
Knowledge Representation for Mathematical/Technical
Knowledge

Summer Semester 2018

– Provisional Lecture Notes –

Prof. Dr. Michael Kohlhase & Dennis Müller, M.Sc.

Professur für Wissensrepräsentation und -verarbeitung
Informatik, FAU Erlangen-Nürnberg

Michael.Kohlhase,Dennis.Mueller@FAU.de

July 4, 2018

Michael.Kohlhase,Dennis.Mueller

i

Preface

Course Concept

Aims: To give students a solid foundation of the basic concepts and practices in representing
mathematical/technical knowledge, so they can do (guided) research in the KWARC group.

Organization: Theory and Practice: The KRMT course intended to give a small cohort of students
(≤ 15) the opportunity to understand theoretical and practical aspects of knowledge representation
for technical documents. The first aspect will be taught as a conventional lecture on computational
logic (focusing on the expressive formalisms needed account for the complexity of mathematical
objects) and the second will be served by the “KRMT Lab”, where we will jointly (instructors and
students) develop representations for technical documents and knowledge. Both parts will roughly
have equal weight and will alternate weekly.

Prerequisites: The course builds on the logic courses in the FAU Bachelor’s program, in particular
the course “Grundlagen der Logik in der Informatik” (GLOIN). While prior exposure to logic and
inference systems e.g. in GLOIN or the AI-1 course is certainly advantageous to keep up, it is not
strictly necessary, as the course introduces all necessary prerequisites as we go along. So a strong
motivation or exposure to strong abstraction and mathematical rigour in other areas should be
sufficient.

Similarly, we do not presuppose any concrete mathematical knowledge – we mostly use (very)
elementary algebra as example domain – but again, exposure to proof-based mathematical practice
– whatever it may be – helps a lot.

Course Contents and Organization

The course concentrates on the theory and practice of representing mathematical knowledge in a
wide array of mathematical software systems.

In the theoretical part we concentrate on computational logic and mathematical foundations;
the course notes are in this document. In the practical part we develop representations of concrete
mathematical knowledge in the MMT system, unveiling the functionality of the system step by
step. This process is tracked in a tutorial separate document [KohMue:mtm17].

Excursions: As this course is predominantly about modeling natural language and not about the
theoretical aspects of the logics themselves, we give the discussion about these as a “suggested
readings” ?sec?. This material can safely be skipped (thus it is in the appendix), but contains the
missing parts of the “bridge” from logical forms to truth conditions and textual entailment.

This Document

This document contains the course notes for the course “Knowledge Representation for Mathemat-
ical/Technical Knowledge” (“Logik-Basierte Wissensrepräsentation für Mathematisch/Technisches
Wissen”) in the Summer Semesters 17 ff.

Format: The document mixes the slides presented in class with comments of the instructor to give
students a more complete background reference.

Caveat: This document is made available for the students of this course only. It is still very much
a draft and will develop over the course of the current course and in coming academic years.

Licensing: This document is licensed under a Creative Commons license that requires attribution,
allows commercial use, and allows derivative works as long as these are licensed under the same
license.

Knowledge Representation Experiment:
This document is also an experiment in knowledge representation. Under the hood, it uses the

STEX package [Kohlhase:ulsmf08; Kohlhase:ssmtl:ctan], a TEX/LATEX extension for semantic

ii

markup, which allows to export the contents into active documents that adapt to the reader and
can be instrumented with services based on the explicitly represented meaning of the documents.
Comments: and extensions are always welcome, please send them to the author.
Other Resources: The course notes are complemented by a tutorial on formalization mathe-
matical Knowledge in the MMT system [KohMue:mtm17] and the formalizations at https:
//gl.mathhub.info/Tutorials/Mathematicians.

Acknowledgments

Materials: All course materials have bee restructured and semantically annotated in the STEX
format, so that we can base additional semantic services on them (see slide 6 for details).
CompLog Students: The course is based on a series of courses “Computational Logic” held at
Jacobs University Bremen and shares a lot of material with these. The following students have
submitted corrections and suggestions to this and earlier versions of the notes: Rares Ambrus,
Florian Rabe, Deyan Ginev, Fulya Horozal, Xu He, Enxhell Luzhnica, and Mihnea Iancu.
KRMT Students: The following students have submitted corrections and suggestions to this and
earlier versions of the notes: Michael Banken

https://gl.mathhub.info/Tutorials/Mathematicians
https://gl.mathhub.info/Tutorials/Mathematicians

iii

Recorded Syllabus for SS 2018

In this document, we record the progress of the course in the summer semester 2018 in the form
of a “recorded syllabus”, i.e. a syllabus that is created after the fact rather than before.
Recorded Syllabus Summer Semester 2018:
date what until slide page
1. April 11. Lecture admin, some overview 20 11
2. April 12. Lab MMT Installation, Formalizing N
3. April 18. Lecture propositional logic and ND 76 45
4. April 19. Lab Elementary Algebra: Groups
5. April 25. Lecture First-Order Logic and ND 84 49
6. April 26. Lab Algebra: Structures & Views
7. May 2. Lecture Applications of Theory Graphs 188 119
8. May 3. Lab Implementing FOL
9. May 9. Lecture Higher-Order Logic and λ-calculus 108 63

May 10. Ascension
10. May 16. Lab λ-calculus, Curry Howard
11. May 17 Lab Dependent Types
12. May 24 Lecture HOL, Axiomatic Set theory 127 74
13. May 25 Lab HOL & βη-reduction in LF
14. May 31 Lab implementing ZFC
15. June 6. Lecture Types & Sets (John Harrison’s talk)
16. June 7. Lab Implementing ZFC
17. June 13. Lab ZFC finalized, Math-in-the-Middle
18. June 14. Lecture (Rabe) Bi-Directional Type Checking
19 June 20. Lecture Ordinals and Cardinals
20 June 21. Lab Formalization Projects

June 27. Final World Cup Game for Germany
21 June 28. Lecture Category Theory 142 80
22 July 4. Lecture Category Theory, Tetrapod ?? ??

Here the syllabus of the last academic year for reference, the current year should be similar;
see the course notes of last year available for reference at http://kwarc.info/teaching/KRMT/
notes-SS17.pdf.
Recorded Syllabus Summer Semester 2017:
date until slide page
1 4. May overview, some admin, math search
2 8. May framing, theory graphs,content/form
3 11. May N,+ in MMT

http://kwarc.info/teaching/KRMT/notes-SS17.pdf
http://kwarc.info/teaching/KRMT/notes-SS17.pdf

iv

Contents

Preface . i
Course Concept . i
Course Contents and Organization . i
This Document . i
Acknowledgments . ii

Recorded Syllabus for SS 2018 . iii

1 Administrativa 1

2 Overview over the Course 5
2.1 Introduction & Motivation . 5
2.2 Mathematical Formula Search . 7
2.3 The Mathematical Knowledge Space . 11
2.4 Modular Representation of mathematical Knowledge 13
2.5 Application: Serious Games . 14
2.6 Search in the Mathematical Knowledge Space . 16

3 What is (Computational) Logic 19
3.1 A History of Ideas in Logic . 20

I Foundations of Mathematics 23

4 Propositional Logic and Inference 25
4.1 Propositional Logic (Syntax/Semantics) . 25
4.2 Calculi for Propositional Logic . 27
4.3 Propositional Natural Deduction Calculus . 30

5 First Order Predicate Logic 35
5.1 First-Order Logic . 35

5.1.1 First-Order Logic: Syntax and Semantics 35
5.1.2 First-Order Substitutions . 39

5.2 First-Order Calculi . 42
5.2.1 Propositional Natural Deduction Calculus 42

6 Higher-Order Logic and λ-Calculus 51
6.1 Higher-Order Predicate Logic . 51
6.2 A better Form of Comprehension and Extensionality 56
6.3 Simply Typed λ-Calculus . 57
6.4 Simply Typed λ-Calculus via Inference Systems . 60
6.5 Simple Type Theory . 63

v

vi CONTENTS

7 Axiomatic Set Theory (ZFC) 67
7.1 Naive Set Theory . 67
7.2 ZFC Axioms . 69
7.3 ZFC Applications . 74

8 Category Theory 77
8.1 Introduction . 77
8.2 Example/Motivation: Natural Numbers in Category Theorty 79
8.3 Universal Constructions in Category Theory . 82

II Aspects of Knoweldge Reprsentation for Mathematics 85

9 Project Tetrapod 87

10 The Flexiformalist Program: Introduction 89

11 What is formality? 95

12 A “formal” Theory of Flexiformality 99
12.1 Parallel Markup in MathML . 100
12.2 Parallel Markup in OMDoc . 102
12.3 Flexible Symbol Grounding in OMDoc . 102

13 Representing Mathematical Vernacular 105

III Summary and Review 107

14 Modular Representation of Mathematical Knowledge 109

15 Application: Serious Games 113

16 Search in the Mathematical Knowledge Space 117

Chapter 1

Administrativa

We will now go through the ground rules for the course. This is a kind of a social contract
between the instructor and the students. Both have to keep their side of the deal to make learning
as efficient and painless as possible.

Prerequisites

� the mandatory courses from Semester 1-4, in particular: (or equivalent)

� course “Grundlagen der Logik in der Informatik” (GLOIN)

� CS Math courses “Mathematik C1-4” (IngMath1-4) (our “domain”)

� algorithms and data structures

� course “Künstliche Intelligenz I” (nice-to-have only)

� Motivation, Interest, Curiosity, hard work

� You can do this course if you want! (and we will help you)

©:Michael Kohlhase 1

Now we come to a topic that is always interesting to the students: the grading scheme.

Grades

� Academic Assessment: two parts (Portfolio Assessment)

� 20-min oral exam at the end of the semester (50%)

� results of the KRMT lab (50%)

©:Michael Kohlhase 2

KRMT Lab (Dogfooding our own Techniques)

� (generally) we use the thursday slot to get our hands dirty with actual repre-
sentations.

1

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

2 CHAPTER 1. ADMINISTRATIVA

� Instructor: Dennis Müller (dennis.mueller@fau.de) Room: 11.138, Tel:
85-64053

� Goal: Reinforce what was taught in class and have some fun

� Homeworks: will be small individual problem/programming/proof assignments
(but take time to solve) group submission if and only if explicitly permitted

� Admin: To keep things running smoothly

� Homeworks will be posted on course forum (discussed in the lab)

� No “submission”, but open development on a git repos. (details follow)

� Homework Discipline:

� start early! (many assignments need more than one evening’s work)

� Don’t start by sitting at a blank screen

� Humans will be trying to understand the text/code/math when grading it.

©:Michael Kohlhase 3

Textbook, Handouts and Information, Forums

� (No) Textbook: Course notes will be posted at http://kwarc.info/teaching/
KRMT

� I mostly prepare them as we go along (semantically preloaded ; research
resource)

� please e-mail me any errors/shortcomings you notice. (improve for the
group)

� Announcements will be posted on the course forum

� https://fsi.cs.fau.de/forum/150-Logikbasierte-Wissensrepraesentation

� Check the forum frequently for

� announcements, homeworks, questions

� discussion among your fellow students

©:Michael Kohlhase 4

Do I need to attend the lectures

� Attendance is not mandatory for the KRMT lecture (official version)

� There are two ways of learning: (both are OK, your mileage may vary)

� Approach B: Read a book/papers

� Approach I: come to the lectures, be involved, interrupt me whenever you
have a question.

dennis.mueller@fau.de
http://creativecommons.org/licenses/by-sa/2.5/
http://kwarc.info/teaching/KRMT
http://kwarc.info/teaching/KRMT
https://fsi.cs.fau.de/forum/150-Logikbasierte-Wissensrepraesentation
http://creativecommons.org/licenses/by-sa/2.5/

3

The only advantage of I over B is that books/papers do not answer questions

� Approach S: come to the lectures and sleep does not work!

� The closer you get to research, the more we need to discuss!

©:Michael Kohlhase 5

Next we come to a special project that is going on in parallel to teaching the course. I am using the
course materials as a research object as well. This gives you an additional resource, but may affect
the shape of the coures materials (which now serve double purpose). Of course I can use all the
help on the research project I can get, so please give me feedback, report errors and shortcomings,
and suggest improvements.

Experiment: E-Learning with KWARC Technologies

� My research area: deep representation formats for (mathematical) knowledge

� Application: E-learning systems (represent knowledge to transport it)

� Experiment: Start with this course (Drink my own medicine)

� Re-Represent the slide materials in OMDoc (Open Math Documents)

� Feed it into the PantaRhei system (http://panta.kwarc.info)

� Try it on you all (to get feedback from you)

� Tasks (Unfortunately, I cannot pay you for this; maybe later)

� help me complete the material on the slides (what is missing/would help?)

� I need to remember “what I say”, examples on the board. (take notes)

� Benefits for you (so why should you help?)

� you will be mentioned in the acknowledgements (for all that is worth)

� you will help build better course materials (think of next-year’s students)

©:Michael Kohlhase 6

http://creativecommons.org/licenses/by-sa/2.5/
http://panta.kwarc.info
http://creativecommons.org/licenses/by-sa/2.5/

4 CHAPTER 1. ADMINISTRATIVA

Chapter 2

Overview over the Course

Plot of this Course

� Today: Motivation, Admin, and find out what you already know

� What is logic, knowledge representation

� What is mathematical/technical knowledge

� how can you get involved with research at KWARC

©:Michael Kohlhase 7

2.1 Introduction & Motivation

Knowledge-Representation and -Processing

� Definition 2.1.1 (True and Justified Belief) Knowledge is a body of
facts, theories, and rules available to persons or groups that are so well
justified that their validity/truth is assumed.

� Definition 2.1.2 Knowledge representation formulates knowledge in a for-
mal language so that new knowledge can be induced by inferred via rule
systems (inference).

� Definition 2.1.3 We call an information system knowledge-based, if a
large part of its behaviour is based on inference on represented knowledge.

� Definition 2.1.4 The field of knowledge processing studies knowledge-
based systems, in particular

� compilation and structuring of explicit/implicit knowledge (knowledge
acquisition)

� formalization and mapping to realization in computers (knowledge rep-
resentation)

� processing for problem solving (inference)

� presentation of knowledge (information visualization)

5

http://creativecommons.org/licenses/by-sa/2.5/

6 CHAPTER 2. OVERVIEW OVER THE COURSE

� knowledge representation and processing are subfields of symbolic artificial
intelligence

©:Michael Kohlhase 8

Mathematical Knowledge (Representation and -Processing)

� KWARC (my research group) develops foundations, methods, and applications
for the representation and processing of mathematical knowledge

� Mathematics plays a fundamental role in Science and Technology(practice
with maths, apply in STEM)

� mathematical knowledge is rich in content, sophisticated in structure, and
explicitly represented . . .

� . . . , and we know exactly what we are talking about (in contrast to
economics or love)

Working Definition: Everything we understand well is “mathematics” (e.g. CS,
Physics, . . .)

�� There is a lot of mathematical knowledge

� 120,000 Articles are published in pure/applied mathematics (3.5 millions
so far)

� 50 Millionen science articles in 2010 [Jinha:a5m10] with a doubling time
of
8-15 years [LarIns:rgsp10]

� 1 M Technical Reports on http://ntrs.nasa.gov/ (e.g. the Apollo
reports)

� a Boeing-Ingenieur tells of a similar collection (but in Word 3,4,5,. . .)

©:Michael Kohlhase 9

About Humans and Computers in Mathematics

� Computers and Humans have complementary strengths.

� Computers can handle large data and computations flawlessly at enormous
speeds.

� Humans can sense the environment, react to unforeseen circumstances and
use their intuitions to guide them through only partially understood situa-
tions.

In mathematics: we exploit this, we

� � let humans explore mathematical theories and come up with novel insight-
s/proofs,

� delegate symbolic/numeric computation and typesetting of documents to
computers.

http://creativecommons.org/licenses/by-sa/2.5/
http://ntrs.nasa.gov/
http://creativecommons.org/licenses/by-sa/2.5/

2.2. MATHEMATICAL FORMULA SEARCH 7

� (sometimes) delegate proof checking and search for trivial proofs to com-
puters

Overlooked Opportunity: management of existing mathematical knowledge

� � cataloguing, retrieval, refactoring, plausibilization, change propagation and
in some cases even application do not require (human) insights and intuition

� can even be automated in the near future given suitable representation
formats and algorithms.

Math. Knowledge Management (MKM): is the discipline that studies this.

�� Application: Scaling Math beyond the One-Brain-Barrier

©:Michael Kohlhase 10

The One-Brain-Barrier

� Observation 2.1.5 More than 105 math articles published annually in Math.

� Observation 2.1.6 The libraries of Mizar, Coq, Isabelle,. . . have∼ 105 state-
ments+proofs each. (but are mutually
incompatible)

� Consequence: humans lack overview over – let alone working knowledge in –
all of math/formalizations. (Leonardo da Vinci was said to be the last who
had)

� Dire Consequences: duplication of work and missed opportunities for the ap-
plication of mathematical/formal results.

� Problem: Math Information systems like arXiv.org, Zentralblatt Math, Math-
SciNet, etc. do not help (only make documents
available)

� Fundamenal Problem: the One-Brain Barrier (OBB)

� To become productive, math must pass through a brain

� Human brains have limited capacity (compared to knowledge available
online)

� Idea: enlist computers (large is what they are good at)

� Prerequisite: make math knowledge machine-actionable & foundation-independent
(use MKM)

©:Michael Kohlhase 11

All of that is very abstract, high-level and idealistic, . . . Let us look at an example, where we can
see computer support for one of the postulated horizontal/MKM tasks in action.

2.2 Mathematical Formula Search

http://creativecommons.org/licenses/by-sa/2.5/
arXiv.org
http://creativecommons.org/licenses/by-sa/2.5/

8 CHAPTER 2. OVERVIEW OVER THE COURSE

More Mathematics on the Web

� The Connexions project (http://cnx.org)

� Wolfram Inc. (http://functions.wolfram.com)

� Eric Weisstein’s MathWorld (http://mathworld.wolfram.com)

� Digital Library of Mathematical Functions (http://dlmf.nist.gov)

� Cornell ePrint arXiv (http://www.arxiv.org)

� Zentralblatt Math (http://www.zentralblatt-math.org)

� . . . Engineering Company Intranets, . . .

� Question: How will we find content that is relevant to our needs

� Idea: try Google (like we always do)

� Scenario: Try finding the distributivity property for Z (∀ k, l,m ∈
Z k · (l +m) = (k · l) + (k ·m))

©:Michael Kohlhase 12

Searching for Distributivity

©:Michael Kohlhase 13

Searching for Distributivity

http://cnx.org
http://functions.wolfram.com
http://mathworld.wolfram.com
http://dlmf.nist.gov
http://www.arxiv.org
http://www.zentralblatt-math.org
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

2.2. MATHEMATICAL FORMULA SEARCH 9

©:Michael Kohlhase 14

Searching for Distributivity

©:Michael Kohlhase 15

Does Image Search help?

� Math formulae are visual objects, after all (let’s try it)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

10 CHAPTER 2. OVERVIEW OVER THE COURSE

©:Michael Kohlhase 16

Of course Google cannot work out of the box

� Formulae are not words:

� a, b, c, k, l, m, x, y, and z are (bound) variables. (do not behave like
words/symbols)

� where are the word boundaries for “bag-of-words” methods?

� Formulae are not images either: They have internal (recursive) structure and
compositional meaning

� Idea: Need a special treatment for formulae (translate into “special words”)
Indeed this is done ([MilYou:tadlmf02; MunMin:MathFind06;
LibMel:marmca06; MisGal:egoMath11])
. . . and works surprisingly well (using e.g. Lucene as an indexing engine)

� Idea: Use database techniques (extract metadata and index it)

Indeed this is done for the Coq/HELM corpus([AGSTZ:ContMathSearchWhelp04])

� Our Idea: Use Automated Reasoning Techniques (free term indexing from
theorem prover jails)

� Demo: MathWebSearch on Zentralblatt Math, the arXiv Data Set

©:Michael Kohlhase 17

A running example: The Power of a Signal

� An engineer wants to compute the power of a given signal s(t)

� She remembers that it involves integrating the square of s.

http://creativecommons.org/licenses/by-sa/2.5/
https://zbmath.org/formulae/
http://arxivsearch.mathweb.org
http://creativecommons.org/licenses/by-sa/2.5/

2.3. THE MATHEMATICAL KNOWLEDGE SPACE 11

� Problem: But how to compute the necessary integrals

� Idea: call up MathWebSearch with
∫ ?

?
s2(t)dt.

� MathWebSearch finds a document about Parseval’s Theorem and 1
T

∫ T
0
s2(t)dt =

Σ∞k=−∞|ck|2 where ck are the Fourier coefficients of s(t).

©:Michael Kohlhase 18

Some other Problems (Why do we need more?)

� Substitution Instances: search for x2 + y2 = z2, find 32 + 42 = 52

� Homonymy:
(
n
k

)
, nCk, Cnk , C

k
n, and k

n all mean the same thing (binomial
coeff.)

� Solution: use content-based representations (MathML, OpenMath)

� Mathematical Equivalence: e.g.
∫
f(x)dx means the same as

∫
f(y)dy (α-

equivalence)

� Solution: build equivalence (e.g. α or ACI) into the search engine (or
normalize first [Normann’06])

� Subterms: Retrieve formulae by specifying some sub-formulae

� Solution: record locations of all sub-formulae as well

©:Michael Kohlhase 19

MathWebSearch: Search Math. Formulae on the Web

� Idea 1: Crawl the Web for math. formulae (in OpenMath or CMathML)

� Idea 2: Math. formulae can be represented as first order terms (see below)

� Idea 3: Index them in a substitution tree index (for efficient retrieval)

� Problem: Find a query language that is intuitive to learn

� Idea 4: Reuse the XML syntax of OpenMath and CMathML, add variables

©:Michael Kohlhase 20

2.3 The Mathematical Knowledge Space

The way we do math will change dramatically

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

12 CHAPTER 2. OVERVIEW OVER THE COURSE

� Definition 2.3.1 (Doing Math) Buchberger’s Math creativity spiral

Spiral

The

Creativity

Compute/
Experiment

Specify/
Formalize

Prove

Visualize

Conjecture

Mathematical
Creativity
Spiral
[Buchberger 1995]

Com−
munication

Publication

Teaching

Application

� Every step will be supported by mathematical software systems

� Towards an infrastructure for web-based mathematics!

©:Michael Kohlhase 21

Mathematical Literacy

� Note: the form and extent of knowledge representation for the components of
“doing math” vary greatly. (e.g. publication vs. proving)

� Observation 2.3.2 (Primitive Cognitive Actions)
To “do mathematics”, we need to

� extract the relevant structures,

� reconcile them with the context of our existing knowledge

� recognize parts as already known

� identify parts that are new to us.

During these processes mathematicians (are trained to)

� abstract from syntactic differences, and

� employ interpretations via non-trivial, but meaning-preserving mappings

� Definition 2.3.3 We call the skillset that identifies mathematical training
mathematical literacy (cf. Observation 2.3.2)

©:Michael Kohlhase 22

Introduction: Framing as a Mathematical Practice

� Understanding Mathematical Practices:

� To understand Math, we must understand what mathematicians do!

� The value of a math education is more in the skills than in the knowledge.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

2.4. MODULAR REPRESENTATION OF MATHEMATICAL KNOWLEDGE 13

� Have been interested in this for a while (see [KohKoh:copmem06])

� Framing: Understand new objects in terms of already understood structures.
Make creative use of this perspective in problem solving.

� Example 2.3.4 Understand point sets in 3-space as zeroes of polynomials.
Derive insights by studying the algebraic properties of polynomials.

� Definition 2.3.5 We are framing the point sets as algebraic varieties (sets
of zeroes of polynomials).

� Example 2.3.6 (Lie group) Equipping a differentiable manifold with a
(differentiable) group operation

� Example 2.3.7 (Stone’s representation theorem) Interpreting a Boolean
algebra as a field of sets.

� Claim: Framing is valuable, since it transports insights between fields.

� Claim: Many famous theorems earn their recognition because they establish
profitable framings.

©:Michael Kohlhase 23

2.4 Modular Representation of mathematical Knowledge

Modular Representation of Math (Theory Graph)

� Idea: Follow mathematical practice of generalizing and framing

� framing: If we can view an object a as an instance of concept B, we can
inherit all of B properties (almost for free.)

� state all assertions about properties as general as possible (to maximize
inheritance)

� examples and applications are just special framings.

� Modern expositions of Mathematics follow this rule (radically e.g. in
Bourbaki)

� formalized in the theory graph paradigm (little/tiny theory doctrine)

� theories as collections of symbol declarations and axioms (model
assumptions)

� theory morphisms as mappings that translate axioms into theorems

� Example 2.4.1 (MMT: Modular Mathematical Theories) MMT is
a foundation-indepent theory graph formalism with advanced theory mor-
phisms.

