
Informatische Werkzeuge in den Geistes- und
Sozialwissenschaften 1/2

Prof. Dr. Michael Kohlhase

Knowledge Representation and -Processing
Computer Science, FAU Erlangen-Nürnberg

https://kwarc.info/kohlhase

2025-06-05

https://kwarc.info/kohlhase

ii

Contents

0.1 Preface . i
0.1.1 Course Concept . i
0.1.2 Course Contents . i
0.1.3 Programming Exercises and JuptyterLab as a Web IDE ii
0.1.4 This Document . iii
0.1.5 Acknowledgments . iii

0.2 Recorded Syllabus . iii

1 Preliminaries 1
1.1 Administrativa . 1
1.2 Getting Most out of IWGS . 3
1.3 Learning Resources for IWGS . 5
1.4 Goals, Culture, & Outline of the Course . 7
1.5 ALeA – AI-Supported Learning . 8

I IWGS-1: Programming, Documents, Web Applications 17

2 Introduction to Programming 19
2.1 What is Programming? . 19
2.2 Programming in IWGS . 22
2.3 Programming in Python . 24

2.3.1 Hello IWGS . 24
2.3.2 JupyterLab, a Python Web IDE for IWGS 26
2.3.3 Variables and Types . 31
2.3.4 Python Control Structures . 34

2.4 Some Thoughts about Computers and Programs 38
2.5 More about Python . 40

2.5.1 Sequences and Iteration . 40
2.5.2 Input and Output . 43
2.5.3 Functions and Libraries in Python . 45
2.5.4 A Final word on Programming in IWGS . 47

3 Numbers, Characters, and Strings 49
3.1 Representing and Manipulating Numbers . 49
3.2 Characters and their Encodings: ASCII and UniCode 53
3.3 More on Computing with Strings . 57
3.4 More on Functions in Python . 60
3.5 Regular Expressions: Patterns in Strings . 64

iii

iv CONTENTS

4 Documents as Digital Objects 69
4.1 Representing & Manipulating Documents on a Computer 69
4.2 Measuring Sizes of Documents/Units of Information 72
4.3 Hypertext Markup Language . 74

4.3.1 Introduction . 74
4.3.2 Interacting with HTML in Web Broswers 76
4.3.3 A Worked Example: The Contact Form . 78

4.4 Documents as Trees . 81
4.5 An Overview over XML Technologies . 86

4.5.1 Introduction to XML . 86
4.5.2 Computing with XML in Python . 89
4.5.3 XML Namespaces . 93
4.5.4 XPath: Specifying XML Subtrees . 94

5 Web Applications 97
5.1 Web Applications: The Idea . 97
5.2 Basic Concepts of the World Wide Web . 98

5.2.1 Preliminaries . 98
5.2.2 Addressing on the World Wide Web . 99
5.2.3 Running the World Wide Web . 102

5.3 Recap: HTML Forms Data Transmission . 104
5.4 Generating HTML on the Server . 107

5.4.1 Routing and Argument Passing in Bottle 108
5.4.2 Templating in Python via STPL . 111
5.4.3 Completing the Contact Form . 113

6 Front-end Technologies 117
6.1 Dynamic HTML: Client-side Manipulation of HTML Documents 117

6.1.1 JavaScript in HTML . 118
6.2 Cascading Stylesheets . 123

6.2.1 Separating Content from Layout . 123
6.2.2 Worked Example: The Contact Form . 125
6.2.3 A small but useful Fragment of CSS . 127
6.2.4 CSS Tools . 132

6.3 jQuery: Write Less, Do More . 133

7 What did we learn in IWGS-1? 139

II IWGS-II: DH Project Tools 141

8 Semester Change-Over 143
8.1 Administrativa . 143
8.2 Getting Most out of IWGS . 145
8.3 Learning Resources for IWGS . 148

9 Databases 151
9.1 Introduction . 151
9.2 Relational Databases . 153
9.3 SQL – A Standardized Interface to RDBMS . 155
9.4 ER-Diagrams and Complex Database Schemata . 158
9.5 RDBMS in Python . 161
9.6 Excursion: Programming with Exceptions in Python 163
9.7 Querying and Views in SQL . 165

CONTENTS v

9.8 Querying via Python . 168
9.9 Real-Life Input/Output: XML and JSON . 171

10 Project: A Web GUI for a Books Database 179
10.1 A Basic Web Application . 179
10.2 Asynchronous Loading in Modern Web Apps . 188
10.3 Deploying the Books Application as a Program . 195

11 Image Processing 199
11.1 Basics of Image Processing . 199

11.1.1 Image Representations . 199
11.1.2 Basic Image Processing in Python . 206
11.1.3 Edge Detection . 210
11.1.4 Scalable Vector Graphics . 213

11.2 Project: An Image Annotation Tool . 218
11.3 Fun with Image Operations: CSS Filters . 225

12 Ontologies, Semantic Web for Cultural Heritage 231
12.1 Documenting our Cultural Heritage . 231
12.2 Systems for Documenting the Cultural Heritage . 234
12.3 The Semantic Web . 238
12.4 Semantic Networks and Ontologies . 243
12.5 CIDOC CRM: An Ontology for Cultural Heritage 248
12.6 The Semantic Web Technology Stack . 254
12.7 Ontologies vs. Databases . 261

13 The WissKI System 265
13.1 WissKI extends Drupal . 265
13.2 Dealing with Ontology Paths: The WissKI Pathbuilder 269
13.3 The WissKI Link Block . 273
13.4 Cultural Heritage Research: Querying WissKI Resources 274
13.5 Application Ontologies in WissKI . 277
13.6 The Linked Open Data Cloud . 279

14 Legal Foundations of Information Technology 285
14.1 Intellectual Property . 285
14.2 Copyright . 288
14.3 Licensing . 291
14.4 Information Privacy . 294

15 Version Control, Collaboration, and Project Management 299
15.1 Revision Control Systems . 299

15.1.1 Dealing with Large/Distributed Projects and Document Collections 299
15.1.2 Local Revision Control: Versioning . 302
15.1.3 GIT as a local Revision Control System . 303
15.1.4 Centralized Revision Control: Collaboration 306
15.1.5 GIT as a centralized RCS . 309
15.1.6 Distributed Revision Control . 311
15.1.7 Working with GIT in large Projects . 312

15.2 Working with GIT and GitLab/GitHub . 314
15.3 Excursion: Authentication with SSH . 316
15.4 Bug/Issue Tracking Systems . 318

16 What did we learn in IWGS? 323

vi CONTENTS

III Excursions 329

A Internet Basics 333

B ALeA – AI-Supported Learning 343

0.1. PREFACE i

0.1 Preface

0.1.1 Course Concept

Objective: The course aims at giving students an overview over the variety of digital tools
and methods at the disposal of practitioners of the humanities and social sciences, explaining
their intuitions on how/why they work (the way they do). The main goal of the course is to
empower students for their for the emerging discipline of “digital humanities and social sciences”. In
contrast to a classical course in computer science which lays the mathematical and computational
foundations which will become useful in the long run, we want to introduce methods and tools
that can become useful in the short term and thus generate immediate success and gratification,
thus alleviating the “programming shock” (the brain stops working when in contact with computer
science tools or computer scientists) common in the humanities and social sciences.
Original Context: The course “InformatischeWerkzeuge in den Geistes- und Sozialwissenschaften”
is a first-year, two-semester course in the bachelor program “Digitale Geistes- und Sozialwis-
senschaften” (Digital Humanities and Social Sciences: DigiHumS) at FAU Erlangen-Nürnberg.
Open to External Students: Other bachelor programs are increasingly co-opting the course
as specialization option or a key skill. There is no inherent restriction to DHSS students in this
course.
Prerequisites: There are no formal prerequisites – after all it starts in the first semester for
DigiHumS – but a good deal of motivation, openness towards exploring the weird and wonderful
world of digital methods and tools, and a certain perseverance in the face of not understanding
directly help tremendously and helps having fun in this course.

We do assume that students have a personal laptop, or access to a computer where they have
admin rights, i.e. can install software. This is necessary for solving the homework. In particular,
smartphones and most tablet computers will not suffice.

0.1.2 Course Contents

The course comprises two parts that are given as two-hour/week lectures.
IWGS 1 (the first semester): begins with an introduction to programming in Python which
we will use as the main computational tool in the course; see ??? and ???. In particular we will
cover

• systematics and culture of programming

• program and control structures

• basic data structures like numbers and strings, in particular character encodings, Unicode, and
regular expressions.

Building on this, we will cover

1. digital documents and document processing, in particular; text files, markupsystems, HTML,
and XML; see chapter 4.

2. basic concepts of the World Wide Web; see ???

3. Web technologies for interactive documents and their applications; in particular internet infras-
tructure, web browsers and servers, PHP, dynamic HTML, JavaScript, and CSS; see ???.

IWGS 2 (the second semester): covers selected topics and exemplary tools that will
become useful in the DH. We will cover

1. Databases; in particular entity relationship diagrams, CRUD operations, and querying; see ???.

2. Image processing tools, see ???

ii CONTENTS

3. Using the ontologies and the semantic web for Cultural Heritage; see chapter 12

4. The WissKI System: A Virtual Research Environment for Cultural Heritage; see ???

5. Copyright and Data Privacy as legal foundations of DH tools; see ???

Idea: The first semester lays the foundations by introducing programming in Python and
work our way towards web applications, which form the base of most modern tools in the DH. In
???, we pull all parts together to build a first, simple web application with persistent storage that
manages a set of books.

After an excursion into project management systems, we introduce methods and tools for their
management. Here, we extend our web application to deal with image fragments; actually building
a simple replacement for a prominent DH web application.

Finally, after another excursion – this time into the legal foundations of intellectual property
and data privacy the course culminates in an introduction of the WissKI system, a virtual research
environment for documenting cultural heritage artifacts. Indeed the WissKI system combines all
topics in the course so far.

0.1.3 Programming Exercises and JuptyterLab as a Web IDE

Programming Exercises: Most of the computer tools introduced in this course require pro-
gramming e.g. for configuration, extension, or input preprocessing or work much better when the
user understands the basic underlying concepts at the program level. Therefore we accompany
the course with a set of (programming) exercises (given as homework to the IWGS students) that
allow practicing that.
Web IDEs: In the IWGS course at FAU, which is adressed to students from the humanities and
social sciences, we do not have access to a pool of standardized hardware. Students have to use
their own computing devices for the programming exercises. In any group with diverse hardware,
installing software, standardizing software versions, . . . becomes a serious problem, even if the
group only has 50 members; in IWGS, we need the Python interpreter, a text editor or integrated
development environment (IDE), and various Python libraries. In IWGS we solve this by using a
web IDE, which only presupposes a web browser on student hardware.
Jupyterlab: After experimenting with commercial web IDEs we settled on jupyterLab, even
though it does not focus on IDE features. Jupyter notebooks allow to mix documentation, code
snippets, and exercise text of programming exercises and package them into learning objects that
can be downloaded, interacted with, and submitted easily. jupyterLab acts as the user interface
for managing and editing jupyter notebooks and supplies standardized shell and Python REPLs for
students. The jupyterLab server runs as a virtual machine on the instructor’s hardware. Resource
consumption is minimal in our experience (except in the week before the exam). See [JKI] for a
documentation of how to set up a server for a small course like IWGS.
Limitations of JupyterLab: Of course, students who want to engage in more serious software
development will eventually have to “graduate” to a regular IDE when programs become larger
and more long-lived. But this – and the necessary software engineering skills – is emphatically
not the focus of the IWGS course.
Exercise Notebooks: The exercise notebooks (in notebook format and PDF – unfortunately
only in German) can be found at https://kwarc.info/teaching/IWGS/NB. They comprise

• outright programming exercises that introduce the Python language or allow to play with the
respective concepts in Python

• code reading/debugging exercises where the character of Beatrice Beispiel almost solves inter-
esting problems, and

• development steps towards larger applications, which often involve completing Python skeletons
using the concepts taught in the lectures.

https://kwarc.info/teaching/IWGS/NB

0.2. RECORDED SYLLABUS iii

In all cases, the necessary increments to be supplied by the students are designed to not let
the Python skills become a barrier, but give students the opportunity to develop the necessary
programming skills in passing.

We have themed the exercises with DigiHumS topics to keep them interesting for our stu-
dents.

0.1.4 This Document
Presentation: The document mixes the slides presented in class with comments of the in-
structor to give students a more complete background reference. Licensing: This document
is licensed under a Creative Commons license that requires attribution, allows commercial use,
and allows derivative works as long as these are licensed under the same license. Knowledge
Representation Experiment: This document is also an experiment in knowledge repre-
sentation. Under the hood, it uses the STEX package [Koh08; sTeX], a TEX/LATEX extension for
semantic markup, which allows to export the contents into active documents that adapt to the
reader and can be instrumented with services based on the explicitly represented meaning of the
documents.
Other Resources: The lecture notes will be complemented by a selection of problems (with and
without solutions) that can be used for self-study; see http://kwarc.info/teaching/IWGS.

0.1.5 Acknowledgments
Materials: The materials in this course are partially based on various lectures the author has
given at Jacobs University Bremen in the years 2010-2016, these in turn have been partially based
on materials and courses by Dr. Heinrich Stamerjohanns, PD Dr. Florian Rabe, and Prof. Dr.
Peter Baumann. ??? have been provided by Philipp Kurth and Dr. Frank Bauer.

All course materials have been restructured and semantically annotated in the STEX format,
so that we can base additional semantic services on them.
Teaching Assistants: The organization and material choice in the IWGS has significantly
been influenced by Jonas Betzendahl and Philipp Kurth, who have been very active and dedicated
teaching assistants and have given feedback on all aspects of the course. They have also provided
almost all of the IWGS exercises – see subsection 0.1.3.
DigiHumS Administrators: Jacqueline Klusik-Eckert and Philipp Kurth who used to admin-
istrate the DigiHumS major at FAU together have been helpful in navigating the administrative
waters of an unfamiliar faculty.
WissKI Specialists and Colleagues: ??? has profited from discussions with Peggy Große
and Juliane Hamisch, then two WissKI specialists at FAU. My colleagues Prof. Peter Bell has
provided the idea and data for the “Kirmes Pictures Project” that grounds some of the second
semester.
JupyterLab: The JupyterLab server at https://juptyter.kwarc.info (see ???) has been
developed, operated, and maintained by Jonas Betzendahl. For details see [JKI].
IWGS Students: The following students have submitted corrections and suggestions to this
and earlier versions of the notes: Paul Moritz Wegener, Michael Gräwe.

0.2 Recorded Syllabus
The recorded syllabus – a record the progress of the course in the 1 – is in the course page

in the ALeA system at https://courses.voll-ki.fau.de/course-home/iwgs-1. The table
of contents in the IWGS lecture notes at https://kwarc.info/teaching/IWGS indicates the
material covered to date in yellow.

http://kwarc.info/teaching/IWGS
https://juptyter.kwarc.info
https://courses.voll-ki.fau.de/course-home/iwgs-1
https://kwarc.info/teaching/IWGS

iv CONTENTS

Chapter 1

Preliminaries

1.1 Administrativa
We will now go through the ground rules for the course. This is a kind of a social contract

between the instructor and the students. Both have to keep their side of the deal to make learning
as efficient and painless as possible.

Prerequisites

� General Prerequisites: Motivation, interest, curiosity, hard work.
nothing else! We will teach you all you need to know

� You can do this course if you want! (we will help)

: 1 2025-06-05

Now we come to a topic that is always interesting to the students: the grading scheme: The short
story is that things are complicated. We have to strike a good balance between what is didactically
useful and what is allowed by Bavarian law and the FAU rules.

Assessment, Grades

� Grading Background/Theory: Only modules are graded! (by the law)

� Module “DH-Einführung” (DHE) =̂ courses IWGS1/2, DH-Einführung. (7.5
ECTS)

� DHE module grade ; pass/fail determined by “portfolio” =̂ collection of contributions/as-
sessments.

� Module “DH-Einführung mit Übungen” (DHÜ) =̂ courses IWGS1/2, (10
ECTS)

� DHÜ module grade ; 1-5 50% exam, 50% homework assignments, 10% bonus
points from prepquizzes.

� Assessment Practice: The IWGS assessments in the “portfolio” consist of

� weekly homework assignments, (practice IWGS concepts and tools)

� 60 minutes exam directly after lectures end: ∼ Feb. 10. 2025.

1

2 CHAPTER 1. PRELIMINARIES

� Retake Exam: 60 min exam at the end of the exam break. (∼ May 4. 2025)

� To help you succeed: We offer you

� External motivation: informal points for homeworks and a grade for exam,
(even though only pass/fail relevant in the end)

� weekly online prepquizzes that help you prepare for the course. (check
understanding/preparation)

: 2 2025-06-05

Homework assignments, quizzes, and end-semester exam may seem like a lot of work – and indeed
they are – but you will need practice (getting your hands dirty) to master the IWGS concepts.
We will go into the details next.

Preparedness Quizzes

� PrepQuizzes: Before every lecture we offer a 10 min online quiz – the PrepQuiz
– about the material from the previous week. (∼ 16:0?-16:15 (check on ALeA);
starts in week 2)

� Motivations: We do this to

� keep you prepared and working continuously. (primary)

� bonus points if the exam has ≥ 50% points (potential part of your grade)

� update the ALeA learner model. (fringe benefit)

� The prepquizes will be given in the ALeA system
� https://courses.voll-ki.fau.de/quiz-dash/iwgs-1

� You have to be logged into ALeA! (via FAU IDM)

� You can take the prepquiz on your laptop or phone, . . .

� . . . in the lecture or at home . . .

� . . . via WLAN or 4G Network. (do not overload)

� Prepquizzes will only be available ∼ 16:0?-16:15 (check on ALeA)!

: 3 2025-06-05

https://courses.voll-ki.fau.de/quiz-dash/iwgs-1

1.2. GETTING MOST OUT OF 3

1.2 Getting Most out of IWGS
In this section we will discuss a couple of measures that students may want to consider to get

most out of the IWGS course.
None of the things discussed in this section – homeworks, tutorials, study groups, and at-

tendance – are mandatory (we cannot force you to do them; we offer them to you as learning
opportunities), but most of them are very clearly correlated with success (i.e. passing the exam
and getting a good grade), so taking advantage of them may be in your own interest.

IWGS Homework Assignments

� Goal: Homework assignments reinforce what was taught in lectures.

� Homework Assignments: Small individual problem/programming/proof task

� but take time to solve (at least read them directly ; questions)

� Didactic Intuition: Homework assignments give you material to test your under-
standing and show you how to apply it.

� Homeworks give no points, but without trying you are unlikely to pass the exam.

� Homework Workflow: in ALeA (see below)

� Homework assignments will be published on thursdays: see https://courses.
voll-ki.fau.de/hw/iwgs-1

� Go to the Tutorials to discuss them.

� Submission of solutions via the StudOn system in the week after

� graded by the TA.

� Homework/Tutorial Discipline:

� Start early! (many assignments need more than one evening’s work)

� Don’t start by sitting at a blank screen (talking & study groups help)

� Humans will be trying to understand the text/code/math when grading it.

� Go to the tutorials, discuss with your TA! (they are there for you!)

: 4 2025-06-05

It is very well-established experience that without doing the homework assignments (or something
similar) on your own, you will not master the concepts, you will not even be able to ask sensible
questions, and take very little home from the course. Just sitting in the course and nodding is not
enough! If you have questions please make sure you discuss them with the instructor, the
teaching assistants, or your fellow students. There are three sensible venues for such discussions:
online in the lectures, in the tutorials, which we discuss now, or in the course forum – see below.
Finally, it is always a very good idea to form study groups with your friends.

IWGS Tutorials

� Weekly tutorials and homework assignments (first one in week two)

https://courses.voll-ki.fau.de/hw/iwgs-1
https://courses.voll-ki.fau.de/hw/iwgs-1

4 CHAPTER 1. PRELIMINARIES

�

Tutor: (Master Student in CS)

� Dirk Böhme: dirk.boehme@fau.de

They know what they are doing and really want to help
you learn! (dedicated to DH)

� Dirk will also grade the homework assignments for the DFÜ students.
(grade-relevant)

� Goal 1: Reinforce what was taught in class (important pillar of the IWGS
concept)

� Goal 2: Let you experiment with Python (think of them as Programming Labs)

� Life-saving Advice: go to your tutorial, and prepare it by having looked at the
lecture notes and the homework assignments

� Inverted Classroom: the latest craze in didactics (works well if done right)

in IWGS: lecture + homework assignments + tutorials =̂ inverted classroom

: 5 2025-06-05

Collaboration

� Definition 1.2.1. Collaboration (or cooperation) is the process of groups of agents
acting together for common, mutual benefit, as opposed to acting in competition
for selfish benefit. In a collaboration, every agent contributes to the common goal
and benefits from the contributions of others.

� In learning situations, the benefit is “better learning”.

� Observation: In collaborative learning, the overall result can be significantly better
than in competitive learning.

� Good Practice: Form study groups. (long- or short-term)

1. Those learners who work/help most, learn most!

2. Freeloaders – individuals who only watch – learn very little!

� It is OK to collaborate on homework assignments in IWGS! (no bonus points)

� Choose your study group well! (ALeA helps via the study buddy feature)

: 6 2025-06-05

As we said above, almost all of the components of the IWGS course are optional. That even
applies to attendance. But make no mistake, attendance is important to most of you. Let me
explain, . . .

Do I need to attend the IWGS Lectures

� Attendance is not mandatory for the IWGS course. (official version)

dirk.boehme@fau.de

1.3. LEARNING RESOURCES FOR 5

� Note: There are two ways of learning: (both are OK, your mileage may vary)

� Approach B: Read a book/papers (here: lecture notes)

� Approach I: come to the lectures, be involved, interrupt the instructor whenever
you have a question.

The only advantage of I over B is that books/papers do not answer questions

� Approach S: come to the lectures and sleep does not work!

� The closer you get to research, the more we need to discuss!

: 7 2025-06-05

1.3 Learning Resources for IWGS

Course Notes, Forum, Matrix

� Lecture notes will be posted at https://kwarc.info/teaching/IWGS

� We mostly prepare/update them as we go along (semantically preloaded ;
research resource)

� Please report any errors/shortcomings you notice. (improve for the
group/successors)

� StudOn Forum: For announcements – https://www.studon.fau.de/studon/goto.
php?target=lcode_3oqqBg7g

� Matrix Channel: https://matrix.to/#/#iwgs:fau.de for questions, discus-
sion with instructors and among your fellow students. (your channel, use
it!)

Login via FAU IDM ; instructions

� Course Videos are at at https://www.fau.tv/course/id/4020.

� Do not let the videos mislead you: Coming to class is highly correlated with
passing the exam!

: 8 2025-06-05

FAU has issued a very insightful guide on using lecture videos. It is a good idea to heed these
recommendations, even if they seem annoying at first.

Practical recommendations on Lecture Videos

� Excellent Guide: [Nor+18a] (German version at [Nor+18b])

https://kwarc.info/teaching/IWGS
https://www.studon.fau.de/studon/goto.php?target=lcode_3oqqBg7g
https://www.studon.fau.de/studon/goto.php?target=lcode_3oqqBg7g
https://matrix.to/#/#iwgs:fau.de
https://www.anleitungen.rrze.fau.de/serverdienste/matrix-an-der-fau/erste-schritte/
https://www.fau.tv/course/id/4020

6 CHAPTER 1. PRELIMINARIES

 

Attend lectures.

Take notes.

Be specific.

Catch up.

Ask for help.

Don’t cut corners.

Using lecture
recordings:
A guide for students

: 9 2025-06-05

NOT a Resource for : LLMs – AI-tools like ChatGPT

� Definition 1.3.1. A large language model (LLM) is a computational model capable
of language generation or other natural language processing tasks.

� Example 1.3.2. OpenAI’s GPT, Google’s Bard, and Meta’s Llama.

� Definition 1.3.3. A chatbot is a software application or web interface that is
designed to mimic human conversation through text or voice interactions. Modern
chatbots are usually based on LLMs.

� Example 1.3.4 (ChatGPT talks about IWGS). (Aha, where does this come
from?)

1.4. GOALS, CULTURE, & OUTLINE OF THE COURSE 7

� Example 1.3.5 (In the IWGS exam). ChatGPT scores almost perfectly (master
solution quality)

� ChatGPT can pass the exam . . . (We could award it a Master’s degree)

� But can you? (the IWGS exams will be in person on paper)

You will only pass the exam, if you can do IWGS yourself!

� Intuition: AI tools like GhatGPT, CoPilot, etc. (see also [She24])

� can help you solve problems, (valuable tools in production situations)

� hinders learning if used for homeworks/quizzes, etc. (like driving instead of
jogging)

� What (not) to do: (to get most of the brave new AI-supported world)

� try out these tools to get a first-hand intuition what they can/cannot do

� challenge yourself while learning so that you can also do it (mind over matter!)

: 10 2025-06-05

1.4 Goals, Culture, & Outline of the Course

Goals of “IWGS”

� Goal: giving students an overview over the variety of digital tools and methods

� Goal: explaining their intuitions on how/why they work (the way they do).

� Goal: empower students for their for the emerging field “digital humanities and
social sciences”.

� NON-Goal: Laying the mathematical and computational foundations which will
become useful in the long run.

� Method: Introduce methods/tools that can become useful in the short term

� generate immediate success and gratification, (important for motivation)

� alleviate the “programming shock” (the brain stops working when in contact
with computer science tools or computer scientists) common in the humanities
and social sciences.

: 11 2025-06-05

One of the most important tasks in an inter/trans-disciplinary enterprise – and that what “digital
humanities” is, fundamentally – is to understand the disciplinary language, intuitions and foun-
dational assumptions of the respective other side. Assuming that most students are more versed
in the “humanities and social sciences” side we want to try to give an overview of the “computer
science culture”.

Academic Culture in Computer Science

� Definition 1.4.1. The academic culture is the overall style of working, research,

8 CHAPTER 1. PRELIMINARIES

and discussion in an academic field.

� Observation 1.4.2. There are significant differences in the academic culture be-
tween computer science, the humanities and the social sciences.

� Computer science is an engineering discipline (we build things)

� given a problem we look for a (mathematical) model, we can think with

� once we have one, we try to re-express it with fewer “primitives” (concepts)

� once we have, we generalize it (make it more widely applicable)

� only then do we implement it in a program (ideally)

Design of versatile, usable, and elegant tools is an important concern

� Almost all technical literature is in English. (technical vocabulary too)

� CSlings love shallow hierarchies. (no personality cult; alle per Du)

: 12 2025-06-05

Please keep in mind that – self-awareness is always difficult – the list above may be incomplete
and clouded by mirror-gazing. We now come to the concrete topics we want to cover in IWGS.
The guiding intuition for the selection is to concentrate on techniques that may become useful in
day-to-day DH work – not CS completeness or teaching efficiency.

Outline of IWGS 1:

� Programming in Python: (main tool in IWGS)

� Systematics and culture of programming

� Program and control structures

� Basic data structures like numbers and wordsstring, character encodings, uni-
code, and regular expressions

� Electronic documents and document processing:

� text files

� markup systems, HTML, and CSS

� XML: Documents are trees.

� Web technologies for interactive documents and web applications

� internet infrastructure: web browsers and server

� server-side computation: bottle routing and

� client-side interaction: dynamic HTML, JavaScript, HTML forms

� Web application project (fill in the blanks to obtain a working web app)

: 13 2025-06-05

1.5 ALeA – AI-Supported Learning

In this section we introduce the ALeA (Adaptive Learning Assistant) system, a learning support

1.5. ALEA – AI-SUPPORTED LEARNING 9

system we will use to support students in IWGS.

ALeA: Adaptive Learning Assistant

� Idea: Use AI methods to help teach/learn AI (AI4AI)

� Concretely: Provide HTML versions of the IWGS slides/lecture notes and embed
learning support services into them. (for pre/postparation of lectures)

� Definition 1.5.1. Call a document active, iff it is interactive and adapts to specific
information needs of the readers. (lecture notes on steroids)

� Intuition: ALeA serves active course materials. (PDF mostly inactive)

� Goal: Make ALeA more like a instructor + study group than like a book!

� Example 1.5.2 (Course Notes). =̂ Slides + Comments

; yellow parts in table of contents (left) already covered in lectures.

: 14 2025-06-05

The central idea in the AI4AI approach – using AI to support learning AI – and thus the ALeA
system is that we want to make course materials – i.e. what we give to students for preparing and
postparing lectures – more like teachers and study groups (only available 24/7) than like static
books.

VoLL-KI Portal at https://courses.voll-ki.fau.de

� Portal for ALeA Courses: https://courses.voll-ki.fau.de

� IWGS in ALeA: https://courses.voll-ki.fau.de/course-home/iwgs-1

https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de/course-home/iwgs-1

10 CHAPTER 1. PRELIMINARIES

� All details for the course.

� recorded syllabus (keep track of material covered in course)

� syllabus of the last semesters (for over/preview)

� ALeA Status: The ALeA system is deployed at FAU for over 1000 students
taking eight courses

� (some) students use the system actively (our logs tell us)

� reviews are mostly positive/enthusiastic (error reports pour in)

: 15 2025-06-05

The ALeA IWGS page is the central entry point for working with the ALeA system. You can
get to all the components of the system, including two presentations of the course contents (notes-
and slides-centric ones), the flashcards, the localized forum, and the quiz dashboard.
We now come to the heart of the ALeA system: its learning support services, which we will now
briefly introduce. Note that this presentation is not really sufficient to undertstand what you may
be getting out of them, you will have to try them, and interact with them sufficiently that the
learner model can get a good estimate of your competencies to adapt the results to you.

Learning Support Services in ALeA

� Idea: Embed learning support services into active course materials.

� Example 1.5.3 (Definition on Hover). Hovering on a (cyan) term reference
reminds us of its definition. (even works recursively)

� Example 1.5.4 (More Definitions on Click). Clicking on a (cyan) term reference
shows us more definitions from other contexts.

1.5. ALEA – AI-SUPPORTED LEARNING 11

� Example 1.5.5 (Guided Tour). A guided tour for a concept c assembles defini-

12 CHAPTER 1. PRELIMINARIES

tions/etc. into a self-contained mini-course culminating at c.

c = count-
able ;

� . . . your idea here . . . (the sky is the limit)

: 16 2025-06-05

Note that this is only an initial collection of learning support services, we are constantly working

on additional ones. Look out for feature notifications () on the upper right hand of
the ALeA screen.

(Practice/Remedial) Problems Everywhere

� Problem: Learning requires a mix of understanding and test-driven practice.

� Idea: ALeA supplies targeted practice problems everywhere.

� Concretely: Revision markers at the end of sections.

� A relatively non-intrusive overview over competency

� Click to extend it for details.

