
Knowledge Representation for Mathematical/Technical
Knowledge

Summer 2017

Provisional Lecture Notes

Michael Kohlhase

Professur für Wissensrepräsentation und -verarbeitung
Informatik, FAU Erlangen-Nürnberg

Michael.Kohlhase@FAU.de

July 27, 2017

Michael.Kohlhase@FAU.de


i

Preface

Course Concept

Aims: To give students a solid foundation of the basic concepts and practices in representing
mathematical/technical knowledge, so they can do (guided) research in the KWARC group.
Prerequisites: The course builds on the logic courses in the FAU Bachelor’s program, in particular
the course “Grundlagen der Logik in der Informatik”1 EdN:1

Course Contents

Goal: To give students a solid foundation of the basic concepts and practices in representing
mathematical/technical knowledge, so they can do (guided) research in the KWARC group.

This Document

This document contains the course notes for the course Artificial Intelligence held at at FAU
Erlangen in the winter semester 2016/171

Format: The document mixes the slides presented in class with comments of the instructor to give
students a more complete background reference.

Caveat : This document is made available for the students of this course only. It is still
very much a draft and will develop over the course of the current course and in coming academic
years.
Licensing: This document is licensed under a Creative Commons license that requires attribution,
allows commercial use, and allows derivative works as long as these are licensed under the same
license.
Knowledge Representation Experiment: This document is also an experiment in knowledge repre-
sentation. Under the hood, it uses the STEX package [Koh08, Koh16], a TEX/LATEX extension for
semantic markup, which allows to export the contents into the eLearning platform PantaRhei.
Comments and extensions are always welcome, please send them to the author.

Acknowledgments

Materials: All course materials have bee restructured and semantically annotated in the STEX
format, so that we can base additional semantic services on them (see slide 7 for details).
KRMT Students: The following students have submitted corrections and suggestions to this and
earlier versions of the notes:

1EdNote: figure out what happens with Lutz’ Ontologies course
1They are based on a course held at Jacobs University in Fall 2005.



ii

Recorded Syllabus for SS 2017

In this document, we record the progress of the course in the summer semester 2017 in the form
of a “recorded syllabus”, i.e. a syllabus that is created after the fact rather than before.
Recorded Syllabus Summer Semester 2017:
# date until slide page
1 4. May overview, some admin, math search ?? ??
2 8. May framing, theory graphs,content/form ?? ??
3 11. May N,+ in MMT



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Course Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Course Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
This Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Recorded Syllabus for SS 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

1 Administrativa 1

2 Overview over the Course 5
2.1 Introduction & Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Mathematical Formula Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The Mathematical Knowledge Space . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Modular Representation of mathematical Knowledge . . . . . . . . . . . . . . . . . 14
2.5 Application: Serious Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Search in the Mathematical Knowledge Space . . . . . . . . . . . . . . . . . . . . . 17

3 What is (Computational) Logic 21
3.1 A History of Ideas in Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

I Formal Systems 25

4 Logical Systems 29

5 Calculi, Derivations, and Proofs 31

6 Properties of Calculi 33

II First-Order Logic and Inference 35

7 First-Order Logic 37
7.1 First-Order Logic: Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . . 38
7.2 First-Order Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.3 Alpha-Renaming for First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Inference in First-Order Logic 47
8.1 First-Order Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.2 Abstract Consistency and Model Existence . . . . . . . . . . . . . . . . . . . . . . 51
8.3 A Completeness Proof for First-Order ND . . . . . . . . . . . . . . . . . . . . . . . 58
8.4 Limits of First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

iii



iv CONTENTS

III Axiomatic Set Theory (ZFC) 61

9 Naive Set Theory 65

10 ZFC Axioms 69

11 ZFC Applications 75

IV Higher-Order Logic and λ-Calculus 77

12 Higher-Order Predicate Logic 81

13 Simply Typed λ-Calculus 89

14 Computational Properties of λ-Calculus 93
14.1 Termination of β-reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
14.2 Confluence of βη Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

15 The Semantics of the Simply Typed λ-Calculus 101
15.1 Soundness of the Simply Typed λ-Calculus . . . . . . . . . . . . . . . . . . . . . . 101
15.2 Completeness of αβη-Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

16 Simply Typed λ-Calculus via Inference Systems 107

17 Higher-Order Unification 111
17.1 Higher-Order Unifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
17.2 Higher-Order Unification Transformations . . . . . . . . . . . . . . . . . . . . . . . 112
17.3 Properties of Higher-Order Unification . . . . . . . . . . . . . . . . . . . . . . . . . 117
17.4 Pre-Unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
17.5 Applications of Higher-Order Unification . . . . . . . . . . . . . . . . . . . . . . . . 121

18 Simple Type Theory 123

19 Higher-Order Tableaux 127

V Project Tetrapod 135

VI Summary and Review 139

20 Modulare Repr"asentation mathematischen Wissens 141

21 Application: Serious Games 145

22 Search in the Mathematical Knowledge Space 149



Chapter 1

Administrativa

General Admin Disclaimer

� This is the first time this course runs(we have to figure out what works best)

� I am still quite new to FAU (different system than I am used to)

� at a private university for 13 years: Jacobs University Bremen

� at a US University for three years: Carnegie Mellon University

� Saarland University Saarbrücken (but that is soooo long ago)

: Do not trust me on admin issues (rather help me understand)

�� I will do my best to learn quickly.

� We should apply the Reasonable Person Principle both ways!

©:Michael Kohlhase 1 STEX

We will now go through the ground rules for the course. This is a kind of a social contract
between the instructor and the students. Both have to keep their side of the deal to make learning
as efficient and painless as possible.

Prerequisites

� the mandatory courses from Semester 1-4, in particular: (or equivalent)

� course “Grundlagen der Logik in der Informatik” (GLOIN)

� CS Math courses “Mathematik C1-4” (IngMath1-4) (our “domain”)

� algorithms and data structures

� course “Künstliche Intelligenz I” (nice-to-have only)

� Motivation, Interest, Curiosity, hard work

� You can do this course if you want! (and we will help you)

©:Michael Kohlhase 2 STEX

1

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


2 CHAPTER 1. ADMINISTRATIVA

Now we come to a topic that is always interesting to the students: the grading scheme.

Grades

� Academic Assessment: two parts (Portfolio Assessment)

� 20-min oral exam at the end of the semester (50%)

� results of the KRMT lab (50%)

©:Michael Kohlhase 3 STEX

KRMT Lab (Dogfooding our own Techniques)

� (generally) we use the thursday slot to get our hands dirty with actual repre-
sentations.

� Instructor: Dennis Müller (dennis.mueller@fau.de) Room: 11.138, Tel:
85-64053

� Goal: Reinforce what was taught in class and have some fun

� Homeworks: will be small individual problem/programming/proof assignments
(but take time to solve) group submission if and only if explicitly permitted

� Admin: To keep things running smoothly

� Homeworks will be posted on course forum (discussed in the lab)

� No “submission”, but open development on a git repos. (details follow)

� Homework Discipline:

� start early! (many assignments need more than one evening’s work)

� Don’t start by sitting at a blank screen

� Humans will be trying to understand the text/code/math when grading it.

©:Michael Kohlhase 4 STEX

Textbook, Handouts and Information, Forums

� (No) Textbook: Course notes will be posted at http://kwarc.info/teaching/
KRMT

� I mostly prepare them as we go along (semantically preloaded ; research
resource)

� please e-mail me any errors/shortcomings you notice. (improve for the
group)

� Announcements will be posted on the course forum

� https://fsi.cs.fau.de/forum/150-Logikbasierte-Wissensrepraesentation

http://creativecommons.org/licenses/by-sa/2.5/
dennis.mueller@fau.de
http://creativecommons.org/licenses/by-sa/2.5/
http://kwarc.info/teaching/KRMT
http://kwarc.info/teaching/KRMT
https://fsi.cs.fau.de/forum/150-Logikbasierte-Wissensrepraesentation


3

� Check the forum frequently for

� announcements, homeworks, questions

� discussion among your fellow students

©:Michael Kohlhase 5 STEX

Do I need to attend the lectures

� Attendance is not mandatory for the KRMT lecture (official version)

� There are two ways of learning: (both are OK, your mileage may vary)

� Approach B: Read a book/papers

� Approach I: come to the lectures, be involved, interrupt me whenever you
have a question.

The only advantage of I over B is that books/papers do not answer questions

� Approach S: come to the lectures and sleep does not work!

� The closer you get to research, the more we need to discuss!

©:Michael Kohlhase 6 STEX

Next we come to a special project that is going on in parallel to teaching the course. I am using the
coures materials as a research object as well. This gives you an additional resource, but may affect
the shape of the coures materials (which now server double purpose). Of course I can use all the
help on the research project I can get, so please give me feedback, report errors and shortcomings,
and suggest improvements.

Experiment: E-Learning with KWARC Technologies

� My research area: deep representation formats for (mathematical) knowledge

� Application: E-learning systems (represent knowledge to transport it)

� Experiment: Start with this course (Drink my own medicine)

� Re-Represent the slide materials in OMDoc (Open Math Documents)

� Feed it into the PantaRhei system (http://panta.kwarc.info)

� Try it on you all (to get feedback from you)

� Tasks (Unfortunately, I cannot pay you for this; maybe later)

� help me complete the material on the slides (what is missing/would help?)

� I need to remember “what I say”, examples on the board. (take notes)

� Benefits for you (so why should you help?)

� you will be mentioned in the acknowledgements (for all that is worth)

� you will help build better course materials (think of next-year’s students)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://panta.kwarc.info


4 CHAPTER 1. ADMINISTRATIVA

©:Michael Kohlhase 7 STEX

http://creativecommons.org/licenses/by-sa/2.5/


Chapter 2

Overview over the Course

Plot of this Course

� Today: Motivation, Admin, and find out what you already know

� What is logic, knowledge representation

� What is mathematical/technical knowledge

� how can you get involved with research at KWARC

©:Michael Kohlhase 8 STEX

2.1 Introduction & Motivation

Knowledge-Representation and -Processing

� Definition 2.1.1 (True and Justified Belief) Knowledge is a body of
facts, theories, and rules available to persons or groups that are so well
justified that their validity/truth is assumed.

� Definition 2.1.2 Knowledge representation formulates knowledge in a for-
mal language so that new knowledge can be induced by inferred via rule
systems (inference).

� Definition 2.1.3 We call an information system knowledge-based, if a
large part of its behaviour is based on inference on represented knowledge.

� Definition 2.1.4 The field of knowledge processing studies knowledge-
based systems, in particular

� compilation and structuring of explicit/implicit knowledge (knowledge
acquisition)

� formalization and mapping to realization in computers (knowledge rep-
resentation)

� processing for problem solving (inference)

� presentation of knowledge (informationvisualization)

5

http://creativecommons.org/licenses/by-sa/2.5/


6 CHAPTER 2. OVERVIEW OVER THE COURSE

� knowledge representation and processing are subfields of symbolic artificial
intelligence

©:Michael Kohlhase 9 STEX

Mathematical Knowledge (Representation and -Processing)

� KWARC (my research group) develops foundations, methods, and applications
for the representation and processing of mathematical knowledge

� Mathematics plays a fundamental role in Science and Technology(practice
with maths, apply in STEM)

� mathematical knowledge is rich in content, sophisticated in structure, and
explicitly represented . . .

� . . . , and we know exactly what we are talking about (in contrast to
economics or love)

Working Definition: Everything we understand well is “mathematics” (e.g. CS,
Physics, . . . )

�� There is a lot of mathematical knowledge

� 120,000 Articles are published in pure/applied mathematics (3.5 millions
so far)

� 50 Millionen science articles in 2010 [Jin10] with a doubling time of
8-15 years [LvI10]

� 1 M Technical Reports on http://ntrs.nasa.gov/ (e.g. the Apollo
reports)

� a Boeing-Ingenieur tells of a similar collection (but in Word 3,4,5,. . . )

©:Michael Kohlhase 10 STEX

About Humans and Computers in Mathematics

� Computers and Humans have complementary strengths.

� Computers can handle large data and computations flawlessly at enormous
speeds.

� Humans can sense the environment, react to unforeseen circumstances and
use their intuitions to guide them through only partially understood situa-
tions.

In mathematics: we exploit this, we

� � let humans explore mathematical theories and come up with novel insight-
s/proofs,

� delegate symbolic/numeric computation and typesetting of documents to
computers.

http://creativecommons.org/licenses/by-sa/2.5/
http://ntrs.nasa.gov/
http://creativecommons.org/licenses/by-sa/2.5/


2.2. MATHEMATICAL FORMULA SEARCH 7

� (sometimes) delegate proof checking and search for trivial proofs to com-
puters

Overlooked Opportunity: management of existing mathematical knowledge

� � cataloguing, retrieval, refactoring, plausibilization, change propagation and
in some cases even application do not require (human) insights and intuition

� can even be automated in the near future given suitable representation
formats and algorithms.

Math. Knowledge Management (MKM): is the discipline that studies this.

�� Application: Scaling Math beyond the One-Brain-Barrier

©:Michael Kohlhase 11 STEX

The One-Brain-Barrier

� Observation 2.1.5 More than 105 math articles published annually in Math.

� Observation 2.1.6 The libraries of Mizar, Coq, Isabelle,. . . have∼ 105 state-
ments+proofs each. (but are mutually
incompatible)

� Consequence: humans lack overview over – let alone working knowledge in –
all of math/formalizations. (Leonardo da Vinci was said to be the last who
had)

� Dire Consequences: duplication of work and missed opportunities for the ap-
plication of mathematical/formal results.

� Problem: Math Information systems like arXiv.org, Zentralblatt Math, Math-
SciNet, etc. do not help (only make documents
available)

� Fundamenal Problem: the One-Brain Barrier (OBB)

� To become productive, math must pass through a brain

� Human brains have limited capacity (compared to knowledge available
online)

� Idea: enlist computers (large is what they are good at)

� Prerequisite: make math knowledge machine-actionable & foundation-independent
(use MKM)

©:Michael Kohlhase 12 STEX

2.2 Mathematical Formula Search

http://creativecommons.org/licenses/by-sa/2.5/
arXiv.org
http://creativecommons.org/licenses/by-sa/2.5/


8 CHAPTER 2. OVERVIEW OVER THE COURSE

More Mathematics on the Web

� The Connexions project (http://cnx.org)

� Wolfram Inc. (http://functions.wolfram.com)

� Eric Weisstein’s MathWorld (http://mathworld.wolfram.com)

� Digital Library of Mathematical Functions (http://dlmf.nist.gov)

� Cornell ePrint arXiv (http://www.arxiv.org)

� Zentralblatt Math (http://www.zentralblatt-math.org)

� . . . Engineering Company Intranets, . . .

� Question: How will we find content that is relevant to our needs

� Idea: try Google (like we always do)

� Scenario: Try finding the distributivity property for Z (∀ k, l,m ∈
Z k · (l +m) = (k · l) + (k +m))

©:Michael Kohlhase 13 STEX

Searching for Distributivity

©:Michael Kohlhase 14 STEX

Searching for Distributivity

http://cnx.org
http://functions.wolfram.com
http://mathworld.wolfram.com
http://dlmf.nist.gov
http://www.arxiv.org
http://www.zentralblatt-math.org
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


2.2. MATHEMATICAL FORMULA SEARCH 9

©:Michael Kohlhase 15 STEX

Searching for Distributivity

©:Michael Kohlhase 16 STEX

Does Image Search help?

� Math formulae are visual objects, after all (let’s try it)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


10 CHAPTER 2. OVERVIEW OVER THE COURSE

©:Michael Kohlhase 17 STEX

Of course Google cannot work out of the box

� Formulae are not words:

� a, b, c, k, l, m, x, y, and z are (bound) variables. (do not behave like
words/symbols)

� where are the word boundaries for “bag-of-words” methods?

� Formulae are not images either: They have internal (recursive) structure and
compositional meaning

� Idea: Need a special treatment for formulae (translate into “special words”)
Indeed this is done ([MY03, MM06, LM06, MG11])
. . . and works surprisingly well (using e.g. Lucene as an indexing engine)

� Idea: Use database techniques (extract metadata and index it)

Indeed this is done for the Coq/HELM corpus ([AGC+06])

� Our Idea: Use Automated Reasoning Techniques (free term indexing from
theorem prover jails)

� Demo: MathWebSearch on Zentralblatt Math, the arXiv Data Set

©:Michael Kohlhase 18 STEX

A running example: The Power of a Signal

� An engineer wants to compute the power of a given signal s(t)

� She remembers that it involves integrating the square of s.

http://creativecommons.org/licenses/by-sa/2.5/
https://zbmath.org/formulae/
http://arxivsearch.mathweb.org
http://creativecommons.org/licenses/by-sa/2.5/


2.2. MATHEMATICAL FORMULA SEARCH 11

� Problem: But how to compute the necessary integrals

� Idea: call up MathWebSearch with
∫ ?

?
s2(t)dt.

� MathWebSearch finds a document about Parseval’s Theorem and 1
T

∫ T
0
s2(t)dt =

Σ∞k=−∞|ck|2 where ck are the Fourier coefficients of s(t).

©:Michael Kohlhase 19 STEX

Some other Problems (Why do we need more?)

� Substitution Instances: search for x2 + y2 = z2, find 32 + 42 = 52

� Homonymy:
(
n
k

)
, nCk, Cnk , and C

k
n all mean the same thing(binomial coeff.)

� Solution: use content-based representations (MathML, OpenMath)

� Mathematical Equivalence: e.g.
∫
f(x)dx means the same as

∫
f(y)dy (α-

equivalence)

� Solution: build equivalence (e.g. α or ACI) into the search engine (or
normalize first [Normann’06])

� Subterms: Retrieve formulae by specifying some sub-formulae

� Solution: record locations of all sub-formulae as well

©:Michael Kohlhase 20 STEX

MathWebSearch: Search Math. Formulae on the Web

� Idea 1: Crawl the Web for math. formulae (in OpenMath or CMathML)

� Idea 2: Math. formulae can be represented as first order terms (see below)

� Idea 3: Index them in a substitution tree index (for efficient retrieval)

� Problem: Find a query language that is intuitive to learn

� Idea 4: Reuse the XML syntax of OpenMath and CMathML, add variables

©:Michael Kohlhase 21 STEX

Statt einer Demo: Wir suchen ein Integral

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


12 CHAPTER 2. OVERVIEW OVER THE COURSE

©:Michael Kohlhase 22 STEX

Statt einer Demo: Suchresultate

©:Michael Kohlhase 23 STEX

2.3 The Mathematical Knowledge Space

The way we do math will change dramatically

� Definition 2.3.1 (Doing Math) Buchberger’s Math creativity spiral

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


2.3. THE MATHEMATICAL KNOWLEDGE SPACE 13

Spiral

The

Creativity

Compute/
Experiment

Specify/
Formalize

Prove

Visualize

Conjecture

Mathematical
Creativity 
Spiral
[Buchberger 1995]

Com−
munication

Publication

Teaching

Application

� Every step will be supported by mathematical software systems

� Towards an infrastructure for web-based mathematics!

©:Michael Kohlhase 24 STEX

Mathematical Literacy

� Note: the form and extent of knowledge representation for the components of
“doing math” vary greatly. (e.g. publication vs. proving)

� Observation 2.3.2 (Primitive Cognitive Actions)
To “do mathematics”, we need to

� extract the relevant structures,

� reconcile them with the context of our existing knowledge

� recognize parts as already known

� identify parts that are new to us.

During these processes mathematicians (are trained to)

� abstract from syntactic differences, and

� employ interpretations via non-trivial, but meaning-preserving mappings

� Definition 2.3.3 We call the skillset that identifies mathematical training
mathematical literacy (cf. Observation 2.3.2)

©:Michael Kohlhase 25 STEX

Introduction: Framing as a Mathematical Practice

� Understanding Mathematical Practices:

� To understand Math, we must understand what mathematicians do!

� The value of a math education is more in the skills than in the knowledge.

� Have been interested in this for a while (see [KK06])

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


14 CHAPTER 2. OVERVIEW OVER THE COURSE

� Framing: Understand new objects in terms of already understood structures.
Make creative use of this perspective in problem solving.

� Example 2.3.4 Understand point sets in 3-space as zeroes of polynomials.
Derive insights by studying the algebraic properties of polynomials.

� Definition 2.3.5 We are framing the point sets as algebraic varieties (sets
of zeroes of polynomials).

� Example 2.3.6 (Lie group) Equipping a differentiable manifold with a
(differentiable) group operation

� Example 2.3.7 (Stone’s representation theorem) Interpreting a Boolean
algebra as a field of sets.

� Claim: Framing is valuable, since it transports insights between fields.

� Claim: Many famous theorems earn their recognition because they establish
profitable framings.

©:Michael Kohlhase 26 STEX

2.4 Modular Representation of mathematical Knowledge

Modular Representation of Math (Theory Graph)

� Idea: Follow mathematical practice of generalizing and framing

� framing: If we can view an object a as an instance of concept B, we can
inherit all of B properties (almost for free.)

� state all assertions about properties as general as possible (to maximize
inheritance)

� examples and applications are just special framings.

� Modern expositions of Mathematics follow this rule (radically e.g. in
Bourbaki)

� formalized in the theory graph paradigm (little/tiny theory doctrine)

� theories as collections of symbol declarations and axioms (model
assumptions)

� theory morphisms as mappings that translate axioms into theorems

� Example 2.4.1 (MMT: Modular Mathematical Theories) MMT is
a foundation-indepent theory graph formalism with advanced theory mor-
phisms.

Problem: With a proliferation of abstract (tiny) theories readability and acces-
sibility suffers (one reason why the Bourbaki books fell out of
favor)

©:Michael Kohlhase 27 STEX

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


2.5. APPLICATION: SERIOUS GAMES 15

�Modular Representation of Math (MMT Example)

Magma
G, ◦
x◦y∈G

SemiGrp

assoc:(x◦y)◦z=x◦(y◦z)

Monoid
e
e◦x=x

Group
i :=λx.τy.x◦y=e
∀x:G.∃y:G.x◦y=e

NonGrpMon

∃x:G.∀y:G.x◦y 6=e

CGroup

comm:x◦y=y◦x

Ring

x m/◦ (y a/◦ z)=(x m/◦ y) a/◦ (x m/◦ z)

NatNums
N, s, 0
P1,. . .P5

NatPlus
+
n+0=n,
n+s(m)=s(n+m)

NatTimes
·
n·1=n,
n·s(m)=n·m+n

IntArith
−
Z := p/N ∪ n/N
−0=0

ϕ =

 G 7→ N
◦ 7→ ·
e 7→ 1


ψ =

 G 7→ N
◦ 7→ +
e 7→ 0


ψ′ =

{
i 7→ −
g 7→ f

}
ϑ =

{
m 7→ e
a 7→ c

}

p n

e :ϕ

f :ψ

d :ψ′

g

c :ϕ

ng

a

m

i : ϑ

{x ◦ y 7→ y ◦ x}

{x ◦ y 7→ y ◦ x}

©:Michael Kohlhase 28 STEX

2.5 Application: Serious Games

Framing for Problem Solving (The FrameIT Method)

� Example 2.5.1 (Problem 0.8.15)

How can you measure the height of a tree you cannot
climb, when you only have a protactor and a tape
measure at hand.

� Framing: view the problem as one that is already understood (using theory
morphisms)

PlanarGeo

PGP

PGSProblem

SOL

Forestry

q

p′ :ϕ

p :ϕ

q′

� squiggly (framing) morphisms guaranteed by metatheory of theories!

http://creativecommons.org/licenses/by-sa/2.5/


16 CHAPTER 2. OVERVIEW OVER THE COURSE

©:Michael Kohlhase 29 STEX

Example Learning Object Graph

Generate [0]

Generate [3]

Generate [2]Fact Discovery

Interaction

ϕ

[π/p]
[A/a]
[B/b]
[C/c]

[|AB|/|ab|]
[∠CAB/∠cab]


=: ϕ

Generate [1]

Game World
User Knowledge New Knowledge

MMT

Game Solution

A

C

B

D

α AB

h = 10.0m

Game Problem

h =?

Explored World

A

C

B

D

h =?

Scrolls

find
a b

c
such that ab ⊥ bc then

a b

c

α
→ |bc| = |ab| · tan(α)

Solution Pushout

A

C

B

D

α AB

|BC| = 10.0 · tan(45◦) = 10.0

Situation Theory

A

C

B

D

α AB

Situation Theory

A,B,C : point
|AB| : R = 10.0
∠CAB : R = 45◦

π : ` AB ⊥ BC

Solution Theory

a b

c

α

|bc| = |ab| · tan(∠cab)

Problem Theory

a b

c

p : ` ab ⊥ bc

Forestry
vertical (tree)
horizontal (ground)

...

Planar Geometry
point : type
line : point → point → line
|ab| : line → R
⊥ : line → line → bool

...

©:Michael Kohlhase 30 STEX

FrameIT: Problem Solving by Framing ; Serious Games

� Implementation in custom web interface (Bachelor’s thesis)

Currently: Minecraft mod (problem/solution pairs as objects that can be
applied for automation)

©:Michael Kohlhase 31 STEX

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


2.6. SEARCH IN THE MATHEMATICAL KNOWLEDGE SPACE 17

� Combining Problem/Solution Pairs

� We can use the same mechanism for combining P/S pairs

� create more complex P/S pairs (e.g. for trees on slopes)

©:Michael Kohlhase 32 STEX

Another whole set of applications and game behaviors can come from the fact that LOGraphs
give ways to combine problem/solution pairs to novel ones. Consider for instance the diagram
on the right, where we can measure the height of a tree of a slope. It can be constructed by
combining the theory SOL with a copy of SOL along a second morphism the inverts h to −h (for
the lower triangle with angle β) and identifies the base lines (the two occurrences of h0 cancel
out). Mastering the combination of problem/solution pairs further enhances the problem solving
repertoire of the player.

2.6 Search in the Mathematical Knowledge Space

The Mathematical Knowledge Space
� Observation 2.6.1 The value of framing is that
it induces new knowledge

� Definition 2.6.2 The mathematical knowledge
space MKS is the structured space of represented
and induced knowledge, mathematically literate
have access to.

induced

rep.

� Idea: make math systems mathematically literate by supporting the MKS

� In this talk: I will cover three aspects

� an approach for representing framing and the MKS (OMDoc/MMT)

� search modulo framing (MKS-literate search)

� a system for archiving the MKS (MathHub.info)

� Told from the Perspective of: searching the MKS

©:Michael Kohlhase 33 STEX

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


18 CHAPTER 2. OVERVIEW OVER THE COURSE

Modular Representation of Math (MMT Example)

Magma
G, ◦
x◦y∈G

SemiGrp

assoc:(x◦y)◦z=x◦(y◦z)

Monoid
e
e◦x=x

Group
i :=λx.τy.x◦y=e
∀x:G.∃y:G.x◦y=e

NonGrpMon

∃x:G.∀y:G.x◦y 6=e

CGroup

comm:x◦y=y◦x

Ring

x m/◦ (y a/◦ z)=(x m/◦ y) a/◦ (x m/◦ z)

NatNums
N, s, 0
P1,. . .P5

NatPlus
+
n+0=n,
n+s(m)=s(n+m)

NatTimes
·
n·1=n,
n·s(m)=n·m+n

IntArith
−
Z := p/N ∪ n/N
−0=0

ϕ =

 G 7→ N
◦ 7→ ·
e 7→ 1


ψ =

 G 7→ N
◦ 7→ +
e 7→ 0


ψ′ =

{
i 7→ −
g 7→ f

}
ϑ =

{
m 7→ e
a 7→ c

}

p n

e :ϕ

f :ψ

d :ψ′

g

c :ϕ

ng

a

m

i : ϑ

{x ◦ y 7→ y ◦ x}

{x ◦ y 7→ y ◦ x}

©:Michael Kohlhase 34 STEX

[ search on the LATIN Logic Atlas

� Flattening the LATIN Atlas (once):

type modular flat factor
declarations 2310 58847 25.4
library size 23.9 MB 1.8 GB 14.8
math sub-library 2.3 MB 79 MB 34.3
MathWebSearch harvests 25.2 MB 539.0 MB 21.3

induced

repd

� simple [ search frontend at http://cds.omdoc.org:8181/search.html

http://creativecommons.org/licenses/by-sa/2.5/
http://cds.omdoc.org:8181/search.html


2.6. SEARCH IN THE MATHEMATICAL KNOWLEDGE SPACE 19

©:Michael Kohlhase 35 STEX

Overview: KWARC Research and Projects

Applications: eMath 3.0, Active Documents, Semantic Spreadsheets, Semantic
CAD/CAM, Change Mangagement, Global Digital Math Library, Math Search Sys-
tems, SMGloM: Semantic Multilingual Math Glossary, Serious Games, . . .
Foundations of Math:

� MathML, OpenMath

� advanced Type Theories

� MMT: Meta Meta The-
ory

� Logic Morphisms/Atlas

� Theorem Prover/CAS In-
teroperability

KM & Interaction:
� Semantic Interpretation
(aka. Framing)

� math-literate interaction

� MathHub: math archi-
ves & active docs

� Semantic Alliance: em-
bedded semantic services

Semantization:
� LATEXML: LATEX→ XML

� STEX: Semantic LATEX

� invasive editors

� Context-Aware IDEs

� Mathematical Corpora

� Linguistics of Math

Foundations: Computational Logic, Web Technologies, OMDoc/MMT

©:Michael Kohlhase 36 STEX

Take-Home Message

� Overall Goal: Overcoming the “One-Brain-Barrier” in Mathematics (by
knowledge-based systems)

� Means: Mathematical Literacy by Knowledge Representation and Processing
in theory graphs in Theoriegraphen. (Framing as mathematical practice)

©:Michael Kohlhase 37 STEX

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


20 CHAPTER 2. OVERVIEW OVER THE COURSE



Chapter 3

What is (Computational) Logic

What is (Computational) Logic?

� The field of logic studies representation languages, inference systems, and their
relation to the world.

� It dates back and has its roots in Greek philosophy (Aristotle et al.)

� Logical calculi capture an important aspect of human thought, and make it
amenable to investigation with mathematical rigour, e.g. in

� foundation of mathematics (Hilbert, Russell and Whitehead)

� foundations of syntax and semantics of language(Creswell, Montague, . . . )

� Logics have many practical applications

� logic/declarative programming (the third programming paradigm)

� program verification: specify conditions in logic, prove program correctness

� program synthesis: prove existence of answers constructively, extract pro-
gram from proof

� proof-carrying code: compiler proves safety conditions, user verifies before
running.

� deductive databases: facts + rules (get more out than you put in)

� semantic web: the Web as a deductive database

� Computational Logic is the study of logic from a computational, proof-theoretic
perspective. (model theory is mostly comprised under “mathematical logic”.)

©:Michael Kohlhase 38 STEX

What is Logic?