Problem: With a proliferation of abstract (tiny) theories readability and acces-
sibility suffers (one reason why the Bourbaki books fell out of
favor)

http://creativecommons.org/licenses/by-sa/2.5/

14 CHAPTER 2. OVERVIEW OVER THE COURSE

©:Michael Kohlhase 24

�Modular Representation of Math (MMT Example)

Magma
G, ◦
x◦y∈G

SemiGrp

assoc:(x◦y)◦z=x◦(y◦z)

Monoid
e
e◦x=x

Group
i :=λx.τy.x◦y=e
∀x:G.∃y:G.x◦y=e

NonGrpMon

∃x:G.∀y:G.x◦y 6=e

CGroup

comm:x◦y=y◦x

Ring

x m/◦ (y a/◦ z)=(x m/◦ y) a/◦ (x m/◦ z)

NatNums
N, s, 0
P1,. . .P5

NatPlus
+
n+0=n,
n+s(m)=s(n+m)

NatTimes
·
n·1=n,
n·s(m)=n·m+n

IntArith
−
Z := p/N ∪ n/N
−0=0

ϕ =

 G 7→ N
◦ 7→ ·
e 7→ 1


ψ =

 G 7→ N
◦ 7→ +
e 7→ 0


ψ′ =

{
i 7→ −
g 7→ f

}
ϑ =

{
m 7→ e
a 7→ c

}

p n

e :ϕ

f :ψ

d :ψ′

g

c :ϕ

ng

a

m

i : ϑ

{x ◦ y 7→ y ◦ x}

{x ◦ y 7→ y ◦ x}

©:Michael Kohlhase 25

2.5 Application: Serious Games

Framing for Problem Solving (The FrameIT Method)

� Example 2.5.1 (Problem 0.8.15)

How can you measure the height of a tree you cannot
climb, when you only have a protactor and a tape
measure at hand.

� Framing: view the problem as one that is already understood (using theory
morphisms)

PlanarGeo

PGP

PGSProblem

SOL

Forestry

q

p′ :ϕ

p :ϕ

q′

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

2.5. APPLICATION: SERIOUS GAMES 15

� squiggly (framing) morphisms guaranteed by metatheory of theories!

©:Michael Kohlhase 26

Example Learning Object Graph

Generate [0]

Generate [3]

Generate [2]Fact Discovery

Interaction

ϕ

[π/p]
[A/a]
[B/b]
[C/c]

[|AB|/|ab|]
[∠CAB/∠cab]


=: ϕ

Generate [1]

Game World
User Knowledge New Knowledge

MMT

Game Solution

A

C

B

D

α AB

h = 10.0m

Game Problem

h =?

Explored World

A

C

B

D

h =?

Scrolls

find
a b

c
such that ab ⊥ bc then

a b

c

α
→ |bc| = |ab| · tan(α)

Solution Pushout

A

C

B

D

α AB

|BC| = 10.0 · tan(45◦) = 10.0

Situation Theory

A

C

B

D

α AB

Situation Theory

A,B,C : point
|AB| : R = 10.0
∠CAB : R = 45◦

π : ` AB ⊥ BC

Solution Theory

a b

c

α

|bc| = |ab| · tan(∠cab)

Problem Theory

a b

c

p : ` ab ⊥ bc

Forestry
vertical (tree)
horizontal (ground)

...

Planar Geometry
point : type
line : point → point → line
|ab| : line → R
⊥ : line → line → bool

...

©:Michael Kohlhase 27

FrameIT Method: Problem

� Problem Representation in the game world (what the student should see)

� Student can interact with the environment via gadgets so solve problems

� “Scrolls” of mathematical knowledge give hints.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

16 CHAPTER 2. OVERVIEW OVER THE COURSE

©:Michael Kohlhase 28

Combining Problem/Solution Pairs

� We can use the same mechanism for combining P/S pairs

� create more complex P/S pairs (e.g. for trees on slopes)

©:Michael Kohlhase 29

Another whole set of applications and game behaviors can come from the fact that LOGraphs
give ways to combine problem/solution pairs to novel ones. Consider for instance the diagram
on the right, where we can measure the height of a tree of a slope. It can be constructed by
combining the theory SOL with a copy of SOL along a second morphism the inverts h to −h (for
the lower triangle with angle β) and identifies the base lines (the two occurrences of h0 cancel
out). Mastering the combination of problem/solution pairs further enhances the problem solving
repertoire of the player.

2.6 Search in the Mathematical Knowledge Space

The Mathematical Knowledge Space
� Observation 2.6.1 The value of framing is that
it induces new knowledge

� Definition 2.6.2 The mathematical knowledge
space MKS is the structured space of represented
and induced knowledge, mathematically literate
have access to.

induced

rep.

� Idea: make math systems mathematically literate by supporting the MKS

� In this talk: I will cover three aspects

� an approach for representing framing and the MKS (OMDoc/MMT)

� search modulo framing (MKS-literate search)

� a system for archiving the MKS (MathHub.info)

� Told from the Perspective of: searching the MKS

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

2.6. SEARCH IN THE MATHEMATICAL KNOWLEDGE SPACE 17

©:Michael Kohlhase 30

Modular Representation of Math (MMT Example)

Magma
G, ◦
x◦y∈G

SemiGrp

assoc:(x◦y)◦z=x◦(y◦z)

Monoid
e
e◦x=x

Group
i :=λx.τy.x◦y=e
∀x:G.∃y:G.x◦y=e

NonGrpMon

∃x:G.∀y:G.x◦y 6=e

CGroup

comm:x◦y=y◦x

Ring

x m/◦ (y a/◦ z)=(x m/◦ y) a/◦ (x m/◦ z)

NatNums
N, s, 0
P1,. . .P5

NatPlus
+
n+0=n,
n+s(m)=s(n+m)

NatTimes
·
n·1=n,
n·s(m)=n·m+n

IntArith
−
Z := p/N ∪ n/N
−0=0

ϕ =

 G 7→ N
◦ 7→ ·
e 7→ 1


ψ =

 G 7→ N
◦ 7→ +
e 7→ 0


ψ′ =

{
i 7→ −
g 7→ f

}
ϑ =

{
m 7→ e
a 7→ c

}

p n

e :ϕ

f :ψ

d :ψ′

g

c :ϕ

ng

a

m

i : ϑ

{x ◦ y 7→ y ◦ x}

{x ◦ y 7→ y ◦ x}

©:Michael Kohlhase 31

[search on the LATIN Logic Atlas

� Flattening the LATIN Atlas (once):

type modular flat factor
declarations 2310 58847 25.4
library size 23.9 MB 1.8 GB 14.8
math sub-library 2.3 MB 79 MB 34.3
MathWebSearch harvests 25.2 MB 539.0 MB 21.3

induced

repd

� simple [search frontend at http://cds.omdoc.org:8181/search.html

©:Michael Kohlhase 32

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://cds.omdoc.org:8181/search.html
http://creativecommons.org/licenses/by-sa/2.5/

18 CHAPTER 2. OVERVIEW OVER THE COURSE

Overview: KWARC Research and Projects

Applications: eMath 3.0, Active Documents, Semantic Spreadsheets, Semantic
CAD/CAM, Change Mangagement, Global Digital Math Library, Math Search Sys-
tems, SMGloM: Semantic Multilingual Math Glossary, Serious Games, . . .
Foundations of Math:

� MathML, OpenMath

� advanced Type Theories

� MMT: Meta Meta The-
ory

� Logic Morphisms/Atlas

� Theorem Prover/CAS In-
teroperability

� Mathematical Model-
s/Simulation

KM & Interaction:
� Semantic Interpretation
(aka. Framing)

� math-literate interaction

� MathHub: math archi-
ves & active docs

� Semantic Alliance: em-
bedded semantic services

Semantization:
� LATEXML: LATEX→ XML

� STEX: Semantic LATEX

� invasive editors

� Context-Aware IDEs

� Mathematical Corpora

� Linguistics of Math

Foundations: Computational Logic, Web Technologies, OMDoc/MMT

©:Michael Kohlhase 33

Take-Home Message

� Overall Goal: Overcoming the “One-Brain-Barrier” in Mathematics (by
knowledge-based systems)

� Means: Mathematical Literacy by Knowledge Representation and Processing
in theory graphs. (Framing as mathematical practice)

©:Michael Kohlhase 34

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Chapter 3

What is (Computational) Logic

What is (Computational) Logic?

� The field of logic studies representation languages, inference systems, and their
relation to the world.

� It dates back and has its roots in Greek philosophy (Aristotle et al.)

� Logical calculi capture an important aspect of human thought, and make it
amenable to investigation with mathematical rigour, e.g. in

� foundation of mathematics (Hilbert, Russell and Whitehead)

� foundations of syntax and semantics of language(Creswell, Montague, . . .)

� Logics have many practical applications

� logic/declarative programming (the third programming paradigm)

� program verification: specify conditions in logic, prove program correctness

� program synthesis: prove existence of answers constructively, extract pro-
gram from proof

� proof-carrying code: compiler proves safety conditions, user verifies before
running.

� deductive databases: facts + rules (get more out than you put in)

� semantic web: the Web as a deductive database

� Computational Logic is the study of logic from a computational, proof-theoretic
perspective. (model theory is mostly comprised under “mathematical logic”.)

©:Michael Kohlhase 35

What is Logic?

� Logic =̂ formal languages, inference and their relation with the world

� Formal language FL: set of formulae (2 + 3/7, ∀x.x+ y = y + x)

� Formula: sequence/tree of symbols (x, y, f, g, p, 1, π,∈,¬, ∧∀,∃)

19

http://creativecommons.org/licenses/by-sa/2.5/

20 CHAPTER 3. WHAT IS (COMPUTATIONAL) LOGIC

� Model: things we understand (e.g. number theory)

� Interpretation: maps formulae into models ([[three plus five]] = 8)

� Validity: M |= A, iff [[A]]
M

= T (five greater three is valid)

� Entailment: A |= B, iffM |= B for allM |= A. (generalize to H |= A)

� Inference rules to transform (sets of) formulae (A,A⇒B ` B)

� Syntax: formulae, inference (just a bunch of symbols)

� Semantics: models, interpr., validity, entailment (math. structures)

Important Question: relation between syntax and semantics?

©:Michael Kohlhase 36

So logic is the study of formal representations of objects in the real world, and the formal state-
ments that are true about them. The insistence on a formal language for representation is actually
something that simplifies life for us. Formal languages are something that is actually easier to
understand than e.g. natural languages. For instance it is usually decidable, whether a string is
a member of a formal language. For natural language this is much more difficult: there is still
no program that can reliably say whether a sentence is a grammatical sentence of the English
language.
We have already discussed the meaning mappings (under the monicker “semantics”). Meaning
mappings can be used in two ways, they can be used to understand a formal language, when we
use a mapping into “something we already understand”, or they are the mapping that legitimize a
representation in a formal language. We understand a formula (a member of a formal language)
A to be a representation of an object O, iff [[A]] = O.
However, the game of representation only becomes really interesting, if we can do something with
the representations. For this, we give ourselves a set of syntactic rules of how to manipulate the
formulae to reach new representations or facts about the world.
Consider, for instance, the case of calculating with numbers, a task that has changed from a difficult
job for highly paid specialists in Roman times to a task that is now feasible for young children.
What is the cause of this dramatic change? Of course the formalized reasoning procedures for
arithmetic that we use nowadays. These calculi consist of a set of rules that can be followed
purely syntactically, but nevertheless manipulate arithmetic expressions in a correct and fruitful
way. An essential prerequisite for syntactic manipulation is that the objects are given in a formal
language suitable for the problem. For example, the introduction of the decimal system has been
instrumental to the simplification of arithmetic mentioned above. When the arithmetical calculi
were sufficiently well-understood and in principle a mechanical procedure, and when the art of
clock-making was mature enough to design and build mechanical devices of an appropriate kind,
the invention of calculating machines for arithmetic by Wilhelm Schickard (1623), Blaise Pascal
(1642), and Gottfried Wilhelm Leibniz (1671) was only a natural consequence.

We will see that it is not only possible to calculate with numbers, but also with representations
of statements about the world (propositions). For this, we will use an extremely simple example;
a fragment of propositional logic (we restrict ourselves to only one logical connective) and a small
calculus that gives us a set of rules how to manipulate formulae.

3.1 A History of Ideas in Logic

Before starting with the discussion on particular logics and inference systems, we put things into
perspective by previewing ideas in logic from a historical perspective. Even though the presentation
(in particular syntax and semantics) may have changed over time, the underlying ideas are still
pertinent in today’s formal systems.

http://creativecommons.org/licenses/by-sa/2.5/

3.1. A HISTORY OF IDEAS IN LOGIC 21

Many of the source texts of the ideas summarized in this Section can be found in [Hei67].

� History of Ideas (abbreviated): Propositional Logic

� General Logic ([ancient Greece, e.g. Aristotle])

+ conceptual separation of syntax and semantics

+ system of inference rules (“Syllogisms”)

– no formal language, no formal semantics

� Propositional Logic [Boole ∼ 1850]

+ functional structure of formal language (propositions + connectives)

+ mathematical semantics (; Boolean Algebra)

– abstraction from internal structure of propositions

©:Michael Kohlhase 37

History of Ideas (continued): Predicate Logic

� Frege’s “Begriffsschrift” [Frege:b79]

+ functional structure of formal language (terms, atomic formulae,
connectives, quantifiers)

– weird graphical syntax, no mathematical semantics

– paradoxes e.g. Russell’s Paradox [R. 1901] (the set of sets that do not
contain themselves)

� modern form of predicate logic [Peano ∼ 1889]

+ modern notation for predicate logic (∨,∧,⇒,∀,∃)

©:Michael Kohlhase 38

History of Ideas (continued): First-Order Predicate Logic

� Types ([Russell 1908])

– restriction to well-types expression

+ paradoxes cannot be written in the system

+ Principia Mathematica ([Whitehead, Russell 1910])

� Identification of first-order Logic ([Skolem, Herbrand, Gödel ∼ 1920 – ’30])

– quantification only over individual variables (cannot write down induction
principle)

+ correct, complete calculi, semi-decidable

+ set-theoretic semantics ([Tarski 1936])

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

22 CHAPTER 3. WHAT IS (COMPUTATIONAL) LOGIC

©:Michael Kohlhase 39

History of Ideas (continued): Foundations of Mathematics

� Hilbert’s Program: find logical system and calculus, ([Hilbert ∼ 1930])

� that formalizes all of mathematics

� that admits sound and complete calculi

� whose consistence is provable in the system itself

� Hilbert’s Program is impossible! ([Gödel 1931])

Let L be a logical system that formalizes arithmetics (〈NaturalNumbers,+, ∗〉),

� then L is incomplete

� then the consistence of L cannot be proven in L.

©:Michael Kohlhase 40

History of Ideas (continued): λ-calculus, set theory

� Simply typed λ-calculus ([Church 1940])

+ simplifies Russel’s types, λ-operator for functions

+ comprehension as β-equality (can be mechanized)

+ simple type-driven semantics (standard semantics ; incompleteness)

� Axiomatic set theory

+– type-less representation (all objects are sets)

+ first-order logic with axioms

+ restricted set comprehension (no set of sets)

– functions and relations are derived objects

©:Michael Kohlhase 41

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Part I

Foundations of Mathematics

23

Chapter 4

Propositional Logic and Inference

4.1 Propositional Logic (Syntax/Semantics)

Propositional Logic (Syntax)

� propositional logic (write PL0) is made up from

� propositional variables: Vo := {P,Q,R, P 1, P 2, . . .} (countably infinite)

� connectives: Σo := {T , F ,¬,∨,∧,⇒,⇔, . . .}

We define the set wff o(Vo) of well-formed propositional formulas as

� negations ¬A
� conjunctions A∧B
� disjunctions A∨B
� implications A⇒B

� equivalences (or biimplications) A⇔B

where A,B ∈ wff o(Vo) themselves.

� Example 4.1.1 P ∧Q,P ∨Q, (¬P ∨Q)⇔ (P ⇒Q) ∈ wff o(Vo)

� Definition 4.1.2 propositional formulae without connectives are called
atomic (or atoms) and complex otherwise.

©:Michael Kohlhase 42

Alternative Notations for Connectives

25

http://creativecommons.org/licenses/by-sa/2.5/

26 CHAPTER 4. PROPOSITIONAL LOGIC AND INFERENCE

Here Elsewhere
¬A ∼A A

A∧B A&B A •B A,B

A∨B A+B A |B A;B

A⇒B A→B A ⊃ B

A⇔B A↔B A≡B

F ⊥ 0

T > 1

©:Michael Kohlhase 43

Semantics (PL0)

� Definition 4.1.3 A modelM := 〈Do, I〉 for propositional logic consists of

� the Universe Do = {T,F}
� the Interpretation I that assigns values to essential connectives

� I(¬) : Do → Do;T 7→ F,F 7→ T

� I(∧) : Do×Do → Do; 〈α, β〉 7→ T, iff α = β = T

� Treat the other connectives as abbreviations, e.g. A∨B=̂ ¬ (¬A∧¬B) and
A⇒B=̂ ¬A∨B, and T =̂ = P ∨¬P (only need to treat ¬,∧ directly)

� A variable assignment ϕ : Vo → Do assigns values to propositional variables

� Definition 4.1.4 The value function Iϕ : wff o(Vo)→ Do assigns values to
formulae.

� Recursively defined, base case: Iϕ(P) = ϕ(P)

� Iϕ(¬A) = I(¬)(Iϕ(A))

� Iϕ(A∧B) = I(∧)(Iϕ(A), Iϕ(B))

©:Michael Kohlhase 44

We will now use the distribution of values of a Boolean expression under all (variable) assignments
to characterize them semantically. The intuition here is that we want to understand theorems,
examples, counterexamples, and inconsistencies in mathematics and everyday reasoning1.

The idea is to use the formal language of Boolean expressions as a model for mathematical
language. Of course, we cannot express all of mathematics as Boolean expressions, but we can at
least study the interplay of mathematical statements (which can be true or false) with the copula
“and”, “or” and “not”.

Semantic Properties of Propositional Formulae

� Definition 4.1.5 LetM := 〈U , I〉 be our model, then we call A

1Here (and elsewhere) we will use mathematics (and the language of mathematics) as a test tube for under-
standing reasoning, since mathematics has a long history of studying its own reasoning processes and assumptions.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

4.2. CALCULI FOR PROPOSITIONAL LOGIC 27

� true under ϕ (ϕ satisfies A) inM, iff Iϕ(A) = T (write
M |=ϕ AM |=ϕ A)

� false under ϕ (ϕ falsifies A) inM, iff Iϕ(A) = F (writeM 6|=ϕ A)

� satisfiable inM, iff Iϕ(A) = T for some assignment ϕ

� valid inM, iffM |=ϕ A for all assignments ϕ (writeM |= A)

� falsifiable inM, iff Iϕ(A) = F for some assignments ϕ

� unsatisfiable inM, iff Iϕ(A) = F for all assignments ϕ

� Example 4.1.6 x∨x is satisfiable and falsifiable.

� Example 4.1.7 x∨¬x is valid and x∧¬x is unsatisfiable.

� Notation 4.1.8 (alternative) Write [[A]]
M
ϕ for Iϕ(A), ifM = 〈U , I〉. (and

[[A]]
M, if A is ground, and [[A]], ifM is clear)

� Definition 4.1.9 (Entailment) (aka. logical consequence)

We say that A entails f (A |= B), iff Iϕ(B) = T for all ϕ with Iϕ(A) = T
(i.e. all assignments that make A true also make f true)

©:Michael Kohlhase 45

Let us now see how these semantic properties model mathematical practice.
In mathematics we are interested in assertions that are true in all circumstances. In our model

of mathematics, we use variable assignments to stand for circumstances. So we are interested
in Boolean expressions which are true under all variable assignments; we call them valid. We
often give examples (or show situations) which make a conjectured assertion false; we call such
examples counterexamples, and such assertions “falsifiable”. We also often give examples for certain
assertions to show that they can indeed be made true (which is not the same as being valid
yet); such assertions we call “satisfiable”. Finally, if an assertion cannot be made true in any
circumstances we call it “unsatisfiable”; such assertions naturally arise in mathematical practice in
the form of refutation proofs, where we show that an assertion (usually the negation of the theorem
we want to prove) leads to an obviously unsatisfiable conclusion, showing that the negation of the
theorem is unsatisfiable, and thus the theorem valid.

4.2 Calculi for Propositional Logic

Let us now turn to the syntactical counterpart of the entailment relation: derivability in a calculus.
Again, we take care to define the concepts at the general level of logical systems.
The intuition of a calculus is that it provides a set of syntactic rules that allow to reason by
considering the form of propositions alone. Such rules are called inference rules, and they can be
strung together to derivations — which can alternatively be viewed either as sequences of formulae
where all formulae are justified by prior formulae or as trees of inference rule applications. But we
can also define a calculus in the more general setting of logical systems as an arbitrary relation on
formulae with some general properties. That allows us to abstract away from the homomorphic
setup of logics and calculi and concentrate on the basics.

Derivation Systems and Inference Rules

� Definition 4.2.1 Let S := 〈L,K, |=〉 be a logical system, then we call a
relation `⊆P(L)×L a derivation relation for S, if it

http://creativecommons.org/licenses/by-sa/2.5/

28 CHAPTER 4. PROPOSITIONAL LOGIC AND INFERENCE

� is proof-reflexive, i.e. H ` A, if A ∈ H;
� is proof-transitive, i.e. if H ` A and H′ ∪{A} ` B, then H∪H′ ` B;

� monotonic (or admits weakening), i.e. H ` A andH⊆H′ implyH′ ` A.

� Definition 4.2.2 We call 〈L,K, |=,`〉 a formal system, iff S := 〈L,K, |=〉
is a logical system, and ` a derivation relation for S.

� Definition 4.2.3 Let L be a formal language, then an inference rule over
L

A1 · · · An

C
N

where A1, . . . ,An and C are formula schemata for L and N is a name.
The Ai are called assumptions, and C is called conclusion.

� Definition 4.2.4 An inference rule without assumptions is called an axiom
(schema).

� Definition 4.2.5 Let S := 〈L,K, |=〉 be a logical system, then we call a
set C of inference rules over L a calculus for S.

©:Michael Kohlhase 46

With formula schemata we mean representations of sets of formulae, we use boldface uppercase
letters as (meta)-variables for formulae, for instance the formula schema A⇒B represents the set
of formulae whose head is ⇒.

Derivations and Proofs

� Definition 4.2.6 Let S := 〈L,K, |=〉 be a logical system and C a calculus
for S, then a C-derivation of a formulaC ∈ L from a setH⊆L of hypotheses
(write H `C C) is a sequence A1, . . . ,Am of L-formulae, such that

� Am = C, (derivation culminates in C)

� for all 1≤i≤m, either Ai ∈ H, or (hypothesis)

� there is an inference rule
Al1 · · · Alk

Ai
in C with lj < i for all j≤k.(rule

application)

Observation: We can also see a derivation as a tree, where the Alj are the
children of the node Ak.

�� Example 4.2.7

In the propositional Hilbert calculus H0 we
have the derivation P `H0 Q⇒P : the se-
quence is P ⇒Q⇒P , P ,Q⇒P and the cor-
responding tree on the right.

K
P ⇒Q⇒P P

MP
Q⇒P

©:Michael Kohlhase 47

Inference rules are relations on formulae represented by formula schemata (where boldface, upper-
case letters are used as meta-variables for formulae). For instance, in Example 4.2.7 the inference

rule
A⇒B A

B
was applied in a situation, where the meta-variables A and B were instantiated

by the formulae P and Q⇒P .

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

4.2. CALCULI FOR PROPOSITIONAL LOGIC 29

As axioms do not have assumptions, they can be added to a derivation at any time. This is just
what we did with the axioms in Example 4.2.7.

Formal Systems

� Observation 4.2.8 Let S := 〈L,K, |=〉 be a logical system and C a calcu-
lus for S, then the C-derivation relation `D defined in Definition 4.2.6 is a
derivation relation in the sense of Definition 4.2.1.1

� Definition 4.2.9 We call 〈L,K, |=, C〉 a formal system, iff S := 〈L,K, |=〉
is a logical system, and C a calculus for S.

� Definition 4.2.10 A derivation ∅ `C A is called a proof of A and if one
exists (write `C A) then A is called a C-theorem.

� Definition 4.2.11 an inference rule I is called admissible in C, if the ex-
tension of C by I does not yield new theorems.

©:Michael Kohlhase 48

aEdNote: MK: this should become a view!

In general formulae can be used to represent facts about the world as propositions; they have a
semantics that is a mapping of formulae into the real world (propositions are mapped to truth
values.) We have seen two relations on formulae: the entailment relation and the deduction
relation. The first one is defined purely in terms of the semantics, the second one is given by a
calculus, i.e. purely syntactically. Is there any relation between these relations?

Soundness and Completeness

� Definition 4.2.12 Let S := 〈L,K, |=〉 be a logical system, then we call a
calculus C for S

� sound (or correct), iff H |= A, whenever H `C A, and

� complete, iff H `C A, whenever H |= A.

� Goal: ` A iff |=A (provability and validity coincide)

� To TRUTH through PROOF (CALCULEMUS [Leibniz ∼1680])

©:Michael Kohlhase 49

Ideally, both relations would be the same, then the calculus would allow us to infer all facts that
can be represented in the given formal language and that are true in the real world, and only
those. In other words, our representation and inference is faithful to the world.

