Informatische Werkzeuge in den Geistes- und
Sozialwissenschaften 2

Prof. Dr. Michael Kohlhase

Professur fiir Wissensreprasentation und -verarbeitung
Informatik, FAU Erlangen-Niirnberg
Michael.KohlhaseQFAU.de

2024-02-08

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 207 2024-02-08

Michael.Kohlhase@FAU.de

Chapter 8
Semester Change-Over

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 207 2024-02-08

8.1 Administrativa

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 207 2024-02-08

Prerequisites

» Formal Prerequisite: [WGS-1 (If you did not take it, read the notes)

» General Prerequisites: Motivation, interest, curiosity, hard work.

nothing elsel (apart from IWGS-1)

We will teach you all you need to know

» You can do this course if you want! (we will help)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 208 2024-02-08

Assessment, Grades

» Grading Background/Theory: Only modules are graded! (by the law)

» Module “DH-Einfiihrung” (DHE) = courses IWGS1/2, DH-Einfiihrung.
» DHE module grade ~ pass/fail determined by “portfolio” = collection of
contributions/assessments.
» Assessment Practice: The IWGS assessments in the “portfolio” consist of
> weekly homework assignments, (practice IWGS concepts and tools)
> 60 minutes exam directly after lectures end: July 27. 2024.

> Retake Exam: 60 min exam at the end of the exam break.(October. 12. 2024)

2024.02.08

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 200

IWGS Homework Assignments

» Homeworks: will be small individual problem/programming/system
assignments
> but take time to solve (at least read them directly ~ questions)
» group submission if and only if explicitly permitted.

> A Without trying the homework assignments you are unlikely to pass the exam.

» Admin: To keep things running smoothly

» Homeworks will be posted on StudOn.
» Sign up for IWGS under https://www.studon.fau.de/frm5075965.html.

» Homeworks are handed in electronically there. (plain text, program files, PDF)

» Go to the tutorials, discuss with your TAl (they are there for you!)
» Homework Discipline:

» Start early! (many assignments need more than one evening's work)

» Don't start by sitting at a blank screen (talking & study group help)

» Humans will be trying to understand the text/code/math when grading it.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 210 2024-02-08

https://www.studon.fau.de/studon
https://www.studon.fau.de/frm5075965.html

IWGS Tutorials

> Weekly tutorials and homework assignments (first one in week two)
Tutor: (Doctoral Student in CS)
> > Jonas Betzendahl: jonas.betzendahl@fau.de S
They know what they are doing and really want to 4
help you learn! (dedicated to DH)
» Goal 1: Reinforce what was taught in class (important pillar of the IWGS
concept)

» Goal 2: Let you experiment with Python (think of them as Programming Labs)

» Life-saving Advice: go to your tutorial, and prepare it by having looked at the
slides and the homework assignments

» Inverted Classroom: the latest craze in didactics (works well if done right)
in IWGS: Lecture + Homework assignments + Tutorials = inverted classroom

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 211 2024-02-08

jonas.betzendahl@fau.de

Textbook, Handouts and Information, Forums, Videos

» No Textbook: but lots of online python tutorials on the web.

» Course notes will be posted at http://kwarc.info/teaching/IWGS (see
references)
» | mostly prepare/adapt/correct them as we go along.
> please e-mail me any errors/shortcomings you notice. (improve for the group)

» The lecture videos of WS 2020/21 are at https://www.fau.tv/course/id/2350
(not much changed)

» Matrix chat at #iwgs:fau.de (via IDM) (instructions)
» StudOn Forum: https://www.studon.fau.de/frm5075965.html for
> announcements, homeworks (my view on the forum)
» questions, discussion among your fellow students (your forum too, use it!)

» If you become an active discussion group, the forum turns into a valuable
resource!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 212 2024-02-08

http://kwarc.info/teaching/IWGS
https://www.anleitungen.rrze.fau.de/serverdienste/matrix-an-der-fau/erste-schritte/
https://www.studon.fau.de/frm5075965.html

Experiment: Learning Support with KWARC Technologies

» My research area: Deep representation formats for (mathematical) knowledge

» One Application: Learning support systems (represent knowledge to transport

it)

»> Experiment: Start with this course (Drink my own medicine)
1. Re-represent the slide materials in OMDoc (Open Mathematical Documents)
2. Feed it into the ALeA system (http://courses.voll-ki.fau.de)
3. Try it on you all (to get feedback from you)
> Research tasks
» help me complete the material on the slides (what is missing/would help?)
» | need to remember “what | say”, examples on the board. (take notes)
» Benefits for you (so why should you help?)
> you will be mentioned in the acknowledgements (for all that is worth)
» you will help build better course materials (think of next-year's students)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 213 2024-02-08

http://courses.voll-ki.fau.de

Vol L-KI Portal at https://courses.voll-ki.fau.de

» Portal for ALeA Courses: https://courses.voll-ki.fau.de
$o - CLWT

BE %1

e -1 IWGS -1 Logic-based Natural
Language Semantics

o 8 [s 0 Wl s 8 [oo M e 5 [s |

» Al-1 in ALeA: nttps://courses.voll-ki.fau.de/course-home/ai-1

> All details for the course.
> recorded syllabus (keep track of material covered in course)

> syllabus of the last semester (for over/preview)
» AleA Status: The AlLeA system is deployed at FAU for over 1000 students
taking six courses

> (some) students use the system actively (our logs tell us)
> reviews are mostly positive/enthusiastic (error reports pour in)

4 1
Artifical Intelligenc:

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 214 2024-02-08

https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de/course-home/ai-1

New Feature: Drilling with Flashcards

» Flashcards challenge you with a task (term/problem) on the front. ..

o 2 0 <[] o 2 © >[monmn

[> Definition 0.1. The weight space is the
space of all possible combinations of weights.
Loss minimization in a weight space is called

weight fitting.

weight space

Assess Your o

Assess Your o
Comptence:

= > = e e
A =

... and the definition/answer is on the back.
> Self-assessment updates the learner model (before/after)
» ldea: Challenge yourself to a card stack, keep drilling/assessing flashcards until

the learner model eliminates all.

» Bonus: Flashcards can be generated from existing semantic markup

(educational equivalent to free beer)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 215 2024-02-08

Practical recommendations on Lecture Videos

» Excellent Guide: [Nor+18a] (german Version at [Nor+18b])

USing Iecture Attend lectures.
recordanS: @ Take notes.

A guide for students

Be specific.

Catch up.

ﬂ Ask for help.

Don’t cut corners.

» Normally intended for “offline students” = everyone during Corona times.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 216 2024-02-08

Software/Hardware tools

» You will need computer access for this course
» we recommend the use of standard software tools

> find a text editor you are comfortable with (get good with it) A text editor is a

program you can use to write text files. (not MSWord)
» any operating system you like (I can only help with UNIX)
> Any browser you like (I use FireFox: less spying)

» Advice: learn how to touch-type NOW (reap the benefits earlier, not later)
> you will be typing multiple hours/week in the next decades
» touch-typing is about twice as fast as “system eagle”.
» you can learn it in two weeks (good programs)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 217 2024-02-08

Outline of IWGS-II:

» Databases

» CRUD operations, querying, and python embedding
» XML and JSON for file based data storage

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 218 2024-02-08

Outline of IWGS-II:

» Databases
» CRUD operations, querying, and python embedding

» XML and JSON for file based data storage
» BooksApp: a Books Application with persistent storage

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 218

2024-02-08

Outline of IWGS-II:

» Databases
» CRUD operations, querying, and python embedding
» XML and JSON for file based data storage

» BooksApp: a Books Application with persistent storage

» Image processing

> Basics
» Image transformations, Image Understanding

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 218

2024-02-08

Outline of IWGS-II:

» Databases
» CRUD operations, querying, and python embedding
» XML and JSON for file based data storage
» BooksApp: a Books Application with persistent storage

» Image processing
> Basics
» Image transformations, Image Understanding

» Ontologies, semantic web, and WissKI
» Ontologies (inference ~ get out more than you put in)
» semantic web Technologies (standardize ontology formats and inference)
» Using semantic web Tech for cultural heritage research data ~ the WissKI System

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 218 2024-02-08

Outline of IWGS-II:

» Databases
» CRUD operations, querying, and python embedding
» XML and JSON for file based data storage
» BooksApp: a Books Application with persistent storage

» Image processing
> Basics
» Image transformations, Image Understanding
» Ontologies, semantic web, and WissKI
» Ontologies (inference ~ get out more than you put in)
» semantic web Technologies (standardize ontology formats and inference)
» Using semantic web Tech for cultural heritage research data ~ the WissKI System
» Legal Foundations of Information Systems
> Copyright & Licensing
> Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 218 2024-02-08

IWGS-Il Project

» lIdea: Consolidate the techniques from IWGS-I and IWGS-II into a prototypical
information system for Art History @ FAU. (Practical Digital Humanities)

» A Running Example: Research image + metadata collection “Bauernkirmes”
provided by Prof. Peter Bell

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 210 2024-02-08

IWGS-Il Project

» lIdea: Consolidate the techniques from IWGS-1 and IWGS-II into a prototypical
information system for Art History @ FAU. (Practical Digital Humanities)

» A Running Example: Research image + metadata collection “Bauernkirmes”
provided by Prof. Peter Bell

» What will you do?: Build a web-based image/data manager, test image
algorithms, annotate ontologically, ...

» How will we organize this: Mostly via the group homework assignments
(together they will make the project)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 210 2024-02-08

Chapter 9
Databases

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 210 2024-02-08

9.1 Introduction

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 210 2024-02-08

Databases, Data, Information, and Knowledge

» Definition 1.1. Discrete, objective facts or observations, which are unorganized
and uninterpreted are called data (singular datum).

» According to Probst/Raub/Romhardt [PRR97]

Character

Set ——

v i | Malct mechanisms
.‘Os ,“9‘ 1 Exchange rate \ CONGEMEg

i 0.95 1$=095% exchange rates

» Example 1.2. The height of Mt. Everest (8.848 meters) is a datum.

Definition 1.3. A database is an organized collection of data, stored and
accessed electronically from a computer system.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 220 2024-02-08

Storing Data Electronically

» Four conventional ways of storing data: (mileage varies)

» In the computer's memory (RAM) (very fast (+), random access (+), but not
persistent (-))

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 221 2024-02-08

Storing Data Electronically

» Four conventional ways of storing data: (mileage varies)
» In the computer's memory (RAM) (very fast (+), random access (+), but not
persistent (-))
> In a text file (persistent (+), fast (+), sequential access (), unstructured ())
Mj Artists - Notepad - O >

File Edit Format VYiew Help

"ArtistId”,"ArtistName"
1,"AC/DC”

2,"Louis Armstrong”

, ' Iron Maiden™

, Miles Davis”

, Pat Benetar”

, Stevie Ray Vaughan"
, Bvenged Sevenfold”

, Destiny's Child"

, Snoop Dogg"

[Fo I S« YR [- N Y]

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 221 2024-02-08

Storing Data Electronically

» Four conventional ways of storing data: (mileage varies)

» In the computer’'s memory (RAM) (very fast (+), random access (+), but not
persistent (-))

> In a text file (persistent (+), fast (+), sequential access (), unstructured ())

> In a spreadsheet (persistent (+), 2D-structured (+-), relations (+), slow (-))

me

.........

wwwwwwwwwwww

A
Tartistia_ ArtistName
1ac/pc

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 221 2024-02-08

Storing Data Electronically

» Four conventional ways of storing data: (mileage varies)

» In the computer’'s memory (RAM) (very fast (+), random access (+), but not
persistent (-))

> In a text file (persistent (+), fast (+), sequential access (), unstructured ())

> In a spreadsheet (persistent (+), 2D-structured (+-), relations (+), slow (-))

» In a database (persistent (4), scalable (+), relations(+), managed (+), slow (-))

ELTON
Artistld - ArtistName -~

All Access Obje... @ «
s o

Tables
2 Louis Armstrong

3 Iron Maiden
4 Miles Davis
5 Pat Benetar
6 Stevie Ray Vaughan
7 Avenged Sevenfold
8 Destiny’s Child
9 snoop Dogg
* (New)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 221 2024-02-08

Storing Data Electronically

» Four conventional ways of storing data: (mileage varies)

» In the computer's memory (RAM)

persistent (-))
> In a text file (persistent (+), fast (+), sequential access (), unstructured ())

> In a spreadsheet (persistent (4), 2D-structured (+-), relations (+), slow (-))
» In a database (persistent (4), scalable (+), relations(+), managed (+), slow (-))

» Databases constitute the most scalable, persistent solution.

(very fast (+), random access (+), but not

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 221 2024-02-08

9.2 Relational Databases

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 221 2024-02-08

(Relational) Database Management Systems

» Definition 2.1. A database management system (DBMS) is program that
interacts with end users, applications, and a database to capture and analyze the
data and provides facilities to administer the database.

» There are different types of DBMS, we will concentrate on relational ones.

» Definition 2.2. In a relational database management system (RDBMS), data are
represented as tables: every datum is represented by a row (also called database
record), which has a value for all columns (also called an column attribute) or
field). A null value is a special “value” used to denote a missing value.

» Remark: Mathematically, each row is an n tuple of values, and thus a table an

n-ary relation. (useful for standardizing RDBMS operations)
» Example 2.3 (Bibliographic Data).
[LastN [FirstN JYOB[YOD [Title [YOP [Publisher [City |
Twain Mark 1835 | 1910 | Huckleberry Finn 1986 | Penguin USA NY
Twain Mark 1835 | 1910 | Tom Sawyer 1987 | Viking NY
Cather Willa 1873 | 1947 | My Antonia 1995 | Library of America | NY
Hemingway | Ernest | 1899 | 1961 | The Sun Also Rises 1995 | Scribner NY
Wolfe Thomas | 1900 | 1938 | Look Homeward, Angel 1995 | Scribner NY
Faulkner William | 1897 | 1962 | The Sound and the Furry | 1990 | Random House NY

» Definition 2.4. Tables are identified by table name and individual components
of records by column name.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 222 2024-02-08

Open-Source Relational Database Management Systems

Definition 2.5. MySQL is an open source RDBMS. L
For simple data sets and web applications MySQL is a

fast and stable multi user system featuring an SQL
database server that can be accessed by multiple My
clients.

>

Definition 2.6. PostgreSQL is an open source RDBMS with an

emphasis on extensibility, standards compliance, and scalability.

Definition 2.7. SQLite is an embeddable RDBMS.

Instead of a database server, SQLite uses a single WSQL
ite

database file, therefore no server configuration is
necessary.

| 2

| 4
» Remark: At the level we use SQL in IWGS, all are equivalent.
» We will use SQLite in IWGS, since it is easiest to install and configure.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 223 2024-02-08

Working with SQLite (via the SQLite shell)

» In IWGS we will use SQLite, since it is very lightweight, easy to install, but

feature complete, and widely used.
Download SQ)Lite at https://www.sqlite.org/download.html,

>
> e.g. sqlite—dll—win64—x64—3280000.zip for windows.

224 2024-02-08

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2

https://www.sqlite.org/download.html

Working with SQLite (via the SQLite shell)

» In IWGS we will use SQLite, since it is very lightweight, easy to install, but
feature complete, and widely used.
» Download SQLite at https://www.sqlite.org/download.html,
> e.g. sqlite—dll—win64—x64—3280000.zip for windows.
» unzip it into a suitable location, start sqlite3.exe there
» this opens a command line interpreter: the SQLite shell. (all DBs have one)
test it with .help that tells you about more “dot commands”.

> sqlite3

SQLite version 3.24.0 2018—06—04 19:24:41

Enter ".help" for usage hints.

Connected to a transient in—memory database.

Use ".open FILENAME" to reopen on a persistent database.
sqlite> .help

.archive ... Manage SQL archives: ".archive ——help" for details
.auth ON|OFF Show authorizer callbacks

[

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 224 2024-02-08

https://www.sqlite.org/download.html

Working with SQLite (via the SQLite shell)

» In IWGS we will use SQLite, since it is very lightweight, easy to install, but

feature complete, and widely used.
» Download SQLite at https://www.sqlite.org/download.html,
> e.g. sqlite—dll—win64—x64—3280000.zip for windows.
> unzip it into a suitable location, start sqlite3.exe there
» this opens a command line interpreter: the SQLite shell. (all DBs have one)
test it with .help that tells you about more “dot commands”.
> If you have a database file books.db from 3.8, use that.

> sqlite3 books.db

SQLite version 3.24.0 2018—06—04 19:24:41

Enter ".help" for usage hints.

> .tables

Books

>select * from Books;

Twain|Mark|1835|1910|Huckleberry Finn|1986|Penguin USA|NY
Twain|Mark|1835|1910| Tom Sawyer|1987|Viking|NY
Cather|Willa]1873|1947|My Antonia|1995|Library of America|NY
Hemingway|Ernest|1899|1961| The Sun Also Rises|1995|Scribner|NY

Wolfe| Thomas|1900|1938|Look Homeward, Angel|1995|Scribner|NY
Faulkner|William|1897|1962|The Sound and the Furry|1990|Random House |[NY
Tolkien|John Ronald Reuel|1892|1973|The Hobbit|1937|George Allen Unwin|UK

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 224 2024-02-08

https://www.sqlite.org/download.html

Working with SQLite (via the SQLite shell)

» In IWGS we will use SQLite, since it is very lightweight, easy to install, but
feature complete, and widely used.
» Download SQLite at https://www.sqlite.org/download.html,
> e.g. sqlite—dll—win64—x64—3280000.zip for windows.
» unzip it into a suitable location, start sqlite3.exe there
> this opens a command line interpreter: the SQLite shell. (all DBs have one)
test it with .help that tells you about more “dot commands”.
> If you have a database file books.db from 3.8, use that.

» _tables shows the available tables
select * from Books is SQL (see below); it shows all entries of the Books table.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 224 2024-02-08

https://www.sqlite.org/download.html

A Graphical User Interface for SQLite

» Definition 2.8. A database browser is a graphical user interface for a RDBMS
that (typically) bundles an SQL instruction editor with displays for query results
and the database schema in separate windows.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 225 2024-02-08

https://sqlitestudio.pl

A Graphical User Interface for SQLite

» Definition 2.9. A database browser is a graphical user interface for a RDBMS
that (typically) bundles an SQL instruction editor with displays for query results
and the database schema in separate windows.

» | will sometimes use one for SQLite in the slides: SQLite Studio (lots of others)

» download from https://sqlitestudio.pl

ece SQLiteStudio (3.2.1)
X 8 B B E BB O O 787 2 B s Lk »: 8 »
e e LisaL editor 1 ‘00 Databases
, Filter by name
2 [5 : = b test]
» T J & & B @& L & B = v 2 testsatied)
History 1 Tables (1)
v [Books
1 select * from Books v 0l Columns (@
H i
1 Last
[T First
1 YoB
Form view (@ Yoo
B 1 Title
B U8 @@ £ El = Total rows loaded: 7 10 YOP
Last First YOB YOD Title YOP | Publisher city % ;:l;"She'
1 Twain Mark 1835 1910 Huckleberry 1986 Penguin USA NY & Indeves
2 Twain Mark 1835 1910 Tom Sawyer 1987 Viking NY & Triggers
3 Cather Wila 1873 1947 My Antonia 1995 Library of America | NY & Views
4 Hemingway Ernest 1899 1961 The Sun Also Rises 1995 Scribner NY
5 Wolfe Thomas 1900 1938 | Look Homeward, Angel 1995 Scribner NY
6 Faukner William 1897 1962 TheSoundandtheFurry 1990 Random House NY
7 Tolkien JohnRonald Reuel | 1892 1973 The Hobbit 1937 George Allen & Unwin | UK
(<]} status
® [07:59:01] Query finished in 0.003 second(s).
L} saL edior1
Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 225 2024-02-08

https://sqlitestudio.pl

A Graphical User Interface for SQLite

» Definition 2.10. A database browser is a graphical user interface for a RDBMS
that (typically) bundles an SQL instruction editor with displays for query results
and the database schema in separate windows.

» | will sometimes use one for SQLite in the slides: SQLite Studio (lots of others)
» download from https://sqlitestudio.pl

» Everything we can do with this, we can do with the database shell as well. (just
looks nicer)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 225 2024-02-08

https://sqlitestudio.pl

9.3 SQL — A Standardized Interface to RDBMS

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 225 2024-02-08

SQL: The Structured Query Language

> ldea: We need a language for describing all operations of a RDBMSs.

> basics: creating, reading, updating, deleting database components (CRUD)
» querying: selecting from and inserting into the database

» access control: who can do what in a database

> transactions: ensuring a consistent database state.

Definition 3.1. SQL, the structured query language is a domain-specific
language for managing data held in a RDBMS. SQL instructions are directly

executed by the RDBMS to change the database state or compute answers to
SQL queries.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2

226 2024-02-08

DDL: Data Definition Language

» Definition 3.2. The data definition language (DDL) is a subset of SQL
instructions that address the creation and deletion of database objects.

» Definition 3.3. The SQL statement CREATE TABLE (name)) ({coldefs)))
creates a table with name (name)). ((coldefs)) are column specifications that
specify the columns: it is a comma-separated list of column names and SQL
data type. The totality of all column specifications of all tables in a database is
called the database schema.

» Example 3.4 (Creating a Table). The following SQL statement creates the
table from 2.3

CREATE TABLE Books (

LastN varchar(128), FirstN varchar(128),

YOB int, YOD int, Title varchar(255), YOP int,
Publisher varchar(128), City varchar(128)

);
» Other CREATE statements exist, e.g. CREATE DATABASE (name)).

» Definition 3.5. The SQL statement DROP ((obj)) (name)) deletes the
database object of class ((obj)) with name (name).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 227 2024-02-08

SQL Data Types (for Column Specifications)

» Definition 3.6. SQL specifies data type for values including:

>

VVVYVVYVYYVYY

VARCHAR ({length))): character strings, including Unicode, of a variable length is
up to the maximum length of (length)).

BOOL truth values: true, false and case variants.

INT: Integers

FLOAT: floating point numbers

DATE: dates, e.g. DATE '1999—01—01" or DATE '2000—2—2'

TIME: time points in ISO format, e.g. TIME '00:00:00" or time '23:59:59.99’
TIMESTAMP: a combination of DATE and TIME (separated by a blank).

CLOB ({length))) (character large object) up to (typically) 2GiB

BLOB ((length))) (binary large object) up to (typically) 2GiB

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 228 2024-02-08

SQL: Adding Records to Tables

» Definition 3.7. SQL provides the INSERT INTO command for inserting
records into a table. This comes in two forms:

1. INSERT INTO ((table) VALUES ((vals)); where (vals)) is a comma-separated list
of values given in the order the columns were declared in the CREATE TABLE
instruction.

2. INSERT INTO (table)) ({cols))) VALUES ({vals))) where (vals)) is a
comma-separated list of values given in the order of {cols)) (a subset of columns) all
other fields are filled with NULL

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 220 2024-02-08

SQL: Adding Records to Tables

» Definition 3.10. SQL provides the INSERT INTO command for inserting
records into a table. This comes in two forms:

1. INSERT INTO (table) VALUES ((vals)); where (vals)) is a comma-separated list
of values given in the order the columns were declared in the CREATE TABLE
instruction.

2. INSERT INTO (table)) ({cols))) VALUES ({vals))) where (vals)) is a
comma-separated list of values given in the order of {cols)) (a subset of columns) all
other fields are filled with NULL

» Example 3.11 (Inserting into the Books Table). The given the table Books
from 3.4 we can add a record with
INSERT INTO Books

VALUES ('Tolkien', 'John Ronald Reuel’, 1892, 1973, 'The Hobbit’, 1937,
'George Allen,, Unwin’, '"UK");

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 220 2024-02-08

SQL: Adding Records to Tables

» Definition 3.13. SQL provides the INSERT INTO command for inserting
records into a table. This comes in two forms:

1. INSERT INTO (table) VALUES ((vals)); where (vals)) is a comma-separated list
of values given in the order the columns were declared in the CREATE TABLE
instruction.

2. INSERT INTO (table)) ({cols))) VALUES ({vals))) where (vals)) is a
comma-separated list of values given in the order of {cols)) (a subset of columns) all
other fields are filled with NULL

» Example 3.14 (Inserting into the Books Table). The given the table Books
from 3.4 we can add a record with
INSERT INTO Books

VALUES ('Tolkien', 'John Ronald Reuel’, 1892, 1973, 'The Hobbit’, 1937,
'George Allen,, Unwin’, '"UK");

» Example 3.15 (Inserting Partial Data). Using the second form of the

INSERT instruction, we can insert partial data. (all we have)

INSERT INTO Books (FirstN, LastN, YOB, title, YOP)
VALUES ('Michael’, 'Kohlhase', '1964', 'IWGS,,Course Notes', '2018');

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 220 2024-02-08

SQL: Deleting Records from Tables

» Definition 3.16. The SQL delete statement allows to change existing records.
DELETE FROM (table) WHERE (condition));

» Example 3.17. Deleting the record for “Huckleberry Finn".
DELETE FROM Works WHERE Title = 'Huckleberry,Finn'

» A\ If we leave out the WHERE clause, all rows are deleted.

» Note: There is much more to the WHERE clause, we will get to that when we
come to SQL querying. (see)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 230 2024-02-08

SQL: Updating Records in Tables

» Definition 3.18. The SQL update statement allows to change existing records.

UPDATE (table)
SET (column)); = (value));, {column)), = (value)),, ...
WHERE (condition));

» Example 3.19. Updating the publisher in “Huckleberry Finn".

UPDATE Books
SET Publisher = "Chatto/Windus', YOP = 1884, City = 'London’
WHERE Title = "Huckleberry Finn’

> A\ If we leave out the WHERE clause, all rows are updated.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 231 2024-02-08

9.4 ER-Diagrams and Complex Database
Schemata

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 231 2024-02-08

Avoiding Redundancy in Databases

» Recall the books table from 2.3:

[LastN [FirstN [YOB [YOD [Title [YOP [Publisher [City]
Twain Mark 1835 | 1910 | Huckleberry Finn 1986 | Penguin USA NY
Twain Mark 1835 | 1910 | Tom Sawyer 1987 | Viking NY
Cather Willa 1873 | 1947 | My Antonia 1995 | Library of America | NY
Hemingway | Ernest 1899 | 1961 | The Sun Also Rises 1995 | Scribner NY
Wolfe Thomas | 1900 | 1938 | Look Homeward, Angel 1995 | Scribner NY
Faulkner William | 1897 | 1962 | The Sound and the Furry | 1990 | Random House NY

» Observation: Some of the fields appear multiple times, e.g. “Mark Twain".

» /A When the database grows this can lead to scalability problems:
> in querying: e.g. if we look for all works by Mark Twain
» in maintenance: e.g. if we want to replace the pen name “Mark Twain” by the real
name “Samuel Langhorne Clemens".
» Idea: Separate concerns (here Authors, Works, and Publishers) into separate
entities, mark their relations.
» Develop a graphical notation for planning
» Implement that into the database

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 232 2024-02-08

Entity Relationship Diagrams

» Definition 4.1. An entity relationship diagram (ERD) illustrates the logical
structure of a database. It consists of entities that characterize (sets of) objects
by their attributes and relations between them.

