathematical Functions (http://dlmf .nist.gov)
Cornell ePrint arXiv (http://www.arxiv.org)
Zentralblatt Math (http://www.zentralblatt-math.org)

... Engineering Company Intranets, ...
Question: How will we find content that is relevant to our needs
Idea: try Google (like we always do)

Scenario: Try finding the distributivity property for Z
(Vk, I, meZ.k - (I +m) = (k-1)+ (k-m))
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Searching for Distributivity

Web |mages Groups MNews Froogle Maps maore =

Google Fmmrimemmmr— s

Web

T Try removing quotes from your search to get mare results.

Your search - "forall k,I,m:Z. k* {1 + m) = k*l + k*m" - did not match any documents.

Suggestions:

+ Make sure all words are spelled correctly.
& Try different Keywords.
+ Try more general keywords.
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Searching for Distributivity

Waeb 'M GroE MEwE FEI_B Maps more =

GO()gle hfomll X2 Z 0ty + Z) = wty + wtz ﬂl

Web

Untitled Document

... theorem diztributive_Ztimes Zplus: distributive Z Ztimes Zolus. change with [forall xy,zZ. x* (¥ +
z) = x*y + ¥'z). introz.elim . ..

matita.cs.unibo. tlibrargZtimes.ma - 21k - Cached - Similar B

2023-04-25
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Searching for Distributivity

Web 'M Groups  MNews M Maps  more =

GO (_)gle fforall a.b.ciZ. a * (b + c) = a*b + a*c s

Web

IMathematica - Setting up equations

Try *RAeduca® rathar than “Solve® and use “ForAll® to put a condition on x, y, and z. In[1]:=
ReducalForAll[[x, v, z}, *'x + €'y + Tz == a"x + b’y + €"2], ...

www codacommaents . camdarchive382-2006-4-004844 hirnl - 18% - Supplemantal Result -
Cached - Sim B

[PoF] arXiv:nlin.SIF0309017 v1 4 Sep 2003

Fila Farmat: PDF/Adobe Acrobat - View as HTML

7.2 Appendix B. Elfiptic constants related to gliN,C}. ... 1 for all 5 = j. [4.14). The first condition means
that the traces [4.13) of the Lax operatar ...

www. citebase org'egi-binfulttext Mormat=application’pdf& dentfier=oaiark nvorg:nlin 0300017 -
Supplemental Result - Simil e

“documenticlass{aricle] ‘wsepackage{axiom] \wsepackagelamssymb ...

i+1) bz:= bz - 2*°ij:NMl else bz:= bz + 2*"iz.bz = zbzr + cz % * y == z ... b,i-1}] be := reduce(™", mi)
c=1=xbec:Ex " becoercalx) Ex==1 ...
wiki.axiom-developer.org’axiom-test—1/sre/algebra’CliffordS padsrc - 20k - Supplemental Aesull -

d - Similar pages
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Does Image Search help?

» Math formulae are visual objects, after all (let's try it)
Google frac.jpg N a |
Web Images News Shopping Maps More ~ Search tools
Image size:
—bx V& —dar 133 x 61

No other sizes of this image found.

Tip: Try entering a descriptive word in the search box.
Your search did not match any documents.
Suggestions:

o Try different keywords.
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Of course Google cannot work out of the box

>

| 2

>

Formulae are not words:

» a, b, c k I, m x, y, and z are (bound) variables. (do not behave like
words/symbols)

» where are the word boundaries for “bag-of-words” methods?

Formulae are not images either: They have internal (recursive) structure and

compositional meaning

Idea: Need a special treatment for formulae (translate into “special words")
Indeed this is done (IMY03; MMO06; LM06; MG11])
... and works surprisingly well (using e.g. Lucene as an indexing engine)
Idea: Use database techniques (extract metadata and index it)
Indeed this is done for the Coq/HELM corpus ([Asp+06])
Our Idea: Use Automated Reasoning Techniques (free term indexing from

theorem prover jails)
Demo: MathWebSearch on Zentralblatt Math, the arXiv Data Set
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https://zbmath.org/formulae/
http://arxivsearch.mathweb.org

A running example: The Power of a Signal

An engineer wants to compute the power of a given signal s(t)
She remembers that it involves integrating the square of s.
Problem: But how to compute the necessary integrals

Idea: call up MathWebSearch with f?? s2(t)dt.

Mat_ll}WebSearch finds a document about Parseval’'s Theorem and
T Jo s2(t)dt =352 |ck|? where ¢, are the Fourier coefficients of s(t).

vVvyyvyyvyy
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Some other Problems (Why do we need more?)

» Substitution Instances: search for x? 4 y? = 72, find 32 4 4% = 52

» Homonymy: (}), ,C*, C7, Ck, and ,J all mean the same thing  (binomial
coeff.)

» Solution: use content-based representations (MathML, OpenMath)

> Mathematical Equivalence: e.g. [ f(x)dx means the same as [ f(y)dy
(c-equivalence)

» Solution: build equivalence (e.g. « or ACI) into the search engine(or normalize
first [Normann'06])

» Subterms: Retrieve formulae by specifying some sub-formulae
» Solution: record locations of all sub-formulae as well
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MathWebSearch: Search Math. Formulae on the Web

vvyyVvyyVvVyy

Idea 1: Crawl the Web for math. formulae (in OpenMath or CMathML)
Idea 2: Math. formulae can be represented as first-order terms (see below)
Idea 3: Index them in a substitution tree index (for efficient retrieval)

Problem: Find a query language that is intuitive to learn
Idea 4: Reuse the XML syntax of OpenMath and CMathML, add variables
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0.2.3 The Mathematical Knowledge Space
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The way we do math will change dramatically

» Definition 2.11 (Doing Math). Buchberger's Math creativity spiral
Publication Application

The

Creativity .
Spiral Mathgmatlcal
Specity/ Cr(_eatlwty
Formalize Spiral

[Buchberger 1995]

Com- Teaching

munication

» Every step will be supported by mathematical software systems

» Towards an infrastructure for web-based mathematics!
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Mathematical Literacy

» Note: The form and extent of knowledge representation for the components of
“doing math” vary greatly. (e.g. publication vs. proving)

» Observation 2.12 (Primitive Cognitive Actions).
To “do mathematics”, we need to

» extract the relevant structures,

» reconcile them with the context of our existing knowledge
» recognize parts as already known

» identify parts that are new to us.

During these processes mathematicians (are trained to)
» abstract from syntactic differences, and
» employ interpretations via non-trivial, but meaning-preserving mappings
» Definition 2.13. We call the skillset that identifies mathematical training
mathematical literacy (cf. ?77)
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Introduction: Framing as a Mathematical Practice

» Understanding Mathematical Practices:

» To understand Math, we must understand what mathematicians do!
» The value of a math education is more in the skills than in the knowledge.
> Have been interested in this for a while (see [KKO6])

» Framing: Understand new objects in terms of already understood structures.
Make creative use of this perspective in problem solving.
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Introduction: Framing as a Mathematical Practice

» Understanding Mathematical Practices:

» To understand Math, we must understand what mathematicians do!
» The value of a math education is more in the skills than in the knowledge.
> Have been interested in this for a while (see [KKO6])

» Framing: Understand new objects in terms of already understood structures.
Make creative use of this perspective in problem solving.

» Example 2.18. Understand point sets in 3-space as zeroes of polynomials.
Derive insights by studying the algebraic properties of polynomials.

» Definition 2.19. We are framing the point sets as algebraic varieties (sets of
zeroes of polynomials).

Kohlhace & Rabe: KRMT
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Introduction: Framing as a Mathematical Practice

» Understanding Mathematical Practices:
» To understand Math, we must understand what mathematicians do!
» The value of a math education is more in the skills than in the knowledge.
> Have been interested in this for a while (see [KKO6])
» Framing: Understand new objects in terms of already understood structures.
Make creative use of this perspective in problem solving.

» Example 2.22. Understand point sets in 3-space as zeroes of polynomials.
Derive insights by studying the algebraic properties of polynomials.

» Definition 2.23. We are framing the point sets as algebraic varieties (sets of
zeroes of polynomials).

» Example 2.24 (Lie group). Equipping a differentiable manifold with a
(differentiable) group operation

» Example 2.25 (Stone’s representation theorem). Interpreting a Boolean
algebra as a field of sets.
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Introduction: Framing as a Mathematical Practice

» Understanding Mathematical Practices:

» To understand Math, we must understand what mathematicians do!
» The value of a math education is more in the skills than in the knowledge.
> Have been interested in this for a while (see [KKO6])

» Framing: Understand new objects in terms of already understood structures.
Make creative use of this perspective in problem solving.

» Example 2.26. Understand point sets in 3-space as zeroes of polynomials.
Derive insights by studying the algebraic properties of polynomials.

» Definition 2.27. We are framing the point sets as algebraic varieties (sets of
zeroes of polynomials).

» Example 2.28 (Lie group). Equipping a differentiable manifold with a
(differentiable) group operation

» Example 2.29 (Stone’s representation theorem). Interpreting a Boolean
algebra as a field of sets.

» Claim: Framing is valuable, since it transports insights between fields.

» Claim: Many famous theorems earn their recognition because they establish
profitable framings.
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0.2.4 MMT: A Modular Framework for
Representing Logics and Domains
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Representation language (MMT)

» Definition 2.30. MMT = module system for mathematical theories

» Formal syntax and semantics
> needed for mathematical interface language
> but how to avoid foundational commitment?
» Foundation-independence
» identify aspects of underlying language that are necessary for large scale processing
> formalize exactly those, be parametric in the rest
> observation: most large scale operations need the same aspects
» Module system
» preserve mathematical structure wherever possible
» formal semantics for modularity
» Web-scalable
» build on XML, OpenMath, OMDoc
» URI based logical identifiers for all declarations

» Implemented in the MMT API system.
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Modular Representation of Math (MMT Example)

» Example 2.31 (Elementary Algebra and Arithmetics).

IntArith
Z, —:LZ—1L
dom: Z=p/NUn/N
dneg: ——z=z

Ring
iy dom: Gm/fo =G ajo a AbelGrou
SR (AbeiGroup )
distl: Fxm/o (y a/o 2)=(xmfo y) afo (xm/o z) P

distr: F(y a/o 2) m/o x=(y n/o x) a/0 (2 1/ x)

P/( Tn
S WY S m

NatPlusTimes S - T VP —

. NonGrpMon Grou
" NoNoN cp P roup
< Y 1 =XAx.iy.xoy=e
base: n-0=0, T
ni: F3x: G.Vy: G.xoye inv: FVx: G.3y: G.xoy=e
stepn-s(m)=n-m-+n

g ¢ 8"
e p

NatPlus - e et
+: N> NN neutl: Fxoe=x
base: n+0=n, G— N neutr: eox=x
_sees mhslm=slrtm) p=q o L
'\4 e—1
NatNums SemiGrp
G —N
0. - 23 +
N,N",0:N,s: N— N o= 0 + assoc: (xoy)oz=xo(yoz) Abelian
P3,...,P5
e—0 j‘ 7| ¢ Fxoy=yox
e V= e
ars o Y = g £ G o0:G—+G—>G

oA s

230
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Representing Logics and Foundations as Theories

» Example 2.32. Logics and foundations represented as MMT theories

<—> LF + X
folsem :
krf“" mwm
@F0“

- mult
modg A;’Q ﬂ—\ q
(Monoid—>(CGroup)__ add

Definition 2.33. Meta relation between theories special case of inclusion

vy

Uniform Meaning Space: morphisms between formalizations in different
logics become possible via meta-morphisms.

v

Remark 2.34. Semantics of logics as views into foundations, e.g., folsem.

v

Remark 2.35. Models represented as views into foundations (e.g. ZFC)
Example 2.36. mod := {G — Z,0 — +, e — 0} interprets Monoid in ZFC.

v
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A MitM Theory in MMT Surface Language

» Example 2.37. A theory of Groups
theory group : base:?Logic =
theory group_theory : base:?Logic =

Declaration = include ?monoid/moneid_theory |

name : type [= Def] [# notation]
. ~ . . inverse: U—U | #1-! prec24
Axioms = Declaration with type - F inverseproperty : | V [x] ,fo 2 1! el
i
ModelsOf makes a record type from a theory. group = ModelsOf group_theory |

» MitM Foundation: optimized for natural math formulation
» higher-order logic based on polymorphic A-calculus
> judgements-as-types paradigm: = F = type of proofs of F
> dependent types with predicate subtyping, e.g. {n}{’a € mat(n,n)|symm(a)’}
> (dependent) record types for reflecting theories

oA on

3D
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The MMT Module System

v

Central notion: theory graph with theory nodes and theory morphisms as edges

v

Definition 2.38. In MMT, a theory is a sequence of constant declarations
optionally with type declarations and definitions

» MMT employs the Curry/Howard isomorphism and treats

> axioms/conjectures as typed symbol declarations (propositions-as-types)
> inference rules as function types (proof transformers)
> theorems as definitions (proof terms for conjectures)

Definition 2.39. MMT had two kinds of theory morphisms

v

> structures instantiate theories in a new context (also called: definitional link, import)
they import of theory S into theory T induces theory morphism S — T

> views translate between existing theories (also called: postulated link, theorem link)
views transport theorems from source to target (framing).

v

Together, structures and views allow a very high degree of re-use
Definition 2.40. We call a statement t induced in a theory T, iff there is

» a path of theory morphisms from a theory S to T with (joint) assignment o,
» such that t = o(s) for some statement s in S.

v

v

Definition 2.41. In MMT, all induced statements have a canonical name, the
MMT URIL.
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0.2.5 Application: Serious Games
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Framing for Problem Solving (The FramelT Method)

» Example 2.42 (Problem 0.8.15).

How can you measure the height of a tree you cannot
climb, when you only have a protactor and a tape mea-
sure at hand.
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Framing for Problem Solving (The FramelT Method)

» Example 2.43 (Problem 0.8.15). T /&

How can you measure the height of a tree you cannot | Z T
Z E i

climb, when you only have a protactor and a tape mea- )
sure at hand. A Do

[A——
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Framing for Problem Solving (The FramelT Method)

» Example 2.44 (Problem 0.8.15). /&
How can you measure the height of a tree you cannot I$ //Zl T

climb, when you only have a protactor and a tape mea- X CQ/' J E:‘L
/ ST |

sure at hand.

pa— = 4
» Framing: view the problem as one that is already understood (using theory
morphisms)
Problem

» squiggly (framing) morphisms guaranteed by metatheory of theories!

PlanarGeo

T e
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Example Learning Object Graph

Game World MMT
User Knowledge New Knowledge

Game Solution

Solution Theory
Generate [3] <

- | =

[Be| = [3B| - tan( L)

Game Problem Problem Theory

J—,“

Fact Discovery

Explored World

[Zcas/Zcas]

Situation Theory

C: point
E=100

A8,
AB|

[}

enerate [2] Loy

Planar Geometry

point type

Forestry
Vertical (tree)

fine point — point — line
3| line —

c
horizontal (ground)
ho : R
v’\ 1 line — line — bool
4 Generate [1] :

[interaction ———"

Generate [0] seserensnnan

Scrolls

<
find 3._5{[, such that 3b L Be then

:
aAb 15 = 381 )
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FramelT Method: Problem

» Problem Representation in the game world (what the student should see)
Watch

» Student can interact with the environment via gadgets so solve problems

» “Scrolls” of mathematical knowledge give hints.
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https://www.youtube.com/watch?v=4hrL88jxcX0

Combining Problem/Solution Pairs

» We can use the same mechanism for combining P/S pairs

» create more complex P/S pairs (e.g. for trees on slopes)
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0.2.6 Search in the Mathematical Knowledge
Space
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The Mathematical Knowledge Space

» Observation 2.45. The value of framing is that it
induces new knowledge
» Definition 2.46. The mathematical knowledge
space MKS is the structured space of represented
and induced knowledge, mathematically literate
have access to.
» Idea: make math systems mathematically literate by supporting the MKS
» In this talk: | will cover three aspects
» an approach for representing framing and the MKS
» search modulo framing
> a system for archiving the MKS

» Told from the Perspective of: searching the MKS

(OMDoc/MMT)
(MKS literate search)
(MathHub.info)

2023-04-25
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bsearch: Indexing flattened Theory Graphs

» Simple Idea: We have all the necessary components: MMT and
MathWebSearch

» Definition 2.47. The bsearch systen is an integration of MathWebSearch and
MMT that
> computes the induced formulae of a modular mathematical library via MMT  (aka.

flattening)

» indexes induced formulae by their MMT URIs in MathWebSearch
> uses MathWebSearch for unification-based querying (hits are MMT URIs)
> uses the MMT to present MMT URI (compute the actual formula)
» generates explanations from the MMT URI of hits.

» Implemented by Mihnea lancu in ca. 10 days (MMT harvester pre-existed)
» almost all work was spent on improvements of MMT flattening
> MathWebSearch just worked (web service helpful)
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bsearch User Interface: Explaining MMT URIs

>
>
>
>

v

Recall: bsearch (MathWebSearch really) returns a MMT URI as a hit.

Question: How to present that to the user?

(for his/her greatest benefit)

Fortunately: MMT system can compute induced statements (the hits)

Problem: Hit statement may look considerably different from the induced

statement

Solution: Template-based generation of NL explanations from MMT URIs.
MMT knows the necessary information from the components of the MMT URI.

Kohlhace & Rabe: KRMT
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Modular Representation of Math (MMT Example)

» Example 2.48 (Elementary Algebra and Arithmetics).

IntArith
Z, —:LZ—1L
dom: Z=p/NUn/N
dneg: ——z=z

Ring
iy dom: Gm/fo =G ajo a AbelGrou
SR (AbeiGroup )
distl: Fxm/o (y a/o 2)=(xmfo y) afo (xm/o z) P

distr: F(y a/o 2) m/o x=(y n/o x) a/0 (2 1/ x)

P/( Tn
S WY S m

NatPlusTimes S - T VP —

. NonGrpMon Grou
" NoNoN cp P roup
< Y 1 =XAx.iy.xoy=e
base: n-0=0, T
ni: F3x: G.Vy: G.xoye inv: FVx: G.3y: G.xoy=e
stepn-s(m)=n-m-+n

g ¢ 8"
e p

NatPlus - e et
+: N> NN neutl: Fxoe=x
base: n+0=n, G— N neutr: eox=x
_sees mhslm=slrtm) p=q o L
'\4 e—1
NatNums SemiGrp
G —N
0. - 23 +
N,N",0:N,s: N— N o= 0 + assoc: (xoy)oz=xo(yoz) Abelian
P3,...,P5
e—0 j‘ 7| ¢ Fxoy=yox
e V= e
ars o Y = g £ G o0:G—+G—>G

oA s
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Example: Explaining a MMT URI

» Example 2.49. bsearch search result u?IntArith?c/g/assoc for query

R+ +E=[rl

» localize the result in the theory u?IntArithf with
Induced statement Vx,y,z : Z.(x +y) +z = x + (y + z) found ir
http://cds.omdoc.org/cds/elal 2IntAdrith (subst, justification).

