
i

Informatische Werkzeuge in den Geistes- und
Sozialwissenschaften 2

Prof. Dr. Michael Kohlhase

Professur für Wissensrepräsentation und -verarbeitung
Informatik, FAU Erlangen-Nürnberg

Michael.Kohlhase@FAU.de

2024-02-08

Michael.Kohlhase@FAU.de

ii

This document contains the course notes of the course “Informatische Werkzeuge in den Geistes-
und Sozialwissenschaften IWGS-2” held at FAU Erlangen-Nürnberg in the Summer Semesters
2019 ff. Other parts of the lecture notes can be found at http://kwarc.info/teaching/IWGS/
notes-*.pdf.

http://kwarc.info/teaching/IWGS/notes-*.pdf
http://kwarc.info/teaching/IWGS/notes-*.pdf

Contents

8 Semester Change-Over 1
8.1 Administrativa . 1

9 Databases 9
9.1 Introduction . 9
9.2 Relational Databases . 11
9.3 SQL – A Standardized Interface to RDBMS . 13
9.4 ER-Diagrams and Complex Database Schemata . 16
9.5 RDBMS in Python . 19
9.6 Excursion: Programming with Exceptions in Python 21
9.7 Querying and Views in SQL . 23
9.8 Querying via Python . 26
9.9 Real-Life Input/Output: XML and JSON . 29
9.10 Exercises . 35

10 Project: A Web GUI for a Books Database 39
10.1 A Basic Web Application . 39
10.2 Access Control and Management . 48
10.3 Asynchronous Loading in Modern Web Apps . 52
10.4 Deploying the Books Application as a Program . 60

11 Image Processing 63
11.1 Basics of Image Processing . 63

11.1.1 Image Representations . 63
11.1.2 Basic Image Processing in Python . 70
11.1.3 Edge Detection . 74
11.1.4 Scalable Vector Graphics . 77

11.2 Project: An Image Annotation Tool . 82
11.3 Fun with Image Operations: CSS Filters . 89
11.4 Exercises . 93

12 Ontologies, Semantic Web for Cultural Heritage 97
12.1 Documenting our Cultural Heritage . 97
12.2 Systems for Documenting the Cultural Heritage . 100
12.3 The Semantic Web . 104
12.4 Semantic Networks and Ontologies . 109
12.5 CIDOC CRM: An Ontology for Cultural Heritage 114
12.6 The Semantic Web Technology Stack . 120
12.7 Ontologies vs. Databases . 127
12.8 Exercises . 130

iii

iv CONTENTS

13 The WissKI System 131
13.1 WissKI extends Drupal . 131
13.2 Dealing with Ontology Paths: The WissKI Pathbuilder 135
13.3 The WissKI Link Block . 139
13.4 Cultural Heritage Research: Querying WissKI Resources 141
13.5 Application Ontologies in WissKI . 143
13.6 The Linked Open Data Cloud . 145

CONTENTS v

Recorded Syllabus – Summer 2024: The recorded syllabus for this semester is in the course
page in the ALeA system at https://courses.voll-ki.fau.de/course-home/iwgs-2. The
table of contents in the IWGS notes at https://courses.voll-ki.fau.de indicates the material
covered to date in yellow.

https://courses.voll-ki.fau.de/course-home/iwgs-2
https://courses.voll-ki.fau.de

vi CONTENTS

Chapter 8

Semester Change-Over

8.1 Administrativa
We will now go through the ground rules for the course. This is a kind of a social contract
between the instructor and the students. Both have to keep their side of the deal to make learning
as efficient and painless as possible.

Prerequisites

� Formal Prerequisite: IWGS-1 (If you did not take it, read the notes)

� General Prerequisites: Motivation, interest, curiosity, hard work.
nothing else! (apart from IWGS-1)

We will teach you all you need to know

� You can do this course if you want! (we will help)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 206 2024-02-08

Now we come to a topic that is always interesting to the students: the grading scheme: The short
story is that things are complicated. We have to strike a good balance between what is didactically
useful and what is allowed by Bavarian law and the FAU rules.

Assessment, Grades

� Grading Background/Theory: Only modules are graded! (by the law)

� Module “DH-Einführung” (DHE) =̂ courses IWGS1/2, DH-Einführung.

� DHE module grade ; pass/fail determined by “portfolio” =̂ collection of con-
tributions/assessments.

� Assessment Practice: The IWGS assessments in the “portfolio” consist of

� weekly homework assignments, (practice IWGS concepts and tools)

� 60 minutes exam directly after lectures end: July 27. 2024.

� Retake Exam: 60 min exam at the end of the exam break. (October. 12. 2024)

1

2 CHAPTER 8. SEMESTER CHANGE-OVER

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 207 2024-02-08

Homework assignments, and end-semester exam may seem like a lot of work – and indeed they
are – but you will need practice (getting your hands dirty) to master the concepts. We will go
into the details next.

IWGS Homework Assignments

� Homeworks: will be small individual problem/programming/system assignments

� but take time to solve (at least read them directly ; questions)

� group submission if and only if explicitly permitted.

� Without trying the homework assignments you are unlikely to pass the exam.

� Admin: To keep things running smoothly

� Homeworks will be posted on StudOn.

� Sign up for IWGS under https://www.studon.fau.de/frm5075965.html.

� Homeworks are handed in electronically there. (plain text, program files, PDF)

� Go to the tutorials, discuss with your TA! (they are there for you!)

� Homework Discipline:

� Start early! (many assignments need more than one evening’s work)

� Don’t start by sitting at a blank screen (talking & study group help)

� Humans will be trying to understand the text/code/math when grading it.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 208 2024-02-08

It is very well-established experience that without doing the homework assignments (or something
similar) on your own, you will not master the concepts, you will not even be able to ask sensible
questions, and take nothing home from the course. Just sitting in the course and nodding is not
enough! If you have questions please make sure you discuss them with the instructor, the teaching
assistants, or your fellow students. There are three sensible venues for such discussions: online in
the lecture, in the tutorials, which we discuss now, or in the course forum – see below. Finally, it
is always a very good idea to form study groups with your friends.

IWGS Tutorials

� Weekly tutorials and homework assignments (first one in week two)

�

Tutor: (Doctoral Student in CS)

� Jonas Betzendahl: jonas.betzendahl@fau.de

They know what they are doing and really want to help
you learn! (dedicated to DH)

� Goal 1: Reinforce what was taught in class (important pillar of the IWGS
concept)

� Goal 2: Let you experiment with Python (think of them as Programming Labs)

https://www.studon.fau.de/studon
https://www.studon.fau.de/frm5075965.html
jonas.betzendahl@fau.de

8.1. ADMINISTRATIVA 3

� Life-saving Advice: go to your tutorial, and prepare it by having looked at the
slides and the homework assignments

� Inverted Classroom: the latest craze in didactics (works well if done right)

in IWGS: Lecture + Homework assignments + Tutorials =̂ inverted classroom

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 209 2024-02-08

Do use the opportunity to discuss the IWGS topics with others. After all, one of the non-trivial
inter/transdisciplinary skills you want to learn in the course is how to talk about computer sci-
ence topics – maybe even with real computer scientists. And that takes practice, practice, and
practice.
But what if you are not in a lecture or tutorial and want to find out more about the IWGS topics?

Textbook, Handouts and Information, Forums, Videos

� No Textbook: but lots of online python tutorials on the web.

� Course notes will be posted at http://kwarc.info/teaching/IWGS (see
references)

� I mostly prepare/adapt/correct them as we go along.

� please e-mail me any errors/shortcomings you notice. (improve for the group)

� The lecture videos of WS 2020/21 are at https://www.fau.tv/course/id/2350(not
much changed)

� Matrix chat at #iwgs:fau.de (via IDM) (instructions)

� StudOn Forum: https://www.studon.fau.de/frm5075965.html for

� announcements, homeworks (my view on the forum)

� questions, discussion among your fellow students (your forum too, use it!)

� If you become an active discussion group, the forum turns into a valuable resource!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 210 2024-02-08

Next we come to a special project that is going on in parallel to teaching the course. I am using the
course materials as a research object as well. This gives you an additional resource, but may affect
the shape of the coures materials (which now serve double purpose). Of course I can use all the
help on the research project I can get, so please give me feedback, report errors and shortcomings,
and suggest improvements.

Experiment: Learning Support with KWARC Technologies

� My research area: Deep representation formats for (mathematical) knowledge

� One Application: Learning support systems(represent knowledge to transport it)

� Experiment: Start with this course (Drink my own medicine)

1. Re-represent the slide materials in OMDoc (Open Mathematical Documents)

2. Feed it into the ALeA system (http://courses.voll-ki.fau.de)

http://kwarc.info/teaching/IWGS
https://www.anleitungen.rrze.fau.de/serverdienste/matrix-an-der-fau/erste-schritte/
https://www.studon.fau.de/frm5075965.html
http://courses.voll-ki.fau.de

4 CHAPTER 8. SEMESTER CHANGE-OVER

3. Try it on you all (to get feedback from you)

� Research tasks

� help me complete the material on the slides (what is missing/would help?)

� I need to remember “what I say”, examples on the board. (take notes)

� Benefits for you (so why should you help?)

� you will be mentioned in the acknowledgements (for all that is worth)

� you will help build better course materials (think of next-year’s students)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 211 2024-02-08

VoLL-KI Portal at https://courses.voll-ki.fau.de

� Portal for ALeA Courses: https://courses.voll-ki.fau.de

� AI-1 in ALeA: https://courses.voll-ki.fau.de/course-home/ai-1

� All details for the course.

� recorded syllabus (keep track of material covered in course)

� syllabus of the last semester (for over/preview)

� ALeA Status: The ALeA system is deployed at FAU for over 1000 students
taking six courses

� (some) students use the system actively (our logs tell us)

� reviews are mostly positive/enthusiastic (error reports pour in)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 212 2024-02-08

The VoLL-KI course portal (and the AI-1) home page is the central entry point for working with
the ALeA system. You can get to all the components of the system, including two presentations
of the course contents (notes- and slides-centric ones), the flash cards, the localized forum, and
the quiz dashboard.

New Feature: Drilling with Flashcards

� Flashcards challenge you with a task (term/problem) on the front. . .

https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de/course-home/ai-1

8.1. ADMINISTRATIVA 5

. . . and the definition/answer is on the back.

� Self-assessment updates the learner model (before/after)

� Idea: Challenge yourself to a card stack, keep drilling/assessing flashcards until
the learner model eliminates all.

� Bonus: Flashcards can be generated from existing semantic markup (educational
equivalent to free beer)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 213 2024-02-08

We have already seen above how the learner model can drive the drilling with flashcards. It can
also be used for the configuration of card stacks by configuring a domain e.g. a section in the
course mateirals and a competency threshold.

Practical recommendations on Lecture Videos

� Excellent Guide: [Nor+18a] (german Version at [Nor+18b])

 

Attend lectures.

Take notes.

Be specific.

Catch up.

Ask for help.

Don’t cut corners.

Using lecture
recordings:
A guide for students

� Normally intended for “offline students” =̂ everyone during Corona times.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 214 2024-02-08

6 CHAPTER 8. SEMESTER CHANGE-OVER

Software/Hardware tools

� You will need computer access for this course

� we recommend the use of standard software tools

� find a text editor you are comfortable with (get good with it) A text editor is a
program you can use to write text files. (not MSWord)

� any operating system you like (I can only help with UNIX)

� Any browser you like (I use FireFox: less spying)

� Advice: learn how to touch-type NOW (reap the benefits earlier, not later)

� you will be typing multiple hours/week in the next decades

� touch-typing is about twice as fast as “system eagle”.

� you can learn it in two weeks (good programs)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 215 2024-02-08

Touch-typing: You should not underestimate the amount of time you will spend typing during
your studies. Even if you consider yourself fluent in two-finger typing, touch-typing will give you
a factor two in speed. This ability will save you at least half an hour per day, once you master it.
Which can make a crucial difference in your success.

Touch-typing is very easy to learn, if you practice about an hour a day for a week, you will
re-gain your two-finger speed and from then on start saving time. There are various free typing
tutors on the network. At http://typingsoft.com/all_typing_tutors.htm you can find about
programs, most for windows, some for linux. I would probably try Ktouch or TuxType

Darko Pesikan (one of the previous TAs) recommends the TypingMaster program. You can
download a demo version from http://www.typingmaster.com/index.asp?go=tutordemo

You can find more information by googling something like "learn to touch-type". (goto http:
//www.google.com and type these search terms).

Outline of IWGS-II:

� Databases

� CRUD operations, querying, and python embedding

� XML and JSON for file based data storage

� BooksApp: a Books Application with persistent storage

� Image processing

� Basics

� Image transformations, Image Understanding

� Ontologies, semantic web, and WissKI

� Ontologies (inference ; get out more than you put in)

� semantic web Technologies (standardize ontology formats and inference)

� Using semantic web Tech for cultural heritage research data ; the WissKI
System

http://typingsoft.com/all_typing_tutors.htm
http://www.typingmaster.com/index.asp?go=tutordemo
http://www.google.com
http://www.google.com

8.1. ADMINISTRATIVA 7

� Legal Foundations of Information Systems

� Copyright & Licensing

� Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 216 2024-02-08

In IWGS-II, we want to consolidate the methods and technologies we learn in a small information
system, which students build in groups, and which will serve as a running example for the course.
These projects will consist of documents, data, and programs.

IWGS-II Project

� Idea: Consolidate the techniques from IWGS-I and IWGS-II into a prototypical
information system for Art History @ FAU. (Practical Digital Humanities)

� A Running Example: Research image + metadata collection “Bauernkirmes”
provided by Prof. Peter Bell

� What will you do?: Build a web-based image/data manager, test image algo-
rithms, annotate ontologically, . . .

� How will we organize this: Mostly via the group homework assignments
(together they will make the project)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 217 2024-02-08

8 CHAPTER 8. SEMESTER CHANGE-OVER

Chapter 9

Databases

We now come to one of the core tools of computer science: databases give us a means to store
large collections of data and organize them for efficient access. We will introduce the underlying
concepts by example, go over the basics of relational database systems and the SQL language,
and experiment with a concrete system: SQLite and its embedding into Python. Acknowl-
edgements: We have borrowed and adapted examples and from [SSU04] and [PMDA] in this
chapter.

9.1 Introduction
Before we do anything else, we wil will look at various concepts around data to clarify concerns.

Databases, Data, Information, and Knowledge

� Definition 9.1.1. Discrete, objective facts or observations, which are unorganized
and uninterpreted are called data (singular datum).

� According to Probst/Raub/Romhardt [PRR97]

� Example 9.1.2. The height of Mt. Everest (8.848 meters) is a datum.

Definition 9.1.3. A database is an organized collection of data, stored and accessed
electronically from a computer system.

�

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 218 2024-02-08

To get an intuition about the possibilities of storing data, we look at some common ways – some
of which we have already seen – and characterize them by some practical dimensions.

9

10 CHAPTER 9. DATABASES

Storing Data Electronically

� Four conventional ways of storing data: (mileage varies)

� In the computer’s memory (RAM) (very fast (+), random access (+), but not
persistent (-))

� In a text file (persistent (+), fast (+), sequential access (), unstructured ())

� In a spreadsheet (persistent (+), 2D-structured (+-), relations (+), slow (-))

� In a database (persistent (+), scalable (+), relations(+), managed (+), slow
(-))

9.2. RELATIONAL DATABASES 11

� Databases constitute the most scalable, persistent solution.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 219 2024-02-08

We will study the practical aspects of one particularly important class of database systems:
relational database management systems.

9.2 Relational Databases
We will now study a particular kind of database: relational database, as these are the most widely
used and structured ones.1 EdN:1

(Relational) Database Management Systems

� Definition 9.2.1. A database management system (DBMS) is program that inter-
acts with end users, applications, and a database to capture and analyze the data
and provides facilities to administer the database.

� There are different types of DBMS, we will concentrate on relational ones.

� Definition 9.2.2. In a relational database management system (RDBMS), data
are represented as tables: every datum is represented by a row (also called database
record), which has a value for all columns (also called an column attribute) or field).
A null value is a special “value” used to denote a missing value.

� Remark: Mathematically, each row is an n tuple of values, and thus a table an
n-ary relation. (useful for standardizing RDBMS operations)

� Example 9.2.3 (Bibliographic Data).

LastN FirstN YOB YOD Title YOP Publisher City

Twain Mark 1835 1910 Huckleberry Finn 1986 Penguin USA NY
Twain Mark 1835 1910 Tom Sawyer 1987 Viking NY
Cather Willa 1873 1947 My Antonia 1995 Library of America NY
Hemingway Ernest 1899 1961 The Sun Also Rises 1995 Scribner NY
Wolfe Thomas 1900 1938 Look Homeward, Angel 1995 Scribner NY
Faulkner William 1897 1962 The Sound and the Furry 1990 Random House NY

� Definition 9.2.4. Tables are identified by table name and individual components
of records by column name.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 220 2024-02-08

As RDBMS constitute the backbone of of modern information technology, there are many many
implementations, commercial ones and open source ones as well. For our purposes, open-source
systems are completely sufficient, so we list the most important ones here.

Open-Source Relational Database Management Systems

1EdNote: MK: In the last years, NoSQL databases and JSON have gained prominaence. Intro them at the end and
reference them here.

12 CHAPTER 9. DATABASES

�

Definition 9.2.5. MySQL is an open source RDBMS.
For simple data sets and web applications MySQL is
a fast and stable multi user system featuring an SQL
database server that can be accessed by multiple clients.

�
Definition 9.2.6. PostgreSQL is an open source RDBMS with an
emphasis on extensibility, standards compliance, and scalability.

�

Definition 9.2.7. SQLite is an embeddable RDBMS.
Instead of a database server, SQLite uses a single
database file, therefore no server configuration is nec-
essary.

� Remark: At the level we use SQL in IWGS, all are equivalent.

� We will use SQLite in IWGS, since it is easiest to install and configure.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 221 2024-02-08

Now that we have made our first steps in the SQL language and with RDBMS in general, let us
pick a concrete RDBMS to experiment with.

Working with SQLite (via the SQLite shell)

� In IWGS we will use SQLite, since it is very lightweight, easy to install, but feature
complete, and widely used.

� Download SQLite at https://www.sqlite.org/download.html,

� e.g. sqlite−dll−win64−x64−3280000.zip for windows.

� unzip it into a suitable location, start sqlite3.exe there

� this opens a command line interpreter: the SQLite shell. (all DBs have one)
test it with .help that tells you about more “dot commands”.

> sqlite3
SQLite version 3.24.0 2018−06−04 19:24:41
Enter ".help" for usage hints.
Connected to a transient in−memory database.
Use ".open FILENAME" to reopen on a persistent database.
sqlite> .help
.archive ... Manage SQL archives: ".archive −−help" for details
.auth ON|OFF Show authorizer callbacks
[...]

� If you have a database file books.db from Example 9.3.8, use that.
> sqlite3 books.db
SQLite version 3.24.0 2018−06−04 19:24:41
Enter ".help" for usage hints.
> .tables
Books
>select ∗ from Books;
Twain|Mark|1835|1910|Huckleberry Finn|1986|Penguin USA|NY
Twain|Mark|1835|1910|Tom Sawyer|1987|Viking|NY
Cather|Willa|1873|1947|My Antonia|1995|Library of America|NY
Hemingway|Ernest|1899|1961|The Sun Also Rises|1995|Scribner|NY

https://www.sqlite.org/download.html

9.3. SQL – A STANDARDIZED INTERFACE TO RDBMS 13

Wolfe|Thomas|1900|1938|Look Homeward, Angel|1995|Scribner|NY
Faulkner|William|1897|1962|The Sound and the Furry|1990|Random House |NY
Tolkien|John Ronald Reuel|1892|1973|The Hobbit|1937|George Allen Unwin|UK

� .tables shows the available tables
select ∗ from Books is SQL (see below); it shows all entries of the Books table.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 222 2024-02-08

Interacting with SQLite via the database shell is nice, but can be quite tedious. Fortunately, there
are better alternatives.

A Graphical User Interface for SQLite

� Definition 9.2.8. A database browser is a graphical user interface for a RDBMS
that (typically) bundles an SQL instruction editor with displays for query results and
the database schema in separate windows.

� I will sometimes use one for SQLite in the slides: SQLite Studio (lots of others)

� download from https://sqlitestudio.pl

� Everything we can do with this, we can do with the database shell as well. (just
looks nicer)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 223 2024-02-08

9.3 SQL – A Standardized Interface to RDBMS
Idea: To interact with RDBMSs, we need a language to describe tables to the system, so that
they can be created, read, updated, and deleted. In fact while we are at it, we need a language
for all RDBMS operations. The domain specific language SQL (pronounced like “sequel”) fills
this need. It is internationally standardized, so that it can be used as the lingua franca for all
RDBMSs, insulating users and application programmers against system internals.

SQL: The Structured Query Language

https://sqlitestudio.pl

14 CHAPTER 9. DATABASES

� Idea: We need a language for describing all operations of a RDBMSs.

� basics: creating, reading, updating, deleting database components (CRUD)

� querying: selecting from and inserting into the database

� access control: who can do what in a database

� transactions: ensuring a consistent database state.

Definition 9.3.1. SQL, the structured query language is a domain-specific language
for managing data held in a RDBMS. SQL instructions are directly executed by the
RDBMS to change the database state or compute answers to SQL queries.

�

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 224 2024-02-08

We start off with a fragment of SQL that is concerned with setting up the database schema, which
gives structure to the data in the database. This schema is used by the RDBMS to optimize
database access.

DDL: Data Definition Language

� Definition 9.3.2. The data definition language (DDL) is a subset of SQL instruc-
tions that address the creation and deletion of database objects.

� Definition 9.3.3. The SQL statement CREATE TABLE⟨⟨name⟩⟩ (⟨⟨coldefs⟩⟩) cre-
ates a table with name ⟨⟨name⟩⟩. ⟨⟨coldefs⟩⟩ are column specifications that specify
the columns: it is a comma-separated list of column names and SQL data type. The
totality of all column specifications of all tables in a database is called the database
schema.

� Example 9.3.4 (Creating a Table). The following SQL statement creates the
table from Example 9.2.3

CREATE TABLE Books (
LastN varchar(128), FirstN varchar(128),
YOB int, YOD int, Title varchar(255), YOP int,
Publisher varchar(128), City varchar(128)

);

� Other CREATE statements exist, e.g. CREATE DATABASE ⟨⟨name⟩⟩.

� Definition 9.3.5. The SQL statement DROP ⟨⟨obj⟩⟩ ⟨⟨name⟩⟩ deletes the database
object of class ⟨⟨obj⟩⟩ with name ⟨⟨name⟩⟩.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 225 2024-02-08

We have seen above that the database schema needs a data type for every column. We give an
overview over the most important ones here.

SQL Data Types (for Column Specifications)

� Definition 9.3.6. SQL specifies data type for values including:

� VARCHAR (⟨⟨length⟩⟩): character strings, including Unicode, of a variable length

9.3. SQL – A STANDARDIZED INTERFACE TO RDBMS 15

is up to the maximum length of ⟨⟨length⟩⟩.
� BOOL truth values: true, false and case variants.

� INT: Integers

� FLOAT: floating point numbers

� DATE: dates, e.g. DATE ’1999−01−01’ or DATE ’2000−2−2’

� TIME: time points in ISO format, e.g. TIME ’00:00:00’ or time ’23:59:59.99’

� TIMESTAMP: a combination of DATE and TIME (separated by a blank).

� CLOB (⟨⟨length⟩⟩) (character large object) up to (typically) 2GiB

� BLOB (⟨⟨length⟩⟩) (binary large object) up to (typically) 2GiB

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 226 2024-02-08

We now come to the SQL commands for inserting content into the database tables we have created
above. This is quite straight-forward.

SQL: Adding Records to Tables

� Definition 9.3.7. SQL provides the INSERT INTO command for inserting records
into a table. This comes in two forms:

1. INSERT INTO ⟨⟨table⟩⟩ VALUES (⟨⟨vals⟩⟩); where ⟨⟨vals⟩⟩ is a comma-separated
list of values given in the order the columns were declared in the CREATE TABLE
instruction.

2. INSERT INTO ⟨⟨table⟩⟩ (⟨⟨cols⟩⟩) VALUES (⟨⟨vals⟩⟩) where ⟨⟨vals⟩⟩ is a comma-
separated list of values given in the order of ⟨⟨cols⟩⟩ (a subset of columns) all other
fields are filled with NULL

� Example 9.3.8 (Inserting into the Books Table). The given the table Books
from Example 9.3.4 we can add a record with

INSERT INTO Books
VALUES (’Tolkien’, ’John␣Ronald␣Reuel’, 1892, 1973, ’The␣Hobbit’, 1937,

’George␣Allen␣ Unwin’, ’UK’);

� Example 9.3.9 (Inserting Partial Data). Using the second form of the INSERT
instruction, we can insert partial data. (all we have)

INSERT INTO Books (FirstN, LastN, YOB, title, YOP)
VALUES (’Michael’, ’Kohlhase’, ’1964’, ’IWGS␣Course␣Notes’, ’2018’);

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 227 2024-02-08

With an insert facility, we need to be able to delete records as well, again it is straight-forward,
with the exception that we have to identify which records to delete.

SQL: Deleting Records from Tables

� Definition 9.3.10. The SQL delete statement allows to change existing records.

DELETE FROM ⟨⟨table⟩⟩ WHERE ⟨⟨condition⟩⟩;

16 CHAPTER 9. DATABASES

� Example 9.3.11. Deleting the record for “Huckleberry Finn”.

DELETE FROM Works WHERE Title = ’Huckleberry␣Finn’

� If we leave out the WHERE clause, all rows are deleted.

� Note: There is much more to the WHERE clause, we will get to that when we
come to SQL querying. (see section 9.7)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 228 2024-02-08

And now we come to a variant of database insertion: record update. In principle, this could be
achieved by deleting the record and then re-inserting the changed one, but the update instruction
presented here is more efficient.

SQL: Updating Records in Tables

� Definition 9.3.12. The SQL update statement allows to change existing records.

UPDATE ⟨⟨table⟩⟩
SET ⟨⟨column⟩⟩1 = ⟨⟨value⟩⟩1, ⟨⟨column⟩⟩2 = ⟨⟨value⟩⟩2, . . .
WHERE ⟨⟨condition⟩⟩;

� Example 9.3.13. Updating the publisher in “Huckleberry Finn”.

UPDATE Books
SET Publisher = ’Chatto/Windus’, YOP = 1884, City = ’London’
WHERE Title = ’Huckleberry␣Finn’

� If we leave out the WHERE clause, all rows are updated.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 229 2024-02-08

9.4 ER-Diagrams and Complex Database Schemata
We now come to a very important aspect of structured databases: designing the database schema
and with this determining the data efficiency and computational performance of the database
itself. We get glimpse of the standard tool: entity relationship diagrams here.

Avoiding Redundancy in Databases

� Recall the books table from Example 9.2.3:

LastN FirstN YOB YOD Title YOP Publisher City

Twain Mark 1835 1910 Huckleberry Finn 1986 Penguin USA NY
Twain Mark 1835 1910 Tom Sawyer 1987 Viking NY
Cather Willa 1873 1947 My Antonia 1995 Library of America NY
Hemingway Ernest 1899 1961 The Sun Also Rises 1995 Scribner NY
Wolfe Thomas 1900 1938 Look Homeward, Angel 1995 Scribner NY
Faulkner William 1897 1962 The Sound and the Furry 1990 Random House NY

� Observation: Some of the fields appear multiple times, e.g. “Mark Twain”.

� When the database grows this can lead to scalability problems:

9.4. ER-DIAGRAMS AND COMPLEX DATABASE SCHEMATA 17

� in querying: e.g. if we look for all works by Mark Twain

� in maintenance: e.g. if we want to replace the pen name “Mark Twain” by the
real name “Samuel Langhorne Clemens”.

� Idea: Separate concerns (here Authors, Works, and Publishers) into separate
entities, mark their relations.

� Develop a graphical notation for planning

� Implement that into the database

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 230 2024-02-08

After this discussion on why we need to design an efficient database schema to the entity relation-
ship diagram themselves.

Entity Relationship Diagrams

� Definition 9.4.1. An entity relationship diagram (ERD) illustrates the logical
structure of a database. It consists of entities that characterize (sets of) objects by
their attributes and relations between them.

� Example 9.4.2 (An ERD for Books). Recall the Books table from Example 9.2.3:

LastN FirstN YOB YOD Title YOP Publisher City

Twain Mark 1835 1910 Huckleberry Finn 1986 Penguin USA NY
Twain Mark 1835 1910 Tom Sawyer 1987 Viking NY
Cather Willa 1873 1947 My Antonia 1995 Library of America NY
Hemingway Ernest 1899 1961 The Sun Also Rises 1995 Scribner NY
Wolfe Thomas 1900 1938 Look Homeward, Angel 1995 Scribner NY
Faulkner William 1897 1962 The Sound and the Furry 1990 Random House NY

� Problem: We have duplicate information in the authors and publishers

� Idea: Spread the Books information over multiple tables.

Authors
Last Name
First Name
Birth Date
Death Date

Works
Title
PubDate

Publ
Name
Citywrit. by

wrote *
1 publ. by 1

publ.*

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 231 2024-02-08

Generally, a good database design is almost always worth the effort, since it makes the code and
maintenance of the applications based on this database much simpler and intuitive.
We are fully aware, that this little example completely under-sells entity relationship diagrams
and does not do this important topic justice. Fortunately, the DH students at FAU have the
mandatory course “Konzeptuelle Modellierung” which does.
We now come to the implementation of the ideas from the entity relationship diagrams. The key
idea is to have references between tables. These are mediated by special database columns types,
which we now introduce.

Linking Tables via Primary and Foreign Keys

� Definition 9.4.3. A column in a table can be designated as a primary key, if its

18 CHAPTER 9. DATABASES

values are non-null and unique i.e. all distinct.

� In DDL, we just add the keyword PRIMARY KEY to the column specification.

� Definition 9.4.4. A foreign key is a column (or collection of columns) in one table
(called the child table) that refers to the primary key in another table (called the
reference table or parent table).

� Intuition: Together primary keys and foreign keys can be used to link tables or
(dually) to spread information over multiple tables.

ERD Implementation

A
. . .

B
. . .

Parent
ID : primary
. . .

Child
fID : foreign
. . .

references

� BTW: Primary keys are great for identification in the WHERE clauses of SQL
instructions.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 232 2024-02-08

We now fortify our intuition on primary and foreign keys by taking up Example 9.4.2 again.

Linking Tables via Primary and Foreign Keys (Example)

� Example 9.4.5. Continuing Example 9.4.2, we now implement

Authors
Last Name
First Name
Birth Date
Death Date

Works
Title
PubDate

Publ
Name
Citywrit. by

wrote *
1 publ. by 1

publ.*

by introducing primary keys in the Authors and Publishers tables and referencing
them by foreign keys in the Works table.

CREATE TABLE Authors (AuthorID int PRIMARY KEY,
LastN varchar(128), FirstN varchar(128), YOB int, YOD int);

CREATE TABLE Publishers (PublisherID int PRIMARY KEY,
Name varchar(128), City varchar(128));

CREATE TABLE Works (
Title varchar(255), YOP int, AuthorID int, PublisherID int,
FOREIGN KEY(AuthorID) REFERENCES Authors(AuthorID),
FOREIGN KEY(PublisherID) REFERENCES Publishers(PublisherID));

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 233 2024-02-08

Linking Tables via Primary and Foreign Keys (continued)

9.5. RDBMS IN PYTHON 19

� Example 9.4.6 (Inserting into the Works Table). The given the tables Works
Authors, and Publishers from Example 9.4.5 we can add a record with

INSERT INTO Authors VALUES (1, ’Twain’, ’Mark’, 1835, 1910);
INSERT INTO Publishers VALUES (1, ’Penguin USA’, ’NY’);
INSERT INTO Works VALUES (’Huckleberry Finn’, 1986, 1, 1);

INSERT INTO Publishers VALUES (2,’Viking’, ’NY’);
INSERT INTO Works VALUES (’Tom Sawyer’, 1987, 1, 2);

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 234 2024-02-08

Note: We have introduced new integer-typed columns for the primary key in the Authors and
Pubishers tables. In principle, we could have designated any existing column as a primary key
instead, if we were sure that the entries are unique – in our case an unreasonable assumption, even
for the publishers.