� Practice problems as usual. (targeted to your specific competency)

1.5. ALEA – AI-SUPPORTED LEARNING 13

: 17 2025-06-05

While the learning support services up to now have been adressed to individual learners, we
now turn to services addressed to communities of learners, ranging from study groups with three
learners, to whole courses, and even – eventually – all the alumni of a course, if they have not
de-registered from ALeA.

Currently, the community aspect of ALeA only consists in localized interactions with the course
materials.
The ALeA system uses the semantic structure of the course materials to localize some interactions
that are otherwise often from separate applications. Here we see two:

1. one for reporting content errors – and thus making the material better for all learners – and‘’

2. a localized course forum, where forum threads can be attached to learning objects.

Localized Interactions with the Community

� Selecting text brings up localized – i.e. anchored on the selection – interactions:
� post a (public) comment or take (private) note

� report an error to the course authors/instructors

� Localized comments induce a thread in the ALeA forum (like the StudOn
Forum, but targeted towards specific learning objects.)

14 CHAPTER 1. PRELIMINARIES

� Answering questions gives karma =̂ a public measure of user helpfulness.

� Notes can be anonymous (; generate no karma)

: 18 2025-06-05

We can use the same four models discussed in the space of guided tours to deploy additional
learning support services, which we now discuss.

New Feature: Drilling with Flashcards

� Flashcards challenge you with a task (term/problem) on the front. . .

. . . and the definition/answer is on the back.

� Self-assessment updates the learner model (before/after)

� Idea: Challenge yourself to a card stack, keep drilling/assessing flashcards until
the learner model eliminates all.

� Bonus: Flashcards can be generated from existing semantic markup (educational
equivalent to free beer)

: 19 2025-06-05

We have already seen above how the learner model can drive the drilling with flashcards. It can
also be used for the configuration of card stacks by configuring a domain e.g. a section in the
course materials and a competency threshold. We now come to a very important issue
that we always face when we do AI systems that interface with humans. Most web technology
companies that take one the approach “the user pays for the services with their personal data,
which is sold on” or integrate advertising for renumeration. Both are not acceptable in university
setting.

But abstaining from monetizing personal data still leaves the problem how to protect it from
intentional or accidental misuse. Even though the GDPR has quite extensive exceptions for
research, the ALeA system – a research prototype – adheres to the principles and mandates of
the GDPR. In particular it makes sure that personal data of the learners is only used in learning
support services directly or indirectly initiated by the learners themselves.

Learner Data and Privacy in ALeA

1.5. ALEA – AI-SUPPORTED LEARNING 15

� Observation: Learning support services in ALeA use the learner model; they

� need the learner model data to adapt to the invidivual learner!

� collect learner interaction data (to update the learner model)

� Consequence: You need to be logged in (via your FAU IDM credentials) for useful
learning support services!

� Problem: Learner model data is highly sensitive personal data!

� ALeA Promise: The ALeA team does the utmost to keep your personal data
safe. (SSO via FAU IDM/eduGAIN, ALeA trust zone)

� ALeA Privacy Axioms:

1. ALeA only collects learner models data about logged in users.

2. Personally identifiable learner model data is only accessible to its subject
(delegation possible)

3. Learners can always query the learner model about its data.

4. All learner model data can be purged without negative consequences (except
usability deterioration)

5. Logging into ALeA is completely optional.

� Observation: Authentication for bonus quizzes are somewhat less optional, but
you can always purge the learner model later.

: 20 2025-06-05

So, now that you have an overview over what the ALeA system can do for you, let us see what
you have to concretely do to be able to use it.

Concrete Todos for ALeA

� Recall: You will use ALeA for the prepquizzes (or lose bonus points)
All other use is optional. (but AI-supported pre/postparation can be helpful)

� To use the ALeA system, you will have to log in via SSO: (do it now)

� go to https://courses.voll-ki.fau.de/course-home/iwgs-1,

� in the upper right hand corner you see ,

� log in via your FAU IDM credentials. (you should have them by now)

� You get access to your personal ALeA profile via
(plus feature notifications, manual, and language chooser)

� Problem: Most ALeA services depend on the learner model. (to adapt to you)

� Solution: Initialize your learner model with your educational history!

� Concretely: enter taken CS courses (FAU equivalents) and grades.

� ALeA uses that to estimate your CS/AI competencies. (for your benefit)

� then ALeA knows about you; I don’t! (ALeA trust zone)

https://courses.voll-ki.fau.de/course-home/iwgs-1

16 CHAPTER 1. PRELIMINARIES

: 21 2025-06-05

Even if you did not understand some of the AI jargon or the underlying methods (yet), you
should be good to go for using the ALeA system in your day-to-day work.

Part I

IWGS-1: Programming, Documents,
Web Applications

17

Chapter 2

Introduction to Programming

2.1 What is Programming?

Programming is an important and distinctive part of “Informatische Werkzeuge in den Geistes-
und Sozialwissenschaften” – the topic of this course. Before we delve into learning Python, we will
review some of the basics of computing to situate the discussion.
To understand programming, it is important to realize that computers are universal machines.
Unlike a conventional tool e.g a spade – which has a limited number of purposes/behaviors –
digging holes in case of a spade, maybe hitting someone over the head, a computer can be given
arbitrary1 purposes/behaviors by specifying them in form of a program.
This notion of a program as a behavior specification for an universal machine is so powerful, that
the field of computer science is centered around studying it – and what we can do with programs,
this includes

i) storing and manipulating data about the world,

ii) encoding, generating, and interpreting image, audio, and video,

iii) transporting information for communication,

iv) representing knowledge and reasoning,

v) transforming, optimizing, and verifying other programs,

vi) learning patterns in data and predicting the future from the past.

Computer Hardware/Software & Programming

� Definition 2.1.1. Computers consist of hardware and software.

� Definition 2.1.2. Hardware consists of

1as long as they are “computable”, not all are.

19

20 CHAPTER 2. INTRODUCTION TO PROGRAMMING

� a central processing unit (CPU)

� memory: e.g. RAM, ROM, . . .

� storage devices: e.g. Disks,
SSD, tape, . . .

� input: e.g. keyboard, mouse,
touchscreen, . . .

� output: e.g. screen, earphone,
printer, . . .

� Definition 2.1.3. Software consists of
� data that represents objects and their

relationships in the world

� programs that inputs, manipulates,
outputs data

data

hardware

program

� Remark: Hardware stores data and runs programs.

: 22 2025-06-05

A universal machine has to have – so experience in computer science shows certain distinctive
parts.

• A CPU that consists of a

– control unit that interprets the program and controls the flow of instructions and
– a arithmetic/logic unit (ALU) that does the actual computations internally.

• Memory that allows the system to store data during runtime (volatile storage; usually RAM) and
between runs of the system (persistant storage; usually hard disks, solid state disks, magnetic
tapes, or optical media).

• I/O devices for the communication with the user and other computers.

With these components we can build various kinds of universal machines; these range from thought
experiments like Turing machines, to today’s general purpose computers like your laptop with
various embedded systems (wristwatches, Internet routers, airbag controllers, . . .) in-between.
Note that – given enough fantasy – the human brain has the same components. Indeed the human
mind is a universal machine – we can think whatever we want, react to the environment, and are
not limited to particular behaviors. There is a sub-field of computer science that studies this: AI
(artificial intelligence). In this analogy, the brain is the “hardware” –sometimes called “wetware”
because it is not made of hard silicon or “meat machine”2. It is instructional to think about what
the program and the data might be in this analogy.

Programming Languages

� Programming =̂ writing programs (Telling the computer what to do)

� Remark 2.1.4. The computer does exactly as told

� extremely fast extremely reliable

� completely stupid: will not do what you mean unless you tell it exactly

2Marvin Minsky; one of the founding fathers of the field of artificial intelligence

2.1. WHAT IS PROGRAMMING? 21

� Programming can be extremely fun/frustrating/addictive (try it)

� Definition 2.1.5. A programming language is the formal language in which we
write programs (express an algorithm concretely)

� formal, symbolic, precise meaning (a machine must understand it)

� There are lots of programming languages

� design huge effort in computer science

� all programming languages equally strong

� each is more or less appropriate for a specific task depending on the circum-
stances

� Lots of programming paradigms: imperative, functional, logic, object oriented pro-
gramming.

: 23 2025-06-05

AI studies human intelligence with the premise that the brain is a computational machine and
that intelligence is a “program” running on it. In particular, the working hypothesis is that we can
“program” intelligence. Even though AI has many successful applications, it has not succeeded
in creating a machine that exhibits the equivalent to general human intelligence, so the jury is
still out whether the AI hypothesis is true or not. In any case it is a fascinating area of scientific
inquiry.
Note: This has an immediate consequence for the discussion in our course. Even though com-
puters can execute programs very efficiently, you should not expect them to “think” like a human.
In particular, they will execute programs exactly as you have written them. This has two conse-
quences:

• the behavior of programs is – in principle – predictable

• all errors of program behavior are your own (the programmer’s)

In computer science, we distinguish two levels on which we can talk about programs. The more
general is the level of algorithms, which is independent of the concrete programming language.
Algorithms express the general ideas and flow of computation and can be realized in various
languages, but are all equivalent – in terms of the algorithms they implement.
As they are not bound to programming languages algorithms transcend them, and we can find
them in our daily lives, e.g. as sequences of instructions like recipes, game instructions, and the
like. This should make algorithms quite familiar; the only difference of programs is that they are
written down in an unambiguous syntax that a computer can understand.

Program Execution

� Definition 2.1.6. Algorithm: informal description of what to do (good enough for
humans)

� Example 2.1.7.

� Example 2.1.8. Program: computer processable version, e.g. in Python.

for x in range(0, 3):

22 CHAPTER 2. INTRODUCTION TO PROGRAMMING

print ("we tell you",x,"time(s)")

� Definition 2.1.9. Interpreter: reads a program and executes it directly

� special case: interactive interpretation (lets you experiment easily)

� Definition 2.1.10. Compiler: translates a program (the source) into another pro-
gram (the binary) in a much simpler programming language for optimized execution
on hardware directly.

� Remark 2.1.11. Compilers are efficient, but more cumbersome for development.

: 24 2025-06-05

We have two kinds of programming languages: one which the CPU can execute directly – these
are very very difficult for humans to understand and maintain – and higher-level ones that are
understandable by humans. If we want to use high-level languages – and we do, then we need to
have some way bridging the language gap: this is what compilers and interpreters do.

2.2 Programming in IWGS
After the general introduction to programming in ???, we now instantiate the situation to the

IWGS course, where we use Python as the primary programming language.

Programming in IWGS: Python

� We will use Python as the programming language in this course

� We cover just enough Python, so that you

� understand the joy and principle of programming

� can play with objects we present in IWGS.

� After a general introduction we will introduce language features as we go along

� For more information on Python (homework/preparation)

RTFM (=̂ “read those fine manuals”)
� RTFM Resources: There are also lots of good tutorials on the web,

� I like [LP; Sth; Swe13];

� but also see the language documentation [P3D].

� [Kar] is an introduction geared to the (digital) humanities

: 25 2025-06-05

Note that IWGS is not a programming course, which concentrates on teaching a pro-
gramming language in all it gory detail. Instead we want to use the IWGS lectures to introduce
the necessary concepts and use the tutorials to introduce additional language features based on
these.

2.2. PROGRAMMING IN 23

But Seriously. . . Learning programming in IWGS

� The IWGS course teaches you

� a general introduction to programming and Python (next)

� various useful concepts and how they can be done in Python (in principle)

� The IWGS tutorials:

� teach the actual skill and joy of programming (hacking ̸= security breach)

� supply you with problems so you can practice that.

� Richard Stallman (MIT) on Hacking: “What they had in common was mainly
love of excellence and programming. They wanted to make their programs that they
used be as good as they could. They also wanted to make them do neat things.
They wanted to be able to do something in a more exciting way than anyone believed
possible and show “Look how wonderful this is. I bet you didn’t believe this could
be done.”

� So, ... Let’s hack

: 26 2025-06-05

However, the result would probably be the following:

2am in the Kollegienhaus CIP Pool

: 27 2025-06-05

If we just start hacking before we fully understand the problem, chances are very good that we
will waste time going down blind alleys, and garden paths, instead of attacking problems. So the
main motto of this course is:

24 CHAPTER 2. INTRODUCTION TO PROGRAMMING

no, let’s think

� We have to fully understand the problem, our tools, and the solution space first
(That is what the IWGS course is for)

� read Richard Stallman’s quote carefully ; problem understanding is a crucial
prerequisite for hacking.

� “The GIGO Principle: Garbage In, Garbage Out” (– ca. 1967)

� “Applets, Not Crapletstm” (– ca. 1997)

: 28 2025-06-05

2.3 Programming in Python

In this section we will introduce the basics of the Python language. Python will be used as
our means to express algorithms and to explore the computational properties of the objects we
introduce in IWGS.

2.3.1 Hello IWGS
Before we get into the syntax and meaning of Python, let us recap why we chose this particular
language for IWGS.

Python in a Nutshell

� Why Python?:
� general purpose programming language

� imperative, interactive interpreter

� syntax very easy to learn (spend more time on problem solving)

� scales well:

� easy for beginners to write simple programs,
� but advanced software can be written with it as well.

� Interactive mode: The Python shell IDLE3

� For the eager (optional):

Establish a Python interpreter (version 3.7) (not 2.?.?, that has different syntax)

� install Python from http://python.org (for offline use)

� make sure (tick box) that the python executable is added to the path. (makes
shell interaction much easier)

: 29 2025-06-05

Installing Python: Python can be installed from http://python.org ; “Downloads”, as a
MSWindows installer or a macOS disk image. For linux it is best installed via the package manager,
e.g. using

http://python.org
http://python.org

2.3. PROGRAMMING IN PYTHON 25

sudo apt−get update
sudo apt−get install python3.7

The download will install the Python interpreter and the Python shell IDLE3 that can be used
for interacting with the interpreter directly.

It is important that you make sure (tick the box in the Windows installer) that the python
executable is added to the path. In the shell1, you can then use the command

python ⟨⟨filename⟩⟩

to run the python file ⟨⟨filename⟩⟩. This is better than using the windows-specific

py ⟨⟨filename⟩⟩

which does not need the python interpreter on the path as we will see later.

Arithmetic Expressions in Python

� Expressions are “programs” that compute values (here: numbers)

� Integers (numbers without a decimal point)

� operators: addition (+), subtraction (), multiplica-
tion (∗), division (/), integer division (//), remain-
der/modulo (%), . . .

� Division yields a float

� Floats (numbers with a decimal point)

� Operators: integer below (floor), integer above
(ceil), exponential (exp), square root (sqrt), . . .

� Numbers are values, i.e. data objects that can be
computed with. (reference the last computed one with
_)

� Definition 2.3.1. Expressions are created from values
(and other expressions) via operators.

� Observation: The Python interpreter simplifies ex-
pressions to values by computation.

: 30 2025-06-05

Before we go on to learn more basic Python operators and instructions, we address an important
general topic: comments in program code.

Comments in Python

� Generally: It is highly advisable to insert comments into your programs,

� especially, if others are going to read your code, (TAs/graders)

� you may very well be one of the “others” yourself, (in a year’s time)

� writing comments first helps you organize your thoughts.

1EdNote: fully introduce the concept of a shell in the next round

26 CHAPTER 2. INTRODUCTION TO PROGRAMMING

� Comments are ignored by the Python interpreter but are useful information for the
programmer.

� In Python: there are two kinds of comments

� Single line comments start with a #

� Multiline comments start and end with three quotes (single or double: """ or
’’’)

� Idea: Use comments to

� specify what the intended input/output behavior of the program or fragment

� give the idea of the algorithm achieves this behavior.

� specify any assumptions about the context (do we need some file to exist)

� document whether the program changes the context.

� document any known limitations or errors in your code.

: 31 2025-06-05

2.3.2 JupyterLab, a Python Web IDE for IWGS
In IWGS, we want to use the jupyterLab cloud service. This runs the Python interpreter on a
cloud server and gives you a browser window with a web IDE, which you can use for interacting
with the interpreter. You will have to make an account there; details to follow.

jupyterLab A Cloud IDE for Python

� For helping you it would be good if the TAs could access to your code

� Idea: Use a web IDE (a web based integrated development environment): jupyter-
Lab, which you can use for interacting with the interpreter.

� We will use jupyterLab for IWGS. (but you can also use Python locally)

� Homework: Set up jupyterLab

� make an account at http://jupyter.kwarc.info

: 32 2025-06-05

The advantage of a cloud IDE like jupyterLab for a course like IWGS is that you do not need
any installation, cannot lose your files, and your teachers (the course instructor and the teaching
assistants) can see (and even directly interact with) the your run time environment. This gives us
a much more controlled setting and we can help you better.
Both IDLE3 as well as jupyterLab come with an integrated editor for writing Python programs.
These editors gives you Python syntax highlighting, and interpreter and debugger integration. In
short, IDLE3 and jupyterLab are integrated development environments for Python. Let us now go
through the interface of the jupyterLab IDE.

jupyterLab Components

� Definition 2.3.2. The jupyterLab dashboard gives you access to all components.

http://jupyter.kwarc.info

2.3. PROGRAMMING IN PYTHON 27

� Definition 2.3.3. The jupyterLab python console, i.e. a Python interpreter in your
browser. (use this for Python interaction and testing.)

� Definition 2.3.4. The jupyterLab terminal, i.e. a UNIX shell in your browser. (use
this for managing files)

28 CHAPTER 2. INTRODUCTION TO PROGRAMMING

� Definition 2.3.5. A shell is a command line interface for accessing the services of
a computer’s operating system.

There are multiple shell implementations: sh, csh, bash, zsh; they differ in advanced
features.

� Useful shell commands: See e.g. [All18] for a basic tutorial

� ls: “list” the files in this directory

� mkdir: “make” folder (called “directory”)

� pwd: “print working directory” (where am I)

� cd ⟨⟨dirname⟩⟩: “change directory”

� if ⟨⟨dirname⟩⟩ = ..: one up in the directory tree
� empty ⟨⟨dirname⟩⟩: go to your home directory.

� rm ⟨⟨name⟩⟩: remove file/directory

� cp/mv ⟨⟨filename⟩⟩ ⟨⟨newname⟩⟩: copy to or rename

� cp/mv ⟨⟨filename⟩⟩ ⟨⟨dirname⟩⟩: copy or move to

� . . . see [All18] for more . . .

: 33 2025-06-05

Now that we understand our tools, we can wrote our first program: Traditionally, this is a
“hello-world program” (see [HWC] for a description and a list of hello world programs in hundreds
of languages) which just prints the string “Hello World” to the console. For Python, this is very
simple as we can see below. We use this program to explain the concept of a program as a (text)
file, which can be started from the console.

A first program in Python

� A classic “Hello World” program: start your python console, type print("Hello IWGS").
(print a string)

2.3. PROGRAMMING IN PYTHON 29

� Alternatively:

1. got to the jupyterLab dashboard select “Text File”,

2. Type your program,

3. Save the file as hello.py

4. Go to your terminal and type python3 hello.py

3’ Alternatively: go to your python console and type (in the same directory)

import hello

: 34 2025-06-05

We have seen that we can just call a program from the terminal, if we stored it in a file. In fact,
we can do better: we can make our program behave like a native shell instruction.

1. The file extension .py is only used by convention, we can leave it out and simply call the file
hello.

2. Then we can add a special Python comment in the first line

python ⟨⟨filename⟩⟩

which the terminal interprets as “call the program python3 on me”.

3. Finally, we make the file hello executable, i.e. tell the terminal the file should behave like a
shell command by issuing

chmod u+x booksapp

in the directory where the file hello is stored.

30 CHAPTER 2. INTRODUCTION TO PROGRAMMING

4. We add the line
export PATH="./:${PATH}"

to the file .bashrc. This tells the terminal where to look for programs (here the respective current
directory called .)

With this simple recipe we could in principle extend the repertoire of instructions of the terminal
and automate repetitive tasks.
We now come to the signature component of jupyterLab: jupyter notebooks. They take the
important practice of documenting code to a whole new level. Instead of just allowing comments
in program files, they provide rich text cells, in which we can write elaborate text.

Jupyter Notebooks

� Definition 2.3.6. Jupyter notebooks are documents that combine live runnable
code with rich, narrative text (for comments and explanations).

� Definition 2.3.7. Jupyter notebooks consist of cells which come in three forms:

� a raw cell shows text as is,

� a markdown cell interprets the contents as markdown text, (later more)

� a code cell interprets the contents as (e.g. Python) code.

� Cells can be executed by pressing “shift enter”. (Just “enter” gives a new line)

� Idea: Jupyter notebooks act as a REPL, just as IDLE3, but allows

� documentation in raw and markdown cells and

� changing and re-executing existing cells.

: 35 2025-06-05

Jupyter Notebooks

� Example 2.3.8 (Showing off Cells in a Notebook).

2.3. PROGRAMMING IN PYTHON 31

: 36 2025-06-05

Markdown a simple Markup Format Generating HTML
.

� Idea: We can translate between markup formats.

� Definition 2.3.9. Markdown is a family of markup formats whose control words
are unobtrusive and easy to write in a text editor. It is intended to be converted to
HTML and other formats for display.

� Example 2.3.10. Markdown is used in applications that want to make user input
easy and efficient, e.g. wikis and issue tracking systems.

� Workflow: Users write markdown, which is formatted to HTML and then served
for display.

� A good cheet-sheet for markdown control words can be found at https://github.
com/adam-p/markdown-here/wiki/Markdown-Cheatsheet.

: 37 2025-06-05

2.3.3 Variables and Types
And we start with a general feature of programming languages: we can give names to values and
use them multiple times. Conceptually, we are introducing shortcuts, and in reality, we are giving
ourselves a way of storing values in memory so that we can reference them later.

Variables in Python

� Idea: Values (of expressions) can be given a name for later reference.

� Definition 2.3.11. A variable is an identifier (the variable name) that references

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

32 CHAPTER 2. INTRODUCTION TO PROGRAMMING

a memory location which contains a value. Storing the value v into the memory of
a variable x is called assigning v to x.

A variable must be initialized (assigned an initial value) before it can be (usefully)
referenced.

� Note: In Python a variable name

� must start with letter or _,

� cannot be a Python keyword

� is case-sensitive (foobar, FooBar, and fooBar are different variables)

� A variable name can be used in expressions everywhere its value could be.

� Definition 2.3.12 (in Python). A variable assignment ⟨⟨var⟩⟩=⟨⟨val⟩⟩ assigns a
new value to a variable.

� Example 2.3.13 (Playing with Python Variables).

: 38 2025-06-05

Let us fortify our intuition about variables with some examples. The first shows that we sometimes
need variables to store objects out of the way and the second one that we can use variables to
assemble intermeditate results.

Variables in Python: Extended Example

� Example 2.3.14 (Swapping Variables). To exchange the values of two variables,
we have to cache the first in an auxiliary variable.
a = 45
b= 0
print("a =", a, "b =", b)
print("Swap the contents of a and b")
swap = a
a= b
b = swap
print("a =", a, "b =", b)

Here we see the first example of a Python script, i.e. a series of Python commands,
that jointly perform an action (and communicates it to the user).

� Example 2.3.15 (Variables for Storing Intermediate Variables).

>>> x = "OhGott"
>>> y = x+x+x
>>> z = y+y+y

2.3. PROGRAMMING IN PYTHON 33

>>> z
’OhGottOhGottOhGottOhGottOhGottOhGottOhGottOhGottOhGott’

: 39 2025-06-05

If we use variables to assemble intermediate results, we can use telling names to document what
these intermediate objects are – something we did not do well in Example 2.3.15; but admittely,
the meaning of the objects in this contrived example is questionable.
The next phenomenon in Python is also common to many (but not all) programming languages:
expressions are classified by the kind of objects their values are. Objects can be simple (i.e. of a
basic type; Python has five of these) or complex, i.e. composed of other objects; we will go into
that below.

Data Types in Python

� Recall: Python programs process data (values), which can be combined by oper-
ators and variable into expressions.

� Data types group data and tell the interpreter what to expect

� 1, 2, 3, etc. are data of type “integer”

� "hello" is data of type “string”

� Data types determine which operators can be applied

� In Python, every values has a type, variables can have any type, but can only be
assigned values of their type.

� Definition 2.3.16. Python has the following five basic types

Data type Keyword contains Examples
integers int bounded integers 1, −5, 0, . . .
floats float floating point numbers 1.2, .125, −1.0, . . .
strings str strings "Hello", ’Hello’, "123", ’a’, . . .

Booleans bool truth values True, False
complexes complex complex numbers 2+3j,. . .

� We will ecounter more types later.

: 40 2025-06-05

We will now see what we can – and cannot – do with data types, this becomes most noticable in
variable assignments which establishes a type for the variable (this cannot be change any more)
and in the application of operators to arguments (which have to be of the correct type).

Data Types in Python (continued)

� The type of a variable is automatically determined in the first variable assignment
(before that the variable is unbound)

>>> firstVariable = 23 # integer
>>> type(firstVariable)
<class ’int’>
weight = 3.45 # float
first = ’Hello’ # str

34 CHAPTER 2. INTRODUCTION TO PROGRAMMING

� Hint: The Python function type to computes the type (don’t worry about the
class bit)

: 41 2025-06-05

Data Types in Python (continued)

� Observation 2.3.17. Python is strongly typed, i.e. types have to match

� Use data type conversion functions int(), float(), complex(), bool(), and str() to
adjust types

� Example 2.3.18 (Type Errors and Type Coersion).

>>> 3+"hello"
Traceback (most recent call last):

File "<pyshell#1>", line 1, in <module>
3+"hello"

TypeError: unsupported operand type(s) for +: ’int’ and ’str’
>>> str(4)+"hello"
’4Hello’

: 42 2025-06-05

2.3.4 Python Control Structures
So far, we only know how to make programs that are a simple sequence of instructions no repe-
titions, no alternative pathways. Example 2.3.13 is a perfect example. We will now change that
by introducing control structures, i.e complex program instructions that change the control flow
of the program.

Conditionals and Loops

� Problem: Up to now programs seem to execute all the instructions in sequence,
from the first to the last. (a linear program)

� Definition 2.3.19. The control flow of a program is the sequence of execution
of the program instructions. It is specified via special program instructions called
control structures.

� Definition 2.3.20. Conditional execution (also called branching) allows to exe-
cute (or not to execute) certain parts of a program (the branches) depending on
a condition. We call a code block that enables conditional execution a conditional
statement or conditional.

� Definition 2.3.21. A condition is a Boolean expression in a control structure.

� Definition 2.3.22. A loop is a control structure that allows to execute certain parts
of a program (the body) multiple times depending on the value of its conditions. A
break instruction terminate the loop irrespective of the value of the condition.

� Example 2.3.23. In Python, conditions are constructed by applying a Boolean
operator to arguments, e.g. 3>5, x==3, x!=3, . . .

2.3. PROGRAMMING IN PYTHON 35

or by combining simpler conditions by Boolean connectives or, and, and not (using
brakets if necessary), e.g. x>5 or x<3

: 43 2025-06-05

After this general introduction – conditional execution and loops are supported by all pro-
gramming languages in some form – we will see how this is realized in Python

Conditionals in Python

� Definition 2.3.24. Conditional execution via if/else statements

if ⟨⟨condition⟩⟩ :
⟨⟨then-part⟩⟩

else :
⟨⟨else-part⟩⟩

⟨⟨more code⟩⟩

Block 1: continuation

Block 2: continuation

Block 3

Block 2: start

Block 1: start

Start

cond

then else

end

True False

� ⟨⟨then-part⟩⟩ and ⟨⟨else-part⟩⟩ have to be indented equally. (e.g. 4 blanks)

� If control structures are nested they need to be further indented consistently.

: 44 2025-06-05

Python uses indenting to signify nesting of body parts in control structures – and other structures
as we will see later. This is a very un-typical syntactic choice in programming languages, which
typically use brackets, braces, or other paired delimiters to indicate nesting and give the freedom
of choice in indenting to programmers. This freedom is so ingrained in programming practice, that
we emphasize the difference here. The following example shows conditional execution in action.

Conditional Execution Example

� Example 2.3.25 (Empathy in Python).
answer = input("Are you happy? ")
if answer == ’No’ or answer == ’no’:

print("Have a chocolate!")
else:

print("Good!")
print("Can I help you with something else?")

Note the indenting of the body parts.

� BTW: input is an operator that prints its argument string, waits for user input,
and returns that.

: 45 2025-06-05

But conditional execution in Python has one more trick up its sleeve: what we can do with two
branches, we can do with more as well.

36 CHAPTER 2. INTRODUCTION TO PROGRAMMING

Variant: Multiple Branches

� Making multiple branches is similar
if ⟨⟨condition⟩⟩ :

⟨⟨then-part⟩⟩
elif ⟨⟨condition⟩⟩ :

⟨⟨other then-part⟩⟩
else :

⟨⟨else-part⟩⟩

� The there can be more than one elif clause.

� The ⟨⟨condition⟩⟩s are evaluated from top to bottom and the ⟨⟨then-part⟩⟩ of the
first one that comes out true is executed. Then the whole control structure is
exited.

� multiple branches could achieved by nested if/else structures.

� Example 2.3.26 (Better Empathy in Python). In Example 2.3.25 we print Good!
even if the input is e.g. I feel terrible, so extend if/else by
elif answer == ’Yes’ or answer == ’yes’ :

print("Good!")
else :

print("I do not understand your answer")

: 46 2025-06-05

Note that the elif is just “syntactic sugar” that does not add anything new to the language: we
could have expressed the same functionality as two nested if/else statements
if ⟨⟨condition⟩⟩ :

⟨⟨then-part⟩⟩
if ⟨⟨condition⟩⟩ :

⟨⟨other then-part⟩⟩
else :

⟨⟨else-part⟩⟩
But this would have introduced an additional layer of nesting (per elif clause in the original). The
nested syntax also obscures the fact that all branches are essentially equal.
Now let us see the syntax for loops in Python.

Loops in Python

� Definition 2.3.27. Python makes loops via while blocks
� syntax of the while loop

while ⟨⟨condition⟩⟩ :
⟨⟨body⟩⟩

⟨⟨more code⟩⟩

� breaking out of loops with
break

� skipping the current body with
continue

� ⟨⟨body⟩⟩ must be indented!

Start

cond body

end

True

False

2.3. PROGRAMMING IN PYTHON 37

: 47 2025-06-05

As always we will fortify our intuition with a couple of small examples.

Examples of Loops

� Example 2.3.28 (Counting in python).

Prints out 0,1,2,3,4
count = 0
while count < 5:

print(count)
count += 1 # This is the same as count = count + 1

This is the standard pattern for using while: using a loop variable (here count) and
incrementing it in every pass through the loop.

� Example 2.3.29 (Breaking an unbounded Loop).