» Example 4.2 (An ERD for Books). Recall the Books table from 2.3:

[LastN [FirstN TYOB[YOD [Title [YOP [Publisher [City |
Twain Mark 1835 | 1910 | Huckleberry Finn 1986 | Penguin USA NY
Twain Mark 1835 | 1910 | Tom Sawyer 1987 | Viking NY
Cather Willa 1873 | 1947 | My Antonia 1995 | Library of America | NY
Hemingway | Ernest | 1899 | 1961 | The Sun Also Rises 1995 | Scribner NY
Wolfe Thomas | 1900 | 1938 | Look Homeward, Angel 1995 | Scribner NY
Faulkner William | 1897 | 1962 | The Sound and the Furry | 1990 | Random House NY

»> Problem: We have duplicate information in the authors and publishers
> Idea: Spread the Books information over multiple tables.
Authors
Last Name Works Publ
. wrote ¥l —— | * publ. et
First Name 1 - Title 1 Name
Birth Date writ. by | pyppate | Publ- by City
Death Date
Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 233 2024-02-08

Linking Tables via Primary and Foreign Keys

» Definition 4.3. A column in a table can be designated as a primary key, if its
values are non-null and unique i.e. all distinct.

» In DDL, we just add the keyword PRIMARY KEY to the column specification.

» Definition 4.4. A foreign key is a column (or collection of columns) in one table
(called the child table) that refers to the primary key in another table (called the
reference table or parent table).

» Intuition: Together primary keys and foreign keys can be used to link tables or
(dually) to spread information over multiple tables.

ERD Implementation

Parent Child

A B ID : primary references 17D foreign

» BTW: Primary keys are great for identification in the WHERE clauses of SQL
instructions.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 234 2024-02-08

Linking Tables via Primary and Foreign Keys (Example)

» Example 4.5. Continuing 4.2, we now implement

Authors

Last Name «| Works " ubl Publ
First Name wrote - Title P Name
Birth Date | ! writ. by| pyppate | Publ- by L1 City
Death Date

by introducing primary keys in the Authors and Publishers tables and referencing
them by foreign keys in the Works table.

CREATE TABLE Authors (AuthorID int PRIMARY KEY,
LastN varchar(128), FirstN varchar(128), YOB int, YOD int);

CREATE TABLE Publishers (PublisherlD int PRIMARY KEY,
Name varchar(128), City varchar(128));

CREATE TABLE Works (
Title varchar(255), YOP int, AuthorID int, PublisherID int,
FOREIGN KEY (AuthorlD) REFERENCES Authors(AuthorID),
FOREIGN KEY(PublisherID) REFERENCES Publishers(PublisherID));

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 235 2024-02-08

Linking Tables via Primary and Foreign Keys (continued)

» Example 4.6 (Inserting into the Works Table). The given the tables Works
Authors, and Publishers from 4.5 we can add a record with
INSERT INTO Authors VALUES (1, 'Twain’, 'Mark’, 1835, 1910);

INSERT INTO Publishers VALUES (1, 'Penguin USA’, 'NY");
INSERT INTO Works VALUES ('Huckleberry Finn’, 1986, 1, 1);

INSERT INTO Publishers VALUES (2,'Viking', 'NY");
INSERT INTO Works VALUES ('Tom Sawyer’, 1987, 1, 2);

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 236 2024-02-08

9.5 RDBMS in Python

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 236 2024-02-08

Using SQLite from Python

» We will use the PySQLite package

» install it locally with pip install pysqglite for Python 3.
> use import sqlite3 to import the library in your programs.

» Typical Python program with sqlite3:

import sqlite3

Open database connection

db = sqlite3.connect((host)), (user)), (pass)), (DBname)))
prepare a cursor object using cursor() method

cursor = db.cursor()

execute SQL commands using the execute() method.
cursor.execute(" (SQL)")

((dataprocessingcode))

make sure data reaches disk

db.commit()

disconnect from server

db.close()

We will assume this as a wrapper for all code examples below.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 237 2024-02-08

Creating Tables in Python

» Example 5.1. Creating the table of 3.4

import sqlite3
our database file
database = "C:\\sqlite\db\books.db"
a string with the SQL instruction to create a table
create = """CREATE TABLE Books (
LastN varchar(128), FirstN varchar(128), YOB int, YOD int,
Title varchar(255), YOP int,Publisher varchar(128), City varchar(128));"""
insertl = """INSERT INTO Books
VALUES ('Twain’, 'Mark’, '1835’, '1910’, 'Huckleberry Finn', '1986’,
'Penguin USA’, 'NY’);"""
insert2 = """INSERT INTO Books
VALUES ('Twain’, 'Mark’, '1835’, '1910', 'Tom Sawyer’, '1987,
'Viking', 'NY');nnn
connect to the SQLIte DB and make a cursor
db = sqlite3.connect(database)
cursor = db.cursor()
create Books table by executing the cursor
cursor.execute("DROP_TABLE_Books;")
cursor.execute(create)
cursor.execute(insertl)
cursor.execute(insert2)
db.commit() # commit to disk
db.close() # clean up by closing

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 238 2024-02-08

To commit or not to commit?

vvyyvyy

v

Recall: SQLite computes with tables in memory but uses files for persistence.
Also Recall: Memory access is 100-10.000 times as fast as file access.
Idea 1: Keep tables in memory, write to file only when necessary.

Idea 2: Give the user/programmer control over when to write to file

> db = sqlite3.connect(({file))) connects to (file)), but computes in memory,
» db.commit() writes in-memory changes to (file)).

Problem: We can have multiple database connections to the same database
file in parallel, there may be race conditions and conflicts.

Our Solution: Commit often enough! (your responsibility/fault)
General Solution: RDBMS offer database transactions. (not covered in IWGS)

Lazy Solution: Set the connection to autocommit mode: (system decides)
sqlite3.connect((file)),isolation level = None)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 230 2024-02-08

9.6 Excursion: Programming with Exceptions in
Python

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 230 2024-02-08

How to deal with Errors in Python

» Theorem 6.1 (Kohlhase’s Law).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 240 2024-02-08

How to deal with Errors in Python

» Theorem 6.5 (Kohlhase’s Law). [can be an idiot, and | do make mistakes!

» Corollary 6.6. Programming languages need a good way to deal with all kinds
of errors!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 240 2024-02-08

How to deal with Errors in Python

» Theorem 6.9 (Kohlhase’s Law). [can be an idiot, and | do make mistakes!

» Corollary 6.10. Programming languages need a good way to deal with all kinds
of errors!

» Definition 6.11. An exception is a special Python object. Raising an exception
e terminates computation and passes e to the next higher level.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 240 2024-02-08

How to deal with Errors in Python

» Theorem 6.13 (Kohlhase's Law). | can be an idiot, and | do make mistakes!

» Corollary 6.14. Programming languages need a good way to deal with all kinds
of errors!

» Definition 6.15. An exception is a special Python object. Raising an exception
e terminates computation and passes e to the next higher level.

» Example 6.16 (Division by Zero). The Python interpreter reports unhandled
exceptions.
>>>-3/0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
Zerodivisionerror: division by zero

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 240 2024-02-08

How to deal with Errors in Python

» Theorem 6.17 (Kohlhase’s Law). / can be an idiot, and | do make mistakes!

» Corollary 6.18. Programming languages need a good way to deal with all kinds
of errors!

» Definition 6.19. An exception is a special Python object. Raising an exception
e terminates computation and passes e to the next higher level.

» Example 6.20 (Division by Zero). The Python interpreter reports unhandled
exceptions.

» Exceptions are first class citizens in Python, in particular they
> are classified by their classes in a hierarchy.

> exception classes can be defined by the user (they inherit from the Exception class)

class DivByZero (Exception)
pass

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 240 2024-02-08

How to deal with Errors in Python

» Theorem 6.21 (Kohlhase's Law). | can be an idiot, and | do make mistakes!

» Corollary 6.22. Programming languages need a good way to deal with all kinds
of errors!

» Definition 6.23. An exception is a special Python object. Raising an exception
e terminates computation and passes e to the next higher level.

» Example 6.24 (Division by Zero). The Python interpreter reports unhandled
exceptions.

» Exceptions are first class citizens in Python, in particular they

> are classified by their classes in a hierarchy.
> exception classes can be defined by the user (they inherit from the Exception class)
» can be raised when an abnormal condition appears

if denominator == 0 :
raise DivByZero

else

((computation))

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 240 2024-02-08

How to deal with Errors in Python

» Theorem 6.25 (Kohlhase's Law). | can be an idiot, and | do make mistakes!

» Corollary 6.26. Programming languages need a good way to deal with all kinds
of errors!

» Definition 6.27. An exception is a special Python object. Raising an exception
e terminates computation and passes e to the next higher level.

» Example 6.28 (Division by Zero). The Python interpreter reports unhandled
exceptions.

» Exceptions are first class citizens in Python, in particular they

are classified by their classes in a hierarchy.

exception classes can be defined by the user (they inherit from the Exception class)
can be raised when an abnormal condition appears

can be handled in a try/except block (there can be multiple)

vvyy

try:
(tentativecomputation))

except : (lerr))1, ..., (err), :
((errorhandling))

finally :
{(cleanup))

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 240 2024-02-08

Playing it Safe with Databases

» Observation 6.29. Things can go wrong when connecting to a databasel (e.g.
missing file)
» ldea: Raise exceptions and handle them.

» Example 6.30. we encapsulate a try/except block into a function for
convenience
import sqlite3
from sqlite3 import Error
def sql _connection():
try:
db = sqlite3.connect(':memory:")
print(" Connection,is_established: ,Database,is,created in memory")
except Error :
print(Error)
finally:
db.close()

The sqlite3 package provides its own exceptions, which we import separately.
Other errors can be handled in additional except clauses.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 241 2024-02-08

9.7 Querying and Views in SQL

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 241 2024-02-08

SQL Querying: The SELECT Statement

» SQL uses the SELECT instruction for retrieving data from a database.

» SELECT (columns)) FROM ((table) returns all records from ((table)
restricted to the fields from (columns)).

» Definition 7.1. We call a SELECT instruction a query.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 242

2024-02-08

SQL Querying: The SELECT Statement

vy

vvyyy

SQL uses the SELECT instruction for retrieving data from a database.

SELECT (columns)) FROM (table)) returns all records from ((table)
restricted to the fields from (columns)).

Definition 7.5. We call a SELECT instruction a query.
Example 7.6. SELECT Title, YOP FROM Books;
SELECT DISTINCT removes duplicate values

SELECT x FROM (table)) returns all records from (table)).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 242 2024-02-08

SQL Querying: The SELECT Statement

>
>

vvyVvyyvyy

v

SQL uses the SELECT instruction for retrieving data from a database.

SELECT (columns)) FROM ((table) returns all records from ((table)
restricted to the fields from (columns)).

Definition 7.9. We call a SELECT instruction a query.
Example 7.10. SELECT Title, YOP FROM Books;
SELECT DISTINCT removes duplicate values

SELECT x FROM (table)) returns all records from (table)).

SELECT (columns)) FROM (table)) WHERE {(cond)) returns all records that
match condition (cond))

Example 7.11. SELECT FirstN, LastN FROM Books WHERE YOP = 1995;

Willa|Cather
Ernest|Hemingway
Thomas|Wolfe

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 242 2024-02-08

SQL Querying: The SELECT Statement

vy

vvyyVvyyvYyy

v

SQL uses the SELECT instruction for retrieving data from a database.

SELECT (columns)) FROM (table)) returns all records from ((table)
restricted to the fields from (columns)).

Definition 7.13. We call a SELECT instruction a query.
Example 7.14. SELECT Title, YOP FROM Books;
SELECT DISTINCT removes duplicate values

SELECT x FROM (table)) returns all records from (table)).

SELECT (columns) FROM (table)) WHERE (cond)) returns all records that
match condition (cond))

Example 7.15. SELECT FirstN, LastN FROM Books WHERE YOP = 1995;

SELECT (columns)) FROM (table) ORDER BY (colums)) orders the
results by (columns)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 242 2024-02-08

SQL Querying: The SELECT Statement

vy

vvyyVvyyvYyy

v

SQL uses the SELECT instruction for retrieving data from a database.

SELECT (columns)) FROM (table)) returns all records from ((table)
restricted to the fields from ((columns).

Definition 7.17. We call a SELECT instruction a query.
Example 7.18. SELECT Title, YOP FROM Books;
SELECT DISTINCT removes duplicate values

SELECT x FROM (table)) returns all records from (table)).

SELECT (columns) FROM (table)) WHERE (cond)) returns all records that
match condition (cond))

Example 7.19. SELECT FirstN, LastN FROM Books WHERE YOP = 1995;

SELECT (columns)) FROM (table) ORDER BY (colums)) orders the
results by (columns)

Example 7.20. Ordering can be ascending (ASC) or descending (DESC)
SELECT FirstN, LastN FROM Books ORDER BY LastN ASC, YOP DESC;

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 242 2024-02-08

Joining Tables in Queries

» Problem: We can query single tables, how cross-table queries? E.g. in

Authors Works
AuthorlD v —_ Publishers
Title —_—
Last Name r PublisherlD
) PubDate
First Name Name
} ™~ AuthorlD .
Birth Date PublisherlD City
Death Date ublisher

» Idea: Virtually join tables for the query! (as if we had the large books table)

» Definition 7.21. A table join (or simply join) is a means for combining columns
from one (self join) or more tables by using values common to each.

» Example 7.22. Joining all three tables from 4.2.

SELECT
Authors.LastN, Authors.FirstN, Authors.YOB, Authors.YOD,
Title, YOP, Publishers.Name, Publishers.City
FROM
Works
INNER JOIN Authors ON Authors.AuthorlD = Works.AuthorID
INNER JOIN Publishers ON Publishers.PublisherID = Works.PublisherID

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 243 2024-02-08

Joining Tables in Queries (Result)

» Example 7.23.

[JON] SQLiteStudio (3.2.1)
B 1 B B B B:Ed @ B G & % @ @ @ B O s : Li »: &8 »
ece LiSQL editor 1 00 Databases
% - 2 = Filter by name
b & [4 B i =) D 4 works WY =
T b & & & el - B B test (saLite 3)
History v = works (sQLite 3)
v [} Tables (3)
1 SELECT . v [Authors
2 Authors.Last, Authors.First, Authors.YOB, Authors.YOD, Title, YOP, il Col
3 Publishers.Name, Publishers.City > il Columns (5)
4 FROM Works # Indexes
5 INNER JOIN Authors ON Authors.AuthorID = Works.AuthorID & Triggers
6 INNER JOIN Publishers ON Publishers.PublisherID = Works.PublisherID v [Publishers
[. » [l Columns (3)
Form view .
Indexes
a B O & /8 El = Total rows loaded: 8 _ & Triggers
v [Works
Last First YOB YOD Title YOP Name City » [Columns (4)
1 Twain Mark 1835 1910 Huckleberry Finn 1986 Penguin USA NY ' Indexes
2 Twain Mark 1835 1910 Tom Sawyer 1987 Viking NY & Triggers
3 Cather Willa 1873 1947 My Antonia 1995 Library of America NY > EF Views ()
4 Hemingway Ernest 1899 1961 The Sun Also Rises 1995 Scribner NY
5 Wolfe Thomas 1900 1938 Look Homeward, Angel 1995 Scribner NY
6 Faulkner William 1897 1962 The Sound and the Furry 1990 Random House NY
7 Tolkien John Ronald Reuel 1892 1973 The Hobbit 1937 George Allen & Unwin UK
- |_rsaL editor 1

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 244

2024-02-08

Database Views: Persisting Queries

» Observation: Via the join in 7.22, the Works table queries like the original
Books table.

» Wouldn’t it be nice If we could also insert/update into that?

» Definition 7.24. A database view (or simply view) is a virtual table based on
the result set of a query. A view contains rows and columns, just like a real
table. The field in a view are fields from one or more real tables in the database.

» Remark 7.25. In many RDBMS we can even insert, delete, and update records
in a view, just as in any other table of the database.

The RDBMS achieves this by automatically translating any change to the view
into a set of changes to the underlying physical tables.

> A but not in SQLite. (this is an omission due to simplicity)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 245 2024-02-08

Database Views: Persisting Queries (Books Example)

» Example 7.26. Use the query from 7.22 to define a view

CREATE VIEW Books AS
SELECT
Authors.LastN AS LastN, Authors.FirstN AS FirstN,
Authors.YOB AS YOB, Authors.YOD AS YOD,
Title, YOP,
Publishers.Name AS Publisher, Publishers.City AS City
FROM
Works
INNER JOIN Authors ON Authors.AuthorlD = Works.AuthorlD
INNER JOIN Publishers ON Publishers.PublisherID = Works.PublisherlD

Use AS clauses in SELECT to specify column names.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 246 2024-02-08

Database Views: Persisting Queries (Books Example)

» Example 7.27.

® [) SQLiteStudio (3.2.1)
X 0B B OB 2 a B = : e B @ @ = B B[»:& »
‘ec e | /SQL editor 1 00 Databases
. 5 Filter by name
o 58 , ;) works [
P & T 4 B & B W, & P & B OO & test (saLite3)
History v % works (salite 3)
v Tables (3)
1 select * from Books v [Authors
» [l Columns (5)
Indexes
& Triggers
Form view » [Publishers
- - » 7] Works
(2] B @8) El = Total rows loaded: 8 7 Views (1)
Last First YOoB YoD Title YOP Publisher City. vE Bymfl'krsiggers
1 Twain Mark 1835 1910 Huckleberry Finn 1986 Penguin USA NY
2 Twain Mark 1835 1910 Tom Sawyer 1987 Viking NY
3 Cather Willa 1873 1947 My Antonia 1995 Library of America NY
4 Hemingway Ernest 1899 1961 The Sun Also Rises 1995 Scribner NY
5 Wolfe Thomas 1900 1938 Look Homeward, Angel 1995 Scribner NY
6 Faulkner William 1897 1962 The Sound and the Furry 1990 Random House NY
7 Tolkien John Ronald Reuel 1892 1973 The Hobbit 1937 George Allen & Unwin UK
8 Tolkien John Ronald Reuel 1892 1973 | The Hobbit 1937 George Allen & Unwin UK
* | _}sQL editor 1
| [—— .
E—— Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 247 2024-02-08

9.8 Querying via Python

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 247 2024-02-08

Working with Cursors

» Definition 8.1. A cursor is a named object that encapsulates a set of query
results in a (virtual) database table.
» To work with a cursor in sqlite3,
> create a cursor object via the cursor method of your database object.
» Open the cursor to establish the result set via its execute method
> Fetch the data into local variables as needed from the cursor.
» The cursor class in sqlite3 provides additional methods:

» fetchone(): return one row as an array/list

> fetchall(): return all rows a list of lists.

> fetchsome((n))): return ((n) rows a list of lists.
» rowcount(): the number of rows in the cursor

» Intuition: Cursors allow programmers to repeatedly use a database query.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 248 2024-02-08

Extended Example: Listing Authors from the Books Table

» Example 8.2.

sql = 'SELECTFirstN,_LastN, ,YOB_ FROM_Books WHERE_YOD,<1950;
cursor.execute(sql)
print ('There_are./’,cursor.rowcount,’ books, whose_authors,died before ,1950:\n")
for row in cursor.fetchall() :

print (row[0],"uu’,row[1], ";uuborny’,row[3],"\n")
print(' Thatyisuall;uifuyou want, more, ,add_more to the database!")

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 2490 2024-02-08

Inserting Multiple Records (Example)

>

>

The cursor.executemany method takes an SQL instruction with parameters and
a list of suitable tuples and executes them.

Example 8.3. So the final form of insertion in 5.1 would be to define variable
with a list of book tuples:

booklist = |
("Twain’, 'Mark’, 1835, 1910, 'Huckleberry_ Finn’, 1986, 'Penguin,USA’, 'NY’),
('Twain’, 'Mark’, 1835, 1910, 'Tom_Sawyer’, 1987, 'Viking', 'NY"),
('Cather’, 'Willa', 1873, 1947, 'My_Antonia’, 1995, 'Library_of America’, 'NY"),
('Hemingway’, 'Ernest’, 1899, 1961, 'The_Sun_Also_Rises’, 1995, 'Scribner’, 'NY’),
('Wolfe', 'Thomas', 1900, 1938, 'Look Homeward, Angel’, 1995, 'Scribner’, 'NY"),
('Faulkner’, 'William’, 1897, 1962, 'The_Sound and_the_Furry’, 1990, 'Random House.’, 'N
('Tolkien', "John_Ronald Reuel’, 1892, 1973, 'The Hobbit’, 1937,'George Allen, Unwin’, 'Uk

and then insert it via a call of cursor.executemany:
cursor.executemany('INSERTLINTO_ Books VALUES(?,7,7,7,7,7,7,7)" booklist)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 250 2024-02-08

Beware of the Python/SQLite Interaction

» What have we learned?:

comic:

HI, THIS 15

WERE HAVING SOME
COMPUTER TROUBLE.

\%m

YOUR SON'S SCHOOL.

OH. DEAR - DID HE
BREAK SOMETHING?

I Awav /

S

At least you now understand the following web

(https://xkcd.com/327/)

DID YOU REALLY
INAME YOUR SON
Robert'); DROP
TABLE Students;—~ 7

~OH.YES UTTIE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S GTUDENT RECORDS.
T HOPE YOURE HAPPY.
él AND I HOPE
~~ YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INP(TS.

» Definition 8.4. We call this an SQL injection attack.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 251

2024-02-08

https://xkcd.com/327/

Beware of the Python/SQLite Interaction

» What have we learned?:

comic:

HI, THIS 15

WERE HAVING SOME
COMPUTER TROUBLE.

\%m

YOUR SON'S SCHOOL.

OH, DEAR - DID HE
BREAK SOMETHING?

I thAY /

S

At least you now understand the following web

(https://xkcd.com/327/)

DID YOU REALLY
INAME YOUR SON
Robert'); DROP
TABLE Students;—~ 7

~OH.YES UTTIE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
T HOPE YOURE HAPPY.
él AND I HOPE
= YOU'VE LEARNED
TO SANMIZE YOUR
DATABASE INP(TS.

» Definition 8.5. We call this an SQL injection attack.

» Hint:

name = input("Please_enter student name:")
cursor.execute(f"INSERTINTO_Students VALUES, (....,{Name},.....);")
For the input Robert');,DROP_,TABLE_Students; this has a Python line
generates and executes the SQL instructions
'Robert’); DROP TABLE Students;

INSERT INTO Students VALUES (...,

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 251

Imagine a web application where you add student names for enrolment.

2024-02-08

https://xkcd.com/327/

SQLite3 Parameter Substitution

» Observation 8.6. We often need variables as parameters in cursor.execute.
» Example 8.7. In 8.2 we can ask the user for a year.
» The python way would be to use f strings
year = input('Books, whose author died, before what, year?")
sql = f'SELECTFirstN, LastN, ,YOB_ FROM_Books ,WHERE_ YOD < {year}’
cursor.execute(sql) # & never use f—strings here ——> insecure
But this leads to vulnerability by SQL injection attacks. (~ Bobby Tables)

» Definition 8.8. sqlite3 supplies a parameter substitution that SQL sanitizes
parameters (removes problematic SQL instructions).

» The sqlite3 way uses parameter substitution (multiple ? possible ~ tuple)

year = input('Books, whose_author died before")
select = 'SELECT_Title ,FROM_ Books ,WHERE_YOD_ <7’
cursor.execute(select, (year,))

or in the “named style” ~» order-independent (argument is a dictionary)
century = input('Century_of the_books?")
select = 'SELECT Title, ,YOP_LFROM_Books WHERE_ YOP_<=:start ,ZAND_,YOP_ > :end’

datadict = {'start’: (century — 1) % 100, 'end’: century * 100}
cursor.execute(select,datadict)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 252 2024-02-08

9.9 Real-Life Input/Output: XML and JSON

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 252 2024-02-08

Filling a DB from via XML (Specification)

» Ildea: We want to make a database based web application for NYC museums.
» Recall the public catalog from Example 4.5.4 (Introduction to XML) in the

IWGS lecture notes, the XML file is online at

https://data.cityofnewyork.us/download/kcrm-j9hh/application/xml

<?xml version="1.0" encoding="UTF—-8"7>
<museums>
<museum>

<name>American Folk Art Museum< /name>
<phone>212—265—1040< /phone>
<address>45 W. 53rd St. (at Fifth Ave.)</address>
<closing>Closed: Monday< /closing>
<rates>admission: $9; seniors/students, $7; under 12, free</rates>
<specials>
Pay—what—you—wish: Friday after 5:30pm;
refreshments and music available
< /specials>
< /museum>
<museum>
<name>American Museum of Natural History</name>
<phone>212—769—5200< /phone>
<address>Central Park West (at W. 79th St.)</address>
<closing>Closed: Thanksgiving Day and Christmas Day< /closing>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 253 2024-02-08

SUMIE RIGHTS RESERVED|

https://data.cityofnewyork.us/download/kcrm-j9hh/application/xml

Filling a DB from via XML (Specification)

» Idea: We want to make a database based web application for NYC museums.

» Recall the public catalog from Example 4.5.4 (Introduction to XML) in the
IWGS lecture notes, the XML file is online at
https://data.cityofnewyork.us/download/kcrm-j9hh/application/xml

» Idea: We need Python program that
» provides a SQLite database with a table 'museum’ with columns 'name’, 'phone’,

.., 'specials’ of appropriate type
> reads the XML file from the URL above and fills the table.

» Possible Enhancement: Encapsulate the functionality into a function, then we

could run this program each night and keep the database up to date.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 253 2024-02-08

https://data.cityofnewyork.us/download/kcrm-j9hh/application/xml

Filling a DB from via XML (Implementation)

» Libraries: urllib [UL] to retrieve the file and Ixml [LXML] to parse it.

from Ixml import etree

from urllib.request import urlopen

url = 'https://data.cityofnewyork.us/download/kcrm—j9hh/application /xml’
document = urlopen(url).read()

tree = etree.fromstring(document)

We now have a (large) XML tree in tree!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 254 2024-02-08

Filling a DB from via XML (Implementation)

» Libraries: urllib [UL] to retrieve the file and Ixml [LXML] to parse it.
» Collect all the XML tags in all the museums (for the column names)

tags = |]
for museum in tree:
for info in museum:
if info.tag not in tags:
tags.append(info.tag)

» We create the SQLite database as discussed in slide 238.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 254 2024-02-08

Filling a DB from via XML (Implementation)

» Libraries: urllib [UL] to retrieve the file and Ixml [LXML] to parse it.
» Collect all the XML tags in all the museums (for the column names)
» We create the SQLite database as discussed in slide 238.

» Then we assemble a table specification in a string columns:

columns = ""

for cn in tags:
All columns have their name and type TEXT
columns += ", {en} TEXT"

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 254 2024-02-08

Filling a DB from via XML (Implementation)

vVvyyvyVvyy

Libraries: urllib [UL] to retrieve the file and Ixml [LXML] to parse it.
Collect all the XML tags in all the museums (for the column names)
We create the SQLite database as discussed in slide 238.

Then we assemble a table specification in a string columns:

Create the Museums table from the specification in columns

cursor.execute("DROP_TABLE_IFLEXISTS Museums;")
cursor.execute(f"""CREATE TABLE Museums
(Id INTEGER PRIMARY KEY {columns});""")

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 254 2024-02-08

Filling a DB from via XML (Implementation)

Libraries: urllib [UL] to retrieve the file and Ixml [LXML] to parse it.
Collect all the XML tags in all the museums (for the column names)
We create the SQLite database as discussed in slide 238.

