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The “solutions” to the exam/assignment problems in this docu-
ment are supplied to give students a starting point for answering ques-
tions. While we are striving for helpful “solutions”, they can be in-
complete and can even contain errors even after our best efforts.

In any case, grading student’s answers is not a process of simply
“comparing with the reference solution”, therefore errors in the “so-
lutions” are not a problem in this case.

If youfind “solutions” youdonot understand or youfind incorrect,
discuss this on the course forum and/or with your TA and/notify the
instructors. We will – if needed – correct them ASAP.
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1 MMT and LF
Problem 1.1 (Type System)

Consider the following LF theory:
a: type
b: a ⟶ type

e: a
f: a ⟶ a

g: {x:a} b x ⟶ b x
h: {x:a} (b x ⟶ b x) ⟶ b (f x)

Relative to that theory:
2 Points1. Taking an example from the above, briefly explain (in at most three sen-

tences) the concept of a higher-order function.

Solution: A higher-order function takes other functions as arguments, e.g.,
the second argument of h above.

3 Points2. Check all typing judgments that hold:
□ f (f (f e)) : a1

□ g e (g e (f e)) : b e2

□ g (f e) (b e) : b (f e)3

3 Points3. Give the type of the following term: h e ([x:b e]g e x)

Solution: b (f e)

2 Points4. Give an empty type.

Solution: e.g., b e

Problem 1.2 (Notations and Type Inference)
Consider the following LF theory:

nat: type
tp : type
vector: tp ⟶ nat ⟶ tp # 1 ^ 2 prec 50

1Correct
2Wrong
3Wrong
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p: nat ⟶ nat ⟶ nat # 1 + 2 prec 10
t: nat ⟶ nat ⟶ nat # 1 * 2 prec 20

vp: {a,n} a^n ⟶ a^n ⟶ a^n # 3 ⊕ 4 prec 5

Relative to that theory:
2 Points1. Briefly explain (in at most three sentences) why the notation for vp does not

mention argument positions 1 and 2 and how that affects the parsing/type-
checking process.

Solution: Their values can be inferred from the other arguments. The sys-
tem inserts a placeholder for the unknown arguments and determines their
values during type-checking.

3 Points2. Give the internal representation of the following terms. (The internal repre-
sentation is the one where the notations are not used at all, e.g., the internal
representation of x+y is p x y.)
1. x*y

Solution: t x y

2. x+y*z

Solution: p x (t y z)

3. v ⊕ w in a context where v and w have type a^n

Solution: vp a n v w

2 Points3. Consider the term [w,x,y, z: w^(x+y)]z ⊕ z.
1. Give the type of the variable w.

Solution: tp

2. Give the type of the subterm z ⊕ z.
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Solution: w^(x+y) or vector w (p x y)

3 Points4. Give a declaration for a constant vc that takes two vectors v,w over the same
type and of possibly different dimensions and returns their concatenation
written v@w. It should bind as tightly as vp.

Solution: vc: {a,m,n}a^m ⟶ a^n ⟶ a^(m+n) #4 @ 5 prec 5

Problem 1.3 (Theory Morphisms)
Consider the following LF theories and views

theory A =
n: type
z: n
s: n ⟶ n

theory B =
t: type
a: t ⟶ t

view M : A → B =
n = t ⟶ t
z = [x] x
s = [f] [x] a (f x)

view N : B → A =
t = n
a = s

view O : B → A =
t = n ⟶ n
a = (omitted)

2 Points1. Briefly explain (in at most three sentences) the purposes of grouping decla-
rations into theories.

Solution: Every theory encapsulates a separate context so that expressions
in different contexts can be formalized in parallel. Moreover, theories can be
reused as a whole, e.g., when building theories modularly.

2 Points2. Give the result of applying the morphism N M N to the type t.

Solution: n ⟶ n

2 Points3. Give the expected type for s in the morphism M.

Solution: (t ⟶ t) ⟶ (t ⟶ t)
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2 Points4. Consider a term u of type U over theory A. What does the type preservation
property of the theory morphism M imply in this case?

