
FAU:KRMT:SS23:42

Last Name: First Name:

Matriculation Number:

Final Exam
KRMT – SS 2023

Sep 25, 2023

Please ignore the QR codes; do not write on them, they are for
grading support

To be used for grading, do not write here

prob. 1.1 1.2 1.3 2.1 2.2 3.1 3.2 3.3 3.4 Sum grade
total 10 10 10 10 10 10 10 10 10 90
reached

i

FAU:KRMT:SS23:42

The “solutions” to the exam/assignment problems in this docu-
ment are supplied to give students a starting point for answering ques-
tions. While we are striving for helpful “solutions”, they can be in-
complete and can even contain errors even after our best efforts.

In any case, grading student’s answers is not a process of simply
“comparing with the reference solution”, therefore errors in the “so-
lutions” are not a problem in this case.

If youfind “solutions” youdonot understand or youfind incorrect,
discuss this on the course forum and/or with your TA and/notify the
instructors. We will – if needed – correct them ASAP.

ii

FAU:KRMT:SS23:42 1 MMT AND LF

1 MMT and LF
Problem 1.1 (Type System)

Consider the following LF theory:
a: type
b: a ⟶ type

e: a
f: a ⟶ a

g: {x:a} b x ⟶ b x
h: {x:a} (b x ⟶ b x) ⟶ b (f x)

Relative to that theory:
2 Points1. Taking an example from the above, briefly explain (in at most three sen-

tences) the concept of a higher-order function.

Solution: A higher-order function takes other functions as arguments, e.g.,
the second argument of h above.

3 Points2. Check all typing judgments that hold:
□ f (f (f e)) : a1

□ g e (g e (f e)) : b e2

□ g (f e) (b e) : b (f e)3

3 Points3. Give the type of the following term: h e ([x:b e]g e x)

Solution: b (f e)

2 Points4. Give an empty type.

Solution: e.g., b e

Problem 1.2 (Notations and Type Inference)
Consider the following LF theory:

nat: type
tp : type
vector: tp ⟶ nat ⟶ tp # 1 ^ 2 prec 50

1Correct
2Wrong
3Wrong

1

FAU:KRMT:SS23:42 1 MMT AND LF

p: nat ⟶ nat ⟶ nat # 1 + 2 prec 10
t: nat ⟶ nat ⟶ nat # 1 * 2 prec 20

vp: {a,n} a^n ⟶ a^n ⟶ a^n # 3 ⊕ 4 prec 5

Relative to that theory:
2 Points1. Briefly explain (in at most three sentences) why the notation for vp does not

mention argument positions 1 and 2 and how that affects the parsing/type-
checking process.

Solution: Their values can be inferred from the other arguments. The sys-
tem inserts a placeholder for the unknown arguments and determines their
values during type-checking.

3 Points2. Give the internal representation of the following terms. (The internal repre-
sentation is the one where the notations are not used at all, e.g., the internal
representation of x+y is p x y.)
1. x*y

Solution: t x y

2. x+y*z

Solution: p x (t y z)

3. v ⊕ w in a context where v and w have type a^n

Solution: vp a n v w

2 Points3. Consider the term [w,x,y, z: w^(x+y)]z ⊕ z.
1. Give the type of the variable w.

Solution: tp

2. Give the type of the subterm z ⊕ z.

2

FAU:KRMT:SS23:42 1 MMT AND LF

Solution: w^(x+y) or vector w (p x y)

3 Points4. Give a declaration for a constant vc that takes two vectors v,w over the same
type and of possibly different dimensions and returns their concatenation
written v@w. It should bind as tightly as vp.

Solution: vc: {a,m,n}a^m ⟶ a^n ⟶ a^(m+n) #4 @ 5 prec 5

Problem 1.3 (Theory Morphisms)
Consider the following LF theories and views

theory A =
n: type
z: n
s: n ⟶ n

theory B =
t: type
a: t ⟶ t

view M : A → B =
n = t ⟶ t
z = [x] x
s = [f] [x] a (f x)

view N : B → A =
t = n
a = s

view O : B → A =
t = n ⟶ n
a = (omitted)

2 Points1. Briefly explain (in at most three sentences) the purposes of grouping decla-
rations into theories.

Solution: Every theory encapsulates a separate context so that expressions
in different contexts can be formalized in parallel. Moreover, theories can be
reused as a whole, e.g., when building theories modularly.

2 Points2. Give the result of applying the morphism N M N to the type t.

Solution: n ⟶ n

2 Points3. Give the expected type for s in the morphism M.

Solution: (t ⟶ t) ⟶ (t ⟶ t)

3

FAU:KRMT:SS23:42 2 LOGICS

2 Points4. Consider a term u of type U over theory A. What does the type preservation
property of the theory morphism M imply in this case?

