
Informatische Werkzeuge in den Geistes- und
Sozialwissenschaften 1

Prof. Dr. Michael Kohlhase

Professur für Wissensrepräsentation und -verarbeitung
Informatik, FAU Erlangen-Nürnberg

Michael.Kohlhase@FAU.de

July 26, 2019

Michael.Kohlhase@FAU.de

i

Preface

Course Concept

Objective: The course aims at giving students an overview over the variety of digital tools and
methods at the disposal of practitioners of the humanities and social sciences, explaining their
intuitions on how/why they work (the way they do). The main goal of the course is to empower
students for their for the emerging “digital humanities and social sciences”. In contrast to a classical
course in Computer Science which lays the mathematical and computational foundations which
will become useful in the long run, we want to introduce methods and tools that can become
useful in the short term and thus generate immediate success and gratification, thus alleviating
the “programming shock” (the brain stops working when in contact with computer science tools
or computer scientists) common in the humanities and social sciences.
Original Context: The course “Informatische Werkzeuge in den Geistes- und Sozialwissenschaften”
is a first-year, two-semester course in the bachelor program “Digitale Geistes- und Sozialwis-
senschaften” (Digital Humanities and Social Sciences) at FAU Erlangen-Nürnberg.
Open to External Students: Other Bachelor programs are increasingly co-opting the course as
specialization option or a key skill. There is no inherent restriction to DHSS students in this
course.
Prerequisites: There are no formal prerequisites – after all it starts in the first semester – but
a good deal of motivation, openness towards exploring the weird and wonderful world digital
methods and tools, and a certain perseverance in the face of not understanding directly help
tremendously and helps having fun in this course.

We do assume that students have a personal laptop, or access to a computer where they have
admin rights, i.e. can install software. This is necessary for solving the homework. In particular,
smartphones and most tablet computers will not suffice.

Course Contents

The course comprises two parts that are given as two-hour/week lectures.
IWGS 1 (the first semester): begins with an introduction to programming in python which we will
use as the main computational tool in the course; see Chapter 2. In particular we will cover

• systematics and culture of programming

• program and control structures

• basic data strutures like numbers and strings, in particular character encodings, unicode,
and regular expressions

Building on this, we will cover

1. digital documents and document processing, in particular; text files, markup systems, HTML,
and CSS; see Chapter 3.

2. Data bases; in particular Entity Relationship diagrams, CRUD operations, and DB querying;
see Chapter 8.

3. Web technologies for interactive documents and applications; in particular Internet infras-
tructure, web browsers and servers, PHP, dynamic HTML, Javascript, and HTML; see
?sec.webxml?.

The last topic will be integrated into a simple student project.
IWGS 2 (the second semester): covers selected topics and exemplary tools that will become useful
in the DH. We are currently planning

ii

1. Copyright and Data Privacy as legal foundations of data/program oriented work

2. large-scale collaborative development tools: revision control system and issue trackers, in
particular Git and GitLab

3. Image processing tools, e.g. tensorflow, pyCV

4. Semantic Web and WissKI

5. Information systems for academic peer review (EasyChair in form of a student project)

This Document

Format: The document mixes the slides presented in class with comments of the instructor to give
students a more complete background reference.
Caveat: This document is made available for the students of this course only. It is still very much
a draft and will develop over the course of the current course and in coming academic years.
Licensing: This document is licensed under a Creative Commons license that requires attribution,
allows commercial use, and allows derivative works as long as these are licensed under the same
license.
Knowledge Representation Experiment:

This document is also an experiment in knowledge representation. Under the hood, it uses
the STEX package [Koh08; Koh18], a TEX/LATEX extension for semantic markup, which allows to
export the contents into active documents that adapt to the reader and can be instrumented with
services based on the explicitly represented meaning of the documents.
Other Resources: The course notes will be complemented by a selection of problems (with and
without solutions) that can be used for self-study; see http://kwarc.info/teaching/IWGS.

Acknowledgments

Materials: The materials in this course are mostly based on lectures the author has given at Jacobs
University Bremen in the years 2010-2016, these in turn have been partially based on materials
and courses by Heinrich Stamerjohanns, Florian Rabe, and Peter Baumann.

All course materials have bee restructured and semantically annotated in the STEX format, so
that we can base additional semantic services on them.
IWGS Students: The following students have submitted corrections and suggestions to this and
earlier versions of the notes: Paul Moritz Wegener, Michael Gräwe.

http://kwarc.info/teaching/IWGS

iii

Recorded Syllabus

In this document, we record the progress of the course in the academic year 2018/19 in the form
of a “recorded syllabus”, i.e. a syllabus that is created after the fact rather than before. For the
topics planned for this course, see ?sec.iwgs-contents?.
Recorded Syllabus Winter Semester 2018/19:

date until slide page
1 Oct 18. admin, overview 11 6
2 Oct 25. python intro 34 25

Nov. 1. All Hallows Day (public holiday)
3 Nov. 8. python fundamentals 50 33
4 Nov. 15. review fundamentals, functions 56 37
5 Nov. 22. number/character representation, unicode 68 46
6 Nov. 29. regular expressions 77 51
7 Dec. 6. plain/formatted text, HTML 87 57
8 Dec. 13. HTML & CSS 103 67
9 Dec. 20. Review: HTML & CSS 103 67
10 Jan. 10. New Year recap; CSS 111 73
11 Jan. 17. Architecture of the WWW 130 85
12 Jan. 24. web applications, bottle 145 92
13 Jan. 31. client-side computation, JavaScript, JQuery 154 98

Recorded Syllabus Summer Semester 2018:

date until slide page
1. April 25. admin, overview, Revision Control 175 118
2. May 2. distributed revision control, workflows 187 126
3. May 9. GitLab, issues
4. May 16. Databases, DDL, sqlite3 216 144
5. May 23. SQL Queries, Views 226 150

May 30 Public Holiday: Christi Himmelfahrt
6. June 6. Image Processing 268 181
7. June 13. Image Maps via SVG/CSS 296 200

June 20. Public Holiday: Fronleichnam
8. June 27. Legal Foundations of IT 310 212
9. July 4. Information Privacy, Semantic Web 327 220
10. July 11. RDF, Linkd Open Data 356 236
11. July 18. WissKI, What have we learned 373 247

July 25. Exam

iv

Contents

Preface . i
Course Concept . i
Course Contents . i
This Document . ii
Acknowledgments . ii

Recorded Syllabus . iii

1 Preliminaries 1
1.1 Administrativa . 1
1.2 Goals, Culture, & Outline of IWGS . 3
1.3 About My Lecturing . 5

I IWGS-1: Programming, Documents, Web Applications 9

2 Introduction to Programming 11
2.1 Programming in IWGS . 11

2.1.1 Introduction to Programming . 11
2.1.2 Programming in IWGS . 16

2.2 Programming in Python . 18
2.2.1 Hello IWGS . 18
2.2.2 Variables and Types . 24
2.2.3 Python Control Structures . 27
2.2.4 Sequences and Iteration . 30
2.2.5 Input and Output . 32
2.2.6 Functions and Libraries in Python . 34
2.2.7 A Final word on Programming in IWGS . 38

3 Documents as Digital Objects 39
3.1 Preliminaries: Data Structures, Documents, and Sizes 39

3.1.1 Representing and Manipulating Numbers 39
3.1.2 Characters and their Encodings . 43
3.1.3 Computing with Strings . 47
3.1.4 Representing & Manipulating Documents on a Computer 52
3.1.5 Measuring Sizes of Documents/Units of Information 53

3.2 Multimedia Documents on the World Wide Web 56
3.2.1 Hypertext Markup Language . 56
3.2.2 Cascading Stylesheets . 61

3.3 An Overview over XML Technologies . 71

v

vi CONTENTS

4 Web Applications 77
4.1 Basic Concepts of the World Wide Web . 77

4.1.1 Preliminaries . 77
4.1.2 Addressing on the World Wide Web . 79
4.1.3 Running the World Wide Web . 81
4.1.4 HTML Forms and the Web . 84

4.2 Generating HTML on the Server . 85
4.2.1 Templating in Python via STPL . 86
4.2.2 Routing, and Argument Passing in Bottle 90

4.3 Dynamic HTML: Client-side Manipulation of HTML Documents 93
4.3.1 JavaScript in HTML . 94
4.3.2 JQuery: Write Less, Do More . 98

5 What did we learn in IWGS-1? 101

II IWGS-II: DH Project Tools 103

6 Semester Change-Over 105
6.1 Administrativa . 105

7 Collaboration and Project Management 111
7.1 Revision Control Systems . 111

7.1.1 Dealing with Large/Distributed Projects and Document Collections 111
7.1.2 Centralized Version Control . 116
7.1.3 Distributed Revision Control . 120
7.1.4 Working with GIT in small Projects . 121
7.1.5 Working with GIT in large Projects . 124

7.2 Working with GIT and GitLab/GitHub . 125
7.2.1 Excursion: Authentication with SSH . 127

7.3 Bug/Issue Tracking Systems . 128

8 Databases 133
8.1 Introduction . 133
8.2 Relational Databases . 135
8.3 SQL – A Standardized Interface to RDBMS . 137
8.4 ER-Diagrams and Complex Database Schemata . 140
8.5 RDBMS in Python . 143
8.6 Excursion: Programming with Exceptions in Python 145
8.7 Querying and Views in SQL . 147
8.8 Querying via Python . 149
8.9 Project: A Web GUI for a Books Database . 151

9 Image Processing 157

10 Legal Foundations of Information Technology 203
10.1 Intellectual Property . 203
10.2 Copyright . 206
10.3 Licensing . 209
10.4 Information Privacy . 212

CONTENTS vii

11 Ontologies, Semantic Web, & WissKI 215
11.1 Documenting our Cultural Heritage . 215
11.2 Semantic Web Techologies . 217

11.2.1 The Semantic Web . 217
11.2.2 Semantic Networks . 222
11.2.3 Ontologies . 226
11.2.4 The Semantic Web Technology Stack . 229
11.2.5 The Linked Open Data Cloud . 236

11.3 The WissKI System: A Virtual Research Environment for Cultural Heritage 237

12 What did we learn in IWGS? 247

viii CONTENTS

Chapter 1

Preliminaries

1.1 Administrativa

We will now go through the ground rules for the course. This is a kind of a social contract
between the instructor and the students. Both have to keep their side of the deal to make learning
as efficient and painless as possible.

Prerequisites

� Prerequisites: Motivation, interest, curiosity, hard work

� we will teach you all you need to know

� You can do this course if you want!

©:Michael Kohlhase 1

Now we come to a topic that is always interesting to the students: the grading scheme: The short
story is that things are complicated. We have to strike a good balance between what is didactically
useful and what is allowed by Bavarian law and the FAU rules.

Assessment, Grades

� Grading Background/Theory: only modules are graded (by the law)

� module “DH-Einführung” =̂ courses IWGS1/2, DH-Einführung

� DHE module grade ; pass/fail determined by “portfolio” =̂ collection of
contributions/assessments

� Assessment Practice: The IWGS assessments in the “portfolio” consist of

� weekly homework assignments (practice IWGS concepts and tools)

� 60 minutes exam directly after Lectures end: ∼ Feb.10. (to show you
master them)

� Retake Exam: 60 min exam at the end of the semester (∼ Sep 30.)

� To help you succeed: we offer you

1

http://creativecommons.org/licenses/by-sa/2.5/

2 CHAPTER 1. PRELIMINARIES

� External motivation: points for homeworks and a grade for exam (even
though only pass/fail relevant in the end)

� Mid-semester mini-exam (online, optional, corrected but ungraded), (so you
can predict the exam style)

� weekly online quizzes that help you prepare for the course (ungraded ;
check understanding/preparation)

©:Michael Kohlhase 2

Homework assignments, quizzes and end-semester exam may seem like a lot of work – and indeed
they are – but you will need practice (getting your hands dirty) to master the concepts. We will
go into the details next.

IWGS Homework Assignments

� Homeworks: will be small individual problem/programming/system assignments
(but take time to solve) group submission if and only if explicitly permitted

� Admin: To keep things running smoothly

� Homeworks will be posted on StudOn (https://studon.fau.de/studon/
crs2287043.html

� Homeworks are handed in electronically (plain text, program files, PDF)

� go to the tutorials, discuss with your TA (they are there for you!)

� Homework Discipline:

� start early! (many assignments need more than one evening’s work)

� Don’t start by sitting at a blank screen

� Humans will be trying to understand the text/code/math when grading it.

©:Michael Kohlhase 3

It is very well-established experience that without doing the homework assignments (or something
similar) on your own, you will not master the concepts, you will not even be able to ask sensible
questions, and take nothing home from the course. Just sitting in the course and nodding is not
enough!
If you have questions please make sure you discuss them with the instructor, the teaching assistants,
or your fellow students. There are three sensible venues for such discussions: online in the lecture,
in the tutorials, which we discuss now, or in the course forum – see below. Finally, it is always a
very good idea to form study groups with your friends.

IWGS Tutorials

� Weekly tutorials and homework assignments (first one in week two)

http://creativecommons.org/licenses/by-sa/2.5/
https://www.studon.fau.de/studon
https://studon.fau.de/studon/crs2287043.html
https://studon.fau.de/studon/crs2287043.html
http://creativecommons.org/licenses/by-sa/2.5/

1.2. GOALS, CULTURE, & OUTLINE OF IWGS 3

�

Teaching Assistants: (Doctoral Students in CS)

� Jonas Betzendahl: jonas.betzendahl@fau.de

� Philipp Kurth: philipp.kurth@fau.de

They know what they are doing and really want to help
you learn! (dedicated to DH)

� Goal 1: Reinforce what was taught in class (important pillar of the IWGS
concept)

� Goal 2: Let you experiment with python (think of them as Programming Labs)

� Life-saving Advice: go to your tutorial, and prepare it by having looked at the
slides and the homework assignments

� Inverted Classroom: the latest craze in didactics (works well if done right)

in CS: Lecture + Homework assignments + Tutorials =̂ Inverted Classroom

©:Michael Kohlhase 4

Do use the opportunity to discuss the IWGS topics with others. After all, one of the non-trivial
inter/transdisciplinary skills you want to learn in the course is how to talk about Computer Science
topics – maybe even with real Computer Scientists. And that takes practice, practice, and practice.

But what if you are not in a lecture or tutorial and want to find out more about the IWGS topics?

Textbook, Handouts and Information, Forums

� No Textbook: but lots of online tutorials on the web

� Course notes will be posted at http://kwarc.info/teaching/IWGS (see
references)

� I mostly prepare them as we go along (first time I teach IWGS)

� please e-mail me any errors/shortcomings you notice. (improve for the
group)

� Announcements will be posted on the StudOn course forum: https://www.
studon.fau.de/studon/goto.php?target=frm_2319978

� Check the forum frequently for

� announcements, homework questions, . . .

� discussion among your fellow students

� If you become an active discussion group, the forum turns into a valuable re-
source!

©:Michael Kohlhase 5

1.2 Goals, Culture, & Outline of IWGS

jonas.betzendahl@fau.de
philipp.kurth@fau.de
http://creativecommons.org/licenses/by-sa/2.5/
http://kwarc.info/teaching/IWGS
https://www.studon.fau.de/studon/goto.php?target=frm_2319978
https://www.studon.fau.de/studon/goto.php?target=frm_2319978
http://creativecommons.org/licenses/by-sa/2.5/

4 CHAPTER 1. PRELIMINARIES

Goals of “IWGS”

� Goal: giving students an overview over the variety of digital tools and methods

� Goal: explaining their intuitions on how/why they work (the way they do).

� Goal: empower students for their for the emerging field “digital humanities and
social sciences”.

� NON-Goal: laying the mathematical and computational foundations which will
become useful in the long run.

� Method: introduce methods and tools that can become useful in the short term

� generate immediate success and gratification,

� alleviate the “programming shock” (the brain stops working when in contact
with computer science tools or computer scientists) common in the humani-
ties and social sciences.

©:Michael Kohlhase 6

One of the most important tasks in an inter/trans-disciplinary enterprise – and that what “digital
humanities” is, fundamentally – is to understand the disciplinary language, intuitions and foun-
dational assumptions of the respective other side. Assuming that most students are more versed
in the “humanities and social sciences” side we want to try to give an overview of the “Computer
Science culture”.

Academic Culture in Computer Science

� Definition 1.2.1 The academic culture is the overall style of working, re-
search, and discussion in an academic field.

� Observation 1.2.2 There are significant differences in the academic culture
between Computer Science and the Humanities and Social Sciences.

� Computer Science is an Engineering Discipline (we build things)

� given a problem we look for a (mathematical) model, we can think with

� once we have one, we try to re-express it with fewer “primitives” (concepts)

� once we have, we generalize it (make it more widely applicable)

� only then do we implement it in a program (ideally)

Design of versatile, usable, and elegant tools is a main concern

� almost all technical literature is in English (technical Vocabulary too)

� CSlings love shallow hierarchies (Kein Personenkult; alle per Du)

©:Michael Kohlhase 7

Please keep in mind that – self-awareness is always difficult – the list below may be incomplete
and clouded by mirror-gazing.
We now come to the concrete topics we want to cover in . The guiding intuition for the selection is

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

1.3. ABOUT MY LECTURING . . . 5

to concentrate on techniques that may become useful in day-to-day DH work – not CS-completeness
or teaching efficiency.

Outline of IWGS 1:

� programming in python (main tool in IWGS)

� systematics and culture of programming

� program and control structures

� basic data strutures like numbers and strings, character encodings, unicode,
and regular expressions

� digital documents and document processing

� text files

� markup systems, HTML, and CSS

� Web technologies for interactive documents and applications

� Internet infrastructure: web browsers and servers

� PHP, dynamic HTML, Javascript, HTML forms

� Web Application Project (design your own!)

©:Michael Kohlhase 8

1.3 About My Lecturing . . .

First let me state the obvious – this is really still part of the admin – but there is an important
point I want to make.

Do I need to attend the lectures

� Attendance is not mandatory for the IWGS lecture

� There are two ways of learning IWGS: (both are OK, your mileage may vary)

� Approach B: Read a Book

� Approach I: come to the lectures, be involved, interrupt me whenever you
have a question.

The only advantage of I over B is that books do not answer questions (yet!
we are working on this in AI research)

� Approach S: come to the lectures and sleep does not work!

� I really mean it: If you come to class, be involved, ask questions, challenge me
with comments, tell me about errors, . . .

� I would much rather have a lively discussion than get through all the slides

� You learn more, I have more fun (Approach B serves as a backup)

� You may have to change your habits, overcome shyness, . . . (please do!)

http://creativecommons.org/licenses/by-sa/2.5/

6 CHAPTER 1. PRELIMINARIES

� This is what I get paid for, and I am more expensive than most books(get your
money’s worth)

©:Michael Kohlhase 9

That being said – I know that it sounds quite idealistic – can I do something to help you along
in this? Let me digress on lecturing styles ; take the following with “cum kilo salis”1, I want to
make a point here, not bad-mouth my colleagues.!

Traditional Lectures (cum kilo salis)

� One person talks to 50+ students who just listen and take notes

� The I have a book hat you do not have style makes it hard to stay awake

� It is well-known that frontal teaching does not optimize learning

� But it scales very well (especially when televised)

©:Michael Kohlhase 10

So there is a tension between

• scalability of teaching – which is a legitimate concern for an institution like FAU, and

• effectiveness/efficiency of learning – which is a legitimate concern for students

My Lectures? What can I do to keep you awake?

� We know how to keep large audiences engaged and motivated (even televised)

� But the topic is different (IWGS is arguably more complex than Sports/Media)

1with much more than the proverbial grain of salt.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

1.3. ABOUT MY LECTURING . . . 7

� We’re not gonna be able to go all the way to TV entertainment(“IWGS total”)

� But I am going to (try to) incorporate some elements . . .

©:Michael Kohlhase 11

I will use interactive elements I call “questionnaires in my course. Here is one example to give you
an idea of what is coming.

The very first Questionnaire in IWGS

� Question: How many journal articles as “Digital Humanities” up to 2018

a) 7?

b) 1116?

c) 56.000?

� Answer:

a) 7 is much much too small (you could not study such a thin field at FAU)

b) 1116 this is the size of the DARIAH bibliography

c) 56.000 is the number of hits labeled “digital humanities” on google scholar
(lots of duplicates likely)

� Questionnaires: are my attempt to get you to interact

� At end of each logical unit (most, if I can get around to preparing them)

� You get 2 -5 minutes, feel free to make noise (e.g. discuss with your
neighbors)

©:Michael Kohlhase 12

One of the reasons why I like the questionnaire format is that it is a small instance of a question-
answer game that is much more effective in inducing learning – recall that learning happens in
the head of the student, no matter what the instructor tries to do – than frontal lectures. In
fact Sokrates – the grand old man of didactics – is said to have taught his students exclusively
by asking leading questions. His style coined the name of the teaching style “Socratic Dialogue”,
which unfortunately does not scale to a class of 100+ students.

http://creativecommons.org/licenses/by-sa/2.5/
https://www.zotero.org/groups/113737/doing_digital_humanities_-_a_dariah_bibliography
http://creativecommons.org/licenses/by-sa/2.5/

8 CHAPTER 1. PRELIMINARIES

More Generally: My Questions to You

� When will I ask them?

� In questionnaires.

� At various points during the lectures.

� We’ll do examples together.

� Why do I ask them?

� They give you the option to follow the lectures actively.

� They allow me to check whether or not you are able to follow.

� How will I look for answers?

� “Streber syndrom”: 3 students answer all the questions, N − 3 sleep.

� If this happens, I may resort to picking students randomly.

There is nothing to be ashamed of when giving a wrong answer! You wouldn’t
believe the number of times I got something wrong myself (I do hope all bugs
are removed now, but . . .)

©:Michael Kohlhase 13

Unfortunately, this idea of adding questionnaires is mitigated by a simple fact of life. Good
questionnaires require good ideas, which are hard to come by; in particular for IWGS-2, I do not
have many. But maybe you – the students – can help.

Call for Help/Ideas with/for Questionnaires

� I have some questionnaires . . . , but more would be good!

� I made some good ones . . . , but better ones would be better

� Please help me with your ideas (I am not Stefan Raab)

� You know something about IWGS by then.

� You know when you would like to break the lecture by a questionnaire.

� There must be a lot of hidden talent! (you are many, I am only one)

� I would be grateful just for the idea. (I can work out the details)

©:Michael Kohlhase 14

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Part I

IWGS-1: Programming, Documents,
Web Applications

9

Chapter 2

Introduction to Programming

2.1 Programming in IWGS

2.1.1 Introduction to Programming

Programming is an important and distinctive part of “Informatische Werkzeuge in den Geistes-
und Sozialwissenschaften” – the topic of this course. Before we delve into learning python, we will
review some of the basics of computing to situate the discussion.
To understand programming, it is important to realize that that computers are universal machines.
Unlike a conventional tool – e.g a spade – which has a limited number of purposes/behaviors –
digging holes in case of a spade, maybe hitting someone over the head, a computer can be given
arbitrary1 purposes/behaviors by specifying them in form of a “program”.
This notion of a program as a behavior specification for an universal machine is so powerful, that
the field of computer science is centered around studying it – and what we can do with programs,
this includes

i) storing and manipulating data about the world,

ii) encoding, generating, and interpreting images, audio, and video,

iii) transporting information for communication,

iv) representing knowledge and reasoning,

v) transforming, optimizing, and verifying other programs,

vi) learning patterns in data and predicting the future from the past.

Computer Hardware/Software & Programming

1as long as they are “computable”, not all are.

11

12 CHAPTER 2. INTRODUCTION TO PROGRAMMING

� Definition 2.1.1 computer hard-
ware consists of devices that exe-
cute commands/instructions:

� central processing unit (CPU)

� memory: e.g. RAM, ROM, . . .

� storage: e.g. Disks, SSD, tape,
. . .

� input: e.g. keyboard, touch-
screen, . . .

� output: e.g. screen, earphone,
printer, . . .

� software = data and programs

� data represents objects and their rela-
tionshipes in the world

� programs input, manipulate, output data

� hardware stores data and runs programs.

Data

Machines

Algorithms

� Programming = writing programs (Telling the computer what to do)

� The computer does exactly as told

� extremely fast extremely reliable

� completely stupid: will not do what you mean unless you tell it exactly

� Programming can be extremely fun/frustrating/addictive (try it)

©:Michael Kohlhase 15

A universal machine has to have – so experience in computer science shows – certain distinctive
parts.

• A CPU that consists of a

– control unit that interprets the program and controls the flow of instructions and
– a arithmetic/logic unit that does the actual computations internally.

• Memory that allows the system to store data during runtime (volatile storage; usually RAM)
and between runs of the system (persistant storage; usually hard disks, solid state disks,
magnetic tapes, or optical media).

• I/O devices for the communication with the user and other computers.

With these components we can build various kinds of universal machines; these range from thought
experiments like Turing machines, to today’s general purpose computers like your laptop with
various embedded computers (wristwatches, Internet routers, airbag controllers, . . .) in-between.
Note that – given enough fantasy – the human brain has the same components Indeed the human
mind is a universal machine – we can think whatever we want, react to the environment, and
are not limited to particular behaviors. There is a sub-field of Computer Science that studies
this: Artificial Intelligence (AI). In this analogy, the brain is the “hardware” –sometimes called
“wetware” because it is not made of hard silicon or “meat machine”2. It is instructional to think
about what the program and the data might be in this analogy.

2Marvin Minsky; one of the founders of AI

http://creativecommons.org/licenses/by-sa/2.5/

2.1. PROGRAMMING IN IWGS 13

AI studies human intelligence with the premise that the brain is a computational machine and
that intelligence is a “program” running on it. In particular, the working hypothesis is that we can
“program” intelligence. Even though AI has many successful applications, it has not succeeded
in creating a machine that exhibits the equivalent to general human intelligence, so the jury is
still out whether the AI hypothesis is true or not. In any case it is a fascinating area of scientific
inquiry.
Note: this has an immediate consequence for the discussion in our course. Even though computers
can execute programs very efficiently, you should not expect them to “think” like a human. In par-
ticular, they will execute programs exactly as you have written them. This has two consequences:

• the behavior of programs is – in principle – predictable

• all errors of program behavior are your own (the programmer’s)

Programming Languages

� Definition 2.1.2 A programming language is the formal language in which
we write programs (express an alogrithm concretely)

� formal, symbolic, precise meaning (a machine must understand it)

� There are lots of programming languages

� design huge effort in computer science

� all programming languages equally strong

� each is more or less appropriate for a specific task depending on the circum-
stances

� Lots of paradigms: imperative, functional programming, logic programming,
object oriented programming

©:Michael Kohlhase 16

In computer science, we distinguish two levels on which we can talk about programs. The more
general is the level of algorithms, which is independent of the concrete programming language.
Algorithms express the general ideas and flow of computation and can be realized in various
languages, but are all equivalent – in terms of the algorithm they implement.
As they are not bound to programming languages algorithms transcend them, and we can find
them in our daily lives, e.g. as sequences of instructions like recipes, grame instructions, and the
like. This should make algorithms quite familiar; the only difference of programs is that they are
written down in an unambiguous syntax that a computer can understand.

Program Execution

� Algorithm: informal description of what to do (good enough for humans)

http://creativecommons.org/licenses/by-sa/2.5/

14 CHAPTER 2. INTRODUCTION TO PROGRAMMING

Program: computer-processable version, e.g. in python

for x in range(0, 3):
print ("we tell you",x,"time(s)")

�

� Interpreter: reads a program and executes it directly

� special case: interactive interpretation (lets you experiment easily)

� Compiler: translates a program (the source) into another program (the binary)
in a much simpler language for optimized execution on hardware directly.

� Remark 2.1.3 Compilers are efficient, but more cumbersome for develop-
ment.

©:Michael Kohlhase 17

We have two kinds of programming languages: one which the CPU can execute directly – these
are very very difficult for humans to understand and maintain – and higher-level ones that are
understandable by humans. If we want to use high-level languages – and we do, then we need to
have some way bridging the language gap: this is what compilers and interpreters do.
Finally, we want to go over a couple of general issues pertaining to programs and (universal)
machines. We will just go over them to get the intuitions – which are central for understanding
computer science – and let the lecture “Theoretical Computer Science” fill in the details and
justifications.

Computers as Universal Machines (a taste of theo. CS)

� Observation: Computers are universal tools: their behavior is determined by a
program; they can do anything, the program specifies.

� Context: Tools in most other disciplines are specific to particular tasks.(except
in e.g. ribosomes in cell biology)

� Remark 2.1.4 (Deep Fundamental Result) There are things no com-
puter can compute.

� Example 2.1.5 whether another program will terminate in finite time.

� Remark 2.1.6 (Church-Turing Hypothesis) There are two classes of
languages

� Turing complete (or computationally universal) ones that can compute
what is theoretically possible.

� data languages that cannot. (but describe data sets)

http://creativecommons.org/licenses/by-sa/2.5/

2.1. PROGRAMMING IN IWGS 15

� Observation 2.1.7 (Turing Equivalence) All programming languages are
(made to be) universal, so they can compute exactly the same. (compil-
ers/interpreters exist)

. . . in particular . . . : Everybody who tells you that one programming languages
is the best has no idea what they’re talking about (though differences in
efficiency, convenience, and beauty exist)

©:Michael Kohlhase 18

� Artificial Intelligence

� Another Universal Tool: The human mind. (We can understand/learn
anything.)

� Strong Artificial Intelligence: claims that the brain is just another computer.

� If that is true then

� the human mind underlies the same restrictions as computational machines

� we may be able to find the “mind-program”.

©:Michael Kohlhase 19

We now come to one of the most important, but maybe least acknowledged principles of program-
ming languages: The Principle of Compositionality. To fully understand it, we need to fix some
fundamental vocabulary.

Top Principle of Programming: Compositionality

� Observation 2.1.8 Modern programming languages compose various primi-
tives and give them a pleasing, concise, and uniform syntax.

� Question: What does all of this even mean?

� Definition 2.1.9 In a programming language, a primitive is a “basic unit of
processing”, i.e. the simplest element that can be given a procedural meaning
(its semantics) of its own.

� Definition 2.1.10 (Compositionality) All programming languages pro-
vide composition principles that allow to compose smaller program fragments
into larger ones in such a way, that the semantics of he larger is determined
by the semantics of the smaller ones and that of the composition principle
employed.

� Observation 2.1.11 The semantics of a programming language, is determined
by the meaning of its primitives and composition principles.

� Definition 2.1.12 Programming language syntax concerns the surface form
of the program: the admissible character sequences. It is also a composition
of the syntax for the primitives.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

16 CHAPTER 2. INTRODUCTION TO PROGRAMMING

©:Michael Kohlhase 20

All of this is very abstract – it has to be as we have not fixed a programming language yet – and
you will only understand the true impact of the compositionality principle over time and with
programming experience. Let us now see what this means concretely for our course.

Consequences of Compositionality

� Observation 2.1.13 To understand a programming language, we (only) have
to understand its primitives, composition principless, and their syntax.

� Definition 2.1.14 The “art of programming” consists of composing the
primitives of a programming language.

� Observation 2.1.15 We only need very few – about half a dozen – primitives
to obtain a Turing complete programming language.

� Observation 2.1.16 The space of program behaviors we can achieve by pro-
gramming is infinitely large nonetheless.

� Remark 2.1.17 More primitives make programming more convenient.

� Remark 2.1.18 Primitives in one language can be composed in others.

©:Michael Kohlhase 21

A note on Programming: Little vs. Large Languages

� Observation 2.1.19 Most such concepts can be studied in isolations, and
some can be given a syntax on their own. (standardization)

� Consequence: If we understand the concepts and syntax of the sublanguages,
then learning another programming language is relatively easy.

©:Michael Kohlhase 22

2.1.2 Programming in IWGS

After the general introduction to “programming” in the last Subsection, we now instantiate the
situation to the IWGS course, where we use python as the primary programming language.

Programming in IWGS: python

� We will use python as the programming language in this course

� We cover just enough python, so that you

� understand the joy and principle of programming

� can play with objects we present in IWGS.

� After a general introduction we will introduce language features as we go along

� For more information on python (homework/preparation)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

2.1. PROGRAMMING IN IWGS 17

RTFM (=̂ “read those fine manuals”)
RTFM Resources: There are also lots of good tutorials on the web,

� � I like [LP; Sth; Swe13];

� but also see the language documentation [P3D].

� [Kar] is an introduction geared to the (digital) humanities

©:Michael Kohlhase 23

Note that IWGS is not a programming course, which concentrates on teaching a programming
language in all it gory detail. Instead we want to use the IWGS lecture to introduce the necessary
concepts and use the tutorials to introduce additional language features based on these.

But Seriously. . . Learning programming in IWGS

� The IWGS lecture teaches you

� a general introduction to programming and python (next)

� various useful concepts and how they can be done in python (in principle)

� The IWGS tutorials

� teach the actual skill and joy of programming (hacking 6= security breach)

� supply you with problems so you can practice that.

Richard Stallman (MIT) on Hacking: “What they had in common was mainly
love of excellence and programming. They wanted to make their programs
that they used be as good as they could. They also wanted to make them
do neat things. They wanted to be able to do something in a more exciting
way than anyone believed possible and show “Look how wonderful this is. I
bet you didn’t believe this could be done.””

�� So, . . . : Let’s hack

©:Michael Kohlhase 24

However, the result would probably be the following:

2am in the Kollegienhaus CIP Pool

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

18 CHAPTER 2. INTRODUCTION TO PROGRAMMING

©:Michael Kohlhase 25

If we just start hacking before we fully understand the problem, chances are very good that we
will waste time going down blind alleys, and garden paths, instead of attacking problems. So the
main motto of this course is:

no, let’s think

� We have to fully understand the problem, our tools, and the solution space first
(That is what the IWGS lecture is for)

� read Richard Stallman’s quote carefully; problem understanding is a crucial
prerequisite for hacking.

� “The GIGO Principle: Garbage In, Garbage Out” (– ca. 1967)

� “Applets, Not Crapletstm” (– ca. 1997)

©:Michael Kohlhase 26

2.2 Programming in Python

In this Section we will introduce the basics of the python language. python will be used as our means
to express algorithms and to explore the computational properties of the objects we introduce in
IWGS.

2.2.1 Hello IWGS

Before we get into the syntax and meaning of python, let us recap why we chose this particular
language for IWGS.

python in a Nutshell

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

2.2. PROGRAMMING IN PYTHON 19

� Why python?:

� general purpose programming language

� imperative, interactive interpreter

� syntax very easy to learn (spend more time on problem solving)

� scales well

� easy for beginners to write simple programs
� but advanced software can be written with it as well

� Interactive mode: The python shell IDLE3

� Homework: Establish a python interpreter (version 3.7) (not 2.?.?, that has
different syntax)

� install python from http://python.org (for offline use)

� make sure (tick box) that the python executable is added to the path.(makes
shell interaction much easier)

©:Michael Kohlhase 27

Installing python: python can be installed from http://python.org; “Downloads”, as a Windows
installer or a Mac OS X disk image. For linux it is best installed via the package manager, e.g.
using

sudo apt−get update
sudo apt−get install python3.7

The download will install the python interpreter and the python shell IDLE3 that can be used
for interacting with the interpreter directly.
It is important that you make sure (tick the box in the Windows installer) that the python exe-
cutable is added to the path. In the shell1, you can then use EdN:1

python 〈〈filename〉〉

to run the python file 〈〈fiename〉〉. This is better than using the windows-specific

py 〈〈filename〉〉

which does not need the python interpreter on the path as we will see later.

Arithmetic Expressions in python

� Expressions are “programs” that compute values (here: numbers)

1EdNote: fully introduce the concept of a shell in the next round

http://python.org
http://creativecommons.org/licenses/by-sa/2.5/
http://python.org

20 CHAPTER 2. INTRODUCTION TO PROGRAMMING

� Integers (numbers without a decimal point)

� operators: addition +, subtraction −, multiplica-
tion ∗, division /, integer division //, remainder/-
modulo %, . . .

� Division yields a float

� Floats (numbers with a decimal point)

� Operators: integer below floor, integer above ceil,
exponential exp, square root sqrt, . . .

Numbers are values, i.e. data objects that can be com-
puted with. (reference the last computed one with _)

�� Expressions are created from values (and other expres-
sions) via operators.

� Observation: The python interpreter simplifies expres-
sions to values by computation.

©:Michael Kohlhase 28

In IWGS, we want to mostly use the pythonAnywhere cloud service. This runs the python interpreter
on a cloud server and gives you a browser window with a web IDE, which you can use for interacting
with the interpreter. You will have to make an account there – a free “beginner’s account” will do
fine for IWGS.

pythonAnywhere A Cloud IDE for python

� For helping you it would be good if the TAs could access to your code

� Idea: Use a web IDE (a web-based integrated development environment), which
you can use for interacting with the interpreter.

� We will use pythonAnywhere for IWGS.

� Homework: Set up pythonAnywhere

� make a “beginner’s account” at http://pythonanywhere.com (sufficient
for IWGS)

� give the IWGS account iwgsTeacher access under Account/Teacher.

©:Michael Kohlhase 29

The advantage of a cloun IDE like pythonAnywhere for a course like IWGS is that you do not need
any installation, cannot lose your files, and your teachers (the course instructor and the teaching
assistants) can see (and even directly interact with) the your run time environment. This gives us
a much more controlled setting and we can help you better.
Both IDLE3 as well as pythonAnywhere come with an integrated editor for writing python programs.
These editors gives you python syntax highlighting, and interpreter and debugger integration. In
short, IDLE3 and pythonAnywhere are integrated development environments for python. Let us
now go through the interface of the pythonAnywhere IDE.

http://creativecommons.org/licenses/by-sa/2.5/
http://pythonanywhere.com
iwgsTeacher
http://creativecommons.org/licenses/by-sa/2.5/

2.2. PROGRAMMING IN PYTHON 21

pythonAnywhere Components

� The pythonAnywhere dashboard gives you access to all components

� The pythonAnywhere python console, i.e. a python interpreter in your browser.
(use this for python interaction and testing)

� The pythonAnywhere bash console, i.e. a UNIX shell in your browser. (use this
for managing files)

22 CHAPTER 2. INTRODUCTION TO PROGRAMMING

� Useful shell commands: See e.g. [All18] for a basic tutorial

� ls: “list” the files in this directory

� mkdir: “make” folder (called “directory”)

� pwd: “print working directory” (where am I)

� cd 〈〈dirname〉〉: “change directory”

� 〈〈dirname〉〉 = ..: one up in the directory tree
� empty 〈〈dirname〉〉: go to your home directory.

� rm 〈〈filename〉〉, cp/mv 〈〈filename〉〉 〈〈newname〉〉/〈〈dirname〉〉: remove, copy,
and move/rename

� . . . see [All18] for more . . .

©:Michael Kohlhase 30

Now that we understand our tools, we can wrote our first program: Traditionally, this is a “hello-
world program” (see [HWC] for a description and a list of hello world programs in hundreds of
languages) which just prints the string “Hello World” to the console. For python, this is very simple
as we can see below. We use this program to explain the concept of a program as a (text) file,
which can be started from the console.

A first program in python

� A classic “Hello World” program:
start your python console, type print("Hello IWGS"). (print a string)

� Alternatively:

1. got to the pythonAnywhere dashboard select “Files”, type file name hello.
py, and press “New file”

http://creativecommons.org/licenses/by-sa/2.5/
hello.py
hello.py

2.2. PROGRAMMING IN PYTHON 23

2. Type your program,

3. Press the “Run” button (you may have to destroy a console first)

3’ Alternatively go to your bash console and type

python hello.py

©:Michael Kohlhase 31

We have seen that we can just call a program from the bash console, if we stored it in a file. In
fact, we can do better: we can make our program behave like a native bash command.

1. The file extension .py is only used by convention, we can leave it out and simply call the file
hello.

2. Then we can add a special python comment in the first line
#!/usr/bin/python

which the bash console interprets as “call the program python on me”.

3. Finally, we make the file hello executable, i.e. tell the bash console the file should behave
like a shell command by issuing
chmod u+x hello

in the directory where the file hello is stored.

4. We add the line
export PATH="./:${PATH}"

to the file .bashrc. This tells the bash console where to look for programs (here the respective
current directory called .)

With this simple recipe we could in principle extend the repertoire of instructions of the bash
console and automate repetitive tasks.
Before we go on to learn more basic python operators and instructions, we address an important
general topic: comments in program code.

Comments in python

� Generally: It is highly advisable to insert comments into your programs,

� especially, if others are going to read your code, (TAs/graders)

� you may very well be one of the “others” yourself, (in a year’s time)

� writing comments first helps you organize your thoughts.

� Comments are ignored by the python interpreter but are useful information for
the programmer.

http://creativecommons.org/licenses/by-sa/2.5/

24 CHAPTER 2. INTRODUCTION TO PROGRAMMING

� In python: there are two kinds of comments

� Single line comments start with a #

� Multiline comments start and end with three quotes (single or double: """
or ’’’)

� Idea: Use comments to

� specify what the intended input/output behavior of the program or fragment

� give the idea of the algorithm achieves this behavior.

� specify any assumptions about the context (do we need some file to exist)

� document whether the program changes the context.

� document any known limitations or errors in your code.

©:Michael Kohlhase 32

2.2.2 Variables and Types

And we start with a general feature of programming languages: we can give names to values and
use them multiple times. Conceptually, we are introducing shortcuts, and in reality, we are giving
ourselves a way of storing values in memory so that we can reference them later.

Variables in python

� Idea: Values (of expressions) can be given a name for later reference.

� Definition 2.2.1 A variable is a memory location which contains a value
and an associated identifier – the variable name.

� note: In python a variable names

� must start with letter or _,

� cannot be python keywords

� is case-sensitive (foobar, FooBar, and fooBar are different variables)

� A variable name can be used in expressions everywhere its value could be.

� A variable assignment 〈〈var〉〉=〈〈val〉〉 assigns a value.

� Example 2.2.2 (Playing with python Variables)

http://creativecommons.org/licenses/by-sa/2.5/

2.2. PROGRAMMING IN PYTHON 25

©:Michael Kohlhase 33

Let us fortify our intuition about variables with some examples. The first shows that we sometimes
need variables to store objects out of the way and the second one that we can use variables to
assemble intermeditate results.

Variables in python: Extended Example

� Example 2.2.3 (Swapping Variables) To exchange the values of two vari-
ables, we have to cache the first in an auxiliary variable.
a = 45
b= 0
print("a =", a, "b =", b)
print("Swap the contents of a and b")
swap = a
a= b
b = swap
print("a =", a, "b =", b)

Here we see the first example of a python script, i.e. a series of python
commands, that jointly perform an action (and communicates it to the user).

� Example 2.2.4 (Variables for Storing Intermediate Variables)

>>> x = "OhGott"
>>> y = x+x+x
>>> z = y+y+y
>>> z
’OhGottOhGottOhGottOhGottOhGottOhGottOhGottOhGottOhGott’

©:Michael Kohlhase 34

If we use variables to assemble intermediate results, we can use telling names to document what
these intermediate objects are – something we did not do well in Example 2.2.4; but admittely,
the meaning of the objects in this contrived example is questionable.
The next phenomenon in python is also common to many (but not all) programming languages:
expressions are classified by the kind of objects their values are. Objects can be simple (i.e. of a
basic type; python has five of these) or complex, i.e. composed of other objects; we will go into
that below.

Data Types in python

� Recall: python programs process data (values), which can be combined by
operators and variables into expressions.

� Data types group data into types

� 1, 2, 3, etc. are data of type “integer”

� "hello" is data of type “string”

� Data types determine which operators can be applied

� In python, every values has a type, variables can have any type, but can only
be assigned values of their type.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

26 CHAPTER 2. INTRODUCTION TO PROGRAMMING

� Definition 2.2.5 python has the following five basic types

Data type Name Examples
Integers int 1, −5, 0, . . .
Floats float 1.2, .125, −1.0, . . .
Strings str "Hello", ’Hello’, "123", ’a’, . . .
Booleans bool True, False

Complex numbers complex 2+3j,. . .

� We will ecounter more types later.

©:Michael Kohlhase 35

We will now see what we can – and cannot – do with data types, this becomes most noticable in
variable assignments which establishes a type for the variable (this cannot be change any more)
and in the application of operators to arguments (which have to be of the correct type).

Data Types in python (continued)

� The type of a variable is automatically determined in the first variable assignment
(before that the variable is unbound)

>>> firstVariable = 23 # integer
>>> type(firstVariable)
<class ’int’>
weight = 3.45 # float
first = ’Hello’ # str

Hint: The python function type to computes the type (don’t worry about the
class bit)

©:Michael Kohlhase 36

� Data Types in python (continued)

� Observation 2.2.6 python is strongly typed, i.e. types have to match

� Use data type conversion functions int(), float(), complex()), bool()), and str()
to adjust types

� Example 2.2.7

>>> 3+"hello"
Traceback (most recent call last):
File "<pyshell#1>", line 1, in <module>
3+"hello"

TypeError: unsupported operand type(s) for +: ’int’ and ’str’
>>> str(4)+"hello"
’4Hello’

©:Michael Kohlhase 37

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

2.2. PROGRAMMING IN PYTHON 27

2.2.3 Python Control Structures

So far, we only know how to make programs that are a simple sequence of instructions – no
repetitions, no alternative pathways. Example 2.2.2 is a perfect example. We will now change
that by introducing control structures, i.e complex program instructions that change the control
flow of the program.

Branching and Looping

� Problem: Up to now programs seem to execute all the instructions in sequence,
from the first to the last (a linear program)

� Idea: Change the control flow, i.e. the sequence of execution of the program
instructions via control structures.

� Definition 2.2.8 Branching (or conditional execution) allows to execute
(or not to execute) certain parts of a program – the branches– depending
on conditions. We call a code block that enables branching a conditional
statement.

� Definition 2.2.9 Looping allows to execute certain parts of a program –
the body– multiple times depending on conditions. We call the code block
that specifies looping a loop.

� Definition 2.2.10 A condition (or Boolean expression) is an expression that
can be evaluated to True o False.

� Example 2.2.11 Conditions are constructed by applying a Boolean opera-
tor to arguments, e.g. 3>5, x==3, x!=3, . . .
or by combining simpler conditions by Boolean connectives or, and, and not
(using brakets if necessary), e.g. x>5 or x<3

©:Michael Kohlhase 38

After this general introduction – branching and looping) are supported by all programming lan-
guage in some form – we will see how this is realized in python

Branching in python

� Definition 2.2.12 Branching via if/else statements

if 〈〈condition〉〉 :
〈〈then-part〉〉

else :
〈〈else-part〉〉

〈〈more code〉〉

Block 1: continuation

Block 2: continuation

Block 3

Block 2: start

Block 1: start

Start

cond

then else

end

True False

� 〈〈then-part〉〉 and 〈〈else-part〉〉 have to be indented equally. (e.g. 4 blanks)

http://creativecommons.org/licenses/by-sa/2.5/

28 CHAPTER 2. INTRODUCTION TO PROGRAMMING

� if control structures are nested they need to be further indented consistently.

©:Michael Kohlhase 39

python uses indenting to signify nesting of body parts in control structures – and other structures
as we will see later. This is a very un-typical syntactic choice in programming languages, which
typically use brackets, braces, or other paired delimiters to indicate nesting and give the freedom
of choice in indenting to programmers. This freedom is so ingrained in programming practice,
that we emphasize the difference here. The following example shows branching in action.

Branching Example

� Example 2.2.13 (Empathy in python)
answer = input("Are you happy? ")
if answer == ’No’ or answer == ’no’:

print("Have a chocolate!")
else:

print("Good!")
print("Can I help you with something else?")

Note the indenting of the body parts.

� BTW: input is an operator that prints its argument string, waits for user input,
and returns that.

©:Michael Kohlhase 40

But branching in python has one more trick up its sleeve: what we can do with two branches, we
can do with more as well.

Variant: Multiple Branching

� Variant: multiple branching is similar
if 〈〈condition〉〉 :
〈〈then-part〉〉

elif 〈〈condition〉〉 :
〈〈other then-part〉〉

else :
〈〈else-part〉〉

� The there can be more than one elif clause.