� Logic =̂ formal languages, inference and their relation with the world

� Formal language FL: set of formulae (2 + 3/7, ∀x.x+ y = y + x)

� Formula: sequence/tree of symbols (x, y, f, g, p, 1, π,∈,¬, ∧∀,∃)

21

http://creativecommons.org/licenses/by-sa/2.5/


22 CHAPTER 3. WHAT IS (COMPUTATIONAL) LOGIC

� Models: things we understand (e.g. number theory)

� Interpretation: maps formulae into models ([[three plus five]] = 8)

� Validity: M |= A, iff [[A]]
M

= T (five greater three is valid)

� Entailment: A |= B, iffM |= B for allM |= A. (generalize to H |= A)

� Inference rules to transform (sets of) formulae (A,A⇒B ` B)

� Syntax: formulae, inference (just a bunch of symbols)

� Semantics: models, interpr., validity, entailment (math. structures)

Important Question: relation between syntax and semantics?

©:Michael Kohlhase 39 STEX

So logic is the study of formal representations of objects in the real world, and the formal state-
ments that are true about them. The insistence on a formal language for representation is actually
something that simplifies life for us. Formal languages are something that is actually easier to
understand than e.g. natural languages. For instance it is usually decidable, whether a string is
a member of a formal language. For natural language this is much more difficult: there is still
no program that can reliably say whether a sentence is a grammatical sentence of the English
language.
We have already discussed the meaning mappings (under the monicker “semantics”). Meaning
mappings can be used in two ways, they can be used to understand a formal language, when we
use a mapping into “something we already understand”, or they are the mapping that legitimize a
representation in a formal language. We understand a formula (a member of a formal language)
A to be a representation of an object O, iff [[A]] = O.
However, the game of representation only becomes really interesting, if we can do something with
the representations. For this, we give ourselves a set of syntactic rules of how to manipulate the
formulae to reach new representations or facts about the world.
Consider, for instance, the case of calculating with numbers, a task that has changed from a difficult
job for highly paid specialists in Roman times to a task that is now feasible for young children.
What is the cause of this dramatic change? Of course the formalized reasoning procedures for
arithmetic that we use nowadays. These calculi consist of a set of rules that can be followed
purely syntactically, but nevertheless manipulate arithmetic expressions in a correct and fruitful
way. An essential prerequisite for syntactic manipulation is that the objects are given in a formal
language suitable for the problem. For example, the introduction of the decimal system has been
instrumental to the simplification of arithmetic mentioned above. When the arithmetical calculi
were sufficiently well-understood and in principle a mechanical procedure, and when the art of
clock-making was mature enough to design and build mechanical devices of an appropriate kind,
the invention of calculating machines for arithmetic by Wilhelm Schickard (1623), Blaise Pascal
(1642), and Gottfried Wilhelm Leibniz (1671) was only a natural consequence.

We will see that it is not only possible to calculate with numbers, but also with representations
of statements about the world (propositions). For this, we will use an extremely simple example;
a fragment of propositional logic (we restrict ourselves to only one logical connective) and a small
calculus that gives us a set of rules how to manipulate formulae.

3.1 A History of Ideas in Logic

Before starting with the discussion on particular logics and inference systems, we put things into
perspective by previewing ideas in logic from a historical perspective. Even though the presentation
(in particular syntax and semantics) may have changed over time, the underlying ideas are still
pertinent in today’s formal systems.

http://creativecommons.org/licenses/by-sa/2.5/


3.1. A HISTORY OF IDEAS IN LOGIC 23

Many of the source texts of the ideas summarized in this Section can be found in [vH67].

� History of Ideas (abbreviated): Propositional Logic

� General Logic ([ancient Greece, e.g. Aristotle])

+ conceptual separation of syntax and semantics

+ system of inference rules (“Syllogisms”)

– no formal language, no formal semantics

� Propositional Logic [Boole ∼ 1850]

+ functional structure of formal language (propositions + connectives)

+ mathematical semantics (; Boolean Algebra)

– abstraction from internal structure of propositions

©:Michael Kohlhase 40 STEX

History of Ideas (continued): Predicate Logic

� Frege’s “Begriffsschrift” [Fre79]

+ functional structure of formal language (terms, atomic formulae,
connectives, quantifiers)

– weird graphical syntax, no mathematical semantics

– paradoxes e.g. Russell’s Paradox [R. 1901] (the set of sets that do not
contain themselves)

� modern form of predicate logic [Peano ∼ 1889]

+ modern notation for predicate logic (∨,∧,⇒,∀,∃)

©:Michael Kohlhase 41 STEX

History of Ideas (continued): First-Order Predicate Logic

� Types ([Russell 1908])

– restriction to well-types expression

+ paradoxes cannot be written in the system

+ Principia Mathematica ([Whitehead, Russell 1910])

� Identification of first-order Logic ([Skolem, Herbrand, Gödel ∼ 1920 – ’30])

– quantification only over individual variables (cannot write down induction
principle)

+ correct, complete calculi, semi-decidable

+ set-theoretic semantics ([Tarski 1936])

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


24 CHAPTER 3. WHAT IS (COMPUTATIONAL) LOGIC

©:Michael Kohlhase 42 STEX

History of Ideas (continued): Foundations of Mathematics

� Hilbert’s Program: find logical system and calculus, ([Hilbert ∼ 1930])

� that formalizes all of mathematics

� that admits sound and complete calculi

� whose consistence is provable in the system itself

� Hilbert’s Program is impossible! ([Gödel 1931])

Let L be a logical system that formalizes arithmetics (〈NaturalNumbers,+, ∗〉),

� then L is incomplete

� then the consistence of L cannot be proven in L.

©:Michael Kohlhase 43 STEX

History of Ideas (continued): λ-calculus, set theory

� Simply typed λ-calculus ([Church 1940])

+ simplifies Russel’s types, λ-operator for functions

+ comprehension as β-equality (can be mechanized)

+ simple type-driven semantics (standard semantics ; incompleteness)

� Axiomatic set theory

+– type-less representation (all objects are sets)

+ first-order logic with axioms

+ restricted set comprehension (no set of sets)

– functions and relations are derived objects

©:Michael Kohlhase 44 STEX

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Part I

Formal Systems

25





27

To prepare the ground for the particular developments coming up, let us spend some time on
recapitulating the basic concerns of formal systems.



28



Chapter 4

Logical Systems

The notion of a logical system is at the basis of the field of logic. In its most abstract form, a logical
system consists of a formal language, a class of models, and a satisfaction relation between models
and expressions of the formal lanugage. The satisfaction relation tells us when an expression is
deemed true in this model.

Logical Systems

� Definition 4.0.1 A logical system is a triple S := 〈L,K, |=〉, where L is
a formal language, K is a set and |=⊆K×L. Members of L are called
formulae of S, members of K models for S, and |= the satisfaction relation.

� Definition 4.0.2 Let S := 〈L,K, |=〉 be a logical system, M ∈ K be a
model and A ∈ L a formula, then we call A

� satisfied byM, iffM |= A

� falsified byM, iffM 6|= A

� satisfiable in K, iffM |= A for some modelM∈ K.
� valid in K (write |=M), iffM |= A for all modelsM∈ K
� falsifiable in K, iffM 6|= A for someM∈ K.
� unsatisfiable in K, iffM 6|= A for allM∈ K.

©:Michael Kohlhase 45 STEX

Entailment

� Definition 4.0.3 Let S := 〈L,K, |=〉 be a logical system, then we define
the entailment relation |=⊆L∗×L. We say that a set H⊆L of formulae
entails B (written H |= B), iff we haveM |= B for all A ∈ H and models
M∈ K withM |= A.

� Observation 4.0.4 (Entailment conserves Validity) If A |= B and
M |= A, thenM |= B.

� Observation 4.0.5 (Entailment is monotonic) If H |= B and H⊆K,
then K |= B.

29

http://creativecommons.org/licenses/by-sa/2.5/


30 CHAPTER 4. LOGICAL SYSTEMS

©:Michael Kohlhase 46 STEX

Example 4.0.6 (First-Order Logic as a Logical System) Let L := wff o(Σ), K be the class
of first-order models, andM |= A :⇔ Iϕ(A) = T, then 〈L,K, |=〉 is a logical system in the sense
of Definition 4.0.1.

Note that central notions like the entailment relation (which is central for understanding reasoning
processes) can be defined independently of the concrete compositional setup we have used for first-
order logic, and only need the general assumptions about logical systems.
Let us now turn to the syntactical counterpart of the entailment relation: derivability in a calculus.
Again, we take care to define the concepts at the general level of logical systems.

http://creativecommons.org/licenses/by-sa/2.5/


Chapter 5

Calculi, Derivations, and Proofs

The intuition of a calculus is that it provides a set of syntactic rules that allow to reason by
considering the form of propositions alone. Such rules are called inference rules, and they can be
strung together to derivations — which can alternatively be viewed either as sequences of formulae
where all formulae are justified by prior formulae or as trees of inference rule applications. But we
can also define a calculus in the more general setting of logical systems as an arbitrary relation on
formulae with some general properties. That allows us to abstract away from the homomorphic
setup of logics and calculi and concentrate on the basics.

Derivation Systems and Inference Rules

� Definition 5.0.1 Let S := 〈L,K, |=〉 be a logical system, then we call a
relation `⊆P(L)×L a derivation relation for S, if it

� is proof-reflexive, i.e. H ` A, if A ∈ H;
� is proof-transitive, i.e. if H ` A and H′ ∪{A} ` B, then H∪H′ ` B;

� monotonic (or admits weakening), i.e. H ` A andH⊆H′ implyH′ ` A.

� Definition 5.0.2 We call 〈L,K, |=,`〉 a formal system, iff S := 〈L,K, |=〉
is a logical system, and ` a derivation relation for S.

� Definition 5.0.3 Let L be a formal language, then an inference rule over
L

A1 · · · An

C
N

where A1, . . . ,An and C are formula schemata for L and N is a name.
The Ai are called assumptions, and C is called conclusion.

� Definition 5.0.4 An inference rule without assumptions is called an axiom
(schema).

� Definition 5.0.5 Let S := 〈L,K, |=〉 be a logical system, then we call a
set C of inference rules over L a calculus for S.

©:Michael Kohlhase 47 STEX

With formula schemata we mean representations of sets of formulae, we use boldface uppercase
letters as (meta)-variables for formulae, for instance the formula schema A⇒B represents the set
of formulae whose head is ⇒.

31

http://creativecommons.org/licenses/by-sa/2.5/


32 CHAPTER 5. CALCULI, DERIVATIONS, AND PROOFS

Derivations and Proofs

� Definition 5.0.6 Let S := 〈L,K, |=〉 be a logical system and C a calculus
for S, then a C-derivation of a formulaC ∈ L from a setH⊆L of hypotheses
(write H `C C) is a sequence A1, . . . ,Am of L-formulae, such that

� Am = C, (derivation culminates in C)

� for all 1≤i≤m, either Ai ∈ H, or (hypothesis)

� there is an inference rule
Al1 · · · Alk

Ai
in C with lj < i for all j≤k.(rule

application)

Observation: We can also see a derivation as a tree, where the Alj are the
children of the node Ak.

��

Example 5.0.7 In the propositional Hilbert
calculus H0 we have the derivation P `H0

Q⇒P : the sequence is P ⇒Q⇒P , P ,Q⇒P
and the corresponding tree on the right.

K
P ⇒Q⇒P P

MP
Q⇒P

� Observation 5.0.8 Let S := 〈L,K, |=〉 be a logical system and C a calcu-
lus for S, then the C-derivation relation `D defined in Definition 5.0.6 is a
derivation relation in the sense of Definition 5.0.1.2

� Definition 5.0.9 We call 〈L,K, |=, C〉 a formal system, iff S := 〈L,K, |=〉
is a logical system, and C a calculus for S.

� Definition 5.0.10 A derivation ∅ `C A is called a proof of A and if one
exists (write `C A) then A is called a C-theorem.

� Definition 5.0.11 an inference rule I is called admissible in C, if the ex-
tension of C by I does not yield new theorems.

©:Michael Kohlhase 48 STEX

bEdNote: MK: this should become a view!

Inference rules are relations on formulae represented by formula schemata (where boldface, upper-
case letters are used as meta-variables for formulae). For instance, in Example 5.0.7 the inference

rule
A⇒B A

B
was applied in a situation, where the meta-variables A and B were instantiated

by the formulae P and Q⇒P .
As axioms do not have assumptions, they can be added to a derivation at any time. This is just
what we did with the axioms in Example 5.0.7.

http://creativecommons.org/licenses/by-sa/2.5/


Chapter 6

Properties of Calculi

In general formulae can be used to represent facts about the world as propositions; they have a
semantics that is a mapping of formulae into the real world (propositions are mapped to truth
values.) We have seen two relations on formulae: the entailment relation and the deduction
relation. The first one is defined purely in terms of the semantics, the second one is given by a
calculus, i.e. purely syntactically. Is there any relation between these relations?

Soundness and Completeness

� Definition 6.0.1 Let S := 〈L,K, |=〉 be a logical system, then we call a
calculus C for S

� sound (or correct), iff H |= A, whenever H `C A, and

� complete, iff H `C A, whenever H |= A.

� Goal: ` A iff |=A (provability and validity coincide)

� To TRUTH through PROOF (CALCULEMUS [Leibniz ∼1680])

©:Michael Kohlhase 49 STEX

Ideally, both relations would be the same, then the calculus would allow us to infer all facts that
can be represented in the given formal language and that are true in the real world, and only
those. In other words, our representation and inference is faithful to the world.

A consequence of this is that we can rely on purely syntactical means to make predictions
about the world. Computers rely on formal representations of the world; if we want to solve a
problem on our computer, we first represent it in the computer (as data structures, which can be
seen as a formal language) and do syntactic manipulations on these structures (a form of calculus).
Now, if the provability relation induced by the calculus and the validity relation coincide (this will
be quite difficult to establish in general), then the solutions of the program will be correct, and
we will find all possible ones.

33

http://creativecommons.org/licenses/by-sa/2.5/


34 CHAPTER 6. PROPERTIES OF CALCULI

Of course, the logics we have studied so far are very simple, and not able to express interesting
facts about the world, but we will study them as a simple example of the fundamental problem of
Computer Science: How do the formal representations correlate with the real world.
Within the world of logics, one can derive new propositions (the conclusions, here: Socrates is
mortal) from given ones (the premises, here: Every human is mortal and Sokrates is human).
Such derivations are proofs.
In particular, logics can describe the internal structure of real-life facts; e.g. individual things,
actions, properties. A famous example, which is in fact as old as it appears, is illustrated in the
slide below.

The miracle of logics

� Purely formal derivations are true in the real world!

©:Michael Kohlhase 50 STEX

If a logic is correct, the conclusions one can prove are true (= hold in the real world) whenever
the premises are true. This is a miraculous fact (think about it!)

http://creativecommons.org/licenses/by-sa/2.5/


Part II

First-Order Logic and Inference

35





Chapter 7

First-Order Logic

First-order logic is the most widely used formal system for modelling knowledge and inference
processes. It strikes a very good bargain in the trade-off between expressivity and conceptual
and computational complexity. To many people first-order logic is “the logic”, i.e. the only logic
worth considering, its applications range from the foundations of mathematics to natural language
semantics.

First-Order Predicate Logic (PL1)

� Coverage: We can talk about (All humans are mortal)

� individual things and denote them by variables or constants

� properties of individuals, (e.g. being human or mortal)

� relations of individuals, (e.g. sibling_of relationship)

� functions on individuals, (e.g. the father_of function)

We can also state the existence of an individual with a certain property, or the
universality of a property.

� But we cannot state assertions like

� There is a surjective function from the natural numbers into the reals.

� First-Order Predicate Logic has many good properties (complete calculi,
compactness, unitary, linear unification,. . . )

� But too weak for formalizing: (at least directly)

� natural numbers, torsion groups, calculus, . . .

� generalized quantifiers (most, at least three, some,. . . )

©:Michael Kohlhase 51 STEX

We will now introduce the syntax and semantics of first-order logic. This introduction differs
from what we commonly see in undergraduate textbooks on logic in the treatment of substitutions
in the presence of bound variables. These treatments are non-syntactic, in that they take the
renaming of bound variables (α-equivalence) as a basic concept and directly introduce capture-
avoiding substitutions based on this. But there is a conceptual and technical circularity in this
approach, since a careful definition of α-equivalence needs substitutions.

37

http://creativecommons.org/licenses/by-sa/2.5/


38 CHAPTER 7. FIRST-ORDER LOGIC

In this Chapter we follow Peter Andrews’ lead from [And02] and break the circularity by intro-
ducing syntactic substitutions, show a substitution value lemma with a substitutability condition,
use that for a soundness proof of α-renaming, and only then introduce capture-avoiding substitu-
tions on this basis. This can be done for any logic with bound variables, we go through the details
for first-order logic here as an example.

7.1 First-Order Logic: Syntax and Semantics

The syntax and semantics of first-order logic is systematically organized in two distinct layers: one
for truth values (like in propositional logic) and one for individuals (the new, distinctive feature
of first-order logic).

The first step of defining a formal language is to specify the alphabet, here the first-order signatures
and their components.

PL1 Syntax (Signature and Variables)

� Definition 7.1.1 First-order logic (PL1), is a formal logical system exten-
sively used in mathematics, philosophy, linguistics, and computer science.
It combines propositional logic with the ability to quantify over individuals.

� PL1 talks about two kinds of objects: (so we have two kinds of symbols)

� truth values; sometimes annotated by type o (like in PL0)

� individuals; sometimes annotated by type ι(numbers, foxes, Pokémon,. . . )

� Definition 7.1.2 A first-order signature consists of (all disjoint; k ∈ N)

� connectives: Σo = {T , F ,¬,∨,∧,⇒,⇔, . . .} (functions on truth values)

� function constants: Σfk = {f, g, h, . . .} (functions on individuals)

� predicate constants: Σpk = {p, q, r, . . .} (relations among inds.)

� (Skolem constants: Σskk = {fk1 , fk2 , . . .}) (witness constructors;
countably ∞)

� We take Σι to be all of these together: Σι := Σf ∪Σp ∪Σsk, where
Σ∗ :=

⋃
k∈N Σ∗k and define Σ := Σι ∪Σo.

� We assume a set of individual variables: Vι = {Xι, Yι, Z,X
1
ι, X

2} (countably
∞)

©:Michael Kohlhase 52 STEX

We make the deliberate, but non-standard design choice here to include Skolem constants into
the signature from the start. These are used in inference systems to give names to objects and
construct witnesses. Other than the fact that they are usually introduced by need, they work
exactly like regular constants, which makes the inclusion rather painless. As we can never predict
how many Skolem constants we are going to need, we give ourselves countably infinitely many for
every arity. Our supply of individual variables is countably infinite for the same reason.

The formulae of first-order logic is built up from the signature and variables as terms (to represent
individuals) and propositions (to represent propositions). The latter include the propositional
connectives, but also quantifiers.

http://creativecommons.org/licenses/by-sa/2.5/


7.1. FIRST-ORDER LOGIC: SYNTAX AND SEMANTICS 39

PL1 Syntax (Formulae)

� Definition 7.1.3 terms: A ∈ wff ι(Σι) (denote individuals: type ι)

� Vι⊆wff ι(Σι),

� if f ∈ Σfk and Ai ∈ wff ι(Σι) for i≤k, then f(A1, . . . ,Ak) ∈ wff ι(Σι).

� Definition 7.1.4 propositions: A ∈ wff o(Σ)(denote truth values: type o)

� if p ∈ Σpk and Ai ∈ wff ι(Σι) for i≤k, then p(A1, . . . ,Ak) ∈ wff o(Σ),

� if A,B ∈ wff o(Σ), then T ,A∧B,¬A,∀X A ∈ wff o(Σ).

� Definition 7.1.5 We define the connectives F ,∨,⇒,⇔ via the abbrevia-
tionsA∨B := ¬ (¬A∧¬B),A⇒B := ¬A∨B,A⇔B := (A⇒B)∧ (B⇒A),
and F := ¬T . We will use them like the primary connectives ∧ and ¬

� Definition 7.1.6 We use ∃X A as an abbreviation for ¬ (∀X ¬A).(exis-
tential quantifier)

� Definition 7.1.7 Call formulae without connectives or quantifiers atomic
else complex.

©:Michael Kohlhase 53 STEX

Note: that we only need e.g. conjunction, negation, and universal quantification, all other logical
constants can be defined from them (as we will see when we have fixed their interpretations).

Alternative Notations for Quantifiers

Here Elsewhere
∀x A

∧
x A (x) A

∃x A
∨
x A

©:Michael Kohlhase 54 STEX

The introduction of quantifiers to first-order logic brings a new phenomenon: variables that are
under the scope of a quantifiers will behave very differently from the ones that are not. Therefore
we build up a vocabulary that distinguishes the two.

Free and Bound Variables

� Definition 7.1.8 We call an occurrence of a variableX bound in a formula
A, iff it occurs in a sub-formula ∀X B of A. We call a variable occurrence
free otherwise.

For a formula A, we will use BVar(A) (and free(A)) for the set of bound
(free) variables of A, i.e. variables that have a free/bound occurrence in A.

� Definition 7.1.9 We define the set free(A) of free variables of a formula
A inductively:

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


40 CHAPTER 7. FIRST-ORDER LOGIC

free(X) := {X}
free(f(A1, . . . ,An)) :=

⋃
1≤i≤n free(Ai)

free(p(A1, . . . ,An)) :=
⋃

1≤i≤n free(Ai)

free(¬A) := free(A)
free(A∧B) := free(A)∪ free(B)
free(∀X A) := free(A)\{X}

� Definition 7.1.10 We call a formula A closed or ground, iff free(A) = ∅.
We call a closed proposition a sentence, and denote the set of all ground
terms with cwff ι(Σι) and the set of sentences with cwff o(Σι).

©:Michael Kohlhase 55 STEX

We will be mainly interested in (sets of) sentences – i.e. closed propositions – as the representations
of meaningful statements about individuals. Indeed, we will see below that free variables do
not gives us expressivity, since they behave like constants and could be replaced by them in all
situations, except the recursive definition of quantified formulae. Indeed in all situations where
variables occur freely, they have the character of meta-variables, i.e. syntactic placeholders that
can be instantiated with terms when needed in an inference calculus.
The semantics of first-order logic is a Tarski-style set-theoretic semantics where the atomic syn-
tactic entities are interpreted by mapping them into a well-understood structure, a first-order
universe that is just an arbitrary set.

Semantics of PL1 (Models)

� We fix the Universe Do = {T,F} of truth values.

� We assume an arbitrary universe Dι 6= ∅ of individuals (this choice is a
parameter to the semantics)

� Definition 7.1.11 An interpretation I assigns values to constants, e.g.

� I(¬) : Do → Do with T 7→ F, F 7→ T, and I(∧) = . . . (as in PL0)

� I : Σfk → F(Dιk;Dι)(interpret function symbols as arbitrary functions)

� I : Σpk → P(Dιk) (interpret predicates as arbitrary relations)

� Definition 7.1.12 A variable assignment ϕ : Vι → Dι maps variables into
the universe.

� A first-order ModelM = 〈Dι, I〉 consists of a universeDι and an interpretationI.

©:Michael Kohlhase 56 STEX

We do not have to make the universe of truth values part of the model, since it is always the same;
we determine the model by choosing a universe and an interpretation function.
Given a first-order model, we can define the evaluation function as a homomorphism over the
construction of formulae.

Semantics of PL1 (Evaluation)

� Given a model 〈D, I〉, the value function Iϕ is recursively defined:(two parts:
terms & propositions)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


7.2. FIRST-ORDER SUBSTITUTIONS 41

� Iϕ : wff ι(Σι)→ Dι assigns values to terms.

� Iϕ(X) := ϕ(X) and
� Iϕ(f(A1, . . . ,Ak)) := I(f)(Iϕ(A1), . . . , Iϕ(Ak))

� Iϕ : wff o(Σ)→ Do assigns values to formulae:

� Iϕ(T ) = I(T ) = T,
� Iϕ(¬A) = I(¬)(Iϕ(A))

� Iϕ(A∧B) = I(∧)(Iϕ(A), Iϕ(B)) (just as in PL0)
� Iϕ(p(A1, . . . ,Ak)) := T, iff 〈Iϕ(A1), . . ., Iϕ(Ak)〉 ∈ I(p)

� Iϕ(∀X A) := T, iff Iϕ,[a/X](A) = T for all a ∈ Dι.

©:Michael Kohlhase 57 STEX

The only new (and interesting) case in this definition is the quantifier case, there we define the value
of a quantified formula by the value of its scope – but with an extended variable assignment. Note
that by passing to the scope A of ∀x A, the occurrences of the variable x in A that were bound
in ∀x A become free and are amenable to evaluation by the variable assignment ψ := ϕ, [a/X].
Note that as an extension of ϕ, the assignment ψ supplies exactly the right value for x in A.
This variability of the variable assignment in the definition value function justifies the somewhat
complex setup of first-order evaluation, where we have the (static) interpretation function for the
symbols from the signature and the (dynamic) variable assignment for the variables.
Note furthermore, that the value Iϕ(∃x A) of ∃x A, which we have defined to be ¬ (∀x ¬A) is
true, iff it is not the case that Iϕ(∀x ¬A) = Iψ(¬A) = F for all a ∈ Dι and ψ := ϕ, [a/X]. This
is the case, iff Iψ(A) = T for some a ∈ Dι. So our definition of the existential quantifier yields the
appropriate semantics.

7.2 First-Order Substitutions

We will now turn our attention to substitutions, special formula-to-formula mappings that oper-
ationalize the intuition that (individual) variables stand for arbitrary terms.

Substitutions on Terms

� Intuition: If B is a term and X is a variable, then we denote the result of
systematically replacing all occurrences of X in a term A by B with [B/X](A).

� Problem: What about [Z/Y ], [Y/X](X), is that Y or Z?

� Folklore: [Z/Y ], [Y/X](X) = Y , but [Z/Y ]([Y/X](X)) = Z of course.
(Parallel application)

� Definition 7.2.1 We call σ : wff ι(Σι)→ wff ι(Σι) a substitution, iff σ(f(A1, . . . ,An)) =
f(σ(A1), . . . , σ(An)) and the support supp(σ) := {X |σ(X) 6= X} of σ is
finite.

� Observation 7.2.2 Note that a substitution σ is determined by its values on
variables alone, thus we can write σ as σ|Vι = {[σ(X)/X] |X ∈ supp(σ)}.

� Notation 7.2.3 We denote the substitution σ with supp(σ) = {xi | 1≤i≤n}
and σ(xi) = Ai by [A1/x

1], . . ., [An/x
n].

http://creativecommons.org/licenses/by-sa/2.5/


42 CHAPTER 7. FIRST-ORDER LOGIC

� Example 7.2.4 [a/x], [f(b)/y], [a/z] instantiates g(x, y, h(z)) to g(a, f(b), h(a)).

� Definition 7.2.5 We call intro(σ) :=
⋃
X∈supp(σ) free(σ(X)) the set of

variables introduced by σ.

©:Michael Kohlhase 58 STEX

The extension of a substitution is an important operation, which you will run into from time
to time. Given a substitution σ, a variable x, and an expression A, σ, [A/x] extends σ with a
new value for x. The intuition is that the values right of the comma overwrite the pairs in the
substitution on the left, which already has a value for x, even though the representation of σ may
not show it.

Substitution Extension

� Notation 7.2.6 (Substitution Extension) Let σ be a substitution, then
we denote with σ, [A/X] the function {(Y,A) ∈ σ |Y 6= X}∪ {(X,A)}.

(σ, [A/X] coincides with σ of X, and gives the result A there.)

� Note: If σ is a substitution, then σ, [A/X] is also a substitution.

� Definition 7.2.7 If σ is a substitution, then we call σ, [A/X] the extension
of σ by [A/X].

� We also need the dual operation: removing a variable from the support

� Definition 7.2.8 We can discharge a variable X from a substitution σ by
σ−X := σ, [X/X].

©:Michael Kohlhase 59 STEX

Note that the use of the comma notation for substitutions defined in Notation 7.2.3 is consis-
tent with substitution extension. We can view a substitution [a/x], [f(b)/y] as the extension of
the empty substitution (the identity function on variables) by [f(b)/y] and then by [a/x]. Note
furthermore, that substitution extension is not commutative in general.
For first-order substitutions we need to extend the substitutions defined on terms to act on propo-
sitions. This is technically more involved, since we have to take care of bound variables.

Substitutions on Propositions

� Problem: We want to extend substitutions to propositions, in particular to
quantified formulae: What is σ(∀X A)?

� Idea: σ should not instantiate bound variables. ([A/X](∀X B) = ∀A B′

ill-formed)

� Definition 7.2.9 σ(∀X A) := (∀X σ−X(A)).

� Problem: This can lead to variable capture: [f(X)/Y ](∀X p(X,Y )) would
evaluate to ∀X p(X, f(X)), where the second occurrence of X is bound after
instantiation, whereas it was free before.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


7.2. FIRST-ORDER SUBSTITUTIONS 43

� Definition 7.2.10 Let B ∈ wff ι(Σι) and A ∈ wff o(Σ), then we call B
substitutable for X in A, iff A has no occurrence of X in a subterm ∀Y C
with Y ∈ free(B).

� Solution: Forbid substitution [B/X]A, when B is not substitutable for X in
A.

� Better Solution: Rename away the bound variable X in ∀X p(X,Y ) before
applying the substitution. (see alphabetic renaming later.)

©:Michael Kohlhase 60 STEX

Here we come to a conceptual problem of most introductions to first-order logic: they directly
define substitutions to be capture-avoiding by stipulating that bound variables are renamed in
the to ensure subsitutability. But at this time, we have not even defined alphabetic renaming
yet, and cannot formally do that without having a notion of substitution. So we will refrain from
introducing capture-avoiding substitutions until we have done our homework.
We now introduce a central tool for reasoning about the semantics of substitutions: the “substitution-
value Lemma”, which relates the process of instantiation to (semantic) evaluation. This result will
be the motor of all soundness proofs on axioms and inference rules acting on variables via sub-
stitutions. In fact, any logic with variables and substitutions will have (to have) some form of
a substitution-value Lemma to get the meta-theory going, so it is usually the first target in any
development of such a logic.

We establish the substitution-value Lemma for first-order logic in two steps, first on terms,
where it is very simple, and then on propositions, where we have to take special care of substi-
tutability.

Substitution Value Lemma for Terms

� Lemma 7.2.11 Let A and B be terms, then Iϕ([B/X]A) = Iψ(A), where
ψ = ϕ, [Iϕ(B)/X].

� Proof: by induction on the depth of A:

P.1.1 depth=0:

P.1.1.1 Then A is a variable (say Y ), or constant, so we have three cases

P.1.1.1.1 A = Y = X: then Iϕ([B/X](A)) = Iϕ([B/X](X)) = Iϕ(B) =
ψ(X) = Iψ(X) = Iψ(A).

P.1.1.1.2 A = Y 6= X: then Iϕ([B/X](A)) = Iϕ([B/X](Y )) = Iϕ(Y ) =
ϕ(Y ) = ψ(Y ) = Iψ(Y ) = Iψ(A).

P.1.1.1.3 A is a constant: analogous to the preceding case (Y 6= X)

P.1.1.2 This completes the base case (depth = 0).