Solution: M(u):M(U) over theory B

2 Points5. Give any term that completes the morphism O.

Solution: e.g., [f:n ⟶ n]f or [f:n ⟶ n]s

2 Logics
Problem 2.1 (General Concepts)

Consider the following LF theory
prop : type
proof: prop ⟶ type
term : type

2 Points1. Briefly explain (in at most three sentences) the idea behind the proofs-as-
terms representation.

Solution: Given a proposition F:prop, the type proof F holds the proofs of
F. In particular, checking of proofs is represented in terms of type-checking
in the logical framework, and F is a theorem if that type is non-empty.

2 Points2. Briefly explain (in at most three sentences) the purpose of using a logical
framework.

Solution: A logical framework allows formally defining and reasoning about
the syntax and semantics of logics and related systems.

2 Points3. What is the importance of the type preservation property of theorymorphisms
when representing proofs? Answer in one sentence.

Solution: Theory morphismsmap proofs to proofs and thus theorems to the-
orems.
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2 Points4. Give a type that can be used to represent inconsistency. Briefly explain (in at
most two sentences) why it can be used.

Solution: The type {F:prop}proof F is inhabited iff there is a proof for
every proposition.

2 Points5. Give the types of
1. universal quantification

Solution: e.g. (term ⟶ prop) ⟶ prop

2. equality

Solution: e.g. term ⟶ term ⟶ prop

Problem 2.2 (Connectives and Proof Rules)
Consider the following partial formalization of propositional logic:

prop : type
proof: prop ⟶ type # proof 1 prec -5

not : prop ⟶ prop # ¬ 1
conj: prop ⟶ prop ⟶ prop # 1 ∧ 2
disj: prop ⟶ prop ⟶ prop # 1 ∨ 2

2 Points1. Briefly explain (in at most two sentences) the difference between an intro-
duction and an elimination rule.

Solution: An introduction rule expresses how to prove a proposition. An
elimination rule expresses how to use it to prove others.

2 Points2. Give the introduction rule for conjunction.

Solution: conjI: {a,b}proof a ⟶ proof b ⟶ proof a ∧ b
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4 Points3. Wewant to extend the above theorywith a primitive binary connective x L y

that is true if and only if its first argument x is true.
Give a declaration for it, including type and notation (but no definiens). Also
give appropriate introduction and elimination proof rules for it.

Solution: e.g.,

left: prop ⟶ prop ⟶ prop # 1 L 2
leftI: {F,G} proof F ⟶ proof F L G
leftE: {F,G} proof (F L G) ⟶ proof F

2 Points4. Give a definition (including definiens and notation) that defines the binary
connective x ≠ y that is true iff both arguments have different truth values.

Solution: diff: prop ⟶ prop ⟶ prop = [x,y](x∧¬ y) ∨(¬ x∧ y) # 1 ≠ 2

3 Mathematical Domains
Problem 3.1 (Monoids)

Consider the following theories
theory Monoid : FOL =
op: term ⟶ term ⟶ term # 1 * 2 prec 100
e: term
assoc: proof ∀ [x] ∀ [y] ∀ [z] (x*y)*z = x*(y*z)

2 Points1. Give the axiom(s) that is/aremissing for this to be an axiomatization ofmonoids.

Solution: neut: proof ∀ [x]x*e=x ∧ e*x=x

3 Points2. Give a theory for groups that includes Monoid.

Solution:

theory Group =
include Monoid
inv: univ ⟶ univ
invax: proof ∀ [x] x*(inv x) = e

Either one of the inversion axioms is sufficient. But giving both is not wrong.
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3 Points3. Give a morphism Opp from Monoid to itself that maps x*y to y*x. You do
not have to do any proofs — instead, just give the expected type and omit the
proof.

Solution:

view Opp : Monoid → Monoid =
op = [x,y]y*x
e = e
assoc : proof ∀ [x] ∀ [y] ∀ [z] z*(y*x) = (z*y)*x

2 Points4. Draw the theory graph involving all of the above (except FOL).

Solution: Op ↻ Monoid → Group

Problem 3.2 (Rings)
Consider the following theory

theory Magma : FOL =
op: term ⟶ term ⟶ term

theory BiMagma : FOL =
structure add : Magma
structure mul : Magma

2 Points1. Briefly explain (in at most two sentences) why that theory uses structure
instead of include.

Solution: Two includes of the same theory are redundant and would identify
the two magmas. Structures create two separate magmas.

2 Points2. Give thenameand type of all constant declarations that are present inBiMagma
(not counting the ones provided by FOL) after elaborating the structures.