� The 〈〈condition〉〉s are evaluated from top to bottom and the 〈〈then-part〉〉
of the first one that comes out true is executed. Then the whole control
structure is exited.

� multiple branching could achieved by nested if/else structures.

� Example 2.2.14 (Better Empathy in python) In Example 2.2.13 we print
Good! even if the input is e.g. I feel terrible, so extend if/else by
elif answer == ’Yes’ or answer == ’yes’ :

print("Good!")
else :

print("I do not understand your answer")

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

2.2. PROGRAMMING IN PYTHON 29

©:Michael Kohlhase 41

Note that the elif is just “syntactic sugar” that does not add anything new to the language: we
could have expressed the same functionality as two nested if/else statements
if 〈〈condition〉〉 :
〈〈then-part〉〉
if 〈〈condition〉〉 :
〈〈other then-part〉〉

else :
〈〈else-part〉〉

But this would have introduced an additional layer of nesting (per elif clause in the original). The
nested syntax also obscures the fact that all branches are essentially equal.
Now let us see the syntax for looping in python.

Looping in python

� Definition 2.2.15 looping via while-blocks
� syntax of the while loop

while 〈〈condition〉〉 :
〈〈body〉〉

〈〈more code〉〉

� breaking out of loops with
break

� skipping the current body
with continue

� 〈〈body〉〉 must be indented!

Start

cond body

end

True

False

©:Michael Kohlhase 42

As always we will fortify our intuition with a couple of small examples.

Looping Examples

� Example 2.2.16 (Counting in python)

Prints out 0,1,2,3,4
count = 0
while count < 5:

print(count)
count += 1 # This is the same as count = count + 1

This is the standard pattern for using while: using a loop variable (here
count) and incrementing it in every pass through the loop.

� Example 2.2.17 (Breaking an unbounded Loop)

Prints out 0,1,2,3,4 but uses break
count = 0
while True:

print(count)
count += 1
if count >= 5:

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

30 CHAPTER 2. INTRODUCTION TO PROGRAMMING

break

� Example 2.2.18 (Exceptions in the Loop)

Prints out only odd numbers − 1,3,5,7,9
count = 0
while count < 10

count += 1
Check if x is even
if count % 2 == 0:

continue
print(count)

©:Michael Kohlhase 43

Example 2.2.16 and Example 2.2.16 do the same thing: counting from zero to four, but using
different mechanisms. This is normal in programming – there is not “one correct solution”. But
the first solution is the “standard one”, and is preferred, sind it is shorter and more readable. The
break functionality shown off in the second one is still very useful. Take for instance the problem
of computing the product of the numbers -10 to 1.000.000. The naive implementation of this is
on the left below which does a lot of unnecessary work, because as soon was we passed 0, then the
whole product must be zero. A more efficient implementation is on the right which breaks after
seeing a zero.

Direct Implementation More Efficient

count = −10
prod = 1
while count < 1000000:

prod ∗= count
count += 1

count = −10
prod = 1
while count <= 1000000:

prod ∗= count
if count = 0 :

break
count += 1

2.2.4 Sequences and Iteration

We now come to a commonly used class of objects in python: sequences, such as lists, sets, tuples,
ranges, and dictionaries.

They are used for storing, accumulating, and accessing objects in various ways in programs.
They all have in common, that they can be used for iteration, thus creating a uniform interface
to similar functionality.

Lists in python

� Definition 2.2.19 A list is a finite sequence of objects.

� In programming languages, lists are used for locally storing and passing around
collections of objects.

� In python lists can be written as a list of comma-separated expressions between
square brackets.

� Example 2.2.20 (Three lists) elements can be of different types in python

http://creativecommons.org/licenses/by-sa/2.5/

2.2. PROGRAMMING IN PYTHON 31

list1 = [’physics’, ’chemistry’, 1997, 2000];
list2 = [1, 2, 3, 4, 5];
list3 = ["a", "b", "c", "d"];

� Example 2.2.21 List elements can be accessed by specifying ranges

>>> list1[0]
’physics’

>>> list1[−2]
1997

>>> list2[1:4]
[2, 3, 4]

� Example 2.2.22 Lists can be constructed by python functions

>>> list(range(1,6,2))
[1,3,5]

range(1,6,2) makes a “range” from 1 to 6 with step 2, list makes a list from
it.

©:Michael Kohlhase 44

Range objects are useful, because they are easily and flexibly constructed for iteration (up next).

Iterating over Lists/Sequences in python

� Definition 2.2.23 A for loop iterates a program fragment over a sequence;
we call the process iteration. python uses the following general syntax

for 〈〈var〉〉 in 〈〈range〉〉:
〈〈body〉〉

〈〈other code〉〉

� Example 2.2.24

for x in range(0, 3):
print ("we tell you",x,"time(s)")

� Lists and strings can also act as ranges

Example 2.2.25

print("Let me reverse something for you!")
x = input("please type somegthing!")
for i in reversed(list(x)):

print(i)

©:Michael Kohlhase 45

But lists are not the only data structure for collections of objects. python provides others that
are organized slightly differently for different applications. We give a particularly useful example
here: dictionaries

Other Sequences in python. e.g Dictionaries

� Definition 2.2.26 A dictionary is an unordered, indexed collection of or-

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

32 CHAPTER 2. INTRODUCTION TO PROGRAMMING

dered pairs (k, v), where we call k the key and v the value.

� In python dictionaries are written with curly brackets, pairs are separated by
commata, and the value is separated from the key by a colon.

� Example 2.2.27 Dictionaries can be used for various purposes,

painting = {
"artist": "Rembrandt",
"title": "The Night Watch",
"year": 1642

}

dict_de_en = {
"Maus": "mouse",
"Ast": "branch",
"Klavier": "piano"

}

enum = {
1: "copy",
2: "paste",
3: "adapt"

}

� sequences can be nested, e.g. for a list of paintings

©:Michael Kohlhase 46

Dictionaries give “keyed access” to collections of data: we can access a value via its key. In
particular, we do not have to remember the position of a value in the collection.

Interacting with Dictionaries

� Dictionary commands by example

� painting["title"] returns the value for the key "title" in the dictionary painting.

� painting["title"]="De Nachtwacht" changes the value for the key "title" to
its original Dutch (or adds item "title": "De Nachtwacht")

� Example 2.2.28 (Printing Keys and Values)
keys values items

for x in thisdict:
print(x)

for x in thisdict:
print(thisdict[x])

for x, y in thisdict.items():
print(x, y)

� more dictionary commands

� if 〈〈key〉〉 in 〈〈dict〉〉 checks whether 〈〈key〉〉 is a key in 〈〈dict〉〉.
� painting.pop("title") removes the "title" item from painting.

©:Michael Kohlhase 47

2.2.5 Input and Output

The next topic of our stroll through python is one that is more practically useful than intrinsi-
cally interesting: file input/output. Together with the regular expressions this allows us to write
programs that transform files.

Input/Output in python

� Recall: The CPU communicates with the user through input devices like key-
boards and output devices like the screen.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

2.2. PROGRAMMING IN PYTHON 33

� Programming languages provide special instructions for this.

� In python we have already seen

� input(〈〈prompt〉〉) for input from the keyboard, it returns a string.

� print(〈〈objects〉〉, sep=〈〈separator〉〉, end=〈〈endchar〉〉) for output to the screen.

� But computers also supply another object to input from and output to (up
next)

©:Michael Kohlhase 48

We now fix some of the nomenclature surrounding files and file systems provided by most com-
puter operating systems. Most programming languages provide their own bindings that allow to
manipulate files.

Secondary (Disk) Storage

� Definition 2.2.29 A file is a resource for recording data in a storage device.

� Definition 2.2.30 Files are identified by a file name are managed by a file
system which organize them hierarchically into named folders and locate
them by a path; a sequence of folder names. The file name and the path
together fully identify a file.

A file name usually consists of a base name and an extension separated by a
dot character.

� Some file systems restrict the characters allowed in the file name and/or lengths
of the base name or extension.

� Definition 2.2.31 Once a file has been opened, the CPU can write to it and
read from it. After use a file should be closed to protect it from accidental
reads and writes.

©:Michael Kohlhase 49

Many operating systems use files as a primary computational metaphor, also treating other re-
sources like files. This leads to an abstraction of files called streams, which encompass files as
well as e.g. keyboards, printers, and the screen, which are seen as objects that can be read from
(keyboards) and written to (e.g. screens). This practice allows flexible use of programs, e.g.
re-directing a the (screen) output of a program to a file by simply changing the output stream.
Now we can come to the python bindings for the file input/output operations. They are rather
straightforward.

Disk Input/Output in python

� In python we have special instructions for dealing with files:

� open(〈〈path〉〉,〈〈iospec〉〉) returns a file object f ; 〈〈iospec〉〉 is one of r (read
only; the default), a (append =̂ write to the end), and r+ (read/write).

� f .read() reads the file f into a string.

� f .readline() reads a single line from the file (including the newline character
(\n) otherwise returns the empty string ’’.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

34 CHAPTER 2. INTRODUCTION TO PROGRAMMING

� f .write(〈〈str〉〉) appends the string 〈〈str〉〉 to the end of f , returns the number
of characters written.

� f .close() closes f to protect it from accidental reads and writes.

� Example 2.2.32 (Duplicating the contents of a file)

f = open(’workfile’,’r+’)
filecontents = f.read()
f.write(filecontents)

� Example 2.2.33 (Reading a file linewise)

>>> f.readline()
’This is the first line of the file.\n’
>>> f.readline()
’Second line of the file\n’
>>> f.readline()
’’

>>> for line in f:
... print(line, end=’’)
...
This is the first line of the file.
Second line of the file

� If you want to read all the lines of a file in a list you can also use list(f) or
f.readlines().

� For reading a python file we use the import(〈〈basename〉〉) instruction

� it searches for the file 〈〈basename〉〉.py, loads it, interprets it as python code,
and directly executes it.

� primarily used for loading python modules (additional functionality)

� useful for loading python-encoded data (e.g. dictionaries)

©:Michael Kohlhase 50

2.2.6 Functions and Libraries in Python

We now come to a general device for organizing and modularizing code provided by most pro-
gramming languages, including python. Like variables, functions give names to python objects –
here fragments of code – and thus make them reusable in other contexts.

Functions in python (Introduction)

� Observation: sometimes programming tasks are repetitive

print("Hello Peter, how are you today? How about some IWGS?")
print("Hello Roxana, how are you today? How about some IWGS?")
print("Hello Frodo, how are you today? How about some IWGS?)
...

� Idea: We can automate the repetitive part by functions

� Example 2.2.34

def greet (who):
print("Hello ",who," how are you today? How about some IWGS?")

greet("Peter")

http://creativecommons.org/licenses/by-sa/2.5/

2.2. PROGRAMMING IN PYTHON 35

greet("Roxana")
greet("Frodo")
greet(input ("Who are you?"))
...

� functions can be a very powerful tool for structuring and documenting programs
(if used correctly)

� Example 2.2.35 (Multilingual Greeting) Given a value for lang

def greet (who):
if lang == ’en’ :

print("Hello ",who," how are you today? How about some IWGS?")
elif lang == ’de’ :
print("Sehr geehrter ",who,", wie geht’s heute? Wie waere es mit IWGS?")

we can even localize (i.e. adapt to the language specified in lang) the greeting.

©:Michael Kohlhase 51

We can now make the intuitions above formal and give the exact python syntax of functions.

Functions in python (Definition)

� Definition 2.2.36 A python function is defined by a code snippet of the
form
def f (p1,. . .,pn):

"""docstring, what does this function do on parameters
:param pi: document arguments}

"""
〈〈body〉〉 # it can contain p1, . . . , pn, and f
return 〈〈value〉〉 # value of the function call (e.g text or number)

〈〈more code〉〉

� the indented part is called the body of f , (: whitespace matters in
python)

� the pi are called parameters, and n the arity of f .

A function f can be called on arguments a1, . . . , an by writing the expression
f(a1, ..., an). This executes the body of f where the (formal) parameters pi
are replaced by the arguments ai.

©:Michael Kohlhase 52

Anonymous and Higher-Order Functions (lambda)

� Observation 2.2.37 A python function definition combines making a function
object with giving it a name.

� Definition 2.2.38 python also allows to make anonymous functions via the
lambda constructor for function objects:

lambda (p1,. . .,pn): 〈〈expr〉〉

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

36 CHAPTER 2. INTRODUCTION TO PROGRAMMING

� Example 2.2.39 The following two python fragments are equivalent:

def cube (x):
x∗x∗x

cube = lambda (x): x∗x∗x

The right one is just a variable assignment that assigns a function object to
the variable cube. (In fact python uses the right one internally)

Question: Why use anonymous functions?

�� Answer: We may not want to invent (i.e. waste) a name if the function is only
used once (examples on the next slide)

©:Michael Kohlhase 53

Higher-Order Functions in python

� Definition 2.2.40 We call a function a higher-order function, iff it takes a
function as argument.

� Definition 2.2.41 map and filter are built-in higher-order functions in python.
They take a function and a list as arguments.

� map(f ,L) returns the list of f -values of the membes of L.

� filter(p,L) returns the sub-list L′ of those l in L, such that p(l)=True.

� Example 2.2.42 Mapping over and filtering a list

>>> li = [5, 7, 22, 97, 54, 62, 77, 23, 73, 61]
>>> map(lambda x: x∗2 , li)
[5, 7, 97, 77, 23, 73, 61]
>>> filter(lambda x: (x%2 != 0) , li)
[10, 14, 44, 194, 108, 124, 154, 46, 146, 122]

©:Michael Kohlhase 54

python provides two kinds of function-like facilities: regular functions as discussed above and
methods, which come with python classes. We will not attempt a presentation of object-oriented
programming and its particular implementation in python – this would be beyond the mandate of
the IWGS course – but give a brief introduction that is sufficient to use methods.

Functions vs. Methods in python

� There is another mechanism that is similar to functions in python. (we briefly
introduce it here to delineate)

� Background: Actually, the types from Definition 2.2.5 are classes, . . .

� Definition 2.2.43 In python all values belong to a class, which provide
special functions we call methods. Values are also called objects, to em-

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

2.2. PROGRAMMING IN PYTHON 37

phasise class aspects. Method application is written with dot notation:
〈〈obj〉〉.〈〈meth〉〉(〈〈args〉〉) corresponds to 〈〈meth〉〉(〈〈obj〉〉,〈〈args〉〉).

� Example 2.2.44 Finding the position of a substring

>>> s = ’This is a Python string’ # s is an object of class ’str’
>>> type(s)
<class ’str’> # see, I told you so
>>> s.index(’Python’) # dot notation (index is a string method)
10

� Example 2.2.45 (Functions vs. Methods)

>>> sorted(’1376254’) # no dots!
[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’]

>>> mylist = [3, 1, 2]
>>> mylist.sort() # dot notation
>>> mylist
[1, 2, 3]

Intuition: only methods can change objects, functions return changed copies

©:Michael Kohlhase 55

For the purposes of IWGS, it is sufficient to remember that methods are a special kind of functions
that employ the dot notation. They are provided by the class of an object.

It is very natural to want to share successful and useful code with others, be it collaborators in
a larger project or company, or the respective community at large. Given what we have learned
so far this is easy to do: we write up the code in a (collection of) python files, and make them
available for download. Then others can simply load them via the import command.

python Libraries

� Idea: Functions, classes, and methods are re-usable, so why not package them
up for others to use.

� Definition 2.2.46 A python library is a python file with a collection of func-
tions, classes, and methods. It can be loaded via the import command.

� There are ≥ 150.000 libraries for python (=̂ packages on http://pypi.org)

� search for them at http://pypi.org (e.g. 815 packages for “music”)

� install them with pip install 〈〈package-name〉〉
� look at how they were done (all have links to source code)

� maybe even contribute back (report issues, improve code, . . .)(open source)

©:Michael Kohlhase 56

The python community is an open source community, therefore many developers organize their
code into libraries and license them under open source licenses.

Software repositories like PyPI (the python Package Index) collect (references to) and make
them for the package manager pip, a program that downloads python libraries and installs them
on the local machine where the import command can find them.

http://creativecommons.org/licenses/by-sa/2.5/
http://pypi.org
http://pypi.org
http://creativecommons.org/licenses/by-sa/2.5/

38 CHAPTER 2. INTRODUCTION TO PROGRAMMING

2.2.7 A Final word on Programming in IWGS

This leaves us with a final word on the way we will handle prgramming in this course: IWGS is
not a programming course, and we expect you to pick up python from the IWGS and web/book
resources.
In this Subsection we will introduce the basics of the python language. python will be used as
our means to express algorithms and to explore the computational properties of the objects we
introduce in IWGS.

For more information on python

RTFM (=̂ “read the fine manuals”)

©:Michael Kohlhase 57

Our very quick introduction to python is intended to present the very basics of programming and
get students off the ground, so that they can start using programs as tools for the humanities
and social sciences.

But there is a lot more to the core functionality python than our very quick introduction
showed, and on top of that there is a wealth of specialized packages and libraries for almost all
computational and practical needs.

http://creativecommons.org/licenses/by-sa/2.5/

Chapter 3

Documents as Digital Objects

In our basic introduction to programming above we have convinced ourselves that we need some
basic objects to compute with, e.g. Boolean values for conditionals, numbers to calculate with,
and characters to form strings for input and output. In this section we will look at how these
are represented in the computer, which in principle can only store binary digits – voltage or no
noltage on a wire – which we think of as 1 and 0.
In this Chapter we look at the representation of the basic data types of programming languages
(numbers and characters) in the computer; Boolean values (“True” and “False”) can directly be
encoded as binary digits.
In this Chapter we take a first look at documents and how they are represented on the computer.

3.1 Preliminaries: Data Structures, Documents, and Sizes

Documents as Digital Objects

� Question: how do texts get onto the computer? (after all, computers can only
do 0/1)

� Hint: At the most basic level, texts are just sequences of characters.

� Answer: We have to encode characters as sequences of bits.

� We will go into how:

� documents are represented as sequences of characters

� characters are represented as numbers

� numbers are represented as bits (0/1)

©:Michael Kohlhase 58

3.1.1 Representing and Manipulating Numbers

We start with the representation of numbers. There are multiple number systems, as we are
interested in the principles only, we restrict ourselves to the natural numbers – all other number
systems can be built on top of these. But even there we have choices about representation, which
influence the space we need and how we compute with natural numbers.

39

http://creativecommons.org/licenses/by-sa/2.5/

40 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS

The first system for number representations is very simple; so simple in fact that it has been
discovered and use a long time ago.

Natural Numbers

� Numbers are symbolic representations of numeric quantities.

� There are many ways to represent numbers (more on this later)

� let’s take the simplest one (about 8,000 to 10,000 years old)

� we count by making marks on some surface.

� For instance //// stands for the number four (be it in 4 apples, or 4 worms)

©:Michael Kohlhase 59

In addition to manipulating normal objects directly linked to their daily survival, humans also
invented the manipulation of place-holders or symbols. A symbol represents an object or a set
of objects in an abstract way. The earliest examples for symbols are the cave paintings showing
iconic silhouettes of animals like the famous ones of Cro-Magnon. The invention of symbols is
not only an artistic, pleasurable “waste of time” for humans, but it had tremendous consequences.
There is archaeological evidence that in ancient times, namely at least some 8000 to 10000 years
ago, humans started to use tally bones for counting. This means that the symbol “bone with
marks” was used to represent numbers. The important aspect is that this bone is a symbol that
is completely detached from its original down to earth meaning, most likely of being a tool or
a waste product from a meal. Instead it stands for a universal concept that can be applied to
arbitrary objects.
So far so good, let us see how this would be represented on a computer:

Unary Natural Numbers on the Computer

� Definition 3.1.1 We call the representation of natural numbers by slashes
on a surface the unary natural numbers

� Question: How do we represent them on a computer? (not bones or walls)

� Idea: If we have a memory bank of n binary digits, initialize all by 0, represent
each slash by a 1 from the right.

� Example 3.1.2 Memory bank with 32 binary digits, represening 11.

http://creativecommons.org/licenses/by-sa/2.5/

3.1. PRELIMINARIES: DATA STRUCTURES, DOCUMENTS, AND SIZES 41

0 1 1 1 1 1 1 1 1 1 1 1

Problem: For realistic arithmetics we need better number representations than
the unary natural numbers (e.g. for representing the number of EU citizens =̂
100 000 pages of /)

©:Michael Kohlhase 60

The unary natural numbers are very simple and direct, but they are neither space-efficient, nor
easy to manipulate. Therefore we will use different ways of representing numbers in practice.

� Positional Number Systems

� Problem: Find a better representation system for natural numbers.

� Idea: build a clever code on the unary numbers, use position information and
addition, multiplication, and exponentiation.

� Definition 3.1.3 A positional number system N is a pair N = 〈Db, ϕb〉
with

� Db is a finite alphabet of b digits. b is called the base or radix of N
� assign each digit d ∈ Db a number ϕb(d) between 0 and b− 1.

� Extend ϕb to sequences of digits by ϕb(〈nk, . . . , n1〉) :=
∑k
i=1 ϕb(ni) · bi−1

� Example 3.1.4 〈{a, b, c}, ϕ〉 with with ϕ(a) := 0, ϕ(b) := 1, and ϕ(c) := 2
is a positional number system for base three. We have

ϕ(〈c, a, b〉) = 2 · 32 +0 · 31 +1 · 30 = 18+0+1 = 19

� Observation 3.1.5 To convert a number n to base b, use successive integer
division (division with remainder) by b:

i := n; repeat (record imodb, i := idivb) until i = 0.

� Example 3.1.6 (Convert 456 to base 8) Result: 7108

456div8 = 57 456mod8 = 0
57div8 = 7 57mod8 = 1
7div8 = 0 7mod8 = 7

©:Michael Kohlhase 61

The problem with the unary number system is that it uses enormous amounts of space, when
writing down large numbers. We obviously need a better encoding.

If we look at the unary number system from a greater distance, we see that we are not using
a very important feature of strings here: position. As we only have one letter in our alphabet
(/), we cannot, so we should use a larger alphabet. The main idea behind a positional number
system N = 〈Db, ϕb〉 is that we encode numbers as strings of digit in Db, such that the position
matters, and to give these encoding a meaning by mapping them into the unary natural numbers
via a mapping ϕb. This is the same process we did for the logics; we are now doing it for number

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

42 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS

systems. However, here, we also want to ensure that the meaning mapping ϕb is a bijection, since
we want to define the arithmetics on the encodings by reference to The arithmetical operators on
the unary natural numbers.

Commonly Used Positional Number Systems

� Definition 3.1.7 The following positional number systems are in common
use.

name set base digits example
unary N1 1 / /////1
binary N2 2 0,1 01010001112
octal N8 8 0,1,. . . ,7 630278
decimal N10 10 0,1,. . . ,9 16209810 or 162098
hexadecimal N16 16 0,1,. . . ,9,A,. . . ,F FF3A1216

� Notation 3.1.8 attach the base of N to every number from N . (default:
decimal)

Trick: Group triples or quadruples of binary digits into recognizable chunks(add
leading zeros as needed)

� � 1100011010111002 = 01102︸ ︷︷ ︸
616

00112︸ ︷︷ ︸
316

01012︸ ︷︷ ︸
516

11002︸ ︷︷ ︸
C16

= 635C16

� 1100011010111002 = 1102︸ ︷︷ ︸
68

0012︸ ︷︷ ︸
18

1012︸ ︷︷ ︸
58

0112︸ ︷︷ ︸
38

1002︸ ︷︷ ︸
48

= 615348

� F3A16 = F16︸︷︷︸
11112

316︸︷︷︸
00112

A16︸︷︷︸
10102

= 1111001110102, 47218 = 48︸︷︷︸
1002

78︸︷︷︸
1112

28︸︷︷︸
0102

18︸︷︷︸
0012

= 1001110100012

©:Michael Kohlhase 62

We have all seen positional number systems: our decimal system is one (for the base 10). Other
systems that important for us are the binary system (it is the smallest non-degenerate one) and
the octal- (base 8) and hexadecimal- (base 16) systems. These come from the fact that binary
numbers are very hard for humans to scan. Therefore it became customary to group three or four
digits together and introduce we (compound) digits for them. The octal system is mostly relevant
for historic reasons, the hexadecimal system is in widespread use as syntactic sugar for binary
numbers, which form the basis for circuits, since binary digits can be represented physically by
current/no current.

Arithmetics in Positional Number Systems

� For arithmetics just follow elementery school rules (for the right base)

� Tom Lehrer’s “New Math”

� Example 3.1.9

http://creativecommons.org/licenses/by-sa/2.5/

3.1. PRELIMINARIES: DATA STRUCTURES, DOCUMENTS, AND SIZES 43

Addition base 4 binary multiplication

1 2 3
+ 11 21 3

3 1 2

1 0 1 0
∗ 1 1 0

0 0 0 0
1 0 1 0

1 0 1 0
1 1 1 1 0 0

©:Michael Kohlhase 63

3.1.2 Characters and their Encodings

IT systems need to encode characters from our alphabets as bit strings (sequences of binary digits
(bits) 0 and 1) for representation in computers. To understand the current state – the unicode
standard – we will take a historical perspective.
It is important to understand that encoding and decoding of characters is an activity that requires
standardization in multi-device settings – be it sending a file to the printer or sending an e-mail to
a friend on another continent. Concretely, the recipient wants to use the same character mapping
for decoding the sequence of bits as the sender used for encoding them – otherwise the message is
garbled.

We observe that we cannot just specify the encoding table in the transmitted document it-
self, (that information would have to be en/decoded with the other content), so we need to rely
document-external external methods like standardization or encoding negotiation at the meta-
level. In this Subsection we will focus on the former.
The ASCII code we will introduce here is one of the first standardized and widely used character
encodings for a complete alphabet. It is still widely used today. The code tries to strike a balance
between a being able to encode a large set of characters and the representational capabilities in
the time of punch cards (see below).

The ASCII Character Code

� Definition 3.1.10 The American Standard Code for Information Interchange
(ASCII) is a character code that assigns characters to numbers 0-127

Code ···0 ···1 ···2 ···3 ···4 ···5 ···6 ···7 ···8 ···9 ···A ···B ···C ···D ···E ···F
0··· NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI
1··· DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US
2··· ! " # $ % & ’ () * + , - . /
3··· 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4··· @ A B C D E F G H I J K L M N O
5··· P Q R S T U V W X Y Z [\] ^ _
6··· ‘ a b c d e f g h i j k l m n o
7··· p q r s t u v w x y z { | } ~ DEL

The first 32 characters are control characters for ASCII devices like printers

�� Motivated by punchcards: The character 0 (binary 0000000) carries no infor-
mation NUL, (used as dividers)
Character 127 (binary 1111111) can be used for deleting (overwriting) last value

(cannot delete holes)

� The ASCII code was standardized in 1963 and is still prevalent in computers
today (but seen as US-centric)

http://creativecommons.org/licenses/by-sa/2.5/

44 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS

©:Michael Kohlhase 64

Punch cards were the preferred medium for long-term storage of programs up to the late 1970s,
since they could directly be produced by card punchers and automatically read by comput-
ers.

A Punchcard

� A punch card is a piece of stiff paper that contains digital information repre-
sented by the presence or absence of holes in predefined positions.

� Example 3.1.11 This punch card encoded the FORTRAN statement Z(1) = Y + W(1)

©:Michael Kohlhase 65

Up to the 1970s, computers were batch machines, where the programmer delivered the program to
the operator (a person behind a counter who fed the programs to the computer) and collected the
printouts the next morning. Essentially, each punch card represented a single line (80 characters)
of program code. Direct interaction with a computer is a relatively young mode of operation.

Playing with Strings and Characters in python

� : in python, characters are just strings of length 1.

� ord gives the ASCII number of the character, chr ASCII character for a number.

� Example 3.1.12 (Playing with Characters)

def lc(c) :
return chr(ord(c) + 32)

def uc(c) :
return chr(ord(c) − 32)

>>> uc(’d’)
’D’
>>> lc(’D’)
’d’

� strings can be accessed by ranges [i:j] ([i] =̂ [i:i])

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

3.1. PRELIMINARIES: DATA STRUCTURES, DOCUMENTS, AND SIZES 45

� Example 3.1.13 taking strings apart and re-assembling them.

def cap(s) :
return uc(s[0]) + s[1:len(s)]

>>> cap(’IWGS’)
’IWGS’

©:Michael Kohlhase 66

Note: Example 3.1.12 and Example 3.1.13 (or any other examples in this lecture) is not
production code, but didactially motivated – to show you what you can do with the objects we
are presenting in python.

In parcticular, if we “lowercase” a character that is already lowercase – e.g. by lc(’c’), then
we get out of the range of the ASCII code: the answer is \x83, which is the character with the
hexadecimal code 83 (decimal 130).

In production code (e.g. the python lower method), we would have some range checks, etc.
The ASCII code as above has a variety of problems, for instance that the control characters are
mostly no longer in use, the code is lacking many characters of languages other than the English
language it was developed for, and finally, it only uses seven bits, where a byte (eight bits) is the
preferred unit in information technology. Therefore there have been a whole zoo of extensions,
which — due to the fact that there were so many of them — never quite solved the encoding
problem.

Problems with ASCII encoding

� Problem: Many of the control characters are obsolete by now (e.g. NUL,BEL,
or DEL)

� Problem: Many European characters are not represented (e.g. è,ñ,ü,ß,. . .)

� European ASCII Variants: Exchange less-used characters for national ones

� Example 3.1.14 (German ASCII) remap e.g. [7→ Ä,] 7→ Ü in German
ASCII (“Apple][” comes out as “Apple ÜÄ”)

� Definition 3.1.15 (ISO-Latin (ISO/IEC 8859)) 16 Extensions of ASCII
to 8-bit (256 characters) ISO-Latin 1 =̂ “Western European”, ISO-Latin 6 =̂ “Arabic”,ISO-
Latin 7 =̂ “Greek”. . .

� Problem: No cursive Arabic, Asian, African, Old Icelandic Runes, Math,. . .

� Idea: Do something totally different to include all the world’s scripts: For a
scalable architecture, separate

� what characters are available from the (character set)

� bit string-to-character mapping (character encoding)

©:Michael Kohlhase 67

The goal of the UniCode standard is to cover all the worlds scripts (past, present, and future) and
provide efficient encodings for them. The only scripts in regular use that are currently excluded
are fictional scripts like the elvish scripts from the Lord of the Rings or Klingon scripts from the
Star Trek series.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

46 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS

An important idea behind UniCode is to separate concerns between standardizing the character
set — i.e. the set of encodable characters and the encoding itself.

Unicode and the Universal Character Set

� Definition 3.1.16 (Twin Standards) A scalable architecture for repre-
senting all the worlds scripts

� The universal character set (UCS) defined by the ISO/IEC 10646 In-
ternational Standard, is a standard set of characters upon which many
character encodings are based.

� The unicode Standard defines a set of standard character encodings, rules
for normalization, decomposition, collation, rendering and bidirectional
display order

� Definition 3.1.17 Each UCS character is identified by an unambiguous
name and an integer number called its code point.

� The UCS has 1.1 million code points and nearly 100 000 characters.

� Definition 3.1.18 Most (non-Chinese) characters have code points in [1, 65536]
(the basic multilingual plane).

� Notation 3.1.19 For code points in the Basic Multilingual Plane (BMP),
four hexadecimal digits are used, e.g. U+0058 for the character LATIN CAPITAL LETTER X;

©:Michael Kohlhase 68

Note that there is indeed an issue with space-efficient encoding here. UniCode reserves space for
232 (more than a million) characters to be able to handle future scripts. But just simply using
32 bits for every UniCode character would be extremely wasteful: UniCode-encoded versions of
ASCII files would be four times as large.
Therefore UniCode allows multiple encodings. UTF-32 is a simple 32-bit code that directly uses
the code points in binary form. UTF-8 is optimized for western languages and coincides with
the ASCII where they overlap. As a consequence, ASCII encoded texts can be decoded in UTF-8
without changes — but in the UTF-8 encoding, we can also address all other UniCode characters
(using multi-byte characters).

Character Encodings in Unicode

� Definition 3.1.20 A character encoding is a mapping from bit strings to
UCS code points.

� Idea: Unicode supports multiple encodings (but not character sets) for efficiency

� Definition 3.1.21 (Unicode Transformation Format)

� UTF-8, 8-bit, variable-width encoding, which maximizes compatibility
with ASCII.

� UTF-16, 16-bit, variable-width encoding (popular in Asia)

� UTF-32, a 32-bit, fixed-width encoding (for safety)

http://creativecommons.org/licenses/by-sa/2.5/

3.1. PRELIMINARIES: DATA STRUCTURES, DOCUMENTS, AND SIZES 47

� Definition 3.1.22 TheUTF-8 encoding follows the following encoding scheme

Unicode Byte1 Byte2 Byte3 Byte4
U+000000−U+00007F 0xxxxxxx
U+000080−U+0007FF 110xxxxx 10xxxxxx
U+000800−U+00FFFF 1110xxxx 10xxxxxx 10xxxxxx
U+010000−U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

� Example 3.1.23 $ = U+0024 is encoded as 00100100 (1 byte)

¢ = U+00A2 is encoded as 11000010,10100010 (two bytes)

e = U+20AC is encoded as 11100010,10000010,10101100 (three bytes)

©:Michael Kohlhase 69

Note how the fixed bit prefixes in the encoding are engineered to determine which of the four cases
apply, so that UTF-8 encoded documents can be safely decoded..

Now that we understand the “theory” of encodings, let us work out how to program with them.

Programming with UniCode strings is particularly simple, strings in python are UTF-8-encoded
UniCode strings and all operations on them are UniCode-based1 This makes the introduction to
UniCode in python very short, we only have to know how to produce non-ASCII characters – which
are on regular keyboards.

Unicode in python

� the python str data type is UniCode encoded as UTF-8.

� How to write UniCode characters?: there are five ways

� write them in your editor (make sure that it uses UTF-8)

� otherwise use python escape sequences (try it!)

>>> "\xa3" # Using 8−bit hex value
’\u00A3’
>>> "\u00A3" # Using a 16−bit hex value
’\u00A3’
>>> "\U000000A3" # Using a 32−bit hex value
’\u00A3’
>>> "\N{Pound Sign}" # character name
’\u00A3’

©:Michael Kohlhase 70

3.1.3 Computing with Strings

In this Subsection we introduce methods to automatically deal with documents – actually large
strings for the moment. We introduce “regular expressions”, a domain-specific language for locating
substrings of a particular form in a document. Regular expressions are useful in many document-
related tasks, e.g. advanced searching and replacing, therefore most programming languages –
python is no exception – integrate them as a sublanguage.

1Older programming languages have ASCII strings only, and UniCode strings are supplied by external modules.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

48 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS

Before we go into regular expressions, we will extend our repertoire on handling and formatting
strings: we will introduce string literals, which allow writing complex strings.

String Literals in python

� Problem: How to write strings including special characters?

� Definition 3.1.24 python uses string literals, i.e character sequences sur-
rounded by one, two, or three sets of matched single or double quotes for
string input. The content can contain escape sequences, i.e. the escape
character backslash followed by a code character for problematic characters:

Seq Meaning Seq Meaning
\\ Backslash (\) \’ Single quote (’)
\" Double quote (") \a Bell (BEL)
\b Backspace (BS) \f Form-feed (FF)
\n Linefeed (LF) \r Carriage Return (CR)
\t Horizontal Tab (TAB) \v Vertical Tab (VT)

In triple-quoted string literals, unescaped newlines and quotes are honored,
except that three unescaped quotes in a row terminate the literal.

Prefixing a string literal with a r or R turns it into a raw string literal, in
which backslashes have no special meaning.

� Note: using the backslash as an escape character forces us to escape it as well.

� Example 3.1.25 The string "a\nb\nc" has length five and three lines, but
the string r"a\nb\nc" only has length seven and only one line.

©:Michael Kohlhase 71

Formatted String Literals (aka. f-strings)

� Definition 3.1.26 Formatted string literals (aka. f-strings) are string liter-
als can contain python expressions that will be replaced with their values at
runtime.

F-strings are prefixed by a prefix f or F, the expressions are delimited by
curly braces, and {/} are represented by {{/}}.

� Example 3.1.27 (An f-String for IWGS)
>>> course="IWGS"
>>> f"The {course} course has {6∗11} students"
’The IWGS course has 66 students’

� Example 3.1.28 (An f-String with Dictionary)
>>> course = {’name’="IWGS",students=’66’}
>>> f"The {course[’name’]} course has {course[’students’]} students."
’The IWGS course has 66 students.’

Note that we alternated the quotes here to avoid the following problems:
>>> f’The course {course[’name’]} has {course[’students’]} students.’
File "<stdin>", line 1

http://creativecommons.org/licenses/by-sa/2.5/

3.1. PRELIMINARIES: DATA STRUCTURES, DOCUMENTS, AND SIZES 49

f’The course {course[’name’]} has {course[’students’]} students.’
^

SyntaxError: invalid syntax

©:Michael Kohlhase 72

Now we can come to the main topic of this Subsection: regular expressions, A domain-specific
language for describing string patterns. Regular expressions are extremely useful, but also quite
cryptical at first. They should be understood as a powerful tool, that relies on a language with
a very limited vocabulary. It is more important to understand what this tool can do and how it
works in principle than memorizing the vocabulary – that can be looked up on demand.
There are several dialects of regular expression languages that differ in details, but share the
general setup and syntax. Here we introduce the python variant and recommend [PyRegex] for a
cheat-sheet on python regular expressions (and an integrated regexp tester).

Regular Expressions, see [Pyt]

� Definition 3.1.29 A regular expression (also called regexp) is a formal ex-
pression that specifies a set of strings.

� Definition 3.1.30 (Meta-Characters for Regexps)

char denotes
. any single character (except a newline)
^ beginning of a string
$ end of a string
[. . .] any single character in the brackets
[^. . .] any single character not in the brackets
(. . .) marks a group
\n the nth group
| disjunction
* matches the preceding element zero or more times
+ matches the preceding element one or more times
? matches the preceding element zero or one times
{n ,m } matches the preceding element between n and m times
\ s whitespace character
\ S non-whitespace character

All other characters match themselves, to match e.g. a ?, escape with a \:
\?.

©:Michael Kohlhase 73

Let us now fortify our intuition with some (simple) examples and a more complex one.

Regular Expression Examples

� Example 3.1.31 (Regular Expressions and their Values)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

50 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS

regexp values
car car
.at cat, hat, mat, . . .
[hc]at cat, hat
[^c]at hat, mat, . . . (but not cat)
^[hc]at hat, cat, but only at the beginning of the line
[0−9] Digits
[1−9][0−9]∗ natural numbers
(.∗)\1 mama, papa, wakawaka
cat|dog cat, dog

A regular expression can be interpreted by a regular expression processor (a
program that identifies parts that match the provided specification) or a compiled
by a parser generator.

�� Example 3.1.32 (A more complex example) The following regexp times
in a variety of formats, such as 10:22am, 21:10, 08h55, and 7.15 pm.
^(?:([0]?\d|1[012])|(?:1[3−9]|2[0−3]))[.:h]?[0−5]\d(?:\s?(?(1)(am|AM|pm|PM)))?$

©:Michael Kohlhase 74

As we have seen regular expressions can become quite cryptic and long (cf. e.g. Example 3.1.32),
so we need help in developing them. One way is to use one of the many regexp testers online

Playing with Regular Expressions

� If you want to play with regexps, go e.g. to http://regex101.com

©:Michael Kohlhase 75

Regular Expressions in python

http://creativecommons.org/licenses/by-sa/2.5/
http://regex101.com
http://creativecommons.org/licenses/by-sa/2.5/

3.1. PRELIMINARIES: DATA STRUCTURES, DOCUMENTS, AND SIZES 51

� We can use regular expressions directly in python by importing the re module
(just add import re at the beginning)

� As python has UniCode strings, regular expressions support UniCode as well.

� Useful python functions that use regular expressions.

� re.findall(〈〈pat〉〉,〈〈str〉〉): Return a list of non-overlapping matches of 〈〈pat〉〉
in 〈〈str〉〉.
>>> re.findall(r"[h|c|r]at,’the cat ate the rat on the mat’)
[’cat’,’rat’]

� re.sub(〈〈pat〉〉,〈〈sub〉〉,〈〈str〉〉): Replace substrings that match 〈〈pat〉〉 in 〈〈str〉〉
by 〈〈sub〉〉.
>>> re.sub(r’\sAND|and\s’, ’ & ’, ’Baked Beans and Spam’)
’Baked Beans & Spam’

� re.split(〈〈pat〉〉,〈〈str〉〉): Split 〈〈str〉〉 into substrings that match pmetavarpat.

>>> re.split(r’\s+’,’When shall we three meet again?’))
[’When’,’shall’,’we’,’three’,’meet’,’again?’]
>>> re.split(r’\s+|\?|\.|!|,|:|;|’,’When shall we three meet again?’))
[’When’,’shall’,’we’,’three’,’meet’,’again’]

©:Michael Kohlhase 76

We will now see what we can do with regular expressions in a practical example.

Example: Correcting and Anonymizing Documents

� Example 3.1.33 We write a that makes simple corrections on documents
and also crosses out all names to anonymize.

� The worst president of the US,arguably was George W. Bush, right?

� However,are you famILIar with Paul Erdős or Henri Poincaré?(Unicode)

Here is the function

� we first add blanks after commata
def corranon (s)

s = re.sub(r",(\S)", r", \1", s)

� capitalize the first letter of a new sentence,

s = re.sub(r"([\.\?!])\w∗(\S)",
lambda (m):m.group(1),r" ".upper()+m.group(2),
s)

� next we make abbreviations for regular expressions to save space

c = "[A−Z]"
l = "[a−z]"

� remove capital letters in the middle of words

http://creativecommons.org/licenses/by-sa/2.5/

52 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS

s = re.sub(f"({l})({c}+)({l})",
lambda (m):f"{m.group(1)}{m.group(2).lower()}{m.group(3)}",
s)

� and we cross-out for official public versions of government documents,

s = re.sub(f"({c}{l}+ ({c}{l}∗(\.?))?{c}{l}+)",
lambda (m):re.sub("\S", "X", m.group(1)),
s)

� finally, we return the result

The worst president of the US,arguably was George W. Bush, right?
becomes
The worst president of the US, arguably was XXXXXX XX XXXX, right?

©:Michael Kohlhase 77

3.1.4 Representing & Manipulating Documents on a Computer

Now that we can represent characters as bit sequences, we can represent text documents. In princi-
ple text documents are just sequences of characters; they can be represented by just concatenating
them.

File Types

� Definition 3.1.34 A text file is a computer file that is structured as a se-
quence of encoded characters. Computer files that are not text files are called
binary files.

� Remark 3.1.35 Text files are usually encoded with ASCII, ISO-Latin, or –
increasingly – UniCode encodings like UTF-8.

©:Michael Kohlhase 78

Remark 3.1.36 Plain text is different from formatted text, which includes markup codes, and
binary files in which some portions must be interpreted as binary objects (encoded integers, real
numbers, images, etc.)

Digital Text

� Definition 3.1.37 Digital text is a digital encoding of textual material that
can be read without much processing.

� Definition 3.1.38 Digital text is subdivided into plain text, where all char-
acters carry the textual information and formatted text, which also contains
markup codes.

� Even though formatted text can read directly, it is usually consumed by humans
through a document renderer, i.e. a device that interprets the control words and
visualizes the textual content accordingly.

� Remark 3.1.39 Document markup turns plain text into formatted text.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

3.1. PRELIMINARIES: DATA STRUCTURES, DOCUMENTS, AND SIZES 53

©:Michael Kohlhase 79

Text Editors

� Definition 3.1.40 A text editor is a program used for editing text files.

� Example 3.1.41 Popular text editors include

� Notepad is a simple editor distributed with Windows.

� emacs and vi are powerful editors originating from UNIX and optimized
for programming.

� sublime is a sophisticated programming editor for multiple operating
systems.

� EtherPad is a browser-based real-time collaborative editor.

� Example 3.1.42 Even though it can save documents as text files, MS Word
is not usually considered a text editor, since it is optimized towards formatted
text; such “editors” are called word processors.

©:Michael Kohlhase 80

Word Processors and Formatted Text

� Definition 3.1.43 A word processor is a software application, that per-
forms the task of composition, editing, formatting, printing of documents
represented as formatted text. The particular representation format is called
the document format.

� Example 3.1.44 Popular word processors include

� MS Word is an elaborated word processor for Windows, whose native for-
mat is Office Open XML (file extension .docx).

� OpenOffice and LibreOffice are similar word processors using the ODF
format (Open Office Format; file extension .odf) natively, but can also
import other formats..

� Pages is a word processors for Mac OS X it uses a proprietary format.

� Office Online and GoogleDocs are browser-based real-time collabora-
tive word processors.

� Example 3.1.45 Text editors are usually not considered to be word pro-
cessors, even though they can sometimes be used to edit markup-based for-
matted text.

©:Michael Kohlhase 81

Before we go on, let us first get into some basics: how do we measure information, and how does
this relate to units of information we know.

3.1.5 Measuring Sizes of Documents/Units of Information

Having represented documents are sequenes of characters, we can use that to measure the sizes of

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

54 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS

documents. In this Subsection we will have a look at the underlying units of information and try
to get an intuition about what we can store in files.

: We will take a very generous stance towards what a document is, in particular, we will include
pictures, audio files, spreadsheets, computer aided designs,

Units for Information

� Observation: The smallest unit of information is knowing the state of a system
with only two states.

� Definition 3.1.46 A bit (a contraction of “binary digit”) is the basic unit
of capacity of a data storage device or communication channel. The capacity
of a system which can exist in only two states, is one bit (written as 1 b)

� Note: In the ASCII encoding, one character is encoded as 8 b, so we introduce
another basic unit:

� Definition 3.1.47 The byte is a derived unit for information capacity: 1B =
8b.

©:Michael Kohlhase 82

From the basic units of information, we can make prefixed units for prefixed units for larger
chunks of information. But note that the usual SI unit prefixes are inconvenient for application
to information measures, since powers of two are much more natural to realize.

Larger Units of Information via Binary Prefixes

� We will see that memory comes naturally in powers to 2, as we address memory
cells by binary numbers, therefore the derived information units are prefixed by
special prefixes that are based on powers of 2.

� Definition 3.1.48 (Binary Prefixes) The following binary unit prefix es
are used for information units because they are similar to the SI unit prefixes.

prefix symbol 2n decimal ~SI prefix Symbol
kibi Ki 210 1024 kilo k
mebi Mi 220 1048576 mega M
gibi Gi 230 1.074× 109 giga G
tebi Ti 240 1.1× 1012 tera T
pebi Pi 250 1.125× 1015 peta P
exbi Ei 260 1.153× 1018 exa E
zebi Zi 270 1.181× 1021 zetta Z
yobi Yi 280 1.209× 1024 yotta Y

Note: The correspondence works better on the smaller prefixes; for yobi vs. yotta
there is a 20% difference in magnitude.

�� The SI unit prefixes (and their operators) are often used instead of the correct
binary ones defined here.

� Example 3.1.49 You can buy hard-disks that say that their capacity is
“one tera-byte”, but they actually have a capacity of one tebibyte.

http://creativecommons.org/licenses/by-sa/2.5/

3.1. PRELIMINARIES: DATA STRUCTURES, DOCUMENTS, AND SIZES 55

©:Michael Kohlhase 83

Let us now look at some information quantities and their real-world counterparts to get an intuition
for the information content.

How much Information?

Bit (b) binary digit 0/1
Byte (B) 8 bit
2 Bytes A Unicode character in UTF.
10 Bytes your name.
Kilobyte (kB) 1,000 bytes OR 103 bytes
2 Kilobytes A Typewritten page.
100 Kilobytes A low-resolution photograph.
Megabyte (MB) 1,000,000 bytes OR 106 bytes
1 Megabyte A small novel or a 3.5 inch floppy disk.
2 Megabytes A high-resolution photograph.
5 Megabytes The complete works of Shakespeare.
10 Megabytes A minute of high-fidelity sound.
100 Megabytes 1 meter of shelved books.
500 Megabytes A CD-ROM.
Gigabyte (GB) 1,000,000,000 bytes or 109 bytes
1 Gigabyte a pickup truck filled with books.
20 Gigabytes A good collection of the works of Beethoven.
100 Gigabytes A library floor of academic journals.