P.1.2 depth> 0: then A = f(A1, . . . ,An) and we have

Iϕ([B/X](A)) = I(f)(Iϕ([B/X](A1)), . . . , Iϕ([B/X](An)))

= I(f)(Iψ(A1), . . . , Iψ(An))

= Iψ(A).

by inductive hypothesis

http://creativecommons.org/licenses/by-sa/2.5/


44 CHAPTER 7. FIRST-ORDER LOGIC

P.1.2.2 This completes the inductive case, and we have proven the assertion

©:Michael Kohlhase 61 STEX

We now come to the case of propositions. Note that we have the additional assumption of substi-
tutability here.

Substitution Value Lemma for Propositions

� Lemma 7.2.12 Let B ∈ wff ι(Σι) be substitutable for X in A ∈ wff o(Σ),
then Iϕ([B/X](A)) = Iψ(A), where ψ = ϕ, [Iϕ(B)/X].

� Proof: by induction on the number n of connectives and quantifiers in A

P.1.1 n = 0: then A is an atomic proposition, and we can argue like in the
inductive case of the substitution value lemma for terms.

P.1.2 n>0 and A = ¬B or A = C ◦D: Here we argue like in the inductive
case of the term lemma as well.

P.1.3 n>0 andA = ∀X C: then Iψ(A) = Iψ(∀X C) = T, iff Iψ,[a/X](C) =
Iϕ,[a/X](C) = T, for all a ∈ Dι, which is the case, iff Iϕ(∀X C) =
Iϕ([B/X](A)) = T.

P.1.4 n>0 and A = ∀Y C where X 6= Y : then Iψ(A) = Iψ(∀Y C) = T,
iff Iψ,[a/Y ](C) = Iϕ,[a/Y ]([B/X](C)) = T, by inductive hypothesis. So
Iψ(A) = Iϕ(∀Y [B/X](C)) = Iϕ([B/X](∀Y C)) = Iϕ([B/X](A))

©:Michael Kohlhase 62 STEX

To understand the proof fully, you should look out where the substitutability is actually used.
Armed with the substitution value lemma, we can now define alphabetic renaming and show it to
be sound with respect to the semantics we defined above. And this soundness result will justify
the definition of capture-avoiding substitution we will use in the rest of the course.

7.3 Alpha-Renaming for First-Order Logic

Armed with the substitution value lemma we can now prove one of the main representational facts
for first-order logic: the names of bound variables do not matter; they can be renamed at liberty
without changing the meaning of a formula.

Alphabetic Renaming

� Lemma 7.3.1 Bound variables can be renamed: If Y is substitutable for X
in A, then Iϕ(∀X A) = Iϕ(∀Y [Y/X](A))

� Proof: by the definitions:

P.1 Iϕ(∀X A) = T, iff

P.2 Iϕ,[a/X](A) = T for all a ∈ Dι, iff

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


7.3. ALPHA-RENAMING FOR FIRST-ORDER LOGIC 45

P.3 Iϕ,[a/Y ]([Y/X](A)) = T for all a ∈ Dι, iff (by substitution value lemma)

P.4 Iϕ(∀Y [Y/X](A)) = T.

� Definition 7.3.2 We call two formulae A and B alphabetical variants (or
α-equal; write A =α B), iff A = ∀X C and B = ∀Y [Y/X](C) for some
variables X and Y .

©:Michael Kohlhase 63 STEX

We have seen that naive substitutions can lead to variable capture. As a consequence, we always
have to presuppose that all instantiations respect a substitutability condition, which is quite
tedious. We will now come up with an improved definition of substitution application for first-
order logic that does not have this problem.

Avoiding Variable Capture by Built-in α-renaming

� Idea: Given alphabetic renaming, we will consider alphabetical variants as
identical

� So: Bound variable names in formulae are just a representational device (we
rename bound variables wherever necessary)

� Formally: Take cwff o(Σι) (new) to be the quotient set of cwff o(Σι) (old)
modulo =α. (formulae as syntactic representatives of equivalence classes)

� Definition 7.3.3 (Capture-Avoiding Substitution Application) Let
σ be a substitution, A a formula, and A′ an alphabetical variant of A, such
that intro(σ)∩BVar(A) = ∅. Then [A]=α = [A′]=α and we can define
σ([A]=α) := [σ(A′)]=α .

� Notation 7.3.4 After we have understood the quotient construction, we
will neglect making it explicit and write formulae and substitutions with
the understanding that they act on quotients.

©:Michael Kohlhase 64 STEX

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


46 CHAPTER 7. FIRST-ORDER LOGIC



Chapter 8

Inference in First-Order Logic

In this Chapter we will introduce inference systems (calculi) for first-order logic and study their
properties, in particular soundness and completeness.

8.1 First-Order Calculi

In this section we will introduce two reasoning calculi for first-order logic, both were invented by
Gerhard Gentzen in the 1930’s and are very much related. The “natural deduction” calculus was
created in order to model the natural mode of reasoning e.g. in everyday mathematical practice.
This calculus was intended as a counter-approach to the well-known Hilbert-style calculi, which
were mainly used as theoretical devices for studying reasoning in principle, not for modeling
particular reasoning styles.

The “sequent calculus” was a rationalized version and extension of the natural deduction cal-
culus that makes certain meta-proofs simpler to push through3. EdN:3

Both calculi have a similar structure, which is motivated by the human-orientation: rather
than using a minimal set of inference rules, they provide two inference rules for every connective
and quantifier, one “introduction rule” (an inference rule that derives a formula with that symbol
at the head) and one “elimination rule” (an inference rule that acts on a formula with this head
and derives a set of subformulae).

This allows us to introduce the calculi in two stages, first for the propositional connectives and
then extend this to a calculus for first-order logic by adding rules for the quantifiers.
To obtain a first-order calculus, we have to extend ND0 with (introduction and elimination) rules
for the quantifiers.

First-Order Natural Deduction (ND1; Gentzen [Gen34])

� Rules for propositional connectives just as always

� Definition 8.1.1 (New Quantifier Rules) The first-order natural de-
duction calculus ND1 extends ND0 by the following four rules

3EdNote: say something about cut elimination/analytical calculi somewhere

47



48 CHAPTER 8. INFERENCE IN FIRST-ORDER LOGIC

A

∀X A
∀I∗ ∀X A

[B/X](A)
∀E

[B/X](A)

∃X A
∃I

∃X A

[[c/X](A)]
1

...
C

C
∃E1

∗ means that A does not depend on any hypothesis in which X is free.

©:Michael Kohlhase 65 STEX

The intuition behind the rule ∀I is that a formula A with a (free) variable X can be generalized
to ∀X A, if X stands for an arbitrary object, i.e. there are no restricting assumptions about
X. The ∀E rule is just a substitution rule that allows to instantiate arbitrary terms B for X in
A. The ∃I rule says if we have a witness B for X in A (i.e. a concrete term B that makes A
true), then we can existentially close A. The ∃E rule corresponds to the common mathematical
practice, where we give objects we know exist a new name c and continue the proof by reasoning
about this concrete object c. Anything we can prove from the assumption [c/X](A) we can prove
outright if ∃X A is known.

This is the classical formulation of the calculus of natural deduction. To prepare the things we
want to do later (and to get around the somewhat un-licensed extension by hypothetical reasoning
in the calculus), we will reformulate the calculus by lifting it to the “judgements level”. Instead
of postulating rules that make statements about the validity of propositions, we postulate rules
that make state about derivability. This move allows us to make the respective local hypotheses
in ND derivations into syntactic parts of the objects (we call them “sequents”) manipulated by the
inference rules.

Natural Deduction in Sequent Calculus Formulation

� Idea: Explicit representation of hypotheses (lift calculus to judgments)

� Definition 8.1.2 A judgment is a meta-statement about the provability
of propositions

� Definition 8.1.3 A sequent is a judgment of the form H ` A about the
provability of the formula A from the set H of hypotheses.

� Idea: Reformulate ND rules so that they act on sequents

� Example 8.1.4

A∧B ` A∧B ∧Er
A∧B ` B

A∧B ` A∧B ∧El
A∧B ` A

∧I
A∧B ` B∧A

⇒I
∅ ` A∧B⇒B∧A

� Note: Even though the antecedent of a sequent is written like a sequence, it
is actually a set. In particular, we can permute and duplicate members at will.

©:Michael Kohlhase 66 STEX

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


8.1. FIRST-ORDER CALCULI 49

Sequent-Style Rules for Natural Deduction

� Definition 8.1.5 The following inference rules make up the sequent cal-
culus

Γ,A ` A
Ax

Γ ` B

Γ,A ` B
weaken

Γ ` A∨¬A
TND

Γ ` A Γ ` B

Γ ` A∧B
∧I

Γ ` A∧B
Γ ` A

∧El
Γ ` A∧B

Γ ` B
∧Er

Γ ` A

Γ ` A∨B
∨Il

Γ ` B

Γ ` A∨B
∨Ir

Γ ` A∨B Γ,A ` C Γ,B ` C

Γ ` C
∨E

Γ,A ` B

Γ ` A⇒B
⇒I

Γ ` A⇒B Γ ` A

Γ ` B
⇒E

Γ,A ` F
Γ ` ¬A

¬I
Γ ` ¬¬A

A
¬E

Γ ` ¬A Γ ` A

Γ ` F
FI

Γ ` F
Γ ` A

FE

©:Michael Kohlhase 67 STEX

First-Order Natural Deduction in Sequent Formulation

� Rules for propositional connectives just as always

� Definition 8.1.6 (New Quantifier Rules)

Γ ` A X 6∈ free(Γ)

Γ ` ∀X A
∀I Γ ` ∀X A

Γ ` [B/X](A)
∀E

Γ ` [B/X](A)

Γ ` ∃X A
∃I Γ ` ∃X A Γ, [c/X](A) ` C c ∈ Σsk0 new

Γ ` C
∃E

©:Michael Kohlhase 68 STEX

Natural Deduction with Equality

� Definition 8.1.7 (First-Order Logic with Equality) We extend PL1

with a new logical symbol for equality = ∈ Σp2 and fix its semantics to
I(=) := {(x, x) |x ∈ Dι}. We call the extended logic first-order logic with
equality (PL1

=)

� We now extend natural deduction as well.

� Definition 8.1.8 For the calculus of natural deduction with equality ND1
=

we add the following two equality rules to ND1 to deal with equality:

A = A
=I

A = B C [A]p
[B/p]C

=E

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


50 CHAPTER 8. INFERENCE IN FIRST-ORDER LOGIC

where C [A]p if the formula C has a subterm A at position p and [B/p]C
is the result of replacing that subterm with B.

� In many ways equivalence behaves like equality, so we will use the following
derived rules in ND1:

A⇔A
⇔I

A⇔B C [A]p
[B/p]C

⇔ =E

©:Michael Kohlhase 69 STEX

Again, we have two rules that follow the introduction/elimination pattern of natural deduction
calculi.

ND1
= Example:

√
2 is Irrational

� We can do real Maths with ND1
=:

� Theorem 8.1.9
√

2 is irrational

Proof: We prove the assertion by contradiction

P.1 Assume that
√

2 is rational.

P.2 Then there are numbers p and q such that
√

2 = p / q.

P.3 So we know 2 s2 = r2.

P.4 But 2 s2 has an odd number of prime factors while r2 an even number.

P.5 This is a contradiction (since they are equal), so we have proven the as-
sertion

©:Michael Kohlhase 70 STEX

If we want to formalize this into ND1, we have to write down all the assertions in the proof steps
in MathTalk and come up with justifications for them in terms of ND1 inference rules. Figure ??
shows such a proof, where we write ′n is prime, use #(n) for the number of prime factors of
a number n, and write irr(r) if r is irrational. Each line in Figure ?? represents one “step” in
the proof. It consists of line number (for referencing), a formula for the asserted property, a
justification via a ND1 rules (and the lines this one is derived from), and finally a list of line
numbers of proof steps that are local hypotheses in effect for the current line. Lines 6 and 9 have
the pseudo-justification “local hyp” that indicates that they are local hypotheses for the proof
(they only have an implicit counterpart in the inference rules as defined above). Finally we have
abbreviated the arithmetic simplification of line 9 with the justification “arith” to avoid having to
formalize elementary arithmetic.

We observe that the ND1 proof is much more detailed, and needs quite a few Lemmata about
# to go through. Furthermore, we have added a MathTalk version of the definition of irrationality
(and treat definitional equality via the equality rules). Apart from these artefacts of formalization,
the two representations of proofs correspond to each other very directly.

ND1
= Example:

√
2 is Irrational (the Proof)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


8.2. ABSTRACT CONSISTENCY AND MODEL EXISTENCE 51

# hyp formula NDjust
1 ∀n,m ¬ (2 n+ 1) = (2 m) lemma
2 ∀n,m #(nm) = m #(n) lemma
3 ∀n, p ′p⇒#(p n) = #(n) + 1 lemma
4 ∀x irr(x)⇔ (¬ (∃p, q x = p / q)) definition
5 irr(

√
2)⇔ (¬ (∃p, q

√
2 = p / q)) ∀E(4)

6 6 ¬ irr(
√

2) local hyp
7 6 ¬¬ (∃p, q

√
2 = p / q) ⇔ =E(6, 5)

8 6 ∃p, q
√

2 = p / q ¬E(7)

9 6,9
√

2 = r / s local hyp
10 6,9 2 s2 = r2 arith(9)
11 6,9 #(r2) = 2 #(r) ∀E2(2)

12 6,9 ′2⇒#(2 s2) = #(s2) + 1 ∀E2(1)

13 ′2 lemma
14 6,9 #(2 s2) = #(s2) + 1 ⇒E(13, 12)

15 6,9 #(s2) = 2 #(s) ∀E2(2)
16 6,9 #(2 s2) = 2 #(s) + 1 =E(14, 15)
17 #(r2) = #(r2) =I
18 6,9 #(2 s2) = #(r2) =E(17, 10)
19 6.9 2 #(s) + 1 = #(r2) =E(18, 16)
20 6.9 2 #(s) + 1 = 2 #(r) =E(19, 11)

21 6.9 ¬ (2 #(s) + 1) = (2 #(r)) ∀E2(1)
22 6,9 F FI(20, 21)

23 6 F ∃E6(22)

24 ¬¬ irr(
√

2) ¬I6(23)

25 irr(
√

2) ¬E2(23)

©:Michael Kohlhase 71 STEX

We leave the soundness result for the first-order natural deduction calculus to the reader and turn
to the complenesss result, which is much more involved and interesting.

8.2 Abstract Consistency and Model Existence

We will now come to an important tool in the theoretical study of reasoning calculi: the “abstract
consistency”/“model existence” method. This method for analyzing calculi was developed by Jaako
Hintikka, Raymond Smullyan, and Peter Andrews in 1950-1970 as an encapsulation of similar
constructions that were used in completeness arguments in the decades before. The basis for
this method is Smullyan’s Observation [Smu63] that completeness proofs based on Hintikka sets
only certain properties of consistency and that with little effort one can obtain a generalization
“Smullyan’s Unifying Principle”.

The basic intuition for this method is the following: typically, a logical system S = 〈L,K, |=〉 has
multiple calculi, human-oriented ones like the natural deduction calculi and machine-oriented ones
like the automated theorem proving calculi. All of these need to be analyzed for completeness (as
a basic quality assurance measure).

A completeness proof for a calculus C for S typically comes in two parts: one analyzes C-
consistency (sets that cannot be refuted in C), and the other construct K-models for C-consistent
sets.

In this situtation the “abstract consistency”/“model existence” method encapsulates the model
construction process into a meta-theorem: the “model existence” theorem. This provides a set of
syntactic (“abstract consistency”) conditions for calculi that are sufficient to construct models.

http://creativecommons.org/licenses/by-sa/2.5/


52 CHAPTER 8. INFERENCE IN FIRST-ORDER LOGIC

With the model existence theorem it suffices to show that C-consistency is an abstract consis-
tency property (a purely syntactic task that can be done by a C-proof transformation argument)
to obtain a completeness result for C.

Model Existence (Overview)

� Definition: Abstract consistency

� Definition: Hintikka set (maximally abstract consistent)

� Theorem: Hintikka sets are satisfiable

� Theorem: If Φ is abstract consistent, then Φ can be extended to a Hintikka
set.

� Corollary: If Φ is abstract consistent, then Φ is satisfiable

� Application: Let C be a calculus, if Φ is C-consistent, then Φ is abstract
consistent.

� Corollary: C is complete.

©:Michael Kohlhase 72 STEX

The proof of the model existence theorem goes via the notion of a Hintikka set, a set of formulae
with very strong syntactic closure properties, which allow to read off models. Jaako Hintikka’s
original idea for completeness proofs was that for every complete calculus C and every C-consistent
set one can induce a Hintikka set, from which a model can be constructed. This can be considered
as a first model existence theorem. However, the process of obtaining a Hintikka set for a set
C-consistent set Φ of sentences usually involves complicated calculus-dependent constructions.

In this situation, Raymond Smullyan was able to formulate the sufficient conditions for the
existence of Hintikka sets in the form of “abstract consistency properties” by isolating the calculus-
independent parts of the Hintikka set construction. His technique allows to reformulate Hintikka
sets as maximal elements of abstract consistency classes and interpret the Hintikka set construction
as a maximizing limit process.
To carry out the “model-existence”/”abstract consistency” method, we will first have to look at the
notion of consistency.
Consistency and refutability are very important notions when studying the completeness for calculi;
they form syntactic counterparts of satisfiability.

Consistency

� Let C be a calculus

� Definition 8.2.1 Φ is called C-refutable, if there is a formula B, such that
Φ `C B and Φ `C ¬B.

� Definition 8.2.2 We call a pair A and ¬A a contradiction.

� So a set Φ is C-refutable, if C can derive a contradiction from it.

� Definition 8.2.3 Φ is called C-consistent, iff there is a formula B, that is
not derivable from Φ in C.

http://creativecommons.org/licenses/by-sa/2.5/


8.2. ABSTRACT CONSISTENCY AND MODEL EXISTENCE 53

� Definition 8.2.4 We call a calculus C reasonable, iff implication elimina-
tion and conjunction introduction are admissible in C and A∧¬A⇒B is
a C-theorem.

� Theorem 8.2.5 C-inconsistency and C-refutability coincide for reasonable
calculi.

©:Michael Kohlhase 73 STEX

It is very important to distinguish the syntactic C-refutability and C-consistency from satisfiability,
which is a property of formulae that is at the heart of semantics. Note that the former specify
the calculus (a syntactic device) while the latter does not. In fact we should actually say S-
satisfiability, where S = 〈L,K, |=〉 is the current logical system.

Even the word “contradiction” has a syntactical flavor to it, it translates to “saying against
each other” from its latin root.
The notion of an “abstract consistency class” provides the a calculus-independent notion of “con-
sistency”: A set Φ of sentences is considered “consistent in an abstract sense”, iff it is a member of
an abstract consistency class ∇.

Abstract Consistency

� Definition 8.2.6 Let ∇ be a family of sets. We call ∇ closed under sub-
sets, iff for each Φ ∈ ∇, all subsets Ψ⊆Φ are elements of ∇.

� Notation 8.2.7 We will use Φ ∗A for Φ∪{A}.

� Definition 8.2.8 A family∇⊆wff o(Σ) of sets of formulae is called a (first-
order) abstract consistency class, iff it is closed under subsets, and for each
Φ ∈ ∇

∇c) A 6∈ Φ or ¬A 6∈ Φ for atomic A ∈ wff o(Σ).

∇¬) ¬¬A ∈ Φ implies Φ ∗A ∈ ∇
∇∧) (A∧B) ∈ Φ implies (Φ∪{A,B}) ∈ ∇
∇∨) ¬ (A∧B) ∈ Φ implies Φ ∗¬A ∈ ∇ or Φ ∗¬B ∈ ∇
∇∀) If (∀X A) ∈ Φ, then Φ ∗ [B/X](A) ∈ ∇ for each closed term B.

∇∃) If ¬ (∀X A) ∈ Φ and c is an individual constant that does not occur
in Φ, then Φ ∗¬ [c/X](A) ∈ ∇

©:Michael Kohlhase 74 STEX

The conditions are very natural: Take for instance ∇c, it would be foolish to call a set Φ of
sentences “consistent under a complete calculus”, if it contains an elementary contradiction. The
next condition ∇¬ says that if a set Φ that contains a sentence ¬¬A is “consistent”, then we
should be able to extend it by A without losing this property; in other words, a complete calculus
should be able to recognize A and ¬¬A to be equivalent.
We will carry out the proof here, since it gives us practice in dealing with the abstract consistency
properties.
Actually we are after abstract consistency classes that have an even stronger property than just
being closed under subsets. This will allow us to carry out a limit construction in the Hintikka
set extension argument later.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


54 CHAPTER 8. INFERENCE IN FIRST-ORDER LOGIC

Compact Collections

� Definition 8.2.9 We call a collection ∇ of sets compact, iff for any set Φ
we have
Φ ∈ ∇, iff Ψ ∈ ∇ for every finite subset Ψ of Φ.

� Lemma 8.2.10 If ∇ is compact, then ∇ is closed under subsets.

� Proof:

P.1 Suppose S⊆T and T ∈ ∇.
P.2 Every finite subset A of S is a finite subset of T .

P.3 As ∇ is compact, we know that A ∈ ∇.
P.4 Thus S ∈ ∇.

©:Michael Kohlhase 75 STEX

The property of being closed under subsets is a “downwards-oriented” property: We go from large
sets to small sets, compactness (the interesting direction anyways) is also an “upwards-oriented”
property. We can go from small (finite) sets to large (infinite) sets. The main application for the
compactness condition will be to show that infinite sets of formulae are in a family ∇ by testing
all their finite subsets (which is much simpler).
The main result here is that abstract consistency classes can be extended to compact ones. The
proof is quite tedious, but relatively straightforward. It allows us to assume that all abstract
consistency classes are compact in the first place (otherwise we pass to the compact extension).

Compact Abstract Consistency Classes

� Lemma 8.2.11 Any first-order abstract consistency class can be extended to
a compact one.

� Proof:

P.1 We choose ∇′ := {Φ⊆ cwff o(Σι) | every finite subset of Φis in ∇}.
P.2 Now suppose that Φ ∈ ∇. ∇ is closed under subsets, so every finite subset

of Φ is in ∇ and thus Φ ∈ ∇′. Hence ∇⊆∇′.
P.3 Let us now show that each ∇′ is compact.

P.3.1 Suppose Φ ∈ ∇′ and Ψ is an arbitrary finite subset of Φ.

P.3.2 By definition of ∇′ all finite subsets of Φ are in ∇ and therefore Ψ ∈ ∇′.
P.3.3 Thus all finite subsets of Φ are in ∇′ whenever Φ is in ∇′.
P.3.4 On the other hand, suppose all finite subsets of Φ are in ∇′.
P.3.5 Then by the definition of ∇′ the finite subsets of Φ are also in ∇, so

Φ ∈ ∇′. Thus ∇′ is compact.

P.4 Note that ∇′ is closed under subsets by the Lemma above.

P.5 Next we show that if ∇ satisfies ∇∗, then ∇′ satisfies ∇∗.
P.5.1 To show ∇c, let Φ ∈ ∇′ and suppose there is an atom A, such that

{A,¬A}⊆Φ. Then {A,¬A} ∈ ∇ contradicting ∇c.

http://creativecommons.org/licenses/by-sa/2.5/


8.2. ABSTRACT CONSISTENCY AND MODEL EXISTENCE 55

P.5.2 To show ∇¬, let Φ ∈ ∇′ and ¬¬A ∈ Φ, then Φ ∗A ∈ ∇′.
P.5.2.1 Let Ψ be any finite subset of Φ ∗A, and Θ := (Ψ\{A}) ∗¬¬A.

P.5.2.2 Θ is a finite subset of Φ, so Θ ∈ ∇.
P.5.2.3 Since ∇ is an abstract consistency class and ¬¬A ∈ Θ, we get

Θ ∗A ∈ ∇ by ∇¬.
P.5.2.4 We know that Ψ⊆Θ ∗A and ∇ is closed under subsets, so Ψ ∈ ∇.
P.5.2.5 Thus every finite subset Ψ of Φ ∗A is in ∇ and therefore by definition

Φ ∗A ∈ ∇′.
P.5.3 the other cases are analogous to ∇¬.

©:Michael Kohlhase 76 STEX

Hintikka sets are sets of sentences with very strong analytic closure conditions. These are motivated
as maximally consistent sets i.e. sets that already contain everything that can be consistently
added to them.

∇-Hintikka Set

� Definition 8.2.12 Let ∇ be an abstract consistency class, then we call a
set H ∈ ∇ a ∇-Hintikka Set, iff H is maximal in ∇, i.e. for all A with
H∗A ∈ ∇ we already have A ∈ H.

� Theorem 8.2.13 (Hintikka Properties) Let ∇ be an abstract consis-
tency class and H be a ∇-Hintikka set, then

Hc) For all A ∈ wff o(Σ) we have A 6∈ H or ¬A 6∈ H.
H¬) If ¬¬A ∈ H then A ∈ H.
H∧) If (A∧B) ∈ H then A,B ∈ H.
H∨) If ¬ (A∧B) ∈ H then ¬A ∈ H or ¬B ∈ H.
H∀) If (∀X A) ∈ H, then [B/X](A) ∈ H for each closed term B.

H∃) If ¬ (∀X A) ∈ H then ¬ [B/X](A) ∈ H for some term closed term B.

Proof:

� P.1 We prove the properties in turn

Hc goes by induction on the structure of A

P.2P.2.1 A atomic: Then A 6∈ H or ¬A 6∈ H by ∇c.
P.2.2 A = ¬B:

P.2.2.1 Let us assume that ¬B ∈ H and ¬¬B ∈ H,
P.2.2.2 then H∗B ∈ ∇ by ∇¬, and therefore B ∈ H by maximality.

P.2.2.3 So {B,¬B}⊆H, which contradicts the inductive hypothesis.

P.2.3 A = B∨C: similar to the previous case

We prove H¬ by maximality of H in ∇.
P.3P.3.1 If ¬¬A ∈ H, then H∗A ∈ ∇ by ∇¬.

http://creativecommons.org/licenses/by-sa/2.5/


56 CHAPTER 8. INFERENCE IN FIRST-ORDER LOGIC

P.3.2 The maximality of H now gives us that A ∈ H.

The other H∗ are similar

©:Michael Kohlhase 77 STEX

The following theorem is one of the main results in the “abstract consistency”/”model existence”
method. For any abstract consistent set Φ it allows us to construct a Hintikka set H with Φ ∈ H.

P.4 Extension Theorem

� Theorem 8.2.14 If ∇ is an abstract consistency class and Φ ∈ ∇ finite, then
there is a ∇-Hintikka set H with Φ⊆H.

� Proof: Wlog. assume that ∇ compact (else use compact extension)

P.1 Choose an enumeration A1,A2, . . . of cwff o(Σι) and c1, c2, . . . of Σsk0 .

P.2 and construct a sequence of sets Hi with H0 := Φ and

Hn+1 :=

 Hn if Hn ∗An 6∈ ∇
Hn ∪{An,¬ [cn/X](B)} if Hn ∗An ∈ ∇ and An = ¬ (∀X B)

Hn ∗An else

P.3 Note that all Hi ∈ ∇, choose H :=
⋃
i∈NH

i

P.4 Ψ⊆H finite implies there is a j ∈ N such that Ψ⊆Hj ,

P.5 so Ψ ∈ ∇ as ∇ closed under subsets and H ∈ ∇ as ∇ is compact.

P.6 Let H∗B ∈ ∇, then there is a j ∈ N with B = Aj , so that B ∈ Hj+1

and Hj+1⊆H
P.7 Thus H is ∇-maximal

©:Michael Kohlhase 78 STEX

Note that the construction in the proof above is non-trivial in two respects. First, the limit
construction for H is not executed in our original abstract consistency class ∇, but in a suitably
extended one to make it compact — the original would not have contained H in general. Second,
the set H is not unique for Φ, but depends on the choice of the enumeration of cwff o(Σι). If
we pick a different enumeration, we will end up with a different H. Say if A and ¬A are both
∇-consistent4 with Φ, then depending on which one is first in the enumeration H, will containEdN:4
that one; with all the consequences for subsequent choices in the construction process.

Valuation

� Definition 8.2.15 A function ν : cwff o(Σι) → Do is called a (first-order)
valuation, iff

� ν(¬A) = T, iff ν(A) = F

� ν(A∧B) = T, iff ν(A) = T and ν(B) = T

� ν(∀X A) = T, iff ν([B/X](A)) = T for all closed terms B.

4EdNote: introduce this above

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


8.2. ABSTRACT CONSISTENCY AND MODEL EXISTENCE 57

� Lemma 8.2.16 If ϕ : Vι → D is a variable assignment, then Iϕ : cwff o(Σι)→
Do is a valuation.

� Proof Sketch: Immediate from the definitions

©:Michael Kohlhase 79 STEX

Thus a valuation is a weaker notion of evaluation in first-order logic; the other direction is also
true, even though the proof of this result is much more involved: The existence of a first-order
valuation that makes a set of sentences true entails the existence of a model that satisfies it.5 EdN:5

Valuation and Satisfiability

� Lemma 8.2.17 If ν : cwff o(Σι)→ Do is a valuation and Φ⊆ cwff o(Σι) with
ν(Φ) = {T}, then Φ is satisfiable.

� Proof: We construct a model for Φ.

P.1 Let Dι := cwff ι(Σι), and

� I(f) : Dιk → Dι ; 〈A1, . . . ,Ak〉 7→ f(A1, . . . ,Ak) for f ∈ Σf

� I(p) : Dιk → Do; 〈A1, . . . ,Ak〉 7→ ν(p(A1, . . . ,An)) for p ∈ Σp.

P.2 Then variable assignments into Dι are ground substitutions.

P.3 We show Iϕ(A) = ϕ(A) for A ∈ wff ι(Σι) by induction on A

P.3.1 A = X: then Iϕ(A) = ϕ(X) by definition.

P.3.2 A = f(A1, . . . ,An): then Iϕ(A) = I(f)(Iϕ(A1), . . . , Iϕ(An)) =

I(f)(ϕ(A1), . . . , ϕ(An)) = f(ϕ(A1), . . . , ϕ(An)) = ϕ(f(A1, . . . ,An)) =
ϕ(A)

P.4 We show Iϕ(A) = ν(ϕ(A)) for A ∈ wff o(Σ) by induction on A

P.4.1 A = p(A1, . . . ,An): then Iϕ(A) = I(p)(Iϕ(A1), . . . , Iϕ(An)) =

I(p)(ϕ(A1), . . . , ϕ(An)) = ν(p(ϕ(A1), . . . , ϕ(An))) = ν(ϕ(p(A1, . . . ,An))) =
ν(ϕ(A))

P.4.2 A = ¬B: then Iϕ(A) = T, iff Iϕ(B) = ν(ϕ(B)) = F, iff ν(ϕ(A)) =

T.

P.4.3 A = B∧C: similar

P.4.4 A = ∀X B: then Iϕ(A) = T, iff Iψ(B) = ν(ψ(B)) = T, for all
C ∈ Dι, where ψ = ϕ, [C/X]. This is the case, iff ν(ϕ(A)) = T.