We have also chosen not to introduce a primary key in the Works table, which is probably a
design mistake in the long run, because this would be very important to have for deletions and
updates.

9.5 RDBMS in Python
Let us now see how we can interact with SQLite programmatically from Python instead of from

the SQLite shell or the database browser.

Using SQLite from Python

� We will use the PySQLite package

� install it locally with pip install pysqlite for Python 3.

� use import sqlite3 to import the library in your programs.

� Typical Python program with sqlite3:

import sqlite3
Open database connection
db = sqlite3.connect(⟨⟨host⟩⟩,⟨⟨user⟩⟩,⟨⟨pass⟩⟩,⟨⟨DBname⟩⟩)
prepare a cursor object using cursor() method
cursor = db.cursor()
execute SQL commands using the execute() method.
cursor.execute("⟨⟨SQL⟩⟩")
⟨⟨dataprocessingcode⟩⟩
make sure data reaches disk
db.commit()
disconnect from server
db.close()

We will assume this as a wrapper for all code examples below.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 235 2024-02-08

The script schema shows the normal way of setting up the interaction with a database using
sqlite3:

1. We first connect to the database by specifying the database file in which the data is kept.
Normally, this will be file on the local file system, but we can also use a file that is available

20 CHAPTER 9. DATABASES

on a remote host ⟨⟨host⟩⟩. Of course, to write to this file will normally require authentication,
therefore sqlite3.connect also takes a user name ⟨⟨user⟩⟩ and a password ⟨⟨pass⟩⟩ as additional
arguments. An alternative for the ⟨⟨DBName⟩⟩ argument is the string :memory: which results in
an in-memory database (no persistent storage). The result of the sqlite3.connect function is a
database object db.

2. Then we create a cursor object cursor (cf. slide 246 for more details) by using the cursor method
of the datebase object db.

3. Then we execute SQL instructions via cursor.execute and do the data processing we need for our
application.

4. To make sure that the changes we made to the database are actually reflected on disk in the
database file ⟨⟨DBName⟩⟩, we commit the changes to disk via db.commit().

5. Finally, we close the database connection via the db.close method to make sure that all our
changes have reached the database file.

We will now put this schema to use using Example 9.3.8 as a basis.

Creating Tables in Python

� Example 9.5.1. Creating the table of Example 9.3.4
import sqlite3
our database file
database = "C:\\sqlite\db\books.db"
a string with the SQL instruction to create a table
create = """CREATE TABLE Books (

LastN varchar(128), FirstN varchar(128), YOB int, YOD int,
Title varchar(255), YOP int,Publisher varchar(128), City varchar(128));"""

insert1 = """INSERT INTO Books
VALUES (’Twain’, ’Mark’, ’1835’, ’1910’, ’Huckleberry Finn’, ’1986’,

’Penguin USA’, ’NY’);"""
insert2 = """INSERT INTO Books

VALUES (’Twain’, ’Mark’, ’1835’, ’1910’, ’Tom Sawyer’, ’1987’,
’Viking’, ’NY’);"""

connect to the SQLIte DB and make a cursor
db = sqlite3.connect(database)
cursor = db.cursor()
create Books table by executing the cursor
cursor.execute("DROP␣TABLE␣Books;")
cursor.execute(create)
cursor.execute(insert1)
cursor.execute(insert2)
db.commit() # commit to disk
db.close() # clean up by closing

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 236 2024-02-08

In this example we first create an SQL instruction as a string, so that we can give them as
arguments to the cursor.execute method conveniently.
Note that cursor.execute only executes a single SQL instructions (for safety reasons; see slide 249
– why does this help there?).
Note that we drop the Books table before (re)creating it, to be sure that we have the right structure
and avoiding errors, when we run the Python script above twice. An alternative would have been
to use CREATE TABLE IF NOT EXISTS, which only creates the table if there is none. But in our
example here, where we directly fill the table, dropping any old tables with the name Books seems
the right thing to do.
There is an issue that sometimes baffles beginners: I have created a table, inserted lots of data into
it, closed the database, and the next time I connect to the database, it is empty ; very annoying.

9.6. EXCURSION: PROGRAMMING WITH EXCEPTIONS IN PYTHON 21

To understand this phenomenon, we have to understand a bit more how databases like SQLite
work and the tradeoffs face when working working with such systems.

To commit or not to commit?

� Recall: SQLite computes with tables in memory but uses files for persistence.

� Also Recall: Memory access is 100-10.000 times as fast as file access.

� Idea 1: Keep tables in memory, write to file only when necessary.

� Idea 2: Give the user/programmer control over when to write to file

� db = sqlite3.connect(⟨⟨file⟩⟩) connects to ⟨⟨file⟩⟩, but computes in memory,

� db.commit() writes in-memory changes to ⟨⟨file⟩⟩.

� Problem: We can have multiple database connections to the same database file
in parallel, there may be race conditions and conflicts.

� Our Solution: Commit often enough! (your responsibility/fault)

� General Solution: RDBMS offer database transactions. (not covered in IWGS)

� Lazy Solution: Set the connection to autocommit mode: (system decides)
sqlite3.connect(⟨⟨file⟩⟩,isolation_level = None)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 237 2024-02-08

Excursion: The general solution to the problem of accessing a database from multiple programs
or processes in parallel is solved by a complex technology called database transactions, which allow
users’ to define a sensible unit of work (via begin/end bracketing) called a transaction and makes
sure that the process

• behaves as if the user’s process has sole access to the database system for the duration of the
transaction (isolation)

• any changes made during the transaction can be rolled back if an error occurs during processing
(integrity).

Transactions are an essential, but complex technology that is beyond the scope of the IWGS
course. For our understanding, db.commit is essentially just the end bracket of a transaction.

9.6 Excursion: Programming with Exceptions in Python
Before we go on, we discuss how we can deal with errors in Python flexibly, so that our web

application will not drop into the Python level and present the user with a stack trace.
We first introduce what errors really are in the Python context and how they are raised and

handled. Then we look at what this means for our handling of database connections.

How to deal with Errors in Python

� Theorem 9.6.1 (Kohlhase’s Law). I can be an idiot, and I do make mistakes!

� Corollary 9.6.2. Programming languages need a good way to deal with all kinds
of errors!

22 CHAPTER 9. DATABASES

� Definition 9.6.3. An exception is a special Python object. Raising an exception e
terminates computation and passes e to the next higher level.

� Example 9.6.4 (Division by Zero). The Python interpreter reports unhandled
exceptions.

>>> −3 / 0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

Zerodivisionerror: division by zero

� Exceptions are first class citizens in Python, in particular they

� are classified by their classes in a hierarchy.

� exception classes can be defined by the user (they inherit from the Exception
class)

class DivByZero (Exception)
pass

� can be raised when an abnormal condition appears

if denominator == 0 :
raise DivByZero

else
⟨⟨computation⟩⟩

� can be handled in a try/except block (there can be multiple)

try:
⟨⟨tentativecomputation⟩⟩

except : ⟨⟨err⟩⟩1, . . ., ⟨⟨err⟩⟩n :
⟨⟨errorhandling⟩⟩

finally :
⟨⟨cleanup⟩⟩

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 238 2024-02-08

Let us now apply Python exceptions to our situation. Here the most important source of errors is
the database connection step, where a database file might be missing or a remote host with the
database file offline.

Playing it Safe with Databases

� Observation 9.6.5. Things can go wrong when connecting to a database! (e.g.
missing file)

� Idea: Raise exceptions and handle them.

� Example 9.6.6. we encapsulate a try/except block into a function for convenience

import sqlite3
from sqlite3 import Error
def sql_connection():

try:
db = sqlite3.connect(’:memory:’)
print("Connection␣is␣established:␣Database␣is␣created␣in␣memory")

except Error :

9.7. QUERYING AND VIEWS IN SQL 23

print(Error)
finally:

db.close()

The sqlite3 package provides its own exceptions, which we import separately.
Other errors can be handled in additional except clauses.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 239 2024-02-08

9.7 Querying and Views in SQL

So far we have created, filled, and possibly updated databases, but we have not done anything
useful with them. That is the realm of querying in SQL, which we will now come to.
We will first cover SQL querying from a single table. There are many variants of the SELECT/-
FROM/WHERE instruction. We explain the most commonly used ones.

SQL Querying: The SELECT Statement

� SQL uses the SELECT instruction for retrieving data from a database.

� SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩ restricted
to the fields from ⟨⟨columns⟩⟩.

� Definition 9.7.1. We call a SELECT instruction a query.

� Example 9.7.2. SELECT Title, YOP FROM Books;

Huckleberry Finn|1986
Tom Sawyer|1987
My Antonia|1995
The Sun Also Rises|1995
Look Homeward, Angel|1995
The Sound and the Furry|1990
The Hobbit|1937

� SELECT DISTINCT removes duplicate values

� SELECT ∗ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩.

� SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ WHERE ⟨⟨cond⟩⟩ returns all records that
match condition ⟨⟨cond⟩⟩

� Example 9.7.3. SELECT FirstN, LastN FROM Books WHERE YOP = 1995;

Willa|Cather
Ernest|Hemingway
Thomas|Wolfe

� SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ ORDER BY ⟨⟨colums⟩⟩ orders the results
by ⟨⟨columns⟩⟩

� Example 9.7.4. Ordering can be ascending (ASC) or descending (DESC)
SELECT FirstN, LastN FROM Books ORDER BY LastN ASC, YOP DESC;

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 240 2024-02-08

24 CHAPTER 9. DATABASES

There are some more variants, for instance we can add a GROUP BY clause, which allows to
group the result table according to various conditions. We now generalize SQL queries
by combining multiple tables into a virtual table from which we aggregate the results. Joins over
that combine multiple tables in queries are the technique that allows to split data into multiple
tables in the first place: we can re recreate the “original big table” via a query.
We will restrict ourselves to the simplest kind of table join: the “inner join” below. There are
quite a few variants of joins; we refer the reader to the literature on them.

Joining Tables in Queries

� Problem: We can query single tables, how cross-table queries? E.g. in

Authors
AuthorID
Last Name
First Name
Birth Date
Death Date

Works
Title
PubDate
AuthorID
PublisherID

Publishers
PublisherID
Name
City

� Idea: Virtually join tables for the query! (as if we had the large books table)

� Definition 9.7.5. A table join (or simply join) is a means for combining columns
from one (self join) or more tables by using values common to each.

� Example 9.7.6. Joining all three tables from Example 9.4.2.
SELECT
Authors.LastN, Authors.FirstN, Authors.YOB, Authors.YOD,
Title, YOP, Publishers.Name, Publishers.City

FROM
Works

INNER JOIN Authors ON Authors.AuthorID = Works.AuthorID
INNER JOIN Publishers ON Publishers.PublisherID = Works.PublisherID

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 241 2024-02-08

The key idea in the query in Example 9.7.6 are the join statements in the last two lines. They
do two things: first the tell SQL to extend the Works table with data from the two tables Authors
and Publishers, and second they tell SQL how the extension should work: by making sure that in
the extension the records in the Works table are extended with the (unique!) record in the Authors
table, that has the same AuthorID, and analogously for the records from the Publishers table. Thus
the two joins implement the two arrows in the ER diagram at the top of the slide. The result of
this query is displayed on the next slide.

Joining Tables in Queries (Result)

� Example 9.7.7.

9.7. QUERYING AND VIEWS IN SQL 25

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 242 2024-02-08

Note that the result of the query from Example 9.7.6 shown in Example 9.7.7 exactly recreates the
original big Books table from Example 9.2.3. So we see that we have “lost nothing” by separating
the data into three more efficient and less redundant – tables.
We have seen above that we can join physical database tables to larger virtual ones whenever we
need it in a SQL query. This is good, but it can be made even better. RDBMS allow to persist
virtual table in the database schema itself as views.

Database Views: Persisting Queries

� Observation: Via the join in Example 9.7.6, the Works table queries like the
original Books table.

� Wouldn’t it be nice If we could also insert/update into that?

� Definition 9.7.8. A database view (or simply view) is a virtual table based on the
result set of a query. A view contains rows and columns, just like a real table. The
field in a view are fields from one or more real tables in the database.

� Remark 9.7.9. In many RDBMS we can even insert, delete, and update records in
a view, just as in any other table of the database.

The RDBMS achieves this by automatically translating any change to the view into
a set of changes to the underlying physical tables.

� but not in SQLite. (this is an omission due to simplicity)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 243 2024-02-08

Remark: With views we can “have our cake and eat it too”: We can make our database schema
space efficient by removing redundancies using “small tables” and still have our “big tables” that
make our life convenient e.g. when inserting records. Consider our Books example again: we can
give the query from Example 9.7.6 a name and let the RDBMS treat it as a (virtual) table.

Database Views: Persisting Queries (Books Example)

26 CHAPTER 9. DATABASES

� Example 9.7.10. Use the query from Example 9.7.6 to define a view
CREATE VIEW Books AS
SELECT
Authors.LastN AS LastN, Authors.FirstN AS FirstN,
Authors.YOB AS YOB, Authors.YOD AS YOD,
Title, YOP,
Publishers.Name AS Publisher, Publishers.City AS City

FROM
Works

INNER JOIN Authors ON Authors.AuthorID = Works.AuthorID
INNER JOIN Publishers ON Publishers.PublisherID = Works.PublisherID

Use AS clauses in SELECT to specify column names.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 244 2024-02-08

The proof is in the pudding. We see that Books view behaves exactly like the big (unstructured)
books table from above. On the right of the database browser window we can see that it is actually
a view.

Database Views: Persisting Queries (Books Example)

� Example 9.7.11.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 245 2024-02-08

9.8 Querying via Python
Now it is time to turn to understanding querying programmatically in Python. The main concept
to grasp is that of a cursor.

Working with Cursors

� Definition 9.8.1. A cursor is a named object that encapsulates a set of query
results in a (virtual) database table.

9.8. QUERYING VIA PYTHON 27

� To work with a cursor in sqlite3,

� create a cursor object via the cursor method of your database object.

� Open the cursor to establish the result set via its execute method

� Fetch the data into local variables as needed from the cursor.

� The cursor class in sqlite3 provides additional methods:

� fetchone(): return one row as an array/list

� fetchall(): return all rows a list of lists.

� fetchsome(⟨⟨n⟩⟩): return ⟨⟨n⟩⟩ rows a list of lists.

� rowcount(): the number of rows in the cursor

� Intuition: Cursors allow programmers to repeatedly use a database query.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 246 2024-02-08

Again, we fortify our intuitions by making a little example: we pretty-print the some of the
information by looping over result of fetching all the records from a given cursor.2

Extended Example: Listing Authors from the Books Table

� Example 9.8.2.
sql = ’SELECT␣FirstN,␣LastN,␣YOB␣FROM␣Books␣WHERE␣YOD␣<␣1950;’
cursor.execute(sql)
print (’There␣are␣’,cursor.rowcount,’␣books,␣whose␣authors␣died␣before␣1950:\n’)
for row in cursor.fetchall() :

print (row[0],’␣␣’,row[1], ’;␣␣born␣’,row[3],’\n’)
print(’That␣is␣all;␣if␣you␣want␣more,␣add␣more␣to␣the␣database!’)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 247 2024-02-08

If we have a large number of uniform SQL instructions, then we can bundle them, by iterating over
a list of parameters. In the example below, we explicitly write down the list, but in applications,
the list would be e.g. read from a metadata file.

Inserting Multiple Records (Example)

� The cursor.executemany method takes an SQL instruction with parameters and a
list of suitable tuples and executes them.

� Example 9.8.3. So the final form of insertion in Example 9.5.1 would be to define
variable with a list of book tuples:
booklist = [

(’Twain’, ’Mark’, 1835, 1910, ’Huckleberry␣Finn’, 1986, ’Penguin␣USA’, ’NY’),
(’Twain’, ’Mark’, 1835, 1910, ’Tom␣Sawyer’, 1987, ’Viking’, ’NY’),
(’Cather’, ’Willa’, 1873, 1947, ’My␣Antonia’, 1995, ’Library␣of␣America’, ’NY’),
(’Hemingway’, ’Ernest’, 1899, 1961, ’The␣Sun␣Also␣Rises’, 1995, ’Scribner’, ’NY’),
(’Wolfe’, ’Thomas’, 1900, 1938, ’Look␣Homeward,␣Angel’, 1995, ’Scribner’, ’NY’),
(’Faulkner’, ’William’, 1897, 1962, ’The␣Sound␣and␣the␣Furry’, 1990, ’Random␣House␣’, ’NY’),
(’Tolkien’, ’John␣Ronald␣Reuel’, 1892, 1973, ’The␣Hobbit’, 1937,’George␣Allen␣ Unwin’, ’UK’)]

2EdNote: MK: show the results

28 CHAPTER 9. DATABASES

and then insert it via a call of cursor.executemany:
cursor.executemany(’INSERT␣INTO␣Books␣VALUES␣(?,?,?,?,?,?,?,?)’,booklist)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 248 2024-02-08

Now that we understand how to deal with databases programmatically, we can come to a real-
world menace: SQL injection attacks. A large portion of the “hacking” events, where a database
is taken over by malicious agents are based – at least in part – on such a technique. Therefore it is
important to understand the basic principles involved, if only to understand how we can safeguard
against them – see e.g. slide 250 below.

Beware of the Python/SQLite Interaction

� What have we learned?: At least you now understand the following web comic:
(https://xkcd.com/327/)

� Definition 9.8.4. We call this an SQL injection attack.

� Hint: Imagine a web application where you add student names for enrolment.

name = input("Please␣enter␣student␣name:␣")
cursor.execute(f"INSERT␣INTO␣Students␣VALUES␣(...␣,{Name},␣...);")

For the input Robert’);␣DROP␣TABLE␣Students; this has a Python line generates
and executes the SQL instructions
INSERT INTO Students VALUES (..., ’Robert’); DROP TABLE Students;

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 249 2024-02-08

Now we can understand why the restriction of cursor.execute to only one SQL instruction en-
hances security of the code: The hypothetical cursor.execute(’INSERT␣...’) command expects one
instruction, but with the parameter substitution in the f string gets two. This would have raised
an error and saved the school administration.
Finally we come back to the topic of preventing SQL injection attacks. We had seen that these
occur when we build the argument string for a cursor.execute call. While the single-instruction-
restriction of is some help, it is not enough. We essentially have to remove all the SQL instructions
from any input string we substitute with. Fortunately, SQL is standardized, so we can implement
that once and for all.

SQLite3 Parameter Substitution

� Observation 9.8.5. We often need variables as parameters in cursor.execute.

https://xkcd.com/327/

9.9. REAL-LIFE INPUT/OUTPUT: XML AND JSON 29

� Example 9.8.6. In Example 9.8.2 we can ask the user for a year.

� The python way would be to use f strings

year = input(’Books,␣whose␣author␣died␣before␣what␣year?’)
sql = f’SELECT␣FirstN,␣LastN,␣YOB␣FROM␣Books␣WHERE␣YOD␣<␣{year}’
cursor.execute(sql) # never use f−strings here −−> insecure

But this leads to vulnerability by SQL injection attacks. (; Bobby Tables)

� Definition 9.8.7. sqlite3 supplies a parameter substitution that SQL sanitizes
parameters (removes problematic SQL instructions).

� The sqlite3 way uses parameter substitution (multiple ? possible ; tuple)

year = input(’Books,␣whose␣author␣died␣before’)
select = ’SELECT␣Title␣FROM␣Books␣WHERE␣YOD␣<␣?’
cursor.execute(select,(year,))

or in the “named style” ; order-independent (argument is a dictionary)

century = input(’Century␣of␣the␣books?’)
select = ’SELECT␣Title,␣YOP␣FROM␣Books␣WHERE␣YOP␣<=␣:start␣AND␣YOP␣>␣:end’
datadict = {’start’: (century − 1) ∗ 100, ’end’: century ∗ 100}
cursor.execute(select,datadict)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 250 2024-02-08

9.9 Real-Life Input/Output: XML and JSON
We have seen how we can use Python programs to fill database tables programmatically. But

the treatment above did not map the dominant data management practices. In practice, databases
are filled from various information sources, usually CSV, XML, and JSON files. Conversely, the
data from a database is often exported to the same file formats for backup and/or communication.

To show the practices, we will see how to import data from an XML file into a data base,
and how to export data as JSON in Python; the latter is an important technique for modern web
applications.

Filling a DB from via XML (Specification)

� Idea: We want to make a database based web application for NYC museums.

� Recall the public catalog from Example 4.5.4 (Introduction to XML) in the IWGS
lecture notes, the XML file is online at
https://data.cityofnewyork.us/download/kcrm-j9hh/application/xml

<?xml version="1.0" encoding="UTF−8"?>
<museums>
<museum>
<name>American Folk Art Museum</name>
<phone>212−265−1040</phone>
<address>45 W. 53rd St. (at Fifth Ave.)</address>
<closing>Closed: Monday</closing>
<rates>admission: $9; seniors/students, $7; under 12, free</rates>
<specials>
Pay−what−you−wish: Friday after 5:30pm;
refreshments and music available

</specials>

https://data.cityofnewyork.us/download/kcrm-j9hh/application/xml

30 CHAPTER 9. DATABASES

</museum>
<museum>
<name>American Museum of Natural History</name>
<phone>212−769−5200</phone>
<address>Central Park West (at W. 79th St.)</address>
<closing>Closed: Thanksgiving Day and Christmas Day</closing>

� Idea: We need Python program that

� provides a SQLite database with a table ’museum’ with columns ’name’, ’phone’,
. . . , ’specials’ of appropriate type

� reads the XML file from the URL above and fills the table.

� Possible Enhancement: Encapsulate the functionality into a function, then we
could run this program each night and keep the database up to date.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 251 2024-02-08

Let us actually implement this idea – after all, we have already seen all the building blocks already.
The program itself is relatively straightforward; we go through the process step by step.

Filling a DB from via XML (Implementation)

� Libraries: urllib [UL] to retrieve the file and lxml [LXML] to parse it.

from lxml import etree
from urllib.request import urlopen
url = ’https://data.cityofnewyork.us/download/kcrm−j9hh/application/xml’
document = urlopen(url).read()
tree = etree.fromstring(document)

We now have a (large) XML tree in tree!

� Collect all the XML tags in all the museums (for the column names)

tags = []
for museum in tree:

for info in museum:
if info.tag not in tags:

tags.append(info.tag)

� We create the SQLite database as discussed in slide 236.

� Then we assemble a table specification in a string columns:

columns = ""
for cn in tags:

All columns have their name and type TEXT
columns += f",␣{cn}␣TEXT"

� Create the Museums table from the specification in columns

cursor.execute("DROP␣TABLE␣IF␣EXISTS␣Museums;")
cursor.execute(f"""CREATE TABLE Museums

(Id INTEGER PRIMARY KEY {columns});""")

� Now the most important part: We fill the database

for museum in tree:
Find and sanitise the contents of all child nodes of this museum.
values = []
for tag in tags:

9.9. REAL-LIFE INPUT/OUTPUT: XML AND JSON 31

if museum.find(tag) != None:
values.append(str(museum.find(tag).text).strip())

else:
values.append("−")

Insert the data for this museum into the database.
cols = str(tuple(tags))

We need a tuple of one ? for each column.
vals = "(" + ("?,␣" ∗ len(tags))[:−2] + ")"

insert = f"INSERT␣INTO␣Museums␣{cols}␣VALUES␣{vals}"
cursor.execute(insert, tuple(values))

� We finalize the transaction as discussed in slide 236.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 252 2024-02-08

If we want to get a sense of the size and complexity of the complete program, we can look at it in
one pice here:

The complete code in one block – a mere 51 lines
import sqlite3
from lxml import etree
from urllib.request import urlopen

Download the XML file and Parse it
url = ’https://data.cityofnewyork.us/download/kcrm−j9hh/application/xml’
document = urlopen(url).read()
tree = etree.fromstring(document)

First run−through of the XML: Collect the info types there,
tags = []
for museum in tree:

for info in museum:
if info.tag not in tags:

tags.append(info.tag)

Next, create database accordingly. First assemble a columns string.
columns = ""
for cn in tags:

All columns have their name and type TEXT
columns += f",␣{cn}␣TEXT"

Then, make the Museums table using that.
db = sqlite3.connect("./museums.sqlite")
cursor = db.cursor()
cursor.execute("DROP␣TABLE␣IF␣EXISTS␣Museums;")
cursor.execute(f"""CREATE TABLE Museums

(Id INTEGER PRIMARY KEY {columns});""")

Lastly, fill database.
for museum in tree:

Find and sanitise the contents of all child nodes of this museum.
values = []
for tag in tags:

if museum.find(tag) != None:
values.append(str(museum.find(tag).text).strip())

else:
values.append("−")

Insert the data for this museum into the database.

32 CHAPTER 9. DATABASES

cols = str(tuple(tags))

We need a tuple of one ? for each column.
vals = "(" + ("?,␣" ∗ len(tags))[:−2] + ")"

insert = f"INSERT␣INTO␣Museums␣{cols}␣VALUES␣{vals}"
cursor.execute(insert, tuple(values))

Finalise Transaction
db.commit()
db.close()

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 255 2024-02-08

We will use the output direction of the envisioned museums web application to introduce
another standard data representation format: JSON the preferred data interchange format for
web applications.

JSON — JavaScript Object Notation

� Definition 9.9.1. JSON (JavaScript Object Notation) is an open standard file
format for interchange of structured data. JSON uses human readable text to store
and transmit data objects consisting of attribute–value pairs and sequences.

� JSON is very flexible, there need not be a regularizing schema.

� Intuition: JSON is for JavaScript as (nested) dictionaries are for Python.

� The browser can directly read JSON and use it via JavaScript.

� ; AJAX =̂ JavaScript can query the backend for JSON data to update parts
of the DOM. (lightweight interaction)

� Consequence:

JSON is the dominant interchange format for web applications.

� Another Intuition: JSON objects are like database records, but less rigid.

� Idea: Build a special JSON database. (JSON I/O; efficient storage)

� Definition 9.9.2. mongoDB is the most popular NoSQL database system. (no
SQL inside)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 256 2024-02-08

As always, we will now look at how we can deal with with the newly introduced concept in Python.
As always there is a special library that does nearly all the work; here it is (obviously named) json
library. It smoothes over the syntactic differences between Python dictionaries and JSON objects.

Dealing with JSON in Python

� Even though JSON concepts and syntax are similar to Python dictionaries, there
are (subtle) differences.

� Concretely: Python allows more data types in dictionaries, e.g.

9.9. REAL-LIFE INPUT/OUTPUT: XML AND JSON 33

Python JSON equivalent
True true
False false
float Number
int Number
None null
dict Object
list Array
tuple Array

� But these differences are systematic and can be overcome via the json library [JS].

� json.dumps(⟨⟨dict⟩⟩) takes a Python dictionary dict, produces a JSON string.

� json.loads(⟨⟨json⟩⟩) takes a JSON string json, produces a Python dictionary.

There are many ways to control the output (pretty-printing), see [JS].

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 257 2024-02-08

We now give an JSON export program for the NYC Museums database for reference. All the
technologies in this program have been covered above, so we just show it for self-study.

JSON Output for the NYC Museums DB

� Libraries: json for JSON [JS] and sqlite3 for the database.

import json
import sqlite3

� Connect to the SQLite database as usual and query the database for everything

db = sqlite3.connect("./museums.sqlite")
cursor = db.cursor()
cursor.execute("SELECT␣∗␣FROM␣Museums;")

� Initialize a dictionary and the list of Museums column names

data = {}
data[’museums’] = []
columns = [’name’, ’phone’, ’address’, ’closing’, ’rates’, ’specials’]

� For each of the rows in the Museums table build a row dictionary

for row in cursor.fetchall():
Generate a dictionary with columns as keys and entrys as values.
rowdict = { columns[n] : row[n] for n in range(6) }

Add that dictionary to the JSON data structure.
data[’museums’].append(rowdict)

� Dump the data dictionary as JSON into a file

with open(’museums.json’, ’w’) as outfile:
json.dump(data, outfile)

� Close the database as usual.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 258 2024-02-08

We set the list variable columns manually for convenience. Of course, if the database schema

34 CHAPTER 9. DATABASES

should change, we have to adapt columns in or programs. Therefore a better way to handle this
would be to get this information from the database itself, which we could do by the following
command in SQLite:
PRAGMA table_info(Museums);
In our case, this gives us the following string, from which we can retrieve the information we need
by a simple regular expression.
0|Id|INTEGER|0||1
1|name|TEXT|0||0
2|phone|TEXT|0||0
3|address|TEXT|0||0
4|closing|TEXT|0||0
5|rates|TEXT|0||0
6|specials|TEXT|0||0
But note that the PRAGMA instruction is specific to SQLite; other systems have other ways of
getting to this information.

JSON Output for the NYC Museums DB
import json
import sqlite3

Connect to database and query database for everything.
db = sqlite3.connect("./museums.sqlite")
cursor = db.cursor()
cursor.execute("SELECT␣∗␣FROM␣Museums;")

Setup soon−to−be−JSON dictionary and the necessary columns
data = {}
data[’museums’] = []
columns = [’name’, ’phone’, ’address’, ’closing’, ’rates’, ’specials’]

For every row in the result, do the following:
for row in cursor.fetchall():

Generate a dictionary with columns as keys and entrys as values.
rowdict = { columns[n] : row[n] for n in range(6) }

Add that dictionary to the JSON data structure.
data[’museums’].append(rowdict)

Write collected JSON data to file.
with open(’museums.json’, ’w’) as outfile:

json.dump(data, outfile)

Close database
db.close()

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 259 2024-02-08

And now we can see the result of this export – at least an initial fragment for space reasons.

JSON Example (NYC Museums)

� Example 9.9.3. The NYC museums data from Example 4.5.4 (Introduction to
XML) in the IWGS lecture notes as JSON:
We represent the data as a “sequence” of (nested) “dictionaries”

[
{"name": "American Folk Art Museum",
"phone": "212−265−1040",
"address": "45 W. 53rd St. (at Fifth Ave.)",

9.10. EXERCISES 35

"closing": "Closed: Monday",
"rates": {

"admission": "$9",
"seniors/students": "$7",
"under 12": "free",

}
"specials": "Pay−what−you−wish: Friday after 5:30pm;

refreshments and music available"
}
{"name": "American Museum of Natural History",
"phone": "212−769−5200",
"address": "Central Park West (at W. 79th St.)"
"closing": "Closed: Thanksgiving Day and Christmas Day"
"rates": {

"admission": "$16",
"seniors/students": "$12",
"kids 2−12": "$9",
"under 2": "free"

}
}
...
]

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 260 2024-02-08

9.10 Exercises

Problem 10.1 (Setting up the Database)
In this exercise we will set up our database tables. Start by cloning the KirmesDH repository1.

The dataset consists of a directory img/, which contains images and a folder metadata/ containing
CSV files. The other directories are not important for this assignment.

Familiarize yourself with the metadata format. As you can see most files employ the same
columns, however some data may be missing. We will mirror the given column structure in our
database.

1. In the given code skeleton, change the values of the variables metadataFolder and imageFolder
at the top of the file according to your folder structure.

2. Establish a connection to the database. Use the databaseName variable.

3. Create a table with name Images in the database with the following column structure:

• FileName, type TEXT

• Title, type TEXT

• Subtitle, type TEXT

• Archive, type TEXT

• Artist, type TEXT

• Location, type TEXT

• Date, type TEXT

• Genre, type TEXT

• Material, type TEXT

• Url, type TEXT

• Content, type BLOB
1https://gitlab.cs.fau.de/iwgs-ss19/KirmesDH

https://gitlab.cs.fau.de/iwgs-ss19/KirmesDH

36 CHAPTER 9. DATABASES

4. At the end of the file, commit all changes you made to the database and close it.

Run your script and open the resulting database file in the DB Browser for SQLite. Make sure
that you see the Images table and that its layout is correct.

Problem 10.2 (Parsing the Input Data)
In this exercise we will parse the metadata files and extract all relevant data. Since the input

data is not curated very carefully and some entries may be missing, we need to design our program
as robustly as possible.

Amend the parseMetadata function in the given Python script for this assignment. The pre-
pared code opens the CSV file and uses the csv library to parse it. Detailed information on
the csv.DictReader can be found here: https://docs.python.org/3/library/csv.html#csv.
DictReader.

In the loop do the following for each row of the file:

1. Use the getValue function to extract the relevant data.

2. Call the addImage function with the data.

Make sure that the data is parsed correctly by running your program and printing the extracted
values. Assure that the program does not crash if certain data fields are not available.