©:Michael Kohlhase 84

How much Information?

Terabyte (TB) 1,000,000,000,000 bytes or 1012 bytes
1 Terabyte 50000 trees made into paper and printed.
2 Terabytes An academic research library.
10 Terabytes The print collections of the U.S. Library of Congress.
400 Terabytes National Climate Data Center (NOAA) database.
Petabyte (PB) 1,000,000,000,000,000 bytes or 1015 bytes
1 Petabyte 3 years of EOS data (2001).
2 Petabytes All U.S. academic research libraries.
20 Petabytes Production of hard-disk drives in 1995.
200 Petabytes All printed material (ever).
Exabyte (EB) 1,000,000,000,000,000,000 bytes or 1018 bytes
2 Exabytes Total volume of information generated in 1999.
5 Exabytes All words ever spoken by human beings ever.
300 Exabytes All data stored digitally in 2007.
Zettabyte (ZB) 1,000,000,000,000,000,000,000 bytes or 1021 bytes
2 Zettabytes Total volume digital data transmitted in 2011
100 Zettabytes Data equivalent to the human Genome in one body.

©:Michael Kohlhase 85

The information in this table is compiled from various studies, most recently [HL11].

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

56 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS

Note: Information content of real-world artifacts can be assessed differently, depending on the
view. Consider for instance a text typewritten on a single page. According to our definition, this
has ca. 2kB, but if we fax it, the image of the page has 2MB or more, and a recording of a
text read out loud is ca. 50MB. Whether this is a terrible waste of bandwidth depends on the
application. On a fax, we can use the shape of the signature for identification (here we actually
care more about the shape of the ink mark than the letters it encodes) or can see the shape of a
coffee stain. In the audio recording we can hear the inflections and sentence melodies to gain an
impression on the emotions that come with text.

3.2 Multimedia Documents on the World Wide Web

We have seen the client-server infrastructure of the WWWeb, which essentially specifies how
hypertext documents are retrieved. Now we look into the documents themselves.

In ?character-encodings? have already discussed how texts can be encoded in files. But for
the rich documents we see on the WWWeb, we have to realize that documents are more than just
sequences of characters. This is traditionally captured in the notion of document markup.

Document Markup

� Definition 3.2.1 Document markup is the process of adding control words
(special character sequences also called markup codes) to a document to
control the structure, formatting, or the relationship among its parts.

� Definition 3.2.2 The vocabulary and composition rules for a particular
kind of document markup system determine a markup format. The markup
format used in a document is called its document type. All characters that
are not control words constitute its textual content.

� Example 3.2.3 A text with markup codes (for printing)

©:Michael Kohlhase 86

There are many systems for document markup, ranging from informal ones as in ?document-
markup.ex? that specify the intended document appearance to humans – in this case the printer
– to technical ones which can be understood by machines but serving the same purpose.

3.2.1 Hypertext Markup Language

WWWeb documents have a specialized markup language that mixes markup for document struc-
ture with layout markup, hyper-references, and interaction. The HTML markup elements always

http://creativecommons.org/licenses/by-sa/2.5/

3.2. MULTIMEDIA DOCUMENTS ON THE WORLD WIDE WEB 57

concern text fragments, they can be nested but may not otherwise overlap. This essentially turns
a text into a document tree.
HTML was created in 1990 and standardized in version 4 in 1997 [RHJ98]. Since then the WWWeb
has evolved considerably from a web of static web pages to a Web in which highly dynamic
web pages become user interfaces for web-based applications and even mobile applets. HTML5
standardized the necessary infrastructure in 2014 [Hic+14].

HTML: Hypertext Markup Language

� Definition 3.2.4 The HyperText Markup Language (HTML), is a repre-
sentation format for web pages [Hic+14].

� Definition 3.2.5 (Main markup elements of HTML) HTMLmarks up
the structure and appearance of text with tags of the form <el> (begin tag),
</el> (end tag), and <el/> (empty tag), where el is one of the following

structure html,head, body metadata title, link, meta
headings h1, h2, . . . , h6 paragraphs p, br
lists ul, ol, dl, . . . , li hyperlinks a
multimedia img, video, audio tables table, th, tr, td, . . .
styling style, div, span old style b, u, tt, i, . . .
interaction script forms form, input, button
Math MathML (formulae) interactive

graphics
vector graphics
(SVG) and canvas
(2D bitmapped)

� Example 3.2.6 A (very simple) HTML file with a single paragraph.

<html>
<body>
<p>Hello IWGS students!</p>

</body>
</html>

©:Michael Kohlhase 87

The thing to understand here is that HTML uses the characters <, >, and / to delimit the markup.
All markup is in the form of tags, so anything that is not between < and > is the textual content.
We will not introduce the various tags and elements of the HTML language here, but refer the
reader to the HTML recommendation [Hic+14] and the plethora of excellent web tutorials.
The best way to understand HTML is via an example. Here we have prepared a simple file that
shows off some of the basic functionality of HTML.

A very first HTML Example (Source)

<html xmlns="http:www.w3.org/1999/xhtml">
<head>
<title>A first HTML Web Page</title>

</head>
<body>
<h1>Anatomy of a HTML Web Page</h1>
<h3>Michael Kohlhase
Jacobs University Bremen</h3>
<h2 id="intro">1. Introduction</h2>
<p>This is really easy, just start writing.</p>

http://creativecommons.org/licenses/by-sa/2.5/

58 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS

<h2>3. Main Part: show off features</h2>
<p>We can can markup text styles inline.</p>
<p> And we can make itemizations:

 with a list item
 and another one

</p>
<h2>3. Conclusion</h2>
<p> As we have seen in the introduction this
was very easy.</p>

</body>
</html>

©:Michael Kohlhase 88

The thing to understand here is that HTML markup is itself a well-balanced structure of begin
and end tags. That wrap other balanced HTML structures and – eventually – textual content.
The HTML recommendation [RHJ98] specifies the visual appearance expectation and interactions
afforded by the respective tags, which HTML-aware software systems – e.g. a web browser – then
execute. In the next slide we see how FireFox displays the HTML document from the previous.

A very first HTML Example (Result)

©:Michael Kohlhase 89

After this simple example, we will come to a more complex one: a little “contact form” as we find
on many web sites that can be used for sending a message to the owner of the site. Let us only
look a the design of the form document before we go into the interaction facilities afforded it.

HTML in Practice: Worked Example

� Make a design and “paper prototype” of the page

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

3.2. MULTIMEDIA DOCUMENTS ON THE WORLD WIDE WEB 59

� put the intended text into a file: contact.html

Contact
Please enter a message:
Your e−mail address: xx @ xx.de
Send message

� load into your browser to check the state

� add title, paragraph and button markup:

<title>Contact</title>
<h2>Please enter a message:</h2>
<h3>Your e−mail address: xx @ xx.de</h3>
<button>Send message</button>

� add input fields and breaks:

60 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS

<title>Contact</title>
<h2>Please enter a message:</h2>
<input name="msg" type="text"/>
<h3> Your e−mail address:</h3>
<input name="addr" type="text"

value="xx @ xx.de"/>

<button>Send message</button>

� convert into a HTML form with action (message receipt):

<title>Contact</title>
<form action="contact−after.html">
<h2>Please enter a message:</h2>
<input name="msg" type="text"/>

<h3>Your e−mail address:</h3>
<input name="addr" type="text"

value="xx @ xx.de"/>

<input type="submit"

value="Send message"/>
</form>

<title>
Contact − Message Confirmed

</title>
<form action="contact4.html">
<h2>
Your message has been submitted!

</h2>
<input type="submit"

value="Continue"/>
</form>

� That’s as far as we will go, the rest is page layout and interaction. (up next)

©:Michael Kohlhase 90

After designing the functional (what are the text blocks) structure of the contact form, we will
need to understand the interaction with the contact form.

HTML Forms

� Question: But how does the interaction with the contact form really work?

� Definition 3.2.7 The HTML form element groups the layout and input el-
ements:

� <form action="〈〈URI〉〉"> specifies the form action.

� <input type="submit".../> triggers the form action: it sends a query
?n1=v1&· · ·&nk=vk to the page at 〈〈URI〉〉, where

� ni are the values of the name attributes of the input fields
� and vi are their values at the time of submission.

� Example 3.2.8 (In the Contact Form) We send the request

http://creativecommons.org/licenses/by-sa/2.5/

3.2. MULTIMEDIA DOCUMENTS ON THE WORLD WIDE WEB 61

contact−after.html?msg=Hi&addr=foo@bar.de

The query part after the ? is currently ignored

� We will come to the full story of processing actions later.

©:Michael Kohlhase 91

Unfortunately, we can only see what the browser sends to the server at the current state of play,
not what the server does with the information. But we will get to this when we take up the
example again.
For the moment, we made use of the fact that we can just specify the page contact−after.html,
which the browser displays next. That ignores the query part and – via a form element of its own
gets the user back to the original contact form.

More useful types of Input fields

� radio buttons: type="radio" (grouped by name attribute)

<input type="radio" name="gender" value="male"/>Male

<input type="radio" name="gender" value="female"/>Female

<input type="radio" name="gender" value="other"/>Other

� check boxes: type="checkbox"
My major is
<input type="checkbox" name="major" value="cs"/>Computer Science
<input type="checkbox" name="major" value="dh"/>Digital Humanities
<input type="checkbox" name="major" value="other"/>Other

� file selector dialogs (interaction is system-specific – here for MacOS Mojave)

<p> Upload your resume <input type="file" name="resume"/></p>

� drop down menus: select and option
Which animal do you like?

<select name="animals">
<option value="bird">Bird</option>
<option value="hamster">Hamster</option>
<option value="cat">Cat</option>
<option value="dog">Dog</option>

</select>

©:Michael Kohlhase 92

3.2.2 Cascading Stylesheets

As the WWWeb evolved from a hypertext system purely aimed at human readers to a Web of
multimedia documents, where machines perform added-value services like searching or aggregating,
it became more important that machines could understand critical aspects web pages. One way
to facilitate this is to separate markup that specifies the content and functionality from markup

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

62 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS

that specifies human-oriented layout and presentation (together called “styling”). This is what
“cascading style sheets” set out to do. Another motivation for CSS is that we often want the
styling of a web page to be customizable (e.g. for vision-impaired readers).

CSS: Cascading Style Sheets

� Idea: Separate structure/function from appearance.

� Definition 3.2.9 The Cascading Style Sheets (CSS), is a style sheet lan-
guage that allows authors and users to attach style (e.g., fonts and spacing)
to structured documents.

� Example 3.2.10 Our text file from Example 3.2.6 with embedded CSS

<html>
<head>
<style type="text/css">

body {background−color:#d0e4fe;}
h1 {color:orange;

text−align:center;}
p {font−family:"Verdana";

font−size:20px;}
</style>
</head>
<body>
<h1>CSS example</h1>
<p>Hello IWGS!.</p>

</body>
</html>

©:Michael Kohlhase 93

Now that we have seen the example, let us fix the basic terminology of CSS.

CSS: Rules, Selectors, and Declarations

� Definition 3.2.11 A CSS style sheet consists of a sequence of rules that
in turn consist of a set of selectors that determine which elements the rule
applies to and a declaration block that specifies styling information.

� Definition 3.2.12 A CSS declaration block consists of a semicolon-separated
list of declarations in curly braces. Each declaration itself consists of a
property, a colon, and a value.

� Example 3.2.13 In Example 3.2.10 we have three rules, they address color
and font properties:

body {background−color:#d0e4fe;}
h1 {color:orange;

text−align:center;}
p {font−family:"Verdana";

Observation: In modern web sites, CSS contributes as much – if not more – to
the appearance as the choice of HTML elements.

©:Michael Kohlhase 94

In the example on the last slide, we specified the background color of the page as #d0e4fe;, which

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

3.2. MULTIMEDIA DOCUMENTS ON THE WORLD WIDE WEB 63

is a pain for the author. Fortunately, there are tools that can help.

� Picking CSS Colors

� Problem: Colors in CSS are specified by funny names (e.g. CornflowerBlue) or
hexadecimal numbers, (e.g. #6495ED)

� Solution: Use an online color picker, e.g. https://www.w3schools.com/
colors/colors_picker.asp

©:Michael Kohlhase 95

Again, we explore this new technology by way of an example. We rework the title box from the
HTML example above – after all treating author/affiliation information as headers is not very
semantic. Here we use div and span elements, which are generic block-level (i.e. paragraph-like)
and inline containers, which can be styled via CSS classes. The class titlebox is represented by the
CSS selector .titlebox.

A Styled HTML Title Box (Source)

� Example 3.2.14 (A style Title Box) The HTML source:

<head>
<title>A Styled HTML Title</title>
<link rel="stylesheet" type="text/css" href="style.css"/>

</head>
<body>
<div class="titlebox">
<div class="title">Anatomy of a HTML Web Page</div>
<div class="author">
Michael Kohlhase
FAU Erlangen−Nuernberg

</div>
</div>
...

And the CSS file referenced in line three:
.titlebox {border: 1px solid black;padding: 10px;

text−align: center
font−family: verdana;}

.title {font−size: 300%;font−weight: bold}

https://www.w3schools.com/colors/colors_picker.asp
https://www.w3schools.com/colors/colors_picker.asp
http://creativecommons.org/licenses/by-sa/2.5/

64 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS

.author {font−size: 160%;font−style: italic;}

.affil {font−variant: small−caps;}

©:Michael Kohlhase 96

And here is the result in the browser:

A Styled HTML Title Box (Result)

©:Michael Kohlhase 97

We will now go over a useful fragment of CSS in more detail and introduce it by example. For a
more complete introduction, see e.g. [CSSb].
Recall that selectors are the part of CSS rules that determine what elements a rule affects. We
now give the most important cases for our applications.

CSS Selectors

� Question: Which elements are affected by a CSS rule?

� Elements of a given name (optionally with given attributes)

� Selectors: name =̂ 〈〈elname〉〉, attributes =̂ [〈〈attname〉〉=〈〈attval〉〉]
� Example: p[xml:lang=’de’] applies to <p lang="de">. . .</p>

� Any elements with a given class attribute

� Selector: .〈〈classname〉〉
� Example: .important applies to <〈〈el〉〉 class=’important’>. . .</〈〈el〉〉>

� The element with a given id attribute

� Selector: #〈〈id〉〉
� Example: #myRoot applies to <〈〈el〉〉 id=’myRoot’>. . .</〈〈el〉〉>

� Multiple selectors can be combined in a comma-separated list

� for a full list see https://www.w3schools.com/cssref/css_selectors.asp

©:Michael Kohlhase 98

We now come to one of the most important conceptual parts of CSS: the box model. Understand-
ing it is essential for dealing with CSS-based layouts.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
https://www.w3schools.com/cssref/css_selectors.asp
http://creativecommons.org/licenses/by-sa/2.5/

3.2. MULTIMEDIA DOCUMENTS ON THE WORLD WIDE WEB 65

The CSS Box Model

� Definition 3.2.15 For layout, CSS considers all HTML elements as boxes,
i.e. document areas with a given width and height. A CSS box has four
parts:

� content: the content of the box, where text and images appear.

� padding: clears an area around the content. The padding is transparent.

� border a border that goes around the padding and content.

� margin clears an area outside the border. The margin is transparent.

The latter three wrap around the content and add to its size.

� all parts of a box can be customized with suitable CSS properties:

div {
background−color: lightgrey;
width: 300px;
border: 25px solid green;
padding: 25px;
margin: 25px;

}

Note that the overall width of the CSS box is 375 pixels.

©:Michael Kohlhase 99

As a summary of the above, we can visualize the CSS box model in a diagram:

The CSS Box Model: Diagram

� The following diagram summarizes the CSS box model

margin

border

padding

height

width

content

top

bottom

left right

http://creativecommons.org/licenses/by-sa/2.5/

66 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS

©:Michael Kohlhase 100

We now come to a topic that is quite mind-boggling at first: The “cascading” aspect of CSS style
sheets. Technically, the story is quite simple, there are two independent mechanisms at work:

• inheritance: if an element is fully contained in another, the inner (usually) inherits all
properties of the outer.

• rule prioritization: if more than one selector applies to an element (e.g. one by element
name and one by id attribute), then we have to determine what rule applies.

Technically, prioritization takes care of them in an integrated fashion.

Cascading of selectors in CSS: Prioritization

� Multiple CSS seletors apply with the following priorities:

1. important (i.e. marked with !important) before unimportant

2. inline (specified via the style attribute)

3. media-specific rules before general ones

4. user-defined CSS stylesheet (e.g. in the FireFox profile)

5. specialized before general selectors (complicated; see e.g. [CSSa])

6. rule order: later before earlier selectors

7. parent inheritance: unspecified properties are inherited from the parent.

8. style sheet included or referenced in the HTML document.

9. browser default

©:Michael Kohlhase 101

But do not despair with this technical specification, you do not have to remember it to be effective
with CSS practically, because the rules just encode very natural “behavior”. And if you need to
understand what the browser – which implements these rules – really sees, use the integrated
inspector tool (see slide 106 for details).

We now look at an example to fortify our intuition.

Cascading of selectors in CSS: Prioritization Example

� Example 3.2.16 Can you explain the colors in the web browsers below?

<h1>Layout with CSS</h1>
<div id="important" class="blue">
I am very important

</div>

.markedimportant {background−color:red !important}
#important {background−color:green}
.blue {background−color:blue}
#important {background−color:yellow}

©:Michael Kohlhase 102

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

3.2. MULTIMEDIA DOCUMENTS ON THE WORLD WIDE WEB 67

For instance, the words very important get a red background, as the class markedimportant is
marked as important by the CSS keyword !important, which makes (cf. rule 1 above) the color
red win agains the color yellow inherited from the parent <div> element (rule 7 above).
Let us now look at CSS inheritance in a little more detail

Cascading in CSS: Inheritance

� Definition 3.2.17 If an element is fully contained in another, the inner
inherits some properties (called inheritable) of the outer. In a nutshell

� text-related properties are inheritable; e.g. color, font, letter−spacing,
line−height, list−style, and text−align

� box-related properties are not; e.g. background, border, display, float,
clear, height, width, margin, padding, position, and text−align.

Note: Inheritance is integrated into prioritization (recall case 7. above)

�� Inheritance makes for consistent text properties and smaller CSS stylesheets.

©:Michael Kohlhase 103

So far, we have looked at the mechanics of CSS from a very general perspective. We will now
come to a set of CSS behaviors that are useful for specifying layouts of pages and texts.
Recall that CSS is based on the box model, which understands HTML elements as boxes, and
layouts as properties of boxes nested in boxes (as the corresponding HTML elements are).

If we can specify how inner boxes float inside outer boxes – via the CSS float rules, we can
already do quite a lot, as the following examples show.

CSS-Flow: How Boxes Flow to their Place

� CSS-Flow describes how different elements are distributed in the visible area
(how they flow; hence the name)

� Example 3.2.18 Block-level Boxes (here divs) flow to the left

<div class="square">1</div>
<div class="square">2</div>
<div class="square">3</div>
<div class="square">4</div>

+

.square {font−size:200%;
height:100px;
width:100px;
border:1px solid black;
margin:2px;
background−color:orange;}

=

� Example 3.2.19 float:left floats boxes as far as they will go (without
overlap)

<body>
<div class="square">1</div>
<div class="square">2</div>
<div class="square">3</div>

+

.square {font−size:200%;
height:100px;
width:100px;
border:1px solid black;
margin:2px;
background−color:orange;
float:left}

=

http://creativecommons.org/licenses/by-sa/2.5/

68 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS

� Example 3.2.20 float:right in a div will float inside the corresponding box

<div class="square">1
<div class="smallsq">A</div>

</div>
<div class="square">2</div>
<div class="square">3</div>
<div class="square">4</div>

+

.smallsq {color:white;
height: 40px;width: 40px;
border: 1px solid black;
margin: 2px;
background−color: blue;
float: right}

=

� Example 3.2.21 float:left will let contents flow around an obstacle

<div class="square"
style="font−size:small">
<div class="smallsq">A</div>
flow, flow, flow, flow, flow,
flow, flow, flow, flow, flow.

</div>

+

.smallsq {color:white;
height: 40px;width: 40px;
border: 1px solid black;
margin: 2px;
background−color: blue;
float: right}

=

The large space (>2px) is caused because there is no linebreaking

©:Michael Kohlhase 104

To fortify our intuition on CSS, we take up the “contact form” example from above and improve
the layout in a step-by-step process concentrating on one aspect at a time.

CSS in Practice: Worked Example

� Recap: The unstyled contact form:

<title>Contact</title>
<form action="contact−after.html">
<h2>Please enter a message:</h2>
<input name="msg" type="text"/>

<h3>Your e−mail address:</h3>
<input name="addr" type="text"

value="xx @ xx.de"/>

<input type="submit"

value="Send message"/>
</form>

� Add a CSS file with font information

http://creativecommons.org/licenses/by-sa/2.5/

3.2. MULTIMEDIA DOCUMENTS ON THE WORLD WIDE WEB 69

<link rel="stylesheet" type="text/css"
href="csscontact1.css" />

<input class="important" type="submit"
value="Send Message"/>

body {font−size: 62.5%;
font−family: "Trebuchet MS",

"Arial", "Helvetica",
"Verdana", "sans−serif"}

.important{font−style: italic;}
input[type="submit"]{font−weight: bold;}

� Add lots of color (ooops, what about the size)

<h2>Please enter a message:</h2>
<h3>Your e−mail address:</h3>
<input class="important" name="addr"

style="background−color:#cce6ff"
type="text" value="xx@xx.de"/>

h2 {background−color: #e600e6;}
h3 {background−color: #3399ff;

color: white;}
input{background−color:yellow}

� Add size information and a dotted frame

<form action="contact−after.html"
style="width:8cm;border:dotted;padding:5px">

<h2>Please enter a message:</h2>
<input name="msg" type="text"

style="height:4cm;width:8cm;
background−color:#ffccff"/>

<h3>Your e−mail address:</h3>
<input class="important" name="addr"

type="text"
value="xx@xx.de" style="width:8cm;

background−color:#cce6ff"/>

� Add a cat that plays with the submit button (because we can)

70 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS

<img id="cat" src="cat.png"
style="position:absolute;

left:170px;top: 15px;
width=300px"/>

©:Michael Kohlhase 105

This worked example should be enough to cover most layout needs in practice. Note that in most
use cases, these generally layout primitives will have to be combined in different and may be even
new ways.
Actually, the last “improvement” may have gone a bit overboard; but we used it to show how
absolute positioning of images (or actually any CSS boxes for that matter) works in practice.

But how to find out what the browser really sees?

� CSS has many interesting inhertance rules

� Definition 3.2.22 The page inspector tool gives you an overview over the
internal state of the browser.

� Example 3.2.23

©:Michael Kohlhase 106

One of the important applications of the content/form separation made possible by CSS is to
tailor web page layout to the screen size and resolution of the device it is viewed on. Of course,
it would be possible to maintain multiple layouts for a web page – one per screensize/resolution
class, but a better way is to have one layout that changes according to the device context. This
is what we will briefly look at now.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

3.3. AN OVERVIEW OVER XML TECHNOLOGIES 71

CSS Application: Responsive Design

� Problem: What is the screen size/resolution of my device?

� Definition 3.2.24 Responsive web design (RWD) designs web documents
so that they can be viewed with a minimum of resizing, panning, and scrolling
– across a wide range of devices (from desktop computer monitors to mobile
phones)

� Example 3.2.25 A web page with content blocks

Desktop Tablet Phone

Implementation: CSS-based layout with relative sizes and media queries – CSS
conditionals based on client screen size/resolution/. . .

©:Michael Kohlhase 107

3.3 An Overview over XML Technologies

We have seen that many of the technologies that deal with marked-up documents utilize the
tree-like structure of (the DOM) of HTML documents. Indeed, it is possible to abstract from
the concrete vocabulary of HTML that the intended layout of hypertexts and the function of its
fragments, and build a generic framework for document trees. This is what we will study in this
Section.

� Excursion: XML (EXtensible Markup Language)

� XML is language family for the Web

� tree representation language (begin/end brackets)

� restrict instances by Doc. Type Def. (DTD) or Schema (Grammar)

� Presentation markup by style files (XSL: XML Style Language)

Intuition: XML is extensible HTML & simplified SGML

�� logic annotation (markup) instead of presentation!

� many tools available: parsers, compression, data bases, . . .

� conceptually: transfer of directed graphs instead of strings.

http://creativecommons.org/licenses/by-sa/2.5/

72 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS

� details at http://www.w3c.org

©:Michael Kohlhase 108

The idea of XML being an “extensible” markup language may be a bit of a misnomer. It is made
“extensible” by giving language designers ways of specifying their own vocabularies. As such XML
does not have a vocabulary of its own, so we could have also it an “empty” markup language that
can be filled with a vocabulary.

XML is Everywhere (E.g. document metadata)

� Example 3.3.1 Open a PDF file in Acrobat Reader, then cklick on File↘ DocumentProperties↘ DocumentMetadata↘ V iewSource,
you get the following text: (showing only a small part)

<rdf:RDF xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
xmlns:iX=’http://ns.adobe.com/iX/1.0/’>

<rdf:Description xmlns:pdf=’http://ns.adobe.com/pdf/1.3/’>
<pdf:CreationDate>2004-09-08T16:14:07Z</pdf:CreationDate>
<pdf:ModDate>2004-09-08T16:14:07Z</pdf:ModDate>
<pdf:Producer>Acrobat Distiller 5.0 (Windows)</pdf:Producer>
<pdf:Author>Herbert Jaeger</pdf:Author>
<pdf:Creator>Acrobat PDFMaker 5.0 for Word</pdf:Creator>
<pdf:Title>Exercises for ACS 1, Fall 2003</pdf:Title>

</rdf:Description>
. . .
<rdf:Description xmlns:dc=’http://purl.org/dc/elements/1.1/’>
<dc:creator>Herbert Jaeger</dc:creator>
<dc:title>Exercises for ACS 1, Fall 2003</dc:title>

</rdf:Description>
</rdf:RDF>

©:Michael Kohlhase 109

This is an excerpt from the document metadata which Acrobat Distiller saves along with
each PDF document it creates. It contains various kinds of information about the creator of the
document, its title, the software version used in creating it and much more. Document metadata
is useful for libraries, bookselling companies, all kind of text databases, book search engines, and
generally all institutions or persons or programs that wish to get an overview of some set of books,
documents, texts. The important thing about this document metadata text is that it is not written
in an arbitrary, PDF-proprietary format. Document metadata only make sense if these metadata
are independent of the specific format of the text. The metadata that MS Word saves with each
Word document should be in the same format as the metadata that Amazon saves with each of
its book records, and again the same that the British library uses, etc.

XML is Everywhere (E.g. Web Pages)

� Example 3.3.2 Open web page file in FireFox, then click on V iew ↘ PageSource,
you get the following text: (showing only a small part and reformatting)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Michael Kohlhase</title>
<meta name="generator"

content="Page generated from XML sources with the WSML package"/>
</head>
<body>. . .
<p>
<i>Professor of Computer Science</i>

http://www.w3c.org
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

3.3. AN OVERVIEW OVER XML TECHNOLOGIES 73

Jacobs University

Mailing address - Jacobs (except Thursdays)

School of Engineering & Science

. . .

</p>. . .
</body>

</html>

� Definition 3.3.3 XHTML is the XML version of HTML (just make it
valid XML)

©:Michael Kohlhase 110

XML Documents as Trees

� Idea: An XML Document is a Tree

<omtext xml:id="foo"
xmlns=". . ."
xmlns:om=". . .">
<CMP xml:lang=’en’>
The number
<om:OMOBJ>
<om:OMS cd="nums1"

name="pi"/>
<om:OMOBJ>
is irrational.
</CMP>

</omtext>

<omtext>

<CMP>
xml:id; foo

xml:lang; en

The number is irrational.

<om:OMOBJ>

<om:OMS>
cd; nums1name; pi

xmlns; . . .

xmlns:om; . . .

� Definition 3.3.4 The XML document tree is made up of element nodes,
attribute nodes, text nodes (and namespace declarations, comments,. . .)

� Definition 3.3.5 For communication this tree is serialized into a balanced
bracketing structure, where

� an element is represented by the brackets <el> (called the opening tag)
and </el> (called the closing tag).

� The leaves of the tree are represented by empty elements (serialized as
<el></el>, which can be abbreviated as <el/>

� and text nodes (serialized as a sequence of UniCode characters).

� An element node can be annotated by further information using attribute
nodes — serialized as an attribute in its opening tag

Note: As a document is a tree, the XML specification mandates that there must
be a unique document root.

©:Michael Kohlhase 111

� Trees in Computer Science

� Observation 3.3.6 We often deal with well-bracketed structures in CS, e.g.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

74 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS

� Expressions: e.g.
3 · (a+ 5)

2x+ 7
(numerator an denominator in fractions

implicitly bracketed)

� Markup Languages like HTML:

<html>
<head><script>.emph {color:red}</script></head>
<body><p>Hello IWGS</p></body>

</html>

� Programming languages like python:

answer = input("Are you happy? ")
if answer == ’No’ or answer == ’no’:

print("Have a chocolate!")
else:

print("Good!")
print("Can I help you with something else?")

Idea: Come up with a common data structure that allows to program the same
algorithms for all of them. (common approach to scaling in Computer Science)

©:Michael Kohlhase 112

� A Common Data Structure for Well-Bracketed Structures

� Observation 3.3.7 In well-bracketed strutures, brackets contain two kinds of
objects

� bracket-less objects

� well-bracketed structures themselves

Idea: Write brackets pairs and bracket-less objects as nodes, connect when con-
tained

�� Example 3.3.8 Let’s try this for HTML – creating nodes top to bottom

<html>
<head>
<script>.emph {color:red}</script>

</head>
<body>
<p>Hello IWGS</p>

</body>
</html>

〈html〉

〈head〉 〈body〉

〈script〉 〈p〉

.emph{color:red}

Hello IWGS

©:Michael Kohlhase 113

Well-Bracketed Structures: Tree Nomenclature

� In Math and CS, such well-bracketed structures are called trees (with root,

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

3.3. AN OVERVIEW OVER XML TECHNOLOGIES 75

branches, leaves, and height). (but written upside-down)

� Example 3.3.9 In a tree, there is only one path from the root to the leaves

〈html〉

〈head〉 〈body〉

〈script〉 〈p〉

.emph{color:red}

Hello IWGS

� Definition 3.3.10 We speak of parent, child, descendent, and ancestor
nodes (genealogy nomenclature)

〈html〉

〈head〉 〈body〉

〈script〉 〈p〉

.emph{color:red}

Hello IWGS

©:Michael Kohlhase 114

Why are trees written upside-down?: The main answer is that we want to draw tree diagrams in
text. And we naturally start drawing a tree at the root. So, if a tree grows from the root and we
do not exactly know the tree height, then we do not know how much space to leave. When we
write trees upside down, we can directly start from the root and grow the tree downward as long
as we need. We will keep to this tradition in the IWGS course.

The Document Object Model

� Definition 3.3.11 The document object model (DOM) is a data structure
for storing documents as marked-up documents as document trees together
with a standardized set of access methods for manipulating them.

©:Michael Kohlhase 115

One of the great advantages of viewing marked-up documents as trees is that we can describe
subsets of its nodes.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

76 CHAPTER 3. DOCUMENTS AS DIGITAL OBJECTS

XPath, A Language for talking about XML Tree Fragments

� Definition 3.3.12 The XML path language (XPath) is a language frame-
work for specifying fragments of XML trees.

� Example 3.3.13

<omtext>

<CMP>
xml:id; foo

xml:lang; en

The number is irrational.

<om:OMOBJ>

<om:OMS>
cd; nums1name; pi

xmlns; . . .

xmlns:om; . . .

XPath exp. fragment
/ root
omtext/CMP/∗ all <CMP>

children
//@name the name at-

tribute on
the <OMS>
element

//CMP/∗[1] the first child of
all <OMS> el-
ements

//∗[@cd=’nums1’] all elements
whose cd has
value nums1

©:Michael Kohlhase 116

An XPath processor is an application or library that reads an XML file into a DOM and given an
XPath expression returns (pointers to) the set of nodes in the DOM that satisfy the expression.

http://creativecommons.org/licenses/by-sa/2.5/

Chapter 4

Web Applications

In this Chapter we will see how we can turn HTML pages into web-based applications that can
be used without having to install additional software.

Web Applications: Using Applications without Installing

� Definition 4.0.1 A web application is a program that runs on a web server
and delivers its user interface as a web site consisting of programmatically
generated web pages using a web browser as the client.

� Example 4.0.2 Commonly used web applications include

� http://ebay.com; auction pages are generated from databases.

� http://www.weather.com; weather information generated from weather
feeds.

� http://slashdot.org; aggregation of news feeds/discussions.

� http://github.com; source code hosting and project management.

� http://studon; course/exam management from students records.

Common Traits: pages generated from databases and external feeds, content
submission via HTML forms, file upload, dynamic HTML.

©:Michael Kohlhase 117

For that, we will first need to understand the basics of how the World-Wide Web works (see
Section 4.1), how we can generate HTML documents programmatically (in our case in python;
see Section 4.2), and finally how we can make HTML pages dynamic by client-side manipulation
(see ?sec.clientside?).

4.1 Basic Concepts of the World Wide Web

We will now present a very brief introduction into the concepts, mechanisms, and technologies
that underlie the World Wide Web – and thus web applications, which are our interest here.

4.1.1 Preliminaries

The WWWeb is the hypertext/multimedia part of the Internet. It is implemented as a service on

77

http://ebay.com
http://www.weather.com
http://slashdot.org
http://github.com
http://studon
http://creativecommons.org/licenses/by-sa/2.5/

78 CHAPTER 4. WEB APPLICATIONS

top of the Internet (at the application level) based on specific protocols and markup formats for
documents.

� The Internet and the Web

� Definition 4.1.1 The Internet is a worldwide computer network that con-
nects hundreds of thousands of smaller networks. (The mother of all
networks)

� Definition 4.1.2 The World Wide Web (WWW or WWWeb) is an open
source information space where documents and other web resources are iden-
tified by URLs, interlinked by hypertext links, and can be accessed via the
Internet.

� The WWW is the multimedia part of the Internet, they form critical infrastruc-
ture for modern society and commerce.

� The Internet/WWW is huge:

Year Web Deep Web eMail
1999 21 TB 100 TB 11TB
2003 167 TB 92 PB 447 PB
2010 ???? ????? ?????

� We want to understand how it works (services and scalability issues)

.

©:Michael Kohlhase 118

Given this recap we can now introduce some vocabulary to help us discuss the phenomena.

Concepts of the World Wide Web

� Definition 4.1.3 A web page is a document (usually marked up in HTML)
on the WWWeb that can include multimedia data and hyperlinks.

� Definition 4.1.4 A web site is a collection of related web pages usually
designed or controlled by the same individual or company.

� a web site generally shares a common domain name.

� Definition 4.1.5 A hyperlink is a reference to data that can immediately
be followed by the user or that is followed automatically by a user agent.

� Definition 4.1.6 A collection text documents with hyperlinks that point
to text fragments within the collection is called a hypertext. The action
of following hyperlinks in a hypertext is called browsing or navigating the
hypertext.

� In this sense, the WWWeb is a multimedia hypertext.

©:Michael Kohlhase 119

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

4.1. BASIC CONCEPTS OF THE WORLD WIDE WEB 79

4.1.2 Addressing on the World Wide Web

The essential idea is that the World Wide Web consists of a set of resources (documents, images,
movies, etc.) that are connected by links (like a spider-web). In the WWWeb, the links consist of
pointers to addresses of resources. To realize them, we only need addresses of resources (much as
we have IP numbers as addresses to hosts on the Internet).

Uniform Resource Identifier (URI), Plumbing of the Web

� Definition 4.1.7 A uniform resource identifier (URI) is a global identifiers
of local or network-retrievable documents, or media files (web resources).
URIs adhere a uniform syntax (grammar) defined in RFC-3986 [BLFM05].
A URI is made up of the following component:

� a scheme that specifies the protocol governing the resource

� an authority: the host (authentification there) that provides the resource.

� a path in the hierarchically organized resources on the host.

� a query in the non-hierarchically organized part of the host data.

� a fragment identifer in the resource.

� Example 4.1.8 The following are two example URIs and their component
parts:

http:// example.com:8042/over/there?name=ferret#nose
__/ ______________ /\ _________/ _________/ __/
| | | | |

scheme authority path query fragment
|___ _________________|_

/ \ / \
mailto:michael.kohlhase@fau.de

Note: URIs only identify documents, they do not have to be provide access to
them (e.g. in a browser).

©:Michael Kohlhase 120

The definition above only specifies the structure of a URI and its functional parts. It is designed
to cover and unify a lot of existing addressing schemes, including URLs (which we cover next),
ISBN numbers (book identifiers), and mail addresses.
In many situations URIs still have to be entered by hand, so they can become quite unwieldy.
Therefore there is a way to abbreviate them.

� Relative URIs

� Definition 4.1.9 URIs can be abbreviated to relative URIs; missing parts
are filled in from the context.

� Example 4.1.10 Relative URIs are more convenient to write

relative URI abbreviates in context
#foo 〈〈current-file〉〉#foo curent file
bar.txt file:///home/kohlhase/foo/bar.txt file system
../bar/bar.html http://example.org/bar/bar.html on the web

http://creativecommons.org/licenses/by-sa/2.5/

80 CHAPTER 4. WEB APPLICATIONS

� Definition 4.1.11 To distinguish them from relative URIs, we call URIs
absolute URIs.

©:Michael Kohlhase 121

The important concept to grasp for relative URIs is that the missing parts can be reconstructed
from the context they are found in: the document itself and how it was retrieved.
For the file system example, we are assuming that the document is a file foo.html that was loaded
from the file system – under the file system URI file:///home/kohlhase/foo/foo.html – and for the
web example via the URI //example.org/foo/foo.html. Note that in the last example, the relative
URI ../bar/ goes up one segment of the path component (that is the meaning of ../), and specifies
the file bar.html in the directory bar.
But relative URIs have another advantage over absolute URIs: they make a web page or web
site easier to move. If a web site only has links using relative URIs internally, then those do not
mention e.g. authority (this is recovered from context and therefore variable), so we can freely
move the web-site e.g. between domains.
Note that some forms of URIs can be used for actually locating (or accessing) the identified
resources, e.g. for retrieval, if the resource is a document or sending to, if the resource is a
mailbox. Such URIs are called “uniform resource locators”, all others “uniform resource locators”.

Uniform Resource Names and Locators

� Definition 4.1.12 A uniform resource locator (URL) is a URI that that
gives access to a web resource, by specifying an access method or location.
All other URIs are called uniform resource names (URN).

� Idea: A URN defines the identity of a resource, a URL provides a method for
finding it.

� Example 4.1.13 The following URI is a URL (try it in your browser)

http://kwarc.info/kohlhase/index.html

� Example 4.1.14 urn:isbn:978−3−540−37897−6 only identifies [Koh06] (it
is in the library)

� Example 4.1.15 URNs can be turned into URLs via a catalog service, e.g.
http://wm-urn.org/urn:isbn:978-3-540-37897-6

� Note: URIs are one of the core features of the web infrastructure, they are
considered to be the plumbing of the WWWeb. (direct the flow of data)

©:Michael Kohlhase 122

Historically, started out as URLs as short strings used for locating documents on the Internet.
The generalization to identifiers (and the addition of URNs) as a concept only came about when
the concepts evolved and the application layer of the Internet grew and needed more structure.
Note that there are two ways in URI can fail to be resource locators: first, the scheme does not
support direct access (as the ISBN scheme in our example), or the scheme specifies an access
method, but address does not point to an actual resource that could be accessed. Of course, the
problem of “dangling links” occurs everywhere we have addressing (and change), and so we will
neglect it from our discussion. In practice, the URL/URN distinction is mainly driven by the
scheme part of a URI, which specifies the access/identification scheme.

http://creativecommons.org/licenses/by-sa/2.5/
http://wm-urn.org/urn:isbn:978-3-540-37897-6
http://creativecommons.org/licenses/by-sa/2.5/

4.1. BASIC CONCEPTS OF THE WORLD WIDE WEB 81

Internationalized Resource Identifiers

� Remark 4.1.16 URIs are ASCII strings.

� Problem: This is awkward e.g. for France Télécom, worse in Asia.

� Solution?: Use unicode (no, too young/unsafe)

� Definition 4.1.17 Internationalized resource identifiers (IRIs) extend the
ASCII-based URIs to the universal character set.

� Definition 4.1.18 URI encoding maps non-ASCII characters to a ASCII
strings:

1. map character to its UTF-8 representation

2. represent each byte of the UTF-8 representation by three characters.

3. The first character is the percent sign (%),

4. and the other two characters are the hexadecimal representation of the
byte.

URI decoding is the dual operation.

� Example 4.1.19 The letter “ł” (U+142) would be represented as %C5%82.

� Example 4.1.20 http://www.Übergrößen.de becomes
http://www.%C3%9Cbergr%C3%B6%C3%9Fen.de

� Remark 4.1.21 Your browser can still show the URI-decoded version (so
you can read it)

©:Michael Kohlhase 123

4.1.3 Running the World Wide Web

The infrastructure of the WWWeb relies on a client-server architecture, where the servers (called
web servers) provide documents and the clients (usually web browsers) present the documents to
the (human) users. Clients and servers communicate via the http protocol. We give an overview
via a concrete example before we go into details.

The World Wide Web as a Client/Server System

http://creativecommons.org/licenses/by-sa/2.5/

82 CHAPTER 4. WEB APPLICATIONS

©:Michael Kohlhase 124

We will now go through and introduce the infrastructure components of the WWWeb in the order
we encounter them. We start with the user agent; in our example the web browser used by the
user to request the web page by entering its URL into the URL bar.

Web Browsers

� Definition 4.1.22 A web browser is a software application for retrieving
(viaHTTP), presenting, and traversing information resources on theWWWeb,
enabling users to view web pages and to jump from one page to another.

� Practical Browser Tools:

� Status Bar: security info, page load progress

� Favorites (bookmarks)

� View Source: view the code of a web page

� Tools/Internet Options, history, temporary Internet files, home page, auto
complete, security settings, programs, etc.

� Example 4.1.23 (Common Browsers)

� Edge is provided by Microsoft for Windows (replaces
MS Internet Explorer)

� FireFox is an open source browser for all platforms, it is known for its
standards compliance.

� Safari is provided by Apple for Mac OS X and Windows

� Chrome is a lean and mean browser provided by Google (very common)

� WebKit is a library that forms the open source basis for Safari and
Chrome.

©:Michael Kohlhase 125

The web browser communicates with the web server through a specialized protocol, the hypertext
transfer protocol, which we cover now.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

4.1. BASIC CONCEPTS OF THE WORLD WIDE WEB 83

HTTP: Hypertext Transfer Protocol

� Definition 4.1.24 The Hypertext Transfer Protocol (HTTP) is an appli-
cation layer protocol for distributed, collaborative, hypermedia information
systems.

� June 1999: HTTP/1.1 is defined in RFC 2616 [Fie+99].

Definition 4.1.25 HTTP is used by a client (called user agent) to access
web resources (addressed by Uniform Resource Locators (URLs)) via a http
request. The web server answers by supplying the resource

� Definition 4.1.26 Most important HTTP requests(5 more less prominent)

GET Requests a representation of the specified re-
source.

safe

PUT Uploads a representation of the specified resource. idempotent
DELETE Deletes the specified resource. idempotent
POST Submits data to be processed (e.g., from a web

form) to the identified resource.

� Definition 4.1.27 We call a HTTP request safe, iff it does not change the
state in the web server. (except for server logs, counters,. . . ; no side effects)

� Definition 4.1.28 We call a HTTP request idempotent, iff executing it
twice has the same effect as executing it once.

� HTTP is a stateless protocol (very memory-efficient for the server.)

©:Michael Kohlhase 126

Finally, we come to the last component, the web server, which is responsible for providing the web
page requested by the user.

Web Servers

� Definition 4.1.29 A web server is a network program that delivers web
resources to and receives content from user agents via the Hypertext Transfer
Protocol (HTTP).

� Example 4.1.30 (Common Web Servers)

� apache is an open source web server that serves about 50% of theWWWeb.

� nginx is a lightweight open source web server (ca. 35%)
.

� IIS is a proprietary server provided by Microsoft.

� Definition 4.1.31 A web server can host – i.e serve resources for – multiple
domains that can be addressed in the authority components of URLs. This
usually includes the special hostname localhost which is interpreted as “this
computer”.

http://creativecommons.org/licenses/by-sa/2.5/

84 CHAPTER 4. WEB APPLICATIONS

� Even though web servers are very complex software systems, they come prein-
stalled on most UNIX systems and can be downloaded for Windows [Xam].

©:Michael Kohlhase 127

Now that we have seen all the components we fortify our intuition of what actually goes down the
net by tracing the http messages.

Example: An http request in real life

� Send off a GET request
wget https://kwarc.info
--2019-03-06 14:04:19-- https://kwarc.info/
Loaded CA certificate ’/etc/ssl/certs/ca-certificates.crt’
Resolving kwarc.info (kwarc.info)... 131.188.48.212, 2001:638:a000:4148:131:188:48:212
Connecting to kwarc.info (kwarc.info)|131.188.48.212|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 8711 (8.5K) [text/html]
Saving to: ’index.html’

index.html 100%[==================================>] 8.51K --.-KB/s in 0s

2019-03-06 14:04:19 (30.0 MB/s) - ’index.html’ saved [8711/8711]

� Looking at the response from the server
cat index.html
<!DOCTYPE html> <html lang="en-us"> ... <body> ... </body> </html>

©:Michael Kohlhase 128

4.1.4 HTML Forms and the Web

The first requirement for web applications is already met by html in terms of HTML forms (see
slide 91 ff.). Let us recap.

Recap HTML Forms: Submitting Data to the Web Server

� Recall: HTML forms collect data via named input elements, the submit event
triggers a HTTP request to the URL specified in thex action attribute.

� Example 4.1.32 Forms contain input fields and explanations.

<form name="input" action="/user/" method="get">
Username: <input type="text" name="user" />
<input type="submit" value="Submit" />

</form>

yields

Pressing the submit button activates a HTTP GET request to the URL
/user/?user=〈〈name〉〉 (other methods (e.g. POST) also possible)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

4.2. GENERATING HTML ON THE SERVER 85

� We now also understand the form action, but should we use GET or POST.

©:Michael Kohlhase 129

To unerstand whether we should use the GET or POST methods, we have to look into the details,
which we will now summarize.

Practical Differences between HTTP GET and POST

� Observation 4.1.33 (Using GET vs. POST in HTML Forms)

GET POST
Caching possible never
Browser History Yes never
Bookmarking Yes No
Change Server Data No Yes
Size Restrictions ≤ 2KB No
Encryption No HTTPS

Upshot: HTTP GET is more convenient, but less potent.

�� : Always use POST for sensitive data (passwords, personal data, etc.)!
GET data is part of the URI and thus unencrypted, POST data via HTTPS is.

©:Michael Kohlhase 130

4.2 Generating HTML on the Server

As the WWWeb is based on a client-server architecture, computation in web applications can be
executed either on the client (the web browser) or the server (the web server). For both we have
a special technology; we start with computation on the web server.

Server-Side Scripting: Programming Web pages

� Idea: Why write HTML pages if we can also program them! (easy to do)

� Definition 4.2.1 A server-side scripting framework is a web server exten-
sion that generates web pages upon HTTP GET requests.

� Example 4.2.2 perl is a scripting language with good string manipulation
facilities. perl CGI is an early server-side scripting framework based on
this.

� Observation 4.2.3 Server-side scripting frameworks allow to make use of ex-
ternal resources (e.g. databases or data feeds) and computational services during
web page generation.