» Justification: from MMT info about morphism ¢ (source, target, assignment)

IntArith is a CGroup if we interpret o as + and G as Z.

> skip over g, since its assignment is trivial and generate
CGroups are SemiGrps by construction

» ground the explanation by
In SemiGrps we have the axiom assoc : Vx,y,z: G.(xoy)oz = xo0(yoz)

oA s
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bsearch on the LATIN Logic Atlas

» Flattening the LATIN Atlas (once):

[ type [ modular [ flat [ factor [
declarations 2310 58847 25.4
library size 23.9 MB 1.8 GB 14.8
math sub-library 2.3 MB 79 MB 34.3
MathWebSearch harvests | 25.2 MB | 539.0 MB 21.3

» simple bsearch frontend at http://cds.omdoc.org:8181/search.html

Flsiz:ife ) DEMO

-

X+Y

http://latin.omdoc.org/math?IntAryth?assoc
associ== (+(+ XY)Z) (+ X (+ Y Z))

Justification
Induced statement found in http:fflatin.omdoc.org/math?intAryth

IntAryth is & AbelianGroup if we interpret over view ¢
AbelianGroup contains the statement assoc

http://latin.omdoc.org/math?Iintaryth? commut

http://latin.omdoc.org/math?IntAryth?inv_distr

2023-04-25
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http://cds.omdoc.org:8181/search.html

Overview: KWARC Research and Projects

Applications: eMath 3.0, Active Documents, Active Learning, Semantic Spread-
sheets/CAD/CAM, Change Mangagement, Global Digital Math Library, Math
Search Systems, SMGloM: Semantic Multilingual Math Glossary, Serious Games,

Foundations of Math: KM & Interaction: Semantization:
» MathML, OpenMath » Semantic Interpretation IATEXML: IATEX — XML
advanced Type Theories (aka. Framing) STEX: Semantic IATEX

> i . .
MMT: Meta Meta Theory math-literate interaction

invasive editors

Logic Morphisms/Atlas Context-Aware IDEs

Theorem Prover/CAS
Interoperability

& active docs

vVvyyywy
v

. Mathematical Corpora
» Active documents: P

embedded semantic
Mathematical services
Models/Simulation

Linguistics of Math

ML for Math Semantics
» Model-based Education Extraction

>
>
>
MathHub: math archives >
>
>
>

v

Foundations: Computational Logic, Web Technologies, OMDoc/MMT
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Take-Home Message

» QOverall Goal: Overcoming the “One-Brain-Barrier” in Mathematics (by
knowledge-based systems)
» Means:

Mathematical Literacy by Knowledge Representation and Processing in
theory graphs. (Framing as mathematical practice)

Kohlhace & Rabe: KRMT
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0.3 What is (Computational) Logic
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What is (Computational) Logic?

» The field of logic studies representation languages, inference systems, and their
relation to the world.
> It dates back and has its roots in Greek philosophy (Aristotle et al.)
» Logical calculi capture an important aspect of human thought, and make it
amenable to investigation with mathematical rigour, e.g. in
» foundation of mathematics (Hilbert, Russell and Whitehead)
» foundations of syntax and semantics of language (Creswell, Montague, ...)
»  Logics have many practical applications

» logic/declarative programming (the third programming paradigm)
program verification: specify conditions in logic, prove program correctness
> program synthesis: prove existence of answers constructively, extract program from

v

proof
» proof-carrying code: compiler proves safety conditions, user verifies before running.
» deductive databases: facts + rules (get more out than you put in)

> semantic web: the \Web as a deductive database

» Definition 3.1. Computational Logic is the study of logic from a computational,
proof-theoretic perspective. (model theory is mostly comprised under
“mathematical logic”.)
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What is Logic?

» Definition 3.2. Logic = formal languages, inference and their relation with the
world

» Formal language FL: set of formulae (2+43/7, Vxx+y=y+x)
> Formula: sequence/tree of symbols (x,y,f,g,p,1,m, €,-,V,3)
» Model: things we understand (e.g. number theory)
> Interpretation: maps formulae into models ([three plus five] = 8)
> Validity: M[=A, iff [A] =T (five greater three is valid)
» Entailment: A}=B, iff M}=B for all M|=A. (generalize to H = A)
» Inference: rules to transform (sets of) formulae (A,A = BIB)
> Syntax: formulae, inference (just a bunch of symbols)
» Semantics: models, interpr., validity, entailment (math. structures)

» Important Question: relation between syntax and semantics?
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0.3.1 A History of Ideas in Logic
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History of Ideas (abbreviated): Propositional Logic

» General Logic ([ancient Greece, e.g. Aristotle])
+ conceptual separation of syntax and semantics
+ system of inference rules (“Syllogisms™)
— no formal language, no formal semantics

» Propositional logic [Boole ~ 1850]
+ functional structure of formal language (propositions + connectives)

+ mathematical semantics (~ Boolean Algebra)
— abstraction from internal structure of propositions
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History of Ideas (continued): Predicate Logic

» Frege's “Begriffsschrift” [Fre79]

+ functional structure of formal language (terms, atomic formulae, connectives,
quantifiers)

— weird graphical syntax, no mathematical semantics

— paradoxes e.g. Russell's Paradox [R. 1901] (the set of sets that do not contain
themselves)

» modern form of predicate logic [Peano ~ 1889]
+ modern notation for predicate logic (v, A\, =V, J)

Kohlhace & Rabe: KRMT a0
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History of Ideas (continued): First-Order Predicate Logic

» Types ([Russell 1908])

— restriction to well-typed expression
+ paradoxes cannot be written in the system
+ Principia Mathematica

» Identification of first-order Logic ([Skolem, Herbrand, Gédel ~ 1920 — '30])
— quantification only over individual variables (cannot write down induction principle)
+ correct, complete calculi, semidecidable
+ set-theoretic semantics

([Whitehead, Russell 1910])

([Tarski 1936])

2023-04-25
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History of Ideas (continued): Foundations of Mathematics

» Hilbert's Program: find logical system and calculus, ([Hilbert ~ 1930])

» that formalizes all of mathematics,
» that admits sound and complete calculi, and
» whose consistency is provable in the system itself.
» Hilbert's Program is impossible!  ([Godel 1931]) Let £ be a logical system that

formalizes arithmetic ((N, +, %)),

» then L is incomplete.
» then the consistence of £ cannot be proven in L.

B1 2023-04-25
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History of Ideas (continued): A-calculus, set theory

» Simply typed A-calculus ([Church 1940])

+ simplifies Russel’s types, A-operator for functions
+ comprehension as S-equality
+ simple type-driven semantics
» Axiomatic set theory
+— type-less representation
+ first-order logic with axioms

+ restricted set comprehension
— functions and relations are derived objects

(can be mechanized)
(standard semantics ~ incompleteness)

(all objects are sets)

(no set of sets)
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Chapter 1
Foundations of Mathematics
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1.1 Propositional Logic and Inference
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1.1.1 Propositional Logic (Syntax/Semantics)
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Propositional Logic (Syntax)

» Definition 1.1 (Syntax). The formulae of propositional logic (write PL?) are
made up from
> propositional variables: Vo:={P, Q, R, P* P? ...} (countably infinite)
> constants/constructors called connectives: Yo:={T,F,—,V,\, =, <, ...}
We define the set wify(Vy) of well-formed propositional formula (wffs) as

propositional variables,
the logical constants T and F,

negations —A,

conjunctions A A B(A and B are called conjuncts),
disjunctions AV B (A and B are called disjuncts),
implications A = B, and

VvyVvVYVYyVYVYYy

equivalences (or biimplication). A < B,
where A, Bewiffy(Vy) themselves.
» Example 1.2. PAQ,PV Q. (—PV Q) < (P = Q)cwiy(Vo)

» Definition 1.3. Propositional formulae without connectives are called atomic (or
an atom) and complex otherwise.
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Alternative Notations for Connectives

Here Elsewhere

-A ~A A

AANB | AZB AeB AB
AvVvB |A+B A|/B A;B
A=B|A—B ADB
A=B|A+<B A=B

F 10

T T 1
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Semantics of PL° (Models)

» Definition 1.4. A model M:=(D,,Z) for propositional logic consists of

» the universe D, = {T,F}

» the interpretation 7 that assigns values to essential connectives.

» 7Z(—): Do—Do; T—F,F>T

» Z(A): Do X Do—Do; (e, B)—T, if a=p=T

We call a constructor a logical constant, iff its value is fixed by the interpretation
» Treat the other connectives as abbreviations, e.g. AV B= —(—-A A —B) and

A=B=-AVB,and T= PV P (only need to treat —, A directly)
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Semantics of PL° (Evaluation)

» Problem: The interpretation function only assigns meaning to connectives.

» Definition 1.5. A variable assignment ¢: Vy—D, assigns values to
propositional variables.

> Definition 1.6. The value function 7, wfy(Vy)—D, assigns values to PL’
formulae. It is recursively defined,
> Zo(P) = (P) (base case)
> Zo(-A) =Z(=)(Zo(A)).
> 7o(A A B) = Z(7)(Z,(A). 7, (B)).

» Note that Z,(AV B) = Z,(—~(—A A —=B)) is only determined by 7,(A) and
Z,(B), so we think of the defined connectives as logical constants as well.

» Definition 1.7. Two formulae A and B are called equivalent, iff Z,(A) = Z,,(B)
for all variable assignments .
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Semantic Properties of Propositional Formulae

» Definition 1.8. Let M:=(U,7) be our model, then we call A

>

vvyVvyVvyy

true under ¢ (¢ satisfies A) in M, iff Z,(A) =T

false under ¢ (¢ falsifies A) in M, iff Z,(A) = F
satisfiable in M, iff Z,(A) = T for some assignment ¢
valid in M, iff M=%A for all assignments ¢

falsifiable in M, iff Z,(A) = F for some assignments ¢
unsatisfiable in M, iff Z,(A) = F for all assignments ¢

» Example 1.9. x V x is satisfiable and falsifiable.

v

Example 1.10. xV —x is valid and x A —x is unsatisfiable.

(write M[=¥A)
(write ME¥A)

> Alternative Notation: Write [A], for Z,(A), if M = (U, 7). (and [A], if A'is
ground, and [A], if M is clear)

» Definition 1.11 (Entailment).

(aka. logical consequence)

We say that A entails B (A|=B), iff Z,(B) =T for all ¢ with Z,(A) =T (i.e.
all assignments that make A true also make B true)
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1.1.2 Calculi for Propositional Logic

Kohlhace & Rabe: KRMT 57 2023-04-25



Derivation Relations and Inference Rules

» Definition 1.12. Let £:=(L, . |=) be a logical system, then we call a relation
F CP(L) x L a derivation relation for L, if

> HEA, if AcH (b is proof reflexive),
> HEA and H' U {A}F-B imply H U H'EB (- is proof transitive),
» HEA and H C H' imply H'HA (- is monotonic or admits weakening).

» Definition 1.13. We call (£,K,|=,C) a formal system, iff L:=(L,IC, =) is a
logical system, and C a calculus for L.
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Derivation Relations and Inference Rules

>

>

>

Definition 1.17. Let £:=(L,C,|=) be a logical system, then we call a relation
F CP(L) x L a derivation relation for L, if

> HEA, if AcH (b is proof reflexive),

> HEA and H' U {A}F-B imply H U H'EB (- is proof transitive),

» HEA and H C H' imply H'HA (- is monotonic or admits weakening).
Definition 1.18. We call (£, [C,|=,C) a formal system, iff £:=(L,IC, =) is a
logical system, and C a calculus for L.

Definition 1.19.
Let £ be the formal language of a logical system, then an inference rule over £
is a decidable n+4 1 ary relation on L. Inference rules are traditionally written as

Al ... A,
C

where Ay, ..., A, and C are formula schemata for £ and \/ is a name.
The A; are called assumptions of N/, and C is called its conclusion.

N

Definition 1.20. An inference rule without assumptions is called an axiom.

Definition 1.21. Let £:=(L, K. |=) be a logical system, then we call a set C of
inference rules over £ a calculus (or inference system) for L.
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Derivations

» Definition 1.22.Let £:=(L,[C, =) be a logical system and C a calculus for L,
then a C-derivation of a formula CeL from a set H C L of hypotheses (write
HtcC) is a sequence Ay, ..., A of L-formulae, such that
> A, =C, (derivation culminates in C)
» for all 1<i<m, either A;cH, or (hypothesis)

.A.,-. al! in C with /;<i for all j<k. (rule application)

We can also see a derivation as a derivation tree, where the A/j are the children

of the node Ay.

» Example 1.23.
In the propositional Hilbert calculus #° we K
have the derivation Pt4,0@ = P: the sequence P-Q—=P P
is P= Q= P,P,Q= P and the MP
corresponding tree on the right. Q=P

. . A
» there is an inference rule —*
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Formal Systems

>

>

Let (£,/C, =) be a logical system and C a calculus, then ¢ is a derivation
relation and thus (£, K, =, F¢) a derivation system.

Therefore we will sometimes also call (£, /C,=,C) a formal system, iff
L:=(L,IC, =) is a logical system, and C a calculus for L.

Definition 1.24. Let C be a calculus, then a C-derivation ()¢A is called a proof
of A and if one exists (write -¢A) then A is called a C-theorem.

Definition 1.25. The act of finding a proof for a formula A is called proving A.
Definition 1.26.

An inference rule 7 is called admissible in a calculus C, if the extension of C by 7
does not yield new theorems.

% is called derivable (or a derived

A ...
Definition 1.27. An inference rule —
rule) in a calculus C, if there is a C derivation Ay, ..., ApcC.

Observation 1.28. Derivable inference rules are admissible, but not the other
way around.
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Soundness and Completeness

» Definition 1.29. Let £:=(L,C, =) be a logical system, then we call a calculus
C for L, iff
» sound (or correct), iff = A, whenever HtcA, and
> complete, iff HtcA, whenever H = A.
» Goal: Find calculi C, such that FcA iff =EA (provability and validity coincide)
(CALCULEMUS [Leibniz ~1680])

O B9

» To TRUTH through PROOF

61 2023-04-25
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The miracle of logics

» Purely formal derivations are true in the real world!
Real World

World of Logics

V x (human x — mortal x) =
7\

it's true!
human Socrates /1“ ) n
I\ |
\
it's true! /,\/ \
RN

A
N
U S
57}
N - it'’s true!

mortal Socrates it must be true --
it's proven!
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1.1.3 Propositional Natural Deduction Calculus
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Calculi: Natural Deduction (NDy; Gentzen [Gen34])

» ldea: AT} tries to mimic human argumentation for theorem proving.
» Definition 1.30. The propositional natural deduction calculus AT} has inference
rules for the introduction and elimination of connectives:

Introduction Elimination Axiom
A B AANB AAB
— N/ NE, NE,
A/B A" B -
AV —-A
[A]!
B A= B A
— =t — =F
A-B

=/ proves A = B by exhibiting a JWR) derivation D (depicted by the double
horizontal lines) of B from the local hypothesis A; =/ then discharges (get rid of
A, which can only be used in D) the hypothesis and concludes A = B. This
mode of reasoning is called hypothetical reasoning.

» Definition 1.31.
Given a set H C wify(Vy) of assumptions and a conclusion C, we write 7 amn, C,
iff there is a NI}y derivation tree whose leaves are in .

» Note: TND is used only in classical logic (otherwise constructive/intuitionistic)
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Natural Deduction: Examples

» Example 1.32 (Inference with Local Hypotheses).

[AAB]! [A B
NE, NE;
B A
BAA

—_—
AAB=BAA

Al

1
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A Deduction Theorem for N}

» Theorem 1.33. H, A1, B, iff H- A = B.
» Proof: We show the two directions separately
1. If H, A=, B, then HE A= B by =/, and
2. If Han A= B, then H, A=\, A=-B by weakening and H, A1, B by =E.
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More Rules for Natural Deduction

» Note: NT} does not try to be minimal, but comfortable to work inlx

» Definition 1.34. AT} has the following additional inference rules for the
remaining connectives.

(A" [B]'
ACBWI ASBW o cC éVEl
(A" (A
éﬂAﬁZCﬁ/l ﬁA;AﬁE
ﬁAFAF/ %FE

» Again: —E is used only in classical logic (otherwise constructive/intuitionistic)
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Natural Deduction in Sequent Calculus Formulation

v

Idea: Represent hypotheses explicitly. (lift calculus to judgments)

v

Definition 1.35. A judgment is a meta statement about the provability of
propositions.

Definition 1.36. A sequent is a judgment of the form Hi-A about the
provability of the formula A from the set H of hypotheses. We write -A for ()-A.

v

v

Idea: Reformulate N} inference rules so that they act on sequents.

v

Example 1.37.We give the sequent style version of 2.35:

— Ax — Ax
AANBFAAB AANBFAAB Ax
—— ANE, —— AE A.BFA
A ANBFB A AN BFA — =l
Al AFB = A
AANBFBAA —_— =
/ FA=B=A

_— =
FAAB=BAA

» Note: Even though the antecedent of a sequent is written like a sequence, it is
actually a set. In particular, we can permute and duplicate members at will.
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Sequent-Style Rules for Natural Deduction

» Definition 1.38. The following inference rules make up the propositional
sequent style natural deduction calculus ADP:

MN-B

FA A A Beken Ay A P
ATB FAAB MFANB
r-AAB r-A ! B ’

ra ., _B MAVBACIBC

Nr-AVB ' TFAVB r-C
rAB MFA=BT-A_
-A— B B
LACF M——A
A A
A A M-F
e At
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Linearized Notation for (Sequent-Style) ND Proofs

» Linearized notation for sequent-style ND proofs

1. Hi B Ag (Jl)

FA FA
2y b A (72) conesponds to AL 22
3. Hs F Az (731,2) P

» Example 1.39. We show a linearized version of the N}y examples 2.40

R

# hyp t  formula NDjust # hyp b formula NDjust

1. 1 F AAB Ax 1. 1 A Ax

2.1 - B NE, 1 2. 2 - B Ax

3. 1 A NE; 1 3. 1,2 + A weaken 1,2
4. 1 F BAA Al2,3 4. 1 F B=A =13

5. F AAB=BAA =4 5. F A=B=A =/4
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1.2 First-Order Predicate Logic

Kohlhace & Rabe: KRMT 60 2023-04-25



1.2.1 First-Order Logic
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First-Order Predicate Logic (PL)

» Coverage: We can talk about (Al humans are mortal)
» individual things and denote them by variables or constants
» properties of individuals, (e.g. being human or mortal)
» relations of individuals, (e.g. sibling _of relationship)
» functions on individuals, (e.g. the father of function)

We can also state the existence of an individual with a certain property, or the
universality of a property.

» But we cannot state assertions like
» There is a surjective function from the natural numbers into the reals.