Prints out 0,1,2,3,4 but uses break
count = 0
while True:

print(count)
count += 1
if count >= 5:

break

: 48 2025-06-05

Example 2.3.28 and Example 2.3.29 do the same thing: counting from zero to four, but using
different mechanisms. This is normal in programming there is not “one correct solution”. But the
first solution is the “standard one”, and is preferred, sind it is shorter and more readable. The
break functionality shown off in the second one is still very useful. Take for instance the problem
of computing the product of the numbers -10 to 1.000.000. The naive implementation of this is
on the left below which does a lot of unnecessary work, because as soon was we passed 0, then the
whole product must be zero. A more efficient implementation is on the right which breaks after
seeing the first zero.

Direct Implementation More Efficient

count = −10
prod = 1
while count < 1000000:

prod ∗= count
count += 1

count = −10
prod = 1
while count <= 1000000:

prod ∗= count
if count = 0 :

break
count += 1

Examples of Loops

� Example 2.3.30 (Exceptions in the Loop).

Prints out only odd numbers − 1,3,5,7,9
count = 0
while count < 10

38 CHAPTER 2. INTRODUCTION TO PROGRAMMING

count += 1
Check if x is even
if count % 2 == 0:

continue
print(count)

: 49 2025-06-05

2.4 Some Thoughts about Computers and Programs
Finally, we want to go over a couple of general issues pertaining to programs and (universal)
machines. We will just go over them to get the intuitions – which are central for understand-
ing computer science and let the lecture “Theoretical Computer Science” fill in the details and
justifications.

Computers as Universal Machines (a taste of theoretical CS)

� Observation: Computers are universal tools: their behavior is determined by a
program; they can do anything, the program specifies.

� Context: Tools in most other disciplines are specific to particular tasks. (except
in e.g. ribosomes in cell biology)

� Remark 2.4.1 (Deep Fundamental Result). There are things no computer can
compute.

� Example 2.4.2. There cannot be a program that decides whether another program
will terminate in finite time.

� Remark 2.4.3 (Church-Turing Hypothesis). There are two classes of languages

� Turing complete (or computationally universal) ones that can compute what is
theoretically possible.

� data languages that cannot. (but describe data sets)

� Observation 2.4.4 (Turing Equivalence). All programming languages are (made
to be) universal, so they can compute exactly the same. (compilers/interpreters
exist)

� . . . in particular . . . : Everybody who tells you that one programming languages
is the best has no idea what they’re talking about (though differences in efficiency,
convenience, and beauty exist)

: 50 2025-06-05

Artificial Intelligence

� Another Universal Tool: The human mind. (We can understand/learn
anything.)

� Strong Artificial Intelligence: claims that the brain is just another computer.

2.4. SOME THOUGHTS ABOUT COMPUTERS AND PROGRAMS 39

� If that is true then

� the human mind underlies the same restrictions as computational machines

� we may be able to find the “mind-program”.

: 51 2025-06-05

We now come to one of the most important, but maybe least acknowledged principles of program-
ming languages: The principle of compositionality. To fully understand it, we need to fix some
fundamental vocabulary.

Top Principle of Programming: Compositionality

� Observation 2.4.5. Modern programming languages compose various primitives
and give them a pleasing, concise, and uniform syntax.

� Question: What does all of this even mean?

� Definition 2.4.6. In a programming language, a primitive is a “basic unit of
processing”, i.e. the simplest element that can be given a procedural meaning (its
semantics) of its own.

� Definition 2.4.7 (Compositionality). All programming languages provide com-
position principles that allow to compose smaller program fragments into larger ones
in such a way, that the semantics of the larger is determined by the semantics of
the smaller ones and that of the composition principle employed.

� Observation 2.4.8. The semantics of a programming language, is determined by
the meaning of its primitives and composition principles.

� Definition 2.4.9. Programming language syntax describes the surface form of the
program: the admissible character sequences. It is also a composition of the syntax
for the primitives.

: 52 2025-06-05

All of this is very abstract – it has to be as we have not fixed a programming language yet and
you will only understand the true impact of the compositionality principle over time and with
programming experience. Let us now see what this means concretely for our course.

Consequences of Compositionality

� Observation 2.4.10. To understand a programming language, we (only) have to
understand its primitives, composition principles, and their syntax.

� Definition 2.4.11. The “art of programming” consists of composing the primitives
of a programming language.

� Observation 2.4.12. We only need very few – about half a dozen – primitives to
obtain a Turing complete programming language.

� Observation 2.4.13. The space of program behaviors we can achieve by program-
ming is infinites large nonetheless.

� Remark 2.4.14. More primitives make programming more convenient.

40 CHAPTER 2. INTRODUCTION TO PROGRAMMING

� Remark 2.4.15. Primitives in one language can be composed in others.

: 53 2025-06-05

A note on Programming: Little vs. Large Languages

� Observation 2.4.16. Most such concepts can be studied in isolations, and some
can be given a syntax on their own. (standardization)

� Consequence: If we understand the concepts and syntax of the sublanguages,
then learning another programming language is relatively easy.

: 54 2025-06-05

2.5 More about Python

After we have had some general thoughts about prorgramming in general, we can get back to
concrete Python facilities and idoms. We will concentrate on those – there are lots and lots more
– that are useful in IWGS.

2.5.1 Sequences and Iteration
We now come to a commonly used class of objects in Python: sequences, such as lists, sets,

tuples, and ranges as well as dictionaries.
They are used for storing, accumulating, and accessing objects in various ways in programs.

They all have in common, that they can be used for iteration, thus creating a uniform interface
to similar functionality.

Lists in Python

� Definition 2.5.1. A list is a finite sequence of objects, its elements.

� In programming languages, lists are used for locally storing and passing around
collections of objects.

� In Python lists can be written as a sequence of comma separated expressions be-
tween square brackets.

� Definition 2.5.2. We call [⟨⟨seq⟩⟩] the list constructor.

� Example 2.5.3 (Three lists). Elements can be of different types in Python

list1 = [’physics’, ’chemistry’, 1997, 2000];
list2 = [1, 2, 3, 4, 5];
list3 = ["a", "b", "c", "d"];

� Example 2.5.4. List elements can be accessed by specifying ranges

>>> list1[0]
’physics’

>>> list1[−2]
1997

>>> list2[1:4]
[2, 3, 4]

2.5. MORE ABOUT PYTHON 41

� Definition 2.5.5. Selecting sublists by specifying start and/or end is called list
slicing.

: 55 2025-06-05

As Example 2.5.4 shows, Python treats counting in list accessors somewhat peculiarly. It starts
counting with zero when counting from the front and with one when counting from the back.

But lists are not the only things in Python that can be accessed in the way shown in ???. Python
introduces a special class of types the sequence types.

Sequences in Python

� Definition 2.5.6. Python has more types that behave just like lists, they are called
sequence types.

� The most important sequence types for IWGS are lists, strings and ranges.

� Definition 2.5.7. A range is a finite sequence of numbers it can conveniently
be constructed by the range function: range(⟨⟨start⟩⟩,⟨⟨stop⟩⟩,⟨⟨step⟩⟩) constructs a
range from ⟨⟨start⟩⟩ (inclusive) to ⟨⟨stop⟩⟩ (exclusive) with step size ⟨⟨step⟩⟩.

� Example 2.5.8. Lists can be constructed from ranges:

>>> list(range(1,6,2))
[1,3,5]

range(1,6,2) makes a “range” from 1 to 6 with step 2, list makes it a list.

: 56 2025-06-05

Ranges are useful, because they are easily and flexibly constructed for iteration (up next).
You may ask yourselves, why Python has a special data structure for ranges. The main rea-
son is that we can treat them more efficiently than lists. Consider the range constructed by
range(1,1000000000), i.e. the numbers between 1 and a billion. If we were to represent this as
a list, then this would probably take most of the memory available on your laptop, even if we
do not do anything with it. But in the range, Python only needs to actually create those parts
of the range that it actually needs. Say we want to access the 1000th element, then the Python
interpreter can just compute that as 1+1000 when it needs to (and free the memory when that
is no longer needed); in particular, the interpreter does even have to create all the intermediate
elements.

Iterating over Sequences in Python

� Definition 2.5.9. A for loop iterates a program fragment over a sequence; we call
the process iteration. Python uses the following general syntax:

for ⟨⟨var⟩⟩ in ⟨⟨range⟩⟩:
⟨⟨body⟩⟩

⟨⟨other code⟩⟩

� Example 2.5.10. A range function makes an sequence over which we can iterate.

for x in range(0, 3):
print ("we tell you",x,"time(s)")

42 CHAPTER 2. INTRODUCTION TO PROGRAMMING

� Example 2.5.11. Lists and strings can also act as sequences. (try it)

print("Let me reverse something for you!")
x = input("please type somegthing!")
for i in reversed(list(x)):

print(i)

: 57 2025-06-05

But lists are not the only data structure for collections of objects. Python provides others that
are organized slightly differently for different applications. We give a particularly useful example
here: dictionaries.

Python Dictionaries

� Definition 2.5.12. A dictionary is an unordered collection of ordered pairs (k,v),
where we call k the key and v the value.

� In Python dictionaries are written with curly brackets, pairs are separated by com-
mata, and the value is separated from the key by a colon.

� Example 2.5.13. Dictionaries can be used for various purposes,

painting = {
"artist": "Rembrandt",
"title": "The Night Watch",
"year": 1642

}

dict_de_en = {
"Maus": "mouse",
"Ast": "branch",
"Klavier": "piano"

}

enum = {
1: "copy",
2: "paste",
3: "adapt"

}
� Dictionaries and sequences can be nested, e.g. for a list of paintings.

: 58 2025-06-05

Dictionaries give “keyed access” to collections of data: we can access a value via its key. In
particular, we do not have to remember the position of a value in the collection.

Interacting with Dictionaries

� Example 2.5.14 (Dictionary operations).

� painting["title"] returns the value for the key "title" in the dictionary painting.

� painting["title"]="De Nachtwacht" changes the value for the key "title" to its
original Dutch (or adds item "title": "De Nachtwacht")

� Example 2.5.15 (Printing Keys and Values).

keys values key/value pairs

for x in thisdict.keys():
print(x)

for x in thisdict.values():
print(x)

for x, y in thisdict.items():
print(x, y)

� More dictionary commands:

� if ⟨⟨key⟩⟩ in ⟨⟨dict⟩⟩ checks whether ⟨⟨key⟩⟩ is a key in ⟨⟨dict⟩⟩.
� painting.pop("title") removes the "title" item from painting.

2.5. MORE ABOUT PYTHON 43

: 59 2025-06-05

Note that thisdict.keys has a short form: we can just iterate over the keys using for x in thisdict:.

2.5.2 Input and Output
The next topic of our stroll through Python is one that is more practically useful than intrinsi-

cally interesting: file input/output. Together with the regular expressions this allows us to write
programs that transform files.

Input/Output in Python

� Recall: The CPU communicates with the user through input devices like keyboards
and output devices like the screen.

� Programming languages provide special instructions for this.

� In Python we have already seen

� input(⟨⟨prompt⟩⟩) for input from the keyboard, it returns a string.

� print(⟨⟨objects⟩⟩,sep=⟨⟨separator⟩⟩,end=⟨⟨endchar⟩⟩) for output to the screen.

� But computers also supply another object to input from and output to (up next)

: 60 2025-06-05

We now fix some of the nomenclature surrounding files and file systems provided by most operating
system. Most programming languages provide their own bindings that allow to manipulate files.

Secondary (Disk) Storage; Files, Folders, etc.

� Definition 2.5.16. A file is a resource for recording data in a storage device. File
size is measured in bit.

� Definition 2.5.17. Files are identified by a file name which usually consists of a
base name and an extension separated by a dot character.

Files are managed by a file system which organize them hierarchically into named
folders and locate them by a path; a sequence of folder names. The file name and
the path together fully identify a file.

� Some file systems restrict the characters allowed in the file name and/or lengths of
the base name or extension.

� Definition 2.5.18. Once a file has been opened, the CPU can write to it and read
from it. After use a file should be closed to protect it from accidental reads and
writes.

: 61 2025-06-05

Many operating systems use files as a primary computational metaphor, also treating other
resources like files. This leads to an abstraction of files called streams, which encompass files
as well as e.g. keyboards, printers, and the screen, which are seen as objects that can be read
from (keyboards) and written to (e.g. screens). This practice allows flexible use of programs,
e.g. re-directing a the (screen) output of a program to a file by simply changing the output
stream.

44 CHAPTER 2. INTRODUCTION TO PROGRAMMING

Now we can come to the Python bindings for the file input/output operations. They are rather
straightforward.

Disk Input/Output in Python

� Definition 2.5.19. Python uses file objects to encapsulate all file input/output
functionality.

� In Python we have special instructions for dealing with files:

� open(⟨⟨path⟩⟩,⟨⟨iospec⟩⟩) returns a file object f ; ⟨⟨iospec⟩⟩ is one of r (read only;
the default), a (append =̂ write to the end), and r+ (read/write).

� f .read() reads the file represented by file object f into a string.

� f .readline() reads a single line from the file (including the newline character \n)
otherwise returns the empty string ’’.

� f .write(⟨⟨str⟩⟩) appends the string ⟨⟨str⟩⟩ to the end of f , returns the number of
characters written.

� f .close() closes f to protect it from accidental reads and writes.

� Example 2.5.20 (Duplicating the contents of a file).

f = open(’workfile’,’r+’)
filecontents = f.read()
f.write(filecontents)

: 62 2025-06-05

The only interesting thing is that we have to declare our intentions when we opening a file. This
allows the file system to protect the files against unintended actions and also optimize the data
transfer to the storage devices involved.
Let us now look at some examples to fortify our intuition about what we can do with files in
practice.

Disk Input/Output in Python (continued)

� Example 2.5.21 (Reading a file linewise).

>>> f.readline()
’This is the first line of the file.\n’
>>> f.readline()
’Second line of the file\n’
>>> f.readline()
’’

>>> for line in f:
... print(line, end=’’)
...
This is the first line of the file.
Second line of the file

� If you want to read all the lines of a file in a list you can also use list(f) or
f.readlines().

� For reading a Python file we use the import(⟨⟨basename⟩⟩) instruction

� it searches for the file ⟨⟨basename⟩⟩.py, loads it, interprets it as Python code,
and directly executes it.

� primarily used for loading Python libraries (additional functionality)

2.5. MORE ABOUT PYTHON 45

� also useful for loading Python-encoded data (e.g. dictionaries)

: 63 2025-06-05

The code snippet on the right of Example 2.5.21 show that files can be iterated over using a for
loop: the file object is implicitly converted into a sequences of strings via the readline method.

2.5.3 Functions and Libraries in Python
We now come to a general device for organizing and modularizing code provided by most pro-
gramming languages, including Python. Like variables, functions give names to Python objects –
here fragments of code – and thus make them reusable in other contexts.

Functions in Python (Introduction)

� Observation: Sometimes programming tasks are repetitive

print("Hello Peter, how are you today? How about some IWGS?")
print("Hello Roxana, how are you today? How about some IWGS?")
print("Hello Frodo, how are you today? How about some IWGS?)
...

� Idea: We can automate the repetitive part by functions.

� Example 2.5.22.We encapsultate the greeting functionality in a function:

def greet (who):
print("Hello ",who," how are you today? How about some IWGS?")

greet("Peter")
greet("Roxana")
greet("Frodo")
greet(input ("Who are you?"))
...

and use it repeatedly.

� Functions can be a very powerful tool for structuring and documenting programs
(if used correctly)

: 64 2025-06-05

Functions in Python (Example)

� Example 2.5.23 (Multilingual Greeting). Given a value for lang

def greet (who):
if lang == ’en’ :

print("Hello ",who," how are you today? How about some IWGS?")
elif lang == ’de’ :

print("Sehr geehrter ",who,", wie geht’s heute? Wie waere es mit IWGS?")

we can even localize (i.e. adapt to the language specified in lang) the greeting.

: 65 2025-06-05

We can now make the intuitions above formal and give the exact Python syntax of functions.

46 CHAPTER 2. INTRODUCTION TO PROGRAMMING

Functions in Python (Definition)

� Definition 2.5.24. A Python function is defined by a code snippet of the form

def f (p1,. . .,pn):
"""docstring, what does this function do on parameters

:param pi: document arguments}
"""
⟨⟨body⟩⟩ # it can contain p1, . . . , pn, and even f
return ⟨⟨value⟩⟩ # value of the function call (e.g text or number)

⟨⟨more code⟩⟩

� the indented part is called the body of f , (: whitespace matters in Python)

� the pi are called parameters, and n the arity of f .

A function f can be called on arguments a1, . . ., an by writing the expression
f(a1, . . ., an). This executes the body of f where the (formal) parameters pi are
replaced by the arguments ai.

: 66 2025-06-05

We now come to a peculiarity of an object-oriented language like Python: it treats types as
first-class entities, which can be defined by the user – they are called classes then. We will not
go into that here, since we will not need classes in IWGS, but have have to briefly talk about
methods, which are essentially functions, but have a special notation.
Python provides two kinds of function-like facilities: regular functions as discussed above and
methods, which come with Python classes. We will not attempt a presentation of object oriented
programming and its particular implementation in Python this would be beyond the mandate of
the IWGS course – but give a brief introduction that is sufficient to use methods.

Functions vs. Methods in Python

� There is another mechanism that is similar to functions in Python. (we briefly
introduce it here to delineate)

� Background: Actually, the types from ??? are classes, . . .

� Definition 2.5.25. In Python all values belong to a class, which provide special
functions we call methods. Values are also called objects, to emphasise class as-
pects. Method application is written with dot notation: ⟨⟨obj⟩⟩.⟨⟨meth⟩⟩(⟨⟨args⟩⟩)
corresponds to ⟨⟨meth⟩⟩(⟨⟨obj⟩⟩,⟨⟨args⟩⟩).

� Example 2.5.26. Finding the position of a substring

>>> s = ’This is a Python string’ # s is an object of class ’str’
>>> type(s)
<class ’str’> # see, I told you so
>>> s.index(’Python’) # dot notation (index is a string method)
10

: 67 2025-06-05

2.5. MORE ABOUT PYTHON 47

Functions vs. Methods in Python

� Example 2.5.27 (Functions vs. Methods).

>>> sorted(’1376254’) # no dots!
[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’]

>>> mylist = [3, 1, 2]
>>> mylist.sort() # dot notation
>>> mylist
[1, 2, 3]

� Intuition: Only methods can change objects, functions return changed copies (of
the objects they act on).

: 68 2025-06-05

For the purposes of IWGS, it is sufficient to remember that methods are a special kind of functions
that employ the dot notation. They are provided by the class of an object.
It is very natural to want to share successful and useful code with others, be it collaborators in
a larger project or company, or the respective community at large. Given what we have learned
so far this is easy to do: we write up the code in a (collection of) Python files, and make them
available for download. Then others can simply load them via the import command.

Python Libraries

� Idea: Functions, classes, and methods are re usable, so why not package them up
for others to use.

� Definition 2.5.28. A Python library is a Python file with a collection of functions,
classes, and methods. It can be imported (i.e. loaded and interpreted as a Python
program fragment) via the import command.

� There are ≥ 150.000 libraries for Python (=̂ packages on http://pypi.org)

� search for them at http://pypi.org (e.g. 815 packages for “music”)

� install them with pip install ⟨⟨package name⟩⟩
� look at how they were done (all have links to source code)

� maybe even contribute back (report issues, improve code, . . .) (open source)

: 69 2025-06-05

The Python community is an open source community, therefore many developers organize their
code into libraries and license them under open source licenses.

Software repositories like PyPI (the Python Package Index) collect (references to) and make
them for the package manager pip, a program that downloads Python libraries and installs them
on the local machine where the import command can find them.

2.5.4 A Final word on Programming in IWGS
This leaves us with a final word on the way we will handle prgramming in this course: IWGS is

not a programming course, and we expect you to pick up Python from the IWGS and web/book
resources. So, recall:

http://pypi.org
http://pypi.org

48 CHAPTER 2. INTRODUCTION TO PROGRAMMING

For more information on Python

RTFM (=̂ “read the fine manuals”)

: 70 2025-06-05

Our very quick introduction to Python is intended to present the very basics of programming
and get IWGS students off the ground, so that they can start using programs as tools for the
humanities and social sciences.

But there is a lot more to the core functionality Python than our very quick introduction
showed, and on top of that there is a wealth of specialized packages and libraries for almost all
computational and practical needs.

Chapter 3

Numbers, Characters, and Strings

In our basic introduction to programming above we have convinced ourselves that we need some
basic objects to compute with, e.g. Boolean values for conditionals, numbers to calculate with,
and characters to form strings for input and output. In this chapter we will look at how these are
represented in the computer, which in principle can only store binary digits voltage or no noltage
on a wire – which we think of as 1 and 0.
In this chapter we look at the representation of the basic data structures of programming languages
(numbers and characters) in the computer; Boolean values (“True” and “False”) can directly be
encoded as binary digits.

Documents as Digital Objects

� Question: how do texts get onto the computer?(after all, computers can only do
0/1)

� Hint: At the most basic level, texts are just sequences of characters.

� Answer: We have to encode characters as sequences of bits.

� We will go into how:

� documents are represented as sequences of characters,

� characters are represented as numbers,

� numbers are represented as bits (0/1).

: 71 2025-06-05

3.1 Representing and Manipulating Numbers
We start with the representation of numbers. There are multiple number systems, as we are
interested in the principles only, we restrict ourselves to the natural numbers – all other number
systems can be built on top of these. But even there we have choices about representation, which
influence the space we need and how we compute with natural numbers.
The first system for number representations is very simple; so simple in fact that it has been
discovered and used a long time ago.

Natural Numbers

49

50 CHAPTER 3. NUMBERS, CHARACTERS, AND STRINGS

� Numbers are symbolic representations of numeric quantities.

� There are many ways to represent numbers (more on this later)

� Let’s take the simplest one (about 8,000 to 10,000 years old)

� We count by making marks on some surface.

� For instance //// stands for the number four (be it in 4 apples, or 4 worms)

: 72 2025-06-05

In addition to manipulating normal objects directly linked to their daily survival, humans also
invented the manipulation of place-holders or symbols. A symbol represents an object or a set
of objects in an abstract way. The earliest examples for symbols are the cave paintings showing
iconic silhouettes of animals like the famous ones of Cro-Magnon. The invention of symbols is
not only an artistic, pleasurable “waste of time” for humans, but it had tremendous consequences.
There is archaeological evidence that in ancient times, namely at least some 8000 to 10000 years
ago, humans started to use tally bones for counting. This means that the symbol “bone with
marks” was used to represent numbers. The important aspect is that this bone is a symbol that
is completely detached from its original down to earth meaning, most likely of being a tool or
a waste product from a meal. Instead it stands for a universal concept that can be applied to
arbitrary objects. So far so good, let us see how this would be represented on a computer:

Unary Natural Numbers on the Computer

� Definition 3.1.1. We call the representation of natural numbers by slashes on a
surface the unary natural numbers.

� Question: How do we represent them on a computer? (not bones or walls)

� Idea: If we have a memory bank of n binary digits, initialize all by 0, represent
each slash by a 1 from the right.

� Example 3.1.2. Memory bank with 32 binary digits, representing the number 11.

0 1 1 1 1 1 1 1 1 1 1 1

� Problem: For realistic arithmetic we need better number representations than the
unary natural numbers (e.g. for representing the number of EU citizens =̂ 100 000
pages of /)

3.1. REPRESENTING AND MANIPULATING NUMBERS 51

: 73 2025-06-05

The problem with the unary number system is that it uses enormous amounts of space, when
writing down large numbers. We obviously need a better representation. The unary natural
numbers are very simple and direct, but they are neither space-efficient, nor easy to manipulate.
Therefore we will use different ways of representing numbers in practice.

Positional Number Systems

� Problem: Find a better representation system for natural numbers.

� Idea: Build a clever code on the unary natural numbers, use position information
and addition, multiplication, and exponentiation.

� Definition 3.1.3. A positional number system N is a pair ⟨D,φ⟩ with

� D is a finite set of b digits; b := #(D) is the base or radix of N .

� φ : D→ [0,b− 1] is bijective.

We extend φ to a bijection between sequences dk, . . ., d0 of digits and natural
numbers by setting

φ(dk, . . ., d0) :=

k∑
i=0

φ(di) · bi

We say that the digit sequence nb := dk, . . ., d0 is the positional notation of a
natural number n, iff φ(dk, . . ., d0) = n.

� Example 3.1.4. ⟨{a, b, c}, φ⟩ with with φ(a) := 0, φ(b):=1, and φ(c) := 2 is a
positional number system for base three. We have

φ(c, a, b) = 2 · 32 + 0 · 31 + 1 · 30 = 18 + 0 + 1 = 19

: 74 2025-06-05

If we look at the unary number system from a greater distance, we see that we are not using a
very important feature of strings here: position. As we only have one letter in our alphabet, we
cannot, so we should use a larger alphabet. The main idea behind a positional number system
N = ⟨Db, φb⟩ is that we encode numbers as strings of digits in Db, such that the position matters,
and to give these encodings a meaning by mapping them into the unary natural numbers via a
mapping φb.

Commonly Used Positional Number Systems

� Definition 3.1.5. The following positional number systems are in common use.

name set base digits example
unary N1 1 0 000001
binary N2 2 0,1 01010001112
octal N8 8 0,1,. . . ,7 630278
decimal N10 10 0,1,. . . ,9 16209810 or 162098
hexadecimal N16 16 0,1,. . . ,9,A,. . . ,F FF3A1216

Binary digits are also called bits, and a sequence of eight bits an octet.

52 CHAPTER 3. NUMBERS, CHARACTERS, AND STRINGS

� Notation: Attach the base of N to every number from N . (default: decimal)

� Trick: Group triples or quadruples of binary digits into recognizable chunks (add
leading zeros as needed)

� 1100011010111002 = 01102︸ ︷︷ ︸
616

00112︸ ︷︷ ︸
316

01012︸ ︷︷ ︸
516

11002︸ ︷︷ ︸
C16

= 635C16

� 1100011010111002 = 1102︸ ︷︷ ︸
68

0012︸ ︷︷ ︸
18

1012︸ ︷︷ ︸
58

0112︸ ︷︷ ︸
38

1002︸ ︷︷ ︸
48

= 615348

� F3A16 = F16︸︷︷︸
11112

316︸︷︷︸
00112

A16︸︷︷︸
10102

= 1111001110102, 47218 = 48︸︷︷︸
1002

78︸︷︷︸
1112

28︸︷︷︸
0102

18︸︷︷︸
0012

= 1001110100012

: 75 2025-06-05

We have all seen positional number systems: our decimal system is one (for the base 10). Other
systems that important for us are the binary system (it is the smallest non degenerate one) and
the octal (base 8) and hexadecimal (base 16) systems. These come from the fact that binary
numbers are very hard for humans to scan. Therefore it became customary to group three or
four digits together and introduce (compound) digits for these groups. The octal system is mostly
relevant for historic reasons, the hexadecimal system is in widespread use as syntactic sugar for
binary numbers, which form the basis for electronic circuits, since binary digits can be represented
physically by voltage/no voltage.

Arithmetics in Positional Number Systems

� For arithmetic just follow the rules from elementary school (for the right base)

� Tom Lehrer’s “New Math”: https://www.youtube.com/watch?v=DfCJgC2zezw

� Example 3.1.6.

Addition base 4 binary multiplication

1 2 3
+ 11 21 3

3 1 2

1 0 1 0
∗ 1 1 0

0 0 0 0
1 0 1 0

1 0 1 0
1 1 1 1 0 0

: 76 2025-06-05

How to get back to Decimal (or any other system)

� Observation: ??? specifies how we can get from base b representations to decimal.
We can always go back to the base b numbers.

� Observation 3.1.7. To convert a decimal number n to base b, use successive
integer division (division with remainder) by b:

i := n; repeat (record imod b, i := i div b) until i = 0.

� Example 3.1.8 (Convert 456 to base 8). Result: 7108

https://www.youtube.com/watch?v=DfCJgC2zezw

3.2. CHARACTERS AND THEIR ENCODINGS: ASCII AND UNICODE 53

456 div 8 = 57 456mod 8 = 0
57 div 8 = 7 57mod 8 = 1
7 div 8 = 0 7mod 8 = 7

: 77 2025-06-05

3.2 Characters and their Encodings: ASCII and UniCode

IT systems need to encode characters from our alphabets as bit strings (sequences of binary
digits (bits) 0 and 1) for representation in computers. To understand the current state – the
unicode standard – we will take a historical perspective. It is important to understand that
encoding and decoding of characters is an activity that requires standardization in multi-device
settings – be it sending a file to the printer or sending an e-mail to a friend on another continent.
Concretely, the recipient wants to use the same character mapping for decoding the sequence of
bits as the sender used for encoding them – otherwise the message is garbled.

We observe that we cannot just specify the encoding table in the transmitted document it-
self, (that information would have to be en/decoded with the other content), so we need to rely
document-external external methods like standardization or encoding negotiation at the meta-
level. In this section we will focus on the former.
The ASCII code we will introduce here is one of the first standardized and widely used character
encodings for a complete alphabet. It is still widely used today. The code tries to strike a balance
between being able to encode a large set of characters and the representational capabilities in the
time of punch cards (see below).

The ASCII Character Code

� Definition 3.2.1. The American Standard Code for Information Interchange (ASCII)
is a character encoding that assigns characters to numbers 0 to 127.

Code · · ·0 · · ·1 · · ·2 · · ·3 · · ·4 · · ·5 · · ·6 · · ·7 · · ·8 · · ·9 · · ·A · · ·B · · ·C · · ·D · · ·E · · ·F
0· · · NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1· · · DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2· · · ␣ ! " # $ % & ′ (] ∗ + , − . /
3· · · 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4· · · @ A B C D E F G H I J K L M N O

5· · · P Q R S T U V W X Y Z [\] ˆ _
6· · · ‘ a b c d e f g h i j k l m n o

7· · · p q r s t u v w x y z { | } ˜ DEL

� The first 32 characters are control characters for ASCII devices like printers.

� Motivated by punch cards: The character 0 (00000002 in binary) carries no
information NUL, (used as dividers)
Character 127 (=̂ 11111112) can be used for deleting (overwriting) last value
(cannot delete holes)

� The ASCII code was standardized in 1963 and is still prevalent in computers today.
(but seen as US centric)

: 78 2025-06-05

Punch cards were the preferred medium for long-term storage of programs up to the late 1970s,
since they could directly be produced by card punchers and automatically read by computers.

54 CHAPTER 3. NUMBERS, CHARACTERS, AND STRINGS

A Punchcard

� Definition 3.2.2. A punch card is a piece of stiff paper that contains digital
information represented by the presence or absence of holes in predefined positions.

� Example 3.2.3. This punch card encodes the FORTRAN statement Z(1) = Y + W(1)

: 79 2025-06-05

Up to the 1970s, computers were batch machines, where the programmer delivered the program
to the operator (a person behind a counter who fed the programs to the computer) and collected the
printouts the next morning. Essentially, each punch card represented a single line (80 characters)
of program code. Direct interaction with a computer is a relatively young mode of operation.
The ASCII code as above has a variety of problems, for instance that the control characters are
mostly no longer in use, the code is lacking many characters of languages other than the English
language it was developed for, and finally, it only uses seven bits, where an octet (eight bits) is the
preferred unit in information technology. Therefore a whole zoo of extensions were introduced,
which — due to the fact that there were so many of them — never quite solved the encoding
problem.