Then we assemble a table specification in a string columns:

Create the Museums table from the specification in columns

Now the most important part: We fill the database

VVYyVYVYYVYY

for museum in tree:
Find and sanitise the contents of all child nodes of this museum.
values =]
for tag in tags:
if museum find(tag) != None:
values.append(str(museum.find(tag).text).strip())
else:
values.append("—")

Insert the data for this museum into the database.
cols = str(tuple(tags))

We need a tuple of one 7 for each column.

vals = "(" 4 ("7,," * len(tags))[:—2] + ")"

insert = f"INSERTLINTOLMuseums_{cols} VALUES {vals}"
cursor. execute(lmsert tupl%values)«? ;
G/SW 2

Michael Kohlhase: Inf. Werkzeuge

254 2024-02-08

Filling a DB from via XML (Implementation)

vVvyvyvyvVvyyvyy

Libraries: urllib [UL] to retrieve the file and Ixml [LXML] to parse it.
Collect all the XML tags in all the museums (for the column names)
We create the SQLite database as discussed in slide 238.

Then we assemble a table specification in a string columns:

Create the Museums table from the specification in columns

Now the most important part: We fill the database

We finalize the transaction as discussed in slide 238.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 254 2024-02-08

The complete code in one block —a mere 51 lines

import sqlite3
from Ixml import etree
from urllib.request import urlopen

Download the XML file and Parse it

url = 'https://data.cityofnewyork.us/download/kcrm—j9hh/application /xml’
document = urlopen(url).read()

tree = etree.fromstring(document)

First run—through of the XML: Collect the info types there,
tags = []
for museum in tree:
for info in museum:
if info.tag not in tags:
tags.append(info.tag)

Next, create database accordingly. First assemble a columns string.
columns = ""
for cn in tags:

All columns have their name and type TEXT

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 255 2024-02-08

JSON — JavaScript Object Notation

» Definition 9.1. JSON (JavaScript Object Notation) is an open standard file
format for interchange of structured data. JSON uses human readable text to
store and transmit data objects consisting of attribute—value pairs and sequences.

> A JSON is very flexible, there need not be a regularizing schema.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 256 2024-02-08

JSON — JavaScript Object Notation

» Definition 9.3. JSON (JavaScript Object Notation) is an open standard file
format for interchange of structured data. JSON uses human readable text to
store and transmit data objects consisting of attribute—value pairs and sequences.

> A JSON is very flexible, there need not be a regularizing schema.

» Intuition: JSON is for JavaScript as (nested) dictionaries are for Python.

» The browser can directly read JSON and use it via JavaScript.
» ~» AJAX = JavaScript can query the backend for JSON data to update parts of the
DOM. (lightweight interaction)

» Consequence:
JSON is the dominant interchange format for web applications.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 256 2024-02-08

JSON — JavaScript Object Notation

» Definition 9.5. JSON (JavaScript Object Notation) is an open standard file
format for interchange of structured data. JSON uses human readable text to
store and transmit data objects consisting of attribute—value pairs and sequences.

> A JSON is very flexible, there need not be a regularizing schema.

» Intuition: JSON is for JavaScript as (nested) dictionaries are for Python.

» The browser can directly read JSON and use it via JavaScript.
» ~» AJAX = JavaScript can query the backend for JSON data to update parts of the
DOM. (lightweight interaction)
» Consequence:
JSON is the dominant interchange format for web applications.

» Another Intuition: JSON objects are like database records, but less rigid.

» Idea: Build a special JSON database. (JSON 1/0; efficient storage)
» Definition 9.6. mongoDB is the most popular NoSQL database system. (no
SQL inside)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 256 2024-02-08

Dealing with JSON in Python

> A\ Even though JSON concepts and syntax are similar to Python dictionaries,

there are (subtle) differences.
» Concretely: Python allows more data types in dictionaries, e.g.
’ Python ‘ JSON equivalent ‘

True true
False false
float Number
int Number
None null
dict Object
list Array
tuple Array
» But these differences are systematic and can be overcome via the json

library [JS].
> json.dumps({dict))) takes a Python dictionary dict, produces a JSON string.

> json.loads(((json))) takes a JSON string json, produces a Python dictionary.
There are many ways to control the output (pretty-printing), see [JS].

SUMIE RIGHTS RESERVED|

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 2024-02-08

JSON Output for the NYC Museums DB

» Libraries: json for JSON [JS] and sqlite3 for the database.

import json
import sqlite3

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 258 2024-02-08

JSON Output for the NYC Museums DB

» Libraries: json for JSON [JS] and sqlite3 for the database.
» Connect to the SQLite database as usual and query the database for everything

db = sqlite3.connect("./museums.sqlite")

cursor = db.cursor()
cursor.execute("SELECT * ,FROM_Museums;")

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 258 2024-02-08

JSON Output for the NYC Museums DB

» Libraries: json for JSON [JS] and sqlite3 for the database.
» Connect to the SQLite database as usual and query the database for everything
» |nitialize a dictionary and the list of Museums column names

data = {}

data['museums’] =]
columns = ['name’, 'phone’, 'address’, 'closing’, 'rates’, 'specials’]

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 258 2024-02-08

JSON Output for the NYC Museums DB

» Libraries: json for JSON [JS] and sqlite3 for the database.

» Connect to the SQ)Lite database as usual and query the database for everything
» Initialize a dictionary and the list of Museums column names

» For each of the rows in the Museums table build a row dictionary

for row in cursor.fetchall():
Generate a dictionary with columns as keys and entrys as values.
rowdict = { columns[n] : row[n] for n in range(6) }

Add that dictionary to the JSON data structure.
data['museums’].append(rowdict)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 258 2024-02-08

JSON Output for the NYC Museums DB

vvyyVvyyvYyy

Libraries: json for JSON [JS] and sqlite3 for the database.

Connect to the SQLite database as usual and query the database for everything
Initialize a dictionary and the list of Museums column names

For each of the rows in the Museums table build a row dictionary

Dump the data dictionary as JSON into a file

with open('museums.json’, 'w') as outfile:
json.dump(data, outfile)

Close the database as usual.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 258 2024-02-08

JSON Output for the NYC Museums DB |

import json
import sqlite3

Connect to database and query database for everything.
db = sqlite3.connect("./museums.sqlite")

cursor = db.cursor()
cursor.execute("SELECT _* ,FROM_ Museums;")

Setup soon—to—be—JSON dictionary and the necessary columns
data = {}

data['museums’] =]

columns = ['name’, 'phone’, "address’, 'closing’, 'rates’, 'specials’]

For every row in the result, do the following:

for row in cursor.fetchall():
Generate a dictionary with columns as keys and entrys as values.
rowdict = { columns|[n] : row[n] for n in range(6) }

Add that dictionary to the JSON data structure.
data['museums'].append(rowdict)

Write collected JSON data to file.
with open('museums.json’, 'w’) as outfile:

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 250 2024-02-08

JSON Output for the NYC Museums DB |l

json.dump(data, outfile)

Close database
db.close()

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 260 2024-02-08

JSON Example (NYC Museums)

» Example 9.7. The NYC museums data from Example 4.5.4 (Introduction to
XML) in the IWGS lecture notes as JSON:
We represent the data as a “sequence” of (nested) “dictionaries”

[

{"name": "American Folk Art Museum",
"phone": "212—265—1040",
"address": "45 W. 53rd St. (at Fifth Ave.)",
"closing": "Closed: Monday",
"rates": {
"admission": "$9",
"seniors/students": "$7",
"under 12": "free",

b
"specials": "Pay—what—you—wish: Friday after 5:30pm;
refreshments and music available"

{"name": "American Museum of Natural History",

"phone": "212—769—5200",
"address": "Central Park West (at W. 79th St.)"
"closing": "Closed: Thanksgiving Day and Christmas Day"
"rates": {

"admission": "$16",

"seniors/students": "$12",

"kids 2—12": "§9"

1} . n n
under 2": "free e
Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 261 2024-02-08 swmssmm

Chapter 10
Project: A Web GUI for a Books Database

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 261 2024-02-08

10.1 A Basic Web Application

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 261 2024-02-08

Building a full Web Application with Database Backend

» Observation 1.1. With the technology in 5 (Web Applications) in the IWGS
lecture notes and we can build a full web application in less than

» 100 lines of Python code and (back-end/routes)
» less than 70 lines of HTML template files. (front end)

» Functionality: Manage a database of books, in particular: (e.g. your library at
home)

» add a new book to the database
> delete a book from the database
> update (i.e. change) an existing book

» The source is at https://gl.mathhub. info/MiKoMH/IWGS/blob/master/
source/booksapp/code/books-app.py.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 262 2024-02-08

https://gl.mathhub.info/MiKoMH/IWGS/blob/master/source/booksapp/code/books-app.py
https://gl.mathhub.info/MiKoMH/IWGS/blob/master/source/booksapp/code/books-app.py

The Books Application: Setup

» We have already seen how to set up the database in slide 250.

import sqlite3
from sqlite3 import Error
from bottle import route, run, debug, template, request, get, post

our database file
database = "books.db"

db = sqlite3.connect(database)

» But we want to receive result rows as dictionaries, not as tuples, so we add

db.row factory = sqlite3.Row

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 263 2024-02-08

The Books Application: Setup

» We have already seen how to set up the database in slide 250.

import sqlite3
from sqlite3 import Error
from bottle import route, run, debug, template, request, get, post

our database file
database = "books.db"

db = sqlite3.connect(database)

» But we want to receive result rows as dictionaries, not as tuples, so we add

db.row factory = sqlite3.Row

» We give ourselves a cursor to work with
cursor = db.cursor()

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 263 2024-02-08

The Books Application: Setup

» We have already seen how to set up the database in slide 250.

import sqlite3
from sqlite3 import Error
from bottle import route, run, debug, template, request, get, post

our database file
database = "books.db"

db = sqlite3.connect(database)

» But we want to receive result rows as dictionaries, not as tuples, so we add
db.row factory = sqlite3.Row

» We give ourselves a cursor to work with
cursor = db.cursor()

» We start the bottle server
run(host="localhost’, port=8080, debug=True)

» And of course, we eventually commit and close the database in the end

db.commit()
db.close()

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 263 2024-02-08

The Books Application: Backend

» We specify the database schema and create the Books table

bookstable = """

CREATE TABLE IF NOT EXISTS Books (
Last varchar(128), First varchar(128),
YOB int, YOD int, Title varchar(255), YOP int,
Publisher varchar(128), City varchar(128)

cursor.execute(bookstable)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 264

2024-02-08

The Books Application: Books to Play With

» Data about books as a Python list of 8-tuples:
initialbooklist = [

("Twain’, 'Mark’, 1835, 1910, 'Huckleberry Finn’, 1986, 'Penguin,USA’, 'NY’),
('Twain’, 'Mark’, 1835, 1910, 'Tom_Sawyer’, 1987, 'Viking', 'NY"),
("Cather’, 'Willa', 1873, 1947, 'My_Antonia’, 1995, 'Library_of America’, 'NY"),
("Hemingway’, 'Ernest’, 1899, 1961, 'The_SunyAlso_Rises’, 1995, 'Scribner’, 'NY"),
('Wolfe', 'Thomas’, 1900, 1938, 'Look Homeward, Angel’, 1995, 'Scribner’, 'NY"),
('Faulkner’, 'William’, 1897, 1962, 'The_Sound and_the_Furry’, 1990, 'Random House.’, 'N
('Tolkien', "John_Ronald Reuel’, 1892, 1973, 'The Hobbit’, 1937,'George Allen, Unwin’, 'Uk

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2

265 2024.02.08

The Books Application: Books to Play With

» Data about books as a Python list of 8-tuples:

initialbooklist = [
("Twain’, 'Mark’, 1835, 1910, 'Huckleberry Finn’, 1986, 'Penguin,USA’, 'NY’),
('Twain’, 'Mark’, 1835, 1910, 'Tom_Sawyer’, 1987, 'Viking', 'NY"),
("Cather’, 'Willa', 1873, 1947, 'My_Antonia’, 1995, 'Library_of America’, 'NY"),
("Hemingway’, 'Ernest’, 1899, 1961, 'The_SunyAlso_Rises’, 1995, 'Scribner’, 'NY"),
('Wolfe', 'Thomas’, 1900, 1938, 'Look Homeward, Angel’, 1995, 'Scribner’, 'NY"),
('Faulkner’, 'William’, 1897, 1962, 'The_Sound and_the_Furry’, 1990, 'Random House.’, 'N
('Tolkien', "John_Ronald Reuel’, 1892, 1973, 'The Hobbit’, 1937,'George Allen, Unwin’, 'Uk

» If the Books table is empty, we fill it with the tuples in initialbooklist:

row = cursor.execute('SELECT_* FROM_Books LIMIT_1").fetchall()
if not row:
cursor.executemany('INSERTLINTO,Books VALUES,(7,7,7,7,7,7,7,7)’,initialbooklist

» Idea: To find out if the table is empty (surprisingly clumsy)

> we fetch a list with at most one row (LIMIT 1);
> if Books is empty, row is the empty list which evaluates to false in a conditional.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 265 2024-02-08

The Books Application Routes: The Application Root

» We only need to add the bottle routes for the various sub pages.
» The main page: Listing the book records in the database

Qroute('/")
def books():
query = 'SELECT _rowid,Last,First,YOB,YOD,Title,YOP,Publisher,City ,FROM,_ Books'
cursor.execute(query)
booklist = cursor.fetchall()
return template('books’,books=booklist,num=len(booklist),cols=cols)

» This uses the following templates: the first generates a table of books from the
template file books.tpl

<p>There are {{num}} books in the database</p>
<table>

% include('th.tpl’, cols=cols)

% for book in books : include('book.tpl’,*xxbook,cols=cols) end

<tr><th><button>add a book< /button></th></tr>
< /table>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 266 2024-02-08

The Books Application Root: Result

» Here is the page of the books application in its initial state.

localhost X turkey BF Htm e 113, & pythor

<« C ® O O localhost:8080/? T IND® = o =

There are 7 books in the database

Last First YOB YOD Title YOP Publisher City Action
Twain Mark 1835 1910 Huckleberry Finn 1986 Penguin USA NY edit delete
Twain Mark 1835 1910 Tom Sawyer 1987 Viking NY edit delete
Cather Willa 1873 1947 My Antonia 1995 Library of America NY edit delete
Hemingway Ernest 1800 1961 The Sun Also Rises 1995 Scribner NY edit delete
‘Wolfe Thomas 1900 1938 Look Homeward, Angel 1995 Scribner NY edit delete
Faulkner William 1897 1962 The Sound and the Furry 1990 Random House NY edit delete
Tolkien John Ronald Reuel 1892 1973 The Hobbit 1937 George Allen & Unwin UK edit delete
add a book

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 267 2024-02-08

The Books Application Root: More Templates

» Recall: The books.tpl template file

<p>There are {{num}} books in the database</p>
<table>
% include('th.tpl’, cols=cols)
% for book in books : include('book.tpl’,*xxbook,cols=cols) end
<tr><th><button>add a book< /button></th></tr>
< /table>
that generates this result via the following two templates:
» |t inserts the table header via th.tpl:

% for col in cols:
<th>{{col}}</th>

o end

<th rowspan="2">Action< /th>

» and iterates over the list of books, using the template file book.tpl:
<tr>
<td>{{lLast}}</td><td>{{First}}</td><td>{{YOB}} < /td><td>{{YOD}} < /td>
<td>{{Title}}</td><td>{{YOP}} < /td><td>{{Publisher}} < /td><td>{{City} } < /td>
<td><button>edit</button>< /td>
<td><button >delete</button></td>
</tr>
» Row Id Trick: Note the slightly subtle use of the rowid column in this template.

It is (only) used in the two action buttons to specify which book to add/ed:
(y) Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 p 2}6/8 2024-02-08 /

The Books Application Routes: Adding Book Records

» We add a route for adding a books record (for the add button)

Q@get(’'/add’)
def add():
return template('add’,cols=cols)

Note that this is the route for the GET method on the path /add.
» This uses the template file add.tpl:

<form action="/add" method="post">
<table>
% include('th.tpl’, cols=cols)
<tr>
% for td in cols:
<td><input type="text" name="{{td}}"/></td>
% end
</tr>
< /table>
<input type="submit" value="Submit" />
< /form>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 2690 2024-02-08

The Books Application Routes: Adding Book Records

» The result is

Ihost:8080/add x

<« c @ © @ localhost:8080/add -9 ryinmo o 2 e =

Last First YOB YOD Title YoP Publisher City A

» The action in the HTML form is to POST to the path /add. Thus we need
POST route for /add as well:

@post(’/add’)
def addResponse():
data = parseResponse()
ins = '""INSERT INTO Books VALUES
(:Last,:First,:YOB,:YOD,:Title,:YOP,:Publisher,:City)""
cursor.execute(ins,data)
return template('response’, data = data, cols=cols,
rowid = cursor.lastrowid,
text = 'Newybookrecord,received’)

Note the use of sqlite3 parameter substitution in addResponse!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 270 2024-02-08

The Books Application Routes: Adding Book Records

» This uses the function parseResponse, which we will reuse later.

def parseResponse ():

data = {'Last’: request.forms.get('Last’),
'First': request.forms.get('First'),
"YOB': request.forms.get("YOB'),
'YOD': request.forms.get('YOD"),
'Title": request.forms.get('Title'),
"YOP': request.forms.get("YOP'),
'Publisher’: request.forms.get('Publisher’),
"City": request.forms.get('City’)}

return data

» and the template repsonse.tpl:

<form action="/">
<p>{{text}}; Thank you!</p>
<table>
% include('th.tpl’,cols=cols)
% include('book.tpl’, *xdata,cols=cols)
< /table>
<input type="submit" value="Continue" />
< /form>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 271

2024-02-08

SUMIE RIGHTS RESERVED|

The Books Application Routes: Adding Book Records

» Here is the result after filling in Tolkien's “Lord of the Rings"

&« C ® ® localhost:8080/add e @ N O @ By =

@ Getting Started FAU Services News MathWeb AG Rotary %} Most Visited »

New book record received; Thank you!

Last First YOB YOD Title YOP Publisher City
Tolkien John Ronald Reuel 1979 None The Lord of the Rings 1954 Allen & Unwin Crows Nest, NSW edit delete
Continue

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 272 2024-02-08

The Books Application Routes: Deleting Book Records

» We add a route for deleting book records (for the delete button)

Oget('/delete/<id:int>")

def delete(id):
cursor.execute('DELETE_ FROM,,Books WHERE_ rowid ,=,?",(id,))
return template('delete’)

Note that we have a dynamic route here: We use the named wildcard <id:int>
to obtain the rowid of the record to be deleted.

» The template file delete.tpl does the obvious:

<form action="/">
<p>Book record deleted; Thank you!</p>
<input type="submit" value="Continue" />
< /form>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 273 2024-02-08

The Books Application Routes: Editing Book Records

» Idea: Combine techniques from the add and delete routes

Oget('/edit/<id:int>")

def edit(id):
cursor.execute('SELECT * ,FROM_,Books WHERE_rowid, ,=.,7",(id,))
return template(’edit’,cursor.fetchone(),id = id,cols=cols)

Q@post(’/edit/<id:int>")

def editResponse(id):
data = parseResponse()
up = """UPDATE Books

SET Last = :Last, First = :First, YOB = :YOB, YOD = :YOD,
Title = :Title, YOP = :YOP, Publisher = :Publisher,
City = :City
WHERE rowid = :rowid"""
data.update({'rowid": id})
cursor.execute(up,data)
return template('response’,data=data,text="Updated,book record’,cols=cols

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 274 2024-02-08

Books Application Routes: Editing Book Records (cont.)

» The template file edit.tpl is similar to add.tpl above, but pre-fills the input fields
with the database record values.

<form action="/edit/{{id}}" method="post">
<table>
% include('th.tpl’, cols=cols)
<tr>
<td><input type="text" name="Last" value="{{Last}}"/></td>
<td><input type="text" name="First" value="{{First}}"/></td>
<td><input type="text" name="YOB" value="{{YOB}}"/></td>
<td><input type="text" name="YOD" value="{{YOD}}"/></td>
<td><input type="text" name="Title" value="{{Title}}"/></td>
<td><input type="text" name="YOP" value="{{YOP}}"/></td>
<td><input type="text" name="Publisher" value="{{Publisher}}"/></td>
<td><input type="text" name="City" value="{{City}}"/></td>
<td><input type="submit" value="Submit"/></td>
</tr>
< /table>
< /form>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 275 2024-02-08

Books Application Routes: Editing Book Records (cont.)

» The result is

«)>C 0 © @ localhost:8080/edit/1 v n @ @ & o =

Last First YOB YOD Title Yor Publisher City
Twain Mark 1835 1910 The adventures of Huckle! 1986 Penguin USA Ny
Submit

» Again, we use the template response.tpl, which we fill with a different message.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 276 2024-02-08

10.2 Access Control and Management

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 276 2024-02-08

Access Control and Management

» Problem: Anyone can write, edit, and delete records from the books database.

» Solution: Implement a password-based log in procedure and restrict
write/edit/delete access to logged-in agents.

» Let's fix some terminology before we continue

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 277 2024-02-08

Access Control and Management

» Problem: Anyone can write, edit, and delete records from the books database.

» Solution: Implement a password-based log in procedure and restrict
write/edit/delete access to logged-in agents.

» Let's fix some terminology before we continue

» Definition 2.3. Access control is the selective restriction of access to a resource,
access management describes the corresponding process.

» Access management usually comprises both authentication and authorization.

» Definition 2.4. Authorization refers to a set of rules that determine who is
allowed to do what with a collection of resources.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 277 2024-02-08

Access Control and Management

v

Problem: Anyone can write, edit, and delete records from the books database.

v

Solution: |mplement a password-based log in procedure and restrict
write/edit/delete access to logged-in agents.

v

Let's fix some terminology before we continue

v

Definition 2.5. Access control is the selective restriction of access to a resource,
access management describes the corresponding process.

» Access management usually comprises both authentication and authorization.

v

Definition 2.6. Authorization refers to a set of rules that determine who is
allowed to do what with a collection of resources.

» For our books application we need four things

1. a browser interaction to query the user for username and password

2. a way to transport them to the web application program

3. a method for checking the username/password (authentication)
4. a way the specify who can do what. (authorization)

Realization: 1./2. via HTTP, 4. via bottle basic auth, implement 3. directly.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 277 2024-02-08

HTTP Basic Authentication

» Recall that HTTP is a plain text protocol that passes around headers like this

GET /docs/index.html HTTP/1.1

Host: www.nowherel23.com

Accept: image/gif, image/jpeg, */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

(blank line)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 278 2024-02-08

HTTP Basic Authentication

» Recall that HTTP is a plain text protocol that passes around headers like this

» Idea: For authentication extend the HT TP headers with support for
username/password pairs.

» Definition 2.8. HTTP basic authentication introduces a HT TP header
Authorization for base64 encoded pairs ((username)):(password)) and a couple
of challenge/response messages.

Client Server
o
Unzuthorized
WWW-Authenticate Ra. & m= 11 sita"

Ask user ,:

:‘ Check credentials

HTTER/1.1 200 OK
or:

HTTES1.1 403 ?(.-rt‘.i::'(".(—‘.r‘.i

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 278 2024-02-08

HTTP Basic Authentication

» Recall that HTTP is a plain text protocol that passes around headers like this

» Idea: For authentication extend the HT TP headers with support for
username/password pairs.

» Definition 2.9. HTTP basic authentication introduces a HTTP header
Authorization for base64 encoded pairs ((username)):(password)) and a couple
of challenge/response messages.

@ Authentication Required - Mozilla Firefox

http://localhost:8000 is requesting your username and
password. The site says: “private”

User Name: |

Password:

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 278 2024-02-08

HTTP Basic Authentication

» Recall that HTTP is a plain text protocol that passes around headers like this

» Idea: For authentication extend the HT TP headers with support for
username/password pairs.

» Definition 2.10. HTTP basic authentication introduces a HT TP header
Authorization for base64 encoded pairs ((username)):((password)) and a couple
of challenge/response messages.

» Problem: Base64 is very easy to decode, so usernames and passwords are
communicated in the clear (very unsafe)

» Passwords are "binary data” (think special characters), encoding just keeps them
unchanged over the network. (no encryption)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 278 2024-02-08

Basic Auth in Bottle

> lIdea: Support the server side of HT TP basic authentication in bottle web-apps.

» Implementation: New decorator @Qauth basic((function))) to mark a route as
password-protected.

» Usage: Decorate every route we want to restrict access of with
Q@auth _basic({function))), where (function)) is a function that takes two string
arguments (user name and password) and returns a Boolean for the
authorization decision.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 279 2024-02-08

Basic Auth in Bottle: Minimal Viable Example

» Example 2.11. A web application with restricted route.

from bottle import run, get, auth basic

def check(user, password):
return user == "miko" and password == "test"

Oget("/")
Q@auth_ basic(check)
def protected():
return "Authorized access granted!"

run(host="localhost", port=8000)

» ldea: Mix restricted and open routes in a partially restricted application.

» Extension: Use different check functions for different levels of restriction (user
roles)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 280 2024-02-08

HTTPS: HTTP over TLS

» Definition 2.12. Hypertext Transfer Protocol Secure (HTTPS) is an extension
of the Hypertext Transfer Protocol (HTTP) for secure communication over a
computer network. HTTPS achieves this by running HTTP over a TLS
connection.

» Consequences for Web Applications: We can use HT TP as usual, except
» we gain communication privacy and server authentication,

» server and browser need to speak HTTPS,
> the server needs a public key certificate and a private key.

(most do)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 281 2024-02-08

https://www.selfsignedcertificate.com/
https://localhost:8888

HTTPS: HTTP over TLS

» Definition 2.13. Hypertext Transfer Protocol Secure (HTTPS) is an extension
of the Hypertext Transfer Protocol (HTTP) for secure communication over a
computer network. HTTPS achieves this by running HTTP over a TLS
connection.

» Consequences for Web Applications: We can use HT TP as usual, except
» we gain communication privacy and server authentication,

» server and browser need to speak HTTPS,
> the server needs a public key certificate and a private key.

» In bottle, we can just swap out the HT TP server to one that can do HTTPS:

(most do)

run(host="localhost’,port="8888",
server="gunicorn’ keyfile="key.pem’ certfile="cert.pem’)

install it first with pip install gunicorn.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 281 2024-02-08

https://www.selfsignedcertificate.com/
https://localhost:8888

HTTPS: HTTP over TLS

» Definition 2.14. Hypertext Transfer Protocol Secure (HTTPS) is an extension
of the Hypertext Transfer Protocol (HTTP) for secure communication over a
computer network. HTTPS achieves this by running HTTP over a TLS
connection.

» Consequences for Web Applications: We can use HT TP as usual, except
» we gain communication privacy and server authentication,

> server and browser need to speak HTTPS, (most do)
> the server needs a public key certificate and a private key.

» In bottle, we can just swap out the HT TP server to one that can do HTTPS:

run(host="localhost’,port="8888",
server="gunicorn’ keyfile="key.pem’ certfile="cert.pem’)

install it first with pip install gunicorn.
» Problem: Where to get the certificate file cert.pem and private key key.pem?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 281 2024-02-08

https://www.selfsignedcertificate.com/
https://localhost:8888

HTTPS: HTTP over TLS

>

>

>

Definition 2.15. Hypertext Transfer Protocol Secure (HTTPS) is an extension
of the Hypertext Transfer Protocol (HTTP) for secure communication over a
computer network. HTTPS achieves this by running HTTP over a TLS
connection.

Consequences for Web Applications: We can use HTTP as usual, except

» we gain communication privacy and server authentication,
> server and browser need to speak HTTPS, (most do)
> the server needs a public key certificate and a private key.

