Last Name:
First Name:
Matriculation Number:

Final Exam
 KRMT - SS 2023

Sep 25, 2023

Please ignore the QR codes; do not write on them, they are for grading support

	To be used for grading, do not write here														
prob.	1.1	1.2	1.3	2.1	2.2	3.1	3.2	3.3	3.4	Sum	grade				
total	10	10	10	10	10	10	10	10	10	90					
reached															

The "solutions" to the exam/assignment problems in this document are supplied to give students a starting point for answering questions. While we are striving for helpful "solutions", they can be incomplete and can even contain errors even after our best efforts.

In any case, grading student's answers is not a process of simply "comparing with the reference solution", therefore errors in the "solutions" are not a problem in this case.

If you find "solutions" you do not understand or you find incorrect, discuss this on the course forum and/or with your TA and/notify the instructors. We will - if needed - correct them ASAP.

1 MMT and LF

Problem 1.1 (Type System)

Consider the following LF theory:

```
a: type
e: a
f: a \longrightarrow a
g: {x:a} b x \longrightarrow b x
h: {x:a} (b x \longrightarrow b x) }\longrightarrow\textrm{b}(\textrm{f}x
```

Relative to that theory:

1. Taking an example from the above, briefly explain (in at most three sen- 2 Points tences) the concept of a higher-order function.

Solution: A higher-order function takes other functions as arguments, e.g., the second argument of h above.
2. Check all typing judgments that hold:
$\square \mathrm{f}(\mathrm{f}(\mathrm{f} e)): \mathrm{a}^{1}$g e (g e (fe)) : b e^{2}g (f e) (be) : b (f e) ${ }^{3}$
3. Give the type of the following term: h e ($[x: b e] g$ e $x)$

3 Points

Solution: b (f e)
4. Give an empty type.

Solution: e.g., b e

Problem 1.2 (Notations and Type Inference)

Consider the following LF theory:
nat: type
tp : type
vector: tp \longrightarrow nat \longrightarrow tp \# 1 ~ 2 prec 50

[^0]```
p: nat }\longrightarrow\mathrm{ nat }\longrightarrow\mathrm{ nat # 1 + 2 prec 10
t: nat }\longrightarrow\mathrm{ nat }\longrightarrow\mathrm{ nat # 1 * 2 prec 20
vp: {a,n} a^n \longrightarrow a^n \longrightarrow a^n # 3 \oplus 4 prec 5
```

Relative to that theory:

1. Briefly explain (in at most three sentences) why the notation for vp does not 2 Points mention argument positions 1 and 2 and how that affects the parsing/typechecking process.

Solution: Their values can be inferred from the other arguments. The system inserts a placeholder for the unknown arguments and determines their values during type-checking.
2. Give the internal representation of the following terms. (The internal representation is the one where the notations are not used at all, e.g., the internal representation of $x+y$ is $p x y$.)

1. $\mathrm{x} * \mathrm{y}$

Solution: t x y
2. $x+y * z$

Solution: p x (t y z)
3. $v \oplus$ w in a context where $v$ and $w$ have type $a^{\wedge} n$

Solution: vp a n v w
3. Consider the term $\left[\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}: \mathrm{w}^{\wedge}(\mathrm{x}+\mathrm{y})\right] \mathrm{z} \oplus \mathrm{z}$.

2 Points

1. Give the type of the variable $w$.

Solution: tp
2. Give the type of the subterm $z \oplus \mathrm{z}$.

Solution: $\mathrm{w}^{\wedge}(\mathrm{x}+\mathrm{y})$ or vector w ( p x y )
4. Give a declaration for a constant vc that takes two vectors $\mathrm{v}, \mathrm{w}$ over the same type and of possibly different dimensions and returns their concatenation written v@w. It should bind as tightly as vp.

Solution: vc: $\{\mathrm{a}, \mathrm{m}, \mathrm{n}\} \mathrm{a}^{\wedge} \mathrm{m} \longrightarrow \mathrm{a}^{\wedge} \mathrm{n} \longrightarrow \mathrm{a}^{\wedge}(\mathrm{m}+\mathrm{n})$ \#4 @ 5 prec 5

## Problem 1.3 (Theory Morphisms)

Consider the following LF theories and views