Problem 10.3 (Inserting Data into the Database)
In this last exercise we fill our database with the parsed data. Before starting with this task,

assure that the previous two assignments work correctly.
Complete the addImage function.

1. Check whether in the img/ folder a file with the specified file name exists. If yes, open and read
it and store the content in the imageData variable.

2. Insert all data fields into the database by issuing the correct SQL command.

Run your script. Make sure it does not crash and check your database in the DB Browser. All
values should be in the correct column. Some rows should have values in the Content column. In
the DB Browser you can see the image when you click on the table cell.

We will now start establishing a web server, using the bottle framework we introduced last
semester. We are building on top of the code above, so you may either continue with your own
code or use the sample solution from last week as a starting point for this exercise.

For the web server we again prepared a code skeleton for you (Server_Skeleton.py and Index_Skeleton.tpl).

Problem 10.4 (Adding a Primary Key to our Table)
Our table Images from last week supports nearly all functionality we need. However currently

it lacks the ability to uniquely identify a single entry, since all properties could be featured in
multiple entries.

We therefore introduce primary keys. To this end, amend your Images table by adding a field
Id of type INTEGER. Mark it as a primary key. When inserting into your database, you don’t
actually have to provide a value for the Id, since SQLite will simply use the next free number.

Problem 10.5 (Setting up our Web Server)
We will now set up a simple web server using the bottle framework. As a starting point you

can use the Server_Skeleton.py and Index_Skeleton.tpl we provide you.
You might need to install the bottle package first. In your command prompt (terminal) issue

the following command:

pip install bottle

https://docs.python.org/3/library/csv.html#csv.DictReader
https://docs.python.org/3/library/csv.html#csv.DictReader

9.10. EXERCISES 37

You should now be able to run the provided code. Make sure you adapt the value of the
variable databasename to match your database file.

After starting you can access your website by visiting the URL http://localhost:8080/ in
your browser. The content of this page is for you to implement.

We provide a route /imageraw in the getImage function. Follow the instructions in the code to
try out the function and see how it works. For all operations which need to display images from
the database on your website you should use this route.

Your job is to implement the index function, which is called when the home page is visited. In
the end this page should display a large table where all entries of your database are listed.

1. Start by querying your database for the data you want to display. Select at least the Id, Title,
Subtitle, Artist, Material and Archive of each entry. Issuing the appropriate SQL command should
provide you a large list of entries. Make sure that this works before continuing.

2. Last semester we created websites in bottle by creating HTML code from python. This does
not scale well to larger projects. We will therefore use bottle’s own template engine, which
allows you to write normal HTML documents, which you can augment with snippets of python
code. You can read about the templating in the bottle documentation: https://bottlepy.
org/docs/dev/tutorial.html#templates.

From the index function, pass the data you queried from the database to the template function.
In the Index_Skeleton.tpl file, create a HTML table. This should employ columns for each data
field you queried (Title, Subtitle, etc).

Inject python code with the appropriate syntax, which loops over the queried data and fills the
table. The Archive field should be a link, which leads you the archive’s website. Run your server,
visit its URL and check if everything works.

3. Augment your HTML table by adding one more column called Thumbnail. This should display
a small version of the stored in each data entry. For this refer to the following tutorial: https:
//www.w3schools.com/tags/tag_img.asp.

Set the thumbnail to an appropriate size (e.g. 200 pixels). As source use the /imageraw route
described above. Make sure you specify the correct id for each entry.

Test your website and enjoy it!

Now we will augment our web server by another route, which displays detailed information for a
single image entry. As a reminder: The code skeleton is available on StudOn together with this
assignment sheet or in the Kirmes repository. Just pull the latest version of the repo!
Problem 10.6 (Details Page)

Our overview table is nice, but we would like the user to be able to inspect a certain entry
more closely. We will therefore create a new route, which displays information for a single image
on its own page.

1. In your Server.py file, create a new route /details/<id:int>. Given an Id as argument, the function
should query the database for this entry. If no entry with the Id can be found, use bottle’s abort
function to display an error with the code 404: https://bottlepy.org/docs/dev/tutorial.
html#http-errors-and-redirects.

2. Create a new template file Details.tpl. From your python code, call the template with the
information you queried from the database. In the template, write HTML code which displays
the given information in a nice and easy-to-read way.

Some information might not be available (NULL/None). Handle this case!

Test your page by navigating to the details URL for some example image, e.g. http://
localhost:8080/details/27. Make sure, that all data is displayed correctly.

http://localhost:8080/
https://bottlepy.org/docs/dev/tutorial.html#templates
https://bottlepy.org/docs/dev/tutorial.html#templates
https://www.w3schools.com/tags/tag_img.asp
https://www.w3schools.com/tags/tag_img.asp
https://bottlepy.org/docs/dev/tutorial.html#http-errors-and-redirects
https://bottlepy.org/docs/dev/tutorial.html#http-errors-and-redirects
http://localhost:8080/details/27
http://localhost:8080/details/27

38 CHAPTER 9. DATABASES

3. On the details page, also display the image in full size. You may again use the /imageraw/id
route from last week as source.

4. Amend your Index.tpl from last week in the following way: Each image thumbnail in the table
should be a link (), which leads to the details page of this respective entry, i.e.
by clicking on the thumbnail of image 27 your website should navigate to the URL http:
//localhost:8080/details/27.

Problem 10.7 (New Entries and Editing)
The next step to creating a useful web application is to allow the user to insert new entries

and edit existing ones.
We have prepared the code for adding new entries for you in this week’s Server.py skeleton.

If you want to continue with your own code, you can copy the functions new, submitNew and
getValue from the skeleton to your own file. Also copy the file New.tpl to your directory. In your
Index.tpl, add a link at the top of the page, which leads to the /new route.

Familiarize yourself with the given code. Understand how it works and how the data flows.
Editing entries is similar to adding new ones. Both require a form to insert data, which is then

sent to a routine to handle the database calls. For the form the only difference is that some data
is already filled out. For now we will only allow editing of the metadata, not the digital image
itself. Your edit form does not need to allow changing the digital image.

1. Create a new file Edit.tpl. Take the given New.tpl as a starting point. Since we do not want to
allow changing the image for now, you can omit the Image input field.

2. In your python code, create a new route /edit/<id:int>. In the function, query the database for
the entry with the given id. Since this is the same operation as in the /details/ route, you can
reuse this code. Call the Edit.tpl template with your queried data.

3. For fields, which are already filled out, the form should display the current value. To this end,
refer to the value attribute of the <input> fields. Test your page by navigating to the URL
of an example entry, e.g. http://localhost:8080/edit/27. Make sure the available data is
displayed correctly.

4. The key difference to the New.tpl form is, that we already have an entry, i.e. an Id. This must
be passed via the form to the function, which handles the database update.

HTML forms allow hidden fields, which look like this:

<input type=’hidden’ name=’id’ value=’{{id}}’>

Since the field is set to hidden, it will not show up on the web page. Nevertheless, its value (the
id) will be sent with the rest of the filled out form data. Use the above code to add the Id to
the form.

5. Create another route /submit_edit of type POST. Refer to the given /submit_new route for
details. Obtain all data from the input form. Afterwards, issue an SQL UPDATE command to
update the entry with the given Id and provide the values from the form.

In the end, use bottle’s redirect functionality to navigate to the details page of the edited entry.
Again, refer to the submitNew function for details.

6. In the Edit.tpl file, make sure that the form action is set to the correct route.

7. On the details page, create a link Edit, which leads to your /edit/<id> route.

http://localhost:8080/details/27
http://localhost:8080/details/27
http://localhost:8080/edit/27

Chapter 10

Project: A Web GUI for a Books
Database

In this chapter we will pull together the technologies we have learned into a simple web application
project. We will do so in multiple setups. We first make a bare-bones application (see section 10.1)
and then step by step extend it with new features:

• Ajax techniques for selectively loading page fragments: section 10.3

• Access control and management: section 10.2

• Deploying Python applications as programs: section 10.4

Bricolage Programming: With this project we want to demonstrate a common practice of
moderen programming: pulling together program fragments or solution ideas from various sources
(e.g. the IWGS course notes or various tutorials or even answers from stack overflow https:
//stackoverflow.com, a question and answer site for professional and enthusiast programmers)
and then adapting them to the current project and fitting them together into a coherent program
that works as expected.

This approach to programming is often called “bricoleur style” [Tur95] or bricolage program-
ming because it relies on handicraft-like tinkering with pieces of existing materials.

Contrary to what many classical programming courses still insinuate they seem to say that you
have to know everything before you can start with a project – the advent of the internet with its
multitude of high-quality programming related resources has made bricoleur style programming
effective and efficient.

Actually, bricolage is a technique that should be leaned and adopted as a tool, especially for
part-time programmers as practitioners in the digital humanities tend to be.

The web application project in this chapter is a bricolage project, only that we have almost all
the ideas in the IWGS course notes already and we do not have to google for them on the web.

10.1 A Basic Web Application
We bring together all we have learned into a basic web application that allows to list all the

books in a database, as well as add, edit, and delete book records.
We use our running example of the books table as a basis, and add a web application layer via

the bottle WSGI server-side scripting framework in Python.
We have intentionally kept the application very simple, so that it can serve as the basis of other

projects. The full source is available at https://gl.mathhub.info/MiKoMH/IWGS/blob/master/
source/databases/code/books-app.py. The respective template files are siblings.

39

https://stackoverflow.com
https://stackoverflow.com
https://gl.mathhub.info/MiKoMH/IWGS/blob/master/source/databases/code/books-app.py
https://gl.mathhub.info/MiKoMH/IWGS/blob/master/source/databases/code/books-app.py

40 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

Building a full Web Application with Database Backend

� Observation 10.1.1. With the technology in chapter 5 (Web Applications) in the
IWGS lecture notes and chapter 9 we can build a full web application in less than

� 100 lines of Python code and (back-end/routes)

� less than 70 lines of HTML template files. (front end)

� Functionality: Manage a database of books, in particular: (e.g. your library at
home)

� add a new book to the database

� delete a book from the database

� update (i.e. change) an existing book

� The source is at https://gl.mathhub.info/MiKoMH/IWGS/blob/master/source/
booksapp/code/books-app.py.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 261 2024-02-08

Now, if you download the file books−app.py and all the sibling template files ∗.tpl at https:
//gl.mathhub.info/MiKoMH/IWGS/blob/master/source/booksapp/code/, you can start the ap-
plication from the terminal by typing python3 books−app.py. This will yield something like

> python3 books−app.py
Bottle v0.12.18 server starting up (using WSGIRefServer())...
Listening on http://localhost:8080/
Hit Ctrl−C to quit.

So enter the url http://localhost:8080/ into the URL bar of your browser, and test the setup.
But let us return to the implementation of the web application.
We do the usual things to set up the web application: we load the libraries, connect to the data
base, and so on.

The Books Application: Setup

� We have already seen how to set up the database in slide 248.

import sqlite3
from sqlite3 import Error
from bottle import route, run, debug, template, request, get, post

our database file
database = "books.db"
db = sqlite3.connect(database)

� But we want to receive result rows as dictionaries, not as tuples, so we add

db.row_factory = sqlite3.Row

� We give ourselves a cursor to work with

cursor = db.cursor()

� We start the bottle server

https://gl.mathhub.info/MiKoMH/IWGS/blob/master/source/booksapp/code/books-app.py
https://gl.mathhub.info/MiKoMH/IWGS/blob/master/source/booksapp/code/books-app.py
https://gl.mathhub.info/MiKoMH/IWGS/blob/master/source/booksapp/code/
https://gl.mathhub.info/MiKoMH/IWGS/blob/master/source/booksapp/code/
http://localhost:8080/

10.1. A BASIC WEB APPLICATION 41

run(host=’localhost’, port=8080, debug=True)

� And of course, we eventually commit and close the database in the end

db.commit()
db.close()

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 262 2024-02-08

The next step is to create a table for the books. This is a completely standard SQL CREATE
statement which we execute in the cursor we have established during setup.

The Books Application: Backend

� We specify the database schema and create the Books table

bookstable = """
CREATE TABLE IF NOT EXISTS Books (

Last varchar(128), First varchar(128),
YOB int, YOD int, Title varchar(255), YOP int,
Publisher varchar(128), City varchar(128)

);
"""

cursor.execute(bookstable)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 263 2024-02-08

The next step is strictly optional. But it is so annoying to have to start with an empty database
when the web application first comes up. So we provide a list of seven books. But, if we are
not careful, these books will be inserted into the database every time we start up the application.
Recall that we did not drop the Books table in the code above.

The Books Application: Books to Play With

� Data about books as a Python list of 8-tuples:
initialbooklist = [

(’Twain’, ’Mark’, 1835, 1910, ’Huckleberry␣Finn’, 1986, ’Penguin␣USA’, ’NY’),
(’Twain’, ’Mark’, 1835, 1910, ’Tom␣Sawyer’, 1987, ’Viking’, ’NY’),
(’Cather’, ’Willa’, 1873, 1947, ’My␣Antonia’, 1995, ’Library␣of␣America’, ’NY’),
(’Hemingway’, ’Ernest’, 1899, 1961, ’The␣Sun␣Also␣Rises’, 1995, ’Scribner’, ’NY’),
(’Wolfe’, ’Thomas’, 1900, 1938, ’Look␣Homeward,␣Angel’, 1995, ’Scribner’, ’NY’),
(’Faulkner’, ’William’, 1897, 1962, ’The␣Sound␣and␣the␣Furry’, 1990, ’Random␣House␣’, ’NY’),
(’Tolkien’, ’John␣Ronald␣Reuel’, 1892, 1973, ’The␣Hobbit’, 1937,’George␣Allen␣ Unwin’, ’UK’)]

� If the Books table is empty, we fill it with the tuples in initialbooklist:

row = cursor.execute(’SELECT␣∗␣FROM␣Books␣LIMIT␣1’).fetchall()
if not row:

cursor.executemany(’INSERT␣INTO␣Books␣VALUES␣(?,?,?,?,?,?,?,?)’,initialbooklist)

� Idea: To find out if the table is empty (surprisingly clumsy)

� we fetch a list with at most one row (LIMIT 1);

� if Books is empty, row is the empty list which evaluates to false in a conditional.

42 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 264 2024-02-08

In a more complete version of the books application we would probably have used a keyword
argument like −−initbooks to the program. We will cover command line parsing – the technology
that enables behavior modifiers – section 10.4. The next task is to create a route for the
main page of the application, i.e. the page booksapp.py serves at http://localhost:8080/. We
want a listing of all the books in the database in a table.

The Books Application Routes: The Application Root

� We only need to add the bottle routes for the various sub pages.

� The main page: Listing the book records in the database
@route(’/’)
def books():

query = ’SELECT␣rowid,Last,First,YOB,YOD,Title,YOP,Publisher,City␣FROM␣Books’
cursor.execute(query)
booklist = cursor.fetchall()
return template(’books’,books=booklist,num=len(booklist),cols=cols)

� This uses the following templates: the first generates a table of books from the
template file books.tpl

<p>There are {{num}} books in the database</p>
<table>

% include(’th.tpl’, cols=cols)
% for book in books : include(’book.tpl’,∗∗book,cols=cols) end
<tr><th><button>add a book</button></th></tr>

</table>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 265 2024-02-08

The backend of this is very simple: we fire up a simple SQL query that selects all the records
from the Books table. As we configured the database connection to return database records as
Python dictionaries, the variable booklist variable is a list of data dictionaries, which we can feed to
the STPL template books.tpl, which creates the return page for http://localhost:8080/. This
page consists of a paragraph which reports on the number of books in the database and then a
table which is built up from

1. a table header which is simply imported from a template file th.tpl

2. a body, which is created by iterating over booklist, feeding each row – a Python dictionary – to
the template book.tpl as keyword arguments via the double star operator, and

3. a table row with a link to the add route for adding new books.

Before we show the nested templates, let us inspect the result:

The Books Application Root: Result

� Here is the page of the books application in its initial state.

http://localhost:8080/
http://localhost:8080/

10.1. A BASIC WEB APPLICATION 43

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 266 2024-02-08

Indeed we have the report on the number of books and a table which ends in an “add a book” link.
The table header and rows contain the seven data cells and two more for possible actions on the
database records. The next two templates are responsible for that; they are called in the books
template above.

The Books Application Root: More Templates

� Recall: The books.tpl template file

<p>There are {{num}} books in the database</p>
<table>

% include(’th.tpl’, cols=cols)
% for book in books : include(’book.tpl’,∗∗book,cols=cols) end
<tr><th><button>add a book</button></th></tr>

</table>

that generates this result via the following two templates:

� It inserts the table header via th.tpl:

% for col in cols:
<th>{{col}}</th>

% end
<th rowspan="2">Action</th>

� and iterates over the list of books, using the template file book.tpl:
<tr>
<td>{{Last}}</td><td>{{First}}</td><td>{{YOB}}</td><td>{{YOD}}</td>
<td>{{Title}}</td><td>{{YOP}}</td><td>{{Publisher}}</td><td>{{City}}</td>
<td><button>edit</button></td>
<td><button >delete</button></td>

</tr>

� Row Id Trick: Note the slightly subtle use of the rowid column in this template.
It is (only) used in the two action buttons to specify which book to add/edit.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 267 2024-02-08

The template th.tpl is completely elementary, book.tpl is called with keyword arguments whose
values substituted for the {{⟨⟨key⟩⟩}} template variables. The last two columns in the table are
the action links that point to the add and delete routes we present next.
The “add a book” functionality is distributed over two routes: a GET route for the path /add/

44 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

and a POST route for the same path. The first is responsible for showing the input form, whereas
the second parses the POST request generated by the first one and fills the database with the
results. Let us look at the implementation in detail.

The Books Application Routes: Adding Book Records

� We add a route for adding a books record (for the add button)

@get(’/add’)
def add():

return template(’add’,cols=cols)

Note that this is the route for the GET method on the path /add.

� This uses the template file add.tpl:
<form action="/add" method="post">
<table>
% include(’th.tpl’, cols=cols)
<tr>

% for td in cols:
<td><input type="text" name="{{td}}"/></td>
% end

</tr>
</table>
<input type="submit" value="Submit"/>

</form>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 268 2024-02-08

The implementation is a rather straightforward application of a template that provides a HTML
form. The only interesting thing is that we can reuse the template th.tpl from above for the table
header. This not only saves effort, but also makes the user experience consistent over the various
parts of the application.

The Books Application Routes: Adding Book Records

� The result is

� The action in the HTML form is to POST to the path /add. Thus we need POST
route for /add as well:

@post(’/add’)
def addResponse():

data = parseResponse()
ins = ’’’INSERT INTO Books VALUES

(:Last,:First,:YOB,:YOD,:Title,:YOP,:Publisher,:City)’’’
cursor.execute(ins,data)
return template(’response’, data = data, cols=cols,

rowid = cursor.lastrowid,
text = ’New␣book␣record␣received’)

10.1. A BASIC WEB APPLICATION 45

Note the use of sqlite3 parameter substitution in addResponse!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 269 2024-02-08

The addResponse function that answers the POST route for the path /add/ just inserts a new
database record in to the Books table. Note the use of the SQLite3 parameter substitution here.
We substitute the parameters :⟨⟨key⟩⟩ in the string ins with the corresponding values in the Python
dictionary data which we obtain as the result of the parseResponse function, which we will look at
next.

The Books Application Routes: Adding Book Records

� This uses the function parseResponse, which we will reuse later.

def parseResponse ():
data = {’Last’: request.forms.get(’Last’),

’First’: request.forms.get(’First’),
’YOB’: request.forms.get(’YOB’),
’YOD’: request.forms.get(’YOD’),
’Title’: request.forms.get(’Title’),
’YOP’: request.forms.get(’YOP’),
’Publisher’: request.forms.get(’Publisher’),
’City’: request.forms.get(’City’)}

return data

� and the template repsonse.tpl:

<form action=’/’>
<p>{{text}}; Thank you!</p>
<table>
% include(’th.tpl’,cols=cols)
% include(’book.tpl’,∗∗data,cols=cols)

</table>
<input type="submit" value="Continue"/>

</form>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 270 2024-02-08

The parseResponse function is almost trivial, it just queries the response object that comes from
the POST request for the various components via the forms.get method and packages the results in
a Python dictionary that feeds the response.tpl template. The latter creates a HTML form without
text input fields we only use it to trigger a GET request to the path / (the application root that
displays the updated book list). Note that we re-use the templates th.tpl and books.tpl from above
again.

The Books Application Routes: Adding Book Records

� Here is the result after filling in Tolkien’s “Lord of the Rings”:

46 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 271 2024-02-08

The next relevant rout is the “delete a book” functionality. Here we use another new feature: when
creating a database table in SQLite3, the system creates an additional primary key column rowid.
In particular we have a rowid column in the Books table, which we make use of.

The Books Application Routes: Deleting Book Records

� We add a route for deleting book records (for the delete button)

@get(’/delete/<id:int>’)
def delete(id):

cursor.execute(’DELETE␣FROM␣Books␣WHERE␣rowid␣=␣?’,(id,))
return template(’delete’)

Note that we have a dynamic route here: We use the named wildcard <id:int> to
obtain the rowid of the record to be deleted.

� The template file delete.tpl does the obvious:

<form action=’/’>
<p>Book record deleted; Thank you!</p>
<input type="submit" value="Continue"/>

</form>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 272 2024-02-08

Note that the link on the “delete” buttons in the books table root (see template book.tpl above)
has the form <button href="/edit/{{rowid}}">edit</button>, i.e. it references the rowid column.
This is picked up in the GET route for /delete/<id:int> path via the named wildcard <id:int>.
This makes sure the right database record is deleted.
The routes for editing book records combine techniques from the ones for adding and deleting.
From the former we use the layout into a GET and POST route, from the latter, we use the
dynamic route

The Books Application Routes: Editing Book Records

� Idea: Combine techniques from the add and delete routes

@get(’/edit/<id:int>’)
def edit(id):

cursor.execute(’SELECT␣∗␣FROM␣Books␣WHERE␣rowid␣=␣?’,(id,))

10.1. A BASIC WEB APPLICATION 47

return template(’edit’,cursor.fetchone(),id = id,cols=cols)

@post(’/edit/<id:int>’)
def editResponse(id):

data = parseResponse()
up = """UPDATE Books

SET Last = :Last, First = :First, YOB = :YOB, YOD = :YOD,
Title = :Title, YOP = :YOP, Publisher = :Publisher,
City = :City

WHERE rowid = :rowid"""
data.update({’rowid’: id})
cursor.execute(up,data)
return template(’response’,data=data,text=’Updated␣book␣record’,cols=cols)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 273 2024-02-08

In this case we have a small subtlety: the update instruction and the template edit.tpl need a rowid
key/value pair. We solve this by updating the data dictionary suitably. Now we only have to give
the template edit.tpl, which is rather straightforward.

Books Application Routes: Editing Book Records (cont.)

� The template file edit.tpl is similar to add.tpl above, but pre-fills the input fields
with the database record values.
<form action="/edit/{{id}}" method="post">
<table>
% include(’th.tpl’, cols=cols)
<tr>
<td><input type="text" name="Last" value="{{Last}}"/></td>
<td><input type="text" name="First" value="{{First}}"/></td>
<td><input type="text" name="YOB" value="{{YOB}}"/></td>
<td><input type="text" name="YOD" value="{{YOD}}"/></td>
<td><input type="text" name="Title" value="{{Title}}"/></td>
<td><input type="text" name="YOP" value="{{YOP}}"/></td>
<td><input type="text" name="Publisher" value="{{Publisher}}"/></td>
<td><input type="text" name="City" value="{{City}}"/></td>
<td><input type="submit" value="Submit"/></td>

</tr>
</table>

</form>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 274 2024-02-08

Books Application Routes: Editing Book Records (cont.)

� The result is

48 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

� Again, we use the template response.tpl, which we fill with a different message.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 275 2024-02-08

The main message to take home from this experiment is that we can build a simple but complete
web application with less than 100 lines of Python code and less than 70 lines of HTML template
files.

10.2 Access Control and Management
Now that we have a basic web application running, we can start adding features. The most

important one is access control to restrict who can access more critical functionalities of the web
application, such as deleting or editing database entries.

There are many technologies for access control, many use advanced features like browser cook-
ies. Here we want to introduce the simplest one: HTTP basic authentication is built into the
fabric of the world wide web: it is part of the HTTP protocol that drives it.

As HTTP basic authentication is unsafe (it sends user names and passwords over the network
only lightly encoded), we also add a discussion on how to upgrade the web application to HTTPS.

The full source is available at https://gl.mathhub.info/MiKoMH/IWGS/blob/master/source/
databases/code/books-app-https.py. The respective template files are siblings.

Access Control and Management

� Problem: Anyone can write, edit, and delete records from the books database.

� Solution: Implement a password-based log in procedure and restrict write/ed-
it/delete access to logged-in agents.

� Let’s fix some terminology before we continue

� Definition 10.2.1. Access control is the selective restriction of access to a resource,
access management describes the corresponding process.

� Access management usually comprises both authentication and authorization.

� Definition 10.2.2. Authorization refers to a set of rules that determine who is
allowed to do what with a collection of resources.

� For our books application we need four things

1. a browser interaction to query the user for username and password

2. a way to transport them to the web application program

3. a method for checking the username/password (authentication)

4. a way the specify who can do what. (authorization)

Realization: 1./2. via HTTP, 4. via bottle basic auth, implement 3. directly.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 276 2024-02-08

HTTP basic authentication is a simple mechanism in the HTTP protocol that standardizes the
transmission of username/password information the “handshake” that leads to its acquisition.

https://gl.mathhub.info/MiKoMH/IWGS/blob/master/source/databases/code/books-app-https.py
https://gl.mathhub.info/MiKoMH/IWGS/blob/master/source/databases/code/books-app-https.py

10.2. ACCESS CONTROL AND MANAGEMENT 49

HTTP Basic Authentication

� Recall that HTTP is a plain text protocol that passes around headers like this
GET /docs/index.html HTTP/1.1
Host: www.nowhere123.com
Accept: image/gif, image/jpeg, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
(blank line)

� Idea: For authentication extend the HTTP headers with support for username/-
password pairs.

� Definition 10.2.3. HTTP basic authentication introduces a HTTP header Authorization
for base64 encoded pairs ⟨⟨username⟩⟩:⟨⟨password⟩⟩ and a couple of challenge/re-
sponse messages.

� Problem: Base64 is very easy to decode, so usernames and passwords are com-
municated in the clear (very
unsafe)

� Passwords are “binary data” (think special characters), encoding just keeps them
unchanged over the network. (no encryption)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 277 2024-02-08

The message sequence diagram in Definition 10.2.3 shows the basic handshake mechanism that
establishes authentication and the delivery of restricted material to an authenticated user.

The diagram shows the details of the communication between client and server (symbolized by
the two vertical lines). The top arrow is a normal HTTP GET request (without a Authorization

50 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

field).
But – as the resource that is requested is access-restricted – the server does not just answer with

a HTTP “200 OK” and the resource, instead the server answers with a HTTP “401 Unauthorized”
code, which contains a description of the reason for the restriction.

When the browser receives the 401 code, it asks the user for a user name and password e.g.
with a popup form like the one shown in Definition 10.2.3, possibly displaying the reason string
– here “private”. This information is then send to the server in a second GET request, this time
with the username/password information in the Authorization request.

The server checks the user/password data and – depending on the result of the check – sends a
HTTP response “200 OK” together with the resource or a “403 Forbidden” (without the resource).

One thing that we have not discussed here is that most browsers store the username/pass-
word information and supply it to the server – often directly in any outgoing requests – which
makes it hard to test authentication and unauthenticated behavior in web application develop-
ment. A useful trick here is – if you are logged into http://example.org – to address a GET
request to http://abc@example.org. Background: HTTP basic authentication allows you to set
user/password information directly by prepending ⟨⟨user⟩⟩:⟨⟨pass⟩⟩ to the authority of the URI used
in a HTTP request.
Of course, HTTP basic authentication is supported by the bottle WSGI framework.

Basic Auth in Bottle

� Idea: Support the server side of HTTP basic authentication in bottle web-apps.

� Implementation: New decorator @auth_basic(⟨⟨function⟩⟩) to mark a route as
password-protected.

� Usage: Decorate every route we want to restrict access of with
@auth_basic(⟨⟨function⟩⟩), where ⟨⟨function⟩⟩ is a function that takes two string
arguments (user name and password) and returns a Boolean for the authorization
decision.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 278 2024-02-08

What happens behind the scene here is clear from the authentication handshake explained in
Definition 10.2.3

Basic Auth in Bottle: Minimal Viable Example

� Example 10.2.4. A web application with restricted route.

from bottle import run, get, auth_basic

def check(user, password):
return user == "miko" and password == "test"

@get("/")
@auth_basic(check)
def protected():

return "Authorized␣access␣granted!"

run(host="localhost", port=8000)

� Idea: Mix restricted and open routes in a partially restricted application.

http://example.org
http://abc@example.org

10.2. ACCESS CONTROL AND MANAGEMENT 51

� Extension: Use different check functions for different levels of restriction (user
roles)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 279 2024-02-08

This was easy enough. But one problem remains: in HTTP basic authentication, user names
and passwords are not confidential when they are transported over the network. The simplest way
to ensure confidentiality is to layer encryption on top of HTTP, which is just what the HTTPS
protocol does.

HTTPS: HTTP over TLS

� Definition 10.2.5. Hypertext Transfer Protocol Secure (HTTPS) is an extension of
the Hypertext Transfer Protocol (HTTP) for secure communication over a computer
network. HTTPS achieves this by running HTTP over a TLS connection.

� Consequences for Web Applications: We can use HTTP as usual, except

� we gain communication privacy and server authentication,

� server and browser need to speak HTTPS, (most do)

� the server needs a public key certificate and a private key.

� In bottle, we can just swap out the HTTP server to one that can do HTTPS:

run(host=’localhost’,port=’8888’,
server=’gunicorn’,keyfile=’key.pem’,certfile=’cert.pem’)

install it first with pip install gunicorn.

� Problem: Where to get the certificate file cert.pem and private key key.pem?

� One Solution: Self-sign one, e.g. using https://www.selfsignedcertificate.
com/ (adapt file names)

� Remaining Problem: Your browser forces you to specify an exception for https:
//localhost:8888 (probably OK for development)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 280 2024-02-08

Self-signed TLS certificate are sufficient for web application development. But publically deploying
a HTTPS based web application we need real ones. Fortunately, there is a relatively simple way
of obtaining them.

Getting a Real TLS Certificate via Let’s-Encrypt

� Intuition: HTTPS is the new “regular HTTP” on the web!

� Observation 10.2.6. A self-signed certificate gives communication privacy but not
authentication ⇝only you yourself vouch for the authenticity of the web site.

� Definition 10.2.7. In a public key infrastructure, the TLS certificate is issued by
a certificate authority, an organization chartered to verify identity and issue TLS
certificates.

https://www.selfsignedcertificate.com/
https://www.selfsignedcertificate.com/
https://localhost:8888
https://localhost:8888

52 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

� Commercial certificate authorities sell trust. (for a lot of money)
They certify e.g. that the https://bmw.com is under control of BMW AG.

� Idea: Finding out that you have control over a particular web site on the web can
be automated, if you run a program on the server host.

� Definition 10.2.8. Let’s Encrypt is a not for profit certificate authority that does
this and issues free TLS certificates. (to encourage HTTPS adoption)

� Concretely: on a linux server you need two steps

1. install certbot (usually via your package manager)

2. then sudo /usr/local/bin/certbot certonly −−standalone will generate certs.

Details at https://letsencrypt.org.

� Success: ≥ 1.000.000.000 TLS certificates, 200.000.000 sites since 2016

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 281 2024-02-08

We have only covered the basic ideas behind certificate authorities and Let’s Encrypt here, but
this should enable you to figure out the rest from the Let’s Encrypt web site.

10.3 Asynchronous Loading in Modern Web Apps
The web applications we have seen up to now have been relatively conventional, based mostly on
server-side scripting together with some client-side computation via JavaScript. This is a powerful
setup with one problem. Whenever the user needs new data from the server, the browser has to
request a new web page – even if only a small fragment of the original page needs to be changed.