In bottle, we can just swap out the HT TP server to one that can do HTTPS:

run(host="localhost’,port="8888",
server="gunicorn’ keyfile="key.pem’ certfile="cert.pem’)
install it first with pip install gunicorn.
Problem: Where to get the certificate file cert.pem and private key key.pem?

One Solution: Self-sign one, e.g. using
https://www.selfsignedcertificate.com/ (adapt file names)

Remaining Problem: Your browser forces you to specify an exception for
https://localhost:8888 (probably OK for development)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 281 2024-02-08

https://www.selfsignedcertificate.com/
https://localhost:8888

Getting a Real TLS Certificate via Let's-Encrypt

» Intuition: HTTPS is the new “regular HTTP" on the web!

» Observation 2.16. A self-signed certificate gives communication privacy but not
authentication « only you yourself vouch for the authenticity of the web site.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 282 2024-02-08

https://bmw.com
https://letsencrypt.org

Getting a Real TLS Certificate via Let's-Encrypt

» Intuition: HTTPS is the new “regular HTTP" on the web!

» Observation 2.19. A self-signed certificate gives communication privacy but not
authentication « only you yourself vouch for the authenticity of the web site.

» Definition 2.20. In a public key infrastructure, the TLS certificate is issued by a
certificate authority, an organization chartered to verify identity and issue TLS
certificates.

» Commercial certificate authorities sell trust. (for a lot of money)
They certify e.g. that the https://bmw.com is under control of BMW AG.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 282 2024-02-08

https://bmw.com
https://letsencrypt.org

Getting a Real TLS Certificate via Let's-Encrypt

» Intuition: HTTPS is the new “regular HTTP" on the web!

» Observation 2.22. A self-signed certificate gives communication privacy but not
authentication « only you yourself vouch for the authenticity of the web site.

» Definition 2.23. In a public key infrastructure, the TLS certificate is issued by a
certificate authority, an organization chartered to verify identity and issue TLS
certificates.

» Commercial certificate authorities sell trust. (for a lot of money)
They certify e.g. that the https://bmw.com is under control of BMW AG.

» Idea: Finding out that you have control over a particular web site on the web
can be automated, if you run a program on the server host.

» Definition 2.24. Let's Encrypt is a not for profit certificate authority that does
this and issues free TLS certificates. (to encourage HTTPS adoption)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 282 2024-02-08

https://bmw.com
https://letsencrypt.org

Getting a Real TLS Certificate via Let's-Encrypt

» Intuition: HTTPS is the new “regular HTTP" on the web!

» Observation 2.25. A self-signed certificate gives communication privacy but not
authentication « only you yourself vouch for the authenticity of the web site.

» Definition 2.26. In a public key infrastructure, the TLS certificate is issued by a
certificate authority, an organization chartered to verify identity and issue TLS
certificates.

» Commercial certificate authorities sell trust. (for a lot of money)
They certify e.g. that the https://bmw.com is under control of BMW AG.

» Idea: Finding out that you have control over a particular web site on the web
can be automated, if you run a program on the server host.

» Definition 2.27. Let's Encrypt is a not for profit certificate authority that does

this and issues free TLS certificates. (to encourage HTTPS adoption)
» Concretely: on a linux server you need two steps

1. install certbot (usually via your package manager)

2. then sudo /usr/local/bin/certbot certonly ——standalone will generate certs.

Details at https://letsencrypt.org.
» Success: > 1.000.000.000 TLS certificates, 200.000.000 sites since 2016

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 282 2024-02-08

https://bmw.com
https://letsencrypt.org

10.3 Asynchronous Loading in Modern Web
Apps

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 282 2024-02-08

AJAX for more responsive Web Pages

» Definition 3.1. Ajax, (also AJAX; short for “Asynchronous JavaScript and
XML") is a set of client side techniques for creating asynchronous web
applications.

» Definition 3.2. A process p is called asynchronous, iff the parent process (i.e.
the one that spawned p) continues processing without waiting for p to terminate.

» Intuition: With Ajax, web applications can send and retrieve data from a server
without interfering with the display and behaviour of the existing page.

» Application: By decoupling the data interchange layer from the presentation
layer, Ajax allows web pages and, by extension, web applications, to change
content dynamically without the need to reload the entire page.

» Observation: Almost all modern web application extensively utilize Ajax.

» Note: In practice, modern implementations commonly use JSON instead of
XML.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 283 2024-02-08

Background: Rendering Pipeline in browsers

» Observation: The nested markup codes turn HTML documents into trees.

» Definition 3.3. The document object model (DOM) is a data structure for the
HTML document tree together with a standardized set of access methods.

» Rendering Pipeline: Rendering a web page proceeds in three steps

1. the browser receives a HTML document,
2. parses it into an internal data structure, the DOM,
3. which is then painted to the screen. (repaint whenever DOM changes)

HTML Document DOM Browser

<html>
<head> Welcome
<title>Welcome< /title>
</head> parse y
<body> Hello World!
<p>Hello World!< /p>
</body> Welcome
</html> Hello World!
The DOM is notified of any user events (resizing, clicks, hover,...)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 284 2024-02-08

Example: Details on Request via AJAX

» Idea: Use Ajax in a web application for the books application

» The start page just has a list of book titles, and
» details are fetched by an Ajax request and presented in line.
» Planning the Program: We need a bottle server with
1. a dynamic route that returns JSON-encoded data for a given book,
2. a route for the main page that lists the book titles,

3. stpl template files for list items with an Ajax request, and
4. a JavaScript function that reads the JSON and inserts it into the DOM.

285 2024-02-08

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2

The finished product (initial state)

Books by Title

1. Tom Sawyer (show details)

2. My Antonia (show details)

3. The Sun Also Rises (show details)

4. Look Homeward, Angel (show details)
5. The Sound and the Furry (show details)
6. The Hobbit (show details)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 286 2024-02-08

The finished product (with details loaded)

Books by Title

1. Tom Sawyer
Author: Mark Twain (1835 - 1910)

Publisher: Viking, 1987

(hide details)
2. My Antonia (show details)
3. The Sun Also Rises (show details)
4. Look Homeward, Angel (show details)
5. The Sound and the Furry (show details)
6. The Hobbit (show details)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 287 2024-02-08

The Routes (Serving HTML and JSON)

» After setting up the database and co, we have a standard route:
@route('/")
def books():
cursor.execute('SELECT rowid, Title,,YoP ,FROM_Books")

rv = cursor.fetchall()
return template('titles’, books=rv)

» JSON routes and APlIs are very easy in bottle: we just return a dictionary.
@route('/json/<id:int>")
def book(id):
cursor.execute(f'SELECT * ,FROM, ,Books , WHERE rowid={id}")
row = cursor.fetchone() # Only one result, rowid is a primary key.
return dict(zip(row.keys(), row)) # Pair up column names with values.

» Dictionaries and JSON in Bottle: Bottle automatically transforms Python
dictionaries into JSON strings; sets the Content Type header to application/json.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 288 2024-02-08

The Basic Templates

» The template titles.tpl is also standard

<html>
% include(’'bookshead.tpl")
<body>
<h1>Books by Title</h1>

% for bk in books: include(title.tpl’,Id=bk[0], title=Dbk[1]) end

< /body>
</html>

» The template title.tpl presents a single book title

{{title}}

<span class="interact" id="interact{{ld}}"
onclick="load _details({{Id}})">(show details)

The empty span will be filled by an Ajax call later!
» The interesting things happen in bookshead.tpl (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 289 2024-02-08

The Script load details

» bookshead.tpl starts supplying JQuery and a JQuery templating library:

<script type="application/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js" >< /script>

<script type="application/javascript"
src="https://cdn.jsdelivr.net/gh/codepb/jquery—template@1.5.10/dist/jquery.load Template

» The main contribution of bookshead.tpl is the JQuery function load _details

async function load _details (numb) {
/* Request Info via JSON, feed it to template, update "show_details" span */
await $.getJSON("/json/" + numb,
function (data) {$("#-content" 4+ numb).loadTemplate($("#open"), data)});

which uses the JQuery Ajax call $.getJSON. This takes two arguments:

1. the URL for the HTTP GET request

2. a JavaScript function that is called if the GET request was successful.

The function (in argument 2) is then used to extend the result of
$("#content"+ numb), i.e. that element in the DOM whose id attribute is contenti
where i is the value of the numb variable.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 200 2024-02-08

The Script load details Continued

> We also use JQuery to change the onlick behaviour of the span element (from
load _details to toggle details, explained below) and the text contained therein.

interact = $("#interact" + numb)
/* change click behaviour of interaction span from show to toggle */

interact.removeAttr('onclick’);
interact.attr('onClick’, 'toggle details(" + numb + '););

/* also change included text appropriately */
interact.html("(hide_details)");

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 201 2024-02-08

The Script load details Continued

> We also use JQuery to change the onlick behaviour of the span element (from
load _details to toggle details, explained below) and the text contained therein.
» Recall the structure of title.tpl: For every book we have a title, a content
element that starts out empty and gets filled when load _details is called, and a
clickable interaction element that triggers load _details.

{{title}}

<span class="interact" id="interact{{Id}}"
onclick="load _details({{ld}})">(show details)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 201 2024-02-08

The Script load details Continued

> We also use JQuery to change the onlick behaviour of the span element (from
load _details to toggle details, explained below) and the text contained therein.

» Recall the structure of title.tpl: For every book we have a title, a content
element that starts out empty and gets filled when load _details is called, and a
clickable interaction element that triggers load _details.

» The toggle details-function used above does nothing but setting the content
element to hidden or visible and changing the text of the interaction element.
function toggle details (numb) {

/* hide or show appropriate content element x/

content = $("#content" + numb);
interact = $("#tinteract" + numb);

if(content.css('display’) == 'none’) {
content.show();
interact.html(" (hide_details)");

} else {
content.hide();
interact.html("(show details)");

}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 201 2024-02-08

JQuery Template Processing

» Recall: We are still trying to understand
$("#content" + numb).loadTemplate($("#open'),data)
It extends the empty in title.tpl with a details table:

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 202 2024-02-08

JQuery Template Processing

» Recall: We are still trying to understand
$("#£content" + numb).loadTemplate($("#open''),data)
It extends the empty in title.tpl with a details table:
» The loadTemplate method takes two arguments
1. a template; here the result of $(#open),i.e. the element in bookshead.tpl whose id
attribute is open (note the type attribute that makes it HTML)

<script type="text/html" id="open" >
<table>
<tr>
<th>Author:</th>

<td>

(— — <

</td>
</tr>
<tr>
<th>Publisher:</th>
<td>, <span data—content="YOP"
</tr>
< /table>
< /script>

SUMIE RIGHTS RESERVED|

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 202 2024-02-08

JQuery Template Processing

» Recall: We are still trying to understand
$("#£content" + numb).loadTemplate($("#open''),data)
It extends the empty in title.tpl with a details table:
» The loadTemplate method takes two arguments
1. a template; here the result of $(#open),i.e. the element in bookshead.tpl whose id
attribute is open (note the type attribute that makes it HTML)
2. a JavaScript data object: here the argument of the success function: the JSON
record provided by the server under route /json/i

{"Last": "Twain’,

"First": '"Mark’,

"YoB": 1835,

"YoD": 1910,

"Title": "Huckleberry Finn’,
"YoP": 1986,

"Publisher": 'Penguin USA’,
"City": 'NY'}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 202 2024-02-08

JQuery Template Processing

» Recall: We are still trying to understand
$("#£content" + numb).loadTemplate($("#open''),data)

It extends the empty in title.tpl with a details table:
» The loadTemplate method takes two arguments
1. a template; here the result of $(#open),i.e. the element in bookshead.tpl whose id
attribute is open (note the type attribute that makes it HTML)
2. a JavaScript data object: here the argument of the success function: the JSON
record provided by the server under route /json/i
» The JQuery template processing places the value of the data—content attribute
into the . The resulting table constitutes the generated “detail view"
<table>
<tr>
<th>Author:< /th>
<td>
Mark< /span> Twain
(1835< /span>—1910)
</td>
</tr>
<tr>
<th>Publisher:</th>
<td>Penguin USA, NY</td>
</tr>
< /table>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 202 2024-02-08

JQuery Template Processing

» Recall: We are still trying to understand
$("#content" + numb).loadTemplate($("#open'),data)
It extends the empty in title.tpl with a details table:
» The loadTemplate method takes two arguments
1. a template; here the result of $(#open),i.e. the element in bookshead.tpl whose id
attribute is open (note the type attribute that makes it HTML)
2. a JavaScript data object: here the argument of the success function: the JSON
record provided by the server under route /json/i

» The JQuery template processing places the value of the data—content attribute
into the . The resulting table constitutes the generated “detail view™

» Note: Both the JavaScript object in step 2. as well as the result of the
template processing show afterwards are virtual objects that exist only in
memory. In particular, we do not have to write them explicitly.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 202 2024-02-08

Code: An AJAX-based Frontend for the Books App

» booksapp—ajax.py: the web server with two routes

import sqlite3
from bottle import route, run, template, static_file

Connect to database

db = sqlite3.connect("./books.db")

Row factory so we can have column names as keys.
db.row factory = sqlite3.Row

cursor = db.cursor()

@route('/")

def books():
cursor.execute('SELECT _rowid, Title,,YoPLFROM_Books')
rv = cursor.fetchall()
return template('titles’, books=rv)

JSON interfaces are very easy in bottle, just return a dictionary

Qroute('/json/<id:int>")

def book(id):
cursor.execute(f'SELECT * FROM_Books WHERE_rowid={id}")
row = cursor.fetchone() # Only one result, rowid is a primary key.
return dict(zip(row.keys(), row)) # Pair up column names with values.

run(host='0.0.0.0", port=32500, debug=True)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 203 2024-02-08

10.4 Deploying the Books Application as a
Program

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 203 2024-02-08

Deploying The Books Application as a Program

>

>

Note: Having a Python script booksapp.py you start with python3 booksapp.py
is sufficient for development.

If you want to deploy it on a web server, you want more: The sysadmin you
deliver your web application to wants to start and manage it like any other UNIX
command.

After all, your web server will most likely be a UNIX (e.g. linux) computer.
In particular behavioural variants should be available via command line options.

Example 4.1. To run the books application without output (—q or ——quiet)
and initialized with the seven book records we want to run

booksapp —q ——initbooks

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 204 2024-02-08

Deploying The Books Application as a Program

» Example 4.2. If we forget the options, we need help:

> booksapp ——help
Usage: <yourscript> [options]

Options:
—h, ——help show this help message and exit
—q, ——quiet don't_print_status messages to_stdout

uu—IuFILE,,——log=FILE write_log reports to FILE
Lu——initbooks uuuuuuuinitialize with seven book, records

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 205 2024-02-08

Deploying a Python Script as a Shell Command/Executable

» We can make our a Python script behave like a native shell command.

» The file extension .py is only used by convention, we can leave it out and simply
call the file booksapp.

» Then we can add a special Python comments in the first line
#!/usr/bin/python3
which the shell interprets as “call the program python3 on me".

» Finally, we make the file hello executable, i.e. tell the shell the file should behave
like a shell command by issuing

chmod u+x booksapp

in the directory where the file booksapp is stored.
» We add the line

export PATH="./:${PATH}"

to the file .bashrc. This tells the shell where to look for programs (here the
respective current directory called .)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 206 2024-02-08

Working with Options in Python

> We have the optparse library for dealing with command line options (install with
pip3)
» Example 4.3 (Options in the Books Application).

from optparse import OptionParser

parser = OptionParser()

parser.add option("—I", "——log", dest="logfile",
help="write,logs,to FILE", metavar="FILE")

parser.add_option("—q", "——quiet",
action="store false", dest="verbose", default=True,
help="don’t,print,status messages to,stdout")

parser.add option('——version',dest="version" default=1.0,type="float",
help="the version_of the books application")

options, args = parser.parse__args()
do something with the options and their args.
print ("VERSION_.:", options.version)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 207 2024-02-08

Chapter 11
Image Processing

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 207 2024-02-08

11.1 Basics of Image Processing

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 207 2024-02-08

11.1.1 Image Representations

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 207 2024-02-08

Images

» Example 1.1 (Zooming in on Augustus). A digital image taken by a
standard DSLR camera. Let's zoom in on it!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 208 2024-02-08

Images

» Example 1.2 (Zooming in on Augustus). And a bit more

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 208 2024-02-08

Images

» Example 1.3 (Zooming in on Augustus). When zooming in on an image,
we start to see blocks of colors, which are organized in a regular grid.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 208 2024-02-08

Images as Rasters of Pixels

> |f we zoom in quite a bit more, we see

> Observation: The colors are arranged in a
two- dimensional grid (raster).

» Definition 1.4. We call the grid raster and each entry in it pixel (from “picture
element”).

=F=A=l= E—— Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 200 2024-02-08

Colors

a
H

w ColorCop -
m| 151
G 103

I RITETET
Cuzto _iiJ

ENRCON

i

» Definition 1.5. Colors are usually
represented in RGB format, i.e. as
triples (R, G, B) with three channels
(also called bands).

> R.G,Bc[0,255] ~ One Byte per
channel per pixel.

d
Ny

» |mages in this format can store
256 - 256 - 256 — 256° (about 16
million) colors.

2
|

w

g R — Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 00 2024-02-08

Color Examples

» Example 1.6. A color can be represented by three numbers.

(255,0,0) (0,255,0) (0,0, 255) (255,255, 255)
Red Green Blue White

(255, 0,255) (0, 255, 255) (255,255, 0) (128,128,128)
Magenta Cyan Yellow Gray

» Definition 1.7. A color is called grayscale, iff R=G = B

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 301 2024-02-08

Normalized Color Values

» Observation 1.8. For color representations, only the relative contribution of the
band is imporant.

» Definition 1.9. Normalized colors use pixel values between 0 and 1.
> Idea: Values are still stored as Bytes, but normalized before use: v/ = v /255
» Example 1.10.

(1,0,0 (0,1,0) 0,01 (1,11
Red Green Blue White

(1,0,1) ©,17 (1,1,0) (0.5,0.5,0.5)
“Magenta Cyan Yellow Gray

i Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 302 2024-02-08

HTML Color Codes

» HTML uses a shorthand notation for colors using hexadecimal numbers.

» Example 1.11.

#0000 #OOFF00
Red Green
#FFOOFF #OOFFFF
Magenta Cyan

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2

#0O000FF
Blue

#FFEF00
Yellow

303

HEFFFFF
White

#308080
Gray

2024-02-08

The Human Eye

» Definition 1.12 (The Human Eye). Light from our surroundings enters our
eye through the lens and then hits the retina on the back of our eye.

Optic Nerve

The retina has cones and rods, which are responsible for color and brightness
vision, respectively.

» Since we are interested in colors here, we will ignore the rods for the purpose of
this lecture.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 304 2024-02-08

The Human Eye — Three Types of Cones

» Sensitivity of the Three Cones:

sensitivity
o
b

350 400 450 500 550 600 650 700 750 800 850
wavelength

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 305 2024-02-08

The Human Eye — Three Types of Cones

» Example 1.13 (We see Yellow).

1
09 L —
08
0.7
08
05
04
03
02
01

0

sensitivity

350 400 450 500 55 600 650 700 750 800 850
wavelength

Example: Yellow
Both “red” and “green” cone are stimulated.

» Observation 1.14. We can create all (human-visible) colors as a mixture of red,
green, and blue light.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 306 2024-02-08

Monitors

» Definition 1.15. A computer monitor (or just monitor)is an output device for
visual information.

» Monitors (usually) have pixels, too!

» Definition 1.16. In color monitors, pixels typically consist not of a single light
source, but three distinct subpixels.

» If these subpixels are small enough and close together, our eye cannot see that
the light actually comes from different points and thus perceives the mixture
color.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 307 2024-02-08

Image Size

» Example 1.17 (Augustus again).

Image: 1440 x 746 pixels

Expected file size:

Width - Height - Channels

1440 - 746 - 3 = 3,222,720B = 3MiB

» But if we look onto our disk we see somthing completely different:

=] Augustus.jpg 4/30/2019 2:58 PM JPEG image 404 KB
|®s| Augustus.png 6/3/2019 1219 PM PNG image 1,628 KB

» On disk, images are usually compressed (JPEG, PNG, GIF,WebP etc). JPEG file
size is smaller than PNG, but image quality is lost.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 308 2024-02-08

JPEG Compression Artefacts

Example 1.18 (Augustus again). Here, the Augustus image is saved with a
very high jpeg compression. The file size is tiny (27 KB, compare to 440 KB on

previous slide). However, the image quality suffers.
JPEG creates blocks of pixels, and approximates the colors in this block with as

few bits as possible (according to compression ratio).

AugustusCompressed.jpg 11 AM JPEG image
Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 300 2024-02-08

11.1.2 Basic Image Processing in Python

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 300 2024-02-08

The Pillow Library for Image Processing in Python

» We will use the Pillow library in IWGS.

» Definition 1.19. Pillow is a fork (a version) of the old Python library PIL
(Python Image Library). (hence the name)

» Details at https://pillow.readthedocs.io/slides/stable/
» Install: pip install Pillow
» Example 1.20. Determine the color of a particular pixel

from PIL import Image

load image

im = Image.open('image.jpg’)
im.show()

access color at pixel (x, y)
x =15

y = 300

r, g b = im.getpixel((x, y))

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 310 2024-02-08

https://pillow.readthedocs.io/slides/stable/

The Pillow Library for Image Processing in Python

» We will use the Pillow library in IWGS.

» Definition 1.22. Pillow is a fork (a version) of the old Python library PIL
(Python Image Library). (hence the name)

» Details at https://pillow.readthedocs.io/slides/stable/
» Install: pip install Pillow

» Example 1.24. Directly use the image object in jupyter notebooks:
from PIL import Image
load image
im = Image.open('image.jpg')
im # in Jupyter Notebooks, we can directly use the variable

The notebooks shows the image in a new cell.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 310 2024-02-08

https://pillow.readthedocs.io/slides/stable/

Grayscale Images

» Recall: A color is grayscale, iff R=G=B.

(0,0,0) (0505,05) (1,1,1
Black Gray White

» Idea: If all channels have the same value, why store all three?

» Grayscale images usually have only one channel.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 311 2024-02-08

Grayscale Conversion

» Observation 1.25. Humans are very sensitive to green, less to red, and least to
blue.

» Definition 1.26. To convert an image to an grayscale image (grayscale
conversion), we compute Gray = 0.21R + 0.71G + 0.08B

»> Example 1.27 (Grayscale Conversion).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 312 2024-02-08

More Image Operations

» Example 1.28 (More Image Operations).

Inverse

Original Grayscale

Each pixel is
processed separately!

Threshold Red Channel
Extraction

» As for grayscale conversion of these process each pixel separately.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 313 2024-02-08

Image Operations in Pillow

» The pillow library supports many image operations out of the box.
» Example 1.29 (Grayscale Conversion and Inversion in Pillow).

from PIL import Image, ImageOps
im = Image.open ('image.jpg’)

convert to grayscale

gray = ImageOps.grayscale(im)

invert image

inverse = ImageOps.invert(im)

» Complete List:
https://pillow.readthedocs.io/en/stable/reference/Imagelps.html

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 314 2024-02-08

https://pillow.readthedocs.io/en/stable/reference/ImageOps.html

Transparency and Image Composition

» Sometimes we want to overlay images ~ layers.
» We need a notion of how transparent a pixel is.

» Definition 1.30. We introduce a fourth channel: A (for alpha). Alpha is the
opacity (inverse of transparency). A pixel is now (R, G, B, A).

» Example 1.31 (Combining Images).

» Note: The order of layers is important here: The Augustus image is below the
other image! The Augustus image has no transparency, the second image does!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 315 2024-02-08

Transparency (continued)

» Example 1.32 (Combining Images).

(RG,BA)=(0.6,00,1.0,0.5)
Half transparent purple
(RGBA)=(0,0,0,0) (RGBA)=(1,1,0,1)
Full transparent Full yellow

Rtarget - (1 7A> X Raugusns +AX Rnurp\e,ye\ow
Gtarget - (1 'A> X Gauguslus +AX Gpu’p\e,yeHow
Btargcl - (“ ’A) X Baugustus +AX Bpurp\c‘ycHow

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 316 2024-02-08

11.1.3 Edge Detection

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 316 2024-02-08

Edge Detection

» Goal: Find interesting parts of image (features).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 317 2024-02-08

Edge Detection

» Goal: Find interesting parts of image (features).
» Example 1.35 (Edge Detection). Find edges, i.e. image sections, where color
changes rapidly.

Clearly there is an edge in this image. How do we detect it automatically?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 317 2024-02-08

Edge Detection

» Goal: Find interesting parts of image (features).
» Example 1.37 (Edge Detection). Find edges, i.e. image sections, where color
changes rapidly.

Decide for each pixel, whether it is on an edge. Here: |s marked pixel an edge
pixel?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 317 2024-02-08

Edge Detection

» Goal: Find interesting parts of image (features).
» Example 1.39 (Edge Detection). Find edges, i.e. image sections, where color
changes rapidly.

Inspect neighbor pixels.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 317 2024-02-08

Edge Detection

» Goal: Find interesting parts of image (features).

» Example 1.41 (Edge Detection). Find edges, i.e. image sections, where color
changes rapidly.
» Definition 1.42. We call a pixel a horizontal edge pixel, iff

lg — It +1lgr — It + Igr — I7rR>T
for some threshold 7 and a vertical edge pixel, iff

I — Iy + 17 — 71 + Igr — lgL>T

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 317 2024-02-08

Algorithm: Sobel Filter

» ldea: There is a general algorithm that computes this.

» Definition 1.43. Given a 3x3 matrix M, the Sobel filter computes a new pixel
value by getting the pixel value of each neighbor in 3x3 window, multiply with
the components in M and adding everything up.

» QObservation 1.44. Given a suitable matrix M, the Sobel filter computes the
quantities from 1.34.

»> Example 1.45 (Edge Tests via Sobel Filters).
Horizontal edge test: Vertical edge test:

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 318 2024-02-08

Edge-Detection in Pillow

» Example 1.46 (Augustus and his Edges).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 310 2024-02-08

Edge-Detection in Pillow

» Example 1.48 (Augustus and his Edges).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 319 2024-02-08

Edge-Detection in Pillow

» Example 1.50 (Augustus and his Edges).

» Example 1.51 (Edge Detection in Pillow).
from PIL import Image, ImageFilter
im = Image.open('augustus.jpg’)
edges = im.filter(ImageFilter. FIND EDGES)
edges.show()

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 319 2024-02-08

11.1.4 Scalable Vector Graphics

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 310 2024-02-08

Vector Graphics

» Problem: Raster images store colors in pixel grid. Quality deteriorates when
image is zoomed into.

» Vector Graphics solve this problem!

Original Zoomed In

Raster Graphics

Vector Graphics

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 320 2024-02-08

Vector Graphics (Definition)

» Definition 1.52. Image representation formats that store shape information
instead of individual pixels, are refered to as vector graphics.
» Example 1.53. For a circle, just store
> center
» radius
> line width
» line color
> fill color
» Example 1.54. For a line, store
» start and end point
> line width
» line color

SUMIE RIGHTS RESERVED|

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 321 2024-02-08

Vector Graphics Display

» There are devices that directly display vector graphics.
» Example 1.55.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 322 2024-02-08

Vector Graphics Display

» There are devices that directly display vector graphics.
» Example 1.58.

» Definition 1.59. For monitors, vector graphics must be rasterized — i.e.
converted into a raster image before display.

» Example 1.60.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 322 2024-02-08

Scalable Vector Graphics (SVG)

» Definition 1.61. Scalable Vector Graphics (SVG) is an XML-based markup
format for vector graphics.

