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Preface

Course Concept

Aims: To give students a solid foundation of the basic concepts and practices in representing
mathematical /technical knowledge, so they can do (guided) research in the KWARC group.

Organization: Theory and Practice: The KRMT course intended to give a small cohort of students
(< 15) the opportunity to understand theoretical and practical aspects of knowledge representation
for technical documents. The first aspect will be taught as a conventional lecture on computational
logic (focusing on the expressive formalisms needed account for the complexity of mathematical
objects) and the second will be served by the “KRMT Lab”, where we will jointly (instructors and
students) develop representations for technical documents and knowledge. Both parts will roughly
have equal weight and will alternate weekly.

Prerequisites: The course builds on the logic courses in the FAU Bachelor’s program, in particular
the course “Grundlagen der Logik in der Informatik” (GLOIN). While prior exposure to logic and
inference systems e.g. in GLOIN or the AI-1 course is certainly advantageous to keep up, it is not
strictly necessary, as the course introduces all necessary prerequisites as we go along. So a strong
motivation or exposure to strong abstraction and mathematical rigour in other areas should be
sufficient.

Similarly, we do not presuppose any concrete mathematical knowledge — we mostly use (very)
elementary algebra as example domain — but again, exposure to proof-based mathematical practice
— whatever it may be — helps a lot.

Course Contents and Organization

The course concentrates on the theory and practice of representing mathematical knowledge in a
wide array of mathematical software systems.

In the theoretical part we concentrate on computational logic and mathematical foundations;
the course notes are in this document. In the practical part we develop representations of concrete
mathematical knowledge in the MMT system, unveiling the functionality of the system step by
step. This process is tracked in a tutorial separate document [OMT].

Excursions: As this course is predominantly about modeling natural language and not about the
theoretical aspects of the logics themselves, we give the discussion about these as a “suggested
readings” ?sec?. This material can safely be skipped (thus it is in the appendix), but contains
the missing parts of the “bridge” from logical forms to truth conditions and textual entailment.

This Document

This document contains the course notes for the course “Knowledge Representation for Mathemat-
ical/Technical Knowledge” (“Logik-Basierte Wissensreprésentation fiir Mathematisch /Technisches
Wissen”) in the Summer Semesters 17 ff.

Format: The document mixes the slides presented in class with comments of the instructor to give
students a more complete background reference.

Caveat: This document is made available for the students of this course only. It is still very much
a draft and will develop over the course of the current course and in coming academic years.

Licensing: This document is licensed under a Creative Commons license that requires attribution,
allows commercial use, and allows derivative works as long as these are licensed under the same
license.

Knowledge Representation Experiment:

This document is also an experiment in knowledge representation. Under the hood, it uses
the STEX package [Koh08; Koh18], a TEX/KTEX extension for semantic markup, which allows to
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export the contents into active documents that adapt to the reader and can be instrumented with
services based on the explicitly represented meaning of the documents.

Comments: and extensions are always welcome, please send them to the author.

Other Resources: The course notes are complemented by a tutorial on formalization mathematical
Knowledge in the MMT system [OMT] and the formalizations at https://gl.mathhub.info/
Tutorials/Mathematicians.
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Florian Rabe, Deyan Ginev, Fulya Horozal, Xu He, Enxhell Luzhnica, and Mihnea lancu.

KRMT Students: The following students have submitted corrections and suggestions to this and
earlier versions of the notes: Michael Banken


https://gl.mathhub.info/Tutorials/Mathematicians
https://gl.mathhub.info/Tutorials/Mathematicians

iii

Recorded Syllabus for SS 2019

In this document, we record the progress of the course in the summer semester 2019 in the form
of a “recorded syllabus”, i.e. a syllabus that is created after the fact rather than before.

Recorded Syllabus Summer Semester 2019:

\ # H date \ what \ until \ slide \ page \
1. April 24. | Lecture admin, some overview 21 11
2. April 25. | Lab MMT Installation, Formalizing elementary

algebra

May 1. Tag der Arbeit
3. May 2. Lecture Theory Graphs Intro, FramelT 29 16
4. May 8. Lecture Theory Graphs and Applications 37 19
5. May 9. Lab Elementary Algebra upto monoids
6. May 15 Lecture Logics generally, and example logics 44 24
7. May 16. | Lab propositional logic in MMT
8. May 22. | Lecture First-Order Logic 86 51
9. May 23. | Lab Implementing FOL
10. || May 29. | Lab FOL+Equality, untyped A — calculus

May 30. Ascension
11. || June 5. Lecture typed A-calculus 112 | 65
12. || June 6. Lab typed A-calculus in LF
13. || June 12. | Lecture HOL and description 117 | 68
14. || June 13. | Lab Implementing HOL
15. || June 19. | Lecture Set Theory, ZFC 136 | 79

June 20. | Public Holiday: Corpus Christi
16. || June 26. | Lecture/Lab ZFC /Tmplementation |

Here the syllabus of the last academic year for reference, the current year should be similar;
see the course notes of last year available for reference at http://kwarc.info/teaching/KRMT/
notes-SS518.pdf.

Recorded Syllabus Summer Semester 2018:
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’ # H date \ what until \ slide \ page ‘

1. April 11. | Lecture admin, some overview

2. April 12. | Lab MMT Installation, Formalizing N

3. April 18. | Lecture propositional logic and ND

4. April 19. | Lab Elementary Algebra: Groups

5. April 25. | Lecture First-Order Logic and ND

6. April 26. | Lab Algebra: Structures & Views

7. May 2. Lecture Applications of Theory Graphs

8. May 3. Lab Implementing FOL

9. May 9. Lecture Higher-Order Logic and A-calculus
May 10. Ascension

10. || May 16. | Lab A-calculus, Curry Howard

11. || May 17 Lab Dependent Types

12. || May 24 Lecture HOL, Axiomatic Set theory

13. || May 25 Lab HOL & fn-reduction in LF

14. || May 31 Lab implementing ZFC

15. || June 6. Lecture Types & Sets (John Harrison’s talk)

16. || June 7. Lab Implementing ZFC

17. || June 13. | Lab ZFC finalized, Math-in-the-Middle

18. || June 14. | Lecture (Rabe) | Bi-Directional Type Checking

19 June 20. | Lecture Ordinals and Cardinals

20 June 21. | Lab Formalization Projects
June 27. Final World Cup Game for Germany

21 June 28. | Lecture Category Theory

22 July 4. Lecture Category Theory, Tetrapod
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Chapter 1

Administrativa

We will now go through the ground rules for the course. This is a kind of a social contract
between the instructor and the students. Both have to keep their side of the deal to make learning

as efficient and painless as possible.

Prerequisites

> the mandatory courses from Semester 1-4, in particular: (or equivalent)

> course “Grundlagen der Logik in der Informatik” (GLOIN)

> CS Math courses “Mathematik C1-4" (IngMath1-4) (our “domain™)
> algorithms and data structures
> course "“Kiinstliche Intelligenz I" (nice-to-have only)

> Motivation, Interest, Curiosity, hard work

> You can do this course if you want! (and we will help you)

(©: Michael Kohlhase 1

Now we come to a topic that is always interesting to the students: the grading scheme.

Grades

> Academic Assessment: two parts (Portfolio Assessment)
> 20-min oral exam at the end of the semester (50%)
> results of the KRMT lab (50%)

(©: Michael Kohlhase 2

KRMT Lab (Dogfooding our own Techniques)

> (generally) we use the thursday slot to get our hands dirty with actual repre-
sentations.



http://creativecommons.org/licenses/by-sa/2.5/
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CHAPTER 1. ADMINISTRATIVA

> Instructor: Dennis Miiller (dennis.mueller@fau.de) Room: 11.138, Tel: 85-
64053

> Goal: Reinforce what was taught in class and have some fun

> Homeworks: will be small individual problem/programming/proof assignments
(but take time to solve) group submission if and only if explicitly permitted

> Admin: To keep things running smoothly

> Homeworks will be posted on course forum (discussed in the lab)

> No “submission”, but open development on a git repos. (details follow)

> Homework Discipline:

> start early! (many assignments need more than one evening's work)
> Don't start by sitting at a blank screen

> Humans will be trying to understand the text/code/math when grading it.

(©: Michael Kohlhase 3

Textbook, Handouts and Information, Forums

> (No) Textbook: there is none!

> Course notes will be posted at http://kwarc.info/teaching/KRMT

> KRMT Lab follows the tutorial at https://gl.mathhub.info/Tutorials/
Mathematicians/blob/master/tutorial/mmt-math-tutorial.pdf

> | mostly prepare/update them as we go along  (semantically preloaded ~
research resource)

> please e-mail me any errors/shortcomings you notice. (improve for the
group)

> Announcements will be posted on the course forum
> https://fsi.cs.fau.de/forum/150-Logikbasierte-Wissensrepraesentation
>> Check the forum frequently for

> announcements, homeworks, questions

> discussion among your fellow students

(©: Michael Kohlhase 4

Do | need to attend the lectures

> Attendance is not mandatory for the KRMT lecture (official version)

> There are two ways of learning: (both are OK, your mileage may vary)



dennis.mueller@fau.de
http://creativecommons.org/licenses/by-sa/2.5/
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> Approach B: Read a book/papers

> Approach I: come to the lectures, be involved, interrupt me whenever you
have a question.

The only advantage of | over B is that books/papers do not answer questions
> Approach S: come to the lectures and sleep does not work!

> The closer you get to research, the more we need to discuss!

(©: Michael Kohlhase 5 g

Next we come to a special project that is going on in parallel to teaching the course. I am using the
course materials as a research object as well. This gives you an additional resource, but may affect
the shape of the coures materials (which now serve double purpose). Of course I can use all the
help on the research project I can get, so please give me feedback, report errors and shortcomings,
and suggest improvements.

Experiment: E-Learning with KWARC Technologies

> My research area: deep representation formats for (mathematical) knowledge
>> Application: E-learning systems (represent knowledge to transport it)

>> Experiment: Start with this course (Drink my own medicine)

> Re-Represent the slide materials in OM Doc (Open Math Documents)
> (Eventually) feed it into the MathHub system  (http://mathhub.info
> Try it on you all (to get feedback from you

> Tasks (Unfortunately, | cannot pay you for this; maybe later

> help me complete the material on the slides (what is missing/would help?

> | need to remember “what | say”, examples on the board. (take notes
> Benefits for you (so why should you help?

> you will be mentioned in the acknowledgements (for all that is worth

)
)
)
)
)
)
)
)

> you will help build better course materials  (think of next-year's students

(©: Michael Kohlhase 6
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Chapter 2

Overview over the Course

Plot of this Course

> Today: Motivation, Admin, and find out what you already know

> What is logic, knowledge representation
> What is mathematical /technical knowledge

> how can you get involved with research at KWARC

(©: Michael Kohlhase 7

2.1 Introduction & Motivation

Knowledge-Representation and -Processing

> Definition 2.1.1 (True and Justified Belief) Knowledge is a body of
facts, theories, and rules available to persons or groups that are so well
justified that their validity /truth is assumed.

> Definition 2.1.2 Knowledge representation formulates knowledge in a for-
mal language so that new knowledge can be induced by inferred via rule
systems (inference).

> Definition 2.1.3 We call an information system knowledge-based, if a large
part of its behaviour is based on inference on represented knowledge.

> Definition 2.1.4 The field of knowledge processing studies knowledge-based
systems, in particular

> compilation and structuring of explicit/implicit knowledge (knowledge
acquisition)

> formalization and mapping to realization in computers (knowledge rep-
resentation)

> processing for problem solving (inference)

> presentation of knowledge (information visualization)



http://creativecommons.org/licenses/by-sa/2.5/

CHAPTER 2. OVERVIEW OVER THE COURSE

> knowledge representation and processing are subfields of symbolic artificial in-
telligence

(©: Michael Kohlhase 8

Mathematical Knowledge (Representation and -Processing)

> KWARC (my research group) develops foundations, methods, and applications
for the representation and processing of mathematical knowledge

> Mathematics plays a fundamental role in Science and Technology (practice
with maths, apply in STEM)

> mathematical knowledge is rich in content, sophisticated in structure, and
explicitly represented . ..

> ..., and we know exactly what we are talking about (in contrast to
economics or love)

Working Definition: Everything we understand well is “mathematics” (e.g. CS,
Physics, ...)

i> There is a lot of mathematical knowledge

> 120,000 Articles are published in pure/applied mathematics (3.5 millions so
far)

> 50 Millionen science articles in 2010 [Jin10] with a doubling time of
8-15 years [LI10]

> 1 M Technical Reports on http://ntrs.nasa.gov/ (e.g. the Apollo
reports)
> a Boeing-Ingenieur tells of a similar collection (but in Word 3,4,5,...)
(©: Michael Kohlhase 9

About Humans and Computers in Mathematics

> Computers and Humans have complementary strengths.

> Computers can handle large data and computations flawlessly at enormous
speeds.

> Humans can sense the environment, react to unforeseen circumstances and
use their intuitions to guide them through only partially understood situa-
tions.

In mathematics: we exploit this, we

D> > let humans explore mathematical theories and come up with novel insight-
s/proofs,
> delegate symbolic/numeric computation and typesetting of documents to
computers.
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2.2. MATHEMATICAL FORMULA SEARCH 7

> (sometimes) delegate proof checking and search for trivial proofs to comput-
ers

Overlooked Opportunity: management of existing mathematical knowledge

> > cataloguing, retrieval, refactoring, plausibilization, change propagation and
in some cases even application do not require (human) insights and intuition

> can even be automated in the near future given suitable representation for-
mats and algorithms.

Math. Knowledge Management (MKM): is the discipline that studies this.

o> Application: Scaling Math beyond the One-Brain-Barrier

(©: Michael Kohlhase 10

The One-Brain-Barrier

> Observation 2.1.5 More than 10° math articles published annually in Math.

> Observation 2.1.6 The libraries of Mizar, Cogq, Isabelle,. .. have ~ 10° state-
ments+proofs each. (but are mutually
incompatible)

> Consequence: humans lack overview over — let alone working knowledge in — all
of math/formalizations.  (Leonardo da Vinci was said to be the last who had)

> Dire Consequences: duplication of work and missed opportunities for the appli-
cation of mathematical/formal results.

> Problem: Math Information systems like arXiv.org, Zentralblatt Math, Math-
SciNet, etc. do not help (only make documents
available)

> Fundamenal Problem: the One-Brain Barrier (OBB)

> To become productive, math must pass through a brain

> Human brains have limited capacity (compared to knowledge available
online)
> Idea: enlist computers (large is what they are good at)

> Prerequisite: make math knowledge machine-actionable & foundation-independent

(use MKM)
(©: Michael Kohlhase 11
All of that is very abstract, high-level and idealistic, ... Let us look at an example, where we can

see computer support for one of the postulated horizontal/MKM tasks in action.

2.2 Mathematical Formula Search
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CHAPTER 2. OVERVIEW OVER THE COURSE

More Mathematics on the Web

> The Connexions project (http://cnx.org
> Wolfram Inc. (http://functions.wolfram.com
> Eric Weisstein's MathWorld (http://mathworld.wolfram.com
> Digital Library of Mathematical Functions (http://dlmf.nist.gov
> Cornell ePrint arXiv (http://wuw.arxiv.org
> Zentralblatt Math (http://www.zentralblatt-math.org

> ...Engineering Company Intranets, ...

> Question: How will we find content that is relevant to our needs

> ldea: try Google (like we always do)
> Scenario: Try finding the distributivity property for Z (VEk,I,me
Z.k-(l4+m)=(k-1)+ (k-m))
(©: Michael Kohlhase 12 ;z 5 —

Searching for Distributivity

Images Groups MNews Froogle Maps maore =
klm:Z.

k*(l+m]=k"|+k*m"| Search ﬁ

Google

Web

T Try remaving quotes from your search to get mare results.

Your search - "forall k,l,m:Z. kK * {1 + m) = K*l + k*m" - did not match any documents.

Suggestions:

+ Make sure all words are spelled correctly.
+ Try different keywords.
+ Try more general keywords.

(©: Michael Kohlhase 13

Searching for Distributivity
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2.2. MATHEMATICAL FORMULA SEARCH

Web |mages Groups MNews Froogls Maps more =

forall xyz:Z. x* (y + 2) = x¥y + x*z Search
Google | sew |

Web

Untitled Document

«us theorem distributive_Ztimes_Zplus: distributive Z Ztimes Zplus. change with [\forall x,y,zZ. x * (y +
Z) = ¥y + x"z). intros.elim x. ..

matita. cg.unibo. itlibraryZtimes.ma - 21k - Cached - Similar pages

UNIVERSITAT

(©: Michael Kohlhase 14

FRIEDRICH. ALEXANDER
ERLANGEN-NORNBERG

Searching for Distributivity

Web Images Groups Mews Froogle Maps more =

GOL)S[Q fforall a.b.c:z @ * (b + c) = a*b + a*c _search |

Web

Mathematica - Setting up eguations

Try *Reduce® rathar than "Sohva® and uze *ForAll® to put a condition on x, y, and z. In[1]:=
Reduca[ForAll[{x, y, z}, 5% + €'y + Tz == a"x + b’y + €°2], ...

Wy, codecomments.com'archive382-2006-4-804844 himl - 18% - Supplemental Result -
Gachad - Similar pages

(PoF] arXiv:nlin. SIF0309017 v1 4 Sep 2003

File Farmat: PDF/Adobe Acrobal - View as HTML

7.2 Appendix B. Elliptic constants related to gl{N,C). ... 1 for all s < j}. {4.14). Tha first condition means
that the traces (4.13) of the Lax operator ...

www.cilabasa ang'egi-bindulltect Hormat=applicationpdf & idanthiar=oai:ark iv. org:nlin® 0308017 -

Supplemantal Result - Simila as

‘'documentclass{aricle)] "usepackagelaxiom} ‘usepackagelamssymb ...

1) bz:= oz - 2*:NNl else bz= bz + 2"izbz :=zbz + cZz x " y == Z ... b,i-1)] be = reduce(™", ml}
©=1=x=bac:Ex* be coarcefx): Ex == 1l ...

wiki axiom-developer. orglaxiom—test—1/sne/algebra’CliffordSpad’sre - 20k - Supplemantal Resull -

uveRSITAT

(©: Michael Kohlhase 15

FRIEDRICH. ALEXANDER
RLANGEN: NORNBERG

Does Image Search help?

> Math formulae are visual objects, after all (let's try it)
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CHAPTER 2. OVERVIEW OVER THE COURSE

Google e = N

Web Images News Shopping Maps More ~ Search tools

Image size:
-6+ /b7 —dac 133 x 61

No other sizes of this image found.

Tip: Try entering a descriptive word in the search box.

