
Informatische Werkzeuge in den Geistes- und
Sozialwissenschaften 2

Prof. Dr. Michael Kohlhase

Professur für Wissensrepräsentation und -verarbeitung
Informatik, FAU Erlangen-Nürnberg

Michael.Kohlhase@FAU.de

2024-02-08

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 207 2024-02-08

Michael.Kohlhase@FAU.de

Chapter 8
Semester Change-Over

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 207 2024-02-08

8.1 Administrativa

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 207 2024-02-08

Prerequisites

▶ Formal Prerequisite: IWGS-1 (If you did not take it, read the notes)
▶ General Prerequisites: Motivation, interest, curiosity, hard work.

nothing else! (apart from IWGS-1)
We will teach you all you need to know

▶ You can do this course if you want! (we will help)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 208 2024-02-08

Assessment, Grades

▶ Grading Background/Theory: Only modules are graded! (by the law)
▶ Module “DH-Einführung” (DHE) =̂ courses IWGS1/2, DH-Einführung.
▶ DHE module grade ; pass/fail determined by “portfolio” =̂ collection of

contributions/assessments.
▶ Assessment Practice: The IWGS assessments in the “portfolio” consist of
▶ weekly homework assignments, (practice IWGS concepts and tools)
▶ 60 minutes exam directly after lectures end: July 27. 2024.

▶ Retake Exam: 60 min exam at the end of the exam break.(October. 12. 2024)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 209 2024-02-08

IWGS Homework Assignments

▶ Homeworks: will be small individual problem/programming/system
assignments
▶ but take time to solve (at least read them directly ; questions)
▶ group submission if and only if explicitly permitted.

▶ Without trying the homework assignments you are unlikely to pass the exam.
▶ Admin: To keep things running smoothly
▶ Homeworks will be posted on StudOn.
▶ Sign up for IWGS under https://www.studon.fau.de/frm5075965.html.
▶ Homeworks are handed in electronically there. (plain text, program files, PDF)
▶ Go to the tutorials, discuss with your TA! (they are there for you!)

▶ Homework Discipline:
▶ Start early! (many assignments need more than one evening’s work)
▶ Don’t start by sitting at a blank screen (talking & study group help)
▶ Humans will be trying to understand the text/code/math when grading it.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 210 2024-02-08

https://www.studon.fau.de/studon
https://www.studon.fau.de/frm5075965.html

IWGS Tutorials

▶ Weekly tutorials and homework assignments (first one in week two)

Tutor: (Doctoral Student in CS)
▶ ▶ Jonas Betzendahl: jonas.betzendahl@fau.de

They know what they are doing and really want to
help you learn! (dedicated to DH)

▶ Goal 1: Reinforce what was taught in class (important pillar of the IWGS
concept)

▶ Goal 2: Let you experiment with Python (think of them as Programming Labs)
▶ Life-saving Advice: go to your tutorial, and prepare it by having looked at the

slides and the homework assignments
▶ Inverted Classroom: the latest craze in didactics (works well if done right)

in IWGS: Lecture + Homework assignments + Tutorials =̂ inverted classroom

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 211 2024-02-08

jonas.betzendahl@fau.de

Textbook, Handouts and Information, Forums, Videos

▶ No Textbook: but lots of online python tutorials on the web.
▶ Course notes will be posted at http://kwarc.info/teaching/IWGS (see

references)
▶ I mostly prepare/adapt/correct them as we go along.
▶ please e-mail me any errors/shortcomings you notice. (improve for the group)

▶ The lecture videos of WS 2020/21 are at https://www.fau.tv/course/id/2350
(not much changed)

▶ Matrix chat at #iwgs:fau.de (via IDM) (instructions)
▶ StudOn Forum: https://www.studon.fau.de/frm5075965.html for
▶ announcements, homeworks (my view on the forum)
▶ questions, discussion among your fellow students (your forum too, use it!)

▶ If you become an active discussion group, the forum turns into a valuable
resource!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 212 2024-02-08

http://kwarc.info/teaching/IWGS
https://www.anleitungen.rrze.fau.de/serverdienste/matrix-an-der-fau/erste-schritte/
https://www.studon.fau.de/frm5075965.html

Experiment: Learning Support with KWARC Technologies

▶ My research area: Deep representation formats for (mathematical) knowledge
▶ One Application: Learning support systems (represent knowledge to transport

it)
▶ Experiment: Start with this course (Drink my own medicine)

1. Re-represent the slide materials in OMDoc (Open Mathematical Documents)
2. Feed it into the ALeA system (http://courses.voll-ki.fau.de)
3. Try it on you all (to get feedback from you)

▶ Research tasks
▶ help me complete the material on the slides (what is missing/would help?)
▶ I need to remember “what I say”, examples on the board. (take notes)

▶ Benefits for you (so why should you help?)
▶ you will be mentioned in the acknowledgements (for all that is worth)
▶ you will help build better course materials (think of next-year’s students)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 213 2024-02-08

http://courses.voll-ki.fau.de

VoLL-KI Portal at https://courses.voll-ki.fau.de

▶ Portal for ALeA Courses: https://courses.voll-ki.fau.de

▶ AI-1 in ALeA: https://courses.voll-ki.fau.de/course-home/ai-1
▶ All details for the course.
▶ recorded syllabus (keep track of material covered in course)
▶ syllabus of the last semester (for over/preview)

▶ ALeA Status: The ALeA system is deployed at FAU for over 1000 students
taking six courses
▶ (some) students use the system actively (our logs tell us)
▶ reviews are mostly positive/enthusiastic (error reports pour in)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 214 2024-02-08

https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de/course-home/ai-1

New Feature: Drilling with Flashcards
▶ Flashcards challenge you with a task (term/problem) on the front. . .

. . . and the definition/answer is on the back.
▶ Self-assessment updates the learner model (before/after)
▶ Idea: Challenge yourself to a card stack, keep drilling/assessing flashcards until

the learner model eliminates all.
▶ Bonus: Flashcards can be generated from existing semantic markup

(educational equivalent to free beer)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 215 2024-02-08

Practical recommendations on Lecture Videos

▶ Excellent Guide: [Nor+18a] (german Version at [Nor+18b])

 

Attend lectures.

Take notes.

Be specific.

Catch up.

Ask for help.

Don’t cut corners.

Using lecture
recordings:
A guide for students

▶ Normally intended for “offline students” =̂ everyone during Corona times.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 216 2024-02-08

Software/Hardware tools

▶ You will need computer access for this course
▶ we recommend the use of standard software tools
▶ find a text editor you are comfortable with (get good with it) A text editor is a

program you can use to write text files. (not MSWord)
▶ any operating system you like (I can only help with UNIX)
▶ Any browser you like (I use FireFox: less spying)

▶ Advice: learn how to touch-type NOW (reap the benefits earlier, not later)
▶ you will be typing multiple hours/week in the next decades
▶ touch-typing is about twice as fast as “system eagle”.
▶ you can learn it in two weeks (good programs)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 217 2024-02-08

Outline of IWGS-II:

▶ Databases
▶ CRUD operations, querying, and python embedding
▶ XML and JSON for file based data storage

▶ BooksApp: a Books Application with persistent storage
▶ Image processing
▶ Basics
▶ Image transformations, Image Understanding

▶ Ontologies, semantic web, and WissKI
▶ Ontologies (inference ; get out more than you put in)
▶ semantic web Technologies (standardize ontology formats and inference)
▶ Using semantic web Tech for cultural heritage research data ; the WissKI System

▶ Legal Foundations of Information Systems
▶ Copyright & Licensing
▶ Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 218 2024-02-08

Outline of IWGS-II:

▶ Databases
▶ CRUD operations, querying, and python embedding
▶ XML and JSON for file based data storage

▶ BooksApp: a Books Application with persistent storage

▶ Image processing
▶ Basics
▶ Image transformations, Image Understanding

▶ Ontologies, semantic web, and WissKI
▶ Ontologies (inference ; get out more than you put in)
▶ semantic web Technologies (standardize ontology formats and inference)
▶ Using semantic web Tech for cultural heritage research data ; the WissKI System

▶ Legal Foundations of Information Systems
▶ Copyright & Licensing
▶ Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 218 2024-02-08

Outline of IWGS-II:

▶ Databases
▶ CRUD operations, querying, and python embedding
▶ XML and JSON for file based data storage

▶ BooksApp: a Books Application with persistent storage
▶ Image processing
▶ Basics
▶ Image transformations, Image Understanding

▶ Ontologies, semantic web, and WissKI
▶ Ontologies (inference ; get out more than you put in)
▶ semantic web Technologies (standardize ontology formats and inference)
▶ Using semantic web Tech for cultural heritage research data ; the WissKI System

▶ Legal Foundations of Information Systems
▶ Copyright & Licensing
▶ Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 218 2024-02-08

Outline of IWGS-II:

▶ Databases
▶ CRUD operations, querying, and python embedding
▶ XML and JSON for file based data storage

▶ BooksApp: a Books Application with persistent storage
▶ Image processing
▶ Basics
▶ Image transformations, Image Understanding

▶ Ontologies, semantic web, and WissKI
▶ Ontologies (inference ; get out more than you put in)
▶ semantic web Technologies (standardize ontology formats and inference)
▶ Using semantic web Tech for cultural heritage research data ; the WissKI System

▶ Legal Foundations of Information Systems
▶ Copyright & Licensing
▶ Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 218 2024-02-08

Outline of IWGS-II:

▶ Databases
▶ CRUD operations, querying, and python embedding
▶ XML and JSON for file based data storage

▶ BooksApp: a Books Application with persistent storage
▶ Image processing
▶ Basics
▶ Image transformations, Image Understanding

▶ Ontologies, semantic web, and WissKI
▶ Ontologies (inference ; get out more than you put in)
▶ semantic web Technologies (standardize ontology formats and inference)
▶ Using semantic web Tech for cultural heritage research data ; the WissKI System

▶ Legal Foundations of Information Systems
▶ Copyright & Licensing
▶ Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 218 2024-02-08

IWGS-II Project
▶ Idea: Consolidate the techniques from IWGS-I and IWGS-II into a prototypical

information system for Art History @ FAU. (Practical Digital Humanities)
▶ A Running Example: Research image + metadata collection “Bauernkirmes”

provided by Prof. Peter Bell

▶ What will you do?: Build a web-based image/data manager, test image
algorithms, annotate ontologically, . . .

▶ How will we organize this: Mostly via the group homework assignments
(together they will make the project)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 219 2024-02-08

IWGS-II Project

▶ Idea: Consolidate the techniques from IWGS-I and IWGS-II into a prototypical
information system for Art History @ FAU. (Practical Digital Humanities)

▶ A Running Example: Research image + metadata collection “Bauernkirmes”
provided by Prof. Peter Bell

▶ What will you do?: Build a web-based image/data manager, test image
algorithms, annotate ontologically, . . .

▶ How will we organize this: Mostly via the group homework assignments
(together they will make the project)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 219 2024-02-08

Chapter 9
Databases

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 219 2024-02-08

9.1 Introduction

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 219 2024-02-08

Databases, Data, Information, and Knowledge

▶ Definition 1.1. Discrete, objective facts or observations, which are unorganized
and uninterpreted are called data (singular datum).

▶ According to Probst/Raub/Romhardt [PRR97]

▶ Example 1.2. The height of Mt. Everest (8.848 meters) is a datum.
Definition 1.3. A database is an organized collection of data, stored and
accessed electronically from a computer system.

▶

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 220 2024-02-08

Storing Data Electronically

▶ Four conventional ways of storing data: (mileage varies)
▶ In the computer’s memory (RAM) (very fast (+), random access (+), but not

persistent (-))

▶ In a text file (persistent (+), fast (+), sequential access (), unstructured ())
▶ In a spreadsheet (persistent (+), 2D-structured (+-), relations (+), slow (-))
▶ In a database (persistent (+), scalable (+), relations(+), managed (+), slow (-))

▶ Databases constitute the most scalable, persistent solution.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 221 2024-02-08

Storing Data Electronically

▶ Four conventional ways of storing data: (mileage varies)
▶ In the computer’s memory (RAM) (very fast (+), random access (+), but not

persistent (-))
▶ In a text file (persistent (+), fast (+), sequential access (), unstructured ())

▶ In a spreadsheet (persistent (+), 2D-structured (+-), relations (+), slow (-))
▶ In a database (persistent (+), scalable (+), relations(+), managed (+), slow (-))

▶ Databases constitute the most scalable, persistent solution.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 221 2024-02-08

Storing Data Electronically

▶ Four conventional ways of storing data: (mileage varies)
▶ In the computer’s memory (RAM) (very fast (+), random access (+), but not

persistent (-))
▶ In a text file (persistent (+), fast (+), sequential access (), unstructured ())
▶ In a spreadsheet (persistent (+), 2D-structured (+-), relations (+), slow (-))

▶ In a database (persistent (+), scalable (+), relations(+), managed (+), slow (-))
▶ Databases constitute the most scalable, persistent solution.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 221 2024-02-08

Storing Data Electronically

▶ Four conventional ways of storing data: (mileage varies)
▶ In the computer’s memory (RAM) (very fast (+), random access (+), but not

persistent (-))
▶ In a text file (persistent (+), fast (+), sequential access (), unstructured ())
▶ In a spreadsheet (persistent (+), 2D-structured (+-), relations (+), slow (-))
▶ In a database (persistent (+), scalable (+), relations(+), managed (+), slow (-))

▶ Databases constitute the most scalable, persistent solution.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 221 2024-02-08

Storing Data Electronically

▶ Four conventional ways of storing data: (mileage varies)
▶ In the computer’s memory (RAM) (very fast (+), random access (+), but not

persistent (-))
▶ In a text file (persistent (+), fast (+), sequential access (), unstructured ())
▶ In a spreadsheet (persistent (+), 2D-structured (+-), relations (+), slow (-))
▶ In a database (persistent (+), scalable (+), relations(+), managed (+), slow (-))

▶ Databases constitute the most scalable, persistent solution.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 221 2024-02-08

9.2 Relational Databases

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 221 2024-02-08

(Relational) Database Management Systems
▶ Definition 2.1. A database management system (DBMS) is program that

interacts with end users, applications, and a database to capture and analyze the
data and provides facilities to administer the database.

▶ There are different types of DBMS, we will concentrate on relational ones.
▶ Definition 2.2. In a relational database management system (RDBMS), data are

represented as tables: every datum is represented by a row (also called database
record), which has a value for all columns (also called an column attribute) or
field). A null value is a special “value” used to denote a missing value.

▶ Remark: Mathematically, each row is an n tuple of values, and thus a table an
n-ary relation. (useful for standardizing RDBMS operations)

▶ Example 2.3 (Bibliographic Data).
LastN FirstN YOB YOD Title YOP Publisher City
Twain Mark 1835 1910 Huckleberry Finn 1986 Penguin USA NY
Twain Mark 1835 1910 Tom Sawyer 1987 Viking NY
Cather Willa 1873 1947 My Antonia 1995 Library of America NY
Hemingway Ernest 1899 1961 The Sun Also Rises 1995 Scribner NY
Wolfe Thomas 1900 1938 Look Homeward, Angel 1995 Scribner NY
Faulkner William 1897 1962 The Sound and the Furry 1990 Random House NY

▶ Definition 2.4. Tables are identified by table name and individual components
of records by column name.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 222 2024-02-08

Open-Source Relational Database Management Systems

Definition 2.5. MySQL is an open source RDBMS.
For simple data sets and web applications MySQL is a
fast and stable multi user system featuring an SQL
database server that can be accessed by multiple
clients.
▶

Definition 2.6. PostgreSQL is an open source RDBMS with an
emphasis on extensibility, standards compliance, and scalability.
▶

Definition 2.7. SQLite is an embeddable RDBMS.
Instead of a database server, SQLite uses a single
database file, therefore no server configuration is
necessary.
▶

▶ Remark: At the level we use SQL in IWGS, all are equivalent.
▶ We will use SQLite in IWGS, since it is easiest to install and configure.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 223 2024-02-08

Working with SQLite (via the SQLite shell)

▶ In IWGS we will use SQLite, since it is very lightweight, easy to install, but
feature complete, and widely used.

▶ Download SQLite at https://www.sqlite.org/download.html,
▶ e.g. sqlite−dll−win64−x64−3280000.zip for windows.

▶ unzip it into a suitable location, start sqlite3.exe there
▶ this opens a command line interpreter: the SQLite shell. (all DBs have one)

test it with .help that tells you about more “dot commands”.
▶ If you have a database file books.db from 3.8, use that.
▶ .tables shows the available tables

select ∗ from Books is SQL (see below); it shows all entries of the Books table.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 224 2024-02-08

https://www.sqlite.org/download.html

Working with SQLite (via the SQLite shell)

▶ In IWGS we will use SQLite, since it is very lightweight, easy to install, but
feature complete, and widely used.

▶ Download SQLite at https://www.sqlite.org/download.html,
▶ e.g. sqlite−dll−win64−x64−3280000.zip for windows.
▶ unzip it into a suitable location, start sqlite3.exe there
▶ this opens a command line interpreter: the SQLite shell. (all DBs have one)

test it with .help that tells you about more “dot commands”.

> sqlite3
SQLite version 3.24.0 2018−06−04 19:24:41
Enter ".help" for usage hints.
Connected to a transient in−memory database.
Use ".open FILENAME" to reopen on a persistent database.
sqlite> .help
.archive ... Manage SQL archives: ".archive −−help" for details
.auth ON|OFF Show authorizer callbacks
[...]

▶ If you have a database file books.db from 3.8, use that.
▶ .tables shows the available tables

select ∗ from Books is SQL (see below); it shows all entries of the Books table.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 224 2024-02-08

https://www.sqlite.org/download.html

Working with SQLite (via the SQLite shell)
▶ In IWGS we will use SQLite, since it is very lightweight, easy to install, but

feature complete, and widely used.
▶ Download SQLite at https://www.sqlite.org/download.html,
▶ e.g. sqlite−dll−win64−x64−3280000.zip for windows.
▶ unzip it into a suitable location, start sqlite3.exe there
▶ this opens a command line interpreter: the SQLite shell. (all DBs have one)

test it with .help that tells you about more “dot commands”.
▶ If you have a database file books.db from 3.8, use that.

> sqlite3 books.db
SQLite version 3.24.0 2018−06−04 19:24:41
Enter ".help" for usage hints.
> .tables
Books
>select ∗ from Books;
Twain|Mark|1835|1910|Huckleberry Finn|1986|Penguin USA|NY
Twain|Mark|1835|1910|Tom Sawyer|1987|Viking|NY
Cather|Willa|1873|1947|My Antonia|1995|Library of America|NY
Hemingway|Ernest|1899|1961|The Sun Also Rises|1995|Scribner|NY
Wolfe|Thomas|1900|1938|Look Homeward, Angel|1995|Scribner|NY
Faulkner|William|1897|1962|The Sound and the Furry|1990|Random House |NY
Tolkien|John Ronald Reuel|1892|1973|The Hobbit|1937|George Allen Unwin|UK

▶ .tables shows the available tables
select ∗ from Books is SQL (see below); it shows all entries of the Books table.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 224 2024-02-08

https://www.sqlite.org/download.html

Working with SQLite (via the SQLite shell)

▶ In IWGS we will use SQLite, since it is very lightweight, easy to install, but
feature complete, and widely used.

▶ Download SQLite at https://www.sqlite.org/download.html,
▶ e.g. sqlite−dll−win64−x64−3280000.zip for windows.
▶ unzip it into a suitable location, start sqlite3.exe there
▶ this opens a command line interpreter: the SQLite shell. (all DBs have one)

test it with .help that tells you about more “dot commands”.
▶ If you have a database file books.db from 3.8, use that.
▶ .tables shows the available tables

select ∗ from Books is SQL (see below); it shows all entries of the Books table.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 224 2024-02-08

https://www.sqlite.org/download.html

A Graphical User Interface for SQLite

▶ Definition 2.8. A database browser is a graphical user interface for a RDBMS
that (typically) bundles an SQL instruction editor with displays for query results
and the database schema in separate windows.

▶ I will sometimes use one for SQLite in the slides: SQLite Studio (lots of others)
▶ download from https://sqlitestudio.pl

▶ Everything we can do with this, we can do with the database shell as well. (just
looks nicer)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 225 2024-02-08

https://sqlitestudio.pl

A Graphical User Interface for SQLite
▶ Definition 2.9. A database browser is a graphical user interface for a RDBMS

that (typically) bundles an SQL instruction editor with displays for query results
and the database schema in separate windows.

▶ I will sometimes use one for SQLite in the slides: SQLite Studio (lots of others)
▶ download from https://sqlitestudio.pl

▶ Everything we can do with this, we can do with the database shell as well. (just
looks nicer)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 225 2024-02-08

https://sqlitestudio.pl

A Graphical User Interface for SQLite

▶ Definition 2.10. A database browser is a graphical user interface for a RDBMS
that (typically) bundles an SQL instruction editor with displays for query results
and the database schema in separate windows.

▶ I will sometimes use one for SQLite in the slides: SQLite Studio (lots of others)
▶ download from https://sqlitestudio.pl

▶ Everything we can do with this, we can do with the database shell as well. (just
looks nicer)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 225 2024-02-08

https://sqlitestudio.pl

9.3 SQL – A Standardized Interface to RDBMS

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 225 2024-02-08

SQL: The Structured Query Language

▶ Idea: We need a language for describing all operations of a RDBMSs.
▶ basics: creating, reading, updating, deleting database components (CRUD)
▶ querying: selecting from and inserting into the database
▶ access control: who can do what in a database
▶ transactions: ensuring a consistent database state.

Definition 3.1. SQL, the structured query language is a domain-specific
language for managing data held in a RDBMS. SQL instructions are directly
executed by the RDBMS to change the database state or compute answers to
SQL queries.

▶

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 226 2024-02-08

DDL: Data Definition Language

▶ Definition 3.2. The data definition language (DDL) is a subset of SQL
instructions that address the creation and deletion of database objects.

▶ Definition 3.3. The SQL statement CREATE TABLE⟨⟨name⟩⟩ (⟨⟨coldefs⟩⟩)
creates a table with name ⟨⟨name⟩⟩. ⟨⟨coldefs⟩⟩ are column specifications that
specify the columns: it is a comma-separated list of column names and SQL
data type. The totality of all column specifications of all tables in a database is
called the database schema.

▶ Example 3.4 (Creating a Table). The following SQL statement creates the
table from 2.3
CREATE TABLE Books (

LastN varchar(128), FirstN varchar(128),
YOB int, YOD int, Title varchar(255), YOP int,
Publisher varchar(128), City varchar(128)

);

▶ Other CREATE statements exist, e.g. CREATE DATABASE ⟨⟨name⟩⟩.
▶ Definition 3.5. The SQL statement DROP ⟨⟨obj⟩⟩ ⟨⟨name⟩⟩ deletes the

database object of class ⟨⟨obj⟩⟩ with name ⟨⟨name⟩⟩.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 227 2024-02-08

SQL Data Types (for Column Specifications)

▶ Definition 3.6. SQL specifies data type for values including:
▶ VARCHAR (⟨⟨length⟩⟩): character strings, including Unicode, of a variable length is

up to the maximum length of ⟨⟨length⟩⟩.
▶ BOOL truth values: true, false and case variants.
▶ INT: Integers
▶ FLOAT: floating point numbers
▶ DATE: dates, e.g. DATE ’1999−01−01’ or DATE ’2000−2−2’
▶ TIME: time points in ISO format, e.g. TIME ’00:00:00’ or time ’23:59:59.99’
▶ TIMESTAMP: a combination of DATE and TIME (separated by a blank).
▶ CLOB (⟨⟨length⟩⟩) (character large object) up to (typically) 2GiB
▶ BLOB (⟨⟨length⟩⟩) (binary large object) up to (typically) 2GiB

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 228 2024-02-08

SQL: Adding Records to Tables
▶ Definition 3.7. SQL provides the INSERT INTO command for inserting

records into a table. This comes in two forms:
1. INSERT INTO ⟨⟨table⟩⟩ VALUES (⟨⟨vals⟩⟩); where ⟨⟨vals⟩⟩ is a comma-separated list

of values given in the order the columns were declared in the CREATE TABLE
instruction.

2. INSERT INTO ⟨⟨table⟩⟩ (⟨⟨cols⟩⟩) VALUES (⟨⟨vals⟩⟩) where ⟨⟨vals⟩⟩ is a
comma-separated list of values given in the order of ⟨⟨cols⟩⟩ (a subset of columns) all
other fields are filled with NULL

▶ Example 3.8 (Inserting into the Books Table). The given the table Books
from 3.4 we can add a record with
INSERT INTO Books
VALUES (’Tolkien’, ’John␣Ronald␣Reuel’, 1892, 1973, ’The␣Hobbit’, 1937,

’George␣Allen␣ Unwin’, ’UK’);

▶ Example 3.9 (Inserting Partial Data). Using the second form of the INSERT
instruction, we can insert partial data. (all we have)

INSERT INTO Books (FirstN, LastN, YOB, title, YOP)
VALUES (’Michael’, ’Kohlhase’, ’1964’, ’IWGS␣Course␣Notes’, ’2018’);

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 229 2024-02-08

SQL: Adding Records to Tables
▶ Definition 3.10. SQL provides the INSERT INTO command for inserting

records into a table. This comes in two forms:
1. INSERT INTO ⟨⟨table⟩⟩ VALUES (⟨⟨vals⟩⟩); where ⟨⟨vals⟩⟩ is a comma-separated list

of values given in the order the columns were declared in the CREATE TABLE
instruction.

2. INSERT INTO ⟨⟨table⟩⟩ (⟨⟨cols⟩⟩) VALUES (⟨⟨vals⟩⟩) where ⟨⟨vals⟩⟩ is a
comma-separated list of values given in the order of ⟨⟨cols⟩⟩ (a subset of columns) all
other fields are filled with NULL

▶ Example 3.11 (Inserting into the Books Table). The given the table Books
from 3.4 we can add a record with
INSERT INTO Books
VALUES (’Tolkien’, ’John␣Ronald␣Reuel’, 1892, 1973, ’The␣Hobbit’, 1937,

’George␣Allen␣ Unwin’, ’UK’);

▶ Example 3.12 (Inserting Partial Data). Using the second form of the
INSERT instruction, we can insert partial data. (all we have)

INSERT INTO Books (FirstN, LastN, YOB, title, YOP)
VALUES (’Michael’, ’Kohlhase’, ’1964’, ’IWGS␣Course␣Notes’, ’2018’);

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 229 2024-02-08

SQL: Adding Records to Tables
▶ Definition 3.13. SQL provides the INSERT INTO command for inserting

records into a table. This comes in two forms:
1. INSERT INTO ⟨⟨table⟩⟩ VALUES (⟨⟨vals⟩⟩); where ⟨⟨vals⟩⟩ is a comma-separated list

of values given in the order the columns were declared in the CREATE TABLE
instruction.

2. INSERT INTO ⟨⟨table⟩⟩ (⟨⟨cols⟩⟩) VALUES (⟨⟨vals⟩⟩) where ⟨⟨vals⟩⟩ is a
comma-separated list of values given in the order of ⟨⟨cols⟩⟩ (a subset of columns) all
other fields are filled with NULL

▶ Example 3.14 (Inserting into the Books Table). The given the table Books
from 3.4 we can add a record with
INSERT INTO Books
VALUES (’Tolkien’, ’John␣Ronald␣Reuel’, 1892, 1973, ’The␣Hobbit’, 1937,

’George␣Allen␣ Unwin’, ’UK’);

▶ Example 3.15 (Inserting Partial Data). Using the second form of the
INSERT instruction, we can insert partial data. (all we have)

INSERT INTO Books (FirstN, LastN, YOB, title, YOP)
VALUES (’Michael’, ’Kohlhase’, ’1964’, ’IWGS␣Course␣Notes’, ’2018’);

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 229 2024-02-08

SQL: Deleting Records from Tables

▶ Definition 3.16. The SQL delete statement allows to change existing records.

DELETE FROM ⟨⟨table⟩⟩ WHERE ⟨⟨condition⟩⟩;

▶ Example 3.17. Deleting the record for “Huckleberry Finn”.

DELETE FROM Works WHERE Title = ’Huckleberry␣Finn’

▶ If we leave out the WHERE clause, all rows are deleted.
▶ Note: There is much more to the WHERE clause, we will get to that when we

come to SQL querying. (see)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 230 2024-02-08

SQL: Updating Records in Tables

▶ Definition 3.18. The SQL update statement allows to change existing records.

UPDATE ⟨⟨table⟩⟩
SET ⟨⟨column⟩⟩1 = ⟨⟨value⟩⟩1, ⟨⟨column⟩⟩2 = ⟨⟨value⟩⟩2, . . .
WHERE ⟨⟨condition⟩⟩;

▶ Example 3.19. Updating the publisher in “Huckleberry Finn”.