The solution to this problem is to use JavaScript itself to load the new information and directly
integrate the result into the DOM, using a technology called Ajax. In this section we will introduce
Ajax by extending the database from section 10.1 with a lightweight front-end web application.
Before we get into the example, we introduce Ajax as a technology itself and recap the idea of
client-side computation using the DOM. The code in this section will be considerably more
complex than what we have seen before. But it shows many of the characteristical ideas of modern
web application development in a nutshell. That should make it worthwile to study, even if that
may take more than one attempt.

AJAX for more responsive Web Pages

� Definition 10.3.1. Ajax, (also AJAX; short for “Asynchronous JavaScript and
XML”) is a set of client side techniques for creating asynchronous web applications.

� Definition 10.3.2. A process p is called asynchronous, iff the parent process (i.e.
the one that spawned p) continues processing without waiting for p to terminate.

� Intuition: With Ajax, web applications can send and retrieve data from a server
without interfering with the display and behaviour of the existing page.

� Application: By decoupling the data interchange layer from the presentation
layer, Ajax allows web pages and, by extension, web applications, to change content
dynamically without the need to reload the entire page.

� Observation: Almost all modern web application extensively utilize Ajax.

https://bmw.com
https://letsencrypt.org

10.3. ASYNCHRONOUS LOADING IN MODERN WEB APPS 53

� Note: In practice, modern implementations commonly use JSON instead of XML.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 282 2024-02-08

Recall the HTML rendering pipeline in browsers around the DOM we introduced for client-side
computation.

Background: Rendering Pipeline in browsers

� Observation: The nested markup codes turn HTML documents into trees.

� Definition 10.3.3. The document object model (DOM) is a data structure for the
HTML document tree together with a standardized set of access methods.

� Rendering Pipeline: Rendering a web page proceeds in three steps

1. the browser receives a HTML document,

2. parses it into an internal data structure, the DOM,

3. which is then painted to the screen. (repaint whenever DOM changes)

HTML Document DOM Browser
<html>
<head>
<title>Welcome</title>

</head>
<body>
<p>Hello World!</p>

</body>
</html>

html

head body

title p

Welcome
Hello World!

Welcome

Hello World!
parse

The DOM is notified of any user events (resizing, clicks, hover,. . .)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 283 2024-02-08

The most important concept to grasp here is the tight synchronization between the DOM and the
screen. The DOM is first established by parsing (i.e. interpreting) the input, and is synchronized
with the browser UI and document viewport. As the DOM is persistent and synchronized, any
change in the DOM is directly mirrored in the browser viewpoint, as a consequence we only need
to change the DOM to change its presentation in the browser. This exactly is the purpose of the
client side scripting language, which we will go into next.

We will put the abstract ideas about Ajax and JSON introduced above to practical use. This
will make our understanding much more concrete.
The first step in the development of a Ajax based front end for the books application – as in any
software project – is to specify the intended behaviour of the front-end and plan the implementa-
tions.

Example: Details on Request via AJAX

� Idea: Use Ajax in a web application for the books application

� The start page just has a list of book titles, and

� details are fetched by an Ajax request and presented in line.

54 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

� Planning the Program: We need a bottle server with

1. a dynamic route that returns JSON-encoded data for a given book,

2. a route for the main page that lists the book titles,

3. stpl template files for list items with an Ajax request, and

4. a JavaScript function that reads the JSON and inserts it into the DOM.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 284 2024-02-08

Here we see a mockup of what the result will look like:

The finished product (initial state)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 285 2024-02-08

The finished product (with details loaded)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 286 2024-02-08

Now we are ready to begin with the implementation. Fortunately, the first step – serving the main
page and the JSON data for a given book is very simple, indeed that is exactly what bottle was
created for, since it is a routine task for building modern web applications.

10.3. ASYNCHRONOUS LOADING IN MODERN WEB APPS 55

The Routes (Serving HTML and JSON)

� After setting up the database and co, we have a standard route:

@route(’/’)
def books():

cursor.execute(’SELECT␣rowid,␣Title,␣YoP␣FROM␣Books’)
rv = cursor.fetchall()
return template(’titles’, books=rv)

� JSON routes and APIs are very easy in bottle: we just return a dictionary.

@route(’/json/<id:int>’)
def book(id):

cursor.execute(f’SELECT␣∗␣FROM␣Books␣WHERE␣rowid={id}’)
row = cursor.fetchone() # Only one result, rowid is a primary key.
return dict(zip(row.keys(), row)) # Pair up column names with values.

� Dictionaries and JSON in Bottle: Bottle automatically transforms Python dic-
tionaries into JSON strings; sets the Content Type header to application/json.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 287 2024-02-08

The Basic Templates

� The template titles.tpl is also standard

<html>
% include(’bookshead.tpl’)
<body>
<h1>Books by Title</h1>

% for bk in books: include(’title.tpl’,Id=bk[0], title=bk[1]) end

</body>
</html>

� The template title.tpl presents a single book title

{{title}}

<span class="interact" id="interact{{Id}}"

onclick="load_details({{Id}})">(show details)

The empty span will be filled by an Ajax call later!

� The interesting things happen in bookshead.tpl (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 288 2024-02-08

But now it becomes more tricky. We set up a couple of scripts in head of bookshead.tpl, which we
will now take a more detailed look at.

56 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

The Script load_details

� bookshead.tpl starts supplying JQuery and a JQuery templating library:
<script type="application/javascript"

src="http://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>
<script type="application/javascript"

src="https://cdn.jsdelivr.net/gh/codepb/jquery−template@1.5.10/dist/jquery.loadTemplate.min.js"></script>

� The main contribution of bookshead.tpl is the JQuery function load_details

async function load_details (numb) {
/∗ Request Info via JSON, feed it to template, update "show␣details" span ∗/
await $.getJSON("/json/" + numb,

function (data) {$("#content" + numb).loadTemplate($("#open"), data)});

which uses the JQuery Ajax call $.getJSON. This takes two arguments:

1. the URL for the HTTP GET request

2. a JavaScript function that is called if the GET request was successful.

The function (in argument 2) is then used to extend the result of $("#content"+
numb), i.e. that element in the DOM whose id attribute is contenti where i is the
value of the numb variable.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 289 2024-02-08

The Script load_details Continued

� We also use JQuery to change the onlick behaviour of the span element (from
load_details to toggle_details, explained below) and the text contained therein.

interact = $("#interact" + numb)

/∗ change click behaviour of interaction span from show to toggle ∗/
interact.removeAttr(’onclick’);
interact.attr(’onClick’, ’toggle_details(’ + numb + ’);’);

/∗ also change included text appropriately ∗/
interact.html("(hide␣details)");

}

� Recall the structure of title.tpl: For every book we have a title, a content element
that starts out empty and gets filled when load_details is called, and a clickable
interaction element that triggers load_details.

{{title}}

<span class="interact" id="interact{{Id}}"

onclick="load_details({{Id}})">(show details)

� The toggle_details-function used above does nothing but setting the content ele-
ment to hidden or visible and changing the text of the interaction element.

10.3. ASYNCHRONOUS LOADING IN MODERN WEB APPS 57

function toggle_details (numb) {
/∗ hide or show appropriate content element ∗/

content = $("#content" + numb);
interact = $("#interact" + numb);

if(content.css(’display’) == ’none’) {
content.show();
interact.html("(hide␣details)");

} else {
content.hide();
interact.html("(show␣details)");

}
}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 290 2024-02-08

Now let us look at this process in more detail. Apart from the fact that we are using JQuery
template processing and the syntax is different, this works exactly like bottle template processing,
which we have extensively practiced above. So just buckle up and enjoy the ride.

JQuery Template Processing

� Recall: We are still trying to understand
$("#content" + numb).loadTemplate($("#open’’),data)
It extends the empty in title.tpl with a details table:

� The loadTemplate method takes two arguments

1. a template; here the result of $(#open),i.e. the element in bookshead.tpl whose
id attribute is open (note the type attribute that makes it HTML)

<script type="text/html" id="open">
<table>

<tr>
<th>Author:</th>
<td>

(− −)

</td>
</tr>
<tr>

<th>Publisher:</th>
<td>, </td>

</tr>
</table>

</script>

2. a JavaScript data object: here the argument of the success function: the JSON
record provided by the server under route /json/i

{"Last": ’Twain’,
"First": ’Mark’,
"YoB": 1835,
"YoD": 1910,
"Title": ’Huckleberry␣Finn’,
"YoP": 1986,
"Publisher": ’Penguin␣USA’,
"City": ’NY’}

58 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

� The JQuery template processing places the value of the data−content attribute
into the . The resulting table constitutes the generated “detail view”:
<table>
<tr>
<th>Author:</th>
<td>
Mark Twain
(1835−1910)

</td>
</tr>
<tr>
<th>Publisher:</th>
<td>Penguin USA, NY</td>

</tr>
</table>

� Note: Both the JavaScript object in step 2. as well as the result of the tem-
plate processing show afterwards are virtual objects that exist only in memory. In
particular, we do not have to write them explicitly.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 291 2024-02-08

Now, we will show you the code in its entirety, it is less than 100 lines. So with the right tools, a
modern web page| with Ajax is not that difficult (once you wrap your head around it).

Code: An AJAX-based Frontend for the Books App

� booksapp−ajax.py: the web server with two routes
import sqlite3
from bottle import route, run, template, static_file

Connect to database
db = sqlite3.connect("./books.db")
Row factory so we can have column names as keys.
db.row_factory = sqlite3.Row
cursor = db.cursor()

@route(’/’)
def books():

cursor.execute(’SELECT␣rowid,␣Title,␣YoP␣FROM␣Books’)
rv = cursor.fetchall()
return template(’titles’, books=rv)

JSON interfaces are very easy in bottle, just return a dictionary
@route(’/json/<id:int>’)
def book(id):

cursor.execute(f’SELECT␣∗␣FROM␣Books␣WHERE␣rowid={id}’)
row = cursor.fetchone() # Only one result, rowid is a primary key.
return dict(zip(row.keys(), row)) # Pair up column names with values.

run(host=’0.0.0.0’, port=32500, debug=True)
Close database
db.close()

� titles.tpl styles the list of book titles
<html>
% include(’bookshead.tpl’)
<body>
<h1>Books by Title</h1>

% for bk in books: include(’title.tpl’,Id=bk[0], title=bk[1]) end

</body>

10.3. ASYNCHRONOUS LOADING IN MODERN WEB APPS 59

</html>

� title.tpl styles a single book

{{title}}

<span class="interact" id="interact{{Id}}"

onclick="load_details({{Id}})">(show details)

� bookshead.tpl provides the whole head of the main page.
<head>
<title>Books with Ajax Details</title>
<meta charset="utf−8">
<style>.interact:hover { background−color: yellow; }</style>

<script type="application/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>

<script type="application/javascript"
src="https://cdn.jsdelivr.net/gh/codepb/jquery−template@1.5.10/dist/jquery.loadTemplate.min.js"></script>

<script type="text/html" id="open">
<table>

<tr>
<th>Author:</th>
<td>

(− −)

</td>
</tr>
<tr>

<th>Publisher:</th>
<td>, </td>

</tr>
</table>

</script>

<script type="text/javascript">
/∗ async because we’re waiting for the template magic to finish before appending ∗/
async function load_details (numb) {
/∗ Request Info via JSON, feed it to template, update "show␣details" span ∗/
await $.getJSON("/json/" + numb,

function (data) {$("#content" + numb).loadTemplate($("#open"), data)});

interact = $("#interact" + numb)

/∗ change click behaviour of interaction span from show to toggle ∗/
interact.removeAttr(’onclick’);
interact.attr(’onClick’, ’toggle_details(’ + numb + ’);’);

/∗ also change included text appropriately ∗/
interact.html("(hide␣details)");

}

function toggle_details (numb) {
/∗ hide or show appropriate content element ∗/

content = $("#content" + numb);
interact = $("#interact" + numb);

if(content.css(’display’) == ’none’) {
content.show();
interact.html("(hide␣details)");

} else {
content.hide();
interact.html("(show␣details)");

}
}
</script>

60 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

</head>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 294 2024-02-08

10.4 Deploying the Books Application as a Program
Now we address the fact that a web appplication is usually deployed on a unix server, by

sysadmins who are accustomed the unix way of handling – configuring, starting, etc. – applications.
We will first introduce a way to make Python scripts as shell commands and give them arguments
optional and mandatory ones.

Deploying The Books Application as a Program

� Note: Having a Python script booksapp.py you start with python3 booksapp.py
is sufficient for development.

� If you want to deploy it on a web server, you want more: The sysadmin you deliver
your web application to wants to start and manage it like any other UNIX command.

� After all, your web server will most likely be a UNIX (e.g. linux) computer.

� In particular behavioural variants should be available via command line options.

� Example 10.4.1. To run the books application without output (−q or −−quiet)
and initialized with the seven book records we want to run
booksapp −q −−initbooks

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 295 2024-02-08

Deploying The Books Application as a Program

� Example 10.4.2. If we forget the options, we need help:

> booksapp −−help
Usage: <yourscript> [options]

Options:
−h, −−help show this help message and exit
−q, −−quiet don’t␣print␣status␣messages␣to␣stdout

␣␣−l␣FILE,␣−−log=FILE␣write␣log␣reports␣to␣FILE
␣␣−−initbooks␣␣␣␣␣␣␣␣␣initialize␣with␣seven␣book␣records

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 296 2024-02-08

Deploying a Python Script as a Shell Command/Executable

� We can make our a Python script behave like a native shell command.

� The file extension .py is only used by convention, we can leave it out and simply

10.4. DEPLOYING THE BOOKS APPLICATION AS A PROGRAM 61

call the file booksapp.

� Then we can add a special Python comments in the first line

#!/usr/bin/python3

which the shell interprets as “call the program python3 on me”.

� Finally, we make the file hello executable, i.e. tell the shell the file should behave
like a shell command by issuing

chmod u+x booksapp

in the directory where the file booksapp is stored.

� We add the line
export PATH="./:${PATH}"

to the file .bashrc. This tells the shell where to look for programs (here the respective
current directory called .)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 297 2024-02-08

Working with Options in Python

� We have the optparse library for dealing with command line options (install with
pip3)

� Example 10.4.3 (Options in the Books Application).

from optparse import OptionParser
parser = OptionParser()
parser.add_option("−l", "−−log", dest="logfile",

help="write␣logs␣to␣FILE", metavar="FILE")
parser.add_option("−q", "−−quiet",

action="store_false", dest="verbose", default=True,
help="don’t␣print␣status␣messages␣to␣stdout")

parser.add_option(’−−version’,dest="version",default=1.0,type="float",
help="the␣version␣of␣the␣books␣application")

options, args = parser.parse_args()
do something with the options and their args.
print (’VERSION␣␣␣:’, options.version)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 298 2024-02-08

62 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

Chapter 11

Image Processing

We will now begin a new topic on our way to a useful image database. In particular we will
see how computer scientists think about images, how digital images are represented in computer
memory and what we can do with them.

11.1 Basics of Image Processing

11.1.1 Image Representations

Images

� Example 11.1.1 (Zooming in on Augustus). A digital image taken by a
standard DSLR camera. Let’s zoom in on it!Images

And a bit more

63

64 CHAPTER 11. IMAGE PROCESSING
Images

When zooming in on an image, we start to see blocks of colors, which are organized
in a regular grid.

Images

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 299 2024-02-08

Images as Rasters of Pixels

� If we zoom in quite a bit more, we see

� Observation: The colors are arranged in a
two- dimensional grid (raster).

� Definition 11.1.2. We call the grid raster and each entry in it pixel (from “picture
element”).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 300 2024-02-08

11.1. BASICS OF IMAGE PROCESSING 65

Colors
Colors

Colors are usually stored in (R,G,B) format.
(3 channels)

R,G,B ∈ [0, 255] -> One Byte per channel per
pixel.

Images in this format can store
256 x 256 x 256 = 256³ Ƴ 16 million colors.

� Definition 11.1.3. Colors are usu-
ally represented in RGB format, i.e.
as triples ⟨R,G,B⟩ with three chan-
nels (also called bands).

� R,G,B∈[0,255] ; One Byte per
channel per pixel.

� Images in this format can store 256 ·
256 · 256 = 2563 (about 16 million)
colors.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 301 2024-02-08

Each pixel stores color information. We can obtain the values stored in digital images using a
color picker. Image processing programs like Microsoft Paint or Adobe Photoshop provide color
pickers (pipettes), but there also exist standalone applications. In this example we are using Color
Cop 1.

According to the color picker, our pixel stores the value (151, 103, 87). Colors are organized
in the so-called RGB format, meaning a color is composed from a mixture of red (R), green (G)
and blue (B). We call these components channels or bands.

The value in each of these channels typically ranges from 0 to 255. This is because a single
Byte can store exactly this value range and a Byte was deemed enough for most applications. We
can deduce that a pixel has 256 × 256 × 256 distinct value combinations, which is just over 16
million colors an image in this format can display. You might have seen this number on product
descriptions of computer monitors or cameras.

Color Examples

� Example 11.1.4. A color can be represented by three numbers.

1http://colorcop.net/

http://colorcop.net/

66 CHAPTER 11. IMAGE PROCESSING
Color Examples

(255, 0, 0)
Red

(0, 255, 0)
Green

(0, 0, 255)
Blue

(255, 255, 255)
White

(255, 0, 255)
Magenta

(0, 255, 255)
Cyan

(255, 255, 0)
Yellow

(128, 128, 128)
Gray

R = G = B
Grayscale colors

� Definition 11.1.5. A color is called grayscale, iff R = G = B

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 302 2024-02-08

A channel value of 0 means no intensity in this channel, a value of 255 corresponds to full intensity.
Thus, in order to create a pure red we set the R channel to 255 and the other two to 0 (no green
or blue). Other colors are achieved in a similar fashion.

Secondary colors (e.g. magenta, cyan, yellow) are created by mixtures of red, green, and blue.
For example, we create magenta by mixing red and blue.

Different shades of gray are obtained, when R=G=B. White is the brightest gray we can
achieve, by setting all values to 255. Black on the other hand has all channels set to 0 (meaning
no light/intensity).
When processing colors it is often beneficial to think about normalized colors. We normalize colors
by dividing by 255 (the highest value). Resulting color values are now between 0 and 1.

Normalized Color Values

� Observation 11.1.6. For color representations, only the relative contribution of
the band is imporant.

� Definition 11.1.7. Normalized colors use pixel values between 0 and 1.

� Idea: Values are still stored as Bytes, but normalized before use: v′ = v/255

� Example 11.1.8.

Normalized Color Values

(1, 0, 0)
Red

(0, 1, 0)
Green

(0, 0, 1)
Blue

(1, 1, 1)
White

(1, 0, 1)
Magenta

(0, 1, 1)
Cyan

(1, 1, 0)
Yellow

(0.5, 0.5, 0.5)
Gray

Rather than thinking of a pixel value of being between 0 and 255, it
is beneficial to think in terms of normalized color values, between
0 and 1.
Values are still stored as Bytes, but normalized before use:
v' = v / 255

Kohlhase: Inf. Werkzeuge @ G/SW 2 299 June 21, 2020

11.1. BASICS OF IMAGE PROCESSING 67

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 303 2024-02-08

HTML Color Codes

� HTML uses a shorthand notation for colors using hexadecimal numbers.

� Example 11.1.9.

HTML Color Codes
Shorthand notation for colors.
Encode (R,G,B) as hexadecimal numbers.

#FF0000
Red

#00FF00
Green

#0000FF
Blue

#FFFFFF
White

#FF00FF
Magenta

#00FFFF
Cyan

#FFFF00
Yellow

#808080
Gray

Kohlhase: Inf. Werkzeuge @ G/SW 2 299 June 21, 2020
Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 304 2024-02-08

Recall from last semester: In HTML and CSS we often express colors in HTML color codes. This
is the same principle as before, however the values are not expressed in decimal numbers but
instead in hexadecimal. Quick detour into the real world: Let’s explore where the RGB
format comes from.

The Human Eye

� Definition 11.1.10 (The Human Eye). Light from our surroundings enters our
eye through the lens and then hits the retina on the back of our eye.

The retina has cones and rods, which are responsible for color and brightness vision,
respectively.

� Since we are interested in colors here, we will ignore the rods for the purpose of
this lecture.

68 CHAPTER 11. IMAGE PROCESSING

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 305 2024-02-08

Light is an electromagnetic radiation. Only a small part of this radiation is visible to the human
visual system (wavelengths around 380 to 740 nanometers).

The Human Eye – Three Types of Cones

� Sensitivity of the Three Cones:

210 CHAPTER 12. IMAGE PROCESSING

The Human Eye – Three Types of Cones

C. Abraham, ƈA Beginnerƅs GYide to (CIE) Colorimetr],Ɖ Hipster Color
Science, 10-Sep-2016. Available: https://medium.com/hipster-color-
science/a-beginners-guide-to-colorimetry-401f1830b65a.
[Accessed: 13-May-2019].

Slide 305

Light is an electromagnetic radiation. Only a small part of this radiation is visible to the human
visual system (wavelengths around 380 to 740 nanometers).

There are three types of cones, which react to different areas in this spectrum. They roughly
correspond to the wavelengths, which we perceive as red, green, and blue (or rather long, middle,
and short wavelengths).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 306 2024-02-08

There are three types of cones, which react to different areas in this spectrum. They roughly
correspond to the wavelengths, which we perceive as red, green, and blue (or rather long, middle,
and short wavelengths).

The Human Eye – Three Types of Cones

� Example 11.1.11 (We see Yellow).

211

The Human Eye – Three Types of Cones

Example: Yellow
Both ƈredƉ and ƈgreenƉ cone are stimulated.

Eye cannot distinguish between yellow light and mixture
of red and green! (both look yellow)

C. Abraham, ƈA Beginnerƅs GYide to (CIE) Colorimetr],Ɖ Hipster Color
Science, 10-Sep-2016. Available: https://medium.com/hipster-color-
science/a-beginners-guide-to-colorimetry-401f1830b65a.
[Accessed: 13-May-2019].

Slide 306

When we now see yellow light for example, the two cones responsible for long and medium length
wavelengths are stimulated. Our brain converts this stimulus to yellow.

However, let’s imagine we perceive a mixture from red and green light. In this case these two
cones will be stimulated, too! Our brain is incapable of distinguishing between these two scenarios,
since the physical stimulus on our eye is the exact same!

It turns out that we can create all colors as a mixture of red, green, and blue light.

� Observation 11.1.12. We can create all (human-visible) colors as a mixture of
red, green, and blue light.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 307 2024-02-08

When we now see yellow light for example, the two cones responsible for long and medium length
wavelengths are stimulated. Our brain converts this stimulus to yellow.

However, let’s imagine we perceive a mixture from red and green light. In this case these two
cones will be stimulated, too! Our brain is incapable of distinguishing between these two scenarios,
since the physical stimulus on our eye is the exact same!
Monitors take advantage of this, since they usually also have pixels.

11.1. BASICS OF IMAGE PROCESSING 69

Monitors

� Definition 11.1.13. A computer monitor (or just monitor)is an output device for
visual information.

� Monitors (usually) have pixels, too!

� Definition 11.1.14. In color monitors, pixels typically consist not of a single light
source, but three distinct subpixels.

� If these subpixels are small enough and close together, our eye cannot see that the
light actually comes from different points and thus perceives the mixture color.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 308 2024-02-08

Image Size

� Example 11.1.15 (Augustus again).

Image: 1440× 746 pixels
Expected file size:
Width ·Height · Channels
1440 · 746 · 3 = 3, 222, 720B ≊ 3MiB

� But if we look onto our disk we see somthing completely different:

� On disk, images are usually compressed (JPEG, PNG, GIF,WebP etc). JPEG file
size is smaller than PNG, but image quality is lost.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 309 2024-02-08

This is because images on disc are usually compressed and stored in an image file format like
JPEG or PNG. Be careful with JPEG compression! JPEG sacrifices image quality in order to
achieve smaller file sizes!

70 CHAPTER 11. IMAGE PROCESSING

JPEG Compression Artefacts

� Example 11.1.16 (Augustus again). Here, the Augustus image is saved with a
very high jpeg compression. The file size is tiny (27 KB, compare to 440 KB on
previous slide). However, the image quality suffers.

JPEG creates blocks of pixels, and approximates the colors in this block with as few
bits as possible (according to compression ratio).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 310 2024-02-08

In this example we turned the JPEG compression very high, which leads to a tiny file size but
strong artefacts in the image quality.

11.1.2 Basic Image Processing in Python
When processing digital images programatically, we have to load them from disc and then perform
operations on them. In IWGS we will use Pillow library for this task. The example shows
howimages are loaded from disc.

The Pillow Library for Image Processing in Python

� We will use the Pillow library in IWGS.

� Definition 11.1.17. Pillow is a fork (a version) of the old Python library PIL
(Python Image Library). (hence the name)

� Details at https://pillow.readthedocs.io/slides/stable/

� Install: pip install Pillow

� Example 11.1.18. Determine the color of a particular pixel

from PIL import Image
load image
im = Image.open(’image.jpg’)
im.show()

https://pillow.readthedocs.io/slides/stable/

11.1. BASICS OF IMAGE PROCESSING 71

access color at pixel (x, y)
x = 15
y = 300
r, g, b = im.getpixel((x, y))

� Example 11.1.19. Directly use the image object in jupyter notebooks:

from PIL import Image
load image
im = Image.open(’image.jpg’)
im # in Jupyter Notebooks, we can directly use the variable

The notebooks shows the image in a new cell.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 311 2024-02-08

Loading here means that the file is read, and that the compression is reversed, i.e. the digital
image is decompressed. This means that the image which was before stored in JPEG compression
is now present in memory. You can think about the loaded image as a long Python list of pixel
values, i.e. one pixel after the other.

Grayscale Images

� Recall: A color is grayscale, iff R=G=B.

216 CHAPTER 12. IMAGE PROCESSING

Grayscale Images

(1, 1, 1)
White

(0.5, 0.5, 0.5)
Gray

(0, 0, 0)
Black

R = G = B

If all channels have the same value, why store all three?
Grayscale images usually have only one channel.

Slide 312

We said before that in colors, which represent shades of gray, all channels have the same value. If
this is true for all colors in an image, we call them grayscale images.

Since it is pointless to store each value three times, grayscale images usually only store one
value per pixel, which is then tripled before display.

� Idea: If all channels have the same value, why store all three?

� Grayscale images usually have only one channel.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 312 2024-02-08

Since it is pointless to store each value three times, grayscale images usually only store one value
per pixel, which is then tripled before display.
Conversion from color to grayscale images is a common operation, which most image processing
tools (Photoshop etc.) support. It serves as a first example of what we can do with digital images.

Grayscale Conversion

� Observation 11.1.20. Humans are very sensitive to green, less to red, and least
to blue.

� Definition 11.1.21. To convert an image to an grayscale image (grayscale con-
version), we compute Gray = 0.21R+ 0.71G+ 0.08B

72 CHAPTER 11. IMAGE PROCESSING

� Example 11.1.22 (Grayscale Conversion).

217

Color to Grayscale Conversion

Gray = 0.21 x R + 0.71 x G + 0.08 x B

Humans are very sensitive to green.
Green is therefore weighted higher than red and blue.

Slide 313

Conversion from color to grayscale images is a common operation, which most image processing
tools (Photoshop etc.) support. It serves as a first example of what we can do with images.

Grayscale conversion is a weighted sum of the three channel values. This means, each channel
value is multiplied with a factor and then the values are added to form a single value. Since
humans are very sensitive to green, the G channel has the highest weight.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 313 2024-02-08

Grayscale conversion is a weighted sum of the three channel values. This means, each channel
value is multiplied with a factor and then the values are summed up to form a single value. Since
humans are very sensitive to green, the G channel has the highest weight.
We now show some more image operations.

More Image Operations

� Example 11.1.23 (More Image Operations).

218 CHAPTER 12. IMAGE PROCESSING

Some more Image Operations

Original SepiaGrayscale Inverse

Threshold Red Channel
Extraction

Each pixel is
processed separately!

Slide 314

Displayed here are some more image operations. All of these process each pixel separately. Im-
plementation of these operations is very simple in Python. Since we store all our pixels in a large
list, we can simply create a for-loop over this list, do our calculation and store the result in a new
image at the same pixel coordinate.

� As for grayscale conversion of these process each pixel separately.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 314 2024-02-08

Implementation of these operations is very simple in Python. Since we store all our pixels in a
large list in Pillow, we can simply create a for-loop over this list, do our calculation and store the
result in a new image at the same pixel coordinate.

11.1. BASICS OF IMAGE PROCESSING 73

Image Operations in Pillow

� The pillow library supports many image operations out of the box.

� Example 11.1.24 (Grayscale Conversion and Inversion in Pillow).

from PIL import Image, ImageOps
im = Image.open (’image.jpg’)
convert to grayscale
gray = ImageOps.grayscale(im)
invert image
inverse = ImageOps.invert(im)

� Complete List: https://pillow.readthedocs.io/en/stable/reference/ImageOps.
html

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 315 2024-02-08

Transparency is an important operation. In this example we want to layer two digital images on
top of each other. We thus need to store for each pixel a measure of how transparent it is.

We expand our RGB notion to RGBA, by introducing a fourth channel A. A stands for alpha
and corresponds to the opacity of a pixel, i.e. a value of 0 means zero opacity (fully transparent),
a value of 1 (normalized) means fully opaque (no transparency).

Transparency and Image Composition

� Sometimes we want to overlay images ; layers.

� We need a notion of how transparent a pixel is.

� Definition 11.1.25. We introduce a fourth channel: A (for alpha). Alpha is the
opacity (inverse of transparency). A pixel is now ⟨R,G,B,A⟩.

� Example 11.1.26 (Combining Images).

219

Slide 315

Pillow supports many image operations. This slide displays two examples. Refer to the docu-
mentation for a complete list.

Transparency
Sometimes we want to overlay images -> Layers
We need a notion of how transparent a pixel is.

We introduce a fourth channel: A (for alpha).
Alpha is the Opacity (inverse of transparency).
A pixel is now (R,G,B,A).

Order of layers is important here! The Augustus image is below the other image!
The Augustus image has NO transparency, the second image does!

+ =

� Note: The order of layers is important here: The Augustus image is below the
other image! The Augustus image has no transparency, the second image does!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 316 2024-02-08

See examples for the opacity here. Fully transparent regions (visualized by the checkerboard),
have an alpha value of 0. Fully opaque regions have a value of 1. Intermediate values are possible
which correspond to partial transparency.

https://pillow.readthedocs.io/en/stable/reference/ImageOps.html
https://pillow.readthedocs.io/en/stable/reference/ImageOps.html

74 CHAPTER 11. IMAGE PROCESSING

Transparency (continued)

� Example 11.1.27 (Combining Images).

220 CHAPTER 12. IMAGE PROCESSING

Slide 316

Transparency is an important operation. In this example we want to layer two images on top of
each other. We thus need to store for each pixel a measure of how transparent it is.

We expand our RGB notion to RGBA, by introducing a fourth channel A. A stands for alpha
and corresponds to the opacity of a pixel, i.e. a value of 0 means zero opacity (fully transparent),
a value of 1 (normalized) means fully opaque (no transparency).

Transparency

(R,G,B,A) = (1, 1, 0, 1)
Full yellow

(R,G,B,A) = (0, 0, 0, 0)
Full transparent

+ =

(R,G,B,A) = (0.6, 0.0, 1.0, 0.5)
Half transparent purple

Rtarget = (1-A) x Raugustus + A x Rpurple,yellow

Gtarget = (1-A) x Gaugustus + A x Gpurple,yellow

Btarget = (1-A) x Baugustus + A x Bpurple,yellow

Slide 317

See examples for the opacity here. Fully transparent regions (visualized by the checkerboard),
have an alpha value of 0. Fully opaque regions have a value of 1. Intermediate values are possible
which correspond to partial transparency.

The final image is then composed by deciding for each pixel how much color from each source
image should contribute.

Note that this is again a per-pixel operation, which can easily be implemented with a simple
for-loop.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 317 2024-02-08

The final image is then composed by deciding for each pixel how much color from each source image
should contribute. Note that this is again a per-pixel operation, which can easily be implemented
with a simple for-loop.

11.1.3 Edge Detection
We will now look at more interesting image operations. A typical example especially important
for object recognition in digital images is to find features i.e. areas in the image, which are
recognizable.

For example, let’s say we want to find so-called edges in our image, i.e. areas where the color
changes rapidly. Edges often correspond to object outlines. We will see an example later.