A consequence of this is that we can rely on purely syntactical means to make predictions
about the world. Computers rely on formal representations of the world; if we want to solve a

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

30 CHAPTER 4. PROPOSITIONAL LOGIC AND INFERENCE

problem on our computer, we first represent it in the computer (as data structures, which can be
seen as a formal language) and do syntactic manipulations on these structures (a form of calculus).
Now, if the provability relation induced by the calculus and the validity relation coincide (this will
be quite difficult to establish in general), then the solutions of the program will be correct, and
we will find all possible ones.

Of course, the logics we have studied so far are very simple, and not able to express interesting
facts about the world, but we will study them as a simple example of the fundamental problem of
Computer Science: How do the formal representations correlate with the real world.

Within the world of logics, one can derive new propositions (the conclusions, here: Socrates is
mortal) from given ones (the premises, here: Every human is mortal and Sokrates is human).
Such derivations are proofs.

In particular, logics can describe the internal structure of real-life facts; e.g. individual things,
actions, properties. A famous example, which is in fact as old as it appears, is illustrated in the
slide below.

The miracle of logics

� Purely formal derivations are true in the real world!

©:Michael Kohlhase 50

If a logic is correct, the conclusions one can prove are true (= hold in the real world) whenever
the premises are true. This is a miraculous fact (think about it!)

4.3 Propositional Natural Deduction Calculus

We will now introduce the “natural deduction” calculus for propositional logic. The calculus was
created in order to model the natural mode of reasoning e.g. in everyday mathematical practice.
This calculus was intended as a counter-approach to the well-known Hilbert style calculi, which
were mainly used as theoretical devices for studying reasoning in principle, not for modeling
particular reasoning styles.

Rather than using a minimal set of inference rules, the natural deduction calculus provides
two/three inference rules for every connective and quantifier, one “introduction rule” (an infer-

http://creativecommons.org/licenses/by-sa/2.5/

4.3. PROPOSITIONAL NATURAL DEDUCTION CALCULUS 31

ence rule that derives a formula with that symbol at the head) and one “elimination rule” (an
inference rule that acts on a formula with this head and derives a set of subformulae).

Calculi: Natural Deduction (ND0; Gentzen [Gentzen:uudlsi35])

� Idea: ND0 tries to mimic human theorem proving behavior (non-minimal)

� Definition 4.3.1 The propositional natural deduction calculus ND0 has
rules for the introduction and elimination of connectives

Introduction Elimination Axiom
A B

A∧B
∧I A∧B

A
∧El

A∧B
B
∧Er

A∨¬A
TND

[A]1

B

A⇒B
⇒I1 A⇒B A

B
⇒E

� TND is used only in classical logic (otherwise constructive/intuitionistic)

©:Michael Kohlhase 51

The most characteristic rule in the natural deduction calculus is the ⇒I rule. It corresponds to
the mathematical way of proving an implication A⇒B: We assume that A is true and show B
from this assumption. When we can do this we discharge (get rid of) the assumption and conclude
A⇒B. This mode of reasoning is called hypothetical reasoning. Note that the local hypothesis
is discharged by the rule ⇒I , i.e. it cannot be used in any other part of the proof. As the ⇒I
rules may be nested, we decorate both the rule and the corresponding assumption with a marker
(here the number 1).
Let us now consider an example of hypothetical reasoning in action.

Natural Deduction: Examples

� Example 4.3.2 (Inference with Local Hypotheses)

[A∧B]1

∧Er
B

[A∧B]1

∧El
A
∧I

B∧A
⇒I1

A∧B⇒B∧A

[A]
1

[B]
2

A
⇒I2

B⇒A
⇒I1

A⇒B⇒A

©:Michael Kohlhase 52

Here we see reasoning with local hypotheses at work. In the left example, we assume the formula
A∧B and can use it in the proof until it is discharged by the rule ∧El on the bottom – therefore
we decorate the hypothesis and the rule by corresponding numbers (here the label “1”). Note the
assumption A∧B is local to the proof fragment delineated by the corresponding hypothesis and
the discharging rule, i.e. even if this proof is only a fragment of a larger proof, then we cannot use
its hypothesis anywhere else. Note also that we can use as many copies of the local hypothesis as
we need; they are all discharged at the same time.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

32 CHAPTER 4. PROPOSITIONAL LOGIC AND INFERENCE

In the right example we see that local hypotheses can be nested as long as hypotheses are kept
local. In particular, we may not use the hypothesis B after the⇒I2, e.g. to continue with a⇒E.
One of the nice things about the natural deduction calculus is that the deduction theorem is
almost trivial to prove. In a sense, the triviality of the deduction theorem is the central idea of
the calculus and the feature that makes it so natural.

A Deduction Theorem for ND0

� Theorem 4.3.3 H,A `ND0 B, iff H `ND0 A⇒B.

� Proof: We show the two directions separately

P.1 If H,A `ND0 B, then H `ND0 A⇒B by ⇒I , and
P.2 If H `ND0 A⇒B, then H,A `ND0 A⇒B by weakening and H,A `ND0

B by ⇒E.

©:Michael Kohlhase 53

Another characteristic of the natural deduction calculus is that it has inference rules (introduction
and elimination rules) for all connectives. So we extend the set of rules from Definition 5.2.1 for
disjunction, negation and falsity.

More Rules for Natural Deduction

� Definition 4.3.4 ND0 has the following additional rules for the remaining
connectives.

A

A∨B
∨Il

B

A∨B
∨Ir

A∨B

[A]
1

...
C

[B]
1

...
C

C
∨E1

[A]
1

...
F
¬A

¬I1 ¬¬A
A
¬E

¬A A

F
FI

F

A
FE

©:Michael Kohlhase 54

Natural Deduction in Sequent Calculus Formulation

� Idea: Explicit representation of hypotheses (lift calculus to judgments)

� Definition 4.3.5 A judgment is a meta-statement about the provability
of propositions

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

4.3. PROPOSITIONAL NATURAL DEDUCTION CALCULUS 33

� Definition 4.3.6 A sequent is a judgment of the form H ` A about the
provability of the formula A from the set H of hypotheses.

Write ` A for ∅ ` A.

� Idea: Reformulate ND rules so that they act on sequents

� Example 4.3.7 We give the sequent-style version of Example 5.2.2

Ax
A∧B ` A∧B

∧Er
A∧B ` B

Ax
A∧B ` A∧B

∧El
A∧B ` A

∧I
A∧B ` B∧A

⇒I
` A∧B⇒B∧A

Ax
A,B ` A

⇒I
A ` B⇒A

⇒I
` A⇒B⇒A

Note: Even though the antecedent of a sequent is written like a sequence, it is
actually a set. In particular, we can permute and duplicate members at will.

©:Michael Kohlhase 55

� Sequent-Style Rules for Natural Deduction

� Definition 4.3.8 The following inference rules make up the propositional
sequent-style natural deduction calculus ND0

` :

Γ,A ` A
Ax

Γ ` B

Γ,A ` B
weaken

Γ ` A∨¬A
TND

Γ ` A Γ ` B

Γ ` A∧B
∧I Γ ` A∧B

Γ ` A
∧El

Γ ` A∧B

Γ ` B
∧Er

Γ ` A

Γ ` A∨B
∨Il

Γ ` B

Γ ` A∨B
∨Ir

Γ ` A∨B Γ,A ` C Γ,B ` C

Γ ` C
∨E

Γ,A ` B

Γ ` A⇒B
⇒I

Γ ` A⇒B Γ ` A

Γ ` B
⇒E

Γ,A ` F
Γ ` ¬A

¬I Γ ` ¬¬A

A
¬E

Γ ` ¬A Γ ` A

Γ ` F
FI

Γ ` F
Γ ` A

FE

©:Michael Kohlhase 56

Linearized Notation for (Sequent-Style) ND Proofs

� Linearized notation for sequent-style ND proofs

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

34 CHAPTER 4. PROPOSITIONAL LOGIC AND INFERENCE

1. H1 ` A1 (J1)
2. H2 ` A2 (J2)
3. H3 ` A3 (R1, 2)

corresponds to
H1 ` A1 H2 ` A2

H3 ` A3
R

� Example 4.3.9 We show a linearized version of Example 5.2.7

hyp ` formula NDjust
1. 1 ` A∧B Ax
2. 1 ` B ∧Er1
3. 1 ` A ∧El1
4. 1 ` B∧A ∧I2, 1
5. ` A∧B⇒BA ⇒I4

hyp ` formula NDjust
1. 1 ` A Ax
2. 2 ` B Ax
3. 1, 2 ` A weaken 1, 2
4. 1 ` B⇒A ⇒I3
5. ` A⇒B⇒A ⇒I4

©:Michael Kohlhase 57

Each line in the table represents one inference step in the proof. It consists of line number (for
referencing), a formula for the asserted property, a justification via a ND rules (and the lines this
one is derived from), and finally a list of line numbers of proof steps that are local hypotheses in
effect for the current line.

http://creativecommons.org/licenses/by-sa/2.5/

Chapter 5

First Order Predicate Logic

5.1 First-Order Logic

First-order logic is the most widely used formal system for modelling knowledge and inference
processes. It strikes a very good bargain in the trade-off between expressivity and conceptual
and computational complexity. To many people first-order logic is “the logic”, i.e. the only logic
worth considering, its applications range from the foundations of mathematics to natural language
semantics.

First-Order Predicate Logic (PL1)

� Coverage: We can talk about (All humans are mortal)

� individual things and denote them by variables or constants

� properties of individuals, (e.g. being human or mortal)

� relations of individuals, (e.g. sibling_of relationship)

� functions on individuals, (e.g. the father_of function)

We can also state the existence of an individual with a certain property, or the
universality of a property.

� But we cannot state assertions like

� There is a surjective function from the natural numbers into the reals.

� First-Order Predicate Logic has many good properties (complete calculi,
compactness, unitary, linear unification,. . .)

� But too weak for formalizing: (at least directly)

� natural numbers, torsion groups, calculus, . . .

� generalized quantifiers (most, at least three, some,. . .)

©:Michael Kohlhase 58

5.1.1 First-Order Logic: Syntax and Semantics

The syntax and semantics of first-order logic is systematically organized in two distinct layers: one
for truth values (like in propositional logic) and one for individuals (the new, distinctive feature

35

http://creativecommons.org/licenses/by-sa/2.5/

36 CHAPTER 5. FIRST ORDER PREDICATE LOGIC

of first-order logic).
The first step of defining a formal language is to specify the alphabet, here the first-order signatures
and their components.

PL1 Syntax (Signature and Variables)

� Definition 5.1.1 First-order logic (PL1), is a formal logical system exten-
sively used in mathematics, philosophy, linguistics, and computer science.
It combines propositional logic with the ability to quantify over individuals.

� PL1 talks about two kinds of objects: (so we have two kinds of symbols)

� truth values; sometimes annotated by type o (like in PL0)

� individuals; sometimes annotated by type ι(numbers, foxes, Pokémon,. . .)

� Definition 5.1.2 A first-order signature consists of (all disjoint; k ∈ N)

� connectives: Σo = {T , F ,¬,∨,∧,⇒,⇔, . . .} (functions on truth values)

� function constants: Σfk = {f, g, h, . . .} (functions on individuals)

� predicate constants: Σpk = {p, q, r, . . .} (relations among inds.)

� (Skolem constants: Σskk = {fk1 , fk2 , . . .}) (witness constructors;
countably ∞)

� We take Σι to be all of these together: Σι := Σf ∪Σp ∪Σsk, where
Σ∗ :=

⋃
k∈N Σ∗k and define Σ := Σι ∪Σo.

� We assume a set of individual variables: Vι = {Xι, Yι, Z,X
1
ι, X

2} (countably
∞)

©:Michael Kohlhase 59

We make the deliberate, but non-standard design choice here to include Skolem constants into
the signature from the start. These are used in inference systems to give names to objects and
construct witnesses. Other than the fact that they are usually introduced by need, they work
exactly like regular constants, which makes the inclusion rather painless. As we can never predict
how many Skolem constants we are going to need, we give ourselves countably infinitely many for
every arity. Our supply of individual variables is countably infinite for the same reason.
The formulae of first-order logic is built up from the signature and variables as terms (to represent
individuals) and propositions (to represent propositions). The latter include the propositional
connectives, but also quantifiers.

PL1 Syntax (Formulae)

� Definition 5.1.3 Terms: A ∈ wff ι(Σι) (denote individuals: type ι)

� Vι⊆wff ι(Σι),

� if f ∈ Σfk and Ai ∈ wff ι(Σι) for i≤k, then f(A1, . . . ,Ak) ∈ wff ι(Σι).

� Definition 5.1.4 Propositions: A ∈ wff o(Σ)(denote truth values: type o)

� if p ∈ Σpk and Ai ∈ wff ι(Σι) for i≤k, then p(A1, . . . ,Ak) ∈ wff o(Σ),

http://creativecommons.org/licenses/by-sa/2.5/

5.1. FIRST-ORDER LOGIC 37

� if A,B ∈ wff o(Σ) and X ∈ Vι, then T ,A∧B,¬A,∀X A ∈ wff o(Σ).

� Definition 5.1.5 We define the connectives F ,∨,⇒,⇔ via the abbrevia-
tionsA∨B := ¬ (¬A∧¬B),A⇒B := ¬A∨B,A⇔B := (A⇒B)∧ (B⇒A),
and F := ¬T . We will use them like the primary connectives ∧ and ¬

� Definition 5.1.6 We use ∃X A as an abbreviation for ¬ (∀X ¬A).(exis-
tential quantifier)

� Definition 5.1.7 Call formulae without connectives or quantifiers atomic
else complex.

©:Michael Kohlhase 60

Note: that we only need e.g. conjunction, negation, and universal quantification, all other logical
constants can be defined from them (as we will see when we have fixed their interpretations).

Alternative Notations for Quantifiers

Here Elsewhere
∀x A

∧
x A (x) A

∃x A
∨
x A

©:Michael Kohlhase 61

The introduction of quantifiers to first-order logic brings a new phenomenon: variables that are
under the scope of a quantifiers will behave very differently from the ones that are not. Therefore
we build up a vocabulary that distinguishes the two.

Free and Bound Variables

� Definition 5.1.8 We call an occurrence of a variableX bound in a formula
A, iff it occurs in a sub-formula ∀X B of A. We call a variable occurrence
free otherwise.

For a formula A, we will use BVar(A) (and free(A)) for the set of bound
(free) variables of A, i.e. variables that have a free/bound occurrence in A.

� Definition 5.1.9 We define the set free(A) of free variables of a formula
A:

free(X) := {X}
free(f(A1, . . . ,An)) :=

⋃
1≤i≤n free(Ai)

free(p(A1, . . . ,An)) :=
⋃

1≤i≤n free(Ai)

free(¬A) := free(A)
free(A∧B) := free(A)∪ free(B)
free(∀X A) := free(A)\{X}

� Definition 5.1.10 We call a formula A closed or ground, iff free(A) = ∅.
We call a closed proposition a sentence, and denote the set of all ground
terms with cwff ι(Σι) and the set of sentences with cwff o(Σι).

� Axiom 5.1.11 Bound variables can be renamed, i.e. any subterm ∀X B
of a formula A can be replaced by A′ := (∀Y B′), where B′ arises from B

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

38 CHAPTER 5. FIRST ORDER PREDICATE LOGIC

by replacing all X ∈ free(B) with a new variable Y that does not occur in
A. We call A′ an alphabetical variant of A.

©:Michael Kohlhase 62

We will be mainly interested in (sets of) sentences – i.e. closed propositions – as the representations
of meaningful statements about individuals. Indeed, we will see below that free variables do
not gives us expressivity, since they behave like constants and could be replaced by them in all
situations, except the recursive definition of quantified formulae. Indeed in all situations where
variables occur freely, they have the character of meta-variables, i.e. syntactic placeholders that
can be instantiated with terms when needed in an inference calculus.
The semantics of first-order logic is a Tarski-style set-theoretic semantics where the atomic syn-
tactic entities are interpreted by mapping them into a well-understood structure, a first-order
universe that is just an arbitrary set.

Semantics of PL1 (Models)

� We fix the Universe Do = {T,F} of truth values.

� We assume an arbitrary universe Dι 6= ∅ of individuals (this choice is a
parameter to the semantics)

� Definition 5.1.12 An interpretation I assigns values to constants, e.g.

� I(¬) : Do → Do with T 7→ F, F 7→ T, and I(∧) = . . . (as in PL0)

� I : Σfk → Dιk → Dι (interpret function symbols as arbitrary functions)

� I : Σpk → P(Dιk) (interpret predicates as arbitrary relations)

� Definition 5.1.13 A variable assignment ϕ : Vι → Dι maps variables into
the universe.

� A first-order ModelM = 〈Dι, I〉 consists of a universeDι and an interpretationI.

©:Michael Kohlhase 63

We do not have to make the universe of truth values part of the model, since it is always the same;
we determine the model by choosing a universe and an interpretation function.
Given a first-order model, we can define the evaluation function as a homomorphism over the
construction of formulae.

Semantics of PL1 (Evaluation)

� Given a model 〈D, I〉, the value function Iϕ is recursively defined:(two parts:
terms & propositions)

� Iϕ : wff ι(Σι)→ Dι assigns values to terms.

� Iϕ(X) := ϕ(X) and
� Iϕ(f(A1, . . . ,Ak)) := I(f)(Iϕ(A1), . . . , Iϕ(Ak))

� Iϕ : wff o(Σ)→ Do assigns values to formulae:

� Iϕ(T) = I(T) = T,
� Iϕ(¬A) = I(¬)(Iϕ(A))

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

5.1. FIRST-ORDER LOGIC 39

� Iϕ(A∧B) = I(∧)(Iϕ(A), Iϕ(B)) (just as in PL0)
� Iϕ(p(A1, . . . ,Ak)) := T, iff 〈Iϕ(A1), . . ., Iϕ(Ak)〉 ∈ I(p)

� Iϕ(∀X A) := T, iff Iϕ,[a/X](A) = T for all a ∈ Dι.

©:Michael Kohlhase 64

The only new (and interesting) case in this definition is the quantifier case, there we define the value
of a quantified formula by the value of its scope – but with an extended variable assignment. Note
that by passing to the scope A of ∀x A, the occurrences of the variable x in A that were bound
in ∀x A become free and are amenable to evaluation by the variable assignment ψ := ϕ, [a/X].
Note that as an extension of ϕ, the assignment ψ supplies exactly the right value for x in A.
This variability of the variable assignment in the definition value function justifies the somewhat
complex setup of first-order evaluation, where we have the (static) interpretation function for the
symbols from the signature and the (dynamic) variable assignment for the variables.
Note furthermore, that the value Iϕ(∃x A) of ∃x A, which we have defined to be ¬ (∀x ¬A) is
true, iff it is not the case that Iϕ(∀x ¬A) = Iψ(¬A) = F for all a ∈ Dι and ψ := ϕ, [a/X]. This
is the case, iff Iψ(A) = T for some a ∈ Dι. So our definition of the existential quantifier yields the
appropriate semantics.

5.1.2 First-Order Substitutions

We will now turn our attention to substitutions, special formula-to-formula mappings that oper-
ationalize the intuition that (individual) variables stand for arbitrary terms.

Substitutions on Terms

� Intuition: If B is a term and X is a variable, then we denote the result of
systematically replacing all occurrences of X in a term A by B with [B/X](A).

� Problem: What about [Z/Y], [Y/X](X), is that Y or Z?

� Folklore: [Z/Y], [Y/X](X) = Y , but [Z/Y]([Y/X](X)) = Z of course.
(Parallel application)

� Definition 5.1.14 We call σ : wff ι(Σι)→ wff ι(Σι) a substitution, iff σ(f(A1, . . . ,An)) =
f(σ(A1), . . . , σ(An)) and the support supp(σ) := {X |σ(X) 6= X} of σ is
finite.

� Observation 5.1.15 Note that a substitution σ is determined by its values
on variables alone, thus we can write σ as σ|Vι = {[σ(X)/X] |X ∈ supp(σ)}.

� Notation 5.1.16 We denote the substitution σ with supp(σ) = {xi | 1≤i≤n}
and σ(xi) = Ai by [A1/x

1], . . ., [An/x
n].

� Example 5.1.17 [a/x], [f(b)/y], [a/z] instantiates g(x, y, h(z)) to g(a, f(b), h(a)).

� Definition 5.1.18 We call intro(σ) :=
⋃
X∈supp(σ) free(σ(X)) the set of

variables introduced by σ.

©:Michael Kohlhase 65

The extension of a substitution is an important operation, which you will run into from time
to time. Given a substitution σ, a variable x, and an expression A, σ, [A/x] extends σ with a

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

40 CHAPTER 5. FIRST ORDER PREDICATE LOGIC

new value for x. The intuition is that the values right of the comma overwrite the pairs in the
substitution on the left, which already has a value for x, even though the representation of σ may
not show it.

Substitution Extension

� Notation 5.1.19 (Substitution Extension) Let σ be a substitution, then
we denote with σ, [A/X] the function {(Y,A) ∈ σ |Y 6= X}∪ {(X,A)}.

(σ, [A/X] coincides with σ of X, and gives the result A there.)

� Note: If σ is a substitution, then σ, [A/X] is also a substitution.

� Definition 5.1.20 If σ is a substitution, then we call σ, [A/X] the extension
of σ by [A/X].

� We also need the dual operation: removing a variable from the support

� Definition 5.1.21 We can discharge a variable X from a substitution σ
by σ−X := σ, [X/X].

©:Michael Kohlhase 66

Note that the use of the comma notation for substitutions defined in Notation 5.1.16 is consis-
tent with substitution extension. We can view a substitution [a/x], [f(b)/y] as the extension of
the empty substitution (the identity function on variables) by [f(b)/y] and then by [a/x]. Note
furthermore, that substitution extension is not commutative in general.

For first-order substitutions we need to extend the substitutions defined on terms to act on propo-
sitions. This is technically more involved, since we have to take care of bound variables.

Substitutions on Propositions

� Problem: We want to extend substitutions to propositions, in particular to
quantified formulae: What is σ(∀X A)?

� Idea: σ should not instantiate bound variables. ([A/X](∀X B) = ∀A B′

ill-formed)

� Definition 5.1.22 σ(∀X A) := (∀X σ−X(A)).

� Problem: This can lead to variable capture: [f(X)/Y](∀X p(X,Y)) would
evaluate to ∀X p(X, f(X)), where the second occurrence of X is bound after
instantiation, whereas it was free before.

Solution: Rename away the bound variable X in ∀X p(X,Y) before applying
the substitution.

� Definition 5.1.23 (Capture-Avoiding Substitution Application) Let
σ be a substitution, A a formula, and A′ an alphabetical variant of A, such
that intro(σ)∩BVar(A) = ∅. Then we define σ(A) := σ(A′).

©:Michael Kohlhase 67

We now introduce a central tool for reasoning about the semantics of substitutions: the “substitution-
value Lemma”, which relates the process of instantiation to (semantic) evaluation. This result will

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

5.1. FIRST-ORDER LOGIC 41

be the motor of all soundness proofs on axioms and inference rules acting on variables via sub-
stitutions. In fact, any logic with variables and substitutions will have (to have) some form of
a substitution-value Lemma to get the meta-theory going, so it is usually the first target in any
development of such a logic.

We establish the substitution-value Lemma for first-order logic in two steps, first on terms,
where it is very simple, and then on propositions.

Substitution Value Lemma for Terms

� Lemma 5.1.24 Let A and B be terms, then Iϕ([B/X]A) = Iψ(A), where
ψ = ϕ, [Iϕ(B)/X].

� Proof: by induction on the depth of A:

P.1.1 depth=0:

P.1.1.1 Then A is a variable (say Y), or constant, so we have three cases

P.1.1.1.1 A = Y = X: then Iϕ([B/X](A)) = Iϕ([B/X](X)) = Iϕ(B) =
ψ(X) = Iψ(X) = Iψ(A).

P.1.1.1.2 A = Y 6= X: then Iϕ([B/X](A)) = Iϕ([B/X](Y)) = Iϕ(Y) =
ϕ(Y) = ψ(Y) = Iψ(Y) = Iψ(A).

P.1.1.1.3 A is a constant: analogous to the preceding case (Y 6= X)

P.1.1.2 This completes the base case (depth = 0).

P.1.2 depth> 0: then A = f(A1, . . . ,An) and we have

Iϕ([B/X](A)) = I(f)(Iϕ([B/X](A1)), . . . , Iϕ([B/X](An)))

= I(f)(Iψ(A1), . . . , Iψ(An))

= Iψ(A).

by inductive hypothesis

P.1.2.2 This completes the inductive case, and we have proven the assertion

©:Michael Kohlhase 68

Substitution Value Lemma for Propositions

� Lemma 5.1.25 Iϕ([B/X](A)) = Iψ(A), where ψ = ϕ, [Iϕ(B)/X].

� Proof: by induction on the number n of connectives and quantifiers in A

P.1.1 n = 0: then A is an atomic proposition, and we can argue like in the
inductive case of the substitution value lemma for terms.

P.1.2 n>0 and A = ¬B or A = C ◦D: Here we argue like in the inductive
case of the term lemma as well.