UPDATE Books
SET Publisher = ’Chatto/Windus’, YOP = 1884, City = ’London’
WHERE Title = ’Huckleberry␣Finn’

▶ If we leave out the WHERE clause, all rows are updated.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 231 2024-02-08

9.4 ER-Diagrams and Complex Database
Schemata

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 231 2024-02-08

Avoiding Redundancy in Databases

▶ Recall the books table from 2.3:
LastN FirstN YOB YOD Title YOP Publisher City
Twain Mark 1835 1910 Huckleberry Finn 1986 Penguin USA NY
Twain Mark 1835 1910 Tom Sawyer 1987 Viking NY
Cather Willa 1873 1947 My Antonia 1995 Library of America NY
Hemingway Ernest 1899 1961 The Sun Also Rises 1995 Scribner NY
Wolfe Thomas 1900 1938 Look Homeward, Angel 1995 Scribner NY
Faulkner William 1897 1962 The Sound and the Furry 1990 Random House NY

▶ Observation: Some of the fields appear multiple times, e.g. “Mark Twain”.
▶ When the database grows this can lead to scalability problems:
▶ in querying: e.g. if we look for all works by Mark Twain
▶ in maintenance: e.g. if we want to replace the pen name “Mark Twain” by the real

name “Samuel Langhorne Clemens”.
▶ Idea: Separate concerns (here Authors, Works, and Publishers) into separate

entities, mark their relations.
▶ Develop a graphical notation for planning
▶ Implement that into the database

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 232 2024-02-08

Entity Relationship Diagrams

▶ Definition 4.1. An entity relationship diagram (ERD) illustrates the logical
structure of a database. It consists of entities that characterize (sets of) objects
by their attributes and relations between them.

▶ Example 4.2 (An ERD for Books). Recall the Books table from 2.3:
LastN FirstN YOB YOD Title YOP Publisher City
Twain Mark 1835 1910 Huckleberry Finn 1986 Penguin USA NY
Twain Mark 1835 1910 Tom Sawyer 1987 Viking NY
Cather Willa 1873 1947 My Antonia 1995 Library of America NY
Hemingway Ernest 1899 1961 The Sun Also Rises 1995 Scribner NY
Wolfe Thomas 1900 1938 Look Homeward, Angel 1995 Scribner NY
Faulkner William 1897 1962 The Sound and the Furry 1990 Random House NY

▶ Problem: We have duplicate information in the authors and publishers
▶ Idea: Spread the Books information over multiple tables.

Authors
Last Name
First Name
Birth Date
Death Date

Works
Title
PubDate

Publ
Name
Citywrit. by

wrote *
1 publ. by 1

publ.*

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 233 2024-02-08

Linking Tables via Primary and Foreign Keys

▶ Definition 4.3. A column in a table can be designated as a primary key, if its
values are non-null and unique i.e. all distinct.

▶ In DDL, we just add the keyword PRIMARY KEY to the column specification.
▶ Definition 4.4. A foreign key is a column (or collection of columns) in one table

(called the child table) that refers to the primary key in another table (called the
reference table or parent table).

▶ Intuition: Together primary keys and foreign keys can be used to link tables or
(dually) to spread information over multiple tables.

ERD Implementation

A
. . .

B
. . .

Parent
ID : primary
. . .

Child
fID : foreign
. . .

references

▶ BTW: Primary keys are great for identification in the WHERE clauses of SQL
instructions.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 234 2024-02-08

Linking Tables via Primary and Foreign Keys (Example)
▶ Example 4.5. Continuing 4.2, we now implement

Authors
Last Name
First Name
Birth Date
Death Date

Works
Title
PubDate

Publ
Name
Citywrit. by

wrote *
1 publ. by 1

publ.*

by introducing primary keys in the Authors and Publishers tables and referencing
them by foreign keys in the Works table.

CREATE TABLE Authors (AuthorID int PRIMARY KEY,
LastN varchar(128), FirstN varchar(128), YOB int, YOD int);

CREATE TABLE Publishers (PublisherID int PRIMARY KEY,
Name varchar(128), City varchar(128));

CREATE TABLE Works (
Title varchar(255), YOP int, AuthorID int, PublisherID int,
FOREIGN KEY(AuthorID) REFERENCES Authors(AuthorID),
FOREIGN KEY(PublisherID) REFERENCES Publishers(PublisherID));

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 235 2024-02-08

Linking Tables via Primary and Foreign Keys (continued)

▶ Example 4.6 (Inserting into the Works Table). The given the tables Works
Authors, and Publishers from 4.5 we can add a record with
INSERT INTO Authors VALUES (1, ’Twain’, ’Mark’, 1835, 1910);
INSERT INTO Publishers VALUES (1, ’Penguin USA’, ’NY’);
INSERT INTO Works VALUES (’Huckleberry Finn’, 1986, 1, 1);

INSERT INTO Publishers VALUES (2,’Viking’, ’NY’);
INSERT INTO Works VALUES (’Tom Sawyer’, 1987, 1, 2);

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 236 2024-02-08

9.5 RDBMS in Python

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 236 2024-02-08

Using SQLite from Python

▶ We will use the PySQLite package
▶ install it locally with pip install pysqlite for Python 3.
▶ use import sqlite3 to import the library in your programs.

▶ Typical Python program with sqlite3:

import sqlite3
Open database connection
db = sqlite3.connect(⟨⟨host⟩⟩,⟨⟨user⟩⟩,⟨⟨pass⟩⟩,⟨⟨DBname⟩⟩)
prepare a cursor object using cursor() method
cursor = db.cursor()
execute SQL commands using the execute() method.
cursor.execute("⟨⟨SQL⟩⟩")
⟨⟨dataprocessingcode⟩⟩
make sure data reaches disk
db.commit()
disconnect from server
db.close()

We will assume this as a wrapper for all code examples below.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 237 2024-02-08

Creating Tables in Python
▶ Example 5.1. Creating the table of 3.4

import sqlite3
our database file
database = "C:\\sqlite\db\books.db"
a string with the SQL instruction to create a table
create = """CREATE TABLE Books (

LastN varchar(128), FirstN varchar(128), YOB int, YOD int,
Title varchar(255), YOP int,Publisher varchar(128), City varchar(128));"""

insert1 = """INSERT INTO Books
VALUES (’Twain’, ’Mark’, ’1835’, ’1910’, ’Huckleberry Finn’, ’1986’,

’Penguin USA’, ’NY’);"""
insert2 = """INSERT INTO Books

VALUES (’Twain’, ’Mark’, ’1835’, ’1910’, ’Tom Sawyer’, ’1987’,
’Viking’, ’NY’);"""

connect to the SQLIte DB and make a cursor
db = sqlite3.connect(database)
cursor = db.cursor()
create Books table by executing the cursor
cursor.execute("DROP␣TABLE␣Books;")
cursor.execute(create)
cursor.execute(insert1)
cursor.execute(insert2)
db.commit() # commit to disk
db.close() # clean up by closing

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 238 2024-02-08

To commit or not to commit?

▶ Recall: SQLite computes with tables in memory but uses files for persistence.
▶ Also Recall: Memory access is 100-10.000 times as fast as file access.
▶ Idea 1: Keep tables in memory, write to file only when necessary.
▶ Idea 2: Give the user/programmer control over when to write to file
▶ db = sqlite3.connect(⟨⟨file⟩⟩) connects to ⟨⟨file⟩⟩, but computes in memory,
▶ db.commit() writes in-memory changes to ⟨⟨file⟩⟩.

▶ Problem: We can have multiple database connections to the same database
file in parallel, there may be race conditions and conflicts.

▶ Our Solution: Commit often enough! (your responsibility/fault)
▶ General Solution: RDBMS offer database transactions. (not covered in IWGS)
▶ Lazy Solution: Set the connection to autocommit mode: (system decides)

sqlite3.connect(⟨⟨file⟩⟩,isolation_level = None)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 239 2024-02-08

9.6 Excursion: Programming with Exceptions in
Python

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 239 2024-02-08

How to deal with Errors in Python

▶ Theorem 6.1 (Kohlhase’s Law).

▶ Corollary 6.2. Programming languages need a good way to deal with all kinds
of errors!

▶ Definition 6.3. An exception is a special Python object. Raising an exception e
terminates computation and passes e to the next higher level.

▶ Example 6.4 (Division by Zero). The Python interpreter reports unhandled
exceptions.

▶ Exceptions are first class citizens in Python, in particular they
▶ are classified by their classes in a hierarchy.
▶ exception classes can be defined by the user (they inherit from the Exception class)

▶ can be raised when an abnormal condition appears
▶ can be handled in a try/except block (there can be multiple)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 240 2024-02-08

How to deal with Errors in Python

▶ Theorem 6.5 (Kohlhase’s Law). I can be an idiot, and I do make mistakes!
▶ Corollary 6.6. Programming languages need a good way to deal with all kinds

of errors!

▶ Definition 6.7. An exception is a special Python object. Raising an exception e
terminates computation and passes e to the next higher level.

▶ Example 6.8 (Division by Zero). The Python interpreter reports unhandled
exceptions.

▶ Exceptions are first class citizens in Python, in particular they
▶ are classified by their classes in a hierarchy.
▶ exception classes can be defined by the user (they inherit from the Exception class)

▶ can be raised when an abnormal condition appears
▶ can be handled in a try/except block (there can be multiple)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 240 2024-02-08

How to deal with Errors in Python

▶ Theorem 6.9 (Kohlhase’s Law). I can be an idiot, and I do make mistakes!
▶ Corollary 6.10. Programming languages need a good way to deal with all kinds

of errors!
▶ Definition 6.11. An exception is a special Python object. Raising an exception

e terminates computation and passes e to the next higher level.

▶ Example 6.12 (Division by Zero). The Python interpreter reports unhandled
exceptions.

▶ Exceptions are first class citizens in Python, in particular they
▶ are classified by their classes in a hierarchy.
▶ exception classes can be defined by the user (they inherit from the Exception class)

▶ can be raised when an abnormal condition appears
▶ can be handled in a try/except block (there can be multiple)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 240 2024-02-08

How to deal with Errors in Python

▶ Theorem 6.13 (Kohlhase’s Law). I can be an idiot, and I do make mistakes!
▶ Corollary 6.14. Programming languages need a good way to deal with all kinds

of errors!
▶ Definition 6.15. An exception is a special Python object. Raising an exception

e terminates computation and passes e to the next higher level.
▶ Example 6.16 (Division by Zero). The Python interpreter reports unhandled

exceptions.

>>> −3 / 0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

Zerodivisionerror: division by zero

▶ Exceptions are first class citizens in Python, in particular they
▶ are classified by their classes in a hierarchy.
▶ exception classes can be defined by the user (they inherit from the Exception class)

▶ can be raised when an abnormal condition appears
▶ can be handled in a try/except block (there can be multiple)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 240 2024-02-08

How to deal with Errors in Python

▶ Theorem 6.17 (Kohlhase’s Law). I can be an idiot, and I do make mistakes!
▶ Corollary 6.18. Programming languages need a good way to deal with all kinds

of errors!
▶ Definition 6.19. An exception is a special Python object. Raising an exception

e terminates computation and passes e to the next higher level.
▶ Example 6.20 (Division by Zero). The Python interpreter reports unhandled

exceptions.
▶ Exceptions are first class citizens in Python, in particular they
▶ are classified by their classes in a hierarchy.
▶ exception classes can be defined by the user (they inherit from the Exception class)

class DivByZero (Exception)
pass

▶ can be raised when an abnormal condition appears
▶ can be handled in a try/except block (there can be multiple)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 240 2024-02-08

How to deal with Errors in Python

▶ Theorem 6.21 (Kohlhase’s Law). I can be an idiot, and I do make mistakes!
▶ Corollary 6.22. Programming languages need a good way to deal with all kinds

of errors!
▶ Definition 6.23. An exception is a special Python object. Raising an exception

e terminates computation and passes e to the next higher level.
▶ Example 6.24 (Division by Zero). The Python interpreter reports unhandled

exceptions.
▶ Exceptions are first class citizens in Python, in particular they
▶ are classified by their classes in a hierarchy.
▶ exception classes can be defined by the user (they inherit from the Exception class)
▶ can be raised when an abnormal condition appears

if denominator == 0 :
raise DivByZero

else
⟨⟨computation⟩⟩

▶ can be handled in a try/except block (there can be multiple)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 240 2024-02-08

How to deal with Errors in Python
▶ Theorem 6.25 (Kohlhase’s Law). I can be an idiot, and I do make mistakes!
▶ Corollary 6.26. Programming languages need a good way to deal with all kinds

of errors!
▶ Definition 6.27. An exception is a special Python object. Raising an exception

e terminates computation and passes e to the next higher level.
▶ Example 6.28 (Division by Zero). The Python interpreter reports unhandled

exceptions.
▶ Exceptions are first class citizens in Python, in particular they
▶ are classified by their classes in a hierarchy.
▶ exception classes can be defined by the user (they inherit from the Exception class)
▶ can be raised when an abnormal condition appears
▶ can be handled in a try/except block (there can be multiple)

try:
⟨⟨tentativecomputation⟩⟩

except : ⟨⟨err⟩⟩1, . . ., ⟨⟨err⟩⟩n :
⟨⟨errorhandling⟩⟩

finally :
⟨⟨cleanup⟩⟩

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 240 2024-02-08

Playing it Safe with Databases

▶ Observation 6.29. Things can go wrong when connecting to a database! (e.g.
missing file)

▶ Idea: Raise exceptions and handle them.
▶ Example 6.30. we encapsulate a try/except block into a function for

convenience
import sqlite3
from sqlite3 import Error
def sql_connection():

try:
db = sqlite3.connect(’:memory:’)
print("Connection␣is␣established:␣Database␣is␣created␣in␣memory")

except Error :
print(Error)

finally:
db.close()

The sqlite3 package provides its own exceptions, which we import separately.
Other errors can be handled in additional except clauses.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 241 2024-02-08

9.7 Querying and Views in SQL

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 241 2024-02-08

SQL Querying: The SELECT Statement
▶ SQL uses the SELECT instruction for retrieving data from a database.
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩

restricted to the fields from ⟨⟨columns⟩⟩.
▶ Definition 7.1. We call a SELECT instruction a query.

▶ Example 7.2. SELECT Title, YOP FROM Books;
Huckleberry Finn|1986
Tom Sawyer|1987
My Antonia|1995
The Sun Also Rises|1995
Look Homeward, Angel|1995
The Sound and the Furry|1990
The Hobbit|1937

▶ SELECT DISTINCT removes duplicate values
▶ SELECT ∗ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩.
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ WHERE ⟨⟨cond⟩⟩ returns all records that

match condition ⟨⟨cond⟩⟩
▶ Example 7.3. SELECT FirstN, LastN FROM Books WHERE YOP = 1995;
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ ORDER BY ⟨⟨colums⟩⟩ orders the

results by ⟨⟨columns⟩⟩
▶ Example 7.4. Ordering can be ascending (ASC) or descending (DESC)

SELECT FirstN, LastN FROM Books ORDER BY LastN ASC, YOP DESC;

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 242 2024-02-08

SQL Querying: The SELECT Statement

▶ SQL uses the SELECT instruction for retrieving data from a database.
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩

restricted to the fields from ⟨⟨columns⟩⟩.
▶ Definition 7.5. We call a SELECT instruction a query.
▶ Example 7.6. SELECT Title, YOP FROM Books;
▶ SELECT DISTINCT removes duplicate values
▶ SELECT ∗ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩.

▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ WHERE ⟨⟨cond⟩⟩ returns all records that
match condition ⟨⟨cond⟩⟩

▶ Example 7.7. SELECT FirstN, LastN FROM Books WHERE YOP = 1995;
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ ORDER BY ⟨⟨colums⟩⟩ orders the

results by ⟨⟨columns⟩⟩
▶ Example 7.8. Ordering can be ascending (ASC) or descending (DESC)

SELECT FirstN, LastN FROM Books ORDER BY LastN ASC, YOP DESC;

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 242 2024-02-08

SQL Querying: The SELECT Statement
▶ SQL uses the SELECT instruction for retrieving data from a database.
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩

restricted to the fields from ⟨⟨columns⟩⟩.
▶ Definition 7.9. We call a SELECT instruction a query.
▶ Example 7.10. SELECT Title, YOP FROM Books;
▶ SELECT DISTINCT removes duplicate values
▶ SELECT ∗ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩.
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ WHERE ⟨⟨cond⟩⟩ returns all records that

match condition ⟨⟨cond⟩⟩
▶ Example 7.11. SELECT FirstN, LastN FROM Books WHERE YOP = 1995;

Willa|Cather
Ernest|Hemingway
Thomas|Wolfe

▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ ORDER BY ⟨⟨colums⟩⟩ orders the
results by ⟨⟨columns⟩⟩

▶ Example 7.12. Ordering can be ascending (ASC) or descending (DESC)
SELECT FirstN, LastN FROM Books ORDER BY LastN ASC, YOP DESC;

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 242 2024-02-08

SQL Querying: The SELECT Statement

▶ SQL uses the SELECT instruction for retrieving data from a database.
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩

restricted to the fields from ⟨⟨columns⟩⟩.
▶ Definition 7.13. We call a SELECT instruction a query.
▶ Example 7.14. SELECT Title, YOP FROM Books;
▶ SELECT DISTINCT removes duplicate values
▶ SELECT ∗ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩.
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ WHERE ⟨⟨cond⟩⟩ returns all records that

match condition ⟨⟨cond⟩⟩
▶ Example 7.15. SELECT FirstN, LastN FROM Books WHERE YOP = 1995;
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ ORDER BY ⟨⟨colums⟩⟩ orders the

results by ⟨⟨columns⟩⟩

▶ Example 7.16. Ordering can be ascending (ASC) or descending (DESC)
SELECT FirstN, LastN FROM Books ORDER BY LastN ASC, YOP DESC;

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 242 2024-02-08

SQL Querying: The SELECT Statement

▶ SQL uses the SELECT instruction for retrieving data from a database.
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩

restricted to the fields from ⟨⟨columns⟩⟩.
▶ Definition 7.17. We call a SELECT instruction a query.
▶ Example 7.18. SELECT Title, YOP FROM Books;
▶ SELECT DISTINCT removes duplicate values
▶ SELECT ∗ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩.
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ WHERE ⟨⟨cond⟩⟩ returns all records that

match condition ⟨⟨cond⟩⟩
▶ Example 7.19. SELECT FirstN, LastN FROM Books WHERE YOP = 1995;
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ ORDER BY ⟨⟨colums⟩⟩ orders the

results by ⟨⟨columns⟩⟩
▶ Example 7.20. Ordering can be ascending (ASC) or descending (DESC)

SELECT FirstN, LastN FROM Books ORDER BY LastN ASC, YOP DESC;

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 242 2024-02-08

Joining Tables in Queries
▶ Problem: We can query single tables, how cross-table queries? E.g. in

Authors
AuthorID
Last Name
First Name
Birth Date
Death Date

Works
Title
PubDate
AuthorID
PublisherID

Publishers
PublisherID
Name
City

▶ Idea: Virtually join tables for the query! (as if we had the large books table)
▶ Definition 7.21. A table join (or simply join) is a means for combining columns

from one (self join) or more tables by using values common to each.
▶ Example 7.22. Joining all three tables from 4.2.

SELECT
Authors.LastN, Authors.FirstN, Authors.YOB, Authors.YOD,
Title, YOP, Publishers.Name, Publishers.City

FROM
Works

INNER JOIN Authors ON Authors.AuthorID = Works.AuthorID
INNER JOIN Publishers ON Publishers.PublisherID = Works.PublisherID

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 243 2024-02-08

Joining Tables in Queries (Result)

▶ Example 7.23.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 244 2024-02-08

Database Views: Persisting Queries

▶ Observation: Via the join in 7.22, the Works table queries like the original
Books table.

▶ Wouldn’t it be nice If we could also insert/update into that?
▶ Definition 7.24. A database view (or simply view) is a virtual table based on

the result set of a query. A view contains rows and columns, just like a real
table. The field in a view are fields from one or more real tables in the database.

▶ Remark 7.25. In many RDBMS we can even insert, delete, and update records
in a view, just as in any other table of the database.
The RDBMS achieves this by automatically translating any change to the view
into a set of changes to the underlying physical tables.

▶ but not in SQLite. (this is an omission due to simplicity)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 245 2024-02-08

Database Views: Persisting Queries (Books Example)

▶ Example 7.26. Use the query from 7.22 to define a view
CREATE VIEW Books AS
SELECT
Authors.LastN AS LastN, Authors.FirstN AS FirstN,
Authors.YOB AS YOB, Authors.YOD AS YOD,
Title, YOP,
Publishers.Name AS Publisher, Publishers.City AS City

FROM
Works

INNER JOIN Authors ON Authors.AuthorID = Works.AuthorID
INNER JOIN Publishers ON Publishers.PublisherID = Works.PublisherID

Use AS clauses in SELECT to specify column names.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 246 2024-02-08

Database Views: Persisting Queries (Books Example)

▶ Example 7.27.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 247 2024-02-08

9.8 Querying via Python

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 247 2024-02-08

Working with Cursors

▶ Definition 8.1. A cursor is a named object that encapsulates a set of query
results in a (virtual) database table.

▶ To work with a cursor in sqlite3,
▶ create a cursor object via the cursor method of your database object.
▶ Open the cursor to establish the result set via its execute method
▶ Fetch the data into local variables as needed from the cursor.

▶ The cursor class in sqlite3 provides additional methods:
▶ fetchone(): return one row as an array/list
▶ fetchall(): return all rows a list of lists.
▶ fetchsome(⟨⟨n⟩⟩): return ⟨⟨n⟩⟩ rows a list of lists.
▶ rowcount(): the number of rows in the cursor

▶ Intuition: Cursors allow programmers to repeatedly use a database query.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 248 2024-02-08

Extended Example: Listing Authors from the Books Table

▶ Example 8.2.
sql = ’SELECT␣FirstN,␣LastN,␣YOB␣FROM␣Books␣WHERE␣YOD␣<␣1950;’
cursor.execute(sql)
print (’There␣are␣’,cursor.rowcount,’␣books,␣whose␣authors␣died␣before␣1950:\n’)
for row in cursor.fetchall() :

print (row[0],’␣␣’,row[1], ’;␣␣born␣’,row[3],’\n’)
print(’That␣is␣all;␣if␣you␣want␣more,␣add␣more␣to␣the␣database!’)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 249 2024-02-08

Inserting Multiple Records (Example)

▶ The cursor.executemany method takes an SQL instruction with parameters and
a list of suitable tuples and executes them.

▶ Example 8.3. So the final form of insertion in 5.1 would be to define variable
with a list of book tuples:
booklist = [

(’Twain’, ’Mark’, 1835, 1910, ’Huckleberry␣Finn’, 1986, ’Penguin␣USA’, ’NY’),
(’Twain’, ’Mark’, 1835, 1910, ’Tom␣Sawyer’, 1987, ’Viking’, ’NY’),
(’Cather’, ’Willa’, 1873, 1947, ’My␣Antonia’, 1995, ’Library␣of␣America’, ’NY’),
(’Hemingway’, ’Ernest’, 1899, 1961, ’The␣Sun␣Also␣Rises’, 1995, ’Scribner’, ’NY’),
(’Wolfe’, ’Thomas’, 1900, 1938, ’Look␣Homeward,␣Angel’, 1995, ’Scribner’, ’NY’),
(’Faulkner’, ’William’, 1897, 1962, ’The␣Sound␣and␣the␣Furry’, 1990, ’Random␣House␣’, ’NY’),
(’Tolkien’, ’John␣Ronald␣Reuel’, 1892, 1973, ’The␣Hobbit’, 1937,’George␣Allen␣ Unwin’, ’UK’)]

and then insert it via a call of cursor.executemany:
cursor.executemany(’INSERT␣INTO␣Books␣VALUES␣(?,?,?,?,?,?,?,?)’,booklist)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 250 2024-02-08

Beware of the Python/SQLite Interaction
▶ What have we learned?: At least you now understand the following web

comic: (https://xkcd.com/327/)

▶ Definition 8.4. We call this an SQL injection attack.

▶ Hint: Imagine a web application where you add student names for enrolment.
name = input("Please␣enter␣student␣name:␣")
cursor.execute(f"INSERT␣INTO␣Students␣VALUES␣(...␣,{Name},␣...);")

For the input Robert’);␣DROP␣TABLE␣Students; this has a Python line
generates and executes the SQL instructions
INSERT INTO Students VALUES (..., ’Robert’); DROP TABLE Students;

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 251 2024-02-08

https://xkcd.com/327/

Beware of the Python/SQLite Interaction
▶ What have we learned?: At least you now understand the following web

comic: (https://xkcd.com/327/)

▶ Definition 8.5. We call this an SQL injection attack.
▶ Hint: Imagine a web application where you add student names for enrolment.

name = input("Please␣enter␣student␣name:␣")
cursor.execute(f"INSERT␣INTO␣Students␣VALUES␣(...␣,{Name},␣...);")

For the input Robert’);␣DROP␣TABLE␣Students; this has a Python line
generates and executes the SQL instructions
INSERT INTO Students VALUES (..., ’Robert’); DROP TABLE Students;

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 251 2024-02-08

https://xkcd.com/327/

SQLite3 Parameter Substitution
▶ Observation 8.6. We often need variables as parameters in cursor.execute.
▶ Example 8.7. In 8.2 we can ask the user for a year.
▶ The python way would be to use f strings

year = input(’Books,␣whose␣author␣died␣before␣what␣year?’)
sql = f’SELECT␣FirstN,␣LastN,␣YOB␣FROM␣Books␣WHERE␣YOD␣<␣{year}’
cursor.execute(sql) # never use f−strings here −−> insecure

But this leads to vulnerability by SQL injection attacks. (; Bobby Tables)
▶ Definition 8.8. sqlite3 supplies a parameter substitution that SQL sanitizes

parameters (removes problematic SQL instructions).
▶ The sqlite3 way uses parameter substitution (multiple ? possible ; tuple)

year = input(’Books,␣whose␣author␣died␣before’)
select = ’SELECT␣Title␣FROM␣Books␣WHERE␣YOD␣<␣?’
cursor.execute(select,(year,))

or in the “named style” ; order-independent (argument is a dictionary)

century = input(’Century␣of␣the␣books?’)
select = ’SELECT␣Title,␣YOP␣FROM␣Books␣WHERE␣YOP␣<=␣:start␣AND␣YOP␣>␣:end’
datadict = {’start’: (century − 1) ∗ 100, ’end’: century ∗ 100}
cursor.execute(select,datadict)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 252 2024-02-08

9.9 Real-Life Input/Output: XML and JSON

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 252 2024-02-08

Filling a DB from via XML (Specification)
▶ Idea: We want to make a database based web application for NYC museums.
▶ Recall the public catalog from Example 4.5.4 (Introduction to XML) in the

IWGS lecture notes, the XML file is online at
https://data.cityofnewyork.us/download/kcrm-j9hh/application/xml
<?xml version="1.0" encoding="UTF−8"?>
<museums>
<museum>
<name>American Folk Art Museum</name>
<phone>212−265−1040</phone>
<address>45 W. 53rd St. (at Fifth Ave.)</address>
<closing>Closed: Monday</closing>
<rates>admission: $9; seniors/students, $7; under 12, free</rates>
<specials>
Pay−what−you−wish: Friday after 5:30pm;
refreshments and music available

</specials>
</museum>
<museum>
<name>American Museum of Natural History</name>
<phone>212−769−5200</phone>
<address>Central Park West (at W. 79th St.)</address>
<closing>Closed: Thanksgiving Day and Christmas Day</closing>

▶ Idea: We need Python program that
▶ provides a SQLite database with a table ’museum’ with columns ’name’, ’phone’,

. . . , ’specials’ of appropriate type
▶ reads the XML file from the URL above and fills the table.

▶ Possible Enhancement: Encapsulate the functionality into a function, then we
could run this program each night and keep the database up to date.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 253 2024-02-08

https://data.cityofnewyork.us/download/kcrm-j9hh/application/xml

Filling a DB from via XML (Specification)

▶ Idea: We want to make a database based web application for NYC museums.
▶ Recall the public catalog from Example 4.5.4 (Introduction to XML) in the

IWGS lecture notes, the XML file is online at
https://data.cityofnewyork.us/download/kcrm-j9hh/application/xml

▶ Idea: We need Python program that
▶ provides a SQLite database with a table ’museum’ with columns ’name’, ’phone’,

. . . , ’specials’ of appropriate type
▶ reads the XML file from the URL above and fills the table.