» Example 1.62.

<svg xmlins="http://www.w3.org/2000/svg"
width="100" height="100" >
<circle cx="50" cy="50" r="50"
style="fill:# 1cffff;_stroke:#000000;_stroke—width:0.1" />
</svg>

> The <svg> tag starts the SVG document, width, height declare its size.

> The <circle> tag starts a circle. cx, cy is the center point, r is the radius. style
describes how the circle looks.

As the SVG size is 100x100 and the circle is at (50,50) with radius 50, it is

centered and fills the whole region.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 323 2024-02-08

More SVG Primitives

» Example 1.63 (Rectangle).
<rect x="..." y="_.." width="..." height="..." style="..." />

» Example 1.64 (Ellipse).

<ellipse cx="..." cy="..." rx="..." ry="..." style="..." />
» Example 1.65 (Line).
<line x1="..." y1="_1" x2="_ 1 y2=1 1 style="_." />
» Example 1.66 (Text).
<text x=".." y="..." style="...">This is my text!< /text>
»> Example 1.67 (Image).
<image xlink:href="..." x="..." y="_.." width="..." height="..." />

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 324 2024-02-08

SVG Polygons

» Example 1.68 (An SVG Triangle).
<svg height="210" width="500" xmlns="http://www.w3.0rg/2000/svg" >
<polygon points="200,10 250,190 160,210"
style="fill:lime;stroke:purple;stroke—width:1" />
<[svg>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 325 2024-02-08

SVG Polygons

» Example 1.70 (An SVG Triangle).
<svg height="210" width="500" xmlns="http://www.w3.0rg/2000/svg" >
<polygon points="200,10 250,190 160,210"
style="fill:lime;stroke:purple;stroke—width:1" />
<[svg>
» Example 1.71 (An SVG Pentagram).
<svg height="210" width="210" xmlns="http://www.w3.0rg/2000/svg" >
<polygon points="100,10 40,198 190,78 10,78 160,198"
style="fill:lime;stroke:purple;stroke—width:5;fill—rule:nonzero;" />
<[svg>

Michael Kohlhase: Inf. Werkfeuge @ G/SW 2 2024-02-08

SVG in HTML

» SVG can be used in dedicated files (file ending .svg)
and referenced in a tag.

» It can however also be written directly in HTML files.
» Example 1.72. Triangle from 1.68 embedded in HTML file

<html>
<body>
<svg height="210" width="500" xmlns="http://www.w3.0rg/2000/svg" >
<polygon points="200,10,,250,190,,160,210"
style="fill:lime;stroke:purple;stroke—width:1" />
</svg>
</body>
</html>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 326 2024-02-08

The SVG viewBox Attribute

» ldea: The SVG viewBox attribute allows us to zoom into an image.

» Example 1.73.
<svg width="200" height="200" xmlns="...">
<circle ex="50" cy="50" r="50" style="..." />
<[svg>
Here, the width and height are scaled by a factor of 2
to give us a little more room. Sometimes we want to
specify a larger image, but only display a section of it.

» Example 1
<svg width= "200" height="200" xmlns=".

viewBox="0,,0,100,100" >
<circle cx="50" cy="50" r="50" style="..." />
</svg>
viewBox specifies a region inside our canvas. Only

things inside that are drawn. The resulting image is
then stretched to the canvas size (zoom effect).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 327

200

100

200

|50

5050)

50
(50,50)

2024-02-08

11.2 Project: An Image Annotation Tool

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 327 2024-02-08

Project: Kirmes Image Annotation Tool

» Problem: Our Books-App project was a fully functional web application, but
does not do anything useful for DigiHumS.

> lIdea: Extend/Adapt it to a database for image annotation like LabelMe [LM].

> Setting: Prof. Peter Bell (formerly at FAU) conducts research on baroque
paintings on parish fairs (Kirmes) and the iconography in these paintings. We
want to build an annotation system for this research.

» Project Goals:
1. Collect kirmes images in a database and display them,

2. mark interesting areas and provide meta data,
3. display/edit/search annotated information.

1. is analogous to Books-App, for 2/3. we need to know more

» Plan: Lern the necessary technologies in class, build the system in exercises

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 328 2024-02-08

HTML Image Maps

» Definition 2.1. HTML image maps mark areas in an digital image and assign
names and links to them.

» Example 2.2. An image map adds hover and on click behavior

iris

pupil

cornea

Clicking on the pupil leads to: Clicking on the vitreous body leads to:

https://en.wikipedia.org/wiki/Pupil https://en.wikipedia.org/wiki/
Vitreous_body

EAQE.—. Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 320 2024-02-08

https://en.wikipedia.org/wiki/Pupil
https://en.wikipedia.org/wiki/Vitreous_body
https://en.wikipedia.org/wiki/Vitreous_body
https://www.image-map.net/

HTML Image Maps

» Definition 2.3. HTML image maps mark areas in an digital image and assign
names and links to them.

» Example 2.4. An image map adds hover and on click behavior

<html>
<body>

<map name="image—map">
<area title="Pupil"
href="https://en.wikipedia.org/wiki/Pupil"
coords="102,117,143,219" shape="rect" />
<area title="Vitreous Body"
href="https://en.wikipedia.org/wiki/Vitreous body"
coords="242,166,107" shape="circle" />
</map>
</body>
</html>

» Easy creation of image maps: https://www.image-map.net/

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 320 2024-02-08

https://www.image-map.net/

Problems of HTML Image Maps

» Problem: |mage maps do not allow interaction:

» the name attribute can only contain unstructured information.
» no integrated highlight for image maps area,
» no onclick or onmouseover attributes.

But the whole point is to have (arbitrarily) complex metadata for image regions.
» New Plan: Use a newer technology: SVG and CSS.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 330 2024-02-08

Handcrafting better Image Annotations with SVG and CSS

» Idea: Integrate the image and the areas into one SVG and make areas
interactive via CSS.

» Example 2.5 (Paper Prototype). Highlight regions and display information on
hover.

George Washington Abraham Lincoln

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 331 2024-02-08

SVG Annotation Implementation Areas

» Implementing Areas as Rectangles:
<svg xmlns="http://www.w3.0rg/2000/svg" width="1536" height="1024" >

<l—— Image ——>
<image width="1536" height="1024" xlink:href="mount_rushmore.jpg" />
<!—— Areas in image as rects. ——>

<rect x="300" y="125" width="250" height="300"/>

<rect x="550" y="225" width="200" height="300"/>

<rect x="750" y="375" width="200" height="300"/>

<rect x="999" y="375" width="200"height="300"/>
</[svg>

Add four <rect>s (one for each president).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 332 2024-02-08

SVG Annotation Implementation Result

» Areas as Rectangles — Result: Now the rectangles are visible

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 333 2024-02-08

Adding CSS for the Areas

» Example 2.6 (Adding CSS).
rect {fill—opacity:0; stroke:white; stroke—opacity:1; stroke—width:5px}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 334 2024-02-08

Selectively Highlighting Areas

» Problem: Now the rectangles are always visible.
» Idea: make the rectangles invisible by default only show them on hover.
» CSS: We set the stroke opacity to zero by default and add a hover selector.

rect {fill—opacity:0; stroke:white; stroke—opacity:0; stroke—width:5px}
rect:hover {stroke—opacity:1}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 335 2024-02-08

Adding Annotation Text

» Adding Annotation Text and making space for it.
<svg xmIns="http://www.w3.0rg/2000/svg" width="1536" height="1224" >

<l—— Image —>
<image width="1536" height="1024" xlink:href="mount _rushmore.jpg" />
<l—— Areas in image as rects, text below ——>

<rect x="300" y="125" width="250" height="300" />
<text x="100" y="1200">George Washington< /text>
<rect x="550" y="225" width="200" height="300" />
<text x="100" y="1200">Thomas Jefferson< /text>
<rect x="750" y="375" width="200" height="300" />
<text x="100" y="1200">Theodore Roosevelt< /text>
<rect x="999" y="375" width="200" height="300" />
<text x="100" y="1200">Abraham Lincoln< /text>
</[svg>

and we add some CSS:
text {fill:black; opacity:1; font—size:100px}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 336 2024-02-08

Adding Annotation Text — Result

» Adding Annotation Text — Result:

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 337 2024-02-08

Selectively Showing Annotations

v

Problem: Now the annotations are always visible.
Idea: Add CSS hover effect for <rect>s, which effects the |<text>|.

Definition 2.7. The CSS sibling operator + modifies a selector so that it (only)
affects following sibling elements (same level).

Example 2.8. In the CSS directive
rect:hover Bl [€8XE {<rules>}
Selector Sibling operator ~ Target
the rules affect the SVG <text> directly after the <rect> element.

Again: the order of elements in the HTML is important!
CSS: We set the opacity to zero by default and add a hover selector for the
following <text> sibling.

text {fill:black; opacity:0; font—size:100px}
rect:hover + text {opacity: 1}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 338 2024-02-08

Image Annotation Tool — Final Result

» Now our annotation tool works as expected!

» Example 2.9 (Final Result). Highlight regions and display information on
hover.

George Washington Abraham Lincoln

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 330 2024-02-08

11.3 Fun with Image Operations: CSS Filters

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 330 2024-02-08

CSS Image Filters

» Goal: Apply image filters (grayscale etc.) directly in CSS.
» Example 3.1 (Image Effects via inline CSS).

» Disadvantage: The original image is delivered to client. When user saves the
image, they get the original!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 340 2024-02-08

Some more CSS Filters

» Example 3.2 (Image Effects via CSS Style sheets).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 341 2024-02-08

Some more CSS Filters

» Example 3.3 (Image Effects via CSS Style sheets).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 341 2024-02-08

Some more CSS Filters

» Example 3.4 (Image Effects via CSS Style sheets).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 341 2024-02-08

Combining CSS Filters

» Idea: We can also combine image filters flexibly. The easist way is when we
define CSS classes for that.
» Example 3.5 (Tie CSS Filters to Classes).

<html>
<head>
<style type="text/css">
blur { filter: blur(4px); }
.brightness { filter: brightness(0.30); }
.contrast { filter: contrast(180%); }
.grayscale { filter: grayscale(100%); }
.huerotate { filter: hue—rotate(180deg); }
.invert { filter: invert(100%); }
.opacity { filter: opacity(50%); }
.saturate { filter: saturate(7); }
.sepia { filter: sepia(100%); }
.shadow { filter: drop—shadow(8px 8px 10px green); }
< /style>
</head>
<body>

</body>

1~ Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 342 2024-02-08

Filtering Everyghing Else

> Note: CSS filters don't just apply to images! (Almost) everything can be
filtered.

» Example 3.6 (Filtering Text (Blurring)).
<p style="filter: _blur(3px)" >A severely blurred Text</p>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 343 2024-02-08

CSS Animations

» Definition 3.7. CSS animations change state of an object over time.
» Example 3.8 (Inverting an image).

img {animation: invertAnimation 1s forwards}

Q@keyframes invertAnimation {
from {filter: none}
to {filter: invert(100%)}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 344 2024-02-08

SVG Filters

» Note: Unfortunately in SVG the filtering works differently from CSS.
» Example 3.9 (Blurring Mt. Rushmore in SVG).

<svg xmlns="http://www.w3.0rg/2000/svg" width="1536" height="1024">
<style> image {filter: url(#£myCustomFilter)}< /style>
<image width="1536" height="1024" xlink:href="mount_rushmore.jpg" />
<l—— Image filter ——>
<filter id="myCustomFilter">
<feGaussianBlur stdDeviation="5" />
< /filter>
</[svg>

» Example 3.10 (SVG Filters can be combined).

<filter id="myCustomFilter">
<feGaussianBlur stdDeviation="5" />
<feColorMatrix type="saturate" values="0.1" />
< /filter>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 345 2024-02-08

Chapter 12
Ontologies, Semantic Web for Cultural Heritage

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 345 2024-02-08

12.1 Documenting our Cultural Heritage

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 345 2024-02-08

Documenting our Cultural Heritage

v

Definition 1.1. Cultural heritage is the legacy of physical artifacts cultural
artefacts and practices, representations, expressions, knowledge, or skills —
intangible cultural heritage (ICH) of a group or society that is inherited from
past generations.

Problem: How can we understand, conserve, and learn from our cultural
heritage?

Traditional Answer: We collect cultural artefacts, study them carefully, relate
them to other artefacts, discuss the findings, and publish the results. We display
the artefacts in museums and galleries, and educate the next generation.

DigHumS Answer: In “Digital Humanities and Social Sciences”’, we want to
represent our cultural heritage digitally, and utilize computational tools to do so.

Practical Question: What are the best representation formats and tools?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 346 2024-02-08

Research Data in a Nutshell

» Definition 1.2. Research data is any information that has been collected,
observed, generated or created to validate original research findings. Although
usually digital, research data also includes non-digital formats such as laboratory
notebooks and diaries.

» Types of research data:

documents, spreadsheets, laboratory notebooks, field notebooks, diaries,

questionnaires, transcripts, codebooks, test responses,

audiotapes, videotapes, photographs, films,

cultural artefacts, specimens, samples,

data files, database contents (video, audio, text, images), digital outputs,

models, algorithms, scripts,

contents of an application (input, output, logfiles, schemata),

methodologies and workflows, standard operating procedures, and protocols,

VVVYVVYYVYYVYY

» Non-digital Research Data such as cultural artefacts, laboratory notebooks,
ice-core samples, or sketchbooks is often unique. Materials could be digitized,
but this may not be possible for all types of data.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 347 2024-02-08

FAIR Research Data: The Next Big Thing

» Principle: Scientific experiments must be replicated, and derivations must be
checkable to be trustworthy. (consensus of scientific community)

» Intuition: Research data must be retained for justification, shared for synergies!

» Consequence: Virtually all scientific funding agencies now require some kind of
research data strategy in proposals. (tendency: getting stricter)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 348 2024-02-08

FAIR Research Data: The Next Big Thing

» Principle: Scientific experiments must be replicated, and derivations must be
checkable to be trustworthy. (consensus of scientific community)

» Intuition: Research data must be retained for justification, shared for synergies!

» Consequence: Virtually all scientific funding agencies now require some kind of
research data strategy in proposals. (tendency: getting stricter)

» Problem: Not all forms of data are actually useable in practice.

» Definition 1.4 (Gold Standard Criteria). Research data should be FAIR:

> Findable: easy to identify and find for both humans and computers, e.g. with
metadata that facilitate searching for specific datasets,

> Accessible: stored for long term so that they can easily be accessed and/or
downloaded with well-defined access conditions, whether at the level of metadata, or
at the level of the actual data,

» Interoperable: ready to be combined with other datasets by humans or computers,
without ambiguities in the meanings of terms and values,

» Reusable: ready to be used for future research and to be further processed using
computational methods.

Consensus in the research data community; for details see [FAIR18; Wil+16].

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 348 2024-02-08

FAIR Research Data: The Next Big Thing

» Principle: Scientific experiments must be replicated, and derivations must be
checkable to be trustworthy. (consensus of scientific community)

» Intuition: Research data must be retained for justification, shared for synergies!

» Consequence: Virtually all scientific funding agencies now require some kind of
research data strategy in proposals. (tendency: getting stricter)

» Problem: Not all forms of data are actually useable in practice.
» Definition 1.5 (Gold Standard Criteria). Research data should be FAIR:

> Findable: easy to identify and find for both humans and computers, e.g. with
metadata that facilitate searching for specific datasets,

> Accessible: stored for long term so that they can easily be accessed and/or
downloaded with well-defined access conditions, whether at the level of metadata, or
at the level of the actual data,

» Interoperable: ready to be combined with other datasets by humans or computers,
without ambiguities in the meanings of terms and values,

» Reusable: ready to be used for future research and to be further processed using
computational methods.

Consensus in the research data community; for details see [FAIR18; Wil+16].

» Open Question: How can we achieve FAIR-ness in a discipline in practice?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 348 2024-02-08

Categories of Data in DigiHumS and their Formats

» We distinguish four broad categories of data in DigiHumS.
» Definition 1.6. Concrete data: digital representations of artefacts in terms of

simple data,
» e.g. raster images as pixel arrays in JPEG. (see)
> e.g. books identified by author/title/publisher/pubyear.)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 340 2024-02-08

Categories of Data in DigiHumS and their Formats

» We distinguish four broad categories of data in DigiHumS.
» Definition 1.12. Concrete data: digital representations of artefacts in terms of
simple data,
> e.g. raster images as pixel arrays in JPEG.)
> e.g. books identified by author/title/publisher/pubyear. (see)
» Definition 1.13. Narrative data: documents and text fragments used for
communicating knowledge to humans.
> e.g. plain text and formatted text with markup code (see 4 (Documents as Digital
Objects) in the IWGS lecture notes)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 340 2024-02-08

Categories of Data in DigiHumS and their Formats

» We distinguish four broad categories of data in DigiHumS.
» Definition 1.18. Concrete data: digital representations of artefacts in terms of

simple data,
» e.g. raster images as pixel arrays in JPEG. (see)
> e.g. books identified by author/title/publisher/pubyear. (see)

» Definition 1.19. Narrative data: documents and text fragments used for
communicating knowledge to humans.
> e.g. plain text and formatted text with markup code (see 4 (Documents as Digital
Objects) in the IWGS lecture notes)
» Definition 1.20. Symbolic data: descriptions of object and facts in a formal
language
» e.g. 3+5 in Python (see 2 (Introduction to Programming) in the IWGS lecture
notes)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 340 2024-02-08

Categories of Data in DigiHumS and their Formats

» We distinguish four broad categories of data in DigiHumS.
» Definition 1.24. Concrete data: digital representations of artefacts in terms of
simple data,
> e.g. raster images as pixel arrays in JPEG. (see)
> e.g. books identified by author/title/publisher/pubyear. (see)
» Definition 1.25. Narrative data: documents and text fragments used for
communicating knowledge to humans.
> e.g. plain text and formatted text with markup code (see 4 (Documents as Digital
Objects) in the IWGS lecture notes)
» Definition 1.26. Symbolic data: descriptions of object and facts in a formal
language
» e.g. 3+5 in Python (see 2 (Introduction to Programming) in the IWGS lecture
notes)
» Definition 1.27. Metadata: “data about data”, e.g. who has created these
facts, images, or documents, how do they relate to each other?(not covered yet)
» Observation 1.28. Metadata are the resources, DigiHumS results are made of
(~ support that)
The other categories digitize artefacts and auxiliary data.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 340 2024-02-08

Categories of Data in DigiHumS and their Formats

>
>

>

>

We distinguish four broad categories of data in DigiHumS.

Definition 1.30. Concrete data: digital representations of artefacts in terms of

simple data,

> e.g. raster images as pixel arrays in JPEG. (see)

> e.g. books identified by author/title/publisher/pubyear. (see)

Definition 1.31. Narrative data: documents and text fragments used for

communicating knowledge to humans.

> e.g. plain text and formatted text with markup code (see 4 (Documents as Digital
Objects) in the IWGS lecture notes)

Definition 1.32. Symbolic data: descriptions of object and facts in a formal

language

» e.g. 3+5 in Python (see 2 (Introduction to Programming) in the IWGS lecture
notes)

Definition 1.33. Metadata: “data about data”, e.g. who has created these

facts, images, or documents, how do they relate to each other?(not covered yet)

Observation 1.34. Metadata are the resources, DigiHumS results are made of

(~ support that)

The other categories digitize artefacts and auxiliary data.

Observation 1.35. We will need all of these — and their combinations — to do

DigiHumS.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 340 2024-02-08

WissKl: a Virtual Research Env. for Cultural Heritage

» Definition 1.36. WissKIl is a virtual research environment (VRE) for managing
scholarly data and documenting cultural heritage.

» Requirements: For a virtual research environment for cultural heritage, we
need
» scientific communication about and documentation of the cultural heritage

networking knowledge from different disciplines (transdisciplinarity)

high-quality data acquisition and analysis

safeguarding authorship, authenticity, persistence

support of scientific publication

» WissKl was developed by the research group of Prof. Giinther Gortz at FAU
Erlangen-Niirnberg and is now used in hundreds of DH projects across Germany.

» FAU supports cultural heritage research by providing hosted WissKI instances.

> See https://wisski.data.fau.de for details
» We will use an instance for the Kirmes paintings in the homework assignments

vvyy

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 350 2024-02-08

https://wisski.data.fau.de

Documenting Cultural Heritage: Current State/Preview

» Pre-DH State of cultural heritage documentation:

» scientific communication/documentation by journal articles/books
> persistence: paper records, file cards, databases (like our KirmesDB)
> Analysis: manual examination of artefacts in museums/archives.

» Idea: Use more technology to do better.

» Preview: WissKl| uses semantic web technologies to do just that. We will now

> Motivate the semantic web (why do we need more than the WWW)
» introduce ontologies, linked open data and their technology stacks
» show off WissKl and offer a little project based on Kirmes corpus.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 351 2024-02-08

12.2 Systems for Documenting the Cultural
Heritage

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 351 2024-02-08

Documenting Cultural Artefacts: Inventory Books

» Definition 2.1. An inventory book is a ledger that identifies, describes, and
records provenance of the artefacts in the collection of a museum.
» Example 2.2 (An Inventory Book).

TWVENTAR ia
JAHR AR, KUNSTLER ‘GEGENSTAND, BESCHREIBUNG , BEZEICHNUNG 1EmNIK,WERWF‘MMSSE ERWERBUNG PREIS |PREIS
: ; o 222
/}0/39 Priisseres |Reitieschd e e
el a2 2 Al = P
(© Wiite w0 promily
I 5| Tkt s
A (o pmnac.
WM
f 6 i if«.ﬁ.»mx o G- e
5 R . TN i IR e ot
AT e st)
1.»‘4‘7;:‘
e
X eor, Some, M oholypeiohi 982 | @ee Rant| oy [flemmt 72,25,
7 o (o5) A a3 | 2= ece
Pz’
’ |
i |

mcairss

‘,‘ Wose |

» Problems: non-digital, only single-user access, institution-local, no querying,

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 352 2024-02-08

Cultural Artefacts in Databases: Example

» Example 2.3. A typical database for cultural artefacts:

B2

(HiDa/MIDAS)

ISLIEY

lobj05381

(GieBgarnitur

lerhalten

(Giehgerit &
Kirchengerst

Eifirmige Kanne &
GieBgamitur

[Silber, vergoldet

lgetrieben, gegossen, ziseliert, geatzt

35 om (Kanne)

1465 cm (Becken]

Herstellung

jamnitzer, Wenzel |

Nirmberg

1574, ab £ 1571(7) 1575

[eiférmige Kanne mit Schiange als Henkel. Ansatzstelle der

Schlange am Corpus der Kanne ist wenig fa
repariert, viel Litzinn sichtbar. Auffallend hiufige

. Frisur der
die Schaftfigur vom Merkelschen Tafelaufsatz.

‘ Freitext:
unerschlossene

Information

na &
idderhbrer

Eigentimer

[Maria, Sta. presso S. Celso

(Leihnehmer

Mailand
Musea Diocesano

eigt das Ewerrte Foma on

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2

W

353

2024-02-08

Cultural Artefacts in Databases: Pro/Con

» Databases of Cultural Artefacts — Advantages:
> persistence, multi-user access, structured data,
> web/catalog publication, standardized exports,
» standardized performant query language.
» Databases of Cultural Artefacts — Problems:
» identifiers are database local ~+ no trans database relations,
» database schemata are inflexible <+~ we need extensions in practice,
> free text as an un-structured, untapped resource.

» ldea: Relational databases impose structure, let's try something very
unstructured: the world wide web. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 354 2024-02-08

Cultural Artefacts in Databases I

» Example 2.4. Another database for cultural artefacts:

W+ vz M add newrocord | mm Delets record! O seorcn | Emsword | G arReset | 88 Todipooors | 5 Torie o Close
- -
7B vonaba. | Gemde Ttel [Selbstbidnis Gerre: [Gemaiae
3 Helbos Chestoph..|Gemade. Datierung: [1493 Datierung Kommenter:)
10 Jionsmorm_|Gensis
4 Louwre Selbsbidnis_Detai 2
2 [Bovbury O ot Vet Toch: [Porgament e simeand ervagen e - - s s o)
12 et oo o [|
16 |MammtKed oGt |
T6 [o[Gemie o =) o
X Mol S ubowatrungsort ertermurmer
R = Vorwator: fstadiio
15 [Cueamkio |Gt Soschi Sintur: [INSAGTDIE GATAL P
© | [Gmie Proverienz [o 1610 Sig Franz i o105 iy EvgenFebe Loprig Nicoks GeVileoy
0 Wb Fonin [Gena (15661565 - 1322 vom L Theusig -
PR sammence (usel AchwL1 1603 KOPE 1813 1 Hemsack S Bareis.dese von Goethe beschneben (uellell 1627, 176 Thusig L . 131122 3]
55— Vi ol Diremmonograrm Konmentr
| T H I Duremonogramm
Rt i Genie
% [schmezsmma|Genie L
77| PuchinachAp.. | Gemlde Anzelewsky: [0 Flechsig: [Uppmenn: [Schoch: [Tietzes: [
28 | Kewbegng(4 . |Gemade Bortsch: [Heller: | Meder [8 Schramm: [Winker. [
R ey]] e p—
% [Kmauretnat|Gense
ecbachiungen Diakussonar Kommentar zu Bid ™ Showthumbnais
3Bkt oG Coitigi
— [FONCGRAFEE Zoteihaubs auch be Pratagonsin dar Terer AaRecte, b i Frami]
32 Mavichs S Gense B ¢ Holet 1627.5 176 nLeiptio)|
32kt orrFms G [Thece "ot Pargement. ringlchout " wogen’ I cen 1340er Jahen” von
S0 [s Vot Gemie X ematg Dab
o2 dernere o
|5 [romsrit [Gense (Theusingl 132 Antelowsy 19308 12
% [sebutidns[Gense [BEWERTUNG Tezes 19205 295
57 [Pampurrtia.|Gena
% [Pamgowaria|Gens Wio[reed Documens| Releed Wet Pages|
35 [Soverng O Goma s f
1o [Pomgoraita. Gense -
1 [ovtutn e - Gena
2 [Oetubontias. Gense
1o [omrl Gt
) |
4 [Gotwton e Gense
o B Weratumolizen .
o EU: Sumpel EvanKiegon 002 =
(3 P WebPam
« "
E——— Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 355 2024-02-08

Using the Web for the Cultural Heritage

» Idea: Why not use the world wide web as a tool?
» it is inherently distributed and networked,
» the data formats HTML and XML are highly flexible,
> gives us instantaneous access to information/images/. . .,
> allows collaboration and discussion. (wikis, fora, blogs)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 356 2024-02-08

Cultural Artefacts on the Web

> Example 2.5. A text about a cultural artefact (an etching by Diirer)

& Notlogged in Talk Contributions Create account Log in

Article Talk Read Edit View history Search Wikipedia Q

wikepiA ~ Melencolia I

=B EcvElopedie From Wikipedia, the free encyclopedia
Main page bencolln 1 Fs a1514 engra?nngvby the (.ierm.an Renaissance ,ﬂms‘ Albrecht Melencolia |
Contents Direr. The print's central subject is an enigmatic and gloomy winged female
Current events figure thought to be a personification of melancholia. Holding her head in her < 5
::::("\’:h::::a hand, she stares past the busy scene in front of her. The area is strewn with
Comtact e symbols and tools associated with craft and carpentry, including an
— hourglass, weighing scales, a hand plane, a claw hammer, and a saw. Other
objects relate to alchemy, geometry or numerology. Behind the figure is a
Contribute structure with an embedded magic square, and a ladder leading beyond the
Help frame. The sky contains a rainbow, a comet or planet, and a bat-like creature
O Y poral bearing the text that has become the print's title.
Recent changes
Upload file Diirer's engraving is one of the most well-known extant old master prints, but,
T despite a vast art-historical literature, it has resisted any definitive

interpretation. Direr may have associated melancholia with creative
activity;(?] the woman may be a representation of a Muse, awaiting inspiration
but fearful that it will not return. As such, Diirer may have intended the print

What links here
Related changes

Melencolia '] (with annotations)

Special pages Artist Albrecht D
Permanent link as a veiled self-portrait. Other art historians see the figure as pondering the - recht Direr
o o o 1514
Page information nature of beauty or the value of artistic creativity in light of rationalism,®l or ear
Cite this page as a purposely obscure work that highlights the limitations of allegorical or Type CEiy
e ¥ Dimensions 24 cm x 18.8 cm (9.4 in
kidata item symbolic art. %7.4in)
Print/export The art historian Erwin Panofsky, whose writing on the print has received the

Question: Just how does the etching discussed here relate to Albrecht Diirer?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 357 2024-02-08

Using the Web for Cultural Heritage

» Problems: with using the Web as a resource

» Information is often of dubious quality (imprecise, typos, incomplete, .. .)
» Information is primarily written for human consumption
> ~ not machine-actionable, but full text search works (e.g. Google)
> sometimes we can use established structures (e.g. Infobox in Wikipedia)
» Evaluation: The web is complementary to databases on the
structure-vs-flexibility tradeoff scale for cultural heritage systems. (we need
both)

» ldea: Use the semantic web for cultural heritage
» Goal: Make information accessible for humans and machines
»> meaning capture by reference to real-world objects
> globally unique identifiers of cultural artefacts (= URIs)

» inference (get out more than you put in!)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 358 2024-02-08

12.3 The Semantic Web

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 358 2024-02-08

The Semantic Web

» Definition 3.1. The semantic web is the result including of semantic content in
web pages with the aim of converting the WWW into a machine-understandable
“web of data”, where inference based services can add value to the ecosystem.