P.1.3 n>0 and A = ∀Y C where (wlog) X 6= Y :

P.1.3.1 then Iψ(A) = Iψ(∀Y C) = T, iff Iψ,[a/Y](C) = T for all a ∈ Dι.
P.1.3.2 But Iψ,[a/Y](C) = Iϕ,[a/Y]([B/X](C)) = T, by inductive hypothesis.

http://creativecommons.org/licenses/by-sa/2.5/

42 CHAPTER 5. FIRST ORDER PREDICATE LOGIC

P.1.3.3 So Iψ(A) = Iϕ(∀Y [B/X](C)) = Iϕ([B/X](∀Y C)) = Iϕ([B/X](A))

©:Michael Kohlhase 69

To understand the proof fully, you should think about where the wlog – it stands for without loss
of generality – comes from.

5.2 First-Order Calculi

In this section we will introduce two reasoning calculi for first-order logic, both were invented by
Gerhard Gentzen in the 1930’s and are very much related. The “natural deduction” calculus was
created in order to model the natural mode of reasoning e.g. in everyday mathematical practice.
This calculus was intended as a counter-approach to the well-known Hilbert-style calculi, which
were mainly used as theoretical devices for studying reasoning in principle, not for modeling
particular reasoning styles.

The “sequent calculus” was a rationalized version and extension of the natural deduction cal-
culus that makes certain meta-proofs simpler to push through2.EdN:2

Both calculi have a similar structure, which is motivated by the human-orientation: rather
than using a minimal set of inference rules, they provide two inference rules for every connective
and quantifier, one “introduction rule” (an inference rule that derives a formula with that symbol
at the head) and one “elimination rule” (an inference rule that acts on a formula with this head
and derives a set of subformulae).

This allows us to introduce the calculi in two stages, first for the propositional connectives and
then extend this to a calculus for first-order logic by adding rules for the quantifiers.

5.2.1 Propositional Natural Deduction Calculus

We will now introduce the “natural deduction” calculus for propositional logic. The calculus was
created in order to model the natural mode of reasoning e.g. in everyday mathematical practice.
This calculus was intended as a counter-approach to the well-known Hilbert style calculi, which
were mainly used as theoretical devices for studying reasoning in principle, not for modeling
particular reasoning styles.
Rather than using a minimal set of inference rules, the natural deduction calculus provides
two/three inference rules for every connective and quantifier, one “introduction rule” (an infer-
ence rule that derives a formula with that symbol at the head) and one “elimination rule” (an
inference rule that acts on a formula with this head and derives a set of subformulae).

Calculi: Natural Deduction (ND0; Gentzen [Gentzen:uudlsi35])

� Idea: ND0 tries to mimic human theorem proving behavior (non-minimal)

� Definition 5.2.1 The propositional natural deduction calculus ND0 has
rules for the introduction and elimination of connectives

2EdNote: say something about cut elimination/analytical calculi somewhere

http://creativecommons.org/licenses/by-sa/2.5/

5.2. FIRST-ORDER CALCULI 43

Introduction Elimination Axiom
A B

A∧B
∧I A∧B

A
∧El

A∧B
B
∧Er

A∨¬A
TND

[A]1

B

A⇒B
⇒I1 A⇒B A

B
⇒E

� TND is used only in classical logic (otherwise constructive/intuitionistic)

©:Michael Kohlhase 70

The most characteristic rule in the natural deduction calculus is the ⇒I rule. It corresponds to
the mathematical way of proving an implication A⇒B: We assume that A is true and show B
from this assumption. When we can do this we discharge (get rid of) the assumption and conclude
A⇒B. This mode of reasoning is called hypothetical reasoning. Note that the local hypothesis
is discharged by the rule ⇒I , i.e. it cannot be used in any other part of the proof. As the ⇒I
rules may be nested, we decorate both the rule and the corresponding assumption with a marker
(here the number 1).
Let us now consider an example of hypothetical reasoning in action.

Natural Deduction: Examples

� Example 5.2.2 (Inference with Local Hypotheses)

[A∧B]1

∧Er
B

[A∧B]1

∧El
A
∧I

B∧A
⇒I1

A∧B⇒B∧A

[A]
1

[B]
2

A
⇒I2

B⇒A
⇒I1

A⇒B⇒A

©:Michael Kohlhase 71

Here we see reasoning with local hypotheses at work. In the left example, we assume the formula
A∧B and can use it in the proof until it is discharged by the rule ∧El on the bottom – therefore
we decorate the hypothesis and the rule by corresponding numbers (here the label “1”). Note the
assumption A∧B is local to the proof fragment delineated by the corresponding hypothesis and
the discharging rule, i.e. even if this proof is only a fragment of a larger proof, then we cannot use
its hypothesis anywhere else. Note also that we can use as many copies of the local hypothesis as
we need; they are all discharged at the same time.
In the right example we see that local hypotheses can be nested as long as hypotheses are kept
local. In particular, we may not use the hypothesis B after the⇒I2, e.g. to continue with a⇒E.
One of the nice things about the natural deduction calculus is that the deduction theorem is
almost trivial to prove. In a sense, the triviality of the deduction theorem is the central idea of
the calculus and the feature that makes it so natural.

A Deduction Theorem for ND0

� Theorem 5.2.3 H,A `ND0 B, iff H `ND0 A⇒B.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

44 CHAPTER 5. FIRST ORDER PREDICATE LOGIC

� Proof: We show the two directions separately

P.1 If H,A `ND0 B, then H `ND0 A⇒B by ⇒I , and
P.2 If H `ND0 A⇒B, then H,A `ND0 A⇒B by weakening and H,A `ND0

B by ⇒E.

©:Michael Kohlhase 72

Another characteristic of the natural deduction calculus is that it has inference rules (introduction
and elimination rules) for all connectives. So we extend the set of rules from Definition 5.2.1 for
disjunction, negation and falsity.

More Rules for Natural Deduction

� Definition 5.2.4 ND0 has the following additional rules for the remaining
connectives.

A

A∨B
∨Il

B

A∨B
∨Ir

A∨B

[A]
1

...
C

[B]
1

...
C

C
∨E1

[A]
1

...
F
¬A

¬I1 ¬¬A
A
¬E

¬A A

F
FI

F

A
FE

©:Michael Kohlhase 73

Natural Deduction in Sequent Calculus Formulation

� Idea: Explicit representation of hypotheses (lift calculus to judgments)

� Definition 5.2.5 A judgment is a meta-statement about the provability
of propositions

� Definition 5.2.6 A sequent is a judgment of the form H ` A about the
provability of the formula A from the set H of hypotheses.

Write ` A for ∅ ` A.

� Idea: Reformulate ND rules so that they act on sequents

� Example 5.2.7 We give the sequent-style version of Example 5.2.2

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

5.2. FIRST-ORDER CALCULI 45

Ax
A∧B ` A∧B

∧Er
A∧B ` B

Ax
A∧B ` A∧B

∧El
A∧B ` A

∧I
A∧B ` B∧A

⇒I
` A∧B⇒B∧A

Ax
A,B ` A

⇒I
A ` B⇒A

⇒I
` A⇒B⇒A

Note: Even though the antecedent of a sequent is written like a sequence, it is
actually a set. In particular, we can permute and duplicate members at will.

©:Michael Kohlhase 74

� Sequent-Style Rules for Natural Deduction

� Definition 5.2.8 The following inference rules make up the propositional
sequent-style natural deduction calculus ND0

` :

Γ,A ` A
Ax

Γ ` B

Γ,A ` B
weaken

Γ ` A∨¬A
TND

Γ ` A Γ ` B

Γ ` A∧B
∧I Γ ` A∧B

Γ ` A
∧El

Γ ` A∧B

Γ ` B
∧Er

Γ ` A

Γ ` A∨B
∨Il

Γ ` B

Γ ` A∨B
∨Ir

Γ ` A∨B Γ,A ` C Γ,B ` C

Γ ` C
∨E

Γ,A ` B

Γ ` A⇒B
⇒I

Γ ` A⇒B Γ ` A

Γ ` B
⇒E

Γ,A ` F
Γ ` ¬A

¬I Γ ` ¬¬A

A
¬E

Γ ` ¬A Γ ` A

Γ ` F
FI

Γ ` F
Γ ` A

FE

©:Michael Kohlhase 75

Linearized Notation for (Sequent-Style) ND Proofs

� Linearized notation for sequent-style ND proofs
1. H1 ` A1 (J1)
2. H2 ` A2 (J2)
3. H3 ` A3 (R1, 2)

corresponds to
H1 ` A1 H2 ` A2

H3 ` A3
R

� Example 5.2.9 We show a linearized version of Example 5.2.7

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

46 CHAPTER 5. FIRST ORDER PREDICATE LOGIC

hyp ` formula NDjust
1. 1 ` A∧B Ax
2. 1 ` B ∧Er1
3. 1 ` A ∧El1
4. 1 ` B∧A ∧I2, 1
5. ` A∧B⇒BA ⇒I4

hyp ` formula NDjust
1. 1 ` A Ax
2. 2 ` B Ax
3. 1, 2 ` A weaken 1, 2
4. 1 ` B⇒A ⇒I3
5. ` A⇒B⇒A ⇒I4

©:Michael Kohlhase 76

Each line in the table represents one inference step in the proof. It consists of line number (for
referencing), a formula for the asserted property, a justification via a ND rules (and the lines this
one is derived from), and finally a list of line numbers of proof steps that are local hypotheses in
effect for the current line.
To obtain a first-order calculus, we have to extend ND0 with (introduction and elimination) rules
for the quantifiers.

First-Order Natural Deduction (ND1; Gentzen [Gentzen:uudlsi35])

� Rules for propositional connectives just as always

� Definition 5.2.10 (New Quantifier Rules) The first-order natural de-
duction calculus ND1 extends ND0 by the following four rules

A

∀X A
∀I∗ ∀X A

[B/X](A)
∀E

[B/X](A)

∃X A
∃I

∃X A

[[c/X](A)]
1

...
C

C
∃E1

∗ means that A does not depend on any hypothesis in which X is free.

©:Michael Kohlhase 77

The intuition behind the rule ∀I is that a formula A with a (free) variable X can be generalized
to ∀X A, if X stands for an arbitrary object, i.e. there are no restricting assumptions about
X. The ∀E rule is just a substitution rule that allows to instantiate arbitrary terms B for X in
A. The ∃I rule says if we have a witness B for X in A (i.e. a concrete term B that makes A
true), then we can existentially close A. The ∃E rule corresponds to the common mathematical
practice, where we give objects we know exist a new name c and continue the proof by reasoning
about this concrete object c. Anything we can prove from the assumption [c/X](A) we can prove
outright if ∃X A is known.

A Complex ND1 Example

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

5.2. FIRST-ORDER CALCULI 47

� Example 5.2.11 We prove ¬ (∀X P (X)) `ND1 ∃X ¬P (X).

¬ (∀X P (X))

[¬ (∃X ¬P (X))]1

[¬P (X)]2

∃I
∃X ¬P (X)

FI
F

¬I2

¬¬P (X)
¬E

P (X)
∀I

∀X P (X)
FI

F
¬I1

¬¬ (∃X ¬P (X))
¬E

∃X ¬P (X)

©:Michael Kohlhase 78

This is the classical formulation of the calculus of natural deduction. To prepare the things we
want to do later (and to get around the somewhat un-licensed extension by hypothetical reasoning
in the calculus), we will reformulate the calculus by lifting it to the “judgements level”. Instead
of postulating rules that make statements about the validity of propositions, we postulate rules
that make state about derivability. This move allows us to make the respective local hypotheses
in ND derivations into syntactic parts of the objects (we call them “sequents”) manipulated by the
inference rules.

First-Order Natural Deduction in Sequent Formulation

� Rules for propositional connectives just as always

� Definition 5.2.12 (New Quantifier Rules)

Γ ` A X 6∈ free(Γ)

Γ ` ∀X A
∀I Γ ` ∀X A

Γ ` [B/X](A)
∀E

Γ ` [B/X](A)

Γ ` ∃X A
∃I Γ ` ∃X A Γ, [c/X](A) ` C c ∈ Σsk0 new

Γ ` C
∃E

©:Michael Kohlhase 79

Natural Deduction with Equality

� Definition 5.2.13 (First-Order Logic with Equality) We extend PL1

with a new logical symbol for equality = ∈ Σp2 and fix its semantics to
I(=) := {(x, x) |x ∈ Dι}. We call the extended logic first-order logic with
equality (PL1

=)

� We now extend natural deduction as well.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

48 CHAPTER 5. FIRST ORDER PREDICATE LOGIC

� Definition 5.2.14 For the calculus of natural deduction with equality
ND1

= we add the following two equality rules to ND1 to deal with equality:

A = A
=I

A = B C [A]p
[B/p]C

=E

where C [A]p if the formula C has a subterm A at position p and [B/p]C
is the result of replacing that subterm with B.

� In many ways equivalence behaves like equality, so we will use the following
derived rules in ND1:

A⇔A
⇔I

A⇔B C [A]p
[B/p]C

⇔ =E

©:Michael Kohlhase 80

Again, we have two rules that follow the introduction/elimination pattern of natural deduction
calculi.
To make sure that we understand the constructions here, let us get back to the “replacement at
position” operation used in the equality rules.

Positions in Formulae

� Idea: Formulae are (naturally) trees, so we can use tree positions to talk about
subformulae

� Definition 5.2.15 A formula position p is a list of natural number that in
each node of a formula (tree) specifies into which child to descend. For a
formula A we denote the subformula at p with A|p.

� We will sometimes write a formula C as C [A]p to indicate that C the sub-
formula A at position p.

� Definition 5.2.16 Let p be a position, then [A/p]C is the formula ob-
tained from C by replacing the subformula at position p by A.

� Example 5.2.17 (Schematically)

A = C|p

p

C

B

p

[B/p]C

©:Michael Kohlhase 81

The operation of replacing a subformula at position p is quite different from e.g. (first-order)
substitutions:

• We are replacing subformulae with subformulae instead of instantiating variables with terms.

• substitutions replace all occurrences of a variable in a formula, whereas formula replacement
only affects the (one) subformula at position p.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

5.2. FIRST-ORDER CALCULI 49

We conclude this Subsection with an extended example: the proof of a classical mathematical result
in the natural deduction calculus with equality. This shows us that we can derive strong properties
about complex situations (here the real numbers; an uncountably infinite set of numbers).

ND1
= Example:

√
2 is Irrational

� We can do real Maths with ND1
=:

� Theorem 5.2.18
√

2 is irrational

Proof: We prove the assertion by contradiction

P.1 Assume that
√

2 is rational.

P.2 Then there are numbers p and q such that
√

2 = p / q.

P.3 So we know 2 q2 = p2.

P.4 But 2 q2 has an odd number of prime factors while p2 an even number.

P.5 This is a contradiction (since they are equal), so we have proven the as-
sertion

©:Michael Kohlhase 82

If we want to formalize this into ND1, we have to write down all the assertions in the proof steps
in PL1 syntax and come up with justifications for them in terms of ND1 inference rules. The next
two slides show such a proof, where we write ′n to denote that n is prime, use #(n) for the number
of prime factors of a number n, and write irr(r) if r is irrational.

ND1
= Example:

√
2 is Irrational (the Proof)

hyp formula NDjust
1 ∀n,m ¬ (2 n+ 1) = (2 m) lemma
2 ∀n,m #(nm) = m #(n) lemma
3 ∀n, p ′p⇒#(p n) = #(n) + 1 lemma
4 ∀x irr(x)⇔ (¬ (∃p, q x = p / q)) definition
5 irr(

√
2)⇔ (¬ (∃p, q

√
2 = p / q)) ∀E(4)

6 6 ¬ irr(
√

2) Ax

7 6 ¬¬ (∃p, q
√

2 = p / q) ⇔ =E(6, 5)

8 6 ∃p, q
√

2 = p / q ¬E(7)

9 6,9
√

2 = p / q Ax
10 6,9 2 q2 = p2 arith(9)
11 6,9 #(p2) = 2 #(p) ∀E2(2)

12 6,9 ′2⇒#(2 q2) = #(q2) + 1 ∀E2(1)

©:Michael Kohlhase 83

Lines 6 and 9 are local hypotheses for the proof (they only have an implicit counterpart in the
inference rules as defined above). Finally we have abbreviated the arithmetic simplification of line
9 with the justification “arith” to avoid having to formalize elementary arithmetic.

ND1
= Example:

√
2 is Irrational (the Proof continued)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

50 CHAPTER 5. FIRST ORDER PREDICATE LOGIC

13 ′2 lemma
14 6,9 #(2 q2) = #(q2) + 1 ⇒E(13, 12)

15 6,9 #(q2) = 2 #(q) ∀E2(2)
16 6,9 #(2 q2) = 2 #(q) + 1 =E(14, 15)
17 #(p2) = #(p2) =I
18 6,9 #(2 q2) = #(q2) =E(17, 10)
19 6.9 2 #(q) + 1 = #(p2) =E(18, 16)
20 6.9 2 #(q) + 1 = 2 #(p) =E(19, 11)

21 6.9 ¬ (2 #(q) + 1) = (2 #(p)) ∀E2(1)
22 6,9 F FI(20, 21)

23 6 F ∃E6(22)

24 ¬¬ irr(
√

2) ¬I6(23)

25 irr(
√

2) ¬E2(23)

©:Michael Kohlhase 84

We observe that the ND1 proof is much more detailed, and needs quite a few Lemmata about
to go through. Furthermore, we have added a definition of irrationality (and treat definitional
equality via the equality rules). Apart from these artefacts of formalization, the two representations
of proofs correspond to each other very directly.

http://creativecommons.org/licenses/by-sa/2.5/

Chapter 6

Higher-Order Logic and λ-Calculus

In this Chapter we set the stage for a deeper discussions of the logical foundations of mathematics
by introducing a particular higher-order logic, which gets around the limitations of first-order logic
— the restriction of quantification to individuals. This raises a couple of questions (paradoxes,
comprehension, completeness) that have been very influential in the development of the logical
systems we know today.

Therefore we use the discussion of higher-order logic as an introduction and motivation for the
λ-calculus, which answers most of these questions in a term-level, computation-friendly system.

The formal development of the simply typed λ-calculus and the establishment of its (meta-
logical) properties will be the body of work in this Chapter. Once we have that we can reconstruct
a clean version of higher-order logic by adding special provisions for propositions.

6.1 Higher-Order Predicate Logic

The main motivation for higher-order logic is to allow quantification over classes of objects that
are not individuals — because we want to use them as functions or predicates, i.e. apply them to
arguments in other parts of the formula.

Higher-Order Predicate Logic (PLΩ)

� Quantification over functions and Predicates: ∀P ∃F P (a)∨¬P (F (a))

� Comprehension: (Existence of Functions)
∃F ∀X FX = A e.g. f(x) = 3x2 + 5x− 7

� Extensionality: (Equality of functions and truth values)
∀F ∀G (∀X FX = GX)⇒F = G
∀P ∀Q (P ⇔Q)⇔P = Q

� Leibniz Equality: (Indiscernability)
A = B for ∀P PA⇒PB

©:Michael Kohlhase 85

Indeed, if we just remove the restriction on quantification we can write down many things that
are essential on everyday mathematics, but cannot be written down in first-order logic. But the
naive logic we have created (BTW, this is essentially the logic of Frege [Frege:b79]) is much too
expressive, it allows us to write down completely meaningless things as witnessed by Russell’s
paradox.

51

http://creativecommons.org/licenses/by-sa/2.5/

52 CHAPTER 6. HIGHER-ORDER LOGIC AND λ-CALCULUS

Problems with PLΩ

� Problem: Russell’s Antinomy: ∀Q M(Q)⇔ (¬Q(Q))

� the setM of all sets that do not contain themselves

� Question: IsM∈M? Answer: M∈M iffM 6∈ M.

� What has happened? the predicate Q has been applied to itself

� Solution for this course: Forbid self-applications by types!!

� ι, o (type of individuals, truth values), α→ β (function type)

� right associative bracketing: α→ β → γ abbreviates α→ (β → γ)

� vector notation: αn → β abbreviates α1 → . . .→ αn → β

� Well-typed formulae (prohibits paradoxes like ∀Q M(Q)⇔ (¬Q(Q)))

� Other solution: Give it a non-standard semantics (Domain-Theory [Scott])

©:Michael Kohlhase 86

The solution to this problem turns out to be relatively simple with the benefit of hindsight: we just
introduce a syntactic device that prevents us from writing down paradoxical formulae. This idea
was first introduced by Russell and Whitehead in their Principia Mathematica [WhiRus:pm10].

Their system of “ramified types” was later radically simplified by Alonzo Church to the form we
use here in [Church:afotst40]. One of the simplifications is the restriction to unary functions
that is made possible by the fact that we can re-interpret binary functions as unary ones using a
technique called “Currying” after the Logician Haskell Brooks Curry (∗1900, †1982). Of course we
can extend this to higher arities as well. So in theory we can consider n-ary functions as syntactic
sugar for suitable higher-order functions. The vector notation for types defined above supports
this intuition.

Types

� Types are semantic annotations for terms that prevent antinomies

� Definition 6.1.1 Given a set B T of base types, construct function types:
α → β is the type of functions with domain type α and range type β. We
call the closure T of B T under function types the set of types over B T .

� Definition 6.1.2 We will use ι for the type of individuals and o for the
type of truth values.

� The type constructor is used as a right-associative operator, i.e. we use
α→ β → γ as an abbreviation for α→ (β → γ)

� We will use a kind of vector notation for function types, abbreviating α1 → . . .→ αn →
β with αn → β.

©:Michael Kohlhase 87

Armed with a system of types, we can now define a typed higher-order logic, by insisting that all
formulae of this logic be well-typed. One advantage of typed logics is that the natural classes of

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

6.1. HIGHER-ORDER PREDICATE LOGIC 53

objects that have otherwise to be syntactically kept apart in the definition of the logic (e.g. the
term and proposition levels in first-order logic), can now be distinguished by their type, leading to
a much simpler exposition of the logic. Another advantage is that concepts like connectives that
were at the language level e.g. in PL0, can be formalized as constants in the signature, which again
makes the exposition of the logic more flexible and regular. We only have to treat the quantifiers
at the language level (for the moment).

Well-Typed Formulae (PLΩ)

� signature Σ =
⋃
α∈T Σα with

� connectives: ¬ ∈ Σo→o {∨,∧,⇒,⇔ . . .}⊆Σo→o→o

� variables VT =
⋃
α∈T Vα, such that every Vα countably infinite.

� well-typed formula e wff α(Σ,VT) of type α

� Vα ∪Σα⊆wff α(Σ,VT)

� If C ∈ wff α→β(Σ,VT) and A ∈ wff α(Σ,VT), then (CA) ∈ wff β(Σ,VT)

� If A ∈ wff o(Σ,VT), then (∀Xα A) ∈ wff o(Σ,VT)

� first-order terms have type ι, propositions the type o.

� there is no type annotation such that ∀Q M(Q)⇔ (¬Q(Q)) is well-typed.
Q needs type α as well as α→ o.

©:Michael Kohlhase 88

The semantics is similarly regular: We have universes for every type, and all functions are “typed
functions”, i.e. they respect the types of objects. Other than that, the setup is very similar to
what we already know.

Standard Semantics for PLΩ

� Definition 6.1.3 The universe of discourse (also carrier)

� arbitrary, non-empty set of individuals Dι
� fixed set of truth values Do = {T,F}
� function universes Dα→β = Dα → Dβ

� interpretation of constants: typed mapping I : Σ→ D (i.e. I(Σα)⊆Dα)

� Definition 6.1.4 We call a structure 〈D, I〉, where D is a universe and I
an interpretation of constants a standard model of PLΩ.

� variable assignment: typed mapping ϕ : VT → D

� Definition 6.1.5 value function: typed mapping Iϕ : wff T (Σ,VT)→ D

� Iϕ|VT = ϕ Iϕ|ΣT = I
� Iϕ(AB) = Iϕ(A)(Iϕ(B))

� Iϕ(∀Xα A) = T, iff Iϕ,[a/X](A) = T for all a ∈ Dα.

� Ao valid under ϕ, iff Iϕ(A) = T.

http://creativecommons.org/licenses/by-sa/2.5/

54 CHAPTER 6. HIGHER-ORDER LOGIC AND λ-CALCULUS

©:Michael Kohlhase 89

We now go through a couple of examples of what we can express in PLΩ, and that works out very
straightforwardly. For instance, we can express equality in PLΩ by Leibniz equality, and it has
the right meaning.

Equality

� “Leibniz equality” (Indiscernability) QαAαBα = ∀Pα→o PA⇔PB

� not that ∀Pα→o PA⇒PB (get the other direction by instantiating P with
Q, where QX⇔ (¬PX))

� Theorem 6.1.6 If M = 〈D, I〉 is a standard model, then Iϕ(Qα) is the
identity relation on Dα.

� Notation 6.1.7 We write A = B for QAB (A and B are equal, iff there
is no property P that can tell them apart.)

� Proof:

P.1 Iϕ(QAB) = Iϕ(∀P PA⇒PB) = T, iff
Iϕ,[r/P](PA⇒PB) = T for all r ∈ Dα→o.

P.2 For A = B we have Iϕ,[r/P](PA) = r(Iϕ(A)) = F or Iϕ,[r/P](PB) =
r(Iϕ(B)) = T.