▶ Possible Enhancement: Encapsulate the functionality into a function, then we
could run this program each night and keep the database up to date.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 253 2024-02-08

https://data.cityofnewyork.us/download/kcrm-j9hh/application/xml

Filling a DB from via XML (Implementation)

▶ Libraries: urllib [UL] to retrieve the file and lxml [LXML] to parse it.

from lxml import etree
from urllib.request import urlopen
url = ’https://data.cityofnewyork.us/download/kcrm−j9hh/application/xml’
document = urlopen(url).read()
tree = etree.fromstring(document)
We now have a (large) XML tree in tree!

▶ Collect all the XML tags in all the museums (for the column names)
▶ We create the SQLite database as discussed in slide 238.
▶ Then we assemble a table specification in a string columns:
▶ Create the Museums table from the specification in columns
▶ Now the most important part: We fill the database
▶ We finalize the transaction as discussed in slide 238.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 254 2024-02-08

Filling a DB from via XML (Implementation)

▶ Libraries: urllib [UL] to retrieve the file and lxml [LXML] to parse it.
▶ Collect all the XML tags in all the museums (for the column names)

tags = []
for museum in tree:

for info in museum:
if info.tag not in tags:

tags.append(info.tag)
▶ We create the SQLite database as discussed in slide 238.

▶ Then we assemble a table specification in a string columns:
▶ Create the Museums table from the specification in columns
▶ Now the most important part: We fill the database
▶ We finalize the transaction as discussed in slide 238.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 254 2024-02-08

Filling a DB from via XML (Implementation)

▶ Libraries: urllib [UL] to retrieve the file and lxml [LXML] to parse it.
▶ Collect all the XML tags in all the museums (for the column names)
▶ We create the SQLite database as discussed in slide 238.
▶ Then we assemble a table specification in a string columns:

columns = ""
for cn in tags:

All columns have their name and type TEXT
columns += f",␣{cn}␣TEXT"

▶ Create the Museums table from the specification in columns
▶ Now the most important part: We fill the database
▶ We finalize the transaction as discussed in slide 238.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 254 2024-02-08

Filling a DB from via XML (Implementation)

▶ Libraries: urllib [UL] to retrieve the file and lxml [LXML] to parse it.
▶ Collect all the XML tags in all the museums (for the column names)
▶ We create the SQLite database as discussed in slide 238.
▶ Then we assemble a table specification in a string columns:
▶ Create the Museums table from the specification in columns

cursor.execute("DROP␣TABLE␣IF␣EXISTS␣Museums;")
cursor.execute(f"""CREATE TABLE Museums

(Id INTEGER PRIMARY KEY {columns});""")

▶ Now the most important part: We fill the database
▶ We finalize the transaction as discussed in slide 238.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 254 2024-02-08

Filling a DB from via XML (Implementation)
▶ Libraries: urllib [UL] to retrieve the file and lxml [LXML] to parse it.
▶ Collect all the XML tags in all the museums (for the column names)
▶ We create the SQLite database as discussed in slide 238.
▶ Then we assemble a table specification in a string columns:
▶ Create the Museums table from the specification in columns
▶ Now the most important part: We fill the database

for museum in tree:
Find and sanitise the contents of all child nodes of this museum.
values = []
for tag in tags:

if museum.find(tag) != None:
values.append(str(museum.find(tag).text).strip())

else:
values.append("−")

Insert the data for this museum into the database.
cols = str(tuple(tags))

We need a tuple of one ? for each column.
vals = "(" + ("?,␣" ∗ len(tags))[:−2] + ")"

insert = f"INSERT␣INTO␣Museums␣{cols}␣VALUES␣{vals}"
cursor.execute(insert, tuple(values))

▶ We finalize the transaction as discussed in slide 238.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 254 2024-02-08

Filling a DB from via XML (Implementation)

▶ Libraries: urllib [UL] to retrieve the file and lxml [LXML] to parse it.
▶ Collect all the XML tags in all the museums (for the column names)
▶ We create the SQLite database as discussed in slide 238.
▶ Then we assemble a table specification in a string columns:
▶ Create the Museums table from the specification in columns
▶ Now the most important part: We fill the database
▶ We finalize the transaction as discussed in slide 238.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 254 2024-02-08

The complete code in one block – a mere 51 lines
import sqlite3
from lxml import etree
from urllib.request import urlopen

Download the XML file and Parse it
url = ’https://data.cityofnewyork.us/download/kcrm−j9hh/application/xml’
document = urlopen(url).read()
tree = etree.fromstring(document)

First run−through of the XML: Collect the info types there,
tags = []
for museum in tree:

for info in museum:
if info.tag not in tags:

tags.append(info.tag)

Next, create database accordingly. First assemble a columns string.
columns = ""
for cn in tags:

All columns have their name and type TEXT

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 255 2024-02-08

JSON — JavaScript Object Notation

▶ Definition 9.1. JSON (JavaScript Object Notation) is an open standard file
format for interchange of structured data. JSON uses human readable text to
store and transmit data objects consisting of attribute–value pairs and sequences.

▶ JSON is very flexible, there need not be a regularizing schema.

▶ Intuition: JSON is for JavaScript as (nested) dictionaries are for Python.
▶ The browser can directly read JSON and use it via JavaScript.
▶ ; AJAX =̂ JavaScript can query the backend for JSON data to update parts of the

DOM. (lightweight interaction)
▶ Consequence:

JSON is the dominant interchange format for web applications.
▶ Another Intuition: JSON objects are like database records, but less rigid.
▶ Idea: Build a special JSON database. (JSON I/O; efficient storage)
▶ Definition 9.2. mongoDB is the most popular NoSQL database system. (no

SQL inside)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 256 2024-02-08

JSON — JavaScript Object Notation

▶ Definition 9.3. JSON (JavaScript Object Notation) is an open standard file
format for interchange of structured data. JSON uses human readable text to
store and transmit data objects consisting of attribute–value pairs and sequences.

▶ JSON is very flexible, there need not be a regularizing schema.
▶ Intuition: JSON is for JavaScript as (nested) dictionaries are for Python.
▶ The browser can directly read JSON and use it via JavaScript.
▶ ; AJAX =̂ JavaScript can query the backend for JSON data to update parts of the

DOM. (lightweight interaction)
▶ Consequence:

JSON is the dominant interchange format for web applications.

▶ Another Intuition: JSON objects are like database records, but less rigid.
▶ Idea: Build a special JSON database. (JSON I/O; efficient storage)
▶ Definition 9.4. mongoDB is the most popular NoSQL database system. (no

SQL inside)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 256 2024-02-08

JSON — JavaScript Object Notation

▶ Definition 9.5. JSON (JavaScript Object Notation) is an open standard file
format for interchange of structured data. JSON uses human readable text to
store and transmit data objects consisting of attribute–value pairs and sequences.

▶ JSON is very flexible, there need not be a regularizing schema.
▶ Intuition: JSON is for JavaScript as (nested) dictionaries are for Python.
▶ The browser can directly read JSON and use it via JavaScript.
▶ ; AJAX =̂ JavaScript can query the backend for JSON data to update parts of the

DOM. (lightweight interaction)
▶ Consequence:

JSON is the dominant interchange format for web applications.
▶ Another Intuition: JSON objects are like database records, but less rigid.
▶ Idea: Build a special JSON database. (JSON I/O; efficient storage)
▶ Definition 9.6. mongoDB is the most popular NoSQL database system. (no

SQL inside)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 256 2024-02-08

Dealing with JSON in Python

▶ Even though JSON concepts and syntax are similar to Python dictionaries,
there are (subtle) differences.

▶ Concretely: Python allows more data types in dictionaries, e.g.
Python JSON equivalent
True true
False false
float Number
int Number
None null
dict Object
list Array
tuple Array

▶ But these differences are systematic and can be overcome via the json
library [JS].
▶ json.dumps(⟨⟨dict⟩⟩) takes a Python dictionary dict, produces a JSON string.
▶ json.loads(⟨⟨json⟩⟩) takes a JSON string json, produces a Python dictionary.

There are many ways to control the output (pretty-printing), see [JS].

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 257 2024-02-08

JSON Output for the NYC Museums DB

▶ Libraries: json for JSON [JS] and sqlite3 for the database.

import json
import sqlite3

▶ Connect to the SQLite database as usual and query the database for everything
▶ Initialize a dictionary and the list of Museums column names
▶ For each of the rows in the Museums table build a row dictionary
▶ Dump the data dictionary as JSON into a file
▶ Close the database as usual.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 258 2024-02-08

JSON Output for the NYC Museums DB

▶ Libraries: json for JSON [JS] and sqlite3 for the database.
▶ Connect to the SQLite database as usual and query the database for everything

db = sqlite3.connect("./museums.sqlite")
cursor = db.cursor()
cursor.execute("SELECT␣∗␣FROM␣Museums;")

▶ Initialize a dictionary and the list of Museums column names
▶ For each of the rows in the Museums table build a row dictionary
▶ Dump the data dictionary as JSON into a file
▶ Close the database as usual.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 258 2024-02-08

JSON Output for the NYC Museums DB

▶ Libraries: json for JSON [JS] and sqlite3 for the database.
▶ Connect to the SQLite database as usual and query the database for everything
▶ Initialize a dictionary and the list of Museums column names

data = {}
data[’museums’] = []
columns = [’name’, ’phone’, ’address’, ’closing’, ’rates’, ’specials’]

▶ For each of the rows in the Museums table build a row dictionary
▶ Dump the data dictionary as JSON into a file
▶ Close the database as usual.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 258 2024-02-08

JSON Output for the NYC Museums DB

▶ Libraries: json for JSON [JS] and sqlite3 for the database.
▶ Connect to the SQLite database as usual and query the database for everything
▶ Initialize a dictionary and the list of Museums column names
▶ For each of the rows in the Museums table build a row dictionary

for row in cursor.fetchall():
Generate a dictionary with columns as keys and entrys as values.
rowdict = { columns[n] : row[n] for n in range(6) }

Add that dictionary to the JSON data structure.
data[’museums’].append(rowdict)

▶ Dump the data dictionary as JSON into a file
▶ Close the database as usual.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 258 2024-02-08

JSON Output for the NYC Museums DB

▶ Libraries: json for JSON [JS] and sqlite3 for the database.
▶ Connect to the SQLite database as usual and query the database for everything
▶ Initialize a dictionary and the list of Museums column names
▶ For each of the rows in the Museums table build a row dictionary
▶ Dump the data dictionary as JSON into a file

with open(’museums.json’, ’w’) as outfile:
json.dump(data, outfile)

▶ Close the database as usual.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 258 2024-02-08

JSON Output for the NYC Museums DB I
import json
import sqlite3

Connect to database and query database for everything.
db = sqlite3.connect("./museums.sqlite")
cursor = db.cursor()
cursor.execute("SELECT␣∗␣FROM␣Museums;")

Setup soon−to−be−JSON dictionary and the necessary columns
data = {}
data[’museums’] = []
columns = [’name’, ’phone’, ’address’, ’closing’, ’rates’, ’specials’]

For every row in the result, do the following:
for row in cursor.fetchall():

Generate a dictionary with columns as keys and entrys as values.
rowdict = { columns[n] : row[n] for n in range(6) }

Add that dictionary to the JSON data structure.
data[’museums’].append(rowdict)

Write collected JSON data to file.
with open(’museums.json’, ’w’) as outfile:

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 259 2024-02-08

JSON Output for the NYC Museums DB II

json.dump(data, outfile)

Close database
db.close()

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 260 2024-02-08

JSON Example (NYC Museums)
▶ Example 9.7. The NYC museums data from Example 4.5.4 (Introduction to

XML) in the IWGS lecture notes as JSON:
We represent the data as a “sequence” of (nested) “dictionaries”
[

{"name": "American Folk Art Museum",
"phone": "212−265−1040",
"address": "45 W. 53rd St. (at Fifth Ave.)",
"closing": "Closed: Monday",
"rates": {

"admission": "$9",
"seniors/students": "$7",
"under 12": "free",

}
"specials": "Pay−what−you−wish: Friday after 5:30pm;

refreshments and music available"
}
{"name": "American Museum of Natural History",
"phone": "212−769−5200",
"address": "Central Park West (at W. 79th St.)"
"closing": "Closed: Thanksgiving Day and Christmas Day"
"rates": {

"admission": "$16",
"seniors/students": "$12",
"kids 2−12": "$9",
"under 2": "free"

}
}
...
]

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 261 2024-02-08

Chapter 10
Project: A Web GUI for a Books Database

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 261 2024-02-08

10.1 A Basic Web Application

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 261 2024-02-08

Building a full Web Application with Database Backend

▶ Observation 1.1. With the technology in 5 (Web Applications) in the IWGS
lecture notes and we can build a full web application in less than
▶ 100 lines of Python code and (back-end/routes)
▶ less than 70 lines of HTML template files. (front end)

▶ Functionality: Manage a database of books, in particular: (e.g. your library at
home)
▶ add a new book to the database
▶ delete a book from the database
▶ update (i.e. change) an existing book

▶ The source is at https://gl.mathhub.info/MiKoMH/IWGS/blob/master/
source/booksapp/code/books-app.py.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 262 2024-02-08

https://gl.mathhub.info/MiKoMH/IWGS/blob/master/source/booksapp/code/books-app.py
https://gl.mathhub.info/MiKoMH/IWGS/blob/master/source/booksapp/code/books-app.py

The Books Application: Setup
▶ We have already seen how to set up the database in slide 250.

import sqlite3
from sqlite3 import Error
from bottle import route, run, debug, template, request, get, post

our database file
database = "books.db"
db = sqlite3.connect(database)

▶ But we want to receive result rows as dictionaries, not as tuples, so we add
db.row_factory = sqlite3.Row

▶ We give ourselves a cursor to work with
cursor = db.cursor()

▶ We start the bottle server
run(host=’localhost’, port=8080, debug=True)

▶ And of course, we eventually commit and close the database in the end
db.commit()
db.close()

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 263 2024-02-08

The Books Application: Setup
▶ We have already seen how to set up the database in slide 250.

import sqlite3
from sqlite3 import Error
from bottle import route, run, debug, template, request, get, post

our database file
database = "books.db"
db = sqlite3.connect(database)

▶ But we want to receive result rows as dictionaries, not as tuples, so we add
db.row_factory = sqlite3.Row

▶ We give ourselves a cursor to work with
cursor = db.cursor()

▶ We start the bottle server
run(host=’localhost’, port=8080, debug=True)

▶ And of course, we eventually commit and close the database in the end
db.commit()
db.close()

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 263 2024-02-08

The Books Application: Setup
▶ We have already seen how to set up the database in slide 250.

import sqlite3
from sqlite3 import Error
from bottle import route, run, debug, template, request, get, post

our database file
database = "books.db"
db = sqlite3.connect(database)

▶ But we want to receive result rows as dictionaries, not as tuples, so we add
db.row_factory = sqlite3.Row

▶ We give ourselves a cursor to work with
cursor = db.cursor()

▶ We start the bottle server
run(host=’localhost’, port=8080, debug=True)

▶ And of course, we eventually commit and close the database in the end
db.commit()
db.close()

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 263 2024-02-08

The Books Application: Backend

▶ We specify the database schema and create the Books table

bookstable = """
CREATE TABLE IF NOT EXISTS Books (

Last varchar(128), First varchar(128),
YOB int, YOD int, Title varchar(255), YOP int,
Publisher varchar(128), City varchar(128)

);
"""

cursor.execute(bookstable)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 264 2024-02-08

The Books Application: Books to Play With

▶ Data about books as a Python list of 8-tuples:
initialbooklist = [

(’Twain’, ’Mark’, 1835, 1910, ’Huckleberry␣Finn’, 1986, ’Penguin␣USA’, ’NY’),
(’Twain’, ’Mark’, 1835, 1910, ’Tom␣Sawyer’, 1987, ’Viking’, ’NY’),
(’Cather’, ’Willa’, 1873, 1947, ’My␣Antonia’, 1995, ’Library␣of␣America’, ’NY’),
(’Hemingway’, ’Ernest’, 1899, 1961, ’The␣Sun␣Also␣Rises’, 1995, ’Scribner’, ’NY’),
(’Wolfe’, ’Thomas’, 1900, 1938, ’Look␣Homeward,␣Angel’, 1995, ’Scribner’, ’NY’),
(’Faulkner’, ’William’, 1897, 1962, ’The␣Sound␣and␣the␣Furry’, 1990, ’Random␣House␣’, ’NY’),
(’Tolkien’, ’John␣Ronald␣Reuel’, 1892, 1973, ’The␣Hobbit’, 1937,’George␣Allen␣ Unwin’, ’UK’)]

▶ If the Books table is empty, we fill it with the tuples in initialbooklist:

row = cursor.execute(’SELECT␣∗␣FROM␣Books␣LIMIT␣1’).fetchall()
if not row:

cursor.executemany(’INSERT␣INTO␣Books␣VALUES␣(?,?,?,?,?,?,?,?)’,initialbooklist)

▶ Idea: To find out if the table is empty (surprisingly clumsy)
▶ we fetch a list with at most one row (LIMIT 1);
▶ if Books is empty, row is the empty list which evaluates to false in a conditional.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 265 2024-02-08

The Books Application: Books to Play With

▶ Data about books as a Python list of 8-tuples:
initialbooklist = [

(’Twain’, ’Mark’, 1835, 1910, ’Huckleberry␣Finn’, 1986, ’Penguin␣USA’, ’NY’),
(’Twain’, ’Mark’, 1835, 1910, ’Tom␣Sawyer’, 1987, ’Viking’, ’NY’),
(’Cather’, ’Willa’, 1873, 1947, ’My␣Antonia’, 1995, ’Library␣of␣America’, ’NY’),
(’Hemingway’, ’Ernest’, 1899, 1961, ’The␣Sun␣Also␣Rises’, 1995, ’Scribner’, ’NY’),
(’Wolfe’, ’Thomas’, 1900, 1938, ’Look␣Homeward,␣Angel’, 1995, ’Scribner’, ’NY’),
(’Faulkner’, ’William’, 1897, 1962, ’The␣Sound␣and␣the␣Furry’, 1990, ’Random␣House␣’, ’NY’),
(’Tolkien’, ’John␣Ronald␣Reuel’, 1892, 1973, ’The␣Hobbit’, 1937,’George␣Allen␣ Unwin’, ’UK’)]

▶ If the Books table is empty, we fill it with the tuples in initialbooklist:

row = cursor.execute(’SELECT␣∗␣FROM␣Books␣LIMIT␣1’).fetchall()
if not row:

cursor.executemany(’INSERT␣INTO␣Books␣VALUES␣(?,?,?,?,?,?,?,?)’,initialbooklist)

▶ Idea: To find out if the table is empty (surprisingly clumsy)
▶ we fetch a list with at most one row (LIMIT 1);
▶ if Books is empty, row is the empty list which evaluates to false in a conditional.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 265 2024-02-08

The Books Application Routes: The Application Root

▶ We only need to add the bottle routes for the various sub pages.
▶ The main page: Listing the book records in the database

@route(’/’)
def books():

query = ’SELECT␣rowid,Last,First,YOB,YOD,Title,YOP,Publisher,City␣FROM␣Books’
cursor.execute(query)
booklist = cursor.fetchall()
return template(’books’,books=booklist,num=len(booklist),cols=cols)

▶ This uses the following templates: the first generates a table of books from the
template file books.tpl

<p>There are {{num}} books in the database</p>
<table>

% include(’th.tpl’, cols=cols)
% for book in books : include(’book.tpl’,∗∗book,cols=cols) end
<tr><th><button>add a book</button></th></tr>

</table>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 266 2024-02-08

The Books Application Root: Result

▶ Here is the page of the books application in its initial state.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 267 2024-02-08

The Books Application Root: More Templates
▶ Recall: The books.tpl template file

<p>There are {{num}} books in the database</p>
<table>

% include(’th.tpl’, cols=cols)
% for book in books : include(’book.tpl’,∗∗book,cols=cols) end
<tr><th><button>add a book</button></th></tr>

</table>
that generates this result via the following two templates:

▶ It inserts the table header via th.tpl:
% for col in cols:
<th>{{col}}</th>

% end
<th rowspan="2">Action</th>

▶ and iterates over the list of books, using the template file book.tpl:
<tr>
<td>{{Last}}</td><td>{{First}}</td><td>{{YOB}}</td><td>{{YOD}}</td>
<td>{{Title}}</td><td>{{YOP}}</td><td>{{Publisher}}</td><td>{{City}}</td>
<td><button>edit</button></td>
<td><button >delete</button></td>

</tr>
▶ Row Id Trick: Note the slightly subtle use of the rowid column in this template.

It is (only) used in the two action buttons to specify which book to add/edit.
Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 268 2024-02-08

The Books Application Routes: Adding Book Records

▶ We add a route for adding a books record (for the add button)

@get(’/add’)
def add():

return template(’add’,cols=cols)

Note that this is the route for the GET method on the path /add.
▶ This uses the template file add.tpl:

<form action="/add" method="post">
<table>
% include(’th.tpl’, cols=cols)
<tr>

% for td in cols:
<td><input type="text" name="{{td}}"/></td>
% end

</tr>
</table>
<input type="submit" value="Submit"/>

</form>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 269 2024-02-08

The Books Application Routes: Adding Book Records
▶ The result is

▶ The action in the HTML form is to POST to the path /add. Thus we need
POST route for /add as well:

@post(’/add’)
def addResponse():

data = parseResponse()
ins = ’’’INSERT INTO Books VALUES

(:Last,:First,:YOB,:YOD,:Title,:YOP,:Publisher,:City)’’’
cursor.execute(ins,data)
return template(’response’, data = data, cols=cols,

rowid = cursor.lastrowid,
text = ’New␣book␣record␣received’)

Note the use of sqlite3 parameter substitution in addResponse!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 270 2024-02-08

The Books Application Routes: Adding Book Records
▶ This uses the function parseResponse, which we will reuse later.

def parseResponse ():
data = {’Last’: request.forms.get(’Last’),

’First’: request.forms.get(’First’),
’YOB’: request.forms.get(’YOB’),
’YOD’: request.forms.get(’YOD’),
’Title’: request.forms.get(’Title’),
’YOP’: request.forms.get(’YOP’),
’Publisher’: request.forms.get(’Publisher’),
’City’: request.forms.get(’City’)}

return data

▶ and the template repsonse.tpl:
<form action=’/’>
<p>{{text}}; Thank you!</p>
<table>
% include(’th.tpl’,cols=cols)
% include(’book.tpl’,∗∗data,cols=cols)

</table>
<input type="submit" value="Continue"/>

</form>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 271 2024-02-08

The Books Application Routes: Adding Book Records

▶ Here is the result after filling in Tolkien’s “Lord of the Rings”:

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 272 2024-02-08

The Books Application Routes: Deleting Book Records

▶ We add a route for deleting book records (for the delete button)

@get(’/delete/<id:int>’)
def delete(id):

cursor.execute(’DELETE␣FROM␣Books␣WHERE␣rowid␣=␣?’,(id,))
return template(’delete’)

Note that we have a dynamic route here: We use the named wildcard <id:int>
to obtain the rowid of the record to be deleted.

▶ The template file delete.tpl does the obvious:

<form action=’/’>
<p>Book record deleted; Thank you!</p>
<input type="submit" value="Continue"/>

</form>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 273 2024-02-08

The Books Application Routes: Editing Book Records

▶ Idea: Combine techniques from the add and delete routes

@get(’/edit/<id:int>’)
def edit(id):

cursor.execute(’SELECT␣∗␣FROM␣Books␣WHERE␣rowid␣=␣?’,(id,))
return template(’edit’,cursor.fetchone(),id = id,cols=cols)

@post(’/edit/<id:int>’)
def editResponse(id):

data = parseResponse()
up = """UPDATE Books

SET Last = :Last, First = :First, YOB = :YOB, YOD = :YOD,
Title = :Title, YOP = :YOP, Publisher = :Publisher,
City = :City

WHERE rowid = :rowid"""
data.update({’rowid’: id})
cursor.execute(up,data)
return template(’response’,data=data,text=’Updated␣book␣record’,cols=cols)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 274 2024-02-08

Books Application Routes: Editing Book Records (cont.)

▶ The template file edit.tpl is similar to add.tpl above, but pre-fills the input fields
with the database record values.
<form action="/edit/{{id}}" method="post">
<table>
% include(’th.tpl’, cols=cols)
<tr>
<td><input type="text" name="Last" value="{{Last}}"/></td>
<td><input type="text" name="First" value="{{First}}"/></td>
<td><input type="text" name="YOB" value="{{YOB}}"/></td>
<td><input type="text" name="YOD" value="{{YOD}}"/></td>
<td><input type="text" name="Title" value="{{Title}}"/></td>
<td><input type="text" name="YOP" value="{{YOP}}"/></td>
<td><input type="text" name="Publisher" value="{{Publisher}}"/></td>
<td><input type="text" name="City" value="{{City}}"/></td>
<td><input type="submit" value="Submit"/></td>

</tr>
</table>

</form>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 275 2024-02-08

Books Application Routes: Editing Book Records (cont.)

▶ The result is

▶ Again, we use the template response.tpl, which we fill with a different message.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 276 2024-02-08

10.2 Access Control and Management

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 276 2024-02-08

Access Control and Management

▶ Problem: Anyone can write, edit, and delete records from the books database.
▶ Solution: Implement a password-based log in procedure and restrict

write/edit/delete access to logged-in agents.
▶ Let’s fix some terminology before we continue

▶ Definition 2.1. Access control is the selective restriction of access to a resource,
access management describes the corresponding process.

▶ Access management usually comprises both authentication and authorization.
▶ Definition 2.2. Authorization refers to a set of rules that determine who is

allowed to do what with a collection of resources.
▶ For our books application we need four things

1. a browser interaction to query the user for username and password
2. a way to transport them to the web application program
3. a method for checking the username/password (authentication)
4. a way the specify who can do what. (authorization)

Realization: 1./2. via HTTP, 4. via bottle basic auth, implement 3. directly.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 277 2024-02-08

Access Control and Management

▶ Problem: Anyone can write, edit, and delete records from the books database.
▶ Solution: Implement a password-based log in procedure and restrict

write/edit/delete access to logged-in agents.
▶ Let’s fix some terminology before we continue
▶ Definition 2.3. Access control is the selective restriction of access to a resource,

access management describes the corresponding process.
▶ Access management usually comprises both authentication and authorization.
▶ Definition 2.4. Authorization refers to a set of rules that determine who is

allowed to do what with a collection of resources.

▶ For our books application we need four things
1. a browser interaction to query the user for username and password
2. a way to transport them to the web application program
3. a method for checking the username/password (authentication)
4. a way the specify who can do what. (authorization)

Realization: 1./2. via HTTP, 4. via bottle basic auth, implement 3. directly.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 277 2024-02-08

Access Control and Management

▶ Problem: Anyone can write, edit, and delete records from the books database.
▶ Solution: Implement a password-based log in procedure and restrict

write/edit/delete access to logged-in agents.
▶ Let’s fix some terminology before we continue
▶ Definition 2.5. Access control is the selective restriction of access to a resource,

access management describes the corresponding process.
▶ Access management usually comprises both authentication and authorization.
▶ Definition 2.6. Authorization refers to a set of rules that determine who is

allowed to do what with a collection of resources.
▶ For our books application we need four things

1. a browser interaction to query the user for username and password
2. a way to transport them to the web application program
3. a method for checking the username/password (authentication)
4. a way the specify who can do what. (authorization)

Realization: 1./2. via HTTP, 4. via bottle basic auth, implement 3. directly.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 277 2024-02-08

HTTP Basic Authentication

▶ Recall that HTTP is a plain text protocol that passes around headers like this
GET /docs/index.html HTTP/1.1
Host: www.nowhere123.com
Accept: image/gif, image/jpeg, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
(blank line)

▶ Idea: For authentication extend the HTTP headers with support for
username/password pairs.

▶ Definition 2.7. HTTP basic authentication introduces a HTTP header
Authorization for base64 encoded pairs ⟨⟨username⟩⟩:⟨⟨password⟩⟩ and a couple
of challenge/response messages.

▶ Problem: Base64 is very easy to decode, so usernames and passwords are
communicated in the clear (very unsafe)

▶ Passwords are “binary data” (think special characters), encoding just keeps them
unchanged over the network. (no encryption)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 278 2024-02-08

HTTP Basic Authentication
▶ Recall that HTTP is a plain text protocol that passes around headers like this
▶ Idea: For authentication extend the HTTP headers with support for

username/password pairs.
▶ Definition 2.8. HTTP basic authentication introduces a HTTP header

Authorization for base64 encoded pairs ⟨⟨username⟩⟩:⟨⟨password⟩⟩ and a couple
of challenge/response messages.