P.5 Thus Iϕ(A) = ν(ϕ(A)) = ν(A) = T for all A ∈ Φ.

P.6 HenceM |= A forM := 〈Dι, I〉.

©:Michael Kohlhase 80 STEX

Now, we only have to put the pieces together to obtain the model existence theorem we are after.

Model Existence

� Theorem 8.2.18 (Hintikka-Lemma) If ∇ is an abstract consistency class

5EdNote: I think that we only get a semivaluation, look it up in Andrews.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


58 CHAPTER 8. INFERENCE IN FIRST-ORDER LOGIC

and H a ∇-Hintikka set, then H is satisfiable.

� Proof:

P.1 we define ν(A) := T, iff A ∈ H,
P.2 then ν is a valuation by the Hintikka set properties.

P.3 We have ν(H) = {T}, so H is satisfiable.

� Theorem 8.2.19 (Model Existence) If ∇ is an abstract consistency class
and Φ ∈ ∇, then Φ is satisfiable.

Proof:

� P.1 There is a ∇-Hintikka set H with Φ⊆H (Extension Theorem)

We know that H is satisfiable. (Hintikka-Lemma)

In particular, Φ⊆H is satisfiable.

©:Michael Kohlhase 81 STEX

8.3 A Completeness Proof for First-Order ND

With the model existence proof we have introduced in the last section, the completeness proof for
first-order natural deduction is rather simple, we only have to check that ND-consistency is an
abstract consistency property.

P.2 P.3 Consistency, Refutability and Abstract Consistency

� Theorem 8.3.1 (Non-Refutability is an Abstract Consistency Property)
Γ := {Φ⊆ cwff o(Σι) |Φ not ND1−refutable} is an abstract consistency class.

� Proof: We check the properties of an ACC

P.1 If Φ is non-refutable, then any subset is as well, so Γ is closed under
subsets.

P.2 We show the abstract consistency conditions ∇∗ for Φ ∈ Γ.

P.2.1 ∇c: We have to show that A 6∈ Φ or ¬A 6∈ Φ for atomic A ∈ wff o(Σ).

P.2.1.2 Equivalently, we show the contrapositive: If {A,¬A}⊆Φ, then Φ 6∈
Γ.

P.2.1.3 So let {A,¬A}⊆Φ, then Φ is ND1-refutable by construction.

P.2.1.4 So Φ 6∈ Γ.

P.2.2 ∇¬: We show the contrapositive again

P.2.2.2 Let ¬¬A ∈ Φ and Φ ∗A 6∈ Γ

P.2.2.3 Then we have a refutation D : Φ ∗A `ND1 F

P.2.2.4 By prepending an application of ¬E for ¬¬A to D, we obtain a
refutation D′ : Φ `ND1 F .

P.2.2.5 Thus Φ 6∈ Γ.

P.2.3 other ∇∗ similar:

http://creativecommons.org/licenses/by-sa/2.5/


8.3. A COMPLETENESS PROOF FOR FIRST-ORDER ND 59

©:Michael Kohlhase 82 STEX

This directly yields two important results that we will use for the completeness analysis.

Henkin’s Theorem

� Corollary 8.3.2 (Henkin’s Theorem) Every ND1-consistent set of sen-
tences has a model.

� Proof:

P.1 Let Φ be a ND1-consistent set of sentences.

P.2 The class of sets of ND1-consistent propositions constitute an abstract
consistency class

P.3 Thus the model existence theorem guarantees a model for Φ.

� Corollary 8.3.3 (Löwenheim&Skolem Theorem) Satisfiable set Φ of
first-order sentences has a countable model.

� Proof Sketch: The model we constructed is countable, since the set of ground
terms is.

©:Michael Kohlhase 83 STEX

Now, the completeness result for first-order natural deduction is just a simple argument away. We
also get a compactness theorem (almost) for free: logical systems with a complete calculus are
always compact.

Completeness and Compactness

� Theorem 8.3.4 (Completeness Theorem for ND1) If Φ |= A, then
Φ `ND1 A.

� Proof: We prove the result by playing with negations.

P.1 If A is valid in all models of Φ, then Φ ∗¬A has no model

P.2 Thus Φ ∗¬A is inconsistent by (the contrapositive of) Henkins Theorem.

P.3 So Φ `ND1 ¬¬A by ¬I and thus Φ `ND1 A by ¬E.

� Theorem 8.3.5 (Compactness Theorem for first-order logic) If Φ |=
A, then there is already a finite set Ψ⊆Φ with Ψ |= A.

Proof: This is a direct consequence of the completeness theorem

� P.1 We have Φ |= A, iff Φ `ND1 A.

As a proof is a finite object, only a finite subset Ψ⊆Φ can appear as
leaves in the proof.

©:Michael Kohlhase 84 STEX

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


60 CHAPTER 8. INFERENCE IN FIRST-ORDER LOGIC

8.4 Limits of First-Order Logic

We will now come to the limits of first-order Logic.6EdN:6

P.2 Gödel’s Incompleteness Theorem

� Theorem 8.4.1 No logical system that can represent Peano-Arithmetic (N, s, 0,+, ∗)
admits complete calculi.

� Proof: (Sketch)

P.1 Let L := 〈S, C〉 be such a system. We show that there is a valid S-sentence
AC , that is no C-theorem.

P.2 Encode the syntax of S and the C in Peano-arithmetic

P.3 We can now talk about S and C in S itself.

P.4 E.g. there is a S-sentence B with the meaning: A is a C-theorem.

P.5 Choose AC as “AC is no C-theorem” (cf. Russell’s set)

P.6 Obviously: AC ist valid in all standard models.

P.7 So C is either not correct or cannot derive AC .

©:Michael Kohlhase 85 STEX

6EdNote: MK: also present the theorem (whose name I forgot) that show that FOL is the “strongest logic” for
first-order models. Maybe also the interpolation theorem.

http://creativecommons.org/licenses/by-sa/2.5/


Part III

Axiomatic Set Theory (ZFC)

61





63

Sets are one of the most useful structures of mathematics. They can be used to form the basis
for representing functions, ordering relations, groups, vector spaces, etc. In fact, they can be used
as a foundation for all of mathematics as we know it. But sets are also among the most difficult
structures to get right: we have already seen that “naive” conceptions of sets lead to inconsistencies
that shake the foundations of mathematics.

There have been many attempts to resolve this unfortunate situation and come up a “foundation
of mathematics”: an inconsistency-free “foundational logic” and “foundational theory” on which all
of mathematics can be built.

In this Part we will present the best-known such attempt – and an attempt it must remain
as we will see – the axiomatic set theory by Zermelo and Fraenkel (ZFC), a set of axioms for
first-order logic that carefully manage set comprehension to avoid introducing the “set of all sets”
which leads us into the paradoxes.
Recommended Reading: The – historical and personal – background of the material covered in
this Part is delightfully covered in [DPPDD09].



64



Chapter 9

Naive Set Theory

We will first recap “naive set theory” and try to formalize it in first-order logic to get a feeling for
the problems involved and possible solutions.

(Naive) Set Theory [Can95, Can97]

� Definition 9.0.1 A set is “everything that can form a unity in the face of
God”. (Georg Cantor (∗1845, †1918))

� Example 9.0.2 (determination by elementhood relation ∈)

� “the set that consists of the number 7 and the prime divisors of 510510”

� {7, c}, {1, 2, 3, 4, 5n, . . .}, {x |x is an integer}, {X |P(X)}

Questions (extensional/intensional):

� � If c = 7, is {7, c} = {7}?
� Is {X |X ∈ N, X 6= X} = {X |X ∈ N, X2 < 0}?
� yes ; extensional ; no ; intensional ;

©:Michael Kohlhase 86 STEX

Georg Cantor was the first to systematically develop a “set theory”, introducing the notion of
a “power set” and distinguishing finite from infinite sets – and the latter into denumerable and
uncountable sets, basing notions of cardinality on bijections.

In doing so, he set a firm foundation for mathematics1, even if that needed more work as was
later discovered.
Now let us see whether we can write down the “theory of sets” as envisioned by Georg Cantor in
first-order logic – which at the time Cantor published his seminal articles was just being invented by
Gottlob Frege. The main idea here is to consider sets as individuals, and only introduce a single
predicate – apart from equality which we consider given by the logic: the binary elementhood
predicate.

(Naive) Set Theory: Formalization

1David Hilbert famously exclaimed “No one shall expel us from the Paradise that Cantor has created” in [Hil26,
p. 170]

65

http://creativecommons.org/licenses/by-sa/2.5/


66 CHAPTER 9. NAIVE SET THEORY

� Idea: Use first-order logic (with equality)

� Signature: (sets are individuals) Σ := {∈}
� Extensionality: ∀M,N M = N⇔ (∀X (X ∈M)⇔ (X ∈ N))

� Comprehension: (all sets that we can write down exist)
∃M ∀X (X ∈M)⇔E (schematic in expression E)

� Idea: Define set theoretic concepts from ∈ as signature extensions

Union ∪ ∈ Σf2 ∀M,N,X (X ∈ (M ∪N))⇔ (X ∈M ∨X ∈ N)

Intersection ∩ ∈ Σf2 ∀M,N,X (X ∈ (M ∩N))⇔ (X ∈M ∧X ∈ N)

Empty Set ∅ ∈ Σf0 ¬ (∃X X ∈ ∅)

and so on.
...

...

©:Michael Kohlhase 87 STEX

The central here is the comprehension axiom that states that any set we can describe by writing
down a frist-order formula E – which usually contains the variable X – must exist. This is a direct
implementation of Cantor’s intuition that sets can be “ . . . everything that forms a unity . . . ”. The
usual set-theoretic operators ∪, ∩, . . . can be defined by suitable axioms.
This formalization will now allow to understand the problems of set theory: with great power
comes great responsibility!

(Naive) Set Theory (Problems)

� Example 9.0.3 (The set of all set and friends)
{M |M set}, {M |M set,M ∈M}, . . .

� Definition 9.0.4 (Problem) Russell’s Antinomy:

M := {M |M set,M 6∈M}

the setM of all sets that do not contain themselves.

� Question: IsM∈M? Answer: M∈M iffM 6∈ M.

� What happened?: We have written something down that makes problems

� Solutions: Define away the problems:

weaker comprehension axiomatic set theory now
weaker properties higher-order logic done
non-standard semantics domain theory [Scott] another time

©:Michael Kohlhase 88 STEX

The culprit for the paradox is the comprehension axiom that guarantees the existence of the “set of
all sets” from which we can then separate out Russell’s set. Multiple ways have been proposed to
get around the paradoxes induced by the “set of all sets”. We have already seen one: (typed) higher-
order logic simply does not allow to write down MM which is higher-order (sets-as-predicates)
way of representing set theory.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


67

The way we are going to exploren now is to remove the general set comprehension axiom we
had introduced above and replace it by more selective ones that only introduce sets that are known
to be safe.



68 CHAPTER 9. NAIVE SET THEORY



Chapter 10

ZFC Axioms

We will now introduce the set theory axioms due to Zermelo and Fraenkel.
We write down a first-order theory of sets by declaring axioms in first-order logic (with equality).
The basic idea is that all individuals are sets, and we can therefore get by with a single binary
predicate: ∈ for elementhood.

Axiomatic Set Theory in First-Order Logic

� Idea: Avoid paradoxes by cautious (axiomatic) Comprehension. ([Zer08])

Ex ∃X X = X There is a set
Ext ∀M,N M = N⇔ (∀X (X ∈M)⇔ (X ∈ N)) Extensionality
Sep ∀N ∃M ∀Z (Z ∈M)⇔ (Z ∈ N ∧E)

From a given set N we can separate all members described by
expression E.

� Theorem 10.0.1 ∀M,N (M ⊆N)∧ (N ⊆M)⇒M = N

� Theorem 10.0.2 M is uniquely determined in Sep

� Proof Sketch: With Ext

� Notation 10.0.3 Write {X ∈ N | E} for the set M guaranteed by Sep.

©:Michael Kohlhase 89 STEX

Note that we do not have a general comprehension axiom, which allows the construction of sets
from expressions, but the separation axiom Sep, which – given a set – allows to “separate out” a
subset. As this axiom is insufficient to providing any sets at all, we guarantee that there is one in
Ex to make the theory less boring.
Before we want to develop the theory further, let us fix the success criteria we have for our
foundation.

Quality Control

� Question: Is ZFC good? (make this more precise under various views)

foundational: Is ZFC sufficient for mathematics?

69

http://creativecommons.org/licenses/by-sa/2.5/


70 CHAPTER 10. ZFC AXIOMS

adequate: is the ZFC notion of sets adequate?

formal: is ZFC consistent?

ambitious: Is ZFC complete?

pragmatic: Is the formalization convenient?

computational: does the formalization yield computation-guiding structure?

� Questions like these help us determine the quality of a foundational system or
theory.

©:Michael Kohlhase 90 STEX

The question about consistency is the most important, so we will address it first. Note that the
absence of paradoxes is a big question, which we cannot really answer now. But we can convince
ourselves that the “set of all sets” cannot exist.

How about Russel’s Antinomy?

� Theorem 10.0.4 There is no universal set

� Proof:

P.1 For each set M , there is a set MR := {X ∈M | X 6∈ X} by Sep.

P.2 show ∀M MR 6∈M
P.3 If MR ∈M , then MR 6∈MR, (also if MR 6∈M)

P.4 thus MR 6∈M or MR ∈MR.

� to get the paradox we would have to separate from the universal set A, to get
AR.

� Great, then we can continue developing our set theory!

©:Michael Kohlhase 91 STEX

Somewhat surprisingly, we can just use Russell’s construction to our advantage here. So back to
the other questions.

Are there Interesting Sets at all?

� yes, e.g. the empty set

� let M be a set (there is one by Ex; we do not need to know what it is)

� define ∅ := {X ∈M | X 6= X}
� ∅ is empty and uniquely determined by Ext.

� Definition 10.0.5 Intersections: M ∩N := {X ∈M | X ∈ N}

Question: How about M ∪N? or N?

�� Answer: we do not know they exist yet! (need more axioms)
Hint: consider Dι = {∅, {∅}, {{∅}}, . . .}

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


71

©:Michael Kohlhase 92 STEX

So we have identified at least interesting set, the empty set. Unfortunately, the existence of the
intersection operator is no big help, if we can only intersect with the empty set. In general, this is
a consequence of the fact that Sep – in contrast to the comprehension axiom we have abolished
– only allows to make sets “smaller”. If we want to make sets “larger”, we will need more axioms
that guarantee these larger sets. The design contribution of axiomatic set theories is to find a
balance between “too large” – and therefore paradoxical – and “not large enough” – and therefore
inadequate.
Before we have a look at the remaining axioms of ZFC, we digress to a very influential experiment
in developing mathematics based on set theory.
“Nicolas Bourbaki” is the collective pseudonym under which a group of (mainly French) 20th-
century mathematicians, with the aim of reformulating mathematics on an extremely abstract
and formal but self-contained basis, wrote a series of books beginning in 1935. With the goal of
grounding all of mathematics on set theory, the group strove for rigour and generality.

Is Set theory enough? ; Nicolas Bourbaki

� Is it possible to develop all of Mathematics from set theory?
; N. Bourbaki: Éléments de Mathématiques/ (there is only one mathematics)

� Original Goal: A modern textbook on calculus.

� Result: 40 volumes in nine books from 1939 to 1968

Set Theory [Bou68] Functions of one real variable Commutative Algebra
Algebra [Bou74] Integration Lie Theory
Topology [Bou89] Topological Vector Spaces Spectral Theory

� Contents:

� starting from set theory all of the fields above are developed.

� All proofs are carried out, no references to other books.

©:Michael Kohlhase 93 STEX

Even though Bourbaki has dropped in favor in modern mathematics, the universality of axiomatic
set theory is generally acknowledged in mathematics and their rigorous style of exposition has
influenced modern branches of mathematics.
The first two axioms we add guarantee the unions of sets, either of finitely many – ∪Ax only
guarantees the union of two sets – but can be iterated. And an axiom for unions of arbitrary
families of sets, which gives us the infinite case. Note that once we have the ability to make finite
sets,

⋃
Ax makes ∪Ax redundant, but minimality of the axiom system is not a concern for us

currently.

The Axioms for Set Union

� Axiom 10.0.6 (Small Union Axiom (∪Ax)) For any sets M and N
there is a set W , that contains all elements of M and N .
∀M,N ∃W ∀X (X ∈M ∨X ∈ N)⇒X ∈W

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


72 CHAPTER 10. ZFC AXIOMS

� Definition 10.0.7 M ∪N := {X ∈W | X ∈M ∨X ∈ N} (exists by
Sep.)

� Axiom 10.0.8 (large Union Axiom (
⋃
Ax)) For each set M there is a

set W , that contains the elements of all elements of M .
∀M ∃W ∀X,Y Y ∈M⇒X ∈ Y ⇒X ∈W

� Definition 10.0.9
⋃

(M) := {X | ∃Y Y ∈M ∧X ∈ Y } (exists by Sep.)

� This also gives us intersections over families (without another axiom):

� Definition 10.0.10⋂
(M) := {Z ∈

⋃
(M) | ∀X X ∈M⇒Z ∈ X}

©:Michael Kohlhase 94 STEX

In Definition 10.0.10 we note that
⋃
Ax also guarantees us intersection over families. Note that

we could not have defined that in analogy to Definition 10.0.5 since we have no set to separate
out of. Intuitively we could just choose one element N from M and define⋂

(M) := {Z ∈ N | ∀X X ∈M⇒Z ∈ X}

But for choice from an infinite set we need another axiom still.
The power set axiom is one of the most useful axioms in ZFC. It allows to construct finite
sets.

The Power Set Axiom

� Axiom 10.0.11 (Power Set Axiom) For each set M there is a set W
that contains all subsets of M : ℘Ax := (∀M ∃W ∀X (X⊆M)⇒X ∈W )

� Definition 10.0.12 Power Set: P(M) := {X |X⊆M} (Exists by Sep.)

� Definition 10.0.13 singleton set: {X} := {Y ∈ P(X) | X = Y }

� Axiom 10.0.14 (Pair Set (Axiom)) (is often assumed instead of
∪Ax)

Given sets M and N there is a set W that contains exactly the elements
M and N : ∀M,N ∃W ∀X (X ∈W )⇔ ((X = N)∨ (X = M))

� Is derivable from ℘Ax: {M,N} := {M} ∪ {N}.

� Definition 10.0.15 (Finite Sets) {X,Y, Z} := {X,Y } ∪ {Z}. . .

� Theorem 10.0.16 ∀Z,X1, . . ., Xn (Z ∈ {X1, . . ., Xn})⇔ (Z = X1 ∨ . . .∨Z = Xn)

©:Michael Kohlhase 95 STEX

The Foundation Axiom

� Axiom 10.0.17 (The foundation Axiom (Fund)) Every non-empty set
has a ∈-minimal element,.
∀X X 6= ∅⇒ (∃Y Y ∈ X ∧¬ (∃Z Z ∈ X ∧Z ∈ Y ))

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


73

� Theorem 10.0.18 There are no infinite descendig chains . . . , X2, X1, X0

and thus no cycles . . . X1, X0, . . . , X2, X1, X0.

� Definition 10.0.19 Fund guarantees a hierarchical structure (von Neu-
mann Hierarchy) of the universe. 0. order: ∅, 1. order: {∅}, 2. order: all
subsets of 1. order, · · ·

� Note: In contrast to a Russel-style typing where sets of differernt type are
distinct, this categorization is cummulative

©:Michael Kohlhase 96 STEX

The Infinity Axiom

� We already know a lot of sets

� z.B. ∅, {∅}, {{∅}}, . . . (iterated singleton set)

� or ∅, {∅}, {∅, {∅}}, . . . (iterated pair set)

But: Does the set N of all members of these sequences?

� Axiom 10.0.20 (Infinity Axiom (∞Ax)) There is a set that contains
∅ and with each X also X ∪ {X}.
∃M ∅ ∈M ∧ (∀Z Z ∈M⇒ (Z ∪ {Z}) ∈M).

� Definition 10.0.21 M is inductive: Ind(M) := ∅ ∈M ∧ (∀Z Z ∈M⇒ (Z ∪ {Z}) ∈M).

� Definition 10.0.22 Set of the Inductive Set: ω := {Z | ∀W Ind(W )⇒Z ∈W}

� Theorem 10.0.23 ω is inductive.

©:Michael Kohlhase 97 STEX

The Replacement Axiom

� We have ω, ℘(M), but not {ω, ℘(ω), ℘(℘(ω)), . . .}.

� Axiom 10.0.24 (The Replacement Axiom (Schema): Rep) If for each
X there is exactly one Y with property P(X,Y ), then for each set U , that
contains these X, there is a set V that contains the respective Y .
(∀X ∃1 Y P(X,Y ))⇒ (∀U ∃V ∀X,Y X ∈ U ∧P(X,Y )⇒Y ∈ V )

� Intuitively: A right-unique propertyP induces a replacement ∀U ∃V V = {F (X) |X ∈ U}.

� Example 10.0.25 Let U = {1, {2, 3}} and P(X⇔Y )⇔ (∀Z Z ∈ Y ⇒Z = X),
then the induced function F maps each X to the set V that contains X,
i.e. V = {{X} |X ∈ U = {{1}, {{2, 3}}}}.

©:Michael Kohlhase 98 STEX

Zermelo Fraenkel Set Theory

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


74 CHAPTER 10. ZFC AXIOMS

� Definition 10.0.26 (Zermelo Fraenkel Set Theory) We call the first-
order theory given by the axioms below Zermelo/Fraenkel set theory and
denote it by ZF.

Ex ∃X X = X
Ext ∀M,N M = N⇔ (∀X (X ∈M)⇔ (X ∈ N))
Sep ∀N ∃M ∀Z (Z ∈M)⇔ (Z ∈ N ∧E)
∪Ax ∀M,N ∃W ∀X (X ∈M ∨X ∈ N)⇒X ∈W⋃
Ax ∀M ∃W ∀X,Y Y ∈M⇒X ∈ Y ⇒X ∈W

℘Ax ∀M ∃W ∀X (X⊆M)⇒X ∈W
∞Ax ∃M ∅ ∈M ∧ (∀Z Z ∈M⇒ (Z ∪ {Z}) ∈M)
Rep (∀X ∃1 Y P(X,Y ))⇒ (∀U ∃V ∀X,Y X ∈ U ∧P(X,Y )⇒Y ∈ V )
Fund ∀X X 6= ∅⇒ (∃Y Y ∈ X ∧¬ (∃Z Z ∈ X ∧Z ∈ Y ))

©:Michael Kohlhase 99 STEX

The Axiom of Choice

� Axiom 10.0.27 (The axiom of Choice :AC) For each set X of non-
empty, pairwise disjoint subsets there is a set that contains exactly one
element of each element of X.
∀X,Y, Z Y ∈ X ∧Z ∈ X ⇒ Y 6= ∅∧ (Y = Z ∨Y ∩Z = ∅)⇒ ∃U ∀V V ∈ X⇒ (∃W U ∩V = {W})

� This axiom assumes the existence of a set of representatives, even if we cannot
give a construction for it. ; we can “pick out” an arbitrary element.

� Reasons for AC:

� Neither ZF ` AC, nor ZF ` ¬AC

� So it does not harm?

� Definition 10.0.28 (Zermelo Fraenkel Set Theory with Choice) The
theory ZF together withAC is called ZFC with choice and denoted as ZFC.

©:Michael Kohlhase 100 STEX

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Chapter 11

ZFC Applications

Limits of ZFC

� Conjecture 11.0.1 (Cantor’s Continuum Hypothesis (CH)) There is
no set whose cardinality is strictly between that of integers and real numbers.

� Theorem 11.0.2 If ZFC is consistent, then neither CH nor ¬CH can be
derived. (CH is independent of ZFC)

� The axiomatzation of ZFC does not suffice

� There are other examples like this.

©:Michael Kohlhase 101 STEX

Ordered Pairs

� Empirically: In ZFC we can define all mathematical concepts.

� For Instance: We would like a set that behaves like an odererd pair

� Definition 11.0.3 Define 〈X,Y 〉 := {{X}, {X,Y }}

� Lemma 11.0.4 〈X,Y 〉 = 〈U, V 〉⇒X = U ∧Y = V

� Lemma 11.0.5 U ∈ X ∧V ∈ Y ⇒〈U, V 〉 ∈ P(P(X ∪ Y ))

� Definition 11.0.6 left projection: πl(X) =

{
U if ∃V X = 〈U, V 〉
∅ if X is no pair

� Definition 11.0.7 right projection πr analogous.

©:Michael Kohlhase 102 STEX

Relations

� All mathematical objects are represented by sets in ZFC, in particular relations

75

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


76 CHAPTER 11. ZFC APPLICATIONS

� Definition 11.0.8 The Cartesian produkt of X and Y
X ×Y := {Z ∈ P(P(X ∪ Y )) | Z is ordered pair with πl(Z) ∈ X ∧πr(Z) ∈ Y }
A relation is a subset of a Cartesian product.

� Definition 11.0.9 The domain and codomain of a function are defined as
usual

Dom(X) =

{
{πl(Z) |Z ∈ X} if if X is a relation;

∅ else

coDom(X) =

{
{πr(Z) |Z ∈ X} if if X is a relation;

∅ else

but they (as first-order functions) must be total, so we (arbitrarily) extend
them by the empty set for non-relations

©:Michael Kohlhase 103 STEX

Functions

� Definition 11.0.10 A function f from X to Y is a right-unique relation
with Dom(f) = X and coDom(f) = Y ; write f : X → Y .

� Definition 11.0.11 function application: f(X) =

{
Y if f function and 〈X,Y 〉 ∈ f
∅ else

©:Michael Kohlhase 104 STEX

Domain Language vs. Representation Language

� Note: Relations and functions are objects of set theory, ZFC ∈ is a predicate
of the representation language

� predicates and functions of the representation language can be expressed in
the object language:

� ∀A ∃R R = {〈U, V 〉 |U ∈ A∧V ∈ A∧ p(U ∧V )} for all predicates p.
� ∀A ∃F F = {〈X, f(X)〉 |X ∈ A} for all functions f .

� As the natural numbers can be epxressed in set theory, the logical calculus can
be expressed by Gödelization.

©:Michael Kohlhase 105 STEX

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Part IV

Higher-Order Logic and λ-Calculus

77





79

In this Part we set the stage for a deeper discussions of the logical foundations of mathematics by
introducing a particular higher-order logic, which gets around the limitations of first-order logic
— the restriction of quantification to individuals. This raises a couple of questions (paradoxes,
comprehension, completeness) that have been very influential in the development of the logical
systems we know today.

Therefore we use the discussion of higher-order logic as an introduction and motivation for the
λ-calculus, which answers most of these questions in a term-level, computation-friendly system.

The formal development of the simply typed λ-calculus and the establishment of its (meta-
logical) properties will be the body of work in this Part. Once we have that we can reconstruct a
clean version of higher-order logic by adding special provisions for propositions.



80



Chapter 12

Higher-Order Predicate Logic

The main motivation for higher-order logic is to allow quantification over classes of objects that
are not individuals — because we want to use them as functions or predicates, i.e. apply them to
arguments in other parts of the formula.

Higher-Order Predicate Logic (PLΩ)

� Quantification over functions and Predicates: ∀P ∃F P (a)∨¬P (F (a))

� Comprehension: (Existence of Functions)
∃F ∀X FX = A e.g. f(x) = 3x2 + 5x− 7

� Extensionality: (Equality of functions and truth values)
∀F ∀G (∀X FX = GX)⇒F = G
∀P ∀Q (P ⇔Q)⇔P = Q

� Leibniz Equality: (Indiscernability)
A = B for ∀P PA⇒PB

©:Michael Kohlhase 106 STEX

Indeed, if we just remove the restriction on quantification we can write down many things that are
essential on everyday mathematics, but cannot be written down in first-order logic. But the naive
logic we have created (BTW, this is essentially the logic of Frege [Fre79]) is much too expressive,
it allows us to write down completely meaningless things as witnessed by Russell’s paradox.

Problems with PLΩ

� Problem: Russell’s Antinomy: ∀Q M(Q)⇔ (¬Q(Q))

� the setM of all sets that do not contain themselves

� Question: IsM∈M? Answer: M∈M iffM 6∈ M.

� What has happened? the predicate Q has been applied to itself

� Solution for this course: Forbid self-applications by types!!

� ι, o (type of individuals, truth values), α→ β (function type)

� right associative bracketing: α→ β → γ abbreviates α→ (β → γ)

81

http://creativecommons.org/licenses/by-sa/2.5/


82 CHAPTER 12. HIGHER-ORDER PREDICATE LOGIC

� vector notation: αn → β abbreviates α1 → . . .→ αn → β

� Well-typed formulae (prohibits paradoxes like ∀Q M(Q)⇔ (¬Q(Q)))

� Other solution: Give it a non-standard semantics (Domain-Theory [Scott])

©:Michael Kohlhase 107 STEX

The solution to this problem turns out to be relatively simple with the benefit of hindsight: we
just introduce a syntactic device that prevents us from writing down paradoxical formulae. This
idea was first introduced by Russell and Whitehead in their Principia Mathematica [WR10].
Their system of “ramified types” was later radically simplified by Alonzo Church to the form we
use here in [Chu40]. One of the simplifications is the restriction to unary functions that is made
possible by the fact that we can re-interpret binary functions as unary ones using a technique
called “Currying” after the Logician Haskell Brooks Curry (∗1900, †1982). Of course we can
extend this to higher arities as well. So in theory we can consider n-ary functions as syntactic
sugar for suitable higher-order functions. The vector notation for types defined above supports
this intuition.

Types

� Types are semantic annotations for terms that prevent antinomies

� Definition 12.0.1 Given a set B T of base types, construct function types:
α → β is the type of functions with domain type α and range type β. We
call the closure T of B T under function types the set of types over B T .

� Definition 12.0.2 We will use ι for the type of individuals and o for the
type of truth values.

� The type constructor is used as a right-associative operator, i.e. we use
α→ β → γ as an abbreviation for α→ (β → γ)

� We will use a kind of vector notation for function types, abbreviating α1 → . . .→ αn →
β with αn → β.

©:Michael Kohlhase 108 STEX

Armed with a system of types, we can now define a typed higher-order logic, by insisting that all
formulae of this logic be well-typed. One advantage of typed logics is that the natural classes of
objects that have otherwise to be syntactically kept apart in the definition of the logic (e.g. the
term and proposition levels in first-order logic), can now be distinguished by their type, leading to
a much simpler exposition of the logic. Another advantage is that concepts like connectives that
were at the language level e.g. in PL0, can be formalized as constants in the signature, which again
makes the exposition of the logic more flexible and regular. We only have to treat the quantifiers
at the language level (for the moment).

Well-Typed Formulae (PLΩ)

� signature Σ =
⋃
α∈T Σα with

� connectives: ¬ ∈ Σo→o {∨,∧,⇒,⇔ . . .}⊆Σo→o→o

� variables VT =
⋃
α∈T Vα, such that every Vα countably infinite.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


83

� well-typed formula e wff α(Σ,VT ) of type α

� Vα ∪Σα⊆wff α(Σ,VT )

� If C ∈ wff α→β(Σ,VT ) and A ∈ wff α(Σ,VT ), then (CA) ∈ wff β(Σ,VT )

� If A ∈ wff o(Σ,VT ), then (∀Xα A) ∈ wff o(Σ,VT )

� first-order terms have type ι, propositions the type o.