P.3 Thus Iϕ(QAB) = T.

P.4 Let Iϕ(A) 6= Iϕ(B) and r = {Iϕ(A)}
P.5 so r(Iϕ(A)) = T and r(Iϕ(B)) = F

P.6 Iϕ(QAB) = F, as Iϕ,[r/P](PA⇒PB) = F, since Iϕ,[r/P](PA) =
r(Iϕ(A)) = T and Iϕ,[r/P](PB) = r(Iϕ(B)) = F.

©:Michael Kohlhase 90

Another example are the Peano Axioms for the natural numbers, though we omit the proofs of
adequacy of the axiomatization here.

Example: Peano Axioms for the Natural Numbers

� Σ = {[N : ι→ o], [0 : ι], [s : ι→ ι]}

� N0 (0 is a natural number)

� ∀Xι NX⇒N(sX) (the successor of a natural number is natural)

� ¬ (∃Xι NX ∧ sX = 0) (0 has no predecessor)

� ∀Xι ∀Yι (sX = sY)⇒X = Y (the successor function is injective)

� ∀Pι→o P0⇒ (∀Xι NX⇒PX⇒P (sX))⇒ (∀Yι NY ⇒P (Y))
induction axiom: all properties P , that hold of 0, and with every n for its
successor s(n), hold on all N

©:Michael Kohlhase 91

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

6.1. HIGHER-ORDER PREDICATE LOGIC 55

Finally, we show the expressivity of PLΩ by formalizing a version of Cantor’s theorem.

Expressive Formalism for Mathematics

� Example 6.1.8 (Cantor’s Theorem) The cardinality of a set is smaller
than that of its power set.

� smaller-card(M,N) := ¬ (∃F surjective(F,M,N))

� surjective(F,M,N) := (∀X ∈M ∃Y ∈ N FY = X)

� Example 6.1.9 (Simplified Formalization) ¬ (∃Fι→ι→ι ∀Gι→ι ∃Jι FJ = G)

� Standard-Benchmark for higher-order theorem provers

� can be proven by Tps and Leo (see below)

©:Michael Kohlhase 92

The simplified formulation of Cantor’s theorem in Example 6.1.9 uses the universe of type ι for
the set S and universe of type ι→ ι for the power set rather than quantifying over S explicitly.
The next concern is to find a calculus for PLΩ.
We start out with the simplest one we can imagine, a Hilbert-style calculus that has been adapted
to higher-order logic by letting the inference rules range over PLΩ formulae and insisting that
substitutions are well-typed.

Hilbert-Calculus

� Definition 6.1.10 (HΩ Axioms) � ∀Po, Qo P ⇒Q⇒P

� ∀Po, Qo, Ro (P ⇒Q⇒R)⇒ (P ⇒Q)⇒P ⇒R

� ∀Po, Qo (¬P ⇒¬Q)⇒P ⇒Q

� Definition 6.1.11 (HΩ Inference rules)

Ao⇒Bo A

B

∀Xα A

[B/Xα](A)

A

∀Xα A

X 6∈ free(A) ∀Xα A∧B
A∧ (∀Xα B)

� Theorem 6.1.12 Sound, wrt. standard semantics

� Also Complete?

©:Michael Kohlhase 93

Not surprisingly, HΩ is sound, but it shows big problems with completeness. For instance, if we
turn to a proof of Cantor’s theorem via the well-known diagonal sequence argument, we will have
to construct the diagonal sequence as a function of type ι → ι, but up to now, we cannot in
HΩ. Unlike mathematical practice, which silently assumes that all functions we can write down
in closed form exists, in logic, we have to have an axiom that guarantees (the existence of) such
a function: the comprehension axioms.

Hilbert-Calculus HΩ (continued)

� valid sentences that are not HΩ-theorems:

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

56 CHAPTER 6. HIGHER-ORDER LOGIC AND λ-CALCULUS

� Cantor’s Theorem:
¬ (∃Fι→ι→ι ∀Gι→ι (∀Kι (NK)⇒N(GK))⇒ (∃Jι (NJ)∧FJ = G))
(There is no surjective mapping from N into the set N → ,N of natural
number sequences)

� proof attempt fails at the subgoal ∃Gι→ι ∀Xι GX = s(fXX)

� Comprehension ∃Fα→β ∀Xα FX = Aβ (for every variable Xα and every
term A ∈ wff β(Σ,VT))

� extensionality
Extαβ ∀Fα→β ∀Gα→β (∀Xα FX = GX)⇒F = G
Exto ∀Fo ∀Go (F ⇔G)⇔F = G

� correct! complete? cannot be!! [Göd31]

©:Michael Kohlhase 94

Actually it turns out that we need more axioms to prove elementary facts about mathematics:
the extensionality axioms. But even with those, the calculus cannot be complete, even though
empirically it proves all mathematical facts we are interested in.

Way Out: Henkin-Semantics

� Gödel’s incompleteness theorem only holds for standard semantics

� find generalization that admits complete calculi:

� Idea: generalize so that the carrier only contains those functions that are
requested by the comprehension axioms.

� Theorem 6.1.13 (Henkin 1950) HΩ is complete wrt. this semantics.

� Proof Sketch: more models ; less valid sentences (these are HΩ-theorems)

� Henkin-models induce sensible measure of completeness for higher-order logic.

©:Michael Kohlhase 95

6.2 A better Form of Comprehension and Extensionality

Actually, there is another problem with PLΩ: The comprehension axioms are computationally
very problematic. First, we observe that they are equality axioms, and thus are needed to show
that two objects of PLΩ are equal. Second we observe that there are countably infinitely many of
them (they are parametric in the term A, the type α and the variable name), which makes dealing
with them difficult in practice. Finally, axioms with both existential and universal quantifiers are
always difficul to reason with.
Therefore we would like to have a formulation of higher-order logic without comprehension axioms.
In the next slide we take a close look at the comprehension axioms and transform them into a
form without quantifiers, which will turn out useful.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

6.3. SIMPLY TYPED λ-CALCULUS 57

From Comprehension to β-Conversion

� ∃Fα→β ∀Xα FX = Aβ for arbitrary variable Xα and term A ∈ wff β(Σ,VT)
(for each term A and each variable X there is a function f ∈ Dα→β , with
f(ϕ(X)) = Iϕ(A))

� schematic in α, β, Xα and Aβ , very inconvenient for deduction

� Transformation in HΩ

� ∃Fα→β ∀Xα FX = Aβ

� ∀Xα (λXα A)X = Aβ (∃E)
Call the function F whose existence is guaranteed “(λXα A)”

� (λXα A)B = [B/X]Aβ (∀E), in particular for B ∈ wff α(Σ,VT).

� Definition 6.2.1 Axiom of β-equality: (λXα A)B = [B/X](Aβ)

� new formulae (λ-calculus [Church 1940])

©:Michael Kohlhase 96

In a similar way we can treat (functional) extensionality.

From Extensionality to η-Conversion

� Definition 6.2.2 Extensionality Axiom: ∀Fα→β ∀Gα→β (∀Xα FX = GX)⇒F = G

� Idea: Maybe we can get by with a simplified equality schema here as well.

� Definition 6.2.3 We say thatA and λXα AX are η-equal, (writeAα→β =η

(λXα AX), if), iff X 6∈ free(A).

� Theorem 6.2.4 η-equality and Extensionality are equivalent

� Proof: We show that η-equality is special case of extensionality; the converse
entailment is trivial

P.1 Let ∀Xα AX = BX, thus AX = BX with ∀E
P.2 λXα AX = λXα BX, therefore A = B with η

P.3 Hence ∀Fα→β ∀Gα→β (∀Xα FX = GX)⇒F = G by twice ∀I.

� Axiom of truth values: ∀Fo ∀Go (F ⇔G)⇔F = G unsolved.

©:Michael Kohlhase 97

The price to pay is that we need to pay for getting rid of the comprehension and extensionality
axioms is that we need a logic that systematically includes the λ-generated names we used in the
transformation as (generic) witnesses for the existential quantifier. Alonzo Church did just that
with his “simply typed λ-calculus” which we will introduce next.

6.3 Simply Typed λ-Calculus

In this section we will present a logic that can deal with functions – the simply typed λ-calculus.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

58 CHAPTER 6. HIGHER-ORDER LOGIC AND λ-CALCULUS

It is a typed logic, so everything we write down is typed (even if we do not always write the types
down).

Simply typed λ-Calculus (Syntax)

� Signature Σ =
⋃
α∈T Σα (includes countably infinite Signatures ΣSkα of Skolem

contants).

� VT =
⋃
α∈T Vα, such that Vα are countably infinite

� Definition 6.3.1 We call the set wff α(Σ,VT) defined by the rules

� Vα ∪Σα⊆wff α(Σ,VT)

� If C ∈ wff α→β(Σ,VT) and A ∈ wff α(Σ,VT), then (CA) ∈ wff β(Σ,VT)

� If A ∈ wff α(Σ,VT), then (λXβ A) ∈ wff β→α(Σ,VT)

the set of well-typed formula e of type α over the signature Σ and use
wff T (Σ,VT) :=

⋃
α∈T wff α(Σ,VT) for the set of all well-typed formulae.

� Definition 6.3.2 We will call all occurrences of the variable X in A bound
in λX A. Variables that are not bound in B are called free in B.

� Substitutions are well-typed, i.e. σ(Xα) ∈ wff α(Σ,VT) and capture-avoiding.

� Definition 6.3.3 (Simply Typed λ-Calculus) The simply typed λ-calculus
Λ→ over a signature Σ has the formulae wff T (Σ,VT) (they are called λ-
terms) and the following equalities:

� α conversion: (λX A) =α (λY [Y/X](A))

� β conversion: (λX A)B =β [B/X](A)

� η conversion: (λX AX) =η A

©:Michael Kohlhase 98

The intuitions about functional structure of λ-terms and about free and bound variables are
encoded into three transformation rules Λ→: The first rule (α-conversion) just says that we can
rename bound variables as we like. β-conversion codifies the intuition behind function application
by replacing bound variables with argument. The equality relation induced by the η-reduction is
a special case of the extensionality principle for functions (f = g iff f(a) = g(a) for all possible
arguments a): If we apply both sides of the transformation to the same argument – say B and
then we arrive at the right hand side, since (λXα AX)B =β AB.
We will use a set of bracket elision rules that make the syntax of Λ→ more palatable. This makes Λ→

expressions look much more like regular mathematical notation, but hides the internal structure.
Readers should make sure that they can always reconstruct the brackets to make sense of the
syntactic notions below.

Simply typed λ-Calculus (Notations)

� Notation 6.3.4 (Application is left-associative) We abbreviate (((FA1)A2). . .)An

with FA1. . .An eliding the brackets and further with FAn in a kind of vec-
tor notation.

� A stands for a left bracket whose partner is as far right as is consistent with

http://creativecommons.org/licenses/by-sa/2.5/

6.3. SIMPLY TYPED λ-CALCULUS 59

existing brackets; i.e. ABC abbreviates A(BC).

� Notation 6.3.5 (Abstraction is right-associative) We abbreviate λX1 λX2 · · ·λXn A · · ·
with λX1. . .Xn A eliding brackets, and further to λXn A in a kind of vec-
tor notation.

� Notation 6.3.6 (Outer brackets) Finally, we allow ourselves to elide
outer brackets where they can be inferred.

©:Michael Kohlhase 99

Intuitively, λX A is the function f , such that f(B) will yield A, where all occurrences of the
formal parameter X are replaced by B.3 EdN:3
In this presentation of the simply typed λ-calculus we build-in α-equality and use capture-avoiding
substitutions directly. A clean introduction would followed the steps in ?sec.fol? by introducing
substitutions with a substitutability condition like the one in ?fo-substitutable.def?, then estab-
lishing the soundness of α conversion, and only then postulating defining capture-avoiding substi-
tution application as in Definition 5.1.23. The development for Λ→ is directly parallel to the one
for PL1, so we leave it as an exercise to the reader and turn to the computational properties of
the λ-calculus.
Computationally, the λ-calculus obtains much of its power from the fact that two of its three
equalities can be oriented into a reduction system. Intuitively, we only use the equalities in one
direction, i.e. in one that makes the terms “simpler”. If this terminates (and is confluent), then
we can establish equality of two λ-terms by reducing them to normal forms and comparing them
structurally. This gives us a decision procedure for equality. Indeed, we have these properties in
Λ→ as we will see below.

αβη-Equality (Overview)

� reduction with
{
β : (λX A)B→β [B/X](A)
η : (λX AX)→ηA

under =α :
λX A

=α

λY [Y/X](A)

� Theorem 6.3.7 βη-reduction is well-typed, terminating and confluent in the
presence of =α-conversion.

� Definition 6.3.8 (Normal Form) We call a λ-term A a normal form (in
a reduction system E), iff no rule (from E) can be applied to A.

� Corollary 6.3.9 βη-reduction yields unique normal forms (up to α-equivalence).

©:Michael Kohlhase 100

We will now introduce some terminology to be able to talk about λ-terms and their parts.

Syntactic Parts of λ-Terms

� Definition 6.3.10 (Parts of λ-Terms) We can always write a λ-term in
the form T = λX1. . .Xk HA1 . . .An, where H is not an application. We
call

� H the syntactic head of T

3EdNote: rationalize the semantic macros for syntax!

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

60 CHAPTER 6. HIGHER-ORDER LOGIC AND λ-CALCULUS

� HA1. . .An the matrix of T, and

� λX1. . .Xk (or the sequence X1, . . . , Xk) the binder of T

� Definition 6.3.11 Head Reduction always has a unique β redex

(λXn (λY A)B1. . .Bn)→h
β (λXn [B1/Y](A)B2. . .Bn)

� Theorem 6.3.12 The syntactic heads of β-normal forms are constant or vari-
ables.

� Definition 6.3.13 Let A be a λ-term, then the syntactic head of the β-
normal form of A is called the head symbol of A and written as head(A).
We call a λ-term a j-projection, iff its head is the jth bound variable.

� Definition 6.3.14 We call a λ-term a η-long form, iff its matrix has base
type.

� Definition 6.3.15 η-Expansion makes η-long forms

η
[
λX

1. . .Xn A
]

:= λX
1. . .Xn

λY
1. . .Y m AY 1. . .Y m

� Definition 6.3.16 Long βη-normal form, iff it is β-normal and η-long.

©:Michael Kohlhase 101

η long forms are structurally convenient since for them, the structure of the term is isomorphic
to the structure of its type (argument types correspond to binders): if we have a term A of type
αn → β in η-long form, where β ∈ B T , then A must be of the form λXα

n B, where B has type
β. Furthermore, the set of η-long forms is closed under β-equality, which allows us to treat the
two equality theories of Λ→ separately and thus reduce argumentational complexity.
Excursion: We will discuss the properties of propositional tableaux in ?stlc-computational? and
the semantics in ?stlc-semantics?. Together they show that the simply typed λ calculus is an
adequate logic for modeling (the equality) of functions and their applications.

6.4 Simply Typed λ-Calculus via Inference Systems

Now, we will look at the simply typed λ-calculus again, but this time, we will present it as an
inference system for well-typedness jugdments. This more modern way of developing type theories
is known to scale better to new concepts.

Simply Typed λ-Calculus as an Inference System: Terms

� Idea: Develop the λ-calculus in two steps

� A context-free grammar for “raw λ-terms” (for the structure)

� Identify the well-typed λ-terms in that (cook them until well-typed)

� Definition 6.4.1 A grammar for the raw terms of the simply typed λ-
calculus:

α :== c | α→ α
Σ :== · | Σ, [c : type] | Σ, [c : α]
Γ :== · | Γ, [x : α]
A :== c | X | A1A2 | λXα A

http://creativecommons.org/licenses/by-sa/2.5/

6.4. SIMPLY TYPED λ-CALCULUS VIA INFERENCE SYSTEMS 61

� Then: Define all the operations that are possible at the “raw terms level”, e.g.
realize that signatures and contexts are partial functions to types.

©:Michael Kohlhase 102

Simply Typed λ-Calculus as an Inference System: Judgments

� Definition 6.4.2 Judgments make statements about complex properties
of the syntactic entities defined by the grammar.

� Definition 6.4.3 Judgments for the simply typed λ-calculus

` Σ : sig Σ is a well-formed signature
Σ ` α : type α is a well-formed type given the type assumptions in Σ
Σ ` Γ : ctx Γ is a well-formed context given the type assumptions in Σ
Γ `Σ A : α A has type α given the type assumptions in Σ and Γ

©:Michael Kohlhase 103

Simply Typed λ-Calculus as an Inference System: Rules

� A ∈ wff α(Σ,VT), iff Γ `Σ A : α derivable in

Σ ` Γ : ctx Γ(X) = α

Γ `Σ X : α
wff:var

Σ ` Γ : ctx Σ(c) = α

Γ `Σ c : α
wff:const

Γ `Σ A : β → α Γ `Σ B : β

Γ `Σ AB : α
wff:app

Γ, [X : β] `Σ A : α

Γ `Σ λXβ A : β → α
wff:abs

Oops: this looks surprisingly like a natural deduction calculus. (; Curry
Howard Isomorphism)

�� To be complete, we need rules for well-formed signatures, types and contexts

` · : sig
sig:empty

` Σ : sig

` Σ, [α : type] : sig
sig:type

` Σ : sig Σ ` α : type

` Σ, [c : α] : sig
sig:const

Σ ` α : type Σ ` β : type

Σ ` α→ β : type
typ:fn

` Σ : sig Σ(α) = type

Σ ` α : type
typ:start

` Σ : sig

Σ ` · : ctx
ctx:empty

Σ ` Γ : ctx Σ ` α : type

Σ ` Γ, [X : α] : ctx
ctx:var

©:Michael Kohlhase 104

Example: A Well-Formed Signature

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

62 CHAPTER 6. HIGHER-ORDER LOGIC AND λ-CALCULUS

� Let Σ := [α : type], [f : α→ α→ α], then Σ is a well-formed signature, since
we have derivations A and B

` · : sig
sig:type

` [α : type] : sig

A [α : type](α) = type
typ:start

[α : type] ` α : type

and with these we can construct the derivation C

A

B
B B

typ:fn
[α : type] ` α→ α : type

typ:fn
[α : type] ` α→ α→ α : type

sig:const
` Σ : sig

©:Michael Kohlhase 105

Example: A Well-Formed λ-Term

� using Σ from above, we can show that Γ := [X : α] is a well-formed context:

C ctx:empty
Σ ` · : ctx

C Σ(α) = type
typ:start

Σ ` α : type
ctx:var

Σ ` Γ : ctx

We call this derivation G and use it to show that

� λXα fXX is well-typed and has type α→ α in Σ. This is witnessed by the
type derivation

C Σ(f) = α→ α→ α
wff:const

Γ `Σ f : α→ α→ α

G
wff:var

Γ `Σ X : α
wff:app

Γ `Σ fX : α→ α

G
wff:var

Γ `Σ X : α
wff:app

Γ `Σ fXX : α
wff:abs

· `Σ λXα fXX : α→ α

©:Michael Kohlhase 106

β η-Equality by Inference Rules: One-Step Reduction

� One-step Reduction (+ ∈ {α, β, η})

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

6.5. SIMPLE TYPE THEORY 63

Γ `Σ A : α Γ `Σ B : β

Γ `Σ (λX A)B→1
β [B/X](A)

wffβ:top

Γ `Σ A : β → α X 6∈ dom(Γ)

Γ `Σ λX AX →1
η A

wffη:top

Γ `Σ A→1
+ B Γ `Σ AC : α

Γ `Σ AC→1
+ BC

tr:appfn

Γ `Σ A→1
+ B Γ `Σ CA : α

Γ `Σ CA→1
+ CB

tr:apparg

Γ, [X : α] `Σ A→1
+ B

Γ `Σ λX A→1
+ λX B

tr:abs

©:Michael Kohlhase 107

β η-Equality by Inference Rules: Multi-Step Reduction

� Multi-Step-Reduction (+ ∈ {α, β, η})

Γ `Σ A→1
+ B

Γ `Σ A→∗+ B
ms:start

Γ `Σ A : α

Γ `Σ A→∗+ A
ms:ref

Γ `Σ A→∗+ B Γ `Σ B→∗+ C

Γ `Σ A→∗+ C
ms:trans

� Congruence Relation
Γ `Σ A→∗+ B

Γ `Σ A =+ B
eq:start

Γ `Σ A =+ B

Γ `Σ B =+ A
eq:sym

Γ `Σ A =+ B Γ `Σ B =+ C

Γ `Σ A =+ C
eq:trans

©:Michael Kohlhase 108

6.5 Simple Type Theory

In this Section we will revisit the higher-order predicate logic introduced in Section 6.1 with the
base given by the simply typed λ-calculus. It turns out that we can define a higher-order logic by
just introducing a type of propositions in the λ-calculus and extending the signatures by logical
constants (connectives and quantifiers).

Higher-Order Logic Revisited

� Idea: introduce special base type o for truth values

� Definition 6.5.1 We call a Σ-algebra 〈D, I〉 a Henkin model, iff Do =
{T,F}.

� Ao valid under ϕ, iff Iϕ(A) = T

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

64 CHAPTER 6. HIGHER-ORDER LOGIC AND λ-CALCULUS

� connectives in Σ: ¬ ∈ Σo→o and {∨,∧,⇒,⇔, . . .}⊆Σo→o→o (with the
intuitive I-values)

� quantifiers: Πα ∈ Σ(α→o)→o with I(Πα)(p) = T, iff p(a) = T for all a ∈ Dα.

� quantified formula e: ∀Xα A stands for Πα(λXα A)

� Iϕ(∀Xα A) = I(Πα)(Iϕ(λXα A)) = T, iff Iϕ,[a/X](A) = T for all a ∈ Dα

� looks like PLΩ (Call any such system HOL→)

©:Michael Kohlhase 109

There is a more elegant way to treat quantifiers in HOL→. It builds on the realization that
the λ-abstraction is the only variable binding operator we need, quantifiers are then modeled
as second-order logical constants. Note that we do not have to change the syntax of HOL→ to
introduce quantifiers; only the “lexicon”, i.e. the set of logical constants. Since Πα and Σα are
logical constants, we need to fix their semantics.

Higher-Order Abstract Syntax

� Idea: In HOL→, we already have variable binder: λ, use that to treat quan-
tification.

� Definition 6.5.2 We assume logical constants Πα and Σα of type (α→ o)→
o.

Regain quantifiers as abbreviations:

(∀Xα A) :=
α

Π(λXα A) (∃Xα A) :=
α

Σ(λXα A)

� Definition 6.5.3 We must fix the semantics of logical constants:

1. I(Πα)(p) = T, iff p(a) = T for all a ∈ Dα (i.e. if p is the universal set)

2. I(Σα)(p) = T, iff p(a) = T for some a ∈ Dα (i.e. iff p is non-empty)

� With this, we re-obtain the semantics we have given for quantifiers above:

Iϕ(∀Xι A) = Iϕ(
ι

Π(λXι A)) = I(
ι

Π)(Iϕ(λXι A)) = T

iff Iϕ(λXι A)(a) = I[a/X],ϕ(A) = T for all a ∈ Dα

©:Michael Kohlhase 110

But there is another alternative of introducing higher-order logic due to Peter Andrews. Instead
of using connectives and quantifiers as primitives and defining equality from them via the Leibniz
indiscernability principle, we use equality as a primitive logical constant and define everything else
from it.

Alternative: HOL=

� only one logical constant qα ∈ Σα→α→o with I(qα)(a, b) = T, iff a = b.

� Definitions (D) and Notations (N)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

6.5. SIMPLE TYPE THEORY 65

N Aα = Bα for qαAαBα

D T for qo = qo

D F for (λXo T) = (λXo Xo)
D Πα for q(α→o)(λXα T)
N ∀Xα A for Πα(λXα A)
D ∧ for λXo λYo (λGo→o→o GT T) = (λGo→o→o GXY)
N A∧B for ∧AoBo

D ⇒ for λXo λYo X = X ∧Y
N A⇒B for ⇒AoBo

D ¬ for qoF
D ∨ for λXo λYo ¬ (¬X ∧¬Y)
N A∨B for ∨AoBo

D ∃Xα Ao for ¬ (∀Xα ¬A)
N Aα 6= Bα for ¬ (qαAαBα)

� yield the intuitive meanings for connectives and quantifiers.

©:Michael Kohlhase 111

In a way, this development of higher-order logic is more foundational, especially in the context
of Henkin semantics. There, Theorem 6.1.6 does not hold (see [Andrews:gmae72] for details).
Indeed the proof of Theorem 6.1.6 needs the existence of “singleton sets”, which can be shown
to be equivalent to the existence of the identity relation. In other words, Leibniz equality only
denotes the equality relation, if we have an equality relation in the models. However, the only way
of enforcing this (remember that Henkin models only guarantee functions that can be explicitly
written down as λ-terms) is to add a logical constant for equality to the signature.
We will conclude this section with a discussion on two additional “logical constants” (constants
with a fixed meaning) that are needed to make any progress in mathematics. Just like above,
adding them to the logic guarantees the existence of certain functions in Henkin models. The
most important one is the description operator that allows us to make definite descriptions like
“the largest prime number” or “the solution to the differential equation f ′ = f .