Edge Detection

� Goal: Find interesting parts of image (features).

� Example 11.1.28 (Edge Detection). Find edges, i.e. image sections, where color
changes rapidly.

221

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Slide 318

We will now look at more interesting image operations. A typical example especially important
for object recognition in images is to find features. Features are areas in the image, which are
recognizable.

For example, let’s say we want to find so-called edges in our image, i.e. areas where the color
changes rapidly. Edges often correspond to object outlines. We will see an example later.

11.1. BASICS OF IMAGE PROCESSING 75

222 CHAPTER 12. IMAGE PROCESSING

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Clearly there is an edge in this image.
How do we detect it automatically?

Slide 319

In this (admittedly simple) example image, we can clearly see, that there is an edge present,
where the color shifts fast from dark to light. We will now explore, how we can detect such an
edge automatically.

Clearly there is an edge in this image. How do we detect it automatically?

222 CHAPTER 12. IMAGE PROCESSING

Slide 319

In this (admittedly simple) example image, we can clearly see, that there is an edge present,
where the color shifts fast from dark to light. We will now explore, how we can detect such an
edge automatically.

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Decide for each pixel, if it is an edge.
Here: Is marked pixel an edge pixel?

Decide for each pixel, whether it is on an edge. Here: Is marked pixel an edge pixel?

222 CHAPTER 12. IMAGE PROCESSING

Slide 319

In this (admittedly simple) example image, we can clearly see, that there is an edge present,
where the color shifts fast from dark to light. We will now explore, how we can detect such an
edge automatically.

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Decide for each pixel, if it is an edge.
Here: Is marked pixel an edge pixel?

Inspect neighbor pixels.

� Definition 11.1.29. We call a pixel a horizontal edge pixel, iff

lB − IT + IBL − ITL + IBR − ITR>τ

for some threshold τ and a vertical edge pixel, iff

lR − IL + ITR − ITL + IBR − IBL>τ

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 318 2024-02-08

In this (admittedly simple) example image, we can clearly see, that there is an edge present,
where the color shifts fast from dark to light. We will now explore, how we can detect such an
edge automatically.
The idea is to decide for each pixel if it is part of an edge or not (binary decision, yes or no). Let’s
take the marked pixel as example, but rememb er that the following operations are performed on
each pixel in the image.

76 CHAPTER 11. IMAGE PROCESSING

The idea for this edge detection algorithm is to compare the pixel column left to our marked pixel
to the column to the right. If the difference between the two columns is large, we know that we
are observing a vertical edge.

Analogous we can do the same for horizontal edges, by comparing the row above to the row
below our marked pixel.

We could perform this operation using only the pixels marked by L, R, B, and T, so only the
direct neighbors. By taking the diagonal pixels into consideration, too, we make sure we only
detect larger features.

Algorithm: Sobel Filter

� Idea: There is a general algorithm that computes this.

� Definition 11.1.30. Given a 3×3 matrix M , the Sobel filter computes a new pixel
value by getting the pixel value of each neighbor in 3x3 window, multiply with the
components in M and adding everything up.

� Observation 11.1.31. Given a suitable matrix M , the Sobel filter computes the
quantities from Definition 11.1.29.

� Example 11.1.32 (Edge Tests via Sobel Filters).

225

Edge Detection

Usually the center row or column is more important and is thus
higher weighted.

Algorithm: Get pixel value of each neighbor in 3x3 window,
multiply with following weights and add everything up.

-1 -2 -1

0 0

1 2 1

0

Horizontal edge test:

-1 0 1

-2 2

-1 0 1

0

Vertical edge test:

Slide 323

The operation we described here is called Sobel filter 2, named after Irwin Sobel.

Usually the direct neighbors are deemed more important than the diagonal neighbors. The
pixel values of the neighbor pixels are thus weighted, such that the direct neighbors contribute
more.

2https://en.wikipedia.org/wiki/Sobel_operator

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 319 2024-02-08

The operation we described here is called Sobel filter, named after Irwin Sobel.
Usually the direct neighbors are deemed more important than the diagonal neighbors. The

pixel values of the neighbor pixels are thus weighted, such that the direct neighbors contribute
more.
Here we see an example of edge detection. White pixels in the right image are pixels, which were
classified as edge pixels, i.e. pixels where large changes in color are present. Black pixels are no
edges.

Edge-Detection in Pillow

� Example 11.1.33 (Augustus and his Edges).

11.1. BASICS OF IMAGE PROCESSING 77

� Example 11.1.34 (Edge Detection in Pillow).

from PIL import Image, ImageFilter
im = Image.open(’augustus.jpg’)
edges = im.filter(ImageFilter.FIND_EDGES)
edges.show() # or just edges in Jupyter

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 320 2024-02-08

11.1.4 Scalable Vector Graphics
The digital images we talked about so far store colors in a large grid of pixels (a raster). A common
problem with these types of images is that we cannot zoom in on them as far as we want, without
loosing quality. At a certain point we start to see the individual pixels.

Vector graphics are an alternative way of storing digital images, which solve this problem.

Vector Graphics

� Problem: Raster images store colors in pixel grid. Quality deteriorates when image
is zoomed into.

� Vector Graphics solve this problem!

78 CHAPTER 11. IMAGE PROCESSING

Original Zoomed In

Raster Graphics

Vector Graphics

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 321 2024-02-08

The idea of vector graphics is fundamentally different than the idea of raster graphics. Instead of
storing pixels, we now store shape information!

For example, for a circle we don’t store a color for each pixel, but we rather just store where
the circle is, along with its radius, color, etc.

Vector Graphics (Definition)

� Definition 11.1.35. Image representation formats that store shape information
instead of individual pixels, are refered to as vector graphics.

� Example 11.1.36. For a circle, just store

� center

� radius

� line width

� line color

� fill color

� Example 11.1.37. For a line, store

� start and end point

� line width

� line color

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 322 2024-02-08

Note that most monitors cannot display vector graphics. There are vector monitors, but they are
not common.

Vector Graphics Display

� There are devices that directly display vector graphics.

� Example 11.1.38.

11.1. BASICS OF IMAGE PROCESSING 79

� Definition 11.1.39. For monitors, vector graphics must be rasterized – i.e. con-
verted into a raster image before display.

� Example 11.1.40.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 323 2024-02-08

The monitor displayed in Example 11.1.38 here does not have pixels. It instead moves a laser and
traces a polygon (the asteroids and spaceship). The laser stimulates a phosphor layer, which then
glows.
Common monitors work with pixels. Vector graphics are thus rasterized (i.e. turned into raster
graphics) just before being displayed. The rasterizer decides for each pixel, whether it is inside or
outside the shape and thus what RGB value to display.
On the edges of Example 11.1.40, we see pixels whose barycenter is outside the triangle but that
are colored in a very light variant of the adjoining pixels. This technique is called anti-aliasing and
is used to make the jagged lines created by rasterization less noticeable to the human eye.
We now introduce a concrete representation format for vector graphics.

SVG is one image format for vector graphics. Since it is XML based we are able to read it. As
described above, we can create circles by specifying a position, radius, and style (color etc).

Scalable Vector Graphics (SVG)

� Definition 11.1.41. Scalable Vector Graphics (SVG) is an XML-based markup
format for vector graphics.

� Example 11.1.42.

<svg xmlns="http://www.w3.org/2000/svg"
width="100" height="100" >

<circle cx="50" cy="50" r="50"
style="fill:#1cffff;␣stroke:#000000;␣stroke−width:0.1" />

</svg>

80 CHAPTER 11. IMAGE PROCESSING

� The <svg> tag starts the SVG document, width, height declare its size.

� The <circle> tag starts a circle. cx, cy is the center point, r is the radius. style
describes how the circle looks.

As the SVG size is 100x100 and the circle is at (50,50) with radius 50, it is centered
and fills the whole region.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 324 2024-02-08

More SVG Primitives

� Example 11.1.43 (Rectangle).

<rect x="..." y="..." width="..." height="..." style="..." />

� Example 11.1.44 (Ellipse).

<ellipse cx="..." cy="..." rx="..." ry="..." style="..." />

� Example 11.1.45 (Line).

<line x1="..." y1="..." x2="..." y2="..." style="..." />

� Example 11.1.46 (Text).

<text x="..." y="..." style="...">This is my text!</text>

� Example 11.1.47 (Image).

<image xlink:href="..." x="..." y="..." width="..." height="..." />

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 325 2024-02-08

We can draw arbitrary polygons by specifying a list of coordinates.

SVG Polygons

� Example 11.1.48 (An SVG Triangle).

<svg height="210" width="500" xmlns="http://www.w3.org/2000/svg">
<polygon points="200,10 250,190 160,210"

style="fill:lime;stroke:purple;stroke−width:1"/>
</svg>

11.1. BASICS OF IMAGE PROCESSING 81

� Example 11.1.49 (An SVG Pentagram).

<svg height="210" width="210" xmlns="http://www.w3.org/2000/svg">
<polygon points="100,10 40,198 190,78 10,78 160,198"

style="fill:lime;stroke:purple;stroke−width:5;fill−rule:nonzero;"/>
</svg>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 326 2024-02-08

SVG can directly be embedded in HTML!

SVG in HTML

� SVG can be used in dedicated files (file ending .svg)
and referenced in a tag.

� It can however also be written directly in HTML files.

� Example 11.1.50. Triangle from Example 11.1.48 embedded in HTML file

<html>
<body>
<svg height="210" width="500" xmlns="http://www.w3.org/2000/svg">
<polygon points="200,10␣250,190␣160,210"

style="fill:lime;stroke:purple;stroke−width:1" />
</svg>

</body>
</html>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 327 2024-02-08

We now explore a useful attribute of SVG called viewBox. We said that we can zoom in onto
vector graphics as far as we want without loosing quality, so let’s give ourselves the possibility to
do so.

The SVG viewBox Attribute

� Idea: The SVG viewBox attribute allows us to zoom into an image.

82 CHAPTER 11. IMAGE PROCESSING

� Example 11.1.51.
<svg width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

Here, the width and height are scaled by a factor of 2
to give us a little more room. Sometimes we want to
specify a larger image, but only display a section of it.

232 CHAPTER 12. IMAGE PROCESSING

Slide 331

SVG can directly be embedded in HTML!

The SVG viewBox Attribute

<svg width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

In this example the width and height are scaled by a
factor of 2 to give us a little more room.
Sometimes we want to specify a larger image, but
only display a section of it.

Introducing viewBox:

viewBox specifies a region inside our canvas. Only
things inside this region are drawn. The resulting
image is then stretched to the canvas size (zoom
effect).
https://www.sarasoueidan.com/blog/svg-coordinate-systems/

<svg viewBox="0 0 100 100" width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

200

20
0

(50,50)
50

100

10
0 50

(50,50)

Slide 332

� Example 11.1.52.
<svg width="200" height="200" xmlns="..."

viewBox="0␣0␣100␣100" >
<circle cx="50" cy="50" r="50" style="..." />

</svg>

viewBox specifies a region inside our canvas. Only
things inside that are drawn. The resulting image is
then stretched to the canvas size (zoom effect).

232 CHAPTER 12. IMAGE PROCESSING

Slide 331

SVG can directly be embedded in HTML!

The SVG viewBox Attribute

<svg width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

In this example the width and height are scaled by a
factor of 2 to give us a little more room.
Sometimes we want to specify a larger image, but
only display a section of it.

Introducing viewBox:

viewBox specifies a region inside our canvas. Only
things inside this region are drawn. The resulting
image is then stretched to the canvas size (zoom
effect).
https://www.sarasoueidan.com/blog/svg-coordinate-systems/

<svg viewBox="0 0 100 100" width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

200

20
0

(50,50)
50

100

10
0 50

(50,50)

Slide 332

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 328 2024-02-08

The top example shows a 200 by 200 units large SVG canvas. In the top left quadrant we draw a
circle.

The second code snippet employs the viewBox attribute, which specifies an area of the image
we want to display. In this example we give it a region from (0,0) to (100,100), meaning we specify
exactly this upper left quadrant.

viewBox now does two things: First, it only draws objects inside this region, i.e. it discards
everything outside. Second, it stretches this region to the whole SVG canvas. This means, that
our final image is still 200 by 200 units (pixels) in size, but we only see a region of our original
image. This gives a zoom effect.

11.2 Project: An Image Annotation Tool

Project: Kirmes Image Annotation Tool

� Problem: Our Books-App project was a fully functional web application, but does
not do anything useful for DigiHumS.

� Idea: Extend/Adapt it to a database for image annotation like LabelMe [LM].

� Setting: Prof. Peter Bell (formerly at FAU) conducts research on baroque paint-
ings on parish fairs (Kirmes) and the iconography in these paintings. We want to
build an annotation system for this research.

� Project Goals:

1. Collect kirmes images in a database and display them,

2. mark interesting areas and provide meta data,

3. display/edit/search annotated information.

1. is analogous to Books-App, for 2/3. we need to know more

� Plan: Lern the necessary technologies in class, build the system in exercises

11.2. PROJECT: AN IMAGE ANNOTATION TOOL 83

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 329 2024-02-08

In our quest for an image annotation technology, we will first explore HTML image maps.

HTML Image Maps

� Definition 11.2.1. HTML image maps mark areas in an digital image and assign
names and links to them.

� Example 11.2.2. An image map adds hover and on click behavior

Clicking on the pupil leads to: Clicking on the vitreous body leads to:
https://en.wikipedia.org/wiki/Pupil https://en.wikipedia.org/wiki/

Vitreous_body

<html>
<body>

<map name="image−map">
<area title="Pupil"

href="https://en.wikipedia.org/wiki/Pupil"
coords="102,117,143,219" shape="rect"/>

<area title="Vitreous␣Body"
href="https://en.wikipedia.org/wiki/Vitreous_body"
coords="242,166,107" shape="circle"/>

</map>
</body>

</html>

� Easy creation of image maps: https://www.image-map.net/

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 330 2024-02-08

Image maps provide a way to mark areas in an image. These areas act as links, i.e. clicking on
them leads to different URLs. For example in this case there are two regions in the image (pupil
and vitreous body), which - when clicked on - direct your browser to the respective Wikipedia
articles.
 tag specifies image as always, but we no add a new attribute usemap that specifies the
name of an image map to use (here image−map).

The map itself is defined by the <map> element (with the same name!). Inside the map we
define our areas for the two parts of the eye we want to annotate. In this example we use a
rectangle for the pupil and a circle for the vitreous body.

This is specified by the two <area> elements, which have a title attribute (shown on hover)
and a link (href). The shapes are specified by the shape attribute with values rect, circle, poly,
. . . and some coordinates specified in the coords attribute.
Image maps are useful for certain tasks, but aren’t quite what we want for our annotation tool.
They are somewhat difficult to work with, especially if you want the areas to react to your mouse.

https://en.wikipedia.org/wiki/Pupil
https://en.wikipedia.org/wiki/Vitreous_body
https://en.wikipedia.org/wiki/Vitreous_body
https://www.image-map.net/

84 CHAPTER 11. IMAGE PROCESSING

Problems of HTML Image Maps

� Problem: Image maps do not allow interaction:

� the name attribute can only contain unstructured information.

� no integrated highlight for image maps area,

� no onclick or onmouseover attributes.

But the whole point is to have (arbitrarily) complex metadata for image regions.

� New Plan: Use a newer technology: SVG and CSS.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 331 2024-02-08

We therefore go a different route, by using SVG and CSS: The whole functionality of the annota-
tion tool will be implemented in a single SVG image where CSS provides the interactivity.
First we implement the equivalent of an image map by including a raster graphic (our image) and
four rectangles for the annotation areas. Coordinates of the rectangles can be read out from any
tool like Microsoft Paint or GIMP.

Handcrafting better Image Annotations with SVG and CSS

� Idea: Integrate the image and the areas into one SVG and make areas interactive
via CSS.

� Example 11.2.3 (Paper Prototype). Highlight regions and display information
on hover.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 332 2024-02-08

Displayed here is our goal behavior, which we will pursue on the following slides. As we have not
implemented this, we could have created this in an image processing program, e.g. photoshop or
GIMP. We call such a mockup for informing our design intuition a paper prototype.

The rectangles mark certain parts of our image and react to the mouse being moved over them.
On the one hand the area is highlighted by the white rectangles. Additionally descriptive text is
displayed below the image (in this case the name of the respective president).

SVG Annotation Implementation Areas

� Implementing Areas as Rectangles:

11.2. PROJECT: AN IMAGE ANNOTATION TOOL 85

<svg xmlns="http://www.w3.org/2000/svg" width="1536" height="1024" >
<!−− Image −−>
<image width="1536" height="1024" xlink:href="mount_rushmore.jpg" />
<!−− Areas in image as rects. −−>
<rect x="300" y="125" width="250" height="300"/>
<rect x="550" y="225" width="200" height="300"/>
<rect x="750" y="375" width="200" height="300"/>
<rect x="999" y="375" width="200"height="300"/>

</svg>

Add four <rect>s (one for each president).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 333 2024-02-08

Note again: The image is not a vector graphic. Even though it is embedded in a SVG envi-
ronment, it will not have the benefits of a vector graphic, i.e. it will lose quality when zoomed in
on.
Note furthermore: the order of elements in our SVG matters! Here the <rect> tags are
specified after the image. SVG draws the elements from top to bottom. The rectangles are
therefore drawn on top of the image.

Swapping this order would lead to the image being drawn on top of the rectangles. This means,
that the rectangles would not be visible!

SVG Annotation Implementation Result

� Areas as Rectangles – Result: Now the rectangles are visible

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 334 2024-02-08

The rectangles are now visible in our SVG. Their color defaults to black, so let’s fix this next, so
that we can actually see our image again.
We add a CSS stylesheet to our site. This can either be defined in a separate file (like in this
example), or be specified directly in the HTML inside of <style> tags.

Adding CSS for the Areas

86 CHAPTER 11. IMAGE PROCESSING

� Example 11.2.4 (Adding CSS).

rect {fill−opacity:0; stroke:white; stroke−opacity:1; stroke−width:5px}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 335 2024-02-08

Our goal is to give the rectangles a solid white border, but no inner color. We thus change the
stroke (border) parameters.

The fill opacity is set to zero, in order to make it completely transparent so we see the presidents’
heads again. However, the rectangles are always visible and do not react to our mouse input. We
will fix this next.

Selectively Highlighting Areas

� Problem: Now the rectangles are always visible.

� Idea: make the rectangles invisible by default only show them on hover.

� CSS: We set the stroke opacity to zero by default and add a hover selector.

rect {fill−opacity:0; stroke:white; stroke−opacity:0; stroke−width:5px}
rect:hover {stroke−opacity:1}

243

SVG Annotation Implementation – Hover Effect

Michael MSll, ƈDie Präsidenten am Mount Rushmore,Ɖ https://www.dieweltenbummler.de/, 2017.
Available: https://www.dieweltenbummler.de/wp-content/uploads/2017/05/Mount-Rushmore-von-unten-1536x1024.jpg.
[Accessed: 11-June-2019].

Slide 346

The rectangles are now invisible, expect when hovered over by the mouse.

Slide 347

11.2. PROJECT: AN IMAGE ANNOTATION TOOL 87

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 336 2024-02-08

The hover selector of the rectangles specifies their style, whenever the mouse is over the element.
This allows us to specialize the appearance for this case: we set the opacity back to one, meaning
full opacity and thus visibility.
Net Effect: The rectangles are now invisible, expect when hovered over by the mouse.
We will now add the description text to each of our annotation areas. Since our text should
appear below the image, let’s start by giving ourselves a bit more room in the SVG canvas. We
thus increase the SVG height by a bit. Note, that this does not impact the image (because it has
an own height).

Adding Annotation Text

� Adding Annotation Text and making space for it.

<svg xmlns="http://www.w3.org/2000/svg" width="1536" height="1224" >
<!−− Image −−>
<image width="1536" height="1024" xlink:href="mount_rushmore.jpg" />
<!−− Areas in image as rects, text below −−>
<rect x="300" y="125" width="250" height="300" />
<text x="100" y="1200">George Washington</text>
<rect x="550" y="225" width="200" height="300" />
<text x="100" y="1200">Thomas Jefferson</text>
<rect x="750" y="375" width="200" height="300" />
<text x="100" y="1200">Theodore Roosevelt</text>
<rect x="999" y="375" width="200" height="300" />
<text x="100" y="1200">Abraham Lincoln</text>

</svg>

and we add some CSS:
text {fill:black; opacity:1; font−size:100px}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 337 2024-02-08

We then add the text. Note, that all text elements have the exact same position below the image.
They only differ in the text they display (the name of the president).

We write each text element directly below the corresponding rectangle tag, for reasons we will
explain in a bit!
We also style the text: The text color is specified by the fill attribute. This is the default, so
it’s not really necessary to specify this. However, oftentimes it is advisable to be as verbose as
possible with certain attributes, because this more clearly shows our intention.

Adding Annotation Text – Result

� Adding Annotation Text – Result:

88 CHAPTER 11. IMAGE PROCESSING

245

SVG Annotation Implementation – Annotation Text

Michael MSll, ƈDie Präsidenten am Mount Rushmore,Ɖ https://www.dieweltenbummler.de/, 2017.
Available: https://www.dieweltenbummler.de/wp-content/uploads/2017/05/Mount-Rushmore-von-unten-1536x1024.jpg.
[Accessed: 11-June-2019].

Slide 349

We have text! It is not particularly pretty, mainly because all texts are right above each other,
but this is expected so far, since we specified all text tags to have the same position. Our main
problem is, that the text does not react to our mouse input yet. Remember: Our goal is that each
text element is only displayed, when the corresponding rectangle in the image is hovered by the
mouse.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 338 2024-02-08

The text is still unreadable, mainly because all texts are right above each other, but this is expected
so far, since we specified all text tags to have the same position. Our main problem is, that the
text does not react to our mouse input yet. Remember: Our goal is that each text element is only
displayed, when the corresponding rectangle in the image is hovered by the mouse.
Our approach is analogous to the hovering of the rectangles we did previously. We text a default
opacity of zero, and a hover opacity of one.

Remember though, that the hover selector always influences the element it is specified on, i.e.
when writing text:hover, and then changing the opacity, this changes the opacity when we hover
over the text, not when we hover the rectangle. We thus introduce the CSS sibling operator, +.

Selectively Showing Annotations

� Problem: Now the annotations are always visible.

� Idea: Add CSS hover effect for <rect>s, which effects the |<text>|.

� Definition 11.2.5. The CSS sibling operator + modifies a selector so that it (only)
affects following sibling elements (same level).

� Example 11.2.6. In the CSS directive

246 CHAPTER 12. IMAGE PROCESSING

SVG Annotation Implementation – Hover Annotation

rect {
fill-opacity: 0;
stroke: white;
stroke-opacity: 0;
stroke-width: 5px;

}

rect:hover {
stroke-opacity: 1;

}

text {
fill: black;
opacity: 0;
font-size: 100px;

}

rect:hover + text {
opacity: 1;

}

Add CSS hover effect for <rect>s,
which effects the <text>.

Syntax:
rect:hover + text {<rules>}

Sibling operatorSelector Target

Note, that the + operator only affects
siblings (same level), which are
directly after the selector element.
The order of elements in the HTML is
therefore important!

Slide 350

Our approach is analogous to the hovering of the rectangles we did previously. Let’s give our text
a default opacity of zero, and a hover opacity of one.

Remember though, that the hover selector always influences the element it is specified on, i.e.
when writing text:hover, and then changing the opacity, this changes the opacity when we hover
over the text, not when we hover the rectangle. We thus introduce the CSS sibling operator, +.

Using the sibling operator, it is possible to change another element’s style when a certain
element is hovered (or interacted with in a different way). In this case, we give the rectangle a
hover selector, which then influences the text.

The sibling operator influences the next element of the specified type (in our case text) in the
HTML/SVG. This is why earlier we put the text elements always directly after the rectangle.

This way, when a rectangle is hovered over, the next text element is always the corresponding
description and will thus become visible.

the rules affect the SVG <text> directly after the <rect> element.

� Again: the order of elements in the HTML is important!

� CSS: We set the opacity to zero by default and add a hover selector for the
following <text> sibling.

text {fill:black; opacity:0; font−size:100px}
rect:hover + text {opacity: 1}

11.3. FUN WITH IMAGE OPERATIONS: CSS FILTERS 89

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 339 2024-02-08

The sibling operator influences the next element of the specified type (in our case text) in the
HTML/SVG. This is why earlier we put the text elements always directly after the rectangle.

This way, when a rectangle is hovered over, the next text element is always the corresponding
description and will thus become visible.

Image Annotation Tool – Final Result

� Now our annotation tool works as expected!

� Example 11.2.7 (Final Result). Highlight regions and display information on
hover.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 340 2024-02-08

11.3 Fun with Image Operations: CSS Filters
Let’s explore more the capabilities CSS has to offer for applying operations to digital images. In
this example we make an image gray, by specifying a grayscale filter attribute. The argument of
the filter gives us the possibility to make the image only a litte gray. Since it is set to 100% in
this example, the image is converted to perfect grayscale.

CSS Image Filters

� Goal: Apply image filters (grayscale etc.) directly in CSS.

� Example 11.3.1 (Image Effects via inline CSS).

90 CHAPTER 11. IMAGE PROCESSING

� Disadvantage: The original image is delivered to client. When user saves the
image, they get the original!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 341 2024-02-08

One extremely important thing to keep in mind is that CSS is executed on the client (the user’s
browser). The original image or text is delivered to the client, where the filter is applied. You can
try this out by right-clicking a filtered image on a web site and saving it to your hard drive. Note,
that the original digital image is saved!

The implication here is, that for certain content it is best to perform the filter on the server and
then deliver the filtered content to the user, so that he or she does not even have the possibility
to get the original. This however also means more computation on the server, which might be
expensive.
Rule of thumb: Perform as much as possible on the client (CSS and JavaScript) and as much
as necessary on the server (for example python in bottle).
Here are more examples of image filters. The CSS selectors here start with dots. This makes them
influence HTML elements of the respective class name, i.e. the selector .shadow gives the HTML
element with class shadow a drop shadow.

Some more CSS Filters

� Example 11.3.2 (Image Effects via CSS Style sheets).

11.3. FUN WITH IMAGE OPERATIONS: CSS FILTERS 91

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 342 2024-02-08

Blurring: Blur is an image operation, which mixes each pixel’s color with the colors of its
neighbor. The operation is thus similar to our edge detection example from earlier, but with
different weights per neighbor pixel.

Also, for blur it is possible to specify larger neighborhoods. In this case the radius of our
neighborhood is 4 pixels, meaning that we mix the colors of a region with radius 4.
Contrast: Contrast makes dark colors darker and light colors lighter for arguments over 100%.
This increases the range between the darkest and lightest pixel.

For arguments under 100%, the contrast shrinks.
Hue Rotation: The color wheel at the top might look familiar to you. It is a standard way of
displaying colors. The outer ring is roughly equivalent with the colors of the rainbow (with some
exceptions; purple for example is not a rainbow color).

The hue-rotate filter rotates this color wheel, such that each color lands in a different spot. In
our example (90deg), red becomes green. This effect can be observed on Augustus’ cloak.
Another useful thing is the combination of CSS filters. For example you can blur an image and
then convert it to grayscale, as showcased in the example.

Combining CSS Filters

� Idea: We can also combine image filters flexibly. The easist way is when we define
CSS classes for that.

� Example 11.3.3 (Tie CSS Filters to Classes).

<html>
<head>
<style type="text/css">

92 CHAPTER 11. IMAGE PROCESSING

.blur { filter: blur(4px); }

.brightness { filter: brightness(0.30); }

.contrast { filter: contrast(180%); }

.grayscale { filter: grayscale(100%); }

.huerotate { filter: hue−rotate(180deg); }

.invert { filter: invert(100%); }

.opacity { filter: opacity(50%); }

.saturate { filter: saturate(7); }

.sepia { filter: sepia(100%); }

.shadow { filter: drop−shadow(8px 8px 10px green); }
</style>

</head>
<body>

</body>
</html>

� Note: The order is important: Changing the order of filters yields different results.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 343 2024-02-08

Digital image are not the only HTML element which can be filtered. It turns out that you can
apply filters to nearly everything in HTML, for example text. Note that here we are using the
blur class from earlier.

Filtering Everyghing Else

� Note: CSS filters don’t just apply to images! (Almost) everything can be filtered.

� Example 11.3.4 (Filtering Text (Blurring)).

<p style="filter:␣blur(3px)">A severely blurred Text</p>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 344 2024-02-08

A fun thing to play around with are CSS animations.

CSS Animations

� Definition 11.3.5. CSS animations change state of an object over time.

� Example 11.3.6 (Inverting an image).

img {animation: invertAnimation 1s forwards}

@keyframes invertAnimation {
from {filter: none}
to {filter: invert(100%)}

}

11.4. EXERCISES 93

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 345 2024-02-08

In this case we define an animation called invertAnimation which applies an inversion-filter. The
syntax specifies that at the beginning of the animation, no filter should be applied and in the end
we want the image to be completely inverted.

We then apply the animation to all elements of tag . We declare that the animation
should run one second (1s), so the image is inverted after one second.

The last attribute specifies what should happen after the animation is completed. forwards
means that the element should simply stay how it is, so it stays inverted after the one second.

SVG Filters

� Note: Unfortunately in SVG the filtering works differently from CSS.

� Example 11.3.7 (Blurring Mt. Rushmore in SVG).

<svg xmlns="http://www.w3.org/2000/svg" width="1536" height="1024">
<style> image {filter: url(#myCustomFilter)}</style>
<image width="1536" height="1024" xlink:href="mount_rushmore.jpg" />
<!−− Image filter −−>
<filter id="myCustomFilter">
<feGaussianBlur stdDeviation="5" />

</filter>
</svg>

� Example 11.3.8 (SVG Filters can be combined).

<filter id="myCustomFilter">
<feGaussianBlur stdDeviation="5" />
<feColorMatrix type="saturate" values="0.1" />

</filter>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 346 2024-02-08

In the first example we define a filter at the bottom. We give it a name (myCustomFilter), which
we can then reference in the CSS snippet above. With the url function we can apply a filter with
the given name to all images.

The Gaussian Blur filter here is similar to the blur filter in CSS.
Similarly to HTML, we can combine filters in SVG as well. In the second example we apply a
saturation filter after the blur. This is similar to a grayscale filter.

11.4 Exercises

Problem 4.1 (Basic Image Manipulation)
In this exercise we will explore Pillow’s image processing capabilities. Create a new Python file

ImageManip.py and import the Image and ImageOps modules like this:

from PIL import Image, ImageOps

Write a Python function transformImage, which takes as arguments a digital image and a string.
The string describes, which transformation should be applied to the image. For example, if the
value of the passed string is "gray", your function should convert the image to grayscale and return
the resulting image.

You find a complete list of Pillow’s image processing functions here: https://pillow.readthedocs.
io/mod/stable/reference/ImageOps.html. Your function should at least support five of them.

https://pillow.readthedocs.io/mod/stable/reference/ImageOps.html
https://pillow.readthedocs.io/mod/stable/reference/ImageOps.html

94 CHAPTER 11. IMAGE PROCESSING

You can freely choose the string value you want to assign each operation. For example, if you
want to support the grayscale operation, you can choose whether the expected string is supposed
to be "gray" or "grayscale" or something else, as long as it is sensible.

If the passed string does not match any operation, just return the original image.
Outside the function, load an image from your hard drive using Pillow’s Image.open function.

You may use one of the images in the Kirmes repository or use one of your own digital images.
Test your transformImage function by passing the image, along with some strings specifying

the image operation. Display the transformed image using Pillow’s show functionality.
Refer to the course notes for examples of the open and show methods.

Problem 4.2 (Watermarking Images)
In this exercise we will add functionality to apply a watermark to a digital image. We provide a

watermark image (Watermark.png) together with this assignment (StudOn and Kirmes repository),
but feel free to create one yourself.

Create a new Python function applyWatermarkToImage, which takes an image as argument. In
the function, load the watermark image from your hard drive. Then use Pillow’s alpha_composite
function to overlay the watermark on top of the input image: https://pillow.readthedocs.io/
mod/stable/reference/Image.html#PIL.Image.Image.alpha_composite

Note that there are two versions of alpha_composite in Pillow. The one we are using here
directly modifies the original image and does not return a new one.

At the end of your function, convert the watermarked image back to RGB (analogous to above)
and return the result.