» Idea: Move web content up the ladder, use inference to make connections.

Character
Set

s i | Markt mechanisms
.‘Os ,“9‘ 1 Exchange rate \ CONGEMEg

i 0.95 1$=095% exchange rates

» Example 3.2. Information not explicitly represented (in one place)
Query: Who was US president when Barak Obama was born?
Google: ... BIRTH DATE: August 04, 1961. ..
Query: Who was US president in 19617
Google: President: Dwight D. Eisenhower [...] John F. Kennedy (starting Jan. 20.)
Humans understand the text and combine the information to get the answer.
Machines need more than just text ~» semantic web technology.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 350 2024-02-08

What is the Information a User sees?

» Example 3.3. Take the following web-site with a conference announcement
WWw2002
The eleventh International World Wide Web Conference
Sheraton Waikiki Hotel
Honolulu, Hawaii, USA
7-11 May 2002
Registered participants coming from
Australia, Canada, Chile Denmark, France, Germany, Ghana, Hong Kong, India,
Ireland, Italy, Japan, Malta, New Zealand, The Netherlands, Norway,
Singapore, Switzerland, the United Kingdom, the United States, Vietnam, Zaire

On the 7th May Honolulu will provide the backdrop of the eleventh
International World Wide Web Conference.

Speakers confirmed
Tim Berners-Lee: Tim is the well known inventor of the Web,
lan Foster: lan is the pioneer of the Grid, the next generation internet.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 360 2024-02-08

What the machine sees

» Example 3.4. Here is what the machine “sees” from the conference

announcement:
WWWene

TOFENSAL ANV [IV] ATV

SAVALRNWH D HWITT

H\GMINeHADH)) SUSA

NoocoMHterne

RINMIVI (\/"VLl)J)\ﬁ\UfJ?ﬁ)\}{V?II

ANuv-D)AsCN\A[HCOTD\JHV | eFVA\ 1< VIA\teg(\ 1M\)\ }o T\ [) 1
IVW—(\[@ILI—@T@J%\/A\@M—@u%@/\/];Z}—|$—|\(@ﬂ]MLI(]Vi—(\[f@NIVE-!T@

SN\}H \/ZW S VIOV TR\ U] [SUAU] V) T\ ZH4) V]

0\'—'(1U<M4TH?\ZWWQ>$$\/VZE> ML W?\/Z{uﬂm E1\(
D\UIVAANAIMVEII) [TV EVTV IV T
5\/HIWIJZ\{>VIIW

TIEBIVATVALT =TI ANV ENRVHU(IWV] [
I*\J?ﬂ—'WﬁI*WU(]\/>?\HV?{U<W9’V>(@Uﬂﬂ§U}1\WWH>I\>\U1V\1|J/

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 361 2024-02-08

Solution: XML markup with “meaningful” Tags

» Example 3.5. Let's annotate (parts of) the meaning via XML markup
<tttle>WWWene
TNANENUDUIVAANAMVEIW) IV [CNTVIN 1</t it Le>
<place>SIVAWH)) HWTHA\GMINeHADH) <USA</place>
<date>K cocoM-tene</date>
<participants>RINIIVI AVD))) AUG\HTD
ANuvA) AeCINA[HeCOT DNV < FVA <G VI TG\ AaHN\ O\ Fo I\ [) 1e
IV T T A\eMAUHSMIZIGATSTIMU VI oMY 2 e
S\H ¢2V1 SSHULVIH\[u(U\)UT TR\ e\ [Su-U] [V U\ e 24 V]
</participants>
<antroduction>O\K(UMAHNITINZ)LE V) (I HITVe HOTTIENUEN

UTVAALN\AIMVE I [TW] [C\{TVIN] T </tntroduction>
<P”’09”‘am>5\ﬂ4\|]Vﬂl\{>vﬁﬂ(

<speaker>T))BIV\IV A L11-TI) (12 THHIND\\E\UVHU(IW] [</speaker>

<speaker>IH\RJUIV-IH\) (] \/>2\W IVHUAGY) [BN BN TVAURAUTV

\|u<speaker>
</program>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 362 2024-02-08

What can we do with this?

» Example 3.6. Consider the following fragments:
RU)UT] TWWWene
TOFENHALTNAADNNVE W) [TV CA{ TV TReL)UTT T
%\/i—mTSGV—(U?\W—()H)H)H?I_I]$HZ\Z$FI$I‘I<:>H—Q—¢>><:>L{SA§RO<\/i—u]T

R[HU] TR cocoM—AteneRoc[HU]T

Given the markup above, a machine agent can
> parse nocoM-terne as the date May 7 11 2002 and add this to the user's calendar

> parse S(IVALAWH))NV HWTHA\MENeHAD))<USA as a destination and find

flights.
» But: do not be deceived by your ability to understand English!

363 2024-02-08

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2

What the machine sees of the XML

» Example 3.7. Here is what the machine sees of the XML

<title>WWWene
TOTIENUAUIVAALNAIV I [TV [N TVIN T </L)ut] >
< \/14ﬂ SSOAVALNWA) Y HWTHAGINeHAD)) SUSA</ \/im >

<[HU >N oocoM-tene </[HU]>

<\/WU>J>\/4\UI>R1}>ﬂ—IWW (\/4VU>J>\/4\UIJZII>\}{VZII

AUV AeC\A[HeCOTD\JV || eFVA\ 1G] VEi-\teg(\ e\ K\ }e T\ [) 1
IV}ﬁ\[@II_Hﬁ@j#\/A\@J\/HiuA@M;Z}4$4\(@7’(]N’|L|<]V$#\U@MV;#@

S\H JV] SSHUIVIH\[u(U\)UTTR\} G u(U\)UT [SuHU] [V U\ e 2 V]
</\/—|Vu)j>\/—<\u/>

AUV LN > O\ UM ATHAITIN) T ¢Vzg> MUV \/Z{Uﬂm ENUTUTIVN
\ANNAPVVEIIW) [TVTICN TV T <)\ >

<\/V2}V4II>S\/14|HVIJ2\{>VINf
<./\/HHV>77116WV\WV/’\EHﬁﬂﬁ)fLKEliiH\zgv\Q\ulVl{uﬂmL</f\/HHV>
<f\/HHV>I4\HMVﬂﬂ\)fuﬂ\/>Z\HVZ{U<1QV>(@uﬂ\W§U}1\W4u>l\>\UW\
\1u<f\/HIHV>

</\/V2}V%1}>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 364 2024-02-08

The Current Web

»> Resources: identified by P

Resource

URIs, untyped

» Links: href, src, ...limited,
non-descriptive

» User: Exciting world -
semantics of the resource,
however, gleaned from content

» Machine: Very little
information available -
significance of the links only
evident from the context
around the anchor.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2

linksTo

Resource

365

Resource

Resource

linksTo linksTo

Resource

linksTo

Resource

Resource

linksTo

linksTo
Resource Resource
linksTo

Resource

2024.02.08

The Semantic Web

> Resources: Globally identified
by URIs or Locally scoped hasManual
(Blank), Extensible, Relational.

» Links: Identified by URIs,
Extensible, Relational.

requires requires

» User: Even more exciting
world, richer user experience.

» Machine: More processable
information is available (Data
Web).

» Computers and
people: Work, learn and
exchange knowledge effectively.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 366 2024-02-08

Towards a “Machine-Actionable Web"

» Recall: We need external agreement on meaning of annotation tags.
» ldea: standardize them in a community process (e.g. DIN or ISO)

» Problem: Inflexible, Limited number of things can be expressed

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 367 2024-02-08

Towards a “Machine-Actionable Web"

vvyyy

Recall: We need external agreement on meaning of annotation tags.

Idea: standardize them in a community process (e.g. DIN or ISO)
Problem: Inflexible, Limited number of things can be expressed

Better: Use ontologies to specify meaning of annotations

» Ontologies provide a vocabulary of terms

» New terms can be formed by combining existing ones

» Meaning (semantics) of such terms is formally specified

> Can also specify relationships between terms in multiple ontologies

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 367 2024-02-08

Towards a “Machine-Actionable Web"

» Recall: We need external agreement on meaning of annotation tags.
» ldea: standardize them in a community process (e.g. DIN or ISO)
» Problem: Inflexible, Limited number of things can be expressed

» Better: Use ontologies to specify meaning of annotations

» Ontologies provide a vocabulary of terms

» New terms can be formed by combining existing ones

» Meaning (semantics) of such terms is formally specified

> Can also specify relationships between terms in multiple ontologies

» Inference with annotations and ontologies (get out more than you put in!)
» Standardize annotations in RDF [KC04] or RDFa [Her+13] and ontologies on
OWL [OWLOY]

» Harvest RDF and RDFa in to a triplestore or OWL reasoner.

» Query that for implied knowledge (e.g. chaining multiple facts from Wikipedia)
SPARQL: Who was US President when Barack Obama was Born?
DBPedia: John F. Kennedy (was president in August 1961)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 367 2024-02-08

12.4 Semantic Networks and Ontologies

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 367 2024-02-08

Semantic Networks [CQ69]

» Definition 4.1. A semantic network is a directed graph for representing
knowledge:

> nodes represent objects and concepts (classes of objects)
(e.g. John (object) and bird (concept))
> edges (called links) represent relations between these (isa, father of, belongs to)

» Example 4.2. A semantic network for birds and persons:
(brd),

inst
has | part

wings

» Problem: How do we derive new information from such a network?

» Idea: Encode taxonomic information about objects and concepts in special
links (“isa" and "inst”) and specify property inheritance along them in the
process model.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 368 2024-02-08

Deriving Knowledge Implicit in Semantic Networks

» Observation 4.3. There is more knowledge in a semantic network than is
explicitly written down.

» Example 4.4. In the network below, we “know” that robins have wings and in
particular, Jack has wings.

has | part

wings

» ldea: Links labeled with “isa” and “inst” are special: they propagate properties
encoded by other links.

» Definition 4.5. We call links labeled by

> “isa” an inclusion or isa link (inclusion of concepts)
> “inst” instance or inst link (concept membership)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 3690 2024-02-08

Deriving Knowledge Semantic Networks

» Definition 4.6 (Inference in Semantic Networks). We call all link labels

except “inst” and “isa” in a semantic network relations.
isa,

Let N be a semantic network and R a relation in N such that A =% B %5 C or
At g Ry C, then we can derive a relation A Ry cinn.
The process of deriving new concepts and relations from existing ones is called
inference and concepts/relations that are only available via inference implicit (in
a semantic network).

» Intuition: Derived relations represent knowledge that is implicit in the network;
they could be added, but usually are not to avoid clutter.

» Example 4.7. Derived relations in 4.4

» Slogan: Get out more knowledge from a semantic networks than you put in.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 370 2024-02-08

Terminologies and Assertions

» Remark 4.8. We should distinguish concepts from objects.

» Definition 4.9. We call the subgraph of a semantic network N spanned by the
isa links and relations between concepts the terminology (or TBox, or the
famous Isa Hierarchy) and the subgraph spanned by the inst links and relations
between objects, the assertions (or ABox) of N.

» Example 4.10. In this semantic network we keep objects concept apart
notationally:

a

ABox Roy eat Rex eat ¢ Clyde

In particular we have objects “Rex”, “Roy”, and “Clyde”, which have (derived)
relations (e.g. Clyde is gray).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 371 2024-02-08

Limitations of Semantic Networks

» What is the meaning of a link?

> link labels are very suggestive (misleading for humans)
» meaning of link types defined in the process model (no denotational semantics)

» Problem: No distinction of optional and defining traits!
» Example 4.11. Consider a robin that has lost its wings in an accident:

has_part i has_ part .
bird —————— > wings bird - wings
Tisa Tisa
robin robin / cancel
Tinst Ti st
jack joe

“Cancel-links" have been proposed, but their status and process model are
debatable.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 372 2024-02-08

Another Notation for Semantic Networks

» Definition 4.12. Function/argument notation for semantic networks
(reification to individuals)

> interprets nodes as arguments
(predicates actually)

» interprets links as functions

» Example 4.13.
bird | .
ISa

has | part

wings
» Evaluation:

+ linear notation
+ easy to give process model by deduction

— worse locality properties

isa(robin,bird)
haspart(bird,wings)
inst(Jack,robin)
owner_of(John, robin)
loves(John,Mary)

(equivalent, but better to implement on a computer)
(e.g. in Prolog)

(networks are associative)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 373 2024-02-08

A Denotational Semantics for Semantic Networks

» Observation: If we handle isa and inst links specially in function/argument

notation
bird rlﬁ

has | part

robin C bird
haspart(bird,wings)
Jackerobin

owner _of(John, Jack)
loves(John,Mary)

wings
it looks like first-order logic, if we take

> acS to mean S(a) for an object a and a concept S.
> A C B to mean VX.A(X) = B(X) and concepts A and B
> R(A,B) to mean VX.A(X) = (3Y.B(Y) A R(X,Y)) for a relation R.

» Idea: Take first-order deduction as process model (gives inheritance for free)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 374 2024-02-08

What is an Ontology

» Definition 4.14. An ontology is a formal model of (an aspect of) the world. It

> introduces a vocabulary for the objects, concepts, and relations of a given domain,
> specifies intended meaning of vocabulary in a description logic using

P> a set of axioms describing structure of the model
> a set of facts describing some particular concrete situation

The vocabulary together with the collection of axioms is often called a
terminology (or TBox) and the collection of facts an ABox (assertions).
In addition to the represented axioms and facts, the description logic determines
a number of derived ones.

» Definition 4.15. A vocabulary often includes names for classes and relationship
(also called concepts, and properties).

» Remark 4.16. If the description logic has a reasoner, we can automatically

> detect inconsistent axiom systems
» compute class membership and taxonomies.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 375 2024-02-08

Semantic Web Technology in a Nutshell

» Ontologies have become one of the standard devices for representing information
about the Web and the world.
» Definition 4.17. This is facilitated and standardized by the :

VVVYVYYVYY

>

URIs for representing objects,

RDF triples for representing facts,

RDFa for annotating RDF triples in XML documents,

OWL for representing TBoxes,

triplestores for storing (lots of) RDF triples,

SPARQL for querying ontologies,

description logic reasoners for deciding ontology consistency and concept
subsumption,

Protg for authoring and maintaining ontologies,

» Details .

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 376 2024-02-08

12.5 CIDOC CRM: An Ontology for Cultural
Heritage

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 376 2024-02-08

Ontologies for Cultural Artefacts

» lIdea: Use ontologies for documenting Vissermen
cultural heritage. .
> flexible schemata (OWL) S) pous etaingl .
> easy data sharing 4 °
» open standards, free tools < erm 31 Documei® -
» semantic querying via SPARQL i
» Idea: We can use RDF like a Mindmap: s et %[wieas
RDF can \ » ¥
. . g s
> represent relations between objects ° L
> classify objects (web resources) Warin Behaim
RDFa for document annotation . Eraobus

» Reference ontologies for interoperability:
» SUMO (Suggested Upper Model Ontology) [SUMO] for common knowledge,
» FOAF (Friend-of-a-Friend) [FOAF14] for persons and relations,

> CIDOC CRM for documentation of cultural heritage. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 377 2024-02-08

CIDOC CRM (Conceptual Reference Model)

» Definition 5.1. CIDOC CRM provides an extensible ontology for concepts and
information in cultural heritage and museum documentation. It is the
international standard (ISO 21127:2014) for the controlled exchange of cultural
heritage information. The central classes include
> space time specified by title/identifier, place, era/period, time-span, and relationship
to persistent items

> events specified by title/identifier, beginning/ending of existence, participants
(people, either individually or in groups), creation/modification of things (physical or
conceptional), and relationship to persistent items

> material things specified by title/identifier, place, the information object the material
thing carries, part-of relationships, and relationship to persistent items

» immaterial things specified by title/identifier, information objects (propositional or
symbolic), conceptional things, and part-of relationships

» Definition 5.2. OWL implements CIDOC CRM in OWL
» Details about CIDOC CRM can be found at [CC] and about OWL at [ECRMb;
ECRMal.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 378 2024-02-08

Protege, an IDE for Ontology Development

» Definition 5.3. Protg [Pro] is an integrated development environment for
ontologies represented in the OWL family. It comprises
> a visual user interface for exploring and editing ontologies,
» a inference component to ensure ontology consistency and minimality,
> a facility for querying the loaded ontologies.
» Example 5.4 (CIDOCCRM in Protege).

@® [) (http://erlangen-crm.org/170309/) : [http://erlangen-crm.org/170309/]
< > @ (http://erlangen-crm.org/170309/) Search...

Active ontology x‘ Entities x‘ Individuals by class x‘ DL Query x‘

Ontology header: RIEMmEX f§ Ontology metrics: RN E =
Ontology IRI http://erlangen-crm.org/170309/ Metrics
Ontology Version IRI Axiom 2543
Logical axiom count 1151
Annotations Declaration axioms count 399
rdfs:label [language: en] Class count 89
Erlangen CRM / OWL Object property count 298
Data property count 13

rdfs:comment [language: en]

Changelog: https://github.com/erlangen-crm/ecrm/commits/master Annotation Property count 4

Ontology imports \ Ontology Prefixes \ General class axioms \

Imported ontologies: el]=]0)Es)

Reasoner active Show Inferences

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 379 2024-02-08

CIDOC CRM Explored (Classes)

» lIdea: Use semantic web technology to explore OWL.
» CIDOC CRM Classes: concept = OWL “Class” (shown

Protege)

[[] .0rg/170309/) : .0rg/170309/]

< > @ (http://erlangen-crm.org/170309/) B search..
) E1 CRM Entity) E2 Temporal Entity) E4 Period) E5 Event

| Active ontology x| Entities x | Individuals by class x| DL Query x|

| Annotation properties | Datatypes | Individuals | = @ ES Event — http://erlangen-crm.org/170309/E5_Event
Classes | Objeot properties | Data properties | | Annotations | Usage |
Class hierarchy: E5 Eve ZISmx § Annotations: ES Event [2 (1] 5])
Asserted [Examples
+ [<] — the birth of Cleopatra (E67)
v owl:Thing - the destruction of Herculaneum by volcanic eruption in 79 AD (E6)
E1 CRM Entity - World War Il (E7)
. - the Battle of Stalingrad (E7)
14 o e sy ~ the Yalta Conference (E7)
E3 Condition State - my birthday celebration 28-6-1995 (E7)

v @ E4 Period - the falling of a tile from my roof last Sunday
> T A el
Hdae
@ £33 Place Description: E5 Event (2100 5 W 5
v © E54 Dimension Equivalent To
@ E97_Monetary_Amount
v @ E77 Persistent Item
v @ E39 Actor SubClass Of
E21 Person) 'E4 Period’
v @ E74 Group @ 'P12 occurred in the presence of some 'E77 Persistent
© E40 Legal Body Item’
v @ E70 Thing
» @ E71 Man-Made Thing
» ® E72 Legal Object General class axioms
v @ E92 Spacetime Volume
» @ E18 Physical Thing SubClass OF (Anonymous Ancestor)

» @ E4 Period

©'P7 took place at' some 'ES3 Place'
@ E93 Spacetime Snapshot

P48 has preferred identifier’ max 1 owl:Thing
P4 has time-span’ exactly 1 owl

To use the reasoner lck Reasoner > Star reasoner £ Show Inferences

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 380 2024-02-08

CIDOC CRM Explored (Relations

» CIDOC CRM Relations: relation = OWL “Object Property” (shown in
Protege)

ece .0rg/170309)) : .0rg/170309/)
< > @ (http://erlangen-crm.org/170309/) search...
) P10 contains

Active ontology x| Entities x | Individuals by class x| DL Query x|

[Annotation properties | Datatypes | Individuals | = ™ P10 contains — http://erlangen-crm.org/170309/P10i_contains
Classes | Object properties | Data properties | Annotations | Usage |

Object property hierarchy: P10 IS ®X M Annotations: P10 contains (2100 5w B¢
LA Asserted Annotations
v = owl:topObjectProperty rdfs:label [language: en]

ies P10 contains.

=102 is title of
= P131 identifies skos:notation [type: xsd:string]
= P149 identifies P10

ChzIEE= JDescription: P10 contains BN
= P101 had as general use
m=P101 was use of Functional falent To
W= P103 was intended for
== P103 was intention of Inverse fur (o oenyor

W P104 applies to

m=P104 is subject to Transitive

» m=P105 has right on Lo Imerse of

» ==P105 right reld by Symmetric g 1p10 falls within'

» =P106 forms part of Asymmetri

» W=P106 is composed of Domains (intersection)
=P107 has current or former membe Reflexive o " ,
m=P107 is current or former member @ 92 Spacetime Volume'

» P12 occurred in the presence of Irreflexive

»> P12 was present at

Ranges (intersection)
w=P121 overlaps with

= P122 borders with
== P125 used object of type
== P125 was type of object used in Disjolnt With
W= P126 employed

= P126 was employed in

© 'E92 Spacetime Volume'

vv

SuperProperty Of (Chain)

Inf. Werkzeuge @ G/SW 2 381 2024-02-08

To use the reasoner clck Reasoner > Stat reasoner % Show Inferences

——— Michael Kohlhas

CIDOC CRM Structure (Overview)

CIDOC CRM
Top Level Classes

e 4
A,w =]

G. Goerz, FAU, Inf. 8
CRAdilN

o
IS
9]
c
£
£
=
c
o}
Re]

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 382 2024-02-08

CIDOC-CRM Modeling

» This is all good and dandy but how do | concretely model cultural artefacts?
» Answer: CIDOC CRM is only a TBox, we add an ABox of objects and facts.
» Example 5.5. Albrecht Diirer painted Melencolia 1 in Niirnberg

We have two units of information here:

1. Albrecht Diirer painted Melencolia 1
2. this happened in the city of Niirnberg

» CIDOC CRM modeling decisions; we start with 1. AD painted M 1

1. A painting m is an “Information Carrier” (E84)
2. It was created in an “Production Event” g (E12)
3. mis related to q via the “was produced by" relation (P108i)
4. q was “carried out by" a “person” d (P14 E21)
5. d “is identified by an “actor appellation” a (P131 E82)
6. a “has note” the string "Albrecht Diirer". (P3)
» CIDOC CRM modeling decisions; continuing with 2. this happened in N
1. A painting m is an “Information Carrier” (E84)
2. It was created in an “Production Event” g (E12)
3. mis related to q via the “ produced by" relation (P108i)
4. q “took place at” a “place” p (P7 E53)
5. p"is identified by" a “place name” n (P48 E3)
6. n "has note” the string "Niirnberg".

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 383 2024-02-08

CIDOC CRM Modelling (Ontology Paths)

» Modeling Albrecht Diirer painted Melencolia 1 in Niirnberg
in CIDOC CRM

"A. Diirer"

P3

"Nirnberg"

Note that we need to create the intermediary objects q, d, a, and n.
» Problem: That is a lot of work for something very simple.

» Definition 5.6. We call sequence of facts s; Py oj, where s; = 0;_1 an ontology
path and any subtree an ontology group.

» Problem Reformulated: A simple statement like Albrecht Diirer painted
Melencolia 1 becomes a whole ontology path in CIDOC CRM.

» But: we can reuse intermediary objects and facts, and need fine grained models
for flexibility.

> ldea: Maybe systems can take some of the pain out of modeling. (~ WissKl)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 384 2024-02-08

Event-Oriented Modeling in CIDOC CRM

» QObservation 5.7. Ontologies make it easy to model facts with transitive verbs,

e.g. Albrecht Diirer created Melencolia 1 (binary relation)
» Problem: What about more complex situations with more arguments? E.g.
1. Albrecht Diirer created Melencolia 1 with an etching needle (ternary)
2. Albrecht Diirer created Melencolia 1 with an etching needle in Niirnberg (four
arguments)
3. Albrecht Diirer created Melencolia 1 with an etching needle in Niirnberg out of
boredom (five)

» Standard Solution: Introduce “events” tied to the verb and describe those
» Example 5.8. There was a creation event e with

1. Albrecht Diirer as the agent,

2. Melencolia 1 as the product,

3. an etching needle as the means,
4. boredom as the reason,

» Consequence: More than 1/3 of CIDOC CRM classes are events of some kind.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 385 2024-02-08

12.6 The Semantic Web Technology Stack

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 385 2024-02-08

Resource Description Framework

|

>

>

Definition 6.1. The Resource Description Framework (RDF) is a framework for
describing resources on the web. It is an XML vocabulary developed by the W3C.

Note: RDF is designed to be read and understood by computers, not to be
displayed to people. (it shows)

Example 6.2. RDF can be used for describing (all “objects on the WWW")

properties for shopping items, such as price and availability

time schedules for web events

information about web pages (content, author, created and modified date)
content and rating for web pictures

content for search engines

electronic libraries

| 2
>
>
| 2
>
>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 386 2024-02-08

Resources and URIs

» RDF describes resources with properties and property values.
» RDF uses Web identifiers (URIs) to identify resources.

» Definition 6.3. A resource is anything that can have a URI, such as
http://www.fau.de.

» Definition 6.4. A property is a resource that has a name, such as author or
homepage, and a property value is the value of a property, such as Michael
Kohlhase or http://kwarc.info/kohlhase. (a property value can be another
resource)

» Definition 6.5. A RDF statement s (also known as a triple) consists of a
resource (the subject of s), a property (the predicate of s), and a property value
(the object of s). A set of RDF triples is called an RDF graph.