� Observation 4.2.4 A server-side scripting frameworks solves two problems:

1. making the development of functionality that generates HTML pages con-
venient and efficient, usually via a template engine, and

2. binding such functionality to URIs – the routes, we call this routing.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

86 CHAPTER 4. WEB APPLICATIONS

©:Michael Kohlhase 131

4.2.1 Templating in Python via STPL

In , we use python for programming, so let us see how we would generate HTML pages in python.

What would we do in python

� Example 4.2.5 (HTML Hello World in python)

print("<html>")
print("<body>Hello world</body>")
print("</html>")

Problem 1: Most web page content is static (page head, text blocks, etc.)

�� Example 4.2.6 (Python Solution) use python functions:
def htmlpage (t,b):

f"<html><head><title>{t}</title></head><body>{t}</body></html>"
htmlpage("Hello","Hello IWGS")

Problem 2: If HTML markup dominate, want to use a HTML editor (mode)

� � e.g. for HTML syntax highlighting/indentation/completion/checking

Idea: Embed program snippets into HTML. (only execute these, copy rest)

�� If HTML markup dominates, want to use a HTML editor (mode)

� e.g. for HTML syntax highlighting/indentation/completion/checking

©:Michael Kohlhase 132

We will now formalize and toolify the idea of “embedding code into HTML”. What comes out of
this idea is called “templating”. It exists in many forms, and in most programming languages.

Template Processing for HTML

� Definition 4.2.7 A template engine (or template processor) for a document
format F is a system that transforms template files, i.e. files with a mixture
of program constructs and F -markup into a F -document by executing the
program constructs (template processing).

� Note: No program code is left in the resulting web page after generation. (im-
portant security concern)

� Remark: We will be most interested in HTML template engines.

� Observation 4.2.8 We can turn a template engine into a server-side scripting
framework by employing the URIs of template files on a server as routes and
extending the web server by template processing.

� Example 4.2.9 PHP (originally “Programmable Home Page Tools”) is a
very successful server-side scripting framework following this model.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

4.2. GENERATING HTML ON THE SERVER 87

©:Michael Kohlhase 133

Before we start with a templating engine in python, we will present extended function/argument
patterns2. EdN:2

Argument Passing in python: Default Arguments

� Definition 4.2.10 The last k ≤ n of n parameters of a function can be
default arguments of the form pi=〈〈val〉〉i: If no argunent ai is given in the
function call, the default value 〈〈val〉〉i is taken.

� Example 4.2.11 The head of the open function is

def open(file, mode=’r’, buffering=−1, encoding=None, errors=None,
newline=None, closefd=True, opener=None)

©:Michael Kohlhase 134

Argument Passing in python: Flexible Arity

� Definition 4.2.12 python functions can take a variable number of param-
eters: def f (p1,. . .,pk,∗r) allows f(a1,. . .,ak,ak+1,. . .,an) and binds the pa-
rameter r to the list [ak+1,. . .,an].

� Example 4.2.13

def flexary (a,b,∗c)
return len(c)

>>> flexary (1,2,3,4,5)
>>> 3

� We can also use the “star syntax” in the function call

� Example 4.2.14 (Passing a list)

def test_var_args_call(arg1, arg2, arg3):
...

args = ["two", 3]
test_var_args_call(1, ∗args)

©:Michael Kohlhase 135

Argument Passing in python: Keyword Arguments

� Definition 4.2.15 python functions can take keyword arguments:
if k is a sequence of key/value pairs then def f(p1,. . .,pn,∗∗k), binds the keys
to values in the body of f .

� Example 4.2.16

def kw_args(farg, ∗∗kwargs):

2EdNote: remove this in the next year; it is already in the python intro

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

88 CHAPTER 4. WEB APPLICATIONS

print "formal arg:", farg
for key in kwargs:

print "another keyword arg: %s: %s" % (key, kwargs[key])
>>> kw_args(farg=1, myarg2="two", myarg3=3)

� Again, we can use the “double star syntax” in the function call

� Example 4.2.17 (Passing a dictionary)

def pdict(a1, a2, a3):
print(’a1: ’,a1,’, a2: ’,a2,’, a3: ’,a3)

dict = {"a3": 3, "a2": "two"}
>>> pdict(1, ∗∗dict)
>>> a1: 1, a2: two, a3: 3

©:Michael Kohlhase 136

Naturally, python comes with a template engine – in fact multiple ones. We will use the one from
the Bottle web application framework for IWGS.

stpl: the “Simple Template Engine” from Bottle

� Definition 4.2.18 Bottle WSGI is a server-side scripting framework based
on python. It supplies the template engine stpl (Simple Template Engine).

(documentation at [STPL])

� Bottle WSGI comes pre-installed on pythonAnywhere, so we only have to import
stpl to use it.

from bottle import template

stpl uses the template function for template processing and {{. . . }} to embed
into a template string.

>>> template(’Hello {{name}}!’, name=’World’)
u’Hello World!’

template accepts the same argument pattern as format3 and returns unicode
strings. E.g.

>>> my_dict={’number’: ’123’, ’street’: ’Fake St.’, ’city’: ’Fakeville’}
>>> template(’I live at {{number}} {{street}}, {{city}}’, ∗∗my_dict)
u’I live at 123 Fake St., Fakeville’

©:Michael Kohlhase 137

cEdNote: need to introduce that above

This is a powerful enabling basic functionality in python, but it does not satisfy our goal of writing
“HTML with embedded python”. Fortunately, that can easily be built on top of the template
functionality:

stpl Syntax and Template Files

� But what about. . . : HTML files with embedded python?

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

4.2. GENERATING HTML ON THE SERVER 89

� stpl uses template files (extension .tpl) for that.

� Definition 4.2.19 A stpl template file mixes HTML with stpl python:

� stpl python is exactly like python but ignores indentation and closes bod-
ies with end instead.

� stpl python can be embedded into the HTML as

� a code lines starting with a %,
� a code blocks surrounded with <% and %>, and
� an expressions {{〈〈exp〉〉}} as long as 〈〈exp〉〉 evaluates to a string.

� Example 4.2.20 Two template files

<!−− next: a line of python code −−>
% course = "Informatische werkzeuge ..."
<p>Some plain text in between</p>
<%
A block of python code
course = name.title().strip()

%>
<p>More plain text</p>

% for item in basket:
{{item}}

% end

©:Michael Kohlhase 138

So now, we have template files. But experience shows that template files can be quite redundant;
in fact, the better designed the web site we want to to create, the more fragments of the template
files we want to reuse in multiple places – with and without adaptions to the particular use case.

Template Functions

� Definition 4.2.21 stpl python supplies the template functions

1. include(〈〈tpl〉〉,〈〈vars〉〉), where 〈〈tpl〉〉 is another template file and 〈〈vars〉〉
a set of variable declarations (for 〈〈tpl〉〉).

2. defined(〈〈var〉〉) for checking definedness 〈〈var〉〉
3. get(〈〈var〉〉, default=〈〈val〉〉): return the value of 〈〈var〉〉, or a default 〈〈val〉〉.
4. setdefault(〈〈name〉〉,〈〈val〉〉)

� Example 4.2.22 (Including Header and Footer in a template) In a co-
herent web site, the web pages often share common header and footer parts.
Realize this via the following page template:

% include(’header.tpl’, title=’Page Title’)
Page Content
% include(’footer.tpl’)

� Example 4.2.23 (Dealing with Variables and Defaults)

% setdefault(’text’, ’No Text’)
<h1>{{get(’title’, ’No Title’)}}</h1>
<p> {{ text }} </p>
% if defined(’author’):
<p>By {{ author }}</p>

% end

http://creativecommons.org/licenses/by-sa/2.5/

90 CHAPTER 4. WEB APPLICATIONS

©:Michael Kohlhase 139

The basic pattern is that we separate concerns and build a separate template file for any “design
feature” of the respective web site. Sometimes these have parameters, which we can test via the
defined predicate and whose values we can obtain via get.

Using Templates

� We can use the base name of the template file in the template function to
process it.

� Example 4.2.24 (Extended Example)

� A python file books.py that provides the data and calls the template func-
tion.
from bottle import template
books = [{’author’: ’Tolkien’,’year’: 1937,’title’: ’The Hobbit’},

{’author’: ’Twain’,’year’: 1876,’title’: ’Tom Sawyer’},
{’author’: ’Hemmingway’,’year’: 1940,’title’: ’For Whom the Bell Tolls’}]

template(’books’,booklist=books)

� A stpl template books.tpl for a books table
<table>
<tr><th>author</th><th>year</th><th>title</th></tr>
% for book in books include(’book.tpl’,∗∗booklist)

</table>

� An auxiliary stpl template book.tpl for row
<tr><td>{{author}}</td><td>{{year}}</td><td>{{title}}</td></tr>

©:Michael Kohlhase 140

4.2.2 Routing, and Argument Passing in Bottle

Routing in Bottle WSGI

� Definition 4.2.25 Serverside routing (or simply routing) is the process by
which a web server connects a HTTP request to a function (called the route
function) that provides a web resource. A single URI path/route function
pair is called a route.

� Bottle WSGI supplies a simple python web server and routing.

� The run(〈〈keys〉〉) function starts the web server with the configuration given
in 〈〈keys〉〉.

� The @route decorator connects path components to python functions that
return strings.

� Example 4.2.26 (A Hello World route) for localhost on port 8080

from bottle import route, run

@route(’/hello’)
def hello():

http://creativecommons.org/licenses/by-sa/2.5/
books.py
books.tpl
book.tpl
http://creativecommons.org/licenses/by-sa/2.5/

4.2. GENERATING HTML ON THE SERVER 91

return "Hello IWGS!"

run(host=’localhost’, port=8080, debug=True)

©:Michael Kohlhase 141

Dynamic and Method-specific Routes in Bottle

� But we can do more with routes

� Definition 4.2.27 A dynamic route is a route annotation that contains a
named wildcard, which can be picked up in the route function.

� Example 4.2.28 Multiple @route annotations per route function f are al-
lowed ; the web application uses f to answer multiple URLs.

@route(’/’)
@route(’/hello/<name>’)
def greet(name=’Stranger’):

return template(’Hello {{name}}, how are you?’, name=name)

With the wildcard <name> we can bind the route function greet to all paths
and via its argument greet customize the greeting.

� Definition 4.2.29 Dynamic routes can be restricted by a route filter to
make them more selective.

� Example 4.2.30 (Concrete Filters) :int for integers or :re:〈〈regex〉〉 for reg-
ular expressions

@route(’/object/<id:int>’)
@route(’/show/<name:re:[a−z]+>’)

©:Michael Kohlhase 142

Dealing with HTTP GET and POST Data

� Recall: from a HTML form we get a GET and POST request with query
?n1=v1&· · ·&nk=vk

� Bottle WSGI provides the request object for dealing with HTTP request data.

� Example 4.2.31 (Submitting a Contact Form)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

92 CHAPTER 4. WEB APPLICATIONS

from bottle import route, run, debug,
template, request, get

@get(’/contact−after.html’)
def new_item():

data = {’msg’: request.GET.msg.strip(),
’addr’: request.GET.addr.strip()}

send−contact−email(addr,msg)
return template(’contact−after’,∗∗data)

<p>Message submitted!</p>
<table>
<tr>
<td>return−address</td>
<td>{addr}</td>

</tr>
<tr>
<td>text</td>
<td>{msg}</td>

</tr>
</table>

©:Michael Kohlhase 143

Sending off the e-mail

� We still need to implement the send−contact−email function, . . .

� Fortunately, there is a python package for that: smtplib, which makes this
relatively easy. (SMTP =̂ “Simple Mail Transfer Protocol”)

� Example 4.2.32 (Continuing)

import smtplib
from email.message import EmailMessage

def send−contact−email (addr, text)
msg = EmailMessage()
msg.set_content(text)
msg[’Subject’] = f’Contact from {addr}’
msg[’From’] = addr
msg[’To’] = info@example.org
s = smtplib.SMTP(’smtp.gmail.com’, 587)
s.send_message(msg)
s.quit()

Actually, this does not quite work yet as google requires authentification and
encryption, . . . ; (google for “python smtplib gmail”)

©:Michael Kohlhase 144

There is one problem however with web applications that is difficult to solve with the technologies
so far. We want web applications to give the user a consistent user experience even though they
are made up of multiple web pages. In a regular application we we only want to login once and
expect the application to remember e.g. our username and password over the course of the various
interactions with the system. For web applications this poses a technical problem which we now
discuss.

State in Web Applications and Cookies

� Recall: Web applications contain multiple pages, HTTP is a stateless protocol.

� Problem: how do we pass state between pages? (e.g. username, password)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

4.3. DYNAMIC HTML: CLIENT-SIDE MANIPULATION OF HTML DOCUMENTS 93

� Simple Solution: Pass information along in query part of page URLs.

� Example 4.2.33 (HTTP GET for Single Login) Since we are generat-
ing pages we can generated augmented links
... more

Problem: only works for limited amounts of information and for a single session

�� Other Solution: Store state persistently on the client hard disk

� Definition 4.2.34 A cookie is a text file stored on the client hard disk by
the web browser. Web servers can request the browser to store and send
cookies.

� Note: cookies are data not programs, they do not generate pop-ups or behave
like viruses, but they can include your log-in name and browser preferences.

� Note: cookies can be convenient, but they can be used to gather information
about you and your browsing habits.

� Definition 4.2.35 third party cookies are used by advertising companies to
track users across multiple sites. (but you can turn off, and even delete
cookies)

©:Michael Kohlhase 145

Note that that both solutions to the state problem are not ideal, for usernames and passwords the
URL-based solution is particularly problematic, since HTTP transmits URLs in GET requests
without encryption, and in our example passwords would be visible to anybody with a packet
sniffer. Here cookies are little better, since they can be requested by any website you visit.

4.3 Dynamic HTML: Client-side Manipulation of HTML Doc-
uments

We now turn to client-side computation:
One of the main advantages of moving documents from their traditional ink-on-paper form into
an electronic form is that we can interact with them more directly. But there are many more
interactions than just browsing hyperlinks we can think of: adding margin notes, looking up
definitions or translations of particular words, or copy-and-pasting mathematical formulae into
a computer algebra system. All of them (and many more) can be made, if we make documents
programmable. For that we need three ingredients:

i) a machine-accessible representation of the document structure, and

ii) a program interpreter in the web browser, and

iii) a way to send programs to the browser together with the documents.

We will sketch the WWWeb solution to this in the following.
To understand client-side computation, we first need to understand the way browsers render HTML
pages.

http://creativecommons.org/licenses/by-sa/2.5/

94 CHAPTER 4. WEB APPLICATIONS

Background: Rendering Pipeline in Browsers

� Observation: The nested, markup codes turn HTML documents into trees.

� Definition 4.3.1 The document object model (DOM) is a data structure
for the HTML document tree together with a standardized set of access
methods.

� Rendering Pipeline: Rendering a web page proceeds in three steps

1. the browser receives a HTML document,

2. parses it into an internal data structure, the DOM,

3. which is then painted to the screen. (repaint whenever DOM changes)

HTML Document DOM Browser
<html>
<head>
<title>Welcome</title>

</head>
<body>
<p>Hello World!</p>

</body>
</html>

html

head body

title p

Welcome
Hello World!

Welcome

Hello World!
parse

The DOM is notified of any user events (resizing, clicks, hover,. . .)

©:Michael Kohlhase 146

The most important concept to grasp here is the tight synchronization between the DOM and the
screen. The DOM is first established by parsing (i.e. interpreting) the input, and is synchronized
with with the browser UI and document viewport. As the DOM is persistant and synchronized,
any change in the DOM is directly mirrored in the browser viewpoint, as a consequence we only
need to change the DOM to change its presentation in the browser. This exactly the purpose of
the client side scripting language, which we will go into next.

4.3.1 JavaScript in HTML

Dynamic HTML

� Idea: generate parts of the web page dynamically by manipulating the DOM.

� Definition 4.3.2 JavaScript is an object-oriented scripting language mostly
used to enable programmatic access to the DOM in a web browser.

� JavaScript is standardized by ECMA in [Ecm].

� Example 4.3.3 We write the some text into a HTML document object (the
document API)
<html>
<head>
<script type="text/javascript">document.write("Dynamic HTML!");</script>
</head>

http://creativecommons.org/licenses/by-sa/2.5/

4.3. DYNAMIC HTML: CLIENT-SIDE MANIPULATION OF HTML DOCUMENTS 95

<body><!-- nothing here; will be added by the script later --></body>
</html>

©:Michael Kohlhase 147

The example above already shows a JavaScript command: document.write, which replaces the
content of the <body> element with its argument – this is only useful for testing and debugging
purposes.
Here are three browser-level functions that can be used for user interaction (and finer debugging
as they do not change the DOM).

Browser-level JavaScript functions

� Example 4.3.4 (Logging to the browser console)

console.log("hello IWGS")

� Example 4.3.5 (Raising a Popup)

alert("Dynamic HTML for IWGS!")

� Example 4.3.6 (Asking for Confirmation)

var returnvalue = confirm("Dynamic HTML for IWGS!")

©:Michael Kohlhase 148

JavaScript is a client-side programming language, that means that the programs are delivered to
the browser with the HTML documents and is executed in the browser. There are essentially three

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

96 CHAPTER 4. WEB APPLICATIONS

ways of embedding JavaScript into HTML documents:

Embedding JavaScript into HTML

� In a <script> element in HTML, e.g.

<script type="text/javascript">
function sayHello() { console.log(’Hello IWGS!’); }

</script>

� External JavaScript file via a <script> element with src

<script type="text/javascript" src=’’../js/foo.js’’/>

Advantage: HTML and JavaScript code are clearly separated

� In event-handler attributes of various HTML elements, e.g.

<input type=’’button’’ value=’’Hallo’’ onclick=’’alert(’Hello IWGS’)"/>

©:Michael Kohlhase 149

A related – and equally important – question is when the various embedded JavaScript fragments
are executed. Here, the situation is more varied

Execution of JavaScript Code

� Question: When and how is JavaScript Code Executed?

� Answer: While loading the HTML page or afterwards – triggered by events

� JavaScript in a script element: during page load (not in a function)

<script type="text/javascript">alert(’Huhu’);</script>

JavaScript in an event-handler attribute onclick, ondblclick, onmouseover, . . . ”
whenever the corresponding event occurs.

�� JavaScript in a “special link”: when the anchor is clicked

©:Michael Kohlhase 150

The first key concept we need to understand here is that the browser essentially acts as an user
interface: it presents the HTML pages to the user, waits for actions by the user – usually mouse
clicks, drags, or gestures; we call them events– and reacts to them.

The second is that all events can be associated to an element node in the DOM: consider an
HTML anchor node, as we have seen above, this corresponds to a rectangular area in the browser
window. Conversely, for any point p in the browser window, there is a minimal DOM element e(p)
that contains p – recall that the DOM is a tree. So, if the user clicks while the mouse is at point
p, then the browser triggers a click event in e(p), determines how e(p) handles a click event, and
if e(p) does not, bubbles the click event up to the parent of e(p) in the DOM tree.

There are multiple ways a DOM element can handel an event: some elements have default
event handlers, e.g. an HTML anchor will handle a click event by issuing a

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

4.3. DYNAMIC HTML: CLIENT-SIDE MANIPULATION OF HTML DOCUMENTS 97

HTTP GET request for 〈〈URI〉〉. Other HTML elements can carry event-handler attributes whose
JavaScript content is executed when the corresponding event is triggered on this element.

Actually there are more events than one might think at first, they include:

1. Mouse events; click when the mouse clicks on an element (touchscreen devices generate it
on a tap); contextmenu: when the mouse right-clicks on an element; mouseover / mouseout:
when the mouse cursor comes over / leaves an element; mousedown / mouseup: when the
mouse button is pressed / released over an element; mousemove: when the mouse is moved.

2. Form element events; submit: when the visitor submits a <form>; focus: when the visitor
focuses on an element, e.g. on an <input>.

3. Keyboard events; keydown and keyup: when the visitor presses and then releases the button.

4. Document events; DOMContentLoaded:– when the HTML is loaded and processed, DOM is
fully built, but external resources like pictures and stylesheets may be not yet loaded.
load: the browser loaded all resources (images, styles etc); beforeunload / unload: when the
user is leaving the page.

5. resource loading events; onload: successful load, onerror: an error occurred.

Let us now use all we have learned in an example to fortify our intuition about using JavaScript
to change the DOM.

Example: Changing Web Pages Programmatically

� Example 4.3.7 (Stupid but Fun)

<body>
<h2>A Pyramid</h2>
<div id="pyramid"/>

<script type="test/javascript">
var char = "#";
var triangle = "";
var str = "";
for(var i=0;i<=10;i++){

str = str + char;
triangle = triangle + str + "
"
}

var elem = document.getElementById("pyramid");
elem.innerHTML=triangle;

</script>
</body>
</html>

©:Michael Kohlhase 151

The HTML document in Example 4.3.7 contains an empty <div> element whose id attribute has
the value pyramid. The subsequent script element contains some code that builds a DOM node-
set of 10 text and
 nodes in the triangle variable. Then it assigns the DOM node for the
<div> to the variable elem and deposits the triangle node-set as children into it via the JavaScript
innerHTML method.

We see the result on the right of Example 4.3.7. It is the same as if the #-strings and

sequence had been written in the HTML – which – at least for pyramids of greater depth – would
have been quite tedious for the author.

http://creativecommons.org/licenses/by-sa/2.5/

98 CHAPTER 4. WEB APPLICATIONS

4.3.2 JQuery: Write Less, Do More

While JavaScript is fully sufficient to manipulate the HTML DOM, it is quite verbose and tedious
to write. To remedy this, the web developer community has developed libraries that extend the
JavaScript language by new functionalities that more concise programs and are often used Instead
of pure JavaScript.

JQuery: Write Less, Do More

� Definition 4.3.8 JQuery is a feature-rich JavaScript library that simpli-
fies tasks like HTML document traversal and manipulation, event handling,
animation, and Ajax.

� Using:

� Download from https://jquery.com/download/, save on your system(re-
member where)

� integrate into your HTML (usually in the <head>)

<script type="text/javascript’’ src=’’client−js/jquery−3.1.1.min.js"/>

or from the Internet directly (only works if you are online)

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js" />

©:Michael Kohlhase 152

The key feature of JQuery is that it borrows the notion of “selectors” to describe HTML node-
sets from CSS – actually, JQuery uses the CSS selectors directly – and then uses JavaScript-like
methods to act on them. In fact, the name JQuery comes from the fact that selectors “query” for
nodes in the DOM.

JQuery Philosophy and Layers

� JQuery Philosophy:

$("#myId").show().css("color", "green").slideDown();

� find elements in the DOM by selectors, e.g. $("#myId")

� do something to them, e.g. show()) (chaining of methods)

� change their layout by changing CSS attributes, e.g. css("color","green")

� change their behavior, e.g. slideDown()

� Good News: JQuery selectors =̂ CSS selectors

©:Michael Kohlhase 153

We will now show a couple of JQuery methods for inserting material into HTML elements and
discuss their behavior in examples

Inserting Material into the DOM

https://jquery.com/download/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

4.3. DYNAMIC HTML: CLIENT-SIDE MANIPULATION OF HTML DOCUMENTS 99

� Inserting before the first child:

$(’#content’).prepend(function(){return ’in front’;});

� Inserting afgter the last child:

$(’#content’).append(’<p>Hello</p>’);
$(’#content’).append(function(){ return ’hinten’; });

� Inserting before/after an element:

$(’#price’).before(’Preis:’);
$(’#price’).after(’ EUR’)

©:Michael Kohlhase 154

Let us fortify our intuition about dynamic HTML by going into a more involved example. We
use the toggle method from the JQuery layout layer to change visibility of a DOM element. This
method adds and removes a style="display:none" attribute to an HTML element and thus toggles
the visibility in the browser window.

Applications and useful tricks in Dynamic HTML

� Example 4.3.9 hide document parts by setting CSS style attributes to
display:none
<html>
<head>
<title>Toggling</title>
<style type="text/css">#dropper { display: none; }</style>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js" />
<script language="JavaScript" type="text/javascript">
$("button").click(function(){$("#dropper").toggle();});
</script>

</head>
<body>
<h2>Toggling the visibility of material</h2>
<button>...more </button>
<div id="dropper"><p>Now you see it!</p></div>

</body>
</html>

Application: write “gmail” or “google docs” as JavaScript enhanced web applications.
(client-side computation for immediate reaction)

�� Current Megatrend: Computation in the “cloud”, browsers (or “apps”) as user
interfaces

©:Michael Kohlhase 155

Current web applications include simple office software (word processors, online spreadsheets, and
presentation tools), but can also include more advanced applications such as project management,
computer-aided design, video editing and point-of-sale. These are only possible if we carefully
balance the effects of server-side and client-side computation. The former is needed for compu-
tational resources and data persistence (data can be stored on the server) and the latter to keep
personal information near the user and react to local context (e.g. screen size).

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

100 CHAPTER 4. WEB APPLICATIONS

Chapter 5

What did we learn in IWGS-1?

Outline of IWGS 1:

� programming in python (main tool in IWGS)

� systematics and culture of programming

� program and control structures

� basic data strutures like numbers and strings, character encodings, unicode,
and regular expressions

� digital documents and document processing

� text files

� markup systems, HTML, and CSS

� Web technologies for interactive documents and applications

� Internet infrastructure: web browsers and servers

� PHP, dynamic HTML, Javascript, HTML forms

� Web Application Project (design your own!)

©:Michael Kohlhase 156

Outline of IWGS-II:

� Project Management and Collaboration on Data, Documents, and Software

� Revision Control Systems

� Issue Trackers and Project Wikis

� Data bases

� CRUD operations, DB querying, and python embedding

� XML and JSON for file-based data storage

� Image Processing

101

http://creativecommons.org/licenses/by-sa/2.5/

102 CHAPTER 5. WHAT DID WE LEARN IN IWGS-1?

� Basics

� Image transformations, Image Understanding

� Legal Foundations of Information Systems

� Copyright & Licensing

� Data Protection (GDPR)

� Ontologies, Semantic Web, and WissKI

� Ontologies (inference ; get out more than you put in)

� Semantic Web Technologies (standardize ontology formats and inference)

� Using SWTech for cultural heritage

©:Michael Kohlhase 157

http://creativecommons.org/licenses/by-sa/2.5/

Part II

IWGS-II: DH Project Tools

103

Chapter 6

Semester Change-Over

6.1 Administrativa

We will now go through the ground rules for the course. This is a kind of a social contract
between the instructor and the students. Both have to keep their side of the deal to make learning
as efficient and painless as possible.

Prerequisites

� IWGS-1 (If you did not hear it, read the notes)

� General Prerequisites: Motivation, interest, curiosity, hard work

� we will teach you all you need to know (apart from IWGS-1)

� You can do this course if you want!

©:Michael Kohlhase 158

Now we come to a topic that is always interesting to the students: the grading scheme: The short
story is that things are complicated. We have to strike a good balance between what is didactically
useful and what is allowed by Bavarian law and the FAU rules.

Assessment, Grades

� Grading Background/Theory: only modules are graded (by the law)

� module “DH-Einführung” =̂ courses IWGS1/2, DH-Einführung

� DHE module grade ; pass/fail determined by “portfolio” =̂ collection of
contributions/assessments

� Assessment Practice: The IWGS assessments in the “portfolio” consist of

� weekly homework assignments (practice IWGS concepts and tools)

� 60 minutes exam directly after Lectures end: ∼ Feb.10. (to show you
master them)

� Retake Exam: 60 min exam at the end of the semester (∼ Sep 30.)

105

http://creativecommons.org/licenses/by-sa/2.5/

106 CHAPTER 6. SEMESTER CHANGE-OVER

� To help you succeed: we offer you

� External motivation: points for homeworks and a grade for exam (even
though only pass/fail relevant in the end)

� Mid-semester mini-exam (online, optional, corrected but ungraded), (so you
can predict the exam style)

� weekly online quizzes that help you prepare for the course (ungraded ;
check understanding/preparation)

©:Michael Kohlhase 159

Homework assignments, quizzes and end-semester exam may seem like a lot of work – and indeed
they are – but you will need practice (getting your hands dirty) to master the concepts. We will
go into the details next.

IWGS Homework Assignments

� Homeworks: will be small individual problem/programming/system assignments
(but take time to solve) group submission if and only if explicitly permitted

� Admin: To keep things running smoothly

� Homeworks will be posted on StudOn (https://studon.fau.de/studon/
crs2287043.html

� Homeworks are handed in electronically (plain text, program files, PDF)

� go to the tutorials, discuss with your TA (they are there for you!)

� Homework Discipline:

� start early! (many assignments need more than one evening’s work)

� Don’t start by sitting at a blank screen

� Humans will be trying to understand the text/code/math when grading it.

©:Michael Kohlhase 160

It is very well-established experience that without doing the homework assignments (or something
similar) on your own, you will not master the concepts, you will not even be able to ask sensible
questions, and take nothing home from the course. Just sitting in the course and nodding is not
enough!
If you have questions please make sure you discuss them with the instructor, the teaching assistants,
or your fellow students. There are three sensible venues for such discussions: online in the lecture,
in the tutorials, which we discuss now, or in the course forum – see below. Finally, it is always a
very good idea to form study groups with your friends.

IWGS Tutorials

� Weekly tutorials and homework assignments (first one in week two)

http://creativecommons.org/licenses/by-sa/2.5/
https://www.studon.fau.de/studon
https://studon.fau.de/studon/crs2287043.html
https://studon.fau.de/studon/crs2287043.html
http://creativecommons.org/licenses/by-sa/2.5/

6.1. ADMINISTRATIVA 107

�

Teaching Assistants: (Doctoral Students in CS)

� Jonas Betzendahl: jonas.betzendahl@fau.de

� Philipp Kurth: philipp.kurth@fau.de

They know what they are doing and really want to help
you learn! (dedicated to DH)

� Goal 1: Reinforce what was taught in class (important pillar of the IWGS
concept)

� Goal 2: Let you experiment with python (think of them as Programming Labs)

� Life-saving Advice: go to your tutorial, and prepare it by having looked at the
slides and the homework assignments

� Inverted Classroom: the latest craze in didactics (works well if done right)

in CS: Lecture + Homework assignments + Tutorials =̂ Inverted Classroom

©:Michael Kohlhase 161

Do use the opportunity to discuss the IWGS topics with others. After all, one of the non-trivial
inter/transdisciplinary skills you want to learn in the course is how to talk about Computer Science
topics – maybe even with real Computer Scientists. And that takes practice, practice, and practice.

But what if you are not in a lecture or tutorial and want to find out more about the IWGS topics?

Textbook, Handouts and Information, Forums

� No Textbook: but lots of online tutorials on the web

� Course notes will be posted at http://kwarc.info/teaching/IWGS (see
references)

� I mostly prepare them as we go along (first time I teach IWGS)

� please e-mail me any errors/shortcomings you notice. (improve for the
group)

� Announcements will be posted on the StudOn course forum: https://www.
studon.fau.de/studon/goto.php?target=frm_2319978

� Check the forum frequently for

� announcements, homework questions, . . .

� discussion among your fellow students

� If you become an active discussion group, the forum turns into a valuable re-
source!

©:Michael Kohlhase 162

jonas.betzendahl@fau.de
philipp.kurth@fau.de
http://creativecommons.org/licenses/by-sa/2.5/
http://kwarc.info/teaching/IWGS
https://www.studon.fau.de/studon/goto.php?target=frm_2319978
https://www.studon.fau.de/studon/goto.php?target=frm_2319978
http://creativecommons.org/licenses/by-sa/2.5/

108 CHAPTER 6. SEMESTER CHANGE-OVER

Outline of IWGS-II:

� Project Management and Collaboration on Data, Documents, and Software

� Revision Control Systems

� Issue Trackers and Project Wikis

� Data bases

� CRUD operations, DB querying, and python embedding

� XML and JSON for file-based data storage

� Image Processing

� Basics

� Image transformations, Image Understanding

� Legal Foundations of Information Systems

� Copyright & Licensing

� Data Protection (GDPR)

� Ontologies, Semantic Web, and WissKI

� Ontologies (inference ; get out more than you put in)

� Semantic Web Technologies (standardize ontology formats and inference)

� Using SWTech for cultural heritage

©:Michael Kohlhase 163

In IWGS-II, we want to consolidate the methods and technologies we learn in a small information
system, which students build in groups, and which will serve as a running example for the course.
These projects will consist of documents, data, and programs.

IWGS-II Project

� Idea: Consolidate the techniques from IWGS-I and IWGS-II into a prototypical
information system for Art History @ FAU. (Practical Digital Humanities)

� A Running Example: Research image + metadata collection “Bauernkirmes”
provided by Prof. Peter Bell

http://creativecommons.org/licenses/by-sa/2.5/

6.1. ADMINISTRATIVA 109

� What will you do?: Build a web-based image/data manager, test image algo-
rithms, annotate ontologically, . . .

� How will we organize this: Mostly via the group homework assignments (to-
gether they will make the project)

©:Michael Kohlhase 164

Some IWGS students were worried that they will not be able to participate fully in the project,
since they are not at the university often. A lot of the project collaboration will go via a collabo-
ration and project management system – cf. Chapter 7.

http://creativecommons.org/licenses/by-sa/2.5/

110 CHAPTER 6. SEMESTER CHANGE-OVER

Chapter 7

Collaboration and Project
Management

To facilitate group work – both for the IWGS-II project and future projects down the line, we will
start off the semester by looking at state-of-the art project and content management systems and
directly use that in the project.

We will concentrate on two parts of such a system:

• collaborative, versioned document/program development via GIT (see Section 7.1)

• issue tracking and management via GitHub/GitLab (Section 7.3).

Systems like GitLab or GitHub also offer additional features like developer communication, contin-
uous integration, automated deployment, monitoring and security management (collectively called
DevOps) which are way beyond the scope of IWGS.

7.1 Revision Control Systems

We address a very important topic for project management: supporting the life-cycle of project
documents, data, and software in a collaborative process. In this Section we discuss how we can
use a set of tools that have been developed for supporting collaborative development of large
program collections can be used for general project artefact management.
We will first introduce the problems and attempts at solutions and the introduce two classes of
revision control systems and discuss their paradigmatic systems.

7.1.1 Dealing with Large/Distributed Projects and Document Collec-
tions

In this Subsection we will look at problems in managing the artefacts of large projects. Such
projects range from technical documentation for complex systems over knowledge collections like
the Wikipedia, to software collections like the Linux kernel. They have in common that a large
group of authors/developers manage a large artefact collection over a long period of time.

Large/Distributed Collections of Project Artefacts

� Observation 7.1.1 Artefact collections can become large and long-lived.

� Problem: How to manage them effectively?

111

112 CHAPTER 7. COLLABORATION AND PROJECT MANAGEMENT

� Example 7.1.2 We will use the following projects/systems as running ex-
amples and characterize them by size.

� The “Subversion Book” [CSFP04] (ca. 450 pages, 9 translations, 3 main
authors, hundreds of contributors, since 2002)

� linux kernel (ca. 16M lines of code, ca. 12 k contributors, since 1991),

� wikipedia (≥ 5M articles, ≥ 280 languages, ca. 40M files, ≥ 130k active
users, since 2001).

� “2048”: a simple browser/app game with lots and lots of variants (forks)
in three years.

©:Michael Kohlhase 165

The first is a relatively standard book about a revision control system (see below), while the
wikipedia and linux kernel are paradigmatic examples of a large document collections and software
development. The last example was chosen as an example of a population of program variants
that develop together, exchanging code and ideas as they evolve.
For most of the examples above it is clear that the artefact collections are ever-changing; after
all that is their ultimate purpose. But even for documents that we perceive as rather static (e.g.
novels) there is a “document lifecycle” – if only before it is published.

Lifecycle Management for Digital Documents

� Documents may have a non-trivial life-cycle involving multiple actors.

� Example 7.1.3 For any book we have the following stages:

1. skeleton/layout (chapters, characters, interactions)

2. first complete draft (given out to test readers)

3. private editing cycle ; accepted draft (testing with more readers,
refining/condensing the story)

4. publisher’s editing cycle ; final draft (professional editor proposes
refinements to the draft)

5. copyediting for spelling, adherence of publisher’s house style

6. adding artwork/cover ; first published edition

7. e-dition (eBook) etc. (different artwork, links, interactivity)

� Example 7.1.4 For technical books, multiple editions follow to adapt them
to changing domain or correct errors.

©:Michael Kohlhase 166

For technical documents the lifecycle does not end here. They usually go through several “editions”
as the subject matter changes (or the presentation improves). As the revisions can be minor, only
parts of the lifecycle described above may be necessary.
As the lifecycle problems are common to all artefact collections, various solutions and practices
have evolved to cope with them. We will briefly present and evaluate them in the following.
For all them the critical question is how they deal with multiple files and multiple/distributed
authors/developers – a single author/developer working on a single file can usually cope quite
well. Multiple variants of the document collections – e.g. in different languages or variants of the
domain further complicate matters and mandate system support.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

7.1. REVISION CONTROL SYSTEMS 113

The first practice of collaborating on a document is probably the most widespread: multiple
authors collaborate on a single document – or very a limited number of documents and distribute
the respective newest state to their collaborators. Some word processors have support for tracking
changes, which may help in the process. Even though the version information could in principle
be looked up in the document metadata, it is common practice to add the current date and the
last author in the file date.

Document Lifecycle Mgmt. & Collaboration Approaches

� Practice: Send around MS Word documents by e-mail (dates in file name)

� Characteristics/Problems:

++ well-understood technology (no training need)

– version tracking as a social process (error prone)

– merging diverging versions is annoying (manual process)

– archiving past versions optional/manual (storage problems)

– no multifile support, no snapshots

� Summary: only supports serial collaboration, no multifile support

start finishtime

D1

δ1
D2

δ2 . . .δ3
Dn

δn

larger teams ; more time wasted

©:Michael Kohlhase 167

The main problem in this practice is that if two – or more – authors change the document in
different ways, we say that the document diverges, someone must merge the variants to get to a
common state again – a tedious undertaking at best without machine support. The solution to
this problem is to socially enforce a linear development timeline: “if you make an iteration until
tomorrow morning, then I can take over until noon, . . . ”.
Instead of distributing the documents to the collaborators we can also upload the respective version
to a central server which keeps the respective “current version” for download by the collaborators.

Document Lifecycle Mgmt. & Collaboration Approaches

� Practice: Put your documents on Dropbox or MS Sharepoint, or use a Wiki.

� Characteristics/Problems:

– local install of (proprietary) software

+ auto-synchronization between cloud and user copies upon save

+ auto-archiving past versions in cloud

– merging diverging versions unsupported (manual process)

http://creativecommons.org/licenses/by-sa/2.5/

114 CHAPTER 7. COLLABORATION AND PROJECT MANAGEMENT

– no multifile support, no snapshots

� Summary: only supports serial collaboration

start finishtime

D1

δ1
D2

δ2 . . .δ3
Dn

δn

larger teams ; more time wasted

©:Michael Kohlhase 168

A central server immediately solves the problem of identifying the “current version”, and usually
also provides date/time of the last change and the author of that change. A server also enforces
a linear development. On a naive server later uploads overwrite previous ones. To remedy this,
more advanced servers give the authors access to old versions of documents. This is in fact very
important, since it may be necessary to revert certain changes, e.g. to reinstate inadvertent
deletions.

While a history-aware server (Dropbox and MS Sharepoint are) allows for a non-linear multi-file
development path in principle, system support for this is missing.

The next practice is somewhat complementary from the last, even though it is technically a
radical extension: changes are uploaded to the server and merged into the document character-
by-character. In particular, this guarantees a linear timeline and a consistent document state.

Document Lifecycle Mgmt. & Collaboration Approaches

� Practice: Use real-time collaborative editors like EtherPad or wordprocessors
like GoogleDocs or Office Online.

� Characteristics/Problems:

+ browser-based, no installation necessary

+ real-time auto-synchronization between cloud and user copies

+– extremely detailed auto-archiving past versions in cloud

– no diverging versions

– no multifile support, no snapshots

� Summary: only supports serial collaboration

start finishtime

D1

δ1
D2

δ2 . . .δ3
Dn

δn

larger teams ; more time wasted

©:Michael Kohlhase 169

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

7.1. REVISION CONTROL SYSTEMS 115

While document consistency is directly guaranteed by the system, intra document, semantic con-
sistency is very hard to achieve, as there is usually no possibility to block out other authors in
order to do a larger rewrite. Though the systems give access to the version history, it’s character-
by-character nature makes it very difficult to spot useful versions.

It is a general observation that while real-time collaborative editing is very convenient and
effective for single small documents, where semantic intra- and inter-document consistency plays
an subordinate role, it does not scale to large document collections and author collectives.
The last practice in collaborative document lifecycle management is to use a revision control
system. These systems were originally built for managing the lifecycles of large software projects
with multiple, distributed developer groups and even more individual files. As a consequence, they
answer all the shortcomings of the practices we have reviewed above, but are restricted to text
files – as programs tend to be.

Document Lifecycle Mgmt. & Collaboration Approaches

� Practice: Use revision control system (good for ASCII-based file formats)

� Characteristics/Problems:

– special install, training necessary

- optimized for character/line-based formats

+ user-initiated synchronization between cloud and user copies

+ auto-archiving past versions on server

++ multifile support, snapshots, merging support, tagging

� Summary: supports parallel, branching collaboration

start finishtime

D1

δ1
D2

δ2

D3
δ3

D4
δ4

. . .δ6

. . .δ5

. . .δ7

Dn−3
δn−3

Dn−2
δn−2

Dn−1
δn−1

δ′n−1

δ′n−3

Dn
δn

δ′n

larger teams ; large-scale parallelization/experimentation

©:Michael Kohlhase 170

The main idea behind such systems is that we can manage very large document collections and
author collectives by making the “document collection changes” – expressed by δ in the figure
above – the prime objects in our system. Changes can be passed around, applied to working
copies, and merged – if we restrict ourselves to text files.
If we look at the paradigmatic document collections from our motivation, then we see that
Wikipedia uses the “central server” solution – it is based on a wiki server, while all the others
use version control systems.
We will now take a closer look at revision control systems and how they work. Following a
somewhat historic path, we will first look at a paradigmatic centralized revision control systems and
then advance to the currently dominant distributed system, building on the concepts introduced
for the centralized system.

http://creativecommons.org/licenses/by-sa/2.5/

116 CHAPTER 7. COLLABORATION AND PROJECT MANAGEMENT

7.1.2 Centralized Version Control

We start out with the basics of revision control system based on a relatively simple architecture
with a central repository with which all developers interact.

Revision Control Systems

� Definition 7.1.5 A revision control system is a software system that tracks
the change process of a document collection via a federation of repositories
that store the development history of the collection. Each step in the devel-
opment history is called a revision.

� Definition 7.1.6 Users do not directly work on the repository, but on a
working copy that is synchronized with the repository by revision control
actions

1. checkout: creates a new working copy from the repository

2. update: merges the differences between the revision of the working copy
and the revision of the repository into the working copy.

3. commit: transmits the differences between the repository revision and
the working copy to the repository, which registers them, patches the
repository revision, and makes this the new repository revision – called
the head revision or simply the head.

� Observation 7.1.7 The commits determine the revisions in a revision control
system.

Remark: revision control systems usually store the head revision explicitly and
can compute development histories via reverse diffs.

©:Michael Kohlhase 171

Definition 7.1.5 and Definition 7.1.6 are very general, so that they can cover a wide variety of
architectures.
Before we become more concrete, let us have a look at the basic ingredient of revision control
systems: computing differences, applying them to documents, and reconciling differences.

� Computing and Managing Differences with diff & patch

� Definition 7.1.8 diff is a file comparison utility that computes differences
between two text files f1 and f2. Differences are output linewise in a diff file
(also called a patch), which can be applied to f1 to obtain f2 via the patch

utility.

� Example 7.1.9

http://creativecommons.org/licenses/by-sa/2.5/

7.1. REVISION CONTROL SYSTEMS 117

The quick brown
fox jumps over
the lazy dog

The quack brown

fox jumps over
the loozy dog

1c1,2
< The quick brown
−−−
> The quack brown
>
3c4
< the lazy dog
−−−
> the loozy dog

� Definition 7.1.10 A diff file consists of a sequence of hunks that in turn
consist of a locator which contrasts the source and target locations (in terms
of line numbers) followed by the added/deleted lines.

©:Michael Kohlhase 172

Merging Differences with merge3

� There are basically two ways of merge the differences of files into one.

� Definition 7.1.11 In two-way merge, an automated procedure tries to com-
bine two different files by copying over differences by guessing or asking the
user.

� Definition 7.1.12 In three-way merge the files are assumed to be created
by changing a joint original (the parent) by editing. The merge3 tool ex-
amines the differences and patterns appearing in the changes between both
files as well as the parent, building a relationship model to generate a new
revision. Usually, non-conflicting differences (affecting only one of the files)
can directly be copied over.

©:Michael Kohlhase 173

With this, we can now understand the revision control worfklows in our concrete system.
In its simplest form, a revision control system, can be understood using the Subversion system that
is heavily used in open source projects that have a relatively hierarchical development model.

Centralized Version Control (with Subversion)

� Definition 7.1.13 Subversion is a centralized revision control system that
features

� a single, central repository (for current revision and reverse diffs)

� local working copies (asynchronous checkouts, updates, commits)

They are kept synchronized by passing around diff differences and patching
the repository and working copies. Conflicts are resolved by (three-way)
merge.

� Example 7.1.14 (A Workflow with three Working Copies)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

118 CHAPTER 7. COLLABORATION AND PROJECT MANAGEMENT

repository

LC1(∅)checkout O

commit δ1
LC2(O)

update δ1

LC3(O + δ2)

merge δ1

commit cr(δ1, δ2)

©:Michael Kohlhase 174

In the workflow of Example 7.1.14 is a typical one:

1. A first user checks out a new working copy LC1, from the empty repository, adds a couple
of files – we denote the new document collection at this point with O, and commits the
difference δ1 between the working copy and O to the repository which δ1 logs it as “revision
1”.

2. There is another repository LC2, which has been checked out earlier (i.e. based on “revision
0”), and which is now no longer in sync with the repository. So we can update (i.e. patch)
it to “revision 1” by transferring δ1 to LC2, which thus has same content as LC1, namely O.

3. For a third repository LC3 which has been checked out at “revision 0” we assume that it has
been changed by adding different files, the difference being δ2. Note that as these changes
are relative to “revision 0”, they cannot simply be committed to the repository. Therefore
we need to update it. As LC3 already contains changes, this amounts to a merge of δ1 and
δ2 to get a new local copy that is essentially O + δ2, which is now relative to “revision 1”.
This can now be committed to the repository to form “revision 2”.

Note: that in all of this it does not matter who the authors of the respective changes and the
owners of the respective working copies are. They might be different persons, or a single author
might have multiple working copies, e.g. one one the work computer, one on a laptop, and one on
the home desktop. They are all held in sync by updates, commits.
With this basic mechanism, we can already model quite complex and collaborative workflows. The
basic idea is simple: we just use the update/commit cycle to synchronize a set of working copies.

Collaboration with Subversion

� Idea: We can use the same technique for collaboration between multiple working
copies.

� Diff-Based Collaboration:

R19

WC1(O17) . . .

up

ci

WCn(O19)

up
ci

The Subversion system takes care of the synchronization:

� you can only commit, if your revision is HEAD (otherwise update)

� update merges the changes into your working copy

http://creativecommons.org/licenses/by-sa/2.5/

7.1. REVISION CONTROL SYSTEMS 119

� If there are changes on the same line, you have a conflict.

©:Michael Kohlhase 175

Note: that these collaborative workflows can be asynchronous. In particular working copies can
lag behind the repository as long as they want – they only have to synchronize for commits. This
gives a lot of freedom in the development process.

Also note: that unless the repository and the working copies are on the same computer – which is
somewhat unlikely. Commits and updates are only possible while online, this sometimes prevents
authors/developers from grouping changes logically as they have to collect them until they are
online again.