Your search did not match any documents.
Suggestions:

o Try different keywords.

(©: Michael Kohlhase 16

Of course Google cannot work out of the box

> Formulae are not words:

>a, b ¢k, I, m, x, vy, and z are (bound) variables. (do not behave like
words/symbols)

> where are the word boundaries for “bag-of-words” methods?

> Formulae are not images either: They have internal (recursive) structure and
compositional meaning

> |dea: Need a special treatment for formulae  (translate into “special words")
Indeed this is done ([MY03; MMO06; LM06; MG11])
... and works surprisingly well (using e.g. Lucene as an indexing engine)

> Idea: Use database techniques (extract metadata and index it)

Indeed this is done for the Coq/HELM corpus ([Asp+06])

> Our Idea: Use Automated Reasoning Techniques (free term indexing from
theorem prover jails)

> Demo: MathWebSearch on Zentralblatt Math, the arXiv Data Set

(©: Michael Kohlhase 17

A running example: The Power of a Signal

> An engineer wants to compute the power of a given signal s(t)

> She remembers that it involves integrating the square of s.
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2.3. THE MATHEMATICAL KNOWLEDGE SPACE

> Problem: But how to compute the necessary integrals

> Idea: call up MathWebSearch with f?? s2(t)dt.

. , T
I> MathWebSearch finds a document about Parseval’s Theorem and 7 [ s*(t)dt =
B2 lex|? where ¢y are the Fourier coefficients of s(t).
(©: Michael Kohlhase 18

Some other Problems (Why do we need more?)

> Substitution Instances: search for z2 + 3% = 22, find 32 4+ 42 = 52

> Homonymy: (Z) nCk, C1, CF and ,J" all mean the same thing  (binomial
coeff.)

> Solution: use content-based representations (MathML, OpenMath)

> Mathematical Equivalence: e.g. [ f(z)dx means the same as [ f(y)dy  (a-
equivalence)

> Solution: build equivalence (e.g. « or ACI) into the search engine(or normalize
first [Normann'06])

> Subterms: Retrieve formulae by specifying some sub-formulae

> Solution: record locations of all sub-formulae as well

(©: Michael Kohlhase 19

MathWebSearch: Search Math. Formulae on the Web

> |dea 1: Crawl the Web for math. formulae (in OpenMath or CMathML)
> Idea 2: Math. formulae can be represented as first order terms (see below)
>> Idea 3: Index them in a substitution tree index (for efficient retrieval)
> Problem: Find a query language that is intuitive to learn

> ldea 4: Reuse the XML syntax of OpenMath and CMathML, add variables

(©: Michael Kohlhase 20

2.3 The Mathematical Knowledge Space

The way we do math will change dramatically

11
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CHAPTER 2. OVERVIEW OVER THE COURSE

> Definition 2.3.1 (Doing Math) Buchberger’s Math creativity spiral

Publication Application

The
Creativity
Spiral

Mathematical
Creativity

Spiral
[Buchberger 1995]

Com- Teaching

munication

> Every step will be supported by mathematical software systems

> Towards an infrastructure for web-based mathematics!

(©: Michael Kohlhase 21

Mathematical Literacy

> Note: the form and extent of knowledge representation for the components of
“doing math"” vary greatly. (e.g. publication vs. proving)

> Observation 2.3.2 (Primitive Cognitive Actions)
To “do mathematics” we need to
> extract the relevant structures,
> reconcile them with the context of our existing knowledge
> recognize parts as already known

identify parts that are new to us.

\

During these processes mathematicians (are trained to)

> abstract from syntactic differences, and

> employ interpretations via non-trivial, but meaning-preserving mappings

> Definition 2.3.3 We call the skillset that identifies mathematical training

mathematical literacy (cf. Observation 2.3.2)
(©: Michael Kohlhase 22

Introduction: Framing as a Mathematical Practice

> Understanding Mathematical Practices:

> To understand Math, we must understand what mathematicians do!

> The value of a math education is more in the skills than in the knowledge.
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2.4. MODULAR REPRESENTATION OF MATHEMATICAL KNOWLEDGE

> Have been interested in this for a while (see [KKO06])

> Framing: Understand new objects in terms of already understood structures.
Make creative use of this perspective in problem solving.

> Example 2.3.4 Understand point sets in 3-space as zeroes of polynomials.
Derive insights by studying the algebraic properties of polynomials.

> Definition 2.3.5 We are framing the point sets as algebraic varieties (sets
of zeroes of polynomials).

> Example 2.3.6 (Lie group) Equipping a differentiable manifold with a
(differentiable) group operation

> Example 2.3.7 (Stone’s representation theorem) Interpreting a Boolean
algebra as a field of sets.

> Claim: Framing is valuable, since it transports insights between fields.

> Claim: Many famous theorems earn their recognition because they establish
profitable framings.

(©: Michael Kohlhase 23

2.4 Modular Representation of mathematical Knowledge

Modular Representation of Math (Theory Graph)

> Idea: Follow mathematical practice of generalizing and framing
> framing: If we can view an object a as an instance of concept B, we can
inherit all of B properties (almost for free.)

> state all assertions about properties as general as possible (to maximize
inheritance)

> examples and applications are just special framings.

> Modern expositions of Mathematics follow this rule (radically e.g. in Bourbaki)

> formalized in the theory graph paradigm (little/tiny theory doctrine)
> theories as collections of symbol declarations and axioms (model
assumptions)
> theory morphisms as mappings that translate axioms into theorems

> Example 2.4.1 (MMT: Modular Mathematical Theories) MMT is a
foundation-indepent theory graph formalism with advanced theory morphisms.

> Problem: With a proliferation of abstract (tiny) theories readability and acces-
sibility suffers (one reason why the Bourbaki books fell out of
favor)

(©: Michael Kohlhase 24
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Modular Representation of Math (MMT Example)

d:y’
I_ntAL P9 Ring a CGroup
Z := p/NUn/N WG=2/C
_— zmfo (yafo z)=(xzmnf y)a/ (zmb z) comm: LOY=yOox

—0=0

NatTimes

n-l=n,
n-s(m)=n-m+n

NatPlus
Jr
n+0=n,
n+s(m)=s(n+m) o= { . }
e—r1 SemiGrp
NatNums
N, s,0 G—N assoc:(zoy)oz=z0(yoz)
“Pi,... P Yp=9q o=+
v er— 0
Magma {roy—youx}
m— e P —
{ arsc } @:Miché/éll Ro{n”@s@ £ } %%C;T

2.5 Application: Serious Games

Framing for Problem Solving (The FramelT Method)

> Example 2.5.1 (Problem 0.8.15)

How can you measure the height of a tree you cannot
climb, when you only have a protactor and a tape

measure at hand.

> Framing: view the problem as one that is already understood (using theory

I S /

morphisms)

T

> squiggly (framing) morphisms guaranteed by metatheory of theories!
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2.5. APPLICATION: SERIOUS GAMES

RIEDRICH.ALEXANDER

User Knowledge

Solution Pushout

Game Solution

c
g h=10.0m /
A &
.

<

Generate [3]

[BC| = 10.0 - tan(45°) = 10.0

Game Problem

Fact Discovery

Generate [2]

Explored World

C
,h7
A &
D

e
S Wem[atc 1

(©: Michael Kohlhase 26 L
Example Learning Object Graph
Game World MMT

New Knowler

Solution Theor

|be| = [ab| - tan(Z.

Problem Theor

line
fab|
1

Planar Geometry
point + type

point — poin
line - R
line — line —

Scrolls

e _
find Jb such that @ L B then

_A s [B0] = [aB] - tan()
a b

(©: Michael Kohlhase

Generate [0]

27

UNIVERSITAT

FRIEDRICH. ALEXANDER
ERLANGEN-NORNBERG

FramelT Method: Problem

> Problem Representation in the game world

> “Scrolls” of mathematical knowledge give hints.

(what the student should see)

Point Mode

> Student can interact with the environment via gadgets so solve problems

15
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(©: Michael Kohlhase 28

Combining Problem /Solution Pairs

AN

:

> We can use the same mechanism for combining P/S pairs

> create more complex P/S pairs (e.g. for trees on slopes)

(©: Michael Kohlhase 29

Another whole set of applications and game behaviours can come from the fact that LOGraphs
give ways to combine problem/solution pairs to novel ones. Consider for instance the diagram
on the right, where we can measure the height of a tree of a slope. It can be constructed by
combining the theory SOL with a copy of SOL along a second morphism the inverts h to —h (for
the lower triangle with angle ) and identifies the base lines (the two occurrences of hg cancel
out). Mastering the combination of problem/solution pairs further enhances the problem solving
repertoire of the player.

2.6 Search in the Mathematical Knowledge Space

The Mathematical Knowledge Space

> Observation 2.6.1 The value of framing is that
it induces new knowledge

> Definition 2.6.2 The mathematical knowledge
space MKS is the structured space of represented
and induced knowledge, mathematically literate
have access to.

>> ldea: make math systems mathematically literate by supporting the MKS

> In this talk: | will cover three aspects

> an approach for representing framing and the MKS (OMDoc/MMT)
> search modulo framing (MKS-literate search)
> a system for archiving the MKS (MathHub.info)

> Told from the Perspective of: searching the MKS
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(©: Michael Kohlhase
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and MMT that

MMT

> uses the MMT to present MMT URI

> Implemented by Mihnea lancu in ca. 10 days

> MathWebSearch just worked

(©: Michael Kohlhase

b search: Indexing flattened Theory Graphs

> Simple Idea: We have all the necessary components: MMT and MathWebSearch

> Definition 2.6.3 The bsearch systen is an integration of MathWebSearch

> computes the induced formulae of a modular mathematical library via

(aka. flattening)

> indexes induced formulae by their MMT URIs in MathWebSearch
> uses MathWebSearch for unification-based querying(hits are MMT URIs)

(compute the actual formula)

> generates explanations from the MMT URI of hits.

(MMT harvester pre-existed)

> almost all work was spent on improvements of MMT flattening

(web service helpful)

31

> Question: How to present that to the user?

ment

(©: Michael Kohlhase

b search User Interface: Explaining MMT URIs

> Recall: bsearch (MathWebSearch really) returns a MMT URI as a hit.

(for his/her greatest benefit)

> Fortunately: MMT system can compute induced statements (the hits)

> Problem: Hit statement may look considerably different from the induced state-

> Solution: Template-based generation of NL explanations from MMT URIs.
MMT knows the necessary information from the components of the MMT URI.

32

Modular Representation of Math (MMT Example)

17
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d:
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Example: Explaining a MMT URI

> Example 2.6.4 bsearch search result u?IntArith?c/g/assoc for query (jz]+
) +E=[Rl
> localize the result in the theory u?IntArithf with

Induced statement Va,y,z : Z.(x + y) + 2 = 2 + (y + z) found in
http://cds.omdoc.org/cds/elal?IntArith (subst, justification).

> Justification: from MMT info about morphism c (source, target,
assignment)
IntArith is a CGroup if we interpret o as + and G as Z.
> skip over g, since its assignment is trivial and generate

CGroups are SemiGrps by construction

> ground the explanation by

In SemiGrps we have the axiom assoc : Va,y,z: G.(xoy)oz =z 0 (yo z)

(©: Michael Kohlhase 34

b search on the LATIN Logic Atlas

> Flattening the LATIN Atlas (once):
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[ type [ modular | flat | factor |
declarations 2310 58847 25.4
library size 23.9 MB 1.8 GB 14.8
math sub-library 2.3 MB 79 MB 34.3
MathWebSearch harvests | 25.2 MB | 539.0 MB 21.3

> simple b search frontend at http://cds.omdoc.org:8181/search.html

Flasi=:ire ) DEMO

X+Y

http://latin.omdoc.org/math?IntAryth?assoc ——
associ== (+{(+ XV Z)(+ X (+YZ)

Justification
Induced statement found in http/flatin.omdoc.org/math?intArvth

IntAryth is & AbelianGroup if we interpret over view ¢
AbslianGroup contains the statement assoc

http://latin.omdoc.org/math?IntAryth? commut

http://latin.omdoc.org/math?IntAryth?inv_distr

IEDRICH.ALEXANDER
NIVERSITAT
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LANGEN: NORNBERG

Overview: KWARC Research and Projects

Applications: eMath 3.0, Active Documents, Semantic Spreadsheets, Semantic
CAD/CAM, Change Mangagement, Global Digital Math Library, Math Search Sys-
tems, SMGIloM: Semantic Multilingual Math Glossary, Serious Games, ...

Foundations of Math: KM & Interaction: Semantization:
> MathML, OpenMath > Semantic Interpretation > IATEXML: IWTEX — XML
> advanced Type Theories (aka. Framing) > gTEX: Semantic IATEX
> MMT: Meta Meta The- > math-literate interaction b invasive editors
ory > MathHub: math archi-

& ve d > Context-Aware IDEs
> Logic Morphisms/Atlas ves & active docs .
> Mathematical Corpora

> Semantic Alliance: em-
> Th P CAS In- . ! L
teroepoerreanl;i“t;over/ n bedded semantic services > Linguistics of Math
R > ML for Math Semantics
> Mathematical Model- Extraction

s/Simulation

Foundations: Computational Logic, Web Technologies, OM Doc/MMT

IEDRICH.ALEXANDER
= universimin
ERLANGEN-NORNBERG

(©: Michael Kohlhase 36

Take-Home Message

> Overall Goal: Overcoming the “One-Brain-Barrier” in Mathematics (by
knowledge-based systems)

> Means: Mathematical Literacy by Knowledge Representation and Processing in
theory graphs. (Framing as mathematical practice)
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Chapter 3

What is (Computational) Logic

What is (Computational) Logic?

> The field of logic studies representation languages, inference systems, and their
relation to the world.

>> It dates back and has its roots in Greek philosophy (Aristotle et al.)

> Logical calculi capture an important aspect of human thought, and make it
amenable to investigation with mathematical rigour, e.g. in
> foundation of mathematics (Hilbert, Russell and Whitehead)

> foundations of syntax and semantics of language (Creswell, Montague, ...)
> Logics have many practical applications

> logic/declarative programming (the third programming paradigm)
> program verification: specify conditions in logic, prove program correctness

> program synthesis: prove existence of answers constructively, extract pro-
gram from proof

> proof-carrying code: compiler proves safety conditions, user verifies before
running.

> deductive databases: facts + rules (get more out than you put in)

> semantic web: the Web as a deductive database

Computational Logic is the study of logic from a computational, proof-theoretic

perspective. (model theory is mostly comprised under “mathematical logic".)
(©: Michael Kohlhase 38 £

> What is Logic?

> Logic = formal languages, inference and their relation with the world

> Formal language FL: set of formulae (2+3/7, Voo +y=y+ 1)
> Formula: sequence/tree of symbols (z,y, f,9,p, 1,7, €,—, AV, 3)

21
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> Model: things we understand (e.g. number theory)
> Interpretation: maps formulae into models ([three plus five] = 8)
> Validity: M = A, iff [[A]]M =T (five greater three is valid)
> Entailment: A =B, iff M =B forall M= A. (generalize to H = A)
> Inference: rules to transform (sets of) formulae (A,A=BF B)
> Syntax: formulae, inference (just a bunch of symbols)
> Semantics: models, interpr., validity, entailment (math. structures)
> Important Question: relation between syntax and semantics?
(©: Michael Kohlhase 39 ;;

So logic is the study of formal representations of objects in the real world, and the formal state-
ments that are true about them. The insistence on a formal language for representation is actually
something that simplifies life for us. Formal languages are something that is actually easier to
understand than e.g. natural languages. For instance it is usually decidable, whether a string is
a member of a formal language. For natural language this is much more difficult: there is still
no program that can reliably say whether a sentence is a grammatical sentence of the English
language.

We have already discussed the meaning mappings (under the monicker “semantics”). Meaning
mappings can be used in two ways, they can be used to understand a formal language, when we
use a mapping into “something we already understand”, or they are the mapping that legitimize a
representation in a formal language. We understand a formula (a member of a formal language)
A to be a representation of an object O, iff [A] = O.

However, the game of representation only becomes really interesting, if we can do something with
the representations. For this, we give ourselves a set of syntactic rules of how to manipulate the
formulae to reach new representations or facts about the world.

Consider, for instance, the case of calculating with numbers, a task that has changed from a difficult
job for highly paid specialists in Roman times to a task that is now feasible for young children.
What is the cause of this dramatic change? Of course the formalized reasoning procedures for
arithmetic that we use nowadays. These calculi consist of a set of rules that can be followed
purely syntactically, but nevertheless manipulate arithmetic expressions in a correct and fruitful
way. An essential prerequisite for syntactic manipulation is that the objects are given in a formal
language suitable for the problem. For example, the introduction of the decimal system has been
instrumental to the simplification of arithmetic mentioned above. When the arithmetical calculi
were sufficiently well-understood and in principle a mechanical procedure, and when the art of
clock-making was mature enough to design and build mechanical devices of an appropriate kind,
the invention of calculating machines for arithmetic by Wilhelm Schickard (1623), Blaise Pascal
(1642), and Gottfried Wilhelm Leibniz (1671) was only a natural consequence.

We will see that it is not only possible to calculate with numbers, but also with representations
of statements about the world (propositions). For this, we will use an extremely simple example;
a fragment of propositional logic (we restrict ourselves to only one logical connective) and a small
calculus that gives us a set of rules how to manipulate formulae.

3.1 A History of Ideas in Logic

Before starting with the discussion on particular logics and inference systems, we put things into
perspective by previewing ideas in logic from a historical perspective. Even though the presentation
(in particular syntax and semantics) may have changed over time, the underlying ideas are still
pertinent in today’s formal systems.
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3.1. A HISTORY OF IDEAS IN LOGIC

Many of the source texts of the ideas summarized in this Section can be found in [Hei67].

History of Ideas (abbreviated): Propositional Logic

> General Logic ([ancient Greece, e.g. Aristotle])

+ conceptual separation of syntax and semantics
+ system of inference rules (“Syllogisms")

— no formal language, no formal semantics

> Propositional Logic [Boole ~ 1850]

+ functional structure of formal language (propositions + connectives)
+ mathematical semantics (~ Boolean Algebra)

— abstraction from internal structure of propositions

(©: Michael Kohlhase 40

History of Ideas (continued): Predicate Logic

> Frege's “Begriffsschrift” [Fre79]

+ functional structure of formal language (terms, atomic formulae,
connectives, quantifiers)

— weird graphical syntax, no mathematical semantics

— paradoxes e.g. Russell's Paradox [R. 1901] (the set of sets that do not
contain themselves)

> modern form of predicate logic [Peano ~ 1889]

+ modern notation for predicate logic (V,A,=,V,3)

(©: Michael Kohlhase 41

History of Ideas (continued): First-Order Predicate Logic

> Types ([Russell 1908])

— restriction to well-types expression
+ paradoxes cannot be written in the system
+ Principia Mathematica ([Whitehead, Russell 1910])

> Identification of first-order Logic ~ ([Skolem, Herbrand, Gédel ~ 1920 — '30])

— quantification only over individual variables  (cannot write down induction
principle)
+ correct, complete calculi, semi-decidable

+ set-theoretic semantics ([Tarski 1936])

23
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(©: Michael Kohlhase 42

History of Ideas (continued): Foundations of Mathematics

> Hilbert's Program: find logical system and calculus, ([Hilbert ~ 1930])

> that formalizes all of mathematics
> that admits sound and complete calculi

> whose consistence is provable in the system itself

> Hilbert's Program is impossible! ([Godel 1931])
Let £ be a logical system that formalizes arithmetics ((N, +, %)),

> then L is incomplete

> then the consistence of £ cannot be proven in L.