> Example 6.6. Statements: [This slide]*"”) has been [author]P"*@ed by [Michael
Kohlhase]°"

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 387 2024-02-08

http://www.fau.de
http://kwarc.info/kohlhase

XML Syntax for RDF

» RDF is a concrete XML vocabulary for writing statements
» Example 6.7. The following RDF document could describe the slides as a
resource

<7xml version="1.0"7>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22—rdf—syntax—ns#"
xmlns:dc= "http://purl.org/dc/elements/1.1/">
<rdf:Description about="https://.../CompLog/kr/en/rdf.tex" >
<dc:creator>Michael Kohlhase< /dc:creator>
<dc:source>http://www.w3schools.com/rdf< /dc:source>
< /rdf:Description>
< /rdf:RDF>
This RDF document makes two statements:
» The subject of both is given in the about attribute of the rdf:Description element
» The predicates are given by the element names of its children
» The objects are given in the elements as URIs or literal content.

» Intuitively: RDF is a web-scalable way to write down ABox information.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 388 2024-02-08

RDFa as an Inline RDF Markup Format

» Problem: RDF is a standoff markup format (annotate by URIs pointing into
other files)
Definition 6.8. RDFa (RDF annotations) is a markup scheme for inline
annotation (as XML attributes) of RDF triples.

» Example 6.9.

<div xmlIns:dc="http://purl.org/dc/elements/1.1/" id="address" >
<h2 about="#address" property="dc:title">RDF as an Inline RDF Markup Format</h2>
<h3 about="#address" property="dc:creator">Michael Kohlhase</h3>
<em about="4#taddress" property="dc:date" datatype="xsd:date"
content="2009—11—11">November 11., 2009< /em>
</div>

https://svn.kwarc.info/.../CompLog/kr/slides/rdfa.tex

http://purl.org/d ements/1.1/tiltle
http://purl.org/dc/elements/I>
http|://purl.org/dc

RDFa as an Inline RDF Markup Format
2009—11—11 (xsd:date)

ements/1.1/creator
Michael Kohlhase

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 380 2024-02-08

https://svn.kwarc.info/.../CompLog/kr/slides/rdfa.tex
http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/date
http://purl.org/dc/elements/1.1/creator

RDF as an ABox Language for the Semantic Web

» lIdea: RDF triples are ABox entries h R's or h:p.

» Example 6.10. h is the resource for lan Horrocks, s is the resource for Ulrike
Sattler, R is the relation “hasColleague”, and ¢ is the class foaf:Person

<rdf:Description about="some.uri/person/ian _horrocks">
<rdf:type rdf: resource—"http //xmlns.com /foaf/0.1/Person" />
<hasColleague resource="some.uri/person/uli_sattler"/>

< /rdf:Description>

» ldea: Now, we need an similar language for TBoxes (based on AL)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 300 2024-02-08

OWL as an Ontology Language for the Semantic Web

» Task: Complement RDF (ABox) with a TBox language.

Idea: Make use of resources that are values in rdf:type. (called Classes)

v

» Definition 6.11. OWL (the ontology web language) is a language for encoding
TBox information about RDF classes.

» Example 6.12 (A concept definition for “Mother”).
Mother=Woman 1 Parent is represented as

XML Syntax Functional Syntax
<EquivalentClasses> EquivalentClasses(
<Class IRI="Mother" /> :Mother
<ObjectIntersectionOf> ObjectlIntersectionOf(
<Class IRI="Woman" /> :Woman
<Class IRI="Parent" /> :Parent
< /ObjectIntersectionOf >)
< /EquivalentClasses>)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 301 2024-02-08

Extended OWL Example in Functional Syntax

» Example 6.13. The semantic network from 4.4 can be expressed in OWL (in
functional syntax)

vVvyyvyy

wings

ClassAssertion formalizes the “inst” relation,

ObjectPropertyAssertion formalizes relations,

SubClassOf formalizes the “isa” relation,

for the “has_part” relation, we have to specify that all birds have a part that is a
wing or equivalently the class of birds is a subclass of all objects that have some
wing.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 302 2024-02-08

Extended OWL Example in Functional Syntax

» Example 6.14. The semantic network from 4.4 can be expressed in OWL (in
functional syntax)

ClassAssertion (:Jack :robin)

ClassAssertion(:John :person)

ClassAssertion (:Mary :person)
ObjectPropertyAssertion(:loves :John :Mary)
ObjectPropertyAssertion(:owner :John :Jack)
SubClassOf(:robin :bird)

SubClassOf (:bird ObjectSomeValuesFrom(:hasPart :wing))

» ClassAssertion formalizes the “inst” relation,

ObjectPropertyAssertion formalizes relations,

SubClassOf formalizes the “isa” relation,

for the "has_part” relation, we have to specify that all birds have a part that is a
wing or equivalently the class of birds is a subclass of all objects that have some

wing.

vvyy

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 302 2024-02-08

SPARQL an RDF Query language

» Definition 6.15. SPARQL, the "SPARQL Protocol and RDF Query Language’
is an RDF query language, able to retrieve and manipulate data stored in RDF.
The SPARQL language was standardized by the World Wide Web Consortium in
2008 [PS08].

» SPARQL is pronounced like the word “sparkle’.

» Definition 6.16. A system is called a SPARQL endpoint, iff it answers SPARQL

queries.

» Example 6.17. Query for person names and their e-mails from a triplestore with
FOAF data.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT 7name 7email
WHERE {

?person a foaf:Person.

7person foaf:name 7name.

?person foaf:mbox 7email.

}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 303 2024-02-08

SPARQL Applications: DBPedia

Emmy Noether

» Typical Application: DBPedia screen-scrapes
Wikipedia fact boxes for RDF triples and uses SPARQL
for querying the induced triplestore.

> Example 6.18 (DBPedia Query). People who were
born in Erlangen before 1900
(http://dbpedia.org/snorql)

SELECT ?name 7birth ?death ?person WHERE {
?person dbo:birthPlace :Erlangen .
?person dbo:birthDate ?birth .
?person foaf:name 7name .

Born Amalie Emmy Noether
?person dbo:deathDate ?death . 23 March 1882
H A A Erl , B ia, G
FILTER (?birth < "1900—01—01" " "xsd:date) . s Bt e
} Died 14 April 1935 (aged 53)
Bryn Mawr, Pennsylvania,
ORDER BY ?name United States
Nationality =~ German
» The answers include Emmy Noether and Georg Simon Alma mater University of Eriangen

h Known for Abstract algebra
O m. Theoretical physics
Noether's theorem

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 304 2024-02-08

http://dbpedia.org/snorql

A more complex DBPedia Query

» Demo: DBPedia http://dbpedia.org/snorql/
Query: Soccer players born in a country with more than 10 M inhabitants, who

play as goalie in a club that has a stadium with more than 30.000 seats.
Answer: computed by DBPedia from a SPARQL query

SELECT dlstlnct 7soccerp1ayer ?countryOfBirth ?team ?countryOfTeam ?stadiumcapacity

{

?soccerplayer a dbo:SoccerPlayer ;
dbo:position|dbp:position <http://dbpedia.org/resource/Goalkeeper_(association_football)> ;
dbo:birthPlace/dbo:country* ?countryOfBirth ;
#dbo:number 13 ;
dbo:team ?team .
?team dbo:capacity ?stadiumcapacity ; dbo:ground ?countryOfTeam .
?countryOfBirth a dbo:Country ; dbo:populationTotal ?population .
2countryOfTeam a dbo:Country .

FILTER (?countryOfTeam != ?countryOfBirth)

FILTER (?stadiumcapacity > 30000)

FILTER (?population > 10000000)

} order by ?soccerplayer

Results: Browse & _Go! Reset

SPARQL results:
:Abdesslam_Benabdellah & :Algeria [/ ‘Wydad_Casablanca & :Morocco & 67000
:Airton_Moraes_Michellon &7 :Brazil 7/ :FC_Red_Bull_Salzburg & ‘Austria i 31000
:Alain_Gouaméné &7 :Ivory_Coast i/ :Raja_Casablanca &’ :Morocco & 67000
:Allan_McGregor & :United_Kingdom ! Begiktag_J.K. & Turkey & 41903
:Anthony_Scribe :France &/ :FC_Dinamo_Thbilisi & :Georgia_(country) i@ 54549
:Brahim_Zaari & :Netherlands = :Raja_Casablanca & :Morocco & 67000
:Bréiner_Castillo :Colombia ' :Deportivo_Té&chira & :Venezuela 38755
:Carlos_Luis_Morales & :Ecuador i/ :Club_Atlético_Independiente & :Argentina & 48069
:Carlos_Navarro_Montoya & :Colombia ' :Club_Atlético_Independiente & :Argentina & 48069
:Cristian_Mufioz & :Argentina i/ :Colo-Colo & :Chile & 47000
:Daniel_Ferreyra & :Argentina i/ :FBC_Melgar & :Peru & 60000
:David_Bi¢ik & :Czech_Republic & Karglyaka_S.K. &/ Turkey & 51295
:David_Loria & :Kazakhstan i/ :Kargiyaka_S.K. &7 Turkey &2 51295
:Denys_Boyko & :Ukraine &/ Begiktag_J.K. & Turkey &2 41903

=Eddies Gustafsson i Michael Kuhilbhstatdaf: Werkzeuge @ G/S¢/ Rad Bull Salzbura3®5 AUDRR28-02-08 31000

http://dbpedia.org/snorql/
https://goo.gl/2i3ng1

Triple Stores: the Semantic Web Databases

» Definition 6.19. A triplestore or RDF store is a purpose-built database for the
storage RDF graphs and retrieval of RDF triples usually through variants of
SPARQL.

» Common triplestores include

» Virtuoso: https://virtuoso.openlinksw.com/ (used in DBpedia)
» GraphDB: http://graphdb.ontotext.com/ (often used in WissKI)
» blazegraph: https://blazegraph.com/ (open source; used in WikiData)

» Definition 6.20. A description logic reasoner implements of reaonsing services
based on a satisfiabiltiy test for description logics.
» Common description logic reasoners include

» FACT++: http://owl.man.ac.uk/factplusplus/
» HermiT: http://www.hermit-reasoner.com/

» Intuition: Triplestores concentrate on querying very large ABoxes with partial
consideration of the TBox, while DL reasoners concentrate on the full set of
ontology inference services, but fail on large ABoxes.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 306 2024-02-08

https://virtuoso.openlinksw.com/
http://graphdb.ontotext.com/
https://blazegraph.com/
http://owl.man.ac.uk/factplusplus/
http://www.hermit-reasoner.com/

12.7 Ontologies vs. Databases

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 306 2024-02-08

Example: Hogwarts Ontology

» Example 7.1. Axioms describe the structure of the world,

Class HogwartsStudent = Student and attendsSchool Hogwarts
Class: HogwartsStudent T hasPet only (Owl or Cat or Toad)
ObjectProperty: hasPet Inverses: isPetOf

Class: Phoenix C isPetOf only Wizard

» Example 7.2. Facts describe some particular concrete situation,

Individual: Hedwig
Types: Owl
Individual: HarryPotter
Types: HogwartsStudent
Facts: hasPet Hedwig
Individual: Fawkes
Types: Phoenix
Facts: isPetOf Dumbledore

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 307 2024-02-08

Ontologies vs. Databases

» QObvious Analogy: In an ontology:
> axioms analogous to DB schema (structure and constraints on data)
» facts analogous to DB data
P> data instantiates schema, is consistent with schema constraints

» But there are also important differences:
Ontology:

» Open world assumption (OWA)

> Missing information treated as

Database:
» Closed world assumption (CWA)

» Missing information treated as false

unknown
» Unique name assumption (UNA) > No UNA
» Each individual has a single, unique > Individuals may have more than one
name name
» Schema behaves as constraints on > Ontology axioms behave like
structure of data DN .
d implications (inference rules)
» Define legal database states. > Entail implicit information

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 308 2024-02-08

DB vs. Ontology by Example (Querying)

»> Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley
hasFriend HermioneGranger
hasPet Hedwig
Individual: Draco Malfoy

» Query: Is Draco Malfoy a friend of HarryPotter?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 300

2024-02-08

DB vs. Ontology by Example (Querying)

» Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley
hasFriend HermioneGranger
hasPet Hedwig
Individual: Draco Malfoy

» Query: Is Draco Malfoy a friend of HarryPotter?

> DB: No
»> Ontology: Don’'t Know (OWA: didn't say Draco was not Harry's friend)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 300 2024-02-08

DB vs. Ontology by Example (Querying)

»> Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley
hasFriend HermioneGranger
hasPet Hedwig
Individual: Draco Malfoy

» Query: Is Draco Malfoy a friend of HarryPotter?
» Counting Query: How many friends does Harry Potter have?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 300 2024-02-08

DB vs. Ontology by Example (Querying)

» Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley
hasFriend HermioneGranger
hasPet Hedwig
Individual: Draco Malfoy

» Query: Is Draco Malfoy a friend of HarryPotter?
» Counting Query: How many friends does Harry Potter have?

> DB: 2
> Ontology: at least 1 (No UNA: Ron and Hermione may be 2 names for same person)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 300 2024-02-08

DB vs. Ontology by Example (Querying)

»> Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley
hasFriend HermioneGranger
hasPet Hedwig
Individual: Draco Malfoy

» Query: Is Draco Malfoy a friend of HarryPotter?
» Counting Query: How many friends does Harry Potter have?

» How about: if we add
DifferentIndividuals: RonWeasley HermioneGranger

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 300 2024-02-08

DB vs. Ontology by Example (Querying)

» Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley
hasFriend HermioneGranger
hasPet Hedwig
Individual: Draco Malfoy

» Query: Is Draco Malfoy a friend of HarryPotter?
» Counting Query: How many friends does Harry Potter have?

» How about: if we add
DifferentIndividuals: RonWeasley HermioneGranger

> DB: 2

» Ontology: at least 2 (OWA: Harry may have more friends we didn't mention yet)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 300 2024-02-08

DB vs. Ontology by Example (Querying)

»> Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley
hasFriend HermioneGranger
hasPet Hedwig
Individual: Draco Malfoy

» Query: Is Draco Malfoy a friend of HarryPotter?
» Counting Query: How many friends does Harry Potter have?

» How about: if we add
DifferentIndividuals: RonWeasley HermioneGranger

» And: if we also add

Individual: HarryPotter
Types: hasFriend only RonWeasley or HermioneGranger

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 300 2024-02-08

DB vs. Ontology by Example (Querying)

» Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley
hasFriend HermioneGranger
hasPet Hedwig
Individual: Draco Malfoy

» Query: Is Draco Malfoy a friend of HarryPotter?
» Counting Query: How many friends does Harry Potter have?

» How about: if we add

DifferentIndividuals: RonWeasley HermioneGranger

» And: if we also add

Individual: HarryPotter
Types: hasFriend only RonWeasley or HermioneGranger

> DB: 2
»> Ontology: 2

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 300 2024-02-08

DB vs. Ontology by Example (Insertion)

» Given: the ontology from 7.1 and 7.2 insert

Individual: Dumbledore
Individual: Fawkes

Types: Phoenix

Facts: isPetOf Dumbledore

» System Response:

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 400

2024-02-08

DB vs. Ontology by Example (Insertion)

» Given: the ontology from 7.1 and 7.2 insert

Individual: Dumbledore
Individual: Fawkes

Types: Phoenix

Facts: isPetOf Dumbledore

» System Response:
»> DB: Update rejected: constraint violation
» Range of hasPet is Human; Dumbledore is not (CWA)

» Ontology Reasoner:
» Infer that Dumbledore is Human

> Also infer that Dumbledore is a Wizard (only a Wizard can have a phoenix as a pet)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 400 2024-02-08

DB vs. Ontology by Example: Query Answering

» DB schema plays no role in query answering (efficiently implementable)
» Ontology axioms play a powerful and crucial role in QA
> Answer may include implicitly derived facts
> Can answer conceptual as well as extensional queries
E.g., Can a Muggle have a Phoenix for a pet?
> May have very high worst case complexity (= terrible running time)
Implementations may still behave well in typical cases.

» Definition 7.3. We call a query language semantic, iff query answering involves
derived axioms and facts.

» Observation 7.4. Ontology queries are semantic, while database queries are
not.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 401 2024-02-08

Summary: Ontology Based Information Systems

» Analogous to relational database management systems
Ontology = schema; instances = data
» Some important (dis)advantages
+ (Relatively) easy to maintain and update schema.
» Schema plus data are integrated in a logical theory.
+ Query results reflect both schema and data

+ Can deal with incomplete information

+ Able to answer both intensional and extensional queries
— Semantics may be counter-intuitive or even inappropriate

» Open -vs- closed world; axioms -vs- constraints.
— Query answering much more difficult. (based on logical entailment)
> Can lead to scalability problems.

» In a nutshell they deliver more valuable answers at cost of efficiency.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 402 2024-02-08

Chapter 13
The WissKI System: A Virtual Research
Environment for Cultural Heritage

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 402 2024-02-08

WissKl: a Virtual Research Env. for Cultural Heritage

» Definition 0.1. WissKl is a virtual research environment (VRE) for managing
scholarly data and documenting cultural heritage.

» Requirements: For a virtual research environment for cultural heritage, we
need
» scientific communication about and documentation of the cultural heritage

networking knowledge from different disciplines (transdisciplinarity)

high-quality data acquisition and analysis

safeguarding authorship, authenticity, persistence

support of scientific publication

» WissKl was developed by the research group of Prof. Giinther Gortz at FAU
Erlangen-Niirnberg and is now used in hundreds of DH projects across Germany.

» FAU supports cultural heritage research by providing hosted WissKI instances.

> See https://wisski.data.fau.de for details
» We will use an instance for the Kirmes paintings in the homework assignments

vvyy

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 403 2024-02-08

https://wisski.data.fau.de

13.1 WissKI extends Drupal

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 403 2024-02-08

WissKI System Architecture

» Software basis: drupal CMS (content management system)

» large, active community, extensible by drupal modules
> provides much of the functionality of a VRE out of the box.

Drupal 8
Kern Module
® o WissKI <>
Triple-
‘ Weitere Module —a—

S
| |

SQL Datenbank

%Jm_. Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 404 2024-02-08

Drupal: A Web Content Managemt Framework

» Definition 1.1. Drupal is an open source web content management application.
It combines CMS functionality with knowledge management via RDF.

» Definition 1.2. Drupal allows to configure web pages modularly from content
blocks, which can be

> static content, i.e. supplied by a module,

» user supplied content, or
> views, i.e. listings of content fragments from other blocks.

These can be assembled into web pages via a visual interface: the config bar.

E Manage * Shortcuts "_ testuser oy WissKl

‘Admin menu
I Content gk Structure 4X Appearance Po Extend N Configuration g People

oIl Reports @ Help

205 2024.02.08

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2

Assembling a Web Site via Drupal Blocks (Example)

» Example 1.3 (Greenpeace via Drupal). Can you flnd the blocks7

I;
GREGNFEACES 47,

x Xﬂ\‘ /) i P15

THEMEN | KAMPAGNEN ERUNS | PRESSE | FORDERINNEN | MITMACHEN | TERMINE
. 7

.‘: y

1\

ZU LANGSAM, ZU TEUER,
+ NICHT GUT GENUG

. ==

Nachrichten » ALLE NACHRICHTEN R\

FRIEDEN | 19.07.2020 WIRTSCHAFT | 17.07.2020 LANDWIRTSCHAFT | 16.07.2020

” \'/ VA
-, 21 Eﬂ& i Rt 7 w

TV_€DAT ~ECEUEAI? v~ @

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 406

2024-02-08

Drupal Modules and Themes

» ldea: Drupal is designed to be modular and extensible (so it can adapt to the
ever-changing web)
» Definition 1.4 (Modular Design). Drupal functionality is structured into

» drupal core — the basic CMS functionality
» modules which contribute e.g. new block types (~ 45.000)
» themes which contribute new Ul layouts (~ 2800)
Drupal core is the vanilla system as downloaded, modules and themes must be
installed and configured separately via the config bar.

» The drupal core functionalities include

user/account management

menu management,

RSS feeds,

taxonomy,

page layout customization (via blocks and views),

system administration

vVvvYyVYVYY

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 407 2024-02-08

Bundles and Fields in Drupal (Data Entry)

» Definition 1.5. Drupal has a special data
type called a bundle, which is essentially
a dictionary: it contains key/value pairs
called fields.

» bundles can be nested ~» sub bundles. ’ : TR R)
> fields also have data type information, etc.
to support editing. ’ f— }
» drupal presents bundles as
» HTML lists for reading

» HTML forms for data entry/editing

» Drupal bundles induce blocks that can be
used for data entry and presentation.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 408 2024-02-08

WissKI System Architecture (Recap)

» WissKl = drupal + CIDOC CRM + triplestore + WissKI modules

Modules

Third-Party WissKI

‘ CCK ‘ OWL/RDF System

‘ Views ‘ Discussion System

‘ WikiTools ‘ Automatic Text Annotator

‘ WysiwygAPI ‘ Authority Files Management

‘ ImageAPI ‘ Import/Export API

Database N
‘ Triple Store

» Note: Much of WissKI functionality is configurable via the drupal config bar.

E Manage * Shortcuts ’_ testuser i WissKI
‘Admin menu

I content gk Structure 4 Appearance Pgo Extend N\ Configuration g People 4lI Reports @ Help

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 409 2024-02-08

13.2 Dealing with Ontology Paths: The WissKI
Pathbuilder

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 409 2024-02-08

The WissKI Path Builder (Idea)

» Recall: Albrecht Diirer painted Melencolia 1 in Niirnberg

"A. Diirer"

P3 "Nirnberg"

» Idea: Hide the complexity induced by the ontology from the user
> Form-based interaction with categories and fields (as in a RDBMS UI)
» Definition 2.1. The WissKI| path builder maps ontology groups and ontology
paths to drupal bundles and fields.
> ontology groups become data entry forms (bundles) for the root entities,

» their fields are mapped to ontology paths.

» subtrees in the ontology become sub-bundles. (shared objects)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 410 2024-02-08

The WissK| Path Builder (Example)

»> Example 2.2 (A WissKl Group).

Albrecht Diirer

E84 Information Carrier

— P108i was produced by —
E12 Production

— P14 carried out by —

E21 Person

— P131 is identified by —
E82 Actor Appellation

— P3 has note —

LAlbrecht Dlrer*

Niirnberg

E84 Information Carrier

— P108i was produced by —
E12 Production

— P7 took place at —

E53 Place

— P87 is identified by —
E48 Place Name

— P3 has note —

4Nurnberg “

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2

411 2024-02-08

Sharing and Disambiguation in Path Builders

» Observation 2.3. Sometimes we want to refer to existing entities in WissKI.

» Example 2.4 (Referring to Niirnberg).

FUNDORT

Eeschreibung ! Mame:

(We love tab completion)

MG

liegt it Mirnberg, Dutzendteich
Mirnberg
Mirnberg

GEOGRAPHISCHE KOORDINATEN

A oo o_ate

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 412

2024-02-08

Sharing and Disambiguation in Path Builders

vVvVvYvyVvyVvyy

v

Observation 2.8. Sometimes we want to refer to existing entities in WissKI.
Example 2.9 (Referring to Niirnberg). (We love tab completion)
Example 2.10 (To What). Albrecht Diirer created all his etchings in Niirnberg.
Problem: (In paths) we are creating lots of objects, which ones to offer?

Idea: Mark the entities we might want to reuse on paths while specifying them.

Definition 2.11. A disambiguation point in a path marks an entity that can be
re used in data acquisition.

Example 2.12. Disambiguation points are highlighted in red on paths.
P3

"A. Diirer"

P3

"Nirnberg"

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 412 2024-02-08

Specifying/Maintaining WissK| Path Builders

» Recall: A WissKl path builder maps ontology groups and ontology paths to
drupal bundles and fields.

»> Example 2.13 (Specifying a WissKI Path Builder).

e PaTH INABLED FELOTYPE CARDINALITY OPERATIONS
& wWerk Group [ecrm:£22_Man-Made_Object | Unlimited e |-
& Tl ectm£22_Man-Made_Object > ecrrP102_has_ile -> ecrm €35_Tide el 1
S Verwalter ecrm €22 Man-Made.Object -> ecrmPSO. s current keeper -5 ecrm £40_Legal_Bocy > ecrmPl is_idertified. by > ecrm £62_Actr_Appellation Tl 1 wan |-
*
ey SCIME22.Man-Made_Object -> ecrm P1isdentfi by -> ecrm £42_1denier Telan 1 can |-
W Beziehung ecrmE22_Man-Made_Object -> ecrm:P45|_forms_part_of -> ecrm:£22_Man-Made_Object -> ecrm:P102_has_tle -> ecrm £35_Title Text (plain) Unlimited B |~
Group facri22_Man-Made._Object - ecrm #1081 was_produced_by —» ecrm€12_roduction Unlimited =
Herstellung Bl . S s d -) G
cctm €22 Man-Made_Object -> ecrmP1081_was_produced_by -> ecrmE12_Production -> ecrm:?14_carredout_by -> ecrm £21_person -> ecrm 131
Tex (plain Unliited B
Hersteller ecrm E82_Actor_Appellation (plain) Edit
4 Datum ecimE22_Man-Made_Object > ecrmP108|_was_produced_by -> ecrm-E12_Production > ecrm:Pé_has_time-span > ecrm E52_Time-Span Text (plain) ' Bt |~
SCH£22 Man-Made_Object > crTP1 081 s produced_by - crmiE1 2_Production - ecrmiP? ook place_at -» ecrmi€32_Place -» ecrm #1_is_denied_by
o 8 Texcpan imice =
* ecrmE44_Place_Appellation L Tet (plain) Unlmiced] 25
ccrm €22 Man-Made_Object > ecrmP1 081 was_produced._by > ecE12.roduction > ecmF32. used.generaltechniaue > ecrm £57_Materal > ecrmP1_is_dentife
£22.Man-Made.Object P1081.vas._produced.by €12.Produc 32 used._general.sechnia £57. M P1.isdentifed.by cscad i _—
Material > ecrmE7s_Conceprual_Object_Appelaton
CCr£22 Man-Mad_Object > P 081 s produced_by > SciE] 2_Production - P33 used SpEciic_technique - ecrm£29_Design_or Frocedure > —
Technk ectmP1_is_identfied_by -> ecrm £75_Conceptual_Object_Appellation Totea Vol =
Text
venyy | SCTE22.Nan-Made_Object - ecrm-P1 2615 subject.of - crm £31_Documert dormatted, 1 e
ong)
S ABDIGNG ecrn£22 Man-Made_Object - GciP1 281_has_representaton > ecrn €26 VIsual e > ecrmP1__dentifad_by - ecrm€s] Contact Font image Unlimited e

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 413 2024-02-08

WissKI| Path Builders as Graphs

»> Example 2.14 (A WissKI Path Construtor as a Graph).
%J WissKI ZPrechebirer © Graph-Ansicht o i

Albrecht Direr: Self-Portrait in a Wig
=

= Connections (Albrecht Images Who's online
Durer: Self-Portrait in a Wig)

There are curently 1

user and 0 guests

online.