Subversion even allows to update to a specific revision, e.g. if an author wants to base her work
on that – or wants to revert some changes1. In fact, Subversion supports branching: committing
different development lines to the repository, but we will not go into this here and leave the
discussion for later when we discuss distributed revision control systems where branching is the
main mechanism of operation.

Branching: Supporting Multiple Lines of Development

� Observation 7.1.15 A central repository entails – ultimately – a single line
of development. changes have to be merged into the repository eventually.

� But: we want to develop – and commit – to variants in parallel.

� Definition 7.1.16 A branch is a copy of an object under revision control
(such as a source code file or a directory tree) so that it can be developed in
parallel.

� In particular, branches allow parallel development histories via separate commits.

� commits from one branch can be merged into another.

� Example 7.1.17 In software development we profit from separate

� master branch/trunk– main line of development, used for integration.

� release branch– only bug fixing; no new features

� feature branch– develop a new feature; close branch upon merge

� staging branch– integrate multiple fixes/features

� Definition 7.1.18 A branch controlled by a different developer or not in-
tended to be merged back is called a fork.

©:Michael Kohlhase 176

Branches are easy to realize in the diff/patch/merge-based architecture.

1Don’t drink and write!

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

120 CHAPTER 7. COLLABORATION AND PROJECT MANAGEMENT

7.1.3 Distributed Revision Control

In this Subsection we will introduce distributed revision control systems using the GIT system as
an example. As this is the currently dominant system, we will also go into more detail about
concrete usage of the system.

Distributed Version Control

� Problems with Centralized Revision Control (Subversion):

1. we can only commit when online!

2. all collaboration goes via one, central repository. (prescribes workflow)

� Idea: Distribute the repositories and move patches between them.

R19 headless

WC1(Oδ17) R1(O17)

merge

commit

. . .
fetch

push

WCn(Oδ′19)Rn(O19)

merge

commitfetch push

merge

1. local commits to local repositories

2. all repositories created equal (flexible organization)

� Definition 7.1.19 We call a revision control system distributed, iff it allows
multiple repositories that can exchanged patches. Contrastingly we call a
revision control system centralized, if it only allows one repository.

� Definition 7.1.20 We call a repository headless (or bare), if used without
working copy, usually in a web server.

©:Michael Kohlhase 177

The concept of distributed revision control systems is motivated by the two shortcomings at the
top of the slide, which can be remedies by a single – if relatively radical idea: allowing lots of
repositories that can communicate with each other by exchanging patches. Local repositories allow
commits while offline and distributed repositories allow for flexible architectures.
Of course, there is a price to pay: instead of having three main revision control actions we now
have five. We need to be able to move commits to a remote repository and fetch commits from
one. This makes the model quite a lot more complicated.

Centralized vs. Distributed Version Control

� Intuition: Distributed revision control systems generalize centralized ones.

Centralized Distributed Centralized Distributed
repository headless repository commit commit + push
working copy repository + working copy update fetch + merge

checkout fetch + checkout

http://creativecommons.org/licenses/by-sa/2.5/

7.1. REVISION CONTROL SYSTEMS 121

R19 headless

WC1(Oδ17) R1(O17)

merge

commit

. . .
fetch

push

WCn(Oδ′19)Rn(O19)

merge

commitfetch push

merge

©:Michael Kohlhase 178

We now come to the most prominent of the distributed revision control system: GIT. It implements
the concepts motivated above. Somewhat paradoxically, the distributed nature of the workflows
makes it simpler and more efficient to implement.

Distributed Version Control with GIT

� Definition 7.1.21 GIT is a distributed revision control system that features

� local repositories in each working copy ; local commit/merge

� multiple remote repositories connected to a local repository

� clone a remote repository ; make local repository/working copy
� local repository changes can be fetched from and pushed to a remote
repository (the upstream/downstream repositories).

� branches and forks (remote upstream repository)

Software Support: There are various software systems that facilitate providing
repositories, e.g.

� � GitHub, a repository hosting service at http://GitHub.com (free public
repositories)

� GitLab, an open source repository management system and repository host-
ing service at http://GitLab.com (free public/private
repositories)

©:Michael Kohlhase 179

7.1.4 Working with GIT in small Projects

Now that we understand the concepts, let us see how we can use them in practice. For this we
assume that students have installed GIT on their computers, so that they can use it; [CS14, section
1.5] gives an excellent introduction.
For this Subsection, we restrict ourselves to the workflows in small projects, where a simple
centralized structure suffices. Also, we we explain GIT functionality “from scratch”, and do not
presuppose a repository management system.
In all of our concrete examples, we will use UNIX shell commands; for Windows users should use
the GIT shell, a GIT-enhanced version of the UNIX shell that comes with the GIT distribution, and
not the Windows command prompt. There are graphical front-ends for the GIT client, but our
experience shows that using shell commands helps understand the concepts and workflows much
better.

Working with GIT (Initializing a Local Repository)

http://creativecommons.org/licenses/by-sa/2.5/
http://GitHub.com
http://GitLab.com
http://creativecommons.org/licenses/by-sa/2.5/

122 CHAPTER 7. COLLABORATION AND PROJECT MANAGEMENT

� Download GIT from https://git-scm.com/downloads, install (you want to
use it on your local machine)

� We will use git from the shell on your system (Mac OS X or linux) or Git Bash
that comes with your GIT download (Windows). (graphical front ends exist but
hinder understanding)

� Test whether your installation works: git −−version

� Make a local repository:

� git init turns the current directory into a GIT working copy by adding a local
repository as a hidden .git folder.

� git init 〈〈name〉〉 makes working copy + local repository in the 〈〈name〉〉 sub-
directory.

Alternative: Clone a remote repository, i.e. git init + git pull

git clone https://gitlab.cs.fau.de/iwgs−ss19/collaboration.git
Cloning into ’collaboration’...
Username for ’https://gitlab.cs.fau.de’: yp70uzyj
Password for ’https://yp70uzyj@gitlab.cs.fau.de’:

©:Michael Kohlhase 180

Before you start, you should configure some global options for GIT (just adapt the following lines
and type them into the shell).

$ git config −−global user.name "John Doe"
$ git config −−global user.email johndoe@example.com

The following two lines configure GIT to always pull the branch called master from the repository
called origin

$ git config branch.master.remote origin
$ git config branch.master.merge refs/heads/master

With this configuration you can replace git push origin master with a simple git push.

Working with GIT (Remote Repositories)

� A repository can be connected to one or several remote repositories

� git remote −v shows the remote repositories e.g.

MiKo:collaboration kohlhase$ git remote −v
origin https://gitlab.cs.fau.de/iwgs−ss19/collaboration.git (fetch)
origin https://gitlab.cs.fau.de/iwgs−ss19/collaboration.git (push)

� git remote add 〈〈name〉〉 〈〈URI〉〉 adds remote repositories e.g.

kohlhase$ git remote add upstream git@gl.kwarc.info:test/collab.git
kohlhase$ git remote −v
origin https://gitlab.cs.fau.de/iwgs−ss19/collaboration.git (fetch)
origin https://gitlab.cs.fau.de:iwgs−ss19/collaboration.git (push)
upstream https://gl.kwarc.info:test/collab.git (fetch)
upstream https://gl.kwarc.info:test/collab.git (push)

https://git-scm.com/downloads
http://creativecommons.org/licenses/by-sa/2.5/

7.1. REVISION CONTROL SYSTEMS 123

� We can now pull/push to the new remote repository, e.g. git push upstream master

� Note: git push is just syntactic sugar for git push origin master

©:Michael Kohlhase 181

We will now come to a GIT peculiarity that is important to understand for working with GIT:
Often we only want to commit only a subset of the changed files – e.g. because the changes
already constitute a achievement of their own or we want to split the development into multiple
commits. There are essentially two ways of achieving this.

1. giving the commit action a list of files to be committed, or

2. marking files for a future commit – this is called staging.

The second method is more flexible, since we do not have to remember which files participate in
a commit and we can stage files as we go along. Therefore GIT uses this method, even though it
adds conceptual complexity – actually, the first method can be recovered by syntactic sugar.

Working with GIT (Staging and Committing)

� Overview: GIT local workflow: staging files for commit

Working
Directory

Staging
Area

.git directory
(repository)

GitLab Repository
= remote repos

Your work here
normal file system

You collect/stage
changes locally

You commit
changes locally

You push
changes remotely

add
commit push

fetchmerge

pull

commits act only on staged files ; git add foo.tex

� basic GIT commands (there are many variants and options ; study them)

git clone 〈〈URI〉〉 clones the repos at 〈〈URI〉〉
git add 〈〈file〉〉 stages 〈〈file〉〉
git commit −m’〈〈msg〉〉’ commits staged files with commit message 〈〈msg〉〉
git status gives information about the working copy.

git push 〈〈repos〉〉 〈〈branch〉〉 pushes all commits to branch 〈〈branch〉〉 on 〈〈repos〉〉
git pull 〈〈repos〉〉 〈〈branch〉〉 fetches and merges branch 〈〈branch〉〉 from 〈〈repos〉〉

©:Michael Kohlhase 182

We have only shown the most basic commands here. There are many other commands an options
that make your life much easier. For instance, the −a option is very useful for git commit: it
automatically stages all the changed files. git commit −am’foo’ commits all your change in the
current directory (which is often what you want).
Let us now fortify our intuition on working with GIT by exhibiting a typical (but elementary)
workflow.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

124 CHAPTER 7. COLLABORATION AND PROJECT MANAGEMENT

An Example Git Workflow

� Example 7.1.22 A typical, elementary workflow in GIT
> git init
Initialized empty Git repository in /tmp
> echo "1,2,3" > test.txt
> git add test.txt
> git commit −m’initializing’

> echo "1,3" > test.txt
> git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update ...
(use "git checkout −− <file>..." to...

modified: test.txt
no changes added to commit
(use "git add" and/or "git commit −a")

> git add test.txt
> git commit −m’bla’ test.txt
> echo "1,3,4" > test.txt
> git add test.txt 1,3,4 1,3,4 1,3

1,3,4 1,3

1,3 1,3 1,3

1,3 1,3 1,2.3

1,3 1,2,3

1,2,3 1,2,3 1,2,3

1,2,3 1,2,3

1,2,3
Workspace Stage Repository

change

add

change

commit

add

add

commit

©:Michael Kohlhase 183

Note that the shell command echo 〈〈string〉〉 > 〈〈file〉〉 updates the contents of the file 〈〈file〉〉 to
〈〈string〉〉 or creates 〈〈file〉〉 with this content in the first place. We use this command to make the
file changes visible in the shell on the left side.

7.1.5 Working with GIT in large Projects

In this Subsection, we will (further) discuss the concepts for using GIT in large, long-lived projects.
This is less important for IWGS, since projects are rather small. But we want to at least make
students aware of GIT branching and the GIT flow paradigm, and we want to clear up the mystery
of which GIT often speaks of master.
We can now come back to the topic, where GIT really shines: branch branching. The main reason
for this is that merging is so well-supported in GIT. Together with the distributed “local-repository”
architecture, this allows for very flexible organization of workflows. We will discuss the basics of
branch-based and fork-based workflows here.

GIT Branches, Remote Repositories

� GIT special commands for making, switching, and merging branches.

git branch 〈〈branch〉〉 makes a branch with name 〈〈name〉〉
git checkout 〈〈branch〉〉 switches a working copy to branch 〈〈branch〉〉
git branch −v shows all branches
git branch −d 〈〈branch〉〉 deletes branch 〈〈branch〉〉

Intuition: In GIT branches are very similar to repositories, but more lightweight.

Repositories can have different permissions.

http://creativecommons.org/licenses/by-sa/2.5/

7.2. WORKING WITH GIT AND GITLAB/GITHUB 125

�� Fork-based Collaboration: If you want to contribute to a repository R you have
no push-rights on,

1. clone R to a new repository R′ you own (i.e. fork it; R′ is a fork of R)
2. develop your contribution on R′.
3. ask Rs owners to pull from R′ (pull request)

GIT repository management systems like GitHub and GitLab support this.

� Git commands for working with remote repositories:

git remote add 〈〈name〉〉 〈〈URI〉〉 gives the repos at 〈〈URI〉〉 the name 〈〈name〉〉
git remote show shows all remote repositories

©:Michael Kohlhase 184

What we have seen above, let us briefly disuss an elaborate workfow suitable for large development
teams, which has become known under the name “GitFlow”.

GitFlow: An Elaborate Development Model based on GIT

� Definition 7.1.23 [Dri10] suggests a development model called GIT flow

� A master branch master that all
other branches merge into

� New functionality is developed
“feature-by-feature” on feature
branches

� A development branch devel that in-
tegrates all feature branches and is
merged into master once the inte-
grated functionity is stable.

� (possibly) release branches for every
release; they collect bugfixes, but no
new features.

©:Michael Kohlhase 185

7.2 Working with GIT and GitLab/GitHub

Working with GitLab/GitHub

� GIT it sufficient to set up a remote repository (but tedious and error-prone)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

126 CHAPTER 7. COLLABORATION AND PROJECT MANAGEMENT

� Idea: Use a GIT repository manager like GitLab/GitHub (we use GitLab)

� Definition 7.2.1 A repository management system is an information sys-
tem that supports the administration of a repository server, i.e. web server
that provides access to a set of headless repositories and manages authentifi-
cation and authorization.

� Example 7.2.2 GitLab is an open source repository management system
and repository hosting service at http://GitLab.com (free public/private
repositories)

� Definition 7.2.3 A repository hosting service is a web-based repository
management system that also offers storage space for repositories.

� Example 7.2.4 GitHub is a a repository hosting service at http://GitHub.
com (free public repositories)

GitHub is now the default hosting service for open source software develop-
ment, it hosts more than 50 Million repositories.

� Definition 7.2.5 Often, repository management systems organize reposito-
ries hierarchically into groups (also called namespaces) and provide a personal
group to all users.

� Concretely: we use the FAU GitLab: https://gitlab.cs.fau.de

1. sign in with the FAU Single Sign On

2. this makes an account there and gives you a personal group https://
gitlab.cs.fau.de/〈〈SSID〉〉

3. IWGS has a course group https://gitlab.cs.fau.de/iwgs-ss19 (the
course projects go there)

©:Michael Kohlhase 186

Now we are ready to play with GitLab, and please do, there is nothing you can do wrong. And –
that is the beauty of revision control systems – few things you cannot undo.

Making Repositories on GitLab

� Make a new project with , play with it (you can always delete it)

� Definition 7.2.6 Group/project visibility can be one of three states:

� Private: Project access must be granted explicitly to each user.

� Internal: The project can be accessed by any authenticated user.

� Public: The project can be accessed without any authentication.

private and public make most sense in our setting.

� Exercise: Make a repository, clone it locally, add a file to it, commit that, let
your friends clone/change/commit it, merge their changes, . . . (see the
homework)

©:Michael Kohlhase 187

http://GitLab.com
http://GitHub.com
http://GitHub.com
https://gitlab.cs.fau.de
https://gitlab.cs.fau.de/users/auth/saml
https://gitlab.cs.fau.de/
https://gitlab.cs.fau.de/
https://gitlab.cs.fau.de/iwgs-ss19
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

7.2. WORKING WITH GIT AND GITLAB/GITHUB 127

Using GitLab for the IWGS Project

� Make a in a member

©:Michael Kohlhase 188

7.2.1 Excursion: Authentication with SSH

Authentication

� Definition 7.2.7 Authentication is the process of ascertaining that some-
body really is who they claim to be.

� Definition 7.2.8 Authentication can be performed by assertaining an authentication
factor, i.e. testing for something the user

� knows, e.g. a password or answer to a security question – kwowledge
factor

� has, e.g. an ID card, key, implanted device, software token, – ownership
factor

� is or does, e.g. a fingerprint, retinal pattern, DNA sequence, or voice –
inheritance factor.

Note: Password authentication is known to be problematic. (and you have to
remember/type it)

�� One Problem: Server and user must both know the password to authenticate
passwords are symmetric keys: the server can leak them.

©:Michael Kohlhase 189

Authentication by Cryptographic Public Keys

� Definition 7.2.9 Cryptography is the practice of transmitting a plain text
t by encoding it into a cypher text t′, to hide its content from anyone but
the legitimate reciever who can decode t′ to t.

� Split key into encode key e and a decode key d

� key e can encode a text t to t′, but only d can decode t′ to t.

� built into the SSH communication protocol.

1. user generates key pair (e, d), deposits d on server as certificate, keeps e
secret.

2. user encodes a text t with e to t′ send t+ t′ to server

3. server decodes t′ to t′′ with d and verifies t = t′′ ; OK, iff t = t′′.

� Advantage: Passwords canot be leaked, need not be transmitted, retyped.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

128 CHAPTER 7. COLLABORATION AND PROJECT MANAGEMENT

©:Michael Kohlhase 190

Working with GIT (Cloning a Remote Repository with SSH)

� Alternative: Clone a remote repository via SSH URL

kohlhase$ git clone git@gitlab.cs.fau.de:iwgs−ss19/collaboration.git
Cloning into ’collaboration’...
remote: Enumerating objects: 12, done.
remote: Counting objects: 100% (12/12), done.
remote: Compressing objects: 100% (5/5), done.
remote: Total 12 (delta 1), reused 0 (delta 0)
Receiving objects: 100% (12/12), done.
Resolving deltas: 100% (1/1), done.

� But we need a key pair for this to work.
Go to https://gitlab.cs.fau.de/profile/keys and follow the instructions
there

� essentially: generate a key pair, copy one into GitLab.

©:Michael Kohlhase 191

We will now complement revision control systems, as discussed above, with issue tracking systems.
The former support dealing with changes in the collaborative development of document collections,
the latter support the collaboratie management of issues – the reasons for changes.

7.3 Bug/Issue Tracking Systems

In this Section we will discuss issue tracking systems, which support the collaborative management
of reports on a particular problem, its status, and other relevant data. These systems originated
from tracking systems for help desks and in software engineering, but have evolved into general
project planning systems. We will mainly look at systems that originate from software engineering
applications here.

Bug/Issue Tracking Systems

� Definition 7.3.1 An issue tracker (also called issue tracking system simply
bugtracker) is a software application that keeps track of reported issues– i.e.
software bugs and feature requests – in software development projects.

� Example 7.3.2 There are many open-source and commercial bugtrackers

� bugzilla: http://bugzilla.org (Mozilla’s bugtracker)

� TRAC: http://trac.edgewall.org (mostly for Subversion)

� GitHub: http://github.com

� GitLab: http://gitlab.com (open source version of GitHub)

� JIRA: https://www.atlassian.com/software/jira (proprietary)

Most bugtrackers also integrate a wiki and integrate a revision control system
via extended markdown.

http://creativecommons.org/licenses/by-sa/2.5/
https://gitlab.cs.fau.de/profile/keys
http://creativecommons.org/licenses/by-sa/2.5/
http://bugzilla.org
http://trac.edgewall.org
http://github.com
http://gitlab.com
https://www.atlassian.com/software/jira

7.3. BUG/ISSUE TRACKING SYSTEMS 129

©:Michael Kohlhase 192

Issue trackers manage issues and track their status over its whole lifetime – from the initial
report to its resolution. This results in a particular set of components that are present in all
systems.

� The Anatomy of an Issue

� Definition 7.3.3 An issue (or bug report) specifies

� title: a short and descriptive overview (one line)

� description: a precise description of the expected and actual behavior,
giving exact reference to the component, version, and environment in
which the bug occurs. (bugs must be reproducible and localizable)

� issue metadata: who, when, what, why, state, . . . (see below)

� discussion about the bug.

� attachment: e.g. a screen shot, set of inputs, etc.

©:Michael Kohlhase 193

Issues – How to Write a Good One

� The descriptions or issues should be concise, but describe all pertinent aspects
of the situation leading to the unexpected behavior

� Example 7.3.4 (A bad bug report description)
My browser crashed. I think I was on foo.com. I think that this is a really
bad problem and you should fix it or else nobody will use your browser.

� Example 7.3.5 (A good one)
I crash each time I go to foo.com (Mozilla build 20000609, Win NT 4.0SP5).
This link will crash Mozilla reproducibly unless you remove the border=0
attribute:

Remember: developers are also human (try to minimize their work)

�� Definition 7.3.6 A feature request is an issue that only specifies the ex-
pected behavior and proposes ways of implementing that.

©:Michael Kohlhase 194

Markdown a simple Markup Language Generating HTML.

� Idea: We can translate between markup languages.

� Definition 7.3.7 Markdown is a family of markup languages whose control
words are unobtrusive and easy to write in a text editor. It is intended to be
converted to HTML and other formats for display.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

130 CHAPTER 7. COLLABORATION AND PROJECT MANAGEMENT

� Example 7.3.8 Markdown is used in applications that want to make user
input easy and effective, e.g. wikis and issue tracking systems.

� Workflow: Users write markdown, which is formatted to HTML and then served
for display.

� Example 7.3.9 We show the most important Markdown commands.
Markdown syntax Generated HTML

Heading
Sub−heading
Another deeper heading

Paragraphs are separated
by a blank line.

Two spaces at the end of a
line leave a line break.

Text attributes _italic_,
∗∗bold∗∗, ‘monospace‘.

Bullet list:
∗ apples
∗ oranges
∗ pears

Numbered list:
1. apples
2. oranges
3. pears

A [link](http://example.com).

<h1>Heading</h1>
<h2>Sub−heading</h2>
<h3>Another deeper heading</h3>
<p>Paragraphs are separated by a blank line.</p>
<p>Two spaces at the end of a

line leave a
 line break.</p>
<p>Text attributes italic,
bold,
<code>monospace</code>.</p>
<p>Bullet list:</p>

apples
oranges
pears

<p>Numbered list:</p>

apples
oranges
pears

<p>A link.</p>

©:Michael Kohlhase 195

Tracker-Specific Markdown Extensions

� Remark 7.3.10 Source code hosting systems offer special extensions for
referencing their components.

� Example 7.3.11 GitLab recognizes

� @foo for team members (@all for all project members), e.g. cc: @miko

� #123 for issues, e.g. depends on #4711

� !123 for merge requests, e.g. but merge #19 first

� $123 for code snippets, e.g. see $123 for an example usage

� 1234567 for commits, e.g. fixed by 4c0decb yesterday.

� [file](path/to/file) for file references,
e.g. as we see in [pre.tex](../lib/pre.tex)

� Observation 7.3.12 very useful for project planning and reporting

©:Michael Kohlhase 196

Bugtracker Workflow

� Typical Workflow: supported by all bugtrackers

� user reports issue (files report in the system)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

7.3. BUG/ISSUE TRACKING SYSTEMS 131

� other users extend/discuss/up/downvote issue

� QA engineer triages issues – classification, remove duplicates, identify de-
pendencies, tie to component, . . .

� developer accepts or re-assigns issue (fixes who is responsible primarily)

� project planning by identification of sub-issues, dependencies (new issues)

� bug fixing (design, implementation, testing)

� issue landing (sign-off, integration into code base)

� release of the fix (in the next revision)

� bug closure

� Observation 7.3.13 An issue tracker can serve as a full-blown project plan-
ning system, if used accordingly.

� Definition 7.3.14 For timing work plans, most issue trackers provide milestoness
that issues can be targetted to.

©:Michael Kohlhase 197

Administrative Metadata for Issues

� to make the issue-based workflows work we need data

� Definition 7.3.15 (Administrative Metadata) issue metadata can spec-
ify

� issue number: for referencing with e.g. #15

� an assignee: a developer currently responsible

� comments: a discussion thread focused on this issue.

� participants: people who get notified of changes/comments

� labels: for specializing bug search

� a status: e.g. one of new, assigned, fixed/closed, reopened.

� a resolution for fixed bugs, e.g.

� FIXED: source updated and tested
� INVALID: not a bug in the code
� WONTFIX: “feature”, not a bug
� DUPLICATE: already reported elsewhere; include reference
� WORKSFORME: couldn’t reproduce issue

� dependencies: which issues does this one depend on/block?

©:Michael Kohlhase 198

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

132 CHAPTER 7. COLLABORATION AND PROJECT MANAGEMENT

Chapter 8

Databases

We now come to one of the core tools of computer science: databases give us a means to store
large collections of data and organize them for efficient access. We will introduce the underlying
concepts by example, go over the basics of relational database systems and the SQL language, and
experiment with a concrete system: SQLite and its embedding into python.
Acknowledgements: We have borrowed and adapted examples and from [SSU04] and [PMDA] in
this Chapter.

8.1 Introduction

Databases, Data, Information, and Knowledge

� Definition 8.1.1 Discrete, objective facts or observations, which are unor-
ganized and uninterpreted are called data (singular datum).

� According to Probst/Raub/Romhardt [PRR97]

� Example 8.1.2 The height of Mt. Everest (8.848 meters) is a datum.

� Definition 8.1.3 A database is an organized collection of data, stored and
accessed electronically from a computer system.

©:Michael Kohlhase 199

Storing Data Electronically

� Four conventional ways of storing data: (mileage varies)

� In the computer’s memory (RAM) (very fast (+), random access (-), but

133

http://creativecommons.org/licenses/by-sa/2.5/

134 CHAPTER 8. DATABASES

not persistent (-))

� In a text file (persistent (+), fast (+), sequential access (-), unstructured
(-))

� In a spreadsheet(persistent (+), 2D-structured (+-), relations (+), slow (-))

� In a database (persistent (+), scalable (+), relations(+), managed (+),
slow (-))

� Databases constitute the most scalable, persistent solution.

©:Michael Kohlhase 200

http://creativecommons.org/licenses/by-sa/2.5/

8.2. RELATIONAL DATABASES 135

8.2 Relational Databases

We will now study a particular kind of database: relational databases, as these are the most widely
used and structured ones.4 EdN:4

(Relational) Database Management Systems

� Definition 8.2.1 A database management system (DBMS) is program that
interacts with end users, applications, and a database to capture and analyze
the data and provides facilities to administer the database.

� There are different types of DBMS, we will concentrate on relational ones.

� Definition 8.2.2 In a relational database management system (RDBMS),
data are represented as tables: every datum is represented by a row (also
called database record), which has a value for all columns (also called an
attributes) or field)s. A null value is a special “value” used to denote a
missing value.

� Remark: Mathematically, each row is an n-tuple of values, and thus a table an
n-ary relation. (useful for standardizing RDBMS operations)

� Example 8.2.3 (Bibliographic Data)

Last First YOB YOD Title YOP Publisher City
Twain Mark 1835 1910 Huckleberry 1986 Penguin USA NY
Twain Mark 1835 1910 Tom Sawyer 1987 Viking NY
Cather Willa 1873 1947 My Antonia 1995 Library of America NY
Hemingway Ernest 1899 1961 The Sun Also Rises 1995 Scribner NY
Wolfe Thomas 1900 1938 Look Homeward, Angel 1995 Scribner NY
Faulkner William 1897 1962 The Sound and the Furry 1990 Random House NY

� Definition 8.2.4 Tables are identified by table name and individual com-
ponents of records by column name.

©:Michael Kohlhase 201

As RDBMS constitute the backbone of of modern information technology, there are many many
implementations, commercial ones and open source ones as well. For our purposes, open-source
systems are completely sufficient, so we list the most important ones here.

Open-Source Relational Database Management Systems

�

Definition 8.2.5 MySQL is an open source
RDBMS. For simple data sets and Web application
MySQL is a fast and stable multi-user system fea-
turing an SQL database server that can be accessed
by multiple clients.

�
Definition 8.2.6 PostgreSQL is an open source RDBMS with
an emphasis on extensibility, standards compliance, and scal-
ability.

4EdNote: MK: In the last years, NoSQL databases and JSON have gained prominaence. Intro them at the end and
reference them here.

http://creativecommons.org/licenses/by-sa/2.5/

136 CHAPTER 8. DATABASES

�

Definition 8.2.7 SQLite is an embeddable
RDBMS. Instead of a database server, SQLite
uses a single database file, therefore no server
configuration is necessary.

� Remark 8.2.8 At the level we use SQL in IWGS, all are equivalent.

� We will use SQLite in IWGS, since it is easiest to install and configure.

©:Michael Kohlhase 202

Now that we have made our first steps in the SQL language and with RDBMS in general, let us
pick a concrete RDBMS to experiment with.

Working with SQLite (via the shell)

� In IWGS we will use SQLite, since it is very lightweight, easy to install, but
feature-complete, and widely used.

� Download SQLite at https://www.sqlite.org/download.html,

� e.g. sqlite−dll−win64−x64−3280000.zip for windows.

� unzip it into a suitable location, start sqlite3.exe there, test

> sqlite3
SQLite version 3.24.0 2018−06−04 19:24:41
Enter ".help" for usage hints.
Connected to a transient in−memory database.
Use ".open FILENAME" to reopen on a persistent database.
sqlite> .help
.archive ... Manage SQL archives: ".archive −−help" for details
.auth ON|OFF Show authorizer callbacks
[...]

� If you have a database file books.db from Example 8.3.8, use that.
> sqlite3 books.db
SQLite version 3.24.0 2018−06−04 19:24:41
Enter ".help" for usage hints.
> .tables
Books
>select ∗ from Books;
Twain|Mark|1835|1910|Huckleberry|1986|Penguin USA|NY
Twain|Mark|1835|1910|Tom Sawyer|1987|Viking|NY
Cather|Willa|1873|1947|My Antonia|1995|Library of America|NY
Hemingway|Ernest|1899|1961|The Sun Also Rises|1995|Scribner|NY
Wolfe|Thomas|1900|1938|Look Homeward, Angel|1995|Scribner|NY
Faulkner|William|1897|1962|The Sound and the Furry|1990|Random House |NY
Tolkien|John Ronald Reuel|1892|1973|The Hobbit|1937|George Allen & Unwin|UK

©:Michael Kohlhase 203

Interacting with SQLite via the database shell5 is nice, but can be quite tedious. Fortunately,EdN:5
there are better alternatives.

A Graphical User Interface for SQLite

5EdNote: MK: maybe introduce that separately somewhere?

http://creativecommons.org/licenses/by-sa/2.5/
https://www.sqlite.org/download.html
http://creativecommons.org/licenses/by-sa/2.5/

8.3. SQL – A STANDARDIZED INTERFACE TO RDBMS 137

� Definition 8.2.9 A database browser is a graphical user interface for a
RDBMS that (typically) bundles an SQL instruction editor with displays
for results and the database schema.

� I will sometimes one for SQLite in the slides: SQLite Studio (lots of others)

� download at https://sqlitestudio.pl/index.rvt?act=download

� Everything we can do with this, we can do with the database shell as well. (just
looks nicer)

©:Michael Kohlhase 204

8.3 SQL – A Standardized Interface to RDBMS

Idea: To interact with in RDBMSs, we need a language to describe tables to the system, so that
they can be created, read, updated, and deleted. In fact while we are at it, we need a language
for all RDBMS operations. The domain-specific language SQL (pronounced like “sequel”) fills
this need. It is internationally standardized, so that it can be used as the lingua franca for all
RDBMSs, insulating users and application programmers against system internals.

SQL: the Structured Query Language

� Idea: We need a language for describing all operations of a RDBMSs.

� basics: creating, reading, updating, deleting database components (CRUD)

� querying: selecting from and inserting into the database

� access control: who can do what in a database

� transactions: ensuring a consistent database state.

� Definition 8.3.1 SQL, the structured query language is a domain-specific
language for managing data held in a RDBMS. SQL instructions are directly
executed by the RDBMS to change the database state or compute answers
to SQL queries.

https://sqlitestudio.pl/index.rvt?act=download
http://creativecommons.org/licenses/by-sa/2.5/

138 CHAPTER 8. DATABASES

©:Michael Kohlhase 205

We start off with a fragment of SQL that is concerned with setting up the database schema, which
gives sturcture to the data in the database. This schema is used by the RDBMS to optimize
dabase accesss.

DDL: Data Definition Language

� Definition 8.3.2 The data definition language (DDL) is a subset of SQL
instructions that address the creation and deletion of database objects.

� Definition 8.3.3 The SQL statement CREATE TABLE〈〈name〉〉 (〈〈coldefs〉〉)
creates a table with name 〈〈name〉〉. 〈〈coldefs〉〉 are column specifications that
specify the columns: it is a comma-separated list of column names and SQL
data types. The totality of all column specifications of all tables in a database
is called the database schema.

� Example 8.3.4 (Creating a Table) The following SQL statement creates
the table from Example 8.2.3

CREATE TABLE Books (
Last varchar(128), First varchar(128),
YOB int, YOD int, Title varchar(255), YOP int,
Publisher varchar(128), City varchar(128)

);

� other CREATE statements exist, e.g. CREATE DATABASE 〈〈name〉〉.

� Definition 8.3.5 The SQL statementDROP 〈〈obj〉〉 〈〈name〉〉 deletes the database
object of class 〈〈obj〉〉 with name 〈〈name〉〉.

©:Michael Kohlhase 206

We have seen above that the database schema needs a data type for every column. We give an
overview over the most important ones here.

SQL Data Types (for Column Specifications)

� Definition 8.3.6 SQL specifies data types for values including

� VARCHAR (〈〈length〉〉): character strings, including Unicode, of a variable
length is up to the maximum length of 〈〈length〉〉.

� BOOL truth values: true, false and case variants.

� INT: Integers

� FLOAT: floating point numbers

� DATE: dates, e.g. DATE ’1999−01−01’ or DATE ’2000−2−2’
� TIME: time points in ISO format, e.g. TIME ’00:00:00’ or time ’23:59:59.99’

� TIMESTAMP: a combination of DATE and TIME (separated by a blank).

� CLOB (〈〈length〉〉) (character large object) up to (typically) 2GiB

� BLOB (〈〈length〉〉) (binary large object) up to (typically) 2GiB

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

8.3. SQL – A STANDARDIZED INTERFACE TO RDBMS 139

©:Michael Kohlhase 207

We now come to the SQL commands for inserting content into the database tables we have created
above. This is quite straight-forward.

SQL: Adding Records to Tables

� Definition 8.3.7 SQL provides the INSERT INTO command for inserting
records into a table. This comes in two forms:

1. INSERT INTO 〈〈table〉〉 VALUES (〈〈vals〉〉); where 〈〈vals〉〉 is a comma-
separated list of values given in the order the columns were declared in
the CREATE TABLE instruction.

2. INSERT INTO 〈〈table〉〉 (〈〈cols〉〉) VALUES (〈〈vals〉〉) where 〈〈vals〉〉 is a comma-
separated list of values given in the order of 〈〈cols〉〉 (a subset of columns)
all other fields are filled with NULL

� Example 8.3.8 (Inserting into the Books Table) The given the table
Books from Example 8.3.4 we can add a record with

INSERT INTO Books
VALUES (’Tolkien’, ’John Ronald Reuel’, 1892, 1973, ’The Hobbit’, 1937,

’George Allen & Unwin’, ’UK’);

� Example 8.3.9 (Inserting Partial Data) Using the second form of the
INSERT insruction, we can insert partial data. (all we have)

INSERT INTO Books (First, Last, YOB, title, YOP)
VALUES (’Michael’, ’Kohlhase’, ’1964’, ’IWGS Course Notes’, ’2018’);

©:Michael Kohlhase 208

With an insert facility, we need to be able to delete records as well, again it is straight-forward,
with the exception that we have to identify which records to delete.

SQL: Deleting Records from Tables

� Definition 8.3.10 The SQL delete statement allows to change existing records.

DELETE FROM 〈〈table〉〉 WHERE 〈〈condition〉〉;

� Example 8.3.11 Deleting the record for “Huckleberry Finn”.

DELETE FROM Works WHERE Title = ’Huckleberry Finn’

: If we leave out the WHERE clause, all rows are deleted.

�� Note: There is much more to the WHERE clause, we will get to that when
we come to SQL querying (see Section 8.7)

©:Michael Kohlhase 209

And now we come to a variant of database insertion: record update. In principle, this could be
achieved by deleting the record and then re-inserting the changed one, but the update instruction
presented here is more efficient.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

140 CHAPTER 8. DATABASES

SQL: Updating Records in Tables

� Definition 8.3.12 The SQL update statement allows to change existing
records.
UPDATE 〈〈table〉〉
SET 〈〈column〉〉1 = 〈〈value〉〉1, 〈〈column〉〉2 = 〈〈value〉〉2, . . .
WHERE 〈〈condition〉〉;

� Example 8.3.13 Updating the publisher in “Huckleberry Finn”.

UPDATE Books
SET Publisher = ’Chatto & Windus’, YOP = 1884, Cit = ’London’
WHERE Title = ’Huckleberry Finn’

Again: If we leave out the WHERE clause, all rows are updated.

©:Michael Kohlhase 210

8.4 ER-Diagrams and Complex Database Schemata

We now come to a very important aspect of structured databases: designing the database schema
– and with this determining the data efficiency and computational performance of the database
itself. We get glimpse of the standard tool: entity relationship diagrams here.

� Avoiding Redundancy in Databases

� Recall the books table from Example 8.2.3:

Last First YOB YOD Title YOP Publisher City
Twain Mark 1835 1910 Huckleberry 1986 Penguin USA NY
Twain Mark 1835 1910 Tom Sawyer 1987 Viking NY
Cather Willa 1873 1947 My Antonia 1995 Library of America NY
Hemingway Ernest 1899 1961 The Sun Also Rises 1995 Scribner NY
Wolfe Thomas 1900 1938 Look Homeward, Angel 1995 Scribner NY
Faulkner William 1897 1962 The Sound and the Furry 1990 Random House NY

Observation: Some of the fields appear multiple times, e.g. “Mark Twain”.

�� : When the database grows this leads to scalability problems

� in querying: e.g. if we look for all works by Mark Twain

� in maintenance: e.g. if we want to replace the pen name “Mark Twain” by
the real name “Samuel Langhorne Clemens”.

� Idea: Separate concerns (here Authors, Works, and Publishers) into separate
entities, mark their relations.

� Develop a graphical notation for planning

� Implement that into the database

©:Michael Kohlhase 211

After this discussion on why we need to design an efficient database schema to the entity relation-

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

8.4. ER-DIAGRAMS AND COMPLEX DATABASE SCHEMATA 141

ship diagrams themselves.

Entity Relationship Diagrams

� Definition 8.4.1 An entity relationship diagram (ERD) illustrates the log-
ical structure of databases. It consists of entities that characterize (sets of)
objects by their attributes and relations between them.

� Example 8.4.2 (An ERD for Books) Recall the Books table from Ex-
ample 8.2.3:

Last First YOB YOD Title YOP Publisher City
Twain Mark 1835 1910 Huckleberry 1986 Penguin USA NY
Twain Mark 1835 1910 Tom Sawyer 1987 Viking NY
Cather Willa 1873 1947 My Antonia 1995 Library of America NY
Hemingway Ernest 1899 1961 The Sun Also Rises 1995 Scribner NY
Wolfe Thomas 1900 1938 Look Homeward, Angel 1995 Scribner NY
Faulkner William 1897 1962 The Sound and the Furry 1990 Random House NY

� Problem: We have duplicate information in the authors and publishers

� Idea: Spread the Books information over multiple tables.

Authors
Last Name
First Name
Birth Date
Death Date

Works
Title
PubDate

Publ
Name
Citywrit by

wrote *
1 publ by

published *

©:Michael Kohlhase 212

Generally, a good database design is almost always worth the effort, since it makes the code and
maintenance of the applications based on this database much simpler and intuitive.
We are fully aware, that this little example completely under-sells entity relationship diagrams
and does not do this important topic justice. Fortunately, the DH students at FAU have the
mandatory course “Konzeptuelle Modellierung” which does.
We now come to the implementation of the ideas from the entity relationship diagrams. The key
idea is to have references between tables. These are mediated by special database columns types,
which we now introduce.

Linking Tables via Primary and Foreign Keys

� Definition 8.4.3 A column in a table can be designated as a primary key.
This constrains its values to be non-null and unique i.e. all distinct.
In DDL, we just add the keyword PRIMARY KEY to the column specifica-
tion.

� Definition 8.4.4 A foreign key is a column (or collection of columnss) in
one table (the called child table) that refers to the primary key in another
table (called the reference table or parent table).

� Intuition: Together primary keys and foreign keyss can be used to link tables or
(dually) to spread information over multiple tables.

http://creativecommons.org/licenses/by-sa/2.5/

142 CHAPTER 8. DATABASES

ERD Implementation

A
. . .

B
. . .

Parent
ID : primary
. . .

Child
fID : foreign
. . .

references

� BTW: Primary keys are great for for identification in the WHERE clauses of
SQL instruction.

©:Michael Kohlhase 213

We now fortify our intuition on primary and foreign keys by taking up Example 8.4.2 again.

Linking Tables via Primary and Foreign Keys (Example)

� Example 8.4.5 Continuing Example 8.4.2, we now implement

Authors
Last Name
First Name
Birth Date
Death Date

Works
Title
PubDate

Publ
Name
Citywrit by

wrote *
1 publ by

published *

by introducing primary keys in the Authors and Publishers tables and refer-
encing them by foreign keys in the Works table.

CREATE TABLE Authors (
AuthorID INTEGER PRIMARY KEY,
Last varchar(128), First varchar(128), YOB int, YOD int

);

CREATE TABLE Publishers (
PublisherID INTEGER PRIMARY KEY,
Name varchar(128), City varchar(128)

);

CREATE TABLE Works (
Title varchar(255), YOP int, AuthorID int, PublisherID int,
FOREIGN KEY(AuthorID) REFERENCES Authors(AuthorID),
FOREIGN KEY(PublisherID) REFERENCES Publishers(PublisherID)

);

� Example 8.4.6 (Inserting into the Works Table) The given the tables
Works Authors, and Publishers from Example 8.4.5 we can add a record with

INSERT INTO Authors VALUES (1, ’Twain’, ’Mark’, 1835, 1910);
INSERT INTO Publishers VALUES (1, ’Penguin USA’, ’NY’);
INSERT INTO Works VALUES (’Huckleberry Finn’, 1986, 1, 1);

INSERT INTO Publishers VALUES (2,’Viking’, ’NY’);
INSERT INTO Works VALUES (’Tom Sawyer’, 1987, 1, 2);

http://creativecommons.org/licenses/by-sa/2.5/

8.5. RDBMS IN PYTHON 143

©:Michael Kohlhase 214

Note: We have introduced new integer-typed columns for the primary key in the Authors and
Pubishers tables. In principle, we could have designated any existing column as a primary key
instead, if we were sure that the entries are unique – in our case an unreasonable assumption, even
for the publishers.

We have also chosen not to introduce a primary key in the Works table, which is probably a
design mistake in the long run, because this would be very important to have for deletions and
updates.

8.5 RDBMS in Python

Let us now see how we can interact with SQLite programmatically from python instead of from
the SQLite shell or the database browser.

Using SQLite from python

� We will use the PySQLite package

� install it locally with pip install pysqlite for python3.

� use import sqlite3 to import the library in your programs.

� Typical python program with sqlite3:

import sqlite3
Open database connection
db = sqlite.connect(〈〈host〉〉,〈〈user〉〉,〈〈pass〉〉,〈〈DBname〉〉)
prepare a cursor object using cursor() method
cursor = db.cursor()
execute SQL commands using the execute() method.
cursor.execute("〈〈SQL〉〉")
〈〈data processing code〉〉
disconnect from server
db.close()

We will assume this as a wrapper for all code examples below.

©:Michael Kohlhase 215

The script schema shows the normal way of setting up the interaction with a database using sqlite3:

1. We first connect to the database by specifying the database file in which the data is kept.
Normally, this will be file on the local file system, but we can also use a file that is available
on a remote host 〈〈host〉〉. Of course, to write to this file will normally require authentication,
therefore sqlite.connect also takes a user name 〈〈user〉〉 and a password 〈〈pass〉〉 as additional
arguments. An alternative for the 〈〈DBName〉〉 argument is the string :memory: which results
in an in-memory database (no persistent storage). The result of the sqlite.connect function
is a database object db.

2. Then we create a cursor object cursor (cf. slide 224 for more details) by using the cursor
method of the datebase object db.

3. Then we execute SQL instructions via cursor.execute and do the data processing we need for
our application.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

144 CHAPTER 8. DATABASES

4. Finally, we close the database connection via the db.close method to make sure that all our
changes have reached the database file.

We will now put this schema to use using Example 8.3.8 as a basis.

Creating Tables in python

� Example 8.5.1 Creating the table of Example 8.3.4

import sqlite3
our database file
database = "C:\\sqlite\db\books.db"
a string with the SQL instruction to create a table
create = """CREATE TABLE Books (

Last varchar(128), First varchar(128), YOB int, YOD int,
Title varchar(255), YOP int,Publisher varchar(128), City varchar(128));"""

insert1 = """INSERT INTO Books
VALUES (’Twain’, ’Mark’, ’1835’, ’1910’, ’Huckleberry Finn’, ’1986’,

’Penguin USA’, ’NY’);"""
insert2 = """INSERT INTO Books

VALUES (’Twain’, ’Mark’, ’1835’, ’1910’, ’Tom Sawyer’, ’1987’,
’Viking’, ’NY’);"""

connect to the SQLIte DB and make a cursor
db = sqlite.connect(database)
cursor = db.cursor()
create Books table by executing the cursor
cursor.execute("DROP TABLE Books;")
cursor.execute(create)
cursor.execute(insert1)
cursor.execute(insert2)
db.close() # clean up by closing

©:Michael Kohlhase 216

In this example we first create an SQL instruction as a string, so that we can give them as
arguments to the cursor.execute method conveniently.
Note that cursor.execute only executes a single SQL instructions (for safety reasons; see slide 217
– why does this help there?).
Note that we drop the Books table before (re)creating it, to be sure that we have the right structure
and avoiding errors, when we run the python script above twite. An alternative would have been
to use CREATE TABLE IF NOT EXISTS, which only creates the table if there is none. But in our
example here, where we directly fill the table, dropping any old tables with the name Books seems
the right thing to do.
Now that we understand how to deal with databases programmatically, we can come to a real-
world menace: SQL injection attacks. A large portion of the “hacking” events, where a database
is taken over by malicious agents are based – at least in part – on such a technique. Therefore it is
important to understand the basic principles involved, if only to understand how we can safeguard
against them – see e.g. slide 226 below.

Beware of the HTML/python/SQLite Interaction

� What have we learned?: At least you now understand the following web comic:
(https://xkcd.com/327/)

http://creativecommons.org/licenses/by-sa/2.5/
https://xkcd.com/327/

8.6. EXCURSION: PROGRAMMING WITH EXCEPTIONS IN PYTHON 145

� Definition 8.5.2 We call this an SQL injection attack.

� Hint: Imagine a Web Application where you add student names for enrolment.
This has a python line

Name=input(Student Name}
cursor.execute(f"INSERT INTO Students VALUES (... ,{Name}, ...);")

which for the inputRobert’); DROP TABLE Students; generates and executes
the SQL instructions
INSERT INTO Students VALUES (..., ’Robert’); DROP TABLE Students;

©:Michael Kohlhase 217

Now we can understand why the restriction of cursor.execute to only one SQL instruction enhances
security of the code: The hypothetical cursor.execute(’INSERT ...’) command expects one SQL
instruction, but with the parameter substitution in the f-string gets two. This would have raised
an error and saved the school administration.

8.6 Excursion: Programming with Exceptions in Python

Before we go on, we discuss how we can deal with errors in python flexibly, so that our web
application web applications will not drop into the python level and present the user with a stack
trace.

We first introduce what errors really are in the python context and how they are raised and
handled. Then we look at what this means for our handling of database connections.

How to deal with Errors in python

� Theorem 8.6.1 (Kohlhase’s Law) I can be an idiot, and I do make mis-
takes!

� Definition 8.6.2 An exception is a special python object. Raising an ex-
ception e terminates computation and passes e to the next higher level.

� Example 8.6.3 (Division by Zero) The python interpreter reports un-
handled exceptions

>>> −3 / 0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

Zerodivisionerror: division by zero

Exceptions are first-class citizens in python, in particular they

http://creativecommons.org/licenses/by-sa/2.5/

146 CHAPTER 8. DATABASES

� � are classified by their classes in a hierarchy.