Test your function and show the watermarked image! You can also use the save function to
write the image to your hard drive:

im.save(‘‘filename.jpg’’, ‘‘JPEG’’)

Optional for the highly motivated: Check out the following tutorial, if you want to
write arbitrary text as watermark: https://pillow.readthedocs.io/mod/stable/reference/
ImageDraw.html#example-draw-partial-opacity-textNote: When they load a font (fnt = ImageFont.truetype(...)),
just pass "arial.ttf" as argument (or another font which is installed on your PC).

Problem 4.3 (Putting Thumbnails in Database)
Our image database and front-end are taking shape. On the home page we currently show an

overview of all entries including thumbnails.
These thumbnails are small (200 pixels wide), yet we always load the full size image from the

database. This is not particularly efficient, since all these (potentially very large) digital images
need to be transferred to the client. We will try to fix this in this exercise.

We provide two new Python files with this exercise (ImageManip.py and ImageHelper.py). The
first provides some basic image processing techniques (from last week). The latter provides func-
tionality to create Pillow images from binary data (and vice versa) or to load Pillow images from
a URL.

Familiarize yourself with the two files. You do not need to understand everything in the
Python code, but make sure that you read the comments and that you understand what kind of
functionality is given.

Now perform the following tasks:

1. In the BuildDB.py script, import the two provided files and Pillow:

import ImageHelper
import ImageManip
from PIL import Image

2. In the BuildDB.py script add one more column to the database called Thumbnail of type BLOB.
This will store our thumbnail.

https://pillow.readthedocs.io/mod/stable/reference/Image.html#PIL.Image.Image.alpha_composite
https://pillow.readthedocs.io/mod/stable/reference/Image.html#PIL.Image.Image.alpha_composite
https://pillow.readthedocs.io/mod/stable/reference/ImageDraw.html#example-draw-partial-opacity-text
https://pillow.readthedocs.io/mod/stable/reference/ImageDraw.html#example-draw-partial-opacity-text

11.4. EXERCISES 95

3. Adapt the addImage function, such that it creates a Pillow image from the imageData variable
(look in the ImageHelper file for a function you can use for this task). Create the thumbnail (see
file ImageManip). Then convert the image back to a binary blob and store it in the Thumbnail
field of our database.

See the comments in the BuildDB.py file for more details.

4. In the Server.py script add a new route /thumbnail/<id:int>. This should be exactly the same
as the /imageraw/<id:int> route (which already exists), with one exception: It should return
the Thumbnail instead of the Content field.

5. Lastly, in the Index.tpl make sure, that your new /thumbnail route is used instead of the
/imageraw. On the details page the original sized image should stay of course.

Problem 4.4 (Displaying Annotations)
In this exercise we will finally give our database frontend the ability sto display annotations

on top of our images. For now, these annotations come from files already provided in the Kirmes
repository in the xml/ subfolder. Each of the files in this directory describes areas (rectangles) in
a given image, along with a description text.

We have prepared the parsing of these files for you, so you don’t need to change anything in
the BuildDB.py script. Nevertheless, check the table creation near the end of the file (from line
246). In addition to the Images table we worked with for the last couple of weeks, we now have a
second table in our database, called Annotations. This table stores the following information:

1. Id: The id of the annotation (analogous to the Id field in the Images table).

2. ImageId: The id of the annotated digital image.

3. Description: A text describing the annotations.

4. X, Y, Width, Height: The position and dimensions of the rectangle in the digital image.

The ImageId is a foreign key, which references the primary key Id attribute of the Images table.
For example, an annotation entry with ImageId=27 defines an annotation for the image entry with
Id=27. Note, that multiple annotations might reference the same digital image.

You don’t need to do anything in this file, but make sure that you run it, so that your database
is filled with the annotation data. Double check in the DB Browser, that the Annotation table is
properly created and filled.

Now our frontend just needs to display the annotation information. To this end, amend the
/details/ route in the Server.py script, such that for the given image id, it queries the database for
annotations.

In the Details.tpl file, iterate over the annotations (if any exist), and create a <rect> and a
<text> for each. Fill in the information from the annotation (position and size of the rectangle,
description for the text). See the course notes for details, if you are unsure how this works.

Check if everything works as expected by visiting the /details/ page for an image, which has
annotations. Not too many images actually have annotations, but some do. For example the
image with id 146 should have a couple.

Make sure that by hovering the mouse over an annotation region, the rectangle highlights (gets
brighter) and the description text is shown.

We will now give the user the ability to edit annotations directly in the browser. The idea is
that changing the values of an annotation (position, size, text) is always easier in a graphical user
interface than by typing in the values in an XML file.

The process requires two parts. First the user must be able to interactively change the values
in the browser. Second, the changes they made must be saved back to the database.

96 CHAPTER 11. IMAGE PROCESSING

In order to ensure a pleasant user experience the first part should be performed directly in the
browser, so that not every mouse click must be sent to the server and back. Since this requires
JavaScript, we have provided this part for you.

Run your server and visit a details page of any image, which has annotations, e.g. http:
//localhost:8080/details/146. At the bottom you should see a checkbox Edit Annotations. If
this is checked, you should see a list of all annotations.

The currently selected element in this list is editable. You can change the annotation descrip-
tion in the text box. You can change the position and size of the annotation rectangle by dragging
the marked (red) rectangle in the image. Note that you can both move and resize the rectangle.

New annotations can be added with the New Annotation button at the bottom and deleted by
clicking the bin icon.

The changes you made are sent to the server, when the Save Changes button is clicked. Saving
the changes in the database is for you to implement.

Right now clicking Save Changes should do nothing (even though the website displays a noti-
fication saying that the changes have been saved).

You can verify that saving is not working by making some changes. Then click Save Changes
and refresh the page. All changes should be gone (because they are not stored in the database).
Problem 4.5 (Editing Annotations)

In the Server.py script you can find a new route /edit_annotations. Since this receives data
(i.e. the changes you made to the annotations), it is marked as POST.

The function loops over a list of changes and gets the necessary data.
Implement the following: For each entry in the list of changes, issue the correct SQL command

to update the values (hint: UPDATE ...). At the end of the function, commit your changes to the
database (db.commit()).

Test your function! In the browser, edit one or multiple annotations and click Save Changes.
Refresh the page. Your changes should still be there!

Problem 4.6 (Deleting Annotations)
Complete the /edit_annotations route by issuing a DELETE command for each entry passed to

this function. Again, don’t forget to commit your changes.
Test your code by deleting entries in the browser and refreshing the page!

Problem 4.7 (Adding Annotations)
Adding new annotations (/new_annotations) is slightly more complicated (but not much). Note

that this function takes in the imageID as an argument.
In the loop, extract the individual fields from the annotation variable (similar to the way it’s

done in /edit_annotations). Since this is a new annotation, there is no annotationID this time.
Issue an INSERT command for each new annotation. Then get the id of the newly stored entry

(cursor.lastrowid) and append this id to the newIds list. These new ids will be sent back to the
client (browser) at the end of the function. This is already implemented.

Lastly, test your functionality! You should now be able to add new annotations in the browser,
which will persist even if you refresh the page.

http://localhost:8080/details/146
http://localhost:8080/details/146

Chapter 12

Ontologies, Semantic Web for
Cultural Heritage

In the last chapter IWGS, we will discuss a virtual research environment for cultural heritage.
Before we present the system itself, we take a close look at the underlying technology: ontologies,
semantic web technologies, and linked open data.

12.1 Documenting our Cultural Heritage
Before we even start talking about the WissKI system, we should become clear on the concepts

involved. We start out with the notion of cultural heritage itself.

Documenting our Cultural Heritage

� Definition 12.1.1. Cultural heritage is the legacy of physical artifacts cultural
artefacts and practices, representations, expressions, knowledge, or skills – intangible
cultural heritage (ICH) of a group or society that is inherited from past generations.

� Problem: How can we understand, conserve, and learn from our cultural heritage?

� Traditional Answer: We collect cultural artefacts, study them carefully, relate
them to other artefacts, discuss the findings, and publish the results. We display
the artefacts in museums and galleries, and educate the next generation.

� DigHumS Answer: In “Digital Humanities and Social Sciences”, we want to
represent our cultural heritage digitally, and utilize computational tools to do so.

� Practical Question: What are the best representation formats and tools?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 347 2024-02-08

There is another context in which we want to understand the WissKI system: that of research
data. We will introduce the basic concepts now.

Research Data in a Nutshell

� Definition 12.1.2. Research data is any information that has been collected, ob-
served, generated or created to validate original research findings. Although usually
digital, research data also includes non-digital formats such as laboratory notebooks

97

98 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

and diaries.

� Types of research data:

� documents, spreadsheets, laboratory notebooks, field notebooks, diaries,

� questionnaires, transcripts, codebooks, test responses,

� audiotapes, videotapes, photographs, films,

� cultural artefacts, specimens, samples,

� data files, database contents (video, audio, text, images), digital outputs,

� models, algorithms, scripts,

� contents of an application (input, output, logfiles, schemata),

� methodologies and workflows, standard operating procedures, and protocols,

� Non-digital Research Data such as cultural artefacts, laboratory notebooks, ice-
core samples, or sketchbooks is often unique. Materials could be digitized, but this
may not be possible for all types of data.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 348 2024-02-08

The very idea of research data is they are retained to justify the published research: in particular
just publishing tables of results and experiment descriptions in journals is not enough.

In the past, this has led to the practice of keeping meticulous lab books in the experimental
sciences, and in recent times to the practice of publishing original data together with the results,
so that experiments can be replicated and derived results can be re-calculated. This being pushed
through the scientific organizations in the last decades.

But publishing raw data is also insufficient: experiments can only be replicated and deriva-
tions can only be checked if the underlying data can be obtained in practice, are complete and
correct, and can be interpreted by the reader. This led to substantial institutional attention and
– consequently – to many new developments:

FAIR Research Data: The Next Big Thing

� Principle: Scientific experiments must be replicated, and derivations must be
checkable to be trustworthy. (consensus of scientific community)

� Intuition: Research data must be retained for justification, shared for synergies!

� Consequence: Virtually all scientific funding agencies now require some kind of
research data strategy in proposals. (tendency: getting stricter)

� Problem: Not all forms of data are actually useable in practice.

� Definition 12.1.3 (Gold Standard Criteria). Research data should be FAIR:

� Findable: easy to identify and find for both humans and computers, e.g. with
metadata that facilitate searching for specific datasets,

� Accessible: stored for long term so that they can easily be accessed and/or down-
loaded with well-defined access conditions, whether at the level of metadata, or
at the level of the actual data,

� Interoperable: ready to be combined with other datasets by humans or comput-
ers, without ambiguities in the meanings of terms and values,

12.1. DOCUMENTING OUR CULTURAL HERITAGE 99

� Reusable: ready to be used for future research and to be further processed using
computational methods.

Consensus in the research data community; for details see [FAIR18; Wil+16].

� Open Question: How can we achieve FAIR-ness in a discipline in practice?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 349 2024-02-08

After these general considerations about research data, let us come back our primary concern in
IWGS: research data in the humanities and social sciences.
If we look at the categories of research data we can expect in the humanities and social sciences,
then we can categorize them into four broad categories. And we can see that we have already
learned about many of them in IWGS.

Categories of Data in DigiHumS and their Formats

� We distinguish four broad categories of data in DigiHumS.

� Definition 12.1.4. Concrete data: digital representations of artefacts in terms of
simple data,

� e.g. raster images as pixel arrays in JPEG. (see chapter 11)

� e.g. books identified by author/title/publisher/pubyear. (see chapter 9)

� Definition 12.1.5. Narrative data: documents and text fragments used for com-
municating knowledge to humans.

� e.g. plain text and formatted text with markup code (see chapter 4
(Documents as Digital Objects) in the IWGS lecture notes)

� Definition 12.1.6. Symbolic data: descriptions of object and facts in a formal
language

� e.g. 3+5 in Python (see chapter 2 (Introduction to Programming) in the
IWGS lecture notes)

� Definition 12.1.7. Metadata: “data about data”, e.g. who has created these facts,
images, or documents, how do they relate to each other? (not covered yet)

� Observation 12.1.8. Metadata are the resources, DigiHumS results are made of
(; support that)
The other categories digitize artefacts and auxiliary data.

� Observation 12.1.9. We will need all of these – and their combinations – to do
DigiHumS.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 350 2024-02-08

The last kind – metadata – is arguably the most important kind in the it concerns the relations
between artefacts, which are usually digitized into concrete data.

WissKI: a Virtual Research Env. for Cultural Heritage

� Definition 12.1.10. WissKI is a virtual research environment (VRE) for managing

100 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

scholarly data and documenting cultural heritage.

� Requirements: For a virtual research environment for cultural heritage, we need

� scientific communication about and documentation of the cultural heritage

� networking knowledge from different disciplines (transdisciplinarity)

� high-quality data acquisition and analysis

� safeguarding authorship, authenticity, persistence

� support of scientific publication

� WissKI was developed by the research group of Prof. Günther Görtz at FAU
Erlangen-Nürnberg and is now used in hundreds of DH projects across Germany.

� FAU supports cultural heritage research by providing hosted WissKI instances.

� See https://wisski.data.fau.de for details

� We will use an instance for the Kirmes paintings in the homework assignments

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 351 2024-02-08

This leads to the following plan for the rest of the chapter.

Documenting Cultural Heritage: Current State/Preview

� Pre-DH State of cultural heritage documentation:

� scientific communication/documentation by journal articles/books

� persistence: paper records, file cards, databases (like our KirmesDB)

� Analysis: manual examination of artefacts in museums/archives.

� Idea: Use more technology to do better.

� Preview: WissKI uses semantic web technologies to do just that. We will now

� Motivate the semantic web (why do we need more than the WWW)

� introduce ontologies, linked open data and their technology stacks

� show off WissKI and offer a little project based on Kirmes corpus.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 352 2024-02-08

12.2 Systems for Documenting the Cultural Heritage
Let us now have a look at how we can use digital systems to document the cultural heritage.

This is the backdrop against which we need to position the WissKI system.
The traditional methods of documenting cultural artefacts is in form of often handwritten – ledgers
that inventory the collections of museums.

Documenting Cultural Artefacts: Inventory Books

� Definition 12.2.1. An inventory book is a ledger that identifies, describes, and
records provenance of the artefacts in the collection of a museum.

https://wisski.data.fau.de

12.2. SYSTEMS FOR DOCUMENTING THE CULTURAL HERITAGE 101

� Example 12.2.2 (An Inventory Book).

� Problems: non-digital, only single-user access, institution-local, no querying, . . .

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 353 2024-02-08

If we want to improve on – or just digitize inventory books, the most obvious idea at least with
what we have learned in IWGS – is to put the data into a database for persistence and use a web
application for the user interface. Instead of surveying the multitude existing systems we want to
improve on, let us briefly show an example.

Cultural Artefacts in Databases: Example

� Example 12.2.3. A typical database for cultural artefacts: (HiDa/MIDAS)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 354 2024-02-08

The system we see above is an instance of the HiDa/MIDAS system, which is in use in many
museums for managing their collections. HiDa [HiDa] is a conventional (and commercial) rela-

102 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

tional database with a sophisticated user interface for data acquisition, reporing, exporting, and
publication. Database schemata can be chosen from a set of options; here we see the MIDAS
schema [BHK16].

The HiDa/MIDAS system is by no means the only one on the market, but the architecture is
typical for the state of the art in most cultural institutions worldwide.

Cultural Artefacts in Databases: Pro/Con

� Databases of Cultural Artefacts – Advantages:

� persistence, multi-user access, structured data,

� web/catalog publication, standardized exports,

� standardized performant query language.

� Databases of Cultural Artefacts – Problems:

� identifiers are database local ; no trans database relations,

� database schemata are inflexible ⇝we need extensions in practice,

� free text as an un-structured, untapped resource.

� Idea: Relational databases impose structure, let’s try something very unstructured:
the world wide web. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 355 2024-02-08

Here is another example.

Cultural Artefacts in Databases II

� Example 12.2.4. Another database for cultural artefacts:

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 356 2024-02-08

Let us see whether this idea has merit.

12.2. SYSTEMS FOR DOCUMENTING THE CULTURAL HERITAGE 103

Using the Web for the Cultural Heritage

� Idea: Why not use the world wide web as a tool?

� it is inherently distributed and networked,

� the data formats HTML and XML are highly flexible,

� gives us instantaneous access to information/images/. . . ,

� allows collaboration and discussion. (wikis, fora, blogs)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 357 2024-02-08

Again, an example is in order to help understand the issues at hand.

Cultural Artefacts on the Web

� Example 12.2.5. A text about a cultural artefact (an etching by Dürer)

� Question: Just how does the etching discussed here relate to Albrecht Dürer?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 358 2024-02-08

We collect the properties of the various approaches to documenting cultural artefacts to see how
to proceed.

Using the Web for Cultural Heritage

� Problems: with using the Web as a resource

� Information is often of dubious quality (imprecise, typos, incomplete, . . .)

� Information is primarily written for human consumption

� ; not machine-actionable, but full text search works (e.g. Google)
� sometimes we can use established structures (e.g. Infobox in Wikipedia)

104 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

� Evaluation: The web is complementary to databases on the structure-vs-flexibility
tradeoff scale for cultural heritage systems. (we need both)

� Idea: Use the semantic web for cultural heritage

� Goal: Make information accessible for humans and machines

� meaning capture by reference to real-world objects

� globally unique identifiers of cultural artefacts (=̂ URIs)

� inference (get out more than you put in!)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 359 2024-02-08

12.3 The Semantic Web
In this section we will introduce the semantic web. That tries to transform the World Wide Web
from a human understandable web of multimedia documents into a “web of machine understandable
data”. In this context, “machine-understandable” means that machines can draw inferences from
data they have access to, so that they can make use of the knowledge that is implicit – i.e. not
explicitly stated, but can be derived from other information (by humans) – in the web.
We will now define the term semantic web and discuss the pertinent ideas involved. There are two
central ones, we will cover here:

• Information and data come in different levels of explicitness; this is usually visualized by a
“ladder” of information.

• if information is sufficiently machine-understandable, then we can automate drawing conclu-
sions.

The Semantic Web

� Definition 12.3.1. The semantic web is the result including of semantic content
in web pages with the aim of converting the WWW into a machine-understandable
“web of data”, where inference based services can add value to the ecosystem.

� Idea: Move web content up the ladder, use inference to make connections.

� Example 12.3.2. Information not explicitly represented (in one place)

Query: Who was US president when Barak Obama was born?

Google: . . . BIRTH DATE: August 04, 1961. . .

Query: Who was US president in 1961?

Google: President: Dwight D. Eisenhower [. . .] John F. Kennedy (starting Jan. 20.)

Humans understand the text and combine the information to get the answer. Ma-
chines need more than just text ; semantic web technology.

12.3. THE SEMANTIC WEB 105

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 360 2024-02-08

The term “semantic web” was coined by Tim Berners Lee in analogy to semantic networks, only
applied to the world wide web. And as for semantic networks, where we have inference processes
that allow us the recover information that is not explicitly represented from the network (here the
world-wide-web).

To see that problems have to be solved, to arrive at the semantic web, we will now look at a
concrete example about the “semantics” in web pages. Here is one that looks typical enough.

What is the Information a User sees?

� Example 12.3.3. Take the following web-site with a conference announcement

WWW2002
The eleventh International World Wide Web Conference
Sheraton Waikiki Hotel
Honolulu, Hawaii, USA
7-11 May 2002

Registered participants coming from
Australia, Canada, Chile Denmark, France, Germany, Ghana, Hong Kong, In-
dia,
Ireland, Italy, Japan, Malta, New Zealand, The Netherlands, Norway,
Singapore, Switzerland, the United Kingdom, the United States, Vietnam, Zaire

On the 7th May Honolulu will provide the backdrop of the eleventh
International World Wide Web Conference.

Speakers confirmed
Tim Berners-Lee: Tim is the well known inventor of the Web,
Ian Foster: Ian is the pioneer of the Grid, the next generation internet.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 361 2024-02-08

But as for semantic networks, what you as a human can see (“understand” really) is deceptive, so
let us obfuscate the document to confuse your “semantic processor”. This gives an impression of
what the computer “sees”.

What the machine sees

� Example 12.3.4. Here is what the machine “sees” from the conference announce-
ment:

WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉
S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕
H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA
7↖∞∞M⊣†∈′′∈

R⌉}⟩∫⊔⌉∇⌉⌈√⊣∇⊔⟩⌋⟩√⊣\⊔∫⌋≀⇕⟩\}{∇≀⇕

A⊓∫⊔∇⊣↕⟩⊣⇔C⊣\⊣⌈⊣⇔C⟨⟩↕⌉D⌉\⇕⊣∇∥⇔F∇⊣\⌋⌉⇔G⌉∇⇕⊣\†⇔G⟨⊣\⊣⇔H≀\}K≀\}⇔I\⌈⟩⊣⇔

106 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

I∇⌉↕⊣\⌈⇔I⊔⊣↕†⇔J⊣√⊣\⇔M⊣↕⊔⊣⇔N⌉⊒Z⌉⊣↕⊣\⌈⇔T⟨⌉N⌉⊔⟨⌉∇↕⊣\⌈∫⇔N≀∇⊒⊣†⇔

S⟩\}⊣√≀∇⌉⇔S⊒⟩⊔‡⌉∇↕⊣\⌈⇔⊔⟨⌉U\⟩⊔⌉⌈K⟩\}⌈≀⇕⇔⊔⟨⌉U\⟩⊔⌉⌈S⊔⊣⊔⌉∫⇔V⟩⌉⊔\⊣⇕⇔Z⊣⟩∇⌉

O\⊔⟨⌉7⊔⟨M⊣†H≀\≀↕⊓↕⊓⊒⟩↕↕√∇≀⊑⟩⌈⌉⊔⟨⌉⌊⊣⌋∥⌈∇≀√≀{⊔⟨⌉⌉↕⌉⊑⌉\⊔⟨

I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉↙

S√⌉⊣∥⌉∇∫⌋≀\{⟩∇⇕⌉⌈

T⟩⇕B⌉∇\⌉∇∫↖L⌉⌉¬T⟩⇕⟩∫⊔⟨⌉⊒⌉↕↕∥\≀⊒\⟩\⊑⌉\⊔≀∇≀{⊔⟨⌉W⌉⌊⇔
I⊣\F≀∫⊔⌉∇¬I⊣\⟩∫⊔⟨⌉√⟩≀\⌉⌉∇≀{⊔⟨⌉G∇⟩⌈⇔⊔⟨⌉\⌉§⊔}⌉\⌉∇⊣⊔⟩≀\⟩\⊔⌉∇\⌉⊔↙

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 362 2024-02-08

Obviously, there is not much the computer understands, and as a consequence, there is not a lot
the computer can support the reader with. So we have to “help” the computer by providing some
meaning. Conventional wisdom is that we add some semantic/functional markup. Here we pick
XML without loss of generality, and characterize some fragments of text e.g. as dates.

Solution: XML markup with “meaningful” Tags

� Example 12.3.5. Let’s annotate (parts of) the meaning via XML markup

<title>WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉</title>
<place>S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA</place>
<date>7↖∞∞M⊣†∈′′∈</date>
<participants>R⌉}⟩∫⊔⌉∇⌉⌈√⊣∇⊔⟩⌋⟩√⊣\⊔∫⌋≀⇕⟩\}{∇≀⇕

A⊓∫⊔∇⊣↕⟩⊣⇔C⊣\⊣⌈⊣⇔C⟨⟩↕⌉D⌉\⇕⊣∇∥⇔F∇⊣\⌋⌉⇔G⌉∇⇕⊣\†⇔G⟨⊣\⊣⇔H≀\}K≀\}⇔I\⌈⟩⊣⇔
I∇⌉↕⊣\⌈⇔I⊔⊣↕†⇔J⊣√⊣\⇔M⊣↕⊔⊣⇔N⌉⊒Z⌉⊣↕⊣\⌈⇔T⟨⌉N⌉⊔⟨⌉∇↕⊣\⌈∫⇔N≀∇⊒⊣†⇔

S⟩\}⊣√≀∇⌉⇔S⊒⟩⊔‡⌉∇↕⊣\⌈⇔⊔⟨⌉U\⟩⊔⌉⌈K⟩\}⌈≀⇕⇔⊔⟨⌉U\⟩⊔⌉⌈S⊔⊣⊔⌉∫⇔V⟩⌉⊔\⊣⇕⇔Z⊣⟩∇⌉

</participants>
<introduction>O\⊔⟨⌉7⊔⟨M⊣†H≀\≀↕⊓↕⊓⊒⟩↕↕√∇≀⊑⟩⌈⌉⊔⟨⌉⌊⊣⌋∥⌈∇≀√≀{⊔⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇↖

\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉↙</introduction>
<program>S√⌉⊣∥⌉∇∫⌋≀\{⟩∇⇕⌉⌈

<speaker>T⟩⇕B⌉∇\⌉∇∫↖L⌉⌉¬T⟩⇕⟩∫⊔⟨⌉⊒⌉↕↕∥\≀⊒\⟩\⊑⌉\⊔≀∇≀{⊔⟨⌉W⌉⌊</speaker>
<speaker>I⊣\F≀∫⊔⌉∇¬I⊣\⟩∫⊔⟨⌉√⟩≀\⌉⌉∇≀{⊔⟨⌉G∇⟩⌈⇔⊔⟨⌉\⌉§⊔}⌉\⌉∇⊣⊔⟩≀\⟩\⊔⌉∇\⌉⊔<speaker>

</program>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 363 2024-02-08

But does this really help? Is conventional wisdom correct?

What can we do with this?

� Example 12.3.6. Consider the following fragments:

ℜ⊔⟩⊔↕⌉⊤WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉ℜ∝⊔⟩⊔↕⌉⊤
ℜ√↕⊣⌋⌉⊤S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USAℜ∝√↕⊣⌋⌉⊤

ℜ⌈⊣⊔⌉⊤7↖∞∞M⊣†∈′′∈ℜ∝⌈⊣⊔⌉⊤

12.3. THE SEMANTIC WEB 107

Given the markup above, a machine agent can

� parse 7∞∞M⊣†∈′′∈ as the date May 7 11 2002 and add this to the user’s calendar,

� parse S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA as a destination and find flights.

� But: do not be deceived by your ability to understand English!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 364 2024-02-08

To understand what a machine can understand we have to obfuscate the markup as well, since it
does not carry any intrinsic meaning to the machine either.

What the machine sees of the XML

� Example 12.3.7. Here is what the machine sees of the XML

<title>WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉</⊔⟩⊔↕⌉>
<√↕⊣⌋⌉>S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA</√↕⊣⌋⌉>

<⌈⊣⊔⌉>7↖∞∞M⊣†∈′′∈</⌈⊣⊔⌉>
<√⊣∇⊔⟩⌋⟩√⊣\⊔∫>R⌉}⟩∫⊔⌉∇⌉⌈√⊣∇⊔⟩⌋⟩√⊣\⊔∫⌋≀⇕⟩\}{∇≀⇕

A⊓∫⊔∇⊣↕⟩⊣⇔C⊣\⊣⌈⊣⇔C⟨⟩↕⌉D⌉\⇕⊣∇∥⇔F∇⊣\⌋⌉⇔G⌉∇⇕⊣\†⇔G⟨⊣\⊣⇔H≀\}K≀\}⇔I\⌈⟩⊣⇔
I∇⌉↕⊣\⌈⇔I⊔⊣↕†⇔J⊣√⊣\⇔M⊣↕⊔⊣⇔N⌉⊒Z⌉⊣↕⊣\⌈⇔T⟨⌉N⌉⊔⟨⌉∇↕⊣\⌈∫⇔N≀∇⊒⊣†⇔

S⟩\}⊣√≀∇⌉⇔S⊒⟩⊔‡⌉∇↕⊣\⌈⇔⊔⟨⌉U\⟩⊔⌉⌈K⟩\}⌈≀⇕⇔⊔⟨⌉U\⟩⊔⌉⌈S⊔⊣⊔⌉∫⇔V⟩⌉⊔\⊣⇕⇔Z⊣⟩∇⌉

</√⊣∇⊔⟩⌋⟩√⊣\⊔∫>

<⟩\⊔∇≀⌈⊓⌋⊔⟩≀\>O\⊔⟨⌉7⊔⟨M⊣†H≀\≀↕⊓↕⊓⊒⟩↕↕√∇≀⊑⟩⌈⌉⊔⟨⌉⌊⊣⌋∥⌈∇≀√≀{⊔⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣↖

⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉↙</⟩\⊔∇≀⌈⊓⌋⊔⟩≀\>
<√∇≀}∇⊣⇕>S√⌉⊣∥⌉∇∫⌋≀\{⟩∇⇕⌉⌈

<∫√⌉⊣∥⌉∇>T⟩⇕B⌉∇\⌉∇∫↖L⌉⌉¬T⟩⇕⟩∫⊔⟨⌉⊒⌉↕↕∥\≀⊒\⟩\⊑⌉\⊔≀∇≀{⊔⟨⌉W⌉⌊</∫√⌉⊣∥⌉∇>

<∫√⌉⊣∥⌉∇>I⊣\F≀∫⊔⌉∇¬I⊣\⟩∫⊔⟨⌉√⟩≀\⌉⌉∇≀{⊔⟨⌉G∇⟩⌈⇔⊔⟨⌉\⌉§⊔}⌉\⌉∇⊣⊔⟩≀\⟩\⊔⌉∇\⌉⊔<∫√⌉⊣∥⌉∇>

</√∇≀}∇⊣⇕>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 365 2024-02-08

So we have not really gained much either with the markup, we really have to give meaning to the
markup as well, this is where techniques from semenatic web come into play.
To understand how we can make the web more semantic, let us first take stock of the current status
of (markup on) the web. It is well-known that world-wide-web is a hypertext, where multimedia
documents (text, images, videos, etc. and their fragments) are connected by hyperlinks. As we
have seen, all of these are largely opaque (non-understandable), so we end up with the following
situation (from the viewpoint of a machine).

The Current Web

108 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

� Resources: identified by
URIs, untyped

� Links: href, src, . . . limited,
non-descriptive

� User: Exciting world - se-
mantics of the resource, how-
ever, gleaned from content

� Machine: Very little infor-
mation available - significance
of the links only evident from
the context around the anchor.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 366 2024-02-08

Let us now contrast this with the envisioned semantic web.

The Semantic Web
� Resources: Globally iden-
tified by URIs or Locally
scoped (Blank), Extensible,
Relational.

� Links: Identified by URIs, Ex-
tensible, Relational.

� User: Even more exciting
world, richer user experience.

� Machine: More processable
information is available (Data
Web).

� Computers and peo-
ple: Work, learn and
exchange knowledge effec-
tively.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 367 2024-02-08

Essentially, to make the web more machine-processable, we need to classify the resources by the
concepts they represent and give the links a meaning in a way, that we can do inference with that.
The ideas presented here gave rise to a set of technologies jointly called the “semantic web”, which
we will now summarize before we return to our logical investigations of knowledge representation
techniques.

Towards a “Machine-Actionable Web”

� Recall: We need external agreement on meaning of annotation tags.

� Idea: standardize them in a community process (e.g. DIN or ISO)

� Problem: Inflexible, Limited number of things can be expressed

� Better: Use ontologies to specify meaning of annotations

12.4. SEMANTIC NETWORKS AND ONTOLOGIES 109

� Ontologies provide a vocabulary of terms

� New terms can be formed by combining existing ones

� Meaning (semantics) of such terms is formally specified

� Can also specify relationships between terms in multiple ontologies

� Inference with annotations and ontologies (get out more than you put in!)

� Standardize annotations in RDF [KC04] or RDFa [Her+13b] and ontologies on
OWL [OWL09]

� Harvest RDF and RDFa in to a triplestore or OWL reasoner.

� Query that for implied knowledge(e.g. chaining multiple facts from Wikipedia)

SPARQL: Who was US President when Barack Obama was Born?
DBPedia: John F. Kennedy (was president in August 1961)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 368 2024-02-08

12.4 Semantic Networks and Ontologies
To get a feeling for ontologies and how they enable the “machine-actionable web” and how that
helps us in DH, we take a look at “semantic networks”, which are an early form of ontologies. They
allow us to explain many of the basic functionalities of the “semantic web” without getting too
much into details of the technologies involved. We will preview that at the end of this section and
go into details section 12.6.
Semantic networks are a very simple way of arranging knowledge about objects and concepts and
their relationships in a graph.