(©: Michael Kohlhase 43

History of Ideas (continued): A-calculus, set theory

> Simply typed A-calculus ([Church 1940])

+ simplifies Russel's types, A-operator for functions
+ comprehension as [-equality (can be mechanized)

+ simple type-driven semantics (standard semantics ~ incompleteness)

> Axiomatic set theory

+— type-less representation (all objects are sets)
+ first-order logic with axioms
+ restricted set comprehension (no set of sets)

— functions and relations are derived objects

(©: Michael Kohlhase 44
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Part 1

Foundations of Mathematics
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Chapter 4

Propositional Logic and Inference

4.1 Propositional Logic (Syntax/Semantics)

Propositional Logic (Syntax)

> propositional logic (write PL") is made up from
& propositional variables: V, := {P,Q, R, P1, P% ...} (countably infinite)
> connectives: X, :={T, F,~,V,A\,=,<,...}

We define the set wff ,(V,) of well-formed propositional formulas as

> negations = A
> conjunctions A AB
> disjunctions AV B
> implications A= B

> equivalences (or biimplications) A < B
where A, B € uwff ,(V,) themselves.
> Example 4.1.1 PAQ,PVQ,(mPVQ)< (P=Q) € wff ,(V,)

> Definition 4.1.2 propositional formulae without connectives are called atomic
(or atoms) and complex otherwise.

(©: Michael Kohlhase 45

Alternative Notations for Connectives

27
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Here Elsewhere

-A ~A A

AANB | AAB AeB A B
AvB | A+B A|B A;B
A=B | A—-B ADB
AB| A+~B A=B

a 1 0
T T 1
(©: Michael Kohlhase 46

Semantics (PLY)

> Definition 4.1.3 A model M := (D,,,Z) for propositional logic consists of
> the Universe D, = {T, F}
> the Interpretation Z that assigns values to essential connectives
>Z(7): Do = Do; T F,F =T
DI(/\):DOXD()%DO§<OQ§> =T, ifla=8=T

> Treat the other connectives as abbreviations, e.g. AvB= - (- AA—-B) and
A=B=-AvB,andT7==PV-P (only need to treat —, A directly)

> A variable assignment ¢: V, — D, assigns values to propositional variables

> Definition 4.1.4 The value function Z,: wff,(V,) — D, assigns values to
formulae.
> Recursively defined, base case: Z,(P) = ¢(P)
> Tp(A) = I(7)(Z,(A))
> To(AAB) = Z(N)(Zy(A), Z,(B))

(©: Michael Kohlhase 47

We will now use the distribution of values of a Boolean expression under all (variable) assignments
to characterize them semantically. The intuition here is that we want to understand theorems,
examples, counterexamples, and inconsistencies in mathematics and everyday reasoning®.

The idea is to use the formal language of Boolean expressions as a model for mathematical
language. Of course, we cannot express all of mathematics as Boolean expressions, but we can at
least study the interplay of mathematical statements (which can be true or false) with the copula
“and”, “or” and “not”.

Semantic Properties of Propositional Formulae

> Definition 4.1.5 Let M := (U, T) be our model, then we call A

1Here (and elsewhere) we will use mathematics (and the language of mathematics) as a test tube for under-
standing reasoning, since mathematics has a long history of studying its own reasoning processes and assumptions.


http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

4.2. CALCULI FOR PROPOSITIONAL LOGIC 29

> true under ¢ (p satisfies A) in M, iff Z,(A) =T (write
ME? AM =9 A)

> false under ¢ (¢ falsifies A) in M, iff Z,(A) =F (write M }£% A)

> satisfiable in M, iff Z,(A) = T for some assignment ¢

> valid in M, iff M E¥ A for all assignments ¢ (write M = A)

> falsifiable in M, iff Z,(A) = F for some assignments ¢
> unsatisfiable in M, iff Z,(A) = F for all assignments ¢

> Example 4.1.6 =V z is satisfiable and falsifiable.

> Example 4.1.7 zV -z is valid and A —z is unsatisfiable.

>> Notation 4.1.8 (alternative) Write [[A]]:l for Z,(A), if M = (U,T). (and
[[A}]M., if A is ground, and [A], if M is clear)

> Definition 4.1.9 (Entailment) (aka. logical consequence)

We say that A entails B (A = B), iff Z,(B) = T for all ¢ with Z,(A) =T
(i.e. all assignments that make A true also make B true)

(©: Michael Kohlhase 48

Let us now see how these semantic properties model mathematical practice.

In mathematics we are interested in assertions that are true in all circumstances. In our model
of mathematics, we use variable assignments to stand for circumstances. So we are interested
in Boolean expressions which are true under all variable assignments; we call them valid. We
often give examples (or show situations) which make a conjectured assertion false; we call such
examples counterexamples, and such assertions “falsifiable”. We also often give examples for certain
assertions to show that they can indeed be made true (which is not the same as being valid
yet); such assertions we call “satisfiable”. Finally, if an assertion cannot be made true in any
circumstances we call it “unsatisfiable”; such assertions naturally arise in mathematical practice in
the form of refutation proofs, where we show that an assertion (usually the negation of the theorem
we want to prove) leads to an obviously unsatisfiable conclusion, showing that the negation of the
theorem is unsatisfiable, and thus the theorem valid.

4.2 Calculi for Propositional Logic

Let us now turn to the syntactical counterpart of the entailment relation: derivability in a calculus.
Again, we take care to define the concepts at the general level of logical systems.

The intuition of a calculus is that it provides a set of syntactic rules that allow to reason by
considering the form of propositions alone. Such rules are called inference rules, and they can be
strung together to derivations — which can alternatively be viewed either as sequences of formulae
where all formulae are justified by prior formulae or as trees of inference rule applications. But we
can also define a calculus in the more general setting of logical systems as an arbitrary relation on
formulae with some general properties. That allows us to abstract away from the homomorphic
setup of logics and calculi and concentrate on the basics.

Derivation Systems and Inference Rules

>> Definition 4.2.1 Let S := (£,K, =) be a logical system, then we call a
relation H CP(L) x L a derivation relation for S, if it
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> is proof-reflexive, i.e. HF A, if A € H;
& is proof-transitive, i.e. if H+ A and H' U{A} F B, then HUH' - B;
> monotonic (or admits weakening), i.e. H + A and H CH' imply H' - A.

> Definition 4.2.2 We call (£, K, =, F) a formal system, iff S := (£, K, =) is

a logical system, and F a derivation relation for S.

> Definition 4.2.3 Let £ be a formal language, then an inference rule over £

where Aq,..., A, and C are formula schemata for £ and N is a name.

The

> Definition 4.2.4 An inference rule without assumptions is called an axiom (schema).

> Definition 4.2.5 Let S := (£, K, =) be a logical system, then we call a set
C of inference rules over £ a calculus for S.

SOME RIGHTS RESERVED

CHAPTER 4. PROPOSITIONAL LOGIC AND INFERENCE

A, - A,
—a N

A, are called assumptions, and C is called conclusion.

©: Michael Kohlhase 49

With formula schemata we mean representations of sets of formulae, we use boldface uppercase
letters as (meta)-variables for formulae, for instance the formula schema A = B represents the set
of formulae whose head is =.

Derivations and Proofs

> Definition 4.2.6 Let S := (£, K, =) be a logical system and C a calculus
for S, then a C-derivation of a formula C € £ from a set H C L of hypotheses
(write H F¢ C) is a sequence Ay, ..., A, of L-formulae, such that

> A, =C, (derivation culminates in C)
> for all 1<i<m, either A; € H, or (hypothesis)
> there is an inference rule

application)

Observation: We can also see a derivation as a tree, where the A, are the
children of the node A;.

> Example 4.2.7

SOME RIGHTS RESERVED

A A
h e L in € with I; < i for all j<k.(rule

In the propositional Hilbert calculus H° we K

have the derivation P Fy0 Q= P: the se- p=(Q=p P
quence is P= Q= P, P, = P and the cor- MP
responding tree on the right. Q="r

(©: Michael Kohlhase 50

Inference rules are relations on formulae represented by formula schemata (where boldface, upper-
case letters are used as meta-variables for formulae). For instance, in Example 4.2.7 the inference

rule

A=B A

was applied in a situation, where the meta-variables A and B were instantiated

by the formulae P and @ = P.
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As axioms do not have assumptions, they can be added to a derivation at any time. This is just
what we did with the axioms in Example 4.2.7.

Formal Systems

> Observation 4.2.8 Let S := (L, K, =) be a logical system and C a calculus
for S, then the C-derivation relation p defined in Definition 4.2.6 is a derivation
relation in the sense of Definition 4.2.1.}

> Definition 4.2.9 We call (£, K, |=,C) a formal system, iff S := (£, K, ) is
a logical system, and C a calculus for S.

> Definition 4.2.10 A derivation @) ¢ A is called a proof of A and if one
exists (write F¢ A) then A is called a C-theorem.

> Definition 4.2.11 an inference rule Z is called admissible in C, if the ex-
tension of C by Z does not yield new theorems.

(©: Michael Kohlhase 51

EpNoTE: MK: this should become a view!

In general formulae can be used to represent facts about the world as propositions; they have a
semantics that is a mapping of formulae into the real world (propositions are mapped to truth
values.) We have seen two relations on formulae: the entailment relation and the deduction
relation. The first one is defined purely in terms of the semantics, the second one is given by a
calculus, i.e. purely syntactically. Is there any relation between these relations?

Soundness and Completeness

> Definition 4.2.12 Let S := (£, K, ) be a logical system, then we call a
calculus C for §

> sound (or correct), iff H = A, whenever H F¢ A, and
> complete, iff H ¢ A, whenever H = A.

> Goal: F A iff FA (provability and validity coincide)

> To TRUTH through PROOF (CALCULEMUS [Leibniz ~1680])

F=kF @
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Ideally, both relations would be the same, then the calculus would allow us to infer all facts that
can be represented in the given formal language and that are true in the real world, and only
those. In other words, our representation and inference is faithful to the world.

A consequence of this is that we can rely on purely syntactical means to make predictions
about the world. Computers rely on formal representations of the world; if we want to solve a
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problem on our computer, we first represent it in the computer (as data structures, which can be
seen as a formal language) and do syntactic manipulations on these structures (a form of calculus).
Now, if the provability relation induced by the calculus and the validity relation coincide (this will
be quite difficult to establish in general), then the solutions of the program will be correct, and
we will find all possible ones.

Of course, the logics we have studied so far are very simple, and not able to express interesting
facts about the world, but we will study them as a simple example of the fundamental problem of
Computer Science: How do the formal representations correlate with the real world.

Within the world of logics, one can derive new propositions (the conclusions, here: Socrates is
mortal) from given ones (the premises, here: Every human is mortal and Sokrates is human).
Such derivations are proofs.

In particular, logics can describe the internal structure of real-life facts; e.g. individual things,
actions, properties. A famous example, which is in fact as old as it appears, is illustrated in the
slide below.

The miracle of logics

> Purely formal derivations are true in the real world!

World of Logics Real World

V x (human x — mortal x)

A

human Socrates

it's true!
i S

2 ”{
s /.
mortal Socrates it must be true -- N v it's true!

it's proven!
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If a logic is correct, the conclusions one can prove are true (= hold in the real world) whenever
the premises are true. This is a miraculous fact (think about it!)

4.3 Propositional Natural Deduction Calculus

We will now introduce the “natural deduction” calculus for propositional logic. The calculus was
created in order to model the natural mode of reasoning e.g. in everyday mathematical practice.
This calculus was intended as a counter-approach to the well-known Hilbert style calculi, which
were mainly used as theoretical devices for studying reasoning in principle, not for modeling
particular reasoning styles.

Rather than using a minimal set of inference rules, the natural deduction calculus provides
two/three inference rules for every connective and quantifier, one “introduction rule” (an infer-


http://creativecommons.org/licenses/by-sa/2.5/

4.3. PROPOSITIONAL NATURAL DEDUCTION CALCULUS 33

ence rule that derives a formula with that symbol at the head) and one “elimination rule” (an
inference rule that acts on a formula with this head and derives a set of subformulae).

Calculi: Natural Deduction (MD?; Gentzen [Gen34])

> Idea: MDY tries to mimic human theorem proving behavior (non-minimal)

> Definition 4.3.1 The propositional natural deduction calculus AMD® has
rules for the introduction and elimination of connectives

Introduction Elimination Axiom
A B AANB AANB
v AE, NE,
AAB A B D
Av-A
[A]!
B 1 A=B A
AsB L —B F

> TND is used only in classical logic (otherwise constructive/intuitionistic)
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The most characteristic rule in the natural deduction calculus is the =I rule. It corresponds to
the mathematical way of proving an implication A = B: We assume that A is true and show B
from this assumption. When we can do this we discharge (get rid of) the assumption and conclude
A = B. This mode of reasoning is called hypothetical reasoning. Note that the local hypothesis
is discharged by the rule =1, i.e. it cannot be used in any other part of the proof. As the =1
rules may be nested, we decorate both the rule and the corresponding assumption with a marker
(here the number 1).

Let us now consider an example of hypothetical reasoning in action.

Natural Deduction: Examples
> Example 4.3.2 (Inference with Local Hypotheses)
[AAB] [AABJ! [A]"
— AE, —— AE] 2
B A [B]
Vi
BAA SNE
EE—— B=A
ANB=BAA N '
A=B=A
- (©: Michael Kohlhase 55

Here we see reasoning with local hypotheses at work. In the left example, we assume the formula
A A B and can use it in the proof until it is discharged by the rule AE; on the bottom — therefore
we decorate the hypothesis and the rule by corresponding numbers (here the label “1”7). Note the
assumption A A B is local to the proof fragment delineated by the corresponding hypothesis and
the discharging rule, i.e. even if this proof is only a fragment of a larger proof, then we cannot use
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its hypothesis anywhere else. Note also that we can use as many copies of the local hypothesis as
we need; they are all discharged at the same time.

In the right example we see that local hypotheses can be nested as long as hypotheses are kept
local. In particular, we may not use the hypothesis B after the =2, e.g. to continue with a =E.
One of the nice things about the natural deduction calculus is that the deduction theorem is
almost trivial to prove. In a sense, the triviality of the deduction theorem is the central idea of
the calculus and the feature that makes it so natural.

A Deduction Theorem for ND°

> Theorem 4.3.3 H, A Fxpo B, iff H Fapo A= B.
> Proof: We show the two directions separately

P.1If H, A Fapo B, then H Fpapo A= B by =1, and

P.2 If H Fpapo A= B, then H, A Fxpo A = B by weakening and H, A -ppo B
by =F. O

(©: Michael Kohlhase 56

Another characteristic of the natural deduction calculus is that it has inference rules (introduction
and elimination rules) for all connectives. So we extend the set of rules from Definition 5.2.1 for
disjunction, negation and falsity.

More Rules for Natural Deduction
> Definition 4.3.4 MDY has the following additional rules for the remaining
connectives.
1 1
[A]" [B]
A B AVB
C C 1
Wi VI, VE
AvB"' AVB C
[A]'
F 1 A
=1 -F
- A A
A A F
FI —FFE
F A
(©: Michael Kohlhase 57
Natural Deduction in Sequent Calculus Formulation
>> ldea: Explicit representation of hypotheses (lift calculus to judgments)
> Definition 4.3.5 A judgment is a meta-statement about the provability of
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propositions

> Definition 4.3.6 A sequent is a judgment of the form # ~ A about the
provability of the formula A from the set H of hypotheses.

Write = A for ) - A.

> ldea: Reformulate ND rules so that they act on sequents

> Example 4.3.7 We give the sequent-style version of Example 5.2.2

Ax Ax
AANBFAAB AANABFAAB

— Ax
AE, N ABFA
AABFB AABFA —_— =T
Al AFB=A
AABFBAA — =7
T FA=B=A

FAAB=BAA

Note: Even though the antecedent of a sequent is written like a sequence, it is
actually a set. In particular, we can permute and duplicate members at will.

(©: Michael Kohlhase 58

> Sequent-Style Rules for Natural Deduction

> Definition 4.3.8 The following inference rules make up the propositional
sequent-style natural deduction calculus NDP:

I'-B

Ax [ AFB

weaken ND

TAFA TFAV-A ©

'FATHB I'AAB I'-AAB

E AR AR,
T-AAB r-a 8

I'FA I'HB I'rAvVvB I'AFC I',BFC
VI, VI,

r E
I'FAVB '-AvB I'kC v

I''AFB 'FA=B TI'FA

TFA=B I'rB =k

IAFF TF-—A
rroa L A F

I'F-ATFA I'tF
—T1rr 1 rFal®

(©: Michael Kohlhase 59

Linearized Notation for (Sequent-Style) ND Proofs

35
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> Linearized notation for sequent-style ND proofs

1. 7‘[1 H A1 (..71) [ =
2. Ha F Ay (F2) corresponds to AL A2R

3. Hy F A (R1,2) Hs b As

> Example 4.3.9 We show a linearized version of Example 5.2.7

# hyp F  formula NDjust # hyp +  formula NDjust
1. 1 F AAB Ax 1. 1 A Ax
2. 1 F B AEr1 2. 2 F B Ax
3. 1 A ANE 1 3. 1,2 F A weaken 1, 2
4. 1 F BAA AI2,1 4. 1 F B=A =I3
5. F AAB=BAA =I4 5 F A=B=A =4
(©: Michael Kohlhase 60 =

Each line in the table represents one inference step in the proof. It consists of line number (for
referencing), a formula for the asserted property, a justification via a ND rules (and the lines this
one is derived from), and finally a list of line numbers of proof steps that are local hypotheses in
effect for the current line.
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Chapter 5

First Order Predicate Logic

5.1 First-Order Logic

First-order logic is the most widely used formal system for modelling knowledge and inference
processes. It strikes a very good bargain in the trade-off between expressivity and conceptual
and computational complexity. To many people first-order logic is “the logic”, i.e. the only logic
worth considering, its applications range from the foundations of mathematics to natural language
semantics.

