
FAU:KRMT:WS24:42

Last Name: First Name:

Matriculation Number:

Retake Exam
KRMT

October 2024

To be used for grading, do not write here

prob. 1.1 1.2 1.3 2.1 2.2 3.1 3.2 3.3 3.4 Sum grade
total 11 9 9 10 11 11 10 10 9 90
reached

i

FAU:KRMT:WS24:42 1 MMT AND LF

1 MMT and LF
Problem 1.1 (Type System)

Consider the following LF theory:
a: type
b: a ⟶ type
c: {x:a} b x ⟶ type

r: a
s: {x:a} b x
t: {x:a} {y: b x} c x y

Relative to that theory:
2 pt1. Using an example from above, briefly explain (in at most two sentences) the concept of dependent types.

Solution: Dependent types are type expressions that have terms as subexpressions. An example is the type b r

that contains the term r.

3 pt2. Check all typing judgments that hold:
□ [x:a][y: b x]x : a ⟶ b x ⟶ a

□✓ [x: a ⟶ a]t (x r) (s (x r)) : {x:a ⟶ a}c (x r) (s (x r))

□✓ t r (s r) : c r (s r)

3 pt3. Give the type of the following term: [x][y]t x y

Solution: {x:a}{y: b x}c x y

3 pt4. Give a type that has exactly 2 distinct terms.

Solution: The type a ⟶ a only has 2 terms: [x:a]r and [x:a]x. (This is because r is the only way to create a
term of type a, except for using the declared variables.)

Problem 1.2 (Notations and Type Inference)
Consider the following LF theory about matrix addition:

nat: type
zero: nat # 0 prec 0
succ: nat ⟶ nat # 1 ' prec 50

matrix: nat ⟶ nat ⟶ type # 1 @ 2 prec 0
plus: {m,n} m@n ⟶ m@n ⟶ m@n # 3 + 4 prec 10
ex: 0'@0'

Relative to that theory:

1

FAU:KRMT:WS24:42 1 MMT AND LF

2 pt1. Briefly (in at most 3 sentences) explain the declaration of plus regarding dependent typing, implicit arguments,
and notations.

Solution: The constant takes 4 arguments, first m and n and then two arguments whose type (as well as the return
type) m@n depends on the previous two arguments. The notation makes the first two arguments implicit (by not
mentioning argument positions 1 and 2), i.e., they must be inferred from the type of the other two arguments.

2 pt2. Give the internal representation of the following terms. (The internal representation is the onewhere the notations
are not used at all and all variable types are given.)
1. [m,n,a: m@n,b]a+b

Solution: [m:nat,n:nat,a: matrix m n, b: matrix m n]plus m n a b

2. ex+ex

Solution: plus (succ zero) (succ zero) ex ex

2 pt3. Consider the string [m,n,a]ex+a. Explain (in at most two sentences) the result of applying type inference to it.

Solution: The type of a is inferred to be 0'@0'. But the types of m and n cannot be inferred, resulting in an error.

3 pt4. Give a declaration with type and notation for a constant times representing matrix multiplication. It should be
written with an infix operator * and bind more tightly than plus. In the type, use the notations and omit all
inferable information.

Solution: times: {l,m,n}l@m ⟶ m@n ⟶ l@n #4 * 5 prec 20

Problem 1.3 (Theory Morphisms)
Consider the following LF theories and views

2

FAU:KRMT:WS24:42 2 LOGICS

theory A =
a: type
b: type
e: a
f: a ⟶ b

theory B =
nat: type
z: nat
s: nat ⟶ nat

view M : A → B =
a = nat
b = nat
e = z
f = [x] s x

view N : A → B =
a = nat ⟶ nat
b = nat
e = [x] x
f = [x] x z

view O : B → A =
nat = (a ⟶ a) ⟶ (a ⟶ a)

z =

s = [p,q,r] (p q) r

3 pt1. Briefly explain (in about three sentences) the principle and relevance of type preservation along theorymorphisms.

Solution: A morphism K from S to T guarantees that if t:A holds over S, then K(t):K(A) holds over T. That can
be used to move results from S to T. That enables modularization with enables using small theories that are reused
as needed.

2 pt2. Give the fully 𝛽-reduced result of applying the morphism N to the term f e.

Solution: z

2 pt3. Give the expected type for s in the morphism O.

Solution: ((a ⟶ a) ⟶ (a ⟶ a)) ⟶ ((a ⟶ a) ⟶ (a ⟶ a))

2 pt4. Give any term that can be assigned to z in the morphism O.

Solution: e.g., [q,r]r or [q,r]e or [q]q

2 Logics
Problem 2.1 (General Concepts)

Consider the following LF theory

3

FAU:KRMT:WS24:42 2 LOGICS

prop : type
false: prop
proof: prop ⟶ type

2 pt1. Using the above as an example, briefly explain (in at most three sentences) the idea of the proofs-as-terms repre-
sentation in LF.

Solution: Given a proposition F:prop, the type proof F holds the proofs of F. In particular, checking of proofs is
represented in terms of type-checking in the logical framework, and F is a theorem if that type is non-empty.