Problems with ASCII encoding

� Problem: Many of the control characters are obsolete by now/ (e.g. NUL,BEL, or
DEL)

� Problem: Many European characters are not represented. (e.g. è,ñ,ü,ß,. . .)

� European ASCII Variants: Exchange less-used characters for national ones.

� Example 3.2.4 (German ASCII). Remap e.g. [7→ Ä,] 7→ Ü in German ASCII
(“Apple][” comes out as “Apple ÜÄ”)

� Definition 3.2.5 (ISO-Latin (ISO/IEC 8859)). 16 Extensions of ASCII to 8-bit
(256 characters) ISO Latin 1 =̂ “Western European”, ISO Latin 6 =̂ “Arabic”, ISO Latin 7 =̂

“Greek”. . .

� Problem: No cursive Arabic, Asian, African, Old Icelandic Runes, Math,. . .

3.2. CHARACTERS AND THEIR ENCODINGS: ASCII AND UNICODE 55

� Idea: Do something totally different to include all the world’s scripts: For a
scalable architecture, separate

� what characters are available, and (character set)

� a mapping from bit strings to characters. (character encoding)

: 80 2025-06-05

The goal of the UniCode standard is to cover all the worlds scripts (past, present, and future) and
provide efficient encodings for them. The only scripts in regular use that are currently excluded
are fictional scripts like the elvish scripts from the Lord of the Rings or Klingon scripts from the
Star Trek series.
An important idea behind UniCode is to separate concerns between standardizing the character
set — i.e. the set of encodable characters and the encoding itself.

Unicode and the Universal Character Set

� Definition 3.2.6 (Twin Standards). A scalable architecture for representing all
the worlds writing systems:

� The universal character set (UCS) defined by the ISO/IEC 10646 International
Standard, is a standard set of characters upon which many character encodings
are based.

� The unicode standard defines a set of standard character encodings, rules for
normalization, decomposition, collation, rendering and bidirectional display or-
der.

� Definition 3.2.7. Each UCS character is identified by an unambiguous name and
an natural number called its code point.

� The UCS has 1.1 million code points and nearly 100 000 characters.

� Definition 3.2.8. Most (non-Chinese) characters have code points in [1,65536]:
the basic multilingual plane (BMP).

� Definition 3.2.9 (Notation). For code points in the (BMP), four hexadecimal
digits are used, e.g. U+ 0058 for the character LATINCAPITALLETTERX;

: 81 2025-06-05

Note that there is indeed an issue with space-efficient character encodings here. UniCode reserves
space for 232 (more than a million) characters to be able to handle future scripts. But just simply
using 32 bits for every UniCode character would be extremely wasteful: UniCode-encoded versions
of ASCII files would be four times as large.
Therefore UniCode allows multiple character encodings. UTF-32 is a simple 32-bit code that
directly uses the code points in binary form. UTF-8 is optimized for western languages and
coincides with the ASCII where they overlap. As a consequence, ASCII encoded texts can be
decoded in UTF-8 without changes — but in the UTF-8 encoding, we can also address all other
unicode characters (using multi-byte characters).

Character Encodings in Unicode

56 CHAPTER 3. NUMBERS, CHARACTERS, AND STRINGS

� Definition 3.2.10. A character encoding is a mapping from bit strings to UCS
code points.

� Idea: Unicode supports multiple character encodings (but not character sets) for
efficiency.

� Definition 3.2.11 (Unicode Transformation Format).

� UTF-8, 8-bit, variable width character encoding, which maximizes compatibility
with ASCII.

� UTF-16, 16-bit, variable width character encoding (popular in Asia)

� UTF-32, a 32-bit, fixed width character encoding (as a fallback)

� Definition 3.2.12. The UTF-8 encoding follows the following schema:

Unicode octet 1 octet 2 octet 3 octet 4
U+ 000000−U+ 00007F 0xxxxxxx
U+ 000080−U+ 0007FF 110xxxxx 10xxxxxx
U+ 000800−U+ 00FFFF 1110xxxx 10xxxxxx 10xxxxxx
U+ 010000−U+ 10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

� Example 3.2.13. $ = U + 0024 is encoded as 00100100 (1 byte)
¢ = U+ 00A2 is encoded as 11000010,10100010 (two bytes)
€ = U+ 20AC is encoded as 11100010,10000010,10101100 (three bytes)

: 82 2025-06-05

Note how the fixed bit prefixes in the UTF-8 encoding are engineered to determine which of the
four cases apply, so that UTF-8 encoded documents can be safely decoded.

XKCD’s Take on Recent Unicode Extensions

� UniCode 6.0 adopted hundreds of emoji characters in 2010 (2666 in July 2017)

� Modifying characters (https://xkcd.com/1813/)

: 83 2025-06-05

XKCD’s Take on Recent Unicode Extensions (cont.)

https://xkcd.com/1813/

3.3. MORE ON COMPUTING WITH STRINGS 57

� Recent UniCode extensions (https://xkcd.com/1953/)

: 84 2025-06-05

3.3 More on Computing with Strings

We now extend our repertoire on handling and formatting strings in Python: we will introduce
string literals, which allow writing complex strings.

Playing with Strings and Characters in Python

� Definition 3.3.1. Python strings are sequences of UniCode characters.

� In Python, characters are just strings of length 1.

� ord gives the UCS code point of the character, chr character for a number.

� Example 3.3.2 (Playing with Characters).

def lc(c) :
return chr(ord(c) + 32)

def uc(c) :
return chr(ord(c) − 32)

>>> uc(’d’)
’D’
>>> lc(’D’)
’d’

� Strings can be accessed by ranges [i:j] ([i] =̂ [i:i])

� Example 3.3.3. Taking strings apart and re-assembling them.

def cap(s) :
if s == "":

return "" # base case
else:

return uc(s[0]) + cap(s[1:len(s)])

>>> cap(’iwgs’)
’IWGS’

: 85 2025-06-05

https://xkcd.com/1953/

58 CHAPTER 3. NUMBERS, CHARACTERS, AND STRINGS

Example 3.3.3 may be difficult to understand at first. It is a programming technique called
recursion, i.e. functions that call themselves from within their body to solve problems by utilizing
solutions to smaller instances of the same problem. Recursion can lead to very concise code, but
requires some getting-used-to.

In Example 3.3.3 we define a function cap that given a string s returns a string that is con-
structed by combining the first character uppercased by the uc function with the result of calling
the cap function on the rest string – s without the first character. The base case for the recursion
is the empty string, where uc also returns the empty string. So let us see what happens in our
test cap(’iwgs’):
cap(’iwgs’) ; uc(’i’)+cap(’wgs’) ; ’I’+uc(’w’)+cap(’gs’) ; ’I’+’W’+uc(’g’)+cap(’s’) ;
’IW’+’G’+cap(’s’) ; ’IWG’+uc(’s’)+cap(’’) ; ’IWG’+’S’+cap(’’) ; ’IWGS’+’’ ; ’IWGS’

Example 3.3.2 and Example 3.3.3 (or any other examples in this lecture) are not production
code, but didactically motivated – to show you what you can do with the objects we are presenting
in Python.

In particular, if we “lowercase” a character that is already lowercase – e.g. by lc(’c’), then
we get out of the range of the UCS code: the answer is \x83, which is the character with the
hexadecimal code 83 (decimal 131), i.e. the character No Break Here.

In production code (as used e.g. in the Python lower method), we would have some range
checks, etc.

String Literals in Python

� Problem: How to write strings including special characters?

� Definition 3.3.4. A literal is a notation for representing a fixed value for a data
structure in source code.

� Definition 3.3.5. Python uses string literals, i.e character sequences surrounded
by one, two, or three sets of matched single or double quotes for string input. The
content can contain escape sequences, i.e. the escape character backslash followed
by a code character for problematic characters:

Seq Meaning Seq Meaning
\\ Backslash (\) \’ Single quote (’)

\" Double quote (") \a Bell (BEL)
\b Backspace (BS) \f Form-feed (FF)
\n Linefeed (LF) \r Carriage Return (CR)
\t Horizontal Tab (TAB) \v Vertical Tab (VT)

In triple-quoted string literals, unescaped newlines and quotes are honored, except
that three unescaped quotes in a row terminate the literal.

: 86 2025-06-05

Raw String Literals in Python

� Definition 3.3.6. Prefixing a string literal with a r or R turns it into a raw string
literal, in which backslashes have no special meaning.

� Note: Using the backslash as an escape character forces us to escape it as well.

� Example 3.3.7. The string "a\nb\nc" has length five and three lines, but the

3.3. MORE ON COMPUTING WITH STRINGS 59

string r"a\nb\nc" only has length seven and only one line.

: 87 2025-06-05

Now that we understand the “theory” of encodings, let us work out how to program with them
in Python:
Programming with UniCode strings is particularly simple, strings in Python are UTF-8-encoded
UniCode strings and all operations on them are UniCode-based1. This makes the introduction to
UniCode in Python very short, we only have to know how to produce non-ASCII characters, i.e.
the characters that are not on regular keyboards.

If we know the code point, this is very simple: we just use UniCode escape sequences.

Unicode in Python

� Remark 3.3.8. The Python string data type is UniCode, encoded as UTF-8.

� How to write UniCode characters?: there are five ways

� write them in your editor (make sure that it uses UTF-8)

� otherwise use Python escape sequences (try it!)

>>> "\xa3" # Using 8−bit hex value
’\u00A3’
>>> "\u00A3" # Using a 16−bit hex value
’\u00A3’
>>> "\U000000A3" # Using a 32−bit hex value
’\u00A3’
>>> "\N{Pound Sign}" # character name
’\u00A3’

: 88 2025-06-05

Note that the discussion about entry methods for unicode characters applies to the bare Python
interpreter, not Python-specific text editor modes or user interfaces, which are often helpful by
automatically replacing the input by the respective glyphs themselves.
String literals are convenient for creating simple string objects. For more complex ones, we usually
want to build them from pieces, usually using the values of variables or the results of functions.
This is what f strings are for in Python; we will cover that now.

Formatted String Literals (aka. f-strings)

� Problem: In a program we often want to build strings from pieces that we already
have lying around interspersed by other strings.

� Solution: Use string concatenation:
>>> course="IWGS"
>>> students=6∗11
>>> "The " + course + " course has " + str(students) + " students"
’The IWGS course has 66 students’

� We can do better! (mixing blanks and quotes is error-prone)

1Older programming languages have ASCII strings only, and UniCode strings are supplied by external libraries.

60 CHAPTER 3. NUMBERS, CHARACTERS, AND STRINGS

� Definition 3.3.9. Formatted string literals (aka. f strings) are string literals can
contain Python expressions that will be evaluated – i.e. replaced with their values
at runtime.

F strings are prefixed by f or F, the expressions are delimited by curly braces, and
the characters { and } themselves are represented by {{ and }}.

� Example 3.3.10 (An f-String for IWGS).
>>> course="IWGS"
>>> f"The {course} course has {6∗11} students"
’The IWGS course has 66 students’

: 89 2025-06-05

F-String Example with a Dictionary

� Example 3.3.11 (An F-String with a Dictionary).
>>> course = {’name’:"IWGS",’students’:’66’}
>>> f"The {course[’name’]} course has {course[’students’]} students."
’The IWGS course has 66 students.’

Note that we alternated the quotes here to avoid the following problems:
>>> f’The course {course[’name’]} has {course[’students’]} students.’

File "<stdin>", line 1
f’The course {course[’name’]} has {course[’students’]} students.’

^
SyntaxError: invalid syntax

: 90 2025-06-05

3.4 More on Functions in Python
We now extend our repertoire of dealing with functions in Python.
In a sense, we now know all we have to about Python function: we can define them and apply

them to arguments. But Python offers us much more: Python

• treats functions as “first-class objects”, i.e. entities that can be given to other functions as
arguments, and can be returned as results.

• provides more ways of passing arguments to a function than the rather rigid way we have seen
above. This can be very convenient and make code more readable.

We will cover these features now. The main motivation for this is that they are widely used
in programming and being able to read them is important for collaborating with experienced
programmers and reading existing code.
We digress to the internals of functions that make them even more powerful. It turns out that we
do not have to give a function a name at all.

Anonymous Functions (lambda)

� Observation 3.4.1. A Python function definition combines making a function
object with giving it a name.

� Definition 3.4.2. Python also allows to make anonymous functions via the function

3.4. MORE ON FUNCTIONS IN PYTHON 61

literal lambda for function objects:

lambda p1,. . .,pn: ⟨⟨expr⟩⟩

� Example 3.4.3. The following two Python fragments are equivalent:

def cube (x):
x∗x∗x

cube = lambda x: x∗x∗x

The right one is just a variable assignment that assigns a function object to the
variable cube. (In fact Python uses the right one internally)

� Question: Why use anonymous functions?

� Answer: We may not want to invent (i.e. waste) a name if the function is only
used once. (examples on the next slide)

: 91 2025-06-05

Anonymous functions do not seem like a big deal at first, but having a way to construct a function
that can be used in any expression, is very powerful as we will see now.

Higher-Order Functions in Python

� Definition 3.4.4. We call a function a higher order function, iff it takes a function
as argument.

� Definition 3.4.5. map and filter are built-in higher order functions in Python.
They take a function and a list as arguments.

� map(f ,L) returns the list of f -values of the elements of L.

� filter(p,L) returns the sub-list L′ of those l in L, such that p(l)=True.

� Example 3.4.6. Mapping over and filtering a list

>>> li = [5, 7, 22, 97, 54, 62, 77, 23, 73, 61]
>>> list(map(lambda x: x∗2 , li))
[10, 14, 44, 194, 108, 124, 154, 46, 146, 122]
>>> list(filter(lambda x: (x%2 != 0) , li))
[5, 7, 97, 77, 23, 73, 61]

: 92 2025-06-05

Admittedly, in our example, we could also have defined a named function twice and then mapped
that over li:

def twice (x):
x∗x

map twice li

But the code from Example 3.4.6 is more compact. Once we get used to the programming
idiom and understand it, it becomes quite readable.

Another important feature of Python functions is flexible argument passing. This allows to
define functions that supply complex behaviors – for which we need to set many parameters but
simple calling patterns – which is good to hide complexity from the programmer.

62 CHAPTER 3. NUMBERS, CHARACTERS, AND STRINGS

The first argument passing feature we want to discuss is the use of keyword arguments, which
gets around the problem of having to remember the position of an argument of a multi-parameter
function.

Argument Passing in Python: Keyword Arguments

� Definition 3.4.7. The last k ≤ n of n parameters of a function can be keyword
arguments of the form pi=⟨⟨val⟩⟩i: If no argument ai is given in the function call,
the default value ⟨⟨val⟩⟩i is taken.

� Example 3.4.8. The head of the open function is

def open(file, mode=’r’, buffering=−1, encoding=None, errors=None,
newline=None, closefd=True, opener=None)

Even if we only call it with open("foo"), we can use parameters like mode or opener
in the body; they have the corresponding default value.

We can also give more arguments via keywords, even out of order

open("foo", buffering=1, mode="+a")

: 93 2025-06-05

BTW: The opener argument of open is a function, and often an anonymous function is used if
it is specified.
The next feature is dual to the last: instead of letting the caller leave out some arguments, we
allow the caller more, which is then bound to a list parameter.

Argument Passing in Python: Flexible Arity

� Definition 3.4.9. Python functions can take a variable number of arguments:
def f (p1, . . ., pk,∗r) allows n ≥ k arguments, e. g. f(a1, . . ., ak,ak+1, . . ., an) and
binds the parameter r the rest argument to the list [ak+1, . . ., an].

� Example 3.4.10. A somewhat construed function that reports the number of extra
arguments

def flexary (a,b,∗c):
return len(c)

>>> flexary (1,2,3,4,5)
>>> 3

� Definition 3.4.11. The star operator unpacks a list into an argument sequence.

� Example 3.4.12 (Passing a starred list).

def test(arg1, arg2, arg3):
...

args = ["two", 3]
test(1, ∗args)

: 94 2025-06-05

Actually the star operator can be used in other situations as well, consider for instance
>>> numbers = [2, 1, 3, 4, 7]
>>> more_numbers = [∗numbers, 11, 18]

3.4. MORE ON FUNCTIONS IN PYTHON 63

>>> print(∗more_numbers, sep=’, ’)
2, 1, 3, 4, 7, 11, 18

Here we have used the star operator twice: First to pass the list numbers as arguments to the list
constructor and a second time to pass the extended list more_numbers to the print function.
Finally, we can combine the ideas from the last two to make keyword arguments flexary.

Argument Passing in Python: Flexible Keyword Arguments

� Definition 3.4.13. Python functions can take keyword arguments:
if k is a sequence of key/value pairs then def f(p1,. . .,pn,∗∗k) binds the keys to
values in the body of f .

� Example 3.4.14.

def kw_args(farg, ∗∗kwargs):
print (f"formal arg: {farg}")
for key in kwargs :

print (f"another keyword arg: {key}: {kwargs[key]}")
>>> kw_args(1, myarg2="two", myarg3=3)
formal arg: 1
another keyword arg: myarg2 : two
another keyword arg: myarg3 : 3

: 95 2025-06-05

Just as for the flexible arity case above, we have an operator that unpacks argument structures,
here a dictionary.

Argument Passing in Python: Flexible Keyword Arguments (cont.)

� Definition 3.4.15.3 The double star operator unpacks a dictionary into a sequence
of keyword arguments.

� Example 3.4.16 (Passing around dates as dictionaries).

date_info = {’day’: "01", ’month’: "01", ’year’: "2020"}
def filename (year=’2019’,month=1,day=1)

f"{year}−{month}−{day}.txt"
>>> filename(∗∗date_info)
’2020−01−01.txt’

� Example 3.4.17 (Mixing formal and keyword arguments).

def pdict(a1, a2, a3):
print(’a1: ’,a1,’, a2: ’,a2,’, a3: ’,a3)

dict = {"a3": 3, "a2": "two"}
>>> pdict(1, ∗∗dict)
>>> a1: 1, a2: two, a3: 3

: 96 2025-06-05

Disclaimer: The last couple of features of Python functions are a bit more advanced than
would usually be expected from a Python programming introduction in a course such as IWGS.
But one of the goals of IWGS is to empower students to be able to read Python code of more

64 CHAPTER 3. NUMBERS, CHARACTERS, AND STRINGS

experienced authors. And that kind of code may very well contain these features, so we need to
cover them in IWGS.

So the last couple of slides should be considered as an “early exposure for understanding” rather
than “essential to know for IWGS” content.

3.5 Regular Expressions: Patterns in Strings
Now we can come to the main topic of this section: regular expressions, A domain-specific

language for describing string patterns. Regular expressions are extremely useful, but also quite
cryptical at first. They should be understood as a powerful tool, that relies on a language with
a very limited vocabulary. It is more important to understand what this tool can do and how it
works in principle than memorizing the vocabulary – that can be looked up on demand.

Problem: Text/Data File Manipulation

� Problem 1 (Information Extraction): We often want to extract information
from large document collections, e.g.

� e-mail addresses or dates from collected correspondencesrtts

� dates and places from newsfeeds

� links from web pages

� Problem 2 (Data Cleaning): The representation in data files is often too noisy
and inconsistent for directly importing into an application; e.g.

� standardizing different spellings of e.g. city names, (Nuremberg vs. Nürnberg)

� eliminating higher UniCode characters, when the application only accepts ASCII,

� separating structured texts into data blocks. (e.g. in x-separated lists)

� Enabling Technology: Specifying text/data fragments ; regular expressions.

: 97 2025-06-05

There are several dialects of regular expression languages that differ in details, but share the
general setup and syntax. Here we introduce the Python variant and recommend [PyRegex] for a
cheat-sheet on Python regular expressions (and an integrated regular expression tester).

Regular Expressions, see [Pyt]

� Definition 3.5.1. A regular expression (also called regular expression) is a formal
expression that specifies a set of strings.

� Definition 3.5.2 (Meta-Characters for Regexps).

3.5. REGULAR EXPRESSIONS: PATTERNS IN STRINGS 65

char denotes
. any single character (except a newline)
ˆ beginning of a string
$ end of a string
[. . .]/[ˆ. . .] any single character in/not in the brackets
[x−y]/[ˆx−y] any single character in/not in range x to y
[. . .] marks a capture group
\n the nth captured group
| disjunction
∗ matches preceding element zero or more times
+ matches preceding element one or more times
? matches preceding element zero or one times
{n,m} matches the preceding element between n and m times
\S/\s non-/whitespace character
\W/\w non-/word character
\D/\d non-/digit (not only 0-9, but also e.g. arabic digits)

All other characters match themselves, to match e.g. a ?, escape with a \: \\?.

: 98 2025-06-05

Let us now fortify our intuition with some (simple) examples and a more complex one.

Regular Expression Examples

� Example 3.5.3 (Regular Expressions and their Values).

regexp values
car car
.at cat, hat, mat, . . .
[hc]at cat, hat
[^c]at hat, mat, . . . (but not cat)
^[hc]at hat, cat, but only at the beginning of the line
[0−9] Digits
[1−9][0−9]∗ natural numbers
(.∗)\1 mama, papa, wakawaka
cat|dog cat, dog

� A regular expression can be interpreted by a regular expression processor (a
program that identifies parts that match the provided specification) or a compiled
by a parser generator.

� Example 3.5.4 (A more complex example). The following regular expression
matches times in a variety of formats, such as 10:22am, 21:10, 08h55, and 7.15 pm.

^(?:([0]?\d|1[012])|(?:1[3−9]|2[0−3]))[.:h]?[0−5]\d(?:\s?(?(1)(am|AM|pm|PM)))?$

: 99 2025-06-05

As we have seen regular expressions can become quite cryptic and long (cf. e.g. ???), so we need
help in developing them. One way is to use one of the many regexp testers online

Playing with Regular Expressions

� If you want to play with regular expressions, go e.g. to http://regex101.com

http://regex101.com

66 CHAPTER 3. NUMBERS, CHARACTERS, AND STRINGS

: 100 2025-06-05

After covering regular expressions in the abstract, we will see how they are integrated into pro-
gramming languages to solve problems. Of course we take Python as an example.

Regular Expressions in Python

� We can use regular expressions directly in Python by importing the re module
(just add import re at the beginning)

� As Python has UniCode strings, regular expressions support UniCode as well.

� Useful Python functions that use regular expressions.

� re.findall(⟨⟨pat⟩⟩,⟨⟨str⟩⟩): Return a list of non-overlapping matches of ⟨⟨pat⟩⟩ in
⟨⟨str⟩⟩.
>>> re.findall(r"[h|c|r]at",’the cat ate the rat on the mat’)
[’cat’,’rat’]

� re.sub(⟨⟨pat⟩⟩,⟨⟨sub⟩⟩,⟨⟨str⟩⟩): Replace substrings that match ⟨⟨pat⟩⟩ in ⟨⟨str⟩⟩ by
⟨⟨sub⟩⟩.
>>> re.sub(r’\sAND|and\s’, ’ ’, ’Baked Beans and Spam’)’Baked Beans Spam’

� re.split(⟨⟨pat⟩⟩,⟨⟨str⟩⟩): Split ⟨⟨str⟩⟩ into substrings that match ⟨⟨pat⟩⟩.
>>> re.split(r’\s+’,’When shall we three meet again?’))
[’When’,’shall’,’we’,’three’,’meet’,’again?’]
>>> re.split(r’\s+|\?|\.|!|,|:|;|’,’When shall we three meet again?’))
[’When’,’shall’,’we’,’three’,’meet’,’again’]

: 101 2025-06-05

As regular expressions form a special language for describing sets of strings, it is not surprising
that they are used in all kinds of searching, splitting, and substring replacement operations. As
the language of regular expressions is well standardized, these more or less work the same in all
programming languages, so what you learn for Python, you can re-use in other languages.

3.5. REGULAR EXPRESSIONS: PATTERNS IN STRINGS 67

We will now see what we can do with regular expressions in a practical example. You should
consider it as a “code reading/understanding” exercise, not think of it as something you should
(easily) be able to do yourself. But ??? could serve as a quarry of ideas for things you can do to
texts with regular expressions.

Example: Correcting and Anonymizing Documents

� Example 3.5.5 (Document Cleanup).

We write a function that makes simple corrections on documents and also crosses
out all names to anonymize.

� “The worst president of the US,arguably was George W. Bush, right? ”

� “However,are you famILIar with Paul Erdős or Henri Poincaré? ” (Unicode)

Here is the function

� we import the regular expressions library and start the function

import re
def corranon (s)

� we first add blanks after commata
s = re.sub(r",(\S)", r", \1", s)

� capitalize the first letter of a new sentence,

s = re.sub(r"([\.\?!])\w∗(\S)",
lambda m:m.group(1),r" ".upper()+m.group(2),
s)

: 102 2025-06-05

This program is just a series of stepwise regular expression computations that are assigned to the
variable s. For the last one, we use the lambda operator that constructs a function as an argument
(the second) to re.sub. We use the anonymous functions because this function is only used once.
This worked well, so we just continue along these lines.

Example: Correcting and Anonymizing Documents (cont.)

� Example 3.5.6 (Document Cleanup (continued)).

� next we make abbreviations for regular expressions to save space

c = "[A−Z]"
l = "[a−z]"

� remove capital letters in the middle of words

s = re.sub(f"({l})({c}+)({l})",
lambda m:f"{m.group(1)}{m.group(2).lower()}{m.group(3)}",
s) #

� and we cross-out for official public versions of government documents,

s = re.sub(f"({c}{l}+ ({c}{l}∗(\.?))?{c}{l}+)", #
lambda m:re.sub("\S", "X", m.group(1)),
s)

68 CHAPTER 3. NUMBERS, CHARACTERS, AND STRINGS

� finally, we return the result
s

“The worst president of the US,arguably was George W. Bush, right? ”
becomes
“The worst president of the US, arguably was XXXXXX XX XXXX, right? ”

: 103 2025-06-05

We show the whole program again, to see that it is relatively small (thanks to the very compact
– if cryptic – regular expressions), when we leave out all the comments.

Example: Correcting and Anonymizing Documents (all)

� Example 3.5.7 (Document Cleanup (overview)).

import re
def corranon (s)

s = re.sub(r",(\S)", r", \1", s)
s = re.sub(r"([\.\?!])\w∗(\S)",

lambda m:m.group(1),r" ".upper()+m.group(2),
s)

c = "[A−Z]"
l = "[a−z]"
s = re.sub(f"({l})({c}+)({l})",

lambda m:f"{m.group(1)}{m.group(2).lower()}{m.group(3)}",
s) #

s = re.sub(f"({c}{l}+ ({c}{l}∗(\.?))?{c}{l}+)", #
lambda m:re.sub("\S", "X", m.group(1)),
s)

s

: 104 2025-06-05

Chapter 4

Documents as Digital Objects

In this chapter we take a first look at documents and how they are represented on the com-
puter.

4.1 Representing & Manipulating Documents on a Computer
Now that we can represent characters as bit sequences, we can represent text documents.

In principle text documents are just sequences of characters; they can be represented by just
concatenating them.

Electronic Documents

� Definition 4.1.1. An electronic document is any media content that is intended to
be used via a document renderer, i.e. a program or computing device that transforms
it into a form that can be directy perceived by the end user.

� Example 4.1.2. PDFs, digital images, videos, audio recordings, web pages, . . .

� Definition 4.1.3. An electronic document that contains a digital encoding of
textual material that can be read by the end user by simply presenting the encoded
characters is called digital text.

� Definition 4.1.4. Digital text is subdivided into plain text, where all characters
carry the textual information and formatted text, which also contains instructions
to the document renderer.

� Example 4.1.5. Python programs are plain text, PDFs are formatted.

: 105 2025-06-05

We will now establish a nomenclature for giving instructions to a document renderer. This has
originated from movable (lead) type based typesetting but carries over well to electronic docu-
ments.

Document Markup

� Definition 4.1.6. Document markup (or just markup) is the process of adding
control words (special character sequences also called markup codes) to a plain text

69

70 CHAPTER 4. DOCUMENTS AS DIGITAL OBJECTS

to control the structure, formatting, or the relationship among its parts, making
it a formatted text. All characters of a formatted text that are not control words
constitute its textual content.

� Example 4.1.7. A text with markup codes (for printing)

� Definition 4.1.8. The control words and composition rules for a particular kind of
markup system determine a markup format (also called a markup language). The
markup format used in an electronic document is called its document type.

� Remark 4.1.9. Markup turns plain text into formatted text.

: 106 2025-06-05

There are many systems for document markup, ranging from informal ones as in Example 4.1.7
that specify the intended document appearance to humans – in this case the printer – to technical
ones which can be understood by machines but serving the same purpose.
Markup is by no means limited to visual markup for documents intended for printing as Exam-
ple 4.1.7 may suggest. There are aural markup formats that instruct document renderers that
transform documents to audio streams of e.g. reading speeds, intonation, and stress.
We now come to another aspect of electronic documents: We mostly interact with them in the
form of files. Again, we fix our nomenclature.

File Types

� Observation 4.1.10. We mostly encounter electronic documents in the form of
files on some storage medium.

� Definition 4.1.11. A text file is a file that contains text data, a binary file one
that contains binary data

Definition 4.1.12. Text files are often processed as a sequence of text lines
(or just lines), i.e. sub string separated by the line feed character U+ 000A;
LINEFEED(LF). The line number is just the position in the sequence.

� Remark 4.1.13. Text files are usually encoded with ASCII, ISO Latin, or increasingly
UniCode encodings like UTF-8.

� Example 4.1.14. Python programs are stored in text files.

� In practice, text files are often processed as a sequence of text lines (or just lines),
i.e. sub strings separated by the line feed character U+ 000A; LINEFEED(LF).
The line number is just the position in the sequence.

4.1. REPRESENTING & MANIPULATING DOCUMENTS ON A COMPUTER 71

: 107 2025-06-05

Remark 4.1.15. Plain text is different from formatted text, which includes markup code, and
binary files in which some portions must be interpreted as binary data (encoded integers, real
numbers, digital images, etc.)
As we have seen above, it does not take much to render a text file: we only need to guess the

right encoding scheme so we can decode the file and show the character sequence to the user.
Indeed the UNIX cat just prints the contents of a text file to a shell. But we need much more, we
need tools with which we can compose and edit text files; we do this with text editors, which we
will discuss now.

Text Editors

� Definition 4.1.16. A text editor is a program used for rendering and manipulating
text files.

� Example 4.1.17. Popular text editors include

� Notepad is a simple editor distributed with MSWindows.

� emacs and vi are powerful editors originating from UNIX and optimized for
programming.

� sublime is a sophisticated programming editor for multiple operating systems.