» First-Order Predicate Logic has many good properties (complete calculi,
compactness, unitary, linear unification,. ..)
» But too weak for formalizing: (at least directly)

» natural numbers, torsion groups, calculus, ...
» generalized quantifiers (most, few,...)
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1.2.1.1 First-Order Logic: Syntax and Semantics
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P! Syntax (Signature and Variables)

» Definition 2.1.
First-order logic (PL), is a formal system extensively used in mathematics,

philosophy, linguistics, and computer science. It combines propositional logic
with the ability to quantify over individuals.
»> PL! talks about two kinds of objects: (so we have two kinds of symbols)

> truth values by reusing PL°
» individuals, e.g. numbers, foxes, Pokémon,...

» Definition 2.2. A first-order signature consists of (all disjoint; keN)
» connectives: ¥° ={T,F, = V,\,= &, ...} (functions on truth values)
> function constants: ¥ = {f, g, h,...} (functions on individuals)
» predicate constants: £} = {p,q,r,...} (relationships among individuals.)
> (Skolem constants: ¥ = {fl, f2,...}) (witness constructors; countably co)
> We take ¥, to be all of these together: Y, =" UYP U™, where Y =JkenZy

and define X:=>, U >°.
» Definition 2.3. We assume a set of individual variables: V,:={X,Y,Z, .. }.
(countably o0)
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P! Syntax (Formulae)

» Definition 2.4. Terms: Acwff (X,,V),) (denote individuals)
> Vl g M/ﬁz,(zi,gvt)y
> if fex) and Alcwf (X,,V,) for i<k, then (AL, .. AM)euf,(=,,V,).
» Definition 2.5. if Propositions: Acwif,(%,,V,): (denote truth values)
> if pcx and Alcwf,(,,V),) for i<k, then p(AY, ..., AR)euwffo(X,,)).),
> if A, Bewffo(X,,V.)and X&V,, then T,AAB,-A VX.Acwf,(%,,V,). Vis a
binding operator called the universal quantifier.

» Definition 2.6. We define the connectives F,V,=-, < via the abbreviations
AVB:=-(-AA-B),A=B=-AVB A< B=A=B)A(B=A), and
F:==T. We will use them like the primary connectives A and —

» Definition 2.7. We use 3X.A as an abbreviation for =(V.X.—A). Jis a binding
operator called the existential quantifier.

» Definition 2.8. Call formulae without connectives or quantifiers atomic else
complex.
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Alternative Notations for Quantifiers

Here ‘ Elsewhere

Vx. A | AxA  (x)A
Ix.A | Vx.A
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Free and Bound Variables

» Definition 2.9. We call an occurrence of a variable X bound in a formula A, iff
it occurs in a sub-formula VX.B of A. We call a variable occurrence free
otherwise.

For a formula A, we will use BVar(A) (and free(A)) for the set of bound (free)
variables of A, i.e. variables that have a free/bound occurrence in A.

» Definition 2.10. We define the set free(A) of frees variable of a formula A:

free(X): {X}
free(f (A1 An)):=Ui<i<nfree(A;)
free(p(Al An)):=Ui<i<nfree(A;)

free(—A): 7free( )
free(A N B):=free(A) U free(B)
free(VX.A):=free(A)\{ X}
» Definition 2.11. We call a formula A closed or ground, iff free(A) = (). We call
a closed proposition a sentence, and denote the set of all ground terms with
cwff ,(%,) and the set of sentences with cwif ,(%,).
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Semantics of PL* (Models)

>

>

>

Definition 2.12. We inherit the universe D, = {T,F} of truth values from PL°
and assume an arbitrary universe D, # () of individuals(this choice is a parameter
to the semantics)

Definition 2.13. An interpretation 7 assigns values to constants, e.g.

» 7(=): Do—Do with Te>F, F—T, and Z(A) = ... (as in PLY)
| ZZ%DL" — D, (interpret function symbols as arbitrary functions)
> 7: 3, —P(D.5) (interpret predicates as arbitrary relations)

Definition 2.14. A variable assignment ¢: V,—D, maps variables into the
universe.

Definition 2.15. A model M = (D,,Z) of PL' consists of a universe D, and an
interpretation Z.
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Semantics of PL* (Evaluation)

» Definition 2.16.
Given a model (D.Z), the value function Z,, is recursively defined:  (two parts:
terms & propositions)
> T, wit,(X,,V,)—D, assigns values to terms.
> T,(X):=p(X) and
> To(f(A1, . AK))=I(F)(Zp(A1), - - To(Ak))
> T, wifo(X,,V.)—D, assigns values to formulae:

> Z¢(T) =I(T) =T,

> Tp(=A) =T()(Z4(A))

> T,(AAB) = 7(A)(Zy(A), To(B)) (just as in PL%)
> To(p(Ag,. .. Ak)) =T, iff (Zo(A1), - Zo(Ak))EZ(pP)

> Iw(VX A) T, iff I(p.[a/X](A) =T for all acD,.

» Definition 2.17 (Assignment Extension). Let ¢ be a variable assignment into
D and a<D, then ¢,[a/X] is called the extension of ¢ with [a/X] and is defined
as {(Y.,a)cp|Y # X} U{(X.,a)}: ¢.[]a/X] coincides with ¢ off X, and gives the
result a there.
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Semantics Computation: Example

» Example 2.18. We define an instance of first-order logic:
> Signature: Let Y§:={j, m}, ¥{:={f}, and ¥5:={o}

» Universe: D,:={J, M}
» Interpretation: Z(j):=J, Z(m):=M, Z(f)(J):=M, Z(f)(M):=M, and

Z(0):={(M.J)}.
Then VX.o(f(X), X) is a sentence and with ¢:=¢.[a/X] for acD, we have

To(VX.0(F(X). X)) =T iff Zy(o(f(X), X)) =T forall acD,
iff  (Zy(f(X)),Zy(X))eZ(0) for all ac{J, M}
i (Z0F)(Z0(X))6(X))e{(M.J)} for all ac{J. M}
iff  (Z(f)(¢(X)).a) = (M.J) for all ac{J. M}
iff Z(f)(a) = M and a = J for all ac{J, M}

Buta # Jfora= M, so Z,(VX.o(f(X). X)) = F in the model (D,, 7).
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1.2.1.2 First-Order Substitutions
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Substitutions on Terms

>

Intuition: If B is a term and X is a variable, then we denote the result of
systematically replacing all occurrences of X in a term A by B with [B/X](A).
Problem: What about [Z/Y],[Y/X](X), is that Y or Z7

Folklore: [Z/Y],[Y/X]|(X) =Y, but [Z/Y]([Y/X](X)) = Z of course.
(Parallel application)

Definition 2.19.[for=sbstListfromto,sbstListdots,sbst]

Let wfe(X,V) be an expression language, then we call o: V—wie(X,V) a
substitution, iff the support supp(o):={X|(X,A)ca, X # A} of ¢ is finite. We
denote the empty substitution with e.

Definition 2.20 (Substitution Application).

We define substitution application by

» o(c)=c for cex

> o(X)=A,iff AcV and (X.A)co.

> o(F(Ar. o An) = Flo(Aa). . o(An)),

> o(3X.A)=3X.0o x(A).

Example 2.21. [a/x], [f(b)/y],[a/z| instantiates g(x,y, h(z)) to

g(a, F(b), h(3)).

Definition 2.22. Let ¢ be a substitution then we call
intro(o):=xesupp(o) free(a (X)) the set of variables introduced by o.
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Substitution Extension

» Definition 2.23 (Substitution Extension).
Let o be a substitution, then we denote the extension of o with [A/X] by
o,JA/X] and define it as {(Y.B)co|Y # X} U {(X.A)}: ¢,[A/X] coincides with
o off X, and gives the result A there.

» Note: If o is a substitution, then o,[A/X] is also a substitution.

» We also need the dual operation: removing a variable from the support:

» Definition 2.24. We can discharge a variable X from a substitution o by setting
o_x:=0o.,[X/X].
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Substitutions on Propositions

v

Problem: We want to extend substitutions to propositions, in particular to
quantified formulae: What is o(VX.A)?

Idea: o should not instantiate bound variables. ([A/X](¥X.B) = VA.B’
ill-formed)

Definition 2.25. o(VX.A):=(VX.0_x(A)).

Problem: This can lead to variable capture: [f(X)/Y](VX.p(X,Y)) would

evaluate to VX.p(X, f(X)), where the second occurrence of X is bound after
instantiation, whereas it was free before.

Definition 2.26. Let Bewff,(X,,V,) and Acwif,(%,,V,), then we call B
substitutable for X in A, iff A has no occurrence of X in a subterm VY.C with
Y cfree(B).

Solution: Forbid substitution [B/X]A, when B is not substitutable for X in A.
Better Solution: Rename away the bound variable X in VX.p(X, Y) before
applying the substitution. (see alphabetic renaming later.)
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Substitution Value Lemma for Terms

> Lemma 2.27. Let A and B be terms, then 7,([B/X]A) =7y (A), where
Y=, [ISO(B)/X]
» Proof: by induction on the depth of A:
1. depth=0 Then A is a variable (say Y ), or constant, so we have three cases
11. A=Y =X
1.1.1. then
T, ([B/XI(A)) = Z,([B/X)(X)) = Z,(B) = t:(X) = Zy(X) = Ty (A).
12. A=Y #X
1.2.1. then 7,,([B/X](A)) = Z,(B/X|(Y)) = T,(¥) = ¢(¥) = 4(¥) =
Tu(Y) = Zy(A).
1.3. Ais a constant
1.3.1. Analogous to the preceding case (Y # X).
1.4. This completes the base case (depth = 0).
2. depth> 0
2.1. then A= 1f(A1,...,A,) and we have

To([B/X]I(A) = Z(F)(Zo([B/X](A1)), .. To([B/X](An)))
= I(f)(Zy(A1), ..., Zy(An))
= T4(A).

y inductive hypothesis _ N




Substitution Value Lemma for Propositions

» Lemma 2.28. Let Bewff,(X,,V),) be substitutable for X in Acwif ,(%,,V,),
then Z,([B/X|(A)) = Zy(A), where ¢ = ¢,[Z,(B)/X].
» Proof: by induction on the number n of connectives and quantifiers in A
1. n=0
1.1. then A is an atomic proposition, and we can argue like in the inductive
case of the substitution value lemma for terms.
2.n>0and A=-BorA=CoD
2.1. Here we argue like in the inductive case of the term lemma as well.
3. n>0and A =VX.C
3.1. then Id,(A) = Iw(VXC) =T, iff Iw.[a/X](C) = I@‘[a/x](C) =T, for
all acD,, which is the case, iff Z,(VX.C) = Z,([B/X](A)) = T.
4. n>0and A=VYY.C where X £ Y
4.1. then T,(A) = T,(VY.C) =T, iff
Ty1a/v)(C) =Ty a/v([B/X](C)) =T, by inductive hypothesis.
4.2."S0 Z,(A) = Z,(7Y.[B/X](C)) = Z,(B/X|(¥Y.C)) = Z,([B/X](A))
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1.2.1.3 Alpha-Renaming for First-Order Logic
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Alphabetic Renaming

» Lemma 2.29. Bound variables can be renamed: If Y is substitutable for X in A,
then T,(VX.A) =Z,(VY.[Y/X]|(A))
» Proof: by the definitions:
1 T,(VX.A) =T, iff
2. Tya/x)(A) =T for all acD,, iff
3. Ty ja/v)([Y/X](A)) =T for all acD,, iff (by substitution value lemma)
4. T,(VY.[Y/X](A))=T.
» Definition 2.30. We call two formulae A and B alphabetical variants (or
a-equal; write A =, B), iff A=YX.C and B =VY.[Y/X](C) for some variables
X and Y.
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Avoiding Variable Capture by Built-in a-renaming

» Idea: Given alphabetic renaming, consider alphabetical variants as identical!

» So: Bound variable names in formulae are just a representational device.  (we
rename bound variables wherever necessary)

» Formally: Take cwff,(X,) (new) to be the quotient set of cuff,(X,) (old)
modulo =,. (formulae as syntactic representatives of equivalence classes)

» Definition 2.31 (Capture-Avoiding Substitution Application). Let o be a
substitution, A a formula, and A’ an alphabetical variant of A, such that
intro(o) M BVar(A) = (. Then A__ = A_ and we can define
o(A-,)=(o(A))_ .

» Notation: After we have understood the quotient construction, we will neglect
making it explicit and write formulae and substitutions with the understanding

that they act on quotients.

> Alternative:
Replace variables with numbers in formulae (de Bruijn indices).
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Undecidability of First-Order Logic

» Theorem 2.32. Validity in first-order logic is undecidable.

» Proof: We prove this by contradiction
1. Let us assume that there is a
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1.2.2 First-Order Calculi
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1.2.2.1 Propositional Natural Deduction
Calculus
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Calculi: Natural Deduction (NDy; Gentzen [Gen34])

» ldea: AT} tries to mimic human argumentation for theorem proving.
» Definition 2.33. The propositional natural deduction calculus AT} has inference
rules for the introduction and elimination of connectives:

Introduction Elimination Axiom
A B AANB AAB
— N/ NE, NE,
A/B A" B -
AV —-A
[A]!
B A= B A
— =t — =F
A-B

=/ proves A = B by exhibiting a JWR) derivation D (depicted by the double
horizontal lines) of B from the local hypothesis A; =/ then discharges (get rid of
A, which can only be used in D) the hypothesis and concludes A = B. This
mode of reasoning is called hypothetical reasoning.

» Definition 2.34.
Given a set H C wify(Vy) of assumptions and a conclusion C, we write 7 amn, C,
iff there is a NI}y derivation tree whose leaves are in .

» Note: TND is used only in classical logic (otherwise constructive/intuitionistic)
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Natural Deduction: Examples

» Example 2.35 (Inference with Local Hypotheses).

[AAB]! [A B
NE, NE;
B A
BAA

—_—
AAB=BAA

Al

1
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A Deduction Theorem for N}

» Theorem 2.36. H, A ,n, B, iff H- A = B.
» Proof: We show the two directions separately
1. If H, A=, B, then HE A= B by =/, and
2. If Han A= B, then H, A=\, A=-B by weakening and H, A1, B by =E.
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More Rules for Natural Deduction

» Note: NT} does not try to be minimal, but comfortable to work inlx

» Definition 2.37. AT} has the following additional inference rules for the
remaining connectives.

(A" [B]'
ACBWI ASBW o cC éVEl
(A" (A
éﬂAﬁZCﬁ/l ﬁA;AﬁE
ﬁAFAF/ %FE

» Again: —E is used only in classical logic (otherwise constructive/intuitionistic)
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Natural Deduction in Sequent Calculus Formulation

v

Idea: Represent hypotheses explicitly. (lift calculus to judgments)

v

Definition 2.38. A judgment is a meta statement about the provability of
propositions.

Definition 2.39. A sequent is a judgment of the form Hi-A about the
provability of the formula A from the set H of hypotheses. We write -A for ()-A.

v

v

Idea: Reformulate N} inference rules so that they act on sequents.

v

Example 2.40.We give the sequent style version of 2.35:

— Ax — Ax
AANBFAAB AANBFAAB Ax
—— ANE, —— AE A.BFA
A ANBFB A AN BFA — =l
Al AFB = A
AANBFBAA —_— =
/ FA=B=A

_— =
FAAB=BAA

» Note: Even though the antecedent of a sequent is written like a sequence, it is
actually a set. In particular, we can permute and duplicate members at will.
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Sequent-Style Rules for Natural Deduction

» Definition 2.41. The following inference rules make up the propositional
sequent style natural deduction calculus ADP:

MN-B

FA A A Beken Ay A P
ATB FAAB MFANB
r-AAB r-A ! B ’

ra ., _B MAVBACIBC

Nr-AVB ' TFAVB r-C
rAB MFA=BT-A_
-A— B B
LACF M——A
A A
A A M-F
e At
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Linearized Notation for (Sequent-Style) ND Proofs

» Linearized notation for sequent-style ND proofs

1. Hi B Ag (Jl)

FA FA
2y b A (72) conesponds to AL 22
3. Hs F Az (731,2) P

» Example 2.42. We show a linearized version of the N}y examples 2.40

R

# hyp t  formula NDjust # hyp b formula NDjust

1. 1 F AAB Ax 1. 1 A Ax

2.1 - B NE, 1 2. 2 - B Ax

3. 1 A NE; 1 3. 1,2 + A weaken 1,2
4. 1 F BAA Al2,3 4. 1 F B=A =13

5. F AAB=BAA =4 5. F A=B=A =/4
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First-Order Natural Deduction (AVD!; Gentzen [Gen34])

» Rules for connectives just as always

» Definition 2.43 (New Quantifier Rules). The first-order natural deduction
calculus N'D* extends N7 by the following four rules:

AL VXA
XA [B/X](A)VE
[le/X](A)]*
IX.A : ceX sk new
[B/X](A) c °
xA C 3E*

* means that A does not depend on any hypothesis in which X is free.
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A Complex N'D! Example

> Example 2.44. We prove —(VX.P(X))Fap:IX.—P(X).

[-P(X)? »
[~(E3X.~P(X)]* IX.~P(X) .

F
P(X)
LXP(X) TXPX)
- Fi
TxePx)

Sk

-
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First-Order Natural Deduction in Sequent Formulation

» Rules for connectives from /\/DE

> Definition 2.45 (New Quantifier Rules). The inference rules of the first-order
sequent calculus AVD?! consist of those from ADP plus the following quantifier
rules:

M-A Xéfree(T) MvXA
FVXA - B/X](A)
r[B/X|(A), MOXA T [e/X](A)-C corg new
XA r-C
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Natural Deduction with Equality

| 2

Definition 2.46 (First-Order Logic with Equality). We extend PL* with a new
logical symbol for equality = €35 and fix its semantics to Z(=):={(x.x)|x€D, }.
We call the extended logic first-order logic with equality (PL")

We now extend natural deduction as well.

Definition 2.47. For the calculus of natural deduction with equality (VD) we
add the following two rules to /D! to deal with equality:

A=B C[A]
S L
A=A [B/pIC
where C[A], if the formula C has a subterm A at position p and [B/p|C is the
result of replacing that subterm with B.

In many ways equivalence behaves like equality, we will use the following rules in

ND1
Definition 2.48. </ is derivable and < E is admissible in A/D!:
| A< B C[A]p E
A=A B/pC
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Positions in Formulae

> lIdea: Formulae are (naturally) trees, so we can use tree positions to talk about
subformulae

» Definition 2.49. A position p is a tuple of natural numbers that in each node of
a expression (tree) specifies into which child to descend. For a expression A we
denote the subexpression at p with A|p.
We will sometimes write a expression C as C[A], to indicate that C the
subexpression A at position p.

» Definition 2.50. Let p be a position, then [A/p|C is the expression obtained
from C by replacing the subexpression at p by A.

» Example 2.51 (Schematically).
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NDL Example: v/2 is Irrational

» We can do real Maths with /D! :

» Theorem 2.52. v/2 is irrational
Proof: We prove the assertion by contradiction

1.

ok wDN

Assume that /2 is rational.