```
theory A =
 n: type
 z: n
 s: n \longrightarrow n
theory B =
 t: type
 a: t }\longrightarrow\textrm{t
```

```
view M : A \(\rightarrow\) B =
 \(\mathrm{n}=\mathrm{t} \longrightarrow \mathrm{t}\)
 \(\mathrm{z}=[\mathrm{x}] \mathrm{x}\)
 \(s=[f][x] a(f \quad x)\)
view \(N: B \rightarrow A=\)
 \(\mathrm{t}=\mathrm{n}\)
 \(\mathrm{a}=\mathrm{s}\)
view \(0: B \rightarrow A=\)
 \(\mathrm{t}=\mathrm{n} \longrightarrow \mathrm{n}\)
 \(\mathrm{a}=\) (omitted)
```

1. Briefly explain (in at most three sentences) the purposes of grouping decla- 2 Points rations into theories.

Solution: Every theory encapsulates a separate context so that expressions in different contexts can be formalized in parallel. Moreover, theories can be reused as a whole, e.g., when building theories modularly.
2. Give the result of applying the morphism $N \mathrm{M} N$ to the type $t$.

Solution: $\mathrm{n} \longrightarrow \mathrm{n}$
3. Give the expected type for s in the morphism M .

Solution: ( $\mathrm{t} \longrightarrow \mathrm{t}) \longrightarrow(\mathrm{t} \longrightarrow \mathrm{t})$
4. Consider a term $u$ of type $U$ over theory A. What does the type preservation property of the theory morphism M imply in this case?

Solution: M(u) : M(U) over theory B
5. Give any term that completes the morphism 0.

2 Points

Solution: e.g., $[\mathrm{f}: \mathrm{n} \longrightarrow \mathrm{n}] \mathrm{f}$ or $[\mathrm{f}: \mathrm{n} \longrightarrow \mathrm{n}] \mathrm{s}$

## 2 Logics

Problem 2.1 (General Concepts)
Consider the following LF theory


1. Briefly explain (in at most three sentences) the idea behind the proofs-asterms representation.

Solution: Given a proposition F: prop, the type proof F holds the proofs of $F$. In particular, checking of proofs is represented in terms of type-checking in the logical framework, and $F$ is a theorem if that type is non-empty.
2. Briefly explain (in at most three sentences) the purpose of using a logical framework.

Solution: A logical framework allows formally defining and reasoning about the syntax and semantics of logics and related systems.
3. What is the importance of the type preservation property of theory morphisms 2 Points when representing proofs? Answer in one sentence.

Solution: Theory morphisms map proofs to proofs and thus theorems to theorems.
4. Give a type that can be used to represent inconsistency. Briefly explain (in at most two sentences) why it can be used.

Solution: The type $\{\mathrm{F}$ : prop\}proof F is inhabited iff there is a proof for every proposition.
5. Give the types of

1. universal quantification

Solution: e.g. (term $\longrightarrow$ prop) $\longrightarrow$ prop
2. equality

Solution: e.g. term $\longrightarrow$ term $\longrightarrow$ prop

Problem 2.2 (Connectives and Proof Rules)
Consider the following partial formalization of propositional logic:
prop : type
proof: prop $\longrightarrow$ type \# proof 1 prec -5
not : prop $\longrightarrow$ prop \# ᄀ 1
conj: prop $\longrightarrow$ prop $\longrightarrow$ prop \# $1 \wedge 2$
disj: prop $\longrightarrow$ prop $\longrightarrow$ prop \# $1 \vee 2$

1. Briefly explain (in at most two sentences) the difference between an introduction and an elimination rule.

Solution: An introduction rule expresses how to prove a proposition. An elimination rule expresses how to use it to prove others.
2. Give the introduction rule for conjunction.

Solution: conjI: \{a,b\}proof $\mathrm{a} \longrightarrow$ proof $\mathrm{b} \longrightarrow$ proof $\mathrm{a} \wedge \mathrm{b}$
3. We want to extend the above theory with a primitive binary connective x L y 4 Points that is true if and only if its first argument $x$ is true.
Give a declaration for it, including type and notation (but no definiens). Also give appropriate introduction and elimination proof rules for it.

Solution: e.g.,
left: prop $\longrightarrow$ prop $\longrightarrow$ prop \# 1 L 2
leftI: \{F,G\} proof F $\longrightarrow$ proof F L G
lefte: $\{\mathrm{F}, \mathrm{G}\}$ proof ( F L G) $\longrightarrow$ proof $F$
4. Give a definition (including definiens and notation) that defines the binary 2 Points connective $\mathrm{x} \neq \mathrm{y}$ that is true iff both arguments have different truth values.

Solution: diff: prop $\longrightarrow$ prop $\longrightarrow$ prop $=[x, y](x \wedge \neg y) \vee(\neg x \wedge y) \# 1 \neq 2$

## 3 Mathematical Domains

## Problem 3.1 (Monoids)

Consider the following theories