First-Order Predicate Logic (PL')

>> Coverage: We can talk about (All humans are mortal)

> individual things and denote them by variables or constants

> properties of individuals, (e.g. being human or mortal)
> relations of individuals, (e.g. sibling of relationship)
> functions on individuals, (e.g. the father of function)

We can also state the existence of an individual with a certain property, or the
universality of a property.

> But we cannot state assertions like
> There is a surjective function from the natural numbers into the reals.

> First-Order Predicate Logic has many good properties (complete calculi,
compactness, unitary, linear unification,. ..)

> But too weak for formalizing: (at least directly)

> natural numbers, torsion groups, calculus, ...

> generalized quantifiers (most, at least three, some,. . .)

(©: Michael Kohlhase 61

5.1.1 First-Order Logic: Syntax and Semantics

The syntax and semantics of first-order logic is systematically organized in two distinct layers: one
for truth values (like in propositional logic) and one for individuals (the new, distinctive feature

37
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of first-order logic).

The first step of defining a formal language is to specify the alphabet, here the first-order signatures
and their components.

PL' Syntax (Signature and Variables)

> Definition 5.1.1 First-order logic (PLI), is a formal logical system exten-
sively used in mathematics, philosophy, linguistics, and computer science. It
combines propositional logic with the ability to quantify over individuals.

> PL' talks about two kinds of objects: (so we have two kinds of symbols)

> truth values; sometimes annotated by type o (like in PLY)

> individuals; sometimes annotated by type ¢ (numbers, foxes, Pokémon,...)
)

> Definition 5.1.2 A first-order signature consists of (all disjoint; k € N

> connectives: 3° = {T, F,—,V,A,=>, ¢, ...} (functions on truth values)
> function constants: Z£ ={f,g,h,...} (functions on individuals)
> predicate constants: X% = {p,q,r,...} (relations among inds.)

> (Skolem constants: X5% = {fF, f¥,...}) (witness constructors; countably
o0)

> We take ¥, to be all of these together: ¥, := 2/ UXPUX®* where
¥* i= Upen Zj and define ¥ := X, UX°.

We assume a set of individual variables: V, = {X,,Y,, Z, X!,, X2} (countably
x)

(©: Michael Kohlhase 62

We make the deliberate, but non-standard design choice here to include Skolem constants into
the signature from the start. These are used in inference systems to give names to objects and
construct witnesses. Other than the fact that they are usually introduced by need, they work
exactly like regular constants, which makes the inclusion rather painless. As we can never predict
how many Skolem constants we are going to need, we give ourselves countably infinitely many for
every arity. Our supply of individual variables is countably infinite for the same reason.

The formulae of first-order logic is built up from the signature and variables as terms (to represent
individuals) and propositions (to represent propositions). The latter include the propositional
connectives, but also quantifiers.

> PL! Syntax (Formulae)

> Definition 5.1.3 Terms: A € wff,(%,) (denote individuals: type ¢)

>V, C wﬁL(ZL)7
> if f € B and A’ € wff,(2,) for i<k, then f(AL,..., AF) € wff,(,).

> Definition 5.1.4 Propositions: A € wff ,(X) (denote truth values: type o)

> if p € 2P and A € wff (X,) for i<k, then p(Al,..., A*) € wff (2),
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> if A,B € wff, (X) and X € V,, then T,AAB,~ A, VX_A € uff ,(2).

> Definition 5.1.5 We define the connectives F,V,=, < via the abbrevia-
tions AVB:=-(-AA-B),A=B:=-AVB,A&B:=(A=B)A(B=A),
and F := —T. We will use them like the primary connectives A and —

> Definition 5.1.6 We use 3X.A as an abbreviation for - (VX .= A). (exis-
tential quantifier)

> Definition 5.1.7 Call formulae without connectives or quantifiers atomic
else complex.

(©: Michael Kohlhase 63

39

Note: that we only need e.g. conjunction, negation, and universal quantification, all other logical

constants can be defined from them (as we will see when we have fixed their interpretations).

Alternative Notations for Quantifiers

Here ‘ Elsewhere
Ve.A | Az.A (x).A
Jz.A | Vz.A

(©: Michael Kohlhase 64

The introduction of quantifiers to first-order logic brings a new phenomenon: variables that are
under the scope of a quantifiers will behave very differently from the ones that are not. Therefore

we build up a vocabulary that distinguishes the two.

Free and Bound Variables

> Definition 5.1.8 We call an occurrence of a variable X bound in a formula
A, iff it occurs in a sub-formula VX .B of A. We call a variable occurrence
free otherwise.

For a formula A, we will use BVar(A) (and free(A)) for the set of bound
(free) variables of A, i.e. variables that have a free/bound occurrence in A.

> Definition 5.1.9 We define the set free(A) of free variables of a formula A:

free(X) := {X}

free(f(A1,...,An)) = U <<, free(Ay)
free(p(A1,...,Ap)) := Ulgign free(A;)
free(— A) := free(A)

free(A AB) := free(A) U free(B)
free(VX.A) := free(A)\{X}

> Definition 5.1.10 We call a formula A closed or ground, iff free(A) = ().
We call a closed proposition a sentence, and denote the set of all ground
terms with cwff,(X,) and the set of sentences with cwff ,(X,).

> Axiom 5.1.11 Bound variables can be renamed, i.e. any subterm VX .B of
a formula A can be replaced by A’ := (VY.B’), where B’ arises from B by
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replacing all X € free(B) with a new variable Y that does not occur in A.
We call A’ an alphabetical variant of A.

(©: Michael Kohlhase 65

We will be mainly interested in (sets of ) sentences —i.e. closed propositions — as the representations
of meaningful statements about individuals. Indeed, we will see below that free variables do
not gives us expressivity, since they behave like constants and could be replaced by them in all
situations, except the recursive definition of quantified formulae. Indeed in all situations where
variables occur freely, they have the character of meta-variables, i.e. syntactic placeholders that
can be instantiated with terms when needed in an inference calculus.

The semantics of first-order logic is a Tarski-style set-theoretic semantics where the atomic syn-
tactic entities are interpreted by mapping them into a well-understood structure, a first-order
universe that is just an arbitrary set.

Semantics of PL' (Models)

> We fix the Universe D, = {T, F} of truth values.

> We assume an arbitrary universe D, # 0 of individuals (this choice is a
parameter to the semantics)

> Definition 5.1.12 An interpretation 7 assigns values to constants, e.g.
>Z(7): Dy = D, with T—= F, F— T, and Z(A) = ... (as in PL?)
>Z: Ei — D — D, (interpret function symbols as arbitrary functions)
>7: 38 = P(DF) (interpret predicates as arbitrary relations)

> Definition 5.1.13 A variable assignment ¢: V, — D, maps variables into
the universe.

A first-order Model M = (D,, Z) consists of a universe D, and an interpretationZ.

(©: Michael Kohlhase 66

We do not have to make the universe of truth values part of the model, since it is always the same;
we determine the model by choosing a universe and an interpretation function.

Given a first-order model, we can define the evaluation function as a homomorphism over the
construction of formulae.

> Semantics of PL' (Evaluation)

> Given a model (D, Z), the value function Z, is recursively defined: (two parts:
terms & propositions)
> Z,: wif,(3,) = D, assigns values to terms.
> Zy(X) = ¢(X) and
> Lo(f(Ars- o Ag)) = Z(F)(Zp(Ar), - .., Lo (As))
> Lyt wif () = D, assigns values to formulae:
> L (T) =Z(T) =T,
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Z,(~A) =Z(7)(Z,(A))

Z,(AN ) Z(N(Zy(A), Z,(B)) (just as in PL?)
Z(p(AY, ..., AR)) =T, iff (T,(A"),...,I,(A")) € Z(p)

Z,(VX ) =T, iffZ, (4 x)(A) =T for all a € D..

(©: Michael Kohlhase 67

The only new (and interesting) case in this definition is the quantifier case, there we define the value
of a quantified formula by the value of its scope — but with an extended variable assignment. Note
that by passing to the scope A of Vx. A, the occurrences of the variable z in A that were bound
in Vz.A become free and are amenable to evaluation by the variable assignment ¢ := ¢, [a/X].
Note that as an extension of ¢, the assignment v supplies exactly the right value for x in A.
This variability of the variable assignment in the definition value function justifies the somewhat
complex setup of first-order evaluation, where we have the (static) interpretation function for the
symbols from the signature and the (dynamic) variable assignment for the variables.

Note furthermore, that the value Z,(3x.A) of Jz.A, which we have defined to be - (Vz.=A) is
true, iff it is not the case that Z,(Vo.— A) =Zy(~A) =F for all a € D, and ¢ := ¢, [a/X]. This
is the case, iff Z,,(A) = T for some a € D,. So our definition of the existential quantifier yields the
appropriate semantics.

5.1.2 First-Order Substitutions

We will now turn our attention to substitutions, special formula-to-formula mappings that oper-
ationalize the intuition that (individual) variables stand for arbitrary terms.

Substitutions on Terms

> Intuition: If B is a term and X is a variable, then we denote the result of
systematically replacing all occurrences of X in a term A by B with [B/X](A).

> Problem: What about [Z/Y],[Y/X](X), is that Y or Z7

> Folklore: [Z/Y],[Y/X]|(X) =Y, but [Z/Y]|([Y/X](X)) = Z of course.
(Parallel application)

> Definition 5.1.14 We call o: wff,(X,) — wff,(X,) a substitution, if o(f(A1,..., Al,))
f(o(A1),...,0(A})) and the support supp(o) := {X | o(X) # X} of o is fi-
nite.

> Observation 5.1.15 Note that a substitution o is determined by its values on
variables alone, thus we can write o as of,, = {[o(X)/X]|X € supp(c)}.

> Notation 5.1.16 We denote the substitution o with supp (o) = {2? | 1<i<n}
and o (') = A, by [A1/a"],.. . [A,/2").

> Example 5.1.17 [a/z], [f(b)/y], [a/z] instantiates g(z,y, h(2)) to g(a, f (D), h(a)).

> Definition 5.1.18 We call intro(o) := Uxcsupp(o) free(c(X)) the set of
variables introduced by o.

(©: Michael Kohlhase 68
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The extension of a substitution is an important operation, which you will run into from time
to time. Given a substitution o, a variable x, and an expression A, o,[A/x] extends o with a
new value for x. The intuition is that the values right of the comma overwrite the pairs in the
substitution on the left, which already has a value for z, even though the representation of o may
not show it.

Substitution Extension

> Notation 5.1.19 (Substitution Extension) Let o be a substitution, then
we denote with o,[A/X] the function {(Y;A)€e€o|Y # X}U{(X,A)}.
(0,[A/X] coincides with o of X, and gives the result A there.)

> Note: If o is a substitution, then o, [A/X] is also a substitution.

> Definition 5.1.20 If o is a substitution, then we call o, [A / X] the extension
of o by [A/X].

> We also need the dual operation: removing a variable from the support

> Definition 5.1.21 We can discharge a variable X from a substitution o by
o_x :=o0,[X/X].
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Note that the use of the comma notation for substitutions defined in Notation 5.1.16 is consis-
tent with substitution extension. We can view a substitution [a/z], [f(b)/y] as the extension of
the empty substitution (the identity function on variables) by [f(b)/y] and then by [a/z]. Note
furthermore, that substitution extension is not commutative in general.

For first-order substitutions we need to extend the substitutions defined on terms to act on propo-
sitions. This is technically more involved, since we have to take care of bound variables.

Substitutions on Propositions

> Problem: We want to extend substitutions to propositions, in particular to
quantified formulae: What is o(VX.A)?

> Idea: o should not instantiate bound variables. ([A/X](VX.B) =VA.B'
ill-formed)

> Definition 5.1.22 ¢(VX.A) := (VX.0_x(A)).

> Problem: This can lead to variable capture: [f(X)/Y](VX.p(X,Y)) would
evaluate to VX .p(X, f(X)), where the second occurrence of X is bound after
instantiation, whereas it was free before.

Solution: Rename away the bound variable X in VX.p(X,Y) before applying
the substitution.

> Definition 5.1.23 (Capture-Avoiding Substitution Application) Let
o be a substitution, A a formula, and A’ an alphabetical variant of A, such
that intro(c) NBVar(A) = (). Then we define o(A) := g(A).

(©: Michael Kohlhase 70

We now introduce a central tool for reasoning about the semantics of substitutions: the “substitution-
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value Lemma”, which relates the process of instantiation to (semantic) evaluation. This result will
be the motor of all soundness proofs on axioms and inference rules acting on variables via sub-
stitutions. In fact, any logic with variables and substitutions will have (to have) some form of
a substitution-value Lemma to get the meta-theory going, so it is usually the first target in any
development of such a logic.

We establish the substitution-value Lemma for first-order logic in two steps, first on terms,
where it is very simple, and then on propositions.

Substitution Value Lemma for Terms

> Lemma 5.1.24 Let A and B be terms, then I,([B/X]A) = Z;(A), where
b=, [1,(B)/X].

> Proof: by induction on the depth of A:

P.1.1 depth=0:
P.1.1.1 Then A is a variable (say Y'), or constant, so we have three cases

P.1.1.1.1 A=Y = X: then Z,([B/X]|(A)) = Z,([B/X](X)) = Z,(B) =
P(X) =Zy(X) = Iy(A).

P.1.1.1.2 A =Y # X: then Z([B/X](A)) = Z,([B/X](Y)) = Z,(Y) =
(V) =o(Y) =Zy(Y) = Zy(A).

P.1.1.1.3 A is a constant: analogous to the preceding case (Y # X)

P.1.1.2 This completes the base case (depth = 0). O

P.1.2 depth> 0: then A = f(A4,...,A,) and we have
Z,(B/X](A) = Z(f)(Z,([B/X](A1)), ..., I, ([B/X](An)))
)

(
= ZI(f)(Zy (A1), -~-7Iw(An))
= ZIy(A).

by inductive hypothesis

P.1.2.2 This completes the inductive case, and we have proven the assertion [
O
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Substitution Value Lemma for Propositions

> Lemma 5.1.25 Z,([B/X](A)) = Zy(A), where ¢ = ¢, [Z,(B)/X].
> Proof: by induction on the number n of connectives and quantifiers in A
P.1.1n = 0: then A is an atomic proposition, and we can argue like in the

inductive case of the substitution value lemma for terms.

P.1.2n>0and A =—-B or A =CoD: Here we argue like in the inductive
case of the term lemma as well.

P.1.3 n>0 and A = VY .C where (wlog) X #Y:
P.1.3.1 then Z,(A) = Zy (VY .C) =T, iff Zy [4/y(C) = T for all a € D,.
P.1.3.2 But Zy, 4/v1(C) = I, 1o/v)([B/X](C)) = T, by inductive hypothesis.
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P.1.3.3 So Z,(A) = Z,,(VY . [B/X](C)) = Z,([B/X](VY.C)) = Ig,([B/X](DA))

O

(©: Michael Kohlhase 72

To understand the proof fully, you should think about where the wlog — it stands for without loss
of generality — comes from.

5.2 First-Order Calculi

In this section we will introduce two reasoning calculi for first-order logic, both were invented by
Gerhard Gentzen in the 1930’s and are very much related. The “natural deduction” calculus was
created in order to model the natural mode of reasoning e.g. in everyday mathematical practice.
This calculus was intended as a counter-approach to the well-known Hilbert-style calculi, which
were mainly used as theoretical devices for studying reasoning in principle, not for modeling
particular reasoning styles.

The “sequent calculus” was a rationalized version and extension of the natural deduction cal-
culus that makes certain meta-proofs simpler to push through?.

Both calculi have a similar structure, which is motivated by the human-orientation: rather
than using a minimal set of inference rules, they provide two inference rules for every connective
and quantifier, one “introduction rule” (an inference rule that derives a formula with that symbol
at the head) and one “elimination rule” (an inference rule that acts on a formula with this head
and derives a set of subformulae).

This allows us to introduce the calculi in two stages, first for the propositional connectives and
then extend this to a calculus for first-order logic by adding rules for the quantifiers.

5.2.1 Propositional Natural Deduction Calculus

We will now introduce the “natural deduction” calculus for propositional logic. The calculus was
created in order to model the natural mode of reasoning e.g. in everyday mathematical practice.
This calculus was intended as a counter-approach to the well-known Hilbert style calculi, which
were mainly used as theoretical devices for studying reasoning in principle, not for modeling
particular reasoning styles.

Rather than using a minimal set of inference rules, the natural deduction calculus provides
two/three inference rules for every connective and quantifier, one “introduction rule” (an infer-
ence rule that derives a formula with that symbol at the head) and one “elimination rule” (an
inference rule that acts on a formula with this head and derives a set of subformulae).

Calculi: Natural Deduction (MD°; Gentzen [Gen34])

> Idea: DO tries to mimic human theorem proving behavior (non-minimal)

> Definition 5.2.1 The propositional natural deduction calculus MDY has
rules for the introduction and elimination of connectives

2EpNoTke: say something about cut elimination/analytical calculi somewhere
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Introduction Elimination Axiom
A B ANB ANB
i AE NE.
AAB A BT ND
Av-A
[A]!
B A=B A
It —=F
A=B B
> TND is used only in classical logic (otherwise constructive/intuitionistic)
(©: Michael Kohlhase 73

The most characteristic rule in the natural deduction calculus is the =1 rule. It corresponds to
the mathematical way of proving an implication A = B: We assume that A is true and show B
from this assumption. When we can do this we discharge (get rid of) the assumption and conclude
A = B. This mode of reasoning is called hypothetical reasoning. Note that the local hypothesis
is discharged by the rule =1, i.e. it cannot be used in any other part of the proof. As the =I
rules may be nested, we decorate both the rule and the corresponding assumption with a marker
(here the number 1).

Let us now consider an example of hypothetical reasoning in action.

Natural Deduction: Examples
> Example 5.2.2 (Inference with Local Hypotheses)
[AAB]! [AABJ ik
—— AE, — AE; 2
B A [B]
N
BAA =12
—— =J! B=A
ANB=BAA _ gt
A=DB=A
(©: Michael Kohlhase 74

Here we see reasoning with local hypotheses at work. In the left example, we assume the formula
A A B and can use it in the proof until it is discharged by the rule AE; on the bottom — therefore
we decorate the hypothesis and the rule by corresponding numbers (here the label “17). Note the
assumption A AB is local to the proof fragment delineated by the corresponding hypothesis and
the discharging rule, i.e. even if this proof is only a fragment of a larger proof, then we cannot use
its hypothesis anywhere else. Note also that we can use as many copies of the local hypothesis as
we need; they are all discharged at the same time.