Then there are numbers p and g such that v/2 = p/q.

So we know 2¢% = p?.

But 2¢® has an odd number of prime factors while p? an even number.
This is a contradiction (since they are equal), so we have proven the
assertion
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NDL Example: /2 is Irrational (the Proof)

# | hyp | formula NDjust

1 Vn,m.—(2n+1) = (2m) lemma

2 Vn, m.#(n™) = m#(n) lemma

3 Vn, p.prime(p) = #(pn) = (#(n) +1) | lemma

4 Vx.irr(x) < (=(3p. g.x = p/q)) definition
5 ir(V2) < (=(9p,a-v2 = p/q)) VE(4)

6 |6 —irr(v/2) Ax

7 16 | —(p.qvV2=p/q) <E(6,5)
8 |6 | Ip.qgvV2=p/q ~E(7)

9 |69 | vV2=p/q Ax

10| 6,9 | 2¢° =p? arith(9)
11|69 | #(p%) =2#(p) VE>(2)
12 | 6,9 | prime(2) = #(2¢%) = (#(q?) + 1) VE2(1)
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NDL Example: /2 is Irrational (the Proof continued)

13 prime(2) lemma

14 | 6,9 | #(2¢%) = #(qg°) + 1 =£(13,12)
15 | 6,9 | #(q%) = 2#(q) VE?(2)

16 | 6,9 | #(29%) =2#(q) +1 =E(14,15)
17 #(p?) = #(p%) =

18 | 69 | #(2¢°) = #(¢?) ~E(17,10)
19 | 6.9 | 2#(q) + 1 = #(p?) =E(18,16)
20 | 6.9 | 2#(q) + 1 =2#(p) —F(19,11)
21 | 6.9 | ~(24(q) +1) = (24(p)) | VEX(1)
22169 | F F1(20,21)
23| 6 F JE9(22)
24 ﬁﬁirr(\ﬁ) ﬁ/6(23)

25 irr(v/2) —E2(23)
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1.3 Higher-Order Logic and \-Calculus
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1.3.1 Higher-Order Predicate Logic
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Higher-Order Predicate Logic (PLQ)

» Quantification over functions and Predicates: VP.3F.P(a) vV —=P(F(a))
» Definition 3.1. Comprehension: (Existence of Functions)
JFVX.FX =A eg f(x)=3x2+5x+7
» Definition 3.2. Extensionality: (Equality of functions and truth values)
VFYG.(YX.FX = GX) = F =G
YPYQ.PQ< P =Q
» Definition 3.3. Leibniz Equality: (Indiscernability)
A =B for YP.PA = PB
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Problems with PLQ2

» Problem: Russell's Antinomy: VQ.M(Q) < (—-Q(Q))

> the set M of all sets that do not contain themselves

> Question Is MeM? Answer MM iff MEM.
» What has happened? the predicate @ has been applied to itself
» Solution for this course: Forbid self-applications by types!!

> ., prop (type of individuals, truth values), & — B (function type)
> right associative bracketing: o — 3 — ~ abbreviates & — § — v
» vector notation: @, — (3 abbreviates a; — ... > ap, — f8

> Well-typed formulae (prohibits paradoxes like VQ.M(Q) < (—Q(Q)))
» Other solution: Give it a non-standard semantics (Domain-Theory [Scott])

Kohlhace & Rabe: KRMT 102 2023-04-25




Types

» Types are semantic annotations for terms that prevent antinomies

» Definition 3.4. Given a set 37 of base types, construct function types: o — 3
is the type of functions with domain type « and range type 5. We call the
closure 7 of BT under function types the set of types over 57 .

» Definition 3.5.

We will use « for the type ofindividuals and prop for the type of truth values.

» Right Associativity: The type constructor is used as a right-associative
operator, i.e. we use « — 3 — -y as an abbreviation for o — 8 — ~

» Vector Notation:

We will use a kind of vector notation for function types, abbreviating
a1 —...— o, — B with @, — 5.
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Well-Typed Formulae (PL2)

» Definition 3.6. Signature X7 = [ Joe7 24 with
» Definition 3.7. Connectives: €Y prop—sprop
{V,A, =, ...} € Eprop—sprop—prop
» Definition 3.8. Variables V' = Joc7Va, such that every V,, countably infinite.
» Definition 3.9. Well typed formulae wif o (X7, V1) of type
> Vo UXa C ufo(Sr, Vr)
> If Cewffag(X7,V7) and Acwif o(27,V7), then C Acwif g(Z7,V7)
> 1f AW prop (57, V1), then VXo. ACWH prop (7, V7 )
» first-order terms have type ¢, propositions the type prop.

» there is no type annotation such that VQ.M(Q) < (—Q(Q)) is well-typed.
Q needs type « as well as a — prop.
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Standard Semantics for PLQ2

» Definition 3.10. The universe of discourse (also carrier) consists of:

» an arbitrary, non-empty set of individuals D,,
> a fixed set of truth values Dyop = {T,F}, and

> function universes D(o_.g) = Do — Dg.

» Definition 3.11. Interpretation of constants: typed mapping Z: X 7—D (i.e.
I(Xa) € Da)

» Definition 3.12. We call a structure (D,Z), where D is a universe and Z an
interpretation a standard model of PLQ.

» Definition 3.13. A variable assignment is a typed mapping ¢: V7+—D.

» Definition 3.14. A value function is a typed mapping 7, : wif (X7, V7)—=D
with
> I«P|\;T =¥ Iv|zT =7
> T,(AB)=T,(A)(Zs(B))
> Iw(VXaA) =T, iff Icp.[a/X](A) =T for all acD,.

> Definition 3.15. A, valid under ¢, iff Z,(A) = T.

Kohlhace & Rabe: KRMT 108 2023-04-25



Equality

>

>

Definition 3.16 (Leibniz equality). Q“A,B, = VPy— prop-PA < PB
(indiscernability)

Note: VP,_ pop-PA = PB (get the other direction by instantiating P with Q,
where QX & (—PX))

Theorem 3.17. If M = (D,Z) is a standard model, then Z,(Q%) is the identity
relation on D,,.
Notation: We write A = B for QAB(A and B are equal, iff there is no property

P that can tell them apart.)
Proof:

1.

2.

w

T,(QAB) =7,(VP.PA= PB) =T, iff
ILpA[r/P](PA = PB) =T for all I’ED(aﬁprop).

For A =B we have 7, ,/p|(PA) = r(Z,(A)) = F or
Itp.[r/P](PB) = r(IW(B)) =T.

. Thus 7,(QAB) = T.

Let 7, (A) # Z,(B) and r={Z,(A)}€D(a—prop) (exists in a standard
model)

so r(Zy,(A)) =T and r(Z,(B)) =F

T,(QAB) =F, as 7, [,/p|(PA = PB) = F, since

To1r/p|(PA) = r(Z,(A)) =T and Z,, |, /p(PB) = r(Z,(B)) = F.
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Example: Peano Axioms for the Natural Numbers

VVvVvYvYyVvYYVvyyYy

Y7 = {[N:iv — prop], [0:¢], [s:e — ¢]}

NO (0 is a natural number)
VX,.NX = N(sX) (the successor of a natural number is natural)
—(IX,.NX AsX =0) (0 has no predecessor)
VXY, (sX =sY)=X=Y (the successor function is injective)

VP, prop-PO = (YX,.NX = PX = P(sX)) = (V.NY = P(Y))
induction axiom: all properties P, that hold of 0, and with every n for its
successor s(n), hold on all N
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Expressive Formalism for Mathematics

» Example 3.18 (Cantor’s Theorem). The cardinality of a set is smaller than
that of its power set.

» smaller-card(M, N):==(JF.surjective(F, M, N))
> surjective(F. M, N):=(YXcM.IYEN.FY = X)

» Example 3.19 (Simplified Formalization). ~(3F, ,, ,,.VG, ,,.3J,.FJ = G)
» Standard-Benchmark for higher-order theorem provers

» can be proven by Tps and Leo (see below)
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Hilbert-Calculus

» Definition 3.20 (*, Axioms).

» VPorop, Qprop-P = Q = P
> varop- Qprop~, "?prop-(lD:> Qi R) = (P:> Q) = Pé R

» VPurop, Qorop- (7P = Q)= P = Q

» Definition 3.21 (7 inference rules).
Xfree(A) VXo.ANB

Apiop = Bprop A VX A A
B [B/X.](A) V Xy A A A (VX,.B)
» Theorem 3.22. Sound, wrt. standard semantics
» Also Complete?
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Hilbert-Calculus #gq (continued)

» Example 3.23. Valid sentences that are not H-theorems:
» Cantor's Theorem:
=(AF . VG . (VK.NK=NG K)= (AN JA FJ = G))
(There is no surjective mapping from N into the set N— N of natural number
sequences)
> proof attempt fails at the subgoal 3G, ,,.VX,.GX = s(fXX)
» Definition 3.24 (New Axiom Schema). Comprehension axiom
IFa—.p.YXa.F X = Ag (for every variable X, and every term Acwff g(X7, V7))

» Definition 3.25 (new axiom schemata). Extensionality axiom

Ext®®  VFo . 5.VGap. (VX0 FX = GX) = F =G
Ext®  VForop-VGprop-FG < F = G

» correct! complete? cannot be!l [G6d31]
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Way Out: Henkin-Semantics

Observation: Godel's incompleteness theorem only holds for standard
semantics.

Idea: Find generalization that admits complete calculi

Concretely: Generalize so that the carrier only contains those functions that
are requested by the comprehension axioms.

» Theorem 3.26 (Henkin’s theorem). 7, is complete wrt. this semantics.

v

Proof sketch: more models ~ less valid sentences (these are Hq-theorems)

Henkin-models induce sensible measure of completeness for higher-order logic.
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1.3.2 A better Form of Comprehension and
Extensionality
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From Comprehension to S-Conversion

» JF, 3.V Xy.FX = Ag for arbitrary variable X, and term Acwff g(X 7, V)
(for each term A and each variable X there is a function fcD, ), with
f(p(X)) = Zy(A))

» schematic in «, 8, Xo and Ag, very inconvenient for deduction

» Transformation in Hq
> SFa 5 Xe FX = Ag
> VXo.(\Xa.A)X = Ag (3E)

Call the function F whose existence is guaranteed "(AX,.A)"
> (AX..A)B = [B/X]Ag (VE), in particular for Bewff o (X7, V7).
> Definition 3.27. Axiom of § equality: (AX,.A) B = [B/X](Az)
» Idea: Introduce a new class of formulae (A-calculus [Chu40])

2023-04-25
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From Extensionality to 1-Conversion

» Definition 3.28. Extensionality Axiom:
VFaHg.VGaﬁg.(VXa.FX = GX) - F=G

» lIdea: Maybe we can get by with a simplified equality schema here as well.
» Definition 3.29. We say that A and \X,.A X are n-equal, (write

Ao p=, (A XaA X)), iff Xfree(A).
» Theorem 3.30. n-equality and Extensionality are equivalent

» Proof: We show that n-equality is special case of extensionality; the converse
direction is trivial
1. Let VX,.AX = BX, thus AX = BX with VE
2. MXo.-AX = 2\ X,.BX, therefore A = B with
3. Hence VF,_,3.YGo8.(VXa. FX = GX) = F = G by twice V/.

> Axiom of truth values: VF, 5.V Gprop. FG <= F = G unsolved.
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1.3.3 Simply Typed \-Calculus
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Simply typed A-Calculus (Syntax)

>

>
>

Definition 3.31. Signature ¥ 7 = | Joe 724 (includes countably infinite
signatures L5 of Skolem contants).

V7 = Jae7 Va, such that V,, are countably infinite.

Definition 3.32. We call the set wiff (X7, V1) defined by the rules

> YV, UX, C Wﬁra(ZT, VT)

> If Cewff, >[3(Z7',V7') and AEWﬁra(ZT,VT), then C AEWB(ZT,VT)

> If Acewff o (X7, V1), then AXg. Acwff g_o (X7, V7)

the set of well typed formulae of type « over the signature > and use

Wit (X7, V7 ) =acT Wit o (27,1 7) for the set of all well-typed formulae.
Definition 3.33. We will call all occurrences of the variable X in A bound in
AX.A. Variables that are not bound in B are called free in B.

Substitutions are well typed, i.e. o(X,)ewf (X 7,V 1) and capture-avoiding.
Definition 3.34 (Simply Typed A-Calculus). The simply typed A calculus A7
over a signature X7 has the formulae wif (X7, V) (they are called A-terms)
and the following equalities:

> « conversion: (AX.A) =, (AY.[Y/X](A)).

> [ conversion: (AX.A) B=3[B/X](A).

> 1 conversion: (AX.A X)=,A if X¢free(A).
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Simply typed A-Calculus (Notations)

» Application is left-associative:
We abbreviate F A' A ... A" with F(A!, ... A") eliding the brackets and
further with F A" in a kind of vector notation.

» Andrews’ dot Notation: A . stands for a left bracket whose partner is as far
right as is consistent with existing brackets; i.e. A .B C abbreviates A (B C).

» Abstraction is right-associative:
We abbreviate AXT X2, -  AX™A - with AXL. . X".A eliding brackets, and

further to AX".A in a kind of vector notation.

» Quter brackets: Finally, we allow ourselves to elide outer brackets where they
can be inferred.
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—.3,-Equality (Overview)

AX.A
under =, : =
AY.[Y/X](A)

=51 (AX.A) B—5[B/X](A)
—, - (OXAX)—,A

=y

» reduction with {

» Theorem 3.35. SB-reduction is well-typed, terminating and confluent in the
presence of ai-conversion.

» Definition 3.36 (Normal Form). We call a A-term A a normal form (in a
reduction system &), iff no rule (from &) can be applied to A.

» Corollary 3.37. =g,,-reduction yields unique normal forms (up to
=, -equivalence).

Kohlhace & Rabe: KRMT 116 2023-04-25



Syntactic Parts of A-Terms

» Definition 3.38 (Parts of A\-Terms).
We can always write a A-term in the form T = AX1.. XK HAY. . A" where H is
not an application. We call
» H the syntactic head of T
> H(A!,...,A") the matrix of T, and
> 2 X1 . XX (or the sequence X, ..., X*) the binder of T
» Definition 3.39.
Head reduction always has a unique 3 redex

(AX".AY.A(B?,...,B")—=A(AX"[B/Y](A)(B?,...,B"))

» Theorem 3.40. The syntactic heads of 3-normal forms are constant or
variables.

» Definition 3.41. Let A be a A-term, then the syntactic head of the 8-normal
form of A is called the head symbol of A and written as head(A). We call a
A-term a j-projection, iff its head is the j* bound variable.

» Definition 3.42. We call a A\-term a 1) long form, iff its matrix has base type.

» Definition 3.43. 1) Expansion makes 7 long forms

n[(AXE XA =X XTAYE L YTA(YE L Y™)

» Definition 3.44. Long 87 normal form, iff it is 8 normal and 7-long.
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A Test Generator for Higher-Order Unification

» Definition 3.45 (Church Numerals). We define closed A-terms of type
Vi=a— o — o
» Numbers: Church numerals: (n fold iteration of argl starting from arg2)

n=(\Sa0.)\0a. S(S...5(0)...)
——

n

> Addition (N-fold iteration of S from N)

+:=(AN,M,.\Sq 5 0-A0a.NS(MSO))
» Multiplication: (N-fold iteration of MS (=+m) from O)

2=(AN, M, \Sa 5 0:A04.N(MS)O)

» Observation 3.46. Subtraction and (integer) division on Church numberals can
be automted via higher-order unification.

» Example 3.47.
5 — 2 by solving the unification problem (2+x,)=5

» Equation solving for Church numerals yields a very nice generator for test cases
for higher-order unification, as we know which solutions to expect.
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1.3.4 Simply Typed A-Calculus via Inference
Systems
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Simply Typed A\-Calculus as an Inference System: Terms

» Idea: Develop the A-calculus in two steps
> A context-free grammar for “raw A-terms” (for the structure)
> Identify the well-typed A-terms in that (cook them until well-typed)

» Definition 3.48.
A grammar for the raw terms of the simply typed A-calculus:

a = cla—a

pu = | X[c:type] | X.[c:a]
ro::= - |I[xq]

A = | X AL A2 AX,.A

» Then: Define all the operations that are possible at the “raw terms level’, e.g.
realize that signatures and contexts are partial functions to types.
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Simply Typed A-Calculus as an Inference System:

Judgments

» Definition 3.49. Judgments make statements about complex properties of the
syntactic entities defined by the grammar.

» Definition 3.50. Judgments for the simply typed A-calculus

FX:sig Y is a well-formed signature

> Fa:type | ais a well-formed type given the type assumptions in *

Y FT:ctx | Iisa well-formed context given the type assumptions in X
MN-sA: «a A has type « given the type assumptions in ¥ and I
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Simply Typed A\-Calculus as an Inference System: Rules

> Acwif (X7, V), iff TExA: « derivable in

YETM:ctx T(X) =« YET:ctx Z(c) =«

X o wff var e o wff const
MN-sA:B8—a lNsB: 8 . M [X:6lFsA: « F 2b
MSAB: o WEEPP T Xg A B al
» Qops: this looks surprisingly like a natural deduction calculus. (~ Curry

Howard Isomorphism)

» To be complete, we need rules for well-formed signatures, types and contexts
FX:sig
F(X,[a: type]) : sig

FY:sig XFa:type
F(X.[c:al) : sig
YFa:type TF B :type FX:sig () = type

sig empty sig type

F - sig

sig const

typ fi typ start

YF(a— B):type ypin Y Fa:type ypstar
FX:sig i empt Y T :ctx ):l—oz:typele .

TF oo TP Y (I[X:al):ctx o
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Example: A Well-Formed Signature

> Let X:=[ca : type],[f:a — @ — «a], then T is a well-formed signature, since we
have derivations A and B

F-:sig _ A o type](a) = type
— sig type typ start
F o type] : sig [a @ type] F a @ type

and with these we can construct the derivation C

B B
typ fn
B Ja:type] F (o — a) : type
typ fn
A Jo:type]l b (o — a — a) : type
sig const

FX:sig
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Example: A Well-Formed A\-Term

» using ¥ from above, we can show that I:=[X:a] is a well-formed context:

C XY(a)=type
ctx empty —— typ start
Y Fctx Y Fa:type

2 HT:ctx

ctx var

We call this derivation G and use it to show that
> A\X,.f X X is well-typed and has type @ — « in . This is witnessed by the
type derivation

C Y(fl=a—a—a

wff const —————— wif var
Fsfra—a— o M X: a G
wff app  ———— wff var
s X a— « MsX:a
wif app
s X X«
wiff abs

s AXG-F X X o — «
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Bn-Equality by Inference Rules: One-Step Reduction

» One-step Reduction (+<{a, 8.7})
r[X:glFsA:a THeB: 3
s (AX.A) B—4[B/X](A)
MFsA: B — a Xgdom(T)
M AXCAA X LA
My A-'B M5AC: a

wif 3 top

wffn top

t fi
rFsAC..BC = PP
MFxA-1B M5CAa
r I
s CA-1CB pparg
(X Fx A>lB
X Fr e tr abs

My AX.A—1AX.B
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Bn-Equality by Inference Rules: Multi-Step Reduction

» Multi-Step-Reduction (+{«, 3,7})

A iB Ao
M ri ——— MS I
A B TFz A A

s A B Ty B C
e A C

ms trans

» Congruence Relation
r-sA-'B

Fr A=, B
FrA=4B_ s A=, B lFsB=,C
—_—— m
TFsB=, A Y e

€q start

eq trans
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Type Computation: Manage Types Algorithmically

type check: Is TFxA: a?