� EtherPad is a browser-based real-time collaborative editor.

� Example 4.1.18. Even though it can save documents as text files, MSWord is not
usually considered a text editor, since it is optimized towards formatted text; such
“editors” are called word processors.

: 108 2025-06-05

What text editors do for text files, word processors do for other electronic documents.

Word Processors and Formatted Text

� Definition 4.1.19. A word processor is a software application, that – apart from
being a document renderer – also supports the tasks of composition, editing, for-
matting, printing of electronic documents.

� Example 4.1.20. Popular word processors include

� MSWord, an elaborated word processor for MSWindows, whose native format is
Office Open XML (OOXML; file extension .docx).

� OpenOffice and LibreOffice are similar word processors using the ODF for-
mat (Open Office Format; file extension .odf) natively, but can also import other
formats..

� Pages, a word processors for macOS it uses a proprietary format.

� OfficeOnline and GoogleDocs are browser-based real-time collaborative word
processors.

� Example 4.1.21. Text editor are usually not considered to be word processors,
even though they can sometimes be used to edit markup based formatted text.

72 CHAPTER 4. DOCUMENTS AS DIGITAL OBJECTS

: 109 2025-06-05

Before we go on, let us first get into some basics: how do we measure information, and how does
this relate to units of information we know.

4.2 Measuring Sizes of Documents/Units of Information
Having represented documents as sequences of characters, we can use that to measure the sizes
of documents. In this section we will have a look at the underlying units of information and try
to get an intuition about what we can store in files.

We will take a very generous stance towards what a document is, in particular, we will
include pictures, audio files, spreadsheets, computer aided designs,

Units for Information

� Observation: The smallest unit of information is knowing the state of a system
with only two states.

� Definition 4.2.1. A bit (a contraction of “binary digit”) is the basic unit of capacity
of a data storage device or communication channel. The capacity of a system which
can exist in only two states, is one bit (written as 1b)

� Note: In the ASCII encoding, one character is encoded as 8b, so we introduce
another basic unit:

� Definition 4.2.2. The byte is a derived unit for information capacity: 1B = 8b.

: 110 2025-06-05

From the basic units of information, we can make prefixed units for prefixed units for larger
chunks of information. But note that the usual SI unit prefixes are inconvenient for application
to information measures, since powers of two are much more natural to realize.

Larger Units of Information via Binary Prefixes

� We will see that memory comes naturally in powers to 2, as we address memory
cell by binary number, therefore the derived information units are prefixed by special
prefixes that are based on powers of 2.

� Definition 4.2.3 (Binary Prefixes). The following binary unit prefixes are used
for information units because they are similar to the SI unit prefixes.

prefix symbol 2n decimal ~SI prefix Symbol
kibi Ki 210 1024 kilo k
mebi Mi 220 1048576 mega M
gibi Gi 230 1.074×109 giga G
tebi Ti 240 1.1×1012 tera T
pebi Pi 250 1.125×1015 peta P
exbi Ei 260 1.153×1018 exa E
zebi Zi 270 1.181×1021 zetta Z
yobi Yi 280 1.209×1024 yotta Y

4.2. MEASURING SIZES OF DOCUMENTS/UNITS OF INFORMATION 73

� Note: The correspondence works better on the smaller prefixes; for yobi vs. yotta
there is a 20% difference in magnitude.

� The SI unit prefixes (and their operators) are often used instead of the correct
binary ones defined here.

� Example 4.2.4. You can buy hard-disks that say that their capacity is “one ter-
abyte”, but they actually have a capacity of one tebibyte.

: 111 2025-06-05

Let us now look at some information quantities and their real-world counterparts to get an intuition
for the information content.

How much Information?

Bit (b) binary digit 0/1
Byte (B) 8 bit
2 Bytes A UniCode character in UTF.
10 Bytes your name.
Kilobyte (kB) 1,000 bytes OR 103 bytes
2 Kilobytes A Typewritten page.
100 Kilobytes A low-resolution photograph.
Megabyte (MB) 1,000,000 bytes OR 106 bytes
1 Megabyte A small novel or a 3.5 inch floppy disk.
2 Megabytes A high-resolution photograph.
5 Megabytes The complete works of Shakespeare.
10 Megabytes A minute of high-fidelity sound.
100 Megabytes 1 meter of shelved books.
500 Megabytes A CD-ROM.
Gigabyte (GB) 1,000,000,000 bytes or 109 bytes
1 Gigabyte a pickup truck filled with books.
20 Gigabytes A good collection of the works of Beethoven.
100 Gigabytes A library floor of academic journals.

: 112 2025-06-05

How much Information?

74 CHAPTER 4. DOCUMENTS AS DIGITAL OBJECTS

Terabyte (TB) 1,000,000,000,000 bytes or 1012 bytes
1 Terabyte 50000 trees made into paper and printed.
2 Terabytes An academic research library.
10 Terabytes The print collections of the U.S. Library of Congress.
400 Terabytes National Climate Data Center (NOAA) database.
Petabyte (PB) 1,000,000,000,000,000 bytes or 1015 bytes
1 Petabyte 3 years of EOS data (2001).
2 Petabytes All U.S. academic research libraries.
20 Petabytes Production of hard-disk drives in 1995.
200 Petabytes All printed material (ever).
Exabyte (EB) 1,000,000,000,000,000,000 bytes or 1018 bytes
2 Exabytes Total volume of information generated in 1999.
5 Exabytes All words ever spoken by human beings ever.
300 Exabytes All data stored digitally in 2007.
Zettabyte (ZB) 1,000,000,000,000,000,000,000 bytes or 1021 bytes
2 Zettabytes Total volume digital data transmitted in 2011
100 Zettabytes Data equivalent to the human Genome in one body.

: 113 2025-06-05

The information in this table is compiled from various studies, most recently [HL11].
Note: Information content of real-world artifacts can be assessed differently, depending on the
view. Consider for instance a text typewritten on a single page. According to our definition,
this has ca. 2kB, but if we fax it, the image of the page has 2MB or more, and a recording of a
text read out loud is ca. 50MB. Whether this is a terrible waste of bandwidth depends on the
application. On a fax, we can use the shape of the signature for identification (here we actually
care more about the shape of the ink mark than the letters it encodes) or can see the shape of a
coffee stain. In the audio recording we can hear the inflections and sentence melodies to gain an
impression on the emotions that come with text.

4.3 Hypertext Markup Language

WWW documents have a specialized document type that mixes markup for document structure
with layout markup, hyper-references, and interaction. The HTML markup elements always
concern text fragments, they can be nested but may not otherwise overlap. This essentially turns
a text into a document tree. In IWGS, we discuss HTML mostly as a way to build interfaces
of web applications. Therefore we will prioritize those aspects of HTML that have to do with
“programming documents” over the creation of nice-looking web pages. Therefore we will pick up
the notion of nested text fragments marked up by well-bracketed tags and elements in section 4.4
and generalize these ideas to XML as a general representation paradigm for semi-structured data
in ???.

We will also postpone the discussion of cascading stylesheets, which have evolved as the dom-
inant technology for the specification of presentation (layout, colors, and fonts) for marked-up
documents, to ???.

4.3.1 Introduction

HTML was created in 1990 and standardized in version 4 in 1997 [RHJ98]. Since then the
WWW has evolved considerably from a web of static web pages to a Web in which highly dynamic
web pages become user interfaces for web-based applications and even mobile applets. HTML5
standardized the necessary infrastructure in 2014 [Hic+14].

4.3. HYPERTEXT MARKUP LANGUAGE 75

HTML: Hypertext Markup Language

� Definition 4.3.1. The HyperText Markup Language (HTML), is a representation
format for web pages [Hic+14].

� Definition 4.3.2 (Main markup elements of HTML). HTML marks up the
structure and appearance of text with tags of the form <el> (begin tag), </el>
(end tag), and <el/> (empty tag), where el is one of the following

structure html,head, body metadata title, link, meta
headings h1, h2, . . . , h6 paragraphs p, br
lists ul, ol, dl, . . . , li hyperlinks a
multimedia img, video, audio tables table, th, tr, td, . . .
styling style, div, span old style b, u, tt, i, . . .
interaction script forms form, input, button
Math MathML (formu-

lae)
interactive
graphics

vector graphics (SVG) and
canvas (2D bitmapped)

� Example 4.3.3. A (very simple) HTML file with a single paragraph.
<html>

<body>
<p>Hello IWGS students!</p>

</body>
</html>

: 114 2025-06-05

The thing to understand here is that HTML uses the characters <, >, and / to delimit the
markup. All markup is in the form of tags, so anything that is not between < and > is the textual
content.
We will not give a complete introduction to the various tags and elements of the HTML language

here, but refer the reader to the HTML recommendation [Hic+14] and the plethora of excellent
web tutorials. Instead we will introduce the concepts of HTML markup by way of examples.
The best way to understand HTML is via an example. Here we have prepared a simple file that
shows off some of the basic functionality of HTML.

A very first HTML Example (Source)
<html xmlns="http:www.w3.org/1999/xhtml">

<head>
<title>A first HTML Web Page</title>

</head>
<body>

<h1>Anatomy of a HTML Web Page</h1>
<h3>Michael Kohlhase
FAU Erlangen Nuernberg</h3>
<h2 id="intro">1. Introduction</h2>
<p>This is really easy, just start writing.</p>
<h2>3. Main Part: show off features</h2>
<p>We can can markup text styles inline.</p>
<p> And we can make itemizations:

 with a list item
 and another one

</p>

76 CHAPTER 4. DOCUMENTS AS DIGITAL OBJECTS

<h2>4. Conclusion</h2>
<p> As we have seen in the introduction this
was very easy.</p>

</body>
</html>

: 115 2025-06-05

The thing to understand here is that HTML markup is itself a well-balanced structure of begin
and end tags. That wrap other balanced HTML structures and – eventually – textual content.
The HTML recommendation [Hic+14] specifies the visual appearance expectation and interactions
afforded by the respective tags, which HTML-aware software systems – e.g. a web browser – then
execute. In the next slide we see how FireFox displays the HTML document from the previous.

A very first HTML Example (Result)

: 116 2025-06-05

4.3.2 Interacting with HTML in Web Broswers

In the last slide, we have seen FireFox as a document renderer for HTML. We will now
introduce this class of programs in general and point out a few others.

Web Browsers

� Definition 4.3.4. A web browser is a software application for retrieving (via
HTTP), presenting, and traversing information resources on the WWW, enabling
users to view web pages and to jump from one page to another.

Definition 4.3.5. A web browser usually supplies user tools like

� history that gives the user access to web pages visited earlier and

4.3. HYPERTEXT MARKUP LANGUAGE 77

� bookmark to remember web pages.

Definition 4.3.6. A web browser usually supplies developer tools like

� the console that logs system-level events in the browser and

� an inspector that gives access to the structure and content of the DOM.

� Practical Browser Tools:

� Status Bar: security info, page load progress

� Favorites (bookmarks)

� View Source: view the code of a web page

� Tools/Internet Options, history, temporary Internet files, home page, auto com-
plete, security settings, programs, etc.

� Example 4.3.7 (Common Browsers).

� MSInternetExplorer is an once dominant, now obsolete browser for MSWindows.

� Edge is provided by Microsoft for MSWindows.(replaces MSInternetExplorer)

� FireFox is an open source browser for all platforms, it is known for its standards
compliance.

� Safari is provided by Apple for macOS and MSWindows.

� Chrome is a lean and mean browser provided by Google Inc. (very common)

� WebKit is a library that forms the open source basis for Safari and Chrome.

: 117 2025-06-05

Let us now look at a couple of more advanced tools available in most web browsers for dealing
with the underlying HTML document.

Browser Tools for dealing with HTML, e.g. in FireFox

� Hit Control-U to see the page source in the browser

78 CHAPTER 4. DOCUMENTS AS DIGITAL OBJECTS

� go to an element and right-click ; “Inspect element”

: 118 2025-06-05

We have used FireFox as an example here, but these tools are available in some form in all
major browsers the browser vendors want to make their offerings attractive to web developers,
so that web pages and web applications get tested and debugged in them and therefore work as
expected.

4.3.3 A Worked Example: The Contact Form

After this simple example, we will come to a more complex one: a little “contact form” as we find
on many web sites that can be used for sending a message to the owner of the site. Let us only
look a the design of the form document before we go into the interaction facilities afforded it.

4.3. HYPERTEXT MARKUP LANGUAGE 79

HTML in Practice: Worked Example

� Make a design and “paper prototype” of the page:

� Put the intended text into a file: contact.html:

Contact
Please enter a message:
Your e−mail address: xx @ xx.de
Send message

� Load into your browser to check the state:

� Add title, paragraph and button markup:

<title>Contact</title>
<h2>Please enter a message:</h2>
<h3>Your e−mail address: xx @ xx.de</h3>
<button>Send message</button>

� Add input fields and breaks:

80 CHAPTER 4. DOCUMENTS AS DIGITAL OBJECTS

<title>Contact</title>
<h2>Please enter a message:</h2>
<input name="msg" type="text"/>
<h3> Your e−mail address:</h3>
<input name="addr" type="text"

value="xx @ xx.de"/>

<button>Send message</button>

� Convert into a HTML form with action (message receipt):

<title>Contact</title>
<form action="contact−after.html">

<h2>Please enter a message:</h2>
<input name="msg" type="text"/>

<h3>Your e−mail address:</h3>
<input name="addr" type="text"

value="xx @ xx.de"/>

<input type="submit"

value="Send message"/>
</form>

<title>
Contact − Message Confirmed

</title>
<form action="contact4.html">

<h2>
Your message has been submitted!

</h2>
<input type="submit"

value="Continue"/>
</form>

� That’s as far as we will go, the rest is page layout and interaction. (up next)

: 119 2025-06-05

After designing the functional (what are the text blocks) structure of the contact form, we will
need to understand the interaction with the contact form.

HTML Forms

� Question: But how does the interaction with the contact form really work?

� Definition 4.3.8. A HTML form is realized by the HTML form tags, which groups
the layout, form action specification and input fields:

� <form action="⟨⟨URI⟩⟩"...> specifies the form action (as a web page
address).

� the input field <input type="submit".../> triggers the form action: it sends
the form data to web page specified there.

� Example 4.3.9 (In the Contact Form). We send the request

GET contact−after.html?
msg=Hi;addr=foo@bar.de

4.4. DOCUMENTS AS TREES 81

We current ignore the form data (the part after the ?)

� We will come to the full story of processing actions later.

: 120 2025-06-05

Unfortunately, we can only see what the browser sends to the server at the current state of play,
not what the server does with the information. But we will get to this when we take up the
example again.
For the moment, we made use of the fact that we can just specify the page contact−after.html,
which the browser displays next. That ignores the query part and – via a form tags of its own gets
the user back to the original contact form.

More useful types of Input fields

� Radio buttons: type="radio" (grouped by name attribute)

<input type="radio" name="gender" value="male"/>Male

<input type="radio" name="gender" value="female"/>Female

<input type="radio" name="gender" value="other"/>Other

� Check boxes: type="checkbox"
My major is
<input type="checkbox" name="major" value="cs"/>Computer Science
<input type="checkbox" name="major" value="dh"/>Digital Humanities
<input type="checkbox" name="major" value="other"/>Other

� File selector dialogs (interaction is system specific here for MacOS Mojave)

<p> Upload your resume <input type="file" name="resume"/></p>

� Drop down menus: select and option
Which animal do you like?

<select name="animals">

<option value="bird">Bird</option>
<option value="hamster">Hamster</option>
<option value="cat">Cat</option>
<option value="dog">Dog</option>

</select>

: 121 2025-06-05

4.4 Documents as Trees
We have concentrated on HTML as a document type for interactive multimedia documents.

Before we progress, we want to discuss an important feature: all practical document types that em-
ploy control words are in some sense well-bracketed. Well-bracketed structures are well-understood
in CS and mathematics: they are called trees and come with a rich and useful collection of de-
scriptive concepts and tools. We will present the concepts in this section and the tools they enable
in ???.

82 CHAPTER 4. DOCUMENTS AS DIGITAL OBJECTS

Well-Bracketed Structures in Computer Science

� Observation 4.4.1. We often deal with well-bracketed structures in CS, e.g.

� Expressions: e.g.
3 · (a+ 5)

2x+ 7
(numerator an denominator in fractions implicitly

bracketed)

� Markup languages like HTML:

<html>
<head><script>.emph {color:red}</script></head>
<body><p>Hello IWGS</p></body>

</html>

� Programming languages like python:

answer = input("Are you happy? ")
if answer == ’No’ or answer == ’no’:

print("Have a chocolate!")
else:

print("Good!")
print("Can I help you with something else?")

� Idea: Come up with a common data structure that allows to program the same
algorithms for all of them. (common approach to scaling in computer science)

: 122 2025-06-05

A Common Data Structure for Well Bracketed Structures

� Observation 4.4.2. In well-bracketed strutures, brackets contain two kinds of
objects

� bracket-less objects

� well-bracketed structures themselves

� Idea: Write bracket pairs and bracket-less objects as nodes, connect with an arrow
when contained. (let arrows point downwards)

� Example 4.4.3. Let’s try this for HTML creating nodes top to bottom

<html>
<head>

<script>.emph {color:red}</script>
</head>
<body>

<p>Hello IWGS</p>
</body>

</html>

⟨html⟩

⟨head⟩ ⟨body⟩

⟨script⟩ ⟨p⟩

.emph {color:red}

Hello IWGS

� Definition 4.4.4. We call such structures tree. (more on trees next)

: 123 2025-06-05

4.4. DOCUMENTS AS TREES 83

Trees are well understood mathematical objects and tree data structures are very commonly used
in computer science and programming. As such they have a well-developed nomenclature, which
we will introduce now.

Well-Bracketed Structures: Tree Nomenclature

� Definition 4.4.5. In mathematics and CS, such well-bracketed structures are called
trees (with root, branches, leaves, and height). (but written upside down)

� Example 4.4.6. In a tree, there is only one path from the root to the leaves

⟨html⟩

⟨head⟩ ⟨body⟩

⟨script⟩ ⟨p⟩

.emph {color:red}

Hello IWGS

� Definition 4.4.7. We speak of parent, child, ancestor, and descendant nodes
(genealogy nomenclature).

⟨html⟩

⟨head⟩ ⟨body⟩

⟨script⟩ ⟨p⟩

.emph {color:red}

Hello IWGS

84 CHAPTER 4. DOCUMENTS AS DIGITAL OBJECTS

: 124 2025-06-05

Why are trees written upside-down?: The main answer is that we want to draw tree diagrams
in text. And we naturally start drawing a tree at the root. So, if a tree grows from the root and
we do not exactly know the tree height, then we do not know how much space to leave. When we
write trees upside down, we can directly start from the root and grow the tree downward as long
as we need. We will keep to this tradition in the IWGS course.

Upside Down Trees in Nature

� Actually, upside down trees exist in nature (though rarely):

This is a fig tree in Bacoli, Italy; see https://www.atlasobscura.com/places/
upside-down-fig-tree

: 125 2025-06-05

We will now make use of the tree structure for computation. Even if the computing tasks we
pursue here may seem a bit abstract, they show very nicely how tree algorithms typically work.

Computing with Trees in Python

� Observation 4.4.8. All connected substructures of trees are trees themselves.
� Idea: Operate on the tree by “Divide and Conquer”

� operate on the two subtrees

� combine results, taking root into account

1

2 3

4 5 6 7
This approach lends itself very well to recursive programming (functions that call

themselves)

� Idea: Represent trees as lists of tree labels and lists (of subtrees).

� Example 4.4.9 (The tree above). Represented as [1,[2,[[4],[5]]],[3,[[6],[7]]]]
compute the tree height by the following Python functions:

https://www.atlasobscura.com/places/upside-down-fig-tree
https://www.atlasobscura.com/places/upside-down-fig-tree

4.4. DOCUMENTS AS TREES 85

def height (tree):
return maxh(tree[1:]) + 1

height([1,[2,[[4],[5]]],[3,[[6],[7]]]])
>>> 3

def maxh (l):
if l == []:

return 0
else

return max(height(l[0]),maxh(l[1:]))

: 126 2025-06-05

Let use have a closer look at Example 4.4.9. The algorithm consists of two functions:

1. height, which computes the height of an input tree by delegating the computation of the maximal
height of its children to maxh and then incrementing the value by 1.

2. maxh, which takes a list of trees and computes the maximum of their heights by calling height
on the first input tree and then comparing with the maximal height of the remaining trees.

Note that maxh and height each call the other. We call such functions mutually recursive. Here
this behavior poses no problem, since the arguments in the recursive calls are smaller than the
inputs: for maxh it is the rest list, and for height the “list of children” of the input tree.
Example 4.4.9 was complex for two reasons: mutual recursion and the somewhat cryptic encoding
of trees as lists of lists of integers. We claim that recursive programming is “not a bug, but a
feature”, as it allows to succinctly capture the “divide-and-conquer” approach afforded by trees.
For the cryptic encoding of trees we can do better.

Computing with Trees in Python (Dictionaries)

� That was a bit cryptic: i.e. very difficult to read/debug

� Idea: why not use dictionaries? (they are more explicit)

� Example 4.4.10. Compute the tree weight (the sum of all labels) by

t =
{"label": = 1,
"children": = [{

"label": = 2,
"children": = [{

"label": = 4,
"children": = []},

{"label": = 5,
"children": = []}]},

{"label": = 3,
"children": = [{

"label": = 6,
"children": = []},

{"label": = 7,
"children": = []}]}]}

def wsum (tl):
if tl == []:

return 0;
else

return weight(tl[0]) + wsum(tl[1:])

def weight (tree):
return tree["label"] + wsum(tree["children"]);

weight(t);
>>> 28

: 127 2025-06-05

Again, we have two mutually recursive functions: weight that takes a tree, and wsum that takes
a list and the recursion goes analogously. Only that this time, the list of children is a dictionary
value and the calls are clearer. The only real difference, is that in wsum we have to add up the
weight of the head of the list an the joint sum of the rest list.

The Document Object Model

� Definition 4.4.11. The document object model (DOM) is a data structure for

86 CHAPTER 4. DOCUMENTS AS DIGITAL OBJECTS

storing marked up electronic documents as trees together with a standardized set
of access methods for manipulating them.

� Idea: When a web browser loads a HTML page, it directly parses it into a
DOM and then works exclusively on that. In particular, the HTML document is
immediately discarded; documents are rendered from the DOM.

: 128 2025-06-05

4.5 An Overview over XML Technologies
We have seen that many of the technologies that deal with marked-up documents utilize the

tree-like structure of (the DOM) of HTML documents. Indeed, it is possible to abstract from the
concrete vocabulary of HTML that implements the intended layout of hypertexts and the function
of its fragments, and build a generic framework for document trees. This is what we will study in
this section.

4.5.1 Introduction to XML

XML (EXtensible Markup Language)

� Definition 4.5.1. XML (short for Extensible Markup Language) is a framework for
markup formats for documents and structured data.

� Tree representation language (begin/end brackets)

� Restrict instances by Doc. Type Def. (DTD) or Schema (Grammar)

� Presentation markup by style files (XSL: XML Style Language)

� Intuition: XML is extensible HTML

� logic annotation (markup) instead of presentation!

� many tools available: parsers, compression, data bases, . . .

� conceptually: transfer of trees instead of strings.

� details at http://w3c.org (XML is standardize by the WWW Consortium)

: 129 2025-06-05

The idea of XML being an “extensible” markup language may be a bit of a misnomer. It is made
“extensible” by giving language designers ways of specifying their own vocabularies. As such XML
does not have a vocabulary of its own, so we could have also it an “empty” markup language that
can be filled with a vocabulary.

XML is Everywhere (E.g. Web Pages)

� Example 4.5.2. Open web page file in FireFox, then click on V iew↘PageSource,
you get the following text: (showing only a small part and reformatting)

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Michael Kohlhase</title>
<meta name="generator"

http://w3c.org

4.5. AN OVERVIEW OVER XML TECHNOLOGIES 87

content="Page generated from XML sources with the WSML package"/>
</head>
<body>. . .
<p>
<i>Professor of Computer Science</i>

Jacobs University

Mailing address - Jacobs (except Thursdays)

School of Engineering amp; Science
. . .</p>. . .</body></html>

� Definition 4.5.3. XHTML is the XML version of HTML.(just make it valid XML)

: 130 2025-06-05

Now we see an example of an XML file that is used for communicating data in a machine-readable,
but human-understandable way.

XML is Everywhere (E.g. Catalogs)

� Example 4.5.4 (The NYC Galleries Catalog). A public XML file at
https://data.cityofnewyork.us/download/kcrmj9hh/application/xml

<?xml version="1.0" encoding="UTF−8"?>
<museums>

<museum>
<name>American Folk Art Museum</name>
<phone>212−265−1040</phone>
<address>45 W. 53rd St. (at Fifth Ave.)</address>
<closing>Closed: Monday</closing>
<rates>admission: $9; seniors/students, $7; under 12, free</rates>
<specials>

Pay−what−you−wish: Friday after 5:30pm;
refreshments and music available

</specials>
</museum>
<museum>

<name>American Museum of Natural History</name>
<phone>212−769−5200</phone>
<address>Central Park West (at W. 79th St.)</address>
<closing>Closed: Thanksgiving Day and Christmas Day</closing>

: 131 2025-06-05

This XML uses an ad hoc markup language: Every <museum> element represents one museum
in New York City (NYC). Its children convey the detailed information as “key value pairs”.
And now, if you still need proof that XML is really used almost everywhere, here is the ultimate
example.

XML is Everywhere (E.g. Office Suites)

� Example 4.5.5 (MS Office uses XML). The MSOffice suite and LibreOffice

use compressed XML as an electronic document format.

1. Save a MSOffice file test.docx, add the extension .zip to obtain test.docx.zip.

2. Uncompress with unzip (UNIX) or open File Explorer, right-click ; “Extract All”
(MSWindows)

3. You obtain a folder with 15+ files, the content is in word/contents.xml

https://data.cityofnewyork.us/download/kcrm j9hh/application/xml

88 CHAPTER 4. DOCUMENTS AS DIGITAL OBJECTS

4. Other files have packaging information, images, and other objects.

This is huge and offensively ugly.

� But you have everything you wanted and more

� In particular, you can process the contents via a program now.

: 132 2025-06-05

XML Documents as Trees

� Idea: An XML Document is a Tree

<omtext xml:id="foo"
xmlns=". . ."
xmlns:om=". . .">

<CMP xml:lang=’en’>
The number
<om:OMOBJ>

<om:OMS cd="nums1"
name="pi"/>

</om:OMOBJ>
is irrational.

</CMP>
</omtext>

<omtext>

<CMP>

xml:id; foo

xml:lang; en

The number is irrational.

<om:OMOBJ>

<om:OMS>

cd; nums1name; pi

xmlns; . . .

xmlns:om; . . .

� Definition 4.5.6. The XML document tree is made up of XML elements, attribute
nodes, text nodes (and namespace declarations, comments,. . .)

: 133 2025-06-05

XML Documents as Trees (continued)

� Definition 4.5.7. For communication this tree is serialized into a balanced brack-
eting structure, where

� an inner XML element nodes is represented by the brackets <el> (called the
opening tag) and </el> (called the closing tag),

� the leaves of the XML tree are represented by empty element tags (serialized as
<el></el>, which can be abbreviated as <el/>,

� and text node (serialized as a sequence of UniCode characters).

� An XML element node can be annotated by further information using attribute
nodes serialized as an attribute in its opening tag.

� Note: As a document is a tree, the XML specification mandates that there must
be a unique document root.

: 134 2025-06-05

4.5. AN OVERVIEW OVER XML TECHNOLOGIES 89

4.5.2 Computing with XML in Python
We have claimed above that the tree nature of XML documents is one of the main advantages.

Let us now see how Python makes good on this promise.
We use the external lxml library [LXMLa] in IWGS, even though the Python distribution includes

the standard library ElementTree library [ET] for dealing with XML. lxml subsumes ElementTree
and extends it by functionality for XPath and can parse a large set of HTML documents even
though they are not valid XML. This makes lxml a better basis for practical applications in the
Digital Humanities.
Acknowledgements: Many of the examples and the flow of exposition in the next slides has
been adapted from the lxml tutorial [LXMLc].

Computing with XML in Python (Elements)

� The lxml library [LXMLa] provides Python bindings for the (low-level) LibXML2
library. (install it with pip3 install lxml)

� The ElementTree API is the main way to programmatically interact with XML.
Activate it by importing etree from lxml:
>>> from lxml import etree

� Elements are easily created, their properties are accessed with special accessor
methods
>>> root = etree.Element("root")
>>> print(root.tag)
root

� Elements are organised in an XML tree structure. To create child element nodes
and add them to a parent element nodes, you can use the append() method:
>>> root.append(etree.Element("child1"))

� Abbreviation: create a child element node and add it to a parent.
>>> child2 = etree.SubElement(root, "child2")
>>> child3 = etree.SubElement(root, "child3")

: 135 2025-06-05

Computing with XML in Python (Result)

� Here is the resulting XML tree so far; we serialize it via etree.tostring
>>> print(etree.tostring(root, pretty_print=True))
<root>

<child1/>
<child2/>
<child3/>

</root>

� BTW, the etree.tostring is highly configurable via default arguments.
tostring(element_or_tree,

encoding=None, method="xml", xml_declaration=None, doctype=None,
pretty_print=False, with_tail=True, standalone=None, exclusive=False,
inclusive_ns_prefixes=None, with_comments=True, strip_text=False)

90 CHAPTER 4. DOCUMENTS AS DIGITAL OBJECTS

The lxml API documentation [LXMLb] has the details.

: 136 2025-06-05

This method of “manually” producing XML trees in memory by applying etree methods may seem
very clumsy and tedious. But the power of lxml lies in the fact that these can be embedded in
Python programs. And as always, programming gives us the power to do things very efficiently.

Computing with XML in Python (Automation)

� This may seem trivial and/or tedious, but we have Python power now:
def nchildren (n):

root = etree.Element("root")
for i in range(1,n):

root.append(f"child{i}")

produces a tree with 1000 children without much effort.
>>> t = nchildren(1000)
>>> print(len(t))
>>> 1000

We abstain from printing the XML tree (too large) and only check the length.

: 137 2025-06-05

But XML documents that only have elements, are boring; let’s do XML attributes next. Recall
that attributes are essentially string-valued key/value pairs. So what could be more natural than
treating them like dictionaries.