In the right example we see that local hypotheses can be nested as long as hypotheses are kept
local. In particular, we may not use the hypothesis B after the =I2, e.g. to continue with a =E.

One of the nice things about the natural deduction calculus is that the deduction theorem is
almost trivial to prove. In a sense, the triviality of the deduction theorem is the central idea of
the calculus and the feature that makes it so natural.

A Deduction Theorem for ND°
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> Theorem 5.2.3 H, A Fapo B, iff H Fapo A = B.

> Proof: We show the two directions separately

P.1If H,A Fapo B, then H Fprpo A= B by =1, and
P.2 If H Fpapo A= B, then H, A Fxpo A = B by weakening and H, A Fpapo B
O

by =F.

(©: Michael Kohlhase

75

Another characteristic of the natural deduction calculus is that it has inference rules (introduction

and elimination rules) for all connectives. So we extend the set of rules from Definition 5.2.1 for
disjunction, negation and falsity.

More Rules for Natural Deduction

> Definition 5.2.4 MDY has the following additional rules for the remaining

connectives.
[A]' [B]'
AVB : :
A B C C 1
VI VI, VE
AvB'' AVB C
[A]!
F 1 A
—1 -E
- A A
-A A F
FI FFE
F A
(©: Michael Kohlhase 76

Natural Deduction in Sequent Calculus Formulation

> ldea: Explicit representation of hypotheses (lift calculus to judgments)

> Definition 5.2.5 A judgment is a meta-statement about the provability of
propositions

> Definition 5.2.6 A sequent is a judgment of the form H ~ A about the
provability of the formula A from the set H of hypotheses.

Write - A for ) - A.

> ldea: Reformulate ND rules so that they act on sequents

> Example 5.2.7 We give the sequent-style version of Example 5.2.2
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Ax Ax
AANBFAAB AANABFAAB

— Ax
AE, AE; ABFA
AABFB AABFA — =T
Al AFB=A
AABFBAA —_— =]
=7 FA=B=A

FAAB=BAA

Note: Even though the antecedent of a sequent is written like a sequence, it is
actually a set. In particular, we can permute and duplicate members at will.

(©: Michael Kohlhase 77

> Sequent-Style Rules for Natural Deduction

> Definition 5.2.8 The following inference rules make up the propositional
sequent-style natural deduction calculus NDP:

r'eB weaken ——F = TND

Ax [LAFB TFAV-A

T,AFA

A TFB I'FAAB I'FAAB
rrars M r-a /P rrs P

I'FA I'-B v I'FAVB TAFC I,BEC

g E
rravB"! TFAVB I'FC v

1“,AI—B:> 'FrA=B T'FA
I'HA=B '-B

=K

IAFF TF-—A
r-a ! A F

I'F-ATFA I'F
—T1rr 1 rFal®

(©: Michael Kohlhase 78

Linearized Notation for (Sequent-Style) ND Proofs

> Linearized notation for sequent-style ND proofs

1. Hl H A1 (..71) = =
2. Hy F Ay (J2) corresponds to b A Hs A2R

3. My F Ay (R1,2) Hs b As

> Example 5.2.9 We show a linearized version of Example 5.2.7

47
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# hyp b formula NDjust # hyp +  formula NDjust
1. 1 F AAB Ax 1. 1 A Ax
2. 1 F B AEy1 2. 2 F B Ax
3. 1 A NE 1 3. 1,2 F A weaken 1, 2
4. 1 F BAA AI2,1 4. 1 F B=A =13
5. F AAB=BAA =I4 5 F A=B=>A =I4
(©: Michael Kohlhase 79

Each line in the table represents one inference step in the proof. It consists of line number (for
referencing), a formula for the asserted property, a justification via a ND rules (and the lines this
one is derived from), and finally a list of line numbers of proof steps that are local hypotheses in
effect for the current line.

To obtain a first-order calculus, we have to extend MDY with (introduction and elimination) rules
for the quantifiers.

First-Order Natural Deduction (MD!; Gentzen [Gen34])

> Rules for propositional connectives just as always

> Definition 5.2.10 (New Quantifier Rules) The first-order natural de-
duction calculus AD! extends MD by the following four rules

A, VX.A
vx.A B/X|A) "
([e/X)(A)]!
IX.A :
[B/X](A) C 1
XA C -

*

means that A does not depend on any hypothesis in which X is free.
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The intuition behind the rule VI is that a formula A with a (free) variable X can be generalized
to VX.A, if X stands for an arbitrary object, i.e. there are no restricting assumptions about
X. The VE rule is just a substitution rule that allows to instantiate arbitrary terms B for X in
A. The 3I rule says if we have a witness B for X in A (i.e. a concrete term B that makes A
true), then we can existentially close A. The JE rule corresponds to the common mathematical
practice, where we give objects we know exist a new name ¢ and continue the proof by reasoning
about this concrete object ¢. Anything we can prove from the assumption [¢/X](A) we can prove
outright if 3X.A is known.

A Complex ND! Example
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> Example 5.2.11 We prove = (VX .P(X)) Fapr 3X.— P(X).

[~ P(X))
[~(3EX.~P(X)]' 3IX.-P(X)
F
- P(X)
P(X)
- (VX.P(X)) VX.P(X)

dI
FI

—JI?

-

FI

F
ax.orx) L
IX.-P(X)

1

(©: Michael Kohlhase 81

This is the classical formulation of the calculus of natural deduction. To prepare the things we
want to do later (and to get around the somewhat un-licensed extension by hypothetical reasoning
in the calculus), we will reformulate the calculus by lifting it to the “judgements level”. Instead
of postulating rules that make statements about the validity of propositions, we postulate rules
that make state about derivability. This move allows us to make the respective local hypotheses
in ND derivations into syntactic parts of the objects (we call them “sequents”’) manipulated by the
inference rules.

First-Order Natural Deduction in Sequent Formulation

> Rules for propositional connectives just as always

>> Definition 5.2.12 (New Quantifier Rules)

I'A X ¢ free(T) I'FVX.A
VI — " _VE
IFVX.A I+ [B/X](A)
F}—[B/X](A)HI I-3X.A T,[c/X](A)FC ce Xk new _ .
I'F3X.A I'-cC
(©: Michael Kohlhase 82

Natural Deduction with Equality

> Definition 5.2.13 (First-Order Logic with Equality) We extend PL!
with a new logical symbol for equality = € X! and fix its semantics to
I(=) == {(z,z) |z € D.}. We call the extended logic first-order logic with
equality (PLL)

> We now extend natural deduction as well.
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> Definition 5.2.14 For the calculus of natural deduction with equality MDL
we add the following two equality rules to AD' to deal with equality:

A=B C[A],
A—A L [B/p]C

where C[A] if the formula C has a subterm A at position p and [B/p|C is
the result of replacing that subterm with B.

> In many ways equivalence behaves like equality, so we will use the following
derived rules in AD!:

A<B ClA]

oI L

ASA Bpc ¢

(©: Michael Kohlhase 83

Again, we have two rules that follow the introduction/elimination pattern of natural deduction
calculi.

To make sure that we understand the constructions here, let us get back to the “replacement at
position” operation used in the equality rules.

Positions in Formulae

> ldea: Formulae are (naturally) trees, so we can use tree positions to talk about
subformulae

> Definition 5.2.15 A formula position p is a list of natural number that in
each node of a formula (tree) specifies into which child to descend. For a
formula A we denote the subformula at p with A .

> We will sometimes write a formula C as C[A], to indicate that C the subfor-
mula A at position p.

> Definition 5.2.16 Let p be a position, then [A /p]C is the formula obtained
from C by replacing the subformula at position p by A.

> Example 5.2.17 (Schematically)

(©: Michael Kohlhase 84

The operation of replacing a subformula at position p is quite different from e.g. (first-order)
substitutions:

e We are replacing subformulae with subformulae instead of instantiating variables with terms.
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e substitutions replace all occurrences of a variable in a formula, whereas formula replacement
only affects the (one) subformula at position p.

We conclude this Subsection with an extended example: the proof of a classical mathematical result
in the natural deduction calculus with equality. This shows us that we can derive strong properties
about complex situations (here the real numbers; an uncountably infinite set of numbers).

NDL Example: v/2 is Irrational

> We can do real Maths with ADL:

> Theorem 5.2.18 \/2 is irrational

Proof: We prove the assertion by contradiction

P.1 Assume that /2 is rational.
P.2 Then there are numbers p and ¢ such that /2 =1p/q.
P.3 So we know 2 ¢ = p?.

P.4 But 2 ¢? has an odd number of prime factors while p? an even number.

P.5 This is a contradiction (since they are equal), so we have proven the assertion
O
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If we want to formalize this into MD!, we have to write down all the assertions in the proof steps
in PL! syntax and come up with justifications for them in terms of AD' inference rules. The next
two slides show such a proof, where we write /n to denote that n is prime, use #(n) for the number
of prime factors of a number n, and write irr(r) if r is irrational.

NDL Example: /2 is Irrational (the Proof)
# | hyp | formula NDjust
1 Yn,m.m(2n+1)=(2m) lemma
2 VY, m.#n™) =m #(n) lemma
3 Vn,p.ip=#(pn) =#mn)+1 lemma
4 Va.irr(z) < (- (3p,q.x =p/q)) | definition
5 irr(v2) & (= (3p,q.vV2=p/q) | VE(4)
6 |6 —irr(v/2) Ax
716 | --(GpgvV2=p/q & =E(6,5)
8 |6 |3dpgv2=p/q —E(7)
9 |69 |V2=p/q Ax
10 (69 | 2¢*=p? arith(9)
1169 | #(%) =2 #(p) VE*(2)
12169 | 2=>#(2¢*) =#(?)+1 VE?(1)
(©: Michael Kohlhase 86

Lines 6 and 9 are local hypotheses for the proof (they only have an implicit counterpart in the
inference rules as defined above). Finally we have abbreviated the arithmetic simplification of line
9 with the justification “arith” to avoid having to formalize elementary arithmetic.
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NDL Example: v/2 is Irrational (the Proof continued)
13 12 lemma
14169 | #(2¢*) =#(*) +1 =FE(13,12)
15 | 6,9 | #(¢%) =2 #(q) VE*(2)
16 169 | #(2¢*) =2 #(q)+1 =E(14,15)
17 #(p?) = #(p?) =
18 | 6,9 | #(2 ¢*) = #(¢*) =FE(17,10)
19 | 6.9 | 2 #(q) +1=#(p?) =F(18,16)
20 | 6.9 | 2 #(q)+1=2 #(p) —=F(19,11)
21 | 6.9 | = (2 #(q)+1) = (2 #(p)) | VE*(1)
22169 | F FI(20,21)
2316 |F 3E°(22)
24 = —irr(v/2) -1°(23)
25 irr(v/2) -E?(23)
(©: Michael Kohlhase 87

We observe that the MD! proof is much more detailed, and needs quite a few Lemmata about
# to go through. Furthermore, we have added a definition of irrationality (and treat definitional
equality via the equality rules). Apart from these artefacts of formalization, the two representations
of proofs correspond to each other very directly.
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Chapter 6

Higher-Order Logic and A-Calculus

In this Chapter we set the stage for a deeper discussions of the logical foundations of mathematics
by introducing a particular higher-order logic, which gets around the limitations of first-order logic
— the restriction of quantification to individuals. This raises a couple of questions (paradoxes,
comprehension, completeness) that have been very influential in the development of the logical
systems we know today.

Therefore we use the discussion of higher-order logic as an introduction and motivation for the
A-calculus, which answers most of these questions in a term-level, computation-friendly system.

The formal development of the simply typed A-calculus and the establishment of its (meta-
logical) properties will be the body of work in this Chapter. Once we have that we can reconstruct
a clean version of higher-order logic by adding special provisions for propositions.

6.1 Higher-Order Predicate Logic

The main motivation for higher-order logic is to allow quantification over classes of objects that
are not individuals — because we want to use them as functions or predicates, i.e. apply them to
arguments in other parts of the formula.

Higher-Order Predicate Logic (PL2)

> Quantification over functions and Predicates: VP.3F.P(a)V = P(F(a))

> Comprehension: (Existence of Functions)
JF.VX.FX =A eg. f(z)=32?+5x—7

> Extensionality: (Equality of functions and truth values)
VF.VG.(VX.FX =GX)=>F =G
VPYVQ.(P&Q)&P=Q

> Leibniz Equality: (Indiscernability)
A =B forVP.PA= PB

(©: Michael Kohlhase 88

Indeed, if we just remove the restriction on quantification we can write down many things that are
essential on everyday mathematics, but cannot be written down in first-order logic. But the naive
logic we have created (BTW, this is essentially the logic of Frege [Fre79]) is much too expressive,
it allows us to write down completely meaningless things as witnessed by Russell’s paradox.

93
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Problems with PLS2

> Problem: Russell's Antinomy: VQ. M(Q) < (= Q(Q))

> the set M of all sets that do not contain themselves

> Question: Is M € M? Answer: M € M iff M & M.

> What has happened? the predicate Q has been applied to itself

> Solution for this course: Forbid self-applications by types!!

> ¢, 0 (type of individuals, truth values), o — 8 (function type)
> right associative bracketing: o« —  — ¥ abbreviates oo — (8 — 7)

> vector notation: &, — (3 abbreviatesa; — ... > a,, =

> Well-typed formulae (prohibits paradoxes like VQ . M(Q) < (—Q(Q)))

> Other solution: Give it a non-standard semantics (Domain-Theory [Scott])

(©: Michael Kohlhase 89

The solution to this problem turns out to be relatively simple with the benefit of hindsight: we
just introduce a syntactic device that prevents us from writing down paradoxical formulae. This
idea was first introduced by Russell and Whitehead in their Principia Mathematica [WR10].

Their system of “ramified types” was later radically simplified by Alonzo Church to the form we
use here in [Chu40]. One of the simplifications is the restriction to unary functions that is made
possible by the fact that we can re-interpret binary functions as unary ones using a technique
called “Currying” after the Logician Haskell Brooks Curry (x1900, 11982). Of course we can
extend this to higher arities as well. So in theory we can consider n-ary functions as syntactic
sugar for suitable higher-order functions. The vector notation for types defined above supports
this intuition.

Types

> Types are semantic annotations for terms that prevent antinomies

> Definition 6.1.1 Given a set 3 T of base types, construct function types:
a — (3 is the type of functions with domain type o and range type 5. We
call the closure 7 of B T under function types the set of types over B T.

> Definition 6.1.2 We will use ¢ for the type of individuals and o for the type
of truth values.

> The type constructor is used as a right-associative operator, i.e. weuse @ — 3 —
7 as an abbreviation for @ — (8 — 7)

> We will use a kind of vector notation for function types, abbreviatinga; — ... — «a,, —
B with @, — 8.

(©: Michael Kohlhase 90

Armed with a system of types, we can now define a typed higher-order logic, by insisting that all
formulae of this logic be well-typed. One advantage of typed logics is that the natural classes of
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objects that have otherwise to be syntactically kept apart in the definition of the logic (e.g. the
term and proposition levels in first-order logic), can now be distinguished by their type, leading to
a much simpler exposition of the logic. Another advantage is that concepts like connectives that
were at the language level e.g. in PL?, can be formalized as constants in the signature, which again
makes the exposition of the logic more flexible and regular. We only have to treat the quantifiers
at the language level (for the moment).

Well-Typed Formulae (PLS2)

> signature ¥ = UaeT Yo with
> connectives: =€ X0l VA, =, ... 1 C % o0
> variables V- = UQGT Vs, such that every V, countably infinite.

> well-typed formula e wff (3, V) of type o

> Vo UXa Cuff o(Z, V)
> If C e wff 53, Vr) and A € wff ,(X,V7), then (CA) € wff 5(%, Vr)
> If A € wff ,(£,V7), then (VX4.A) € wff ,(£,Vr)

> first-order terms have type ¢, propositions the type o.

> there is no type annotation such that VQ.M(Q) < (~Q(Q)) is well-typed.
@ needs type « as well as a — o.

(©: Michael Kohlhase 91

The semantics is similarly regular: We have universes for every type, and all functions are “typed
functions”, i.e. they respect the types of objects. Other than that, the setup is very similar to
what we already know.

Standard Semantics for PL2

> Definition 6.1.3 The universe of discourse (also carrier)
> arbitrary, non-empty set of individuals D,
> fixed set of truth values D, = {T,F}
> function universes Do—g = Do — Dpg
interpretation of constants: typed mapping Z: ¥ — D (i.e. Z(24a) CDa)

> Definition 6.1.4 We call a structure (D,Z), where D is a universe and 7
an interpretation of constants a standard model of PLS.

D> variable assignment: typed mapping ¢: V3 — D

> Definition 6.1.5 value function: typed mapping Z,: wff (3, Vr) = D
& I<p|vT = I<p|zT =7
> T,(AB) = Z,(A)(Z,(B))
> I¢(VXQA) =T, iff I@,[a/X](A) =T for all a € D,.
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A, valid under ¢, iff Z,(A) = T.

SOME RIGHTS RESERVED

(©: Michael Kohlhase 92

We now go through a couple of examples of what we can express in PL{2, and that works out very
straightforwardly. For instance, we can express equality in PLQ by Leibniz equality, and it has
the right meaning.

Another example are the Peano Axioms for the natural numbers, though we omit the proofs of

(©: Michael Kohlhase 93

> Equality

> Definition 6.1.6 (Leibniz equality) Q“*A.B, = VP,_,,.PA < PB (in-
discernability)

> Note: VPy_,,.PA= PB (get the other direction by instantiating P with Q,
where QX < (- PX))

> Theorem 6.1.7 If M = (D,Z) is a standard model, then 7,(Q%) is the
identity relation on Dq.

> Notation 6.1.8 We write A = B for QAB(A and B are equal, iff there is
no property P that can tell them apart.)

> Proof:

P.17,(QAB) = Z,(VP.PA= PB) = T, iff

Iv,[T/p](PAjPB) = T for aII re Da—m.

P.2 For A = B we have 7, ,/p|(PA) = 7(Z,(A)) = F or Z,/p|(PB) =
r(Z,(B)) =T.

P.3 Thus Z,(QAB) = T.

P4 Llet 7,(A) # Z,(B) and r = {Z,(A)}

P.5so 7(Z,(A)) =T and r(Z,(B)) = F

P.6 7,(QAB) =F, asZ, |,/ p|(PA= PB) = F, since Z,, |,/p|(PA) = 7(Z,(A))

T and Z,, |,/ p|(PB) = r(Z,(B)) = F. O

adequacy of the axiomatization here.