▶ Problem: Base64 is very easy to decode, so usernames and passwords are
communicated in the clear (very unsafe)

▶ Passwords are “binary data” (think special characters), encoding just keeps them
unchanged over the network. (no encryption)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 278 2024-02-08

HTTP Basic Authentication
▶ Recall that HTTP is a plain text protocol that passes around headers like this
▶ Idea: For authentication extend the HTTP headers with support for

username/password pairs.
▶ Definition 2.9. HTTP basic authentication introduces a HTTP header

Authorization for base64 encoded pairs ⟨⟨username⟩⟩:⟨⟨password⟩⟩ and a couple
of challenge/response messages.

▶ Problem: Base64 is very easy to decode, so usernames and passwords are
communicated in the clear (very unsafe)

▶ Passwords are “binary data” (think special characters), encoding just keeps them
unchanged over the network. (no encryption)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 278 2024-02-08

HTTP Basic Authentication

▶ Recall that HTTP is a plain text protocol that passes around headers like this
▶ Idea: For authentication extend the HTTP headers with support for

username/password pairs.
▶ Definition 2.10. HTTP basic authentication introduces a HTTP header

Authorization for base64 encoded pairs ⟨⟨username⟩⟩:⟨⟨password⟩⟩ and a couple
of challenge/response messages.

▶ Problem: Base64 is very easy to decode, so usernames and passwords are
communicated in the clear (very unsafe)

▶ Passwords are “binary data” (think special characters), encoding just keeps them
unchanged over the network. (no encryption)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 278 2024-02-08

Basic Auth in Bottle

▶ Idea: Support the server side of HTTP basic authentication in bottle web-apps.
▶ Implementation: New decorator @auth_basic(⟨⟨function⟩⟩) to mark a route as

password-protected.
▶ Usage: Decorate every route we want to restrict access of with

@auth_basic(⟨⟨function⟩⟩), where ⟨⟨function⟩⟩ is a function that takes two string
arguments (user name and password) and returns a Boolean for the
authorization decision.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 279 2024-02-08

Basic Auth in Bottle: Minimal Viable Example

▶ Example 2.11. A web application with restricted route.

from bottle import run, get, auth_basic

def check(user, password):
return user == "miko" and password == "test"

@get("/")
@auth_basic(check)
def protected():

return "Authorized␣access␣granted!"

run(host="localhost", port=8000)

▶ Idea: Mix restricted and open routes in a partially restricted application.
▶ Extension: Use different check functions for different levels of restriction (user

roles)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 280 2024-02-08

HTTPS: HTTP over TLS
▶ Definition 2.12. Hypertext Transfer Protocol Secure (HTTPS) is an extension

of the Hypertext Transfer Protocol (HTTP) for secure communication over a
computer network. HTTPS achieves this by running HTTP over a TLS
connection.

▶ Consequences for Web Applications: We can use HTTP as usual, except
▶ we gain communication privacy and server authentication,
▶ server and browser need to speak HTTPS, (most do)
▶ the server needs a public key certificate and a private key.

▶ In bottle, we can just swap out the HTTP server to one that can do HTTPS:

run(host=’localhost’,port=’8888’,
server=’gunicorn’,keyfile=’key.pem’,certfile=’cert.pem’)

install it first with pip install gunicorn.
▶ Problem: Where to get the certificate file cert.pem and private key key.pem?
▶ One Solution: Self-sign one, e.g. using

https://www.selfsignedcertificate.com/ (adapt file names)
▶ Remaining Problem: Your browser forces you to specify an exception for

https://localhost:8888 (probably OK for development)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 281 2024-02-08

https://www.selfsignedcertificate.com/
https://localhost:8888

HTTPS: HTTP over TLS
▶ Definition 2.13. Hypertext Transfer Protocol Secure (HTTPS) is an extension

of the Hypertext Transfer Protocol (HTTP) for secure communication over a
computer network. HTTPS achieves this by running HTTP over a TLS
connection.

▶ Consequences for Web Applications: We can use HTTP as usual, except
▶ we gain communication privacy and server authentication,
▶ server and browser need to speak HTTPS, (most do)
▶ the server needs a public key certificate and a private key.

▶ In bottle, we can just swap out the HTTP server to one that can do HTTPS:

run(host=’localhost’,port=’8888’,
server=’gunicorn’,keyfile=’key.pem’,certfile=’cert.pem’)

install it first with pip install gunicorn.

▶ Problem: Where to get the certificate file cert.pem and private key key.pem?
▶ One Solution: Self-sign one, e.g. using

https://www.selfsignedcertificate.com/ (adapt file names)
▶ Remaining Problem: Your browser forces you to specify an exception for

https://localhost:8888 (probably OK for development)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 281 2024-02-08

https://www.selfsignedcertificate.com/
https://localhost:8888

HTTPS: HTTP over TLS
▶ Definition 2.14. Hypertext Transfer Protocol Secure (HTTPS) is an extension

of the Hypertext Transfer Protocol (HTTP) for secure communication over a
computer network. HTTPS achieves this by running HTTP over a TLS
connection.

▶ Consequences for Web Applications: We can use HTTP as usual, except
▶ we gain communication privacy and server authentication,
▶ server and browser need to speak HTTPS, (most do)
▶ the server needs a public key certificate and a private key.

▶ In bottle, we can just swap out the HTTP server to one that can do HTTPS:

run(host=’localhost’,port=’8888’,
server=’gunicorn’,keyfile=’key.pem’,certfile=’cert.pem’)

install it first with pip install gunicorn.
▶ Problem: Where to get the certificate file cert.pem and private key key.pem?

▶ One Solution: Self-sign one, e.g. using
https://www.selfsignedcertificate.com/ (adapt file names)

▶ Remaining Problem: Your browser forces you to specify an exception for
https://localhost:8888 (probably OK for development)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 281 2024-02-08

https://www.selfsignedcertificate.com/
https://localhost:8888

HTTPS: HTTP over TLS
▶ Definition 2.15. Hypertext Transfer Protocol Secure (HTTPS) is an extension

of the Hypertext Transfer Protocol (HTTP) for secure communication over a
computer network. HTTPS achieves this by running HTTP over a TLS
connection.

▶ Consequences for Web Applications: We can use HTTP as usual, except
▶ we gain communication privacy and server authentication,
▶ server and browser need to speak HTTPS, (most do)
▶ the server needs a public key certificate and a private key.

▶ In bottle, we can just swap out the HTTP server to one that can do HTTPS:

run(host=’localhost’,port=’8888’,
server=’gunicorn’,keyfile=’key.pem’,certfile=’cert.pem’)

install it first with pip install gunicorn.
▶ Problem: Where to get the certificate file cert.pem and private key key.pem?
▶ One Solution: Self-sign one, e.g. using

https://www.selfsignedcertificate.com/ (adapt file names)
▶ Remaining Problem: Your browser forces you to specify an exception for

https://localhost:8888 (probably OK for development)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 281 2024-02-08

https://www.selfsignedcertificate.com/
https://localhost:8888

Getting a Real TLS Certificate via Let’s-Encrypt
▶ Intuition: HTTPS is the new “regular HTTP” on the web!
▶ Observation 2.16. A self-signed certificate gives communication privacy but not

authentication ⇝only you yourself vouch for the authenticity of the web site.

▶ Definition 2.17. In a public key infrastructure, the TLS certificate is issued by a
certificate authority, an organization chartered to verify identity and issue TLS
certificates.

▶ Commercial certificate authorities sell trust. (for a lot of money)
They certify e.g. that the https://bmw.com is under control of BMW AG.

▶ Idea: Finding out that you have control over a particular web site on the web
can be automated, if you run a program on the server host.

▶ Definition 2.18. Let’s Encrypt is a not for profit certificate authority that does
this and issues free TLS certificates. (to encourage HTTPS adoption)

▶ Concretely: on a linux server you need two steps
1. install certbot (usually via your package manager)
2. then sudo /usr/local/bin/certbot certonly −−standalone will generate certs.

Details at https://letsencrypt.org.
▶ Success: ≥ 1.000.000.000 TLS certificates, 200.000.000 sites since 2016

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 282 2024-02-08

https://bmw.com
https://letsencrypt.org

Getting a Real TLS Certificate via Let’s-Encrypt
▶ Intuition: HTTPS is the new “regular HTTP” on the web!
▶ Observation 2.19. A self-signed certificate gives communication privacy but not

authentication ⇝only you yourself vouch for the authenticity of the web site.
▶ Definition 2.20. In a public key infrastructure, the TLS certificate is issued by a

certificate authority, an organization chartered to verify identity and issue TLS
certificates.

▶ Commercial certificate authorities sell trust. (for a lot of money)
They certify e.g. that the https://bmw.com is under control of BMW AG.

▶ Idea: Finding out that you have control over a particular web site on the web
can be automated, if you run a program on the server host.

▶ Definition 2.21. Let’s Encrypt is a not for profit certificate authority that does
this and issues free TLS certificates. (to encourage HTTPS adoption)

▶ Concretely: on a linux server you need two steps
1. install certbot (usually via your package manager)
2. then sudo /usr/local/bin/certbot certonly −−standalone will generate certs.

Details at https://letsencrypt.org.
▶ Success: ≥ 1.000.000.000 TLS certificates, 200.000.000 sites since 2016

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 282 2024-02-08

https://bmw.com
https://letsencrypt.org

Getting a Real TLS Certificate via Let’s-Encrypt
▶ Intuition: HTTPS is the new “regular HTTP” on the web!
▶ Observation 2.22. A self-signed certificate gives communication privacy but not

authentication ⇝only you yourself vouch for the authenticity of the web site.
▶ Definition 2.23. In a public key infrastructure, the TLS certificate is issued by a

certificate authority, an organization chartered to verify identity and issue TLS
certificates.

▶ Commercial certificate authorities sell trust. (for a lot of money)
They certify e.g. that the https://bmw.com is under control of BMW AG.

▶ Idea: Finding out that you have control over a particular web site on the web
can be automated, if you run a program on the server host.

▶ Definition 2.24. Let’s Encrypt is a not for profit certificate authority that does
this and issues free TLS certificates. (to encourage HTTPS adoption)

▶ Concretely: on a linux server you need two steps
1. install certbot (usually via your package manager)
2. then sudo /usr/local/bin/certbot certonly −−standalone will generate certs.

Details at https://letsencrypt.org.
▶ Success: ≥ 1.000.000.000 TLS certificates, 200.000.000 sites since 2016

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 282 2024-02-08

https://bmw.com
https://letsencrypt.org

Getting a Real TLS Certificate via Let’s-Encrypt
▶ Intuition: HTTPS is the new “regular HTTP” on the web!
▶ Observation 2.25. A self-signed certificate gives communication privacy but not

authentication ⇝only you yourself vouch for the authenticity of the web site.
▶ Definition 2.26. In a public key infrastructure, the TLS certificate is issued by a

certificate authority, an organization chartered to verify identity and issue TLS
certificates.

▶ Commercial certificate authorities sell trust. (for a lot of money)
They certify e.g. that the https://bmw.com is under control of BMW AG.

▶ Idea: Finding out that you have control over a particular web site on the web
can be automated, if you run a program on the server host.

▶ Definition 2.27. Let’s Encrypt is a not for profit certificate authority that does
this and issues free TLS certificates. (to encourage HTTPS adoption)

▶ Concretely: on a linux server you need two steps
1. install certbot (usually via your package manager)
2. then sudo /usr/local/bin/certbot certonly −−standalone will generate certs.

Details at https://letsencrypt.org.
▶ Success: ≥ 1.000.000.000 TLS certificates, 200.000.000 sites since 2016

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 282 2024-02-08

https://bmw.com
https://letsencrypt.org

10.3 Asynchronous Loading in Modern Web
Apps

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 282 2024-02-08

AJAX for more responsive Web Pages

▶ Definition 3.1. Ajax, (also AJAX; short for “Asynchronous JavaScript and
XML”) is a set of client side techniques for creating asynchronous web
applications.

▶ Definition 3.2. A process p is called asynchronous, iff the parent process (i.e.
the one that spawned p) continues processing without waiting for p to terminate.

▶ Intuition: With Ajax, web applications can send and retrieve data from a server
without interfering with the display and behaviour of the existing page.

▶ Application: By decoupling the data interchange layer from the presentation
layer, Ajax allows web pages and, by extension, web applications, to change
content dynamically without the need to reload the entire page.

▶ Observation: Almost all modern web application extensively utilize Ajax.
▶ Note: In practice, modern implementations commonly use JSON instead of

XML.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 283 2024-02-08

Background: Rendering Pipeline in browsers

▶ Observation: The nested markup codes turn HTML documents into trees.
▶ Definition 3.3. The document object model (DOM) is a data structure for the

HTML document tree together with a standardized set of access methods.
▶ Rendering Pipeline: Rendering a web page proceeds in three steps

1. the browser receives a HTML document,
2. parses it into an internal data structure, the DOM,
3. which is then painted to the screen. (repaint whenever DOM changes)

HTML Document DOM Browser
<html>
<head>
<title>Welcome</title>

</head>
<body>
<p>Hello World!</p>

</body>
</html>

html

head body

title p

Welcome
Hello World!

Welcome

Hello World!
parse

The DOM is notified of any user events (resizing, clicks, hover,. . .)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 284 2024-02-08

Example: Details on Request via AJAX

▶ Idea: Use Ajax in a web application for the books application
▶ The start page just has a list of book titles, and
▶ details are fetched by an Ajax request and presented in line.

▶ Planning the Program: We need a bottle server with
1. a dynamic route that returns JSON-encoded data for a given book,
2. a route for the main page that lists the book titles,
3. stpl template files for list items with an Ajax request, and
4. a JavaScript function that reads the JSON and inserts it into the DOM.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 285 2024-02-08

The finished product (initial state)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 286 2024-02-08

The finished product (with details loaded)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 287 2024-02-08

The Routes (Serving HTML and JSON)

▶ After setting up the database and co, we have a standard route:

@route(’/’)
def books():

cursor.execute(’SELECT␣rowid,␣Title,␣YoP␣FROM␣Books’)
rv = cursor.fetchall()
return template(’titles’, books=rv)

▶ JSON routes and APIs are very easy in bottle: we just return a dictionary.

@route(’/json/<id:int>’)
def book(id):

cursor.execute(f’SELECT␣∗␣FROM␣Books␣WHERE␣rowid={id}’)
row = cursor.fetchone() # Only one result, rowid is a primary key.
return dict(zip(row.keys(), row)) # Pair up column names with values.

▶ Dictionaries and JSON in Bottle: Bottle automatically transforms Python
dictionaries into JSON strings; sets the Content Type header to application/json.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 288 2024-02-08

The Basic Templates
▶ The template titles.tpl is also standard

<html>
% include(’bookshead.tpl’)
<body>
<h1>Books by Title</h1>

% for bk in books: include(’title.tpl’,Id=bk[0], title=bk[1]) end

</body>
</html>

▶ The template title.tpl presents a single book title

{{title}}

<span class="interact" id="interact{{Id}}"

onclick="load_details({{Id}})">(show details)

The empty span will be filled by an Ajax call later!
▶ The interesting things happen in bookshead.tpl (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 289 2024-02-08

The Script load_details

▶ bookshead.tpl starts supplying JQuery and a JQuery templating library:
<script type="application/javascript"

src="http://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>
<script type="application/javascript"

src="https://cdn.jsdelivr.net/gh/codepb/jquery−template@1.5.10/dist/jquery.loadTemplate.min.js"></script>

▶ The main contribution of bookshead.tpl is the JQuery function load_details

async function load_details (numb) {
/∗ Request Info via JSON, feed it to template, update "show␣details" span ∗/
await $.getJSON("/json/" + numb,

function (data) {$("#content" + numb).loadTemplate($("#open"), data)});

which uses the JQuery Ajax call $.getJSON. This takes two arguments:
1. the URL for the HTTP GET request
2. a JavaScript function that is called if the GET request was successful.

The function (in argument 2) is then used to extend the result of
$("#content"+ numb), i.e. that element in the DOM whose id attribute is contenti
where i is the value of the numb variable.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 290 2024-02-08

The Script load_details Continued
▶ We also use JQuery to change the onlick behaviour of the span element (from

load_details to toggle_details, explained below) and the text contained therein.
interact = $("#interact" + numb)

/∗ change click behaviour of interaction span from show to toggle ∗/
interact.removeAttr(’onclick’);
interact.attr(’onClick’, ’toggle_details(’ + numb + ’);’);

/∗ also change included text appropriately ∗/
interact.html("(hide␣details)");

}

▶ Recall the structure of title.tpl: For every book we have a title, a content
element that starts out empty and gets filled when load_details is called, and a
clickable interaction element that triggers load_details.

▶ The toggle_details-function used above does nothing but setting the content
element to hidden or visible and changing the text of the interaction element.
function toggle_details (numb) {
/∗ hide or show appropriate content element ∗/

content = $("#content" + numb);
interact = $("#interact" + numb);

if(content.css(’display’) == ’none’) {
content.show();
interact.html("(hide␣details)");

} else {
content.hide();
interact.html("(show␣details)");

}
}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 291 2024-02-08

The Script load_details Continued
▶ We also use JQuery to change the onlick behaviour of the span element (from

load_details to toggle_details, explained below) and the text contained therein.
▶ Recall the structure of title.tpl: For every book we have a title, a content

element that starts out empty and gets filled when load_details is called, and a
clickable interaction element that triggers load_details.

{{title}}

<span class="interact" id="interact{{Id}}"

onclick="load_details({{Id}})">(show details)

▶ The toggle_details-function used above does nothing but setting the content
element to hidden or visible and changing the text of the interaction element.
function toggle_details (numb) {
/∗ hide or show appropriate content element ∗/

content = $("#content" + numb);
interact = $("#interact" + numb);

if(content.css(’display’) == ’none’) {
content.show();
interact.html("(hide␣details)");

} else {
content.hide();
interact.html("(show␣details)");

}
}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 291 2024-02-08

The Script load_details Continued
▶ We also use JQuery to change the onlick behaviour of the span element (from

load_details to toggle_details, explained below) and the text contained therein.
▶ Recall the structure of title.tpl: For every book we have a title, a content

element that starts out empty and gets filled when load_details is called, and a
clickable interaction element that triggers load_details.

▶ The toggle_details-function used above does nothing but setting the content
element to hidden or visible and changing the text of the interaction element.
function toggle_details (numb) {
/∗ hide or show appropriate content element ∗/

content = $("#content" + numb);
interact = $("#interact" + numb);

if(content.css(’display’) == ’none’) {
content.show();
interact.html("(hide␣details)");

} else {
content.hide();
interact.html("(show␣details)");

}
}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 291 2024-02-08

JQuery Template Processing

▶ Recall: We are still trying to understand
$("#content" + numb).loadTemplate($("#open’’),data)
It extends the empty in title.tpl with a details table:

▶ The loadTemplate method takes two arguments

1. a template; here the result of $(#open),i.e. the element in bookshead.tpl whose id
attribute is open (note the type attribute that makes it HTML)

2. a JavaScript data object: here the argument of the success function: the JSON
record provided by the server under route /json/i

▶ The JQuery template processing places the value of the data−content attribute
into the . The resulting table constitutes the generated “detail view”:

▶ Note: Both the JavaScript object in step 2. as well as the result of the
template processing show afterwards are virtual objects that exist only in
memory. In particular, we do not have to write them explicitly.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 292 2024-02-08

JQuery Template Processing
▶ Recall: We are still trying to understand

$("#content" + numb).loadTemplate($("#open’’),data)
It extends the empty in title.tpl with a details table:

▶ The loadTemplate method takes two arguments
1. a template; here the result of $(#open),i.e. the element in bookshead.tpl whose id

attribute is open (note the type attribute that makes it HTML)

<script type="text/html" id="open">
<table>

<tr>
<th>Author:</th>
<td>

(− −)

</td>
</tr>
<tr>

<th>Publisher:</th>
<td>, </td>

</tr>
</table>

</script>

2. a JavaScript data object: here the argument of the success function: the JSON
record provided by the server under route /json/i

▶ The JQuery template processing places the value of the data−content attribute
into the . The resulting table constitutes the generated “detail view”:

▶ Note: Both the JavaScript object in step 2. as well as the result of the
template processing show afterwards are virtual objects that exist only in
memory. In particular, we do not have to write them explicitly.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 292 2024-02-08

JQuery Template Processing
▶ Recall: We are still trying to understand

$("#content" + numb).loadTemplate($("#open’’),data)
It extends the empty in title.tpl with a details table:

▶ The loadTemplate method takes two arguments
1. a template; here the result of $(#open),i.e. the element in bookshead.tpl whose id

attribute is open (note the type attribute that makes it HTML)
2. a JavaScript data object: here the argument of the success function: the JSON

record provided by the server under route /json/i

{"Last": ’Twain’,
"First": ’Mark’,
"YoB": 1835,
"YoD": 1910,
"Title": ’Huckleberry␣Finn’,
"YoP": 1986,
"Publisher": ’Penguin␣USA’,
"City": ’NY’}

▶ The JQuery template processing places the value of the data−content attribute
into the . The resulting table constitutes the generated “detail view”:

▶ Note: Both the JavaScript object in step 2. as well as the result of the
template processing show afterwards are virtual objects that exist only in
memory. In particular, we do not have to write them explicitly.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 292 2024-02-08

JQuery Template Processing
▶ Recall: We are still trying to understand

$("#content" + numb).loadTemplate($("#open’’),data)
It extends the empty in title.tpl with a details table:

▶ The loadTemplate method takes two arguments
1. a template; here the result of $(#open),i.e. the element in bookshead.tpl whose id

attribute is open (note the type attribute that makes it HTML)
2. a JavaScript data object: here the argument of the success function: the JSON

record provided by the server under route /json/i
▶ The JQuery template processing places the value of the data−content attribute

into the . The resulting table constitutes the generated “detail view”:
<table>
<tr>
<th>Author:</th>
<td>
Mark Twain
(1835−1910)

</td>
</tr>
<tr>
<th>Publisher:</th>
<td>Penguin USA, NY</td>

</tr>
</table>

▶ Note: Both the JavaScript object in step 2. as well as the result of the
template processing show afterwards are virtual objects that exist only in
memory. In particular, we do not have to write them explicitly.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 292 2024-02-08

JQuery Template Processing

▶ Recall: We are still trying to understand
$("#content" + numb).loadTemplate($("#open’’),data)
It extends the empty in title.tpl with a details table:

▶ The loadTemplate method takes two arguments
1. a template; here the result of $(#open),i.e. the element in bookshead.tpl whose id

attribute is open (note the type attribute that makes it HTML)
2. a JavaScript data object: here the argument of the success function: the JSON

record provided by the server under route /json/i
▶ The JQuery template processing places the value of the data−content attribute

into the . The resulting table constitutes the generated “detail view”:
▶ Note: Both the JavaScript object in step 2. as well as the result of the

template processing show afterwards are virtual objects that exist only in
memory. In particular, we do not have to write them explicitly.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 292 2024-02-08

Code: An AJAX-based Frontend for the Books App

▶ booksapp−ajax.py: the web server with two routes
import sqlite3
from bottle import route, run, template, static_file

Connect to database
db = sqlite3.connect("./books.db")
Row factory so we can have column names as keys.
db.row_factory = sqlite3.Row
cursor = db.cursor()

@route(’/’)
def books():

cursor.execute(’SELECT␣rowid,␣Title,␣YoP␣FROM␣Books’)
rv = cursor.fetchall()
return template(’titles’, books=rv)

JSON interfaces are very easy in bottle, just return a dictionary
@route(’/json/<id:int>’)
def book(id):

cursor.execute(f’SELECT␣∗␣FROM␣Books␣WHERE␣rowid={id}’)
row = cursor.fetchone() # Only one result, rowid is a primary key.
return dict(zip(row.keys(), row)) # Pair up column names with values.

run(host=’0.0.0.0’, port=32500, debug=True)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 293 2024-02-08

10.4 Deploying the Books Application as a
Program

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 293 2024-02-08

Deploying The Books Application as a Program

▶ Note: Having a Python script booksapp.py you start with python3 booksapp.py
is sufficient for development.

▶ If you want to deploy it on a web server, you want more: The sysadmin you
deliver your web application to wants to start and manage it like any other UNIX
command.

▶ After all, your web server will most likely be a UNIX (e.g. linux) computer.
▶ In particular behavioural variants should be available via command line options.
▶ Example 4.1. To run the books application without output (−q or −−quiet)

and initialized with the seven book records we want to run
booksapp −q −−initbooks

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 294 2024-02-08

Deploying The Books Application as a Program

▶ Example 4.2. If we forget the options, we need help:

> booksapp −−help
Usage: <yourscript> [options]

Options:
−h, −−help show this help message and exit
−q, −−quiet don’t␣print␣status␣messages␣to␣stdout

␣␣−l␣FILE,␣−−log=FILE␣write␣log␣reports␣to␣FILE
␣␣−−initbooks␣␣␣␣␣␣␣␣␣initialize␣with␣seven␣book␣records

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 295 2024-02-08

Deploying a Python Script as a Shell Command/Executable

▶ We can make our a Python script behave like a native shell command.
▶ The file extension .py is only used by convention, we can leave it out and simply

call the file booksapp.
▶ Then we can add a special Python comments in the first line

#!/usr/bin/python3

which the shell interprets as “call the program python3 on me”.
▶ Finally, we make the file hello executable, i.e. tell the shell the file should behave

like a shell command by issuing

chmod u+x booksapp

in the directory where the file booksapp is stored.
▶ We add the line

export PATH="./:${PATH}"

to the file .bashrc. This tells the shell where to look for programs (here the
respective current directory called .)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 296 2024-02-08

Working with Options in Python

▶ We have the optparse library for dealing with command line options (install with
pip3)

▶ Example 4.3 (Options in the Books Application).

from optparse import OptionParser
parser = OptionParser()
parser.add_option("−l", "−−log", dest="logfile",

help="write␣logs␣to␣FILE", metavar="FILE")
parser.add_option("−q", "−−quiet",

action="store_false", dest="verbose", default=True,
help="don’t␣print␣status␣messages␣to␣stdout")

parser.add_option(’−−version’,dest="version",default=1.0,type="float",
help="the␣version␣of␣the␣books␣application")

options, args = parser.parse_args()
do something with the options and their args.
print (’VERSION␣␣␣:’, options.version)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 297 2024-02-08

Chapter 11
Image Processing

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 297 2024-02-08

11.1 Basics of Image Processing

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 297 2024-02-08

11.1.1 Image Representations

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 297 2024-02-08

Images

▶ Example 1.1 (Zooming in on Augustus). A digital image taken by a
standard DSLR camera. Let’s zoom in on it!Images

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 298 2024-02-08

Images

▶ Example 1.2 (Zooming in on Augustus). And a bit moreImages

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 298 2024-02-08

Images

▶ Example 1.3 (Zooming in on Augustus). When zooming in on an image,
we start to see blocks of colors, which are organized in a regular grid.Images

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 298 2024-02-08

Images as Rasters of Pixels

▶ If we zoom in quite a bit more, we see
▶ Observation: The colors are arranged in a

two- dimensional grid (raster).

▶ Definition 1.4. We call the grid raster and each entry in it pixel (from “picture
element”).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 299 2024-02-08

Colors
Colors

Colors are usually stored in (R,G,B) format.
(3 channels)

R,G,B ∈ [0, 255] -> One Byte per channel per
pixel.

Images in this format can store
256 x 256 x 256 = 256³ ≈ 16 million colors.

▶ Definition 1.5. Colors are usually
represented in RGB format, i.e. as
triples ⟨R,G ,B⟩ with three channels
(also called bands).

▶ R,G ,B∈[0,255] ; One Byte per
channel per pixel.

▶ Images in this format can store
256 · 256 · 256 = 2563 (about 16
million) colors.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 300 2024-02-08

Color Examples

▶ Example 1.6. A color can be represented by three numbers.

Color Examples

(255, 0, 0)
Red

(0, 255, 0)
Green

(0, 0, 255)
Blue

(255, 255, 255)
White

(255, 0, 255)
Magenta

(0, 255, 255)
Cyan

(255, 255, 0)
Yellow

(128, 128, 128)
Gray

R = G = B
Grayscale colors

▶ Definition 1.7. A color is called grayscale, iff R = G = B

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 301 2024-02-08

Normalized Color Values
▶ Observation 1.8. For color representations, only the relative contribution of the

band is imporant.
▶ Definition 1.9. Normalized colors use pixel values between 0 and 1.
▶ Idea: Values are still stored as Bytes, but normalized before use: v ′ = v/255
▶ Example 1.10.

Normalized Color Values

(1, 0, 0)
Red

(0, 1, 0)
Green

(0, 0, 1)
Blue

(1, 1, 1)
White

(1, 0, 1)
Magenta

(0, 1, 1)
Cyan

(1, 1, 0)
Yellow

(0.5, 0.5, 0.5)
Gray

Rather than thinking of a pixel value of being between 0 and 255, it
is beneficial to think in terms of normalized color values, between
0 and 1.
Values are still stored as Bytes, but normalized before use:
v' = v / 255

Kohlhase: Inf. Werkzeuge @ G/SW 2 299 June 21, 2020

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 302 2024-02-08

HTML Color Codes

▶ HTML uses a shorthand notation for colors using hexadecimal numbers.
▶ Example 1.11.