Solution: M(u):M(U) over theory B

2 Points5. Give any term that completes the morphism O.

Solution: e.g., [f:n ⟶ n]f or [f:n ⟶ n]s

2 Logics
Problem 2.1 (General Concepts)

Consider the following LF theory
prop : type
proof: prop ⟶ type
term : type

2 Points1. Briefly explain (in at most three sentences) the idea behind the proofs-as-
terms representation.

Solution: Given a proposition F:prop, the type proof F holds the proofs of
F. In particular, checking of proofs is represented in terms of type-checking
in the logical framework, and F is a theorem if that type is non-empty.

2 Points2. Briefly explain (in at most three sentences) the purpose of using a logical
framework.

Solution: A logical framework allows formally defining and reasoning about
the syntax and semantics of logics and related systems.

2 Points3. What is the importance of the type preservation property of theorymorphisms
when representing proofs? Answer in one sentence.

Solution: Theory morphismsmap proofs to proofs and thus theorems to the-
orems.

4

FAU:KRMT:SS23:42 2 LOGICS

2 Points4. Give a type that can be used to represent inconsistency. Briefly explain (in at
most two sentences) why it can be used.

Solution: The type {F:prop}proof F is inhabited iff there is a proof for
every proposition.

2 Points5. Give the types of
1. universal quantification

Solution: e.g. (term ⟶ prop) ⟶ prop

2. equality

Solution: e.g. term ⟶ term ⟶ prop

Problem 2.2 (Connectives and Proof Rules)
Consider the following partial formalization of propositional logic:

prop : type
proof: prop ⟶ type # proof 1 prec -5

not : prop ⟶ prop # ¬ 1
conj: prop ⟶ prop ⟶ prop # 1 ∧ 2
disj: prop ⟶ prop ⟶ prop # 1 ∨ 2

2 Points1. Briefly explain (in at most two sentences) the difference between an intro-
duction and an elimination rule.

Solution: An introduction rule expresses how to prove a proposition. An
elimination rule expresses how to use it to prove others.

2 Points2. Give the introduction rule for conjunction.

Solution: conjI: {a,b}proof a ⟶ proof b ⟶ proof a ∧ b

5

FAU:KRMT:SS23:42 3 MATHEMATICAL DOMAINS

4 Points3. Wewant to extend the above theorywith a primitive binary connective x L y

that is true if and only if its first argument x is true.
Give a declaration for it, including type and notation (but no definiens). Also
give appropriate introduction and elimination proof rules for it.

Solution: e.g.,

left: prop ⟶ prop ⟶ prop # 1 L 2
leftI: {F,G} proof F ⟶ proof F L G
leftE: {F,G} proof (F L G) ⟶ proof F

2 Points4. Give a definition (including definiens and notation) that defines the binary
connective x ≠ y that is true iff both arguments have different truth values.

Solution: diff: prop ⟶ prop ⟶ prop = [x,y](x∧¬ y) ∨(¬ x∧ y) # 1 ≠ 2

3 Mathematical Domains
Problem 3.1 (Monoids)

Consider the following theories
theory Monoid : FOL =
op: term ⟶ term ⟶ term # 1 * 2 prec 100
e: term
assoc: proof ∀ [x] ∀ [y] ∀ [z] (x*y)*z = x*(y*z)

2 Points1. Give the axiom(s) that is/aremissing for this to be an axiomatization ofmonoids.

Solution: neut: proof ∀ [x]x*e=x ∧ e*x=x

3 Points2. Give a theory for groups that includes Monoid.

Solution:

theory Group =
include Monoid
inv: univ ⟶ univ
invax: proof ∀ [x] x*(inv x) = e

Either one of the inversion axioms is sufficient. But giving both is not wrong.

6

FAU:KRMT:SS23:42 3 MATHEMATICAL DOMAINS

3 Points3. Give a morphism Opp from Monoid to itself that maps x*y to y*x. You do
not have to do any proofs — instead, just give the expected type and omit the
proof.

Solution:

view Opp : Monoid → Monoid =
op = [x,y]y*x
e = e
assoc : proof ∀ [x] ∀ [y] ∀ [z] z*(y*x) = (z*y)*x

2 Points4. Draw the theory graph involving all of the above (except FOL).

Solution: Op ↻ Monoid → Group

Problem 3.2 (Rings)
Consider the following theory

theory Magma : FOL =
op: term ⟶ term ⟶ term

theory BiMagma : FOL =
structure add : Magma
structure mul : Magma

2 Points1. Briefly explain (in at most two sentences) why that theory uses structure
instead of include.

Solution: Two includes of the same theory are redundant and would identify
the two magmas. Structures create two separate magmas.