Example: Peano Axioms for the Natural Numbers

>Y={[N:t—=0],[0:¢,[s:¢t— ]}

> NO (0 is a natural number)
> VX,.NX = N(sX) (the successor of a natural number is natural)
> - (3X,.NX AsX =0) (0 has no predecessor)
>VX,.VY,.(sX=sY)=X =Y (the successor function is injective)
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> VP,_,,.P0= (VX,.NX = PX = P(sX)) = (VY,.NY = P(Y))
induction axiom: all properties P, that hold of 0, and with every n for its
successor s(n), hold on all N

(©: Michael Kohlhase 94

Finally, we show the expressivity of PLS) by formalizing a version of Cantor’s theorem.

Expressive Formalism for Mathematics

> Example 6.1.9 (Cantor’s Theorem) The cardinality of a set is smaller
than that of its power set.

> smaller-card(M, N) := — (3F .surjective(F, M, N))
> surjective(F, M, N) := (VX € M.3Y € N.FY = X)

> Example 6.1.10 (Simplified Formalization) -~ (3F,,,,,.VG,,.3J,.FJ = G)
>> Standard-Benchmark for higher-order theorem provers

> can be proven by TPs and LEO (see below)

(©: Michael Kohlhase 95

The simplified formulation of Cantor’s theorem in Example 6.1.10 uses the universe of type ¢ for
the set S and universe of type ¢ — ¢ for the power set rather than quantifying over S explicitly.

The next concern is to find a calculus for PLS2.

We start out with the simplest one we can imagine, a Hilbert-style calculus that has been adapted
to higher-order logic by letting the inference rules range over PLS) formulae and insisting that
substitutions are well-typed.

Hilbert-Calculus

> Definition 6.1.11 (Hq Axioms) VP, Q,.P=Q=P
DVPoaQoaRO'(PéQiR):>(P:>Q):>P:>R
> VP, Qo- (" P=-Q)=>P=>Q

> Definition 6.1.12 (Hg Inference rules)

A,=B, A VXa. A A X ¢ free(A) VXo.AAB
B B/X.(A) VX..A AA(VX,.B)

> Theorem 6.1.13 Sound, wrt. standard semantics

> Also Complete?

(©: Michael Kohlhase 96

Not surprisingly, Hq is sound, but it shows big problems with completeness. For instance, if we
turn to a proof of Cantor’s theorem via the well-known diagonal sequence argument, we will have
to construct the diagonal sequence as a function of type ¢ — ¢, but up to now, we cannot in
Hea. Unlike mathematical practice, which silently assumes that all functions we can write down
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in closed form exists, in logic, we have to have an axiom that guarantees (the existence of) such
a function: the comprehension axioms.

Hilbert-Calculus Hq (continued)

> valid sentences that are not Hq-theorems:

> Cantor’'s Theorem:
- (3F,5,5,-YG,5,.(VK,.(NK)=N(GK))= (3J,.(NJ) A FJ = G))
(There is no surjective mapping from N into the set N — N of natural
number sequences)

> proof attempt fails at the subgoal 3G,_,,.VX,.GX = s(fX X)

Comprehension 3F,_,3.VXo.FX = Ag (for every variable X, and every term
A € wff 4(5, V7))

> extensionality
Ext®? VFu4 ,5.YGap.(VXa-FX=GX)=F =G
Ext° VF, . VGo.(F&G)& F =G

B> correct! complete? cannot bell [G6d31]
(©: Michael Kohlhase 97

Actually it turns out that we need more axioms to prove elementary facts about mathematics:
the extensionality axioms. But even with those, the calculus cannot be complete, even though
empirically it proves all mathematical facts we are interested in.

Way Out: Henkin-Semantics

> Godel's incompleteness theorem only holds for standard semantics

> find generalization that admits complete calculi:

>> ldea: generalize so that the carrier only contains those functions that are re-
quested by the comprehension axioms.

> Theorem 6.1.14 (Henkin 1950) Hq is complete wrt. this semantics.

> Proof Sketch: more models ~ less valid sentences (these are H-theorems)
O

> Henkin-models induce sensible measure of completeness for higher-order logic.

(©: Michael Kohlhase 98

6.2 A better Form of Comprehension and Extensionality

Actually, there is another problem with PL: The comprehension axioms are computationally
very problematic. First, we observe that they are equality axioms, and thus are needed to show
that two objects of PLS) are equal. Second we observe that there are countably infinitely many of
them (they are parametric in the term A, the type « and the variable name), which makes dealing
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with them difficult in practice. Finally, axioms with both existential and universal quantifiers are
always difficul to reason with.

Therefore we would like to have a formulation of higher-order logic without comprehension axioms.
In the next slide we take a close look at the comprehension axioms and transform them into a
form without quantifiers, which will turn out useful.

From Comprehension to 3-Conversion

> 3Fa8.VXa.F X = Ag for arbitrary variable X, and term A ¢ wﬁB(E,VT)
(for each term A and each variable X there is a function f € D,_,5, with

flp(X)) =Z,(A))
> schematic in o, 8, X, and Ag, very inconvenient for deduction

> Transformation in Hq

> 3F0 5. VX0 . FX = Ay

> VXa. (A Xa.A)X = Ag (3E)
Call the function F' whose existence is guaranteed "(\ X,.A)"

> (A Xo.A)B = [B/X]Az (VE), in particular for B € wff (2, V7).
> Definition 6.2.1 Axiom of S-equality: (A Xa.A)B = [B/X](Ap)

> new formulae (A-calculus [Church 1940])

(©: Michael Kohlhase 99

In a similar way we can treat (functional) extensionality.

From Extensionality to 7-Conversion

> Definition 6.2.2 Extensionality Axiom: VFy_,3.YGaossp. (VX0 . FX =GX)=F HG

> ldea: Maybe we can get by with a simplified equality schema here as well.

> Definition 6.2.3 We say that A and A X.AX are 7-equal, (write An_3 =y
(XX AX), if), iff X & free(A).

> Theorem 6.2.4 N-equality and Extensionality are equivalent

> Proof: We show that 7-equality is special case of extensionality; the converse
entailment is trivial

P.1 Let VX,.AX = BX, thus AX = BX with VE
P2 )X,.AX =)\ X,.BX, therefore A =B with 7
P.3 Hence VF,,3.VGasp. (VX0 . FX = GX) = F = G by twice VI. O

> Axiom of truth values: VF,.VG,.(F < G) << F = G unsolved.

(©: Michael Kohlhase 100

The price to pay is that we need to pay for getting rid of the comprehension and extensionality
axioms is that we need a logic that systematically includes the A-generated names we used in the
transformation as (generic) witnesses for the existential quantifier. Alonzo Church did just that
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with his “simply typed A-calculus” which we will introduce next.

6.3 Simply Typed A-Calculus

In this section we will present a logic that can deal with functions — the simply typed A-calculus.
It is a typed logic, so everything we write down is typed (even if we do not always write the types
down).

Simply typed A-Calculus (Syntax)

> Signature ¥ = (J e+ Xa (includes countably infinite Signatures 25k of Skolem
contants).

> V7 = Uqeq Vo, such that V, are countably infinite

> Definition 6.3.1 We call the set wff (2, V) defined by the rules
> VCY U EO{ g wﬁa(za VT)
> If C € wff o, 5(5,Vr) and A € wff (5, Vr), then (CA) € wff 5(%,V7)
> If A € wif (5, Vr), then (A X5.A) € wff 5_,,(%,Vr)

the set of well-typed formula e of type a over the signature ¥ and use
wif (3, V7) = User wif o (3, V) for the set of all well-typed formulae.

> Definition 6.3.2 We will call all occurrences of the variable X in A bound
in A X.A. Variables that are not bound in B are called free in B.

> Substitutions are well-typed, i.e. 0(Xa) € wff (X, V7) and capture-avoiding.

> Definition 6.3.3 (Simply Typed A-Calculus) The simply typed A-calculus
A7 over a signature ¥ has the formulae wff (3, Vr) (they are called \-terms)
and the following equalities:
> « conversion: (AX.A) =, (A\Y.[Y/X](A))
> /3 conversion: (AN X.A)B =3 [B/X](A)
> 7 conversion: (A X.AX)=yp A

(©: Michael Kohlhase 101

The intuitions about functional structure of A-terms and about free and bound variables are
encoded into three transformation rules A7: The first rule (a-conversion) just says that we can
rename bound variables as we like. 3-conversion codifies the intuition behind function application
by replacing bound variables with argument. The equality relation induced by the M-reduction is
a special case of the extensionality principle for functions (f = ¢ iff f(a) = g(a) for all possible
arguments a): If we apply both sides of the transformation to the same argument — say B and
then we arrive at the right hand side, since (A Xo.AX)B =3 AB.

We will use a set of bracket elision rules that make the syntax of A7 more palatable. This makes A~
expressions look much more like regular mathematical notation, but hides the internal structure.
Readers should make sure that they can always reconstruct the brackets to make sense of the
syntactic notions below.

Simply typed A-Calculus (Notations)
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> Notation 6.3.4 (Application is left-associative) We abbreviate (((FA')A?%)..]) A"
with FA!.. A" eliding the brackets and further with FA" in a kind of vector
notation.

D> A . stands for a left bracket whose partner is as far right as is consistent with
existing brackets; i.e. A.BC abbreviates A(BC).

with A X'.. . X" A eliding brackets, and further to A X™. A in a kind of vec-
tor notation.

> Notation 6.3.6 (Outer brackets) Finally, we allow ourselves to elide outer
brackets where they can be inferred.

(©: Michael Kohlhase 102

Intuitively, A X.A is the function f, such that f(B) will yield A, where all occurrences of the
formal parameter X are replaced by B.?

In this presentation of the simply typed A-calculus we build-in a-equality and use capture-avoiding
substitutions directly. A clean introduction would followed the steps in ?sec.fol? by introduc-
ing substitutions with a substitutability condition like the one in ?fo-substitutable.def?, then
establishing the soundness of « conversion, and only then postulating defining capture-avoiding
substitution application as in Definition 5.1.23. The development for A7 is directly parallel to the
one for PL', so we leave it as an exercise to the reader and turn to the computational properties
of the A-calculus.

Computationally, the A-calculus obtains much of its power from the fact that two of its three
equalities can be oriented into a reduction system. Intuitively, we only use the equalities in one
direction, i.e. in one that makes the terms “simpler”. If this terminates (and is confluent), then
we can establish equality of two A-terms by reducing them to normal forms and comparing them
structurally. This gives us a decision procedure for equality. Indeed, we have these properties in

X as we will see below.

aSn-Equality (Overview)

AX.A
under =, : =

55 (AX.A)B=4[B/X](A) r
m AY.[Y/X](A)

> reduction with { (NX.AX) =y A

> Theorem 6.3.7 8n-reduction is well-typed, terminating and confluent in the
presence of =,-conversion.

> Definition 6.3.8 (Normal Form) We call a A-term A a normal form (in
a reduction system &), iff no rule (from £) can be applied to A.

> Corollary 6.3.9 fn-reduction yields unique normal forms (up to a-equivalence).

(©: Michael Kohlhase 103

We will now introduce some terminology to be able to talk about A-terms and their parts.

Syntactic Parts of A\-Terms

SEpNoOTE: rationalize the semantic macros for syntax!

> Notation 6.3.5 (Abstraction is right-associative) We abbreviate \ X'. ) X2. ] - A X". A ...

EdN:3
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> Definition 6.3.10 (Parts of A-Terms) We can always write a A-term in
the foorm T = A X'... X*.HA'... A", where H is not an application. We
call

> H the syntactic head of T
> HA'...A™ the matrix of T, and
> AX'. .. X", (or the sequence X1,..., X}) the binder of T

> Definition 6.3.11 Head Reduction always has a unique 5 redex
(AX".(AY.A)B'...B") =} (AX".[B'/Y](A)B®.. B")
> Theorem 6.3.12 The syntactic heads of 3-normal forms are constant or vari-
ables.

> Definition 6.3.13 Let A be a A-term, then the syntactic head of the (-
normal form of A is called the head symbol of A and written as head(A).
We call a A-term a j-projection, iff its head is the j*" bound variable.

> Definition 6.3.14 We call a A-term a 7)-long form, iff its matrix has base
type.

> Definition 6.3.15 7-Expansion makes 7-long forms

NAXY . X" Al = AX" . X" AY L YT AY YT

> Definition 6.3.16 Long fr-normal form, iff it is S-normal and 7-long.

(©: Michael Kohlhase 104

1 long forms are structurally convenient since for them, the structure of the term is isomorphic
to the structure of its type (argument types correspond to binders): if we have a term A of type
@, — [ in N-long form, where 8 € B T, then A must be of the form \ X,".B, where B has type
B. Furthermore, the set of 7-long forms is closed under S-equality, which allows us to treat the
two equality theories of A7 separately and thus reduce argumentational complexity.

A Test Generator for Higher-Order Unification

> Definition 6.3.17 (Church Numerals) We define closed A-terms of type
vi=(a—a) >a—a

> Numbers: Church numerals: (n-fold iteration of argl starting from arg2)

n:= (ASasa-A0a.8(S...5(0)...))
——

n

> Addition (N-fold iteration of S from N)

+ = AN, M, .\ Sasa.AOs. NS(MSO)

> Multiplication: (N-fold iteration of MS (=+m) from O)

= AN, M, A Sa—a-A00.N(MS)O
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> Observation 6.3.18 Subtraction and (integer) division on Church numberals
can be automted via higher-order unification.

> Example 6.3.19 5 — 2 by solving the unification problem 2 + z, =75

Equation solving for Church numerals yields a very nice generator for test cases
for higher-order unification, as we know which solutions to expect.

(©: Michael Kohlhase 105

Excursion: We will discuss the properties of propositional tableaux in ?stlc-computational?
and the semantics in ?stlc-semantics?. Together they show that the simply typed A calculus is
an adequate logic for modeling (the equality) of functions and their applications.

6.4 Simply Typed A-Calculus via Inference Systems

Now, we will look at the simply typed A-calculus again, but this time, we will present it as an
inference system for well-typedness jugdments. This more modern way of developing type theories
is known to scale better to new concepts.

> Simply Typed A-Calculus as an Inference System: Terms

> Idea: Develop the A-calculus in two steps

> A context-free grammar for “raw A-terms” (for the structure)

> ldentify the well-typed A-terms in that (cook them until well-typed)

> Definition 6.4.1 A grammar for the raw terms of the simply typed M-

calculus:
a cla—a
Y == | X [c:type] | E,[c: ]
I :== -|L,[x:q]
A == c|X|A'A?|)X,.A

>> Then: Define all the operations that are possible at the “raw terms level”, e.g.
realize that signatures and contexts are partial functions to types.
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Simply Typed A-Calculus as an Inference System: Judgments

> Definition 6.4.2 Judgments make statements about complex properties of
the syntactic entities defined by the grammar.

> Definition 6.4.3 Judgments for the simply typed A-calculus

F X sig Y. is a well-formed signature
Y Fa:type | ais a well-formed type given the type assumptions in X
YFET :ctx | I'is a well-formed context given the type assumptions in 3
I'ks A: a | A has type a given the type assumptions in ¥ and T’
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Simply Typed A-Calculus as an Inference System: Rules

> A € wff (X, Vr), iff T s A: «a derivable in

YFED:ictx I'(X) =« SETD:ctx X(c) =

Tre X o wff:var T wif:const
I'Fs A:—>a T'FsB: DX :pFs A:
wiff:app wif:abs
[y, AB: o Thy AXs5.A: B> a
QOops: this looks surprisingly like a natural deduction calculus. (~ Curry

Howard Isomorphism)

> To be complete, we need rules for well-formed signatures, types and contexts

. ¢ F X sig ot
sigiem sig:type
I—~:sigg Pty I—E,[a:type]:siggyp
FX:sig XFa:type .
- sig:const
F X [c:a]:sig
YFa:t YEB:t FXY:sig Y(a) =t
yPe p ypetyp:fn sig ¥(a) ypetyp:start
YFa— G type YFa:type
F X sig ¢ . YT :ctx El—a:typet
————ctx:em ctx:var
YE-etx Pty YET,[X o] :etx
(©: Michael Kohlhase 108

Example: A Well-Formed Signature

> Let ¥ := [o : type], [f : @ = a — a], then X is a well-formed signature, since
we have derivations A and B

F - :sig . A o typel(a) = type
sig:type typ:start
F [a : type] : sig [ : type] - a: type

and with these we can construct the derivation C

B B
typ:fn
B [a:typel Fa — a:type
typ:fn
A [a:type] Fa — a— a:type
sig:const

F X sig

(©: Michael Kohlhase 109
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Example: A Well-Formed A-Term

> using X from above, we can show that T := [X : o] is a well-formed context:

C C %(a) = type
ctx:empty ——— typ:start
YFetx Y F o:type

YET:ctx

ctx:var

We call this derivation G and use it to show that

> A Xq-fXX is well-typed and has type & — « in X. This is witnessed by the
type derivation

C Y¥(fl=a—a—a

wff:const ————— wff:var
'y fra—sa—a 'k X: « G
wff:app ———— wif:var
ks fXoa—a Ik X: «
wif:app
ks fXX: «
wff:abs

e AXa fXX:a >«

(©: Michael Kohlhase 110

(£ M-Equality by Inference Rules: One-Step Reduction

> One-step Reduction (+ € {a, 3,71})

FFEA:Oé FFEB:ﬂ
[Fs (AX.A)B —} [B/X](A)
'y A: > a X ¢ dom(T)

wif3:top

ffn:t
Thn AX.AX b A TP
FI—EA—>1+B FI—EAC:Ozt. f
[y AC -1 BC PR/
FFzA—)}FB FI—ZCA:at_
[rx CA L CB - oPPard
IL[IX:a]Fx A -1 B
X :aFs Ay tr:abs
'k A X.A =L VN X.B
(©: Michael Kohlhase 111

B M-Equality by Inference Rules: Multi-Step Reduction

65


http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

66 CHAPTER 6. HIGHER-ORDER LOGIC AND A-CALCULUS

> Multi-Step-Reduction (+ € {«, 3,71})

Fl‘gA—)},'_B tart FFgA:O& f
— " __ms:star ———————ms:re
'ks A—=31 B ks A =% A
'Fs A=3BTI'ksB = C
ms:trans
ks A—=3 C
> Congruence Relation
ks A1 B tart
Tis A, Beq.s ar
'k A=, B 'F's A=, BTFyB=,C tra
————— —eq:sym eq:trans
TrsB—, A Y Trs A=, C a
(©: Michael Kohlhase 112

6.5 Simple Type Theory

In this Section we will revisit the higher-order predicate logic introduced in Section 6.1 with the
base given by the simply typed A-calculus. It turns out that we can define a higher-order logic by
just introducing a type of propositions in the A-calculus and extending the signatures by logical
constants (connectives and quantifiers).