HTML Color Codes
Shorthand notation for colors.
Encode (R,G,B) as hexadecimal numbers.

#FF0000
Red

#00FF00
Green

#0000FF
Blue

#FFFFFF
White

#FF00FF
Magenta

#00FFFF
Cyan

#FFFF00
Yellow

#808080
Gray

Kohlhase: Inf. Werkzeuge @ G/SW 2 299 June 21, 2020

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 303 2024-02-08

The Human Eye

▶ Definition 1.12 (The Human Eye). Light from our surroundings enters our
eye through the lens and then hits the retina on the back of our eye.

The retina has cones and rods, which are responsible for color and brightness
vision, respectively.

▶ Since we are interested in colors here, we will ignore the rods for the purpose of
this lecture.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 304 2024-02-08

The Human Eye – Three Types of Cones

▶ Sensitivity of the Three Cones:

210 CHAPTER 12. IMAGE PROCESSING

The Human Eye – Three Types of Cones

C. Abraham, “A Beginner’s Guide to (CIE) Colorimetry,” Hipster Color
Science, 10-Sep-2016. Available: https://medium.com/hipster-color-
science/a-beginners-guide-to-colorimetry-401f1830b65a.
[Accessed: 13-May-2019].

Slide 305

Light is an electromagnetic radiation. Only a small part of this radiation is visible to the human
visual system (wavelengths around 380 to 740 nanometers).

There are three types of cones, which react to different areas in this spectrum. They roughly
correspond to the wavelengths, which we perceive as red, green, and blue (or rather long, middle,
and short wavelengths).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 305 2024-02-08

The Human Eye – Three Types of Cones

▶ Example 1.13 (We see Yellow).

211

The Human Eye – Three Types of Cones

Example: Yellow
Both “red” and “green” cone are stimulated.

Eye cannot distinguish between yellow light and mixture
of red and green! (both look yellow)

C. Abraham, “A Beginner’s Guide to (CIE) Colorimetry,” Hipster Color
Science, 10-Sep-2016. Available: https://medium.com/hipster-color-
science/a-beginners-guide-to-colorimetry-401f1830b65a.
[Accessed: 13-May-2019].

Slide 306

When we now see yellow light for example, the two cones responsible for long and medium length
wavelengths are stimulated. Our brain converts this stimulus to yellow.

However, let’s imagine we perceive a mixture from red and green light. In this case these two
cones will be stimulated, too! Our brain is incapable of distinguishing between these two scenarios,
since the physical stimulus on our eye is the exact same!

It turns out that we can create all colors as a mixture of red, green, and blue light.

▶ Observation 1.14. We can create all (human-visible) colors as a mixture of red,
green, and blue light.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 306 2024-02-08

Monitors

▶ Definition 1.15. A computer monitor (or just monitor)is an output device for
visual information.

▶ Monitors (usually) have pixels, too!
▶ Definition 1.16. In color monitors, pixels typically consist not of a single light

source, but three distinct subpixels.
▶ If these subpixels are small enough and close together, our eye cannot see that

the light actually comes from different points and thus perceives the mixture
color.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 307 2024-02-08

Image Size

▶ Example 1.17 (Augustus again).

Image: 1440× 746 pixels
Expected file size:
Width ·Height · Channels
1440 · 746 · 3 = 3, 222, 720B ≊ 3MiB

▶ But if we look onto our disk we see somthing completely different:

▶ On disk, images are usually compressed (JPEG, PNG, GIF,WebP etc). JPEG file
size is smaller than PNG, but image quality is lost.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 308 2024-02-08

JPEG Compression Artefacts
▶ Example 1.18 (Augustus again). Here, the Augustus image is saved with a

very high jpeg compression. The file size is tiny (27 KB, compare to 440 KB on
previous slide). However, the image quality suffers.
JPEG creates blocks of pixels, and approximates the colors in this block with as
few bits as possible (according to compression ratio).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 309 2024-02-08

11.1.2 Basic Image Processing in Python

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 309 2024-02-08

The Pillow Library for Image Processing in Python

▶ We will use the Pillow library in IWGS.
▶ Definition 1.19. Pillow is a fork (a version) of the old Python library PIL

(Python Image Library). (hence the name)
▶ Details at https://pillow.readthedocs.io/slides/stable/
▶ Install: pip install Pillow
▶ Example 1.20. Determine the color of a particular pixel

from PIL import Image
load image
im = Image.open(’image.jpg’)
im.show()
access color at pixel (x, y)
x = 15
y = 300
r, g, b = im.getpixel((x, y))

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 310 2024-02-08

https://pillow.readthedocs.io/slides/stable/

The Pillow Library for Image Processing in Python

▶ We will use the Pillow library in IWGS.
▶ Definition 1.22. Pillow is a fork (a version) of the old Python library PIL

(Python Image Library). (hence the name)
▶ Details at https://pillow.readthedocs.io/slides/stable/
▶ Install: pip install Pillow
▶ Example 1.24. Directly use the image object in jupyter notebooks:

from PIL import Image
load image
im = Image.open(’image.jpg’)
im # in Jupyter Notebooks, we can directly use the variable

The notebooks shows the image in a new cell.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 310 2024-02-08

https://pillow.readthedocs.io/slides/stable/

Grayscale Images

▶ Recall: A color is grayscale, iff R=G=B.

216 CHAPTER 12. IMAGE PROCESSING

Grayscale Images

(1, 1, 1)
White

(0.5, 0.5, 0.5)
Gray

(0, 0, 0)
Black

R = G = B

If all channels have the same value, why store all three?
Grayscale images usually have only one channel.

Slide 312

We said before that in colors, which represent shades of gray, all channels have the same value. If
this is true for all colors in an image, we call them grayscale images.

Since it is pointless to store each value three times, grayscale images usually only store one
value per pixel, which is then tripled before display.

▶ Idea: If all channels have the same value, why store all three?
▶ Grayscale images usually have only one channel.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 311 2024-02-08

Grayscale Conversion

▶ Observation 1.25. Humans are very sensitive to green, less to red, and least to
blue.

▶ Definition 1.26. To convert an image to an grayscale image (grayscale
conversion), we compute Gray = 0.21R + 0.71G + 0.08B

▶ Example 1.27 (Grayscale Conversion).

217

Color to Grayscale Conversion

Gray = 0.21 x R + 0.71 x G + 0.08 x B

Humans are very sensitive to green.
Green is therefore weighted higher than red and blue.

Slide 313

Conversion from color to grayscale images is a common operation, which most image processing
tools (Photoshop etc.) support. It serves as a first example of what we can do with images.

Grayscale conversion is a weighted sum of the three channel values. This means, each channel
value is multiplied with a factor and then the values are added to form a single value. Since
humans are very sensitive to green, the G channel has the highest weight.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 312 2024-02-08

More Image Operations
▶ Example 1.28 (More Image Operations).

218 CHAPTER 12. IMAGE PROCESSING

Some more Image Operations

Original SepiaGrayscale Inverse

Threshold Red Channel
Extraction

Each pixel is
processed separately!

Slide 314

Displayed here are some more image operations. All of these process each pixel separately. Im-
plementation of these operations is very simple in Python. Since we store all our pixels in a large
list, we can simply create a for-loop over this list, do our calculation and store the result in a new
image at the same pixel coordinate.

▶ As for grayscale conversion of these process each pixel separately.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 313 2024-02-08

Image Operations in Pillow

▶ The pillow library supports many image operations out of the box.
▶ Example 1.29 (Grayscale Conversion and Inversion in Pillow).

from PIL import Image, ImageOps
im = Image.open (’image.jpg’)
convert to grayscale
gray = ImageOps.grayscale(im)
invert image
inverse = ImageOps.invert(im)

▶ Complete List:
https://pillow.readthedocs.io/en/stable/reference/ImageOps.html

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 314 2024-02-08

https://pillow.readthedocs.io/en/stable/reference/ImageOps.html

Transparency and Image Composition

▶ Sometimes we want to overlay images ; layers.
▶ We need a notion of how transparent a pixel is.
▶ Definition 1.30. We introduce a fourth channel: A (for alpha). Alpha is the

opacity (inverse of transparency). A pixel is now ⟨R,G ,B,A⟩.
▶ Example 1.31 (Combining Images).

219

Slide 315

Pillow supports many image operations. This slide displays two examples. Refer to the docu-
mentation for a complete list.

Transparency
Sometimes we want to overlay images -> Layers
We need a notion of how transparent a pixel is.

We introduce a fourth channel: A (for alpha).
Alpha is the Opacity (inverse of transparency).
A pixel is now (R,G,B,A).

Order of layers is important here! The Augustus image is below the other image!
The Augustus image has NO transparency, the second image does!

+ =

▶ Note: The order of layers is important here: The Augustus image is below the
other image! The Augustus image has no transparency, the second image does!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 315 2024-02-08

Transparency (continued)

▶ Example 1.32 (Combining Images).

220 CHAPTER 12. IMAGE PROCESSING

Slide 316

Transparency is an important operation. In this example we want to layer two images on top of
each other. We thus need to store for each pixel a measure of how transparent it is.

We expand our RGB notion to RGBA, by introducing a fourth channel A. A stands for alpha
and corresponds to the opacity of a pixel, i.e. a value of 0 means zero opacity (fully transparent),
a value of 1 (normalized) means fully opaque (no transparency).

Transparency

(R,G,B,A) = (1, 1, 0, 1)
Full yellow

(R,G,B,A) = (0, 0, 0, 0)
Full transparent

+ =

(R,G,B,A) = (0.6, 0.0, 1.0, 0.5)
Half transparent purple

Rtarget = (1-A) x Raugustus + A x Rpurple,yellow

Gtarget = (1-A) x Gaugustus + A x Gpurple,yellow

Btarget = (1-A) x Baugustus + A x Bpurple,yellow

Slide 317

See examples for the opacity here. Fully transparent regions (visualized by the checkerboard),
have an alpha value of 0. Fully opaque regions have a value of 1. Intermediate values are possible
which correspond to partial transparency.

The final image is then composed by deciding for each pixel how much color from each source
image should contribute.

Note that this is again a per-pixel operation, which can easily be implemented with a simple
for-loop.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 316 2024-02-08

11.1.3 Edge Detection

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 316 2024-02-08

Edge Detection
▶ Goal: Find interesting parts of image (features).

▶ Example 1.33 (Edge Detection). Find edges, i.e. image sections, where color
changes rapidly.

221

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Slide 318

We will now look at more interesting image operations. A typical example especially important
for object recognition in images is to find features. Features are areas in the image, which are
recognizable.

For example, let’s say we want to find so-called edges in our image, i.e. areas where the color
changes rapidly. Edges often correspond to object outlines. We will see an example later.

▶ Definition 1.34. We call a pixel a horizontal edge pixel, iff

lB − IT + IBL − ITL + IBR − ITR>τ

for some threshold τ and a vertical edge pixel, iff

lR − IL + ITR − ITL + IBR − IBL>τ

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 317 2024-02-08

Edge Detection
▶ Goal: Find interesting parts of image (features).
▶ Example 1.35 (Edge Detection). Find edges, i.e. image sections, where color

changes rapidly.

222 CHAPTER 12. IMAGE PROCESSING

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Clearly there is an edge in this image.
How do we detect it automatically?

Slide 319

In this (admittedly simple) example image, we can clearly see, that there is an edge present,
where the color shifts fast from dark to light. We will now explore, how we can detect such an
edge automatically.

Clearly there is an edge in this image. How do we detect it automatically?

▶ Definition 1.36. We call a pixel a horizontal edge pixel, iff

lB − IT + IBL − ITL + IBR − ITR>τ

for some threshold τ and a vertical edge pixel, iff

lR − IL + ITR − ITL + IBR − IBL>τ

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 317 2024-02-08

Edge Detection
▶ Goal: Find interesting parts of image (features).
▶ Example 1.37 (Edge Detection). Find edges, i.e. image sections, where color

changes rapidly.

222 CHAPTER 12. IMAGE PROCESSING

Slide 319

In this (admittedly simple) example image, we can clearly see, that there is an edge present,
where the color shifts fast from dark to light. We will now explore, how we can detect such an
edge automatically.

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Decide for each pixel, if it is an edge.
Here: Is marked pixel an edge pixel?

Decide for each pixel, whether it is on an edge. Here: Is marked pixel an edge
pixel?

▶ Definition 1.38. We call a pixel a horizontal edge pixel, iff

lB − IT + IBL − ITL + IBR − ITR>τ

for some threshold τ and a vertical edge pixel, iff

lR − IL + ITR − ITL + IBR − IBL>τ

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 317 2024-02-08

Edge Detection
▶ Goal: Find interesting parts of image (features).
▶ Example 1.39 (Edge Detection). Find edges, i.e. image sections, where color

changes rapidly.

222 CHAPTER 12. IMAGE PROCESSING

Slide 319

In this (admittedly simple) example image, we can clearly see, that there is an edge present,
where the color shifts fast from dark to light. We will now explore, how we can detect such an
edge automatically.

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Decide for each pixel, if it is an edge.
Here: Is marked pixel an edge pixel?

Inspect neighbor pixels.

▶ Definition 1.40. We call a pixel a horizontal edge pixel, iff

lB − IT + IBL − ITL + IBR − ITR>τ

for some threshold τ and a vertical edge pixel, iff

lR − IL + ITR − ITL + IBR − IBL>τ

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 317 2024-02-08

Edge Detection

▶ Goal: Find interesting parts of image (features).
▶ Example 1.41 (Edge Detection). Find edges, i.e. image sections, where color

changes rapidly.
▶ Definition 1.42. We call a pixel a horizontal edge pixel, iff

lB − IT + IBL − ITL + IBR − ITR>τ

for some threshold τ and a vertical edge pixel, iff

lR − IL + ITR − ITL + IBR − IBL>τ

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 317 2024-02-08

Algorithm: Sobel Filter

▶ Idea: There is a general algorithm that computes this.
▶ Definition 1.43. Given a 3×3 matrix M, the Sobel filter computes a new pixel

value by getting the pixel value of each neighbor in 3x3 window, multiply with
the components in M and adding everything up.

▶ Observation 1.44. Given a suitable matrix M, the Sobel filter computes the
quantities from 1.34.

▶ Example 1.45 (Edge Tests via Sobel Filters).

225

Edge Detection

Usually the center row or column is more important and is thus
higher weighted.

Algorithm: Get pixel value of each neighbor in 3x3 window,
multiply with following weights and add everything up.

-1 -2 -1

0 0

1 2 1

0

Horizontal edge test:

-1 0 1

-2 2

-1 0 1

0

Vertical edge test:

Slide 323

The operation we described here is called Sobel filter 2, named after Irwin Sobel.

Usually the direct neighbors are deemed more important than the diagonal neighbors. The
pixel values of the neighbor pixels are thus weighted, such that the direct neighbors contribute
more.

2https://en.wikipedia.org/wiki/Sobel_operator

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 318 2024-02-08

Edge-Detection in Pillow
▶ Example 1.46 (Augustus and his Edges).

▶ Example 1.47 (Edge Detection in Pillow).
from PIL import Image, ImageFilter
im = Image.open(’augustus.jpg’)
edges = im.filter(ImageFilter.FIND_EDGES)
edges.show() # or just edges in Jupyter

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 319 2024-02-08

Edge-Detection in Pillow
▶ Example 1.48 (Augustus and his Edges).

▶ Example 1.49 (Edge Detection in Pillow).
from PIL import Image, ImageFilter
im = Image.open(’augustus.jpg’)
edges = im.filter(ImageFilter.FIND_EDGES)
edges.show() # or just edges in Jupyter

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 319 2024-02-08

Edge-Detection in Pillow
▶ Example 1.50 (Augustus and his Edges).

▶ Example 1.51 (Edge Detection in Pillow).
from PIL import Image, ImageFilter
im = Image.open(’augustus.jpg’)
edges = im.filter(ImageFilter.FIND_EDGES)
edges.show() # or just edges in Jupyter

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 319 2024-02-08

11.1.4 Scalable Vector Graphics

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 319 2024-02-08

Vector Graphics

▶ Problem: Raster images store colors in pixel grid. Quality deteriorates when
image is zoomed into.

▶ Vector Graphics solve this problem!
Original Zoomed In

Raster Graphics

Vector Graphics

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 320 2024-02-08

Vector Graphics (Definition)

▶ Definition 1.52. Image representation formats that store shape information
instead of individual pixels, are refered to as vector graphics.

▶ Example 1.53. For a circle, just store
▶ center
▶ radius
▶ line width
▶ line color
▶ fill color

▶ Example 1.54. For a line, store
▶ start and end point
▶ line width
▶ line color

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 321 2024-02-08

Vector Graphics Display
▶ There are devices that directly display vector graphics.
▶ Example 1.55.

▶ Definition 1.56. For monitors, vector graphics must be rasterized – i.e.
converted into a raster image before display.

▶ Example 1.57.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 322 2024-02-08

Vector Graphics Display

▶ There are devices that directly display vector graphics.
▶ Example 1.58.
▶ Definition 1.59. For monitors, vector graphics must be rasterized – i.e.

converted into a raster image before display.
▶ Example 1.60.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 322 2024-02-08

Scalable Vector Graphics (SVG)

▶ Definition 1.61. Scalable Vector Graphics (SVG) is an XML-based markup
format for vector graphics.

▶ Example 1.62.

<svg xmlns="http://www.w3.org/2000/svg"
width="100" height="100" >

<circle cx="50" cy="50" r="50"
style="fill:#1cffff;␣stroke:#000000;␣stroke−width:0.1" />

</svg>

▶ The <svg> tag starts the SVG document, width, height declare its size.
▶ The <circle> tag starts a circle. cx, cy is the center point, r is the radius. style

describes how the circle looks.

As the SVG size is 100x100 and the circle is at (50,50) with radius 50, it is
centered and fills the whole region.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 323 2024-02-08

More SVG Primitives

▶ Example 1.63 (Rectangle).

<rect x="..." y="..." width="..." height="..." style="..." />

▶ Example 1.64 (Ellipse).

<ellipse cx="..." cy="..." rx="..." ry="..." style="..." />

▶ Example 1.65 (Line).

<line x1="..." y1="..." x2="..." y2="..." style="..." />

▶ Example 1.66 (Text).

<text x="..." y="..." style="...">This is my text!</text>

▶ Example 1.67 (Image).

<image xlink:href="..." x="..." y="..." width="..." height="..." />

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 324 2024-02-08

SVG Polygons
▶ Example 1.68 (An SVG Triangle).

<svg height="210" width="500" xmlns="http://www.w3.org/2000/svg">
<polygon points="200,10 250,190 160,210"

style="fill:lime;stroke:purple;stroke−width:1"/>
</svg>

▶ Example 1.69 (An SVG Pentagram).
<svg height="210" width="210" xmlns="http://www.w3.org/2000/svg">
<polygon points="100,10 40,198 190,78 10,78 160,198"

style="fill:lime;stroke:purple;stroke−width:5;fill−rule:nonzero;"/>
</svg>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 325 2024-02-08

SVG Polygons
▶ Example 1.70 (An SVG Triangle).

<svg height="210" width="500" xmlns="http://www.w3.org/2000/svg">
<polygon points="200,10 250,190 160,210"

style="fill:lime;stroke:purple;stroke−width:1"/>
</svg>

▶ Example 1.71 (An SVG Pentagram).
<svg height="210" width="210" xmlns="http://www.w3.org/2000/svg">
<polygon points="100,10 40,198 190,78 10,78 160,198"

style="fill:lime;stroke:purple;stroke−width:5;fill−rule:nonzero;"/>
</svg>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 325 2024-02-08

SVG in HTML

▶ SVG can be used in dedicated files (file ending .svg)
and referenced in a tag.

▶ It can however also be written directly in HTML files.
▶ Example 1.72. Triangle from 1.68 embedded in HTML file

<html>
<body>
<svg height="210" width="500" xmlns="http://www.w3.org/2000/svg">
<polygon points="200,10␣250,190␣160,210"

style="fill:lime;stroke:purple;stroke−width:1" />
</svg>

</body>
</html>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 326 2024-02-08

The SVG viewBox Attribute

▶ Idea: The SVG viewBox attribute allows us to zoom into an image.
▶ Example 1.73.

<svg width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

Here, the width and height are scaled by a factor of 2
to give us a little more room. Sometimes we want to
specify a larger image, but only display a section of it.

232 CHAPTER 12. IMAGE PROCESSING

Slide 331

SVG can directly be embedded in HTML!

The SVG viewBox Attribute

<svg width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

In this example the width and height are scaled by a
factor of 2 to give us a little more room.
Sometimes we want to specify a larger image, but
only display a section of it.

Introducing viewBox:

viewBox specifies a region inside our canvas. Only
things inside this region are drawn. The resulting
image is then stretched to the canvas size (zoom
effect).
https://www.sarasoueidan.com/blog/svg-coordinate-systems/

<svg viewBox="0 0 100 100" width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

200

20
0

(50,50)
50

100

10
0 50

(50,50)

Slide 332

▶ Example 1.74.
<svg width="200" height="200" xmlns="..."

viewBox="0␣0␣100␣100" >
<circle cx="50" cy="50" r="50" style="..." />

</svg>

viewBox specifies a region inside our canvas. Only
things inside that are drawn. The resulting image is
then stretched to the canvas size (zoom effect).

232 CHAPTER 12. IMAGE PROCESSING

Slide 331

SVG can directly be embedded in HTML!

The SVG viewBox Attribute

<svg width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

In this example the width and height are scaled by a
factor of 2 to give us a little more room.
Sometimes we want to specify a larger image, but
only display a section of it.

Introducing viewBox:

viewBox specifies a region inside our canvas. Only
things inside this region are drawn. The resulting
image is then stretched to the canvas size (zoom
effect).
https://www.sarasoueidan.com/blog/svg-coordinate-systems/

<svg viewBox="0 0 100 100" width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

200

20
0

(50,50)
50

100

10
0 50

(50,50)

Slide 332

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 327 2024-02-08

11.2 Project: An Image Annotation Tool

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 327 2024-02-08

Project: Kirmes Image Annotation Tool

▶ Problem: Our Books-App project was a fully functional web application, but
does not do anything useful for DigiHumS.

▶ Idea: Extend/Adapt it to a database for image annotation like LabelMe [LM].
▶ Setting: Prof. Peter Bell (formerly at FAU) conducts research on baroque

paintings on parish fairs (Kirmes) and the iconography in these paintings. We
want to build an annotation system for this research.

▶ Project Goals:
1. Collect kirmes images in a database and display them,
2. mark interesting areas and provide meta data,
3. display/edit/search annotated information.

1. is analogous to Books-App, for 2/3. we need to know more
▶ Plan: Lern the necessary technologies in class, build the system in exercises

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 328 2024-02-08

HTML Image Maps

▶ Definition 2.1. HTML image maps mark areas in an digital image and assign
names and links to them.

▶ Example 2.2. An image map adds hover and on click behavior

Clicking on the pupil leads to: Clicking on the vitreous body leads to:
https://en.wikipedia.org/wiki/Pupil https://en.wikipedia.org/wiki/

Vitreous_body

▶ Easy creation of image maps: https://www.image-map.net/

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 329 2024-02-08

https://en.wikipedia.org/wiki/Pupil
https://en.wikipedia.org/wiki/Vitreous_body
https://en.wikipedia.org/wiki/Vitreous_body
https://www.image-map.net/

HTML Image Maps

▶ Definition 2.3. HTML image maps mark areas in an digital image and assign
names and links to them.

▶ Example 2.4. An image map adds hover and on click behavior

<html>
<body>

<map name="image−map">
<area title="Pupil"

href="https://en.wikipedia.org/wiki/Pupil"
coords="102,117,143,219" shape="rect"/>

<area title="Vitreous␣Body"
href="https://en.wikipedia.org/wiki/Vitreous_body"
coords="242,166,107" shape="circle"/>

</map>
</body>

</html>

▶ Easy creation of image maps: https://www.image-map.net/

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 329 2024-02-08

https://www.image-map.net/

Problems of HTML Image Maps

▶ Problem: Image maps do not allow interaction:
▶ the name attribute can only contain unstructured information.
▶ no integrated highlight for image maps area,
▶ no onclick or onmouseover attributes.

But the whole point is to have (arbitrarily) complex metadata for image regions.
▶ New Plan: Use a newer technology: SVG and CSS.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 330 2024-02-08

Handcrafting better Image Annotations with SVG and CSS

▶ Idea: Integrate the image and the areas into one SVG and make areas
interactive via CSS.

▶ Example 2.5 (Paper Prototype). Highlight regions and display information on
hover.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 331 2024-02-08

SVG Annotation Implementation Areas

▶ Implementing Areas as Rectangles:
<svg xmlns="http://www.w3.org/2000/svg" width="1536" height="1024" >
<!−− Image −−>
<image width="1536" height="1024" xlink:href="mount_rushmore.jpg" />
<!−− Areas in image as rects. −−>
<rect x="300" y="125" width="250" height="300"/>
<rect x="550" y="225" width="200" height="300"/>
<rect x="750" y="375" width="200" height="300"/>
<rect x="999" y="375" width="200"height="300"/>

</svg>

Add four <rect>s (one for each president).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 332 2024-02-08

SVG Annotation Implementation Result

▶ Areas as Rectangles – Result: Now the rectangles are visible

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 333 2024-02-08

Adding CSS for the Areas
▶ Example 2.6 (Adding CSS).

rect {fill−opacity:0; stroke:white; stroke−opacity:1; stroke−width:5px}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 334 2024-02-08

Selectively Highlighting Areas
▶ Problem: Now the rectangles are always visible.
▶ Idea: make the rectangles invisible by default only show them on hover.
▶ CSS: We set the stroke opacity to zero by default and add a hover selector.

rect {fill−opacity:0; stroke:white; stroke−opacity:0; stroke−width:5px}
rect:hover {stroke−opacity:1}

243

SVG Annotation Implementation – Hover Effect

Michael Moll, “Die Präsidenten am Mount Rushmore,” https://www.dieweltenbummler.de/, 2017.
Available: https://www.dieweltenbummler.de/wp-content/uploads/2017/05/Mount-Rushmore-von-unten-1536x1024.jpg.
[Accessed: 11-June-2019].

Slide 346

The rectangles are now invisible, expect when hovered over by the mouse.

Slide 347

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 335 2024-02-08

Adding Annotation Text

▶ Adding Annotation Text and making space for it.

<svg xmlns="http://www.w3.org/2000/svg" width="1536" height="1224" >
<!−− Image −−>
<image width="1536" height="1024" xlink:href="mount_rushmore.jpg" />
<!−− Areas in image as rects, text below −−>
<rect x="300" y="125" width="250" height="300" />
<text x="100" y="1200">George Washington</text>
<rect x="550" y="225" width="200" height="300" />
<text x="100" y="1200">Thomas Jefferson</text>
<rect x="750" y="375" width="200" height="300" />
<text x="100" y="1200">Theodore Roosevelt</text>
<rect x="999" y="375" width="200" height="300" />
<text x="100" y="1200">Abraham Lincoln</text>

</svg>

and we add some CSS:
text {fill:black; opacity:1; font−size:100px}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 336 2024-02-08

Adding Annotation Text – Result

▶ Adding Annotation Text – Result:

245

SVG Annotation Implementation – Annotation Text

Michael Moll, “Die Präsidenten am Mount Rushmore,” https://www.dieweltenbummler.de/, 2017.
Available: https://www.dieweltenbummler.de/wp-content/uploads/2017/05/Mount-Rushmore-von-unten-1536x1024.jpg.
[Accessed: 11-June-2019].

Slide 349

We have text! It is not particularly pretty, mainly because all texts are right above each other,
but this is expected so far, since we specified all text tags to have the same position. Our main
problem is, that the text does not react to our mouse input yet. Remember: Our goal is that each
text element is only displayed, when the corresponding rectangle in the image is hovered by the
mouse.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 337 2024-02-08

Selectively Showing Annotations

▶ Problem: Now the annotations are always visible.
▶ Idea: Add CSS hover effect for <rect>s, which effects the |<text>|.
▶ Definition 2.7. The CSS sibling operator + modifies a selector so that it (only)

affects following sibling elements (same level).
▶ Example 2.8. In the CSS directive

246 CHAPTER 12. IMAGE PROCESSING

SVG Annotation Implementation – Hover Annotation

rect {
fill-opacity: 0;
stroke: white;
stroke-opacity: 0;
stroke-width: 5px;

}

rect:hover {
stroke-opacity: 1;

}

text {
fill: black;
opacity: 0;
font-size: 100px;

}

rect:hover + text {
opacity: 1;

}

Add CSS hover effect for <rect>s,
which effects the <text>.