Online users

o root

- o ecmP1_is_identiied_by »
- Paintings ecm_E42_{dentiier6382517d-
an wood pan. Ge6i-5e54-81at-53200a496156
o ecrmP1_is_identified_by »
ecm_E35_TitleSbc3d940-
e Py becg-a774-
b424-53020039%dc0

© ecrm:P108i_was_produced_by

Diskussion

-
® hitp:/upload.w. »
ecm_E12_Productionc59934fF-
Py 'Y 0328-1e84-
. b754-4800a5(47022 nt dis
1500 - © ecnmP50_has_current_keeper

-
lecrm_E52_Time-Spd >
ecm_E40_Legal_Bodye6337190

° - 2916-8145421a9159
Atbrecht Drer: Self]
© ecm:P65_shows_visual_tem
° ° > ecm_E38_Imagecde530bd-
b775-b314-81ca-
° 595253300270
a
* 37
-
Albrecht Direr

» Very nice and helpful, but does not work currently!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 414 2024-02-08

WissKI Path Builders as Triples

» Of course we can view path builders as sets of triples.
» Example 2.15 (A WissKI Path Construtor as Triples).

| 0
o WissKT Atbrecttpurer

Albrecht Diirer: Self-Portrait in a Wig
eete EdtTet Edtfom ouph Newos Pave [EEEE xwL

ecm:P129_is_about
ecim:PE7_refers_to

ecrm:P108i_was_produced_by
ecim:P1_is_identified_by
scrm:P1_is_identified_by
ecrm:P50_has_current_keeper
ecm:P65_shows_visual_item

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2

Triples-Ansicht

Create Navigate Find

Who's online

There are currently 1 user
and 0 guests online.
Online users

Diskussion

o Show discussion for
this topis

2024.02.08

Data Presentation using Path Builders in WissKI

» Path builders can be used as drupal blocks for data presentation.

> For every object o, aggregate the values of the paths starting in o.

> Example 2.16 (Compressed View).
| 1 T irer
i WissKI Aecht e,

Albrecht Diirer: Self-Portrait in a Wig

Seff-Portrait (earlier known as Self-Portrait at Twenty-Eight Years Old Wearing a Coat
with Fur Collar or Self-Portrait in a Wig) is a painting on wood panel by the German
Renaissance artist Albrecht Direr. Painted early in 1500, just before his 29th birthday, it
is the last of his three painted self-portraits. It is considered the most personal, iconic
and complex of his self-portraits, and the one that has become fixed in the popular
imagination

The self-portrait is most remarkable because of its arrogant suggestion of divinity in its
resemblance to many earlier representations of Christ. Art historians note the similarities
with the conventions of religious painting, including its symmetry, dark tones and the
manner in which the artist directly confronts the viewer and raises his hands to the
middle of his chest as if in the act of blessing. It is likely that Darer portrayed himself in
this way through a combination of arrogance and a desire by a young and ambitious
artist to acknowledge that his talent as God given

Komprimierte
Ansicht

537
Paintings
SeifPorrait in a Wig

1t Direr

Alte Pin;

ek Munich
hitp://upload wikimedia.org
Ivikipedialcommons/thumb/c/c2/D
%C3%BCrer_self_portrait_28 jpg

7300px-
D%C3%BCrer_self_portrait_28 jpg

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2

Create

Images

Navigate Find

Who's online

There are curently 1
userand 0 guests
online.

Online users

o root

Diskussion

2024-02-08

13.3 The WissKI Link Block

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 416 2024-02-08

The WissKI Link Block (Idea)

» QObservation 3.1. For an entity in a RDF graph, both the outgoing and the
incoming relations are important for understanding.

» Example 3.2. This view only shows the outgoing edges!

“J wISSK Albrecht Durer B Komprimierte Home fbot
mo for CIDOC 2 Ansicht reate avigate

Albrecht Diirer: Self-Portrait in a Wig

B oo eser sstrom G

Seff-Portrait (earlier known as Self-Portait at Twenty-Eight Years Old Wearing a Coat | ~ Obje Images Who's online

with Fur Colla or Self-Portrai in a Wig) s a painting on wood panel by the German | .27 There are currently 1
Renaissance artist Albrecht Direr. Painted early in 1500, just before his 29th birthday, it | userand 0 guests

is the last of his three painted self-portraits. It is considered the most personal, iconic | Paintings online.

and complex of his self-portraits, and the one that has become fixed in the popular | Online

imagination SeitPortrait in a Wig o root

The self-portrait is most remarkable because of its arrogant suggestion of divinity in its
resemblance to many earlier representations of Christ. Art historians note the similarities
with the conventions of religious painting, including its symmetry, dark tones and the
manner in which the artist directly confronts the viewer and raises his hands to the
middle of his chest as if in the act of blessing. It is likely that Darer portrayed himself in

Abrecht Direr Diskussion

this way through a combination of arrogance and a desie by a young and ambitious |
aristto acknowledge that his talent as God given hitpupioad wikimedia. org
wikipedia/commons/thumb/c/c2/D

%C3%BCrer_self_portrait_28 jpg

1300px-
D%C3%BCrer_self_portrait_28 jpg

» ldea: Add a block with “incoming links" to the page, use the path builder.

——— Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 417 2024-02-08

Link Blocks (Definition)

» Definition 3.3. Let p be a drupal page for an ontology group g, then a WissKI
link block is a special drupal block with associated path builder, whose ontology

paths all end in g.
» Example 3.4 (A link block for Images).

Home » Navigate » Abbildung

c29e7d34-1c7b-675e-4c¢3b-ob7fife72cs5f e
View | Edit | Delete | Triples = Graph Zugehiriges
Bild Werk
= = = i - : Dorpskermis op

het feest van de H.
Joris

Note the difference between
» a “work” — the original painting Pieter Brueghel created in 1628
> and an “image of the work” — a b/w photograph of the “work”.

This particular link block mediates between these two.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 418 2024-02-08

A Link Block in the Wild (the full Picture)

» Example 3.5 (A link block for Images).

Home » Navigate » Abbildung

c29e7d34-1c7b-675e-4¢3b-ob7f1fc72es5f e
View Edit Delete Triples. Graph Zugehoriges
‘Werk:

Bild

Dorpskermis op
het feest van de H.
Joris

> outgoing relations below
the image,

» incoming ones in the link
block

Bild-URL

http://kirmes.wisski.agfd.fau. i 'b-
675e-4cab-obfiferzesf _jpg

Bild-ID

c29e7d34-167b-675e-4c3b-0bfife72csf

Lizenz

CC BY-NC-SA 4.0

Kommentar

Es handelt sich um den Scan einer s/w-Fotografie. Die Fotografie weist einige
Knicke an den Ecken sowie Kleinere Risse auf.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 419 2024-02-08

Making Link Blocks via the Path Builder

» How to make a link block in page p for group g7 (Details at [WH])
1. create a block via the config bar and place it on p.
2. associate it with a link block path builder
3. model paths into g in the path builder (various source groups)

» Idea: You essentially know link block paths already: If you have already
modeled a path g, r1,...,rpn, s for a group s, then you have a path
sty g, where ;.

! are the inverse roles of r; (exist in CIDOC CRM)

shn

"A. Diirer"

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 420 2024-02-08

13.4 Cultural Heritage Research: Querying
WissKI Resources

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 420 2024-02-08

Research in WissKI

» So far we have seen how to acquire complex knowledge about cultural artefacts
using CIDOC CRM ABoxes.

» Question: But how do we do research using WissKI|?

» Answer: Finding patterns, inherent connections, .. .in the data.

» But how?: That depends on the kind of research you want to do. Here are

some WissK| research tools

1. we can use drupal search on the data.
2. We can formulate our own queries in SPARQL
3. We can pre-configure various queries in drupal views.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 421 2024-02-08

Drupal Search in WissKI

» Example 4.1.

Search
Search WissKI Entities Content Users
Search by Entity Title

Entity Title
Finds titles from the cache table

v Advanced Search
in Bundles
Kiinstler

Abbildung
Werk

in Paths

Kiinstler
Name (erfassungsmasken.name) contains

Albrecht
Werke dieses Kiinstlers (pb_wisskilinkblock.werke_dieses_kunstlers) contains

Melencolia

Match
© Al: Any:

8 Search Wisski Entities.
Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 422 2024-02-08

SPARQL Endpoint in WissKI

» Example 4.2. Find kirmes paintings and their painters and count them

My account Log out

Query Endpoint

Home

Query Endpoint

Query
SELECT (COUNT (?k
Zkuenstler a <http:

el WHERE { GRAPH ?graph {

:/ [kirmes.wisski.agfd.fau.de/ontology/kirmes/kir21a_artist> . ?kuenstler

<http:/ /erlangen-crm.org/170309/P131_is_identified_by> ?name . Zname a <http:/ /erlangen-crm.org
/170309/E82_Actor_Appellation> . 7name <http:/ /erlangen-crm.org/170309/P3_has_note>

E k a <http://erlangen-crm.org/170309/E22_Man-Made_Object> . ?
<http:/ /erlangen-crm.org/170309/P108i_was_produced_by> Zherstellung . ?herstellung a
<http:/ /erlangen-crm.org/170309/E12_Production> . 7 g <http:/ /erlangen-crm.org/170309
/P14_carried_out_by> ?kuenstler . 2werk <http://erlangen-crm.org/170309/P102_has _title> titel .
7titel a <http:/ /erlangen-crm.org/170309/E35_Title> . Ztitel <http://erlangen-crm.org/170309
/P3_has_note> Awerktitel }} GROUP BY Zkuenstlername werktitel

ORDER BY (anzahl)

AN

Execute Query

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 423 2024-02-08

SPARQL Endpoint in WissKI

» Example 4.3. Find kirmes paintings and their painters and count them

kirmes.wisski.agfd.fau.de

Navigate Query Endpoint

Query Endpoint
T e e

"2"AAxsd:integer "Pieter Brueghel (I)" " Dorpskermis op het feest van de H. Joris "
"1"AAxsd:integer "Pieter Brueghel (I)" "Dorpskermis op het feest van de H. Joris"
Query

SELECT (COUNT (?kuenstlername) AS ?anzahl) ?kuenstlername ?werktitel WHERE { GRAPH ?graph {
?kuenstler a <https://kirmes.wisski.agfd.fau.de/ontology/kirmes/kir21a_artist> . ?kuenstler
<http://erlangen-crm.org/170309/P131_is_identified_by> ?name . ?name a <http://erlangen-crm.org
/170309/E82_Actor_Appellation> . ?name <http://erlangen-crm.org/170309/P3_has_note>
7kuenstlername . ?werk a <http://erlangen-crm.org/170309/E22_Man-Made_Object> . ?werk y

Execute Query

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2

423 2024-02-08

Data Presentation via Views in WissKI

@ Back to site

¢h structure

[r—

B Content & Appearance

Abbildungen (Wisski Entity)
Home » Administration » Structure » Views

Displays

D

Display name: Page

TITLE
Tite: Abbildungen
FORMAT
Format: Grid | Settings
Shows Fields | Settings

FIELDS o [~
Wisski Entity: Entiy d (hidden]

Wisski Entity: Tie

FILTER CRITERIA nda |~
Wisski Entity: Bundle/Group (= Abbildung)

SORT CRITERIA add

Cancel

2 testuser

P+ Extend

& Wisski

A Configuration

PAGE SETTINGS
Path: /abbildungen
Menu: No menu

Access: Unrestricted

HEADER add |~

Global: Result summary (Global: Result
summary)

FOOTER Add
NO RESULTS BEHAVIOR dd
PAGER

Use pager: Full | Paged, 10 items

More link: No

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2

1y reople

» Example 4.4 (Configuring a View). This makes a drupal block.

@ Tour
@ e

ol Reports

Edit view name/description |+

Viewpage |+

v ADVANCED
CONTEXTUAL FILTERS add
RELATIONSHIPS Add

EXPOSED FORM
Exposed form in block: No

Exposed form style: Basic | Settings
OTHER

Machine Name: page_1
Administrative comment: None

Use AJAX: No

Hide attachments in summary: No
Contextual links: Shown

Query settings: Settings

Caching: Tag based

€SS class: None

Drupal generates a SPARQL query, aggregates results into a block.

424 2024-02-08

This Research is WissKl-instance-local

» Observation 4.5. All these research queries only work in the current WissKI|
instance.

» Observation 4.6. There is probably much more about the entities you are
interested in outside your particular WissK| instance.

» Problem: How to make use of this?

» Solution: We need to do two things

1. Make use of other people’s ABoxes
2. Provide your ABox to other people.

This practice is called linked open data. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 425 2024-02-08

13.5 Application Ontologies in WissKI

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 425 2024-02-08

WissKI Information Architecture (Ontologies)

» Ontologies, instances, and export formats

Erlangen CRM / OWL

System Ontologie

Caans D
Import Y K Export
3 , <
E = ., o =z S
LIDO ol) |3 LIDO
roFrL 1| S | B [Instanzen 3 [S [roFxML
saL 2|IE Sollez OAI-PMH
T|a a|2
Lokale
< Normdaten
SKOS/XML T Sle) L] g) SKOSXML
TS5 Globale T
Q Normdaten

1 = Hierarchie (is-a) | = Instanzilerung (type-of) § = Konzeptrelation

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 426 2024-02-08

Application Ontologies extend CIDOC CRM

» Observation 5.1. Sometimes we need more than CIDOC CRM.

» Definition 5.2. A WissKI application ontology is one that extends CIDOC
CRM, without changing it.

» Example 5.3 (Behaim Application Ontology).

ouliThing
» @ behaim:C_GLOBUS-ROOT
haim:C_GLOBUS_TYPES
rmeEL_CRM_Entity
b © ecrmE2 Temporsl Entity
ecrmiES2_Time-Span
» @ ecrm:ES3 Place
ecrm:ES4_Dimension
v © ecrmiE77_Persistent_tem
> © ecrmiE39_Actor
. v) ecrm:E70_Thing
Referenzontologie: ¥ ® ecrmiE7_Mantade_Thing
Erlangen CRM > ecrm:E24_Physical_Man-Made_Thing
¥ @ ecrm:E28_Conceptual_Object
» @ ecrm:ESS_Type
» @ ecrm:E89_Propositional_Object
¥ @ ecrm:ES0_Symbolic_Object
> © ecrmiE41_Appeliation
v © ecrmE73_information_Object

e e25_Destan o procedure
> > © cmesi_Document

» @ ecrmiE33_Linguistic_Object.
v @ ecrmiE36_visual_ttem
¥ @ behaim:C_GLOBUS-REGION
» @ behaim:C_GEO-REGION
v @ behaim:C_NONGEO-REGION
v @ behaim:C_BILDREGION
@ behaim:C_KREISLINIE
Applikationsontologie: < v © behaimiC_MNATUR

. behaim:C_ASTRONOMIS!
Behaim-Globus behaim;C_BAUWERK.

» @ behaim:C_HERRSCHAFTS
» ® behaim:C_MENSCHENZE

© behaim:C_SCHEF

@ behaim:C_SZENE
» ® behaim:C_TIERZEICHEN
® behaim:C_SEGMENT
N\ b @ behaim:C_TEXTREGION

> ® camies7_ark

» ® ecrm:E38_Image

vy

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 427 2024-02-08

Making an Application Ontology

» The “current ontology” of a WissKI instance can be configured via the config bar
via the “WissKI ontology” module.

» The application ontology should import CIDOC CRM.
» lIdea: Use Protg for that.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 428 2024-02-08

13.6 The Linked Open Data Cloud

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 428 2024-02-08

Linked Open Data

» Definition 6.1. Linked data is structured data in which classified objects are
interlinked via relations with other objects so that the data becomes more useful
through semantic queries and access methods.

» Definition 6.2. Linked open data (LOD) is linked data which is released under
an open license, which does not impede its reuse by the community.

» Definition 6.3. Given the semantic web technology stack, we can create
interoperable ontologies and interlinked data sets, we call their totality the .

» Recall the LOD Incentives:

> incentivize other authors to extend/improve the LOD
~> more/better data can be generated at a lower cost.

» generate attention to the LOD and recognition for authors
~ this gives alternative revenue models for authors.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 420 2024-02-08

The Linked Open Data Cloud

» The linked open data cloud in 2014 (today much bigger, but unreadable)

Geographc

s Publcaions

UserGenerated Content
Goverment
crossoomain ()
e scences

Social Networking

Crawlable Linked Datasets as of April 2014

2024-02-08

The Linked Open Data Cloud

» Zooming in (data sets and their — interlinked — ontologies)

spave -
pest So—
Web. /
CT8 s s BME / / |
conference
'

brainz Audio-
Scrobbler Qoos r

Flickr
exporter

Virtuoso
Sponger

RDF Book
Mashup

ST
e
DBpedia ——

%

=
PRC

r7

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 431 2024-02-08

Using the LOD-Cloud in WissKI

» Idea: Do not re-model entities that already exist (in the LOD Cloud)
» Problem: Most of the LOD Cloud is about things we do not want.

» But there are some sources that are useful
» the GND (Gemeinsame Normdatei [GND]), an authority file for personal/corporate
names and keywords from literary catalogs,
> geonames[GN], a geographical database with more than 25M names and locations
> Wikipedia
» Observation 6.4. All of them provide URIs for real world entities, which is just
what we need for objects in RDF triples.

» Definition 6.5. WissKI| provides special modules called adapters for GND and
geonames.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 432 2024-02-08

Using Geonames in WissK| (Example)

1. Example 6.6. We want to use the “Meilwald” (Erlangen) in WissKI.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 433 2024-02-08

https://geodata.org

Using Geonames in WissK| (Example)

1. Example 6.7. We want to use the “Meilwald” (Erlangen) in WissKI.

2. make a sub-ontology groups “norm data” in the WissKI path builder
3. The induced sub-bundle looks like this:

Normdatei:
|

Normdaten 1D:

Normdatum URI:

This must be an external URL such as hitp:dexamplz com.

V)X

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 433 2024-02-08

https://geodata.org

Using Geonames in WissK| (Example)

bl

Example 6.8. We want to use the "Meilwald”" (Erlangen) in WissKI.

make a sub-ontology groups “norm data” in the WissKI path builder

The induced sub-bundle looks like this:

We enter https://geodata.org for “Normdatei” and go there to find out the
URI for "Meilwald” which goes into “Normdatum URI".

-

GeoNames

The GeoNames geographical database covers all countries and contains over
eleven million placenames that are available for download free of charge.

Meilwald all countries
search [advanced search]

enter a location name, ex: "Paris", "Mount Everest","New York"

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 433 2024-02-08

https://geodata.org

Using Geonames in WissK| (Example)

=

Example 6.9. We want to use the “Meilwald” (Erlangen) in WissKI.

make a sub-ontology groups “norm data” in the WissKI| path builder

The induced sub-bundle looks like this:

We enter https://geodata.org for “Normdatei” and go there to find out the

URI for “Meilwald” which goes into
there may be multiple results

Meilwald

“Normdatum URI".

(here only one)

ol countres

search [advanced search]

1 records found for "Meilwald"

Name

Country Feature class _Latitude Longitude

1® Erlanger Meilwald
Erlanger Meil-Wald,Erlanger Meilwald,Meilwald

Germany, Bavaria forest(s) N49°36' 30" E11°1'39"

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 433 2024-02-08

https://geodata.org

Using Geonames in WissKI (Example)

bl

o

Example 6.10. We want to use the “Meilwald" (Erlangen) in WissKI.
make a sub-ontology groups “norm data” in the WissKI path builder

The induced sub-bundle looks like this:

We enter https://geodata.org for “Normdatei” and go there to find out the
URI for “Meilwald” which goes into “Normdatum URI".

there may be multiple results
Select/click the intended one, check the details

< C ® © & https://www.geonames.org/2929566/erlange

GeoNames

- O

(here only one)

vinm g &

Erlanger Meilwald - to view map click on map icon in bottom toolbar.

(we need to reduce the cost for the map views)

h Hierarchy ~ i= History W@ Tags = Alternate names

Erlanger Meilwald ca. 321 m
9 G5 forests)
Germany F » Bavaria %2

49.60852, 11.02765

$d &£ & E © x E geotree .kml

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2

rdf

N 49°36’31” E 11°01740”

Q

2024-02-08

https://geodata.org

Using Geonames in WissK| (Example)

e

o

Example 6.11. We want to use the “Meilwald" (Erlangen) in WissKI.
make a sub-ontology groups “norm data” in the WissKI| path builder
The induced sub-bundle looks like this:

We enter https://geodata.org for “Normdatei” and go there to find out the
URI for “Meilwald” which goes into “Normdatum URI".

there may be multiple results (here only one)

6. Select/click the intended one, check the details
7. Enter the URL from the URL bar into “Normdatum URI".

Normdatei:
|

Normdaten 1D:

Normdatum URL:

This must be an extemnal URL such as kitpexampls com.

V)X

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 433 2024-02-08

https://geodata.org

Towards a WissKl Commons in the LOD Cloud

> Recap: We can directly refer to (URIs of) external objects in WissKI.

» Observation 6.12. The most interesting source for references to cultural
artefacts are other WissK| instances.

» Problem: A WissKl is an island, unless it exports its datal (few do)

» lIdea: We need a LOD cloud of cultural heritage research data under to foster
object centric research in the humanities.

» Definition 6.13. We call the part of this resource that can be created by
aggregating WissK| exports the WissKI commons.

» QObservation 6.14. WissK| exports meet the FAIR principles quite nicely already.
» We will be working on a FAU WissKI commons in the next years. (help wanted)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 434 2024-02-08

References |

[Cq]

[CQ69]

[ECRMa]

[ECRMb]

[FAIR18]

[FOAF14]

[GN]

CIDOC CRM - The CIDOC Conceptual Reference Model. url:
http://www.cidoc-crm.org/ (visited on 07/13/2020).

Allan M. Collins and M. Ross Quillian. "“Retrieval time from semantic
memory”. In: Journal of verbal learning and verbal behavior 8.2
(1969), pp. 240-247. doi: 10.1016/50022-5371(69)80069-1.

erlangen-crm. url: https://github.com/erlangen-crm (visited on
07/13/2020).

Erlangen CRM/OWL - An OWL DL 1.0 implementation of the
CIDOC Conceptual Reference Model (CIDOC CRM). url:
http://erlangen-crm.org/ (visited on 07/13/2020).

European Commission Expert Group on FAIR Data. Turning FAIR
into reality. 2018. doi: 10.2777/1524.

FOAF Vocabulary Specification 0.99. Namespace Document. The
FOAF Project, Jan. 14, 2014. url: http://xmlns.com/foaf/spec/.

Geonames. url: https://www.geonames.org/ (visited on
07/29/2020).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 434 2024-02-08

http://www.cidoc-crm.org/
https://doi.org/10.1016/S0022-5371(69)80069-1
https://github.com/erlangen-crm
http://erlangen-crm.org/
https://doi.org/10.2777/1524
http://xmlns.com/foaf/spec/
https://www.geonames.org/

References ||

[GND]

[Her+13]

[JS]

[KCO04]

[LM]

DNB — The Integrated Authority File (GND). url: https://www.dnb.
de/EN/Professionell/Standardisierung/GND/gnd_node.html
(visited on 07/29/2020).

Ivan Herman et al. RDFa 1.1 Primer — Second Edition. Rich
Structured Data Markup for Web Documents. \W3C Working Goup
Note. World Wide Web Consortium (W3C), Apr. 19, 2013. url:
http://www.w3.org/TR/xhtml-rdfa-primer/.

json — JSON encoder and decoder. url:
https://docs.python.org/3/library/json.html (visited on
04/16/2021).

Graham Klyne and Jeremy J. Carroll. Resource Description Framework
(RDF): Concepts and Abstract Syntax. \W3C Recommendation. World
Wide Web Consortium (W3C), Feb. 10, 2004. url:
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

LabelMe: the open annotation tool. url:
http://labelme.csail.mit.edu (visited on 08/28/2020).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 434 2024-02-08

https://www.dnb.de/EN/Professionell/Standardisierung/GND/gnd_node.html
https://www.dnb.de/EN/Professionell/Standardisierung/GND/gnd_node.html
http://www.w3.org/TR/xhtml-rdfa-primer/
https://docs.python.org/3/library/json.html
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://labelme.csail.mit.edu

References ||

[LXML]

[Nor+18a]

[Nor-+18b]

[OWLOY]

[Pro]

[PRR97]

Ixml — XML and HTML with Python. url: https://1xml.de (visited
on 12/09/2019).

Emily Nordmann et al. Lecture capture: Practical recommendations
for students and lecturers. 2018. url:
https://osf.io/huydx/download.

Emily Nordmann et al. Vorlesungsaufzeichnungen nutzen: Eine
Anleitung fiir Studierende. 2018. url:
https://osf.io/ebr7a/download.

OWL Working Group. OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation. World Wide Web Consortium
(W3C), Oct. 27, 2009. url:
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/.

Protégé. Project Home page at http://protege.stanford.edu.
url: http://protege.stanford.edu.

G. Probst, St. Raub, and Kai Romhardt. Wissen managen. 4 (2003).
Gabler Verlag, 1997.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 434 2024-02-08

https://lxml.de
https://osf.io/huydx/download
https://osf.io/e6r7a/download
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://protege.stanford.edu
http://protege.stanford.edu

References IV

[PS08]

[SUMO]

[UL]

[WH]

[Wil+16]

Eric Prud'hommeaux and Andy Seaborne. SPARQL Query Language
for RDF. W3C Recommendation. World Wide Web Consortium
(W3C), Jan. 15, 2008. url: http://www.w3.org/TR/2008/REC-
rdf-sparql-query-20080115/.

Suggested Upper Merged Ontology. url:
http://www.adampease.org/0P/ (visited on 01/25/2019).

urllib — URL handling modules. url:
https://docs.python.org/3/library/urllib.html (visited on
04/15/2021).

WissKI Handbuch. url:

http://wiss-ki.eu/documentation/wisski_handbuch (visited
on 07/23/2020).

Mark D. Wilkinson et al. “The FAIR Guiding Principles for scientific
data management and stewardship”. In: Scientific Data 3 (2016). doi:
10.1038/sdata.2016.18.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 434 2024-02-08

http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.adampease.org/OP/
https://docs.python.org/3/library/urllib.html
http://wiss-ki.eu/documentation/wisski_handbuch
https://doi.org/10.1038/sdata.2016.18

	8 Semester Change-Over
	8.1 Administrativa

	9 Databases
	9.1 Introduction
	9.2 Relational Databases
	9.3 SQL – A Standardized Interface to RDBMS
	9.4 ER-Diagrams and Complex Database Schemata
	9.5 RDBMS in Python
	9.6 Excursion: Programming with Exceptions in Python
	9.7 Querying and Views in SQL
	9.8 Querying via Python
	9.9 Real-Life Input/Output: XML and JSON

	10 Project: A Web GUI for a Books Database
	10.1 A Basic Web Application
	10.2 Access Control and Management
	10.3 Asynchronous Loading in Modern Web Apps
	10.4 Deploying the Books Application as a Program

	11 Image Processing
	11.1 Basics of Image Processing
	11.1.1 Image Representations
	11.1.2 Basic Image Processing in Python
	11.1.3 Edge Detection
	11.1.4 Scalable Vector Graphics

	11.2 Project: An Image Annotation Tool
	11.3 Fun with Image Operations: CSS Filters

	12 Ontologies, Semantic Web for Cultural Heritage
	12.1 Documenting our Cultural Heritage
	12.2 Systems for Documenting the Cultural Heritage
	12.3 The Semantic Web
	12.4 Semantic Networks and Ontologies
	12.5 CIDOC CRM: An Ontology for Cultural Heritage
	12.6 The Semantic Web Technology Stack
	12.7 Ontologies vs. Databases

	13 The WissKI System: A Virtual Research Environment for Cultural Heritage
	13.1 WissKI extends Drupal
	13.2 Dealing with Ontology Paths: The WissKI Pathbuilder
	13.3 The WissKI Link Block
	13.4 Cultural Heritage Research: Querying WissKI Resources
	13.5 Application Ontologies in WissKI
	13.6 The Linked Open Data Cloud
	References