� excpetion classes can be defined by the user (they inherit from the
Exception class)

class DivByZero (Exception)
pass

� can be raised when an abnormal condition appears

if denominator == 0 :
raise DivByZero

else
〈〈computation〉〉

� can be handled in a try/except block (there can be multiple)

try:
〈〈tentative computation〉〉

except : 〈〈err〉〉1, . . ., 〈〈err〉〉n :
〈〈errorhandling〉〉

finally :
〈〈cleanup〉〉

©:Michael Kohlhase 218

Let us now apply python exception to our situation. Here the most important source of errors is
the database connection step, where a database file might be missing or a remote host with the
database file offline.

Playing it Safe with Databases

� Observation 8.6.4 Things can go wrong when connecting to a database(e.g.
missing file)

� Idea: Raise exceptions and handle them.

� Example 8.6.5 we encapsulate a try/except block into a function for con-
venience
import sqlite3
from sqlite3 import Error
def sql_connection():

try:
db = sqlite3.connect(’:memory:’)
print("Connection is established: Database is created in memory")

except Error :
print(Error)

finally:
db.close()

The sqlite3 package provides its own exceptions, which we import separately.
Other errors can be handled in additional except clauses.

©:Michael Kohlhase 219

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

8.7. QUERYING AND VIEWS IN SQL 147

8.7 Querying and Views in SQL

So far we have created, filled, and possibly updated databases, but we have not done anything
useful with them. That is the realm of querying in SQL, which we will now come to.
We will first cover SQL querying from a single table. There are many variants of the SELECT/FROM/WHERE
instruction. We explain the most commonly used ones.

SQL Querying: The SELECT Statement

� SQL uses the SELECT instruction for retrieving data from a database.

� SELECT 〈〈columns〉〉 FROM 〈〈table〉〉 returns all records from 〈〈table〉〉 restricted
to the fields from 〈〈columns〉〉.

� Definition 8.7.1 We call a SELECT instruction a query.

� Example 8.7.2 SELECT Title, YOP FROM Books;

Huckleberry Finn|1986
Tom Sawyer|1987
My Antonia|1995
The Sun Also Rises|1995
Look Homeward, Angel|1995
The Sound and the Furry|1990
The Hobbit|1937

� SELECT DISTINCT removes duplicate values

� SELECT ∗ FROM 〈〈table〉〉 returns all records from 〈〈table〉〉.

� SELECT 〈〈columns〉〉 FROM 〈〈table〉〉 WHERE 〈〈cond〉〉 returns all records that
match condition 〈〈cond〉〉

� Example 8.7.3 SELECT First, Last FROM Books WHERE YOP = 1995;

Willa|Cather
Ernest|Hemingway
Thomas|Wolfe

� SELECT 〈〈columns〉〉 FROM 〈〈table〉〉 ORDER BY 〈〈colums〉〉 orders the results
by 〈〈columns〉〉

� Example 8.7.4 Ordering can be ascending (ASC) or descending (DESC)
SELECT First, Last FROM Books ORDER Last ASC, YOP DESC;

©:Michael Kohlhase 220

There are some more variants, for instance we can add a GROUP BY clause, which allows to
group the result table according to various conditions.
We now generalize SQL queries by combining multiple tables into a virtual table from which we
aggregate the results.

Joining Tables in Queries

� Problem: We can query single tables, how cross-table queries? E.g. in

http://creativecommons.org/licenses/by-sa/2.5/

148 CHAPTER 8. DATABASES

Authors
AuthorID
Last Name
First Name
Birth Date
Death Date

Works
Title
PubDate
AuthorID
PublisherID

Publishers
PublisherID
Name
City

� Idea: virtually joining tables for the query

� Definition 8.7.5 A table join (or simply join) is a means for combining
columns from one (self-join) or more tables by using values common to each.

� Example 8.7.6 Joining all three tables from Example 8.4.2.

SELECT
Authors.Last, Authors.First, Authors.YOB, Authors.YOD,
Title, YOP, Publishers.Name, Publishers.City

FROM
Works

INNER JOIN Authors ON Authors.AuthorID = Works.AuthorID
INNER JOIN Publishers ON Publishers.PublisherID = Works.PublisherID

©:Michael Kohlhase 221

We have seen above that we can join physical database tables to larger virtual ones whenever we
need it in a SQL query. This is good, but it can be made even better. RDBMS allow to persist
virtual tables in the database schema itself as views.

Database Views: Persisting Queries

� Observation: Via the join in Example 8.7.6, the Works table queries like the
original Books table.

� Wouldn’t it be nice If we could also insert/update into that?

� Definition 8.7.7 A database view (or simply view) is a virtual table based
on the result-set of a query. A view contains rows and columns, just like a

http://creativecommons.org/licenses/by-sa/2.5/

8.8. QUERYING VIA PYTHON 149

real table. The fields in a view are fields from one or more real tables in the
database.

� Remark 8.7.8 we can insert, delete, and update records in a view, just as
in any other table of the database.

The RDBMS achieves this by automatically translating any change to the
view into a set of changes to the underlying physical tables.

� : but not in SQLite, (this is an omission due to simplicity)

©:Michael Kohlhase 222

Remark: With views we can “have our cake and eat it too”: We can make our database schema
space-efficient by removing redundancies using “small tables” and still have our “big tables” that
make our life convenient e.g. when inserting records. Consider our Books example.

Database Views: Persisting Queries (Books Example)

� Example 8.7.9 Use the query from Example 8.7.6 to define a view

CREATE VIEW Books AS
SELECT
Authors.Last AS Last, Authors.First AS First,
Authors.YOB AS YOB, Authors.YOD AS YOD,
Title, YOP,
Publishers.Name AS Publisher, Publishers.City AS City

FROM
Works

INNER JOIN Authors ON Authors.AuthorID = Works.AuthorID
INNER JOIN Publishers ON Publishers.PublisherID = Works.PublisherID

Use AS clauses in SELECT to specify column names.

©:Michael Kohlhase 223

8.8 Querying via Python

Now it is time to turn to understanding querying programmatically in python. The main concept

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

150 CHAPTER 8. DATABASES

to grasp is that of a cursor.

Working with Cursors

� Definition 8.8.1 A cursor is a named object that encapsulates a set of
query results in a (virtual) database table.

� To work with a cursor in sqlite3,

� create a cursor object via the cursor method of your database object.

� Open the cursor to establish the result set via its execute method

� Fetch the data into local variables as needed from the cursor.

� The cursor class in sqlite3 provides additional methods:

� fetchone(): return one row as an array/list

� fetchall(): return all rows a list of lists.

� fetchsome(〈〈n〉〉): return 〈〈n〉〉 rows a list of lists.

� rowcount(): the number of rows in the cursor

Intuition: Cursors allow programmers to repeatedly use a database query.

©:Michael Kohlhase 224

Again, we fortify our intuitions by making a little example: we pretty-print the some of the
information by looping over result of fetching all the records from a given cursor.6EdN:6

� Extended Example: Listing Authors from the Books Table

� Example 8.8.2

sql = ’SELECT First, Last, YOB FROM Books WHERE YOD < 1950;’
cursor.execute(sql)
print (’There are ’,cursor.rowcount,’ books, whose authors died before 1950:\n’)
for row in cursor.fetchall() :

print (row[0],’ ’,row[1], ’; born ’,row[3],’\n’)
print(’That is all; if you want more, add more to the database!’)

©:Michael Kohlhase 225

Finally we come back to the topic of preventing SQL injection attacks. We had seen that these
occur when we build the argument string for a cursor.execute call. While the single-instruction-
restriction of is some help, it is not enough. We essentially have to remove all the SQL instructions
from any input string we substitute with. Fortunately, SQL is standardized, so we can implement
that once and for all.

SQLite3 Parameter Substitution

� Observation 8.8.3 We often need variables as parameters in cursor.execute.

� Example 8.8.4 In Example 8.8.2 we can ask the user for a year.

6EdNote: MK: show the results

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

8.9. PROJECT: A WEB GUI FOR A BOOKS DATABASE 151

� The python way would be to use f-strings

year = input(’Books, whose author died before what year?’)
sql = f’SELECT First, Last, YOB FROM Books WHERE YOD < {year}’
cursor.execute(sql) # never use f−strings here −−> insecure

But this leads to vulnerability by SQL injection attacks. (; Bobby Tables)

� Definition 8.8.5 sqlite3 supplies a parameter substitution that SQL-sanitizes
parameters (removes problematic SQL instructions).

� The sqlite3 way uses parameter substitution (multiple ? possible ; tuple)

year = input(’Books, whose author died before’)
select = ’SELECT Title FROM Books WHERE YOD < ?’
cursor.execute(select,(year,))

or in the “named style” ; order-independent (argument is a dictionary)

century = input{’Century of the books?’}
select = ’SELECT Title, YOP FROM Books WHERE YOP <= :start AND YOP > :end’
datadict = {’start’: (century − 1) ∗ 100, ’end’: century ∗ 100}
cursor.execute(select,datadict)

©:Michael Kohlhase 226

If we have a large number of uniform SQL instructions, then we can bundle them, by iterating over
a list of parameters. In the example below, we explicitly write down the list, but in applications,
the list would be e.g. read from a metadata file.

Inserting Multiple Records (Example)

� The cursor.executemany method takes an SQL instruction with parameters and a
list of suitable tuples and executes them.

� Example 8.8.6 So the final form of insertion in Example 8.5.1 would be:

booklist = [
(’Twain’, ’Mark’, 1835, 1910, ’Huckleberry Finn’, 1986, ’Penguin USA’, ’NY’),
(’Twain’, ’Mark’, 1835, 1910, ’Tom Sawyer’, 1987, ’Viking’, ’NY’),
(’Cather’, ’Willa’, 1873, 1947, ’My Antonia’, 1995, ’Library of America’, ’NY’),
(’Hemingway’, ’Ernest’, 1899, 1961, ’The Sun Also Rises’, 1995, ’Scribner’, ’NY’),
(’Wolfe’, ’Thomas’, 1900, 1938, ’Look Homeward, Angel’, 1995, ’Scribner’, ’NY’),
(’Faulkner’, ’William’, 1897, 1962, ’The Sound and the Furry’, 1990, ’Random House ’, ’NY’),
(’Tolkien’, ’John Ronald Reuel’, 1892, 1973, ’The Hobbit’, 1937,’George Allen & Unwin’, ’UK’)

]
cursor.executemany(’INSERT INTO Books VALUES (?,?,?,?,?,?,?,?)’,booklist)
cursor.execute(insert2)
db.close() # clean up by closing

©:Michael Kohlhase 227

8.9 Project: A Web GUI for a Books Database

We now bring together all we have learned into a basic web application that allows to list all the
books ina database, as well as add, edit, and delete book records.

We use our running example of the books table as a basis, and add a web application layer via
the Bottle WSGI server-side scripting framework in python.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

152 CHAPTER 8. DATABASES

We have intentionally kept the application very simple, so that it can serve as the basis of other
projects. The full source is available at https://gl.mathhub.info/MiKoMH/IWGS/blob/master/
source/databases/ex/books-app.py. The respective template files are siblings.

The Books Application: Setup

� We have already seen how to set up the database in slide 227.

� But we want to receive result rows as dictionaries, not as tuples, so we add

db.row_factory = sqlite3.Row

� And of course, start the server, and closed the database in the end
run(host=’localhost’, port=8080, debug=True)
db.close()

� We only need to add the Bottle routes for the various sub-pages.

©:Michael Kohlhase 228

The Books Application Routes: The Application Root

� We only need to add the Bottle routes for the various sub-pages.

� The main page: listing the book records in the database
@route(’/’)
def books():

s = ’SELECT rowid,Last,First,YOB,YOD,Title,YOP,Publisher,City FROM Books’
cursor.execute(s)
booklist = cursor.fetchall()

� This uses the following templates: the first generates a table of books from the
template file books.tpl

<p>There are {{num}} books in the Database</p>
<table>

% include(’th.tpl’)
% for book in books : include(’book.tpl’,∗∗book) end
<tr><th>add a book</th></tr>

</table>

It inserts the table header from the template file th.tpl:
<tr>
<td>Last</td><td>First</td><td>YOB</td><td>YOD</td>
<td>Title</td><td>YOP</td><td>Publisher</td><td>City</td>
<td/><td/>

</tr>

and iterates over the list of books, using the template file book.tpl:
<tr>
<td>{{Last}}</td><td>{{First}}</td>
<td>{{YOB}}</td><td>{{YOD}}</td>
<td>{{Title}}</td><td>{{YOP}}</td>
<td>{{Publisher}}</td><td>{{City}}</td>
<td>edit</td>
<td>delete</td>

</tr>

https://gl.mathhub.info/MiKoMH/IWGS/blob/master/source/databases/ex/books-app.py
https://gl.mathhub.info/MiKoMH/IWGS/blob/master/source/databases/ex/books-app.py
http://creativecommons.org/licenses/by-sa/2.5/

8.9. PROJECT: A WEB GUI FOR A BOOKS DATABASE 153

©:Michael Kohlhase 229

The Books Application Routes: Adding Book Records

� We add a route for adding books record (for the add button)

@get(’/add’)
def add():

return template(’add’)

Note that this is the route for the GET method on the path /add.

� This uses the template file add.tpl:
<form action="/add" method="post">
<table>
% include(’th.tpl’)
<tr>
<td><input type="text" name="Last"/></td>
<td><input type="text" name="First"/></td>
<td><input type="text" name="YOB"/></td>
<td><input type="text" name="YOB"/></td>
<td><input type="text" name="Title"/></td>
<td><input type="text" name="YOP"/></td>
<td><input type="text" name="Publisher"/></td>
<td><input type="text" name="City"/></td>

</tr>
</table>
<input type="submit" value="Submit"/>

</form>

� The result is

� Here the action is to POST to the path /add. Thus we need POST route for
/add as well:
@post(’/add’)
def addResponse():

data = parseResponse()
ins = ’INSERT INTO Books VALUES (:Last,:First,:YOB,:YOD,:Title,:YOP,:Publisher,:City)’
cursor.execute(ins,data)
return template(’response’, data = data,

rowid = cursor.lastrowid,
text = ’New book record received’)

� this uses the function parseResponse, which we will reuse later.
def parseResponse ():

data = {’Last’: request.forms.get(’Last’),
’First’: request.forms.get(’First’),
’YOB’: request.forms.get(’YOB’),
’YOD’: request.forms.get(’YOD’),
’Title’: request.forms.get(’Title’),
’YOP’: request.forms.get(’YOP’),

http://creativecommons.org/licenses/by-sa/2.5/

154 CHAPTER 8. DATABASES

’Publisher’: request.forms.get(’Publisher’),
’City’: request.forms.get(’City’)}

return data

� and the template repsonse.tpl:
<form action=’/’>
<p>{{text}}; Thank you!</p>
<table>
% include(’th.tpl’)
% include(’book.tpl’,∗∗data)

</table>
<input type="submit" value="Continue"/>

</form>

� Here is the result after filling in Tolkien’s “Lord of the Rings”:

©:Michael Kohlhase 230

The Books Application Routes: Deleting Book Records

� We add a route for deleting book records (for the add button)

@get(’/delete/<id>’)
def delete(id):

cursor.execute(’DELETE FROM Books WHERE rowid = ?’,(id,))
return template(’delete’)

Note that we have a dynamic route here: We use the named wildcard <id:int>
to obtain the rowid of the record to be deleted.

� The template file delete.tpl does the obvious:
<form action=’/’>
<p>Book record deleted ; Thank you!</p>
<input type="submit" value="Continue"/>

</form>

©:Michael Kohlhase 231

The Books Application Routes: Editing Book Records

� The routes for editing book records combine techniques from the ones for adding
and deleting. From the former we use the layout into a GET and POST route,

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

8.9. PROJECT: A WEB GUI FOR A BOOKS DATABASE 155

from the latter, we use the dynamic route:
@get(’/edit/<id:int>’)
def edit(id):

cursor.execute(’SELECT ∗ FROM Books WHERE rowid = ?’,(id,))
return template(’edit’,cursor.fetchone(), id = id)

@post(’/edit/<id:int>’)
def editResponse(id):

data = parseResponse()
up = """UPDATE Books

SET Last = :Last, First = :First, YOB = :YOB, YOD = :YOD,
Title = :Title, YOP = :YOP,
Publisher = :Publisher, City = :City

WHERE rowid = :rowid"""
dr = data # so we can extend it by rowid.
dr.update({’rowid’: id})
cursor.execute(up,dr)
return template(’response’, data = data,

rowid = id,
text = ’Updated book record’)

In this case we have a small subtlety: the update instruction needs a rowid
key/value pair, whereas the template response.tpl does not. We solve this by
making a copy dr of the data dictionary and updating this suitably.

� The template file edit.tpl is similar to add.tpl above, but pre-fills the input fields
with the database record values.
<form action="/edit/{{id}}" method="post">
<table>
% include(’th.tpl’)
<tr>
<td><input type="text" name="Last" value="{{Last}}"/></td>
<td><input type="text" name="First" value="{{First}}"/></td>
<td><input type="text" name="YOB" value="{{YOB}}"/></td>
<td><input type="text" name="YOB" value="{{YOB}}"/></td>
<td><input type="text" name="Title" value="{{Title}}"/></td>
<td><input type="text" name="YOP" value="{{YOP}}"/></td>
<td><input type="text" name="Publisher" value="{{Publisher}}"/></td>
<td><input type="text" name="City" value="{{City}}"/></td>

</tr>
</table>
<input type="submit" value="Submit"/>

</form>

� The result is

� Again, we use the template response.tpl, which we fill with a different message.

©:Michael Kohlhase 232

http://creativecommons.org/licenses/by-sa/2.5/

156 CHAPTER 8. DATABASES

Chapter 9

Image Processing

We will now begin a new topic on our way to a useful image database. In particular we will see
how computer scientists think about images, how images are represented in computer memory
and what we can do with them.

Images

Slide 233

We see here an image taken by a standard DSLR camera. Let’s zoom in on it.

157

158 CHAPTER 9. IMAGE PROCESSING

Images

Slide 234

And a bit more...

Images

Slide 235

When zooming in on an image, we start to see blocks of colors, which are organized in a regular
grid.

159

Raster (Pixel) Graphics

Colors are arranged in a two-
dimensional grid (raster).

A single entry in this grid is
called pixel.

x

y

Slide 236

We call the grid raster and each entry in it pixel.

Colors

Colors are usually stored in (R,G,B) format.
(3 channels)

R,G,B ∈ [0, 255] -> One Byte per channel per
pixel.

Images in this format can store
256 x 256 x 256 = 256³ ≈ 16 million colors.

Slide 237

Each pixel stores color information. We can obtain the values stored in images using a color

160 CHAPTER 9. IMAGE PROCESSING

picker. Image processing programs like Microsoft Paint or Adobe Photoshop provide color pickers
(pipettes), but there also exist standalone applications. In this example we are using Color Cop 1.

According to the color picker, our pixel stores the value (151, 103, 87). Colors are organized
in the so-called RGB format, meaning a color is composed from a mixture of red (R), green (G)
and blue (B). We call these components channels or bands.

The value in each of these channels typically ranges from 0 to 255. This is because a single
Byte can store exactly this value range and a Byte was deemed enough for most applications. We
can deduce that a pixel has 256 × 256 × 256 distinct value combinations, which is just over 16
million colors an image in this format can display. You might have seen this number on product
descriptions of computer monitors or cameras.

Color Examples

(255, 0, 0)
Red

(0, 255, 0)
Green

(0, 0, 255)
Blue

(255, 255, 255)
White

(255, 0, 255)
Magenta

(0, 255, 255)
Cyan

(255, 255, 0)
Yellow

(128, 128, 128)
Gray

R = G = B
Grayscale colors

Slide 238

A channel value of 0 means no intensity in this channel, a value of 255 corresponds to full intensity.
Thus, in order to create a pure red we set the R channel to 255 and the other two to 0 (no green
or blue). Other colors are achieved in a similar fashion.

Secondary colors (magenta, cyan, yellow) are created by mixtures of red, green, and blue. For
example, we create magenta by mixing red and blue.

Different shades of gray are obtained, when R=G=B. White is the brightest gray we can
achieve, by setting all values to 255. Black on the other hand has all channels set to 0 (meaning
no light/intensity).

1http://colorcop.net/

http://colorcop.net/

161

Normalized Color Values

(1, 0, 0)
Red

(0, 1, 0)
Green

(0, 0, 1)
Blue

(1, 1, 1)
White

(1, 0, 1)
Magenta

(0, 1, 1)
Cyan

(1, 1, 0)
Yellow

(0.5, 0.5, 0.5)
Gray

Rather than thinking of a pixel value of being between 0 and 255, it
is beneficial to think in terms of normalized color values, between
0 and 1.
Values are still stored as Bytes, but normalized before use:
v' = v / 255

Slide 239

When processing colors it is often beneficial to think about normalized colors. We normalize
colors by dividing by 255 (the highest value). Resulting color values are now between 0 and 1.

HTML Color Codes

Shorthand notation for colors.
Encode (R,G,B) as hexadecimal numbers.

#FF0000
Red

#00FF00
Green

#0000FF
Blue

#FFFFFF
White

#FF00FF
Magenta

#00FFFF
Cyan

#FFFF00
Yellow

#808080
Gray

Slide 240

162 CHAPTER 9. IMAGE PROCESSING

Recall from last semester: In HTML and CSS we often express colors in HTML color codes. This
is the same principle as before, however the values are not expressed in decimal numbers but
instead in hexadecimal.

The Human Eye

The human eye has cones and rods, which are responsible
for color and brightness vision, respectively.

M. D. Fairchild, Color appearance models, 2nd ed. Chichester, West Sussex, England ; Hoboken, NJ: J. Wiley, 2005.

Slide 241

Quick detour into the real world: Let’s explore where the RGB format comes from.

Light from our surroundings enters our eye through the lens and then hits the retina on the
back of our eye. On the retina sit rods and cones, which are responsible for brightness and color
vision, respectively. Since we are interested in colors here, we will ignore the rods for the purpose
of this lecture.

163

The Human Eye – Three Types of Cones

C. Abraham, “A Beginner’s Guide to (CIE) Colorimetry,” Hipster Color
Science, 10-Sep-2016. Available: https://medium.com/hipster-color-
science/a-beginners-guide-to-colorimetry-401f1830b65a.
[Accessed: 13-May-2019].

Slide 242

Light is an electromagnetic radiation. Only a small part of this radiation is visible to the human
visual system (wavelengths around 380 to 740 nanometers).

There are three types of cones, which react to different areas in this spectrum. They roughly
correspond to the wavelengths, which we perceive as red, green, and blue (or rather long, middle,
and short wavelengths).

164 CHAPTER 9. IMAGE PROCESSING

The Human Eye – Three Types of Cones

Example: Yellow
Both “red” and “green” cone are stimulated.

Eye cannot distinguish between yellow light and mixture
of red and green! (both look yellow)

C. Abraham, “A Beginner’s Guide to (CIE) Colorimetry,” Hipster Color
Science, 10-Sep-2016. Available: https://medium.com/hipster-color-
science/a-beginners-guide-to-colorimetry-401f1830b65a.
[Accessed: 13-May-2019].

Slide 243

When we now see yellow light for example, the two cones responsible for long and medium length
wavelengths are stimulated. Our brain converts this stimulus to yellow.

However, let’s imagine we perceive a mixture from red and green light. In this case these two
cones will be stimulated, too! Our brain is incapable of distinguishing between these two scenarios,
since the physical stimulus on our eye is the exact same!

It turns out that we can create all colors as a mixture of red, green, and blue light.

165

Monitors

Monitors have pixels, too!

One pixel = red, green, blue subpixel!
If the subpixels are small enough, it
looks like a single color!

Devcore, TFT Bildschirm RGB Pixel. 2012. Available:
https://commons.wikimedia.org/wiki/File:TFT_Bildschirm_RGB_Pixel.JPG. [Accessed: 06-June-2019].

SharkD, “Additive color mixing,” 2006. Available:
https://commons.wikimedia.org/wiki/File:AdditiveColor.
svg. [Accessed: 06-June-2019].

Slide 244

Monitors take advantage of this, since they usually also have pixels. These pixels typically consist
not of a single light source, but three distinct subpixels. If these subpixels are small enough and
close together, our eye cannot see that the light actually comes from different points and thus
perceives the mixture color.

End of detour!

Image Size

Image: 1440 x 746 pixels

Image File Size Expectation:
Width x Height x Channels: 1440 x 746 x 3 = 3,222,720 Bytes ≈ 3 MB

However:

On disk images are usually compressed (jpeg, png, gif, etc).
Jpeg file size is smaller than png, but image quality is lost.

166 CHAPTER 9. IMAGE PROCESSING

Slide 245

Take our Augustus image again. It is 1440 pixels wide and 746 pixels high. Since each pixel stores
three channels, which each measure one Byte, we can calculate the image size: 1440× 746× 3 =
3222720 Bytes. On disk however images are usually smaller.

This is because images on disc are usually compressed and stored in a format like .jpg or .png.
Be careful with JPEG compression! JPEG sacrifices image quality in order to achieve smaller file
sizes!

Jpeg Compression Artifacts

Here, the Augustus image is saved with a very high jpeg compression.
The file size is tiny (27 KB, compare to 440 KB on previous slide).
However, the image quality suffers.

Jpeg creates blocks of pixels, and approximates the colors in this block
with as few bits as possible (according to compression ratio).

Slide 246

In this example we turned the JPEG compression very high, which leads to a tiny file size but
strong artifacts in the image quality.

167

Pillow
https://pillow.readthedocs.io/en/stable/
Install: pip install Pillow

We will use Pillow in IWGS.
Pillow is a fork (a version) of the old Python module PIL (Python Image Library).

from PIL import Image

load image
im = Image.open('image.jpg')
im.show()

access color at pixel (x, y)
x = 15
y = 300
r, g, b = im.getpixel((x, y))

Slide 247

When processing images in code, we have to load them from disc and then perform operations on
them. In IWGS we will use Pillow for this task. The example shows how images are loaded from
disc.

Loading here means that the file is read, and that the compression is reversed, i.e. the image
is decompressed. This means that the image which was before stored in JPEG compression is now
present in main memory (RAM). You can think about the loaded image as a long Python list of
pixel values, i.e. one pixel after the other.

168 CHAPTER 9. IMAGE PROCESSING

Grayscale Images

(1, 1, 1)
White

(0.5, 0.5, 0.5)
Gray

(0, 0, 0)
Black

R = G = B

If all channels have the same value, why store all three?
Grayscale images usually have only one channel.

Slide 248

We said before that in colors, which represent shades of gray, all channels have the same value. If
this is true for all colors in an image, we call them grayscale images.

Since it is pointless to store each value three times, grayscale images usually only store one
value per pixel, which is then tripled before display.

Color to Grayscale Conversion

Gray = 0.21 x R + 0.71 x G + 0.08 x B

Humans are very sensitive to green.
Green is therefore weighted higher than red and blue.

169

Slide 249

Conversion from color to grayscale images is a common operation, which most image processing
tools (Photoshop etc.) support. It serves as a first example of what we can do with images.

Grayscale conversion is a weighted sum of the three channel values. This means, each channel
value is multiplied with a factor and then the values are added to form a single value. Since
humans are very sensitive to green, the G channel has the highest weight.

Some more Image Operations

Original SepiaGrayscale Inverse

Threshold Red Channel
Extraction

Each pixel is
processed separately!

Slide 250

Displayed here are some more image operations. All of these process each pixel separately. Im-
plementation of these operations is very simple in Python. Since we store all our pixels in a large
list, we can simply create a for-loop over this list, do our calculation and store the result in a new
image at the same pixel coordinate.

170 CHAPTER 9. IMAGE PROCESSING

Image Operations in Pillow

from PIL import Image, ImageOps

im = Image.open ('image.jpg')

convert to grayscale
gray = ImageOps.grayscale(im)

invert image
inverse = ImageOps.invert(im)

Complete List:
https://pillow.readthedocs.io/en/stable/reference/ImageOps.html

Slide 251

Pillow supports many image operations. This slide displays two examples. Refer to the docu-
mentation for a complete list.

Transparency

Sometimes we want to overlay images -> Layers
We need a notion of how transparent a pixel is.

We introduce a fourth channel: A (for alpha).
Alpha is the Opacity (inverse of transparency).
A pixel is now (R,G,B,A).

Order of layers is important here! The Augustus image is below the other image!
The Augustus image has NO transparency, the second image does!

+ =

Slide 252

171

Transparency is an important operation. In this example we want to layer two images on top of
each other. We thus need to store for each pixel a measure of how transparent it is.

We expand our RGB notion to RGBA, by introducing a fourth channel A. A stands for alpha
and corresponds to the opacity of a pixel, i.e. a value of 0 means zero opacity (fully transparent),
a value of 1 (normalized) means fully opaque (no transparency).

Transparency

(R,G,B,A) = (1, 1, 0, 1)
Full yellow

(R,G,B,A) = (0, 0, 0, 0)
Full transparent

+ =

(R,G,B,A) = (0.6, 0.0, 1.0, 0.5)
Half transparent purple

Rtarget = (1-A) x Raugustus + A x Rpurple,yellow

Gtarget = (1-A) x Gaugustus + A x Gpurple,yellow

Btarget = (1-A) x Baugustus + A x Bpurple,yellow

Slide 253

See examples for the opacity here. Fully transparent regions (visualized by the checkerboard),
have an alpha value of 0. Fully opaque regions have a value of 1. Intermediate values are possible
which correspond to partial transparency.

The final image is then composed by deciding for each pixel how much color from each source
image should contribute.

Note that this is again a per-pixel operation, which can easily be implemented with a simple
for-loop.

172 CHAPTER 9. IMAGE PROCESSING

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Slide 254

We will now look at more interesting image operations. A typical example especially important
for object recognition in images is to find features. Features are areas in the image, which are
recognizable.

For example, let’s say we want to find so-called edges in our image, i.e. areas where the color
changes rapidly. Edges often correspond to object outlines. We will see an example later.

173

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Clearly there is an edge in this image.
How do we detect it automatically?

Slide 255

In this (admittedly simple) example image, we can clearly see, that there is an edge present,
where the color shifts fast from dark to light. We will now explore, how we can detect such an
edge automatically.

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Decide for each pixel, if it is an edge.
Here: Is marked pixel an edge pixel?

Slide 256

174 CHAPTER 9. IMAGE PROCESSING

The idea is to decide for each pixel if it is part of an edge or not (binary decision, yes or no). Let’s
take the marked pixel as example, but remember that the following operations are performed on
each pixel in the image.

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Inspect neighbor pixels.

TL T TR

L R

BL B BR

T = Top
B = Bottom
L = Left
R = Right

Slide 257

Let’s consider the neighbors of our marked pixel.

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Horizontal edge, if:
[IB – IT] + [IBL – ITL] + [IBR – ITR] > Threshold

Vertical edge, if:
[IR – IL] + [ITR – ITL] + [IBR – IBL] > Threshold

TL T TR

L R

BL B BR

T = Top
B = Bottom
L = Left
R = Right

175

Slide 258

The idea for this edge detection algorithm is to compare the pixel column left to our marked pixel
to the column to the right. If the difference between the two columns is large, we know that we
are observing a vertical edge.

Analogous we can do the same for horizontal edges, by comparing the row above to the row
below our marked pixel.

We could perform this operation using only the pixels marked by L, R, B, and T, so only the
direct neighbors. By taking the diagonal pixels into consideration, too, we make sure we only
detect larger features.

Edge Detection

Usually the center row or column is more important and is thus
higher weighted.

Algorithm: Get pixel value of each neighbor in 3x3 window,
multiply with following weights and add everything up.

-1 -2 -1

0 0

1 2 1

0

Horizontal edge test:

-1 0 1

-2 2

-1 0 1

0

Vertical edge test:

Slide 259

The operation we described here is called Sobel filter 2, named after Irwin Sobel.

Usually the direct neighbors are deemed more important than the diagonal neighbors. The
pixel values of the neighbor pixels are thus weighted, such that the direct neighbors contribute
more.

2https://en.wikipedia.org/wiki/Sobel_operator

https://en.wikipedia.org/wiki/Sobel_operator

176 CHAPTER 9. IMAGE PROCESSING

Edge Detection

from PIL import Image, ImageFilter

im = Image.open('augustus.jpg')
edges = im.filter(ImageFilter.FIND_EDGES)

edges.show()

Slide 260

Here we see an example of edge detection. White pixels in the right image are pixels, which were
classified as edge pixels, i.e. pixels where large changes in color are present. Black pixels are no
edges.

Pillow provides this operation as showcased in the code example.

Vector Graphics

Raster Graphics store colors in pixel grid.
Quality deteriorates when image is zoomed into.

Vector Graphics solve this problem!

Original Zoomed in

Raster Graphic

Vector Graphic

177

Slide 261

The images we talked about so far store colors in a large grid of pixels (a raster). A common
problem with these types of images is that we cannot zoom in on them as far as we want, without
loosing quality. At a certain point we start to see the individual pixels.

Vector graphics are an alternative way of storing image data, which solve this problem.

Vector Graphics

Instead of individual pixels, vector graphics store shape information.

Example: For circle, just store
• center
• radius
• line width
• line color
• fill color

For line, store
• start and end point
• line width
• line color

For display, vector graphics usually have to be rasterized
(monitors only support raster graphics)!

Slide 262

The idea of vector graphics is fundamentally different than the idea of raster graphics. Instead of
storing pixels, we now store shape information!

For example, for a circle we don’t store a color for each pixel, but we rather just store where
the circle is, along with its radius, color, etc.

178 CHAPTER 9. IMAGE PROCESSING

Vector Graphics Display

There exist monitors to directly
display vector graphics.

However, with common displays,
vector graphics are rasterized before
display.

Autopilot, A free software Asteroids-like video game played on an oscillograph
configured in X-Y mode. 2013.
Available: https://commons.wikimedia.org/wiki/File:Space_Rocks_(game).jpg.
[Accessed: 06-June-2019].

John. P. Hess, “Rasterization - The Most Basic Rendering Technique,”
FilmmakerIQ.com, 07-Apr-2017. Available:
https://filmmakeriq.com/lessons/rasterization/.
[Accessed: 06-June-2019].

Slide 263

Note that most monitors cannot display vector graphics. There are vector monitors, but they are
not common.

The monitor displayed here does not have pixels. It instead moves a laser and traces a polygon
(the asteroids and spaceship). The laser stimulates a phosphor layer, which then glows.

Common monitors work with pixels. Vector graphics are thus rasterized (i.e. turned into
raster graphics) just before being displayed. The rasterizer decides for each pixel, whether it is
inside or outside the shape.

179

SVG

Scalable Vector Graphics.
SVG is one type of vector graphics.
XML-based!

Example for circle:

<svg width="100" height="100" xmlns="http://www.w3.org/2000/svg">
<circle cx="50" cy="50" r="50" style="fill:#1cffff; stroke:#000000; stroke-width:0.1" />

</svg>

<svg> tag starts document.
width, height declares size.

<circle> starts circle.
cx, cy is the center point.
r is the radius.
style describes how the circle looks.

Since the SVG size is 100x100 and the circle is at (50,50) with radius 50,
it is centered and fills the whole region.

Slide 264

SVG is one image format for vector graphics. Since it is XML-based we are able to read it. As
described above, we can create circles by specifying a position, radius, and style (color etc).

More SVG Primitives

Rectangle:
<rect x="..." y="..." width="..." height="..." style="..." />

Ellipse:
<ellipse cx="..." cy="..." rx="..." ry="..." style="..." />

Line:
<line x1="..." y1="..." x2="..." y2="..." style="..." />

Text:
<text x="..." y="..." style="...">This is my text!</text>

Images:
<image xlink:href="..." x="..." y="..." width="..." height="..." />

Slide 265

Here are some examples of SVG primitives.

180 CHAPTER 9. IMAGE PROCESSING

SVG Polygons

<svg height="210" width="500" xmlns="http://www.w3.org/2000/svg">
<polygon points="200,10 250,190 160,210" style="fill:lime;stroke:purple;stroke-width:1" />

</svg>

<svg height="210" width="210" xmlns="http://www.w3.org/2000/svg">
<polygon points="100,10 40,198 190,78 10,78 160,198"
style="fill:lime;stroke:purple;stroke-width:5;fill-rule:nonzero;" />

</svg>

Slide 266

We can draw arbitrary polygons by specifying a list of coordinates.

SVG in HTML

SVG can be used in dedicated files (.svg file ending).
It can however also be written directly in HTML files.

Triangle from last slide embedded in HTML file:

<html>
<body>

<svg height="210" width="500" xmlns="http://www.w3.org/2000/svg">
<polygon points="200,10 250,190 160,210" style="fill:lime;stroke:purple;stroke-width:1" />
</svg>

</body>
</html>

Slide 267

SVG can directly be embedded in HTML!

181

The SVG viewBox Attribute

<svg width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

In this example the width and height are scaled by a
factor of 2 to give us a little more room.
Sometimes we want to specify a larger image, but
only display a section of it.

Introducing viewBox:

viewBox specifies a region inside our canvas. Only
things inside this region are drawn. The resulting
image is then stretched to the canvas size (zoom
effect).
https://www.sarasoueidan.com/blog/svg-coordinate-systems/

<svg viewBox="0 0 100 100" width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

200

2
0

0

(50,50)

50

100

1
0

0 50

(50,50)

Slide 268

We now explore a useful attribute of SVG called viewBox. We said that we can zoom in onto
vector graphics as far as we want without loosing quality, so let’s give ourselves the possibility to
do so.

The top example shows a 200 by 200 units large SVG canvas. In the top left quadrant we draw
a circle.

The second code snippet employs the viewBox attribute, which specifies an area of the image
we want to display. In this example we give it a region from (0,0) to (100,100), meaning we specify
exactly this upper left quadrant.

viewBox now does two things: First, it only draws objects inside this region, i.e. it discards
everything outside. Second, it stretches this region to the whole SVG canvas. This means, that
our final image is still 200 by 200 units (pixels) in size, but we only see a region of our original
image. This gives a zoom effect.

182 CHAPTER 9. IMAGE PROCESSING

Annotations in HTML

In the exercise, we will augment our web server by an annotation tool.

Goal:
• Mark interesting areas and provide meta data.
• Display annotated information.

Slide 269

Our goal for the image database is to be able to highlight interesting areas in the image and display
this information to the user.

Image Maps

Image maps allow you to mark regions in an image and assign links to them.
Example:

Clicking on the pupil leads to:
https://en.wikipedia.org/wiki/Pupil

Clicking on the vitreous body leads to:
https://en.wikipedia.org/wiki/Vitreous_body

Tobii AB, “The human eye,” https://www.tobiipro.com, 2019.
Available: https://www.tobiipro.com/imagevault/publishedmedia/4a2hi9g5oq7422kkcdn8/Structures_Of_The_Human_Eye.png.
[Accessed: 06-June-2019].

Slide 270

183

To this end we will first explore HTML image maps. Image maps provide a way to mark areas in
an image. These areas act as links, i.e. clicking on them leads to different URLs. For example in
this case there are two regions in the image (pupil and vitreous body), which - when clicked on -
direct your browser to the respective Wikipedia articles.

Image Maps in HTML

Easy creation of image maps: https://www.image-map.net/

<html>
<body>

<img src="https://www.tobiipro.com/imagevault/publishedmedia/4a2hi9g5oq7422kkcdn8/Structures_Of_The_Human_Eye.png"
usemap="#image-map">

<map name="image-map">
<area title="Pupil"

href="https://en.wikipedia.org/wiki/Pupil" coords="102,117,143,219" shape="rect" >
<area title="Vitreous Body"

href="https://en.wikipedia.org/wiki/Vitreous_body" coords="242,166,107" shape="circle" >
</map>

</body>
</html>

 tag specifies image, usemap attribute specifies an image map with a
name (here image-map).

<map> (with the same name!) then includes <area>s, which have a title
(shown on hover) and a link (<href>).
Areas are defined by a shape (rect, circle, poly) and some coords.

Slide 271

We add a new attribute to our tag, called usemap. This specifies an image map to use. It
does so by giving the name of the map.

The map itself is defined just under the image. Note that its name is the same we provided in
the usemap attribute. Inside the map we define our areas for the two parts of the eye we want to
annotate. In this example we use a rectangle for the pupil and a circle for the vitreous body. The
coords attribute gives information about the shape, i.e. for the rect the upper left and bottom
right corner and for the circle the position and radius.

184 CHAPTER 9. IMAGE PROCESSING

Problems with HTML Image Maps

HTML image maps suffer from one big problem:

<area> does not allow CSS hover attribute. This makes it hard to highlight
regions on mouse-over (only with JavaScript).

Slide 272

Image maps are useful for certain tasks, but aren’t quite what we want here. They are somewhat
difficult to work with, especially if you want the areas to react to your mouse.

SVG Image Maps

Goal: Build an annotation system, which displays information on hover.

Michael Moll, “Die Präsidenten am Mount Rushmore,” https://www.dieweltenbummler.de/, 2017.
Available: https://www.dieweltenbummler.de/wp-content/uploads/2017/05/Mount-Rushmore-von-unten-1536x1024.jpg.
[Accessed: 11-June-2019].

Slide 273

185

We therefore go a different route, by using SVG. Displayed here is our goal, which we will pursue on
the following slides. The rectangles mark certain parts of our image and react to the mouse being
moved over them. On the one hand the area is highlighted by the white rectangles. Additionally
descriptive text is displayed below the image (in this case the name of the respective president).

SVG Annotation Implementation – First Steps

<html>
<body>

<svg xmlns="http://www.w3.org/2000/svg" width="1536" height="1024" >

<!-- Image -->
<image width="1536" height="1024" xlink:href="mount_rushmore.jpg" />

</svg>

</body>
</html>

SVG, which includes a raster <image>.

Slide 274

Let’s start simple by creating the standard HTML code skeleton. We also include a raster graphic
(our image). Note again, that the image is not a vector image. Even though it is embedded in
a SVG environment, it will not have the benefits of vector graphics, i.e. it will lose quality when
zoomed in on.

186 CHAPTER 9. IMAGE PROCESSING

SVG Annotation Implementation – First Steps

Michael Moll, “Die Präsidenten am Mount Rushmore,” https://www.dieweltenbummler.de/, 2017.
Available: https://www.dieweltenbummler.de/wp-content/uploads/2017/05/Mount-Rushmore-von-unten-1536x1024.jpg.
[Accessed: 11-June-2019].

Slide 275

This is the result of code so far. As expected we see our image, not more, not less.

SVG Annotation Implementation – Areas

<html>
<body>

<svg xmlns="http://www.w3.org/2000/svg" width="1536" height="1024" >

<!-- Image -->
<image width="1536" height="1024" xlink:href="mount_rushmore.jpg" />

<!-- Areas in image as rects. -->
<rect x="300" y="125" width="250" height="300" />
<rect x="550" y="225" width="200" height="300" />
<rect x="750" y="375" width="200" height="300" />
<rect x="999" y="375" width="200" height="300" />

</svg>

</body>
</html>

Add four <rect>s (one for each
president).

Slide 276

Let’s add the rectangles for the annotation. Coordinates of the rectangles can be read from any
image processing tool like Microsoft Paint or GIMP.

187

Note that the order of elements in our SVG matters! Here the <rect> tags are specified after
the image. SVG draws the elements from top to bottom. The rectangles are therefore drawn on
top of the image.

Swapping this order would lead to the image being drawn on top of the rectangles. This means,
that the rectangles would not be visible!

SVG Annotation Implementation – Areas

Michael Moll, “Die Präsidenten am Mount Rushmore,” https://www.dieweltenbummler.de/, 2017.
Available: https://www.dieweltenbummler.de/wp-content/uploads/2017/05/Mount-Rushmore-von-unten-1536x1024.jpg.
[Accessed: 11-June-2019].

Slide 277

The rectangles are now visible in our SVG. Their color defaults to black, so let’s fix this next, so
that we can actually see our image again.

188 CHAPTER 9. IMAGE PROCESSING

SVG Annotation Implementation – Adding CSS

<html>
<head>
<link rel="stylesheet" href="SVGImageMap.css">

</head>

<body>

<svg xmlns="http://www.w3.org/2000/svg" width="1536" height="1024" >

<!-- Image -->
<image width="1536" height="1024" xlink:href="mount_rushmore.jpg" />

<!-- Areas in image as rects. -->
<rect x="300" y="125" width="250" height="300" />
<rect x="550" y="225" width="200" height="300" />
<rect x="750" y="375" width="200" height="300" />
<rect x="999" y="375" width="200" height="300" />

</svg>

</body>
</html>

Add CSS stylesheet. In this case the
CSS in a separate file, but you can also
embed it directly in the HTML.

Slide 278

We add a CSS stylesheet to our site. This can either be defined in a separate file (like in this
example), or be specified directly in the HTML inside of <style> tags.

SVG Annotation Implementation – Adding CSS

rect {
fill-opacity: 0;
stroke: white;
stroke-opacity: 1;
stroke-width: 5px;

}

Simple CSS stylesheet. <rect>s are
given no fill, and a white stroke.

Slide 279

189

We define our CSS. Our goal is to give the rectangles a solid white border, but no inner color. We
thus change the stroke (border) parameters.

The fill opacity is set to zero, in order to make it completely transparent.

SVG Annotation Implementation – Adding CSS

Michael Moll, “Die Präsidenten am Mount Rushmore,” https://www.dieweltenbummler.de/, 2017.
Available: https://www.dieweltenbummler.de/wp-content/uploads/2017/05/Mount-Rushmore-von-unten-1536x1024.jpg.
[Accessed: 11-June-2019].

Slide 280

Our rectangles are now white and since we set the inner part to transparent, we see the presidents’
heads again. However, the rectangles are always visible and do not react to our mouse input. We
will fix this next.

190 CHAPTER 9. IMAGE PROCESSING

SVG Annotation Implementation – Hover Effect

rect {
fill-opacity: 0;
stroke: white;
stroke-opacity: 0;
stroke-width: 5px;

}

rect:hover {
stroke-opacity: 1;

}

Set <rect> stroke to zero opacity (fully
transparent). This makes it invisible.
Instead make it opaque on hover.

Slide 281

Since we want the rectangles to be invisible by default, let’s start by setting the stroke opacity to
zero. Now the areas are never visible.

Next, we give the rectangles a hover selector. This specifies the rectangles’ style, whenever the
mouse is over the element. This allows us to specialize the appearance for this case.

For the hover-case we set the opacity back to one, meaning full visibility.

191

SVG Annotation Implementation – Hover Effect

Michael Moll, “Die Präsidenten am Mount Rushmore,” https://www.dieweltenbummler.de/, 2017.
Available: https://www.dieweltenbummler.de/wp-content/uploads/2017/05/Mount-Rushmore-von-unten-1536x1024.jpg.
[Accessed: 11-June-2019].

Slide 282

The rectangles are now invisible, expect when hovered over by the mouse.

SVG Annotation Implementation – Annotation Text
<html>
<head>
<link rel="stylesheet" href="SVGImageMap.css">

</head>

<body>

<svg xmlns="http://www.w3.org/2000/svg" width="1536" height="1224" >

<!-- Image -->
<image width="1536" height="1024" xlink:href="mount_rushmore.jpg" />

<!-- Areas in image as rects. -->
<rect x="300" y="125" width="250" height="300" />
<text x="100" y="1200">George Washington</text>

<rect x="550" y="225" width="200" height="300" />
<text x="100" y="1200">Thomas Jefferson</text>

<rect x="750" y="375" width="200" height="300" />
<text x="100" y="1200">Theodore Roosevelt</text>

<rect x="999" y="375" width="200" height="300" />
<text x="100" y="1200">Abraham Lincoln</text>

</svg>

</body>
</html>

Add annotation text per element. Note
that all <text>s have the same position
at the bottom of our SVG.

Let’s give ourselves a bit more room at
the bottom.
Increase the height of the SVG.

Slide 283

We will now add the description text to each of our annotation areas. Since our text should
appear below the image, let’s start by giving ourselves a bit more room in the SVG canvas. We

192 CHAPTER 9. IMAGE PROCESSING

thus increase the SVG height by a bit. Note, that this does not impact the image (because it has
an own height).

We then add the text. Note, that all text elements have the exact same position below the
image. They only differ in the text they display (the name of the president).