� there is no type annotation such that ∀Q M(Q)⇔ (¬Q(Q)) is well-typed.
Q needs type α as well as α→ o.

©:Michael Kohlhase 109 STEX

The semantics is similarly regular: We have universes for every type, and all functions are “typed
functions”, i.e. they respect the types of objects. Other than that, the setup is very similar to
what we already know.

Standard Semantics for PLΩ

� Definition 12.0.3 The universe of discourse (also carrier)

� arbitrary, non-empty set of individuals Dι
� fixed set of truth values Do = {T,F}
� function universes Dα→β = F(Dα;Dβ)

� interpretation of constants: typed mapping I : Σ→ D (i.e. I(Σα)⊆Dα)

� Definition 12.0.4 We call a structure 〈D, I〉, where D is a universe and
I an interpretation of constants a standard model of PLΩ.

� variable assignment: typed mapping ϕ : VT → D

� Definition 12.0.5 value function: typed mapping Iϕ : wff T (Σ,VT )→ D

� Iϕ|VT = ϕ Iϕ|ΣT = I
� Iϕ(AB) = Iϕ(A)(Iϕ(B))

� Iϕ(∀Xα A) = T, iff Iϕ,[a/X](A) = T for all a ∈ Dα.

� Ao valid under ϕ, iff Iϕ(A) = T.

©:Michael Kohlhase 110 STEX

We now go through a couple of examples of what we can express in PLΩ, and that works out very
straightforwardly. For instance, we can express equality in PLΩ by Leibniz equality, and it has
the right meaning.

Equality

� “Leibniz equality” (Indiscernability) QαAαBα = ∀Pα→o PA⇔PB

� not that ∀Pα→o PA⇒PB (get the other direction by instantiating P with
Q, where QX⇔ (¬PX))

� Theorem 12.0.6 If M = 〈D, I〉 is a standard model, then Iϕ(Qα) is the

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


84 CHAPTER 12. HIGHER-ORDER PREDICATE LOGIC

identity relation on Dα.

� Notation 12.0.7 We write A = B for QAB(A and B are equal, iff there
is no property P that can tell them apart.)

� Proof:

P.1 Iϕ(QAB) = Iϕ(∀P PA⇒PB) = T, iff
Iϕ,[r/P ](PA⇒PB) = T for all r ∈ Dα→o.

P.2 For A = B we have Iϕ,[r/P ](PA) = r(Iϕ(A)) = F or Iϕ,[r/P ](PB) =
r(Iϕ(B)) = T.

P.3 Thus Iϕ(QAB) = T.

P.4 Let Iϕ(A) 6= Iϕ(B) and r = {Iϕ(A)}
P.5 so r(Iϕ(A)) = T and r(Iϕ(B)) = F

P.6 Iϕ(QAB) = F, as Iϕ,[r/P ](PA⇒PB) = F, since Iϕ,[r/P ](PA) =
r(Iϕ(A)) = T and Iϕ,[r/P ](PB) = r(Iϕ(B)) = F.

©:Michael Kohlhase 111 STEX

Another example are the Peano Axioms for the natural numbers, though we omit the proofs of
adequacy of the axiomatization here.

Example: Peano Axioms for the Natural Numbers

� Σ = {[N : ι→ o], [0 : ι], [s : ι→ ι]}

� N0 (0 is a natural number)

� ∀Xι NX⇒N(sX) (the successor of a natural number is natural)

� ¬ (∃Xι NX ∧ sX = 0) (0 has no predecessor)

� ∀Xι ∀Yι (sX = sY )⇒X = Y (the successor function is injective)

� ∀Pι→o P0⇒ (∀Xι NX⇒PX⇒P (sX))⇒ (∀Yι NY ⇒P (Y ))
induction axiom: all properties P , that hold of 0, and with every n for its
successor s(n), hold on all N

©:Michael Kohlhase 112 STEX

Finally, we show the expressivity of PLΩ by formalizing a version of Cantor’s theorem.

Expressive Formalism for Mathematics

� Example 12.0.8 (Cantor’s Theorem) The cardinality of a set is smaller
than that of its power set.

� smaller-card(M,N) := ¬ (∃F surjective(F,M,N))

� surjective(F,M,N) := (∀X ∈M ∃Y ∈ N FY = X)

� Example 12.0.9 (Simplified Formalization) ¬ (∃Fι→ι→ι ∀Gι→ι ∃Jι FJ = G)

� Standard-Benchmark for higher-order theorem provers

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


85

� can be proven by Tps and Leo (see below)

©:Michael Kohlhase 113 STEX

The simplified formulation of Cantor’s theorem in Example 12.0.9 uses the universe of type ι for
the set S and universe of type ι→ ι for the power set rather than quantifying over S explicitly.
The next concern is to find a calculus for PLΩ.
We start out with the simplest one we can imagine, a Hilbert-style calculus that has been adapted
to higher-order logic by letting the inference rules range over PLΩ formulae and insisting that
substitutions are well-typed.

Hilbert-Calculus

� Definition 12.0.10 (HΩ Axioms) � ∀Po, Qo P ⇒Q⇒P

� ∀Po, Qo, Ro (P ⇒Q⇒R)⇒ (P ⇒Q)⇒P ⇒R

� ∀Po, Qo (¬P ⇒¬Q)⇒P ⇒Q

� Definition 12.0.11 (HΩ Inference rules)

Ao⇒Bo A

B

∀Xα A

[B/Xα](A)

A

∀Xα A

X 6∈ free(A) ∀Xα A∧B
A∧ (∀Xα B)

� Theorem 12.0.12 Sound, wrt. standard semantics

� Also Complete?

©:Michael Kohlhase 114 STEX

Not surprisingly, HΩ is sound, but it shows big problems with completeness. For instance, if we
turn to a proof of Cantor’s theorem via the well-known diagonal sequence argument, we will have
to construct the diagonal sequence as a function of type ι → ι, but up to now, we cannot in
HΩ. Unlike mathematical practice, which silently assumes that all functions we can write down
in closed form exists, in logic, we have to have an axiom that guarantees (the existence of) such
a function: the comprehension axioms.

Hilbert-Calculus HΩ (continued)

� valid sentences that are not HΩ-theorems:

� Cantor’s Theorem:
¬ (∃Fι→ι→ι ∀Gι→ι (∀Kι (NK)⇒N(GK))⇒ (∃Jι (NJ)∧FJ = G))
(There is no surjective mapping from N into the set F(N; ,)N of natural
number sequences)

� proof attempt fails at the subgoal ∃Gι→ι ∀Xι GX = s(fXX)

� Comprehension ∃Fα→β ∀Xα FX = Aβ (for every variable Xα and every
term A ∈ wff β(Σ,VT ))

� extensionality
Extαβ ∀Fα→β ∀Gα→β (∀Xα FX = GX)⇒F = G
Exto ∀Fo ∀Go (F ⇔G)⇔F = G

� correct! complete? cannot be!! [Göd31]

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


86 CHAPTER 12. HIGHER-ORDER PREDICATE LOGIC

©:Michael Kohlhase 115 STEX

Actually it turns out that we need more axioms to prove elementary facts about mathematics:
the extensionality axioms. But even with those, the calculus cannot be complete, even though
empirically it proves all mathematical facts we are interested in.

Way Out: Henkin-Semantics

� Gödel’s incompleteness theorem only holds for standard semantics

� find generalization that admits complete calculi:

� Idea: generalize so that the carrier only contains those functions that are
requested by the comprehension axioms.

� Theorem 12.0.13 (Henkin 1950) HΩ is complete wrt. this semantics.

� Proof Sketch: more models ; less valid sentences (these are HΩ-theorems)

� Henkin-models induce sensible measure of completeness for higher-order logic.

©:Michael Kohlhase 116 STEX

Actually, there is another problem with PLΩ: The comprehension axioms are computationally
very problematic. First, we observe that they are equality axioms, and thus are needed to show
that two objects of PLΩ are equal. Second we observe that there are countably infinitely many of
them (they are parametric in the term A, the type α and the variable name), which makes dealing
with them difficult in practice. Finally, axioms with both existential and universal quantifiers are
always difficul to reason with.
Therefore we would like to have a formulation of higher-order logic without comprehension axioms.
In the next slide we take a close look at the comprehension axioms and transform them into a
form without quantifiers, which will turn out useful.

From Comprehension to β-Conversion

� ∃Fα→β ∀Xα FX = Aβ for arbitrary variable Xα and term A ∈ wff β(Σ,VT )
(for each term A and each variable X there is a function f ∈ Dα→β , with
f(ϕ(X)) = Iϕ(A))

� schematic in α, β, Xα and Aβ , very inconvenient for deduction

� Transformation in HΩ

� ∃Fα→β ∀Xα FX = Aβ

� ∀Xα (λXα A)X = Aβ (∃E)
Call the function F whose existence is guaranteed “(λXα A)”

� (λXα A)B = [B/X]Aβ (∀E), in particular for B ∈ wff α(Σ,VT ).

� Definition 12.0.14 Axiom of β-equality: (λXα A)B = [B/X](Aβ)

� new formulae (λ-calculus [Church 1940])

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


87

©:Michael Kohlhase 117 STEX

In a similar way we can treat (functional) extensionality.

From Extensionality to η-Conversion

� Definition 12.0.15 Extensionality Axiom: ∀Fα→β ∀Gα→β (∀Xα FX = GX)⇒F = G

� Idea: Maybe we can get by with a simplified equality schema here as well.

� Definition 12.0.16 We say that A and λXα AX are η-equal, (write
Aα→β =η (λXα AX), if), iff X 6∈ free(A).

� Theorem 12.0.17 η-equality and Extensionality are equivalent

� Proof: We show that η-equality is special case of extensionality; the converse
entailment is trivial

P.1 Let ∀Xα AX = BX, thus AX = BX with ∀E
P.2 λXα AX = λXα BX, therefore A = B with η

P.3 Hence ∀Fα→β ∀Gα→β (∀Xα FX = GX)⇒F = G by twice ∀I.

� Axiom of truth values: ∀Fo ∀Go (F ⇔G)⇔F = G unsolved.

©:Michael Kohlhase 118 STEX

The price to pay is that we need to pay for getting rid of the comprehension and extensionality
axioms is that we need a logic that systematically includes the λ-generated names we used in the
transformation as (generic) witnesses for the existential quantifier. Alonzo Church did just that
with his “simply typed λ-calculus” which we will introduce next.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


88 CHAPTER 12. HIGHER-ORDER PREDICATE LOGIC



Chapter 13

Simply Typed λ-Calculus

In this section we will present a logic that can deal with functions – the simply typed λ-calculus.
It is a typed logic, so everything we write down is typed (even if we do not always write the types
down).

Simply typed λ-Calculus (Syntax)

� Signature Σ =
⋃
α∈T Σα (includes countably infinite Signatures ΣSkα of Skolem

contants).

� VT =
⋃
α∈T Vα, such that Vα are countably infinite

� Definition 13.0.1 We call the set wff α(Σ,VT ) defined by the rules

� Vα ∪Σα⊆wff α(Σ,VT )

� If C ∈ wff α→β(Σ,VT ) and A ∈ wff α(Σ,VT ), then (CA) ∈ wff β(Σ,VT )

� If A ∈ wff α(Σ,VT ), then (λXβ A) ∈ wff β→α(Σ,VT )

the set of well-typed formula e of type α over the signature Σ and use
wff T (Σ,VT ) :=

⋃
α∈T wff α(Σ,VT ) for the set of all well-typed formulae.

� Definition 13.0.2 We will call all occurrences of the variable X in A
bound in λX A. Variables that are not bound in B are called free in B.

� Substitutions are well-typed, i.e. σ(Xα) ∈ wff α(Σ,VT ) and capture-avoiding.

� Definition 13.0.3 (Simply Typed λ-Calculus) The simply typed λ-calculus
Λ→ over a signature Σ has the formulae wff T (Σ,VT ) (they are called λ-
terms) and the following equalities:

� α conversion: (λX A) =α (λY [Y/X](A))

� β conversion: (λX A)B =β [B/X](A)

� η conversion: (λX AX) =η A

©:Michael Kohlhase 119 STEX

The intuitions about functional structure of λ-terms and about free and bound variables are
encoded into three transformation rules Λ→: The first rule (α-conversion) just says that we can
rename bound variables as we like. β-conversion codifies the intuition behind function application
by replacing bound variables with argument. The equality relation induced by the η-reduction is

89

http://creativecommons.org/licenses/by-sa/2.5/


90 CHAPTER 13. SIMPLY TYPED λ-CALCULUS

a special case of the extensionality principle for functions (f = g iff f(a) = g(a) for all possible
arguments a): If we apply both sides of the transformation to the same argument – say B and
then we arrive at the right hand side, since (λXα AX)B =β AB.
We will use a set of bracket elision rules that make the syntax of Λ→ more palatable. This makes Λ→

expressions look much more like regular mathematical notation, but hides the internal structure.
Readers should make sure that they can always reconstruct the brackets to make sense of the
syntactic notions below.

Simply typed λ-Calculus (Notations)

� Notation 13.0.4 (Application is left-associative) We abbreviate (((FA1)A2). . .)An

with FA1. . .An eliding the brackets and further with FAn in a kind of vec-
tor notation.

� A stands for a left bracket whose partner is as far right as is consistent with
existing brackets; i.e. ABC abbreviates A(BC).

� Notation 13.0.5 (Abstraction is right-associative) We abbreviate λX1 λX2 · · ·λXn A · · ·
with λX1. . .Xn A eliding brackets, and further to λXn A in a kind of vec-
tor notation.

� Notation 13.0.6 (Outer brackets) Finally, we allow ourselves to elide
outer brackets where they can be inferred.

©:Michael Kohlhase 120 STEX

Intuitively, λX A is the function f , such that f(B) will yield A, where all occurrences of the
formal parameter X are replaced by B.7EdN:7
In this presentation of the simply typed λ-calculus we build-in α-equality and use capture-avoiding
substitutions directly. A clean introduction would followed the steps in Chapter 7 by introducing
substitutions with a substitutability condition like the one in Definition 7.2.10, then establishing
the soundness of α conversion, and only then postulating defining capture-avoiding substitution
application as in Definition 7.3.3. The development for Λ→ is directly parallel to the one for
PL1, so we leave it as an exercise to the reader and turn to the computational properties of the
λ-calculus.
Computationally, the λ-calculus obtains much of its power from the fact that two of its three
equalities can be oriented into a reduction system. Intuitively, we only use the equalities in one
direction, i.e. in one that makes the terms “simpler”. If this terminates (and is confluent), then
we can establish equality of two λ-terms by reducing them to normal forms and comparing them
structurally. This gives us a decision procedure for equality. Indeed, we have these properties in
Λ→ as we will see below.

αβη-Equality (Overview)

� reduction with
{
β : (λX A)B→β [B/X](A)
η : (λX AX)→ηA

under =α :
λX A

=α

λY [Y/X](A)

� Theorem 13.0.7 βη-reduction is well-typed, terminating and confluent in
the presence of =α-conversion.

� Definition 13.0.8 (Normal Form) We call a λ-term A a normal form

7EdNote: rationalize the semantic macros for syntax!

http://creativecommons.org/licenses/by-sa/2.5/


91

(in a reduction system E), iff no rule (from E) can be applied to A.

� Corollary 13.0.9 βη-reduction yields unique normal forms (up to α-equivalence).

©:Michael Kohlhase 121 STEX

We will now introduce some terminology to be able to talk about λ-terms and their parts.

Syntactic Parts of λ-Terms

� Definition 13.0.10 (Parts of λ-Terms) We can always write a λ-term
in the form T = λX1. . .Xk HA1 . . .An, where H is not an application.
We call

� H the syntactic head of T

� HA1. . .An the matrix of T, and

� λX1. . .Xk (or the sequence X1, . . . , Xk) the binder of T

� Definition 13.0.11 Head Reduction always has a unique β redex

(λXn (λY A)B1. . .Bn)→h
β (λXn [B1/Y ](A)B2. . .Bn)

� Theorem 13.0.12 The syntactic heads of β-normal forms are constant or
variables.

� Definition 13.0.13 Let A be a λ-term, then the syntactic head of the β-
normal form of A is called the head symbol of A and written as head(A).
We call a λ-term a j-projection, iff its head is the jth bound variable.

� Definition 13.0.14 We call a λ-term a η-long form, iff its matrix has base
type.

� Definition 13.0.15 η-Expansion makes η-long forms

η
[
(λX

1. . .Xn A)
]

:= (λX
1. . .Xn

λY
1. . .Y m AY 1. . .Y m)

� Definition 13.0.16 Long βη-normal form, iff it is β-normal and η-long.

©:Michael Kohlhase 122 STEX

η long forms are structurally convenient since for them, the structure of the term is isomorphic
to the structure of its type (argument types correspond to binders): if we have a term A of type
αn → β in η-long form, where β ∈ B T , then A must be of the form λXα

n B, where B has type
β. Furthermore, the set of η-long forms is closed under β-equality, which allows us to treat the
two equality theories of Λ→ separately and thus reduce argumentational complexity.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


92 CHAPTER 13. SIMPLY TYPED λ-CALCULUS



Chapter 14

Computational Properties of
λ-Calculus

As we have seen above, the main contribution of the λ-calculus is that it casts the comprehension
and (functional) extensionality axioms in a way that is more amenable to automation in reasoning
systems, since they can be oriented into a confluent and terminating reduction system. In this
Chapter we prove the respective properties. We start out with termination, since we will need it
later in the proof of confluence.

14.1 Termination of β-reduction

We will use the termination of β reduction to present a very powerful proof method, called the
“logical relations method”, which is one of the basic proof methods in the repertoire of a proof
theorist, since it can be extended to many situations, where other proof methods have no chance
of succeeding.

Before we start into the termination proof, we convince ourselves that a straightforward induction
over the structure of expressions will not work, and we need something more powerful.

Termination of β-Reduction

� only holds for the typed case
(λX XX)(λX XX)→β (λX XX)(λX XX)

� Theorem 14.1.1 (Typed β-Reduction terminates) For allA ∈ wff α(Σ,VT ),
the chain of reductions from A is finite.

� proof attempts:

� Induction on the structure A must fail, since this would also work for the
untyped case.

� Induction on the type of A must fail, since β-reduction conserves types.

� combined induction on both: Logical Relations [Tait 1967]

©:Michael Kohlhase 123 STEX

The overall shape of the proof is that we reason about two relations: SR and LR between λ-terms
and their types. The first is the one that we are interested in, LR(A, α) essentially states the

93

http://creativecommons.org/licenses/by-sa/2.5/


94 CHAPTER 14. COMPUTATIONAL PROPERTIES OF λ-CALCULUS

property that βη reduction terminates at A. Whenever the proof needs to argue by induction on
types it uses the “logical relation” LR, which is more “semantic” in flavor. It coincides with SR on
base types, but is defined via a functionality property.

Relations SR and LR

� Definition 14.1.2 A is called strongly reducing at type α (write SR(A, α)),
iff each chain β-reductions from A terminates.

� We define a logical relationLR inductively on the structure of the type

� α base type: LR(A, α), iff SR(A, α)

� LR(C, α→ β), iff LR(CA, β) for all A ∈ wff α(Σ,VT ) with LR(A, α).

Proof: Termination Proof

� P.1 LR⊆SR (Lemma 14.1.4 b))

A ∈ wff α(Σ,VT ) implies LR(A, α) (Theorem 14.1.8 with σ = ∅)
thus SR(A, α).

P.2 P.3� Lemma 14.1.3 (SR is closed under subterms) If SR(A, α) and Bβ is a
subterm of A, then SR(B, β).

� Proof Idea: Every infinite β-reduction from B would be one from A.

©:Michael Kohlhase 124 STEX

The termination proof proceeds in two steps, the first one shows that LR is a sub-relation of SR,
and the second that LR is total on λ-terms. Togther they give the termination result.
The next result proves two important technical side results for the termination proofs in a joint
induction over the structure of the types involved. The name “rollercoaster lemma” alludes to the
fact that the argument starts with base type, where things are simple, and iterates through the
two parts each leveraging the proof of the other to higher and higher types.

LR⊆SR (Rollercoaster Lemma)

� Lemma 14.1.4 (Rollercoaster Lemma)

a) If h is a constant or variable of type αn → α and SR(Ai, αi), then
LR(hAn, α).

b) LR(A, α) implies SR(A, α).

Proof: we prove both assertions by simultaneous induction on α

� P.1.1 α base type:

P.1.1.1.1 a): hAn is strongly reducing, since the Ai are (brackets!)

P.1.1.1.1.2 so LR(hAn, α) as α is a base type (SR = LR)

P.1.1.1.2 b): by definition

α = β → γ:

P.1.2P.1.2.1.1 a): Let LR(B, β).

http://creativecommons.org/licenses/by-sa/2.5/


14.1. TERMINATION OF β-REDUCTION 95

P.1.2.1.1.2 by IH b) we have SR(B, β), and LR((hAn)B, γ) by IH a)

P.1.2.1.1.3 so LR(hAn, α) by definition.

P.1.2.1.2 b): Let LR(A, α) and Xβ /∈ free(A).

P.1.2.1.2.2 LR(X,β) by IH a) with n = 0, thus LR(AX, γ) by definition.

P.1.2.1.2.3 By IH b) we have SR(AX, γ) and by Lemma 14.1.3 SR(A, α).

©:Michael Kohlhase 125 STEX

The part of the rollercoaster lemma we are really interested in is part b). But part a) will become
very important for the case where n = 0; here it states that constants and variables are LR.
The next step in the proof is to show that all well-formed formulae are LR. For that we need to
prove closure of LR under =β expansion

β-Expansion Lemma

� Lemma 14.1.5 If LR([B/X](A), α) and LR(B, β) for Xβ 6∈ free(B), then
LR((λXα A)B, α).

� Proof:

P.1 Let α = γi → δ where δ base type and LR(Ci, γi)

P.2 It is sufficient to show that SR(((λX A)B)C, δ), as δ base type

P.3 We have LR([B/X](A)C, δ) by hypothesis and definition of LR.
P.4 thus SR([B/X](A)C, δ), as δ base type.

P.5 in particular SR([B/X](A), α) and SR(Ci, γi) (subterms)

P.6 SR(B, β) by hypothesis and Lemma 14.1.4

P.7 So an infinite reduction from ((λX A)B)C cannot solely consist of re-
dexes from [B/X](A) and the Ci.

P.8 so an infinite reduction from ((λX A)B)C must have the form

((λX A)B)C →∗β ((λX A′)B′)C′

→1
β [B′/X](A′)C′

→∗β . . .

where A→∗βA′, B→∗β B′ and Ci→∗β Ci′

P.9 so we have [B/X](A)→∗β [B′/X](A′)

P.10 so we have the infinite reduction

[B/X](A)C →∗β [B′/X](A′)C′

→∗β . . .

which contradicts our assumption

http://creativecommons.org/licenses/by-sa/2.5/


96 CHAPTER 14. COMPUTATIONAL PROPERTIES OF λ-CALCULUS

� Lemma 14.1.6 (LR is closed under β-expansion)
If C→βD and LR(D, α), so is LR(C, α).

©:Michael Kohlhase 126 STEX

Note that this Lemma is one of the few places in the termination proof, where we actually look
at the properties of =β reduction.

We now prove that every well-formed formula is related to its type by LR. But we cannot prove
this by a direct induction. In this case we have to strengthen the statement of the theorem – and
thus the inductive hypothesis, so that we can make the step cases go through. This is common for
non-trivial induction proofs. Here we show instead that every instance of a well-formed formula is
related to its type by LR; we will later only use this result for the cases of the empty substitution,
but the stronger assertion allows a direct induction proof.

A ∈ wff α(Σ,VT ) implies LR(A, α)

� Definition 14.1.7 We write LR(σ) if LR(σ(Xα), α) for all X ∈ supp(σ).

� Theorem 14.1.8 If A ∈ wff α(Σ,VT ), then LR(σ(A), α) for any substitu-
tion σ with LR(σ).

� Proof: by induction on the structure of A

P.1.1 A = Xα ∈ supp(σ): then LR(σ(A), α) by assumption

P.1.2 A = X /∈ supp(σ): then σ(A) = A and LR(A, α) by Lemma 14.1.4
with n = 0.

P.1.3 A ∈ Σ: then σ(A) = A as above

P.1.4 A = BC: by IH LR(σ(B), γ → α) and LR(σ(C), γ)

P.1.4.2 so LR(σ(B)σ(C), α) by definition of LR.

P.1.5 A = λXβ Cγ : Let LR(B, β) and θ := σ, [B/X], then θ meets the
conditions of the IH.

P.1.5.2 Moreover σ(λXβ Cγ)B→β σ, [B/X](C) = θ(C).

P.1.5.3 Now, LR(θ(C), γ) by IH and thus LR(σ(A)B, γ) by Lemma 14.1.6.

P.1.5.4 So LR(σ(A), α) by definition of LR.

©:Michael Kohlhase 127 STEX

In contrast to the proof of the roller coaster Lemma above, we prove the assertion here by an
induction on the structure of the λ-terms involved. For the base cases, we can directly argue with
the first assertion from Lemma 14.1.4, and the application case is immediate from the definition
of LR. Indeed, we defined the auxiliary relation LR exclusively that the application case – which
cannot be proven by a direct structural induction; remember that we needed induction on types
in Lemma 14.1.4– becomes easy.

The last case on λ-abstraction reveals why we had to strengthen the inductive hypothesis: =β

reduction introduces a substitution which may increase the size of the subterm, which in turn
keeps us from applying the inductive hypothesis. Formulating the assertion directly under all
possible LR substitutions unblocks us here.

This was the last result we needed to complete the proof of termiation of β-reduction.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


14.2. CONFLUENCE OF βη CONVERSION 97

Remark: If we are only interested in the termination of head reductions, we can get by with a
much simpler version of this lemma, that basically relies on the uniqueness of head β reduction.

Closure under Head β-Expansion (weakly reducing)

� Lemma 14.1.9 (LR is closed under head β-expansion) If C →h
β D

and LR(D, α), so is LR(C, α).

� Proof: by induction over the structure of α

P.1.1 α base type:

P.1.1.1 we have SR(D, α) by definition

P.1.1.2 so SR(C, α), since head reduction is unique

P.1.1.3 and thus LR(C, α).

P.1.2 α = β → γ:

P.1.2.1 Let LR(B, β), by definition we have LR(DB, γ).

P.1.2.2 but CB→h
β DB, so LR(CB, γ) by IH

P.1.2.3 and LR(C, α) by definition.

Note: This result only holds for weak reduction (any chain of β head reductions
terminates) for strong reduction we need a stronger Lemma.

©:Michael Kohlhase 128 STEX

For the termination proof of head β-reduction we would just use the same proof as above, just
for a variant of SR, where SRAα that only requires that the head reduction sequence out of A
terminates. Note that almost all of the proof except Lemma 14.1.3 (which holds by the same
argument) is invariant under this change. Indeed Rick Statman uses this observation in [Sta85] to
give a set of conditions when logical relations proofs work.

14.2 Confluence of βη Conversion

We now turn to the confluence for βη, i.e. that the order of reductions is irrelevant. This entails
the uniqueness of βη normal forms, which is very useful.
Intuitively confluence of a relation R means that “anything that flows apart will come together
again.” – and as a consequence normal forms are unique if they exist. But there is more than one
way of formalizing that intuition.

� Confluence

� Definition 14.2.1 (Confluence) Let R⊆A2 be a relation on a set A,
then we say that

� has a diamond property, iff for every a, b, c ∈ A with a →1
R b a →1

R c
there is a d ∈ A with b→1

R d and c→1
R d.

� is confluent, iff for every a, b, c ∈ A with a→∗R b a→∗R c there is a d ∈ A
with b→∗R d and c→∗R d.

http://creativecommons.org/licenses/by-sa/2.5/


98 CHAPTER 14. COMPUTATIONAL PROPERTIES OF λ-CALCULUS

� weakly confluent iff for every a, b, c ∈ A with a→1
R b a→1

R c there is a
d ∈ A with b→∗R d and c→∗R d.

diamond confluent weakly
property confluent

a

b c

d

a

b c

d

* *

* *

a

b c

d* *

©:Michael Kohlhase 129 STEX

The diamond property is very simple, but not many reduction relations enjoy it. Confluence is
the notion that that directly gives us unique normal forms, but is difficult to prove via a digram
chase, while weak confluence is amenable to this, does not directly give us confluence.
We will now relate the three notions of confluence with each other: the diamond property (some-
times also called strong confluence) is stronger than confluence, which is stronger than weak
confluence

Relating the notions of confluence

� Observation 14.2.2 If a rewrite relation has a diamond property, then it is
weakly confluent.

� Theorem 14.2.3 If a rewrite relation has a diamond property, then it is con-
fluent.

� Proof Idea: by a tiling argument, composing 1 × 1 diamonds to an n × m
diamond.

� Theorem 14.2.4 (Newman’s Lemma) If a rewrite relation is terminating
and weakly confluent, then it is also confluent.

©:Michael Kohlhase 130 STEX

Note that Newman’s Lemma cannot be proven by a tiling argument since we cannot control the
growth of the tiles. There is a nifty proof by Gérard Huet [Hue80] that is worth looking at.
After this excursion into the general theory of reduction relations, we come back to the case at
hand: showing the confluence of βη-reduction.
η is very well-behaved – i.e. confluent and terminating

η-Reduction ist terminating and confluent

� Lemma 14.2.5 η-Reduction ist terminating

� Proof: by a simple counting argument

� Lemma 14.2.6 η-reduction is confluent.

� Proof Idea: We show that η-reduction has the diamond property by diagram
chase over

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


14.2. CONFLUENCE OF βη CONVERSION 99

λX AX

A λX A′X

A′

where A→ηA′. Then the assertion follows by Theorem 14.2.3.

©:Michael Kohlhase 131 STEX

For β-reduction the situation is a bit more involved, but a simple diagram chase is still sufficient
to prove weak confluence, which gives us confluence via Newman’s Lemma

β is confluent

� Lemma 14.2.7 β-Reduction is weakly confluent.

� Proof Idea: by diagram chase over

(λX A)B

(λX A′)B (λX A)B′ [B/X](A)

(λX A′)B′ [B′/X](A)

[B′/X](A′)

*

� Corollary 14.2.8 β-Reduction is confluent.

� Proof Idea: by Newman’s Lemma.

©:Michael Kohlhase 132 STEX

There is one reduction in the diagram in the proof of Lemma 14.2.7 which (note that B can occur
multiple times in [B/X](A)) is not necessary single-step. The diamond property is broken by the
outer two reductions in the diagram as well.
We have shown that the β and η reduction relations are terminating and confluent and terminating
individually, now, we have to show that βη is a well. For that we introduce a new concept.