Semantic Networks [CQ69]

� Definition 12.4.1. A semantic network is a directed graph for representing knowl-
edge:

� nodes represent objects and concepts (classes of objects)
(e.g. John (object) and bird (concept))

� edges (called links) represent relations between these (isa, father_of,
belongs_to)

� Example 12.4.2. A semantic network for birds and persons:

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

� Problem: How do we derive new information from such a network?

� Idea: Encode taxonomic information about objects and concepts in special links
(“isa” and “inst”) and specify property inheritance along them in the process model.

110 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 369 2024-02-08

Even though the network in Example 12.4.2 is very intuitive (we immediately understand the
concepts depicted), it is unclear how we (and more importantly a machine that does not asso-
ciate meaning with the labels of the nodes and edges) can draw inferences from the “knowledge”
represented.

Deriving Knowledge Implicit in Semantic Networks

� Observation 12.4.3. There is more knowledge in a semantic network than is
explicitly written down.

� Example 12.4.4. In the network below, we “know” that robins have wings and in
particular, Jack has wings.

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

� Idea: Links labeled with “isa” and “inst” are special: they propagate properties
encoded by other links.

� Definition 12.4.5. We call links labeled by

� “isa” an inclusion or isa link (inclusion of concepts)

� “inst” instance or inst link (concept membership)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 370 2024-02-08

We now make the idea of “propagating properties” rigorous by defining the notion of derived
relations, i.e. the relations that are left implicit in the network, but can be added without changing
its meaning.

Deriving Knowledge Semantic Networks

� Definition 12.4.6 (Inference in Semantic Networks). We call all link labels
except “inst” and “isa” in a semantic network relations.

Let N be a semantic network and R a relation in N such that A isa−→ B
R−→ C or

A
inst−→ B

R−→ C, then we can derive a relation A
R−→ C in N .

The process of deriving new concepts and relations from existing ones is called
inference and concepts/relations that are only available via inference implicit (in a
semantic network).

� Intuition: Derived relations represent knowledge that is implicit in the network;
they could be added, but usually are not to avoid clutter.

� Example 12.4.7. Derived relations in Example 12.4.4

12.4. SEMANTIC NETWORKS AND ONTOLOGIES 111

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

has_part
has_part

isa/

� Slogan: Get out more knowledge from a semantic networks than you put in.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 371 2024-02-08

Note that Definition 12.4.6 does not quite allow to derive that Jack is a bird (did you spot that
“isa” is not a relation that can be inferred?), even though we know it is true in the world. This
shows us that inference in semantic networks has be to very carefully defined and may not be
“complete”, i.e. there are things that are true in the real world that our inference procedure does
not capture.

Dually, if we are not careful, then the inference procedure might derive properties that are not
true in the real world even if all the properties explicitly put into the network are. We call such
an inference procedure unsound or incorrect.

These are two general phenomena we have to keep an eye on.
Another problem is that semantic networks (e.g. in Example 12.4.2) confuse two kinds of concepts:
individuals (represented by proper names like John and Jack) and concepts (nouns like robin and
bird). Even though the isa and inst link already acknowledge this distinction, the “has_part” and
“loves” relations are at different levels entirely, but not distinguished in the networks.

Terminologies and Assertions

� Remark 12.4.8. We should distinguish concepts from objects.

� Definition 12.4.9. We call the subgraph of a semantic network N spanned by the
isa links and relations between concepts the terminology (or TBox, or the famous
Isa Hierarchy) and the subgraph spanned by the inst links and relations between
objects, the assertions (or ABox) of N .

� Example 12.4.10. In this semantic network we keep objects concept apart nota-
tionally:

ABox ClydeRexRoy

TBox

elephant graytigerstriped

higher animal
headlegs

amoeba

moveanimal

instinstinst

color

isaisa

pattern

has_parthas_part

isaisa

can

eat

eat
eat

color

In particular we have objects “Rex”, “Roy”, and “Clyde”, which have (derived) rela-
tions (e.g. Clyde is gray).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 372 2024-02-08

But there are severe shortcomings of semantic networks: the suggestive shape and node names
give (humans) a false sense of meaning, and the inference rules are only given in the process model

112 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

(the implementation of the semantic network processing system).
This makes it very difficult to assess the strength of the inference system and make assertions

e.g. about completeness.

Limitations of Semantic Networks

� What is the meaning of a link?

� link labels are very suggestive (misleading for humans)

� meaning of link types defined in the process model (no denotational semantics)

� Problem: No distinction of optional and defining traits!

� Example 12.4.11. Consider a robin that has lost its wings in an accident:

wings

robin

bird

jack

has_part

isa

inst

wings

robin

joe

bird
has_part

inst

isa
cancel

“Cancel-links” have been proposed, but their status and process model are debatable.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 373 2024-02-08

To alleviate the perceived drawbacks of semantic networks, we can contemplate another notation
that is more linear and thus more easily implemented: function/argument notation.

Another Notation for Semantic Networks

� Definition 12.4.12. Function/argument notation for semantic networks

� interprets nodes as arguments (reification to individuals)

� interprets links as functions (predicates actually)

� Example 12.4.13.

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

isa(robin,bird)
haspart(bird,wings)
inst(Jack,robin)
owner_of(John, robin)
loves(John,Mary)

� Evaluation:

+ linear notation (equivalent, but better to implement on a computer)

+ easy to give process model by deduction (e.g. in Prolog)

– worse locality properties (networks are associative)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 374 2024-02-08

Indeed the function/argument notation is the immediate idea how one would naturally represent
semantic networks for implementation.

This notation has been also characterized as subject/predicate/object triples, alluding to simple

12.4. SEMANTIC NETWORKS AND ONTOLOGIES 113

(English) sentences. This will play a role in the “semantic web” later. The next slide is a bit
outside of the scope of IWGS, but we want to go into this anyway.
We have been talking about the “procedural model” of a semantic network, which essentially
specifies the inference algorithm that derives new knowledge in a network. There is an alternative
to this: we can map the network language – function/argument notation for networks is an essential
step for this – into a known language with an inference system. We call this kind of a mapping a
“denotational semantics”, here into a language called first-order logic.
Building on the function/argument notation from above, we can now give a formal semantics for
semantic network: we translate them into first-order logic and use the semantics of that.

A Denotational Semantics for Semantic Networks

� Observation: If we handle isa and inst links specially in function/argument nota-
tion

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

robin ⊆ bird
haspart(bird,wings)
Jack∈robin
owner_of(John, Jack)
loves(John,Mary)

it looks like first-order logic, if we take

� a∈S to mean S(a) for an object a and a concept S.

� A ⊆ B to mean ∀X A(X)⇒B(X) and concepts A and B

� R(A,B) to mean ∀X A(X)⇒ (∃Y B(Y) ∧R(X,Y)) for a relation R.

� Idea: Take first-order deduction as process model (gives inheritance for free)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 375 2024-02-08

Indeed, the semantics induced by the translation to first-order logic, gives the intuitive meaning to
the semantic networks. Note that this only holds only for the features of semantic networks that
are representable in this way, e.g. the “cancel links” shown above are not (and that is a feature,
not a bug).
But even more importantly, the translation to first-order logic gives a first process model: we
can use first-order inference to compute the set of inferences that can be drawn from a semantic
network.

Based on the intuitions from semantic networks we can now come to general (semantic web)
ontologies.

What is an Ontology

� Definition 12.4.14. An ontology is a formal model of (an aspect of) the world. It

� introduces a vocabulary for the objects, concepts, and relations of a given do-
main,

� specifies intended meaning of vocabulary in a description logic using

� a set of axioms describing structure of the model
� a set of facts describing some particular concrete situation

The vocabulary together with the collection of axioms is often called a terminology
(or TBox) and the collection of facts an ABox (assertions).

114 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

In addition to the represented axioms and facts, the description logic determines a
number of derived ones.

� Definition 12.4.15. A vocabulary often includes names for classes and relationship
(also called concepts, and properties).

� Remark 12.4.16. If the description logic has a reasoner, we can automatically

� detect inconsistent axiom systems

� compute class membership and taxonomies.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 376 2024-02-08

There is a whole collection of standardized languages and interoperable systems that facilitate
dealing with (very large) ontologies in practice. We will only give a summary preview here,
leaving the detailed discussion to section 12.6.

Semantic Web Technology in a Nutshell

� Ontologies have become one of the standard devices for representing information
about the Web and the world.

� Definition 12.4.17. This is facilitated and standardized by the :

� URIs for representing objects,

� RDF triples for representing facts,

� RDFa for annotating RDF triples in XML documents,

� OWL for representing TBoxes,

� triplestores for storing (lots of) RDF triples,

� SPARQL for querying ontologies,

� description logic reasoners for deciding ontology consistency and concept sub-
sumption,

� Protg for authoring and maintaining ontologies,

� Details section 12.6.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 377 2024-02-08

Indeed, this list can be read as a technology roadmap for the WissKI system. We have already
seen the most of the concepts in ??, we will discuss the technologies section 12.6, but first we will
have a look at the CIDOC CRM ontology that is used in WissKI.

12.5 CIDOC CRM: An Ontology for Cultural Heritage

We have seen that databases are not the only choice for representing data about cultural
heritage. Indeed, the WissKI system chooses ontologies as a basis for representation and querying.

To ensure interoperability, WissKI is based on the ISO-standardized CIDOC CRM ontology,
which we will now introduce and explore.
Now, we can instantiate what we have learned about ontology-based information systems to cul-
tural heritage disciplines. We collect all the bits and pieces and hint at the technologies (details
section 12.6).

12.5. CIDOC CRM: AN ONTOLOGY FOR CULTURAL HERITAGE 115

Ontologies for Cultural Artefacts
� Idea: Use ontologies for documenting
cultural heritage.

� flexible schemata (OWL)

� easy data sharing

� open standards, free tools

� semantic querying via SPARQL

� Idea: We can use RDF like a Mindmap:
RDF can

� represent relations between objects

� classify objects (web resources)

RDFa for document annotation

Formate: RDF

(Resource Description Framework)

● RDF ist ein Framework zur Repräsentation

von Metadaten

● RDF ist ähnlich einer Mindmap

– Beziehungen zwischen

Dingen (Web Resources)

– Adhoc Verknüpfungen

erstellen

– Dinge klassifizieren

● RDF Datenbank:

Triple Store

Martin Scholz, FAU, Informatik 8 17

� Reference ontologies for interoperability:

� SUMO (Suggested Upper Model Ontology) [SUMO] for common knowledge,

� FOAF (Friend-of-a-Friend) [FOAF14] for persons and relations,

� CIDOC CRM for documentation of cultural heritage. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 378 2024-02-08

So let us look at the CIDOC CRM ontology in more detail. It has been developed by the Docu-
mentation Committee of the ICOM (International Council of Museums) over more than 20 years
and has been standardized by the ISO. Even more importantly for our purposes here, the CIDOC
CRM has been implemented in the OWL format, which gives us the use of the semantic web
technology stack.

CIDOC CRM (Conceptual Reference Model)

� Definition 12.5.1. CIDOC CRM provides an extensible ontology for concepts and
information in cultural heritage and museum documentation. It is the international
standard (ISO 21127:2014) for the controlled exchange of cultural heritage infor-
mation. The central classes include

� space time specified by title/identifier, place, era/period, time-span, and rela-
tionship to persistent items

� events specified by title/identifier, beginning/ending of existence, participants
(people, either individually or in groups), creation/modification of things (phys-
ical or conceptional), and relationship to persistent items

� material things specified by title/identifier, place, the information object the
material thing carries, part-of relationships, and relationship to persistent items

� immaterial things specified by title/identifier, information objects (propositional
or symbolic), conceptional things, and part-of relationships

� Definition 12.5.2. OWL implements CIDOC CRM in OWL

116 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

� Details about CIDOC CRM can be found at [CC] and about OWL at [ECRMb;
ECRMa].

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 379 2024-02-08

One of the advantages of having CIDOC CRM in OWL is that we can use semantic web technolo-
gies to deal with it. Here we use one of the practically most important tools: Protg.

Protege, an IDE for Ontology Development

� Definition 12.5.3. Protg [Pro] is an integrated development environment for
ontologies represented in the OWL family. It comprises

� a visual user interface for exploring and editing ontologies,

� a inference component to ensure ontology consistency and minimality,

� a facility for querying the loaded ontologies.

� Example 12.5.4 (CIDOCCRM in Protege).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 380 2024-02-08

The backbone of the CIDOC CRM ontology is formed by the concepts (called “classes” in OWL).
They form an inheritance hierarchy – of which the top part is shown on the left of the Protg
window below. The ontology provides – usually relatively abstract classes for all objects related
to cultural artefacts, their properties, and provenance.

CIDOC CRM Explored (Classes)

� Idea: Use semantic web technology to explore OWL.

� CIDOC CRM Classes: concept =̂ OWL “Class” (shown in Protege)

12.5. CIDOC CRM: AN ONTOLOGY FOR CULTURAL HERITAGE 117

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 381 2024-02-08

The concepts are complemented by the relations called “object properties” in OWL.

CIDOC CRM Explored (Relations)

� CIDOC CRM Relations: relation =̂ OWL “Object Property” (shown in Protege)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 382 2024-02-08

There are also a small number of “data properties”, i.e. properties whose values are concrete data
like numbers, dates, or strings. They are less interesting structurally, but important in practice.

118 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

We can summarize the structure of the CIDOC CRM ontology in the following diagram.

CIDOC CRM Structure (Overview)

participate in

Actors Conceptual Objects

Physical Entities

Temporal Entities

affect

Types

refine

A
pp

el
la

tio
ns

id
en

tif
y/

na
m

e

location

occur at within

Time-Spans
Places

CIDOC CRM$
Top Level Classes$

© T. Gill$
G. Goerz, FAU, Inf. 8$

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 383 2024-02-08

Now that we understand the CIDOC CRM ontology, we look into the process of modeling cultural
artefacts.

CIDOC-CRM Modeling

� This is all good and dandy but how do I concretely model cultural artefacts?

� Answer: CIDOC CRM is only a TBox, we add an ABox of objects and facts.

� Example 12.5.5. Albrecht Dürer painted Melencolia 1 in Nürnberg
We have two units of information here:

1. Albrecht Dürer painted Melencolia 1

2. this happened in the city of Nürnberg

� CIDOC CRM modeling decisions; we start with 1. AD painted M 1

1. A painting m is an “Information Carrier” (E84)

2. It was created in an “Production Event” q (E12)

3. m is related to q via the “was produced by” relation (P108i)

4. q was “carried out by” a “person” d (P14 E21)

5. d “is identified by” an “actor appellation” a (P131 E82)

6. a “has note” the string "Albrecht Dürer”. (P3)

� CIDOC CRM modeling decisions; continuing with 2. this happened in N

1. A painting m is an “Information Carrier” (E84)

2. It was created in an “Production Event” q (E12)

12.5. CIDOC CRM: AN ONTOLOGY FOR CULTURAL HERITAGE 119

3. m is related to q via the “ produced by” relation (P108i)

4. q “took place at” a “place” p (P7 E53)

5. p “is identified by” a “place name” n (P48 E3)

6. n “has note” the string "Nürnberg”. (P3)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 384 2024-02-08

If we look more closely at the objects and relations Example 12.5.5, we see that

• a typical information unit results in a whole chain of objects connected by ontology relations

• parts of these chains are shared between information units

We address this now and introduce the concept of ontology groups and ontology paths for that.

CIDOC CRM Modelling (Ontology Paths)

� Modeling Albrecht Dürer painted Melencolia 1 in Nürnberg
in CIDOC CRM

m : E84 q : E12
P108i

d : E21P14 a : E82
P131

"A. Dürer"
P3

p : E53

P7

n : E48
P87 "Nürnberg"P3

Note that we need to create the intermediary objects q, d, a, and n.

� Problem: That is a lot of work for something very simple.

� Definition 12.5.6. We call sequence of facts si
pi−→ oi, where si = oi−1 an

ontology path and any subtree an ontology group.

� Problem Reformulated: A simple statement like Albrecht Dürer painted Me-
lencolia 1 becomes a whole ontology path in CIDOC CRM.

� But: we can reuse intermediary objects and facts, and need fine grained models
for flexibility.

� Idea: Maybe systems can take some of the pain out of modeling. (; WissKI)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 385 2024-02-08

In Example 12.5.5, we have already seen one of the peculiarities of modeling complex situations in
ontologies: the use of events as intermediate objects. This is a general phenomenon when modeling
with ontologies, which we have to get used. to

Event-Oriented Modeling in CIDOC CRM

� Observation 12.5.7. Ontologies make it easy to model facts with transitive verbs,
e.g. Albrecht Dürer created Melencolia 1 (binary relation)

� Problem: What about more complex situations with more arguments? E.g.

1. Albrecht Dürer created Melencolia 1 with an etching needle (ternary)

120 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

2. Albrecht Dürer created Melencolia 1 with an etching needle in Nürnberg
(four arguments)

3. Albrecht Dürer created Melencolia 1 with an etching needle in Nürnberg out
of boredom (five)

� Standard Solution: Introduce “events” tied to the verb and describe those

� Example 12.5.8. There was a creation event e with

1. Albrecht Dürer as the agent,

2. Melencolia 1 as the product,

3. an etching needle as the means,

4. boredom as the reason,

� Consequence: More than 1/3 of CIDOC CRM classes are events of some kind.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 386 2024-02-08

This “event-oriented” thinking is unfamiliar at first and takes practice to become natural. As
a rule of thumb one should proceed as in the Melencolia example above. We first identify the
“participants” in the situation, if these are more than two, we need to introduce an appropriate
event (select from the ones provided by CIDOC CRM) and then connect the event to the object
currently under consideration, and all the “participants” to the event.

12.6 The Semantic Web Technology Stack
In this section we discuss how we can apply description logics in the real world, in particular,
as a conceptual and algorithmic basis of the semantic web. That tries to transform the World
Wide Web from a human-understandable web of multimedia documents into a “web of machine-
understandable data”. In this context, “machine-understandable” means that machines can draw
inferences from data they have access to. Note that the discussion in this digression is not a
full-blown introduction to RDF and OWL, we leave that to [SR14; Her+13a; Hit+12] and the
respective W3C recommendations. Instead we introduce the ideas behind the mappings from a
perspective of the description logics we have discussed above.
The most important component of the semantic web is a standardized language that can represent
“data” about information on the Web in a machine-oriented way.

Resource Description Framework

� Definition 12.6.1. The Resource Description Framework (RDF) is a framework for
describing resources on the web. It is an XML vocabulary developed by the W3C.

� Note: RDF is designed to be read and understood by computers, not to be
displayed to people. (it shows)

� Example 12.6.2. RDF can be used for describing (all “objects on the WWW”)

� properties for shopping items, such as price and availability

� time schedules for web events

� information about web pages (content, author, created and modified date)

� content and rating for web pictures

12.6. THE SEMANTIC WEB TECHNOLOGY STACK 121

� content for search engines

� electronic libraries

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 387 2024-02-08

Note that all these examples have in common that they are about “objects on the Web”, which is
an aspect we will come to now.
“Objects on the Web” are traditionally called “resources”, rather than defining them by their
intrinsic properties – which would be ambitious and prone to change – we take an external property
to define them: everything that has a URI is a web resource. This has repercussions on the design
of RDF.

Resources and URIs

� RDF describes resources with properties and property values.

� RDF uses Web identifiers (URIs) to identify resources.

� Definition 12.6.3. A resource is anything that can have a URI, such as http:
//www.fau.de.

� Definition 12.6.4. A property is a resource that has a name, such as author
or homepage, and a property value is the value of a property, such as Michael
Kohlhase or http://kwarc.info/kohlhase. (a property value can be another
resource)

� Definition 12.6.5. A RDF statement s (also known as a triple) consists of a
resource (the subject of s), a property (the predicate of s), and a property value
(the object of s). A set of RDF triples is called an RDF graph.

� Example 12.6.6. Statements: [This slide]subj has been [author]preded by [Michael
Kohlhase]obj

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 388 2024-02-08

The crucial observation here is that if we map “subjects” and “objects” to “individuals”, and
“predicates” to “relations”, the RDF triples are just relational ABox statements of description
logics. As a consequence, the techniques we developed apply.
Note: Actually, a RDF graph is technically a labeled multigraph, which allows multiple edges
between any two nodes (the resources) and where nodes and edges are labeled by URIs.
We now come to the concrete syntax of RDF. This is a relatively conventional XML syntax that
combines RDF statements with a common subject into a single “description” of that resource.

XML Syntax for RDF

� RDF is a concrete XML vocabulary for writing statements

� Example 12.6.7. The following RDF document could describe the slides as a
resource
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"

xmlns:dc= "http://purl.org/dc/elements/1.1/">
<rdf:Description about="https://.../CompLog/kr/en/rdf.tex">
<dc:creator>Michael Kohlhase</dc:creator>

http://www.fau.de
http://www.fau.de
http://kwarc.info/kohlhase

122 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

<dc:source>http://www.w3schools.com/rdf</dc:source>
</rdf:Description>

</rdf:RDF>

This RDF document makes two statements:

� The subject of both is given in the about attribute of the rdf:Description element

� The predicates are given by the element names of its children

� The objects are given in the elements as URIs or literal content.

� Intuitively: RDF is a web-scalable way to write down ABox information.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 389 2024-02-08

Note that XML namespaces play a crucial role in using element to encode the predicate URIs.
Recall that an element name is a qualified name that consists of a namespace URI and a proper
element name (without a colon character). Concatenating them gives a URI in our example the
predicate URI induced by the dc:creator element is http://purl.org/dc/elements/1.1/creator.
Note that as URIs go RDF URIs do not have to be URLs, but this one is and it references (is
redirected to) the relevant part of the Dublin Core elements specification [DCM12].
RDF was deliberately designed as a standoff markup format, where URIs are used to annotate
web resources by pointing to them, so that it can be used to give information about web resources
without having to change them. But this also creates maintenance problems, since web resources
may change or be deleted without warning.

RDFa gives authors a way to embed RDF triples into web resources and make keeping RDF
statements about them more in sync.

RDFa as an Inline RDF Markup Format

� Problem: RDF is a standoff markup format (annotate by URIs pointing into
other files)

Definition 12.6.8. RDFa (RDF annotations) is a markup scheme for inline anno-
tation (as XML attributes) of RDF triples.

� Example 12.6.9.
<div xmlns:dc="http://purl.org/dc/elements/1.1/" id="address">

<h2 about="#address" property="dc:title">RDF as an Inline RDF Markup Format</h2>
<h3 about="#address" property="dc:creator">Michael Kohlhase</h3>
<em about="#address" property="dc:date" datatype="xsd:date"

content="2009−11−11">November 11., 2009
</div>

https://svn.kwarc.info/.../CompLog/kr/slides/rdfa.tex

RDFa as an Inline RDF Markup Format

2009−11−11 (xsd:date)

Michael Kohlhase

http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/date

http://purl.org/dc/elements/1.1/creator

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 390 2024-02-08

In the example above, the about and property attributes are reserved by RDFa and specify the
subject and predicate of the RDF statement. The object consists of the body of the element,

http://purl.org/dc/elements/1.1/creator
https://svn.kwarc.info/.../CompLog/kr/slides/rdfa.tex
http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/date
http://purl.org/dc/elements/1.1/creator

12.6. THE SEMANTIC WEB TECHNOLOGY STACK 123

unless otherwise specified e.g. by the content and datatype attributes for literals content.
Let us now come back to the fact that RDF is just an XML syntax for ABox statements.

RDF as an ABox Language for the Semantic Web

� Idea: RDF triples are ABox entries h R s or h:φ.

� Example 12.6.10. h is the resource for Ian Horrocks, s is the resource for Ulrike
Sattler, R is the relation “hasColleague”, and φ is the class foaf:Person

<rdf:Description about="some.uri/person/ian_horrocks">
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<hasColleague resource="some.uri/person/uli_sattler"/>

</rdf:Description>

� Idea: Now, we need an similar language for TBoxes (based on ALC)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 391 2024-02-08

In this situation, we want a standardized representation language for TBox information; OWL
does just that: it standardizes a set of knowledge representation primitives and specifies a variety
of concrete syntaxes for them. OWL is designed to be compatible with RDF, so that the two
together can form an ontology language for the web.

OWL as an Ontology Language for the Semantic Web

� Task: Complement RDF (ABox) with a TBox language.

� Idea: Make use of resources that are values in rdf:type. (called Classes)

� Definition 12.6.11. OWL (the ontology web language) is a language for encoding
TBox information about RDF classes.

� Example 12.6.12 (A concept definition for “Mother”). Mother=Woman ⊓
Parent is represented as

XML Syntax Functional Syntax

<EquivalentClasses>
<Class IRI="Mother"/>
<ObjectIntersectionOf>
<Class IRI="Woman"/>
<Class IRI="Parent"/>

</ObjectIntersectionOf>
</EquivalentClasses>

EquivalentClasses(
:Mother
ObjectIntersectionOf(
:Woman
:Parent

)
)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 392 2024-02-08

But there are also other syntaxes in regular use. We show the functional syntax which is inspired
by the mathematical notation of relations.

Extended OWL Example in Functional Syntax

� Example 12.6.13. The semantic network from Example 12.4.4 can be expressed

124 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

in OWL (in functional syntax)

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

ClassAssertion (:Jack :robin)
ClassAssertion(:John :person)
ClassAssertion (:Mary :person)
ObjectPropertyAssertion(:loves :John :Mary)
ObjectPropertyAssertion(:owner :John :Jack)
SubClassOf(:robin :bird)
SubClassOf (:bird ObjectSomeValuesFrom(:hasPart :wing))

� ClassAssertion formalizes the “inst” relation,

� ObjectPropertyAssertion formalizes relations,

� SubClassOf formalizes the “isa” relation,

� for the “has_part” relation, we have to specify that all birds have a part that
is a wing or equivalently the class of birds is a subclass of all objects that
have some wing.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 393 2024-02-08

We have introduced the ideas behind using description logics as the basis of a “machine-oriented
web of data”. While the first OWL specification (2004) had three sublanguages “OWL Lite”, “OWL
DL” and “OWL Full”, of which only the middle was based on description logics, with the OWL2
Recommendation from 2009, the foundation in description logics was nearly universally accepted.

The semantic web hype is by now nearly over, the technology has reached the “plateau of
productivity” with many applications being pursued in academia and industry. We will not go
into these, but briefly instroduce one of the tools that make this work.

SPARQL an RDF Query language

� Definition 12.6.14. SPARQL, the “SPARQL Protocol and RDF Query Language”
is an RDF query language, able to retrieve and manipulate data stored in RDF.
The SPARQL language was standardized by the World Wide Web Consortium in
2008 [PS08].

� SPARQL is pronounced like the word “sparkle”.

� Definition 12.6.15. A system is called a SPARQL endpoint, iff it answers SPARQL
queries.

� Example 12.6.16. Query for person names and their e-mails from a triplestore
with FOAF data.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?email
WHERE {
?person a foaf:Person.
?person foaf:name ?name.

12.6. THE SEMANTIC WEB TECHNOLOGY STACK 125

?person foaf:mbox ?email.
}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 394 2024-02-08

SPARQL end-points can be used to build interesting applications, if fed with the appropriate data.
An interesting – and by now paradigmatic – example is the DBPedia project, which builds a large
ontology by analyzing Wikipedia fact boxes. These are in a standard HTML form which can be
analyzed e.g. by regular expressions, and their entries are essentially already in triple form: The
subject is the Wikipedia page they are on, the predicate is the key, and the object is either the
URI on the object value (if it carries a link) or the value itself.

SPARQL Applications: DBPedia

� Typical Application: DBPedia screen-scrapes
Wikipedia fact boxes for RDF triples and uses SPARQL
for querying the induced triplestore.

� Example 12.6.17 (DBPedia Query). People who
were born in Erlangen before 1900
(http://dbpedia.org/snorql)

SELECT ?name ?birth ?death ?person WHERE {
?person dbo:birthPlace :Erlangen .
?person dbo:birthDate ?birth .
?person foaf:name ?name .
?person dbo:deathDate ?death .
FILTER (?birth < "1900−01−01"^^xsd:date) .

}
ORDER BY ?name

� The answers include Emmy Noether and Georg Simon
Ohm.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 395 2024-02-08

A more complex DBPedia Query

� Demo: DBPedia http://dbpedia.org/snorql/
Query: Soccer players born in a country with more than 10 M inhabitants, who play
as goalie in a club that has a stadium with more than 30.000 seats.
Answer: computed by DBPedia from a SPARQL query

http://dbpedia.org/snorql
http://dbpedia.org/snorql/
https://goo.gl/2i3ng1

126 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 396 2024-02-08

We conclude our survey of the semantic web technology stack with the notion of a triplestore,
which refers to the database component, which stores vast collections of ABox triples.

Triple Stores: the Semantic Web Databases

� Definition 12.6.18. A triplestore or RDF store is a purpose-built database for
the storage RDF graphs and retrieval of RDF triples usually through variants of
SPARQL.

� Common triplestores include

� Virtuoso: https://virtuoso.openlinksw.com/ (used in DBpedia)

� GraphDB: http://graphdb.ontotext.com/ (often used in WissKI)

� blazegraph: https://blazegraph.com/ (open source; used in WikiData)

� Definition 12.6.19. A description logic reasoner implements of reaonsing services
based on a satisfiabiltiy test for description logics.

� Common description logic reasoners include

� FACT++: http://owl.man.ac.uk/factplusplus/

� HermiT: http://www.hermit-reasoner.com/

� Intuition: Triplestores concentrate on querying very large ABoxes with partial
consideration of the TBox, while DL reasoners concentrate on the full set of ontology
inference services, but fail on large ABoxes.

https://virtuoso.openlinksw.com/
http://graphdb.ontotext.com/
https://blazegraph.com/
http://owl.man.ac.uk/factplusplus/
http://www.hermit-reasoner.com/

12.7. ONTOLOGIES VS. DATABASES 127

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 397 2024-02-08

12.7 Ontologies vs. Databases
To understand ontologies better and contrast them to database systems to understand their

respective possible role in documenting cultural artefacts. We start off with a definition of the
concept and components of an ontology.

We will still keep our presentation of the material at a general level without committing to a
particular ontology language or system.
We now consolidate our understanding of all these concepts with an example. We build an ontology
by first contstructing a TBox and then a corresponding ABox.

Example: Hogwarts Ontology

� Example 12.7.1. Axioms describe the structure of the world,

Class HogwartsStudent = Student and attendsSchool Hogwarts
Class: HogwartsStudent ⊑ hasPet only (Owl or Cat or Toad)
ObjectProperty: hasPet Inverses: isPetOf
Class: Phoenix ⊑ isPetOf only Wizard

� Example 12.7.2. Facts describe some particular concrete situation,

Individual: Hedwig
Types: Owl

Individual: HarryPotter
Types: HogwartsStudent
Facts: hasPet Hedwig

Individual: Fawkes
Types: Phoenix
Facts: isPetOf Dumbledore

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 398 2024-02-08

It is very instructive to compare ontologies to databases. There are some similarities induced by
the joint intention to represent structured data, but also some important differences, which will
play a crucial role in our discussion later on.

Ontologies vs. Databases

� Obvious Analogy: In an ontology:

� axioms analogous to DB schema (structure and constraints on data)

� facts analogous to DB data

� data instantiates schema, is consistent with schema constraints

� But there are also important differences:

128 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

Database:

� Closed world assumption (CWA)

� Missing information treated as
false

� Unique name assumption (UNA)

� Each individual has a single,
unique name

� Schema behaves as constraints on
structure of data

� Define legal database states.

Ontology:

� Open world assumption (OWA)

� Missing information treated as
unknown

� No UNA

� Individuals may have more
than one name

� Ontology axioms behave like im-
plications (inference rules)

� Entail implicit information

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 399 2024-02-08

Let us elucidate these quite abstract concdepts and differences using a simple example, which we
again take from the Hogwarts ontology (see Example 12.7.1 and Example 12.7.2).

DB vs. Ontology by Example (Querying)

� Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley

hasFriend HermioneGranger
hasPet Hedwig

Individual: Draco Malfoy

� Query: Is Draco Malfoy a friend of HarryPotter?

� DB: No

� Ontology: Don’t Know (OWA: didn’t say Draco was not Harry’s friend)

� Counting Query: How many friends does Harry Potter have?