Higher-Order Logic Revisited

> ldea: introduce special base type o for truth values

> Definition 6.5.1 We call a X-algebra (D,Z) a Henkin model, iff D, =
{T,F}.

> A, valid under ¢, iff Z,(A) =T

> connectives in X: = € X,,, and {V,A, =, <, ...} CX, 00 (with the
intuitive Z-values)

> quantifiers: II% € ¥(a—0)—o With Z(I1%)(p) = T, iff p(a) = T for all a € Da.

> quantified formula e: VX . A stands for II*( A Xo.A)
> Z,(VXa.A) = M) (Zo(A Xa-A)) =T, iff T, o/ x1(A) =T for all a € Dy

> looks like PLS) (Call any such system HOL ™)
(©: Michael Kohlhase 113

There is a more elegant way to treat quantifiers in HOL™. It builds on the realization that
the A-abstraction is the only variable binding operator we need, quantifiers are then modeled
as second-order logical constants. Note that we do not have to change the syntax of HOL™ to
introduce quantifiers; only the “lexicon”, i.e. the set of logical constants. Since II* and X¢ are
logical constants, we need to fix their semantics.
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Higher-Order Abstract Syntax

cation.

0.

Regain quantifiers as abbreviations:

(VX0.A) = I"(AXa.A)  (3Xa.A) = X%\ X,.A)

> Definition 6.5.3 We must fix the semantics of logical constants:

> With this, we re-obtain the semantics we have given for quantifiers above:
Z,(VX,.A) =Z,(II' (A X,.A)) = Z(II')(Z,(A X,.A)) =T

iff ISO()\XLA)(G) = I[a/X],go(A) =T for all a € D,

(©: Michael Kohlhase 114

> Idea: In HOL™, we already have variable binder: )\, use that to treat quantifi-

> Definition 6.5.2 We assume logical constants II* and ¢ of type (o — 0) —

1. Z(II*)(p) =T, iff p(a) = T for all a € D, (i.e. if p is the universal set)
2. 7(2%)(p) =T, iff p(a) =T for some a € D, (i.e. iff p is non-empty)

67

But there is another alternative of introducing higher-order logic due to Peter Andrews. Instead
of using connectives and quantifiers as primitives and defining equality from them via the Leibniz
indiscernability principle, we use equality as a primitive logical constant and define everything else

from it.

Alternative: HOL=

> only one logical constant ¢® € X a—, with Z(¢%)(a,b) = T, iff a = b.

> Definitions (D) and Notations (N)

N A,=B, for ¢“A.B.

D T for ¢°=gq°

D F for MNX,.T=)\X,.X,

D II® for q“7°(AX,.T)

N VX,.A for YN Xq.A)

D A for AXo AYo.(AGo300-GTT =XGoyo0-GXY)
N AAB for AA,B,

D = for ANX,.\Y,. (X =X AY)
N A=B for =A_B,

D - for ¢°F

D vV for AX, AY,.m (=X ADY)
N AVB for VA,B,

D 3X,.A, for - (VX,.7A)

N A,#B, for = (¢*A.B.)

> yield the intuitive meanings for connectives and quantifiers.



http://creativecommons.org/licenses/by-sa/2.5/

68 CHAPTER 6. HIGHER-ORDER LOGIC AND A-CALCULUS
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In a way, this development of higher-order logic is more foundational, especially in the context of
Henkin semantics. There, Theorem 6.1.7 does not hold (see [And72] for details). Indeed the proof
of Theorem 6.1.7 needs the existence of “singleton sets”, which can be shown to be equivalent to
the existence of the identity relation. In other words, Leibniz equality only denotes the equality
relation, if we have an equality relation in the models. However, the only way of enforcing this
(remember that Henkin models only guarantee functions that can be explicitly written down as
A-terms) is to add a logical constant for equality to the signature.

We will conclude this section with a discussion on two additional “logical constants” (constants
with a fixed meaning) that are needed to make any progress in mathematics. Just like above,
adding them to the logic guarantees the existence of certain functions in Henkin models. The
most important one is the description operator that allows us to make definite descriptions like
“the largest prime number” or “the solution to the differential equation f’ = f.

More Axioms for HOL™

> Definition 6.5.4 unary conditional w € X, .
wA, B, means: “If A, then B”

> Definition 6.5.5 binary conditional if € ¥, 0 sa—a
ifA,B,C, means: “if A, then B else C”.

> Definition 6.5.6 description operator ¢ € ¥4 0)a
if P is a singleton set, then tP,_,, is the element in P,

> Definition 6.5.7 choice operator ¥ € X(a_0)sa
if P is non-empty, then YP,_,, is an arbitrary element from P

> Definition 6.5.8 (Axioms for these Operators)

> unary conditional: Vy,.VX,.p=>wpX = X

> conditional: V,.V Xy, Ya, Zo. (0= ifpXY = X)A (mp=ifpZX = X)
> description VPs _s0.(3' Xo0.PX)= (VYa.PY =P =Y)

> choice VPy_y,.(3Xo.PX)= (VY,.PY =7P =Y)

Idea: These operators ensure a much larger supply of functions in Henkin models.

(©: Michael Kohlhase 116

> More on the Description Operator

> ¢ is a weak form of the choice operator (only works on singleton sets)
> Alternative Axiom of Descriptions: VX, .1%(=X) = X.

> use that Zp,/ x(=X) = {a}

> we only need this for base types # o

> Define 12 := =(\X,.X) or t° := \Gyo.GT or 1° := =(=T)

o 1078 = NH (o p)s0Xart? (A Zg.(3Fass.(HF) A (FX) = Z))
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Chapter 7

Axiomatic Set Theory (ZFC)

Sets are one of the most useful structures of mathematics. They can be used to form the basis
for representing functions, ordering relations, groups, vector spaces, etc. In fact, they can be used
as a foundation for all of mathematics as we know it. But sets are also among the most difficult
structures to get right: we have already seen that “naive” conceptions of sets lead to inconsistencies
that shake the foundations of mathematics.

There have been many attempts to resolve this unfortunate situation and come up a “foundation
of mathematics™ an inconsistency-free “foundational logic” and “foundational theory” on which all
of mathematics can be built.

In this Chapter we will present the best-known such attempt — and an attempt it must remain
as we will see — the axiomatic set theory by Zermelo and Fraenkel (ZFC), a set of axioms for
first-order logic that carefully manage set comprehension to avoid introducing the “set of all sets”
which leads us into the paradoxes.

Recommended Reading: The — historical and personal — background of the material covered in
this Chapter is delightfully covered in [Dox+09].

7.1 Naive Set Theory

We will first recap “naive set theory” and try to formalize it in first-order logic to get a feeling for
the problems involved and possible solutions.

(Naive) Set Theory [Can95; Can97]

> Definition 7.1.1 A set is “everything that can form a unity in the face of
God”. (Georg Cantor (%1845, 11918))

> Example 7.1.2 (determination by elementhood relation €)

> “the set that consists of the number 7 and the prime divisors of 510510”
>{7,¢},{1,2,3,4,5n,...}, {x|x is an integer}, {X |P(X)}

Questions (extensional /intensional):
> olfe=7is{7,¢c}={7}7
sIs{X|XeNX#X}={X|XeN, X?<0}7?

> yes ~» extensional; no ~ intensional,

71
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Georg Cantor was the first to systematically develop a “set theory”, introducing the notion of
a “power set” and distinguishing finite from infinite sets — and the latter into denumerable and
uncountable sets, basing notions of cardinality on bijections.

In doing so, he set a firm foundation for mathematics!, even if that needed more work as was
later discovered.

Now let us see whether we can write down the “theory of sets” as envisioned by Georg Cantor in
first-order logic — which at the time Cantor published his seminal articles was just being invented by
Gottlob Frege. The main idea here is to consider sets as individuals, and only introduce a single
predicate — apart from equality which we consider given by the logic: the binary elementhood
predicate.

(Naive) Set Theory: Formalization

> Idea: Use first-order logic (with equality)

> Signature: (sets are individuals) ¥ := {€}

> Extensionality: VM, N.M = N& (VX.(X € M)& (X € N))

> Comprehension: (all sets that we can write down exist)
IMVX. (X e M) E (schematic in expression E)

>> Idea: Define set theoretic concepts from € as signature extensions

Union ueX [ VM,N,X.(X e (MUN))<(XeMVXeN)
Intersection | Ne X | VM,N,X.(X e (MNN))& (X € MAX € N)
Empty Set | 0 ex] | -~(3X.X €0)

and so on.

(©: Michael Kohlhase 119

The central here is the comprehension axiom that states that any set we can describe by writing
down a frist-order formula E — which usually contains the variable X — must exist. This is a direct
implementation of Cantor’s intuition that sets can be “. .. everything that forms a unity ...”. The
usual set-theoretic operators U, N, ...can be defined by suitable axioms.

This formalization will now allow to understand the problems of set theory: with great power
comes great responsibility!

(Naive) Set Theory (Problems)

> Example 7.1.3 (The set of all set and friends)
{M|M set}, {M|M set, M € M}, ...

> Definition 7.1.4 (Problem) Russell’s Antinomy:
M :={M|M set, M ¢ M}

the set M of all sets that do not contain themselves.

1David Hilbert famously exclaimed “No one shall expel us from the Paradise that Cantor has created’ in [Hil26,
p. 170]
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> Question: Is M € M? Answer: M € M iff M & M.
> What happened?: We have written something down that makes problems

> Solutions: Define away the problems:

weaker comprehension axiomatic set theory now
weaker properties higher-order logic done
non-standard semantics | domain theory [Scott| | another time
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The culprit for the paradox is the comprehension axiom that guarantees the existence of the “set of
all sets” from which we can then separate out Russell’s set. Multiple ways have been proposed to
get around the paradoxes induced by the “set of all sets”. We have already seen one: (typed) higher-
order logic simply does not allow to write down MM which is higher-order (sets-as-predicates)
way of representing set theory.

The way we are going to exploren now is to remove the general set comprehension axiom we
had introduced above and replace it by more selective ones that only introduce sets that are known
to be safe.

7.2 Z7ZFC Axioms

We will now introduce the set theory axioms due to Zermelo and Fraenkel.

We write down a first-order theory of sets by declaring axioms in first-order logic (with equality).
The basic idea is that all individuals are sets, and we can therefore get by with a single binary
predicate: € for elementhood.

Axiomatic Set Theory in First-Order Logic

> Idea: Avoid paradoxes by cautious (axiomatic) Comprehension. ([Zer08])

Ex |3IX. X=X There is a set
Ext | VM,N.M =N+ (VX.(X € M)& (X € N)) | Extensionality
Sep | VN.IM.VZ.(Z € M) (Z € NAE)

From a given set IV we can separate all members described by
expression E.

> Theorem 7.2.1 VM, N.(M CN)A(NCM)=M = N
> Theorem 7.2.2 M is uniquely determined in Sep
> Proof Sketch: With Ext O

> Notation 7.2.3 Write {X € N | E} for the set M guaranteed by Sep.

(©: Michael Kohlhase 121

Note that we do not have a general comprehension axiom, which allows the construction of sets
from expressions, but the separation axiom Sep, which — given a set — allows to “separate out” a
subset. As this axiom is insufficient to providing any sets at all, we guarantee that there is one in
Ex to make the theory less boring.
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Before we want to develop the theory further, let us fix the success criteria we have for our
foundation.

Quality Control

> Question: Is ZFC good? (make this more precise under various views)

foundational: Is ZFC sufficient for mathematics?

adequate: is the ZFC notion of sets adequate?

formal: is ZFC consistent?

ambitious: Is ZFC complete?

pragmatic: Is the formalization convenient?

computational: does the formalization yield computation-guiding structure?

> Questions like these help us determine the quality of a foundational system or
theory.
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The question about consistency is the most important, so we will address it first. Note that the
absence of paradoxes is a big question, which we cannot really answer now. But we can convince
ourselves that the “set of all sets” cannot exist.

How about Russel's Antinomy?

> Theorem 7.2.4 There is no universal set
> Proof:

P.1 For each set M, there is aset Mg :={X € M | X ¢ X} by Sep.

P.2 show VM. Mg ¢ M

P.3If Mg € M, then Mg & Mg, (also if Mr & M)

P.4 thus Mr & M or Mg € Mgp. O

>> to get the paradox we would have to separate from the universal set A, to get

Ag.

>> Great, then we can continue developing our set theory!

(©: Michael Kohlhase 123

Somewhat surprisingly, we can just use Russell’s construction to our advantage here. So back to
the other questions.

Are there Interesting Sets at all?

> yes, e.g. the empty set

> let M be a set (there is one by Ex; we do not need to know what it is)
>define):={XeM| X #£X}
> () is empty and uniquely determined by Ext.
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> Definition 7.2.5 Intersections: M NN :={X e M | X € N}

Question: How about M UN? or N?

> Answer: we do not know they exist yet! (need more axioms)
Hint: consider D, = {0,{0},{{0}},...}
(©: Michael Kohlhase 124

So we have identified at least interesting set, the empty set. Unfortunately, the existence of the
intersection operator is no big help, if we can only intersect with the empty set. In general, this is
a consequence of the fact that Sep — in contrast to the comprehension axiom we have abolished
— only allows to make sets “smaller”. If we want to make sets “larger”, we will need more axioms
that guarantee these larger sets. The design contribution of axiomatic set theories is to find a
balance between “too large” — and therefore paradoxical — and “not large enough” — and therefore
inadequate.

Before we have a look at the remaining axioms of ZFC, we digress to a very influential experiment
in developing mathematics based on set theory.

“Nicolas Bourbaki” is the collective pseudonym under which a group of (mainly French) 20th-
century mathematicians, with the aim of reformulating mathematics on an extremely abstract
and formal but self-contained basis, wrote a series of books beginning in 1935. With the goal of
grounding all of mathematics on set theory, the group strove for rigour and generality.

Is Set theory enough? ~» Nicolas Bourbaki

> Is it possible to develop all of Mathematics from set theory?
~» N. Bourbaki: Eléments de Mathématiqueg (there is only one mathematics)

> Original Goal: A modern textbook on calculus.

> Result: 40 volumes in nine books from 1939 to 1968

Set Theory [Bou68] Functions of one real variable ~Commutative Algebra
Algebra [Bou74] Integration Lie Theory
Topology [Bou89] Topological Vector Spaces Spectral Theory

> Contents:

> starting from set theory all of the fields above are developed.

> All proofs are carried out, no references to other books.
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Even though Bourbaki has dropped in favor in modern mathematics, the universality of axiomatic
set theory is generally acknowledged in mathematics and their rigorous style of exposition has
influenced modern branches of mathematics.

The first two axioms we add guarantee the unions of sets, either of finitely many — UAx only
guarantees the union of two sets — but can be iterated. And an axiom for unions of arbitrary
families of sets, which gives us the infinite case. Note that once we have the ability to make finite
sets, | JAx makes UAx redundant, but minimality of the axiom system is not a concern for us
currently.
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The Axioms for Set Union

> Axiom 7.2.6 (Small Union Axiom (UAx)) For any sets M and N there
is a set W, that contains all elements of M and N.
VM,N.GIW VX (XeMVXeN)=XeW

> Definition 7.2.7 M UN:={X eW | X e MV X € N} (exists by Sep.)

> Axiom 7.2.8 (large Union Axiom (|JAx)) For each set M there is a set
W, that contains the elements of all elements of M.
VM. IW VX, Y. YeM=XecY=>XecW

> Definition 7.2.9 (M) :={X|Y.Y e MAX €Y} (exists by Sep.)
> This also gives us intersections over families (without another axiom):

> Definition 7.2.10

(M) :={Ze|JM) |VX.X e M=Z e X}

(©: Michael Kohlhase 126

In Definition 7.2.10 we note that | JAx also guarantees us intersection over families. Note that we
could not have defined that in analogy to Definition 7.2.5 since we have no set to separate out of.
Intuitively we could just choose one element N from M and define

(JM):={ZeN|VX.XeM=ZecX}

But for choice from an infinite set we need another axiom still.

The power set axiom is one of the most useful axioms in ZFC. It allows to construct finite
sets.

The Power Set Axiom

> Axiom 7.2.11 (Power Set Axiom) For each set M there is a set W that
contains all subsets of M: p Ax := (VM.IW.VX.(XCM)=X € W)

> Definition 7.2.12 Power Set: P(M) :={X | XCM} (Exists by Sep.)
> Definition 7.2.13 singleton set: {X}:={Y eP(X) | X =Y}

> Axiom 7.2.14 (Pair Set (Axiom)) (is often assumed instead of UAXx)

Given sets M and N there is a set W that contains exactly the elements M
and N: VM, N.IWVX. (X e W) (X =N)Vv(X =M))

> Is derivable from 9 Ax: {M,N} :={M}U{N}.
> Definition 7.2.15 (Finite Sets) {X,Y,Z} .= {X, Y} U{Z}...
> Theorem 7.2.16 VZ, X1, ..., Xn.(Z € {X1,... X, ) S (Z = X1 V...V Z = X,)

(©: Michael Kohlhase 127



http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

7.2. ZFC AXIOMS

7

The Foundation Axiom

> Axiom 7.2.17 (The foundation Axiom (Fund)) Every non-empty set
has a €-minimal element,.

VX.(X#A0)=@Y.Y e XAN~(3Z.Z€eXNZ€Y))

> Theorem 7.2.18 There are no infinite descendig chains ..., Xo, X1, Xg and
thus no cycles ... X1, Xo, ..., X2, X1, Xo.

> Definition 7.2.19 Fund guarantees a hierarchical structure (von Neumann
Hierarchy) of the universe. 0. order: @, 1. order: {(}, 2. order: all subsets
of 1. order, - --

> Note: In contrast to a Russel-style typing where sets of differernt type are
distinct, this categorization is cummulative
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The Infinity Axiom

> We already know a lot of sets

>z.B. 0, {0}, {{0}}, ... (iterated singleton set)
>or 0, {0}, {0,{0}}, ... (iterated pair set)

But: Does the set N of all members of these sequences?

> Axiom 7.2.20 (Infinity Axiom (coAx)) There is a set that contains ()
and with each X also X U {X}.
IM.0e MANZ.Z e M= (ZU{Z}) € M).

> Definition 7.2.21 M is inductive: Ind(M) :=0 e MANZ.Z e M= (ZU{Z}) 4
> Definition 7.2.22 Set of the Inductive Set: w := {Z |VW.Ind(W)=Z € W}

> Theorem 7.2.23 w is inductive.
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The Replacement Axiom

> We have w, (M), but not {w, p(w), p(p(w)),...}.