Syntax:
rect:hover + text {<rules>}

Sibling operatorSelector Target

Note, that the + operator only affects
siblings (same level), which are
directly after the selector element.
The order of elements in the HTML is
therefore important!

Slide 350

Our approach is analogous to the hovering of the rectangles we did previously. Let’s give our text
a default opacity of zero, and a hover opacity of one.

Remember though, that the hover selector always influences the element it is specified on, i.e.
when writing text:hover, and then changing the opacity, this changes the opacity when we hover
over the text, not when we hover the rectangle. We thus introduce the CSS sibling operator, +.

Using the sibling operator, it is possible to change another element’s style when a certain
element is hovered (or interacted with in a different way). In this case, we give the rectangle a
hover selector, which then influences the text.

The sibling operator influences the next element of the specified type (in our case text) in the
HTML/SVG. This is why earlier we put the text elements always directly after the rectangle.

This way, when a rectangle is hovered over, the next text element is always the corresponding
description and will thus become visible.

the rules affect the SVG <text> directly after the <rect> element.
▶ Again: the order of elements in the HTML is important!
▶ CSS: We set the opacity to zero by default and add a hover selector for the

following <text> sibling.

text {fill:black; opacity:0; font−size:100px}
rect:hover + text {opacity: 1}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 338 2024-02-08

Image Annotation Tool – Final Result

▶ Now our annotation tool works as expected!
▶ Example 2.9 (Final Result). Highlight regions and display information on

hover.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 339 2024-02-08

11.3 Fun with Image Operations: CSS Filters

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 339 2024-02-08

CSS Image Filters

▶ Goal: Apply image filters (grayscale etc.) directly in CSS.
▶ Example 3.1 (Image Effects via inline CSS).

▶ Disadvantage: The original image is delivered to client. When user saves the
image, they get the original!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 340 2024-02-08

Some more CSS Filters

▶ Example 3.2 (Image Effects via CSS Style sheets).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 341 2024-02-08

Some more CSS Filters

▶ Example 3.3 (Image Effects via CSS Style sheets).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 341 2024-02-08

Some more CSS Filters

▶ Example 3.4 (Image Effects via CSS Style sheets).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 341 2024-02-08

Combining CSS Filters
▶ Idea: We can also combine image filters flexibly. The easist way is when we

define CSS classes for that.
▶ Example 3.5 (Tie CSS Filters to Classes).

<html>
<head>
<style type="text/css">
.blur { filter: blur(4px); }
.brightness { filter: brightness(0.30); }
.contrast { filter: contrast(180%); }
.grayscale { filter: grayscale(100%); }
.huerotate { filter: hue−rotate(180deg); }
.invert { filter: invert(100%); }
.opacity { filter: opacity(50%); }
.saturate { filter: saturate(7); }
.sepia { filter: sepia(100%); }
.shadow { filter: drop−shadow(8px 8px 10px green); }

</style>
</head>
<body>

</body>
</html>

▶ Note: The order is important: Changing the order of filters yields different
results.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 342 2024-02-08

Filtering Everyghing Else

▶ Note: CSS filters don’t just apply to images! (Almost) everything can be
filtered.

▶ Example 3.6 (Filtering Text (Blurring)).

<p style="filter:␣blur(3px)">A severely blurred Text</p>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 343 2024-02-08

CSS Animations

▶ Definition 3.7. CSS animations change state of an object over time.
▶ Example 3.8 (Inverting an image).

img {animation: invertAnimation 1s forwards}

@keyframes invertAnimation {
from {filter: none}
to {filter: invert(100%)}

}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 344 2024-02-08

SVG Filters

▶ Note: Unfortunately in SVG the filtering works differently from CSS.
▶ Example 3.9 (Blurring Mt. Rushmore in SVG).

<svg xmlns="http://www.w3.org/2000/svg" width="1536" height="1024">
<style> image {filter: url(#myCustomFilter)}</style>
<image width="1536" height="1024" xlink:href="mount_rushmore.jpg" />
<!−− Image filter −−>
<filter id="myCustomFilter">
<feGaussianBlur stdDeviation="5" />

</filter>
</svg>

▶ Example 3.10 (SVG Filters can be combined).

<filter id="myCustomFilter">
<feGaussianBlur stdDeviation="5" />
<feColorMatrix type="saturate" values="0.1" />

</filter>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 345 2024-02-08

Chapter 12
Ontologies, Semantic Web for Cultural Heritage

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 345 2024-02-08

12.1 Documenting our Cultural Heritage

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 345 2024-02-08

Documenting our Cultural Heritage

▶ Definition 1.1. Cultural heritage is the legacy of physical artifacts cultural
artefacts and practices, representations, expressions, knowledge, or skills –
intangible cultural heritage (ICH) of a group or society that is inherited from
past generations.

▶ Problem: How can we understand, conserve, and learn from our cultural
heritage?

▶ Traditional Answer: We collect cultural artefacts, study them carefully, relate
them to other artefacts, discuss the findings, and publish the results. We display
the artefacts in museums and galleries, and educate the next generation.

▶ DigHumS Answer: In “Digital Humanities and Social Sciences”, we want to
represent our cultural heritage digitally, and utilize computational tools to do so.

▶ Practical Question: What are the best representation formats and tools?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 346 2024-02-08

Research Data in a Nutshell

▶ Definition 1.2. Research data is any information that has been collected,
observed, generated or created to validate original research findings. Although
usually digital, research data also includes non-digital formats such as laboratory
notebooks and diaries.

▶ Types of research data:
▶ documents, spreadsheets, laboratory notebooks, field notebooks, diaries,
▶ questionnaires, transcripts, codebooks, test responses,
▶ audiotapes, videotapes, photographs, films,
▶ cultural artefacts, specimens, samples,
▶ data files, database contents (video, audio, text, images), digital outputs,
▶ models, algorithms, scripts,
▶ contents of an application (input, output, logfiles, schemata),
▶ methodologies and workflows, standard operating procedures, and protocols,

▶ Non-digital Research Data such as cultural artefacts, laboratory notebooks,
ice-core samples, or sketchbooks is often unique. Materials could be digitized,
but this may not be possible for all types of data.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 347 2024-02-08

FAIR Research Data: The Next Big Thing
▶ Principle: Scientific experiments must be replicated, and derivations must be

checkable to be trustworthy. (consensus of scientific community)
▶ Intuition: Research data must be retained for justification, shared for synergies!
▶ Consequence: Virtually all scientific funding agencies now require some kind of

research data strategy in proposals. (tendency: getting stricter)

▶ Problem: Not all forms of data are actually useable in practice.
▶ Definition 1.3 (Gold Standard Criteria). Research data should be FAIR:
▶ Findable: easy to identify and find for both humans and computers, e.g. with

metadata that facilitate searching for specific datasets,
▶ Accessible: stored for long term so that they can easily be accessed and/or

downloaded with well-defined access conditions, whether at the level of metadata, or
at the level of the actual data,

▶ Interoperable: ready to be combined with other datasets by humans or computers,
without ambiguities in the meanings of terms and values,

▶ Reusable: ready to be used for future research and to be further processed using
computational methods.

Consensus in the research data community; for details see [FAIR18; Wil+16].
▶ Open Question: How can we achieve FAIR-ness in a discipline in practice?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 348 2024-02-08

FAIR Research Data: The Next Big Thing
▶ Principle: Scientific experiments must be replicated, and derivations must be

checkable to be trustworthy. (consensus of scientific community)
▶ Intuition: Research data must be retained for justification, shared for synergies!
▶ Consequence: Virtually all scientific funding agencies now require some kind of

research data strategy in proposals. (tendency: getting stricter)
▶ Problem: Not all forms of data are actually useable in practice.
▶ Definition 1.4 (Gold Standard Criteria). Research data should be FAIR:
▶ Findable: easy to identify and find for both humans and computers, e.g. with

metadata that facilitate searching for specific datasets,
▶ Accessible: stored for long term so that they can easily be accessed and/or

downloaded with well-defined access conditions, whether at the level of metadata, or
at the level of the actual data,

▶ Interoperable: ready to be combined with other datasets by humans or computers,
without ambiguities in the meanings of terms and values,

▶ Reusable: ready to be used for future research and to be further processed using
computational methods.

Consensus in the research data community; for details see [FAIR18; Wil+16].

▶ Open Question: How can we achieve FAIR-ness in a discipline in practice?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 348 2024-02-08

FAIR Research Data: The Next Big Thing
▶ Principle: Scientific experiments must be replicated, and derivations must be

checkable to be trustworthy. (consensus of scientific community)
▶ Intuition: Research data must be retained for justification, shared for synergies!
▶ Consequence: Virtually all scientific funding agencies now require some kind of

research data strategy in proposals. (tendency: getting stricter)
▶ Problem: Not all forms of data are actually useable in practice.
▶ Definition 1.5 (Gold Standard Criteria). Research data should be FAIR:
▶ Findable: easy to identify and find for both humans and computers, e.g. with

metadata that facilitate searching for specific datasets,
▶ Accessible: stored for long term so that they can easily be accessed and/or

downloaded with well-defined access conditions, whether at the level of metadata, or
at the level of the actual data,

▶ Interoperable: ready to be combined with other datasets by humans or computers,
without ambiguities in the meanings of terms and values,

▶ Reusable: ready to be used for future research and to be further processed using
computational methods.

Consensus in the research data community; for details see [FAIR18; Wil+16].
▶ Open Question: How can we achieve FAIR-ness in a discipline in practice?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 348 2024-02-08

Categories of Data in DigiHumS and their Formats
▶ We distinguish four broad categories of data in DigiHumS.
▶ Definition 1.6. Concrete data: digital representations of artefacts in terms of

simple data,
▶ e.g. raster images as pixel arrays in JPEG. (see)
▶ e.g. books identified by author/title/publisher/pubyear. (see)

▶ Definition 1.7. Narrative data: documents and text fragments used for
communicating knowledge to humans.
▶ e.g. plain text and formatted text with markup code (see 4 (Documents as Digital

Objects) in the IWGS lecture notes)
▶ Definition 1.8. Symbolic data: descriptions of object and facts in a formal

language
▶ e.g. 3+5 in Python (see 2 (Introduction to Programming) in the IWGS lecture

notes)
▶ Definition 1.9. Metadata: “data about data”, e.g. who has created these facts,

images, or documents, how do they relate to each other? (not covered yet)
▶ Observation 1.10. Metadata are the resources, DigiHumS results are made of

(; support that)
The other categories digitize artefacts and auxiliary data.

▶ Observation 1.11. We will need all of these – and their combinations – to do
DigiHumS.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 349 2024-02-08

Categories of Data in DigiHumS and their Formats
▶ We distinguish four broad categories of data in DigiHumS.
▶ Definition 1.12. Concrete data: digital representations of artefacts in terms of

simple data,
▶ e.g. raster images as pixel arrays in JPEG. (see)
▶ e.g. books identified by author/title/publisher/pubyear. (see)

▶ Definition 1.13. Narrative data: documents and text fragments used for
communicating knowledge to humans.
▶ e.g. plain text and formatted text with markup code (see 4 (Documents as Digital

Objects) in the IWGS lecture notes)

▶ Definition 1.14. Symbolic data: descriptions of object and facts in a formal
language
▶ e.g. 3+5 in Python (see 2 (Introduction to Programming) in the IWGS lecture

notes)
▶ Definition 1.15. Metadata: “data about data”, e.g. who has created these

facts, images, or documents, how do they relate to each other?(not covered yet)
▶ Observation 1.16. Metadata are the resources, DigiHumS results are made of

(; support that)
The other categories digitize artefacts and auxiliary data.

▶ Observation 1.17. We will need all of these – and their combinations – to do
DigiHumS.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 349 2024-02-08

Categories of Data in DigiHumS and their Formats
▶ We distinguish four broad categories of data in DigiHumS.
▶ Definition 1.18. Concrete data: digital representations of artefacts in terms of

simple data,
▶ e.g. raster images as pixel arrays in JPEG. (see)
▶ e.g. books identified by author/title/publisher/pubyear. (see)

▶ Definition 1.19. Narrative data: documents and text fragments used for
communicating knowledge to humans.
▶ e.g. plain text and formatted text with markup code (see 4 (Documents as Digital

Objects) in the IWGS lecture notes)
▶ Definition 1.20. Symbolic data: descriptions of object and facts in a formal

language
▶ e.g. 3+5 in Python (see 2 (Introduction to Programming) in the IWGS lecture

notes)

▶ Definition 1.21. Metadata: “data about data”, e.g. who has created these
facts, images, or documents, how do they relate to each other?(not covered yet)

▶ Observation 1.22. Metadata are the resources, DigiHumS results are made of
(; support that)
The other categories digitize artefacts and auxiliary data.

▶ Observation 1.23. We will need all of these – and their combinations – to do
DigiHumS.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 349 2024-02-08

Categories of Data in DigiHumS and their Formats
▶ We distinguish four broad categories of data in DigiHumS.
▶ Definition 1.24. Concrete data: digital representations of artefacts in terms of

simple data,
▶ e.g. raster images as pixel arrays in JPEG. (see)
▶ e.g. books identified by author/title/publisher/pubyear. (see)

▶ Definition 1.25. Narrative data: documents and text fragments used for
communicating knowledge to humans.
▶ e.g. plain text and formatted text with markup code (see 4 (Documents as Digital

Objects) in the IWGS lecture notes)
▶ Definition 1.26. Symbolic data: descriptions of object and facts in a formal

language
▶ e.g. 3+5 in Python (see 2 (Introduction to Programming) in the IWGS lecture

notes)
▶ Definition 1.27. Metadata: “data about data”, e.g. who has created these

facts, images, or documents, how do they relate to each other?(not covered yet)
▶ Observation 1.28. Metadata are the resources, DigiHumS results are made of

(; support that)
The other categories digitize artefacts and auxiliary data.

▶ Observation 1.29. We will need all of these – and their combinations – to do
DigiHumS.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 349 2024-02-08

Categories of Data in DigiHumS and their Formats
▶ We distinguish four broad categories of data in DigiHumS.
▶ Definition 1.30. Concrete data: digital representations of artefacts in terms of

simple data,
▶ e.g. raster images as pixel arrays in JPEG. (see)
▶ e.g. books identified by author/title/publisher/pubyear. (see)

▶ Definition 1.31. Narrative data: documents and text fragments used for
communicating knowledge to humans.
▶ e.g. plain text and formatted text with markup code (see 4 (Documents as Digital

Objects) in the IWGS lecture notes)
▶ Definition 1.32. Symbolic data: descriptions of object and facts in a formal

language
▶ e.g. 3+5 in Python (see 2 (Introduction to Programming) in the IWGS lecture

notes)
▶ Definition 1.33. Metadata: “data about data”, e.g. who has created these

facts, images, or documents, how do they relate to each other?(not covered yet)
▶ Observation 1.34. Metadata are the resources, DigiHumS results are made of

(; support that)
The other categories digitize artefacts and auxiliary data.

▶ Observation 1.35. We will need all of these – and their combinations – to do
DigiHumS.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 349 2024-02-08

WissKI: a Virtual Research Env. for Cultural Heritage

▶ Definition 1.36. WissKI is a virtual research environment (VRE) for managing
scholarly data and documenting cultural heritage.

▶ Requirements: For a virtual research environment for cultural heritage, we
need
▶ scientific communication about and documentation of the cultural heritage
▶ networking knowledge from different disciplines (transdisciplinarity)
▶ high-quality data acquisition and analysis
▶ safeguarding authorship, authenticity, persistence
▶ support of scientific publication

▶ WissKI was developed by the research group of Prof. Günther Görtz at FAU
Erlangen-Nürnberg and is now used in hundreds of DH projects across Germany.

▶ FAU supports cultural heritage research by providing hosted WissKI instances.
▶ See https://wisski.data.fau.de for details
▶ We will use an instance for the Kirmes paintings in the homework assignments

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 350 2024-02-08

https://wisski.data.fau.de

Documenting Cultural Heritage: Current State/Preview

▶ Pre-DH State of cultural heritage documentation:
▶ scientific communication/documentation by journal articles/books
▶ persistence: paper records, file cards, databases (like our KirmesDB)
▶ Analysis: manual examination of artefacts in museums/archives.

▶ Idea: Use more technology to do better.
▶ Preview: WissKI uses semantic web technologies to do just that. We will now
▶ Motivate the semantic web (why do we need more than the WWW)
▶ introduce ontologies, linked open data and their technology stacks
▶ show off WissKI and offer a little project based on Kirmes corpus.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 351 2024-02-08

12.2 Systems for Documenting the Cultural
Heritage

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 351 2024-02-08

Documenting Cultural Artefacts: Inventory Books
▶ Definition 2.1. An inventory book is a ledger that identifies, describes, and

records provenance of the artefacts in the collection of a museum.
▶ Example 2.2 (An Inventory Book).

▶ Problems: non-digital, only single-user access, institution-local, no querying,
. . .

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 352 2024-02-08

Cultural Artefacts in Databases: Example

▶ Example 2.3. A typical database for cultural artefacts: (HiDa/MIDAS)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 353 2024-02-08

Cultural Artefacts in Databases: Pro/Con

▶ Databases of Cultural Artefacts – Advantages:
▶ persistence, multi-user access, structured data,
▶ web/catalog publication, standardized exports,
▶ standardized performant query language.

▶ Databases of Cultural Artefacts – Problems:
▶ identifiers are database local ; no trans database relations,
▶ database schemata are inflexible ⇝we need extensions in practice,
▶ free text as an un-structured, untapped resource.

▶ Idea: Relational databases impose structure, let’s try something very
unstructured: the world wide web. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 354 2024-02-08

Cultural Artefacts in Databases II

▶ Example 2.4. Another database for cultural artefacts:

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 355 2024-02-08

Using the Web for the Cultural Heritage

▶ Idea: Why not use the world wide web as a tool?
▶ it is inherently distributed and networked,
▶ the data formats HTML and XML are highly flexible,
▶ gives us instantaneous access to information/images/. . . ,
▶ allows collaboration and discussion. (wikis, fora, blogs)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 356 2024-02-08

Cultural Artefacts on the Web

▶ Example 2.5. A text about a cultural artefact (an etching by Dürer)

▶ Question: Just how does the etching discussed here relate to Albrecht Dürer?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 357 2024-02-08

Using the Web for Cultural Heritage

▶ Problems: with using the Web as a resource
▶ Information is often of dubious quality (imprecise, typos, incomplete, . . .)
▶ Information is primarily written for human consumption
▶ ; not machine-actionable, but full text search works (e.g. Google)
▶ sometimes we can use established structures (e.g. Infobox in Wikipedia)

▶ Evaluation: The web is complementary to databases on the
structure-vs-flexibility tradeoff scale for cultural heritage systems. (we need
both)

▶ Idea: Use the semantic web for cultural heritage
▶ Goal: Make information accessible for humans and machines
▶ meaning capture by reference to real-world objects
▶ globally unique identifiers of cultural artefacts (=̂ URIs)
▶ inference (get out more than you put in!)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 358 2024-02-08

12.3 The Semantic Web

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 358 2024-02-08

The Semantic Web

▶ Definition 3.1. The semantic web is the result including of semantic content in
web pages with the aim of converting the WWW into a machine-understandable
“web of data”, where inference based services can add value to the ecosystem.

▶ Idea: Move web content up the ladder, use inference to make connections.

▶ Example 3.2. Information not explicitly represented (in one place)
Query: Who was US president when Barak Obama was born?
Google: . . . BIRTH DATE: August 04, 1961. . .
Query: Who was US president in 1961?
Google: President: Dwight D. Eisenhower [. . .] John F. Kennedy (starting Jan. 20.)

Humans understand the text and combine the information to get the answer.
Machines need more than just text ; semantic web technology.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 359 2024-02-08

What is the Information a User sees?

▶ Example 3.3. Take the following web-site with a conference announcement
WWW2002
The eleventh International World Wide Web Conference
Sheraton Waikiki Hotel
Honolulu, Hawaii, USA
7-11 May 2002
Registered participants coming from
Australia, Canada, Chile Denmark, France, Germany, Ghana, Hong Kong, India,
Ireland, Italy, Japan, Malta, New Zealand, The Netherlands, Norway,
Singapore, Switzerland, the United Kingdom, the United States, Vietnam, Zaire

On the 7th May Honolulu will provide the backdrop of the eleventh
International World Wide Web Conference.

Speakers confirmed
Tim Berners-Lee: Tim is the well known inventor of the Web,
Ian Foster: Ian is the pioneer of the Grid, the next generation internet.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 360 2024-02-08

What the machine sees

▶ Example 3.4. Here is what the machine “sees” from the conference
announcement:

WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉
S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕
H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA
7↖∞∞M⊣†∈′′∈
R⌉}⟩∫⊔⌉∇⌉⌈√⊣∇⊔⟩⌋⟩√⊣\⊔∫⌋≀⇕⟩\}{∇≀⇕

A⊓∫⊔∇⊣↕⟩⊣⇔C⊣\⊣⌈⊣⇔C⟨⟩↕⌉D⌉\⇕⊣∇∥⇔F∇⊣\⌋⌉⇔G⌉∇⇕⊣\†⇔G⟨⊣\⊣⇔H≀\}K≀\}⇔I\⌈⟩⊣⇔
I∇⌉↕⊣\⌈⇔I⊔⊣↕†⇔J⊣√⊣\⇔M⊣↕⊔⊣⇔N⌉⊒Z⌉⊣↕⊣\⌈⇔T⟨⌉N⌉⊔⟨⌉∇↕⊣\⌈∫⇔N≀∇⊒⊣†⇔

S⟩\}⊣√≀∇⌉⇔S⊒⟩⊔‡⌉∇↕⊣\⌈⇔⊔⟨⌉U\⟩⊔⌉⌈K⟩\}⌈≀⇕⇔⊔⟨⌉U\⟩⊔⌉⌈S⊔⊣⊔⌉∫⇔V⟩⌉⊔\⊣⇕⇔Z⊣⟩∇⌉

O\⊔⟨⌉7⊔⟨M⊣†H≀\≀↕⊓↕⊓⊒⟩↕↕√∇≀⊑⟩⌈⌉⊔⟨⌉⌊⊣⌋∥⌈∇≀√≀{⊔⟨⌉⌉↕⌉⊑⌉\⊔⟨

I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉↙

S√⌉⊣∥⌉∇∫⌋≀\{⟩∇⇕⌉⌈

T⟩⇕B⌉∇\⌉∇∫↖L⌉⌉¬T⟩⇕⟩∫⊔⟨⌉⊒⌉↕↕∥\≀⊒\⟩\⊑⌉\⊔≀∇≀{⊔⟨⌉W⌉⌊⇔
I⊣\F≀∫⊔⌉∇¬I⊣\⟩∫⊔⟨⌉√⟩≀\⌉⌉∇≀{⊔⟨⌉G∇⟩⌈⇔⊔⟨⌉\⌉§⊔}⌉\⌉∇⊣⊔⟩≀\⟩\⊔⌉∇\⌉⊔↙

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 361 2024-02-08

Solution: XML markup with “meaningful” Tags
▶ Example 3.5. Let’s annotate (parts of) the meaning via XML markup

<title>WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉</title>
<place>S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA</place>
<date>7↖∞∞M⊣†∈′′∈</date>
<participants>R⌉}⟩∫⊔⌉∇⌉⌈√⊣∇⊔⟩⌋⟩√⊣\⊔∫⌋≀⇕⟩\}{∇≀⇕

A⊓∫⊔∇⊣↕⟩⊣⇔C⊣\⊣⌈⊣⇔C⟨⟩↕⌉D⌉\⇕⊣∇∥⇔F∇⊣\⌋⌉⇔G⌉∇⇕⊣\†⇔G⟨⊣\⊣⇔H≀\}K≀\}⇔I\⌈⟩⊣⇔
I∇⌉↕⊣\⌈⇔I⊔⊣↕†⇔J⊣√⊣\⇔M⊣↕⊔⊣⇔N⌉⊒Z⌉⊣↕⊣\⌈⇔T⟨⌉N⌉⊔⟨⌉∇↕⊣\⌈∫⇔N≀∇⊒⊣†⇔

S⟩\}⊣√≀∇⌉⇔S⊒⟩⊔‡⌉∇↕⊣\⌈⇔⊔⟨⌉U\⟩⊔⌉⌈K⟩\}⌈≀⇕⇔⊔⟨⌉U\⟩⊔⌉⌈S⊔⊣⊔⌉∫⇔V⟩⌉⊔\⊣⇕⇔Z⊣⟩∇⌉

</participants>
<introduction>O\⊔⟨⌉7⊔⟨M⊣†H≀\≀↕⊓↕⊓⊒⟩↕↕√∇≀⊑⟩⌈⌉⊔⟨⌉⌊⊣⌋∥⌈∇≀√≀{⊔⟨⌉⌉↕⌉⊑⌉\⊔⟨I\↖

⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉↙</introduction>
<program>S√⌉⊣∥⌉∇∫⌋≀\{⟩∇⇕⌉⌈

<speaker>T⟩⇕B⌉∇\⌉∇∫↖L⌉⌉¬T⟩⇕⟩∫⊔⟨⌉⊒⌉↕↕∥\≀⊒\⟩\⊑⌉\⊔≀∇≀{⊔⟨⌉W⌉⌊</speaker>
<speaker>I⊣\F≀∫⊔⌉∇¬I⊣\⟩∫⊔⟨⌉√⟩≀\⌉⌉∇≀{⊔⟨⌉G∇⟩⌈⇔⊔⟨⌉\⌉§⊔}⌉\⌉∇⊣⊔⟩≀\⟩\⊔⌉∇↖

\⌉⊔<speaker>
</program>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 362 2024-02-08

What can we do with this?

▶ Example 3.6. Consider the following fragments:
ℜ⊔⟩⊔↕⌉⊤WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉ℜ∝⊔⟩⊔↕⌉⊤
ℜ√↕⊣⌋⌉⊤S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USAℜ∝√↕⊣⌋⌉⊤

ℜ⌈⊣⊔⌉⊤7↖∞∞M⊣†∈′′∈ℜ∝⌈⊣⊔⌉⊤

Given the markup above, a machine agent can
▶ parse 7∞∞M⊣†∈′′∈ as the date May 7 11 2002 and add this to the user’s calendar,
▶ parse S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA as a destination and find

flights.
▶ But: do not be deceived by your ability to understand English!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 363 2024-02-08

What the machine sees of the XML
▶ Example 3.7. Here is what the machine sees of the XML

<title>WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉</⊔⟩⊔↕⌉>
<√↕⊣⌋⌉>S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA</√↕⊣⌋⌉>

<⌈⊣⊔⌉>7↖∞∞M⊣†∈′′∈</⌈⊣⊔⌉>
<√⊣∇⊔⟩⌋⟩√⊣\⊔∫>R⌉}⟩∫⊔⌉∇⌉⌈√⊣∇⊔⟩⌋⟩√⊣\⊔∫⌋≀⇕⟩\}{∇≀⇕

A⊓∫⊔∇⊣↕⟩⊣⇔C⊣\⊣⌈⊣⇔C⟨⟩↕⌉D⌉\⇕⊣∇∥⇔F∇⊣\⌋⌉⇔G⌉∇⇕⊣\†⇔G⟨⊣\⊣⇔H≀\}K≀\}⇔I\⌈⟩⊣⇔
I∇⌉↕⊣\⌈⇔I⊔⊣↕†⇔J⊣√⊣\⇔M⊣↕⊔⊣⇔N⌉⊒Z⌉⊣↕⊣\⌈⇔T⟨⌉N⌉⊔⟨⌉∇↕⊣\⌈∫⇔N≀∇⊒⊣†⇔

S⟩\}⊣√≀∇⌉⇔S⊒⟩⊔‡⌉∇↕⊣\⌈⇔⊔⟨⌉U\⟩⊔⌉⌈K⟩\}⌈≀⇕⇔⊔⟨⌉U\⟩⊔⌉⌈S⊔⊣⊔⌉∫⇔V⟩⌉⊔\⊣⇕⇔Z⊣⟩∇⌉

</√⊣∇⊔⟩⌋⟩√⊣\⊔∫>

<⟩\⊔∇≀⌈⊓⌋⊔⟩≀\>O\⊔⟨⌉7⊔⟨M⊣†H≀\≀↕⊓↕⊓⊒⟩↕↕√∇≀⊑⟩⌈⌉⊔⟨⌉⌊⊣⌋∥⌈∇≀√≀{⊔⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇↖

\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉↙</⟩\⊔∇≀⌈⊓⌋⊔⟩≀\>
<√∇≀}∇⊣⇕>S√⌉⊣∥⌉∇∫⌋≀\{⟩∇⇕⌉⌈

<∫√⌉⊣∥⌉∇>T⟩⇕B⌉∇\⌉∇∫↖L⌉⌉¬T⟩⇕⟩∫⊔⟨⌉⊒⌉↕↕∥\≀⊒\⟩\⊑⌉\⊔≀∇≀{⊔⟨⌉W⌉⌊</∫√⌉⊣∥⌉∇>

<∫√⌉⊣∥⌉∇>I⊣\F≀∫⊔⌉∇¬I⊣\⟩∫⊔⟨⌉√⟩≀\⌉⌉∇≀{⊔⟨⌉G∇⟩⌈⇔⊔⟨⌉\⌉§⊔}⌉\⌉∇⊣⊔⟩≀\⟩\⊔⌉∇↖

\⌉⊔<∫√⌉⊣∥⌉∇>

</√∇≀}∇⊣⇕>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 364 2024-02-08

The Current Web

▶ Resources: identified by
URIs, untyped

▶ Links: href, src, . . . limited,
non-descriptive

▶ User: Exciting world -
semantics of the resource,
however, gleaned from content

▶ Machine: Very little
information available -
significance of the links only
evident from the context
around the anchor.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 365 2024-02-08

The Semantic Web

▶ Resources: Globally identified
by URIs or Locally scoped
(Blank), Extensible, Relational.