. type inference: are there I, «, such that
» Questions: MEsA: a?

type reconstruction the above without type

annotations at bound variables?
» prenex fragment makes problems decidable (see Curry Howard)
» Algorithm (Hindley & Milner):
> invert inference rules

» first-order unification,
> universal generalization, minimization
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Example Computation

rule tree constraint
[X:a]
r X8l
[XBlEs X a ThEeAX.X: B — «a -
il - M AXX(AZ.W): a ?Wﬁf,er
[W:8]eT, 2] B3
M [ZAlFsW:é
M= AZW:

» unification: a =8 =~ — 4,
» minimization: I = [W:{]
» Solution: [W:][FsAX. X(AZ.W): Vy.y — §
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1.3.5 The Semantics of the Simply Typed
A-Calculus
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Semantics of A7

» Definition 3.51. We call a collection D7:={D,|acT } a typed collection (of
sets) and a collection fr-: Dr—E&7, a typed function, iff fy: Dy —E,.

» Definition 3.52. A typed collection D+ is called a frame, iff
D(a%ﬁ) - Da — DB
» Definition 3.53. Given a frame D, and a typed function 7: ¥—D, then we
call Z, - wif (X7, V7 )—D the value function induced by 7, iff
<P| ‘P IW'{,T =7
T,(A'B) = T,(A)(Z,(B))
Zyo(AXo-A) is that function fED(, . g), such that f(a) = Z,, 5/ x(A) for all acD,
» Definition 3.54. We call a frame (D,Z) omprehensmn closed or a Y r-algebra,

iff Zo, - wif (X7, V7)—D is total. (every A-term has a value)

2023-04-25
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1.3.6.1 Soundness of the Simply Typed
A-Calculus
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Substitution Value Lemma for \-Terms |

» Lemma 3.55 (Substitution Value Lemma). Let A and B be terms, then
To([B/X](A)) =Ty(A), where ) = ¢.[1,(B)/X]
» Proof: by induction on the depth of A
we have five cases
1. A=X
1.1. Then
Z,([B/X](A)) = Z,(1B/XI(X)) = Z,(B) = $(X) = Zy(X) = Zy(A).
2. A=Y #Xand YeV 1
2.1. then Z,([B/X](A)) = Z,([B/X|(Y)) = Z,(Y) = (V) =(Y) =
Ty(Y) =Ty(A).
3. Aci o
3.1. This is analogous to the last case.
4. A=CD
4.1. then
7,([B/X](A)) = 7,,([B/X](C D)) = 7,,(([B/X](C)) ([B/X](D))) =
7,(B/X1(C)(Z,(1B/X](D))) = Zy(C)(Z4(D)) = Z,(C D) = Z,,(A)
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Substitution Value Lemma for A\-Terms |l

5. A=)Y,.C
5.1. We can assume that X # Y and Y ¢ free(B)
5.2. Thus for all acD,, we have
Zo([B/X](A))(a) = Z,([B/X](AY.C))(a) = Z,(AY.[B/X](C))(a) =
L 1a/v)([B/XI(C)) = Ly (a/v)(C) = Zy(AY.C)(a) = Zy(A)(a)
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Soundness of afn-Equality

» Theorem 3.56. Let A:=(D.T) be a > -algebra and Y ¢free(A), then
To(AX.A) =T, (AY.[Y/X]A) for all assignments .

» Proof: by substitution value lemma

Zo(AY.[Y/X]A)Ca Ly 1av([Y/X](A))
T 1a/x1(A)

— T,(\X.A)Ca
» Theorem 3.57. If A:=(D.Z) is a Y1 -algebra and X not bound in A, then
To((AX.A) B) = Zo([B/X]|(A)).
Proof: by substitution value lemma again
>
TZ,((AX.A)B) = Z,( X.A)QZ,(B)

Lo z,.8)/x1(A)
Zo([B/X](A))
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Soundness of an (continued)

» Theorem 3.58. If Xdfree(A), then T,(AX.A X) =T1,(A) for all ¢.
» Proof: by calculation

T,AXAX)0a = T, ./x(AX)
= Ty ja/x)(A)CLy 1a/x)(X)
= To(A)CT, X (X)) as X¢free(A).
= 7,(A)0a

» Theorem 3.59. afn-equality is sound wrt. > -algebras. (if A=,z,B, then
T ,(A) =T1,(B) for all assignments )
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1.3.6.2 Completeness of afn-Equality
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Normal Forms in the simply typed A-calculus

» Definition 3.60. We call a term Acwif (X 7,V ) a 8 normal form iff there is
no BEWﬁ’—T(ZT,VT) with A—;B.
We call N a 8 normal form of A, iff N is a 8-normal form and A— ;N.
We denote the set of -normal forms with wff (%, VT)L%,,'

» We have just proved that 87n-reduction is terminating and confluent, so we have

» Corollary 3.61 (Normal Forms). Every Acwif (X7,V 1) has a unique j3
normal form (3, long (1 normal form), which we denote by Al (Al;, Al;,)
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Frames and Quotients

» Definition 3.62. Let D be a frame and ~ a typed equivalence relation on D,
then we call ~ a congruence on D, iff f ~ f" and g ~ g’ imply f(g) ~ f'(g’).

> Definition 3.63. We call a congruence ~ functional, iff for all f,gcD, ) the
fact that f(a) ~ g(a) holds for all acD,, implies that f ~ g.

»> Example 3.64. =5 (=3,) is a (functional) congruence on cwff - (%7) by
definition.

» Theorem 3.65. Let DT be a > r-frame and ~ a functional congruence on D,
then the quotient space D/ ~ is a Y1 -frame.

» Proof:

1. D) ~={f.|feD}, define f_(a.):=f(a)_.

2. This only depends on equivalence classes: Let f'ef. and a’ca..

3. Then f(a)_ =f'(a),=f"(a)_=f(d).

4. To see that we have L = g, iff f ~ g, iff f(a) = g(a) since ~ is
functional.

5. This is the case iff f(a)_ = g(a)_, iff fu(a~) = g~(a~) for all acD,, and
thus for all a.eD/ ~.
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Bn-Equivalence as a Functional Congruence

vy

>

>

v

Lemma 3.66. Sn-equality is a functional congruence on wit (X7,V ).

Proof: Let A C=4,B C for all C and X< (V,\free(A) U free(B)).
1. then (in particular) A X=3,B X, and

2.
3.

(AX.A X)=3,(AX.B X), since n-equality acts on subterms.
By definition we have A=, (AX,.A X)=p3,(AX,.B X)=,B.

Definition 3.67. We call an injective substitution o: free(C)—%+ a grounding
substitution for Cewff (X1, V1), iff no o(X) occurs in C.

Observation: They always exist, since all X, are infinite and free(C) is finite.

Theorem 3.68. n-equality is a functional congruence on cwif (X 7).
Proof: We use 7?

1.

Gk wn

Let A, Becwf (.5 (>7), such that A7, B.

As (1 is functional on wif (X7, V), there must be a C with A C#5,B C.
Now let C':=¢(C), for a grounding substitution o.

Any 7 conversion sequence for A C'# 4, B C’ induces one for A C#4,B C.
Thus we have shown that A+, B entails A C'#4,B C'.
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A Herbrand Model for A7

» Definition 3.69. We call 73, (cwffr(ZT)l 777 the ¥ term algebra, if
7°7 = Ids ..

» The name “term algebra” in the previous definition is justified by the following

» Theorem 3.70. 73, is a > 7-algebra

» Proof: We use the work we did above
1.

2.
3.
4.
5.
6.

Note that CWffT(ZT)l,’i,, = cwff r(X7)/=3, and thus a X-frame by ?7
and ?77.

So we only have to show that the value function 777 = Ids _ is total.

Let o be an assignment into cwffT(ZT)L,M.

Note that o:= ¢|;..(a) is a substitution, since free(A) is finite.

A simple induction on the structure of A shows that 777+ (A) = (O'(A))L,jn.
So the value function is total since substitution application is.
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Completetness of afSn-Equality

» Theorem 3.71. A = B is valid in the class of Y.-algebras, iff A= 3,B.

> Proof: For A, B closed this is a simple consequence of the fact that 73, is a
> r-algebra.

1. If A= B isvalid in all X-algebras, it must be in 73, and in particular
Al,, =T1"1(A)=1"1(B) = Bl,, and therefore A= ;,B.

If the equation has free variables, then the argument is more subtle.

2. Let o be a grounding substitution for A and B and ¢ the induced variable
assignment.

3. Thus 77" ,(A) = 777 ,(B) is the Bn-normal form of o(A) and o(B).

4. Since ¢ is a structure preserving homomorphism on well-formed formulae,
@ H(Z77,(A)) is the is the Bn-normal form of both A and B and thus
A=,5,B.
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1.3.6 De Bruijn Indices
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De Bruijn Indices: Nameless Dummies for Bound Variables

» Problem: We consider alphabetically equal A terms as “syntactically equal”.
» ldea: Get rid of variables by replacing them with nameless dummies (numbers).

» Definition 3.72 (Formally).
Raw A-terms with de Bruijn indices are expressions given by changing the last
production in 3.48 to

A = c|n|ALAZ|)A

A variable n is bound if it is in the scope of at least n binders (\); otherwise it is
free. The binding site for a variable n is the nth binder it is in the scope of,
starting from the innermost binder.

» Example 3.73. (\x.\y.z x (Au.u x)) (Aw.w x), becomes
(\\42(A\13)) (A5 1),

» Problem: De Bruijn indices are less readable than standard \ terms.

» Solution: Maintain a Ul with names even when using de Bruijn indices
internally.

» Problem: Substitution and 3 reduction become complicated. (see below)
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De Bruijn Indices: [-Reduction

» Definition 3.74. For 3-reducing (AM) N we must:
1. find variable occurrences n1, nz, ..., ng in M bound by outer A in AM

» Example 3.75. We perform the steps outlined above on (A4 2 (A1 3)) (A5 1):
1. we obtain A\ ny (A1 n2)
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De Bruijn Indices: [-Reduction

» Definition 3.76. For S-reducing (AM) N we must:

1. find variable occurrences n1, nz, ..., ng in M bound by outer A in AM
2. decrement the free variables of M to match the removal of the outer ),

» Example 3.77. We perform the steps outlined above on (A4 2 (A1 3)) (A5 1):

1. we obtain \4 ny (A1 n2)
2. we obtain A3 n1 (A1 n2) decrementing free variables.
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De Bruijn Indices: [-Reduction

» Definition 3.78. For -reducing (AM) N we must:
1. find variable occurrences n1, na, ..., nx in M bound by outer A in AM
2. decrement the free variables of M to match the removal of the outer A,
3. replace n; with N, suitably incrementing the free variables in N each time, to match

the number of A-binders, under which n; occurs.
» Example 3.79. We perform the steps outlined above on (A\4 2 (A1 3)) (A5 1):
1. we obtain A\ ny (A1 n2)

2. we obtain A3 ny (A1 n2) decrementing free variables.
3. we replace X with the argument A5 1.

» 1 is under one A\ ~ replace it with \6 1
» 13 is under two As ~» replace it with A7 1.

The final result is A3 (A6 1) (A1 (A7 1))

| SOME AIGHTE RESLRVED |
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1.3.7 Simple Type Theory
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Higher-Order Logic Revisited

v vvyyy

A\

Idea: introduce special base type prop for truth values
Definition 3.80. We call a X-algebra (D,Z) a Henkin model, iff Dy, = {T, F}.
Definition 3.81. A, valid under ¢, iff Z,(A) =T

Definition 3.82. Connectives in X: =€ 05— prop and
{V,\,=, <, ...} € Lprop—prop—sprop (with the intuitive Z-values)

Definition 3.83. Quantifiers: €Y, rop—prop With Z(M1%)(p) = T, iff
p(a) =T for all acD,,.

Definition 3.84. [Quantified] formulae: V.X,.A stands for [1* (AX,.A).
Tp(VXa-A) = Z(N)(Lp(AXa-A)) = T, iff Ty, [a/x)(A) =T for all acD,,
looks like PLQ (Call any such system HOL ™)
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Higher-Order Abstract Syntax

» Idea: In HOL ™, we already have variable binder: ), use that to treat
quantification.

» Definition 3.85. We assume logical constants I1* and o of type
o — prop — prop.
Regain quantifiers as abbreviations:

(VX0 A) =11 (D XaoA)  (FXaA) =0 (AXa.A)

» Definition 3.86. We must fix the semantics of logical constants:

1. Z(N*)(p) =T, iff p(a) =T for all ac D, (i.e. if p is the universal set)
2. Z(c*)(p) = T, iff p(a) = T for some acD, (i.e. iff p is non-empty)

» With this, we re-obtain the semantics we have given for quantifiers above:
To(VXA) =T,(M" (AX.A)) =Z(M ) (Ze(AX.A)) =T

iff Z,(AX,-A)(a) = Zja/x).0(A) = T for all acD,
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Alternative: HOL™

» only one logical constant ¢*€> .o prop With Z(g%)(a,b) =T, iff a = b.
» Definitions (D) and Notations (N)

A, =B, for g*A.B.

T for gPoP = gProP

F for  AXorop- T = AXorop- Xprop
e for g PP (AX,.T)

VXo-A for % (AX,-A)

A for A)<prop-)\»/prop-()\C';prop~>prop~>prop-GTT — /\Gpropﬁprop—)prop
for A (Aprop) (Bprop)

= for  AXorop-A Yorop- (X = X A Y)
A=B for = (Apop) (Bprop)

= for gP°P F

Y for  AXorop:A Yprop: (=X A =Y)
AVB for  V (Aprop) (Bprop)

IXo-Aprop for  =(VX,.—A)

A, #Bs  for —g* (As) (Ba)

» yield the intuitive meanings for connectives and quantifiers.

Z20=200=20=20=z2000=z2
>
>
oy)
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Henkin's Theorem

» Theorem 3.87 (Henkin’s Theorem). Every Hq-consistent set of sentences has
a model.

» Proof:
1. Let ® be a Hq-consistent set of sentences.
2. Extend ® by adding sentences until ® becoms a Hintikka set H with good
closure properties.
3. Build a term X-algebra as a typed universe and interpret TWFfclprop in
Dprop by setting Z,(A) =T, iff AcH.
» Theorem 3.88 (Completeness Theorem for 7). If & |=A, then &4 A.
Proof: We prove the result by playing with negations.
» 1. If Aisvalid in all models of ®, then ® U {-A} has no model
2. Thus ® U {—A} is inconsistent by (the contrapositive of) Henkins Theorem.

3. So ®F4,,——A by negation introduction and thus ®t, A by negation
elimination.
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Consequences of Henkin's Theorem

» Theorem 3.89 (Compactness). If H |=A, then there is a finite K C H with
KA.

» Theorem 3.90 (Higher-Order Lowenheim/Skolem). If A is satisfiable, then
there is a countable Henkin model M with ME=A.

> Corollary 3.91 (Skolem-Paradox). R is uncountable (by Cantor’s theorem),
but has a countable Henkin model.

» Problem: Is there a contradiction?

» Remark: Look at the exact logical formulation of Cantor’s theorem, what does
that mean in terms of Henkin models!

» Turns Out: There is no contradiction in —(3F : N — R.F surjective)

» The non-existence of surjective functions only entails a cardinality difference for
standard models.
» in Henkin models it only means that D(,_.g) contains no surjective functions.

» Godel Theorems: There is no formal system that can distinguish between
Henkin and standard models.
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Are there Functions at all in Henkin Models?

» In General: All that can be written down! (X 7-algebras are comprehension
closed)
» Otherwise D, could be empty.
» Diorop # 0, as Dprop2{ T, F} as Zy,(VXprop. X V= X) =T and
T o (W Xorop- X A —X) = F.
» What functions we write down?:
» Digoa) # 0, since Ty,(AXa-X)ED (4 q)-
» Dipropsu) =0, iff D, = 0. (AXorop- Y. does not help)
» In General: D(, .3 = (), sometimes! (Curry-Howard-Iso.)
» Lambda-Definable Functions:
> are always total (terminate on any input)
> e.g. on the natural numbers: +, -~ but not —, /, va
» lIdea: Guarantee that D, # () by a constant ceX .
» Problem: But what are good constants that give us mathematically relevant
function universes? (up next)
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More Operators and Axioms for HOL ™

» Definition 3.92. The unary conditional w*€X 0 q—a
W (Aprop)Ba means: “If A, then B

» Definition 3.93. The binary conditional if*€X 05 0 a—a
if (Aprop) (Ba) (Cq) means: “if A, then B else C".
» Definition 3.94. The description operator t*€¥ 4, prop—a
if P is a singleton set, then ¢ (Py— prop) is the (unique) element in P.

» Definition 3.95. The choice operator Y*€X¥ 4, prop—a
if P is non-empty, then v (Po_prop) is an arbitrary element from P.

» Definition 3.96 (Axioms for these Operators).
» unary conditional: Vprop. ¥ Xa.0 = w X = X
» binary conditional: Yprep.VXa, Yo, Za-(p=if @ X Y = X)A (mp=if p Z X = X)
> description operator VPq s prop-(3' Xa-PX) = (VYa.PY = L P =Y)
» choice operator VP prop-(IXa-PX) = (VYo0.PY =~ P =Y)

» lIdea: These operators ensure a much larger supply of functions in Henkin
models.
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More on the Description Operator

» . !is a weak form of the choice operator (only works on singleton sets)
» Alternative Axiom of Descriptions: V.X,..% = X = X.

> use that 7, /x (= X) = {a}

> we only need this for base types # prop

» Define (”P:= = (AXprop-X) or (PP =(AGprop—sprop- G T) or LP"Pi=== T
> 2B —(AHp g propXa-t? (M\Z5.(3Fa .p.HF A F X = 2)))
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1.4 Category Theory
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1.4.1 Introduction
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Common Structure to Mathematical Objects

> Example 4.1. Let A, B, and C be sets, and f: A—~B and g: B—C be
functions. Then g o f is a function and we have functions |d4 and Idg with
l[dpof =f="Foldg.
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Common Structure to Mathematical Objects

» Example 4.5. Let A, B, and C be sets, and f: A—~B and g: B—C be
functions. Then g o f is a function and we have functions |d4 and Idg with
l[dpof =f="Foldg.