> Axiom 7.2.24 (The Replacement Axiom (Schema): Rep) If for each
X there is exactly one Y with property P(X,Y), then for each set U, that
contains these X, there is a set V' that contains the respective Y.
VX.FY.P(X,)Y))=(VU.IV.VX,Y.X cUAP(X,Y)=Y €V)

> Intuitively: A right-unique property P induces a replacement VU .3V.V = {F(X) | X €

> Example 7.2.25 Let U = {1,{2,3}}and P(X ©Y)& VZ.ZcY=>7Z=X),
then the induced function F maps each X to the set V' that contains X, i.e.

Ul.
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V={X}XeU={{1},{{2,3}}}}.
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Zermelo Fraenkel Set Theory

> Definition 7.2.26 (Zermelo Fraenkel Set Theory) We call the first-order
theory given by the axioms below Zermelo/Fraenkel set theory and denote it

by ZF.

Ex IX. X=X

Ext | VM,N.M =N<& (VX.(X € M)< (X € N))

Sep | VN.IM.NZ.(Ze M) (Z € NAE)

UAX | VM,N.IWVX. (X eMVXeN)=XeW

UAx | VM. IWVXY.Y e M=XecY=>XecW

PAx | VM.IWVX.(XCM)=X cW

c0Ax | IM.De MANNVZ.Z € M= (ZU{Z}) € M)

Rep | (VX.3'Y.P(X,Y))= (VU.FV.VX,Y.X cUAP(X,Y)=Y € V)
Fund |VX.(X #0)=3Y.Y e XA~ (3Z.Zc XANZcY))

(©: Michael Kohlhase 131

The Axiom of Choice

> Axiom 7.2.27 (The axiom of Choice :AC) For each set X of non-empty,
pairwise disjoint subsets there is a set that contains exactly one element of
each element of X.

VXY, ZY EXNZEX =Y ANAY =ZVvYNZ=0)=3IU.VW.VeX=EGW.UnV ={W})

> This axiom assumes the existence of a set of representatives, even if we cannot
give a construction for it. ~» we can “pick out” an arbitrary element.

> Reasons for AC:
> Neither ZF + AC, nor ZF  -AC

> So it does not harm?

> Definition 7.2.28 (Zermelo Fraenkel Set Theory with Choice) The the-
ory ZF together with AC is called ZFC with choice and denoted as ZFC.
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7.3 ZFC Applications

Limits of ZFC

> Conjecture 7.3.1 (Cantor’s Continuum Hypothesis (CH)) There is no
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set whose cardinality is strictly between that of integers and real numbers.

> Theorem 7.3.2 If ZFC is consistent, then neither CH nor -~ CH can be
derived. (CH is independent of ZFC)

> The axiomatzation of ZFC does not suffice

> There are other examples like this.
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Ordered Pairs

> Empirically: In ZFC we can define all mathematical concepts.

> For Instance: We would like a set that behaves like an odererd pair
> Definition 7.3.3 Define (X,Y) := {{X},{X,Y}}

> Lemma 7.3.4 (X, Y)=(U,V)=X=UAY =V

> Lemma 7.3.5 U € XAV € Y=(U,V) e P(P(XUY))

U if IV.X = (U, V)

> Definition 7.3.6 left projection: m(X) = { 0 if X is no pair

> Definition 7.3.7 right projection m, analogous.
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Relations

> All mathematical objects are represented by sets in ZFC, in particular relations

> Definition 7.3.8 The Cartesian produkt of X and Y
XxY ={Zep(P(XUY)) | Zis ordered pair with m;(Z) € X A7.(Z) €Y}
A relation is a subset of a Cartesian product.

> Definition 7.3.9 The domain and codomain of a function are defined as

usual
Dom(X) = { {m(Z)|Z € X} if if X is a relation;
0 else
coDom(X) = {m(Z2)|Z € X} if if X is a relation;
0 else

but they (as first-order functions) must be total, so we (arbitrarily) extend
them by the empty set for non-relations
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Functions

> Definition 7.3.10 A function f from X to Y is a right-unique relation with
Dom(f) = X and coDom(f) =Y write f: X —» Y.

Y if f function and (X,Y) €| f

> Definition 7.3.11 function application: f(X) = { 0 clse
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Domain Language vs. Representation Language

> Note: Relations and functions are objects of set theory, ZF'C € is a predicate
of the representation language

> predicates and functions of the representation language can be expressed in the
object language:

>VA.IR.R={(UV)|Uec ANV € AAp(UAV)} for all predicates p.
> VA.IF.F = {(X, f(X))| X € A} for all functions f.

> As the natural numbers can be epxressed in set theory, the logical calculus can
be expressed by Gdodelization.

(©: Michael Kohlhase 137
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Chapter 8

Category Theory

Acknowledgement: The presentation of category theory below has been inspired by Daniele Turi’s
Category Lecture Notes [Tur01].

8.1 Introduction

The crucial observation for category theory is that we do very similar things when we define
complex concepts, objects, or models. Here are some examples.

Common Structure to Mathematical Objects

> Example 8.1.1 Let A, B, and C be sets, and f: A — B and g: B — C be
functions. Then go f is a function and we have functions Id4 and Idp with

ldpof=f=feldp.

> Example 8.1.2 Let A, B, and C be topological spaces, and f: A — B and
g: B — C be continuous functions. Then go f, Id4, and Idg are continuous
and Idyo f = f = foldp.

> Example 8.1.3 Let A, B, and C be posets, and f: A - B and g: B —
C be monotonic functions. Then go f, Id4, and Idp are monotonic and

ldaof=f=feldp.

> Example 8.1.4 Let A, B, and C' be monoids, and f: A — B and g: B —
C be homomorphisms. Then go f, Id4, and Idg are homomorphisms and

ldaof=f=feldp.
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Given the examples above — and there are hundreds more — it seem natural to try to find a common
pattern, make that into a mathematical concept in its own right, and see what we can do in general
with that.

Categories: The Definition

> Definition 8.1.5 A category C consists of:

1. A class ob(C) of objects.

2. A class More of arrows (also called morphisms or maps).

81
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3. For each arrow f, two objects which are called domain dom(f) and
codomain cod(f) of f. We write f: dom(f) — cod(f) and call two
arrows f and g composable, iff dom(f) = cod(g).

4. An associative operation o called composition assigning to each pair
(f, g) of composable arrows another arrow go f such that dom(go f) =
dom(f) and cod(go f) = cod(g), i.e. go f: dom(f) — cod(g).

5. For every object A an arrow 14: A — A called the identity morphism,
such that for any f: A — B we have foly = f =10 f.

We write the class of arrows f: A — B as Mor¢(A4, B). The notations
Home (A, B), C(A, B), [A, Ble, and (A4, B)¢ are also used.

> Observation 8.1.6 Many classes of mathematical objects and their natural
(structure-preserving) mappings form categories.

> Definition 8.1.7 Category theory studies general properties of structures
abstracting away from the concrete objects.

(©: Michael Kohlhase 139

Categories in KRMT

> Remark: We have already seen various examples of categories in KRMT

> Example 8.1.8 Types and functions in MMT/LF (abstract away from
terms)

> Example 8.1.9 (Contexts and Substitutions in Logics)
> A substitution ¢ induces a function from wff (£,T" & supp(o)) to wff (£,T' W intro

> Example 8.1.10 (Theories and Theory Morphisms) A theory T de-
fines a language (set of well-typed terms) L7, and a theory morphism from
S to T mapping between Lg and L.

(©: Michael Kohlhase 140

Commonly used Categories

> Definition 8.1.11 The objects of the category of sets Set are sets and its
arrows f: A — B are the functions. f: A — B.

> Definition 8.1.12 The objects of the category of topological spaces Top
are topological spaces and its arrows are the continuous functions.

> Definition 8.1.13 A category C is called small (otherwise large), iff 0b(C)
and Mor¢ cousist of sets (not classes).

> Definition 8.1.14 Let C be a category, then the opposite category (also
called the dual category) C°P is formed by reversing all the arrows of C, i.e.

Morges :={f: B— A| f: A— B € Mor¢}
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Functors
> Definition 8.1.15 Let C and D be categories, then a mapping F' from C to
D is called a (covariant) functor, iff F

> associates to each X € ob(C) an object F(X) € ob(D)

Morp (F(X), F(Y)) such that the following two conditions hold:

> F(lx) = 1p(x) for each X € ob(C).
> F(gof) = F(g)o F(f) for all morphisms f: X - Y and g: Y — Z
in C.

That is, functors must preserve identity morphisms and morphism composi-
tion.

> Definition 8.1.16 The category of small categories (denoted as Cat) has
all small categories as objects and functors as arrows.

> Observation 8.1.17 Cat is itself a large category.
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> associates to each morphism f: X =Y € More(X,Y) amorphism F(f): F(X) 1

8.2 Example/Motivation: Natural Numbers in Category The-

orty

We will now try to get an intution on how category theory “works”, i.e. how we can work at
the general level, i.e. the category theoretic level and apply the results down to all the concrete
categories. This also serves as a motivation to the universal properties we will study in the next

section.

For the construction of the natural number object, we will need a couple of category-theoretic
concepts that we will only introduce in the next section; for now we will just (have to) take them

on faith and come back to them later.

Lawvere's Natural Numbers Object

> Recap: In set theory, we define the natural numbers by the five Peano axioms
about N, 0 € N, and s: N — N.

> In Category Theory we can give a different answer  (need more terminology)

> Definition 8.2.1 A natural number object (NNO) in a (Cartesian closed)
category E with terminal object 1 is an object N in E equipped with

> a morphism z: 1 — N from the terminal object 1 (zero)

> a morphism s: N = N (successor)

such that for every other diagram 1 -4 A Iy Athereis a unique morphism
u: N — A such that the following diagram commutes:
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z S
1 N N
| |
U U
X Sy
A— A
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Natural Numbers = Natural Number Object in Set

> Theorem 8.2.2 The natural number object in Set is isomorphic to Peano's
N.

> Peano’s N by the Recursion Theorem [ML86, §l1.3].

> Lemma 8.2.3 The natural number object (N, z,s) in Set obeys Peano’s ax-
ioms.

> Proof:
P.1 For P1 note 1 in Set is a singleton set {a}, and any function z: 1 — N
identifies an element z(a) (let's call it z as well) in N.
P.2 For P2 note that s in Set is a function.

P.3 For P3 assume s(n) = z and consider a diagram 1 —» A L A with
A =e,d and u(e) = u(d) = d. Then there is a function f: N — A such
that f(z) = e and f(s(n)) = u(f(n)). But if s(n) = z then f(s(n)) =
e#d=u(f(n)).

P.4 Injectivity of s (P4) is left as an exercise

P.5 P5, see Lemma 8.2.10 O
(©: Michael Kohlhase 144

The Language of Diagrams

> Definition 8.2.4 A diagram in a category E is a directed graph, where the
nodes are objects of E and the edges are arrows of E.

Diagrams often use dashed arrows to signify unique existence of arrows.

> Definition 8.2.5 Let D be a diagram, then we say that D commutes (or is
commuative), iff for any two paths fi,..., f, and g1,..., gn with the same
start and end in D we have f,o0...0f; =¢gn0...09;.

> Example 8.2.6

Let f: A>B,g:A—C,u:C — D,and v: B — ALB

D in a category C, then we say that the diagram on Jg lu

the right commutes, iff fov = gou. v
Cc——D

> Definition 8.2.7
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f S
A b We treat the right diagram as an A b
Ni l“ abbreviation of the left one. llA v l“
D A—— D
(©: Michael Kohlhase 145

Diagram Chase: the Proof Method in Category Theory

> Definition 8.2.8 (Diagram Chase in Small Categories with Functions)

If C is small and f, g, u, and v are functions (e.g. f

in In Set), the diagram above commutes, iff the A——B
commutativity equation v(f(a)) = u(g(a)) holds for lg lu
all a € A. C SECEEN D

We use the commutativity equation (and other properties of arrows) in the
proof method of diagram chase (or diagrammatic search), which involves
“chasing” elements around the diagram, until the desired element or result is
constructed or verified.

> Example 8.2.9

!
The diagram on the right commutes, X L, Yy L y’
iff k(g(f(x))) = k(h(z)) = ¢'(f'(f(2))) \ lg |y
for all z € X. h k
zZ—7
(©: Michael Kohlhase 146

Natural Number Objects in Set: Induction

> Lemma 8.2.10 The natural number object in Set is inductive: If ACN and
from z € N and a € A we obtain s(a) € A we obtain A =N.

> Proof: We translate the assumptions to diagrams and od a diagram chase.

P.1 We extend the NNO diagram with an inclusion function i: A — N that
corresponds to A CN. Note that every cell commutes in the diagram on

the left.
I
11% ? 2“5|A ilu 1 N—"0N
SRR TR
1 N 3 N 1 N 3 N
Note that s|,: A — A as a € A implies s(a) € A. (induction step

assumption)

P.2 Trivially, also the diagram on the right commutes, so by uniqueness in NNO,
we have iou = 1y.
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P.3 (Lemma: Right Inverses are Injective) Given two composable functions f
and g, if fog is the identity, then f is injective.

P.4So U: N — A s injective, in other words: NC A, and thus A = N. O

(©: Michael Kohlhase 147

Uniqueness of Natural Numbers

> Theorem 8.2.11 The natural numbers object is uniquely determined up to
isomorphism in a category.

’
S

> Proof: We prove that if there is another diagram 1 = N’ = N/, then N and
N’ are isomorphic.

P.1 We show that there are functions f: N — N’ and f': N’ — N, such that
fOf/ = |dN/ and f,Of = |dN
P.2 We have the following two commuting diagrams

z S

1 N N
S Y Y
z S z S
l1— N — N 1 N N
R Y e
1 N 3 N 1 N 3 N

The left one comes from the universal property of 1 = N -2 N and
1 =5 N =5 N, the right one by construction. hence f’o f = 1y.

P.3 We obtain fo f’ = 1y by a similar argument. O
(©: Michael Kohlhase 148

8.3 Universal Constructions in Category Theory

Initial and Terminal Objects

> Definition 8.3.1 Let C be a category, then we call an object T € 0b(C)
initial (also cofinal or universal and written as 0), iff for every X € 0b(C)
there is exactly one arrow a: I — X. If every arrow into I is an isomorphism,
then I is called strict initial object

Definition 8.3.2 An object T' € 0b(C) is called terminal or final, iff for every
X € ob(C) there is exactly one arrow a: X — T. A terminal object is also
called a terminator and write it as 1.

> Observation 8.3.3 /nitial and terminal objects are unique up to isomorphism,
if they exist at all. (they need not exist in all categories)
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UNIVERSAL CONSTRUCTIONS IN CATEGORY THEORY

> Example 8.3.4 In Set the initial object is the empty set, while the final
object is the (unique up to isomorphism) singleton set.

Remark: We can think of the initial and terminal objects the category-theoretic

generalizations (“universal characterizations”) of the empty and singleton sets:
they are characterized by objects and arrows only.

(©: Michael Kohlhase 149

~ Pushouts: Unions on Steroids

> Question: Can we also characterize operations like union universally?

> ldea: In AU B, we use AN B twice.
We have AN B C A and AN B C B, which we can express B
with arrows (inclusions) ANB < A and ANB <% B.
Similarly we have AC AU B and B C AU B which we ex- @
press as A <% AUB and B <2 AUB.

> Definition 8.3.5 Let C be a category, then the pushout of morphisms f: Z —
X and g: Z — Y consists of an object P together with two morphisms
ig: X = Pandig: Y — P, such that the left diagram below commutes and
that (P,if,4,) is universal with respect to this diagram — i.e., for any other
such set (Q,jf,jq) for which the following diagram commutes, there must
exist a unique u: P — @ also making the diagram commute, i.e.

Q Jg

. r\u R

Zg \\ Zg
P+——Y jy P+——Y
Pf Tg Pf Tg

f f
X——Z X——Z

(©: Michael Kohlhase 150

Pushouts in Set

> As with all universal constructions, the pushout, if it exists, is unique up to a
unique isomorphism.

>If X, Y, and Z are sets, and f: Z — X and g: Z — Y are function, then
the pushout of f and g is the disjoint union X WY, where elements sharing a
common preimage (in Z) are identified, i.e. P = (X WY)/~, where ~ is the
finest equivalence relation such that ¢1(f(2)) ~ t2(g(2)).

> In particular: if X, Y CW for some larger set W, Z = X NY, and f and g the
inclusions of Z into X and Y, then the pushout can be canonically identified
with X UY.
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Product Objects and Exponentials in Categories

> Question: Can we also characterize functions (function spaces) in categories?

> Idea: Functions are sets of pairs with additional properties (left totality and
right uniqueness)

>> Definition 8.3.6 Let C be a category and X5, Xo € 0b(C). Then we call an
object X together with two morphisms m1: X — X7 and m: X — X5 the
product of X; and X5 and write it as X; x Xs if it satisfies the following
universal property:

For every object Y and pair of morphisms s Y f
|

fi:Y = X; and fo: Y — X, there exists a L | X
|

unique morphism f: Y — X; x X5 such that v

the diagram on the right commutes: X1 ™ X1 X Xz To X2

The unique morphism f is called the product of morphisms f; and fo and
is denoted (f1, f2). The morphisms m and 7o are called the (canonical)
projections or projection morphisms.

(©: Michael Kohlhase 152

Products in Set and Top

> In Set, the product is the Cartesian product: Given sets X; and X5, then
we have the projections m;: X1 x Xo — X;. Given any set Y with func-
tions f;: Z — X;, the universal arrow f is defined as f: Y — X x Xo;y —

(fr(v), f1(y))-

> In Top, the product of two objects ist the product topology.

(©: Michael Kohlhase 153

Exponentials in Categories

> Definition 8.3.7 If A x B exists for all objects A and B in a category C,
then we say that C has all binary products.

> Definition 8.3.8 Let C be a category that has all binary products and
Z,Y € ob(C), then we call an object Z¥ together with a morphism eval: Z¥ x Y —
Z is called an exponential object, iff for any X € 0b(C) and g: X xY — Z €
Morc there is a unique morphism Ag: X — ZY (called the transpose of g)
such that the following diagram commutes:
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X X xY
AS Z¥ xYy —— Z
eval

> Lemma 8.3.9 In Set, Z¥ =Y — Z and eval: Z¥Y xY — Z;(f,y) — f(y).
Ag(@)(y) = g(2,y).

(©: Michael Kohlhase 154

For any map g: X xY — Z the map \g: X — ZY is the Curried form of g:

Cartesian Closed Categories
> Definition 8.3.10 A category C is called Cartesian closed (a CCC), iff it
satisfies the following three properties:

> C has a terminal object.
> Any two objects X and Y of C have a product X x Y in C.

> Any two objects Y and Z of C have an exponential Z¥ in C.

(©: Michael Kohlhase 155
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