2 pt2. Briefly explain (in at most two sentences) the key relation between the proofs-as-terms representation and the type
preservation along morphisms.

Solution: Because morphisms preserve typing, proofs P:proof F are mapped to proofs M(P): proof M(F). In
particular, theorems are mapped to theorems.

2 pt3. Explain the proof rule corresponding to the type proof false ⟶ {F}proof F.

Solution: This is the false-elimination rule. It captures that if false is provable, so is every other formula.

4 pt4. Give the formalizations of untyped and typed universal quantification. Include the declarations of all constants
you need that are not yet given above.

Solution: The untyped representation is relative to a fixed type term: type and uses
forall: (term ⟶ prop) ⟶ prop. The type representation is relative a set of type tp: type and terms
tm: tp ⟶ type of each type, and it uses {A}(tm A ⟶ prop) ⟶ prop.

Problem 2.2 (Connectives and Proof Rules)
Consider the following partial formalization of propositional logic:

prop : type
proof: prop ⟶ type # proof 1 prec -5
not : prop ⟶ prop # ¬ 1
conj: prop ⟶ prop ⟶ prop # 1 ∧ 2
disj: prop ⟶ prop ⟶ prop # 1 ∨ 2

3 pt1. Give the introduction and elimination rules for conjunction.

Solution:

conjI: {a,b} proof a ⟶ proof b ⟶ proof (a ∧ b)
conjEl: {a,b} proof (a ∧ b) ⟶ proof a
conjEr: {a,b} proof (a ∧ b) ⟶ proof b

4

FAU:KRMT:WS24:42 3 MATHEMATICAL DOMAINS

2 pt2. Briefly explain (in at most two sentences) the analogy between a proof by contradiction and a formal proof using
negation introduction.

Solution: A proof by contradiction establishes a conjecture by assuming it is false and deriving a contradiction.
Negation introduction captures that principle for the special case where the conjecture is a negated formula.

2 pt3. We want to extend the above theory with a ternary disjunction operator 𝐷 such that 𝐷 𝑎 𝑏 𝑐 is true if at least one
of its three arguments is true. Give a definition (including type and definiens) for it.

Solution: D: prop ⟶ prop ⟶ prop ⟶ prop = [a,b,c]a∨ b ∨ c

4 pt4. Continuing the previous question, give the introduction and elimination rules that characterize ternary disjunction
and that can be defined from the rules for binary disjunction. Give only the types, do not include the definitions.

Solution:

DIl: {a,b,c} proof a ⟶ proof D a b c
DIm: {a,b,c} proof b ⟶ proof D a b c
DIr: {a,b,c} proof c ⟶ proof D a b c
DE: {a,b,c,g} (proof a ⟶ proof g) ⟶ (proof b ⟶ proof g) ⟶ (proof c ⟶ proof g)
⟶ (proof D a b c ⟶ proof g)

3 Mathematical Domains
Problem 3.1 (Monoids)

Consider the following theories:
theory CommMonoid : FOL =
op: term ⟶ term ⟶ term # 1 * 2 prec 100
e: term
assoc: proof ∀ [x] ∀ [y] ∀ [z] (x*y)*z ≐ x*(y*z)
neut: proof ∀ [x] x*e ≐ x

comm: ???

theory LeftBoundedRelation : FOL =
op: term ⟶ term ⟶ prop
bound: term
bounded: proof ∀ [x] op bound x

5

FAU:KRMT:WS24:42 3 MATHEMATICAL DOMAINS

2 pt1. Give the missing type of the constant comm to obtain a theory for commutative monoids.

Solution: comm: proof ∀ [x] ∀ [y]x*y ≐ y*x

2 pt2. Assume, alternatively, we wanted to give the theory of (not necessarily commutative) monoids. How would we
have to change the above formalization?

Solution: Remove the axiom comm and add the other neutrality axiom (because it is not redundant anymore in the
absence of commutativity).

3 pt3. Give a theory for commutative groups that includes CommMonoid.

Solution:

theory CommGroup =
include CommMonoid
inv: term ⟶ term
invAx: proof ∀ [x] x*(inv x) ≐ e

4 pt4. Give a morphism Divides that shows that every commutative monoid allows defining the left-bounded relation
that holds for (𝑥, 𝑦) if there is an 𝑓 such that 𝑥 ∗ 𝑓 = 𝑦. For the axioms, only give the expected type, not the proofs.

Solution:

view Divides: LeftBoundeRelation → CommMonoid =
op = [x,y] ∃ [f] x*f ≐ y
bound = e
bounded: proof ∀ [x] ∃ [f] e*f ≐ f

Problem 3.2 (Lattices)
Lattices are algebraic objects with two binary operations, called join and meet, each of which must be a semilattice.

The following is a partial formalization (with some types omitted):
theory Semilattice : FOL =
op: term ⟶ term ⟶ term
idempotent : proof ∀ [x] op x x ≐ x
associative: ...
commutative: ...

theory Lattice : FOL =
structure join : Semilattice
structure meet : Semilattice
absorb_jm: ...
absorb_mj: ...