» Example 4.6. Let A, B, and C be topological spaces, and f: A—B and
g: B—C be continuous functions. Then go f, Id4, and Idg are continuous and
ldpof =f="fFoldg.

2023-04-25
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Common Structure to Mathematical Objects

> Example 4.9. Let A, B, and C be sets, and f: A—~B and g: B—C be
functions. Then g o f is a function and we have functions |d4 and Idg with
|dAOf:f:fO|dB.

» Example 4.10. Let A, B, and C be topological spaces, and f: A—B and
g: B—C be continuous functions. Then go f, Id4, and Idg are continuous and
|dAOf:f:fO|dB.

» Example 4.11. Let A, B, and C be posets, and f: A—~B and g: B—C be

monotone functions. Then g o f, Ida, and Idg are monotone and
|dAOf:f:fO|C|B.
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Common Structure to Mathematical Objects

>

Example 4.13. Let A, B, and C be sets, and f: A—~B and g: B—C be
functions. Then g o f is a function and we have functions |d4 and Idg with
|dAOf:f:fO|dB.

Example 4.14. Let A, B, and C be topological spaces, and f: A—B and

g: B—C be continuous functions. Then go f, Id4, and Idg are continuous and
|dAOf:f:fO|dB.

Example 4.15. Let A, B, and C be posets, and f: A—~B and g: B—C be
monotone functions. Then g o f, Ida, and Idg are monotone and
|dAOf:f:fO|C|B.

Example 4.16. Let A, B, and C be monoids, and f: A—~B and g: B—C be

monoid homomorphisms. Then g o f, Ida, and Idg are monoid homomorphisms
and ldgof = f = foldg.
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Categories: The Definition

» Definition 4.17.

A category C consists of:

1. A class ob(C) of objects.

2. A class Morc of arrows (also called morphism or map).

3. For each arrow f, two objects which are called domain dom(f) and codomain cod(f)
of f. We write f: dom(f)—>cod(f) and call two arrows f and g composable, iff
dom(f) = cod(g).

4. An associative operation o called composition assigning to each pair (f.g) of
composable arrows another arrow g o f such that dom(g o f) = dom(f) and
cod(gof)=cod(g), i.e. gof:dom(f)—cod(g).

5. For every object A an arrow 14: A— A called the identity morphism, such that for
any f: A>B we have folag =f =1gof.

We write the class of arrows f: A—B as Mor¢ (A, B). The notations

Home (A, B), C(A, B), [A, Blc, and (A, B)¢ are also used.

» Observation 4.18. Many classes of mathematical objects and their natural
(structure-preserving) mappings form categories.

» Definition 4.19. Category theory studies general properties of structures
abstracting away from the concrete objects.
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Categories in KRMT

» Remark: We have already seen various examples of categories in KRMT

» Example 4.20. Types and functions in MMT /LF form a category. (abstract
away from terms)

» Example 4.21. Contexts and substitutions in logics form a category:
A substitution ¢ induces a function from wif(X, I Wsupp(c)) to
wif(Z, I Wintro(o)).

» Example 4.22. MMT theories and theory morphisms form a category:
A theory T defines a language (set of well typed terms) L+, and a theory
morphism from S to T mapping between Ls and L.
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Commonly used Categories

» Definition 4.23. The objects of the category of sets Set are sets and its arrows
f: A—B are the functions.

» Definition 4.24. The objects of the category of topological spaces Top are
topological spaces and its arrows are the continuous functions.

» Definition 4.25. A category C is called small (otherwise large), iff ob(C) and
More consist of sets (not classes).

» Definition 4.26. Let C be a category, then the opposite category (also called
the dual category) C°P is formed by reversing all the arrows of C, i.e.

Morger:={f: B—A|f: A—~BcMorc}
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Functors

» Definition 4.27. Let C and D be categories, then a mapping F from C to D is
called a (covariant) functor, iff F

> associates to each Xcob(C) an object F(X)cob(D)
> associates to each morphism f: X—Y¢&More (X, Y) a morphism

F(f): F(X)—F(Y)eMorp(F(X), F(Y))

such that the following two conditions hold:

> F(lx) = 1f(x) for each Xcob(C).
> F(gof)=F(g)oF(f) for all morphisms f: X—Y and g: Y—Z in C.

That is, functors must preserve identity morphisms and morphism composition.

» Definition 4.28. The category of small categories (denoted as Cat) has all
small categories as objects and functors as arrows.

» Observation 4.29. Cat is itself a large category.

2023-04-25
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1.4.2 Example/Motivation: Natural Numbers in
Category Theory
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Lawvere's Natural Numbers Object

» Recap: In set theory, we define the natural numbers by the five Peano axioms
about N, 0N, and s: N—N.

» In category theory we can give a different answer! (need more terminology)

» Definition 4.30. A natural number object (NNO) in a (Cartesian closed)
category E with terminal object 1 is an object N in E equipped with

» a morphism z: 1N from the terminal object 1 (zero)
» a morphism s: N—N (successor)

such that for every other diagram 1 -1 A 'y Athereis a unique morphism
u: N—A such that the following diagram commutes:

1—2 s N—25N

\ u
q f

A—A

u
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Natural Numbers = natural number object in Set

» Theorem 4.31. The natural number object in Set is isomorphic to Peano’s N.
» Peano's N by the Recursion Theorem [ML86, §l1.3].
» Lemma 4.32. The natural number object (N, z, s) in Set obeys Peano's axioms.

» Proof:

1. For P1 note that 1 in Set is a singleton set {a}, and any function z: 1N
identifies an element z(a) (let's call it z as well) in N.

2. For P2 note that s in Set is a function.

3. For P3 assume s(n) = z and consider a diagram 1 — A L A with
A= {e,d} and u(e) = u(d) = d. Then there is a function f: N—A such
that f(z) = e and f(s(n)) = u(f(n)). But if s(n) = z then
f(s(n)) =e#d=u(f(n)).

4. Injectivity of s (P4) is left as an exercise.

5. P5, see 77
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The Language of Diagrams

» Definition 4.33. A diagram in a category E is a directed graph, where the nodes
are objects of E and the edges are arrows of E connecting the respective objects.
Diagrams often use dashed arrows to signify unique existence of arrows.

» Definition 4.34.

Let D be a diagram, then we say that D commutes (or is commuative), iff for
any two paths f1,...,f, and g1, ..., gm with the same start and end in D we

have f,o0...0f1 =gmo...0g1.
» Example 4.35.

Let f: A+B, g: A+C, u: C»D,and v: B+Dina At g
category C, then we say that the diagram on the right ig lv
commutes, iff fov =gou. u
C——D
» Definition 4.36.
f f
A—B We treat the left diagram as an A—B
iu abbreviation of the right one. llA g iU
D A—— D
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Diagram Chase: the Proof Method in Category Theory

» Definition 4.37 (Diagram Chase in Small Categories with Functions).

If C is small and f, g, u, and v are functions (e.g. in f

In Set), the diagram above commutes, iff the A——B
commutativity equation v(f(a)) = u(g(a)) holds for lg lV
all acA.

c—25D

We use the commutativity equation (and other properties of arrows) in the proof
method of diagram chase (or diagrammatic search), which involves “chasing”
elements around the diagram, until the desired element or result is constructed
or verified.

» Example 4.38.

The diagram on the right commutes, iff X y f' v
k(g(f(x))) = k(h(x)) = g'(f'(f(x))) for \ lg le
all xeX.

Z *> Vv
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Natural Number Objects in Set: Induction |

» Lemma 4.39. The natural number object in Set is inductive: If AC N and
from zeN and ac A we obtain s(a)cA we obtain A = N.

» Proof: We translate the assumptions to diagrams and conduct a diagram chase.

1.

2.

3.

We extend the NNO diagram with an inclusion function i: A—N that
corresponds to A C N. Note that every cell commutes in the diagram on

the left.

z S
—

11— N N
11l z ! Sla v z s
1 A A l1—— N——N
11l z ii ii 11l z llw llm
l1—— N—N 14>NT>N

S

Note that s|, : A—A as acA implies s(a)cA. (induction step assumption)
Trivially, also the diagram on the right commutes, so by uniqueness in
NNO, we have jo u = 1.

Given two composable functions f and g, if f o g is the identity, then f is
injective.
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Natural Number Objects in Set: Induction |l

4. So U: N—A is injective, in other words: N C A, and thus A =N.
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Uniqueness of Natural Numbers

» Theorem 4.40. The natural number object is uniquely determined up to
isomorphism in a category.

’
s

» Proof: We prove that if there is another diagram 1 LG NN N, then N and
N’ are isomorphic.
1. We show that there are functions f: N—N’ and f’: N'—N, such that
fof = |d]~r;;/ and f'of = |d{:::].
2. We have the following two commuting diagrams

z s
1 N N
ST
z s z s
11— N —— N 1 N N
11l Lf’ Lf’ 11l lll\%{ llr::;
z z
1 N S N 1 N S N

The left one comes from the universal property of 1 - N — N and

1 25 IV =5 IV, the right one by construction. hence ' o f = 1.
3. We obtain f o f’ = 1, by a similar argument.
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1.4.3 Universal Constructions in Category
Theory
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Initial and Terminal Objects

» Definition 4.41. Let C be a category, then we call an object /€ob(C) initial
(also cofinal or universal and written as 0), iff for every X<ob(C) there is exactly
one arrow a: [—X. If every arrow into [ is an isomorphism, then [ is called
strict initial object.

Definition 4.42. An object Tcob(C) is called terminal or final, iff for every
Xeob(C) there is exactly one arrow a: X—T. A terminal object is also called a
terminator and write it as 1.

» Observation 4.43. Initial and terminal objects are unique up to isomorphism, if
they exist at all. (they need not exist in all categories)

» Example 4.44. In Set the initial object is the empty set, while the terminal
object is the (unique up to isomorphism) singleton set.

» Remark: We can think of the initial and terminal objects the category-theoretic
generalizations (“universal characterizations”) of the empty and singleton sets:
they are characterized by objects and arrows only.
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Pushouts: Unions on Steroids

» Question: Can we also characterize operations like union universally?
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Pushouts: Unions on Steroids

» Question: Can we also characterize operations like union universally?

» ldea: In AU B, we use AN B twice.
We have AN B C Aand AN B C B, which we can

express with arrows (inclusions) AN B <45 A and A B
AN B <2 B. Similarly we have A C AU B and

B C AU B which we express as A <2 AU B and

B <& AUB.
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Pushouts: Unions on Steroids

» Question: Can we also characterize operations like union universally?
» ldea: In AU B, we use AN B twice.
We have AN B C Aand AN B C B, which we can

express with arrows (inclusions) AN B <45 A and A B
AN B <2 B. Similarly we have A C AU B and

B C AU B which we express as A <2 AU B and

B <% AUB.

Definition 4.47.Let C be a category, then the pushout of morphisms f: Z—X
and g: Z—Y consists of an object P together with two morphisms ir: X—P
and i1 Y—P, such that the left diagram below commutes and that (P, ir, ig) is
universal with respect to this diagram — i.e., for any other such set (Q. ir, ig) for

which the following diagram commutes, there must exist a unique u: P—Q also
making the diagram commute, i.e.

)

Yy — P
Tg Tllf
f
Z— X
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Pushouts in Set

>

>

As with all universal constructions, the pushout, if it exists, is unique up to a
unique isomorphism.

If X, Y, and Z are sets, and f: Z—X and g: Z—Y are function, then the
pushout of f and g is the disjoint union X & Y, where elements sharing a
common preimage (in Z) are identified, i.e. P = (X W Y)/ ~, where ~ is the
finest equivalence relation such that ¢1(f(z)) ~ 12(g(2)).

In particular: if X, YCW for some larger set W, Z =X NY, and f and g the

inclusions of Z into X and Y/, then the pushout can be canonically identified
with X U Y.
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Product Objects and Exponentials in Categories

» Question: Can we also characterize functions (function spaces) in categories?
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Product Objects and Exponentials in Categories

» Question: Can we also characterize functions (function spaces) in categories?

» ldea: Functions are sets of pairs with additional properties (left totality and
right uniqueness)
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Product Objects and Exponentials in Categories

» Question: Can we also characterize functions (function spaces) in categories?

» ldea: Functions are sets of pairs with additional properties (left totality and
right uniqueness)

» Definition 4.50. Let C be a category and X, Xoc0b(C). Then we call an object
X together with two morphisms my: X— X1 and mp: X— X5 the product of Xy

and X5 and write it as X7 x X, if it satisfies the following universal property:
For every object Y and pair of morphisms

f1: Y—=Xy and fo: Y— X5 there exists a unique
morphism f: Y— X1 x X, such that the diagram
on the right commutes:

f1 fo

f.
X1<;X1XX2?>X2
1 )

The unique morphism f is called the product of morphisms f1 and 75 and is
denoted (f1,f2). The morphisms 71 and 7 are called the (canonical) projection
or projection morphism.
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Products in Set and Top

» Example 4.51. In Set, the product is the Cartesian product: Given sets X; and
X, then we have the projections 7;: X; x Xo—X;. Given any set Y with
functions f;: Z—X;, the universal arrow f is defined as
foY=Xyx Xay—(hly) Aly)).

» Example 4.52.

In Top, the product of two objects is the product topology.
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Exponentials in Categories

» Definition 4.53. If A x B exists for all objects A and B in a category C, then we
say that C has all binary products.

» Definition 4.54. Let C be a category that has all binary products and
Z.Y¢cob(C), then we call an object ZY together with a morphism
eval: ZY x Y Z is called an exponential object, iff for any Xcob(C) and
g: X x Y-—+ZcMore there is a unique morphism Ag: X—ZY (called the
transpose of g) such that the following diagram commutes:

X X <Y
gl Dgly)t N8
zY Yy ——>27
eval

» Lemma 4.55. In Set, ZY =Y — Z and eval: ZY x Y —Z;(f.y)—f(y). For
any map g: X x Y—Z the map \g: X—ZY is the Curried form of g:

Ag(x)(y) = g(x.y).
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Cartesian Closed Categories

» Definition 4.56. A category C is called Cartesian closed (a CCC), iff it satisfies

the following three properties:

» C has a terminal object.
» Any two objects X and Y of C have a product X x Y in C.

> Any two objects Y and Z of C have an exponential ZY in C.
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1.5 Axiomatic Set Theory (ZFC)
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1.5.1 Naive Set Theory
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(Naive) Set Theory [Can95; Can97]

» Definition 5.1. A set is “everything that can form a unity in the face of God".
(Georg Cantor (x1845, 11918))

»> Example 5.2. (determination by elementhood relation €)
> “the set that consists of the number 7 and the prime divisors of 510510"
> {7.c}, {1,2,3,4,5n,.. .}, {x|x is an integer}, {X|P(X)}

» Questions (extensional/intensional):
> Ifc=7,is{7,c} ={7}7
> Is {X|XEN, X # X} = {X|XeN, X?<0}?
» vyes ~» extensional, no ~» intensional,

2023-04-25
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(Naive) Set Theory: Formalization

» Idea: Use first-order logic (with equality)
> Signature: X:={€...}
» Extensionality: VM, N.M = N < (VX.(XeM) < (XeN))(two sets are equal, iff they
have the same elements)
» Comprehension: IM.VX.(XeM) < E (all sets that we can write down exist)
» Note: The comprehension axiom is schematic in expression E!
» Idea: Define set theoretic concepts from € as signature extensions
Union Uerh | VM N X.(Xe(MUN)) < (XeM v XEN)
Intersection | NeX) [ VM, N, X.(Xe(M N N)) < (XeM A XEN)
Empty set | 0eXf | —-(3X.Xe0)

(sets are individuals)

and so on.

2023-04-25
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(Naive) Set Theory (Problems)

v

v

vyvyy

Example 5.3 (The set of all set and friends).

{M|M set}, {M|M set, Mc M}, .

Definition 5.4 (Problem). Russell's Antinomy:

M:={M|M set, MZM}

the set M of all sets that do not contain themselves.

Question: Is McM? Answer: McM iff MEM.

What happened?: We have written something down that makes problems

Solutions: Define away the problems:

weaker comprehension

axiomatic set theory

now

weaker properties

higher-order logic

done

non-standard semantics

domain theory [Scott]

another time
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1.5.2 ZFC Axioms
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Axiomatic Set Theory in First-Order Logic

» Idea: Avoid paradoxes by cautious (axiomatic) comprehension. ([Zer08])

Ex | IX. X=X There is a set
Ext | VM,N.M = N < (VX.(XeM) < (XeN)) | Extensionality
Sep | VN.GM.VZ.(ZeM) <= (ZeN N E)

From a given set N we can separate all members described by
expression E. (which may contain Z)

» Theorem 5.5. VM N.(M C N)A(NCM)=M=N

» Theorem 5.6. M is uniquely determined in Sep
Proof sketch: With Ext

> Notation: Write {XcN|E} for the set M guaranteed by Sep.
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Quality Control

» Question: Is ZFC good? (make this more precise under various views)

foundational: Is ZFC sufficient for mathematics?

adequate: is the ZFC notion of sets adequate?

formal: is ZFC consistent?

ambitious: Is ZFC complete?

pragmatic: Is the formalization convenient?

computational: does the formalization yield computation-guiding structure?

» Questions like these help us determine the quality of a foundational system or
theory.
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How about Russel’'s Antinomy?

» Theorem 5.7. There is no universal set.

» Proof:
1. For each set M, there is a set Mg:={XcM | X<X} by Sep.
2. Show YM.Mg¢ZM.
3. If MreM, then Mgr& Mg, (also if MRgM)
4. Thus MRQM or MgreMg.

» Intuition: To get the paradox we would have to separate from the universal set
A, to get Ag.

» Great, then we can continue developing our set theory!
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Are there Interesting Sets at all?

» Question: Are there Interesting Sets at all?

» Answer: Yes, e.g. the empty set:
> Let M be a set (there is one by Ex; we do not need to know what it is)
» Define :={XeM | X # X}.
» () is empty and uniquely determined by Ext.

» Even more: Intersections: M N N:={XeM|XeN}

» Question: How about M U N? or N7

» Answer: we do not know they exist yet! (need more axioms)

Hint: consider D, = {(). {0}, {{0}}....}
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Is Set theory enough? ~» Nicolas Bourbaki

» |s it possible to develop all of Mathematics from set theory?
~ N. Bourbaki: Eléments de Mathématiqueg  (there is only one mathematics)
» Original Goal: A modern textbook on calculus.
» Result: 40 volumes in nine books from 1939 to 1968
Set Theory [Bou68] Functions of one real variable Commutative Algebra
Algebra [Bou74] Integration Lie Theory
Topology [Bou89] Topological Vector Spaces Spectral Theory
» Contents:

» Starting from set theory all of the fields above are developed.
» All proofs are carried out, no references to other books.
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The Axioms for Set Union

v

Axiom 5.8 (Small Union Axiom UAX). For any sets M and N there is a set
W, that contains all elements of M and N.
VM, N.SW.VX.(XeMV XeN) = XeW

Definition 5.9. MU N:={XcW | XcM Vv XeN} (exists by Sep.)