Commuting Relations
� Definition 14.2.9 Let A be a set, then we say that
relations R ∈ A2 and S ∈ A2 commute, if X →R Y
and X →S Z entail the existence of a W ∈ A with
Y →S W and Z →R W .

� Observation 14.2.10 If R and S commute, then →R
and →S do as well.

X

Y Z

W

R S

S R

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


100 CHAPTER 14. COMPUTATIONAL PROPERTIES OF λ-CALCULUS

� Observation 14.2.11 R is confluent, if R commutes with itself.

� Lemma 14.2.12 If R and S are terminating and confluent relations such
that →∗R and →∗S commute, then →∗R∪S is confluent.

� Proof Sketch: As R and S commute, we can reorder any reduction sequence
so that all R-reductions precede all S-reductions. As R is terminating and
confluent, the R-part ends in a unique normal form, and as S is normalizing it
must lead to a unique normal form as well.

©:Michael Kohlhase 133 STEX

This directly gives us our goal.

β η is confluent

� Lemma 14.2.13→∗β and →∗η commute.

� Proof Sketch: diagram chase

©:Michael Kohlhase 134 STEX

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Chapter 15

The Semantics of the Simply Typed
λ-Calculus

The semantics of Λ→ is structured around the types. Like the models we discussed before, a model
(we call them “algebras”, since we do not have truth values in Λ→) is a pair 〈D, I〉, where D is the
universe of discourse and I is the interpretation of constants.

Semantics of Λ→

� Definition 15.0.1 We call a collection DT := {Dα |α ∈ T } a typed col-
lection (of sets) and a collection fT : DT → ET , a typed function, iff
fα : Dα → Eα.

� Definition 15.0.2 A typed collectionDT is called a frame, iffDα→β ⊆Dα → Dβ

� Definition 15.0.3 Given a frame DT , and a typed function I : Σ → D,
then we call Iϕ : wff T (Σ,VT )→ D the value function induced by I, iff

� Iϕ|VT = ϕ, Iϕ|Σ = I
� Iϕ(AB) = Iϕ(A)(Iϕ(B))

� Iϕ(λXα A) is that function f ∈ Dα→β , such that f(a) = Iϕ,[a/X](A)
for all a ∈ Dα

� Definition 15.0.4 We call a frame 〈D, I〉 comprehension-closed or a Σ-
algebra, iff Iϕ : wff T (Σ,VT )→ D is total. (every λ-term has a
value)

©:Michael Kohlhase 135 STEX

15.1 Soundness of the Simply Typed λ-Calculus

We will now show is that αβη-reduction does not change the value of formulae, i.e. if A =αβη B,
then Iϕ(A) = Iϕ(B), for all D and ϕ. We say that the reductions are sound. As always, the main
tool for proving soundess is a substitution value lemma. It works just as always and verifies that
we the definitions are in our semantics plausible.

Substitution Value Lemma for λ-Terms

101

http://creativecommons.org/licenses/by-sa/2.5/


102 CHAPTER 15. THE SEMANTICS OF THE SIMPLY TYPED λ-CALCULUS

� Lemma 15.1.1 (Substitution Value Lemma) Let A and B be terms,
then Iϕ([B/X](A)) = Iψ(A), where ψ = ϕ, [Iϕ(B)/X]

� Proof: by induction on the depth of A

P.1 we have five cases

P.1.1 A = X: Then Iϕ([B/X](A)) = Iϕ([B/X](X)) = Iϕ(B) = ψ(X) =
Iψ(X) = Iψ(A).

P.1.2 A = Y 6= X and Y ∈ VT : then Iϕ([B/X](A)) = Iϕ([B/X](Y )) =
Iϕ(Y ) = ϕ(Y ) = ψ(Y ) = Iψ(Y ) = Iψ(A).

P.1.3 A ∈ Σ: This is analogous to the last case.

P.1.4 A = CD: then Iϕ([B/X](A)) = Iϕ([B/X](CD)) = Iϕ([B/X](C)[B/X](D)) =
Iϕ([B/X](C))(Iϕ([B/X](D))) = Iψ(C)(Iψ(D)) = Iψ(CD) = Iψ(A)

P.1.5 A = λYα C:

P.1.5.1 We can assume that X 6= Y and Y /∈ free(B)

P.1.5.2 Thus for all a ∈ Dα we have Iϕ([B/X](A))(a) = Iϕ([B/X](λY C))(a) =
Iϕ(λY [B/X](C))(a) = Iϕ,[a/Y ]([B/X](C)) = Iψ,[a/Y ](C) = Iψ(λY C)(a) =
Iψ(A)(a)

©:Michael Kohlhase 136 STEX

Soundness of αβη-Equality

� Theorem 15.1.2 Let A := 〈D, I〉 be a Σ-algebra and Y 6∈ free(A), then
Iϕ(λX A) = Iϕ(λY [Y/X]A) for all assignments ϕ.

� Proof: by substitution value lemma

Iϕ(λY [Y/X]A) @ a = Iϕ,[a/Y ]([Y/X](A))
= Iϕ,[a/X](A)
= Iϕ(λX A) @ a

� Theorem 15.1.3 If A := 〈D, I〉 is a Σ-algebra and X not bound in A, then
Iϕ((λX A)B) = Iϕ([B/X](A)).

� Proof: by substitution value lemma again

Iϕ((λX A)B) = Iϕ(λX A) @ Iϕ(B)
= Iϕ,[Iϕ(B)/X](A)
= Iϕ([B/X](A))

©:Michael Kohlhase 137 STEX

Soundness of αβη (continued)

� Theorem 15.1.4 If X 6∈ free(A), then Iϕ(λX AX) = Iϕ(A) for all ϕ.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


15.2. COMPLETENESS OF αβη-EQUALITY 103

� Proof: by calculation

Iϕ(λX AX) @ a = Iϕ,[a/X](AX)
= Iϕ,[a/X](A) @ Iϕ,[a/X](X)
= Iϕ(A) @ Iϕ,[a/X](X) as X 6∈ free(A).
= Iϕ(A) @ a

� Theorem 15.1.5 αβη-equality is sound wrt. Σ-algebras. (if A =αβη B,
then Iϕ(A) = Iϕ(B) for all assignments ϕ)

©:Michael Kohlhase 138 STEX

15.2 Completeness of αβη-Equality

We will now show is that αβη-equality is complete for the semantics we defined, i.e. that whenever
Iϕ(A) = Iϕ(B) for all variable assignments ϕ, then A =αβη B. We will prove this by a model
existence argument: we will construct a modelM := 〈D, I〉 such that if A 6=αβη B then Iϕ(A) 6=
Iϕ(B) for some ϕ.
As in other completeness proofs, the model we will construct is a “ground term model”, i.e. a
model where the carrier (the frame in our case) consists of ground terms. But in the λ-calculus,
we have to do more work, as we have a non-trivial built-in equality theory; we will construct the
“ground term model” from sets of normal forms. So we first fix some notations for them.

Normal Forms in the simply typed λ-calculus

� Definition 15.2.1 We call a term A ∈ wff T (Σ,VT ) a β normal form iff
there is no B ∈ wff T (Σ,VT ) with A→β B.

We call N a β normal form of A, iff N is a β-normal form and A→βN.

We denote the set of β-normal forms with wff T (Σ,VT )
y
β η

.

� We have just proved that βη-reduction is terminating and confluent, so we
have

� Corollary 15.2.2 (Normal Forms) Every A ∈ wff T (Σ,VT ) has a unique
β normal form (βη, long βη normal form), which we denote by A↓β (A↓β η
A↓lβ η)

©:Michael Kohlhase 139 STEX

The term frames will be a quotient spaces over the equality relations of the λ-calculus, so we
introduce this construction generally.

Frames and Quotients

� Definition 15.2.3 Let D be a frame and ∼ a typed equivalence relation
on D, then we call ∼ a congruence on D, iff f ∼ f ′ and g ∼ g′ imply
f(g) ∼ f ′(g′).

� Definition 15.2.4 We call a congruence ∼ functional, iff for all f, g ∈
Dα→β the fact that f(a) ∼ g(a) holds for all a ∈ Dα implies that f ∼ g.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


104 CHAPTER 15. THE SEMANTICS OF THE SIMPLY TYPED λ-CALCULUS

� Example 15.2.5 =β (=βη) is a (functional) congruence on cwff T (Σ) by
definition.

� Theorem 15.2.6 Let D be a Σ-frame and ∼ a functional congruence on D,
then the quotient space D/∼ is a Σ-frame.

� Proof:

P.1 D/∼ = {[f ]∼ | f ∈ D}, define [f ]∼([a]∼) := [f(a)]∼.

P.2 This only depends on equivalence classes: Let f ′ ∈ [f ]∼ and a′ ∈ [a]∼.

P.3 Then [f(a)]∼ = [f ′(a)]∼ = [f ′(a′)]∼ = [f(a′)]∼

P.4 To see that we have [f ]∼ = [g]∼, iff f ∼ g, iff f(a) = g(a) since ∼ is
functional.

P.5 This is the case iff [f(a)]∼ = [g(a)]∼, iff [f ]∼([a]∼) = [g]∼([a]∼) for all
a ∈ Dα and thus for all [a]∼ ∈ D/∼.

©:Michael Kohlhase 140 STEX

To apply this result, we have to establish that βη-equality is a functional congruence.
We first establish βη as a functional congruence on wff T (Σ,VT ) and then specialize this result to
show that is is also functional on cwff T (Σ) by a grounding argument.

βη-Equivalence as a Functional Congruence

� Lemma 15.2.7 βη-equality is a functional congruence on wff T (Σ,VT ).

� Proof: Let AC =βη BC for all C and X ∈ (Vγ\(free(A)∪ free(B))).

P.1 then (in particular) AX =βη BX, and

P.2 (λX AX) =βη (λX BX), since βη-equality acts on subterms.

P.3 By definition we have A=η(λXα AX)=βη(λXα BX)=ηB.

� Definition 15.2.8 We call an injective substitution σ : free(C) → Σ a
grounding substitution for C ∈ wff T (Σ,VT ), iff no σ(X) occurs in C.

Observation: They always exist, since all Σα are infinite and free(C) is finite.

�� Theorem 15.2.9 βη-equality is a functional congruence on cwff T (Σ).

� Proof: We use Lemma 15.2.7

P.1 Let A,B ∈ cwff (α→β)(Σ), such that A 6=βη B.

P.2 As βη is functional on wff T (Σ,VT ), there must be aC withAC 6=βη BC.

P.3 Now let C′ := σ(C), for a grounding substitution σ.

P.4 Any βη conversion sequence for AC′ 6=βη BC′ induces one for AC 6=βη

BC.

P.5 Thus we have shown that A 6=βη B entails AC′ 6=βη BC′.

©:Michael Kohlhase 141 STEX

Note that: the result for cwff T (Σ) is sharp. For instance, if Σ = {cι}, then (λX X) 6=βη (λX c),

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


15.2. COMPLETENESS OF αβη-EQUALITY 105

but (λX X)c=βηc=βη(λX c)c, as {c} = cwff ι(Σ) (it is a relatively simple exercise to extend
this problem to more than one constant). The problem here is that we do not have a constant
dι that would help distinguish the two functions. In wff T (Σ,VT ) we could always have used a
variable.
This completes the preparation and we can define the notion of a term algebra, i.e. a Σ-algebra
whose frame is made of βη-normal λ-terms.

A Herbrand Model for Λ→

� Definition 15.2.10 We call Tβη := 〈cwff T (Σ)
y
β η
, Iβ η〉 the Σ term alge-

bra, if Iβ η = IdΣ.

� The name “term algebra” in the previous definition is justified by the following

� Theorem 15.2.11 Tβη is a Σ-algebra

� Proof: We use the work we did above

P.1 Note that cwff T (Σ)
y
β η

= cwff T (Σ)/=βη and thus a Σ-frame by The-
orem 15.2.6 and Lemma 15.2.7.

P.2 So we only have to show that the value function Iβ η = IdΣ is total.

P.3 Let ϕ be an assignment into cwff T (Σ)
y
β η

.

P.4 Note that σ := ϕ|free(A) is a substitution, since free(A) is finite.

P.5 A simple induction on the structure of A shows that Iβ ηϕ (A) = σ(A)
y
β η

.

P.6 So the value function is total since substitution application is.

©:Michael Kohlhase 142 STEX

And as always, once we have a term model, showing completeness is a rather simple exercise.
We can see that αβη-equality is complete for the class of Σ-algebras, i.e. if the equation A = B
is valid, then A =αβη B. Thus αβη equivalence fully characterizes equality in the class of all
Σ-algebras.

Completetness of αβη-Equality

� Theorem 15.2.12 A = B is valid in the class of Σ-algebras, iff A =αβη B.

� Proof: For A, B closed this is a simple consequence of the fact that Tβη is a
Σ-algebra.

P.1 If A = B is valid in all Σ-algebras, it must be in Tβη and in particular
A↓β η = Iβ η(A) = Iβ η(B) = B↓β η and therefore A =αβη B.

P.2 If the equation has free variables, then the argument is more subtle.

P.3 Let σ be a grounding substitution for A and B and ϕ the induced variable
assignment.

P.4 Thus Iβ ηϕ(A) = Iβ ηϕ(B) is the βη-normal form of σ(A) and σ(B).

P.5 Since ϕ is a structure preserving homomorphism on well-formed formulae,
ϕ−1(Iβ ηϕ(A)) is the is the βη-normal form of both A and B and thus
A =αβη B.

http://creativecommons.org/licenses/by-sa/2.5/


106 CHAPTER 15. THE SEMANTICS OF THE SIMPLY TYPED λ-CALCULUS

©:Michael Kohlhase 143 STEX

Theorem 15.2.12 and Theorem 15.1.5 complete our study of the sematnics of the simply-typed
λ-calculus by showing that it is an adequate logic for modeling (the equality) of functions and
their applications.

http://creativecommons.org/licenses/by-sa/2.5/


Chapter 16

Simply Typed λ-Calculus via
Inference Systems

Now, we will look at the simply typed λ-calculus again, but this time, we will present it as an
inference system for well-typedness jugdments. This more modern way of developing type theories
is known to scale better to new concepts.

Simply Typed λ-Calculus as an Inference System: Terms

� Idea: Develop the λ-calculus in two steps

� A context-free grammar for “raw λ-terms” (for the structure)

� Identify the well-typed λ-terms in that (cook them until well-typed)

� Definition 16.0.1 A grammar for the raw terms of the simply typed λ-
calculus:

α :== c | α→ α
Σ :== · | Σ, [c : type] | Σ, [c : α]
Γ :== · | Γ, [x : α]
A :== c | X | A1A2 | λXα A

� Then: Define all the operations that are possible at the “raw terms level”, e.g.
realize that signatures and contexts are partial functions to types.

©:Michael Kohlhase 144 STEX

Simply Typed λ-Calculus as an Inference System: Judgments

� Definition 16.0.2 Judgments make statements about complex properties
of the syntactic entities defined by the grammar.

� Definition 16.0.3 Judgments for the simply typed λ-calculus

` Σ : sig Σ is a well-formed signature
Σ ` α : type α is a well-formed type given the type assumptions in Σ
Σ ` Γ : ctx Γ is a well-formed context given the type assumptions in Σ
Γ `Σ A : α A has type α given the type assumptions in Σ and Γ

107

http://creativecommons.org/licenses/by-sa/2.5/


108 CHAPTER 16. SIMPLY TYPED λ-CALCULUS VIA INFERENCE SYSTEMS

©:Michael Kohlhase 145 STEX

Simply Typed λ-Calculus as an Inference System: Rules

� A ∈ wff α(Σ,VT ), iff Γ `Σ A : α derivable in

Σ ` Γ : ctx Γ(X) = α

Γ `Σ X : α
wff:var

Σ ` Γ : ctx Σ(c) = α

Γ `Σ c : α
wff:const

Γ `Σ A : β → α Γ `Σ B : β

Γ `Σ AB : α
wff:app

Γ, [X : β] `Σ A : α

Γ `Σ λXβ A : β → α
wff:abs

Oops: this looks surprisingly like a natural deduction calculus. (; Curry
Howard Isomorphism)

�� To be complete, we need rules for well-formed signatures, types and contexts

` · : sig
sig:empty

` Σ : sig

` Σ, [α : type] : sig
sig:type

` Σ : sig Σ ` α : type

` Σ, [c : α] : sig
sig:const

Σ ` α : type Σ ` β : type

Σ ` α→ β : type
typ:fn

` Σ : sig Σ(α) = type

Σ ` α : type
typ:start

` Σ : sig

Σ ` · : ctx
ctx:empty

Σ ` Γ : ctx Σ ` α : type

Σ ` Γ, [X : α] : ctx
ctx:var

©:Michael Kohlhase 146 STEX

Example: A Well-Formed Signature

� Let Σ := [α : type], [f : α→ α→ α], then Σ is a well-formed signature, since
we have derivations A and B

` · : sig
sig:type

` [α : type] : sig

A [α : type](α) = type
typ:start

[α : type] ` α : type

and with these we can construct the derivation C

A

B
B B

typ:fn
[α : type] ` α→ α : type

typ:fn
[α : type] ` α→ α→ α : type

sig:const
` Σ : sig

©:Michael Kohlhase 147 STEX

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


109

Example: A Well-Formed λ-Term

� using Σ from above, we can show that Γ := [X : α] is a well-formed context:

C ctx:empty
Σ ` · : ctx

C Σ(α) = type
typ:start

Σ ` α : type
ctx:var

Σ ` Γ : ctx

We call this derivation G and use it to show that

� λXα fXX is well-typed and has type α→ α in Σ. This is witnessed by the
type derivation

C Σ(f) = α→ α→ α
wff:const

Γ `Σ f : α→ α→ α

G
wff:var

Γ `Σ X : α
wff:app

Γ `Σ fX : α→ α

G
wff:var

Γ `Σ X : α
wff:app

Γ `Σ fXX : α
wff:abs

· `Σ λXα fXX : α→ α

©:Michael Kohlhase 148 STEX

β η-Equality by Inference Rules: One-Step Reduction

� One-step Reduction (+ ∈ {α, β, η})

Γ `Σ A : α Γ `Σ B : β

Γ `Σ (λX A)B→1
β [B/X](A)

wffβ:top

Γ `Σ A : β → α X 6∈ dom(Γ)

Γ `Σ λX AX →1
η A

wffη:top

Γ `Σ A→1
+ B Γ `Σ AC : α

Γ `Σ AC→1
+ BC

tr:appfn

Γ `Σ A→1
+ B Γ `Σ CA : α

Γ `Σ CA→1
+ CB

tr:apparg

Γ, [X : α] `Σ A→1
+ B

Γ `Σ λX A→1
+ λX B

tr:abs

©:Michael Kohlhase 149 STEX

β η-Equality by Inference Rules: Multi-Step Reduction

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


110 CHAPTER 16. SIMPLY TYPED λ-CALCULUS VIA INFERENCE SYSTEMS

� Multi-Step-Reduction (+ ∈ {α, β, η})

Γ `Σ A→1
+ B

Γ `Σ A→∗+ B
ms:start

Γ `Σ A : α

Γ `Σ A→∗+ A
ms:ref

Γ `Σ A→∗+ B Γ `Σ B→∗+ C

Γ `Σ A→∗+ C
ms:trans

� Congruence Relation
Γ `Σ A→∗+ B

Γ `Σ A =+ B
eq:start

Γ `Σ A =+ B

Γ `Σ B =+ A
eq:sym

Γ `Σ A =+ B Γ `Σ B =+ C

Γ `Σ A =+ C
eq:trans

©:Michael Kohlhase 150 STEX

http://creativecommons.org/licenses/by-sa/2.5/


Chapter 17

Higher-Order Unification

We now come to a very important (if somewhat non-trivial and under-appreciated) algorithm:
higher-order unification, i.e. unification in the simply typed λ-calculus, i.e. unification modulo
αβη equality.

17.1 Higher-Order Unifiers

Before we can start solving the problem of higher-order unification, we have to become clear
about the terms we want to use. It turns out that “most general αβη unifiers may not exist – as
Theorem 17.1.5 shows, there may be infinitely descending chains of unifiers that become more an
more general. Thus we will have to generalize our concepts a bit here.

HOU: Complete Sets of Unifiers

� Question: Are there most general higher-order Unifiers?

� Answer: What does that mean anyway?

� Definition 17.1.1 σ =βη ρ[W ], iff σ(X) =αβη ρ(X) for all X ∈W . σ =βη

ρ[E ] iff σ =βη ρ[free(E)]

� Definition 17.1.2 σ is more general than θ on W (σ ≤βη θ[W ]), iff there
is a substitution ρ with θ =βη ρ ◦σ[W ].

� Definition 17.1.3 Ψ⊆U(E) is a complete set of unifiers, iff for all unifiers
θ ∈ U(E) there is a σ ∈ Ψ, such that σ ≤βη θ[E ].

� Definition 17.1.4 If Ψ⊆U(E) is complete, then ≤βη-minimal elements
σ ∈ Ψ are most general unifiers of E .

� Theorem 17.1.5 The set {[λuv hu/F ]}∪ {σi | i ∈ N} where

σi := [λuv gnu(u(hn1uv)). . .(u(hnnuv))/F ], [λ v z/X]

is a complete set of unifiers for the equation FXaι =? FXbι, where F and X
are variables of types (ι→ ι)→ ι→ ι and ι→ ι

Furthermore, σi+1 is more general than σi.

111



112 CHAPTER 17. HIGHER-ORDER UNIFICATION

� Proof Sketch: [Hue76, Theorem 5]

©:Michael Kohlhase 151 STEX

The definition of a solved form in Λ→ is just as always; even the argument that solved forms are
most general unifiers works as always, we only need to take αβη equality into account at every
level.

Unification

� Definition 17.1.6 X1 =? B1 ∧ . . .∧Xn =? Bn is in solved form, if the Xi

are distinct free variables Xi 6∈ free(Bj) and Bj does not contain Skolem
constants for all j.

� Lemma 17.1.7 If E = X1 =? B1 ∧ . . .∧Xn =? Bn is in solved form, then
σE := [B1/X1], . . ., [Bn/Xn] is the unique most general unifier of E

� Proof:

P.1 σ(Xi) =αβη σ(Bi), so σ ∈ U(E)

P.2 Let θ ∈ U(E), then θ(Xi) =αβη θ(B
i) = θ ◦σ(Xi)

P.3 so θ ≤βη θ ◦σ[E ].

©:Michael Kohlhase 152 STEX

17.2 Higher-Order Unification Transformations

We are now in a position to introduce the higher-order unifiation transformations. We proceed
just like we did for first-order unification by casting the unification algorithm as a set of unification
inference rules, leaving the control to a second layer of development.
We first look at a group of transformations that are (relatively) well-behaved and group them under
the concept of “simplification”, since (like the first-order transformation rules they resemble) have
good properties. These are usually implemented in a group and applied eagerly.

Simplification SIM

� Definition 17.2.1 The higher-order simplification transformations SIM

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


17.2. HIGHER-ORDER UNIFICATION TRANSFORMATIONS 113

consist of the rules below.

(λXα A) =? (λYα B)∧E s ∈ ΣSkα new
SIM:α

[s/X](A) =? [s/Y ](B)∧E

(λXα A) =? B∧E s ∈ ΣSkα new
SIM:η

[s/X](A) =? Bs∧E

hUn =? hVn ∧E h ∈ (Σ∪ΣSk)
SIM:dec

U1 =? V1 ∧ . . .∧Un =? Vn ∧E

E ∧X =? A X 6∈ free(A) A∩ΣSk = ∅ X ∈ free(E)
SIM:elim

[A/X](E)∧X =? A

After rule applications all λ-terms are reduced to head normal form.

©:Michael Kohlhase 153 STEX

The main new feature of these rules (with respect to their first-order counterparts) is the handling
of λ-binders. We eliminate them by replacing the bound variables by Skolem constants in the
bodies: The SIM : α standardizes them to a single one using α-equality, and SIM : η first η-
expands the right-hand side (which must be of functional type) so that SIM :α applies. Given
that we are setting bound variables free in this process, we need to be careful that we do not use
them in the SIM:elim rule, as these would be variable-capturing.

Consider for instance the higher-order unification problem (λX X) =? (λY W ), which is
unsolvable (the left hand side is the identity function and the right hand side some constant
function – whose value is given by W ). So after an application of SIM : α, we have c =? W ,
which looks like it could be a solved pair, but the elimination rule prevents that by insisting that
instances may not contain Skolem Variables.
Conceptually, SIM is a direct generalization of first-order unification transformations, and shares
it properties; even the proofs go correspondingly.

Properties of Simplification

� Lemma 17.2.2 (Properties of SIM) SIM generalizes first-order uni-
fication.

� SIM is terminating and confluent up to α-conversion

� Unique SIM normal forms exist (all pairs have the form hUn =? kVm)

� Lemma 17.2.3 U(E ∧ Eσ) = U(σ(E)∧Eσ).

Proof: by the definitions

� P.1 If θ ∈ U(E ∧Eσ), then θ ∈ (U(E)∩U(Eσ)).

So θ =βη θ ◦σ[supp(σ)],

and thus (θ ◦σ) ∈ U(E), iff θ ∈ U(σ(E)).

http://creativecommons.org/licenses/by-sa/2.5/


114 CHAPTER 17. HIGHER-ORDER UNIFICATION

P.2 P.3� Theorem 17.2.4 If E `SIM F , then U(E) ≤βη U(F)[E ]. (correct,
complete)

Proof: By an induction over the length of the derivation

P.1 We the SIM rules individually for the base case

P.1.1 SIM:α: by α-conversion

P.1.2 SIM:η: By η-conversion in the presence of SIM:α

P.1.3 SIM:dec: The head h ∈ (Σ∪ΣSk) cannot be instantiated.

P.1.4 SIM:elim: By Lemma 17.2.3.

P.2 The step case goes directly by inductive hypothesis and transitivity of
derivation.

©:Michael Kohlhase 154 STEX

Now that we have simplifiation out of the way, we have to deal with unification pairs of the form
hUn =? kVm. Note that the case where both h and k are contstants is unsolvable, so we can
assume that one of them is a variable. The unification problem Fα→αa =? a is a particularly
simple example; it has solutions [λXα a/F ] and [λXα X/F ]. In the first, the solution comes by
instantiating F with a λ-term of type α → α with head a, and in the second with a 1-projection
term of type α → α, which projects the head of the argument into the right position. In both
cases, the solution came from a term with a given type and an appropriate head. We will look at
the problem of finding such terms in more detail now.

General Bindings

� Problem: Find all formulae of given type α and head h.

� sufficient: long βη head normal form, most general

� General Bindings: Gh
α(Σ) := (λXk

α h(H1X) . . . (HnX))

� where α = αk → β, h : γn → β and β ∈ B T
� and Hi :αk → γi new variables.

� Observation 17.2.5 General bindings are unique up to choice of names for
Hi.

� Definition 17.2.6 If the head h is jth bound variable in Gh
α(Σ), call

Gh
α(Σ) j-projection binding (and write Gj

α(Σ)) else imitation binding

� clearly Gh
α(Σ) ∈ wff α(Σ,VT ) and head(Gh

α(Σ)) = h

©:Michael Kohlhase 155 STEX

For the construction of general bindings, note that their construction is completely driven by the
intended type α and the (type of) the head h. Let us consider some examples.

Example 17.2.7 The following general bindings may be helpful: Gaι
ι→ι(Σ) = λXι a,Gaι

ι→ι→ι(Σ) =

λXιYι a, and Gaι→ι
ι→ι→ι(Σ) = λXιYι a(HXY ), where H is of type ι→ ι→ ι

We will now show that the general bindings defined in Definition 17.2.6 are indeed the most general
λ-terms given their type and head.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


17.2. HIGHER-ORDER UNIFICATION TRANSFORMATIONS 115

Approximation Theorem

� Theorem 17.2.8 If A ∈ wff α(Σ,VT ) with head(A) = h, then there is a
general binding G = Gh

α(Σ) and a substitution ρ with ρ(G) =αβη A and
dp(ρ)<dp(A).

� Proof: We analyze the term structure of A

P.1 If α = αk → β and h : γn → β where β ∈ B T , then the long head normal
form of A must be λXk

α hUn.

P.2 G = Gh
α(Σ) = λXk

α h(H1X) . . . (HnX) for some variablesHi :αk → γi.

P.3 Choose ρ := [λXk
α U1/H1], . . ., [λXk

α Un/Hn].

P.4 Then we have ρ(G) = λXk
α h(λXk

α U1X) . . . (λXk
α UnX)

=βη λXk
α hUn

=βη A

P.5 The depth condition can be read off as dp(λXk
α U1)≤dp(A)− 1.

©:Michael Kohlhase 156 STEX

With this result we can state the higher-order unification transformations.

Higher-Order Unification (HOU)

� Recap: After simplification, we have to deal with pairs where one (flex/rigid)
or both heads (flex/flex) are variables

� Definition 17.2.9 Let G = Gh
α(Σ) (imitation) or G ∈ {Gj

α(Σ) | 1≤j≤n},
then HOU consists of the transformations (always reduce to SIM normal
form)

� Rule for flex/rigid pairs:
FαU=? hV∧E

HOU :fr
F =? G∧FU=? hV∧E

� Rules for flex/flex pairs:
FαU=? HV∧E

HOU :ff
F =? G∧FU=? HV∧E

©:Michael Kohlhase 157 STEX

Let us now fortify our intuition with a simple example.

HOU Example

Example 17.2.10 Let Q,w : ι→ ι, l : ι→ ι→ ι, and j : ι, then we have the
following derivation tree in HOU .

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


116 CHAPTER 17. HIGHER-ORDER UNIFICATION

Q(j) =? l(j, w(j))

j =? l(j, w(j)) l(H(j),K(j)) =? l(j, w(j))

H(j) =? j ∧K(j) =? w(j)

j =? j ∧K(j) =? w(j)j =? j ∧K(j) =? w(j)

j =? j ∧K′(j) =? jj =? j ∧K′(j) =? j

j
.
= j; j

.
= jj

.
= j; j

.
= jj

.
= j; j

.
= jj

.
= j; j

.
= j

Q = λX l(X,w(X)) λX l(X,w(j)) λX l(j, w(X)) λX l(j, w(j))

Q=λX l(H(X),K(X))Q=λX X

H=λX X H=λX j

K=λX w(K′(X))
K=λX X

K=λX w(K′(X))
K=λX X

K′=λX X K′=λX j K′=λX X K′=λX j

©:Michael Kohlhase 158 STEX

The first thing that meets the eye is that higher-order unification is branching. Indeed, for flex/-
rigid pairs, we have to systematically explore the possibilities of binding the head variable the
imitation binding and all projection bindings. On the initial node, we have two bindings, the
projection binding leads to an unsolvable unification problem, whereas the imitation binding leads
to a unification problem that can be decomposed into two flex/rigid pairs. For the first one of
them, we have a projection and an imitation binding, which we systematically explore recursively.
Eventually, we arrive at four solutions of the initial problem.
The following encoding of natural number arithmetics into Λ→ is useful for testing our unification
algorithm

A Test Generator for Higher-Order Unification

� Definition 17.2.11 (Church Numerals) We define closed λ-terms of type
ν := (α→ α)→ α→ α

� Numbers: Church numerals: (n-fold iteration of arg1 starting from
arg2)

n := (λSα→α λOα S(S . . . S︸ ︷︷ ︸
n

(O) . . .))