2 Points2. Give thenameand type of all constant declarations that are present inBiMagma
(not counting the ones provided by FOL) after elaborating the structures.

Solution:

add/op: term ⟶ term ⟶ term
mul/op: term ⟶ term ⟶ term

7

FAU:KRMT:SS23:42 3 MATHEMATICAL DOMAINS

3 Points3. Give the proposition in BiMagma that expresses that multiplication on the left
distributes over addition.

Solution:

∀ [x] ∀ [y] ∀ [z]
mul/op x (add/op y z) = add/op (mul/op x y) (mul/op x z)

3 Points4. Assume we have a theory Int : FOL in which the terms represent integer
numbers and in which the usual operations on integers such as 0,1,+,-,*
are declared. Give the views that yield amodular viewIntBM : BiMagma → Int.

Solution:

view IntAdd : Magma → Int =
op = +

view IntMul : Magma → Int =
op = *

view IntBM : BiMagma → Int =
structure add = IntAdd
structure mul = IntMul

Problem 3.3 (Numbers)
Consider the following theory

theory Nat : FOL =
nat = term
z: nat
s: nat ⟶ nat

plus: nat ⟶ nat ⟶ nat # 1 + 2
plus_z : {m} proof z+m = m
plus_s : {m,n} proof (s m)+n = s(m+n)

2 Points1. Here addition is specified by equality axioms that allow reducing expressions
to canonical forms.
1. What are the canonical forms for type nat here?

Solution: All terms built from only z and s.

8

FAU:KRMT:SS23:42 3 MATHEMATICAL DOMAINS

2. What does “reducing to canonical forms” mean in this case? Answer in
at most two sentences.

Solution: Using the equality axioms left-to-right, any application of
plus to canonical forms can be rewritten into a canonical form.

4 Points2. Briefly explain (in at most four sentences) the purpose of the no-junk and
no-confusion axioms (which are omitted above) that capture the inductive
structure of the natural numbers. In doing so, sketch what the axioms look
like for the natural numbers.

Solution: The no-confusion axioms state that all canonical forms are differ-
ent, i.e., that z is not equal to any s x and that s is injective. The no-junk
axiom captures that there are no other natural numbers than the canonical
forms: any property that holds for all canonical forms holds for all natural
numbers.

4 Points3. Add a declaration and equality axioms that formalize the binary operation of
absolute difference (e.g., the function |𝑚 − 𝑛|).

Solution: e.g.,

ad: nat ⟶ nat ⟶ nat # 1 - 2
ad_any_z: {m} proof m-z = m
ad_z_any: {m} proof z-m = m
ad_s_s: {m,n} proof (s m)-(s n) = m-n

Problem 3.4 (Set Theory)
Consider the following fragment of a formalization of set theory

theory SetTheory : FOL =
set = term
in : set ⟶ set ⟶ prop # 1 ∈ 2

extensionality: proof ∀ [x] ∀ [y]
(forall [z] z ∈ x ⇔ z ∈ y) ⇒ x=y

2 Points1. Explain the axiom of extensionality.

Solution: It states that two sets are equal if they contain the same elements.

9

FAU:KRMT:SS23:42 3 MATHEMATICAL DOMAINS

2 Points2. Give the formalization of the axiom that the empty set exists.

Solution: emptyExists: proof ∃ [e] ¬∃ [x] x ∈ e

2 Points3. Briefly explain (in at most three sentences) the difficulty of using standard
first-order logic for set theory when it comes to defining operations such as
the empty set, and how adding a description operator can overcome this.

Solution: Set theory can prove the existence of objects, but FOL cannot di-
rectly refer to them. The description operator is a logical feature that returns
a uniquely existing object with a given property, thus allowing to refer to it.

4 Points4. Assume we have already defined the following operations
empty: set
unordered_pair : set ⟶ set ⟶ set # 1 uop 2
bigunion: set ⟶ set
biginter: set ⟶ set
powerset: set ⟶ set
separation : set ⟶ (set ⟶ prop) ⟶ set # 1 | 2
replacement: set ⟶ (set ⟶ set) ⟶ set # 1 repl 2

Moreover, assume we have already defined a set F that contains all sets built
using only the above operations. Define the set of natural numbers.

Hint: It helps to give a few auxiliary definitions. Eventually, take the inter-
section of all subsets of F that contain the natural numbers.

Solution:

z = empty
s : set ⟶ set = [x] bigunion (x uop (x uop x))
hasnats : set ⟶ prop = [h] z ∈ h ∧ ∀ [n] n ∈ h ⇒ (s n) ∈ h
nat = biginter (F | hasnats)

10

	MMT and LF
	Logics
	Mathematical Domains