Axiom 5.10 (Large Union Axiom | JAx). For each set M there is a set W,
that contains the elements of all elements of M.
YM.AWNVX,Y.YEM = XcY = XecW

Definition 5.11. (M) ={X|ZY.YeM A XcY} (exists by Sep.)
This also gives us intersections over families (without another axiom):
Definition 5.12.

((\M):={Z<| IM[VX.XEM = ZeX)
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The Power Set Axiom

v

Axiom 5.13 (Power Set Axiom). For each set M there is a set W that
contains all subsets of M: pAx:=(VM.IW.VX.(XCM) = XcW)

Definition 5.14. Power Set: p(M):={X|XCM} (Exists by Sep.)
Definition 5.15. Singleton set: {X}:={Yep(X)| X =Y}
Axiom 5.16 (Pair Set (Axiom)). (is often assumed instead of UAXx)

Given sets M and N there is a set W that contains exactly the elements M and
N: VM, NESW.YX(XEW) < (X = N) V(X = M))

Is derivable from pAx: {M,N}:={M} U {N}.

Definition 5.17 (Finite Sets). {X. Y, Z}:={X. Y} U {Z}...

Theorem 5.18. VZ Xy, ..., X (ZE{ X, ..., Xoh) e (Z=X1V...VZ=X,)
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The Foundation Axiom

» Axiom 5.19 (The Foundation Axiom Fund).
Every non-empty set has a c-minimal element,.
VX (X Z£D)= (FY.YEX AN~(TFZ.ZeEX N ZEY))

» Theorem 5.20. There are no infinite descendig chains ... X5, X1, Xy and thus
no cycles ... X1, Xo, ..., X5, X1, Xo.

» Definition 5.21. Fund guarantees a hierarchical structure (von Neumann
Hierarchy) of the universe.
1. 0. order: 0,
2. 1. order: {0},
3. 2. order: all subsets of 1. order, - --

» Note: In contrast to a Russel-style typing where sets of differernt type are
distinct, this categorization is cummulative.
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The Infinity Axiom

>

v

We already know a lot of sets

> eg. 0, {0}, {{0}}, ... (iterated singleton set)
> or 0, {0}, {0,{0}}, ... (iterated pair set)

But Does the set N of all members of these sequences?

Axiom 5.22 (Infinity Axiom coAx).
There is a set that contains () and with each X also X U {X}.
IMODEM A (VZ.ZeM = (Z U{Z})eM).

Definition 5.23. M is inductive: Ind(M):=0eM A (VZ.ZeM = (ZU{Z})eM).
Definition 5.24. Set of the Inductive Set: w:={Z|VW.Ind(W) = ZcW}
Theorem 5.25. w is inductive.
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The Replacement Axiom

» We have w, (M), but not {w, p(w), p(p(w)),...}.

»> Axiom 5.26 (The Replacement Axiom (Schema): Rep).
If for each X there is exactly one Y with property P(X,Y), then for each set U,
that contains these X, there is a set V' that contains the respective Y .
(VX.FY.P(X,Y)) = (VU.IV.YX, Y. XEUAP(X,Y) = YeV)

» Intuitively: A right-unique property P induces a replacement
vU.AV.V = {F(X)|XeU}.

» Example 5.27. Let U= {1,{2,3}} and P(X & Y) < (VZ.ZcY = Z = X),
then the induced function F maps each X to the set V that contains X, i.e.

V= {X}XeU = {1}, ({23} ]}
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Zermelo Fraenkel Set Theory

» Definition 5.28 (Zermelo Fraenkel Set Theory).
We call the first-order theory given by the axioms below Zermelo/Fraenkel set
theory and denote it by ZF.

Ex | IX.X=X

Ext | VM. N.M = N < (VX.(XcM) < (XEN))

Sep | YN.TM.VZ.(ZEM) < (ZEN A E)

UAX | VM. NIW.VX.(XEM v XEN) — XeW

UAx | VMIW.IX.Y.YEM = XY — XcW

OAX | VMW TX.(XCM) = XeW

~oAx | IMOEM A (VZ.ZEM = (Z U {Z})eM)

Rep | (VX.TY.P(X,Y)) = (VUSV.VX. Y.XcU AP(X,Y) = YeV)
Fund | VX.(X Z0) = QY.YeX A ~(3Z.ZEX A ZEY))
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The Axiom of Choice

>

>

>

Axiom 5.29 (The axiom of Choice :AC).

For each set X of non-empty, pairwise disjoint subsets there is a set that
contains exactly one element of each element of X.

VXY, ZYEXNZeX = (YA DO)AN (Y =ZVvYNZ=

0)= (AV.VeX = (FUNV =1{})))

This axiom assumes the existence of a set of representatives, even if we cannot
give a construction for it. ~ we can “pick out” an arbitrary element.

Reasons for AC:

» Neither ZF - AC, nor ZF F =AC
» So it does not harm?

Definition 5.30 (Zermelo Fraenkel Set Theory with Choice).
The theory ZF together with AC is called ZF with choice and denoted as ZFC.
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1.5.3 ZFC Applications
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Limits of ZFC

» There is no set whose cardinality is strictly between that of integers and real
numbers.

» Theorem 5.31.
If ZFC s consistent, then neither CH nor —=CH can be derived. (CH is
independent of ZFC)

» The axiomatzation of ZFC does not suffice.

» There are other examples like this.
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Ordered Pairs

vvvyyVvVyy

Empirically: In ZFC we can define all mathematical concepts.

For Instance: We would like a set that behaves like an odererd pair.
Definition 5.32. Define (X, Y):={{X}.{X.Y}}

Lemma 5.33. (X,Y)=(U,V)=X=UAY =V

Lemma 5.34. UcX A VeY = (U, V)cp(p(XUY))

Definition 5.35. Left projection: m/(X) = { % :]i Sg'ii:p;iﬁj’ )

Definition 5.36. Right projection 7, analogous.
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Relations

» All mathematical objects are represented by sets in ZFC, in particular relations
» Definition 5.37. The Cartesian product of X and Y

X xY:={Zcp(p(XUY))|Zis ordered pair with m/(Z)cX A7, (Z2)eY}

A relation is a subset of a Cartesian product.

» Definition 5.38. The domain and codomain of a function are defined as usual:

m(Z) ZeX} if X is a relation

Dom(X) = {{'( ) .
m.(Z)|ZeX} if X is a relation

coDom(X) = { {m(2)] é clse

but they (as first-order functions) must be total, so we (arbitrarily) extend them
by the empty set for non-relations
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Functions

» Definition 5.39. A function f from X to Y is a right unique relation with
Dom(f) = X and coDom(f) = Y; write f: X—Y.

» Definition 5.40. function application:
Y if f function and ((X, Y)ef)

f(X):{ 0 else
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Domain Language vs. Representation Language

» Note: Relations and functions are objects of set theory, ZFC€< is a predicate of
the representation language.

» Predicates and functions of the representation language can be expressed in the
object language:
> VA.SR.R = {(U,V)|UcAAN VEANA p(UA V)} for all predicates p.
> VA.SF.F = {(X, f(X))|X€A} for all functions f.

» As the natural numbers can be epxressed in set theory, the logical calculus can
be expressed by Gdédelization.
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Chapter 2
Aspects of Knowledge Representation for
Mathematics
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2.1 Project Tetrapod
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The way we do math will change dramatically

» Definition 1.1 (Doing Math). Buchberger's Math creativity spiral
Publication Application

The

Creativity .
Spiral Mathematical
Creativity
Spiral

[Buchberger 1995]

Com- Teaching

munication

» Every step will be supported by mathematical software systems

» Towards an infrastructure for web-based mathematics!
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Knowledge Representation is only Part of "Doing Math"

» Definition 1.2. One of the key insights is that the mathematics ecosystem
involves a body of knowledge externalized in an ontology that provides
organization and combines the following four aspects:

» Inference: exploring theories, formulating conjectures, and constructing proofs

» Computation: simplifying mathematical objects, re contextualizing conjectures. ..

» Concretization: collecting concrete examples/models, applying mathematical
knowledge to real-world problems and situations.

» Narration: devising both informal and formal languages for expressing mathematical
ideas, visualizing mathematical data, presenting mathematical developments,
organizing and interconnecting mathematical knowledge

oA s
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“Doing Math™: as a Tetrapod

» We call the endeavour of creating a computer-supported mathematical
ecosystem “Project tetrapod” as it needs to stand on four legs.

Concretization

Organization
Narration o Inference

Computation
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2.2 The Flexiformalist Program: Introduction
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Background: Mathematical Documents

» Mathematics plays a fundamental role in Science, Technology, and Engineering
(learn from Math, apply for STEM)

» Mathematical knowledge is rich in content, sophisticated in structure, and
technical in presentation,

» its conservation, dissemination, and utilization constitutes a challenge for the
community and an attractive line of inquiry.

» Challenge: How can/should we do mathematics in the 21t century?

» Mathematical knowledge and objects are transported by documents

» Three levels of electronic documents:
0. printed (for archival purposes) (~90%)
1. digitized (usually from print) (~50%)
2. presentational: encoded text interspersed with presentation markup (~20%)
3. semantic: encoded text with functional markup for the meaning (<£0.1%)

transforming down is simple, transforming up needs humans or Al.

» Observation: Computer support for access, aggregation, and application is
(largely) restricted to the semantic level.

» This talk: How do we do maths and math documents at the semantic level?
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Hilbert's (Formalist) Program

» Definition 2.1. Hilbert's Program called for a foundation of mathematics with

> A formal system that can express all of mathematics  (language, models, calculus)
» Completeness: all valid mathematical statements can be proved in the formalism.
> Consistency: a proof that no contradiction can be obtained in the formalism of

mathematics.
» Decidability: algorithm for deciding the truth or falsity of any mathematical

statement.
» Originally proposed as “metamathematics” by David Hilbert in 1920.

» Evaluation:
The program was

» successful in that FOL4+ZFC is a foundation [G5d30] (there are others)

» disappointing for completeness [G6d31], consistency [God31], decidability [Chu36;
Tur36]

» inspiring for computer scientists building theorem provers

> largely irrelevant to current mathematicians (I want to address this!)
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Formality in Logic and Artificial Intelligence

>
>

Al, Philosophy, and Math identify formal representations with Logic
Definition 2.2. A formal system S:=(L£, M,C) consists of

> a (computable) formal language £:=L(S) (grammar for words/sentences)
> a model theory M, (a mapping into (some) world)
» and a sound (complete?) proof calculus C (a syntactic method of establishing truth)

We use § for the class of all formal systems.

Reasoning in a formal system proceeds like a chess game: chaining “moves”
allowed by the proof calculus via syntactic (depending only on the form) criteria.

Observation: computers need £ and C  (adequacy hinges on relation to M)

Formality is a “all-or-nothing property”. (a single “clearly” can ruin a formal
proof)

Empirically: formalization is not always achievable (too tedious for the gain!)

Humans can draw conclusions from informal (not £) representations by other
means (not C).
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The miracle of logics

» Purely formal derivations are true in the real world!
Real World

World of Logics

V x (human x — mortal x) =
7\

it's true!
human Socrates /1“ ) n
I\ |
\
it's true! /,\/ \
RN

A
N
U S
57}
N - it'’s true!

mortal Socrates it must be true --
it's proven!

2023-04-25
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Formalization in Mathematical Practice

» To formalize maths in a formal system S, we need to choose a foundation, i.e.
a foundational S theory, e.g. a set theory like ZFC.

» Formality is an all-or-nothing property (a single “obviously” can ruin it.)
» Almost all mathematical documents are informal in 4 ways:
» the foundation is unspecified (they are essentially equivalent)
» the language is informal (essentially opaque to MKM algos.)
> even formulae are informal (presentation markup)
» context references are underspecified

» mathematical objects and concepts are often identified by name
> statements (citations of definitions, theorems, and proofs) underspecified
P theories and theory reuse not marked up at all

» The gold standard of mathematical communication is “rigor” (cf. [BCO1])
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Formalization in Mathematical Practice

» To formalize maths in a formal system S, we need to choose a foundation, i.e.
a foundational S theory, e.g. a set theory like ZFC.

» Formality is an all-or-nothing property (a single “obviously” can ruin it.)
» Almost all mathematical documents are informal in 4 ways:
» The gold standard of mathematical communication is “rigor” (cf. [BCO1])

» Definition 2.5. We call a mathematical document rigorous, if it could be formalized
in a formal system given enough resources.

» This possibility is almost always unconsummated

» Why?: There are four factors that disincentivize formalization for Maths
propaganda: Maths is done with pen and paper
tedium: de Bruijn factors ~ 4 for current systems (details in [Wiel2])
inflexibility: formalization requires commitment to formal system and foundation
proof verification useless: peer reviewing works just fine for Math

» Definition 2.6. The de Bruijn factor is the quotient of the lengths of the
formalization and the original text.
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Formalization in Mathematical Practice

» To formalize maths in a formal system S, we need to choose a foundation, i.e.
a foundational S theory, e.g. a set theory like ZFC.

» Formality is an all-or-nothing property (a single “obviously” can ruin it.)
» Almost all mathematical documents are informal in 4 ways:
» The gold standard of mathematical communication is “rigor” (cf. [BCO1])

» Definition 2.7. We call a mathematical document rigorous, if it could be formalized
in a formal system given enough resources.

» This possibility is almost always unconsummated

» Why?: There are four factors that disincentivize formalization for Maths

propaganda: Maths is done with pen and paper
tedium: de Bruijn factors ~ 4 for current systems (details in [Wiel2])
inflexibility: formalization requires commitment to formal system and foundation
proof verification useless: peer reviewing works just fine for Math
> Definition 2.8. The de Bruijn factor is the quotient of the lengths of the
formalization and the original text.
» In Effect: Hilbert's program has been comforting but useless

» Question: What can we do to change this?
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Migration by Stepwise Formalization

» Full Formalization is hard (we have to commit, make explicit)
» Let's look at documents and document collections.
number
®
formality
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Migration by Stepwise Formalization

» Full Formalization is hard (we have to commit, make explicit)

» Let's look at documents and document collections.
» Partial formalization allows us to

» formalize stepwise, and
» be flexible about the depth of formalization.

number

formality
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Functionality of Flexiformal Services

» Generally: Flexiformal services deliver according to formality level (GIGO:
Garbage in ~ Garbage out!)

» But: Services have differing functionality profiles.

A
: x
> Math Search works well on informal . & /|
. [l
documents £ & > [
e &7 ok |
» Change management only needs S| & |
. . + & / I
dependency information 9 8 s/ |
3 & 1
» Proof search needs theorem = &Y
f lized in logi @ 5
ormalized in logic e &
KON
. |
» Proof checking needs formal proof too P |
1 5
Formality
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The Flexiformalist Program (Details in [Koh13])

» The development of a regime of partially formalizing
» mathematical knowledge into a modular ontology of mathematical theories (content
commons), and
» mathematical documents by semantic annotations and links into the content
commons (semantic documents),

» The establishment of a software infrastructure with

> a distributed network of archives that manage the content commons and collections
of semantic documents,

» semantic web services that perform tasks to support current and future mathematic
practices

» active document players that present semantic documents to readers and give access
to respective

» the re-development of comprehensive part of mathematical knowledge and the
mathematical documents that carries it into a flexiformal digital library of
mathematics.
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Applications!

» A Business model for a Semantic Web for Math/Science?
» For uptake it is essential to match the return to the investment!

Return e

@%‘./ Formal Methods
Q

.X:)ur Challenge
Web 20 -
[ ] e

Math on the
. Semantic Web (today)
,~"Web 1.0

Investment

» Need to move the technology up (carrots) and left (easier)
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2.3 What is formality?
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The Process of Formalization

» Formalization in mathematics can be seen as a sequence of documents

an informal proof sketch on a blackboard, and

a high-level run-through of the essentials of a proof in a colloquium talk,

and the speaker’s notes that contain all the details that are glossed over in

a fully rigorous proof published in a journal, which may lead to

5. a mechanical verification of the proof in a proof checker. (This is formall)

b S =

» Intuitively, the steps get ever more formal, but our definition cannot predict this.

» Example 3.1. A recap of concepts from the intro of [CS09]
An accelerated Turing machine (sometimes called Zeno machine) is a Turing

machine that takes 2~" units of time (say seconds) to perform its n* step.

» Example 3.2. A rigorous definition of the same concept.

Definition 1.3: An accelerated Turing machine is a Turing machine M =
(X,I,S.s,,0,8) working with with a computational time structure T =
{titi.<,+) with T C Q4 (Q4 is the set of non-negative rationals) such

that D .oy ti < 0.
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Multiple Dimensions in Formalization |

» Example 3.3 (SAMS Case Study). Formalize a set of robot design documents
down to implementation and up again to documentation.

System

Specification

Module ‘ Reviews
Specification /

Manual

Certification

‘ Implementation “ Verification ‘

The V-Model requires explicit cross-references between the levels

» QObservation: The links between the document fragments are formalized by a
graph structure for machine support. (e.g. requirements tracing)
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Multiple Dimensions in Formalization Il

» We ended with a complex, multi-dimensional collection domain model

Project

Document Structures Code Structures
sEmsmm -y PR

‘e .
TumsmssmmmEEEmEEEEEE®

hee

Defijre

*
‘sasssEsEssEEsEEEEEEEEEEEEEEEEEEEEEEEEEnEnt

Stru &
5 D 4 .
= .Document J= E
] g .
- P r
: : :
H 1 .
Logical Structures = . has &
enu CEEETRTRTTY B ) n "
B . : _J :
. / . -
L) imports . b N
. . *fecsssnnsnnnat
1 home- - mightBe njgfitBe
L Theory . ightBe
L - Collection imightBe
1 - Structures
. is ¢
H H Object Structures
' ] fomnsnnnnsnma,
i ; ke
H H . “
: (Definition | Example | : hes- :
Ll has- " - Category H
H H . - - .
| Def . . Assertion,,, Axiom,,, .
5 : : (Definition,, ) [ Example,,, |
. 0 .
.
H
H
.
.

TR e e e Eee e

.
¢

» |n particular, the formalization process was linear in the dimensions at best.
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What is Informal Mathematical Knowledge

o=
< Expfess‘on

» Idea: Informal knowledge could be formalized (but
isn't yet!)

» Definition 3.4. The meaning of a knowledge item
is the set of all its formalizations.

» Problem: What is the space of formalizations?

» Definition 3.5. The formal space is the set
F:={(5,e)|5c5,ecL(S)}, where § is the class of
formal systems and £(S) is the language of S. (i.e.
every formal expression is a point in F)

«<——uno-~Qor —>

» Different Logics correspond to different bands
» The meaning of D is a set Z(D) C F. o *

. . . . 1
» D can be formalized in multiple logics Ao
Z(D) forms a cross-section of logic-bands.
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A Formality Ordering on F

pe

» Stepwise formalization looks like this:
AN
D= D1 % ®
N~
L_—rg5pact

Document Forrf‘al pac
E Space }
» Definition 3.6. D is more formal than D’ (write D<<D’), iff Z(D)CZ(D').