� DB: 2

� Ontology: at least 1 (No UNA: Ron and Hermione may be 2 names for same
person)

� How about: if we add
DifferentIndividuals: RonWeasley HermioneGranger

� DB: 2

� Ontology: at least 2 (OWA: Harry may have more friends we didn’t mention
yet)

� And: if we also add
Individual: HarryPotter
Types: hasFriend only RonWeasley or HermioneGranger

12.7. ONTOLOGIES VS. DATABASES 129

� DB: 2

� Ontology: 2

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 400 2024-02-08

We continue our example with the behavior if we insert new information to the Hogwarts ontology.
Again, databases and ontology systems react differently.

DB vs. Ontology by Example (Insertion)

� Given: the ontology from Example 12.7.1 and Example 12.7.2 insert

Individual: Dumbledore
Individual: Fawkes
Types: Phoenix
Facts: isPetOf Dumbledore

� System Response:

� DB: Update rejected: constraint violation

� Range of hasPet is Human; Dumbledore is not (CWA)

� Ontology Reasoner:

� Infer that Dumbledore is Human
� Also infer that Dumbledore is a Wizard (only a Wizard can have a phoenix
as a pet)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 401 2024-02-08

Finally, we come to one of the central disciplines in which to compare databases and ontology
based information systems: query answering. Here we see a crucial difference: ontology queries
are semantic, i.e. they take both axioms and facts into account.

DB vs. Ontology by Example: Query Answering

� DB schema plays no role in query answering (efficiently implementable)

� Ontology axioms play a powerful and crucial role in QA

� Answer may include implicitly derived facts

� Can answer conceptual as well as extensional queries
E.g., Can a Muggle have a Phoenix for a pet?

� May have very high worst case complexity (=̂ terrible running time)
Implementations may still behave well in typical cases.

� Definition 12.7.3. We call a query language semantic, iff query answering involves
derived axioms and facts.

� Observation 12.7.4. Ontology queries are semantic, while database queries are
not.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 402 2024-02-08

We will now summarize what we have learned about ontology-based information systems.

130 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

Summary: Ontology Based Information Systems

� Analogous to relational database management systems
Ontology =̂ schema; instances =̂ data

� Some important (dis)advantages

+ (Relatively) easy to maintain and update schema.

� Schema plus data are integrated in a logical theory.

+ Query results reflect both schema and data

+ Can deal with incomplete information

+ Able to answer both intensional and extensional queries

– Semantics may be counter-intuitive or even inappropriate

� Open -vs- closed world; axioms -vs- constraints.

– Query answering much more difficult. (based on logical entailment)

� Can lead to scalability problems.

� In a nutshell they deliver more valuable answers at cost of efficiency.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 403 2024-02-08

12.8 Exercises
Problem 8.1 (Function/Argument Form of a Semantic Network)

Write the semantic network from Example 12.4.10 in function/argument notation.

Problem 8.2 (Evaluation of Semantic Networks)
Using the example from Problem 8.1, discuss the pros and cons – give two of each - of semantic

networks.

Problem 8.3 (Semantic Web Technology)
Semantic web technology comes in two parts, RDF and OWL. Briefly describe their roles in

the semantic web. How do they relate to ALC?

Problem 8.4

1. Install the Protege System from http://protege.stanford.edu/ on your computer and

2. use it to represent the following knowledge into an ABox:

(a) Vincent is the brother of Cecilia who is George’s daughter.
(b) Ruth is George’s niece and Paul her brother.
(c) Frida is George’s mother.

3. Define a TBox of family relationships (compliant to the common understanding) that is suffi-
ciently rich so that the following relationships can be inferred (discuss the inferences).

(a) Paul is Cecilia’s cousin.
(b) Frida is Ruth’s and Vincent’s grandmother.
(c) George has a brother or sister.

http://protege.stanford.edu/

Chapter 13

The WissKI System: A Virtual
Research Environment for Cultural
Heritage

We will now come to the WissKI system itself, which positions itself as a virtual research
environment for cultural heritage. Indeed it is a comprehensive, ontology-based information system
for documenting, studying, and presenting our cultural heritage.

Before we go into the technicalities of the WissKI system itself, let us recall the requirements
and motivations.

WissKI: a Virtual Research Env. for Cultural Heritage

� Definition 13.0.1. WissKI is a virtual research environment (VRE) for managing
scholarly data and documenting cultural heritage.

� Requirements: For a virtual research environment for cultural heritage, we need

� scientific communication about and documentation of the cultural heritage

� networking knowledge from different disciplines (transdisciplinarity)

� high-quality data acquisition and analysis

� safeguarding authorship, authenticity, persistence

� support of scientific publication

� WissKI was developed by the research group of Prof. Günther Görtz at FAU
Erlangen-Nürnberg and is now used in hundreds of DH projects across Germany.

� FAU supports cultural heritage research by providing hosted WissKI instances.

� See https://wisski.data.fau.de for details

� We will use an instance for the Kirmes paintings in the homework assignments

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 404 2024-02-08

13.1 WissKI extends Drupal
The first thing about the WissKI system is that it is realized as an extension of the drupal web
content management system, which already provides many of the features (e.g. user management,

131

https://wisski.data.fau.de

132 CHAPTER 13. THE WISSKI SYSTEM

web authoring, collaboration, . . .) a VRE needs to implement.

WissKI System Architecture

� Software basis: drupal CMS (content management system)

� large, active community, extensible by drupal modules

� provides much of the functionality of a VRE out of the box.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 405 2024-02-08

We now give a general overview of the drupal system, and introduce the concepts we need for
understanding WissKI system. Naturally, this does now do the drupal WCMS justice. For an
introduction we refer readers to [Gla17; Tom17] and the drupal web site [Dru].

Drupal: A Web Content Managemt Framework

� Definition 13.1.1. Drupal is an open source web content management application.
It combines CMS functionality with knowledge management via RDF.

� Definition 13.1.2. Drupal allows to configure web pages modularly from content
blocks, which can be

� static content, i.e. supplied by a module,

� user supplied content, or

� views, i.e. listings of content fragments from other blocks.

These can be assembled into web pages via a visual interface: the config bar.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 406 2024-02-08

To fortify our intuition about the concepts introduced above, let us try to find them in an existing
web page.

13.1. WISSKI EXTENDS DRUPAL 133

Assembling a Web Site via Drupal Blocks (Example)

� Example 13.1.3 (Greenpeace via Drupal). Can you find the blocks?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 407 2024-02-08

We now come to one of the most important features used in WissKI: drupal is modular and
extensible; this allows us to build the features for an ontology-based information system as drupal
modules.

Drupal Modules and Themes

� Idea: Drupal is designed to be modular and extensible (so it can adapt to the
ever-changing web)

� Definition 13.1.4 (Modular Design). Drupal functionality is structured into

� drupal core – the basic CMS functionality

� modules which contribute e.g. new block types (∼ 45.000)

� themes which contribute new UI layouts (∼ 2800)

Drupal core is the vanilla system as downloaded, modules and themes must be
installed and configured separately via the config bar.

� The drupal core functionalities include

� user/account management

� menu management,

� RSS feeds,

� taxonomy,

� page layout customization (via blocks and views),

� system administration

134 CHAPTER 13. THE WISSKI SYSTEM

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 408 2024-02-08

This brings us to the central data acquisition subsystem in drupal, which we will use to build our
system. Much of the actual data in the drupal system is internally stored in terms of dictionaries:
systems of key/value pairs.

Bundles and Fields in Drupal (Data Entry)
� Definition 13.1.5. Drupal has a special
data type called a bundle, which is essen-
tially a dictionary: it contains key/value
pairs called fields.

� bundles can be nested ; sub bun-
dles.

� fields also have data type informa-
tion, etc. to support editing.

� drupal presents bundles as

� HTML lists for reading

� HTML forms for data entry/editing

� Drupal bundles induce blocks that can
be used for data entry and presentation.

Semantified Data Entry Form

06.09.2011 Georg Hohmann: WissKI - CIDOC 2011 - Sibiu, Romania 12

Albrecht Dürer

Nürnberg

E84 Information Carrier
ĺ P108i was produced by ĺ
E12 Production
ĺ P14 carried out by ĺ
E21 Person
ĺ P131 is identified by ĺ
E82 Actor Appellation
ĺ P3 has note ĺ
ÄAlbrecht Dürer³

E84 Information Carrier
ĺ P108i was produced by ĺ
E12 Production
ĺ P7 took place at ĺ
E53 Place
ĺ P87 is identified by ĺ
E48 Place Name
ĺ P3 has note ĺ
ÄNürnberg ³

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 409 2024-02-08

Now we can summarize the WissKI architecture in a simple equation. While this glosses over
many of finer points in the system, it is important to keep this in mind for working with the
system in practice.

WissKI System Architecture (Recap)

� WissKI = drupal + CIDOC CRM + triplestore + WissKI modules

06.09.2011 Georg Hohmann: WissKI - CIDOC 2011 - Sibiu, Romania 4

Drupal

Modules

Third-Party

Database

WissKI

Triple Store

Import/Export API

OWL/RDF System

Core

WikiTools

WysiwygAPI

Views

CCK

...

ImageAPI

...

Authority Files Management

Automatic Text Annotator

Discussion System

All software used is available under free software licences.

� Note: Much of WissKI functionality is configurable via the drupal config bar.

13.2. DEALING WITH ONTOLOGY PATHS: THE WISSKI PATHBUILDER 135

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 410 2024-02-08

13.2 Dealing with Ontology Paths: The WissKI Pathbuilder
We now come to what is probably the defining feature of WissKI: the WissKI path builder. It

solves the problem that with ontologies, even for simple facts we have to generate entire ontology
paths.

The WissKI Path Builder (Idea)

� Recall: Albrecht Dürer painted Melencolia 1 in Nürnberg

m : E84 q : E12
P108i

d : E21P14 a : E82
P131

"A. Dürer"
P3

p : E53

P7

n : E48
P87 "Nürnberg"P3

� Idea: Hide the complexity induced by the ontology from the user

� Form-based interaction with categories and fields (as in a RDBMS UI)

� Definition 13.2.1. The WissKI path builder maps ontology groups and ontology
paths to drupal bundles and fields.

� ontology groups become data entry forms (bundles) for the root entities,

� their fields are mapped to ontology paths.

� subtrees in the ontology become sub-bundles. (shared objects)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 411 2024-02-08

Even though we have introduced all the necessary concepts above, the best way of understanding
this is to look at our running example again: the path builder induces a data entry form that
allows us to enter a whole set of ontology paths, introducing and sharing intermediary objects
along the way.

The WissKI Path Builder (Example)

� Example 13.2.2 (A WissKI Group).

136 CHAPTER 13. THE WISSKI SYSTEM
Semantified Data Entry Form

06.09.2011 Georg Hohmann: WissKI - CIDOC 2011 - Sibiu, Romania 12

Albrecht Dürer

Nürnberg

E84 Information Carrier
→ P108i was produced by →
E12 Production
→ P14 carried out by →
E21 Person
→ P131 is identified by →
E82 Actor Appellation
→ P3 has note →
„Albrecht Dürer“

E84 Information Carrier
→ P108i was produced by →
E12 Production
→ P7 took place at →
E53 Place
→ P87 is identified by →
E48 Place Name
→ P3 has note →
„Nürnberg “

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 412 2024-02-08

If we look at the data entry form on the left of Example 13.2.2, then we see that we only enter
strings, not the objects we mean. So there is the problem of disambiguating which objects that
are then linked to some object via CIDOC CRM relations we actually mean with the string.

Sharing and Disambiguation in Path Builders

� Observation 13.2.3. Sometimes we want to refer to existing entities in WissKI.

� Example 13.2.4 (Referring to Nürnberg). (We love tab completion)

� Example 13.2.5 (To What). Albrecht Dürer created all his etchings in Nürnberg.

� Problem: (In paths) we are creating lots of objects, which ones to offer?

� Idea: Mark the entities we might want to reuse on paths while specifying them.

� Definition 13.2.6. A disambiguation point in a path marks an entity that can be
re used in data acquisition.

� Example 13.2.7. Disambiguation points are highlighted in red on paths.

m : E84 q : E12
P108i

d : E21P14 a : E82
P131

"A. Dürer"
P3

p : E53

P7

n : E48
P87 "Nürnberg"P3

13.2. DEALING WITH ONTOLOGY PATHS: THE WISSKI PATHBUILDER 137

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 413 2024-02-08

Now we can have a look at how drupal sees (and shows) path builders

Specifying/Maintaining WissKI Path Builders

� Recall: A WissKI path builder maps ontology groups and ontology paths to drupal
bundles and fields.

� Example 13.2.8 (Specifying a WissKI Path Builder).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 414 2024-02-08

Of course all paths of an ontology group can be visualized as a graph. WissKI supports this as
well.

WissKI Path Builders as Graphs

� Example 13.2.9 (A WissKI Path Construtor as a Graph).

Graph-Ansicht

� Very nice and helpful, but does not work currently!

138 CHAPTER 13. THE WISSKI SYSTEM

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 415 2024-02-08

And finally, a path builder can be seen as a set of triples indeed this is the default export format
for path builders.
Of course all paths of an ontology group can be visualized as a graph. WissKI supports this as
well.

WissKI Path Builders as Triples

� Of course we can view path builders as sets of triples.

� Example 13.2.10 (A WissKI Path Construtor as Triples).

Triples-Ansicht

� Such an export also allows standardized communication.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 416 2024-02-08

But of course, path builders can not only be used as data acquisition devices. They also define
drupal blocks which can be used for data visualization (akin to fact boxes in Wikipedia).

Data Presentation using Path Builders in WissKI

� Path builders can be used as drupal blocks for data presentation.

� For every object o, aggregate the values of the paths starting in o.

� Example 13.2.11 (Compressed View).

Komprimierte

Ansicht

13.3. THE WISSKI LINK BLOCK 139

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 417 2024-02-08

13.3 The WissKI Link Block

The WissKI Link Block (Idea)

� Observation 13.3.1. For an entity in a RDF graph, both the outgoing and the
incoming relations are important for understanding.

� Example 13.3.2. This view only shows the outgoing edges!

Komprimierte

Ansicht

� Idea: Add a block with “incoming links” to the page, use the path builder.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 418 2024-02-08

Link Blocks (Definition)

� Definition 13.3.3. Let p be a drupal page for an ontology group g, then a WissKI
link block is a special drupal block with associated path builder, whose ontology
paths all end in g.

� Example 13.3.4 (A link block for Images).

Note the difference between

� a “work” – the original painting Pieter Brueghel created in 1628

� and an “image of the work” – a b/w photograph of the “work”.

140 CHAPTER 13. THE WISSKI SYSTEM

This particular link block mediates between these two.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 419 2024-02-08

A Link Block in the Wild (the full Picture)

� Example 13.3.5 (A link block for Images).

� outgoing relations be-
low the image,

� incoming ones in the
link block

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 420 2024-02-08

Making Link Blocks via the Path Builder

� How to make a link block in page p for group g? (Details at [WH])

1. create a block via the config bar and place it on p.

2. associate it with a link block path builder

3. model paths into g in the path builder (various source groups)

� Idea: You essentially know link block paths already: If you have already modeled
a path g, r1, . . ., rn, s for a group s, then you have a path s, r−1

n , . . ., r−1
1 , g, where

r−1
i are the inverse roles of ri (exist in CIDOC CRM)

m : E84 q : E12
P108i

P108

d : E21P14

P14i

a : E82
P131

"A. Dürer"
P3

p : E53

P7

P7i n : E48
P87 "Nürnberg"P3

� Note: With this setup, you never have to fill out the link block paths!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 421 2024-02-08

13.4. CULTURAL HERITAGE RESEARCH: QUERYING WISSKI RESOURCES 141

13.4 Cultural Heritage Research: Querying WissKI Resources
So far, we have concentrated on the WissKI system, and how that can be used for data

acquisition and documentation of cultural artefacts. While we did this we lost view of the most
important aspect: what are we doing data acquisition for? Arguably this is cultural heritage
research – and we mean this in an inclusive manner – this could be academic research or researching
for a school project or article in a newspaper.

This research and how the WissKI system can support is what we will go into now.

Research in WissKI

� So far we have seen how to acquire complex knowledge about cultural artefacts
using CIDOC CRM ABoxes.

� Question: But how do we do research using WissKI?

� Answer: Finding patterns, inherent connections, . . . in the data.

� But how?: That depends on the kind of research you want to do. Here are some
WissKI research tools

1. we can use drupal search on the data.

2. We can formulate our own queries in SPARQL

3. We can pre-configure various queries in drupal views.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 422 2024-02-08

The simplest form of “research” is just being able to search over the objects that have been created.
This is one of the basic facilities WissKI offers out of the box. Already that can be quite useful.

Drupal Search in WissKI

� Example 13.4.1.

142 CHAPTER 13. THE WISSKI SYSTEM

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 423 2024-02-08

SPARQL Endpoint in WissKI

� Example 13.4.2. Find kirmes paintings and their painters and count them

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 424 2024-02-08

Data Presentation via Views in WissKI

� Example 13.4.3 (Configuring a View). This makes a drupal block.

13.5. APPLICATION ONTOLOGIES IN WISSKI 143

Drupal generates a SPARQL query, aggregates results into a block.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 425 2024-02-08

This Research is WissKI-instance-local

� Observation 13.4.4. All these research queries only work in the current WissKI
instance.

� Observation 13.4.5. There is probably much more about the entities you are
interested in outside your particular WissKI instance.

� Problem: How to make use of this?

� Solution: We need to do two things

1. Make use of other people’s ABoxes

2. Provide your ABox to other people.

This practice is called linked open data. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 426 2024-02-08

13.5 Application Ontologies in WissKI

WissKI Information Architecture (Ontologies)

� Ontologies, instances, and export formats

144 CHAPTER 13. THE WISSKI SYSTEM

Martin Scholz, FAU, Informatik 8 33

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 427 2024-02-08

Application Ontologies extend CIDOC CRM

� Observation 13.5.1. Sometimes we need more than CIDOC CRM.

� Definition 13.5.2. A WissKI application ontology is one that extends CIDOC
CRM, without changing it.

� Example 13.5.3 (Behaim Application Ontology).

Referenzontologie:

Erlangen CRM

Applikationsontologie:

Behaim-Globus

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 428 2024-02-08

Making an Application Ontology

13.6. THE LINKED OPEN DATA CLOUD 145

� The “current ontology” of a WissKI instance can be configured via the config bar
via the “WissKI ontology” module.

� The application ontology should import CIDOC CRM.

� Idea: Use Protg for that.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 429 2024-02-08

13.6 The Linked Open Data Cloud

Linked Open Data

� Definition 13.6.1. Linked data is structured data in which classified objects are
interlinked via relations with other objects so that the data becomes more useful
through semantic queries and access methods.

� Definition 13.6.2. Linked open data (LOD) is linked data which is released under
an open license, which does not impede its reuse by the community.

� Definition 13.6.3. Given the semantic web technology stack, we can create inter-
operable ontologies and interlinked data sets, we call their totality the .

� Recall the LOD Incentives:

� incentivize other authors to extend/improve the LOD
; more/better data can be generated at a lower cost.

� generate attention to the LOD and recognition for authors
; this gives alternative revenue models for authors.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 430 2024-02-08

By Definition 13.6.3 the linked open data cloud is the totality of linked open data that has been
published. [LOD] tracks (the larger parts of) it. This gives us a sense of the extent of this giant
network of knowledge expressed as triples.

The Linked Open Data Cloud

� The linked open data cloud in 2014 (today much bigger, but unreadable)

146 CHAPTER 13. THE WISSKI SYSTEM

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 431 2024-02-08

We now “zoom in” on this picture to get a better sense”. Each of the circles in the picture is a
data set of at least 1000 triples. The DBPedia in the center of this fragment has 3 billion triples
alone (in 2014).

The Linked Open Data Cloud

� Zooming in (data sets and their – interlinked – ontologies)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 432 2024-02-08

The ideas of the linked open data cloud directly apply knowledge about cultural artefacts as we
formalize them in the WissKI system: we can directly reference objects from the cloud in WissKI.

Using the LOD-Cloud in WissKI

13.6. THE LINKED OPEN DATA CLOUD 147

� Idea: Do not re-model entities that already exist (in the LOD Cloud)

� Problem: Most of the LOD Cloud is about things we do not want.

� But there are some sources that are useful

� the GND (Gemeinsame Normdatei [GND]), an authority file for personal/corpo-
rate names and keywords from literary catalogs,

� geonames[GN], a geographical database with more than 25M names and loca-
tions

� Wikipedia

� Observation 13.6.4. All of them provide URIs for real world entities, which is just
what we need for objects in RDF triples.

� Definition 13.6.5. WissKI provides special modules called adapters for GND and
geonames.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 433 2024-02-08

Using linked open data in WissKI actually makes for higher-quality digitizations, as they are more
interoperable. Unfortunately, WissKI only supports the two adapters we mention above. There
are many many more that would be useful.
Let us now see how to concretely use an adapter, here for the geonames service.

Using Geonames in WissKI (Example)

1. Example 13.6.6. We want to use the “Meilwald” (Erlangen) in WissKI.

2. make a sub-ontology groups “norm data” in the WissKI path builder

3. The induced sub-bundle looks like this:

4. We enter https://geodata.org for “Normdatei” and go there to find out the URI
for “Meilwald” which goes into “Normdatum URI”.

https://geodata.org

148 CHAPTER 13. THE WISSKI SYSTEM

5. there may be multiple results (here only one)

6. Select/click the intended one, check the details

7. Enter the URL from the URL bar into “Normdatum URI”.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 434 2024-02-08

If we – as we did here – tell the story of using authority files in WissKI from a linked open data
perspective, a curious asymmetry becomes apparent: WissKI is using LOD resources, but is – by
and large – not contributing LOD resources back to the “public domain” of linked open cultural

13.6. THE LINKED OPEN DATA CLOUD 149

heritage data.

Towards a WissKI Commons in the LOD Cloud

� Recap: We can directly refer to (URIs of) external objects in WissKI.

� Observation 13.6.7. The most interesting source for references to cultural arte-
facts are other WissKI instances.

� Problem: A WissKI is an island, unless it exports its data! (few do)

� Idea: We need a LOD cloud of cultural heritage research data under to foster
object centric research in the humanities.

� Definition 13.6.8. We call the part of this resource that can be created by aggre-
gating WissKI exports the WissKI commons.

� Observation 13.6.9. WissKI exports meet the FAIR principles quite nicely already.

� We will be working on a FAU WissKI commons in the next years. (help wanted)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 435 2024-02-08

This asymmetry is a very serious problem, since cultural heritage research is not profiting as
much from digitizations as it could. Keeping data in WissKI silos – this is what we do when we
are not exporting WissKI data and referencing objects from other WissKI instances – leads to
fragmentation of the research community and to duplication of work.

150 CHAPTER 13. THE WISSKI SYSTEM

Bibliography

[BHK16] Jens Bove, Lutz Heusinger, and Angela Kailus.Marburger Informations-, Dokumentations-
und Administrations-System (MIDAS): Handbuch und CD. 4th ed. K.G.Saur, 2016.
doi: 10.11588/artdok.00003770.

[CC] CIDOC CRM - The CIDOC Conceptual Reference Model. url: http://www.cidoc-
crm.org/ (visited on 07/13/2020).

[CQ69] Allan M. Collins and M. Ross Quillian. “Retrieval time from semantic memory”. In:
Journal of verbal learning and verbal behavior 8.2 (1969), pp. 240–247. doi: 10.1016/
S0022-5371(69)80069-1.

[DCM12] DCMI Usage Board. DCMI Metadata Terms. DCMI Recommendation. Dublin Core
Metadata Initiative, June 14, 2012. url: http://dublincore.org/documents/
2012/06/14/dcmi-terms/.

[Dru] Drupal.org – Community plumbing. url: http://drupal.org (visited on 02/14/2015).

[ECRMa] erlangen-crm. url: https://github.com/erlangen-crm (visited on 07/13/2020).

[ECRMb] Erlangen CRM/OWL - An OWL DL 1.0 implementation of the CIDOC Conceptual
Reference Model (CIDOC CRM). url: http://erlangen- crm.org/ (visited on
07/13/2020).

[FAIR18] European Commission Expert Group on FAIR Data. Turning FAIR into reality. 2018.
doi: 10.2777/1524.

[FOAF14] FOAF Vocabulary Specification 0.99. Namespace Document. The FOAF Project,
Jan. 14, 2014. url: http://xmlns.com/foaf/spec/.

[Gla17] Matt Glaman. Drupal 8 Development Cookbook – Harness the power of Drupal 8 with
this recipe-based practical guide. 2nd ed. Packt Publishing, 2-17. isbn: 9781788290401.

[GN] Geonames. url: https://www.geonames.org/ (visited on 07/29/2020).

[GND] DNB – The Integrated Authority File (GND). url: https://www.dnb.de/EN/
Professionell/Standardisierung/GND/gnd_node.html (visited on 07/29/2020).

[Her+13a] Ivan Herman et al. RDF 1.1 Primer (Second Edition). Rich Structured Data Markup
for Web Documents. W3CWorking Group Note. WorldWideWeb Consortium (W3C),
2013. url: http://www.w3.org/TR/rdfa-primer.

[Her+13b] Ivan Herman et al. RDFa 1.1 Primer – Second Edition. Rich Structured Data Markup
for Web Documents. W3CWorking Goup Note. World Wide Web Consortium (W3C),
Apr. 19, 2013. url: http://www.w3.org/TR/xhtml-rdfa-primer/.

[HiDa] HiDa. url: https://www.startext.de/produkte/hida (visited on 07/12/2020).

[Hit+12] Pascal Hitzler et al. OWL 2 Web Ontology Language Primer (Second Edition). W3C
Recommendation. World Wide Web Consortium (W3C), 2012. url: http://www.
w3.org/TR/owl-primer.

[JS] json – JSON encoder and decoder. url: https://docs.python.org/3/library/
json.html (visited on 04/16/2021).

151

https://doi.org/10.11588/artdok.00003770
http://www.cidoc-crm.org/
http://www.cidoc-crm.org/
https://doi.org/10.1016/S0022-5371(69)80069-1
https://doi.org/10.1016/S0022-5371(69)80069-1
http://dublincore.org/documents/2012/06/14/dcmi-terms/
http://dublincore.org/documents/2012/06/14/dcmi-terms/
http://drupal.org
https://github.com/erlangen-crm
http://erlangen-crm.org/
https://doi.org/10.2777/1524
http://xmlns.com/foaf/spec/
https://www.geonames.org/
https://www.dnb.de/EN/Professionell/Standardisierung/GND/gnd_node.html
https://www.dnb.de/EN/Professionell/Standardisierung/GND/gnd_node.html
http://www.w3.org/TR/rdfa-primer
http://www.w3.org/TR/xhtml-rdfa-primer/
https://www.startext.de/produkte/hida
http://www.w3.org/TR/owl-primer
http://www.w3.org/TR/owl-primer
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html

152 BIBLIOGRAPHY

[KC04] Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF): Con-
cepts and Abstract Syntax. W3C Recommendation. World Wide Web Consortium
(W3C), Feb. 10, 2004. url: http://www.w3.org/TR/2004/REC-rdf-concepts-
20040210/.

[LM] LabelMe: the open annotation tool. url: http://labelme.csail.mit.edu (visited
on 08/28/2020).

[LOD] The Linked Open Data Cloud. url: https://lod-cloud.net/ (visited on 08/19/2020).

[LXML] lxml – XML and HTML with Python. url: https://lxml.de (visited on 12/09/2019).

[Nor+18a] Emily Nordmann et al. Lecture capture: Practical recommendations for students and
lecturers. 2018. url: https://osf.io/huydx/download.

[Nor+18b] Emily Nordmann et al.Vorlesungsaufzeichnungen nutzen: Eine Anleitung für Studierende.
2018. url: https://osf.io/e6r7a/download.

[OWL09] OWL Working Group. OWL 2 Web Ontology Language: Document Overview. W3C
Recommendation. World Wide Web Consortium (W3C), Oct. 27, 2009. url: http:
//www.w3.org/TR/2009/REC-owl2-overview-20091027/.

[PMDA] Python – MySQL Database Access. url: https : / / www . tutorialspoint . com /
python/python_database_access.htm (visited on 11/18/2018).

[Pro] Protégé. Project Home page at http://protege.stanford.edu. url: http://
protege.stanford.edu.

[PRR97] G. Probst, St. Raub, and Kai Romhardt. Wissen managen. 4 (2003). Gabler Verlag,
1997.

[PS08] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF. W3C
Recommendation. World Wide Web Consortium (W3C), Jan. 15, 2008. url: http:
//www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/.

[SR14] Guus Schreiber and Yves Raimond. RDF 1.1 Primer. W3C Working Group Note.
World Wide Web Consortium (W3C), 2014. url: http://www.w3.org/TR/rdf-
primer.

[SSU04] Susan Schreibman, Ray Siemens, and John Unsworth, eds. A Companion to Digi-
tal Humanities. Wiley-Blackwell, 2004. isbn: 978-1-405-10321-3. url: http://www.
digitalhumanities.org/companion.

[SUMO] Suggested Upper Merged Ontology. url: http://www.adampease.org/OP/ (visited
on 01/25/2019).

[Tom17] Todd Tomlinson. Enterprise Drupal 8 Development – For Advanced Projects and
Large Development Teams. Apress, 2017. isbn: 9781484202548.

[Tur95] Sherry Turkle. Life on the Screen: Identity in the Age of the Internet. Simon & Schus-
ter, 1995.

[UL] urllib – URL handling modules. url: https://docs.python.org/3/library/
urllib.html (visited on 04/15/2021).

[WH] WissKI Handbuch. url: http://wiss-ki.eu/documentation/wisski_handbuch
(visited on 07/23/2020).

[Wil+16] Mark D. Wilkinson et al. “The FAIR Guiding Principles for scientific data manage-
ment and stewardship”. In: Scientific Data 3 (2016). doi: 10.1038/sdata.2016.18.

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://labelme.csail.mit.edu
https://lod-cloud.net/
https://lxml.de
https://osf.io/huydx/download
https://osf.io/e6r7a/download
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
https://www.tutorialspoint.com/python/python_database_access.htm
https://www.tutorialspoint.com/python/python_database_access.htm
http://protege.stanford.edu
http://protege.stanford.edu
http://protege.stanford.edu
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/rdf-primer
http://www.w3.org/TR/rdf-primer
http://www.digitalhumanities.org/companion
http://www.digitalhumanities.org/companion
http://www.adampease.org/OP/
https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/urllib.html
http://wiss-ki.eu/documentation/wisski_handbuch
https://doi.org/10.1038/sdata.2016.18

	8 Semester Change-Over
	8.1 Administrativa

	9 Databases
	9.1 Introduction
	9.2 Relational Databases
	9.3 SQL – A Standardized Interface to RDBMS
	9.4 ER-Diagrams and Complex Database Schemata
	9.5 RDBMS in Python
	9.6 Excursion: Programming with Exceptions in Python
	9.7 Querying and Views in SQL
	9.8 Querying via Python
	9.9 Real-Life Input/Output: XML and JSON
	9.10 Exercises

	10 Project: A Web GUI for a Books Database
	10.1 A Basic Web Application
	10.2 Access Control and Management
	10.3 Asynchronous Loading in Modern Web Apps
	10.4 Deploying the Books Application as a Program

	11 Image Processing
	11.1 Basics of Image Processing
	11.1.1 Image Representations
	11.1.2 Basic Image Processing in Python
	11.1.3 Edge Detection
	11.1.4 Scalable Vector Graphics

	11.2 Project: An Image Annotation Tool
	11.3 Fun with Image Operations: CSS Filters
	11.4 Exercises

	12 Ontologies, Semantic Web for Cultural Heritage
	12.1 Documenting our Cultural Heritage
	12.2 Systems for Documenting the Cultural Heritage
	12.3 The Semantic Web
	12.4 Semantic Networks and Ontologies
	12.5 CIDOC CRM: An Ontology for Cultural Heritage
	12.6 The Semantic Web Technology Stack
	12.7 Ontologies vs. Databases
	12.8 Exercises

	13 The WissKI System
	13.1 WissKI extends Drupal
	13.2 Dealing with Ontology Paths: The WissKI Pathbuilder
	13.3 The WissKI Link Block
	13.4 Cultural Heritage Research: Querying WissKI Resources
	13.5 Application Ontologies in WissKI
	13.6 The Linked Open Data Cloud