We write each text element directly below the corresponding rectangle tag, for reasons we will
explain in a bit!

SVG Annotation Implementation – Annotation Text

rect {
fill-opacity: 0;
stroke: white;
stroke-opacity: 0;
stroke-width: 5px;

}

rect:hover {
stroke-opacity: 1;

}

text {
fill: black;
opacity: 1;
font-size: 100px;

}

CSS for text. Set color, opacity and size.

Slide 284

Let’s also give our text a style. The text color is specified by the fill attribute. This is the default,
so it’s not really necessary to specify this. However, oftentimes it is advisable to be as verbose as
possible with certain attributes, because this more clearly shows our intention.

193

SVG Annotation Implementation – Annotation Text

Michael Moll, “Die Präsidenten am Mount Rushmore,” https://www.dieweltenbummler.de/, 2017.
Available: https://www.dieweltenbummler.de/wp-content/uploads/2017/05/Mount-Rushmore-von-unten-1536x1024.jpg.
[Accessed: 11-June-2019].

Slide 285

We have text! It is not particularly pretty, mainly because all texts are right above each other,
but this is expected so far, since we specified all text tags to have the same position. Our main
problem is, that the text does not react to our mouse input yet. Remember: Our goal is that each
text element is only displayed, when the corresponding rectangle in the image is hovered by the
mouse.

SVG Annotation Implementation – Hover Annotation

rect {
fill-opacity: 0;
stroke: white;
stroke-opacity: 0;
stroke-width: 5px;

}

rect:hover {
stroke-opacity: 1;

}

text {
fill: black;
opacity: 0;
font-size: 100px;

}

rect:hover + text {
opacity: 1;

}

Add CSS hover effect for <rect>s,
which effects the <text>.

Syntax:
rect:hover + text {<rules>}

Sibling operatorSelector Target

Note, that the + operator only affects
siblings (same level), which are
directly after the selector element.
The order of elements in the HTML is
therefore important!

194 CHAPTER 9. IMAGE PROCESSING

Slide 286

Our approach is analogous to the hovering of the rectangles we did previously. Let’s give our text
a default opacity of zero, and a hover opacity of one.

Remember though, that the hover selector always influences the element it is specified on, i.e.
when writing text:hover, and then changing the opacity, this changes the opacity when we hover
over the text, not when we hover the rectangle. We thus introduce the CSS sibling operator, +.

Using the sibling operator, it is possible to change another element’s style when a certain
element is hovered (or interacted with in a different way). In this case, we give the rectangle a
hover selector, which then influences the text.

The sibling operator influences the next element of the specified type (in our case text) in the
HTML/SVG. This is why earlier we put the text elements always directly after the rectangle.

This way, when a rectangle is hovered over, the next text element is always the corresponding
description and will thus become visible.

SVG Annotation Implementation – Hover Annotation

Michael Moll, “Die Präsidenten am Mount Rushmore,” https://www.dieweltenbummler.de/, 2017.
Available: https://www.dieweltenbummler.de/wp-content/uploads/2017/05/Mount-Rushmore-von-unten-1536x1024.jpg.
[Accessed: 11-June-2019].

Slide 287

Now our annotation tool is working as expected!

195

CSS Image Filters

Demo: https://codepen.io/rss/pen/ftnDd

Goal: Apply image effects (grayscale etc.) directly in CSS.

<html>
<body>

<style>

img {
filter: grayscale(100%);

}

</style>

</body>
</html>

Slide 288

Let’s explore more capabilities of CSS. CSS is able to apply operations to images. In this example
we make an image gray, by specifying a grayscale filter attribute. The argument of the filter gives
us the possibility to make the image only a litte gray. Since it is set to 100% in this example, the
image is converted to perfect grayscale.

Some more CSS Filters

.blur { filter: blur(4px); }

.brightness { filter: brightness(0.30); }

.contrast { filter: contrast(180%); }

.grayscale { filter: grayscale(100%); }

.huerotate { filter: hue-rotate(180deg); }

.invert { filter: invert(100%); }

.opacity { filter: opacity(50%); }

.saturate { filter: saturate(7); }

.sepia { filter: sepia(100%); }

.shadow { filter: drop-shadow(8px 8px 10px green); }

The argument values are of course only examples.

196 CHAPTER 9. IMAGE PROCESSING

Slide 289

Here are more examples of image filters. The CSS selectors here start with dots. This makes them
influence HTML elements of the respective class name, i.e. the selector .shadow gives the HTML
element with class shadow a drop shadow.

CSS Blur

<html>
<body>

<style>
img { filter: blur(4px); }

</style>

</body>
</html>

Slide 290

Blur is an image operation, which mixes each pixel’s color with the colors of its neighbor. The
operation is thus similar to our edge detection example from earlier, but with different weights
per neighbor pixel.

Also, for blur it is possible to specify larger neighborhoods. In this case the radius of our
neighborhood is 4 pixels, meaning that we mix the colors of a region with radius 4.

197

CSS Contrast

<html>
<body>

<style>
img { filter: contrast(180%); }

</style>

</body>
</html>

Slide 291

Contrast makes dark colors darker and light colors lighter for arguments over 100%. This increases
the range between the darkest and lightest pixel.

For arguments under 100%, the contrast shrinks.

CSS Hue Rotate 90°

<html>
<body>

<style>
img { filter: hue-rotate(90deg); }

</style>

</body>
</html>

Slide 292

198 CHAPTER 9. IMAGE PROCESSING

The color wheel at the top might look familiar to you. It is a standard way of displaying colors.
The outer ring is roughly equivalent with the colors of the rainbow (with some exceptions; purple
for example is not a rainbow color).

The hue-rotate filter rotates this color wheel, such that each color lands in a different spot. In
our example (90deg), red becomes green. This effect can be observed on Augustus’ cloak.

CSS Filters

CSS filters do not just apply to images!
(Almost) everything can be filtered.

<p class="blur">Text</p>

Filters can be combined!

.combination {
filter: blur(4px) grayscale(100%);

}

Disadvantage for image: Original image is delivered to client. When
user saves the image, they get the original!

Slide 293

Images are not the only HTML element which can be filtered. It turns out that you can apply
filters to nearly everything in HTML, for example text. Note that here we are using the blur class
from earlier.

Another useful thing is the combination of CSS filters. For example you can blur an image
and then convert it to grayscale, as showcased in the example.

Note that the order is important. Changing the order of these filters yields different results.

One extremely important thing to keep in mind is that CSS is executed on the client (the user’s
browser). The original image or text is delivered to the client, where the filter is applied. You can
try this out by right-clicking a filtered image on a website and saving it to your hard drive. Note,
that the original image is saved!

The implication here is, that for certain content it is best to perform the filter on the server and
then deliver the filtered content to the user, so that he or she does not even have the possibility
to get the original. This however also means more computation on the server, which might be
expensive.

As a rule of thumb: perform as much as possible on the client side (CSS and JavaScript) and
as much as necessary on the server (for example Python in Bottle).

199

CSS Animations

img {
animation: invertAnimation 1s forwards;

}

@keyframes invertAnimation {
from {

filter: none;
}
to {

filter: invert(100%);
}

}

Slide 294

A fun thing to play around with are CSS animations. Animations allow you to change state of
an object over time. In this case we define an animation called invertAnimation which applies an
inversion-filter. The syntax specifies that at the beginning of the animation, no filter should be
applied and in the end we want the image to be completely inverted.

We then apply the animation to all elements of tag . We declare that the animation
should run one second (1s), so the image is inverted after one second.

The last attribute specifies what should happen after the animation is completed. forwards
means that the element should simply stay how it is, so it stays inverted after the one second.

200 CHAPTER 9. IMAGE PROCESSING

SVG Filters

<svg xmlns="http://www.w3.org/2000/svg" width="1536" height="1024">

<style>
image {

filter: url(#myCustomFilter);
}

</style>

<image width="1536" height="1024" xlink:href="mount_rushmore.jpg" />

<!-- Image filter -->
<filter id="myCustomFilter">

<feGaussianBlur stdDeviation="5" />
</filter>

</svg>

Slide 295

Unfortunately in SVG the filtering works differently. In this example we define a filter at the
bottom. We give it a name (myCustomFilter), which we can then reference in the CSS snippet
above. With the url function we can apply a filter with the given name to all images.

The Gaussian Blur filter here is similar to the blur filter in CSS.

SVG Filters

<svg xmlns="http://www.w3.org/2000/svg" width="1536" height="1024">

<style>
image {

filter: url(#myCustomFilter);
}

</style>

<image width="1536" height="1024" xlink:href="mount_rushmore.jpg" />

<!-- Image filter -->
<filter id="myCustomFilter">

<feGaussianBlur stdDeviation="5" />
<feColorMatrix type="saturate" values="0.1" />

</filter>

</svg>

201

Slide 296

Similarly to HTML, we can combine filters. In this case we apply a saturation filter after the blur.
This is similar to a grayscale filter.

202 CHAPTER 9. IMAGE PROCESSING

Chapter 10

Legal Foundations of Information
Technology

In this Chapter, we cover a topic that is a very important secondary aspect of our work as Computer
Scientists: the legal foundations that regulate how the fruits of our labor are appreciated (and
recompensated), and what we have to do to respect people’s personal data.

Caveat : The content of this Chapter are about legal matters, but are written by a computer
scientist, i.e. not a legal expert. They should considered as an introduction of the fundamental
concepts involved, and definitely not as legal advice. For that, contact an intellectual property
lawyer.

10.1 Intellectual Property

The first complex of questions centers around the assessment of the products of work of knowl-
edge/information workers, which are largely intangible, and about questions of recompensation
for such work.

Intellectual Property: Concept

� Question: Intellectual labour creates (intangible) objects, can they be owned?

� Answer: Yes: in certain circumstances they are property like tangible objects.

� Definition 10.1.1 The concept of intellectual property motivates a set of
laws that regulate property rights rights on intangible objects, in particular

� Patents grant exploitation rights on original ideas.

� Copyrights grant personal and exploitation rights on expressions of ideas.

� Industrial Design Rights protect the visual design of objects beyond their
function.

� Trademarks protect the signs that identify a legal entity or its products
to establish brand recognition.

� Intent: Property-like treatment of intangibles will foster innovation by giving
individuals and organizations material incentives.

203

204 CHAPTER 10. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY

©:Michael Kohlhase 297

To understand intellectual property better, let us recap the concepts of property and ownership
in general.

Background: Property and Ownership in General

� Definition 10.1.2 Ownership is the state or fact of exclusive rights and
control over property, which may be a physical object, land/real estate or
intangible object.

� Definition 10.1.3 Ownership involves multiple rights (the property rights),
which may be separated and held by different parties.

� Definition 10.1.4 There are various legal entities (e.g. persons, states,
companies, associations, . . .) that can have ownership over a property p.
We call them the owners of p.

� Remark 10.1.5 Depending on the nature of the property, an owner of prop-
erty has the right to consume, alter, share, redefine, rent, mortgage, pawn,
sell, exchange, transfer, give away or destroy it, or to exclude others from
doing these things, as well as to perhaps abandon it.

� Remark 10.1.6 The process and mechanics of ownership are fairly com-
plex: one can gain, transfer, and lose ownership of property in a number of
ways.

©:Michael Kohlhase 298

These concepts are the basis for many other concepts such as money, trade, debt, bankruptcy, and
the criminality of theft. Ownership is the key building block in the development of the capitalist
socio-economic system, must influentially developed in Adam Smith’s book An Inquiry into the
Nature and Causes of the Wealth of Nations [Smith:WoN1776] from 1776.
Naturally, many of the concepts are hotly debated. Especially due to the fact that intuitions
and legal systems about property have evolved around the more tangible forms of properties
that cannot be simply duplicated and indeed multiplied by copying them. In particular, other
intangibles like physical laws or mathematical theorems cannot be property.

Intellectual Property: Problems

� Delineation Problems: How can we distinguish the product of human work, from
“discoveries”, of e.g. algorithms, facts, genome, algorithms. (not property)

� Philosophical Problems: The implied analogy with physical property (like land
or an automobile) fails because physical property is generally rivalrous while
intellectual works are non-rivalrous (the enjoyment of the copy does not prevent
enjoyment of the original).

� Practical Problems: There is widespread criticism of the concept of intellectual
property in general and the respective laws in particular.

� (software) patents are often used to stifle innovation in practice. (patent
trolls)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

10.1. INTELLECTUAL PROPERTY 205

� copyright is seen to help big corporations and to hurt the innovating individ-
uals

©:Michael Kohlhase 299

We will not go into the philosophical debates around intellectual property here, but concentrate
on the legal foundations that are in force now and regulate IP issues. We will see that groups
holding alternative views of intellectual properties have learned to use current IP laws to their
advantage and have built systems and even whole sections of the software economy on this basis.
Many of the concepts we will discuss here are regulated by laws, which are (ultimately) subject
to national legislative and juridicative systems. Therefore, none of them can be discussed without
an understanding of the different jurisdictions. Of course, we cannot go into particulars here,
therefore we will make use of the classification of jurisdictions into two large legal traditions to
get an overview. For any concrete decisions, the details of the particular jurisdiction have to be
checked.

Legal Traditions

� The various legal systems of the world can be grouped into “traditions”.

� Definition 10.1.7 Legal systems in the common law tradition are usually
based on case law, they are often derived from the British system.

� Definition 10.1.8 Legal systems in the civil law tradition are usually based
on explicitly codified laws (civil codes).

� As a rule of thumb all English-speaking countries have systems in the common
law tradition, whereas the rest of the world follows a civil law tradition.

©:Michael Kohlhase 300

Another prerequisite for understanding intellectual property concepts is the historical development
of the legal frameworks and the practice how intellectual property law is synchronized interna-
tionally.

Historic/International Aspects of Intellectual Property Law

� Early History: In late antiquity and the middle ages IP matters were regulated
by royal privileges

� History of Patent Laws: First in Venice 1474, Statutes of Monopolies in England
1624, US/France 1790/1. . .

� History of Copyright Laws: Statue of Anne 1762, France: 1793, . . .

� Problem: In an increasingly globalized world, national IP laws are not enough.

� Definition 10.1.9 The Berne convention process is a series of international
treaties that try to harmonize international IP laws. It started with the
original Berne convention 1886 and went through revision in 1896, 1908,
1914, 1928, 1948, 1967, 1971, and 1979.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

206 CHAPTER 10. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY

� The World Intellectual Property Organization Copyright Treaty was adopted in
1996 to address the issues raised by information technology and the Internet,
which were not addressed by the Berne Convention.

� Definition 10.1.10 The Anti-Counterfeiting Trade Agreement (ACTA) is
a multinational treaty on international standards for intellectual property
rights enforcement.

� With its focus on enforcement ACTA is seen my many to break fundamental
human information rights, criminalize FLOSS

©:Michael Kohlhase 301

10.2 Copyright

In this Section, we go into more detail about a central concept of intellectual property law: copy-
right is the component most of IP law applicable to the individual computer scientist. Therefore
a basic understanding should be part of any CS education. We start with a definition of what
works can be copyrighted, and then progress to the rights this affords to the copyright holder.

Copyrightable Works

� Definition 10.2.1 A copyrightable work is any artefact of human labor that
fits into one of the following eight categories:

� Literary works: Any work expressed in letters, numbers, or symbols,
regardless of medium. (Computer source code is also considered to be a
literary work.)

� Musical works: Original musical compositions.

� Sound recordings of musical works. (different licensing)

� Dramatic works: literary works that direct a performance through writ-
ten instructions.

� Choreographic works must be “fixed,” either through notation or video
recording.

� Pictorial, graphic and sculptural work (PGS works): Any two-dimensional
or three-dimensional art work

� Audiovisual works: work that combines audio and visual components.
(e.g. films, television programs)

� Architectural works (copyright only extends to aesthetics)

� The categories are interpreted quite liberally (e.g. for computer code).

� There are various requirements to make a work copyrightable: it has to

� exhibit a certain originality (Schöpfungshöhe)

� require a certain amount of labor and diligence (“sweat of the brow”
doctrine)

©:Michael Kohlhase 302

In short almost all products of intellectual work are copyrightable, but this does not mean copyright

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

10.2. COPYRIGHT 207

applies to all those works. Indeed there is a large body of works that are “out of copyright”, and
can be used by everyone. Indeed it is one of the intentions of intellectual property laws to increase
the body of intellectual resources a society a draw upon to create wealth. Therefore copyright
is limited by regulations that limit the duration of copyright and exempts some classes of works
from copyright (e.g. because they have already been payed for by society).

Limitations of Copyrightabilitiy: The Public Domain

� Definition 10.2.2 A work is said to be in the public domain, if no copyright
applies, otherwise it is called copyrighted.

� Example 10.2.3 Works made by US government employees (in their work
time) are in the public domain directly (Rationale: taxpayer already payed
for them)

� Copyright expires: usually 70 years after the death of the creator

� Example 10.2.4 (US Copyright Terms) Some people claim that US copy-
right terms are extended, whenever Disney’s Mickey Mouse would become
public domain.

©:Michael Kohlhase 303

Now that we have established, which works are copyrighted — i.e. to which works are intellectual
property, we now turn to the rights owning such a property entails.

Rights under Copyright Law

� Definition 10.2.5 The copyright is a collection of rights on a copyrighted
work;

� personal rights: the copyright holder may

� determine whether and how the work is published (right to publish)
� determine whether and how her authorship is acknowledged. (right
of attribution)

� to object to any distortion, mutilation or other modification of the
work, which would be prejudicial to his honor or reputation (droit de
respect)

http://creativecommons.org/licenses/by-sa/2.5/

208 CHAPTER 10. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY

� exploitation rights: the owner of a copyright has the exclusive right to
do, or authorize to do any of the following:

� to reproduce the copyrighted work in copies (or phonorecords);
� to prepare derivative works based upon the copyrighted work;
� to distribute copies of the work to the public by sale, rental, lease, or
lending;

� to perform the copyrighted work publicly;
� to display the copyrighted work publicly; and
� to perform the copyrighted work publicly by means of a digital-audio
transmission.

� Remark 10.2.6 Formally, it is not the copyrightable work that can be
owned itself, but the copyright.

� Definition 10.2.7 The use of a copyrighted material, by anyone other than
the owner of the copyright, amounts to copyright infringement only when
the use is such that it conflicts with any one or more of the exclusive rights
conferred to the owner of the copyright.

©:Michael Kohlhase 304

Initially, and by default the copyright of an intellectual work is owned by the creator. But – as
with any property – copyrights can be transferred. We will now

Copyright Holder

� Definition 10.2.8 The copyright holder is the legal entity that owns the
copyright to a copyrighted work.

� By default, the original creator of a copyrightable work holds the copyright.

� In most jurisdictions, no registration or declaration is necessary (but copyright
ownership may be difficult to prove)

� copyright is considered intellectual property, and can be transferred to others
(e.g. sold to a publisher or bequeathed)

� Definition 10.2.9 (Work for Hire) A work made for hire (WFH) is a
work created by an employee as part of his or her job, or under the explicit
guidance or under the terms of a contract.

� In jurisdictions from the common law tradition, the copyright holder of a WFH
is the employer, in jurisdictions from the civil law tradition, the author, unless
the respective contract regulates it otherwise.

©:Michael Kohlhase 305

Again, the rights of the copyright holder are mediated by usage rights of society; recall that
intellectual property laws are originally designed to increase the intellectual resources available to
society.

Limitations of Copyright (Citation/Fair Use)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

10.3. LICENSING 209

� There are limitations to the exclusivity of rights of the copyright holder (some
things cannot be forbidden)

� Citation Rights: Civil law jurisdictions allow citations of (extracts of) copy-
righted works for scientific or artistic discussions. (note that the right of
attribution still applies)

� In the civil law tradition, there are similar rights:

� Definition 10.2.10 (Fair Use/Fair Dealing Doctrines) Case law in com-
mon law jurisdictions has established a fair use doctrine, which allows e.g.

� making safety copies of software and audiovisual data

� lending of books in public libraries

� citing for scientific and educational purposes

� excerpts in search engine

Fair use is established in court on a case-by-case taking into account the
purpose (commercial/educational), the nature of the work the amount of the
excerpt, the effect on the marketability of the work.

©:Michael Kohlhase 306

10.3 Licensing

Given that intellectual property law grants a set of exclusive rights to the owner, we will now
look at ways and mechanisms how usage rights can be bestowed on others. This process is called
licensing, and it has enormous effects on the way software is produced, marketed, and consumed.
Again, we will focus on copyright issues and how innovative license agreements have created the
open source movement and economy.

Licensing: the Transfer of Rights

� Remember: the copyright holder has exclusive rights to a copyrighted work.

� In particular: all others have only fair-use rights (but we can transfer rights)

� Definition 10.3.1 A license is an authorization (by the licensor) to use the
licensed material (by the licensee).

� Note: a license is a regular contract (about intellectual property) that is handled
just like any other contract. (it can stipulate anything the licensor and licensees
agree on) in particular a license may

� involve term, territory, or renewal provisions

� require paying a fee and/or proving a capability.

� require to keep the licensor informed on a type of activity, and to give them
the opportunity to set conditions and limitations.

� Mass Licensing of Computer Software: Software vendors usually license soft-
ware under extensive end-user license agreement (EULA) entered into upon the

http://creativecommons.org/licenses/by-sa/2.5/

210 CHAPTER 10. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY

installation of that software on a computer. The license authorizes the user to
install the software on a limited number of computers.

©:Michael Kohlhase 307

Copyright law was originally designed to give authors of literary works — e.g. novelists and
playwrights — revenue streams and regulate how publishers and theatre companies can distribute
and display them so that society can enjoy more of their work.

With the inclusion of software as “literary workss” under copyright law the basic parameters
of the system changed considerably:

• modern software development is much more a collaborative and diversified effort than literary
writing,

• re-use of software components is a decisive factor in software,

• software can be distributed in compiled form to be executable which limits inspection and
re-use, and

• distribution costs for digital media are negligible compared to printing.

As a consequence, much software development has been industrialized by large enterprises, who
become copyright holder as the software was created as work for hire. This has led to software
quasi-monopolies, which are prone to stifling innovation and thus counteract the intentions of
intellectual property laws.
The Free/Open Source Software movement attempts to use the intellectual property laws them-
selves to counteract their negative side effects on innovation and collaboration and the (perceived)
freedom of the programmer.

Free/Libre/Open-Source Licenses

� Recall: Software is treated as literary works wrt. copyright law.

� But: Software is different from literary works wrt. distribution channels (and
that is what copyright law regulates)

� In particular: When literary works are distributed, you get all there is, software
is usually distributed in binary format, you cannot understand/cite/modify/fix
it.

� So: Compilation can be seen as a technical means to enforce copyright. (seen
as an impediment to freedom of fair use)

� Recall: IP laws (in particular patent law) was introduced explicitly for two things

� incentivize innovation (by granting exclusive exploitation rights)

� spread innovation (by publishing ideas and processes)

Compilation breaks the second tenet (and may thus stifle innovation)

� Idea: We should create a public domain of source code

� Definition 10.3.2 Free/Libre/Open-Source Software (FLOSS) is software
that is and licensed via licenses that ensure that its source is available.

http://creativecommons.org/licenses/by-sa/2.5/

10.3. LICENSING 211

� Almost all of the Internet infrastructure is (now) FLOSS; so are the Linux and
Android operating systems and applications like OpenOffice and The GIMP.

©:Michael Kohlhase 308

The relatively complex name Free/Libre/Open Source comes from the fact that the English1 word
“free” has two meanings: free as in “freedom” and free as in “free beer”. The initial name “free
software” confused issues and thus led to problems in public perception of the movement. Indeed
Richard Stallman’s initial motivation was to ensure the freedom of the programmer to create
software, and only used cost-free software to expand the software public domain. To disambiguate
some people started using the French “libre” which only had the “freedom” reading of “free”. The
term “open source” was eventually adopted in 1998 to have a politically less loaded label.
The main tool in brining about a public domain of open-source software was the use of licenses
that are cleverly crafted to guarantee usage rights to the public and inspire programmers to license
their works as open-source systems. The most influential license here is the GNU public license
which we cover as a paradigmatic example.

GPL/Copyleft: Creating a FLOSS Public Domain?

� Problem: How do we get people to contribute source code to the FLOSS public
domain?

� Idea: Use special licenses to:

� allow others to use/fix/modify our source code (derivative works)

� require them to release their modifications to the FLOSS public domain if
they do.

� Definition 10.3.3 A copyleft license is a license which requires that allows
derivative works, but requires that they be licensed with the same license.

� Definition 10.3.4 The General Public License (GPL) is a copyleft license
for FLOSS software originally written by Richard Stallman in 1989. It re-
quires that the source code of GPL-licensed software be made available.

� The GPL was the first copyleft license to see extensive use, and continues to
dominate the licensing of FLOSS software.

� FLOSS based development can reduce development and testing costs (but
community involvement must be managed)

� Various software companies have developed successful business models based
on FLOSS licensing models. (e.g. Red Hat, Mozilla, IBM, . . .)

©:Michael Kohlhase 309

Note: that the GPL does not make any restrictions on possible uses of the software. In particular, it
does not restrict commercial use of the copyrighted software. Indeed it tries to allow commercial use
without restricting the freedom of programmers. If the unencumbered distribution of source code
makes some business models (which are considered as “extortion” by the open-source proponents)
intractable, this needs to be compensated by new, innovative business models. Indeed, such
business models have been developed, and have led to an “open-source economy” which now
constitutes a non-trivial part of the software industry.

1the movement originated in the USA

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

212 CHAPTER 10. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY

With the great success of open-source sofware, the central ideas have been adapted to other classes
of copyrightable works; again to create and enlarge a public domain of resources that allow re-use,
derived works, and distribution.

Open Content via Open Content Licenses

� Recall: FLOSS licenses have created a vibrant public domain for software.

� How about: other copyrightable works: music, video, literature, technical doc-
uments

�

Definition 10.3.5 The Creative Commons licenses
are

� a common legal vocabulary for sharing content

� to create a kind of “public domain” using licensing

� presented in three layers
(human/lawyer/machine)-readable

� Creative Commons license provisions (http://www.creativecommons.org)

� author retains copyright on each module/course

� author licenses material to the world with requirements

+/- attribuition (must reference the author)
+/- commercial use (can be restricted)
+/- derivative works (can allow modification)
+/- share alike (copyleft) (modifications must be donated back)

©:Michael Kohlhase 310

10.4 Information Privacy

Information/Data Privacy

� Definition 10.4.1 The principle of information privacy comprises the idea
that humans have the right to control who can access their personal data
when.

� Information privacy concerns exist wherever personally identifiable information
is collected and stored – in digital form or otherwise. In particular in the following
contexts

� Healthcare records

� Criminal justice investigations and proceedings

� Financial institutions and transactions

� Biological traits, such as ethnicity or genetic material

� Residence and geographic records

http://www.creativecommons.org
http://creativecommons.org/licenses/by-sa/2.5/

10.4. INFORMATION PRIVACY 213

� Information privacy is becoming a growing concern with the advent of the In-
ternet and search engines that make access to information easy and efficient.

� The “reasonable expectation of privacy” is regulated by special laws.

� These laws differ considerably by jurisdiction; Germany has particularly stringent
regulations (and you are subject to these.)

� Intuition: Acquisition and storage of personal data is only legal for the purposes
of the respective transaction, must be minimized, and distribution of personal
data is generally forbidden with few exceptions. Users have to be informed about
collection of personal data.

©:Michael Kohlhase 311

Organizational Measures or Information Privacy (under Ger-
man Law)

� Physical access control: Unauthorized persons may not be granted physical
access to data processing equipment that process personal data. (; locks,
access control systems)

� System access control: Unauthorized users may not use systems that process
personal data (; passwords, firewalls, . . .)

� Information access control: Users may only access those data they are authorized
to access. (; access control lists, safe boxes for storage media, encryption)

� Data transfer control: Personal data may not be copied during transmission
between systems (; encryption)

� Input control: It must be possible to review retroactively who entered, changed,
or deleted personal data. (; authentification, journaling)

� Availability control: Personal data have to be protected against loss and acci-
dental destruction (; physical/building safety,
backups)

� Obligation of separation: Personal data that was acquired for separate purposes
has to be processed separately.

©:Michael Kohlhase 312

The General Data Protection Regulation (GDPR)

� Definition 10.4.2 The General Data Protection Regulation (GDPR) is a
EU regulation created in 2016 to unite principals of data privacy within
Europe.

The GDPR applies to data controllers, i.e organizations that process personal
data of EU citizens (the data subjects).

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

214 CHAPTER 10. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY

It sanctions violations to GDPR mandates with substantial punishments –
up to 20Me or 4% of annual worldwide turnover

� Remark 10.4.3 As an EU regulation, the GDPR is directly effective in all
EU member countries. (enforced since 2018)

� The GDPR applies to data controllers outside the EU, iff they

1. offer goods or services to EU citizens, or

2. monitor their behavior

©:Michael Kohlhase 313

The General Data Protection Regulation (GDPR)

� Definition 10.4.4 Personally identifiable information (PII) is information
that, when used alone or with other relevant data, can identify an individual.

PII may contain direct identifiers (e.g., passport information) that can iden-
tify a person uniquely, or quasi-identifiers (e.g., race) that can be combined
with other quasi-identifiers (e.g., date of birth) to successfully recognize an
individual.

� Under the GDPR, any PII a site collects must be either anonymized or pseudonymized
(with the consumer’s identity replaced with a pseudonym).

� With pseudonymization companies can still do data analysis that would be im-
possible with anonymization.

©:Michael Kohlhase 314

GDPR Customer-Service Requirements

� Visitors must be notified of data the site collects from them and explicitly con-
sent to that information-gathering (This site uses cookies ;
Agree)

� data controllers must notify data subjects in a timely way (72h) if any of their
personal data held by the site is breached.

� The data controller needs to specify a data-protection officer (DPO).

� data subjects have the right to have their presence on the site erased

� data subjects can request the disclosure all data the data controller collected on
them. (if the request is in writing, the answer must be on paper)

©:Michael Kohlhase 315

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Chapter 11

Ontologies, Semantic Web, & WissKI

In the last Chapter of IWGS, we will discuss a virtual research environment for cultural heritage.
Before we present the system itself, we take a close look at the underlying technology: ontologies,
semantic web technologies, and linked open data.

11.1 Documenting our Cultural Heritage

Before we even start talking about the WissKI system, we should become clear on the concepts
involved. We start out with the notion of cultural heritage.

Documenting our Cultural Heritage

� Definition 11.1.1 Cultural heritage is the legacy of physical artifacts and
intangible attributes of a group or society that is inherited from past gener-
ations.

� Problem: How can we understand, conserve, and learn from our cultural her-
itage?

� Traditional Answer: We collect cultural artefacts, study them carefully, relate
them to other artefacts, discuss the findings, and publish the results. We display
the artefacts in museums and galleries, and educate the next generation.

� DigHumS Answer: In “Digital Humanities and Social Sciences”, we want to
represent our cultural heritage digitally, and utilize computational tools to do so.

� Practical Question: What are the best representation formats and tools?

©:Michael Kohlhase 316

Categories of Data in DigihumS and their IWGS Formats

� We distinguish four broad categories of data in DigiHumS.

� Concrete data: digital representations of artefacts in terms of simple data,

� e.g. images as pixel arrays in JPEG. (see Chapter 9)

215

http://creativecommons.org/licenses/by-sa/2.5/

216 CHAPTER 11. ONTOLOGIES, SEMANTIC WEB, & WISSKI

� e.g. books identified by author/title/publisher/pubyear. (see Chapter 8)

� Narrative data: documents and text fragments used for communicating knowl-
edge to humans.

� e.g. plain text and formatted text with markup codes (see Chapter 3)

� Symbolic data: descriptions of object and facts in a formal language

� e.g. 3+5 in python (see Chapter 2)

� Definition 11.1.2 Metadata: “data about data”, e.g. who has created these
facts, images, or documents. (not covered yet)

� Observation 11.1.3 We will need all of these – and their combinations – to
do DigiHumS.

©:Michael Kohlhase 317

WissKI: a Virtual Research Env. for Cultural Heritage

� Requirements: For a virtual research environment for Cultural Heritage

� scientific communication about and documentation of the cultural heritage

� networking knowledge from different disciplines (transdisciplinarity)

� high-quality data acquisition and analysis

� safeguarding authorship, authenticity, persistence

� support of scientific publication

� Development on the WissKI started at FAU Erlangen-Nürnberg by the research
group of Prof. Günther Görtz and is now used in more than 100 DH projects
across Germany.

©:Michael Kohlhase 318

Documenting Cultural Heritage: Current State/Preview

� Pre-DH State of Cultural Heritage Documentation

� scientific communication/documentation by journal articles/books

� persistence: paper records, file cards, databases (like our KirmesDB)

� Analysis: manual examination or artefacts in museums/archives.

� Idea: Use more technology to do better.

� Preview: WissKI uses Semantic Web technologies to do just that. We will now

� Motivate the Semantic Web (why do we need more than the WWW)

� introduce ontologies, linked open data and their technology stacks

� show off WissKI.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

11.2. SEMANTIC WEB TECHOLOGIES 217

©:Michael Kohlhase 319

11.2 Semantic Web Techologies

11.2.1 The Semantic Web

The Semantic Web

� Definition 11.2.1 The semantic web is a collaborative movement led by
the W3C that promotes the inclusion of semantic content in web pages with
the aim of converting the current web, dominated by unstructured and semi-
structured documents into a machine-understandable “web of data”.

� Idea: Move web content up the ladder, use inference to make connections.

� Example 11.2.2 We want to find information that is not explicitly repre-
sented (in one
place)

Query: Who was US president when Barak Obama was born?

Google: . . . BIRTH DATE: August 04, 1961. . .

Query: Who was US president in 1961?

Google: President: Dwight D. Eisenhower [. . .] John F. Kennedy (starting
January 20)

Humans can read (and understand) the text and combine the information to
get the answer.

©:Michael Kohlhase 320

The term “Semantic Web” was coined by Tim Berners Lee in analogy to semantic networks, only
applied to the world wide web. And as for semantic networks, where we have inference processes
that allow us the recover information that is not explicitly represented from the network (here the
world-wide-web).
To see that problems have to be solved, to arrive at the “Semantic Web”, we will now look at a
concrete example about the “semantics” in web pages. Here is one that looks typical enough.

What is the Information a User sees?

WWW2002
The eleventh International World Wide Web Conference
Sheraton Waikiki Hotel
Honolulu, Hawaii, USA

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

218 CHAPTER 11. ONTOLOGIES, SEMANTIC WEB, & WISSKI

7-11 May 2002

Registered participants coming from
Australia, Canada, Chile Denmark, France, Germany, Ghana, Hong
Kong, India,
Ireland, Italy, Japan, Malta, New Zealand, The Netherlands, Nor-
way,
Singapore, Switzerland, the United Kingdom, the United States,
Vietnam, Zaire

On the 7th May Honolulu will provide the backdrop of the eleventh
International World Wide Web Conference.

Speakers confirmed
Tim Berners-Lee: Tim is the well known inventor of the Web,
Ian Foster: Ian is the pioneer of the Grid, the next generation inter-
net.

©:Michael Kohlhase 321

But as for semantic networks, what you as a human can see (“understand” really) is deceptive, so
let us obfuscate the document to confuse your “semantic processor”. This gives an impression of
what the computer “sees”.

What the machine sees

WWW∈′′∈
T〈eeleve\t〈I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce
S〈e∇ato\Wa〉‖〉‖〉Hotel
Ho\olulu⇔Hawa〉〉⇔USA
7↖∞∞Ma†∈′′∈

Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om

Au∫t∇al〉a⇔Ca\ada⇔C〈〉leDe\ma∇‖⇔F∇a\ce⇔Ge∇ma\†⇔G〈a\a⇔Ho\}Ko\}⇔I\↖
d〉a⇔
I∇ela\d⇔Ital†⇔Ja√a\⇔Malta⇔NewZeala\d⇔T〈eNet〈e∇la\d∫⇔No∇wa†⇔

S〉\}a√o∇e⇔Sw〉t‡e∇la\d⇔t〈eU\〉tedK〉\}dom⇔t〈eU\〉tedState∫⇔V〉et\am⇔Za〉∇e

O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈

I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce↙

S√ea‖e∇∫co\{〉∇med

T〉mBe∇\e∇∫↖Lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb⇔
Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\te∇\et↙

©:Michael Kohlhase 322

Obviously, there is not much the computer understands, and as a consequence, there is not a lot
the computer can support the reader with. So we have to “help” the computer by providing some

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

11.2. SEMANTIC WEB TECHOLOGIES 219

meaning. Conventional wisdom is that we add some semantic/functional markup. Here we pick
XML without loss of generality, and characterize some fragments of text e.g. as dates.

Solution: XML markup with “meaningful” Tags

<title>WWW∈′′∈
T〈eeleve\t〈I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce</title>
<place>S〈e∇ato\Wa〉‖〉‖〉HotelHo\olulu⇔Hawa〉〉⇔USA</place>
<date>7↖∞∞Ma†∈′′∈</date>
<participants>Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om
Au∫t∇al〉a⇔Ca\ada⇔C〈〉leDe\ma∇‖⇔F∇a\ce⇔Ge∇ma\†⇔G〈a\a⇔Ho\}Ko\}⇔I\↖
d〉a⇔
I∇ela\d⇔Ital†⇔Ja√a\⇔Malta⇔NewZeala\d⇔T〈eNet〈e∇la\d∫⇔No∇wa†⇔

S〉\}a√o∇e⇔Sw〉t‡e∇la\d⇔t〈eU\〉tedK〉\}dom⇔t〈eU\〉tedState∫⇔V〉et\am⇔Za〉∇e</participants>

</introduction>O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈

I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce↙</introduction>
<program>S√ea‖e∇∫co\{〉∇med

<speaker>T〉mBe∇\e∇∫↖Lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb</speaker>
<speaker>Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\te∇↖
\et<speaker>
</program>

©:Michael Kohlhase 323

What can we do with this?

� Example 11.2.3 Consider the following fragments:

<title>WWW∈′′∈
T〈eeleve\t〈I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce</title>
<place>S〈e∇ato\Wa〉‖〉‖〉HotelHo\olulu⇔Hawa〉〉⇔USA</place>
<date>7↖∞∞Ma†∈′′∈</date>

Given the markup above, we can

� parse 7↖∞∞Ma†∈′′∈ as the date May 7-11 2002 and add this to the user’s
calendar.

� parse S〈e∇ato\Wa〉‖〉‖〉HotelHo\olulu⇔Hawa〉〉⇔USA as a destination and find
flights.

But: do not be deceived by your ability to understand English

©:Michael Kohlhase 324

We have to obfuscate the markup as well, since it does not carry any meaning to the machine
intrinsically either.

�What the machine sees of the XML

<t〉tle>WWW∈′′∈

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

220 CHAPTER 11. ONTOLOGIES, SEMANTIC WEB, & WISSKI

T〈eeleve\t〈I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce</t〉tle>
<√lace>S〈e∇ato\Wa〉‖〉‖〉HotelHo\olulu⇔Hawa〉〉⇔USA</√lace>

<date>7↖∞∞Ma†∈′′∈</date>
<√a∇t〉c〉√a\t∫>Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om
Au∫t∇al〉a⇔Ca\ada⇔C〈〉leDe\ma∇‖⇔F∇a\ce⇔Ge∇ma\†⇔G〈a\a⇔Ho\}Ko\}⇔I\↖
d〉a⇔
I∇ela\d⇔Ital†⇔Ja√a\⇔Malta⇔NewZeala\d⇔T〈eNet〈e∇la\d∫⇔No∇wa†⇔

S〉\}a√o∇e⇔Sw〉t‡e∇la\d⇔t〈eU\〉tedK〉\}dom⇔t〈eU\〉tedState∫⇔V〉et\am⇔Za〉∇e</√a∇t〉c〉√a\t∫>

</〉\t∇oduct〉o\>O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈I\↖

te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce↙</〉\t∇oduct〉o\>
<√∇o}∇am>S√ea‖e∇∫co\{〉∇med

<∫√ea‖e∇>T〉mBe∇\e∇∫↖Lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb</∫√ea‖e∇>
<∫√ea‖e∇>Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\te∇\et<∫√ea‖e∇>

</√∇o}∇am>

©:Michael Kohlhase 325

So we have not really gained much either with the markup, we really have to give meaning to the
markup as well, this is where techniques from knowledge representation come into play
To understand how we can make the web more semantic, let us first take stock of the current status
of (markup on) the web. It is well-known that world-wide-web is a hypertext, where multimedia
documents (text, images, videos, etc. and their fragments) are connected by hyperlinks. As we
have seen, all of these are largely opaque (non-understandable), so we end up with the following
situation (from the viewpoint of a machine).

The Current Web
� Resources: identified by
URI’s, untyped

� Links: href, src, . . . limited,
non-descriptive

� User: Exciting world - seman-
tics of the resource, however,
gleaned from content

� Machine: Very little informa-
tion available - significance of
the links only evident from the
context around the anchor.

©:Michael Kohlhase 326

Let us now contrast this with the envisioned semantic web.

The Semantic Web

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

11.2. SEMANTIC WEB TECHOLOGIES 221

� Resources: Globally Identified
by URI’s or Locally scoped
(Blank), Extensible, Relational

� Links: Identified by URI’s, Ex-
tensible, Relational

� User: Even more exciting
world, richer user experience

� Machine: More processable
information is available (Data
Web)

� Computers and people: Work,
learn and exchange knowledge
effectively

©:Michael Kohlhase 327

Essentially, to make the web more machine-processable, we need to classify the resources by the
concepts they represent and give the links a meaning in a way, that we can do inference with that.
The ideas presented here gave rise to a set of technologies jointly called the “semantic web”, which
we will now summarize before we return to our logical investigations of knowledge representation
techniques.

Towards a “Machine-Actionable Web”

� Recall: We need external agreement on meaning of annotation tags.

� Idea: standardize them in a community process (e.g. DIN or ISO)

� Problem: Inflexible, Limited number of things can be expressed

� Better: Use Ontologies to specify meaning of annotations

� Ontologies provide a vocabulary of terms

� New terms can be formed by combining existing ones

� Meaning (semantics) of such terms is formally specified

� Can also specify relationships between terms in multiple ontologies

� Inference with annotations and ontologies (get out more than you put in!)

� Standardize annotations in RDF [w3c:rdf-concepts] or RDFa [w3c:rdfa-primer]
and ontologies on OWL [w3c:owl2-overview]

� Harvest RDF and RDFa in to a triplestore or OWL reasoner.

� Query that for implied knowledge (e.g. chaining multiple facts from
Wikipedia)

SPARQL: Who was US President when Barack Obama was Born?

http://creativecommons.org/licenses/by-sa/2.5/

222 CHAPTER 11. ONTOLOGIES, SEMANTIC WEB, & WISSKI

DBPedia: John F. Kennedy (was president in August 1961)

©:Michael Kohlhase 328

11.2.2 Semantic Networks

To get a feeling for ontologies and how they enable the “machine-actionable web” and how that
helps us in DH, we take a look at “semantic networks”, which are an early form of ontologies.
Semantic networks are a very simple way of arranging concepts and their relations in a graph.

Semantic Networks [ColQui:rtsm69]

� Definition 11.2.4 A semantic network is a directed graph for representing
knowledge:

� nodes represent concepts, i.e. classes of individuals/objects (e.g. bird,
John, robin)

� links represent relations between these (isa, father_of, belongs_to)

� Example 11.2.5 A semantic net for birds and persons:

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
inst

inst

Problem: how do we do inference from such a network?

�� Idea: encode taxonomic information about concepts and individuals

� in “isa” links (inclusion of concepts)

� in “inst” links (concept memberships)

� use property inheritance along “isa” and “inst” in the process model

©:Michael Kohlhase 329

Even though the network in Example 11.2.5 is very intuitive (we immediately understand the
concepts depicted), it is unclear how we (and more importantly a machine that does not asso-
ciate meaning with the labels of the nodes and edges) can draw inferences from the “knowledge”
represented.

Deriving Knowledge Implicit in Semantic Networks

� Observation 11.2.6 There is more knowledge in a semantic network than is
explicitly written down.

� Example 11.2.7 In the network below, we “know” that robins have wings
and in particular, Jack has wings.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

11.2. SEMANTIC WEB TECHOLOGIES 223

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
inst

inst

Idea: “isa” and “inst” links are special: they propagate properties encoded by
other links.

©:Michael Kohlhase 330

� Deriving Knowledge Implicit in Semantic Networks

� Definition 11.2.8 (Inference in Semantic Networks) We call all link
labels except “inst” and “isa” in a semantic network relations.

Let N be a semantic network and R a relation in N such that A isa−→ B
R−→ C

or A inst−→ B
R−→ C, then we can derive a relation A R−→ C in N .

� Intuition: Derived relations represent knowledge that is implicit in the network;
they could be added, but usually are not to avoid clutter.

� Example 11.2.9

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
inst

insthas_part
has_part

inst

Slogan: Get out more knowledge from a semantic networks than you put in.

©:Michael Kohlhase 331

Note that Definition 11.2.8 does not quite allow to derive that Jack is a bird (did you spot that?),
even though we know it is true in the world. This shows us that we that inference in semantic
networks has be to very carefully defined and may not be “complete”, i.e. there are things that
are true in the real world that our inference procedure does not capture.

Dually, if we are not careful, then the inference procedure might derive properties that are not
true in the real world – even if all the properties explicitly put into the network are. We call such
an inference procedure unsound or incorrect.

These are two general phenomenona that we have to keep an eye on.
Another problem is that semantic nets (e.g. in in Example 11.2.5) confuse two kinds of concepts:
individuals (represented by proper names like John and Jack) and concepts (nouns like robin and
bird). Even though the “isa” and “inst” links already acknowledge this distinction, the “has_part”
and “loves” relations are at different levels entirely, but not distinguished in the networks.

� Terminologies and Assertions

� Remark 11.2.10 We should keep the “inst” and “isa” links apart – and

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

224 CHAPTER 11. ONTOLOGIES, SEMANTIC WEB, & WISSKI

distinguish concepts from individuals/objects.

� Example 11.2.11 From the network

ClydeRexRoy

elephant graytigerstriped

higher animal
headlegs

amoeba

moveanimal

instinstinst

color

isaisa

pattern

has_parthas_part

isaisa

can

eat

eat
eat

infer that elephants have legs and that Clyde is gray.

� Definition 11.2.12 We call the subgraph of a semantic network N spanned
by the “isa” relations the terminology (or TBox, or the famous Isa-Hierarchy)
and the subgraph spanned by the “inst” relation the assertions (or ABox) of
N .

©:Michael Kohlhase 332

But there are severe shortcomings of semantic networks: the suggestive shape and node names
give (humans) a false sense of meaning, and the inference rules are only given in the process model
(the implementation of the semantic network processing system).

This makes it very difficult to assess the strength of the inference system and make assertions
e.g. about completeness.

Limitations of Semantic Networks

� What is the meaning of a link?

� link names are very suggestive (misleading for humans)

� meaning of link types defined in the process model (no denotational
semantics)

Problem: No distinction of optional and defining traits

�� Example 11.2.13 Consider a robin that has lost its wings in an accident

wings

robin

bird

jack

has_part

isa

inst

wings

robin

joe

bird
has_part

inst

isa
cancel

Cancel-links have been proposed, but their status and process model are
debatable.

©:Michael Kohlhase 333

To alleviate the perceived drawbacks of semantic networks, we can contemplate another notation
that is more linear and thus more easily implemented: function/argument notation.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

11.2. SEMANTIC WEB TECHOLOGIES 225

Another Notation for Semantic Networks

� Definition 11.2.14 Function/argument notation for semantic networks

� interprets node as arguments (reification to individuals)

� interprets link as functions (logical relations)

� Example 11.2.15

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
inst

inst

isa(robin,bird)
haspart(bird,wings)
inst(Jack,robin)
owner_of(John, robin)
loves(John,Mary)

Evaluation:

� + linear notation (equivalent, but better to implement on a computer)

+ easy to give process model by deduction (e.g. in ProLog)

– worse locality properties (networks are associative)

©:Michael Kohlhase 334

Indeed the function/argument notation is the immediate idea how one would naturally represent
semantic networks for implementation.