� Addition (N -fold iteration of S from N)

+ := (λNνMν λSα→α λOα NS(MSO))

� Multiplication: (N -fold iteration of MS (=+m) from O)

· := (λNνMν λSα→α λOα N(MS)O)

� Observation 17.2.12 Subtraction and (integer) division on Church number-
als can be automted via higher-order unification.

� Example 17.2.13 5− 2 by solving the unification problem 2 + xν =? 5

http://creativecommons.org/licenses/by-sa/2.5/


17.3. PROPERTIES OF HIGHER-ORDER UNIFICATION 117

Equation solving for Church numerals yields a very nice generator for test cases
for higher-order unification, as we know which solutions to expect.

©:Michael Kohlhase 159 STEX

17.3 Properties of Higher-Order Unification

We will now establish the properties of the higher-order unification problem and the algorithms
we have introduced above. We first establish the unidecidability, since it will influence how we go
about the rest of the properties.
We establish that higher-order unification is undecidable. The proof idea is a typical for undecid-
able proofs: we reduce the higher-order unification problem to one that is known to be undecidable:
here, the solution of Diophantine equations N.

� Undecidability of Higher-Order Unification

� Theorem 17.3.1 Second-order unification is undecidable (Goldfarb
’82 [Gol81])

� Proof Sketch: Reduction to Hilbert’s tenth problem (solving Diophantine
equations) (known to be undecidable)

� Definition 17.3.2 We call an equation a Diophantine equation, if it is of
the form

� xi xj = xk

� xi +xj = xk

� xi = cj where cj ∈ N

where the variables xi range over N.

� These can be solved by higher-order unification on Church numerals. (cf. Ob-
servation 17.2.12)

.

� Theorem 17.3.3 The general solution for sets of Diophantine equations is
undecidable. (Matijasevič 1970 [Mat70])

©:Michael Kohlhase 160 STEX

The argument undecidability proofs is always the same: If higher-order unification were decidable,
then via the encoding we could use it to solve Diophantine equations, which we know we cannot
by Matijasevič’s Theorem.
The next step will be to analyze our transformations for higher-order unification for correctness
and completeness, just like we did for first-order unification.

HOU is Correct

� Lemma 17.3.4 If E `HOU:fr E ′ or E `HOU:ff E ′, then U(E ′)⊆U(E).

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


118 CHAPTER 17. HIGHER-ORDER UNIFICATION

� Proof Sketch: HOU :fr and HOU :ff only add new pair.

� Corollary 17.3.5 HOU is correct: If E `HOU E ′, then U(E ′)⊆U(E).

©:Michael Kohlhase 161 STEX

Given that higher-order unification is not unitary and undecidable, we cannot just employ the
notion of completeness that helped us in the analysis of first-order unification. So the first thing
is to establish the condition we want to establish to see that HOU gives a higher-order unification
algorithm.

Completeness of HOU

� We cannot expect completeness in the same sense as for first-order unification:
“If E `U F , then U(E)⊆U(F)” (see ?founifcalc-complete?) as the rules fix a
binding and thus partially commit to a unifier (which excludes others).

� We cannot expect termination either, since HOU is undecidable.

� For a semi-decision procedure we only need termination on unifiable problems.

� Theorem 17.3.6 (HOU derives Complete Set of Unifiers)
If θ ∈ U(E), then there is a HOU-derivation E `HOU F , such that F is in
solved form, σF ∈ U(E), and σF is more general than θ.

� Proof Sketch: Given a unifier θ of E , we guide the derivation with a measure
µθ towards F .

©:Michael Kohlhase 162 STEX

So we will embark on the details of the completeness proof. The first step is to define a measure
that will guide the HOU transformation out of a unification problem E given a unifier θ of cE.

Completeness of HOU (Measure)

� Definition 17.3.7 We call µ(E , θ) := 〈µ1(E , θ), µ2(θ)〉 the unification mea-
sure for E and θ, if

� µ1(E , θ) is the multiset of term depths of θ(X) for the unsolved X ∈
supp(θ).

� µ2(E) the multiset of term depths in E .
� ≺ is the strict lexicographic order on pairs: (〈a, b〉 ≺ 〈c, d〉, if a < c or
a = c and b < d)

� Component orderings are multiset orderings: (M ∪{m} < M ∪N iff
n < m for all n ∈ N)

� Lemma 17.3.8 ≺ is well-founded. (by construction)

©:Michael Kohlhase 163 STEX

This measure will now guide the HOU transformation in the sense that in any step it chooses
whether to use HOU : fr or HOU :ff, and which general binding (by looking at what θ would do).
We formulate the details in Theorem 17.3.9 and look at their consequences before we proove it.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


17.3. PROPERTIES OF HIGHER-ORDER UNIFICATION 119

Completeness of HOU (µ-Prescription)

� Theorem 17.3.9 If E is unsolved and θ ∈ U(E), then there is a unification
problem E ′ with E `HOU E ′ and a substitution θ′ ∈ U(E ′) , such that

� θ =βη θ
′[E ]

� µ(E ′, θ′) ≺ µ(E , θ).

we call such a HOU-step a µ-prescribed

� Corollary 17.3.10 If E is unifiable without µ-prescribed HOU-steps, then
E is solved.

� In other words: µ guides the HOU-transformations to a solved form

©:Michael Kohlhase 164 STEX

We now come to the proof of Theorem 17.3.9, which is a relatively simple consequence of Theo-
rem 17.2.8.

Proof of Theorem 17.3.9

� Proof:

P.1 Let A=? B be an unsolved pair of the form FU=? GV in F .
P.2 E is a SIM normal form, so F and G must be constants or variables,

P.3 but not the same constant, since otherwise SIM:dec would be applicable.

P.4 We can also exclude A =αβη B, as SIM:triv would be be appliccable.

P.5 If F = G is a variable not in supp(θ), then SIM : dec appliccable. By
correctness we have θ ∈ U(E ′) and µ(E ′, θ) ≺ µ(E , θ), as µ1(E ′, θ) �
µ1(E , θ) and µ2(E ′) ≺ µ2(E).

P.6 Otherwise we either have F 6= G or F = G ∈ supp(θ).

P.7 In both cases F or G is an unsolved variable F ∈ supp(θ) of type α, since
E is unsolved.

P.8 Without loss of generality we choose F = F.

P.9 By Theorem 17.2.8 there is a general binding G = Gf
α(Σ) and a substi-

tution ρ with ρ(G) =αβη θ(F ). So,

� if head(G) 6∈ supp(θ), then HOU :fr is appliccable,
� if head(G) ∈ supp(θ), then HOU :ff is appliccable.

P.10 Choose θ′ := θ∪ ρ. Then θ =βη θ
′[E ] and θ′ ∈ U(E ′) by correctness.

P.11 HOU :ff and HOU :fr solve F ∈ supp(θ) and replace F by supp(ρ) in
the set of unsolved variable of E .

P.12 so µ1(E ′, θ′) ≺ µ1(E , θ) and thus µ(E ′, θ′) ≺ µ(E , θ).

©:Michael Kohlhase 165 STEX

We now convince ourselves that if HOU terminates with a unification problem, then it is either
solved – in which case we can read off the solution – or unsolvable.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


120 CHAPTER 17. HIGHER-ORDER UNIFICATION

Terminal HOU -problems are Solved or Unsolvable

� Theorem 17.3.11 If E is a unsolved UP and θ ∈ U(E), then there is a
HOU-derivation E `HOU σσ, with σ ≤βη θ[E ].

� Proof: Let D : E `HOU F a maximal µ-prescribed HOU-derivation from E .

P.1 This must be finite, since ≺ is well-founded (ind. over length n of D)
P.2 If n = 0, then E is solved and σE most general unifier

P.3 thus σE ≤βη θ[E ]

P.4 If n > 0, then there is a µ-prescribed step E `HOU E ′ and a substitution
θ′ as in Theorem 17.3.9.

P.5 by IH there is a HOU-derivation E ′ `HOU F with σF ≤βη θ′[E ′].
P.6 by correctness σF ∈ U(E ′) ⊆ U(E).

P.7 rules of HOU only expand free variables, so σF ≤βη θ′[E ′]
P.8 Thus σF ≤βη θ′[E ],

P.9 This completes the proof, since θ′ =βη θ[E ] by Theorem 17.3.9.

©:Michael Kohlhase 166 STEX

We now recap the properties of higher-order unification (HOU) to gain an overview.

Properties of HO-Unification

� HOU is undecidable, HOU need not have most general unifiers

� The HOU transformation induce an algorithm that enumerates a complete set
of higher-order unifiers.

� HOU :ff gives enormous degree of indeterminism

� HOU is intractable in practice consider restricted fragments where it is!

� HO Matching (decidable up to order four), HO Patterns (unitary, linear), . . .

©:Michael Kohlhase 167 STEX

17.4 Pre-Unification

We will now come to a variant of higher-order unification that is used in higher-order theorem
proving, where we are only interested in the exgistence of a unifier – e.g. in mating-style tableaux.
In these cases, we can do better than full higher-order unification.

Pre-Unification

� HOU :ff has a giant branching factor in the search space for unifiers. (makes
HOU impracticable)

� In most situations, we are more interested in solvability of unification problems

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


17.5. APPLICATIONS OF HIGHER-ORDER UNIFICATION 121

than in the unifiers themselves.

� More liberal treatment of flex/flex pairs.

� Observation 17.4.1 flex/flex-pairs FUn =? GVm are always (trivially) solv-
able by [λXn H/F ], [λY m H/G], where H is a new variable

� Idea: consider flex/flex-pairs as pre-solved.

� Definition 17.4.2 (Pre-Unification) For given termsA,B ∈ wff α(Σ,VT )
find a substitution σ, such that σ(A) =p

β η σ(B), where =p
β η is the equality

theory that is induced by βη and FU = GV.

� Lemma 17.4.3 A higher-order unification problem is unifiable, iff it is pre-
unifiable.

©:Michael Kohlhase 168 STEX

The higher-order pre-unification algorithm can be obtained from HOU by simply omitting the
offending HOU :ff rule.

Pre-Unification Algorithm HOPU

� Definition 17.4.4 A unification problem is a pre-solved form, iff all of its
pairs are solved or flex/flex

� Lemma 17.4.5 If E is solved and P flex/flex, then σσ is a most general
unifier of a pre-solved form E ∧P.

� Restrict all HOU rule so that they cannot be applied to pre-solved pairs.

� In particular, remove HOU :ff!

� HOPU only consists of SIM and HOU :fr.

� Theorem 17.4.6 HOPU is a correct and complete pre-unification algorithm

� Proof Sketch: with exactly the same methods as higher-order unification

� Theorem 17.4.7 Higher-order pre-unification is infinitary, i.e. a unification
problem can have infinitely many unifiers. (Huet 76’ [Hue76])

� Example 17.4.8 Y (λXι X)a=? a, where a is a constant of type ι and Y
a variable of type (ι→ ι)→ ι → ι has the most general unifiers λ sz snz
and λ sz sna, which are mutually incomparable and thus most general.

©:Michael Kohlhase 169 STEX

17.5 Applications of Higher-Order Unification

Application of HOL in NL Semantics: Ellipsis

� Example 17.5.1 John loves his wife. George does too

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


122 CHAPTER 17. HIGHER-ORDER UNIFICATION

� love(john,wife_of(john))∧Q(george)

� “George has property some Q, which we still have to determine”

Idea: If John has property Q, then it is that he loves his wife.

�� Equation: Q(john) =αβη love(john,wife_of(john))

� Solutions (computed by HOU):

� Q = λ z love(z,wife_of(z)) and Q = λ z love(z,wife_of(john))

* Q = λ z love(john,wife_of(z)) and Q = λ z love(john,wife_of(john))

� Readings: George loves his own wife. and George loves Johns wife.

©:Michael Kohlhase 170 STEX

http://creativecommons.org/licenses/by-sa/2.5/


Chapter 18

Simple Type Theory

In this Chapter we will revisit the higher-order predicate logic introduced in Chapter 12 with the
base given by the simply typed λ-calculus. It turns out that we can define a higher-order logic by
just introducing a type of propositions in the λ-calculus and extending the signatures by logical
constants (connectives and quantifiers).

Higher-Order Logic Revisited

� Idea: introduce special base type o for truth values

� Definition 18.0.1 We call a Σ-algebra 〈D, I〉 a Henkin model, iff Do =
{T,F}.

� Ao valid under ϕ, iff Iϕ(A) = T

� connectives in Σ: ¬ ∈ Σo→o and {∨,∧,⇒,⇔, . . .}⊆Σo→o→o (with the
intuitive I-values)

� quantifiers: Πα ∈ Σ(α→o)→o with I(Πα)(p) = T, iff p(a) = T for all a ∈ Dα.

� quantified formula e: ∀Xα A stands for Πα(λXα A)

� Iϕ(∀Xα A) = I(Πα)(Iϕ(λXα A)) = T, iff Iϕ,[a/X](A) = T for all a ∈ Dα

� looks like PLΩ (Call any such system HOL→)

©:Michael Kohlhase 171 STEX

There is a more elegant way to treat quantifiers in HOL→. It builds on the realization that
the λ-abstraction is the only variable binding operator we need, quantifiers are then modeled
as second-order logical constants. Note that we do not have to change the syntax of HOL→ to
introduce quantifiers; only the “lexicon”, i.e. the set of logical constants. Since Πα and Σα are
logical constants, we need to fix their semantics.

Higher-Order Abstract Syntax

� Idea: In HOL→, we already have variable binder: λ, use that to treat quan-
tification.

� Definition 18.0.2 We assume logical constants Πα and Σα of type (α→ o)→

123

http://creativecommons.org/licenses/by-sa/2.5/


124 CHAPTER 18. SIMPLE TYPE THEORY

o.

Regain quantifiers as abbreviations:

(∀Xα A) :=
α

Π(λXα A) (∃Xα A) :=
α

Σ(λXα A)

� Definition 18.0.3 We must fix the semantics of logical constants:

1. I(Πα)(p) = T, iff p(a) = T for all a ∈ Dα (i.e. if p is the universal set)

2. I(Σα)(p) = T, iff p(a) = T for some a ∈ Dα (i.e. iff p is non-empty)

� With this, we re-obtain the semantics we have given for quantifiers above:

Iϕ(∀Xι A) = Iϕ(
ι

Π(λXι A)) = I(
ι

Π)(Iϕ(λXι A)) = T

iff Iϕ(λXι A)(a) = I[a/X],ϕ(A) = T for all a ∈ Dα

©:Michael Kohlhase 172 STEX

But there is another alternative of introducing higher-order logic due to Peter Andrews. Instead
of using connectives and quantifiers as primitives and defining equality from them via the Leibniz
indiscernability principle, we use equality as a primitive logical constant and define everything else
from it.

Alternative: HOL=

� only one logical constant qα ∈ Σα→α→o with I(qα)(a, b) = T, iff a = b.

� Definitions (D) and Notations (N)

N Aα = Bα for qαAαBα

D T for qo = qo

D F for (λXo T ) = (λXo Xo)
D Πα for q(α→o)(λXα T )
N ∀Xα A for Πα(λXα A)
D ∧ for λXo λYo (λGo→o→o GT T ) = (λGo→o→o GXY )
N A∧B for ∧AoBo

D ⇒ for λXo λYo X = X ∧Y
N A⇒B for ⇒AoBo

D ¬ for qoF
D ∨ for λXo λYo ¬ (¬X ∧¬Y )
N A∨B for ∨AoBo

D ∃Xα Ao for ¬ (∀Xα ¬A)
N Aα 6= Bα for ¬ (qαAαBα)

� yield the intuitive meanings for connectives and quantifiers.

©:Michael Kohlhase 173 STEX

In a way, this development of higher-order logic is more foundational, especially in the context of
Henkin semantics. There, Theorem 12.0.6 does not hold (see [And72] for details). Indeed the proof
of Theorem 12.0.6 needs the existence of “singleton sets”, which can be shown to be equivalent to
the existence of the identity relation. In other words, Leibniz equality only denotes the equality

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


125

relation, if we have an equality relation in the models. However, the only way of enforcing this
(remember that Henkin models only guarantee functions that can be explicitly written down as
λ-terms) is to add a logical constant for equality to the signature.
We will conclude this section with a discussion on two additional “logical constants” (constants
with a fixed meaning) that are needed to make any progress in mathematics. Just like above,
adding them to the logic guarantees the existence of certain functions in Henkin models. The
most important one is the description operator that allows us to make definite descriptions like
“the largest prime number” or “the solution to the differential equation f ′ = f .

More Axioms for HOL→

� Definition 18.0.4 unary conditional w ∈ Σo→α→α
wAoBα means: “If A, then B”

� Definition 18.0.5 binary conditional if ∈ Σo→α→α→α
ifAoBαCα means: “if A, then B else C”.

� Definition 18.0.6 description operator ι ∈ Σ(α→o)→α
if P is a singleton set, then ιPα→o is the element in P,

� Definition 18.0.7 choice operator γ ∈ Σ(α→o)→α
if P is non-empty, then γPα→o is an arbitrary element from P

� Definition 18.0.8 (Axioms for these Operators)

� unary conditional: ∀ϕo ∀Xα ϕ⇒wϕX = X

� conditional: ∀ϕo ∀Xα, Yα, Zα (ϕ⇒ ifϕXY = X)∧ (¬ϕ⇒ ifϕZX = X)

� description ∀Pα→o (∃1Xα PX)⇒ (∀Yα PY ⇒ ιP = Y )

� choice ∀Pα→o (∃Xα PX)⇒ (∀Yα PY ⇒ γP = Y )

Idea: These operators ensure a much larger supply of functions in Henkin
models.

©:Michael Kohlhase 174 STEX

�More on the Description Operator

� ι is a weak form of the choice operator (only works on singleton sets)

� Alternative Axiom of Descriptions: ∀Xα ια(=X) = X.

� use that I[a/X](=X) = {a}
� we only need this for base types 6= o

� Define ιo := =(λXo X) or ιo := (λGo→o GT ) or ιo := =(=T )

� ια→β := (λH(α→β)→oXα ιβ(λZβ (∃Fα→β (HF )∧ (FX) = Z)))

©:Michael Kohlhase 175 STEX

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


126 CHAPTER 18. SIMPLE TYPE THEORY



Chapter 19

Higher-Order Tableaux

In this Chapter we will extend the ideas from first-order tableaux to higher-order logic.
The rules fo standard tableaux are just like the ones for first-order logic, only that we can take
advantage oft higher-order abstract syntax for the quantifiers

Tableau-Rules (T sω )

� Definition 19.0.1 The rules of T sω consist of the propositional tableau
rules of T0 together with

α

ΠAT

T sω :∀
ACT

α

ΠAF c ∈ (Σsk0 \H)
T sω :∃

AcF

©:Michael Kohlhase 176 STEX

Higher-order, free-variable tableaux work exactly like first-order tableaux, except that the cut rule
uses higher-order unification.

Higher-Order Free-Variable Tableaus (Tω first try)

� Definition 19.0.2 The Tω calculus consists of the propositional tableau
rules plus

α

ΠAT

Tω:∀
AXα

T

α

ΠAF free(A) = {Y 1
α1
, . . . , Y nαn} f ∈ ΣSkαn→α new

Tω:∃
A(fY n)

F

� Problem: Unification in Λ→ is undecidable, so we need more

127

http://creativecommons.org/licenses/by-sa/2.5/


128 CHAPTER 19. HIGHER-ORDER TABLEAUX

� Idea: explicit rule that residuates the unification problem

Aα

Bβ

Tω:cut
A 6=? B

and adapt the HOU rules to tableaux (DNF instead of CNF)

©:Michael Kohlhase 177 STEX

Note that we cannot directly use the higher-order unification algorithm, since that is undecidable
– this would not result in a fair proof search procedure. Therefore we reinterpret HOPU rules as
tableau rules and mix them into the proof search procedure.

For the reinterpretation ofHOU rules into tableau rules we change notation of the unification pairs,
using A 6=? B instead of A =? B, since in the tableau setting we want to refute that A and B
cannot be made equal instead of finding conditions that make them equal (as we did for unification).
Correspondingly, we we do not use a “conjunction” of equations, but a disjunction (using tableau
branches) of “disequations”. But up to this “double negation” the unification algorithm stays the
same.

Tω (Pre-Unification)

� we can use SIM :α, SIM : η, and SIM : triv directly, for SIM : dec and
SIM:elim we integrate into tableau setting more closely, obtaining

hUn 6=? hVn h ∈ (Σ∪ΣSk ∪VT )
Tω :dec

U1 6=? V1
∣∣∣ . . . ∣∣∣ Un 6=? Vn

FαU 6=? hV
Tω :fr

F 6=? G
∣∣∣ FU 6=? hV

X 6=? A X 6∈ free(A) A∩ΣSk = ∅
Tω :elim

⊥

where G = Gh
α(Σ) (imitation) or G ∈ {Gj

α(Σ) | 1≤j≤n}

� Definition 19.0.3 We call a Tω tableau closed, if all branches end in a ⊥
or a flex/flex pair.

©:Michael Kohlhase 178 STEX

Note that the elimination rule is particularly elegant in the tableau setting – it comes in the form
of a closure rule: If we have a solved pair, then we can just make the branch unsatisfiable by
applying its most general unifier to the whole tableau.

Note furthermore, that with the mixed propositional and pre-unification calculus in Tω, the de-
cision whether to do regular or matings-style tableaux boils down to a a decision of the strategy
used to expand the Tω tableaux.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


129

We will now fortify our intuition with an extended example: a Tω proof of (a version of) Cantor’s
theorem. The particular formulation we use below uses the whole universe of type ι for the set S
and universe of type ι→ ι for the power set.

Tω Example: Cantor’s Theorem

� Theorem 19.0.4 There is no surjective function from the natural numbers
into the sequences of natural numbers.

� Formally: ¬ (∃Fι→ι→ι ∀Gι→ι ∃Jι FJ = G)

� For the proof we use

� ∀Xι ¬X = sX (the successor function has no fixed points)

� an extensionality axiom

©:Michael Kohlhase 179 STEX

We initialize the tableau with the three formulae discussed above, and then employ the Tω rules.

Tω-Proof (Cantor’s Theorem)

� First the propositional part (analyzing formula structure)

¬ (∃Fι→ι→ι ∀Gι→ι ∃Jι FJ = G)F

∃Fι→ι→ι ∀Gι→ι ∃Jι FJ = GT

∀Gι→ι ∃Jι fι→ι→ιJ = GT

∃Jι fJ = GT

f(jG) = GT

H = K⇒ (∀Nι HN = KN)T

H = KF

H = K 6=? f(jG) = G
H 6=? f(jG)

⊥
K 6=? G
⊥

HN = KNT

f(jG)N = GNT

X = sXF

X = sX 6=? f(jG)N = GN

� then we continue with unification tableau

http://creativecommons.org/licenses/by-sa/2.5/


130 CHAPTER 19. HIGHER-ORDER TABLEAUX

X = sX 6=? f(jG)N = GN

GN 6=? s(f(jG)N)

s(H1N) 6=? s(f(jG)N)

H1N 6=? f(jG)N

f(H2N)(H3N) 6=? f(jG)N

X 6=? f(jG)N

⊥

G 6=? (λYι s(H
1Y ))

⊥

H1 6=? (λYι f(H2Y )(H3Y ))

⊥
H2N 6=? jG H3N 6=? N

H2 6=? (λYι Y ) N 6=? jG H3 6=? (λYι Y ) jG 6=? jG

⊥ ⊥ ⊥ ⊥

� We found a closed tableau and completed the Tω proof.

©:Michael Kohlhase 180 STEX

In the higher-order unification tableau above we face the same problem we always face when we
try to display the dynamics of free-variable tableaux: in the closure rules we have to instantiate
the whole tableau. But this turns the tableau into a standard tableau. So we close the leftmost
branch and apply the substitution to the branches to the right of the current branch only.
Note that at first sight N 6=? jG is not solved (and indeed unsolvable), since j is a Skolem constant.
But we only need to forbid the Skolem constants that were introduced by the SIM:α and SIM:η
rules. So there is no problem here; since they were introduced by Tω:∃.
Even though we were successful in proving Cantor’s theorem, Tω is not complete as we will see.

Problem for Tω
� Theorem 19.0.5 There is a valid formula (∃Xo X)

� This is clearly valid, (eg. A∨¬A)

� Tω attempt
¬ (∀Xo ¬X)F

∀Xo ¬XT

¬XT

XF

� we are stuck!

� Observation: We have to instantiate X further, e.g. by [¬Qo/X].

� then we can continue
XF

¬QF

QT

X 6=? Q

close with [Q/X].

http://creativecommons.org/licenses/by-sa/2.5/


131

©:Michael Kohlhase 181 STEX

We see that unlike in first-order unification we cannot obtain all necessary instantiations by unifi-
cation. Indeed in the presence of predicate variables – in our example above we can view Xo as a
nullary predicate – we have to allow instantiations with (all) logical connectives and quantifiers.
Fortunately, we can do this in a minimally committing fashion via general bindings, unfortunately,
we have to systematically try out all possible ones – which is costly, since there are infinitely many
quantifiers.

Primitive Substitutions

� Unification is not sufficient for Tω

� We need a rule that instantiates head variables with terms that introduce
logical constants.

� Definition 19.0.6 We extend Tω with the rule Tω:prim.

XαUn
α

G ∈ Gk
α(Σ) k ∈ ({∧,¬}∪{

β

Π |β ∈ T })
Tω:prim

X 6=? G
∣∣∣ XαUn

α

We call [G/X] a primitive substitution.

� In our example ¬Q = G¬o (Σ).

©:Michael Kohlhase 182 STEX

There is another source of incompleteness as another example shows: we can have propositions
embedded in formulae. Note that this is different from the situation in first-order logic, but quite
natural in mathematics, e.g. for conditional statements of the form “if ϕo then Aα else Bα.”,
where ϕ is a proposition embedded in a term of type α.

Another Example

� A = ¬ (co→obo)∨ (c¬¬ b) is valid

� Tω proof attempt
¬ (cb)∨ (c¬¬ b)F

¬ (cb)F

c¬¬ bF
cbT

cb 6=? c¬¬ b
b 6=? ¬¬ b

and we are stuck (again)

� Idea: theory unification with Xo = ¬¬Xo

� But the problem is more general: If A⇔B valid, then ¬ (cA)∧ (cB) must
be Tω-refutable.

� Solution: call to the theorem prover recursively.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


132 CHAPTER 19. HIGHER-ORDER TABLEAUX

� Definition 19.0.7 We extend Tω with the rule Tω:rec,

Ao 6=? Bo

AT

BF

∣∣∣∣ AF

BT

Tω:rec

� Observation 19.0.8 We can prove Ao by unifying it with To.

©:Michael Kohlhase 183 STEX

The Tω:rec rule puts the propositional and unification rules of Tω at an equal footing. Tω can
be seen as a calculus for theorem proving or as an unification algorithm that takes the theory of
equivalence into account.
Each aspect of Tω can recurse into the the other; this is necessary, since in HOL→ the propositional
level – which has a fixed interpretation and therefore special Tω rules – and the term level – which
is freely interpreted and must thus be handled by unification – can recurse arbitrarily.
To make matters worse, we also have a soundness problem that comes from Skolemization: we
can prove a version of the Axiom of Choice that is known to be independent of HOL→, and thus
should not be provable.

Skolemization is not sound

� Axiom of Choice:
∃γα→o→α ∀Pα→o (∃Xα PX)⇒ (∀Yα (PY )⇒ γP = Y )

� Weaker Version: (call it C)

∀Rα→α→o (∀Xα ∃Yα RXY )⇒ (∃F(α→o)→α ∀Zα RZ(FZ))

� Neither C nor ¬C are valid in HOL→ (independent)

� but C is provable Tω. (see next slide)

©:Michael Kohlhase 184 STEX

In this proof, the Skolem constant f introduced for the assumption ∀Xα ∃Yα RXY becomes
available as an instance for the variable F in (used to require the existence of a choice opera-
tor).

Skolemization is not sound (Choice Proof)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


133

∀Rα→α→o (∀Xα ∃Yα RXY )⇒ (∃F(α→o)→α ∀Zα RZ(FZ))
F

∀Xα ∃Yα rXY
T

∃F(α→o)→α ∀Zα rZ(FZ)
F

∃Yα rXY
T

rX(fX)
T

∀F(α→o)→α ¬ (∀Zα rZ(fZ))
T

∀Zα rZ(FZ)
F

r(gF )(F (gF ))
F

rX(fX) 6=? r(gF )(F (gF ))
X 6=? gF
⊥

f(gF ) 6=? F (gF )
F 6=? (λZα f(H1Z))

⊥
f(g(λZα f(H1Z))) 6=? f(H1(g(λZα f(H1Z))))

g(λZα f(H1Z)) 6=? H1(g(λZα f(H1Z)))
H1 6=? (λWα W )

⊥
g(λZα fZ) 6=? g(λZα fZ)

⊥

©:Michael Kohlhase 185 STEX

In first-order logic, Skolemization is sound, since Skolem constants do not “lose their arguments”,
so they cannot be used to prove the axiom of choice.

The following part is still experimentals; not required for the course

Variable Conditions

� Definition 19.0.9 Let Γ be an annotated variable context, Then a variable
condition R is a relation on R⊆dom(Γ)×dom(Γ−).

� Definition 19.0.10 We call a substitution σ with supp(σ)⊆dom(Γ)∪dom(∆)
a R-substitution, iff Y 6∈ free(σ(X)) for all (x, y) ∈ R.

� Intuition: If (X,Y −) ∈ R, then no formula that contains Y − freely may be
substituted for X.

� We define a judgment ∆ ` R(X,A) by

� ∆,Γ `σ A : Γ(X) und X 6∈ free(A),

� {X}× free(A)∩R = ∅ (no variable Y ∈ free(A) is an R-image of X)

� So σ is a R-substitution, iff ∆ `Σ R(X,σ(X)) for all X ∈ supp(σ).

� Extension of variable conditions for instantiaton with [A/X]:

R(A/X) := {(Z,W ) ∈ R |Z 6= X}∪ {(Z,W ) |Z ∈ free(A),R(X,W )}

©:Michael Kohlhase 186 STEX

Higher-Order Tableaux (final)

� Higher-order tableaux are triples 〈Γ: R〉 T

� propositional tableaux as always (do not change Γ or R)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


134 CHAPTER 19. HIGHER-ORDER TABLEAUX

� New quantifier rules
α

ΠAT

AXα
T

α

ΠAF

AY −
F

where

� X,Y − 6∈ dom(Γ)

� Γ′ := Γ, [X : α] and Γ′ := Γ, [Y − : α]

� R′ := R and R′ := R∪ free(A)×{Y −}.

� substitution rule: If a path in 〈Γ, [X : α] : R〉 T ends in an equation X =? A
with Γ `Σ R(X,A), then generate 〈Γ: R(A/X)〉 [A/X]T .