More Axioms for HOL→

� Definition 6.5.4 unary conditional w ∈ Σo→α→α
wAoBα means: “If A, then B”

� Definition 6.5.5 binary conditional if ∈ Σo→α→α→α
ifAoBαCα means: “if A, then B else C”.

� Definition 6.5.6 description operator ι ∈ Σ(α→o)→α
if P is a singleton set, then ιPα→o is the element in P,

� Definition 6.5.7 choice operator γ ∈ Σ(α→o)→α
if P is non-empty, then γPα→o is an arbitrary element from P

� Definition 6.5.8 (Axioms for these Operators)

� unary conditional: ∀ϕo ∀Xα ϕ⇒wϕX = X

� conditional: ∀ϕo ∀Xα, Yα, Zα (ϕ⇒ ifϕXY = X)∧ (¬ϕ⇒ ifϕZX = X)

� description ∀Pα→o (∃1Xα PX)⇒ (∀Yα PY ⇒ ιP = Y)

� choice ∀Pα→o (∃Xα PX)⇒ (∀Yα PY ⇒ γP = Y)

http://creativecommons.org/licenses/by-sa/2.5/

66 CHAPTER 6. HIGHER-ORDER LOGIC AND λ-CALCULUS

Idea: These operators ensure a much larger supply of functions in Henkin
models.

©:Michael Kohlhase 112

�More on the Description Operator

� ι is a weak form of the choice operator (only works on singleton sets)

� Alternative Axiom of Descriptions: ∀Xα ια(=X) = X.

� use that I[a/X](=X) = {a}
� we only need this for base types 6= o

� Define ιo := =(λXo X) or ιo := λGo→o GT or ιo := =(=T)

� ια→β := λH(α→β)→oXα ιβ(λZβ (∃Fα→β (HF)∧ (FX) = Z))

©:Michael Kohlhase 113

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Chapter 7

Axiomatic Set Theory (ZFC)

Sets are one of the most useful structures of mathematics. They can be used to form the basis
for representing functions, ordering relations, groups, vector spaces, etc. In fact, they can be used
as a foundation for all of mathematics as we know it. But sets are also among the most difficult
structures to get right: we have already seen that “naive” conceptions of sets lead to inconsistencies
that shake the foundations of mathematics.

There have been many attempts to resolve this unfortunate situation and come up a “foundation
of mathematics”: an inconsistency-free “foundational logic” and “foundational theory” on which all
of mathematics can be built.

In this Chapter we will present the best-known such attempt – and an attempt it must remain
as we will see – the axiomatic set theory by Zermelo and Fraenkel (ZFC), a set of axioms for
first-order logic that carefully manage set comprehension to avoid introducing the “set of all sets”
which leads us into the paradoxes.
Recommended Reading: The – historical and personal – background of the material covered in
this Chapter is delightfully covered in [DoxPapPap:lest09].

7.1 Naive Set Theory

We will first recap “naive set theory” and try to formalize it in first-order logic to get a feeling for
the problems involved and possible solutions.

(Naive) Set Theory [Cantor:bbtm95; Cantor:bbtm97]

� Definition 7.1.1 A set is “everything that can form a unity in the face of
God”. (Georg Cantor (∗1845, †1918))

� Example 7.1.2 (determination by elementhood relation ∈)

� “the set that consists of the number 7 and the prime divisors of 510510”

� {7, c}, {1, 2, 3, 4, 5n, . . .}, {x |x is an integer}, {X |P(X)}

Questions (extensional/intensional):

� � If c = 7, is {7, c} = {7}?
� Is {X |X ∈ N, X 6= X} = {X |X ∈ N, X2 < 0}?
� yes ; extensional ; no ; intensional ;

67

68 CHAPTER 7. AXIOMATIC SET THEORY (ZFC)

©:Michael Kohlhase 114

Georg Cantor was the first to systematically develop a “set theory”, introducing the notion of
a “power set” and distinguishing finite from infinite sets – and the latter into denumerable and
uncountable sets, basing notions of cardinality on bijections.

In doing so, he set a firm foundation for mathematics1, even if that needed more work as was
later discovered.
Now let us see whether we can write down the “theory of sets” as envisioned by Georg Cantor in
first-order logic – which at the time Cantor published his seminal articles was just being invented by
Gottlob Frege. The main idea here is to consider sets as individuals, and only introduce a single
predicate – apart from equality which we consider given by the logic: the binary elementhood
predicate.

(Naive) Set Theory: Formalization

� Idea: Use first-order logic (with equality)

� Signature: (sets are individuals) Σ := {∈}
� Extensionality: ∀M,N M = N⇔ (∀X (X ∈M)⇔ (X ∈ N))

� Comprehension: (all sets that we can write down exist)
∃M ∀X (X ∈M)⇔E (schematic in expression E)

� Idea: Define set theoretic concepts from ∈ as signature extensions

Union ∪ ∈ Σf2 ∀M,N,X (X ∈ (M ∪N))⇔ (X ∈M ∨X ∈ N)

Intersection ∩ ∈ Σf2 ∀M,N,X (X ∈ (M ∩N))⇔ (X ∈M ∧X ∈ N)

Empty Set ∅ ∈ Σf0 ¬ (∃X X ∈ ∅)

and so on.
...

...

©:Michael Kohlhase 115

The central here is the comprehension axiom that states that any set we can describe by writing
down a frist-order formula E – which usually contains the variable X – must exist. This is a direct
implementation of Cantor’s intuition that sets can be “ . . . everything that forms a unity . . . ”. The
usual set-theoretic operators ∪, ∩, . . . can be defined by suitable axioms.
This formalization will now allow to understand the problems of set theory: with great power
comes great responsibility!

(Naive) Set Theory (Problems)

� Example 7.1.3 (The set of all set and friends)
{M |M set}, {M |M set,M ∈M}, . . .

� Definition 7.1.4 (Problem) Russell’s Antinomy:

M := {M |M set,M 6∈M}

the setM of all sets that do not contain themselves.

1David Hilbert famously exclaimed “No one shall expel us from the Paradise that Cantor has created” in
[Hilbert:udu26]

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

7.2. ZFC AXIOMS 69

� Question: IsM∈M? Answer: M∈M iffM 6∈ M.

� What happened?: We have written something down that makes problems

� Solutions: Define away the problems:

weaker comprehension axiomatic set theory now
weaker properties higher-order logic done
non-standard semantics domain theory [Scott] another time

©:Michael Kohlhase 116

The culprit for the paradox is the comprehension axiom that guarantees the existence of the “set of
all sets” from which we can then separate out Russell’s set. Multiple ways have been proposed to
get around the paradoxes induced by the “set of all sets”. We have already seen one: (typed) higher-
order logic simply does not allow to write down MM which is higher-order (sets-as-predicates)
way of representing set theory.

The way we are going to exploren now is to remove the general set comprehension axiom we
had introduced above and replace it by more selective ones that only introduce sets that are known
to be safe.

7.2 ZFC Axioms

We will now introduce the set theory axioms due to Zermelo and Fraenkel.
We write down a first-order theory of sets by declaring axioms in first-order logic (with equality).
The basic idea is that all individuals are sets, and we can therefore get by with a single binary
predicate: ∈ for elementhood.

Axiomatic Set Theory in First-Order Logic

� Idea: Avoid paradoxes by cautious (axiomatic) Comprehension.([Zermelo08])

Ex ∃X X = X There is a set
Ext ∀M,N M = N⇔ (∀X (X ∈M)⇔ (X ∈ N)) Extensionality
Sep ∀N ∃M ∀Z (Z ∈M)⇔ (Z ∈ N ∧E)

From a given set N we can separate all members described by
expression E.

� Theorem 7.2.1 ∀M,N (M ⊆N)∧ (N ⊆M)⇒M = N

� Theorem 7.2.2 M is uniquely determined in Sep

� Proof Sketch: With Ext

� Notation 7.2.3 Write {X ∈ N | E} for the set M guaranteed by Sep.

©:Michael Kohlhase 117

Note that we do not have a general comprehension axiom, which allows the construction of sets
from expressions, but the separation axiom Sep, which – given a set – allows to “separate out” a
subset. As this axiom is insufficient to providing any sets at all, we guarantee that there is one in
Ex to make the theory less boring.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

70 CHAPTER 7. AXIOMATIC SET THEORY (ZFC)

Before we want to develop the theory further, let us fix the success criteria we have for our
foundation.

Quality Control

� Question: Is ZFC good? (make this more precise under various views)

foundational: Is ZFC sufficient for mathematics?

adequate: is the ZFC notion of sets adequate?

formal: is ZFC consistent?

ambitious: Is ZFC complete?

pragmatic: Is the formalization convenient?

computational: does the formalization yield computation-guiding structure?

� Questions like these help us determine the quality of a foundational system or
theory.

©:Michael Kohlhase 118

The question about consistency is the most important, so we will address it first. Note that the
absence of paradoxes is a big question, which we cannot really answer now. But we can convince
ourselves that the “set of all sets” cannot exist.

How about Russel’s Antinomy?

� Theorem 7.2.4 There is no universal set

� Proof:

P.1 For each set M , there is a set MR := {X ∈M | X 6∈ X} by Sep.

P.2 show ∀M MR 6∈M
P.3 If MR ∈M , then MR 6∈MR, (also if MR 6∈M)

P.4 thus MR 6∈M or MR ∈MR.

� to get the paradox we would have to separate from the universal set A, to get
AR.

� Great, then we can continue developing our set theory!

©:Michael Kohlhase 119

Somewhat surprisingly, we can just use Russell’s construction to our advantage here. So back to
the other questions.

Are there Interesting Sets at all?

� yes, e.g. the empty set

� let M be a set (there is one by Ex; we do not need to know what it is)

� define ∅ := {X ∈M | X 6= X}
� ∅ is empty and uniquely determined by Ext.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

7.2. ZFC AXIOMS 71

� Definition 7.2.5 Intersections: M ∩N := {X ∈M | X ∈ N}

Question: How about M ∪N? or N?

�� Answer: we do not know they exist yet! (need more axioms)
Hint: consider Dι = {∅, {∅}, {{∅}}, . . .}

©:Michael Kohlhase 120

So we have identified at least interesting set, the empty set. Unfortunately, the existence of the
intersection operator is no big help, if we can only intersect with the empty set. In general, this is
a consequence of the fact that Sep – in contrast to the comprehension axiom we have abolished
– only allows to make sets “smaller”. If we want to make sets “larger”, we will need more axioms
that guarantee these larger sets. The design contribution of axiomatic set theories is to find a
balance between “too large” – and therefore paradoxical – and “not large enough” – and therefore
inadequate.
Before we have a look at the remaining axioms of ZFC, we digress to a very influential experiment
in developing mathematics based on set theory.
“Nicolas Bourbaki” is the collective pseudonym under which a group of (mainly French) 20th-
century mathematicians, with the aim of reformulating mathematics on an extremely abstract
and formal but self-contained basis, wrote a series of books beginning in 1935. With the goal of
grounding all of mathematics on set theory, the group strove for rigour and generality.

Is Set theory enough? ; Nicolas Bourbaki

� Is it possible to develop all of Mathematics from set theory?
; N. Bourbaki: Éléments de Mathématiques/ (there is only one mathematics)

� Original Goal: A modern textbook on calculus.

� Result: 40 volumes in nine books from 1939 to 1968

Set Theory [Bourbaki:tos68] Functions of one real variable Commutative Algebra
Algebra [Bourbaki:a74] Integration Lie Theory
Topology [Bourbaki:gt89] Topological Vector Spaces Spectral Theory

� Contents:

� starting from set theory all of the fields above are developed.

� All proofs are carried out, no references to other books.

©:Michael Kohlhase 121

Even though Bourbaki has dropped in favor in modern mathematics, the universality of axiomatic
set theory is generally acknowledged in mathematics and their rigorous style of exposition has
influenced modern branches of mathematics.
The first two axioms we add guarantee the unions of sets, either of finitely many – ∪Ax only
guarantees the union of two sets – but can be iterated. And an axiom for unions of arbitrary
families of sets, which gives us the infinite case. Note that once we have the ability to make finite
sets,

⋃
Ax makes ∪Ax redundant, but minimality of the axiom system is not a concern for us

currently.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

72 CHAPTER 7. AXIOMATIC SET THEORY (ZFC)

The Axioms for Set Union

� Axiom 7.2.6 (Small Union Axiom (∪Ax)) For any setsM andN there
is a set W , that contains all elements of M and N .
∀M,N ∃W ∀X (X ∈M ∨X ∈ N)⇒X ∈W

� Definition 7.2.7 M ∪N := {X ∈W | X ∈M ∨X ∈ N}(exists by Sep.)

� Axiom 7.2.8 (large Union Axiom (
⋃
Ax)) For each set M there is a

set W , that contains the elements of all elements of M .
∀M ∃W ∀X,Y Y ∈M⇒X ∈ Y ⇒X ∈W

� Definition 7.2.9
⋃

(M) := {X | ∃Y Y ∈M ∧X ∈ Y } (exists by Sep.)

� This also gives us intersections over families (without another axiom):

� Definition 7.2.10⋂
(M) := {Z ∈

⋃
(M) | ∀X X ∈M⇒Z ∈ X}

©:Michael Kohlhase 122

In Definition 7.2.10 we note that
⋃
Ax also guarantees us intersection over families. Note that we

could not have defined that in analogy to Definition 7.2.5 since we have no set to separate out of.
Intuitively we could just choose one element N from M and define⋂

(M) := {Z ∈ N | ∀X X ∈M⇒Z ∈ X}

But for choice from an infinite set we need another axiom still.
The power set axiom is one of the most useful axioms in ZFC. It allows to construct finite
sets.

The Power Set Axiom

� Axiom 7.2.11 (Power Set Axiom) For each setM there is a setW that
contains all subsets of M : ℘Ax := (∀M ∃W ∀X (X⊆M)⇒X ∈W)

� Definition 7.2.12 Power Set: P(M) := {X |X⊆M} (Exists by Sep.)

� Definition 7.2.13 singleton set: {X} := {Y ∈ P(X) | X = Y }

� Axiom 7.2.14 (Pair Set (Axiom)) (is often assumed instead of ∪Ax)

Given sets M and N there is a set W that contains exactly the elements
M and N : ∀M,N ∃W ∀X (X ∈W)⇔ ((X = N)∨ (X = M))

� Is derivable from ℘Ax: {M,N} := {M} ∪ {N}.

� Definition 7.2.15 (Finite Sets) {X,Y, Z} := {X,Y } ∪ {Z}. . .

� Theorem 7.2.16 ∀Z,X1, . . ., Xn (Z ∈ {X1, . . ., Xn})⇔ (Z = X1 ∨ . . .∨Z = Xn)

©:Michael Kohlhase 123

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

7.2. ZFC AXIOMS 73

The Foundation Axiom

� Axiom 7.2.17 (The foundation Axiom (Fund)) Every non-empty set
has a ∈-minimal element,.
∀X (X 6= ∅)⇒ (∃Y Y ∈ X ∧¬ (∃Z Z ∈ X ∧Z ∈ Y))

� Theorem 7.2.18 There are no infinite descendig chains . . . , X2, X1, X0 and
thus no cycles . . . X1, X0, . . . , X2, X1, X0.

� Definition 7.2.19 Fund guarantees a hierarchical structure (von Neu-
mann Hierarchy) of the universe. 0. order: ∅, 1. order: {∅}, 2. order:
all subsets of 1. order, · · ·

� Note: In contrast to a Russel-style typing where sets of differernt type are
distinct, this categorization is cummulative

©:Michael Kohlhase 124

The Infinity Axiom

� We already know a lot of sets

� z.B. ∅, {∅}, {{∅}}, . . . (iterated singleton set)

� or ∅, {∅}, {∅, {∅}}, . . . (iterated pair set)

But: Does the set N of all members of these sequences?

� Axiom 7.2.20 (Infinity Axiom (∞Ax)) There is a set that contains ∅
and with each X also X ∪ {X}.
∃M ∅ ∈M ∧ (∀Z Z ∈M⇒ (Z ∪ {Z}) ∈M).

� Definition 7.2.21 M is inductive: Ind(M) := ∅ ∈M ∧ (∀Z Z ∈M⇒ (Z ∪ {Z}) ∈M).

� Definition 7.2.22 Set of the Inductive Set: ω := {Z | ∀W Ind(W)⇒Z ∈W}

� Theorem 7.2.23 ω is inductive.

©:Michael Kohlhase 125

The Replacement Axiom

� We have ω, ℘(M), but not {ω, ℘(ω), ℘(℘(ω)), . . .}.

� Axiom 7.2.24 (The Replacement Axiom (Schema): Rep) If for each
X there is exactly one Y with property P(X,Y), then for each set U , that
contains these X, there is a set V that contains the respective Y .
(∀X ∃1 Y P(X,Y))⇒ (∀U ∃V ∀X,Y X ∈ U ∧P(X,Y)⇒Y ∈ V)

� Intuitively: A right-unique propertyP induces a replacement ∀U ∃V V = {F (X) |X ∈ U}.

� Example 7.2.25 Let U = {1, {2, 3}} and P(X⇔Y)⇔ (∀Z Z ∈ Y ⇒Z = X),
then the induced function F maps each X to the set V that contains X,

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

74 CHAPTER 7. AXIOMATIC SET THEORY (ZFC)

i.e. V = {{X} |X ∈ U = {{1}, {{2, 3}}}}.

©:Michael Kohlhase 126

Zermelo Fraenkel Set Theory

� Definition 7.2.26 (Zermelo Fraenkel Set Theory) We call the first-
order theory given by the axioms below Zermelo/Fraenkel set theory and
denote it by ZF.

Ex ∃X X = X
Ext ∀M,N M = N⇔ (∀X (X ∈M)⇔ (X ∈ N))
Sep ∀N ∃M ∀Z (Z ∈M)⇔ (Z ∈ N ∧E)
∪Ax ∀M,N ∃W ∀X (X ∈M ∨X ∈ N)⇒X ∈W⋃
Ax ∀M ∃W ∀X,Y Y ∈M⇒X ∈ Y ⇒X ∈W

℘Ax ∀M ∃W ∀X (X⊆M)⇒X ∈W
∞Ax ∃M ∅ ∈M ∧ (∀Z Z ∈M⇒ (Z ∪ {Z}) ∈M)
Rep (∀X ∃1 Y P(X,Y))⇒ (∀U ∃V ∀X,Y X ∈ U ∧P(X,Y)⇒Y ∈ V)
Fund ∀X (X 6= ∅)⇒ (∃Y Y ∈ X ∧¬ (∃Z Z ∈ X ∧Z ∈ Y))

©:Michael Kohlhase 127

The Axiom of Choice

� Axiom 7.2.27 (The axiom of Choice :AC) For each setX of non-empty,
pairwise disjoint subsets there is a set that contains exactly one element of
each element of X.
∀X,Y, Z Y ∈ X ∧Z ∈ X ⇒ (Y 6= ∅)∧ (Y = Z ∨Y ∩Z = ∅)⇒ ∃U ∀V V ∈ X⇒ (∃W U ∩V = {W})

� This axiom assumes the existence of a set of representatives, even if we cannot
give a construction for it. ; we can “pick out” an arbitrary element.

� Reasons for AC:

� Neither ZF ` AC, nor ZF ` ¬AC

� So it does not harm?

� Definition 7.2.28 (Zermelo Fraenkel Set Theory with Choice) The
theory ZF together withAC is called ZFC with choice and denoted as ZFC.

©:Michael Kohlhase 128

7.3 ZFC Applications

Limits of ZFC

� Conjecture 7.3.1 (Cantor’s Continuum Hypothesis (CH)) There is

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

7.3. ZFC APPLICATIONS 75

no set whose cardinality is strictly between that of integers and real numbers.

� Theorem 7.3.2 If ZFC is consistent, then neither CH nor ¬CH can be
derived. (CH is independent of ZFC)

� The axiomatzation of ZFC does not suffice

� There are other examples like this.

©:Michael Kohlhase 129

Ordered Pairs

� Empirically: In ZFC we can define all mathematical concepts.

� For Instance: We would like a set that behaves like an odererd pair

� Definition 7.3.3 Define 〈X,Y 〉 := {{X}, {X,Y }}

� Lemma 7.3.4 〈X,Y 〉 = 〈U, V 〉⇒X = U ∧Y = V

� Lemma 7.3.5 U ∈ X ∧V ∈ Y ⇒〈U, V 〉 ∈ P(P(X ∪ Y))

� Definition 7.3.6 left projection: πl(X) =

{
U if ∃V X = 〈U, V 〉
∅ if X is no pair

� Definition 7.3.7 right projection πr analogous.

©:Michael Kohlhase 130

Relations

� All mathematical objects are represented by sets in ZFC, in particular relations

� Definition 7.3.8 The Cartesian produkt of X and Y
X ×Y := {Z ∈ P(P(X ∪ Y)) | Z is ordered pair with πl(Z) ∈ X ∧πr(Z) ∈ Y }
A relation is a subset of a Cartesian product.

� Definition 7.3.9 The domain and codomain of a function are defined as
usual

Dom(X) =

{
{πl(Z) |Z ∈ X} if if X is a relation;

∅ else

coDom(X) =

{
{πr(Z) |Z ∈ X} if if X is a relation;

∅ else

but they (as first-order functions) must be total, so we (arbitrarily) extend
them by the empty set for non-relations

©:Michael Kohlhase 131

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

76 CHAPTER 7. AXIOMATIC SET THEORY (ZFC)

Functions

� Definition 7.3.10 A function f from X to Y is a right-unique relation
with Dom(f) = X and coDom(f) = Y ; write f : X → Y .

� Definition 7.3.11 function application: f(X) =

{
Y if f function and 〈X,Y 〉 ∈ f
∅ else

©:Michael Kohlhase 132

Domain Language vs. Representation Language

� Note: Relations and functions are objects of set theory, ZFC ∈ is a predicate
of the representation language

� predicates and functions of the representation language can be expressed in
the object language:

� ∀A ∃R R = {〈U, V 〉 |U ∈ A∧V ∈ A∧ p(U ∧V)} for all predicates p.
� ∀A ∃F F = {〈X, f(X)〉 |X ∈ A} for all functions f .

� As the natural numbers can be epxressed in set theory, the logical calculus can
be expressed by Gödelization.

©:Michael Kohlhase 133

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Chapter 8

Category Theory

Acknowledgement: The presentation of category theory below has been inspired by Daniele Turi’s
Category Lecture Notes [Turi:ctln01].

8.1 Introduction

Common Structure to Mathematical Objects

� Example 8.1.1 Let A, B, and C be sets, and f : A → B and g : B → C
be functions. Then g ◦ f is a function and we have functions IdA and IdB
with IdA ◦ f = f = f ◦ IdB .

� Example 8.1.2 Let A, B, and C be topological spaces, and f : A → B
and g : B → C be continuouss functions. Then g ◦ f , IdA, and IdB are
continuous and IdA ◦ f = f = f ◦ IdB .

� Example 8.1.3 Let A, B, and C be posets, and f : A→ B and g : B → C
be monotonics functions. Then g ◦ f , IdA, and IdB are monotonic and
IdA ◦ f = f = f ◦ IdB .

� Example 8.1.4 Let A, B, and C be monoids, and f : A→ B and g : B →
C be homomorphisms. Then g ◦ f , IdA, and IdB are homomorphisms and
IdA ◦ f = f = f ◦ IdB .

©:Michael Kohlhase 134

Categories: The Definition

� Definition 8.1.5 A category C consists of:

1. A collection ob(C) of things called objects.

2. A collection hom(C) of things called arrows (also morphisms or maps).

3. For each arrow f , two objects which are called domain of f ; dom(f)
and codomain; cod(f). We write f : dom(f) → cod(f) and call two
arrows f and g composable, iff dom(f) = cod(g).

4. An associative operation ◦ called composition assigning to each pair

77

http://creativecommons.org/licenses/by-sa/2.5/

78 CHAPTER 8. CATEGORY THEORY

(f, g) of composable arrows another arrow; g ◦ f such that dom(g ◦ f) =
dom(f) and cod(g ◦ f) = cod(g), i.e. g ◦ f : dom(f)→ cod(g).

5. for every object A an arrow 1A : A→ A called the identity morphism,
such that for any f : A→ B we have f ◦ 1A = f = 1B ◦ f .

� Observation 8.1.6 Many classes of mathematical objects and their natural
(structure-preserving) mappings form categories.

� Definition 8.1.7 Category theory studies general properties of structures
abstracting away from the concrete objects.

©:Michael Kohlhase 135

Categories in KRMT

� Remark: We have already seen various examples of categories in KRMT

� Example 8.1.8 Types and functions in MMT/LF (abstract away from
terms)

� Example 8.1.9 (Contexts and Substitutions in Logics)

� A substitution σ induces a function from wff (Σ,Γ] supp(σ)) to wff (Σ,Γ] intro(σ)).

� Example 8.1.10 (Theories and Theory Morphisms) A theory T de-
fines a language (set of well-typed terms) LT , and a theory morphism from
S to T mapping between LS and LT .

©:Michael Kohlhase 136

Commonly used Categories

� Definition 8.1.11 The objects of the category of sets Set are sets and its
arrows are the functions.