Computing with XML in Python (Attributes)

� Attributes can directly be added in the Element function

>>> root = etree.Element("root", interesting="totally")
>>> etree.tostring(root)
b’<root interesting="totally"/>’

� The .get method returns attributes in a dictionary-like object:

>>> print(root.get("interesting"))
totally

We can set them with the .set method:
>>> root.set("hello", "Huhu")
>>> print(root.get("hello"))
Huhu

This results in a changed element:

>>> etree.tostring(root)
b’<root interesting="totally" hello="Huhu"/>’

: 138 2025-06-05

Recall that we could use Python dictionaries for iterating over in a for loop. We can do the same
for attributes:

4.5. AN OVERVIEW OVER XML TECHNOLOGIES 91

Computing with XML in Python (Attributes; continued)

� We can access attributes by the keys, values, and items methods, known from
dictionaries:
>>> sorted(root.keys())
[’hello’, ’interesting’]

>>> for name, value in sorted(root.items()):
... print(f’{name} = {value}’)
hello = ’Huhu’
interesting = ’totally’

� To get a ‘real‘ dictionary, use the attrib method (e.g. to pass around)

>>> attributes = root.attrib

Note that attributes participates in any changes to root and vice versa.

� To get an independent snapshot of the attributes that does not depend on the
XML tree, copy it into a dict:

>>> d = dict(root.attrib)
>>> sorted(d.items())
[(’hello’, ’Guten Tag’), (’interesting’, ’totally’)]

: 139 2025-06-05

The last two items touch a somewhat delicate subject in programming. Mutable an immutable
data structures: the former can be changed in place as we have above with the .set method, and the
latter cannot. Both have their justification and respective advantages. Immutable data structures
are “safe” in the sense that they cannot be changed unexpectedly by another part of the program,
they have the disadvantage that every time we want to have a variant, we have to copy the whole
object. Mutable ones do not – we can change in place – but we have to be very careful about who
accesses them when.

This is also the reason why we spoke of “dictionary-like interface” to XML trees in lxml: dic-
tionaries are immutable, while XML trees are not.
The main remaining functionality in XML is the treatment of text. XML treats text as special
kinds of node in the tree: text nodes. They can be treated just like any other node in the XML
tree in the etree library.

Computing with XML in Python (Text nodes)

� XML elements can contain text: we use the .text property to access and set it.

>>> root = etree.Element("root")
>>> root.text = "TEXT"
>>> print(root.text)
TEXT
>>> etree.tostring(root)
b’<root>TEXT</root>’

: 140 2025-06-05

To get a real intuition about what is happening, let us see how we can use all the functionality so

92 CHAPTER 4. DOCUMENTS AS DIGITAL OBJECTS

far: we programmatically construct an HTML tree.

Case Study: Creating an HTML document

� We create nested html and body elements

>>> html = etree.Element("html")
>>> body = etree.SubElement(html, "body")

� Then we inject a text node into the latter using the .text property.

>>> body.text = "TEXT"

� Let’s check the result
>>> etree.tostring(html)
b’<html><body>TEXT</body></html>’

� We add another element: a line break and check the result
>>> br = etree.SubElement(body, "br")
>>> etree.tostring(html)
b’<html><body>TEXT
</body></html>’

� Finally, we can add trailing text via the .tail property

>>> br.tail = "TAIL"
>>> etree.tostring(html)
b’<html><body>TEXT
TAIL</body></html>’

: 141 2025-06-05

Note the use of the .tail property here? While the .text property can be used to set “all” the text
in an XML element, we have to use the .tail property to add trailing text (e.g. after the

element).
Notwithstanding the “Python power” argument from above, there are situations, where we just
want to write down XML fragments and insert them into (programmatically created) XML trees.
lxml as functionality for this: XML literals, which we introduce now.

Computing with XML in Python (XML Literals)

� Definition 4.5.8. We call any string that is well-formed XML an XML literal.

� We can use the XML function to read XML literals.
>>> root = etree.XML("<root>data</root>")

The result is a first-class element tree, which we can use as above
>>> print(root.tag)
root
>>> etree.tostring(root)
b’<root>data</root>’

BTW, the fromstring function does the same.

� There is a variant html that also supplies the necessary HTML decoration.

4.5. AN OVERVIEW OVER XML TECHNOLOGIES 93

>>> root = etree.HTML("<p>data
more</p>")
>>> etree.tostring(root)
b’<html><body><p>data
more</p></body></html>’

� BTW: If you want to read only the text content of an XML element, i.e. without
any intermediate tags, use the method keyword in tostring:

>>> etree.tostring(root, method="text")
b’datamore’

: 142 2025-06-05

4.5.3 XML Namespaces
We now come to a topic that is considered very difficult, confusing, and un-necessary by many
people: XML namespaces. But it really is not, if you approach it with an open mind. Indeed
it is probably what you would have come up with if you had been presented with the problem
of mixing vocabularies, which is in turn a consequence of the fact that XML is used pervasively
in the computing world and especially in Digital Humanities, where we often need to aggregate
semi-structured data from multiple sources (and this multiple XML vocabularies).

XML is Everywhere (E.g. document metadata)

� Example 4.5.9. Open a PDF file in AcrobatReader, then click on

File↘DocumentProperties↘DocumentMetadata↘V iewSource

you get the following text: (showing only a small part)
<rdf:RDF xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’

xmlns:iX=’http://ns.adobe.com/iX/1.0/’>
<rdf:Description xmlns:pdf=’http://ns.adobe.com/pdf/1.3/’>
<pdf:CreationDate>2004-09-08T16:14:07Z</pdf:CreationDate>
<pdf:ModDate>2004-09-08T16:14:07Z</pdf:ModDate>
<pdf:Producer>Acrobat Distiller 5.0 (Windows)</pdf:Producer>
<pdf:Author>Herbert Jaeger</pdf:Author>
<pdf:Creator>Acrobat PDFMaker 5.0 for Word</pdf:Creator>
<pdf:Title>Exercises for ACS 1, Fall 2003</pdf:Title>

</rdf:Description>
. . .
<rdf:Description xmlns:dc=’http://purl.org/dc/elements/1.1/’>
<dc:creator>Herbert Jaeger</dc:creator>
<dc:title>Exercises for ACS 1, Fall 2003</dc:title>

</rdf:Description>
</rdf:RDF>

� Example 4.5.10. Example 4.5.9 mixes elements from three different vocabularies:

� RDF: xmlns:rdf for the “Resource Descritpion Format”,

� PDF: xmlns:pdf for the “Portable Document Format”, and

� DC: xmlns:dc for the “Dublin Core” vocabulary

: 143 2025-06-05

This is an excerpt from the document metadata which AcrobatDistiller saves along with
each PDF document it creates. It contains various kinds of information about the creator of the
document, its title, the software version used in creating it and much more. Document metadata
is useful for libraries, bookselling companies, all kind of text databases, book search engines, and
generally all institutions or persons or programs that wish to get an overview of some set of books,

94 CHAPTER 4. DOCUMENTS AS DIGITAL OBJECTS

documents, texts. The important thing about this document metadata text is that it is not written
in an arbitrary, PDF proprietary format. Document metadata only make sense if these metadata
are independent of the specific format of the text. The metadata that MSWord saves with each
Word document should be in the same format as the metadata that Amazon saves with each of
its book records, and again the same that the British library uses, etc.
We will now reflect what we have seen in Example 4.5.9 and fully define the namespacing mecha-
nisms involved. Note that these definitions are technically involved, but conceptually quite natural.
As a consequence they should be read more with an eye towards “what are we trying to achieve”
than the technical details.

Mixing Vocabularies via XML Namespaces

� Problem: We would like to reuse elements from different XML vocabularies
What happens if element names coincide, but have different meanings?

� Idea: Disambiguate them by vocabulary name. (prefix)

� Problem: What if vocabulary names are not unique? (e.g. different versions)

� Idea: Use a long string for identification and a short prefix for referencing

� Definition 4.5.11. An XML namespace is a string that identifies an XML vocab-
ulary. Every element and attribute name in XML consists of a local name and a
namespace.

� Definition 4.5.12. A namespace declaration is an attribute xmlns:⟨⟨prefix⟩⟩= whose
value is an XML namespace n on an XML element e. The first associates the
namespace prefix ⟨⟨prefix⟩⟩ with the namespace n in e: Then, any XML element in e
with a prefixed name ⟨⟨prefix⟩⟩:⟨⟨name⟩⟩ has namespace n and local name ⟨⟨name⟩⟩.
A default namespace declaration xmlns=d on an element e gives all elements in e
whose name is not prefixed, the namepsace d.

Namespace declarations on subtrees shadow the ones on supertrees.

: 144 2025-06-05

4.5.4 XPath: Specifying XML Subtrees
One of the great advantages of viewing marked-up documents as trees is that we can describe
subsets of its nodes.

XPath, A Language for talking about XML Tree Fragments

� Definition 4.5.13. The XML path language (XPath) is a framework for specifying
(sets of) fragments of XML trees by specifying paths from the root.

� Intuition: XPath is for trees what regular expressions are for strings.

� Example 4.5.14.

4.5. AN OVERVIEW OVER XML TECHNOLOGIES 95

<omtext>

<CMP>

xml:id; foo

xml:lang; en

The number is irrational.

<om:OMOBJ>

<om:OMS>

cd; nums1name; pi

xmlns; . . .

xmlns:om; . . .

XPath exp. fragment
/ root
omtext/CMP/∗ all <CMP>

children
//@name the name at-

tribute on the
<OMS> ele-
ment

//CMP/∗[1] the first child of
all <CMP> ele-
ments

//∗[@cd=’nums1’] all elements
whose cd has
value nums1

: 145 2025-06-05

An XPath processor is an application or library that reads an XML file into a DOM and given
an XPath expression returns (pointers to) the set of nodes in the DOM that satisfy the expres-
sion.

Computing with XML in Python (XPath)

� Say we have an XML tree:
>>> f = StringIO(’<foo><bar></bar></foo>’)
>>> tree = etree.parse(f)

� Then xpath() selects the list of matching elements for an XPath:
>>> r = tree.xpath(’/foo/bar’)
>>> len(r)
1
>>> r[0].tag
’bar’

� And we can do it again, . . .
>>> r = tree.xpath(’bar’)
>>> r[0].tag
’bar’

� The xpath() method has support for XPath variables:
>>> expr = "//∗[local−name() = $name]"
>>> print(root.xpath(expr, name = "foo")[0].tag)
foo
>>> print(root.xpath(expr, name = "bar")[0].tag)
bar

: 146 2025-06-05

To see that XPath is not just a plaything, we will now look at at a typical example where we can
identify useful subtrees in a large HTML document: the Wikipedia page on paintings by Leonardo
da Vinci.

XPath Example: Scraping Wikipedia

� Example 4.5.15 (Extracting Information from HTML).

96 CHAPTER 4. DOCUMENTS AS DIGITAL OBJECTS

� We want a list of all titles of paintings by Leonardo da Vinci.

� open https://en.wikipedia.org/wiki/List_of_works_by_Leonardo_da_
Vinci in FireFox. (save it into a file leo.html)

� call DOM inspector to get an idea of the XPath of titles. (bottom line)

The path is table > tbody > tr > td > dl > dd > i > b > a
Alternatively: right-click on highlighted line, ; "copy" ; "XPath", gives
/html/body/div[3]/div[3]/div[4]/div/table[4]/tbody/tr[3]/td[2]/dl/dd/i/b/a.

� Idea: We want to use the second table cells td[2].

� Program it in Python using the lxml library: titles is list of title strings.

from lxml import html

with open(’leo.html’, ’r’) as m:
str = m.read()

tree = html.fromstring(str)
titles=tree.xpath(’//table//td[2]//i/b/a/text()’)

: 147 2025-06-05

If the task of writing an XPath for extracting the 50+ titles from this page does not convince you
as worth learning XPath for, consider that Wikipedia has ca. 30 such lists, which apparently have
exactly the same tree structure, so the XPath developed once for da Vinci, probably works for all
the others as well.

https://en.wikipedia.org/wiki/List_of_works_by_Leonardo_da_Vinci
https://en.wikipedia.org/wiki/List_of_works_by_Leonardo_da_Vinci

Chapter 5

Web Applications

In this chapter we will see how we can turn HTML pages into web-based applications that can
be used without having to install additional software.

For that we discuss the basics of the World Wide Web as the client server architecture that
enables such applications. Then we take up the contact form example to get an understanding
how information is passed between client and server in interactive web pages. This motivates a
discussion of server-side computation of web pages that can react to such information. A discussion
of CSS styling shows how to make the web pages that are generated can be made visually appealing.
We conclude the chapter by a discussion of client-side computation that allows making web pages
interactive without recurring to the server. Excursion: The World Wide Web as we introduce
it here is based on the Internet infrastructure and protocols. In some places it may be useful to
read up on this inAppendix A.

5.1 Web Applications: The Idea

Web Applications: Using Applications without Installing

� Definition 5.1.1. A web application (also called webapp) is a program that runs
on a web server and delivers its user interface as a web site consisting of program-
matically generated web pages using a web browser as the client.

� Example 5.1.2. Commonly used web applications include

� http://ebay.com; auction pages are generated from databases.

� http://www.weather.com; weather information generated from weather feeds.

� http://slashdot.org; aggregation of news feeds/discussions.

� http://github.com; source code hosting and project management.

� http://studon; course/exam management from students records.

� Common Traits: Pages generated from databases and external feeds, content
submission via HTML forms, file upload, dynamic HTML.

: 148 2025-06-05

We have seen that web applications are a common way of building application software. To
understand how this works let us now have a look at the components.

97

http://ebay.com
http://www.weather.com
http://slashdot.org
http://github.com
http://studon

98 CHAPTER 5. WEB APPLICATIONS

Anatomy of a Web Application

� Definition 5.1.3. A web application consists of two parts:

� A front-end that handles the user interaction.

� A back-end that stores, computes and serves the application content.

Browser Web
Server Database

read

interact HTTP

JavaScript e.g. python

computation

Front-End Back-End

Both parts rely on (separate) computational facilities.
A database as a persistence layer is optional.

� Note: The web browser, web server, and database can

� be deployed on different computers, (high throughput)

� all run on your laptop (e.g. for development)

: 149 2025-06-05

To understand web applications, we will first need to understand

1. how we can express web pages in HTML and (see ???) interact with them for data input (we
recap this in ???),

2. the basics of how the World Wide Web works as a distribution framework (see ???),

3. how we can generate HTML documents programmatically (in our case in Python; see ???) as
answer pages, and finally

4. how we can make HTML pages dynamic by client side manipulation (see ???).

5.2 Basic Concepts of the World Wide Web

We will now present a very brief introduction into the concepts, mechanisms, and technologies
that underlie the World Wide Web and thus web applications, which are our interest here.

5.2.1 Preliminaries
The WWW is the hypertext/multimedia part of the internet. It is implemented as a service on

top of the internet (at the application level) based on specific protocols and markup formats for
documents.

The Internet and the Web

� Definition 5.2.1. The Internet is a global computer network that connects hun-
dreds of thousands of smaller networks.

5.2. BASIC CONCEPTS OF THE WORLD WIDE WEB 99

� Definition 5.2.2. The World Wide Web (WWW) is an open source information
space where electronic documents and other web resources are identified by URLs,
interlinked by hypertext links, and can be accessed via the Internet.

� Intuition: The WWW is the multimedia part of the internet, they form critical
infrastructure for modern society and commerce.

� The internet/WWW is huge:

Year Web Deep Web eMail
1999 21 TB 100 TB 11TB
2003 167 TB 92 PB 447 PB
2010 ???? ????? ?????

� We want to understand how it works. (services and scalability issues)

: 150 2025-06-05

Given this recap we can now introduce some vocabulary to help us discuss the phenomena.

Concepts of the World Wide Web

� Definition 5.2.3. A web page is a document on the WWW that can include
multimedia data and hyperlinks.

� Note: Web pages are usually marked up in in HTML.

� Definition 5.2.4. A web site is a collection of related web pages usually designed
or controlled by the same individual or organization.

� A web site generally shares a common domain name.

� Definition 5.2.5. A hyperlink is a reference to data that can immediately be
followed by the user or that is followed automatically by a user agent.

� Definition 5.2.6. A collection text documents with hyperlinks that point to text
fragments within the collection is called a hypertext. The action of following hyper-
links in a hypertext is called browsing or navigating the hypertext.

� In this sense, the WWW is a multimedia hypertext.

: 151 2025-06-05

5.2.2 Addressing on the World Wide Web
The essential idea is that the World Wide Web consists of a set of resources (documents, images,

movies, etc.) that are connected by links (like a spider-web). In the WWW, the links consist of
pointers to addresses of resources. To realize them, we only need addresses of resources (much as
we have IP numbers as addresses to hosts on the internet).

Uniform Resource Identifier (URI), Plumbing of the Web

� Definition 5.2.7. A uniform resource identifier (URI) is a global identifiers of local

100 CHAPTER 5. WEB APPLICATIONS

or network-retrievable documents, or media files (web resources). URIs adhere a
uniform syntax (grammar) defined in RFC-3986 [BLFM05].

A URI is made up of the following components:

� a scheme that specifies the protocol governing the resource,

� an authority: the host (authentication there) that provides the resource,

� a path in the hierarchically organized resources on the host,

� a query in the non-hierarchically organized part of the host data, and

� a fragment identifier in the resource.

� Example 5.2.8. The following are two example URIs and their component parts:
http :// example.com :8042/ over/there?name=ferret#nose
__/ ______________ /\ _________/ _________/ __/
| | | | |

scheme authority path query fragment
|___ _________________|_
/ \ / \

mailto:michael.kohlhase@fau.de

� Note: URIs only identify documents, they do not have to provide access to them
(e.g. in a browser).

: 152 2025-06-05

The definition above only specifies the structure of a URI and its functional parts. It is designed
to cover and unify a lot of existing addressing schemes, including URLs (which we cover next),
ISBN numbers (book identifiers), and mail addresses.
In many situations URIs still have to be entered by hand, so they can become quite unwieldy.
Therefore there is a way to abbreviate them.

Relative URIs

� Definition 5.2.9. URIs can be abbreviated to relative URIs; missing parts are filled
in from the context.

� Example 5.2.10. Relative URIs are more convenient to write

relative URI abbreviates in context
#foo ⟨⟨current− file⟩⟩#foo curent file
bar.txt file:///home/kohlhase/foo/bar.txt file system
../bar/bar.html http://example.org/bar/bar.html on the web

� Definition 5.2.11. To distinguish them from relative URIs, we call URIs absolute
URIs.

: 153 2025-06-05

The important concept to grasp for relative URIs is that the missing parts can be reconstructed
from the context they are found in: the document itself and how it was retrieved.
For the file system example, we are assuming that the document is a file foo.html that was loaded
from the file system – under the file system URI file:///home/kohlhase/foo/foo.html – and for the
web example via the URI //example.org/foo/foo.html. Note that in the last example, the relative
URI ../bar/ goes up one segment of the path component (that is the meaning of ../), and specifies
the file bar.html in the directory bar.

5.2. BASIC CONCEPTS OF THE WORLD WIDE WEB 101

But relative URIs have another advantage over absolute URIs: they make a web page or web
site easier to move. If a web site only has links using relative URIs internally, then those do not
mention e.g. authority (this is recovered from context and therefore variable), so we can freely
move the web-site e.g. between domains.
Note that some forms of URIs can be used for actually locating (or accessing) the identified
resources, e.g. for retrieval, if the resource is a document or sending to, if the resource is a
mailbox. Such URIs are called “uniform resource locators”, all others “uniform resource locators”.

Uniform Resource Names and Locators

� Definition 5.2.12. A uniform resource locator (URL) is a URI that gives access
to a web resource, by specifying an access method or location. All other URIs are
called uniform resource name (URN).

� Idea: A URN defines the identity of a resource, a URL provides a method for
finding it.

� Example 5.2.13.

The following URI is a URL (try it in your browser)
http://kwarc.info/kohlhase/index.html

� Example 5.2.14. urn:isbn:978−3−540−37897−6 only identifies [Koh06] (it is in
the library)

� URNs can be turned into URLs via a catalog service, e.g. http://wm-urn.org/
urn:isbn:978-3-540-37897-6

� Note: URIs are one of the core features of the web infrastructure, they are
considered to be the plumbing of the WWW. (direct the flow of data)

: 154 2025-06-05

Historically, started out as URLs as short strings used for locating documents on the internet.
The generalization to identifiers (and the addition of URNs) as a concept only came about when
the concepts evolved and the application layer of the internet grew and needed more structure.
Note that there are two ways in URI can fail to be resource locators: first, the scheme does not
support direct access (as the ISBN scheme in our example), or the scheme specifies an access
method, but address does not point to an actual resource that could be accessed. Of course, the
problem of “dangling links” occurs everywhere we have addressing (and change), and so we will
neglect it from our discussion. In practice, the URL/URN distinction is mainly driven by the
scheme part of a URI, which specifies the access/identification scheme.

Internationalized Resource Identifiers

� Remark 5.2.15. URIs are ASCII strings.

� Problem: This is awkward e.g. for “France Télécom”, worse in Asia.

� Solution?: Use unicode! (no, too young/unsafe)

� Definition 5.2.16. Internationalized resource identifiers (IRIs) extend the ASCII-
based URIs to the universal character set.

� Definition 5.2.17. URI-encoding maps non-ASCII characters to ASCII strings:

http://wm-urn.org/urn:isbn:978-3-540-37897-6
http://wm-urn.org/urn:isbn:978-3-540-37897-6

102 CHAPTER 5. WEB APPLICATIONS

1. Map each character to its UTF-8 representation.

2. Represent each byte of the UTF-8 representation by three characters.

3. The first character is the percent sign (%),

4. and the other two characters are the hexadecimal representation of the byte.

URI-decoding is the dual operation.

� Example 5.2.18. The letter “ł” (U+ 142) would be represented as %C5%82.

� Example 5.2.19. http://www.Übergrößen.de becomes
http://www.%C3%9Cbergr%C3%B6%C3%9Fen.de

� Remark 5.2.20. Your browser can still show the URI-decoded version (so you can
read it)

: 155 2025-06-05

5.2.3 Running the World Wide Web
The infrastructure of the WWW relies on a client-server architecture, where the servers (called
web servers) provide documents and the clients (usually web browsers) present the documents to
the (human) users. Clients and servers communicate via the HTTPs and HTTPSs protocols. We
give an overview via a concrete example before we go into details.

The World Wide Web as a Client/Server System

: 156 2025-06-05

The web browser communicates with the web server through a specialized protocol, the hypertext
transfer protocol, which we cover now.

HTTP: Hypertext Transfer Protocol

� Definition 5.2.21. The Hypertext Transfer Protocol (HTTP) is an application
layer protocol for distributed, collaborative, hypermedia information systems.

5.2. BASIC CONCEPTS OF THE WORLD WIDE WEB 103

� June 1999: HTTP/1.1 is defined in RFC 2616 [Fie+99].

� Preview/Recap: HTTP is used by a client (called user agent) to access web
web resources (addressed by uniform resource locators (URLs)) via a HTTP request.
The web server answers by supplying the web resource (and metadata).

� Definition 5.2.22. Most important HTTP request methods. (5 more less
prominent)

GET Requests a representation of the specified resource. safe
PUT Uploads a representation of the specified resource. idempotent
DELETE Deletes the specified resource. idempotent
POST Submits data to be processed (e.g., from a web

form) to the identified resource.

� Definition 5.2.23. We call a HTTP request safe, iff it does not change the state
in the web server. (except for server logs, counters,. . . ; no side effects)

� Definition 5.2.24. We call a HTTP request idempotent, iff executing it twice has
the same effect as executing it once.

� HTTP is a stateless protocol. (very memory efficient for the server.)

: 157 2025-06-05

Finally, we come to the last component, the web server, which is responsible for providing the web
page requested by the user.

Web Servers

� Definition 5.2.25. A web server is a network program (a server in a client server
architecture of the WWW) that delivers web resources to and receives content from
clients via the Hypertext Transfer Protocol (HTTP).

� Example 5.2.26 (Common Web Servers).

� apache is an open source web server that serves about 50% of the WWW.

� nginx is a lightweight open source web server. (ca. 35%)

� IIS is a proprietary web server provided by Microsoft Inc.

� Definition 5.2.27. A web server can host – i.e serve web resources for multiple
domains (via configurable hostnames) that can be addressed in the authority com-
ponents of URLs. This usually includes the special hostname localhost which is
interpreted as “this computer”.

� Even though web servers are very complex software systems, they come preinstalled
on most UNIX systems and can be downloaded for MSWindows [Xam].

: 158 2025-06-05

Now that we have seen all the components we fortify our intuition of what actually goes down
the net by tracing the HTTP messages.

104 CHAPTER 5. WEB APPLICATIONS

Example: An HTTP request in real life

� Send off a GET request for http://www.nowhere123.com/doc/index.html
GET /docs/index.html HTTP/1.1
Host: www.nowhere123.com
Accept: image/gif, image/jpeg, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
(blank line)

� The response from the server
HTTP/1.1 200 OK
Date: Sun, 18 Oct 2009 08:56:53 GMT
Server: Apache/2.2.14 (Win32)
Last-Modified: Sat, 20 Nov 2004 07:16:26 GMT
ETag: "10000000565a5-2c-3e94b66c2e680"
Accept-Ranges: bytes
Content-Length: 44
Connection: close
Content-Type: text/html
X-Pad: avoid browser bug

<html><body><h1>It works!</h1></body></html>

� Note: As you can seen, these are clear-text messages that go over an unpro-
tected network. A consequence is that everyone on this network can intercept this
communication and see what you are doing/reading/watching.

: 159 2025-06-05

5.3 Recap: HTML Forms Data Transmission

The first two requirement for web applications above are already met by HTML in terms of
HTML forms (see slide 120 ff.). Let us recap and extend2EdN:2

Recap HTML Forms: Submitting Data to the Web Server

� Recall: HTML forms collect data via named input elements, the submit event
triggers a HTTP request to the URL specified in the action attribute.

� Example 5.3.1. Forms contain input fields and explanations.

<form name="input" action="login.html" method="get">
Username: <input type="text" name="user"/>
Password: <input type="password" name="pass"/>
<input type="submit" value="Submit"/>

</form>

yields the following in a web browser:

2EdNote: continue

http://www.nowhere123.com/doc/index.html

5.3. RECAP: HTML FORMS DATA TRANSMISSION 105

Pressing the submit button activates a HTTP GET request to the URL
login.html?user=⟨⟨name⟩⟩&pass=⟨⟨passwd⟩⟩

� Never use the GET method for submitting passwords (see below)

: 160 2025-06-05

We can now use the tools any modern browser supplies to check up on this claim. In fact, using
the browser tools is essential for advanced web development. Here we use the web console, that
monitors any activity, to check upon what really happens when we interact with the web page.

Checking up on the Transmission

� Let’s verify the claims above using browser tools (here the web console)

� Loading the file and filling in the form: (console logs file URI)

� After submitting the form: (console logs the HTTP request)

106 CHAPTER 5. WEB APPLICATIONS

: 161 2025-06-05

A side effect of re-playing our development in the browser is that we see another type of input
field: A password field, which hides user input from un-authorized eyes. We also see that the
GET request incorporates the form data which contains the password into the URI of the request,
which is visible to everyone on the web. We will come back to this problem later.
Let us now look at the data transmission mechanism in more detail to see what is actually trans-
mitted and how.

HTML Forms and Form Data Transmission

� We specify the HTTP communication of HTML forms in detail.

� Definition 5.3.2. The HTML form element groups the layout and input elements:

� <form action="⟨⟨URI⟩⟩" method="⟨⟨req⟩⟩"> specifies the form action in terms
of a HTTP request ⟨⟨req⟩⟩ to the URI ⟨⟨URI⟩⟩.

� The form data consists of a string ⟨⟨data⟩⟩ of the form n1=v1&· · ·&nk=vk,
where

� ni are the values of the name attributes of the input fields
� and vi are their values at the time of submission.

� <input type="submit" .../> triggers the form action: it composes a HTTP
request

� If ⟨⟨req⟩⟩ is get (the default), then the browser issues a GET request ⟨⟨URI⟩⟩?⟨⟨data⟩⟩.
� If ⟨⟨req⟩⟩ is post, then the browser issues a POST request to ⟨⟨URI⟩⟩ with

document content ⟨⟨data⟩⟩.

� We now also understand the form action, but should we use GET or POST.

: 162 2025-06-05

To understand whether we should use the GET or POST methods, we have to look into the
details, which we will now summarize.

5.4. GENERATING HTML ON THE SERVER 107

Practical Differences between HTTP GET and POST

� Using GET vs. POST in HTML Forms:

GET POST
Caching possible never
Browser History Yes never
Bookmarking Yes No
Change Server Data No Yes
Size Restrictions ≤ 2KB No
Encryption No HTTPS

� Upshot: HTTP GET is more convenient, but less potent.

� Always use POST for sensitive data! (passwords, personal data, etc.)
GET data is part of the URI and thus unencrypted, POST data via HTTPS is.

: 163 2025-06-05

5.4 Generating HTML on the Server

As the WWW is based on a client server architecture, computation in web applications can be
executed either on the client (the web browser) or the server (the web server). For both we have
a special technology; we start with computation on the web server.

Server-Side Scripting: Programming Web pages

� Idea: Why write HTML pages if we can also program them! (easy to do)

� Definition 5.4.1. A server-side scripting framework is a web server extension that
generates web pages upon HTTP requests.

� Example 5.4.2. perl is a scripting language with good string manipulation
facilities. PERL CGI is an early server-side scripting framework based on this.

� Example 5.4.3. Python is a scripting language with good string manipulation
facilities. And bottle WSGI is a simple but powerful server-side scripting framework
based on this.

� Observation: Server-side scripting frameworks allow to make use of external
resources (e.g. databases or data feeds) and computational services during web
page generation.

� Observation: A server-side scripting framework solves two problems:

1. making the development of functionality that generates HTML pages convenient
and efficient, usually via a template engine, and

2. binding such functionality to URLs the routes, we call this routing.

: 164 2025-06-05

We will look at the second problem: routing first. There is a dedicated Python library for that.

108 CHAPTER 5. WEB APPLICATIONS

5.4.1 Routing and Argument Passing in Bottle
We wil now introduce the bottle library, which supplies a lightweight web server and server-side

scripting framework implemented in Python. It is already installed on the JuptyerLab cloud IDE
at http://jupyter.kwarc.info. To install it on your laptop, just type pip install bottle in a
shell.

The Web Server and Routing in Bottle WSGI

� Definition 5.4.4. Serverside routing (or simply routing) is the process by which a
web server connects a HTTP request to a function (called the route function) that
provides a web resource. A single URI path/route function pair is called a route.

� The bottle WSGI library supplies a simple Python web server and routing.

� The run(⟨⟨keys⟩⟩) function starts the web server with the configuration in ⟨⟨keys⟩⟩.
� The @route decorator connects path components to Python function that return

strings. Decorators change functions. A decorator @route(⟨⟨path⟩⟩) augments the
following function f to answer to HTTP requests to the ⟨⟨path⟩⟩ and return f ’s
return value.