```
theory Monoid : FOL =
 op: term \longrightarrow term \longrightarrow term # 1 * 2 prec 100
 e: term
 assoc: proof }\forall[x] \forall [y] \forall [z] (x*y)*z = x*(y*z
```

1. Give the axiom(s) that is/are missing for this to be an axiomatization of monoids. 2 Points

Solution: neut: proof $\forall[\mathrm{x}] \mathrm{x} * \mathrm{e}=\mathrm{x} \wedge \mathrm{e} * \mathrm{x}=\mathrm{x}$
2. Give a theory for groups that includes Monoid.

3 Points

## Solution:

```
theory Group =
 include Monoid
 inv: univ \longrightarrow univ
 invax: proof }\forall\mathrm{ [x] x*(inv x) = e
```

Either one of the inversion axioms is sufficient. But giving both is not wrong.
3. Give a morphism Opp from Monoid to itself that maps $x * y$ to $y * x$. You do not have to do any proofs - instead, just give the expected type and omit the proof.

## Solution:

```
view Opp : Monoid \(\rightarrow\) Monoid =
 \(o p=[x, y] y * x\)
 \(\mathrm{e}=\mathrm{e}\)
 assoc : proof \(\forall[\mathrm{x}] \quad \forall[y] \forall[z] \mathrm{z} *(\mathrm{y} * \mathrm{x})=(\mathrm{z} * \mathrm{y}) * \mathrm{x}\)
```

4. Draw the theory graph involving all of the above (except FOL).

Solution: Op 〕 Monoid $\rightarrow$ Group

## Problem 3.2 (Rings)

Consider the following theory

```
theory Magma : FOL =
 op: term \longrightarrow term \longrightarrow term
theory BiMagma : FOL =
 structure add : Magma
 structure mul : Magma
```

1. Briefly explain (in at most two sentences) why that theory uses structure
instead of include.

Solution: Two includes of the same theory are redundant and would identify the two magmas. Structures create two separate magmas.
2. Give the name and type of all constant declarations that are present in BiMagma 2 Points (not counting the ones provided by FOL) after elaborating the structures.

## Solution:

```
add/op: term }\longrightarrow\mathrm{ term }\longrightarrow\mathrm{ term
```

mul/op: term $\longrightarrow$ term $\longrightarrow$ term
3. Give the proposition in BiMagma that expresses that multiplication on the left 3 Points distributes over addition.

## Solution:

```
\forall [x] }\forall [y] \forall [z
mul/op x (add/op y z) = add/op (mul/op x y) (mul/op x z)
```

4. Assume we have a theory Int : FOL in which the terms represent integer numbers and in which the usual operations on integers such as $0,1,+,-, *$ are declared. Give the views that yield a modular view IntBM : BiMagma $\rightarrow$ Int.

## Solution:

```
view IntAdd : Magma }->\mathrm{ Int =
 op = +
view IntMul : Magma }->\mathrm{ Int =
 op = *
view IntBM : BiMagma }->\mathrm{ Int =
 structure add = IntAdd
 structure mul = IntMul
```


## Problem 3.3 (Numbers)

Consider the following theory

```
theory Nat : FOL =
 nat = term
 z: nat
 s: nat \longrightarrow nat
 plus: nat \longrightarrow nat \longrightarrow nat # 1 + 2
 plus_z : {m} proof z+m = m
 plus_s : {m,n} proof (s m)+n = s(m+n)
```

1. Here addition is specified by equality axioms that allow reducing expressions 2 Points to canonical forms.
2. What are the canonical forms for type nat here?

Solution: All terms built from only z and s.
2. What does "reducing to canonical forms" mean in this case? Answer in at most two sentences.

Solution: Using the equality axioms left-to-right, any application of plus to canonical forms can be rewritten into a canonical form.
2. Briefly explain (in at most four sentences) the purpose of the no-junk and no-confusion axioms (which are omitted above) that capture the inductive structure of the natural numbers. In doing so, sketch what the axioms look like for the natural numbers.

Solution: The no-confusion axioms state that all canonical forms are different, i.e., that $z$ is not equal to any $s x$ and that $s$ is injective. The no-junk axiom captures that there are no other natural numbers than the canonical forms: any property that holds for all canonical forms holds for all natural numbers.
3. Add a declaration and equality axioms that formalize the binary operation of absolute difference (e.g., the function $|m-n|$ ).

```
Solution: e.g.,
ad: nat \longrightarrow nat \longrightarrow nat # 1 - 2
ad_any_z: {m} proof m-z = m
ad_z_any: {m} proof z-m = m
ad_s_s: {m,n} proof (s m)-(s n) = m-n
```


## Problem 3.4 (Set Theory)

Consider the following fragment of a formalization of set theory

```
theory SetTheory : FOL =
 set = term
 in : set }\longrightarrow\mathrm{ set }\longrightarrow\mathrm{ prop # 1 G 2
 extensionality: proof }\forall\mathrm{ [x] }\forall\mathrm{ [y]
 (forall [z] z \in x & z \in y) => x=y
```

1. Explain the axiom of extensionality.

Solution: It states that two sets are equal if they contain the same elements.
2. Give the formalization of the axiom that the empty set exists.

Solution: emptyExists: proof $\exists[\mathrm{e}] \neg \exists[\mathrm{x}] \mathrm{x} \in \mathrm{e}$
3. Briefly explain (in at most three sentences) the difficulty of using standard first-order logic for set theory when it comes to defining operations such as the empty set, and how adding a description operator can overcome this.

Solution: Set theory can prove the existence of objects, but FOL cannot directly refer to them. The description operator is a logical feature that returns a uniquely existing object with a given property, thus allowing to refer to it.
4. Assume we have already defined the following operations

```
empty: set
unordered_pair : set }\longrightarrow\mathrm{ set }\longrightarrow\mathrm{ set # 1 uop 2
bigunion: set }\longrightarrow\mathrm{ set
biginter: set }\longrightarrow\mathrm{ set
powerset: set \longrightarrow set
separation : set }\longrightarrow\mathrm{ (set }\longrightarrow\mathrm{ prop) }\longrightarrow\mathrm{ set # 1 | 2
replacement: set }\longrightarrow\mathrm{ (set }\longrightarrow\mathrm{ set) }\longrightarrow\mathrm{ set # 1 repl 2
```

Moreover, assume we have already defined a set F that contains all sets built using only the above operations. Define the set of natural numbers.

Hint: It helps to give a few auxiliary definitions. Eventually, take the intersection of all subsets of $F$ that contain the natural numbers.

## Solution:

```
z = empty
s : set \longrightarrow set = [x] bigunion (x uop (x uop x))
hasnats : set }\longrightarrow\mathrm{ prop = [h] z G h ^ V [n] n G h # (s n) G h
nat = biginter (F | hasnats)
```


[^0]:    ${ }^{1}$ Correct
    ${ }^{2}$ Wrong
    ${ }^{3}$ Wrong