Solution:

add/op: term ⟶ term ⟶ term
mul/op: term ⟶ term ⟶ term
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3 Points3. Give the proposition in BiMagma that expresses that multiplication on the left
distributes over addition.

Solution:

∀ [x] ∀ [y] ∀ [z]
mul/op x (add/op y z) = add/op (mul/op x y) (mul/op x z)

3 Points4. Assume we have a theory Int : FOL in which the terms represent integer
numbers and in which the usual operations on integers such as 0,1,+,-,*
are declared. Give the views that yield amodular viewIntBM : BiMagma → Int.

Solution:

view IntAdd : Magma → Int =
op = +

view IntMul : Magma → Int =
op = *

view IntBM : BiMagma → Int =
structure add = IntAdd
structure mul = IntMul

Problem 3.3 (Numbers)
Consider the following theory

theory Nat : FOL =
nat = term
z: nat
s: nat ⟶ nat

plus: nat ⟶ nat ⟶ nat # 1 + 2
plus_z : {m} proof z+m = m
plus_s : {m,n} proof (s m)+n = s(m+n)

2 Points1. Here addition is specified by equality axioms that allow reducing expressions
to canonical forms.
1. What are the canonical forms for type nat here?

Solution: All terms built from only z and s.
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2. What does “reducing to canonical forms” mean in this case? Answer in
at most two sentences.

Solution: Using the equality axioms left-to-right, any application of
plus to canonical forms can be rewritten into a canonical form.

4 Points2. Briefly explain (in at most four sentences) the purpose of the no-junk and
no-confusion axioms (which are omitted above) that capture the inductive
structure of the natural numbers. In doing so, sketch what the axioms look
like for the natural numbers.

Solution: The no-confusion axioms state that all canonical forms are differ-
ent, i.e., that z is not equal to any s x and that s is injective. The no-junk
axiom captures that there are no other natural numbers than the canonical
forms: any property that holds for all canonical forms holds for all natural
numbers.

4 Points3. Add a declaration and equality axioms that formalize the binary operation of
absolute difference (e.g., the function |𝑚 − 𝑛|).

Solution: e.g.,

ad: nat ⟶ nat ⟶ nat # 1 - 2
ad_any_z: {m} proof m-z = m
ad_z_any: {m} proof z-m = m
ad_s_s: {m,n} proof (s m)-(s n) = m-n

Problem 3.4 (Set Theory)
Consider the following fragment of a formalization of set theory

theory SetTheory : FOL =
set = term
in : set ⟶ set ⟶ prop # 1 ∈ 2

extensionality: proof ∀ [x] ∀ [y]
(forall [z] z ∈ x ⇔ z ∈ y) ⇒ x=y

2 Points1. Explain the axiom of extensionality.

Solution: It states that two sets are equal if they contain the same elements.
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2 Points2. Give the formalization of the axiom that the empty set exists.

Solution: emptyExists: proof ∃ [e] ¬∃ [x] x ∈ e

2 Points3. Briefly explain (in at most three sentences) the difficulty of using standard
first-order logic for set theory when it comes to defining operations such as
the empty set, and how adding a description operator can overcome this.

Solution: Set theory can prove the existence of objects, but FOL cannot di-
rectly refer to them. The description operator is a logical feature that returns
a uniquely existing object with a given property, thus allowing to refer to it.

4 Points4. Assume we have already defined the following operations
empty: set
unordered_pair : set ⟶ set ⟶ set # 1 uop 2
bigunion: set ⟶ set
biginter: set ⟶ set
powerset: set ⟶ set
separation : set ⟶ (set ⟶ prop) ⟶ set # 1 | 2
replacement: set ⟶ (set ⟶ set) ⟶ set # 1 repl 2

Moreover, assume we have already defined a set F that contains all sets built
using only the above operations. Define the set of natural numbers.

Hint: It helps to give a few auxiliary definitions. Eventually, take the inter-
section of all subsets of F that contain the natural numbers.

Solution:

z = empty
s : set ⟶ set = [x] bigunion (x uop (x uop x))
hasnats : set ⟶ prop = [h] z ∈ h ∧ ∀ [n] n ∈ h ⇒ (s n) ∈ h
nat = biginter (F | hasnats)
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