� Primitive Substitution: If 〈Γ, [X : α] : R〉 T contains a formula (XUn)α, and
A ∈ Gk

α(Σ,Γ, C) with k ∈ ({∧,¬}∪{Πβ |β ∈ T }), then generate 〈Γ∪C : R(A/X)〉 [A/X]T

� Closed Tableau: every branch ends in a trivial equation A=? A or a pre-solved
equation FU 6=? GV.

� tableau-substitution closes the respective branch

� Side conditions

(λXα A) 6=? (λYα B) Z 6∈ dom(Γ)

[Z/X](A) 6=? Z(Y )(B)

(λXα A) 6=? B Z 6∈ dom(Γ)

[Z/X](A) 6=? BZ

where Γ′ = Γ, [Z0 : α] and R′ := R(Z/X)

hUn 6=? hVn h ∈ (Σ∪dom(Γ0)∪dom(Γ−))

U1 6=? V1
∣∣∣ . . . ∣∣∣ Un 6=? Vn

FU=? hV Γ(F ) = α Γ `Σ R(F,G)

F 6=? G
∣∣∣ FU 6=? hV

Here we have

� G ∈ Gh(Σ,∆, C)
� Γ′ = Γ∪C and R′ := R

©:Michael Kohlhase 187 STEX

http://creativecommons.org/licenses/by-sa/2.5/


Part V

Project Tetrapod

135





137

The way we do math will change dramatically

� Definition 19.0.11 (Doing Math) Buchberger’s Math creativity spiral

Spiral

The

Creativity

Compute/
Experiment

Specify/
Formalize

Prove

Visualize

Conjecture

Mathematical
Creativity 
Spiral
[Buchberger 1995]

Com−
munication

Publication

Teaching

Application

� Every step will be supported by mathematical software systems

� Towards an infrastructure for web-based mathematics!

©:Michael Kohlhase 188 STEX

Knowledge Representation is only Part of “Doing Math”

� One of the key insights is that the mathematics ecosystem involves a body of
knowledge described as an ontology and four aspects of it:

� inference: exploring theories, formulating conjectures, and constructing
proofs

� computation: simplifying mathematical objects, re-contextualizing conjec-
tures. . .

� models: collecting examples, applying mathematical knowledge to real-
world problems and situations.

� narration: devising both informal and formal languages for expressing math-
ematical ideas, visualizing mathematical data, presenting mathematical de-
velopments, organizing and interconnecting mathematical knowledge

� We call the endeavour of creating a computer-supported mathematical ecosys-
tem “Project tetrapod” as it needs to stand on four legs.

http://creativecommons.org/licenses/by-sa/2.5/


138

Ontology

Computation

InferenceNarration

Models

Collaborators: KWARC@FAU, McMaster University

©:Michael Kohlhase 189 STEX

http://creativecommons.org/licenses/by-sa/2.5/


Part VI

Summary and Review

139





Chapter 20

Modulare Repr"asentation
mathematischen Wissens

�Modular Representation of Math (Theory Graph)

� Idea: Follow mathematical practice of generalizing and framing

� framing: If we can view an object a as an instance of concept B, we can
inherit all of B properties (almost for free.)

� state all assertions about properties as general as possible (to maximize
inheritance)

� examples and applications are just special framings.

� Modern expositions of Mathematics follow this rule (radically e.g. in
Bourbaki)

� formalized in the theory graph paradigm (little/tiny theory doctrine)

� theories as collections of symbol declarations and axioms (model
assumptions)

� theory morphisms as mappings that translate axioms into theorems

� Example 20.0.1 (MMT: Modular Mathematical Theories) MMT is
a foundation-indepent theory graph formalism with advanced theory mor-
phisms.

Problem: With a proliferation of abstract (tiny) theories readability and acces-
sibility suffers (one reason why the Bourbaki books fell out of
favor)

©:Michael Kohlhase 190 STEX

�Modular Representation of Math (MMT Example)

141

http://creativecommons.org/licenses/by-sa/2.5/


142 CHAPTER 20. MODULARE REPR"ASENTATION MATHEMATISCHEN WISSENS

Magma
G, ◦
x◦y∈G

SemiGrp

assoc:(x◦y)◦z=x◦(y◦z)

Monoid
e
e◦x=x

Group
i :=λx.τy.x◦y=e
∀x:G.∃y:G.x◦y=e

NonGrpMon

∃x:G.∀y:G.x◦y 6=e

CGroup

comm:x◦y=y◦x

Ring

x m/◦ (y a/◦ z)=(x m/◦ y) a/◦ (x m/◦ z)

NatNums
N, s, 0
P1,. . .P5

NatPlus
+
n+0=n,
n+s(m)=s(n+m)

NatTimes
·
n·1=n,
n·s(m)=n·m+n

IntArith
−
Z := p/N ∪ n/N
−0=0

ϕ =

 G 7→ N
◦ 7→ ·
e 7→ 1


ψ =

 G 7→ N
◦ 7→ +
e 7→ 0


ψ′ =

{
i 7→ −
g 7→ f

}
ϑ =

{
m 7→ e
a 7→ c

}

p n

e :ϕ

f :ψ

d :ψ′

g

c :ϕ

ng

a

m

i : ϑ

{x ◦ y 7→ y ◦ x}

{x ◦ y 7→ y ◦ x}

©:Michael Kohlhase 191 STEX

The MMT Module System

� Central notion: theory graph with theory nodes and theory morphisms as edges

� Definition 20.0.2 In MMT, a theory is a sequence of constant declara-
tions – optionally with type declarations and definitions

� MMT employs the Curry/Howard isomorphism and treats

� axioms/conjectures as typed symbol declarations (propositions-as-types)

� inference rules as function types (proof transformers)

� theorems as definitions (proof terms for conjectures)

� Definition 20.0.3 MMT had two kinds of theory morphisms

� structures instantiate theories in a new context (also called:
definitional link, import)
they import of theory S into theory T induces theory morphism S → T

� views translate between existing theories (also called: postulated link,
theorem link)
views transport theorems from source to target (framing)

� together, structures and views allow a very high degree of re-use

� Definition 20.0.4 We call a statement t induced in a theory T , iff there
is

� a path of theory morphisms from a theory S to T with (joint) assignment
σ,

� such that t = σ(s) for some statement s in S.

http://creativecommons.org/licenses/by-sa/2.5/


143

� In MMT, all induced statements have a canonical name, the MMT URI.

©:Michael Kohlhase 192 STEX

Applications for Theories in Physics

� Theory Morphisms allow to “view” source theory in terms of target theory.

� Theory Morphisms occur in Physics all the time.

Theory Temp. in Kelvin Temp. in Celsius Temp. in Fahrenheit
Signature ◦K ◦C ◦F
Axiom: absolute zero at 0◦K Water freezes at 0◦C cold winter night: 0◦F
Axiom: δ(◦K1) = δ(◦C1) Water boils at 100◦C domestic pig: 100◦F
Theorem: Water freezes at

271.3◦K
domestic pig: 38◦C Water boils at 170◦F

Theorem: cold winter night:
240◦K

absolute zero at
−271.3◦C

absolute zero at
−460◦F

Views: ◦C +271.3−→
◦
K, ◦C

−32/2−→
◦
F, and ◦F

+240/2−→
◦
K, inverses.

� Other Examples: Coordinate Transformations,

� Application: Unit Conversion: apply view morphism (flatten) and simplify with
UOM. (For new units, just add theories and views.)

� Application: MathWebSearch on flattened theory (Explain view path)

©:Michael Kohlhase 193 STEX

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


144 CHAPTER 20. MODULARE REPR"ASENTATION MATHEMATISCHEN WISSENS



Chapter 21

Application: Serious Games

Framing for Problem Solving (The FrameIT Method)

� Example 21.0.1 (Problem 0.8.15)

How can you measure the height of a tree you cannot
climb, when you only have a protactor and a tape
measure at hand.

� Framing: view the problem as one that is already understood (using theory
morphisms)

PlanarGeo

PGP

PGSProblem

SOL

Forestry

q

p′ :ϕ

p :ϕ

q′

� squiggly (framing) morphisms guaranteed by metatheory of theories!

©:Michael Kohlhase 194 STEX

Example Learning Object Graph

145

http://creativecommons.org/licenses/by-sa/2.5/


146 CHAPTER 21. APPLICATION: SERIOUS GAMES

Generate [0]

Generate [3]

Generate [2]Fact Discovery

Interaction

ϕ

[π/p]
[A/a]
[B/b]
[C/c]

[|AB|/|ab|]
[∠CAB/∠cab]


=: ϕ

Generate [1]

Game World
User Knowledge New Knowledge

MMT

Game Solution

A

C

B

D

α AB

h = 10.0m

Game Problem

h =?

Explored World

A

C

B

D

h =?

Scrolls

find
a b

c
such that ab ⊥ bc then

a b

c

α
→ |bc| = |ab| · tan(α)

Solution Pushout

A

C

B

D

α AB

|BC| = 10.0 · tan(45◦) = 10.0

Situation Theory

A

C

B

D

α AB

Situation Theory

A,B,C : point
|AB| : R = 10.0
∠CAB : R = 45◦

π : ` AB ⊥ BC

Solution Theory

a b

c

α

|bc| = |ab| · tan(∠cab)

Problem Theory

a b

c

p : ` ab ⊥ bc

Forestry
vertical (tree)
horizontal (ground)

...

Planar Geometry
point : type
line : point → point → line
|ab| : line → R
⊥ : line → line → bool

...

©:Michael Kohlhase 195 STEX

FrameIT: Problem Solving by Framing ; Serious Games

� Implementation in custom web interface (Bachelor’s thesis)

Currently: Minecraft mod (problem/solution pairs as objects that can be
applied for automation)

©:Michael Kohlhase 196 STEX

� Combining Problem/Solution Pairs

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


147

� We can use the same mechanism for combining P/S pairs

� create more complex P/S pairs (e.g. for trees on slopes)

©:Michael Kohlhase 197 STEX

Another whole set of applications and game behaviors can come from the fact that LOGraphs
give ways to combine problem/solution pairs to novel ones. Consider for instance the diagram
on the right, where we can measure the height of a tree of a slope. It can be constructed by
combining the theory SOL with a copy of SOL along a second morphism the inverts h to −h (for
the lower triangle with angle β) and identifies the base lines (the two occurrences of h0 cancel
out). Mastering the combination of problem/solution pairs further enhances the problem solving
repertoire of the player.

http://creativecommons.org/licenses/by-sa/2.5/


148 CHAPTER 21. APPLICATION: SERIOUS GAMES



Chapter 22

Search in the Mathematical
Knowledge Space

The Mathematical Knowledge Space
� Observation 22.0.1 The value of framing is that
it induces new knowledge

� Definition 22.0.2 The mathematical knowl-
edge space MKS is the structured space of rep-
resented and induced knowledge, mathematically
literate have access to.

induced

rep.

� Idea: make math systems mathematically literate by supporting the MKS

� In this talk: I will cover three aspects

� an approach for representing framing and the MKS (OMDoc/MMT)

� search modulo framing (MKS-literate search)

� a system for archiving the MKS (MathHub.info)

� Told from the Perspective of: searching the MKS

©:Michael Kohlhase 198 STEX

[ search: Indexing flattened Theory Graphs

� Simple Idea: We have all the necessary components: MMT and MathWebSearch

� Definition 22.0.3 The [ search systen is an integration of MathWebSearch
and MMT that

� computes the induced formulae of a modular mathematical library via
MMT (aka. flattening)

� indexes induced formulae by their MMT URIs in MathWebSearch

� uses MathWebSearch for unification-based querying (hits are MMT
URIs)

149

http://creativecommons.org/licenses/by-sa/2.5/


150 CHAPTER 22. SEARCH IN THE MATHEMATICAL KNOWLEDGE SPACE

� uses the MMT to present MMT URI (compute the actual formula)

� generates explanations from the MMT URI of hits.

� Implemented by Mihnea Iancu in ca. 10 days (MMT harvester pre-existed)

� almost all work was spent on improvements of MMT flattening

� MathWebSearch just worked (web service helpful)

©:Michael Kohlhase 199 STEX

[ search User Interface: Explaining MMT URIs

� Recall: [ search (MathWebSearch really) returns a MMT URI as a hit.

� Question: How to present that to the user? (for his/her greatest benefit)

� Fortunately: MMT system can compute induced statements (the hits)

� Problem: Hit statement may look considerably different from the induced
statement

� Solution: Template-based generation of NL explanations from MMT URIs.

MMT knows the necessary information from the components of the MMT URI.

©:Michael Kohlhase 200 STEX

Modular Representation of Math (MMT Example)

Magma
G, ◦
x◦y∈G

SemiGrp

assoc:(x◦y)◦z=x◦(y◦z)

Monoid
e
e◦x=x

Group
i :=λx.τy.x◦y=e
∀x:G.∃y:G.x◦y=e

NonGrpMon

∃x:G.∀y:G.x◦y 6=e

CGroup

comm:x◦y=y◦x

Ring

x m/◦ (y a/◦ z)=(x m/◦ y) a/◦ (x m/◦ z)

NatNums
N, s, 0
P1,. . .P5

NatPlus
+
n+0=n,
n+s(m)=s(n+m)

NatTimes
·
n·1=n,
n·s(m)=n·m+n

IntArith
−
Z := p/N ∪ n/N
−0=0

ϕ =

 G 7→ N
◦ 7→ ·
e 7→ 1


ψ =

 G 7→ N
◦ 7→ +
e 7→ 0


ψ′ =

{
i 7→ −
g 7→ f

}
ϑ =

{
m 7→ e
a 7→ c

}

p n

e :ϕ

f :ψ

d :ψ′

g

c :ϕ

ng

a

m

i : ϑ

{x ◦ y 7→ y ◦ x}

{x ◦ y 7→ y ◦ x}

©:Michael Kohlhase 201 STEX

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


151

Example: Explaining a MMT URI

� Example 22.0.4 [ search search result u?IntArith?c/g/assoc for query (x+

y ) + z = R .

� localize the result in the theory u?IntArithf with

Induced statement ∀x, y, z : Z.(x+y)+z = x+(y+z) found in
http://cds.omdoc.org/cds/elal?IntArith (subst, justification).

� Justification: from MMT info about morphism c (source, target,
assignment)

IntArith is a CGroup if we interpret ◦ as + and G as Z.

� skip over g, since its assignment is trivial and generate

CGroups are SemiGrps by construction

� ground the explanation by

In SemiGrps we have the axiom assoc : ∀x, y, z : G.(x ◦ y) ◦ z = x ◦ (y ◦ z)

©:Michael Kohlhase 202 STEX

[ search on the LATIN Logic Atlas

� Flattening the LATIN Atlas (once):

type modular flat factor
declarations 2310 58847 25.4
library size 23.9 MB 1.8 GB 14.8
math sub-library 2.3 MB 79 MB 34.3
MathWebSearch harvests 25.2 MB 539.0 MB 21.3

induced

repd

� simple [ search frontend at http://cds.omdoc.org:8181/search.html

http://creativecommons.org/licenses/by-sa/2.5/
http://cds.omdoc.org:8181/search.html


152 CHAPTER 22. SEARCH IN THE MATHEMATICAL KNOWLEDGE SPACE

©:Michael Kohlhase 203 STEX

Overview: KWARC Research and Projects

Applications: eMath 3.0, Active Documents, Semantic Spreadsheets, Semantic
CAD/CAM, Change Mangagement, Global Digital Math Library, Math Search Sys-
tems, SMGloM: Semantic Multilingual Math Glossary, Serious Games, . . .
Foundations of Math:

� MathML, OpenMath

� advanced Type Theories

� MMT: Meta Meta The-
ory

� Logic Morphisms/Atlas

� Theorem Prover/CAS In-
teroperability

KM & Interaction:
� Semantic Interpretation
(aka. Framing)

� math-literate interaction

� MathHub: math archi-
ves & active docs

� Semantic Alliance: em-
bedded semantic services

Semantization:
� LATEXML: LATEX→ XML

� STEX: Semantic LATEX

� invasive editors

� Context-Aware IDEs

� Mathematical Corpora

� Linguistics of Math

Foundations: Computational Logic, Web Technologies, OMDoc/MMT

©:Michael Kohlhase 204 STEX

Take-Home Message

� Overall Goal: Overcoming the “One-Brain-Barrier” in Mathematics (by
knowledge-based systems)

� Means: Mathematical Literacy by Knowledge Representation and Processing
in theory graphs in Theoriegraphen. (Framing as mathematical practice)

©:Michael Kohlhase 205 STEX

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Bibliography

[AGC+06] Andrea Asperti, Ferruccio Guidi, Claudio Sacerdoti Coen, Enrico Tassi, and Stefano
Zacchiroli. A content based mathematical search engine: Whelp. In Jean-Christophe
Filliâtre, Christine Paulin-Mohring, and Benjamin Werner, editors, Types for Proofs
and Programs, International Workshop, TYPES 2004, revised selected papers, num-
ber 3839 in LNCS, pages 17–32. Springer Verlag, 2006.

[And72] Peter B. Andrews. General models and extensionality. Journal of Symbolic Logic,
37(2):395–397, 1972.

[And02] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To
Truth Through Proof. Kluwer Academic Publishers, second edition, 2002.

[Bou68] Nicolas Bourbaki. Theory of Sets. Elements of Mathematics. Springer Verlag, 1968.

[Bou74] Nicolas Bourbaki. Algebra I. Elements of Mathematics. Springer Verlag, 1974.

[Bou89] N. Bourbaki. General Topology 1-4. Elements of Mathematics. Springer Verlag, 1989.

[Can95] Georg Cantor. Beiträge zur begründung der transfiniten mengenlehre (1). Mathema-
tische Annalen, 46:481–512, 1895.

[Can97] Georg Cantor. Beiträge zur begründung der transfiniten mengenlehre (2). Mathema-
tische Annalen, 49:207–246, 1897.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56–68, 1940.

[DPPDD09] A.K. Doxiadēs, C.H. Papadimitriou, A. Papadatos, and A. Di Donna. Logicomix: An
Epic Search for Truth. Bloomsbury, 2009.

[Fre79] Gottlob Frege. Begriffsschrift: eine der arithmetischen nachgebildete formelsprache
des reinen denkens, 1879.

[Gen34] Gerhard Gentzen. Untersuchungen über das logische Schließen I. Mathematische
Zeitschrift, 39(2):176–210, 1934.

[Göd31] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte der Mathematischen Physik, 38:173–198, 1931.
English Version in [vH67].

[Gol81] Warren D. Goldfarb. The undecidability of the second-order unification problem.
Theoretical Computer Science, 13:225–230, 1981.

[Hil26] David Hilbert. Über das unendliche. Mathematische Annalen, 95:161–190, 1926.

[Hue76] Gérard P. Huet. Résolution d’Équations dans des Langages d’ordre 1,2,...,w. Thèse
d‘état, Université de Paris VII, 1976.

153



154 BIBLIOGRAPHY

[Hue80] Gérard Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the ACM (JACM), 27(4):797–821, 1980.

[Jin10] Arif Jinha. Article 50 million: an estimate of the number of scholarly articles in
existence. Learned Publishing, 23(3):258–263, 2010.

[KK06] Andrea Kohlhase and Michael Kohlhase. Communities of Practice in MKM: An
Extensional Model. In Jon Borwein and William M. Farmer, editors, Mathematical
Knowledge Management (MKM), number 4108 in LNAI, pages 179–193. Springer
Verlag, 2006.

[Koh08] Michael Kohlhase. Using LATEX as a semantic markup format. Mathematics in
Computer Science, 2(2):279–304, 2008.

[Koh16] Michael Kohlhase. sTeX: Semantic markup in TEX/LATEX. Technical report, Com-
prehensive TEX Archive Network (CTAN), 2016.

[LM06] Paul Libbrecht and Erica Melis. Methods for Access and Retrieval of
Mathematical Content in ActiveMath. In N. Takayama and A. Igle-
sias, editors, Proceedings of ICMS-2006, number 4151 in LNAI, pages 331–
342. Springer Verlag, 2006. http://www.activemath.org/publications/
Libbrecht-Melis-Access-and-Retrieval-ActiveMath-ICMS-2006.pdf.

[LvI10] Peder Olesen Larsen and Markus von Ins. The rate of growth in scientific publica-
tion and the decline in coverage provided by science citation index. Scientometrics,
84(3):575–603, 2010.

[Mat70] Ju. V. Matijasevič. Enumerable sets are diophantine. Soviet Math. Doklady, 11:354–
358, 1970.

[MG11] Jozef Misutka and Leo Galambos. System description: Egomath2 as a tool for math-
ematical searching on wikipedia.org. In James Davenport, William Farmer, Florian
Rabe, and Josef Urban, editors, Calculemus/MKM, number 6824 in LNAI, pages
307–309. Springer Verlag, 2011.

[MM06] Rajesh Munavalli and Robert Miner. Mathfind: a math-aware search engine. In
SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 735–735, New York, NY,
USA, 2006. ACM Press.

[MY03] Bruce R. Miller and Abdou Youssef. Technical aspects of the digital library of mathe-
matical functions. Annals of Mathematics and Artificial Intelligence, 38(1-3):121–136,
2003.

[Smu63] Raymond M. Smullyan. A unifying principle for quantification theory. Proc. Nat.
Acad Sciences, 49:828–832, 1963.

[Sta85] Rick Statman. Logical relations and the typed lambda calculus. Information and
Computation, 65, 1985.

[vH67] Jean van Heijenoort. From Frege to Gödel: a source book in mathematical logic
1879-1931. Source books in the history of the sciences series. Harvard Univ. Press,
Cambridge, MA, 3rd printing, 1997 edition, 1967.

[WR10] Alfred North Whitehead and Bertrand Russell. Principia Mathematica, volume I.
Cambridge University Press, Cambridge, UK, 2 edition, 1910.

[Zer08] Ernst Zermelo. Untersuchungen über die Grundlagen der Mengenlehre. I. Mathema-
tische Annalen, 65:261–281, 1908.

http://www.activemath.org/publications/Libbrecht-Melis-Access-and-Retrieval-ActiveMath-ICMS-2006.pdf
http://www.activemath.org/publications/Libbrecht-Melis-Access-and-Retrieval-ActiveMath-ICMS-2006.pdf


Index

C-consistent, 54
C-derivation, 34
C-refutable, 54
R-substitution, 135
∇-Hintikka Set, 57
β-equality

Axiom of, 88
Axiom of

β-equality, 88
equal

eta, 89
eta

equal, 89
Σ-algebra, 103
alpha

conversion, 91
beta

conversion, 91
conversion

alpha, 91
beta, 91
eta, 91

eta
conversion, 91

β normal form of A, 105
β normal form, 105
alpha

equal, 47
equal

alpha, 47
βη-normal

Long (form), 93
η-Expansion, 93
η-long

form, 93
Long

βη-normal
form, 93

form
η-long, 93

algebra
term, 107

term
algebra, 107

abstract
consistency, 55

addition
Church, 118

admissible, 34
admits

weakening, 33
alphabetical

variants, 47
Antinomy

Russell’s, 68
application

function, 78
arithmetic, 24
assignment

variable, 42, 85
assumption, 33
atomic

formula, 41
Axiom

Extensionality, 89
axiom, 33

comprehension, 83, 87

Barrier
One-Brain, 7

base
type, 84

binary
conditional, 127

binder, 93
binding

imitation, 116
projection, 116

Blaise Pascal, 24
bound, 41, 91

variable, 41

calculus, 33
sequent, 51

carrier, 85
Cartesian

produkt, 78
choice

operator, 127

155



156 INDEX

Church
addition, 118
multiplication, 118
numeral, 118

closed, 42, 130
closed under

subsets, 55
codomain, 78
collection

typed, 103
commute, 101
compact, 56
complete, 35

set of unifiers, 113
complex

formula, 41
comprehension

axiom, 83, 87
comprehension-closed, 103
Computational

Logic, 23
conclusion, 33
condition

variable, 135
conditional

binary, 127
unary, 127

confluent, 99
weakly, 100

congruence, 105
functional, 105

connective, 40, 84, 125
consistency

abstract (class), 55
constant

function, 40
predicate, 40
Skolem, 40

constants
interpretation of, 85

contant
Skolem, 91

contradiction, 54
correct, 35
creativity

Math (spiral), 12
Currying, 84

derivation
relation, 33

description
operator, 127

diamond
property, 99

Diophantine
equation, 119

discharge, 44
domain, 78

type, 84

Ein-Hirn
Schranke, 7

entailment, 24
relation, 31

entails, 31
Equality

Leibniz, 83
equation

Diophantine, 119
extension, 44
Extensionality, 83

Axiom, 89
extensionality, 87

falsifiable, 31
falsified byM, 31
first-order

logic, 40
natural deduction, 49
signature, 40

first-order logic with equality, 51
form

normal, 92
pre-solved, 123
solved, 114

formal
system, 33, 34

formula, 23, 31
atomic, 41
complex, 41
quantified, 125
well-typed, 85, 91

frame, 103
free, 41, 91

variable, 41
function, 78

application, 78
constant, 40
type, 84
typed, 103
universe, 85
value, 42, 85, 103

functional
congruence, 105

general
more, 113

Gottfried Wilhelm Leibniz, 24



INDEX 157

ground, 42
grounding

substitution, 106

Head
Reduction, 93

head
symbol, 93
syntactic, 93

Henkin
model, 125

Hierarchy
von Neumann, 75

higher-order
simplification, 114

hypotheses, 34

imitation
binding, 116

individual, 40
variable, 40

individuals, 42
set of, 85
type of, 84

inductive, 75
inference, 24

rule, 33
Inferenz, 5
Informationsvisualisierung, 5
interpretation, 24, 42
interpretation of

constants, 85
introduced, 44

Judgment, 109
judgment, 50

lambda
term, 91

left
projection, 77

Leibniz
Equality, 83

Logic
Computational, 23

logic, 23
first-order, 40

logical
relation, 96
system, 31

Math
creativity, 12

Mathematik-Kompetenz, 13
mathematische

Wissensraum, 19
matrix, 93
measure

unification, 120
most general

unifier, 113
unifier

most general, 113
MKS, 19
Model, 42
model, 24, 31

Henkin, 125
standard, 85

monotonic, 33
more

general, 113
multiplication

Church, 118

natural deduction
first-order (calculus), 49

normal
form, 92

numeral
Church, 118

OBB, 7
One-Brain

Barrier, 7
operator

choice, 127
description, 127

Paradigma
Theoriegraph, 15

Power Set, 74
pre-solved, 123

form, 123
predicate

constant, 40
primitive

substitution, 133
produkt

Cartesian, 78
projection, 93

binding, 116
left, 77
right, 77

proof, 34
proof-reflexive, 33
proof-transitive, 33
property

diamond, 99
proposition, 41



158 INDEX

quantified
formula, 125

quantifier, 125

range
type, 84

reasonable, 55
reducing

strongly, 96
Reduction

Head, 93
relation, 78

derivation, 33
entailment, 31
logical, 96
satisfaction, 31

right
projection, 77

rule
inference, 33

Russell’s
Antinomy, 68

satisfaction
relation, 31

satisfiable, 31
satisfied byM, 31
Schranke

Ein-Hirn, 7
semantics, 24
sentence, 42
sequent, 50

calculus, 51
set, 67

Zermelo/Fraenkel (theory), 76
set of

individuals, 85
truth values, 85

Set of the Inductive Set, 75
set of unifiers

complete, 113
signature, 84, 91

first-order, 40
simplification

higher-order (transformations), 114
singleton set, 74
Skolem

constant, 40
contant, 91

solved
form, 114

sound, 35
standard

model, 85

step
subst-prescribed, 121

stlc, 91
strongly

reducing, 96
subsets

closed under, 55
subst-prescribed

step, 121
substitutable, 45
substitution, 43

grounding, 106
primitive, 133

support, 43
symbol

head, 93
syntactic

head, 93
syntax, 24
system

formal, 33, 34
logical, 31

term, 41
lambda, 91

theorem, 34
Theoriegraph

Paradigma, 15
truth

value, 40, 42
truth values

set of, 85
type of, 84

type, 84
base, 84
domain, 84
function, 84
range, 84

type of
individuals, 84
truth values, 84

typed
collection, 103
function, 103

unary
conditional, 127

unification
measure, 120

Universe, 42
universe, 42, 85

function, 85
unsatisfiable, 31



INDEX 159

valid, 31, 85, 125
validity, 24
valuation, 58
value

function, 42, 85, 103
truth, 40, 42

variable, 84
assignment, 42, 85
bound (bound), 41
condition, 135
free, 41
free (free), 41
individual, 40

variants
alphabetical, 47

von Neumann
Hierarchy, 75

weakening
admits, 33

weakly
confluent, 100

well-typed
formula, 85, 91

Wilhelm Schickard, 24
Wissen, 5
Wissensakquise, 5
wissensbasiert, 5
Wissensraum

mathematische, 19
Wissensreprasentation, 5
Wissensverarbeitung, 5
with choice

ZFC, 76

Zermelo/Fraenkel
set, 76

ZFC
with choice, 76


	Preface
	Course Concept
	Course Contents
	This Document
	Acknowledgments

	Recorded Syllabus for SS 2017
	1 Administrativa
	2 Overview over the Course
	2.1 Introduction & Motivation
	2.2 Mathematical Formula Search
	2.3 The Mathematical Knowledge Space
	2.4 Modular Representation of mathematical Knowledge
	2.5 Application: Serious Games
	2.6 Search in the Mathematical Knowledge Space

	3 What is (Computational) Logic
	3.1 A History of Ideas in Logic

	I Formal Systems
	4 Logical Systems
	5 Calculi, Derivations, and Proofs
	6 Properties of Calculi

	II First-Order Logic and Inference
	7 First-Order Logic
	7.1 First-Order Logic: Syntax and Semantics
	7.2 First-Order Substitutions
	7.3 Alpha-Renaming for First-Order Logic

	8 Inference in First-Order Logic
	8.1 First-Order Calculi
	8.2 Abstract Consistency and Model Existence
	8.3 A Completeness Proof for First-Order ND
	8.4 Limits of First-Order Logic


	III Axiomatic Set Theory (ZFC)
	9 Naive Set Theory
	10 ZFC Axioms
	11 ZFC Applications

	IV Higher-Order Logic and -Calculus
	12 Higher-Order Predicate Logic
	13 Simply Typed -Calculus
	14 Computational Properties of -Calculus
	14.1 Termination of -reduction
	14.2 Confluence of  Conversion

	15 The Semantics of the Simply Typed -Calculus
	15.1 Soundness of the Simply Typed -Calculus
	15.2 Completeness of -Equality

	16 Simply Typed -Calculus via Inference Systems
	17 Higher-Order Unification
	17.1 Higher-Order Unifiers
	17.2 Higher-Order Unification Transformations
	17.3 Properties of Higher-Order Unification
	17.4 Pre-Unification
	17.5 Applications of Higher-Order Unification

	18 Simple Type Theory
	19 Higher-Order Tableaux

	V Project Tetrapod
	VI Summary and Review
	20 Modulare Repr"asentation mathematischen Wissens
	21 Application: Serious Games
	22 Search in the Mathematical Knowledge Space