▶ Links: Identified by URIs,
Extensible, Relational.

▶ User: Even more exciting
world, richer user experience.

▶ Machine: More processable
information is available (Data
Web).

▶ Computers and
people: Work, learn and
exchange knowledge effectively.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 366 2024-02-08

Towards a “Machine-Actionable Web”

▶ Recall: We need external agreement on meaning of annotation tags.
▶ Idea: standardize them in a community process (e.g. DIN or ISO)
▶ Problem: Inflexible, Limited number of things can be expressed

▶ Better: Use ontologies to specify meaning of annotations
▶ Ontologies provide a vocabulary of terms
▶ New terms can be formed by combining existing ones
▶ Meaning (semantics) of such terms is formally specified
▶ Can also specify relationships between terms in multiple ontologies

▶ Inference with annotations and ontologies (get out more than you put in!)
▶ Standardize annotations in RDF [KC04] or RDFa [Her+13] and ontologies on

OWL [OWL09]
▶ Harvest RDF and RDFa in to a triplestore or OWL reasoner.
▶ Query that for implied knowledge (e.g. chaining multiple facts from Wikipedia)

SPARQL: Who was US President when Barack Obama was Born?
DBPedia: John F. Kennedy (was president in August 1961)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 367 2024-02-08

Towards a “Machine-Actionable Web”

▶ Recall: We need external agreement on meaning of annotation tags.
▶ Idea: standardize them in a community process (e.g. DIN or ISO)
▶ Problem: Inflexible, Limited number of things can be expressed
▶ Better: Use ontologies to specify meaning of annotations
▶ Ontologies provide a vocabulary of terms
▶ New terms can be formed by combining existing ones
▶ Meaning (semantics) of such terms is formally specified
▶ Can also specify relationships between terms in multiple ontologies

▶ Inference with annotations and ontologies (get out more than you put in!)
▶ Standardize annotations in RDF [KC04] or RDFa [Her+13] and ontologies on

OWL [OWL09]
▶ Harvest RDF and RDFa in to a triplestore or OWL reasoner.
▶ Query that for implied knowledge (e.g. chaining multiple facts from Wikipedia)

SPARQL: Who was US President when Barack Obama was Born?
DBPedia: John F. Kennedy (was president in August 1961)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 367 2024-02-08

Towards a “Machine-Actionable Web”

▶ Recall: We need external agreement on meaning of annotation tags.
▶ Idea: standardize them in a community process (e.g. DIN or ISO)
▶ Problem: Inflexible, Limited number of things can be expressed
▶ Better: Use ontologies to specify meaning of annotations
▶ Ontologies provide a vocabulary of terms
▶ New terms can be formed by combining existing ones
▶ Meaning (semantics) of such terms is formally specified
▶ Can also specify relationships between terms in multiple ontologies

▶ Inference with annotations and ontologies (get out more than you put in!)
▶ Standardize annotations in RDF [KC04] or RDFa [Her+13] and ontologies on

OWL [OWL09]
▶ Harvest RDF and RDFa in to a triplestore or OWL reasoner.
▶ Query that for implied knowledge (e.g. chaining multiple facts from Wikipedia)

SPARQL: Who was US President when Barack Obama was Born?
DBPedia: John F. Kennedy (was president in August 1961)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 367 2024-02-08

12.4 Semantic Networks and Ontologies

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 367 2024-02-08

Semantic Networks [CQ69]

▶ Definition 4.1. A semantic network is a directed graph for representing
knowledge:
▶ nodes represent objects and concepts (classes of objects)

(e.g. John (object) and bird (concept))
▶ edges (called links) represent relations between these (isa, father_of, belongs_to)

▶ Example 4.2. A semantic network for birds and persons:

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

▶ Problem: How do we derive new information from such a network?
▶ Idea: Encode taxonomic information about objects and concepts in special

links (“isa” and “inst”) and specify property inheritance along them in the
process model.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 368 2024-02-08

Deriving Knowledge Implicit in Semantic Networks

▶ Observation 4.3. There is more knowledge in a semantic network than is
explicitly written down.

▶ Example 4.4. In the network below, we “know” that robins have wings and in
particular, Jack has wings.

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

▶ Idea: Links labeled with “isa” and “inst” are special: they propagate properties
encoded by other links.

▶ Definition 4.5. We call links labeled by
▶ “isa” an inclusion or isa link (inclusion of concepts)
▶ “inst” instance or inst link (concept membership)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 369 2024-02-08

Deriving Knowledge Semantic Networks

▶ Definition 4.6 (Inference in Semantic Networks). We call all link labels
except “inst” and “isa” in a semantic network relations.
Let N be a semantic network and R a relation in N such that A isa−→ B

R−→ C or
A

inst−→ B
R−→ C , then we can derive a relation A

R−→ C in N.
The process of deriving new concepts and relations from existing ones is called
inference and concepts/relations that are only available via inference implicit (in
a semantic network).

▶ Intuition: Derived relations represent knowledge that is implicit in the network;
they could be added, but usually are not to avoid clutter.

▶ Example 4.7. Derived relations in 4.4

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

has_part
has_part

isa/

▶ Slogan: Get out more knowledge from a semantic networks than you put in.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 370 2024-02-08

Terminologies and Assertions

▶ Remark 4.8. We should distinguish concepts from objects.
▶ Definition 4.9. We call the subgraph of a semantic network N spanned by the

isa links and relations between concepts the terminology (or TBox, or the
famous Isa Hierarchy) and the subgraph spanned by the inst links and relations
between objects, the assertions (or ABox) of N.

▶ Example 4.10. In this semantic network we keep objects concept apart
notationally:

ABox ClydeRexRoy

TBox

elephant graytigerstriped

higher animal
headlegs

amoeba

moveanimal

instinstinst

color

isaisa

pattern

has_parthas_part

isaisa

can

eat

eat
eat

color

In particular we have objects “Rex”, “Roy”, and “Clyde”, which have (derived)
relations (e.g. Clyde is gray).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 371 2024-02-08

Limitations of Semantic Networks

▶ What is the meaning of a link?
▶ link labels are very suggestive (misleading for humans)
▶ meaning of link types defined in the process model (no denotational semantics)

▶ Problem: No distinction of optional and defining traits!
▶ Example 4.11. Consider a robin that has lost its wings in an accident:

wings

robin

bird

jack

has_part

isa

inst

wings

robin

joe

bird
has_part

inst

isa
cancel

“Cancel-links” have been proposed, but their status and process model are
debatable.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 372 2024-02-08

Another Notation for Semantic Networks

▶ Definition 4.12. Function/argument notation for semantic networks
▶ interprets nodes as arguments (reification to individuals)
▶ interprets links as functions (predicates actually)

▶ Example 4.13.

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

isa(robin,bird)
haspart(bird,wings)
inst(Jack,robin)
owner_of(John, robin)
loves(John,Mary)

▶ Evaluation:
+ linear notation (equivalent, but better to implement on a computer)
+ easy to give process model by deduction (e.g. in Prolog)
– worse locality properties (networks are associative)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 373 2024-02-08

A Denotational Semantics for Semantic Networks

▶ Observation: If we handle isa and inst links specially in function/argument
notation

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

robin ⊆ bird
haspart(bird,wings)
Jack∈robin
owner_of(John, Jack)
loves(John,Mary)

it looks like first-order logic, if we take
▶ a∈S to mean S(a) for an object a and a concept S .
▶ A ⊆ B to mean ∀X A(X)⇒ B(X) and concepts A and B
▶ R(A,B) to mean ∀X A(X)⇒ (∃Y B(Y) ∧ R(X ,Y)) for a relation R.

▶ Idea: Take first-order deduction as process model (gives inheritance for free)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 374 2024-02-08

What is an Ontology

▶ Definition 4.14. An ontology is a formal model of (an aspect of) the world. It
▶ introduces a vocabulary for the objects, concepts, and relations of a given domain,
▶ specifies intended meaning of vocabulary in a description logic using
▶ a set of axioms describing structure of the model
▶ a set of facts describing some particular concrete situation

The vocabulary together with the collection of axioms is often called a
terminology (or TBox) and the collection of facts an ABox (assertions).
In addition to the represented axioms and facts, the description logic determines
a number of derived ones.

▶ Definition 4.15. A vocabulary often includes names for classes and relationship
(also called concepts, and properties).

▶ Remark 4.16. If the description logic has a reasoner, we can automatically
▶ detect inconsistent axiom systems
▶ compute class membership and taxonomies.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 375 2024-02-08

Semantic Web Technology in a Nutshell

▶ Ontologies have become one of the standard devices for representing information
about the Web and the world.

▶ Definition 4.17. This is facilitated and standardized by the :
▶ URIs for representing objects,
▶ RDF triples for representing facts,
▶ RDFa for annotating RDF triples in XML documents,
▶ OWL for representing TBoxes,
▶ triplestores for storing (lots of) RDF triples,
▶ SPARQL for querying ontologies,
▶ description logic reasoners for deciding ontology consistency and concept

subsumption,
▶ Protg for authoring and maintaining ontologies,

▶ Details .

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 376 2024-02-08

12.5 CIDOC CRM: An Ontology for Cultural
Heritage

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 376 2024-02-08

Ontologies for Cultural Artefacts

▶ Idea: Use ontologies for documenting
cultural heritage.
▶ flexible schemata (OWL)
▶ easy data sharing
▶ open standards, free tools
▶ semantic querying via SPARQL

▶ Idea: We can use RDF like a Mindmap:
RDF can
▶ represent relations between objects
▶ classify objects (web resources)

RDFa for document annotation

Formate: RDF

(Resource Description Framework)

● RDF ist ein Framework zur Repräsentation

von Metadaten

● RDF ist ähnlich einer Mindmap

– Beziehungen zwischen

Dingen (Web Resources)

– Adhoc Verknüpfungen

erstellen

– Dinge klassifizieren

● RDF Datenbank:

Triple Store

Martin Scholz, FAU, Informatik 8 17▶ Reference ontologies for interoperability:
▶ SUMO (Suggested Upper Model Ontology) [SUMO] for common knowledge,
▶ FOAF (Friend-of-a-Friend) [FOAF14] for persons and relations,
▶ CIDOC CRM for documentation of cultural heritage. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 377 2024-02-08

CIDOC CRM (Conceptual Reference Model)

▶ Definition 5.1. CIDOC CRM provides an extensible ontology for concepts and
information in cultural heritage and museum documentation. It is the
international standard (ISO 21127:2014) for the controlled exchange of cultural
heritage information. The central classes include
▶ space time specified by title/identifier, place, era/period, time-span, and relationship

to persistent items
▶ events specified by title/identifier, beginning/ending of existence, participants

(people, either individually or in groups), creation/modification of things (physical or
conceptional), and relationship to persistent items

▶ material things specified by title/identifier, place, the information object the material
thing carries, part-of relationships, and relationship to persistent items

▶ immaterial things specified by title/identifier, information objects (propositional or
symbolic), conceptional things, and part-of relationships

▶ Definition 5.2. OWL implements CIDOC CRM in OWL
▶ Details about CIDOC CRM can be found at [CC] and about OWL at [ECRMb;

ECRMa].

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 378 2024-02-08

Protege, an IDE for Ontology Development
▶ Definition 5.3. Protg [Pro] is an integrated development environment for

ontologies represented in the OWL family. It comprises
▶ a visual user interface for exploring and editing ontologies,
▶ a inference component to ensure ontology consistency and minimality,
▶ a facility for querying the loaded ontologies.

▶ Example 5.4 (CIDOCCRM in Protege).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 379 2024-02-08

CIDOC CRM Explored (Classes)
▶ Idea: Use semantic web technology to explore OWL.
▶ CIDOC CRM Classes: concept =̂ OWL “Class” (shown in Protege)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 380 2024-02-08

CIDOC CRM Explored (Relations)
▶ CIDOC CRM Relations: relation =̂ OWL “Object Property” (shown in

Protege)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 381 2024-02-08

CIDOC CRM Structure (Overview)

participate in

Actors Conceptual Objects

Physical Entities

Temporal Entities

affect

Types

refine

A
pp

el
la

tio
ns

id
en

tif
y/

na
m

e

location

occur at within

Time-Spans
Places

CIDOC CRM$
Top Level Classes$

© T. Gill$
G. Goerz, FAU, Inf. 8$

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 382 2024-02-08

CIDOC-CRM Modeling
▶ This is all good and dandy but how do I concretely model cultural artefacts?
▶ Answer: CIDOC CRM is only a TBox, we add an ABox of objects and facts.
▶ Example 5.5. Albrecht Dürer painted Melencolia 1 in Nürnberg

We have two units of information here:
1. Albrecht Dürer painted Melencolia 1
2. this happened in the city of Nürnberg

▶ CIDOC CRM modeling decisions; we start with 1. AD painted M 1
1. A painting m is an “Information Carrier” (E84)
2. It was created in an “Production Event” q (E12)
3. m is related to q via the “was produced by” relation (P108i)
4. q was “carried out by” a “person” d (P14 E21)
5. d “is identified by” an “actor appellation” a (P131 E82)
6. a “has note” the string "Albrecht Dürer”. (P3)

▶ CIDOC CRM modeling decisions; continuing with 2. this happened in N
1. A painting m is an “Information Carrier” (E84)
2. It was created in an “Production Event” q (E12)
3. m is related to q via the “ produced by” relation (P108i)
4. q “took place at” a “place” p (P7 E53)
5. p “is identified by” a “place name” n (P48 E3)
6. n “has note” the string "Nürnberg”. (P3)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 383 2024-02-08

CIDOC CRM Modelling (Ontology Paths)

▶ Modeling Albrecht Dürer painted Melencolia 1 in Nürnberg
in CIDOC CRM

m : E84 q : E12P108i
d : E21P14 a : E82

P131
"A. Dürer"

P3

p : E53
P7

n : E48
P87 "Nürnberg"P3

Note that we need to create the intermediary objects q, d , a, and n.
▶ Problem: That is a lot of work for something very simple.
▶ Definition 5.6. We call sequence of facts si

pi−→ oi , where si = oi−1 an ontology
path and any subtree an ontology group.

▶ Problem Reformulated: A simple statement like Albrecht Dürer painted
Melencolia 1 becomes a whole ontology path in CIDOC CRM.

▶ But: we can reuse intermediary objects and facts, and need fine grained models
for flexibility.

▶ Idea: Maybe systems can take some of the pain out of modeling. (; WissKI)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 384 2024-02-08

Event-Oriented Modeling in CIDOC CRM

▶ Observation 5.7. Ontologies make it easy to model facts with transitive verbs,
e.g. Albrecht Dürer created Melencolia 1 (binary relation)

▶ Problem: What about more complex situations with more arguments? E.g.
1. Albrecht Dürer created Melencolia 1 with an etching needle (ternary)
2. Albrecht Dürer created Melencolia 1 with an etching needle in Nürnberg (four

arguments)
3. Albrecht Dürer created Melencolia 1 with an etching needle in Nürnberg out of

boredom (five)
▶ Standard Solution: Introduce “events” tied to the verb and describe those
▶ Example 5.8. There was a creation event e with

1. Albrecht Dürer as the agent,
2. Melencolia 1 as the product,
3. an etching needle as the means,
4. boredom as the reason,

▶ Consequence: More than 1/3 of CIDOC CRM classes are events of some kind.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 385 2024-02-08

12.6 The Semantic Web Technology Stack

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 385 2024-02-08

Resource Description Framework

▶ Definition 6.1. The Resource Description Framework (RDF) is a framework for
describing resources on the web. It is an XML vocabulary developed by the W3C.

▶ Note: RDF is designed to be read and understood by computers, not to be
displayed to people. (it shows)

▶ Example 6.2. RDF can be used for describing (all “objects on the WWW”)
▶ properties for shopping items, such as price and availability
▶ time schedules for web events
▶ information about web pages (content, author, created and modified date)
▶ content and rating for web pictures
▶ content for search engines
▶ electronic libraries

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 386 2024-02-08

Resources and URIs

▶ RDF describes resources with properties and property values.
▶ RDF uses Web identifiers (URIs) to identify resources.
▶ Definition 6.3. A resource is anything that can have a URI, such as

http://www.fau.de.
▶ Definition 6.4. A property is a resource that has a name, such as author or

homepage, and a property value is the value of a property, such as Michael
Kohlhase or http://kwarc.info/kohlhase. (a property value can be another
resource)

▶ Definition 6.5. A RDF statement s (also known as a triple) consists of a
resource (the subject of s), a property (the predicate of s), and a property value
(the object of s). A set of RDF triples is called an RDF graph.

▶ Example 6.6. Statements: [This slide]subj has been [author]preded by [Michael
Kohlhase]obj

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 387 2024-02-08

http://www.fau.de
http://kwarc.info/kohlhase

XML Syntax for RDF

▶ RDF is a concrete XML vocabulary for writing statements
▶ Example 6.7. The following RDF document could describe the slides as a

resource
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"

xmlns:dc= "http://purl.org/dc/elements/1.1/">
<rdf:Description about="https://.../CompLog/kr/en/rdf.tex">
<dc:creator>Michael Kohlhase</dc:creator>
<dc:source>http://www.w3schools.com/rdf</dc:source>

</rdf:Description>
</rdf:RDF>

This RDF document makes two statements:
▶ The subject of both is given in the about attribute of the rdf:Description element
▶ The predicates are given by the element names of its children
▶ The objects are given in the elements as URIs or literal content.

▶ Intuitively: RDF is a web-scalable way to write down ABox information.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 388 2024-02-08

RDFa as an Inline RDF Markup Format

▶ Problem: RDF is a standoff markup format (annotate by URIs pointing into
other files)
Definition 6.8. RDFa (RDF annotations) is a markup scheme for inline
annotation (as XML attributes) of RDF triples.

▶ Example 6.9.
<div xmlns:dc="http://purl.org/dc/elements/1.1/" id="address">

<h2 about="#address" property="dc:title">RDF as an Inline RDF Markup Format</h2>
<h3 about="#address" property="dc:creator">Michael Kohlhase</h3>
<em about="#address" property="dc:date" datatype="xsd:date"

content="2009−11−11">November 11., 2009
</div>

https://svn.kwarc.info/.../CompLog/kr/slides/rdfa.tex

RDFa as an Inline RDF Markup Format

2009−11−11 (xsd:date)

Michael Kohlhase

http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/date

http://purl.org/dc/elements/1.1/creator

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 389 2024-02-08

https://svn.kwarc.info/.../CompLog/kr/slides/rdfa.tex
http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/date
http://purl.org/dc/elements/1.1/creator

RDF as an ABox Language for the Semantic Web

▶ Idea: RDF triples are ABox entries h R s or h:φ.
▶ Example 6.10. h is the resource for Ian Horrocks, s is the resource for Ulrike

Sattler, R is the relation “hasColleague”, and φ is the class foaf:Person

<rdf:Description about="some.uri/person/ian_horrocks">
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<hasColleague resource="some.uri/person/uli_sattler"/>

</rdf:Description>
▶ Idea: Now, we need an similar language for TBoxes (based on ALC)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 390 2024-02-08

OWL as an Ontology Language for the Semantic Web

▶ Task: Complement RDF (ABox) with a TBox language.
▶ Idea: Make use of resources that are values in rdf:type. (called Classes)
▶ Definition 6.11. OWL (the ontology web language) is a language for encoding

TBox information about RDF classes.
▶ Example 6.12 (A concept definition for “Mother”).

Mother=Woman ⊓ Parent is represented as
XML Syntax Functional Syntax

<EquivalentClasses>
<Class IRI="Mother"/>
<ObjectIntersectionOf>
<Class IRI="Woman"/>
<Class IRI="Parent"/>

</ObjectIntersectionOf>
</EquivalentClasses>

EquivalentClasses(
:Mother
ObjectIntersectionOf(
:Woman
:Parent

)
)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 391 2024-02-08

Extended OWL Example in Functional Syntax

▶ Example 6.13. The semantic network from 4.4 can be expressed in OWL (in
functional syntax)

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

▶ ClassAssertion formalizes the “inst” relation,
▶ ObjectPropertyAssertion formalizes relations,
▶ SubClassOf formalizes the “isa” relation,
▶ for the “has_part” relation, we have to specify that all birds have a part that is a

wing or equivalently the class of birds is a subclass of all objects that have some
wing.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 392 2024-02-08

Extended OWL Example in Functional Syntax

▶ Example 6.14. The semantic network from 4.4 can be expressed in OWL (in
functional syntax)

ClassAssertion (:Jack :robin)
ClassAssertion(:John :person)
ClassAssertion (:Mary :person)
ObjectPropertyAssertion(:loves :John :Mary)
ObjectPropertyAssertion(:owner :John :Jack)
SubClassOf(:robin :bird)
SubClassOf (:bird ObjectSomeValuesFrom(:hasPart :wing))

▶ ClassAssertion formalizes the “inst” relation,
▶ ObjectPropertyAssertion formalizes relations,
▶ SubClassOf formalizes the “isa” relation,
▶ for the “has_part” relation, we have to specify that all birds have a part that is a

wing or equivalently the class of birds is a subclass of all objects that have some
wing.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 392 2024-02-08

SPARQL an RDF Query language

▶ Definition 6.15. SPARQL, the “SPARQL Protocol and RDF Query Language”
is an RDF query language, able to retrieve and manipulate data stored in RDF.
The SPARQL language was standardized by the World Wide Web Consortium in
2008 [PS08].

▶ SPARQL is pronounced like the word “sparkle”.
▶ Definition 6.16. A system is called a SPARQL endpoint, iff it answers SPARQL

queries.
▶ Example 6.17. Query for person names and their e-mails from a triplestore with

FOAF data.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?email
WHERE {
?person a foaf:Person.
?person foaf:name ?name.
?person foaf:mbox ?email.

}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 393 2024-02-08

SPARQL Applications: DBPedia

▶ Typical Application: DBPedia screen-scrapes
Wikipedia fact boxes for RDF triples and uses SPARQL
for querying the induced triplestore.

▶ Example 6.18 (DBPedia Query). People who were
born in Erlangen before 1900
(http://dbpedia.org/snorql)

SELECT ?name ?birth ?death ?person WHERE {
?person dbo:birthPlace :Erlangen .
?person dbo:birthDate ?birth .
?person foaf:name ?name .
?person dbo:deathDate ?death .
FILTER (?birth < "1900−01−01"^^xsd:date) .

}
ORDER BY ?name

▶ The answers include Emmy Noether and Georg Simon
Ohm.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 394 2024-02-08

http://dbpedia.org/snorql

A more complex DBPedia Query
▶ Demo: DBPedia http://dbpedia.org/snorql/

Query: Soccer players born in a country with more than 10 M inhabitants, who
play as goalie in a club that has a stadium with more than 30.000 seats.
Answer: computed by DBPedia from a SPARQL query

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 395 2024-02-08

http://dbpedia.org/snorql/
https://goo.gl/2i3ng1

Triple Stores: the Semantic Web Databases

▶ Definition 6.19. A triplestore or RDF store is a purpose-built database for the
storage RDF graphs and retrieval of RDF triples usually through variants of
SPARQL.

▶ Common triplestores include
▶ Virtuoso: https://virtuoso.openlinksw.com/ (used in DBpedia)
▶ GraphDB: http://graphdb.ontotext.com/ (often used in WissKI)
▶ blazegraph: https://blazegraph.com/ (open source; used in WikiData)

▶ Definition 6.20. A description logic reasoner implements of reaonsing services
based on a satisfiabiltiy test for description logics.

▶ Common description logic reasoners include
▶ FACT++: http://owl.man.ac.uk/factplusplus/
▶ HermiT: http://www.hermit-reasoner.com/

▶ Intuition: Triplestores concentrate on querying very large ABoxes with partial
consideration of the TBox, while DL reasoners concentrate on the full set of
ontology inference services, but fail on large ABoxes.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 396 2024-02-08

https://virtuoso.openlinksw.com/
http://graphdb.ontotext.com/
https://blazegraph.com/
http://owl.man.ac.uk/factplusplus/
http://www.hermit-reasoner.com/

12.7 Ontologies vs. Databases

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 396 2024-02-08

Example: Hogwarts Ontology

▶ Example 7.1. Axioms describe the structure of the world,

Class HogwartsStudent = Student and attendsSchool Hogwarts
Class: HogwartsStudent ⊑ hasPet only (Owl or Cat or Toad)
ObjectProperty: hasPet Inverses: isPetOf
Class: Phoenix ⊑ isPetOf only Wizard

▶ Example 7.2. Facts describe some particular concrete situation,

Individual: Hedwig
Types: Owl

Individual: HarryPotter
Types: HogwartsStudent
Facts: hasPet Hedwig

Individual: Fawkes
Types: Phoenix
Facts: isPetOf Dumbledore

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 397 2024-02-08

Ontologies vs. Databases

▶ Obvious Analogy: In an ontology:
▶ axioms analogous to DB schema (structure and constraints on data)
▶ facts analogous to DB data
▶ data instantiates schema, is consistent with schema constraints

▶ But there are also important differences:
Database:
▶ Closed world assumption (CWA)
▶ Missing information treated as false

▶ Unique name assumption (UNA)
▶ Each individual has a single, unique

name
▶ Schema behaves as constraints on

structure of data
▶ Define legal database states.

Ontology:
▶ Open world assumption (OWA)
▶ Missing information treated as

unknown
▶ No UNA
▶ Individuals may have more than one

name
▶ Ontology axioms behave like

implications (inference rules)
▶ Entail implicit information

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 398 2024-02-08

DB vs. Ontology by Example (Querying)

▶ Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley

hasFriend HermioneGranger
hasPet Hedwig

Individual: Draco Malfoy

▶ Query: Is Draco Malfoy a friend of HarryPotter?

▶ Counting Query: How many friends does Harry Potter have?
▶ How about: if we add

DifferentIndividuals: RonWeasley HermioneGranger

▶ And: if we also add
Individual: HarryPotter
Types: hasFriend only RonWeasley or HermioneGranger

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 399 2024-02-08

DB vs. Ontology by Example (Querying)

▶ Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley

hasFriend HermioneGranger
hasPet Hedwig

Individual: Draco Malfoy

▶ Query: Is Draco Malfoy a friend of HarryPotter?
▶ DB: No
▶ Ontology: Don’t Know (OWA: didn’t say Draco was not Harry’s friend)

▶ Counting Query: How many friends does Harry Potter have?
▶ How about: if we add

DifferentIndividuals: RonWeasley HermioneGranger

▶ And: if we also add
Individual: HarryPotter
Types: hasFriend only RonWeasley or HermioneGranger

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 399 2024-02-08

DB vs. Ontology by Example (Querying)

▶ Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley

hasFriend HermioneGranger
hasPet Hedwig

Individual: Draco Malfoy

▶ Query: Is Draco Malfoy a friend of HarryPotter?
▶ Counting Query: How many friends does Harry Potter have?