» This partial ordering relation answers the question of “graded formality” or the

nature of “stepwise formalization” raised above.

2023-04-25
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Stepwise Formalization in Multiple Dimensions

» Empirically: Formalization is a stepwise process of (order of steps may vary)

» spotting semantic objects (from the surrounding text)
(e.g. assigning to home theories)

» chunking: grouping them for re use
(this is used by semantic services)

> relating: making their relationships explicit

» In multi-dimensional situations:

> any formalization step on D trims Z(D).
» not all “steps’ are comparable in <<

» but per-dimension formalization is confluent

» Observation: This is the normal situation, we coin a new concept to describe

It.
» Definition 3.7. We call a representation flexiform, iff it is of flexible formality in

any of the adequate dimensions of formality.
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Flexiforms and Flexiformalization

» Definition 3.8. “Flexiform” is an adjective, we are interested in
> flexiform fragments: e.g. definitions with formulae in MathML parallel markup
(presentation/content).
> flexiform theories: formal theories with flexiform fragments.

> flexiform digital libraries: formality widely ranging, supports flexiformalization in
collection.

Call all such representations flexiforms (noun)

» Remark: The set of flexiforms has very good closure properties.

» Flexiform fragments can be composed to flexiform documents,
» which can be collected to flexiform libraries,

» which in turn can be formalized to flexiform theory graphs

» or excerpted to flexiform documents.

All that without leaving the space of flexiforms!
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2.4 A “formal” Theory of Flexiformality
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How to model Flexiformal Mathematics

» | hope to have convinced you: that Math is informal:

> foundations unspecified (what a relief)
» natural language & presentation formulae (humans can disambiguate)
> context references (but math is better than the pack)

» Problem: How do we deal with that in our “formal” systems?
> Proposed Answer: learn from OpenMath/MathML

> referential theory of meaning (by pointing to symbol definitions)
> allow opaque content (presentation/natural language)
» parallel markup (mix formal/informal recursively at any level)
» pluralism at all levels (object/logic/foundation/metalogic)
» underspecification of symbol meaning

extend to statement/paragraph and theory/discourse levels (OMDoc)
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OMDoc in a Nutshell (three levels of modeling) [Koh06]

Formula level OpenMath/C-MathML

. . <apply>
» Objects as logical formulae <esymbol cd="ring">plus</c.>
> symbol meaning by reference to theory | <csymbol cd="ring">zero</c.>
level S
</apply>

Statement level:
<defn for="plus" type="rec" >

» Definition, Theorem, Proof, Example <CMP>rec. eq. for plus</CMP>
o . <FMP>X +0 = X</FMP>

> semantics via explicit forms and refs. <FMP>X + 5(Y) = s(X + Y)</FMP3
> parallel formal & natural language </defn>
Module level Theory Graph [RK13] ‘—> LF + X
> : : _ : folsem 4

inheritance via symbol-mapping K"\N\h FO
> views by proof-obligations R, -

mod

» logics as meta-theories logic atlas £ /q_\
gics a5 (logic at129) | fonoid > (Coroup) 244> Ring
> meta-logics as oracles for type/eq

| SOME AIGHTE RESLRVED |
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2.4.1 Parallel Markup in MathML
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Layout Schemata and the MathML Box model

» Presentation MathML represents the visual appearance of a formula in a tree of
layout primitives
» Example 4.1 (Presentation MathML for 3/(x + 2)).

(x+2)

<mfrac>...</mfrac>

/

<mn>3</mn>
<mfenced>...</mfenced>
<Mi>x</mi> <mo>+</mo> <mn>2</mn>
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Functional Markup in MathML: The “Operator Tree"

» Content MathML represents the functional structureof a formula in a tree of
operators, via application and binding.

» Example 4.2 (Content MathML for 3/(x + 2)).

Q <apply>...</apply>
/ \ <div/> <en>3</cn
/ 3 [c] <apply>...</apply>
+ X 2 <plus/> <ci>x</ci> <mn>2</mn>

> Extra Operators: use <csymbol cd="(CD)">(Name) </csymbol>, where

» CD is a content dictionary a document that defines Name
» Name is the name of a symbol definition in CD.
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Parallel Markup e.g. in MathML |

» Idea: Combine the presentation and content markup and cross-reference
(x+2)

F [T 7
T I\

x|+ L_ |12} + _.x .2

» use e.g. for semantic copy and paste. (click 03n presentation, follow link and
copy content)
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Parallel Markup e.g. in MathML I

» Concrete Realization in MathML: semantics element with presentation as
first child and content in annotation—xml child

<semantics>...</semantics>

N

<annotation—xml>...</annotation—xml>

<divide/> ci href="3">3<ci/>

’ TN
<mfenced id="f">...</mfenced>  <apply href="f">...</apply>

__________ -~

<plus href= "‘;;” />
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2.4.2 Parallel Markup in OMDoc
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Separating Narrative— and Conceptual Structure

» Document structure is discourse-level presentation of content structure.
» Example 4.3. Introducing a theory via a straw man in a lecture

_ |lecture | _

), ( ~

sh sk 1sh| [slhal| |sks

~

sls | | sl

v

sl; are slides

. ) N .
- C VI,
¥ i is narrative text P can f |

> & are examples . g :
R g X : ~

»> A is a naive theory ﬁ
> T is the final theory / : /

. Y - N ~
» S is the straw man

S

» Idea: have two documents content + narrative structure
» Narrative OMDoc: only doc. structure + narr. elements + links into content.
» ark

Future: Generate the narr. from content (need discourse-level content m
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2.4.3 Flexible Symbol Grounding in OMDoc
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A Formal Theory of Underspecification?

» Use theory graphs to specify “meaning” in stages e.g. arithmetics
[ arithNatrec |
Vx : N .x+0=x —
vx:N*vy:N~X+S(y):S(X+y) €A~ arit
m Vx,y.x+y=y+x

arithNat arithComp arithPoly
+,%: N* - N +,*%:C" - C +, * : P[C]" — P[C]
| | |

arithO
=+, *

» Be non-committal: In OpenMath, arith1.ocd only says that + is
commutative
this is a feature, not a bu lets you remain uncommitted /underspegified
a feature, nota bug  (lets y /undersp
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2.5 Representing Mathematical Vernacular
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Chapter 3
Summary and Review
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3.1 Modular Representation of Mathematical
Knowledge

Kohlhace & Rabe: KRMT 213 2023-04-25



Modular Representation of Math (Theory Graph)

» Idea: Follow mathematical practice of generalizing and framing

» framing: If we can view an object a as an instance of concept B, we can inherit all

of B properties (almost for free.)

state all assertions about properties as general as possible (to maximize inheritance)
» examples and applications are just special framings.

» Modern expositions of Mathematics follow this rule (radically e.g. in Bourbaki)

» Definition 1.1. In the theory graph paradigm, we have

>

> theories as collections of symbol declarations and axioms (model assumptions)
» theory morphisms as mappings that translate axioms into theorems

The central object of knowledge curation is the theory graph which has theories
as nodes and theory morphisms as edge.

» Example 1.2 (MMT: Modular Mathematical Theories). MMT is a

foundation-independent theory graph formalism with advanced theory
morphisms.
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The Theory Graph Paradigm

» Definition 1.3. In the little theories doctrine, theories are made as small as
reasonable to enhance modularity and re-use.

» Definition 1.4. In the tiny theories doctrine theories are minimal, i.e. have at
most two declarations. (one inclusions and one payload)

» Problem: With a proliferation of abstract (tiny) theories readability and
accessibility suffers (one reason why the Bourbaki books fell out of favor)

2023-04-25
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Modular Representation of Math (MMT Example)

» Example 1.5 (Elementary Algebra and Arithmetics).

IntArith
Z, —:LZ—1L
dom: Z=p/NUn/N
dneg: ——z=z

Ring
iy dom: Gm/fo =G ajo a AbelGrou
SR (AbeiGroup )
distl: Fxm/o (y a/o 2)=(xmfo y) afo (xm/o z) P

distr: F(y a/o 2) m/o x=(y n/o x) a/0 (2 1/ x)

P/( Tn
S WY S m

NatPlusTimes S - T VP —

. NonGrpMon Grou
" NoNoN cp P roup
< Y 1 =XAx.iy.xoy=e
base: n-0=0, T
ni: F3x: G.Vy: G.xoye inv: FVx: G.3y: G.xoy=e
stepn-s(m)=n-m-+n

g ¢ 8"
e p

NatPlus - e et
+: N> NN neutl: Fxoe=x
base: n+0=n, G— N neutr: eox=x
_sees mhslm=slrtm) p=q o L
'\4 e—1
NatNums SemiGrp
G —N
0. - 23 +
N,N",0:N,s: N— N o= 0 + assoc: (xoy)oz=xo(yoz) Abelian
P3,...,P5
e—0 j‘ 7| ¢ Fxoy=yox
e V= e
ars o Y = g £ G o0:G—+G—>G

oA s
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The MMT Module System

v

Central notion: theory graph with theory nodes and theory morphisms as edges

v

Definition 1.6. In MMT, a theory is a sequence of constant declarations
optionally with type declarations and definitions

» MMT employs the Curry/Howard isomorphism and treats

> axioms/conjectures as typed symbol declarations (propositions-as-types)
> inference rules as function types (proof transformers)
> theorems as definitions (proof terms for conjectures)

Definition 1.7. MMT had two kinds of theory morphisms

v

> structures instantiate theories in a new context (also called: definitional link, import)
they import of theory S into theory T induces theory morphism S — T

> views translate between existing theories (also called: postulated link, theorem link)
views transport theorems from source to target (framing).

v

Together, structures and views allow a very high degree of re-use
Definition 1.8. We call a statement t induced in a theory T, iff there is

> a path of theory morphisms from a theory S to T with (joint) assignment o,
» such that t = o(s) for some statement s in S.

v

v

Definition 1.9. In MMT, all induced statements have a canonical name, the
MMT URIL.
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Applications for Theories in Physics

» Theory Morphisms allow to “view" source theory in terms of target theory.
» Theory Morphisms occur in Physics all the time.

Theory Temp. in Kelvin Temp. in Celsius Temp. in Fahrenheit

Signature | °K °C °F

Axiom: absolute zero at 0°K Water freezes at 0°C cold winter night: 0°F

Axiom: 0(°K1) = 4(°C1) Water boils at 100°C domestic pig: 100°F

Theorem: | Water  freezes  at | domestic pig: 38°C Water boils at 170°F
271.3°K

Theorem: | cold winter night: | absolute zero at | absolute zero at
240°K —271.3°C —460°F

. 30, o~ —32/2 o 424072 .
Views: °C 243 °K, °C */> F, and °F *{ K, inverses.
» Other Examples: Coordinate Transformations,

» Application: Unit Conversion: apply view morphism (flatten) and simplify with
UOM. (For new units, just add theories and views.)

» Application: MathWebSearch on flattened theory (Explain view path)
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3.2 Application: Serious Games
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Framing for Problem Solving (The FramelT Method)

» Example 2.1 (Problem 0.8.15).

How can you measure the height of a tree you cannot
climb, when you only have a protactor and a tape mea-
sure at hand.
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Framing for Problem Solving (The FramelT Method)

» Example 2.2 (Problem 0.8.15). T /&

How can you measure the height of a tree you cannot | Z T
Z E i

climb, when you only have a protactor and a tape mea- )
sure at hand. A Do

[A——
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Framing for Problem Solving (The FramelT Method)

» Example 2.3 (Problem 0.8.15). /&
How can you measure the height of a tree you cannot I$ //Zl T

climb, when you only have a protactor and a tape mea- X CQ/' J E:‘L
/ ST |

sure at hand.

pa— = 4
» Framing: view the problem as one that is already understood (using theory
morphisms)
Problem

_ T e
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Example Learning Object

Graph

Game World

Game Solution

Generate [3]

"

Game Problem

J—,“

Fact Discovery

Explored World

¢

[}

enerate [2]

User Knowledge

Situation Theory

AB,C: point
7B|: & =100

Zoag: R=4
z.rAB

Forestry
Vertical (tree)

horizontal (ground)

[Zcas/Zcas]

Generate [1]

[interaction ———"
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Scrolls

<
find 3._5{[, such that 3b L Be then

:
aAb 15 = 381 )

New Knowledge

a

[Be| = [3B| - tan( L)

Solution Theory
c

b

Problem Theory

Planar
point
fine

ab]
L

Generate [0] seserensnnan

Geometry
type
point — point — line
line — &
line —» line — bool
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FramelT Method: Problem

» Problem Representation in the game world (what the student should see)
Watch

» Student can interact with the environment via gadgets so solve problems

» “Scrolls” of mathematical knowledge give hints.
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https://www.youtube.com/watch?v=4hrL88jxcX0

Combining Problem/Solution Pairs

» We can use the same mechanism for combining P/S pairs

» create more complex P/S pairs (e.g. for trees on slopes)
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3.3 Search in the Mathematical Knowledge
Space
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The Mathematical Knowledge Space

» Observation 3.1. The value of framing is that it
induces new knowledge
» Definition 3.2. The mathematical knowledge space
MKS is the structured space of represented and
induced knowledge, mathematically literate have
access to.
» Idea: make math systems mathematically literate by supporting the MKS
» In this talk: | will cover three aspects
» an approach for representing framing and the MKS (OMDoc/MMT)
» search modulo framing (MKS literate search)
> a system for archiving the MKS (MathHub.info)

» Told from the Perspective of: searching the MKS
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bsearch: Indexing flattened Theory Graphs

» Simple Idea: We have all the necessary components: MMT and
MathWebSearch

» Definition 3.3. The bsearch systen is an integration of MathWebSearch and
MMT that
> computes the induced formulae of a modular mathematical library via MMT  (aka.

flattening)

» indexes induced formulae by their MMT URIs in MathWebSearch
> uses MathWebSearch for unification-based querying (hits are MMT URIs)
> uses the MMT to present MMT URI (compute the actual formula)
» generates explanations from the MMT URI of hits.

» Implemented by Mihnea lancu in ca. 10 days (MMT harvester pre-existed)
» almost all work was spent on improvements of MMT flattening
> MathWebSearch just worked (web service helpful)
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bsearch User Interface: Explaining MMT URIs

>
>
>
>

v

Recall: bsearch (MathWebSearch really) returns a MMT URI as a hit.

Question: How to present that to the user?

(for his/her greatest benefit)

Fortunately: MMT system can compute induced statements (the hits)

Problem: Hit statement may look considerably different from the induced

statement

Solution: Template-based generation of NL explanations from MMT URIs.
MMT knows the necessary information from the components of the MMT URI.

Kohlhace & Rabe: KRMT
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Modular Representation of Math (MMT Example)

» Example 3.4 (Elementary Algebra and Arithmetics).

IntArith
Z, —:LZ—1L
dom: Z=p/NUn/N
dneg: ——z=z

Ring
iy dom: Gm/fo =G ajo a AbelGrou
SR (AbeiGroup )
distl: Fxm/o (y a/o 2)=(xmfo y) afo (xm/o z) P

distr: F(y a/o 2) m/o x=(y n/o x) a/0 (2 1/ x)

P/( Tn
S WY S m

NatPlusTimes S - T VP —

. NonGrpMon Grou
" NoNoN cp P roup
< Y 1 =XAx.iy.xoy=e
base: n-0=0, T
ni: F3x: G.Vy: G.xoye inv: FVx: G.3y: G.xoy=e
stepn-s(m)=n-m-+n

g ¢ 8"
e p

NatPlus - e et
+: N> NN neutl: Fxoe=x
base: n+0=n, G— N neutr: eox=x
_sees mhslm=slrtm) p=q o L
'\4 e—1
NatNums SemiGrp
G —N
0. - 23 +
N,N",0:N,s: N— N o= 0 + assoc: (xoy)oz=xo(yoz) Abelian
P3,...,P5
e—0 j‘ 7| ¢ Fxoy=yox
e V= e
ars o Y = g £ G o0:G—+G—>G

oA s
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Example: Explaining a MMT URI

» Example 3.5. bsearch search result u?IntArith?c/g/assoc for query

R+ +E=[rl

» localize the result in the theory u?IntArithf with
Induced statement Vx,y,z : Z.(x +y) +z = x + (y + z) found ir
http://cds.omdoc.org/cds/elal 2IntAdrith (subst, justification).

» Justification: from MMT info about morphism ¢ (source, target, assignment)

IntArith is a CGroup if we interpret o as + and G as Z.

> skip over g, since its assignment is trivial and generate
CGroups are SemiGrps by construction

» ground the explanation by
In SemiGrps we have the axiom assoc : Vx,y,z: G.(xoy)oz = xo0(yoz)

oA s
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bsearch on the LATIN Logic Atlas

» Flattening the LATIN Atlas (once):

[ type [ modular [ flat [ factor [
declarations 2310 58847 25.4
library size 23.9 MB 1.8 GB 14.8
math sub-library 2.3 MB 79 MB 34.3
MathWebSearch harvests | 25.2 MB | 539.0 MB 21.3

» simple bsearch frontend at http://cds.omdoc.org:8181/search.html

Flsiz:ife ) DEMO

-

X+Y

http://latin.omdoc.org/math?IntAryth?assoc
associ== (+(+ XY)Z) (+ X (+ Y Z))

Justification
Induced statement found in http:fflatin.omdoc.org/math?intAryth

IntAryth is & AbelianGroup if we interpret over view ¢
AbelianGroup contains the statement assoc

http://latin.omdoc.org/math?Iintaryth? commut

http://latin.omdoc.org/math?IntAryth?inv_distr

2023-04-25
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http://cds.omdoc.org:8181/search.html

Overview: KWARC Research and Projects

Applications: eMath 3.0, Active Documents, Active Learning, Semantic Spread-
sheets/CAD/CAM, Change Mangagement, Global Digital Math Library, Math
Search Systems, SMGloM: Semantic Multilingual Math Glossary, Serious Games,

Foundations of Math: KM & Interaction: Semantization:
» MathML, OpenMath » Semantic Interpretation IATEXML: IATEX — XML
advanced Type Theories (aka. Framing) STEX: Semantic IATEX

> i . .
MMT: Meta Meta Theory math-literate interaction

invasive editors

Logic Morphisms/Atlas Context-Aware IDEs

Theorem Prover/CAS
Interoperability

& active docs

vVvyyywy
v

. Mathematical Corpora
» Active documents: P

embedded semantic
Mathematical services
Models/Simulation

Linguistics of Math

ML for Math Semantics
» Model-based Education Extraction

>
>
>
MathHub: math archives >
>
>
>

v

Foundations: Computational Logic, Web Technologies, OMDoc/MMT
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Take-Home Message

» QOverall Goal: Overcoming the “One-Brain-Barrier” in Mathematics (by
knowledge-based systems)
» Means:

Mathematical Literacy by Knowledge Representation and Processing in
theory graphs. (Framing as mathematical practice)

Kohlhace & Rabe: KRMT
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