� Example 5.4.5 (A Hello World route). . . . for localhost on port 8080

from bottle import route, run

@route(’/hello’)
def hello():

return "Hello IWGS!"

run(host=’localhost’, port=8080, debug=True)

This web server answers to HTTP GET requests for the URL http://localhost:
8080/hello

: 165 2025-06-05

Let us understand Example 5.4.5 line by line: The first line imports the library. The second
establishes a route with the name hello and binds it to the Python function hello in line 3 and
4. The last line configures the bottle web server: it serves content via the HTTP protocol for
localhost on port 8080.

So, if we run the program from Example 5.4.5, then we obtain a web server that will answer
HTTP GET requests to the URL http://localhost:8080/hello with a HTTP answer with the
content Hello IWGS!.

To keep the example simple, we have only returned a text string; A realistic application would
have generated a full HTML page (see below).
In the last line of Example 5.4.5, we have also configured the bottle web server to use “debug
mode”, which is very helpful during early development.

In this mode, the bottle web server is much more verbose and provides helpful debugging
information whenever an error occurs. It also disables some optimisations that might get in your
way and adds some checks that warn you about possible misconfiguration.

Note that debug mode should be disabled in a production server for efficiency.
But we can do more with routes!

Dynamic Routes in Bottle

http://jupyter.kwarc.info
http://localhost:8080/hello
http://localhost:8080/hello
http://localhost:8080/hello

5.4. GENERATING HTML ON THE SERVER 109

� Definition 5.4.6. A dynamic route is a route annotation that contains named
wildcards, which can be picked up in the route function.

� Example 5.4.7. Multiple @route annotations per route function f are allowed ;
the web application uses f to answer multiple URLs.

@route(’/’)
@route(’/hello/<name>’)
def greet(name=’Stranger’):

return (f’Hello {name}, how are you?’)

With the wildcard <name> we can bind the route function greet to all paths and
via its argument name and customize the greeting.

Concretely: A HTTP GET request to

� http://localhost is answered with Hello Stranger, how are you?.

� http://localhost/hello/MiKo is answered with Hello MiKo, how are you?.

Requests to e.g http://localhost/hello or http://localhost/hello/prof/
kohlhase lead to errors. (404: not found)

: 166 2025-06-05

Often we want to have more control over the routes. We can get that by filters, which can involve
data types and/or regular expressions.

Restricting Dynamic Routes

� Definition 5.4.8. A dynamic route can be restricted by a route filter to make it
more selective.

� Example 5.4.9 (Concrete Filters). We use :int for integers and :re:⟨⟨regex⟩⟩ for
regular expressions

@route(’/tel/<id:int>’) # local number
@route(’/tel/<num:re:^\+[1−9]{1}[0−9]{3,14}$>’) # international

Different route filters allow to classify paths and treat them differently.

� Note: Multiple named wildcards are also possible, in a dynamic route; with and
without filters

� Example 5.4.10 (A route with two wildcards).

@route(’/<action>/<user:re:[a−z]+>’) # matches /follow/miko
def user_api(action, user):

...

: 167 2025-06-05

We have already seen above that we want to use HTTP GET and POST request for different
facets of transmitting HTML form data to the web server. This is supported by bottle WSGI in
two ways: we can specify the HTTP method of a route and we have access to the form data (and
other aspects of the request).

http://localhost
http://localhost/hello/MiKo
http://localhost/hello
http://localhost/hello/prof/kohlhase
http://localhost/hello/prof/kohlhase

110 CHAPTER 5. WEB APPLICATIONS

Method-Specific Routes: HTTP GET and POST

� Definition 5.4.11. The @route decorator takes a method keyword to specify the
HTTP request method to be answered. (HTTP GET is the default)

� @get(⟨⟨path⟩⟩) abbreviates @route(⟨⟨path⟩⟩,method="GET")

� @post(⟨⟨path⟩⟩) abbreviates @route(⟨⟨path⟩⟩,method="POST")

� Example 5.4.12 (Login 1). Managing logins with HTTP GET and POST.

from bottle import get, post, request # or route

@get(’/login’) # or @route(’/login’)
def login():

return ’’’
<form action="/login" method="post">

Username: <input name="username" type="text" />
Password: <input name="password" type="password" />
<input value="Login" type="submit" />

</form>
’’’

� Note: We can also have a POST request to the same path; we use that for
handling the form data transmitted by the POST action on submit. (up next)

: 168 2025-06-05

Recall that we have already seen most of this in slide 160. The only new thing is that we return
the HTML as a string in the route function as a request to a HTTP GET request. Now comes
the interesting part: the form uses the POST method in the form action and we have to specify
a route for that. Recall from ??? that this allows for encrypted transmission, so we are less naive
than our solution from slide 160.

Bottle Request: Dealing with POST Data

� Recall: from a HTML form we get a GET or POST request with form data
n1=v1&· · ·&nk=vk (here user=mkohlhase&login=noneofyourbusiness)

� Bottle WSGI provides the request object for dealing with HTTP request data.

� Example 5.4.13 (Login 2). Continuing from Example 5.4.12: we parse the
request transmitted request and check password information:

@post(’/login’) # or @route(’/login’, method=’POST’)
def do_login():

username = request.forms.get(’username’)
password = request.forms.get(’password’)
if check_login(username, password):

return "<p>Your login information was correct.</p>"
else:

return "<p>Login failed.</p>"

We assume a Python function check_login that checks authentication credential
and authenticator, and keeps a list of logged in users.

5.4. GENERATING HTML ON THE SERVER 111

: 169 2025-06-05

The main new thing in Example 5.4.13 is that we use the request.forms.get method to query the
request object that comes with the HTTP request triggering the route for the form data.

5.4.2 Templating in Python via STPL

In IWGS, we use Python for programming, so let us see how we would generate HTML pages in
Python.

What would we do in Python

� Example 5.4.14 (HTML Hello World in Python).
print("<html>")
print("<body>Hello world</body>")
print("</html>")

� Problem 1: Most web page content is static (page head, text blocks, etc.)

� Example 5.4.15 (Python Solution). . . . use Python functions:
def htmlpage (t,b):

f"<html><head><title>{t}</title></head><body>{b}</body></html>"
htmlpage("Hello","Hello IWGS")

� Problem 2: If HTML markup dominates, want to use a HTML editor (mode),

� e.g. for HTML syntax highlighting/indentation/completion/checking

� Idea: Embed program snippets into HTML. (only execute these, copy rest)

: 170 2025-06-05

We will now formalize and toolify the idea of “embedding code into HTML”. What comes out of
this idea is called “templating”. It exists in many forms, and in most programming languages.

Template Processing for HTML

� Definition 5.4.16. A template engine (or template processor) for a document
format F is a program that transforms templates, i.e. strings or files (a template file)
ith a mixture of program constructs and F markup, into a F strings or F documents
by executing the program constructs in the template (template processing).

� Note: No program code is left in the resulting web page after generation.
(important security concern)

� Remark: We will be most interested in HTML template engines.

� Observation: We can turn a template engine into a server-side scripting framework
by employing the URIs of template files on a server as routes and extending the web
server by template processing.

� Example 5.4.17. PHP (originally “Programmable Home Page Tools”) is a very
successful server-side scripting framework following this model.

: 171 2025-06-05

112 CHAPTER 5. WEB APPLICATIONS

Naturally, Python comes with a template engine in fact multiple ones. We will use the one from
the bottle web application framework for IWGS.

stpl: the “Simple Template Engine” from Bottle

� Definition 5.4.18. Bottle WSGI supplies the template engine stpl (Simple Tem-
plate Engine) that processes the STPL (Simple Template Language) format.
(documentation at [STPL])

� Definition 5.4.19. A template engine for a document format F is a program that
transforms templates, i.e. strings or files through a mixture of program constructs
and F markup, into F -strings or F -documents by executing the program constructs
in the template (template processing).

� stpl uses the template function for template processing and {{. . . }} to embed
program objects into a template; it returns a formatted unicode string.

>>> template(’Hello {{name}}!’, name=’World’)
u’Hello World!’

>>> my_dict={’number’: ’123’, ’street’: ’Fake St.’, ’city’: ’Fakeville’}
>>> template(’I live at {{number}} {{street}}, {{city}}’, ∗∗my_dict)
u’I live at 123 Fake St., Fakeville’

: 172 2025-06-05

The stpl template function is a powerful enabling basic functionality in Python, but it does not
satisfy our goal of writing “HTML with embedded Python”. Fortunately, that can easily be built
on top of the template functionality:

stpl Syntax and Template Files

� But what about. . . : HTML files with embedded Python?

� stpl uses template files (extension .tpl) for that.

� Definition 5.4.20. A stpl template file mixes HTML with stpl python:

� stpl python is exactly like Python but ignores indentation and closes bodies with
end instead.

� stpl python can be embedded into the HTML as

� a code lines starting with a %,
� a code blocks surrounded with <% and %>, and
� an expressions {{⟨⟨exp⟩⟩}} as long as ⟨⟨exp⟩⟩ evaluates to a string.

� Example 5.4.21. Two template files

5.4. GENERATING HTML ON THE SERVER 113

<!−− next: a line of python code −−>
% course = "Informatische werkzeuge ..."
<p>Some plain text in between</p>
<%

A block of python code
course = name.title().strip()

%>
<p>More plain text</p>

% for item in basket:

{{item}}
% end

: 173 2025-06-05

So now, we have template files. But experience shows that template files can be quite redundant;
in fact, the better designed the web site we want to to create, the more fragments of the template
files we want to reuse in multiple places – with and without adaptions to the particular use case.

Template Functions

� Definition 5.4.22. stpl python supplies the template functions

1. include(⟨⟨tpl⟩⟩,⟨⟨vars⟩⟩), where ⟨⟨tpl⟩⟩ is another template file and ⟨⟨vars⟩⟩ a set of
variable declarations (for ⟨⟨tpl⟩⟩).

2. defined(⟨⟨var⟩⟩) for checking definedness ⟨⟨var⟩⟩
3. get(⟨⟨var⟩⟩,⟨⟨default⟩⟩): return the value of ⟨⟨var⟩⟩, or ⟨⟨default⟩⟩.
4. setdefault(⟨⟨name⟩⟩,⟨⟨val⟩⟩)

� Example 5.4.23 (Including Header and Footer in a template). In a coherent
web site, the web pages often share common header and footer parts. Realize this
via the following page template:

% include(’header.tpl’, title=’Page Title’)
... Page Content ...

% include(’footer.tpl’)

� Example 5.4.24 (Dealing with Variables and Defaults).

% setdefault(’text’, ’No Text’)
<h1>{{get(’title’, ’No Title’)}}</h1>
<p> {{ text }} </p>
% if defined(’author’):

<p>By {{ author }}</p>
% end

: 174 2025-06-05

5.4.3 Completing the Contact Form
We are now equipped to finish the contact form example

We now come back to our worked HTML example: the contact form from above. Here is the
current state:

Back to our Contact Form (Current State)

114 CHAPTER 5. WEB APPLICATIONS

� A contact form and message receipt (communicate via HTTPs request)

contact4.html

<title>Contact</title>
<form action="contact−after.html">

<h2>Please enter a message:</h2>
<input name="msg" type="text"/>

<h3>Your e−mail address:</h3>
<input name="addr" type="text"

value="xx @ xx.de"/>

<input type="submit"

value="Send message"/>
</form>

GET contact−after.html?
msg=Hi;addr=foo@bar.de

contact−after.html

<title>
Contact − Message Confirmed

</title>
<form action="contact4.html">

<h2>
Your message has been submitted!

</h2>
<input type="submit"

value="Continue"/>
</form>

GET contact.html

� Problem: The answer is a static HTML document independent of form data.

� Solution: Generate the answer programmatically using the form data. (up next)

: 175 2025-06-05

There are two great flaws in the current state of the contact form:

1. The “receipt page” contact−after.html is static and does not take the data it receives from the
contact form into account. It would be polite to give some record on what happened. We can
fix this using bottle WSGI using the methods we just learned.

2. Nothing actually happens with the message. It should be either entered into an internal message
queue in a database0 or ticketing system, or fed into an e-mail to a sales person. As we do not
have access to the first, we will just use a Python library to send an e-mail programmatically.

Completing the Contact Form

� bottle WSGI has functionality (request.GET and request.POST) to decode the form
data from a HTTP request. (so we do not have to worry about the details)

� Example 5.4.25 (Submitting a Contact Form). We use a new route for
contact−form−after.html with a corresponding template file:

5.4. GENERATING HTML ON THE SERVER 115

contact.py contact−after.tpl

from bottle import route, run, debug,
template, request, get

@get(’/contact−after.html’)
def new_item():

data = {’msg’: request.GET.msg.strip(),
’addr’: request.GET.addr.strip()}

send−contact−email(addr,msg)
return template(’contact−after’,∗∗data)

run(host="localhost", port=8080)

<p>Message submitted!</p>
<table>

<tr>
<td>Return Address:</td>
<td>{{addr}}</td>

</tr>
<tr>

<td>Message Sent:</td>
<td>{{msg}}</td>

</tr>
</table>

: 176 2025-06-05

Fortunately, the only remaining part: actually sending off an e-mail to the specified mailbox is
very easy: using the smtplib library we just create an e-mail message object, and then specify all
the components.

Sending off the e-mail

� We still need to implement the send−contact−email function, . . .

� Fortunately, there is a Python package for that: smtplib, which makes this relatively
easy. (SMTP =̂ Simple Mail Transfer Protocol”)

� Example 5.4.26 (Continuing).

import smtplib
from email.message import EmailMessage

def send−contact−email (addr, text)
msg = EmailMessage()
msg.set_content(text)
msg[’Subject’] = ’Contact Form Result’
msg[’From’] = info@example.org
msg[’To’] = addr
s = smtplib.SMTP(’smtp.gmail.com’, 587)
s.send_message(msg)
s.quit()

Actually, this does not quite work yet as google requires authentication and encryp-
tion, . . . ; (google for “python smtplib
gmail”)

: 177 2025-06-05

Once we have the e-mail message object msg, we open a “SMTP connection” s send the message
via its send_message method and close the connection by s.quit()). Again, the Python library
hides all the gory details of the SMTP protocol.

116 CHAPTER 5. WEB APPLICATIONS

Chapter 6

Front-end Technologies

We introduce three important concepts for building modern web front-ends for web applications:

1. Client-side computation: manipulating the browser DOM via JavaScript.

2. Cascading Stylesheets (CSS) for styling the layout of HTML (and XML).

3. The jQuery library: a symbiosis of JavaScript and CSS ideas to make JavaScript coding easier
and more efficient.

6.1 Dynamic HTML: Client-side Manipulation of HTML Doc-
uments

We now turn to client-side computation:
One of the main advantages of moving documents from their traditional ink-on-paper form

into an electronic form is that we can interact with them more directly. But there are many
more interactions than just browsing hyperlinks we can think of: adding margin notes, looking
up definitions or translations of particular words, or copy-and-pasting mathematical formulae into
a computer algebra system. All of them (and many more) can be made, if we make documents
programmable. For that we need three ingredients:

i) a machine-accessible representation of the document structure, and

ii) a program interpreter in the web browser, and

iii) a way to send programs to the browser together with the document.

We will sketch the WWW solution to this in the following.
To understand client-side computation, we first need to understand the way browsers render

HTML pages.

Background: Rendering Pipeline in browsers

� Observation: The nested markup codes turn HTML documents into trees.

� Definition 6.1.1. The document object model (DOM) is a data structure for the
HTML document tree together with a standardized set of access methods.

� Rendering Pipeline: Rendering a web page proceeds in three steps

1. the browser receives a HTML document,

2. parses it into an internal data structure, the DOM,

117

118 CHAPTER 6. FRONT-END TECHNOLOGIES

3. which is then painted to the screen. (repaint whenever DOM changes)

HTML Document DOM Browser
<html>

<head>
<title>Welcome</title>

</head>
<body>

<p>Hello World!</p>
</body>

</html>

html

head body

title p

Welcome
Hello World!

Welcome

Hello World!
parse

The DOM is notified of any user events. (resizing, clicks, hover,. . .)

: 178 2025-06-05

The most important concept to grasp here is the tight synchronization between the DOM and the
screen. The DOM is first established by parsing (i.e. interpreting) the input, and is synchronized
with the browser UI and document viewport. As the DOM is persistent and synchronized, any
change in the DOM is directly mirrored in the browser viewpoint, as a consequence we only need
to change the DOM to change its presentation in the browser. This exactly is the purpose of the
client side scripting language, which we will go into next.

6.1.1 JavaScript in HTML

Dynamic HTML

� Definition 6.1.2. We call a web page dynamic, if its presentation can change
without the web browser loading new content.

� Idea: Generate parts of the web page dynamically by manipulating the DOM.

� Definition 6.1.3. JavaScript is an object-oriented scripting language mostly used
to enable programmatic access to the DOM in a web browser.

� JavaScript is standardized by ECMA in [Ecm].

� Example 6.1.4. We write the some text into HTML DOM.
<html>
<head>
<script type="text/javascript">document.write("Dynamic HTML!");</script>
</head>
<body><!-- nothing here; will be added by the script later --></body>
</html>

� Application: Write “gmail” or “google docs” as JavaScript enhanced web applications.
(client-side computation for immediate reaction)

� Current Megatrend: Computation in the “cloud”, browsers (or “apps”) as user
interfaces.

: 179 2025-06-05

The example above already shows a JavaScript command: document.write, which replaces the
content of the <body> element with its argument – this is only useful for testing and debugging
purposes.

6.1. DYNAMIC HTML: CLIENT-SIDE MANIPULATION OF HTML DOCUMENTS 119

Current web applications include simple office software (word processors, online spreadsheets,
and presentation tools), but can also include more advanced applications such as project man-
agement, computer-aided design, video editing and point-of-sale. These are only possible if we
carefully balance the effects of server-side and client-side computation. The former is needed for
computational resources and data persistence (data can be stored on the server) and the latter to
keep personal information near the user and react to local context (e.g. screen size).
Here are three browser level functions that can be used for user interaction (and finer debugging
as they do not change the DOM).

Browser-level JavaScript functions: 1

� Example 6.1.5 (Logging to the browser console).

console.log("hello IWGS")

: 180 2025-06-05

The function console.log writes its argument into the console of the web browser.
It is primarily used for debugging the source code of a web page.
Example 6.1.6. If we want to know whether a function square has been executed we add calls
to console.log like this:

function square (n) {
console.log ("entered function square with argument " + n);
return (n ∗ n);
console.log ("exited function square with result " + n ∗ n);
}

In the console we can check whether the content contains e.g. entered function square and moreover
whether argument and value are as expected.

Browser-level JavaScript functions: 2

� Example 6.1.7 (Raising a Popup).

alert("Dynamic HTML for IWGS!")

120 CHAPTER 6. FRONT-END TECHNOLOGIES

: 181 2025-06-05

The function alert creates a popup that contains the argument.

Browser-level JavaScript functions: 3

� Example 6.1.8 (Asking for Confirmation).

var returnvalue = confirm("Dynamic HTML for IWGS!")

: 182 2025-06-05

The function confirm creates a popup that contains the argument and a confirmation/cancel
button pair and returns the corresponding Boolean value.
If the user clicks on the confirmation button, the returned value will be false and true for the
cancel button.
Example 6.1.9. You can play with this in the following frizzle:

<html>
<head>

<title>confirm</title>
<script src="./client-js/jquery-3.6.4.min.js" type="application/javascript"></script>
<style>

.emph{
color: blue;

}
.code{

font−size: 110%;
}

</style>
</head>
<body>

<h2>Live Demo of the JavaScript confirm Function</h2>

<textarea id="output" style="width:400px">
</textarea>
<textarea id="code" style="width:400px; height:400px">
</textarea>
<p>

Click <button onclick="openPopup()">here</button> to execute
the confirm function again!

</p>
<p>

Show <button onclick="showCode()">source code</button>
</p>

<script type="application/javascript">
function openPopup(){

console.log("executed openPopup function");
var output="";

6.1. DYNAMIC HTML: CLIENT-SIDE MANIPULATION OF HTML DOCUMENTS 121

var returnValue=confirm ("Hello World!");
if(returnValue==true){

output="You clicked the OK button!" + "(return value: " + returnValue + ")";

} else {
output="You clicked the Cancel button!" + "(return value: " + returnValue

+ ")";
}
console.log(output);
$("#output").html(output);
$("p").show();

}
openPopup();

function showCode(){
console.log("executed showCode function");
var func=openPopup.toString();
//alert(func);
$("#code").html(func);

}
</script>

</body>
</html>

JavaScript is a client side programming language, that means that the programs are delivered to
the browser with the HTML documents and is executed in the browser. There are essentially three
ways of embedding JavaScript into HTML documents:

Embedding JavaScript into HTML

� In a <script> element in HTML, e.g.

<script type="text/javascript">
function sayHello() { console.log(’Hello IWGS!’); }

</script>

� External JavaScript file via a <script> element with src attribute:

<script type="text/javascript" src="../js/foo.js"/>

Advantage: HTML and JavaScript code are clearly separated.

� In event handler attributes of various HTML elements, e.g.

<input type="button" value="Hallo" onclick="alert(’Hello IWGS’)"/>

: 183 2025-06-05

A related – and equally important – question is, when the various embedded JavaScript fragments
are executed. Here, the situation is more varied

Execution of JavaScript Code

� Question: When and how is JavaScript code executed?

� Answer: While loading the HTML page or afterwards triggered by events.

122 CHAPTER 6. FRONT-END TECHNOLOGIES

� JavaScript in a script element: during page load: (not in a function)

<script type="text/javascript">alert(’Huhu’);</script>

� JavaScript in an event handler attribute onclick, ondblclick, onmouseover, . . . ”
whenever the corresponding event occurs.

� JavaScript in a “special link”: when the anchor is clicked:

: 184 2025-06-05

The first key concept we need to understand here is that the browser essentially acts as an user
interface: it presents the HTML pages to the user, waits for actions by the user – usually mouse
clicks, drags, or gestures; we call them events – and reacts to them.

The second is that all events can be associated to an element node in the DOM: consider an
HTML anchor node, as we have seen above, this corresponds to a rectangular area in the browser
window. Conversely, for any point p in the browser window, there is a minimal DOM element e(p)
that contains p recall that the DOM is a tree. So, if the user clicks while the mouse is at point p,
then the browser triggers a click event in e(p), determines how e(p) handles a click event, and if
e(p) does not, bubbles the click event up to the parent of e(p) in the DOM tree.

There are multiple ways a DOM element can handle an event: some elements have default
event handlers, e.g. an HTML anchor will handle a click event by issuing a
HTTP GET request for ⟨⟨URI⟩⟩. Other HTML elements can carry event handler attributes whose
JavaScript content is executed when the corresponding event is triggered on this element.

Actually there are more events than one might think at first, they include:

1. Mouse events; click when the mouse clicks on an element (touchscreen devices generate it on a
tap); contextmenu: when the mouse right-clicks on an element; mouseover / mouseout: when the
mouse cursor comes over / leaves an element; mousedown / mouseup: when the mouse button
is pressed / released over an element; mousemove: when the mouse is moved.

2. Form element events; submit: when the visitor submits a <form>; focus: when the visitor
focuses on an element, e.g. on an <input>.

3. keyboard events; keydown and keyup: when the visitor presses and then releases the button.

4. Document events; DOMContentLoaded:– when the HTML is loaded and processed, DOM is
fully built, but external resources like pictures and stylesheets may be not yet loaded.
load: the browser loaded all resources (images, styles etc); beforeunload / unload: when the user
is leaving the page.

5. resource loading events; onload: successful load, onerror: an error occurred.

Let us now use all we have learned in an example to fortify our intuition about using JavaScript
to change the DOM.

Example: Changing Web Pages Programmatically

� Example 6.1.10 (Stupid but Fun).

6.2. CASCADING STYLESHEETS 123

<body>
<h2>A Pyramid</h2>
<div id="pyramid"/>

<script type="text/javascript">
var char = "#";
var triangle = "";
var str = "";
for(var i=0;i<=10;i++){

str = str + char;
triangle = triangle + str + "
"
}

var elem = document.getElementById("pyramid");
elem.innerHTML=triangle;

</script>
</body>
</html>

: 185 2025-06-05

The HTML document in Example 6.1.10 contains an empty <div> element whose id attribute has
the value pyramid. The subsequent script element contains some code that builds a DOM node-
set of 10 text and
 nodes in the triangle variable. Then it assigns the DOM node for the
<div> to the variable elem and deposits the triangle node-set as children into it via the JavaScript
innerHTML method.

We see the result on the right of Example 6.1.10. It is the same as if the #-strings and

sequence had been written in the HTML which at least for pyramids of greater depth would have
been quite tedious for the author.

6.2 Cascading Stylesheets
In this section we introduce a technology of digital documents which naturally belongs into

chapter 4: the specification of presentation (layout, colors, and fonts) for marked-up documents.

6.2.1 Separating Content from Layout
As the WWW evolved from a hypertext system purely aimed at human readers to a Web of

multimedia documents, where machines perform added-value services like searching or aggregating,
it became more important that machines could understand critical aspects web pages. One way
to facilitate this is to separate markup that specifies the content and functionality from markup
that specifies human-oriented layout and presentation (together called “styling”). This is what
“cascading style sheets” set out to do.

Another motivation for CSS is that we often want the styling of a web page to be customizable
(e.g. for vision impaired readers).

CSS: Cascading Style Sheets

� Idea: Separate structure/function from appearance.

� Definition 6.2.1. Cascading Style Sheets (CSS) is a style language that allows
authors and users to attach style (e.g., fonts, colors, and spacing) to HTML and
XML documents.

� Example 6.2.2. Our text file from ??? with embedded CSS:

124 CHAPTER 6. FRONT-END TECHNOLOGIES

<html>
<head>

<style type="text/css">
body {background−color:#d0e4fe;}
h1 {color:orange;

text−align:center;}
p {font−family:"Verdana";

font−size:20px;}
</style>

</head>
<body>

<h1>CSS example</h1>
<p>Hello IWGS!.</p>

</body>
</html>

: 186 2025-06-05

Now that we have seen the example, let us fix the basic terminology of CSS.

CSS: Rules, Selectors, and Declarations

� Definition 6.2.3. A CSS style sheet consists of a sequence of rules that in turn
consist of a set of selectors that determine which XML elements the rule applies to
and a declaration block that specifies intended presentation.

� Definition 6.2.4. A CSS declaration block consists of a semicolon separated list of
declarations in curly braces. Each declaration itself consists of a property, a colon,
and a value.

� Example 6.2.5. In Example 6.2.2 we have three rules, they address color and font
properties:

body {background−color:#d0e4fe;}
h1 {color:orange;

text−align:center;}
p {font−family:"Verdana";

� Observation: In modern web sites, CSS contributes as much – if not more – to
the appearance as the choice of HTML elements.

: 187 2025-06-05

In Example 6.2.5 the selectors are just element names, they specify that the respecive declaration
blocks apply to all elements of this name.
We explore this new technology by way of an example. We rework the title box from the HTML
example above – after all treating author/affiliation information as headers is not very semantic.
Here we use div and span elements, which are generic block-level (i.e. paragraph-like) and inline
containers, which can be styled via CSS classes. The class titlebox is represented by the CSS selector
.titlebox.

A Styled HTML Title Box (Source)

� Example 6.2.6 (A style Title Box). The HTML source:
<head>

<title>A Styled HTML Title</title>
<link rel="stylesheet" type="text/css" href="style.css"/>

6.2. CASCADING STYLESHEETS 125

</head>
<body>

<div class="titlebox">
<div class="title">Anatomy of a HTML Web Page</div>
<div class="author">

Michael Kohlhase
FAU Erlangen−Nuernberg

</div>
</div>
...

And the CSS file referenced in the <link> element in line 3:
.titlebox {border: 1px solid black;padding: 10px;

text−align: center
font−family: verdana;}

.title {font−size: 300%;font−weight: bold}

.author {font−size: 160%;font−style: italic;}

.affil {font−variant: small−caps;}

: 188 2025-06-05

And here is the result in the browser:

A Styled HTML Title Box (Result)

: 189 2025-06-05

6.2.2 Worked Example: The Contact Form
To fortify our intuition on CSS, we take up the “contact form” example from above and improve
the layout in a step-by-step process concentrating on one aspect at a time.

CSS in Practice: The Contact Form Example (Continued)

� Recap: The unstyled contact form – Dream vs. Reality

126 CHAPTER 6. FRONT-END TECHNOLOGIES

<title>Contact</title>
<form action="contact−after.html">

<h2>Please enter a message:</h2>
<input name="msg" type="text"/>

<h3>Your e−mail address:</h3>
<input name="addr" type="text"

value="xx @ xx.de"/>

<input type="submit"

value="Send message"/>
</form>

� Add a CSS file with font information

<link rel="stylesheet" type="text/css"
href="csscontact1.css" />

<input class="important" type="submit"
value="Send Message"/>

body {font−size: 62.5%;
font−family: "Trebuchet MS",

"Arial", "Helvetica",
"Verdana", "sans−serif"}

.important{font−style: italic;}
input[type="submit"]{font−weight: bold;}

� Add lots of color (ooops, what about the size)

6.2. CASCADING STYLESHEETS 127

<h2>Please enter a message:</h2>
<h3>Your e−mail address:</h3>
<input class="important" name="addr"

style="background−color:#cce6ff"
type="text" value="xx@xx.de"/>

h2 {background−color: #e600e6;}
h3 {background−color: #3399ff;

color: white;}
input{background−color:yellow}

� Add size information and a dotted frame

<form action="contact−after.html"
style="width:8cm;border:dotted;padding:5px">

<h2>Please enter a message:</h2>
<input name="msg" type="text"

style="height:4cm;width:8cm;
background−color:#ffccff"/>

<h3>Your e−mail address:</h3>
<input class="important" name="addr"

type="text"
value="xx@xx.de" style="width:8cm;

background−color:#cce6ff"/>

� Add a cat that plays with the submit button (because we can)

<img id="cat" src="cat.png"
style="position:absolute;

left:170px;top: 15px;
width=300px"/>

: 190 2025-06-05

This worked example should be enough to cover most layout needs in practice. Note that in most
use cases, these generally layout primitives will have to be combined in different and may be even
new ways.
Actually, the last “improvement” may have gone a bit overboard; but we used it to show how
absolute positioning of images (or actually any CSS boxes for that matter) works in practice.

6.2.3 A small but useful Fragment of CSS

CSS is a huge ecosystem of technologies, which is spread out over about 100 particular specifi-
cations – see [CSSa] for an overview.

We will now go over a small fragment of CSS that is already very useful for web applications
in more detail and introduce it by example. For a more complete introduction, see e.g. [CSSc].

128 CHAPTER 6. FRONT-END TECHNOLOGIES

Recall that selectors are the part of CSS rules that determine what elements a rule affects. We
now give the most important cases for our applications.

CSS Selectors

� Question: Which elements are affected by a CSS rule?