6

FAU:KRMT:WS24:42 3 MATHEMATICAL DOMAINS

4 pt1. Give the names and types of all constant declarations that are present in Lattice after elaborating the structures
(not counting the ones provided by FOL).
If types are omitted in the formalization, also omit them in your answer.

Solution:

join/op: term ⟶ term ⟶ term
join/idempotent: proof ∀ [x] join/op x x ≐ x
join/associative: ...
join/commutative: ...
meet/op: term ⟶ term ⟶ term
meet/idempotent: proof ∀ [x] meet/op x x ≐ x
meet/associative: ...
meet/commutative: ...

2 pt2. The axiom absorb_jm is meant to formalize the property 𝑥 ⊔ (𝑥 ⊓ 𝑦) = 𝑥 where ⊔ and ⊓ are the join and meet
operations of the lattice, respectively. Add its type to the above formalization.

Solution:

absorb_jm: proof ∀ [x] ∀ [y] join/op x (meet/op x y) ≐ x

4 pt3. Assumewe have a theory Nat : FOL in which the terms represent natural numbers and inwhich the usual oper-
ations on natural numbers are declared including binary operations min and max for the minimum and maximum
of two numbers.
These form a lattice if minimum and maximum are interpreted as join and meet, respectively.
Give the views that yield a modular view NatLat : Lattice → Nat representing that interpretation. Omit all
assignments to axioms.

Solution:

view NatMeet : Semilattice → Nat =
op = min
...

view NatJoin : Semilattice → Nat =
op = max
...

view NatLat : Lattice → Nat =
structure meet = NatMeet
structure join = NatJoin
...

7

FAU:KRMT:WS24:42 3 MATHEMATICAL DOMAINS

Problem 3.3 (Numbers)
Consider the following theory for natural numbers with infinity:

theory NatInf : FOL =
nat = term
z: nat
s: nat ⟶ nat
i: nat

si : ⊢ s i ≐ i

3 pt1. Assuming equality axioms are left-to-right rewrite rules, what are the canonical forms here?

Solution: i, z, s z, s s z, . . .

4 pt2. Extend the formalization with addition: declare a binary operation for addition and axioms that determine the
result of addition for all arguments.

Solution: e.g.,

plus: nat ⟶ nat ⟶ nat # 1 + 2
plus_z : {x} ⊢ z +x ≐ x
plus_s : {x,y} ⊢ (s y)+x ≐ s(y+x)
plus_i : {x} ⊢ i +x ≐ i

3 pt3. Give the formalization of an induction schema that can be used to prove a property for all elements of the set of
natural numbers with infinity.

Solution: e.g.,

induction: {P: term ⟶ prop}
⊢ P z
⟶ ⊢ P i
⟶ ({x} ⊢ P x ⟶ ⊢ P (s x))
⟶ {x} ⊢ P x

Problem 3.4 (Set Theory)
Consider the following fragment of a formalization of set theory

theory SetTheory : FOL =
set = term
in : set ⟶ set ⟶ prop # 1 ∈ 2

axiom: proof ∀ [x] ∀ exists [p] ∀ [s] (forall [u] u ∈ s ⇒ u ∈ x) ⇒ s ∈ p

8

FAU:KRMT:WS24:42 3 MATHEMATICAL DOMAINS

2 pt1. Explain the intuition behind the stated axiom.

Solution: It expresses that the powerset of 𝑥 exists for all 𝑥.

2 pt2. Add a definition of the binary predicate on sets 𝑠 that expresses that the two sets are disjoint.

Solution: disjoint: term ⟶ term ⟶ prop = [x,y]¬ ∃ [z] z ∈ x ∧ z ∈ y

A definition that assumes the empty set has already been defined was also accepted.

2 pt3. Briefly explain (in at most two sentences) the pros and cons of assuming a description operator when formalizing
set theory in first-order logic.

Solution: pro: It is possible to formalize set theory without any primitive function symbols and define all opera-
tions later based on existential axioms.
con: The logic is more complex than standard first-order logic.

3 pt4. Assume we have already defined the following operations
cartesian_product : set ⟶ set ⟶ set # 1 * 2
bigunion : set ⟶ set
biginter : set ⟶ set
powerset : set ⟶ set
ordered_pair : set ⟶ set ⟶ set # 1 , 2
separation : set ⟶ (set ⟶ prop) ⟶ set # 1 | 2
replacement : set ⟶ (set ⟶ set) ⟶ set # 1 repl 2
existsUnique : (set ⟶ prop) ⟶ prop

Define the operator 𝐵𝐴 that returns the set of functions from 𝐴 to 𝐵 (giving type, definition, and a reasonable
notation).

Solution: e.g.,

fun : set ⟶ set ⟶ set
= [A,B] (powerset A*B) | [r] ∀ [a] a ∈ A ⇒ existsUnique [b] (a,b) ∈ r
2 ^ 1

9

	MMT and LF
	Logics
	Mathematical Domains