� Definition 8.1.12 The objects of the category of topological spaces Top
are topological spaces and its arrows are the continuouis functions.

� Definition 8.1.13 A category C is called small (otherwise large), iff ob(C)
and hom(C) consist of sets (not classes).

� Definition 8.1.14 Let C be a category, then the opposite category (also
called the dual category) Cop is formed by reversing all the arrows of C, i.e.

hom(Cop) := {f : B → A | f : A→ B ∈ hom(C)}

©:Michael Kohlhase 137

Functors

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

8.2. EXAMPLE/MOTIVATION: NATURAL NUMBERS IN CATEGORY THEORTY 79

� Definition 8.1.15 Let C and D be categories, then a mapping F from C
to D is called a functor, iff F

� associates to each X ∈ ob(D) an object F (X) ∈ ob(D)

� associates to each morphism f : X → Y ∈ hom(C) a morphism F (f) : F (X)→ F (Y) ∈
hom(D) such that the following two conditions hold:

� F (1X) = 1F (X) for each X ∈ ob(C).
� F (g ◦ f) = F (f) ◦F (g) for all morphisms f : X → Y and g : Y → Z
in C.

That is, functors must preserve identity morphisms and morphism compo-
sition.

� Definition 8.1.16 The category of small categories (denoted as Cat) has
all small categories as objects and functors as arrows.

� Observation 8.1.17 Cat is itself a small category.

©:Michael Kohlhase 138

8.2 Example/Motivation: Natural Numbers in Category The-
orty

Lawvere’s Natural Numbers Object

� Recap: In set theory, we define the natural numbers by the five Peano axioms
about N, 0 ∈ N, and s : N→ N.

� In Category Theory we can give a different answer (need more terminology)

� Definition 8.2.1 A natural number object in a (cartesian closed) category
E with terminal object 1 is an object N in E equipped with

� a morphism z : 1→ N from the terminal object 1 (zero)

� a morphism s : N→ N (successor)

such that for every other diagram 1
q−→ A

f−→ A there is a unique morphism
u : N→ A such that the following diagram commutes:

1 N N

A A

z s

u u
fq

©:Michael Kohlhase 139

Natural Numbers =̂ Natural Number Object in Set

� Theorem 8.2.2 The natural number object in Set is isomorphic to Peano’s

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

80 CHAPTER 8. CATEGORY THEORY

N.

� Peano’s N by the Recursion Theorem [ML:mff86].

� Lemma 8.2.3 The natural number object 〈N, z, s〉 in Set obeys Peano’s ax-
ioms.

� Proof:

P.1 For P1 note 1 in Set is a singleton set {a}, and any function z : 1 → N
identifies an element z(a) (let’s call it z as well) in N.

P.2 For P2 note that s in Set is a function.

P.3 For P3 assume s(n) = z and consider a diagram 1
e−→ A

f−→ A with
A = e, d and u(e) = u(d) = d. Then there is a function f : N → A
such that f(z) = e and f(s(n)) = u(f(n)). But if s(n) = z then
f(s(n)) = e 6= d = u(f(n)).

P.4 Injectivity of s (P4) is left as an exercise

P.5 P5, see Lemma 8.2.10

©:Michael Kohlhase 140

The Language of Diagrams

� Definition 8.2.4 A diagram in a category E is a directed graph, where
the nodes are objects of E and the edges are arrows of E.

� Definition 8.2.5 Let D be a diagram, then we say that D commutes, iff
for any two paths f1, . . . , fn and g1, . . . , gm with the same start and end in
D we have fn ◦ . . . ◦ f1 = gm ◦ . . . ◦ g1.

We will use dashed arrows to signify unique existence of arrows.

� Example 8.2.6

Let f : A → B, g : A → C, u : C → D, and v : B →
D in a category C, then we say that the diagram on
the right commutes, iff f ◦ v = g ◦u.

A B

C D

f

g u
v

� Definition 8.2.7

A B

D

f

g u
We treat the right diagram as an
abbreviation of the left one.

A B

A D

f

1A u
v

©:Michael Kohlhase 141

Diagram Chase: the Proof Method in Category Theory

� Definition 8.2.8 (Diagram Chase in Small Categories with Functions)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

8.2. EXAMPLE/MOTIVATION: NATURAL NUMBERS IN CATEGORY THEORTY 81

If C is small and f , g, u, and v are functions (e.g.
in In Set), the diagram above commutes, iff the
commutativity equation v(f(a)) = u(g(a)) holds for
all a ∈ A.

A B

C D

f

g u
v

We use the commutativityequation (and other properties of arrows) in the
proof method of diagram chase (or diagrammatic search), which involves
“chasing” elements around the diagram, until the desired element or result
is constructed or verified.

� Example 8.2.9

The diagram on the right commutes,
iff k(g(f(x))) = k(h(x)) = g′(f ′(f(x)))
for all x ∈ X.

X Y Y ′

Z Z ′

f f ′

g g′
kh

©:Michael Kohlhase 142

Natural Number Objects in Set: Induction

� Lemma 8.2.10 The natural number object in Set is inductive: If A⊆N and
from z ∈ N and a ∈ A we obtain s(a) ∈ A we obtain A = N.

� Proof: We translate the assumptions to diagrams and od a diagram chase.

P.1 We extend the NNO diagram with an inclusion function i : A → N that
corresponds to A⊆N. Note that every cell commutes in the diagram on
the left.

1

1

1

N N

A A

N N

z

z

z

11

11

s

u u
s|A

i i

s

1

1

N N

N N

z

z
11 1N 1N

s

s

Note that s|A : A→ A as a ∈ A implies s(a) ∈ A. (induction step
assumption)

P.2 Trivially, also the diagram on the right commutes, so by uniqueness in
NNO, we have i ◦u = 1N.

P.3 (Lemma: Right Inverses are Injective) Given two composable functions f
and g, if f ◦ g is the identity, then f is injective.

P.4 So U : N→ A is injective, in other words: N⊆A, and thus A = N.

©:Michael Kohlhase 143

Uniqueness of Natural Numbers

� Theorem 8.2.11 The natural numbers object is uniquely determined up to
isomorphism in a category.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

82 CHAPTER 8. CATEGORY THEORY

� Proof: We prove that if there is another diagram 1
z′−→ N′ s′−→ N′, then N

and N′ are isomorphic.

P.1 We show that there are functions f : N → N′ and f ′ : N′ → N, such that
f ◦ f ′ = IdN′ and f ′ ◦ f = IdN.

P.2 We have the following two commuting diagrams

1

1

1

N N

N′ N′

N N

z

z′

z

11

11

f f

f ′ f ′

s

s′

s

1

1

N N

N N

z

z
11 1N 1N

s

s

The left one comes from the universal property of 1
z−→ N s−→ N and

1
z′−→ N′ s′−→ N′, the right one by construction. hence f ′ ◦ f = 1N.

P.3 We obtain f ◦ f ′ = 1N′ by a similar argument.

©:Michael Kohlhase 144

8.3 Universal Constructions in Category Theory

Initial and Terminal Objects

� Definition 8.3.1 Let C be a category, then we call an object I ∈ ob(C)
initial (also cofinal or universal and written as 0), iff for every X ∈ ob(C)
there is exactly one arrow a : I → X. If every arrow into I is an isomor-
phism, then I is called strict initial object.

An object T ∈ ob(C) is called terminal or final, iff for every X ∈ ob(C)
there is exactly one arrow a : X → T . A terminal object is also called a
terminator and write it as 1.

� Observation 8.3.2 Initial and terminal objects are unique up to isomor-
phism, if they exist at all. (they need not exist in all
categories)

� Example 8.3.3 In Set the initial object is the empty set, while the final
object is the (unique up to isomorphism) singleton set.

� Remark: We can think of the initial and terminal objects the category-theoretic
generalizations (“universal characterizations”) of the empty and singleton sets:
they are characterized by objects and arrows only.

©:Michael Kohlhase 145

Pushouts

� Question: Can we also characterize operations like union universally?

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

8.3. UNIVERSAL CONSTRUCTIONS IN CATEGORY THEORY 83

� Idea: In A∪B, we use A∩B twice.
We have A∩B⊆A and A∩B⊆B, which we can express
with arrows (inclusions) A∩B ↪

ιA−→ A and A∩B ↪
ιB−→ B.

Similarly we have A⊆A∪B and B⊆A∪B which we ex-
press as A ↪

ιA−→ A∪B and B ↪
ιB−→ A∪B.

A B

� Definition 8.3.4 Let C be a category, then the pushout of morphisms f
f : Z → X and g : Z → Y is consists of an object P together with two
morphisms if : X → P and ig : Y → P , such that the left diagram below
commutes and that 〈P, if , ig〉 is universal with respect to this diagram – i.e.,
for any other such set 〈Q, jf , jg〉 for which the following diagram commutes,
there must exist a unique u : P → Q also making the diagram commute,
i.e.

X

Y

Z

P

f
gif

ig

X

Y

Z

P

Q

f
gif

ig
jf

jg

u

©:Michael Kohlhase 146

Pushouts in Set

� As with all universal constructions, the pushout, if it exists, is unique up to a
unique isomorphism.

� If X, Y , and Z are sets, and f : Z → X and g : Z → Y are function, then
the pushout of f and g is the disjoint union X] Y , where elements sharing a
common preimage (in Z) are identified, i.e. P = (X] Y)/∼, where ∼ is the
finest equivalence relation such that ι1(f(z)) ∼ ι2(g(z)).

� In particular: if X,Y ⊆W for some larger setW , Z = X ∩Y , and f and g the
inclusions of Z into X and Y , then the pushout can be canonically identified
with X ∪Y .

©:Michael Kohlhase 147

Product Objects and Exponentials in Categories

� Question: Can we also characterize functions (function spaces) in categories?

� Idea: Functions are sets of pairs with additional properties (left totality and
right uniqueness)

� Definition 8.3.5 Let C be a category and X1, X2 ∈ ob(C). Then we call
an object X together with two morphisms π1 : X → X1 and π2 : X → X2

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

84 CHAPTER 8. CATEGORY THEORY

the product of X1 and X2 and write it as X1 ×X2 if it satisfies the following
universal property:

For every object Y and pair of morphisms
f1 : Y → X1 and f2 : Y → X2 there exists a
unique morphism f : Y → X1 ×X2 such that
the diagram on the right commutes: X1 X1 ×X2 X1

Y

π1 π2

f1 f2
f

The unique morphism f is called the product of morphisms f1 and f2

and is denoted 〈f1, f2〉. The morphisms π1 and π2 are called the canonical
projections or projection morphisms.

©:Michael Kohlhase 148

Products in Set

� In Set, the product is the Cartesian product: Given sets X1 and X2, then
we have the projections πi : X1×X2 → Xi. Given any set Y with functions
fi : Z → Xi, the universal arrow f is defined as f : Y → X1×X2; y 7→
〈f1(y), f1(y)〉.

� In Top, the product of two objects ist the product topology.

©:Michael Kohlhase 149

Exponentials in Categories

� Definition 8.3.6 If A×B existss for all objects A and B in a category C,
then we say that C has all binary products.

� Definition 8.3.7 Let C be a category that has all binary products and
Z, Y ∈ ob(C), then we call an object ZY together with a morphism eval : ZY × Y →
Z is called an exponential object, iff for anyX ∈ ob(C) and g : X × Y → Z ∈
hom(C) there is a unique morphism λg : X → ZY (called the transpose of
g) such that the following diagram commutes:

X

ZY

X × Y

ZY × Y Z

λg 〈λg, 1Y 〉
g

eval

©:Michael Kohlhase 150

Cartesian Closed Categories

� Definition 8.3.8 A category C is a Cartesian closed category (CCC) , iff
it satisfies the following three properties:

� C has a terminal object.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

8.3. UNIVERSAL CONSTRUCTIONS IN CATEGORY THEORY 85

� Any two objects X and Y of C have a product X × Y in C.
� Any two objects Y and and Z of C have an exponential ZY in C.

©:Michael Kohlhase 151

http://creativecommons.org/licenses/by-sa/2.5/

86 CHAPTER 8. CATEGORY THEORY

Part II

Aspects of Knoweldge Reprsentation
for Mathematics

87

Chapter 9

Project Tetrapod

The way we do math will change dramatically

� Definition 9.0.1 (Doing Math) Buchberger’s Math creativity spiral

Spiral

The

Creativity

Compute/
Experiment

Specify/
Formalize

Prove

Visualize

Conjecture

Mathematical
Creativity
Spiral
[Buchberger 1995]

Com−
munication

Publication

Teaching

Application

� Every step will be supported by mathematical software systems

� Towards an infrastructure for web-based mathematics!

©:Michael Kohlhase 152

Knowledge Representation is only Part of “Doing Math”

� One of the key insights is that the mathematics ecosystem involves a body of
knowledge described as an ontology and four aspects of it:

� inference: exploring theories, formulating conjectures, and constructing
proofs

� computation: simplifying mathematical objects, re-contextualizing conjec-
tures. . .

� models: collecting examples, applying mathematical knowledge to real-
world problems and situations.

� narration: devising both informal and formal languages for expressing math-

89

http://creativecommons.org/licenses/by-sa/2.5/

90 CHAPTER 9. PROJECT TETRAPOD

ematical ideas, visualizing mathematical data, presenting mathematical de-
velopments, organizing and interconnecting mathematical knowledge

� We call the endeavour of creating a computer-supported mathematical ecosys-
tem “Project tetrapod” as it needs to stand on four legs.

Ontology

Computation

InferenceNarration

Models

Collaborators: KWARC@FAU, McMaster University

©:Michael Kohlhase 153

http://creativecommons.org/licenses/by-sa/2.5/

Chapter 10

The Flexiformalist Program:
Introduction

� Background: Mathematical Documents

� Mathematics plays a fundamental role in Science, Technology, and Engineering
(learn from Math, apply for STEM)

� Mathematical knowledge is rich in content, sophisticated in structure, and
technical in presentation,

� its conservation, dissemination, and utilization constitutes a challenge for the
community and an attractive line of inquiry.

� Challenge: How can/should we do mathematics in the 21st century?

� Mathematical knowledge and objects are transported by documents

� Three levels of electronic documents:

0. printed (for archival purposes) (∼90%)

1. digitized (usually from print) (∼50%)

2. presentational: encoded text interspersed with presentation markup(∼20%)

3. semantic: encoded text with functional markup for the meaning (≤0.1%)

transforming down is simple, transforming up needs humans or AI.

� Observation: Computer support for access, aggregation, and application is
(largely) restricted to the semantic level.

� This talk: How do we do maths and math documents at the semantic level?

©:Michael Kohlhase 154

Hilbert’s (Formalist) Program

� Definition 10.0.1 Hilbert’s Program called for a foundation of mathemat-

91

http://creativecommons.org/licenses/by-sa/2.5/

92 CHAPTER 10. THE FLEXIFORMALIST PROGRAM: INTRODUCTION

ics with

� A formal system that can express all of mathematics (language,
models, calculus)

� Completeness: all valid mathematical statements can be proved in the
formalism.

� Consistency: a proof that no contradiction can be obtained in the for-
malism of mathematics.

� Decidability: algorithm for deciding the truth or falsity of any mathe-
matical statement.

� Originally proposed as “metamathematics” by David Hilbert in 1920.

� Evaluation: The program was

� successful in that FOL+ZFC is a foundation [Göd30] (there are others)

� disappointing for completeness [Göd31], consistency [Göd31], decidabil-
ity [Chu36; Tur36]

� inspiring for computer Scientists building theorem provers

� largely irrelevant to current mathematicians (I want to address this!)

©:Michael Kohlhase 155

Formality in Logic and Artificial Intelligence

� AI, Philosophy, and Math identify formal representations with Logic

� Definition 10.0.2 A formal system S := 〈L,M, C〉 consists of

� a (computable) formal language L := L(S) (grammar for
words/sentences)

� a model theoryM, (a mapping into (some) world)

� and a sound (complete?) proof calculus C (a syntactic method of
establishing truth)

We use F for the class of all formal systems

� Reasoning in a formal system proceeds like a chess game: chaining “moves”
allowed by the proof calculus via syntactic (depending only on the form) criteria.

� Observation: computers need L and C (adequacy hinges on relation toM)

� Formality is a “all-or-nothing property”. (a single “clearly” can ruin a formal
proof)

� Empirically: formalization is not always achievable (too tedious for the gain!)

� Humans can draw conclusions from informal (not L) representations by other
means (not C).

http://creativecommons.org/licenses/by-sa/2.5/

93

©:Michael Kohlhase 156

Within the world of logics, one can derive new propositions (the conclusions, here: Socrates is
mortal) from given ones (the premises, here: Every human is mortal and Sokrates is human).
Such derivations are proofs.
In particular, logics can describe the internal structure of real-life facts; e.g. individual things,
actions, properties. A famous example, which is in fact as old as it appears, is illustrated in the
slide below.

The miracle of logics

� Purely formal derivations are true in the real world!

©:Michael Kohlhase 157

If a logic is correct, the conclusions one can prove are true (= hold in the real world) whenever
the premises are true. This is a miraculous fact (think about it!)

Formalization in Mathematical Practice

� To formalize maths in a formal system S, we need to choose a foundation, i.e.
a foundational S-theory, e.g. a set theory like ZFC.

� Formality is an all-or-nothing property (a single “obviously” can ruin it.)

� Almost all mathematical documents are informal in 4 ways:

� the foundation is unspecified (they are essentially equivalent)

� the language is informal (essentially opaque to MKM algos.)

� even formulae are informal (presentation markup)

� context references are underspecified

� mathematical objects and concepts are often identified by name
� statements (citations of definitions, theorems, and proofs) underspeci-
fied

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

94 CHAPTER 10. THE FLEXIFORMALIST PROGRAM: INTRODUCTION

� theories and theory reuse not marked up at all

� The gold standard of mathematical communication is “rigor” (cf. [BC01])

� Definition 10.0.3 We call a mathematical document rigorous, if it
could be formalized in a formal system given enough resources.

� This possibility is almost always unconsummated

� Why?: There are four factors that disincentivize formalization for Maths

propaganda: Maths is done with pen and paper
tedium: de Bruijn factors ∼ 4 for current systems (details in [Wie12])
inflexibility: formalization requires commitment to formal system and

foundation
proof verification useless: peer reviewing works just fine for Math

� Definition 10.0.4 The de Bruijn factor is the quotient of the lengths
of the formalization and the original text.

In Effect: Hilbert’s program has been comforting but useless

�� Question: What can we do to change this?

©:Michael Kohlhase 158

Migration by Stepwise Formalization

� Full Formalization is hard (we have to commit, make explicit)

� Let’s look at documents and document collections.

formality

number

� Partial formalization allows us to

� formalize stepwise, and

� be flexible about the depth of formalization.

http://creativecommons.org/licenses/by-sa/2.5/

95

formality

number

©:Michael Kohlhase 159

Functionality of Flexiformal Services

� Generally: Flexiformal services deliver according to formality level (GIGO:
Garbage in ; Garbage out!)

� But: Services have differing functionality profiles.

� Math Search works well on informal
documents

� Change management only needs de-
pendency information

� Proof search needs theorem formal-
ized in logic

� Proof checking needs formal proof
too Formality

Fu
nc
tio

na
lit
y

Ch
an

ge
M

an
ag

em
ent

Se
m
an

tic
Se

arc
h

Proo
f S

ea
rc
h

Proo
f C

he
ck

in
g

©:Michael Kohlhase 160

The Flexiformalist Program (Details in [Koh13])

� The development of a regime of partially formalizing

� mathematical knowledge into a modular ontology of mathematical theories
(content commons), and

� mathematical documents by semantic annotations and links into the con-
tent commons (semantic documents),

� The establishment of a software infrastructure with

� a distributed network of archives that manage the content commons and
collections of semantic documents,

� semantic web services that perform tasks to support current and future
mathematic practices

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

96 CHAPTER 10. THE FLEXIFORMALIST PROGRAM: INTRODUCTION

� active document players that present semantic documents to readers and
give access to respective

� the re-development of comprehensive part of mathematical knowledge and
the mathematical documents that carries it into a flexiformal digital library of
mathematics.

©:Michael Kohlhase 161

Applications!

� A Business model for a Semantic Web for Math/Science?

� For uptake it is essential to match the return to the investment!

Investment

Return

Br
ea
k-E

ve
n L
ine

Web 1.0

Web 2.0

Formal Methods

Math on the
Semantic Web (today)

Our Challenge

� Need to move the technology up (carrots) and left (easier)

©:Michael Kohlhase 162

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Chapter 11

What is formality?

The Process of Formalization

� Formalization in mathematics can be seen as a sequence of documents

1. an informal proof sketch on a blackboard, and

2. a high-level run-through of the essentials of a proof in a colloquium talk,

3. and the speaker’s notes that contain all the details that are glossed over
in

4. a fully rigorous proof published in a journal, which may lead to

5. a mechanical verification of the proof in a proof checker.(This is formal!)

� Intuitively, the steps get ever more formal, but our definition cannot predict
this.

� Example 11.0.1 A recap of concepts from the intro of [CS09]

An accelerated Turing machine (sometimes called Zeno machine)
is a Turing machine that takes 2−n units of time (say seconds) to
perform its nth step.

� Example 11.0.2 A rigorous definition of the same concept.

Definition 1.3: An accelerated Turing machine is a Turing machine
M = 〈X,Γ, S, so,2, δ〉 working with with a computational time structure
T = 〈{ti}i, <,+〉 with T ⊆ Q+ (Q+ is the set of non-negative ra-
tionals) such that

∑
i∈N ti <∞.

©:Michael Kohlhase 163

Multiple Dimensions in Formalization

� Example 11.0.3 (SAMS Case Study) Formalize a set of robot design
documents down to implementation and up again to documentation.

97

http://creativecommons.org/licenses/by-sa/2.5/

98 CHAPTER 11. WHAT IS FORMALITY?

The V-Model requires explicit cross-references between the levels

� Observation: The links between the document fragments are formalized by a
graph structure for machine support. (e.g. requirements tracing)

� We ended with a complex, multi-dimensional collection domain model

� In particular, the formalization process was linear in the dimensions at best.

©:Michael Kohlhase 164

What is Informal Mathematical Knowledge

http://creativecommons.org/licenses/by-sa/2.5/

99

� Idea: informal knowledge could be formalized (but
isn’t yet!)

� Definition 11.0.4 The meaning of a knowledge
item is the set of all its formalizations

� Problem: What is the space of formalizations?

� Definition 11.0.5 The formal space is the set
F := {〈S, e〉 |S ∈ F, e ∈ L(S)}, where F is the
class of formal systems and L(S) is the language
of S. (i.e. every formal expression is a point in
F)

� Different Logics correspond to different bands

� The meaning of D is a set I(D)⊆F .

� D can be formalized in multiple logics
I(D) forms a cross-section of logic-bands.

©:Michael Kohlhase 165

A Formality Ordering on F

� Stepwise formalization looks like this:

Lo
gi
cs

Expres
sions

Formal Spa
ceDocument

Space
Less Formal More Formal

D D1

D2

D′2

D3

D′3

D′′3

� Definition 11.0.6 D is more formal thanD′ (writeD≪D′), iff I(D)⊂I(D′).

� This partial ordering relation answers the question of “graded formality” or the
nature of “stepwise formalization” raised above.

©:Michael Kohlhase 166

Stepwise Formalization in Multiple Dimensions

� Empirically: Formalization is a stepwise process of (order of steps may vary)

� spotting semantic objects (from the surrounding text)

� chunking: grouping them for re-use (e.g. assigning to home theories)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

100 CHAPTER 11. WHAT IS FORMALITY?

� relating: making their relationships explicit (this is used by semantic
services)

� In multi-dimensional situations:

� any formalization step on D trims I(D).

� not all “steps” are comparable in ≪

� but per-dimension formalization is confluent

� Observation: This is the normal situation, we coin a new concept to describe
it.

� Definition 11.0.7 We call a representation flexiform, iff it is of flexible
formality in any of the adequate dimensions of formality.

©:Michael Kohlhase 167

Flexiforms and Flexiformalization

� Definition 11.0.8 “Flexiform” is an adjective, we are interested in

� flexiform fragments: e.g. definitions with formulae in MathML parallel
markup (presentation/content).

� flexiform theories: formal theories with flexiform fragments.

� flexiform digital libraries: formality widely ranging, supports flexifor-
malization in collection.

Call all such representations flexiforms (noun)

� Remark: The set of flexiforms has very good closure properties.

� Flexiform fragments can be composed to flexiform documents,

� which can be collected to flexiform libraries,

� which in turn can be formalized to flexiform theory graphs

� or excerpted to flexiform documents.

All that without leaving the space of flexiforms!

©:Michael Kohlhase 168

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Chapter 12

A “formal” Theory of Flexiformality

How to model Flexiformal Mathematics

� I hope to have convinced you: that Math is informal:

� foundations unspecified (what a relief)

� natural language & presentation formulae (humans can disambiguate)

� context references (but math is better than the pack)

� Problem: How do we deal with that in our “formal” systems?