▶ How about: if we add
DifferentIndividuals: RonWeasley HermioneGranger

▶ And: if we also add
Individual: HarryPotter
Types: hasFriend only RonWeasley or HermioneGranger

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 399 2024-02-08

DB vs. Ontology by Example (Querying)

▶ Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley

hasFriend HermioneGranger
hasPet Hedwig

Individual: Draco Malfoy

▶ Query: Is Draco Malfoy a friend of HarryPotter?
▶ Counting Query: How many friends does Harry Potter have?
▶ DB: 2
▶ Ontology: at least 1 (No UNA: Ron and Hermione may be 2 names for same person)

▶ How about: if we add
DifferentIndividuals: RonWeasley HermioneGranger

▶ And: if we also add
Individual: HarryPotter
Types: hasFriend only RonWeasley or HermioneGranger

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 399 2024-02-08

DB vs. Ontology by Example (Querying)

▶ Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley

hasFriend HermioneGranger
hasPet Hedwig

Individual: Draco Malfoy

▶ Query: Is Draco Malfoy a friend of HarryPotter?
▶ Counting Query: How many friends does Harry Potter have?
▶ How about: if we add

DifferentIndividuals: RonWeasley HermioneGranger

▶ And: if we also add
Individual: HarryPotter
Types: hasFriend only RonWeasley or HermioneGranger

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 399 2024-02-08

DB vs. Ontology by Example (Querying)

▶ Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley

hasFriend HermioneGranger
hasPet Hedwig

Individual: Draco Malfoy

▶ Query: Is Draco Malfoy a friend of HarryPotter?
▶ Counting Query: How many friends does Harry Potter have?
▶ How about: if we add

DifferentIndividuals: RonWeasley HermioneGranger

▶ DB: 2
▶ Ontology: at least 2 (OWA: Harry may have more friends we didn’t mention yet)

▶ And: if we also add
Individual: HarryPotter
Types: hasFriend only RonWeasley or HermioneGranger

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 399 2024-02-08

DB vs. Ontology by Example (Querying)

▶ Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley

hasFriend HermioneGranger
hasPet Hedwig

Individual: Draco Malfoy

▶ Query: Is Draco Malfoy a friend of HarryPotter?
▶ Counting Query: How many friends does Harry Potter have?
▶ How about: if we add

DifferentIndividuals: RonWeasley HermioneGranger

▶ And: if we also add
Individual: HarryPotter
Types: hasFriend only RonWeasley or HermioneGranger

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 399 2024-02-08

DB vs. Ontology by Example (Querying)

▶ Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley

hasFriend HermioneGranger
hasPet Hedwig

Individual: Draco Malfoy

▶ Query: Is Draco Malfoy a friend of HarryPotter?
▶ Counting Query: How many friends does Harry Potter have?
▶ How about: if we add

DifferentIndividuals: RonWeasley HermioneGranger

▶ And: if we also add
Individual: HarryPotter
Types: hasFriend only RonWeasley or HermioneGranger

▶ DB: 2
▶ Ontology: 2

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 399 2024-02-08

DB vs. Ontology by Example (Insertion)

▶ Given: the ontology from 7.1 and 7.2 insert

Individual: Dumbledore
Individual: Fawkes
Types: Phoenix
Facts: isPetOf Dumbledore

▶ System Response:

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 400 2024-02-08

DB vs. Ontology by Example (Insertion)

▶ Given: the ontology from 7.1 and 7.2 insert

Individual: Dumbledore
Individual: Fawkes
Types: Phoenix
Facts: isPetOf Dumbledore

▶ System Response:
▶ DB: Update rejected: constraint violation
▶ Range of hasPet is Human; Dumbledore is not (CWA)

▶ Ontology Reasoner:
▶ Infer that Dumbledore is Human
▶ Also infer that Dumbledore is a Wizard (only a Wizard can have a phoenix as a pet)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 400 2024-02-08

DB vs. Ontology by Example: Query Answering

▶ DB schema plays no role in query answering (efficiently implementable)
▶ Ontology axioms play a powerful and crucial role in QA
▶ Answer may include implicitly derived facts
▶ Can answer conceptual as well as extensional queries

E.g., Can a Muggle have a Phoenix for a pet?
▶ May have very high worst case complexity (=̂ terrible running time)

Implementations may still behave well in typical cases.
▶ Definition 7.3. We call a query language semantic, iff query answering involves

derived axioms and facts.
▶ Observation 7.4. Ontology queries are semantic, while database queries are

not.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 401 2024-02-08

Summary: Ontology Based Information Systems

▶ Analogous to relational database management systems
Ontology =̂ schema; instances =̂ data

▶ Some important (dis)advantages
+ (Relatively) easy to maintain and update schema.
▶ Schema plus data are integrated in a logical theory.

+ Query results reflect both schema and data
+ Can deal with incomplete information
+ Able to answer both intensional and extensional queries
– Semantics may be counter-intuitive or even inappropriate
▶ Open -vs- closed world; axioms -vs- constraints.

– Query answering much more difficult. (based on logical entailment)
▶ Can lead to scalability problems.

▶ In a nutshell they deliver more valuable answers at cost of efficiency.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 402 2024-02-08

Chapter 13
The WissKI System: A Virtual Research

Environment for Cultural Heritage

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 402 2024-02-08

WissKI: a Virtual Research Env. for Cultural Heritage

▶ Definition 0.1. WissKI is a virtual research environment (VRE) for managing
scholarly data and documenting cultural heritage.

▶ Requirements: For a virtual research environment for cultural heritage, we
need
▶ scientific communication about and documentation of the cultural heritage
▶ networking knowledge from different disciplines (transdisciplinarity)
▶ high-quality data acquisition and analysis
▶ safeguarding authorship, authenticity, persistence
▶ support of scientific publication

▶ WissKI was developed by the research group of Prof. Günther Görtz at FAU
Erlangen-Nürnberg and is now used in hundreds of DH projects across Germany.

▶ FAU supports cultural heritage research by providing hosted WissKI instances.
▶ See https://wisski.data.fau.de for details
▶ We will use an instance for the Kirmes paintings in the homework assignments

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 403 2024-02-08

https://wisski.data.fau.de

13.1 WissKI extends Drupal

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 403 2024-02-08

WissKI System Architecture

▶ Software basis: drupal CMS (content management system)
▶ large, active community, extensible by drupal modules
▶ provides much of the functionality of a VRE out of the box.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 404 2024-02-08

Drupal: A Web Content Managemt Framework

▶ Definition 1.1. Drupal is an open source web content management application.
It combines CMS functionality with knowledge management via RDF.

▶ Definition 1.2. Drupal allows to configure web pages modularly from content
blocks, which can be
▶ static content, i.e. supplied by a module,
▶ user supplied content, or
▶ views, i.e. listings of content fragments from other blocks.

These can be assembled into web pages via a visual interface: the config bar.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 405 2024-02-08

Assembling a Web Site via Drupal Blocks (Example)
▶ Example 1.3 (Greenpeace via Drupal). Can you find the blocks?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 406 2024-02-08

Drupal Modules and Themes

▶ Idea: Drupal is designed to be modular and extensible (so it can adapt to the
ever-changing web)

▶ Definition 1.4 (Modular Design). Drupal functionality is structured into
▶ drupal core – the basic CMS functionality
▶ modules which contribute e.g. new block types (∼ 45.000)
▶ themes which contribute new UI layouts (∼ 2800)

Drupal core is the vanilla system as downloaded, modules and themes must be
installed and configured separately via the config bar.

▶ The drupal core functionalities include
▶ user/account management
▶ menu management,
▶ RSS feeds,
▶ taxonomy,
▶ page layout customization (via blocks and views),
▶ system administration

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 407 2024-02-08

Bundles and Fields in Drupal (Data Entry)

▶ Definition 1.5. Drupal has a special data
type called a bundle, which is essentially
a dictionary: it contains key/value pairs
called fields.
▶ bundles can be nested ; sub bundles.
▶ fields also have data type information, etc.

to support editing.
▶ drupal presents bundles as
▶ HTML lists for reading
▶ HTML forms for data entry/editing

▶ Drupal bundles induce blocks that can be
used for data entry and presentation.

Semantified Data Entry Form

06.09.2011 Georg Hohmann: WissKI - CIDOC 2011 - Sibiu, Romania 12

Albrecht Dürer

Nürnberg

E84 Information Carrier
→ P108i was produced by →
E12 Production
→ P14 carried out by →
E21 Person
→ P131 is identified by →
E82 Actor Appellation
→ P3 has note →
„Albrecht Dürer“

E84 Information Carrier
→ P108i was produced by →
E12 Production
→ P7 took place at →
E53 Place
→ P87 is identified by →
E48 Place Name
→ P3 has note →
„Nürnberg “

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 408 2024-02-08

WissKI System Architecture (Recap)

▶ WissKI = drupal + CIDOC CRM + triplestore + WissKI modules

06.09.2011 Georg Hohmann: WissKI - CIDOC 2011 - Sibiu, Romania 4

Drupal

Modules

Third-Party

Database

WissKI

Triple Store

Import/Export API

OWL/RDF System

Core

WikiTools

WysiwygAPI

Views

CCK

...

ImageAPI

...

Authority Files Management

Automatic Text Annotator

Discussion System

All software used is available under free software licences.

▶ Note: Much of WissKI functionality is configurable via the drupal config bar.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 409 2024-02-08

13.2 Dealing with Ontology Paths: The WissKI
Pathbuilder

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 409 2024-02-08

The WissKI Path Builder (Idea)

▶ Recall: Albrecht Dürer painted Melencolia 1 in Nürnberg

m : E84 q : E12P108i
d : E21P14 a : E82

P131
"A. Dürer"

P3

p : E53
P7

n : E48
P87 "Nürnberg"P3

▶ Idea: Hide the complexity induced by the ontology from the user
▶ Form-based interaction with categories and fields (as in a RDBMS UI)

▶ Definition 2.1. The WissKI path builder maps ontology groups and ontology
paths to drupal bundles and fields.
▶ ontology groups become data entry forms (bundles) for the root entities,
▶ their fields are mapped to ontology paths.
▶ subtrees in the ontology become sub-bundles. (shared objects)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 410 2024-02-08

The WissKI Path Builder (Example)

▶ Example 2.2 (A WissKI Group).Semantified Data Entry Form

06.09.2011 Georg Hohmann: WissKI - CIDOC 2011 - Sibiu, Romania 12

Albrecht Dürer

Nürnberg

E84 Information Carrier
→ P108i was produced by →
E12 Production
→ P14 carried out by →
E21 Person
→ P131 is identified by →
E82 Actor Appellation
→ P3 has note →
„Albrecht Dürer“

E84 Information Carrier
→ P108i was produced by →
E12 Production
→ P7 took place at →
E53 Place
→ P87 is identified by →
E48 Place Name
→ P3 has note →
„Nürnberg “

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 411 2024-02-08

Sharing and Disambiguation in Path Builders
▶ Observation 2.3. Sometimes we want to refer to existing entities in WissKI.
▶ Example 2.4 (Referring to Nürnberg). (We love tab completion)

▶ Example 2.5 (To What). Albrecht Dürer created all his etchings in Nürnberg.
▶ Problem: (In paths) we are creating lots of objects, which ones to offer?
▶ Idea: Mark the entities we might want to reuse on paths while specifying them.
▶ Definition 2.6. A disambiguation point in a path marks an entity that can be re

used in data acquisition.
▶ Example 2.7. Disambiguation points are highlighted in red on paths.

m : E84 q : E12P108i
d : E21P14 a : E82

P131
"A. Dürer"

P3

p : E53
P7

n : E48
P87 "Nürnberg"P3

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 412 2024-02-08

Sharing and Disambiguation in Path Builders

▶ Observation 2.8. Sometimes we want to refer to existing entities in WissKI.
▶ Example 2.9 (Referring to Nürnberg). (We love tab completion)
▶ Example 2.10 (To What). Albrecht Dürer created all his etchings in Nürnberg.
▶ Problem: (In paths) we are creating lots of objects, which ones to offer?
▶ Idea: Mark the entities we might want to reuse on paths while specifying them.
▶ Definition 2.11. A disambiguation point in a path marks an entity that can be

re used in data acquisition.
▶ Example 2.12. Disambiguation points are highlighted in red on paths.

m : E84 q : E12P108i
d : E21P14 a : E82

P131
"A. Dürer"

P3

p : E53
P7

n : E48
P87 "Nürnberg"P3

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 412 2024-02-08

Specifying/Maintaining WissKI Path Builders

▶ Recall: A WissKI path builder maps ontology groups and ontology paths to
drupal bundles and fields.

▶ Example 2.13 (Specifying a WissKI Path Builder).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 413 2024-02-08

WissKI Path Builders as Graphs

▶ Example 2.14 (A WissKI Path Construtor as a Graph).

Graph-Ansicht

▶ Very nice and helpful, but does not work currently!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 414 2024-02-08

WissKI Path Builders as Triples

▶ Of course we can view path builders as sets of triples.
▶ Example 2.15 (A WissKI Path Construtor as Triples).

Triples-Ansicht

▶ Such an export also allows standardized communication.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 415 2024-02-08

Data Presentation using Path Builders in WissKI

▶ Path builders can be used as drupal blocks for data presentation.
▶ For every object o, aggregate the values of the paths starting in o.

▶ Example 2.16 (Compressed View).

Komprimierte

Ansicht

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 416 2024-02-08

13.3 The WissKI Link Block

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 416 2024-02-08

The WissKI Link Block (Idea)

▶ Observation 3.1. For an entity in a RDF graph, both the outgoing and the
incoming relations are important for understanding.

▶ Example 3.2. This view only shows the outgoing edges!

Komprimierte

Ansicht

▶ Idea: Add a block with “incoming links” to the page, use the path builder.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 417 2024-02-08

Link Blocks (Definition)

▶ Definition 3.3. Let p be a drupal page for an ontology group g , then a WissKI
link block is a special drupal block with associated path builder, whose ontology
paths all end in g .

▶ Example 3.4 (A link block for Images).

Note the difference between
▶ a “work” – the original painting Pieter Brueghel created in 1628
▶ and an “image of the work” – a b/w photograph of the “work”.

This particular link block mediates between these two.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 418 2024-02-08

A Link Block in the Wild (the full Picture)

▶ Example 3.5 (A link block for Images).

▶ outgoing relations below
the image,

▶ incoming ones in the link
block

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 419 2024-02-08

Making Link Blocks via the Path Builder

▶ How to make a link block in page p for group g? (Details at [WH])
1. create a block via the config bar and place it on p.
2. associate it with a link block path builder
3. model paths into g in the path builder (various source groups)

▶ Idea: You essentially know link block paths already: If you have already
modeled a path g , r1, . . ., rn, s for a group s, then you have a path
s, r−1

n , . . ., r−1
1 , g , where r−1

i are the inverse roles of r i (exist in CIDOC CRM)

m : E84 q : E12
P108i

P108

d : E21P14

P14i

a : E82
P131

"A. Dürer"
P3

p : E53

P7

P7i n : E48
P87 "Nürnberg"P3

▶ Note: With this setup, you never have to fill out the link block paths!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 420 2024-02-08

13.4 Cultural Heritage Research: Querying
WissKI Resources

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 420 2024-02-08

Research in WissKI

▶ So far we have seen how to acquire complex knowledge about cultural artefacts
using CIDOC CRM ABoxes.

▶ Question: But how do we do research using WissKI?
▶ Answer: Finding patterns, inherent connections, . . . in the data.
▶ But how?: That depends on the kind of research you want to do. Here are

some WissKI research tools
1. we can use drupal search on the data.
2. We can formulate our own queries in SPARQL
3. We can pre-configure various queries in drupal views.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 421 2024-02-08

Drupal Search in WissKI
▶ Example 4.1.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 422 2024-02-08

SPARQL Endpoint in WissKI

▶ Example 4.2. Find kirmes paintings and their painters and count them

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 423 2024-02-08

SPARQL Endpoint in WissKI

▶ Example 4.3. Find kirmes paintings and their painters and count them

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 423 2024-02-08

Data Presentation via Views in WissKI

▶ Example 4.4 (Configuring a View). This makes a drupal block.

Drupal generates a SPARQL query, aggregates results into a block.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 424 2024-02-08

This Research is WissKI-instance-local

▶ Observation 4.5. All these research queries only work in the current WissKI
instance.

▶ Observation 4.6. There is probably much more about the entities you are
interested in outside your particular WissKI instance.

▶ Problem: How to make use of this?
▶ Solution: We need to do two things

1. Make use of other people’s ABoxes
2. Provide your ABox to other people.

This practice is called linked open data. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 425 2024-02-08

13.5 Application Ontologies in WissKI

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 425 2024-02-08

WissKI Information Architecture (Ontologies)
▶ Ontologies, instances, and export formats

Martin Scholz, FAU, Informatik 8 33Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 426 2024-02-08

Application Ontologies extend CIDOC CRM
▶ Observation 5.1. Sometimes we need more than CIDOC CRM.
▶ Definition 5.2. A WissKI application ontology is one that extends CIDOC

CRM, without changing it.
▶ Example 5.3 (Behaim Application Ontology).

Referenzontologie:

Erlangen CRM

Applikationsontologie:

Behaim-Globus

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 427 2024-02-08

Making an Application Ontology

▶ The “current ontology” of a WissKI instance can be configured via the config bar
via the “WissKI ontology” module.

▶ The application ontology should import CIDOC CRM.
▶ Idea: Use Protg for that.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 428 2024-02-08

13.6 The Linked Open Data Cloud

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 428 2024-02-08

Linked Open Data

▶ Definition 6.1. Linked data is structured data in which classified objects are
interlinked via relations with other objects so that the data becomes more useful
through semantic queries and access methods.

▶ Definition 6.2. Linked open data (LOD) is linked data which is released under
an open license, which does not impede its reuse by the community.

▶ Definition 6.3. Given the semantic web technology stack, we can create
interoperable ontologies and interlinked data sets, we call their totality the .

▶ Recall the LOD Incentives:
▶ incentivize other authors to extend/improve the LOD

; more/better data can be generated at a lower cost.
▶ generate attention to the LOD and recognition for authors

; this gives alternative revenue models for authors.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 429 2024-02-08

The Linked Open Data Cloud

▶ The linked open data cloud in 2014 (today much bigger, but unreadable)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 430 2024-02-08

The Linked Open Data Cloud

▶ Zooming in (data sets and their – interlinked – ontologies)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 431 2024-02-08

Using the LOD-Cloud in WissKI

▶ Idea: Do not re-model entities that already exist (in the LOD Cloud)
▶ Problem: Most of the LOD Cloud is about things we do not want.
▶ But there are some sources that are useful
▶ the GND (Gemeinsame Normdatei [GND]), an authority file for personal/corporate

names and keywords from literary catalogs,
▶ geonames[GN], a geographical database with more than 25M names and locations
▶ Wikipedia

▶ Observation 6.4. All of them provide URIs for real world entities, which is just
what we need for objects in RDF triples.

▶ Definition 6.5. WissKI provides special modules called adapters for GND and
geonames.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 432 2024-02-08

Using Geonames in WissKI (Example)

1. Example 6.6. We want to use the “Meilwald” (Erlangen) in WissKI.

2. make a sub-ontology groups “norm data” in the WissKI path builder
3. The induced sub-bundle looks like this:
4. We enter https://geodata.org for “Normdatei” and go there to find out the

URI for “Meilwald” which goes into “Normdatum URI”.
5. there may be multiple results (here only one)
6. Select/click the intended one, check the details
7. Enter the URL from the URL bar into “Normdatum URI”.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 433 2024-02-08

https://geodata.org

Using Geonames in WissKI (Example)

1. Example 6.7. We want to use the “Meilwald” (Erlangen) in WissKI.
2. make a sub-ontology groups “norm data” in the WissKI path builder
3. The induced sub-bundle looks like this:

4. We enter https://geodata.org for “Normdatei” and go there to find out the
URI for “Meilwald” which goes into “Normdatum URI”.

5. there may be multiple results (here only one)
6. Select/click the intended one, check the details
7. Enter the URL from the URL bar into “Normdatum URI”.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 433 2024-02-08

https://geodata.org

Using Geonames in WissKI (Example)
1. Example 6.8. We want to use the “Meilwald” (Erlangen) in WissKI.
2. make a sub-ontology groups “norm data” in the WissKI path builder
3. The induced sub-bundle looks like this:
4. We enter https://geodata.org for “Normdatei” and go there to find out the

URI for “Meilwald” which goes into “Normdatum URI”.

5. there may be multiple results (here only one)
6. Select/click the intended one, check the details
7. Enter the URL from the URL bar into “Normdatum URI”.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 433 2024-02-08

https://geodata.org

Using Geonames in WissKI (Example)

1. Example 6.9. We want to use the “Meilwald” (Erlangen) in WissKI.
2. make a sub-ontology groups “norm data” in the WissKI path builder
3. The induced sub-bundle looks like this:
4. We enter https://geodata.org for “Normdatei” and go there to find out the

URI for “Meilwald” which goes into “Normdatum URI”.
5. there may be multiple results (here only one)

6. Select/click the intended one, check the details
7. Enter the URL from the URL bar into “Normdatum URI”.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 433 2024-02-08

https://geodata.org

Using Geonames in WissKI (Example)
1. Example 6.10. We want to use the “Meilwald” (Erlangen) in WissKI.
2. make a sub-ontology groups “norm data” in the WissKI path builder
3. The induced sub-bundle looks like this:
4. We enter https://geodata.org for “Normdatei” and go there to find out the

URI for “Meilwald” which goes into “Normdatum URI”.
5. there may be multiple results (here only one)
6. Select/click the intended one, check the details

7. Enter the URL from the URL bar into “Normdatum URI”.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 433 2024-02-08

https://geodata.org

Using Geonames in WissKI (Example)

1. Example 6.11. We want to use the “Meilwald” (Erlangen) in WissKI.
2. make a sub-ontology groups “norm data” in the WissKI path builder
3. The induced sub-bundle looks like this:
4. We enter https://geodata.org for “Normdatei” and go there to find out the

URI for “Meilwald” which goes into “Normdatum URI”.
5. there may be multiple results (here only one)
6. Select/click the intended one, check the details
7. Enter the URL from the URL bar into “Normdatum URI”.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 433 2024-02-08

https://geodata.org

Towards a WissKI Commons in the LOD Cloud

▶ Recap: We can directly refer to (URIs of) external objects in WissKI.
▶ Observation 6.12. The most interesting source for references to cultural

artefacts are other WissKI instances.
▶ Problem: A WissKI is an island, unless it exports its data! (few do)
▶ Idea: We need a LOD cloud of cultural heritage research data under to foster

object centric research in the humanities.
▶ Definition 6.13. We call the part of this resource that can be created by

aggregating WissKI exports the WissKI commons.
▶ Observation 6.14. WissKI exports meet the FAIR principles quite nicely already.
▶ We will be working on a FAU WissKI commons in the next years. (help wanted)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 434 2024-02-08

References I

[CC] CIDOC CRM - The CIDOC Conceptual Reference Model. url:
http://www.cidoc-crm.org/ (visited on 07/13/2020).

[CQ69] Allan M. Collins and M. Ross Quillian. “Retrieval time from semantic
memory”. In: Journal of verbal learning and verbal behavior 8.2
(1969), pp. 240–247. doi: 10.1016/S0022-5371(69)80069-1.

[ECRMa] erlangen-crm. url: https://github.com/erlangen-crm (visited on
07/13/2020).

[ECRMb] Erlangen CRM/OWL - An OWL DL 1.0 implementation of the
CIDOC Conceptual Reference Model (CIDOC CRM). url:
http://erlangen-crm.org/ (visited on 07/13/2020).

[FAIR18] European Commission Expert Group on FAIR Data. Turning FAIR
into reality. 2018. doi: 10.2777/1524.

[FOAF14] FOAF Vocabulary Specification 0.99. Namespace Document. The
FOAF Project, Jan. 14, 2014. url: http://xmlns.com/foaf/spec/.

[GN] Geonames. url: https://www.geonames.org/ (visited on
07/29/2020).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 434 2024-02-08

http://www.cidoc-crm.org/
https://doi.org/10.1016/S0022-5371(69)80069-1
https://github.com/erlangen-crm
http://erlangen-crm.org/
https://doi.org/10.2777/1524
http://xmlns.com/foaf/spec/
https://www.geonames.org/

References II

[GND] DNB – The Integrated Authority File (GND). url: https://www.dnb.
de/EN/Professionell/Standardisierung/GND/gnd_node.html
(visited on 07/29/2020).

[Her+13] Ivan Herman et al. RDFa 1.1 Primer – Second Edition. Rich
Structured Data Markup for Web Documents. W3C Working Goup
Note. World Wide Web Consortium (W3C), Apr. 19, 2013. url:
http://www.w3.org/TR/xhtml-rdfa-primer/.

[JS] json – JSON encoder and decoder. url:
https://docs.python.org/3/library/json.html (visited on
04/16/2021).

[KC04] Graham Klyne and Jeremy J. Carroll. Resource Description Framework
(RDF): Concepts and Abstract Syntax. W3C Recommendation. World
Wide Web Consortium (W3C), Feb. 10, 2004. url:
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

[LM] LabelMe: the open annotation tool. url:
http://labelme.csail.mit.edu (visited on 08/28/2020).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 434 2024-02-08

https://www.dnb.de/EN/Professionell/Standardisierung/GND/gnd_node.html
https://www.dnb.de/EN/Professionell/Standardisierung/GND/gnd_node.html
http://www.w3.org/TR/xhtml-rdfa-primer/
https://docs.python.org/3/library/json.html
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://labelme.csail.mit.edu

References III

[LXML] lxml – XML and HTML with Python. url: https://lxml.de (visited
on 12/09/2019).

[Nor+18a] Emily Nordmann et al. Lecture capture: Practical recommendations
for students and lecturers. 2018. url:
https://osf.io/huydx/download.

[Nor+18b] Emily Nordmann et al. Vorlesungsaufzeichnungen nutzen: Eine
Anleitung für Studierende. 2018. url:
https://osf.io/e6r7a/download.

[OWL09] OWL Working Group. OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation. World Wide Web Consortium
(W3C), Oct. 27, 2009. url:
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/.

[Pro] Protégé. Project Home page at http://protege.stanford.edu.
url: http://protege.stanford.edu.

[PRR97] G. Probst, St. Raub, and Kai Romhardt. Wissen managen. 4 (2003).
Gabler Verlag, 1997.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 434 2024-02-08

https://lxml.de
https://osf.io/huydx/download
https://osf.io/e6r7a/download
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://protege.stanford.edu
http://protege.stanford.edu

References IV

[PS08] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language
for RDF. W3C Recommendation. World Wide Web Consortium
(W3C), Jan. 15, 2008. url: http://www.w3.org/TR/2008/REC-
rdf-sparql-query-20080115/.

[SUMO] Suggested Upper Merged Ontology. url:
http://www.adampease.org/OP/ (visited on 01/25/2019).

[UL] urllib – URL handling modules. url:
https://docs.python.org/3/library/urllib.html (visited on
04/15/2021).

[WH] WissKI Handbuch. url:
http://wiss-ki.eu/documentation/wisski_handbuch (visited
on 07/23/2020).

[Wil+16] Mark D. Wilkinson et al. “The FAIR Guiding Principles for scientific
data management and stewardship”. In: Scientific Data 3 (2016). doi:
10.1038/sdata.2016.18.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 434 2024-02-08

http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.adampease.org/OP/
https://docs.python.org/3/library/urllib.html
http://wiss-ki.eu/documentation/wisski_handbuch
https://doi.org/10.1038/sdata.2016.18

	8 Semester Change-Over
	8.1 Administrativa

	9 Databases
	9.1 Introduction
	9.2 Relational Databases
	9.3 SQL – A Standardized Interface to RDBMS
	9.4 ER-Diagrams and Complex Database Schemata
	9.5 RDBMS in Python
	9.6 Excursion: Programming with Exceptions in Python
	9.7 Querying and Views in SQL
	9.8 Querying via Python
	9.9 Real-Life Input/Output: XML and JSON

	10 Project: A Web GUI for a Books Database
	10.1 A Basic Web Application
	10.2 Access Control and Management
	10.3 Asynchronous Loading in Modern Web Apps
	10.4 Deploying the Books Application as a Program

	11 Image Processing
	11.1 Basics of Image Processing
	11.1.1 Image Representations
	11.1.2 Basic Image Processing in Python
	11.1.3 Edge Detection
	11.1.4 Scalable Vector Graphics

	11.2 Project: An Image Annotation Tool
	11.3 Fun with Image Operations: CSS Filters

	12 Ontologies, Semantic Web for Cultural Heritage
	12.1 Documenting our Cultural Heritage
	12.2 Systems for Documenting the Cultural Heritage
	12.3 The Semantic Web
	12.4 Semantic Networks and Ontologies
	12.5 CIDOC CRM: An Ontology for Cultural Heritage
	12.6 The Semantic Web Technology Stack
	12.7 Ontologies vs. Databases

	13 The WissKI System: A Virtual Research Environment for Cultural Heritage
	13.1 WissKI extends Drupal
	13.2 Dealing with Ontology Paths: The WissKI Pathbuilder
	13.3 The WissKI Link Block
	13.4 Cultural Heritage Research: Querying WissKI Resources
	13.5 Application Ontologies in WissKI
	13.6 The Linked Open Data Cloud
	References