This notation has been also characterized as subject/predicate/object triples, alluding to simple
(English) sentences. This will play a role in the “semantic web” later.
The next slide is a bit outside of the scope of IWGS, but we want to go into this anyway.
We have been talking about the “procedural model” of a semanticnetwork, which essentially spec-
ifies the inference algorithm that derives new knowledge in a network. There is an alternative to
this: we can map the network language – function/argumentnotation for networks is an essential
step for this – in to a known language with an inference system. We call this kind of a mapping
a “denotational semantics”, here into a language called first-order logic.
Building on the function/argument notation from above, we can now give a formal semantics for
semantic networks: we translate into first-order logic and use the semantics of that.

A Denotational Semantics for Semantic Networks

� Extension: take isa/inst concept/individual distinction into account

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
inst

inst

robin⊆ bird
haspart(bird,wings)
Jack ∈ robin
owner_of(John, Jack)
loves(John,Mary)

http://creativecommons.org/licenses/by-sa/2.5/

226 CHAPTER 11. ONTOLOGIES, SEMANTIC WEB, & WISSKI

� Observation: this looks like first-order logic, if we take

� a ∈ S to mean S(a)

� A⊆B to mean ∀X A(X)⇒B(X)

� haspart(A,B) to mean ∀X A(X)⇒ (∃Y B(Y)∧ part_of(X,Y))

� Idea: Take first-order deduction as process model (gives inheritance for free)

©:Michael Kohlhase 335

Indeed, the semantics induced by the translation to first-order logic, gives the intuitive meaning
to the semantic networks. Note that this only holds only for the features of semantic networks
that are representable in this way, e.g. the cancel links shown above are not (and that is a feature,
not a bug).

But even more importantly, the translation to first-order logic gives a first process model: we
can use first-order inference to compute the set of inferences that can be drawn from a semantic
network.

11.2.3 Ontologies

Based on the intuitions from semantic networks we can now come to general (Semantic Web)
ontologies and contrast them to database systems. We will still keep our presentation of the
material at a general level without committing to a particular ontology language or system.

What is an Ontology

� Definition 11.2.16 An ontology is a formal model of (an aspect of) the
world. It

� introduces a vocabulary for the objects, concepts, and relations of a given
domain,

� specifies intended meaning of vocabulary in a description logic using

� a set of axioms describing structure of the model
� a set of facts describing some particular concrete situation

The vocabulary together with the collection of axioms is often called a
terminology (or TBox) and the collection of facts an ABox (assertions).

In addition to the represented axioms and facts, the description logic deter-
mines a number of derived ones.

� Definition 11.2.17 A vocabulary often includes names for classes and relationships
(also called concepts, and properties).

� Remark 11.2.18 If the description logic has a reasoner, we can automati-
cally

� detect inconsistent axiom systems

� compute class membership and taxonomies.

©:Michael Kohlhase 336

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

11.2. SEMANTIC WEB TECHOLOGIES 227

Example: Hogwarts Ontology

� Example 11.2.19 Axioms describe the structure of the model,

Class HogwartsStudent = Student and attendsSchool Hogwarts
Class: HogwartsStudent v hasPet only (Owl or Cat or Toad)
ObjectProperty: hasPet Inverses: isPetOf
Class: Phoenix v isPetOf only Wizard

� Example 11.2.20 Facts describe some particular concrete situation,

Individual: Hedwig
Types: Owl

Individual: HarryPotter
Types: HowgwartsStudent
Facts: hasPet Hedwig

Individual: Fawkes
Types: Phoenix
Facts: isPetOf Dumbledore

©:Michael Kohlhase 337

Ontologies vs. Databases

� Obvious Analogy: Ontology facts analogous to DB data: (structure and
constraints on data)

� Another one: Ontology axioms analogous to DB schema

� Instantiates schema

� Consistent with schema constraints

� But there are also important differences:
Database:

� Closed world assumption (CWA)

� Missing information treated as
false

� Unique name assumption (UNA)

� Each individual has a single,
unique name

� Schema behaves as constraints on
structure of data

� Define legal database states

Ontology:

� Open world assumption (OWA)

� Missing information treated as
unknown

� No UNA

� Individuals may have more
than one name

� Ontology axioms behave like im-
plications (inference rules)

� Entail implicit information

©:Michael Kohlhase 338

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

228 CHAPTER 11. ONTOLOGIES, SEMANTIC WEB, & WISSKI

DB vs. Ontology Example

� Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley

hasFriend HermioneGranger
hasPet Hedwig

Individual: Draco Malfoy

� Query: Is Draco Malfoy a friend of HarryPotter?

� DB: No

� Ontology: Don’t Know (OWA: didn’t say Draco was not Harry’s friend)

� Query: How many friends does Harry Potter have?

� DB: 2

� Ontology: at least 1 (No UNA: Ron and Hermione may be 2 names for
same person)

� How about: if we add
DifferentIndividuals: RonWeasley HermioneGranger

� Ontology: at least 2 (OWA: Harry may have more friends we didn’t
mention yet)

� And: if we also add
Individual: HarryPotter
Types: hasFriend only RonWeasley or HermioneGranger

� Ontology: 2

©:Michael Kohlhase 339

DB vs. Ontology Example

� Given: the ontology from the Hogwarts axioms and and facts insert

Individual: Dumbledore
Individual: Fawkes
Types: Phoenix
Facts: isPetOf Dumbledore

� System Response:

� DB: Update rejected: constraint violation

� Range of hasPet isHuman; Dumbledore is not (CWA)

� Ontology Reasoner:

http://creativecommons.org/licenses/by-sa/2.5/

11.2. SEMANTIC WEB TECHOLOGIES 229

� Infer that Dumbledore is Human
� Also infer that Dumbledore is a Wizard (only a Wizard can have a
phoenix as a pet)

©:Michael Kohlhase 340

DB vs. Ontology: Query Answering

� DB schema plays no role in query answering (efficiently implementable)

� Ontology axioms play a powerful and crucial role in QA

� Answer may include implicitly derived facts

� Can answer conceptual as well as extensional queries
E.g., Can a Muggle have a Phoenix for a pet?

� May have very high worst case complexity (=̂ terrible runtimes)
Implementations may still behave well in typical cases

� Definition 11.2.21 We call a query language semantic, iff query answering
involves derived axioms and facts.

� Observation 11.2.22 Ontology queries are semantic, while database queries
are not.

©:Michael Kohlhase 341

Ontology Based Information Systems

� Analogous to relational database management systems
Ontology =̂ schema; instances =̂ data

� Some important (dis)advantages

+ (Relatively) easy to maintain and update schema.

� Schema plus data are integrated in a logical theory.

+ Query answers reflect both schema and data

+ Can deal with incomplete information

+ Able to answer both intensional and extensional queries

– Semantics may be counter-intuitive or even inappropriate

� Open -vs- closed world; axioms -vs- constraints.

– Query answering much more difficult. (based on logical entailment)

� Can lead to scalability problems.

©:Michael Kohlhase 342

11.2.4 The Semantic Web Technology Stack

In this Subsection we discuss how we can apply description logics in the real world, in particular,

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

230 CHAPTER 11. ONTOLOGIES, SEMANTIC WEB, & WISSKI

as a conceptual and algorithmic basis of the “Semantic Web”. That tries to transform the “World
Wide Web” from a human-understandable web of multimedia documents into a “web of machine-
understandable data”. In this context, “machine-understandable” means that machines can draw
inferences from data they have access to.
Note that the discussion in this digression is not a full-blown introduction to RDF and OWL,
we leave that to [RDF1.1primer; RDFa1.1primer; OW2-primer] and the respective W3C
recommendations. Instead we introduce the ideas behind the mappings from a perspective of the
description logics we have discussed above.
The most important component of the “Semantic Web” is a standardized language that can rep-
resent “data” about information on the Web in a machine-oriented way.

Resource Description Framework

� Definition 11.2.23 The Resource Description Framework (RDF) is a frame-
work for describing resources on the web. It is an XML vocabulary developed
by the W3C.

� Note: RDF is designed to be read and understood by computers, not to be
being displayed to people. (it shows)

� Example 11.2.24 RDF can be used for describing (all “objects on the
WWWeb”)

� properties for shopping items, such as price and availability

� time schedules for web events

� information about web pages (content, author, created and modified
date)

� content and rating for web pictures

� content for search engines

� electronic libraries

©:Michael Kohlhase 343

Note that all these examples have in common that they are about “objects on the Web”, which is
an aspect we will come to now.
“Objects on the Web” are traditionally called “resources”, rather than defining them by their
intrinsic properties – which would be ambitious and prone to change – we take an external property
to define them: everything that has a URI is a web resource. This has repercussions on the design
of RDF.

Resources and URIs

� RDF describes resources with properties and property values.

� RDF uses Web identifiers (URIs) to identify resources.

� Definition 11.2.25 A resource is anything that can have a URI, such as
http://www.fau.de

� Definition 11.2.26 A property is a resource that has a name, such as au-
thor or homepage, and a property value is the value of a property, such as

http://creativecommons.org/licenses/by-sa/2.5/
http://www.fau.de

11.2. SEMANTIC WEB TECHOLOGIES 231

Michael Kohlhase or http://kwarc.info/kohlhase (a property value can
be another resource)

� Definition 11.2.27 A RDF statement (also known as a triple) s consists
of a resource (the subject), aproperty (the predicate), and a property value
(the object of s). A set of RDF tripless is called an RDF graph.

� Example 11.2.28 Statement: [This slide]subj has been [author]preded by
[Michael Kohlhase]obj

©:Michael Kohlhase 344

The crucial observation here is that if we map “subjects” and “objects” to “individuals”, and
“predicates” to “relations”, the RDF statements are just relational ABox statements of description
logics. As a consequence, the techniques we developed apply.
We now come to the concrete syntax of RDF. This is a relatively conventional XML syntax that
combines RDF statements with a common subject into a single “description” of that resource.

XML Syntax for RDF

� RDF is a concrete XML vocabulary for writing statements

� Example 11.2.29 The following RDF document could describe the slides
as a resource
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"

xmlns:dc= "http://purl.org/dc/elements/1.1/">
<rdf:Description about="https://.../CompLog/kr/en/rdf.tex">
<dc:creator>Michael Kohlhase</dc:creator>
<dc:source>http://www.w3schools.com/rdf</dc:source>

</rdf:Description>
</rdf:RDF>

This RDF document makes two statements:

� The subject of both is given in the about attribute of the rdf:Description
element

� The predicates are given by the element names of its children

� The objects are given in the elements as URIs or literal content.

Intuitively: RDF is a web-scalable way to write down ABox information.

©:Michael Kohlhase 345

Note that XML namespaces play a crucial role in using element to encode the predicate URIs.
Recall that an element name is a qualified name that consists of a namespace URI and a proper
element name (without a colon character). Concatenating them gives a URI in our example the
predicate URI induced by the dc:creator element is http://purl.org/dc/elements/1.1/creator.
Note that as URIs go RDF URIs do not have to be URLs, but this one is and it references (is redi-
rected to) the relevant part of the Dublin Core elements specification [DCMI:dcmi-terms:tr].
RDF was deliberately designed as a standoff markup format, where URIs are used to annotate
web resources by pointing to them, so that it can be used to give information about web resources
without having to change them. But this also creates maintenance problems, since web resources
may change or be deleted without warning.

http://kwarc.info/kohlhase
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://purl.org/dc/elements/1.1/creator

232 CHAPTER 11. ONTOLOGIES, SEMANTIC WEB, & WISSKI

RDFa gives authors a way to embed RDF triples into web resources and make keeping RDF
statements about them more in sync.

�RDFa as an Inline RDF Markup Format

� Problem: RDF is a standoff markup format (annotate by URIs pointing into
other files)

� Example 11.2.30

<div xmlns:dc="http://purl.org/dc/elements/1.1/" id="address">
<h2 about="#address" property="dc:title">RDF as an Inline RDF Markup Format</h2>
<h3 about="#address" property="dc:creator">Michael Kohlhase</h3>
<em about="#address" property="dc:date" datatype="xsd:date"

content="2009−11−11">November 11., 2009
</div>

https://svn.kwarc.info/.../CompLog/kr/en/rdfa.tex

RDF as an Inline RDF Markup Format

2009−11−11 (xsd:date)

Michael Kohlhase

http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/date

http://purl.org/dc/elements/1.1/creator

©:Michael Kohlhase 346

In the example above, the about and property attribute are reserved by RDFa and specify the
subject and predicate of the RDF statement. The object consists of the body of the element,
unless otherwise specified e.g. by the resource attribute.
Let us now come back to the fact that RDF is just an XML syntax for ABox statements.

RDF as an ABox Language for the Semantic Web

� Idea: RDF triples are ABox entries hRs or h : ϕ.

� Example 11.2.31 h is the resource for Ian Horrocks, s is the resource for
Ulrike Sattler, R is the relation “hasColleague”, and ϕ is the class foaf:Person

<rdf:Description about="some.uri/person/ian_horrocks">
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<hasColleague resource="some.uri/person/uli_sattler"/>

</rdf:Description>

Idea: Now, we need an similar language for TBoxes (based on ALC)

©:Michael Kohlhase 347

In this situation, we want a standardized representation language for TBox information; OWL
does just that: it standardizes a set of knowledge representation primitives and specifies a variety
of concrete syntaxes for them. OWL is designed to be compatible with RDF, so that the two
together can form an ontology language for the web.

https://svn.kwarc.info/.../CompLog/kr/en/rdfa.tex
http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/date
http://purl.org/dc/elements/1.1/creator
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

11.2. SEMANTIC WEB TECHOLOGIES 233

�OWL as an Ontology Language for the Semantic Web

� Task: Complement RDF (ABox) with a TBox language

� Idea: Make use of resources that are values in rdf:type (called Classes)

� Definition 11.2.32 OWL (the ontology web language) is a language for
encoding TBox information about RDF classes.

� Example 11.2.33 (A concept definition for “Mother”)
Mother=WomanuParent is represented as

XML Syntax Functional Syntax

<EquivalentClasses>
<Class IRI="Mother"/>
<ObjectIntersectionOf>
<Class IRI="Woman"/>
<Class IRI="Parent"/>

</ObjectIntersectionOf>
</EquivalentClasses>

EquivalentClasses(
:Mother
ObjectIntersectionOf(
:Woman
:Parent

)
)

©:Michael Kohlhase 348

Extended OWL Example in Functional Syntax

� Example 11.2.34 The semantic network from above can be expressed in
OWL (in functional syntax)

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
inst

inst

ClassAssertion (:Jack :robin)
ClassAssertion(:John :person)
ClassAssertion (:Mary :person)
ObjectPropertyAssertion(:loves :John :Mary)
ObjectPropertyAssertion(:owner :John :Jack)
SubClassOf(:robin :bird)
SubClassOf (:bird ObjectSomeValuesFrom(:hasPart :wing))

� ClassAssertion formalizes the “inst” relation,

� ObjectPropertyAssertion formalizes relations,

� SubClassOf formalizes the “isa” relation,

� for the “has_part” relation, we have to specify that all birds have a part
that is a wing or equivalently the class of birds is a subclass of all objects
that have some wing.

http://creativecommons.org/licenses/by-sa/2.5/

234 CHAPTER 11. ONTOLOGIES, SEMANTIC WEB, & WISSKI

©:Michael Kohlhase 349

We have introduced the ideas behind using description logics as the basis of a “machine-oriented
web of data”. While the first OWL specification (2004) had three sublanguages “OWL Lite”, “OWL
DL” and “OWL Full”, of which only the middle was based on description logics, with the OWL2
Recommendation from 2009, the foundation in description logics was nearly universally accepted.
The Semantic Web hype is by now nearly over, the technology has reached the “plateau of pro-
ductivity” with many applications being pursued in academia and industry. We will not go into
these, but briefly instroduce one of the tools that make this work.

SPARQL an RDF Query language

� Definition 11.2.35 A database that stores RDF data is called a triple store

� Definition 11.2.36 SPARQL, the “ SPARQL Protocol and RDF Query
Language” is an RDF query language, able to retrieve and manipulate data
stored in RDF. The SPARQL language was standardized by the World Wide
Web Consortium in 2008 [PruSea08:sparql].

� SPARQL is pronounced like the word “sparkle”.

� Definition 11.2.37 A triple store is called a SPARQL endpoint, iff it an-
swers SPARQL queries.

� Example 11.2.38
Query for person names and their e-mails from a triple store with FOAF
data.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?email
WHERE {
?person a foaf:Person.
?person foaf:name ?name.
?person foaf:mbox ?email.

}

©:Michael Kohlhase 350

SPARQL end-points can be used to build interesting applications, if fed with the appropriate data.
An interesting – and by now paradigmatic – example is the DBPedia project.

SPARQL Applications: DBPedia

� Typical Application: DBPedia screen-scrapes Wikipedia fact boxes for RDF
triples and uses SPARQL for querying the induced triple store.

� Example 11.2.39 (DBPedia Query)
People who were born in Berlin before 1900 (http://dbpedia.org/sparql)

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?name ?birth ?death ?person WHERE {
?person dbo:birthPlace :Berlin .
?person dbo:birthDate ?birth .
?person foaf:name ?name .

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://dbpedia.org/sparql

11.2. SEMANTIC WEB TECHOLOGIES 235

?person dbo:deathDate ?death .
FILTER (?birth < "1900−01−01"^^xsd:date) .

}
ORDER BY ?name

©:Michael Kohlhase 351

A more complex DBPedia Query

� Demo: DBPedia http://dbpedia.org/snorql/
Query: Soccer players born in a country with more than 10 M inhabitants, who
play as goalie in a club that has a stadium with more than 30.000 seats.
Answer: computed by DBPedia from a SPARQL query

©:Michael Kohlhase 352

Triple Stores: the Semantic Web Databases

� Definition 11.2.40 A triplestore or RDF store is a purpose-built database
for the storage RDF graphs and retrieval of RDF triples through semantic
queries, usually variants of SPARQL.

©:Michael Kohlhase 353

http://creativecommons.org/licenses/by-sa/2.5/
http://dbpedia.org/snorql/
https://goo.gl/2i3ng1
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

236 CHAPTER 11. ONTOLOGIES, SEMANTIC WEB, & WISSKI

11.2.5 The Linked Open Data Cloud

Linked Open Data

� Definition 11.2.41 Linked data is a structured data which is interlinked
via relations with other data so that become more useful through semantic
queries.

� Definition 11.2.42 Linked open data (LOD) is linked data which is re-
leased under an open license, which does not impede its reuse for free.

� Definition 11.2.43 Given the Semantic Web technology stack, we can cre-
ate interoperable ontologies and interlinked data sets, we call their totality
the linked open data cloud.

©:Michael Kohlhase 354

The Linked Open Data Cloud

� The Linked Open Data Cloud in 2014 (today much bigger, but unreadable)

©:Michael Kohlhase 355

The Linked Open Data Cloud

� zooming in (data sets and their – interlinked – ontologies)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

11.3. THEWISSKI SYSTEM: A VIRTUAL RESEARCH ENVIRONMENT FOR CULTURAL HERITAGE237

©:Michael Kohlhase 356

11.3 The WissKI System: A Virtual Research Environment
for Cultural Heritage

We will now come to the WissKI system itself, which positions itself as a virtual research environ-
ment for cultural heritage. Indeed it is a comprehensive, ontology-based information system for
documenting, studying, and presenting our cultural heritage.
Acknowledgements: The presentation in this Section has been derived from WissKI presentations
by Martin Scholz and Sarah Wagner. In particular, most of the image are copied from those.

WissKI: a Virtual Research Env. for Cultural Heritage

� Requirements: For a virtual research environment for Cultural Heritage

� scientific communication about and documentation of the cultural heritage

� networking knowledge from different disciplines (transdisciplinarity)

� high-quality data acquisition and analysis

� safeguarding authorship, authenticity, persistence

� support of scientific publication

� Development on the WissKI started at FAU Erlangen-Nürnberg by the research
group of Prof. Günther Görtz and is now used in more than 100 DH projects
across Germany.

©:Michael Kohlhase 357

Cultural Artefacts in Databases I

� Example 11.3.1 A typical database for cultural artefacts.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

238 CHAPTER 11. ONTOLOGIES, SEMANTIC WEB, & WISSKI

©:Michael Kohlhase 358

Cultural Artefacts in Databases II

� Example 11.3.2 Another database for cultural artefacts

©:Michael Kohlhase 359

Using the Internet for the Cultural Heritage I

� Idea: Why not use the Internet as a tool

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

11.3. THEWISSKI SYSTEM: A VIRTUAL RESEARCH ENVIRONMENT FOR CULTURAL HERITAGE239

� it is inherently distributed and networked

� gives us instantaneous access to information/images/. . .

� allows collaboration and discussion (wikis, fora, blogs)

©:Michael Kohlhase 360

Documents discussing Cultural Artefacts

� Example 11.3.3 A text about a cultural artefact (an etching by Dürer)

©:Michael Kohlhase 361

Using the Internet for the Cultural Heritage II

� Problems: with using the Internet as a resource

� are often of dubious quality (imprecise, typos, incomplete, . . .)

� Informationen are primarily written for human consumption

� ; not machine-actionable, but full text search works (e.g. Google)
� sometimes we can use established structures (e.g. Infobox in Wikipedia)

� Idea: Use the Semantic Web for Cultural Heritage

� Goal: Make information accessible for humans and machines

� meaning capture by reference to real-world objects

� globally unique identifiers of cultural artefacts

� inference (get out more than you put in!)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

240 CHAPTER 11. ONTOLOGIES, SEMANTIC WEB, & WISSKI

©:Michael Kohlhase 362

RDF for Representing Information about Cultural Artefacts
� flexible schemata (OWL)

� easy data sharing

� open standards, free tools

� semantic search via SPARQL

� Idea: We can use RDF like a
Mindmap: RDF can

� represent relations between
objects

� classify objects (web
resources)

� RDFa for document annota-
tion

Formate: RDF

(Resource Description Framework)

● RDF ist ein Framework zur Repräsentation

von Metadaten

● RDF ist ähnlich einer Mindmap

– Beziehungen zwischen

Dingen (Web Resources)

– Adhoc Verknüpfungen

erstellen

– Dinge klassifizieren

● RDF Datenbank:

Triple Store

Martin Scholz, FAU, Informatik 8 17

� Reference ontologies for interoperability

� SUMO (Suggested Upper Model Ontology) for common knowledge

� FOAF (Friend-of-a-Friend) for persons and relations

� CIDOC-CRM for documentation of cultural heritage

©:Michael Kohlhase 363

CIDOC CRM (Conceptual Reference Model)

� ISO-standardized (ISO-21127)

� Reference ontology for the documentation of cultural heritage (museums)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

11.3. THEWISSKI SYSTEM: A VIRTUAL RESEARCH ENVIRONMENT FOR CULTURAL HERITAGE241

participate in

Actors Conceptual Objects

Physical Entities

Temporal Entities

affect

Types

refine

A
pp

el
la

tio
ns

id
en

tif
y/

na
m

e

location

occur at within

Time-Spans
Places

CIDOC CRM$
Top Level Classes$

© T. Gill$
G. Goerz, FAU, Inf. 8$

©:Michael Kohlhase 364

CIDOC CRM (Conceptual Reference Model)

� Erlangen CRM: Implementation in OWL (enables e.g. Protege support)

Referenzontologie:

Erlangen CRM

Applikationsontologie:

Behaim-Globus

©:Michael Kohlhase 365

WissKI System Architecture

� Software basis: Drupal CMS (Content Management System)

� large, active community, extensible by Drupal modules

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

242 CHAPTER 11. ONTOLOGIES, SEMANTIC WEB, & WISSKI

� WissKI =̂ WissKI-modules (extend Drupal by semantic funcitonality)

06.09.2011 Georg Hohmann: WissKI - CIDOC 2011 - Sibiu, Romania 4

Drupal

Modules

Third-Party

Database

WissKI

Triple Store

Import/Export API

OWL/RDF System

Core

WikiTools

WysiwygAPI

Views

CCK

...

ImageAPI

...

Authority Files Management

Automatic Text Annotator

Discussion System

All software used is available under free software licences.

©:Michael Kohlhase 366

WissKI Information Architecture (Ontologies)

� Ontologies, instances, and export formats

Martin Scholz, FAU, Informatik 8 33

©:Michael Kohlhase 367

Data Presentation in WissKI

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

11.3. THEWISSKI SYSTEM: A VIRTUAL RESEARCH ENVIRONMENT FOR CULTURAL HERITAGE243

� Idea: hide the complexity induced by the ontology from the user

� path constructor: reduction of ontology constructs to ontology paths and on-
tology groups

� Form-based interaction with categories and fields (as in a RDBMS UI)

� Example 11.3.4 (Compressed View)

Komprimierte

Ansicht

� Example 11.3.5 (A WissKI Path Construtor)
Semantified Data Entry Form

06.09.2011 Georg Hohmann: WissKI - CIDOC 2011 - Sibiu, Romania 12

Albrecht Dürer

Nürnberg

E84 Information Carrier
→ P108i was produced by →
E12 Production
→ P14 carried out by →
E21 Person
→ P131 is identified by →
E82 Actor Appellation
→ P3 has note →
„Albrecht Dürer“

E84 Information Carrier
→ P108i was produced by →
E12 Production
→ P7 took place at →
E53 Place
→ P87 is identified by →
E48 Place Name
→ P3 has note →
„Nürnberg “

� Example 11.3.6 (A WissKI Path Construtor as a Table)

244 CHAPTER 11. ONTOLOGIES, SEMANTIC WEB, & WISSKI
WissKI: PfadkonstruktorFeld /

Gruppierung
Ontologienpfad

� Example 11.3.7 (A WissKI Path Construtor as a Graph)

Graph-Ansicht

� Example 11.3.8 (A WissKI Path Construtor as Triples)

Triples-Ansicht

©:Michael Kohlhase 368

Data Input in WissKI

� Idea: hide the complexity induced by the ontology from the curator

� Example 11.3.9 (Form-based data entry) with autocomplete, external
norm authorities

http://creativecommons.org/licenses/by-sa/2.5/

11.3. THEWISSKI SYSTEM: A VIRTUAL RESEARCH ENVIRONMENT FOR CULTURAL HERITAGE245

Maskengestützte

Eingabe

� Example 11.3.10 (Free Text Entry) and fragment annotation
Eingabe und Auszeichnung

von Freitext

©:Michael Kohlhase 369

Free Text Entry and Fragment Annotation

� via a configurable WYSIWYG Editor (Javascript) (MS Word Feeling)

� Text fragment annotations for

� Entities (instances) (categories, relations)

� Semi-automatic annotation by shallow text analysis (suggestions)

� Curator can always add, correct, and delete annotations

� annotations can be harvested and exported.

©:Michael Kohlhase 370

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

246 CHAPTER 11. ONTOLOGIES, SEMANTIC WEB, & WISSKI

WissKI: Shallow Text Analysis

� Shallow Text Analysis in WissKIWissKI: automatische Textanalyse

Martin Scholz, FAU, Informatik 8 45

©:Michael Kohlhase 371

http://creativecommons.org/licenses/by-sa/2.5/

Chapter 12

What did we learn in IWGS?

Outline of IWGS 1:

� programming in python (main tool in IWGS)

� systematics and culture of programming

� program and control structures

� basic data strutures like numbers and strings, character encodings, unicode,
and regular expressions

� digital documents and document processing

� text files

� markup systems, HTML, and CSS

� Web technologies for interactive documents and applications

� Internet infrastructure: web browsers and servers

� PHP, dynamic HTML, Javascript, HTML forms

� Web Application Project (design your own!)

©:Michael Kohlhase 372

Outline of IWGS-II:

� Project Management and Collaboration on Data, Documents, and Software

� Revision Control Systems

� Issue Trackers and Project Wikis

� Data bases

� CRUD operations, DB querying, and python embedding

� XML and JSON for file-based data storage

� Image Processing

247

http://creativecommons.org/licenses/by-sa/2.5/

248 CHAPTER 12. WHAT DID WE LEARN IN IWGS?

� Basics

� Image transformations, Image Understanding

� Legal Foundations of Information Systems

� Copyright & Licensing

� Data Protection (GDPR)

� Ontologies, Semantic Web, and WissKI

� Ontologies (inference ; get out more than you put in)

� Semantic Web Technologies (standardize ontology formats and inference)

� Using SWTech for cultural heritage

©:Michael Kohlhase 373

http://creativecommons.org/licenses/by-sa/2.5/

Bibliography

[All18] Jay Allen. New User Tutorial: Basic Shell Commands. 2018. url: https://www.
liquidweb.com/kb/new- user- tutorial- basic- shell- commands/ (visited on
10/22/2018).

[BLFM05] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform Resource Identifier
(URI): Generic Syntax. RFC 3986. Internet Engineering Task Force (IETF), 2005.
url: http://www.ietf.org/rfc/rfc3986.txt.

[CS14] Scott Chacon and Ben Straub. Pro Git. 2nd Edition. APress, 2014. isbn: 978-1484200773.
url: https://git-scm.com/book/en/v2.

[CSFP04] Ben Collins-Sussman, Brian W. Fitzpatrick, and Michael Pilato. Version Control
With Subversion. Sebastopol, CA, USA: O’Reilly & Associates, Inc., 2004. isbn:
0596004486. url: http://svnbook.red-bean.com.

[CSSa] CSS Specificity. url: https://en.wikipedia.org/wiki/Cascading_Style_Sheets#
Specificity (visited on 12/03/2018).

[CSSb] CSS Tutorial. url: https://www.w3schools.com/css/default.asp (visited on
12/02/2018).

[Dri10] Vincent Driessen. A successful Git branching model. online at http://nvie.com/
posts/a- successful- git- branching- model/. 2010. url: http://nvie.com/
posts/a-successful-git-branching-model/ (visited on 03/19/2015).

[Ecm] ECMAScript Language Specification. ECMA Standard. 5th Edition. Dec. 2009.

[Fie+99] R. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. Internet En-
gineering Task Force (IETF), 1999. url: http://www.ietf.org/rfc/rfc2616.txt.

[Hic+14] Ian Hickson et al.HTML5. A Vocabulary and Associated APIs for HTML and XHTML.
W3C Recommentation. World Wide Web Consortium (W3C), Oct. 28, 2014. url:
http://www.w3.org/TR/html5/.

[HL11] Martin Hilbert and Priscila López. “The World’s Technological Capacity to Store,
Communicate, and Compute Information”. In: Science 331 (2011). doi: 10.1126/
science.1200970. url: http://www.sciencemag.org/content/331/6018/692.
full.pdf.

[HWC] The Hello World Collection. url: http://helloworldcollection.de/ (visited on
11/23/2018).

[Kar] Folgert Karsdorp. Python Programming for the Humanities. url: http : / / www .
karsdorp.io/python-course/ (visited on 10/14/2018).

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathematical documents
[Version 1.2]. LNAI 4180. Springer Verlag, Aug. 2006. url: http://omdoc.org/
pubs/omdoc1.2.pdf.

[Koh08] Michael Kohlhase. “Using LATEX as a Semantic Markup Format”. In: Mathematics in
Computer Science 2.2 (2008), pp. 279–304. url: https://kwarc.info/kohlhase/
papers/mcs08-stex.pdf.

249

https://www.liquidweb.com/kb/new-user-tutorial-basic-shell-commands/
https://www.liquidweb.com/kb/new-user-tutorial-basic-shell-commands/
http://www.ietf.org/rfc/rfc3986.txt
https://git-scm.com/book/en/v2
http://svnbook.red-bean.com
https://en.wikipedia.org/wiki/Cascading_Style_Sheets#Specificity
https://en.wikipedia.org/wiki/Cascading_Style_Sheets#Specificity
https://www.w3schools.com/css/default.asp
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/html5/
https://doi.org/10.1126/science.1200970
https://doi.org/10.1126/science.1200970
http://www.sciencemag.org/content/331/6018/692.full.pdf
http://www.sciencemag.org/content/331/6018/692.full.pdf
http://helloworldcollection.de/
http://www.karsdorp.io/python-course/
http://www.karsdorp.io/python-course/
http://omdoc.org/pubs/omdoc1.2.pdf
http://omdoc.org/pubs/omdoc1.2.pdf
https://kwarc.info/kohlhase/papers/mcs08-stex.pdf
https://kwarc.info/kohlhase/papers/mcs08-stex.pdf

250 BIBLIOGRAPHY

[Koh18] Michael Kohlhase. sTeX: Semantic Markup in TEX/LATEX. Tech. rep. Comprehensive
TEX Archive Network (CTAN), 2018. url: http://www.ctan.org/get/macros/
latex/contrib/stex/sty/stex.pdf.

[LP] Learn Python – Free Interactive Python Tutorial. url: https://www.learnpython.
org/ (visited on 10/24/2018).

[P3D] Python 3 Documentation. url: https://docs.python.org/3/ (visited on 09/02/2014).

[PMDA] Python – MySQL Database Access. url: https : / / www . tutorialspoint . com /
python/python_database_access.htm (visited on 11/18/2018).

[PRR97] G. Probst, St. Raub, and Kai Romhardt. Wissen managen. 4 (2003). Gabler Verlag,
1997.

[PyRegex] Rodolfo Carvalho. PyRegex - Your Python Regular Expression’s Best Buddy. url:
http://www.pyregex.com/ (visited on 12/03/2018).

[Pyt] re – Regular expression operations. online manual at https://docs.python.org/2/
library/re.html. url: https://docs.python.org/2/library/re.html.

[RHJ98] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.0 Specification. W3C Rec-
ommendation REC-html40. World Wide Web Consortium (W3C), Apr. 1998. url:
http://www.w3.org/TR/PR-xml.html.

[SSU04] Susan Schreibman, Ray Siemens, and John Unsworth, eds. A Companion to Digi-
tal Humanities. Wiley-Blackwell, 2004. isbn: 978-1-405-10321-3. url: http://www.
digitalhumanities.org/companion.

[Sth] A Beginner’s Python Tutorial. http://www.sthurlow.com/python/. seen 2014-09-
02. url: http://www.sthurlow.com/python/.

[STPL] Simple Template Engine. url: https : / / bottlepy . org / docs / dev / stpl . html
(visited on 12/08/2018).

[Swe13] Al Sweigart. Invent with Python: Learn to program by making computer games. 2nd ed.
online at http://inventwithpython.com. 2013. isbn: 978-0-9821060-1-3. url: http:
//inventwithpython.com.

[Xam] apache friends - Xampp. http://www.apachefriends.org/en/xampp.html. url:
http://www.apachefriends.org/en/xampp.html.

http://www.ctan.org/get/macros/latex/contrib/stex/sty/stex.pdf
http://www.ctan.org/get/macros/latex/contrib/stex/sty/stex.pdf
https://www.learnpython.org/
https://www.learnpython.org/
https://docs.python.org/3/
https://www.tutorialspoint.com/python/python_database_access.htm
https://www.tutorialspoint.com/python/python_database_access.htm
http://www.pyregex.com/
https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html
http://www.w3.org/TR/PR-xml.html
http://www.digitalhumanities.org/companion
http://www.digitalhumanities.org/companion
http://www.sthurlow.com/python/
http://www.sthurlow.com/python/
https://bottlepy.org/docs/dev/stpl.html
http://inventwithpython.com
http://inventwithpython.com
http://inventwithpython.com
http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html

Index

sparql
endpoint, 234

ABox, 224, 226
absolute

URI, 80
academic

culture, 4
algorithm, 13
American Standard Code for Information Inter-

change, 43
ancestor, 75
anonymous

functions, 35
Anti-Counterfeiting Trade Agreement, 206
architectural

work, 206
argument, 35
arity, 35
assertions, 224, 226
assign, 24
assignee, 131
attachment, 129
attribuition, 212
attribute, 73, 135, 141

node, 73
audiovisual

work, 206
authentication, 127

factor, 127
authority, 79
availability

control, 213
axiom, 226

balanced
bracketing

structure, 73
bare, 120
base, 41

name, 33
bash

console, 21
basic

multilingual

plane, 46
begin

tag, 57
Berne

convention, 205
binary, 14, 42

file, 52
unit

prefix, 54
bit, 54
body, 27, 35
Boolean, 26

expression, 27
border, 65
Bottle

WSGI, 88
box, 65
bracketing

balanced (structure), 73
branch, 27, 75, 119
branching, 27
browsing, 78
bug

report, 129
bugtracker, 128
byte, 54

called, 35
Cascading Style Sheets, 62
central

processing
unit, 12

centralized, 120
character, 46

encoding, 46
checkout, 116
child, 75

table, 141
choreographic

work, 206
civil

law
tradition, 205

class, 36
clone, 121

251

252 INDEX

close, 33
closed

world
assumption, 227

closing
tag, 73

code
block, 89
line, 89
point, 46

column, 135
name, 135
specification, 138

comment, 131
commercial

use, 212
commit, 116
common

law
tradition, 205

compiler, 14
Complex

number, 26
component, 79
compose, 15
composition

principle, 15
computationally

universal, 14
computer

hardware, 12
concept, 222, 226
class, 226
concrete

data, 215
condition, 27
conditional

execution, 27
statement, 27

content, 65
control

flow, 27
structure, 27
word, 56

cookie, 93
copyleft, 211
copyright, 207

holder, 208
infringement, 208

copyrightable
work, 206

copyrighted, 207
CPU, 12
Creative Commons

license, 212
Cryptography, 127
cultural

heritage, 215
cursor, 150
CWA, 227
cypher

text, 127

dashboard, 21
data, 12, 133

controller, 213
definition

language, 138
language, 14
subject, 213
transfer

control, 213
database, 133

browser, 137
management

system, 135
record, 135
schema, 138
view, 148

datum, 133
DBMS, 135
DDL, 138
decimal, 42
declaration, 62

block, 62
decode, 127

key, 127
default

argument, 87
value, 87

DELETE, 83
delete, 139
dependency, 131
derivative

works, 212
derive, 223
derived, 226
descendent, 75
description, 129

logic, 226
development, 125

history, 116
dictionary, 31
diff

file, 116
digit, 41
digital

text, 52

INDEX 253

digits, 41
direct

identifier, 214
discussion, 129
distributed, 120
document

format, 53
markup, 56
object

model, 75, 94
renderer, 52
root, 73
type, 56

DOM, 75, 94
dot

notation, 37
downstream, 121
dramatic

work, 206
DUPLICATE, 131
dynamic

route, 91

element
node, 73

empty
element, 73
tag, 57

encode
key, 127

end
tag, 57

end-user
license

agreement, 209
endode, 127
entity, 141

relationship
diagram, 141

ERD, 141
escape

character, 48
sequence, 48

event, 96
event-handler

attribute, 96
exbi, 54
exception, 145
exploitation

rights, 208
expression, 20, 89
extension, 33

f-string, 48

fact, 226
fair

use
doctrine, 209

feature
branch, 119, 125
request, 129

fetch, 121
field), 135
file, 33

name, 33
system, 33

FIXED, 131
float, 26
FLOSS, 210
folder, 33

name, 33
for

loop, 31
foreign

key, 141
fork, 119, 121, 125
form

action, 60
formatted

string
literal, 48

text, 52
fragment, 79
Free/Libre/Open-Source

Software, 210
function, 35

object, 35
function/argument

notation, 225

GDPR, 213
General

Public
License, 211

GET, 83
gibi, 54
GIT

flow, 125
group, 126

handling, 146
head, 116

revision, 116
headless, 120
height, 65, 75
hexadecimal, 42
higher-order

function, 36

254 INDEX

host, 83
hostname, 83
http

request, 83
hunk, 117
hyperlink, 78
Hypertext

Transfer
Protocol, 83

hypertext, 78
HyperText Markup Language, 57

idempotent, 83
information

access
control, 213

privacy, 212
inheritable, 67
inheritance

factor, 127
inherits, 67
input, 12

control, 213
inserting, 139
integer, 26
intellectual

property, 203
internal, 126
Internet, 78
interpreter, 14
INVALID, 131
IRI, 81
internationalized

resource
identifier, 81

Isa-Hierarchy, 224
ISO-Latin, 45
issue, 128, 129

metadata, 129
number, 131
tracker, 128
tracking

system, 128
iterate, 31
iteration, 31

join, 148

key, 32
keyword

argument, 87
kibi, 54
kwowledge

factor, 127

label, 131
leaf, 75
library, 37
license, 209
licensee, 209
licensor, 209
linked

data, 236
open

data, 236
list, 30
literary

work, 206
local

repository, 121
localhost, 83
LOD, 236
loop, 27
looping, 27

margin, 65
markdown, 129
markup

codes, 56
format, 56

master
branch, 119, 125

mebi, 54
media

query, 71
memory, 12
merging, 117
Metadata, 216
milestones, 131
musical

work, 206

named
wildcard, 91

namespace, 126
declaration, 73

narrative
data, 216

navigating, 78
node

text, 73
null

value, 135

object, 36, 226, 231
obligation

of
separation, 213

octal, 42

INDEX 255

ODF, 53
Office Open XML, 53
ontology, 226

web
language, 233

open, 33
world

assumption, 227
Open Office Format, 53
opening

tag, 73
operator, 20
output, 12
OWA, 227
owner, 204
ownership, 204

factor, 127

padding, 65
page

inspector, 70
parameter, 35

substitution, 151
parent, 75, 117

table, 141
participant, 131
patch, 116
path, 33, 79
pebi, 54
personal

group, 126
rights, 207

personally
identifiable

information, 214
PGS

work, 206
physical

access
control, 213

pictorial, graphic and sculptural
work, 206

PII, 214
plain

text, 52, 127
positional

number
system, 41

POST, 83
predicate, 231
primary

key, 141
primitive, 15
private, 126

program, 12
programming, 16

language, 13
properties, 226
property, 62, 204, 230

right, 204
value, 230

pseudonymized, 214
public, 126

domain, 207
pull

request, 125
punch

card, 44
push, 121
PUT, 83
python

console, 21

quasi-identifier, 214
query, 79, 147

radix, 41
raising, 145
raw

string
literal, 48

RDBMS, 135
RDF

graph, 231
store, 235

read, 33
reference

table, 141
regexp, 49
regular

expression, 49
relation, 141, 223, 226
relationship, 226
relative

URI, 79
release

branch, 119, 125
remote

repository, 121
renewal

provision, 209
repository, 116

hosting
service, 126

management
system, 126

server, 126
represented, 226

256 INDEX

resolution, 131
resource, 230
Resource Description Framework, 230
revision, 116

control
action, 116
system, 116

root, 74
route, 85, 90

filter, 91
function, 90

routing, 85, 90
row, 135
RTFM, 17, 38
rule, 62
RWD, 71
responsive

web
design, 71

safe, 83
scheme, 79
selector, 62
self-join, 148
semantic, 229

network, 222
web, 217

semantics, 15
server-side

scripting
framework, 85

serverside
routing, 90

share
alike, 212

software, 12
sound

recording, 206
source, 14
SQL, 137

injection
attack, 145

SQL-sanitizes, 151
staging, 123

branch, 119
statement, 231
status, 131
storage, 12
stpl

python, 89
stream, 33
string, 26

literal, 48
structured

query
language, 137

subject, 231
symbolic

data, 216
syntax, 15
system

access
control, 213

table, 135
join, 148
name, 135

tag, 57
TBox, 224, 226
tebi, 54
template

engine, 86
file, 86, 89
functions, 89
processing, 86
processor, 86

term
provision, 209

terminology, 224, 226
territory

provision, 209
text

editor, 53
file, 52
node, 73

textual
content, 56

third party
cookies, 93

three-way
merge, 117

title, 129
tree, 74
triple, 231

store, 234
triplestore, 235
trunk, 119
Turing

complete, 14
two-way

merge, 117
type, 26

UCS, 46
UNA, 227
unary, 42

natural
numbers, 40

INDEX 257

unicode
Standard, 46

uniform
resource

identifier, 79
locator, 80
name, 80

unique, 141
name

assumption, 227
universal

character
set, 46

tool, 14
update, 116, 140
upstream, 121
URI, 79

decoding, 81
encoding, 81

URL, 80
URN, 80
user

agent, 83

value, 20, 32, 62, 135
variable, 24

assignment, 24
name, 24

view, 148
vocabulary, 226

web
application, 77
browser, 82
IDE, 20
page, 78
resource, 79
server, 83
site, 78

WFH, 208
width, 65
WONTFIX, 131
word

processor, 53
work made for hire, 208
working

copy, 116
WORKSFORME, 131
World Wide Web, 78
write, 33
WWW, 78
WWWeb, 78

XML

document
tree, 73

path
language, 76

yobi, 54

zebi, 54

	Preface
	Course Concept
	Course Contents
	This Document
	Acknowledgments

	Recorded Syllabus
	1 Preliminaries
	1.1 Administrativa
	1.2 Goals, Culture, & Outline of IWGS
	1.3 About My Lecturing …

	I IWGS-1: Programming, Documents, Web Applications
	2 Introduction to Programming
	2.1 Programming in IWGS
	2.1.1 Introduction to Programming
	2.1.2 Programming in IWGS

	2.2 Programming in Python
	2.2.1 Hello IWGS
	2.2.2 Variables and Types
	2.2.3 Python Control Structures
	2.2.4 Sequences and Iteration
	2.2.5 Input and Output
	2.2.6 Functions and Libraries in Python
	2.2.7 A Final word on Programming in IWGS

	3 Documents as Digital Objects
	3.1 Preliminaries: Data Structures, Documents, and Sizes
	3.1.1 Representing and Manipulating Numbers
	3.1.2 Characters and their Encodings
	3.1.3 Computing with Strings
	3.1.4 Representing & Manipulating Documents on a Computer
	3.1.5 Measuring Sizes of Documents/Units of Information

	3.2 Multimedia Documents on the World Wide Web
	3.2.1 Hypertext Markup Language
	3.2.2 Cascading Stylesheets

	3.3 An Overview over XML Technologies

	4 Web Applications
	4.1 Basic Concepts of the World Wide Web
	4.1.1 Preliminaries
	4.1.2 Addressing on the World Wide Web
	4.1.3 Running the World Wide Web
	4.1.4 HTML Forms and the Web

	4.2 Generating HTML on the Server
	4.2.1 Templating in Python via STPL
	4.2.2 Routing, and Argument Passing in Bottle

	4.3 Dynamic HTML: Client-side Manipulation of HTML Documents
	4.3.1 JavaScript in HTML
	4.3.2 JQuery: Write Less, Do More

	5 What did we learn in IWGS-1?

	II IWGS-II: DH Project Tools
	6 Semester Change-Over
	6.1 Administrativa

	7 Collaboration and Project Management
	7.1 Revision Control Systems
	7.1.1 Dealing with Large/Distributed Projects and Document Collections
	7.1.2 Centralized Version Control
	7.1.3 Distributed Revision Control
	7.1.4 Working with GIT in small Projects
	7.1.5 Working with GIT in large Projects

	7.2 Working with GIT and GitLab/GitHub
	7.2.1 Excursion: Authentication with SSH

	7.3 Bug/Issue Tracking Systems

	8 Databases
	8.1 Introduction
	8.2 Relational Databases
	8.3 SQL – A Standardized Interface to RDBMS
	8.4 ER-Diagrams and Complex Database Schemata
	8.5 RDBMS in Python
	8.6 Excursion: Programming with Exceptions in Python
	8.7 Querying and Views in SQL
	8.8 Querying via Python
	8.9 Project: A Web GUI for a Books Database

	9 Image Processing
	10 Legal Foundations of Information Technology
	10.1 Intellectual Property
	10.2 Copyright
	10.3 Licensing
	10.4 Information Privacy

	11 Ontologies, Semantic Web, & WissKI
	11.1 Documenting our Cultural Heritage
	11.2 Semantic Web Techologies
	11.2.1 The Semantic Web
	11.2.2 Semantic Networks
	11.2.3 Ontologies
	11.2.4 The Semantic Web Technology Stack
	11.2.5 The Linked Open Data Cloud

	11.3 The WissKI System: A Virtual Research Environment for Cultural Heritage

	12 What did we learn in IWGS?