� Proposed Answer: learn from OpenMath/MathML

� referential theory of meaning (by pointing to symbol definitions)

� allow opaque content (presentation/natural language)

� parallel markup (mix formal/informal recursively at any level)

� pluralism at all levels (object/logic/foundation/metalogic)

� underspecification of symbol meaning

extend to statement/paragraph and theory/discourse levels (OMDoc)

©:Michael Kohlhase 169

OMDoc in a Nutshell (three levels of modeling) [Koh06]

101

http://creativecommons.org/licenses/by-sa/2.5/

102 CHAPTER 12. A “FORMAL” THEORY OF FLEXIFORMALITY

Formula level: OpenMath/C-MathML

� Objects as logical formulae

� symbol meaning by reference to the-
ory level

<apply>
<csymbol cd="ring">plus</c.>
<csymbol cd="ring">zero</c.>
<ci>N</ci>
</apply>

Statement level:

� Definition, Theorem, Proof, Example

� semantics via explicit forms and refs.

� parallel formal & natural language

<defn for="plus" type="rec">
<CMP>rec. eq. for plus</CMP>
<FMP>X + 0 = X</FMP>
<FMP>X + s(Y) = s(X + Y)</FMP>
</defn>

Module level: Theory Graph [RK13]

� inheritance via symbol-mapping

� views by proof-obligations

� logics as meta-theories (logic atlas)

� meta-logics as oracles for type/eq

LF LF + X

FOL HOL

Monoid CGroup Ring

ZFC
f2h

add

mult

folsem

mod

©:Michael Kohlhase 170

12.1 Parallel Markup in MathML

Layout Schemata and the MathML Box model

� Presentation MathML represents the visual appearance of a formula in a tree
of layout primitives

� Example 12.1.1 (Presentation MathML for 3/(x+ 2))

3
(x+2)

3 (x+2)

x + 2

<mfrac>...</mfrac>

<mn>3</mn>
<mfenced>...</mfenced>

<mi>x</mi> <mo>+</mo> <mn>2</mn>

©:Michael Kohlhase 171

Functional Markup in MathML: The “Operator Tree”

� Content MathML represents the functional structureof a formula in a tree of
operators, via application and binding.

� Example 12.1.2 (Content MathML for 3/(x+ 2))

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

12.1. PARALLEL MARKUP IN MATHML 103

@

3 @/

+ x 2

<apply>...</apply>

<div/> <cn>3</cn>
<apply>...</apply>

<plus/> <ci>x</ci> <mn>2</mn>

Extra Operators: use <csymbol cd="〈〈CD〉〉">〈〈Name〉〉</csymbol>, where

� � 〈〈CD〉〉 is a content dictionary– a document that defines 〈〈Name〉〉
� 〈〈Name〉〉 is the name of a symbol definition in 〈〈CD〉〉.

©:Michael Kohlhase 172

Parallel Markup e.g. in MathML

� Idea: Combine the presentation and content markup and cross-reference

3

(x+2)

3 (x+2)

x + 2

@

3 @/

+ x 2

� use e.g. for semantic copy and paste. (click o3n presentation, follow link and
copy content)

� Concrete Realization in MathML: semantics element with presentation as first
child and content in annotation−xml child

<semantics>...</semantics>

<annotation−xml>...</annotation−xml>

<mfrac id="M">...</mfrac>

<mn id="3">3</mn>

<mfenced id="f">...</mfenced>

<mi id="x">x</mi>

<mo id="p">+</mo>

<mn id="2">2</mn>

<apply href="M">...</apply>

<divide/> <ci href="3">3<ci/>

<apply href="f">...</apply>

<plus href="p"/>

<ci href="x">x</ci>

<cn href="2">2</cn>

http://creativecommons.org/licenses/by-sa/2.5/

104 CHAPTER 12. A “FORMAL” THEORY OF FLEXIFORMALITY

©:Michael Kohlhase 173

12.2 Parallel Markup in OMDoc

Separating Narrative– and Conceptual Structure

� Doc. structure is discourse-level presentation of content structure

� Example 12.2.1 Introducing a theory via a straw man in a lecture

� sli are slides

� ni is narrative text

� Ei are examples

� N is a naive theory

� F is the final theory

� S is the straw man

N

EN FS

EFES

lecture

sl1 sl2 sl3 sl4 sl5 sl6 sl7

n1 n2 . . . n3

� Idea: have two documents content + narrative structure

� Narrative OMDoc: only doc. structure + narr. elements + links into content.

� Future: Generate the narr. from content (need discourse-level content
markup)

©:Michael Kohlhase 174

12.3 Flexible Symbol Grounding in OMDoc

A Formal Theory of Underspecification?

� Use theory graphs to specify “meaning” in stages e.g. arithmetics

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

12.3. FLEXIBLE SYMBOL GROUNDING IN OMDOC 105

Nat
N, 0, 1, 2, . . .

uNat
N1, 0, s
P1, . . . , P5

biNat
N2, 0, 1, s0, s1
P1′, . . .

Comp
C, i

arithNat
+, ∗ : N∗ → N

arithComp
+, ∗ : C∗ → C

arithPoly
+, ∗ : P[C]∗ → P[C]

arithNatrec
∀x : N∗.x+ 0 = x
∀x : N∗, y : N.x+ s(y) = s(x+ y)

arith0
+, ∗

alg0
e+, e∗

arith1
∀x, y.x+ y = y + x

polyC
P[C]

Be non-committal: In OpenMath, arith1.ocd only says that + is commuta-
tive
this is a feature, not a bug (lets you remain uncommitted/underspecified)

©:Michael Kohlhase 175

http://creativecommons.org/licenses/by-sa/2.5/

106 CHAPTER 12. A “FORMAL” THEORY OF FLEXIFORMALITY

Chapter 13

Representing Mathematical
Vernacular

107

108 CHAPTER 13. REPRESENTING MATHEMATICAL VERNACULAR

Part III

Summary and Review

109

Chapter 14

Modular Representation of
Mathematical Knowledge

�Modular Representation of Math (Theory Graph)

� Idea: Follow mathematical practice of generalizing and framing

� framing: If we can view an object a as an instance of concept B, we can
inherit all of B properties (almost for free.)

� state all assertions about properties as general as possible (to maximize
inheritance)

� examples and applications are just special framings.

� Modern expositions of Mathematics follow this rule (radically e.g. in
Bourbaki)

� formalized in the theory graph paradigm (little/tiny theory doctrine)

� theories as collections of symbol declarations and axioms (model
assumptions)

� theory morphisms as mappings that translate axioms into theorems

� Example 14.0.1 (MMT: Modular Mathematical Theories) MMT is
a foundation-indepent theory graph formalism with advanced theory mor-
phisms.

Problem: With a proliferation of abstract (tiny) theories readability and acces-
sibility suffers (one reason why the Bourbaki books fell out of
favor)

©:Michael Kohlhase 176

�Modular Representation of Math (MMT Example)

111

http://creativecommons.org/licenses/by-sa/2.5/

112 CHAPTER 14. MODULAR REPRESENTATION OF MATHEMATICAL KNOWLEDGE

Magma
G, ◦
x◦y∈G

SemiGrp

assoc:(x◦y)◦z=x◦(y◦z)

Monoid
e
e◦x=x

Group
i :=λx.τy.x◦y=e
∀x:G.∃y:G.x◦y=e

NonGrpMon

∃x:G.∀y:G.x◦y 6=e

CGroup

comm:x◦y=y◦x

Ring

x m/◦ (y a/◦ z)=(x m/◦ y) a/◦ (x m/◦ z)

NatNums
N, s, 0
P1,. . .P5

NatPlus
+
n+0=n,
n+s(m)=s(n+m)

NatTimes
·
n·1=n,
n·s(m)=n·m+n

IntArith
−
Z := p/N ∪ n/N
−0=0

ϕ =

 G 7→ N
◦ 7→ ·
e 7→ 1


ψ =

 G 7→ N
◦ 7→ +
e 7→ 0


ψ′ =

{
i 7→ −
g 7→ f

}
ϑ =

{
m 7→ e
a 7→ c

}

p n

e :ϕ

f :ψ

d :ψ′

g

c :ϕ

ng

a

m

i : ϑ

{x ◦ y 7→ y ◦ x}

{x ◦ y 7→ y ◦ x}

©:Michael Kohlhase 177

The MMT Module System

� Central notion: theory graph with theory nodes and theory morphisms as edges

� Definition 14.0.2 In MMT, a theory is a sequence of constant declara-
tions – optionally with type declarations and definitions

� MMT employs the Curry/Howard isomorphism and treats

� axioms/conjectures as typed symbol declarations (propositions-as-types)

� inference rules as function types (proof transformers)

� theorems as definitions (proof terms for conjectures)

� Definition 14.0.3 MMT had two kinds of theory morphisms

� structures instantiate theories in a new context (also called:
definitional link, import)
they import of theory S into theory T induces theory morphism S → T

� views translate between existing theories (also called: postulated link,
theorem link)
views transport theorems from source to target (framing)

� together, structures and views allow a very high degree of re-use

� Definition 14.0.4 We call a statement t induced in a theory T , iff there
is

� a path of theory morphisms from a theory S to T with (joint) assignment
σ,

� such that t = σ(s) for some statement s in S.

http://creativecommons.org/licenses/by-sa/2.5/

113

� In MMT, all induced statements have a canonical name, the MMT URI.

©:Michael Kohlhase 178

Applications for Theories in Physics

� Theory Morphisms allow to “view” source theory in terms of target theory.

� Theory Morphisms occur in Physics all the time.

Theory Temp. in Kelvin Temp. in Celsius Temp. in Fahrenheit
Signature ◦K ◦C ◦F
Axiom: absolute zero at 0◦K Water freezes at 0◦C cold winter night: 0◦F
Axiom: δ(◦K1) = δ(◦C1) Water boils at 100◦C domestic pig: 100◦F
Theorem: Water freezes at

271.3◦K
domestic pig: 38◦C Water boils at 170◦F

Theorem: cold winter night:
240◦K

absolute zero at
−271.3◦C

absolute zero at
−460◦F

Views: ◦C +271.3−→
◦
K, ◦C

−32/2−→
◦
F, and ◦F

+240/2−→
◦
K, inverses.

� Other Examples: Coordinate Transformations,

� Application: Unit Conversion: apply view morphism (flatten) and simplify with
UOM. (For new units, just add theories and views.)

� Application: MathWebSearch on flattened theory (Explain view path)

©:Michael Kohlhase 179

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

114 CHAPTER 14. MODULAR REPRESENTATION OF MATHEMATICAL KNOWLEDGE

Chapter 15

Application: Serious Games

Framing for Problem Solving (The FrameIT Method)

� Example 15.0.1 (Problem 0.8.15)

How can you measure the height of a tree you cannot
climb, when you only have a protactor and a tape
measure at hand.

� Framing: view the problem as one that is already understood (using theory
morphisms)

PlanarGeo

PGP

PGSProblem

SOL

Forestry

q

p′ :ϕ

p :ϕ

q′

� squiggly (framing) morphisms guaranteed by metatheory of theories!

©:Michael Kohlhase 180

Example Learning Object Graph

115

http://creativecommons.org/licenses/by-sa/2.5/

116 CHAPTER 15. APPLICATION: SERIOUS GAMES

Generate [0]

Generate [3]

Generate [2]Fact Discovery

Interaction

ϕ

[π/p]
[A/a]
[B/b]
[C/c]

[|AB|/|ab|]
[∠CAB/∠cab]


=: ϕ

Generate [1]

Game World
User Knowledge New Knowledge

MMT

Game Solution

A

C

B

D

α AB

h = 10.0m

Game Problem

h =?

Explored World

A

C

B

D

h =?

Scrolls

find
a b

c
such that ab ⊥ bc then

a b

c

α
→ |bc| = |ab| · tan(α)

Solution Pushout

A

C

B

D

α AB

|BC| = 10.0 · tan(45◦) = 10.0

Situation Theory

A

C

B

D

α AB

Situation Theory

A,B,C : point
|AB| : R = 10.0
∠CAB : R = 45◦

π : ` AB ⊥ BC

Solution Theory

a b

c

α

|bc| = |ab| · tan(∠cab)

Problem Theory

a b

c

p : ` ab ⊥ bc

Forestry
vertical (tree)
horizontal (ground)

...

Planar Geometry
point : type
line : point → point → line
|ab| : line → R
⊥ : line → line → bool

...

©:Michael Kohlhase 181

FrameIT Method: Problem

� Problem Representation in the game world (what the student should see)

� Student can interact with the environment via gadgets so solve problems

� “Scrolls” of mathematical knowledge give hints.

©:Michael Kohlhase 182

Combining Problem/Solution Pairs

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

117

� We can use the same mechanism for combining P/S pairs

� create more complex P/S pairs (e.g. for trees on slopes)

©:Michael Kohlhase 183

Another whole set of applications and game behaviors can come from the fact that LOGraphs
give ways to combine problem/solution pairs to novel ones. Consider for instance the diagram
on the right, where we can measure the height of a tree of a slope. It can be constructed by
combining the theory SOL with a copy of SOL along a second morphism the inverts h to −h (for
the lower triangle with angle β) and identifies the base lines (the two occurrences of h0 cancel
out). Mastering the combination of problem/solution pairs further enhances the problem solving
repertoire of the player.

http://creativecommons.org/licenses/by-sa/2.5/

118 CHAPTER 15. APPLICATION: SERIOUS GAMES

Chapter 16

Search in the Mathematical
Knowledge Space

The Mathematical Knowledge Space
� Observation 16.0.1 The value of framing is that
it induces new knowledge

� Definition 16.0.2 The mathematical knowl-
edge space MKS is the structured space of rep-
resented and induced knowledge, mathematically
literate have access to.

induced

rep.

� Idea: make math systems mathematically literate by supporting the MKS

� In this talk: I will cover three aspects

� an approach for representing framing and the MKS (OMDoc/MMT)

� search modulo framing (MKS-literate search)

� a system for archiving the MKS (MathHub.info)

� Told from the Perspective of: searching the MKS

©:Michael Kohlhase 184

[search: Indexing flattened Theory Graphs

� Simple Idea: We have all the necessary components: MMT and MathWebSearch

� Definition 16.0.3 The [search systen is an integration of MathWebSearch
and MMT that

� computes the induced formulae of a modular mathematical library via
MMT (aka. flattening)

� indexes induced formulae by their MMT URIs in MathWebSearch

� uses MathWebSearch for unification-based querying (hits are MMT
URIs)

119

http://creativecommons.org/licenses/by-sa/2.5/

120 CHAPTER 16. SEARCH IN THE MATHEMATICAL KNOWLEDGE SPACE

� uses the MMT to present MMT URI (compute the actual formula)

� generates explanations from the MMT URI of hits.

� Implemented by Mihnea Iancu in ca. 10 days (MMT harvester pre-existed)

� almost all work was spent on improvements of MMT flattening

� MathWebSearch just worked (web service helpful)

©:Michael Kohlhase 185

[search User Interface: Explaining MMT URIs

� Recall: [search (MathWebSearch really) returns a MMT URI as a hit.

� Question: How to present that to the user? (for his/her greatest benefit)

� Fortunately: MMT system can compute induced statements (the hits)

� Problem: Hit statement may look considerably different from the induced
statement

� Solution: Template-based generation of NL explanations from MMT URIs.

MMT knows the necessary information from the components of the MMT URI.

©:Michael Kohlhase 186

Modular Representation of Math (MMT Example)

Magma
G, ◦
x◦y∈G

SemiGrp

assoc:(x◦y)◦z=x◦(y◦z)

Monoid
e
e◦x=x

Group
i :=λx.τy.x◦y=e
∀x:G.∃y:G.x◦y=e

NonGrpMon

∃x:G.∀y:G.x◦y 6=e

CGroup

comm:x◦y=y◦x

Ring

x m/◦ (y a/◦ z)=(x m/◦ y) a/◦ (x m/◦ z)

NatNums
N, s, 0
P1,. . .P5

NatPlus
+
n+0=n,
n+s(m)=s(n+m)

NatTimes
·
n·1=n,
n·s(m)=n·m+n

IntArith
−
Z := p/N ∪ n/N
−0=0

ϕ =

 G 7→ N
◦ 7→ ·
e 7→ 1


ψ =

 G 7→ N
◦ 7→ +
e 7→ 0


ψ′ =

{
i 7→ −
g 7→ f

}
ϑ =

{
m 7→ e
a 7→ c

}

p n

e :ϕ

f :ψ

d :ψ′

g

c :ϕ

ng

a

m

i : ϑ

{x ◦ y 7→ y ◦ x}

{x ◦ y 7→ y ◦ x}

©:Michael Kohlhase 187

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

121

Example: Explaining a MMT URI

� Example 16.0.4 [search search result u?IntArith?c/g/assoc for query (x+

y) + z = R .

� localize the result in the theory u?IntArithf with

Induced statement ∀x, y, z : Z.(x+y)+z = x+(y+z) found in
http://cds.omdoc.org/cds/elal?IntArith (subst, justification).

� Justification: from MMT info about morphism c (source, target,
assignment)

IntArith is a CGroup if we interpret ◦ as + and G as Z.

� skip over g, since its assignment is trivial and generate

CGroups are SemiGrps by construction

� ground the explanation by

In SemiGrps we have the axiom assoc : ∀x, y, z : G.(x ◦ y) ◦ z = x ◦ (y ◦ z)

©:Michael Kohlhase 188

[search on the LATIN Logic Atlas

� Flattening the LATIN Atlas (once):

type modular flat factor
declarations 2310 58847 25.4
library size 23.9 MB 1.8 GB 14.8
math sub-library 2.3 MB 79 MB 34.3
MathWebSearch harvests 25.2 MB 539.0 MB 21.3

induced

repd

� simple [search frontend at http://cds.omdoc.org:8181/search.html

©:Michael Kohlhase 189

Overview: KWARC Research and Projects

http://creativecommons.org/licenses/by-sa/2.5/
http://cds.omdoc.org:8181/search.html
http://creativecommons.org/licenses/by-sa/2.5/

122 CHAPTER 16. SEARCH IN THE MATHEMATICAL KNOWLEDGE SPACE

Applications: eMath 3.0, Active Documents, Semantic Spreadsheets, Semantic
CAD/CAM, Change Mangagement, Global Digital Math Library, Math Search Sys-
tems, SMGloM: Semantic Multilingual Math Glossary, Serious Games, . . .
Foundations of Math:

� MathML, OpenMath

� advanced Type Theories

� MMT: Meta Meta The-
ory

� Logic Morphisms/Atlas

� Theorem Prover/CAS In-
teroperability

� Mathematical Model-
s/Simulation

KM & Interaction:
� Semantic Interpretation
(aka. Framing)

� math-literate interaction

� MathHub: math archi-
ves & active docs

� Semantic Alliance: em-
bedded semantic services

Semantization:
� LATEXML: LATEX→ XML

� STEX: Semantic LATEX

� invasive editors

� Context-Aware IDEs

� Mathematical Corpora

� Linguistics of Math

Foundations: Computational Logic, Web Technologies, OMDoc/MMT

©:Michael Kohlhase 190

Take-Home Message

� Overall Goal: Overcoming the “One-Brain-Barrier” in Mathematics (by
knowledge-based systems)

� Means: Mathematical Literacy by Knowledge Representation and Processing
in theory graphs in Theoriegraphen. (Framing as mathematical practice)

©:Michael Kohlhase 191

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Bibliography

[BC01] Henk Barendregt and Arjeh M. Cohen. “Electronic communication of mathematics and
the interaction of computer algebra systems and proof assistants”. In: Journal of Sym-
bolic Computation 32 (2001), pp. 3–22.

[Chu36] Alonzo Church. “A note on the Entscheidungsproblem”. In: Journal of Symbolic Logic
(May 1936), pp. 40–41.

[CS09] Cris Calude and Ludwig Staiger. A Note on Accelerated Turing Machines. CDMTCS
Research Report 350. Centre for Discrete Mathematics and Theoretical Computer Sci-
ence, Auckland University, 2009. url: http://www.cs.auckland.ac.nz/CDMTCS/
researchreports/350cris.pdf.

[Göd30] Kurt Gödel. “Die Vollständigkeit der Axiome des logischen Funktionenkalküls”. In:Monat-
shefte für Mathematik und Physik 37 (1930). English Version in [Hei67], pp. 349–360.

[Göd31] Kurt Gödel. “Über formal unentscheidbare Sätze der Principia Mathematica und ver-
wandter Systeme I”. In: Monatshefte der Mathematischen Physik 38 (1931). English
Version in [Hei67], pp. 173–198.

[Hei67] Jean van Heijenoort. From Frege to Gödel: a source book in mathematical logic 1879-
1931. 3rd printing, 1997. Source books in the history of the sciences series. Cambridge,
MA: Harvard Univ. Press, 1967. isbn: 0-674-32450-1.

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathematical documents [Ver-
sion 1.2]. LNAI 4180. Springer Verlag, Aug. 2006. url: http://omdoc.org/pubs/
omdoc1.2.pdf.

[Koh13] Michael Kohlhase. “The Flexiformalist Manifesto”. In: 14th International Workshop on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2012). Ed. by
Andrei Voronkov et al. Timisoara, Romania: IEEE Press, 2013, pp. 30–36. isbn: 978-1-
4673-5026-6. url: http://kwarc.info/kohlhase/papers/synasc13.pdf.

[RK13] Florian Rabe and Michael Kohlhase. “A Scalable Module System”. In: Information &
Computation 0.230 (2013), pp. 1–54. url: http://kwarc.info/frabe/Research/mmt.
pdf.

[Tur36] Alan Turing. “On computable numbers, with an application to the Entscheidungsprob-
lem”. In: Proceedings of the London Mathematical Society, Series 2 42 (June 1936),
pp. 230–265.

[Wie12] Freek Wiedijk. The “de Bruijn factor”. web page at http://www.cs.ru.nl/~freek/
factor/. Mar. 1, 2012. url: http://www.cs.ru.nl/~freek/factor/.

123

http://www.cs.auckland.ac.nz/CDMTCS/researchreports/350cris.pdf
http://www.cs.auckland.ac.nz/CDMTCS/researchreports/350cris.pdf
http://omdoc.org/pubs/omdoc1.2.pdf
http://omdoc.org/pubs/omdoc1.2.pdf
http://kwarc.info/kohlhase/papers/synasc13.pdf
http://kwarc.info/frabe/Research/mmt.pdf
http://kwarc.info/frabe/Research/mmt.pdf
http://www.cs.ru.nl/~freek/factor/
http://www.cs.ru.nl/~freek/factor/
http://www.cs.ru.nl/~freek/factor/

Index

chunking, 13
content

dictionary, 17

de Bruijn
factor, 8

flexiform, 14
digital

library, 14
fragment, 14
theory, 14

formal
language, 6
space, 13
system, 6

foundation, 7
class of

formal systems, 6

Hilberts
program, 5

induced, 26

Math
creativity

spiral, 3
mathematical

knowledge
space, 33

meaning, 13
MKS, 33
MMT

URI, 26
model

theory, 6
more formal than, 13

proof
calculus, 6

relating, 14
rigorous, 8

spotting, 13

structure, 26
symbol

definition, 17

theory, 26
graph

paradigm, 25

view, 26

124

	Preface
	Course Concept
	Course Contents and Organization
	This Document
	Acknowledgments

	Recorded Syllabus for SS 2018
	1 Administrativa
	2 Overview over the Course
	2.1 Introduction & Motivation
	2.2 Mathematical Formula Search
	2.3 The Mathematical Knowledge Space
	2.4 Modular Representation of mathematical Knowledge
	2.5 Application: Serious Games
	2.6 Search in the Mathematical Knowledge Space

	3 What is (Computational) Logic
	3.1 A History of Ideas in Logic

	I Foundations of Mathematics
	4 Propositional Logic and Inference
	4.1 Propositional Logic (Syntax/Semantics)
	4.2 Calculi for Propositional Logic
	4.3 Propositional Natural Deduction Calculus

	5 First Order Predicate Logic
	5.1 First-Order Logic
	5.1.1 First-Order Logic: Syntax and Semantics
	5.1.2 First-Order Substitutions

	5.2 First-Order Calculi
	5.2.1 Propositional Natural Deduction Calculus

	6 Higher-Order Logic and -Calculus
	6.1 Higher-Order Predicate Logic
	6.2 A better Form of Comprehension and Extensionality
	6.3 Simply Typed -Calculus
	6.4 Simply Typed -Calculus via Inference Systems
	6.5 Simple Type Theory

	7 Axiomatic Set Theory (ZFC)
	7.1 Naive Set Theory
	7.2 ZFC Axioms
	7.3 ZFC Applications

	8 Category Theory
	8.1 Introduction
	8.2 Example/Motivation: Natural Numbers in Category Theorty
	8.3 Universal Constructions in Category Theory

	II Aspects of Knoweldge Reprsentation for Mathematics
	9 Project Tetrapod
	10 The Flexiformalist Program: Introduction
	11 What is formality?
	12 A ``formal'' Theory of Flexiformality
	12.1 Parallel Markup in MathML
	12.2 Parallel Markup in OMDoc
	12.3 Flexible Symbol Grounding in OMDoc

	13 Representing Mathematical Vernacular

	III Summary and Review
	14 Modular Representation of Mathematical Knowledge
	15 Application: Serious Games
	16 Search in the Mathematical Knowledge Space