� Elements of a given name (optionally with given attributes)

� Selectors: name =̂ ⟨⟨elname⟩⟩, attributes =̂ [⟨⟨attname⟩⟩=⟨⟨attval⟩⟩]

� Example 6.2.7. p[xml:lang=’de’] applies to <p xml:lang="de">. . .</p>

� Any element with a given class attributes

� Selector: .⟨⟨classname⟩⟩

� Example 6.2.8. .important applies to <⟨⟨el⟩⟩ class=’important’>. . .</⟨⟨el⟩⟩>

� The element with a given id attribute

� Selector: #⟨⟨id⟩⟩

� Example 6.2.9. #myRoot applies to <⟨⟨el⟩⟩ id=’myRoot’>. . .</⟨⟨el⟩⟩>

� Note: Multiple selectors can be combined in a comma separated list.

� For a full list see https://www.w3schools.com/cssref/css_selectors.asp.

: 191 2025-06-05

We now come to one of the most important conceptual parts of CSS: the box model. Understanding
it is essential for dealing with CSS based layouts.

The CSS Box Model

� Definition 6.2.10. For layout, CSS considers all HTML elements as boxes, i.e.
document areas with a given width and height. A CSS box has four parts:

� content: the content of the box, where text and images appear.

� padding: clears an area around the content. The padding is transparent.

� border a border that goes around the padding and content.

� margin clears an area outside the border. The margin is transparent.

The latter three wrap around the content and add to its size.

� All parts of a box can be customized with suitable CSS properties:

div {
background−color: lightgrey;
width: 300px;
border: 25px solid green;
padding: 25px;
margin: 25px;

}

https://www.w3schools.com/cssref/css_selectors.asp

6.2. CASCADING STYLESHEETS 129

Note that the overall width of the CSS box is 300 + 2 · 3 · 25 = 450 pixels.

: 192 2025-06-05

As a summary of the above, we can visualize the CSS box model in a diagram:

The CSS Box Model: Diagram

� Definition 6.2.11. The following diagram summarizes the CSS box model

margin

border

padding

height

width

content

top

bottom

left right

: 193 2025-06-05

We now come to a topic that is quite mind-boggling at first: The “cascading” aspect of CSS
stylesheets. Technically, the story is quite simple, there are two independent mechanisms at work:

• inheritance: if an element is fully contained in another, the inner (usually) inherits all properties
of the outer.

• rule priorization: if more than one selector applies to an element (e.g. one by element name and
one by id attribute), then we have to determine what rule applies.

Technically, priorization takes care of them in an integrated fashion.

Cascading of selectors in CSS: Priorization

� Multiple CSS selectors apply with the following priorizations:

1. important (i.e. marked with !important) before unimportant

2. inline (specified via the style attribute)

3. media-specific rules before general ones

4. user-defined CSS stylesheet (e.g. in the FireFox profile)

5. specialized before general selectors (complicated; see e.g. [CSSb])

6. rule order: later before earlier selectors

7. parent inheritance: unspecified properties are inherited from the parent.

130 CHAPTER 6. FRONT-END TECHNOLOGIES

8. Style sheet included or referenced in the HTML document.

9. browser default

: 194 2025-06-05

But do not despair with this technical specification, you do not have to remember it to be effective
with CSS practically, because the rules just encode very natural “behavior”. And if you need to
understand what the browser – which implements these rules – really sees, use the integrated page
inspector tool (see slide 199 for details).
We now look at an example to fortify our intuition.

Cascading of selectors in CSS: Priorization Example

� Example 6.2.12. Can you explain the colors in the web browsers below?

<h1>Layout with CSS</h1>
<div id="important" class="blue">

I am very important
</div>

.markedimportant {background−color:red !important}
#important {background−color:green}
.blue {background−color:blue}
#important {background−color:yellow}

: 195 2025-06-05

For instance, the words “very important” get a red background, as the class markedimportant is
marked as important by the CSS keyword !important, which makes (cf. rule 1 above) the color
red win agains the color yellow inherited from the parent <div> element (rule 7 above).
Let us now look at CSS inheritance in a little more detail.

Cascading in CSS: Inheritance

� Definition 6.2.13. Child elements can inherits some properties (called inheritable)
from their parents. In a nutshell:

� text-related properties are inheritable; e.g. color, font, letter−spacing, line−height,
list−style, and text−align

� box-related properties are not; e.g. background, border, display, float, clear,
height, width, margin, padding, position, and text−align.

� Note: Inheritance is integrated into priorization. (recall case 7. above)

� Inheritance makes for consistent text properties and smaller CSS stylesheets.

: 196 2025-06-05

So far, we have looked at the mechanics of CSS from a very general perspective. We will now
come to a set of CSS behaviors that are useful for specifying layouts of pages and texts.
Recall that CSS is based on the box model, which understands HTML elements as boxes, and
layouts as properties of boxes nested in boxes (as the corresponding HTML elements are).

If we can specify how inner boxes float inside outer boxes – via the CSS float rules, we can
already do quite a lot, as the following examples show.

6.2. CASCADING STYLESHEETS 131

CSS Flow: How Boxes Float to their Place

� Definition 6.2.14. CSS Flow describes how different elements are distributed in
the visible area. (how they flow; hence the name)
The float property allows to influence that.

� Example 6.2.15. Block-level boxes (here div node) float to the left:

<div class="square">1</div>
<div class="square">2</div>
<div class="square">3</div>
<div class="square">4</div>

+

.square {font−size:200%;
height:100px;
width:100px;
border:1px solid black;
margin:2px;
background−color:orange;}

=

� Example 6.2.16. float:left floats boxes as far as they will go: (without overlap)

<div class="square">1</div>
<div class="square">2</div>
<div class="square">3</div>
<div class="square">4</div>

+

.square {font−size:200%;
height:100px;
width:100px;
border:1px solid black;
margin:2px;
background−color:orange;
float:left}

=

� Example 6.2.17. float:right in a div will float inside the corresponding box.

<div class="square">1
<div class="smallsq">A</div>

</div>
<div class="square">2</div>
<div class="square">3</div>
<div class="square">4</div>

+

.smallsq {color:white;
height: 40px;width: 40px;
border: 1px solid black;
margin: 2px;
background−color: blue;
float: right}

=

� Example 6.2.18. float:left will let contents flow around an obstacle

<div class="square"
style="font−size:small">
<div class="smallsq">A</div>
flow, flow, flow, flow, flow,
flow, flow, flow, flow, flow.

</div>

+

.smallsq {color:white;
height: 40px;width: 40px;
border: 1px solid black;
margin: 2px;
background−color: blue;
float: right}

=

The large space (>2px) is caused because there is no linebreaking.

: 197 2025-06-05

132 CHAPTER 6. FRONT-END TECHNOLOGIES

One of the important applications of the content/form separation made possible by CSS is to
tailor web page layout to the screen size and resolution of the device it is viewed on. Of course, it
would be possible to maintain multiple layouts for a web page one per screensize/resolution class,
but a better way is to have one layout that changes according to the device context. This is what
we will briefly look at now.

CSS Application: Responsive Design

� Problem: What is the screen size/resolution of my device?

� Definition 6.2.19. Responsive web design (RWD) designs web documents so that
they can be viewed with a minimum of resizing, panning, and scrolling – across a
wide range of devices (from desktop monitors to mobile phones).

� Example 6.2.20. A web page with content blocks

Desktop Tablet Phone

� Implementation: CSS based layout with relative sizes and media queries– CSS
conditionals based on client screen size/resolution/. . .

: 198 2025-06-05

6.2.4 CSS Tools
In this subsection we introduce a technology of digital documents which naturally As CSS

has grown to be very complex and moreover, the browser DOM of which CSS is part can even
be modified after loading the HTML (see ???), we need tools to help us develop effective and
maintainable CSS.

But how to find out what the web browser really sees?

� CSS has many interesting inheritance rules.

� Definition 6.2.21. The page inspector tool gives you an overview over the internal
state of the web browser and its DOM.

� Example 6.2.22.

6.3. JQUERY: WRITE LESS, DO MORE 133

: 199 2025-06-05

In CSS we can specify colors by various names, but the full range of possible colors can only spec-
ified by numeric (usually hexadecimal) numbers. For instance in ???, we specified the background
color of the page as #d0e4fe;, which is a pain for the author. Fortunately, there are tools that can
help.

Picking CSS Colors

� Problem: Colors in CSS are specified by funny names (e.g. CornflowerBlue) or
hexadecimal numbers, (e.g. #6495ED).

� Solution: Use an online color picker, e.g. https://www.w3schools.com/colors/
colors_picker.asp

: 200 2025-06-05

6.3 jQuery: Write Less, Do More

While JavaScript is fully sufficient to manipulate the HTML DOM, it is quite verbose and tedious
to write. To remedy this, the web developer community has developed libraries that extend the

https://www.w3schools.com/colors/colors_picker.asp
https://www.w3schools.com/colors/colors_picker.asp

134 CHAPTER 6. FRONT-END TECHNOLOGIES

JavaScript language by new functionalities that more concise programs and are often used Instead
of pure JavaScript.

jQuery: Write Less, Do More

� Definition 6.3.1. JQuery is a feature-rich JavaScript library that simplifies tasks
like HTML document traversal and manipulation, event handling, animation, and
Ajax.

� Using:

� Download from https://jquery.com/download/, save on your system
(remember where)

� integrate into your HTML (usually in the <head>)

<script type="text/javascript" src="client−js/jquery−3.2.1.min.js"/>

or from the internet directly (only works if you are online)

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js" />

: 201 2025-06-05

The key feature of jQuery is that it borrows the notion of “selectors” to describe HTML node sets
from CSS actually, jQuery uses the CSS selectors directly and then uses JavaScript-like methods
to act on them. In fact, the name jQuery comes from the fact that selectors “query” for nodes in
the DOM.

jQuery Philosophy and Layers

� jQuery Philosophy: Select a subtree from the DOM, and operate on it.

� Syntax Convention: jQuery instructions start with a $ to distinguish it from
JavaScript.

� Example 6.3.2. The following jQuery command achieves a lot in four steps:

$("#myId").show().css("color", "green").slideDown();

1. Find elements in the DOM by CSS selectors, e.g. $("#myId")

2. do something to them, here show() (chaining of methods)

3. change their layout by changing CSS attributes, e.g. css("color","green")

4. change their behavior, e.g. slideDown()

� Good News: jQuery selectors =̂ CSS selector.

: 202 2025-06-05

We will now show a couple of jQuery methods for inserting material into HTML elements and
discuss their behavior in examples

Inserting Material into the DOM

https://jquery.com/download/

6.3. JQUERY: WRITE LESS, DO MORE 135

� Inserting before the first child:

$(’#content’).prepend(function(){return ’in front’;});

� Inserting after the last child:

$(’#content’).append(’<p>Hello</p>’);
$(’#content’).append(function(){ return ’in the back’; });

� Inserting before/after an element:

$(’#price’).before(’Price:’);
$(’#price’).after(’ EUR’)

: 203 2025-06-05

Let us fortify our intuition about dynamic HTML by going into a more involved example. We
use the toggle method from the jQuery layout layer to change visibility of a DOM element. This
method adds and removes a style="display:none" attribute to an HTML element and thus toggles
the visibility in the browser window.

Applications and useful tricks in Dynamic HTML

� Observation: jQuery is not limited to adding material to the DOM.

� Idea: Use jQuery to change CSS properties in the DOM as well.

� Example 6.3.3 (Visibility). Hide document parts by setting CSS style attributes
to display:none.
<html>

<head>
<title>Toggling</title>
<style type="text/css">#dropper { display: none; }</style>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js" />
<script language="JavaScript" type="text/javascript">

$("button").click(function(){$("#dropper").toggle();});
</script>

</head>
<body>

<h2>Toggling the visibility of material</h2>
<button>...more </button>
<div id="dropper"><p>Now you see it!</p></div>

</body>
</html>

: 204 2025-06-05

Fun with Buttons (Three easy Interactions)

� Example 6.3.4 (A Button that Changes Color on Hover).
<div id="hoverPoint">

<button id="hover">hover</button>
<script type="text/javascript">

$("#hover").hover(function () {$(this).css("background−color", "red");},
function () {$(this).css("background−color", "blue");});

</script>
</div>

136 CHAPTER 6. FRONT-END TECHNOLOGIES

� The HTML has a button with text “hover”.

� The jQuery code selects it via its id and catches its hover event via the hover()
method.

� This takes two functions as arguments:

� The first is called when the mouse moves into the button, the second when
it leaves.

� The first changes changes the button color to red, the second reverts this.

: 205 2025-06-05

Fun with Buttons (Three easy Interactions)

� Example 6.3.5 (A Button that Uncovers Text).
<div id="readPoint">

<button class="read" style="display:block">Read More</button>
<button class="read" style="display:none">Read Less</button>
<div id="rText" style="display:none; width:200px; clear:left">

A read−more button is not only a call−to−action, but it also organizes
the screen area management in a non−wasteful way. If and only if users are interested,
they will use the button.

</div>
<script type="text/javascript">

$(".read").click(function() {$("#rText").toggle("slow",function(){$(".read").toggle()});});
</script>

</div>

� The HTML has two buttons (one of them visible) and a text.

� The jQuery code selects both buttons via their read class.

� A click event activates the .click() method taking an event handler function:

� This selects the text via its id attribute rTeX and
� uses the toggle() method which changes the display between none and block.
� The first parameter of toggle() is a duration for the animation.
� The second is a completion function to be run after animation finishes.
� Here complection function makes the respective other button visible (read

more/less).

: 206 2025-06-05

Fun with Buttons (Three easy Interactions)

� Example 6.3.6 (A Button that Plays a Sound).
<div id="soundPoint">

<button id="sound" onclick="playSound(’laugh.mp3’)">Sound</button>
<script type="text/javascript">

function playSound(url) {
console.log("Call playSound with " + url);
const a = new Audio(url);
a.play();
}

</script>

6.3. JQUERY: WRITE LESS, DO MORE 137

</div>

� The HTML has a button with text “sound” and an onclick attribute.

� That activates the playSound function on a URL:

� The playSound function is defined in the script element: it

� logs the action and URL in the browser console,
� makes a new audio object a, which
� plays it via the play() method.

: 207 2025-06-05

For reference, here is the full code of the examples in one file:
<html>
<head>

<title>Buttons</title>
<script src="https://code.jquery.com/jquery−3.4.1.min.js" type="text/javascript"></script>
<style type="text/css">

button {color: white; font−size: large; background−color: blue;
width: 110px; height: 40px; border−radius: 20px;}

div[id$="Point"] {display: inline−block;}
</style>

</head>

<body>
<h1 id="top">Look how easy interaction is ... </h1>

<div id="hoverPoint">
<button id="hover">hover</button>
<script type="text/javascript">

$("#hover").hover(function () {$(this).css("background−color", "red");},
function () {$(this).css("background−color", "blue");});

</script>
</div>

<div id="readPoint">
<button class="read" style="display:block">Read More</button>
<button class="read" style="display:none">Read Less</button>
<div id="rText" style="display:none; width:200px; clear:left">

A read−more button is not only a call−to−action, but it also organizes
the screen area management in a non−wasteful way. If and only if users are interested,
they will use the button.

</div>
<script type="text/javascript">

$(".read").click(function() {$("#rText").toggle("slow",function(){$(".read").toggle()});});
</script>

</div>

<div id="soundPoint">
<button id="sound" onclick="playSound(’laugh.mp3’)">Sound</button>
<script type="text/javascript">

function playSound(url) {
console.log("Call playSound with " + url);
const a = new Audio(url);
a.play();
}

</script>
</div>

</body>
</html>

It has a bit more general CSS and includes jQuery in the beginning.

138 CHAPTER 6. FRONT-END TECHNOLOGIES

Chapter 7

What did we learn in IWGS-1?

Outline of IWGS 1:

� Programming in Python: (main tool in IWGS)

� Systematics and culture of programming

� Program and control structures

� Basic data structures like numbers and wordsstring, character encodings, uni-
code, and regular expressions

� Electronic documents and document processing:

� text files

� markup systems, HTML, and CSS

� XML: Documents are trees.

� Web technologies for interactive documents and web applications

� internet infrastructure: web browsers and server

� server-side computation: bottle routing and

� client-side interaction: dynamic HTML, JavaScript, HTML forms

� Web application project (fill in the blanks to obtain a working web app)

: 208 2025-06-05

Outline of IWGS-II:

� Databases

� CRUD operations, querying, and python embedding

� XML and JSON for file based data storage

� BooksApp: a Books Application with persistent storage

� Image processing

� Basics

139

140 CHAPTER 7. WHAT DID WE LEARN IN IWGS-1?

� Image transformations, Image Understanding

� Ontologies, semantic web, and WissKI

� Ontologies (inference ; get out more than you put in)

� semantic web Technologies (standardize ontology formats and inference)

� Using semantic web Tech for cultural heritage research data ; the WissKI
System

� Legal Foundations of Information Systems

� Copyright & Licensing

� Data Protection (GDPR)

: 209 2025-06-05

Part II

IWGS-II: DH Project Tools

141

Chapter 8

Semester Change-Over

8.1 Administrativa
We will now go through the ground rules for the course. This is a kind of a social contract

between the instructor and the students. Both have to keep their side of the deal to make learning
as efficient and painless as possible.

Prerequisites

� Formal Prerequisite: IWGS-1 (If you did not take it, read the notes)

� General Prerequisites: Motivation, interest, curiosity, hard work.
nothing else! (apart from IWGS-1)

We will teach you all you need to know

� You can do this course if you want! (we will help)

: 210 2025-06-05

Now we come to a topic that is always interesting to the students: the grading scheme: The short
story is that things are complicated. We have to strike a good balance between what is didactically
useful and what is allowed by Bavarian law and the FAU rules.

Assessment, Grades

� Grading Background/Theory: Only modules are graded! (by the law)

� Module “DH-Einführung” (DHE) =̂ courses IWGS1/2, DH-Einführung. (7.5
ECTS)

� DHE module grade ; pass/fail determined by “portfolio” =̂ collection of contributions/as-
sessments.

� Module “DH-Einführung mit Übungen” (DHÜ) =̂ courses IWGS1/2, (10
ECTS)

� DHÜ module grade ; 1-5 50% exam, 50% homework assignments, 10% bonus
points from prepquizzes.

� Assessment Practice: The IWGS assessments in the “portfolio” consist of

143

144 CHAPTER 8. SEMESTER CHANGE-OVER

� weekly homework assignments, (practice IWGS concepts and tools)

� 60 minutes exam directly after lectures end: July 24. 2025.

� Retake Exam: 60 min exam at the end of the exam break. (October. 9. 2025)

� To help you succeed: We offer you

� External motivation: informal points for homeworks and a grade for exam,
(even though only pass/fail relevant in the end)

� weekly online prepquizzes that help you prepare for the course. (check
understanding/preparation)

: 211 2025-06-05

Homework assignments, quizzes, and end-semester exam may seem like a lot of work – and indeed
they are – but you will need practice (getting your hands dirty) to master the IWGS concepts.
We will go into the details next.

Preparedness Quizzes

� PrepQuizzes: Before every lecture we offer a 10 min online quiz – the PrepQuiz
– about the material from the previous week. (∼ 16:0?-16:15 (check on ALeA);
starts in week 2)

� Motivations: We do this to

� keep you prepared and working continuously. (primary)

� bonus points if the exam has ≥ 50% points (potential part of your grade)

� update the ALeA learner model. (fringe benefit)

� The prepquizes will be given in the ALeA system
� https://courses.voll-ki.fau.de/quiz-dash/iwgs-2

� You have to be logged into ALeA! (via FAU IDM)

� You can take the prepquiz on your laptop or phone, . . .

� . . . in the lecture or at home . . .

� . . . via WLAN or 4G Network. (do not overload)

� Prepquizzes will only be available ∼ 16:0?-16:15 (check on ALeA)!

https://courses.voll-ki.fau.de/quiz-dash/iwgs-2

8.2. GETTING MOST OUT OF 145

: 212 2025-06-05

ALeA in IWGS

� We assume that you already know the ALeA system from last semester

� Use it for

� lecture notes (notes- vs slides-oriented)

� flashcards (drill yourself on the IWGS jargon/concepts)

� course forum (questions, discussions and error reporting)

� solving and peer-grading homework assignments

� finding study groups (you need not endure IWGS alone)

� practicing with targeted problems (e.g. from old exams)

� doing the prepquizzes (before each lecture)

: 213 2025-06-05

Excursion: We will recap an introduction to ALeA system in???.

8.2 Getting Most out of IWGS
In this section we will discuss a couple of measures that students may want to consider to get

most out of the IWGS course.
None of the things discussed in this section – homeworks, tutorials, study groups, and at-

tendance – are mandatory (we cannot force you to do them; we offer them to you as learning
opportunities), but most of them are very clearly correlated with success (i.e. passing the exam
and getting a good grade), so taking advantage of them may be in your own interest.

IWGS Homework Assignments

146 CHAPTER 8. SEMESTER CHANGE-OVER

� Goal: Homework assignments reinforce what was taught in lectures.

� Homework Assignments: Small individual problem/programming/proof task

� but take time to solve (at least read them directly ; questions)

� Didactic Intuition: Homework assignments give you material to test your under-
standing and show you how to apply it.

� Homeworks give no points, but without trying you are unlikely to pass the exam.

� Homework Workflow: in ALeA (see below)

� Homework assignments will be published on thursdays: see https://courses.
voll-ki.fau.de/hw/iwgs-2

� Go to the Tutorials to discuss them.

� Submission of solutions via the StudOn system in the week after

� graded by the TA.

� Homework/Tutorial Discipline:

� Start early! (many assignments need more than one evening’s work)

� Don’t start by sitting at a blank screen (talking & study groups help)

� Humans will be trying to understand the text/code/math when grading it.

� Go to the tutorials, discuss with your TA! (they are there for you!)

: 214 2025-06-05

It is very well-established experience that without doing the homework assignments (or something
similar) on your own, you will not master the concepts, you will not even be able to ask sensible
questions, and take very little home from the course. Just sitting in the course and nodding is not
enough! If you have questions please make sure you discuss them with the instructor, the
teaching assistants, or your fellow students. There are three sensible venues for such discussions:
online in the lectures, in the tutorials, which we discuss now, or in the course forum – see below.
Finally, it is always a very good idea to form study groups with your friends.

IWGS Tutorials

� Weekly tutorials and homework assignments (first one in week two)

�

Tutor: (Master Student in CS)

� Dirk Böhme: dirk.boehme@fau.de

They know what they are doing and really want to help
you learn! (dedicated to DH)

� Dirk will also grade the homework assignments for the DFÜ students.
(grade-relevant)

� Goal 1: Reinforce what was taught in class (important pillar of the IWGS
concept)

� Goal 2: Let you experiment with Python (think of them as Programming Labs)

https://courses.voll-ki.fau.de/hw/iwgs-2
https://courses.voll-ki.fau.de/hw/iwgs-2
dirk.boehme@fau.de

8.2. GETTING MOST OUT OF 147

� Life-saving Advice: go to your tutorial, and prepare it by having looked at the
lecture notes and the homework assignments

� Inverted Classroom: the latest craze in didactics (works well if done right)

in IWGS: lecture + homework assignments + tutorials =̂ inverted classroom

: 215 2025-06-05

Collaboration

� Definition 8.2.1. Collaboration (or cooperation) is the process of groups of agents
acting together for common, mutual benefit, as opposed to acting in competition
for selfish benefit. In a collaboration, every agent contributes to the common goal
and benefits from the contributions of others.

� In learning situations, the benefit is “better learning”.

� Observation: In collaborative learning, the overall result can be significantly better
than in competitive learning.

� Good Practice: Form study groups. (long- or short-term)

1. Those learners who work/help most, learn most!

2. Freeloaders – individuals who only watch – learn very little!

� It is OK to collaborate on homework assignments in IWGS! (no bonus points)

� Choose your study group well! (ALeA helps via the study buddy feature)

: 216 2025-06-05

As we said above, almost all of the components of the IWGS course are optional. That even
applies to attendance. But make no mistake, attendance is important to most of you. Let me
explain, . . .

Do I need to attend the IWGS Lectures

� Attendance is not mandatory for the IWGS course. (official version)

� Note: There are two ways of learning: (both are OK, your mileage may vary)

� Approach B: Read a book/papers (here: lecture notes)

� Approach I: come to the lectures, be involved, interrupt the instructor whenever
you have a question.

The only advantage of I over B is that books/papers do not answer questions

� Approach S: come to the lectures and sleep does not work!

� The closer you get to research, the more we need to discuss!

: 217 2025-06-05

148 CHAPTER 8. SEMESTER CHANGE-OVER

8.3 Learning Resources for IWGS

Course Notes, Forum, Matrix

� Lecture notes will be posted at https://kwarc.info/teaching/IWGS

� We mostly prepare/update them as we go along (semantically preloaded ;
research resource)

� Please report any errors/shortcomings you notice. (improve for the
group/successors)

� StudOn Forum: For announcements – https://www.studon.fau.de/studon/goto.
php?target=lcode_3oqqBg7g

� Matrix Channel: https://matrix.to/#/#iwgs:fau.de for questions, discus-
sion with instructors and among your fellow students. (your channel, use
it!)

Login via FAU IDM ; instructions

� Course Videos are at at https://www.fau.tv/course/id/2350.

� Do not let the videos mislead you: Coming to class is highly correlated with
passing the exam!

: 218 2025-06-05

FAU has issued a very insightful guide on using lecture videos. It is a good idea to heed these
recommendations, even if they seem annoying at first.

Practical recommendations on Lecture Videos

� Excellent Guide: [Nor+18a] (German version at [Nor+18b])

 

Attend lectures.

Take notes.

Be specific.

Catch up.

Ask for help.

Don’t cut corners.

Using lecture
recordings:
A guide for students

: 219 2025-06-05

https://kwarc.info/teaching/IWGS
https://www.studon.fau.de/studon/goto.php?target=lcode_3oqqBg7g
https://www.studon.fau.de/studon/goto.php?target=lcode_3oqqBg7g
https://matrix.to/#/#iwgs:fau.de
https://www.anleitungen.rrze.fau.de/serverdienste/matrix-an-der-fau/erste-schritte/

8.3. LEARNING RESOURCES FOR 149

NOT a Resource for : LLMs – AI-tools like ChatGPT

� Definition 8.3.1. A large language model (LLM) is a computational model capable
of language generation or other natural language processing tasks.

� Example 8.3.2. OpenAI’s GPT, Google’s Bard, and Meta’s Llama.

� Definition 8.3.3. A chatbot is a software application or web interface that is
designed to mimic human conversation through text or voice interactions. Modern
chatbots are usually based on LLMs.

� Example 8.3.4 (ChatGPT talks about IWGS). (Aha, where does this come
from?)

� Example 8.3.5 (In the IWGS exam). ChatGPT scores almost perfectly (master
solution quality)

� ChatGPT can pass the exam . . . (We could award it a Master’s degree)

� But can you? (the IWGS exams will be in person on paper)

You will only pass the exam, if you can do IWGS yourself!

� Intuition: AI tools like GhatGPT, CoPilot, etc. (see also [She24])

� can help you solve problems, (valuable tools in production situations)

� hinders learning if used for homeworks/quizzes, etc. (like driving instead of
jogging)

� What (not) to do: (to get most of the brave new AI-supported world)

� try out these tools to get a first-hand intuition what they can/cannot do

� challenge yourself while learning so that you can also do it (mind over matter!)

: 220 2025-06-05

150 CHAPTER 8. SEMESTER CHANGE-OVER

Outline of IWGS-II:

� Databases

� CRUD operations, querying, and python embedding

� XML and JSON for file based data storage

� BooksApp: a Books Application with persistent storage

� Image processing

� Basics

� Image transformations, Image Understanding

� Ontologies, semantic web, and WissKI

� Ontologies (inference ; get out more than you put in)

� semantic web Technologies (standardize ontology formats and inference)

� Using semantic web Tech for cultural heritage research data ; the WissKI
System

� Legal Foundations of Information Systems

� Copyright & Licensing

� Data Protection (GDPR)

: 221 2025-06-05

Chapter 9

Databases

We now come to one of the core tools of CS: databases give us a means to store large collections
of data and organize them for efficient access. We will introduce the underlying concepts by
example, go over the basics of relational database systems and the SQL language, and experiment
with a concrete system: SQLite and its embedding into Python. Acknowledgements: We have
borrowed and adapted examples and from [SSU04] and [PMDA] in this chapter.

9.1 Introduction
Before we do anything else, we wil will look at various concepts around data to clarify concerns.

Databases, Data, Information, and Knowledge

� Definition 9.1.1. Discrete, objective facts or observations, which are unorganized
and uninterpreted are called data (singular datum).

� According to Probst/Raub/Romhardt [PRR97]

� Example 9.1.2. The height of Mt. Everest (8.848 meters) is a datum.

Definition 9.1.3. A database is an organized collection of data, stored and accessed
electronically from a computer system.

�

: 222 2025-06-05

To get an intuition about the possibilities of storing data, we look at some common ways – some
of which we have already seen – and characterize them by some practical dimensions.

Storing Data Electronically

151

152 CHAPTER 9. DATABASES

� Four conventional ways of storing data: (mileage varies)

� In the computer’s memory (RAM) (very fast (+), random access (+), but not
persistent (-))

� In a text file (persistent (+), fast (+), sequential access (), unstructured ())

� In a spreadsheet (persistent (+), 2D-structured (+-), relations (+), slow (-))

� In a database (persistent (+), scalable (+), relations(+), managed (+), slow
(-))

� Databases constitute the most scalable, persistent solution.

: 223 2025-06-05

9.2. RELATIONAL DATABASES 153

We will study the practical aspects of one particularly important class of database systems:
relational database management systems.

9.2 Relational Databases
We will now study a particular kind of database: relational database, as these are the most

widely used and structured ones.3 EdN:3

(Relational) Database Management Systems

� Definition 9.2.1. A database management system (DBMS) is program that inter-
acts with end users, applications, and a database to capture and analyze the data
and provides facilities to administer the database.

� There are different types of DBMS, we will concentrate on relational ones.

� Definition 9.2.2. In a relational database management system (RDBMS), data
are represented as tables: every datum is represented by a row (also called database
record), which has a value for all columns (also called a column attribute or field).
A null value is a special “value” used to denote a missing value.

� Remark: Mathematically, each row is an n tuple of values, and thus a table an
n-ary relation. (useful for standardizing RDBMS operations)

� Example 9.2.3 (Bibliographic Data).

LastN FirstN YOB YOD Title YOP Publisher City

Twain Mark 1835 1910 Huckleberry Finn 1986 Penguin USA NY
Twain Mark 1835 1910 Tom Sawyer 1987 Viking NY
Cather Willa 1873 1947 My Antonia 1995 Library of America NY
Hemingway Ernest 1899 1961 The Sun Also Rises 1995 Scribner NY
Wolfe Thomas 1900 1938 Look Homeward, Angel 1995 Scribner NY
Faulkner William 1897 1962 The Sound and the Fury 1990 Random House NY

� Definition 9.2.4. Tables are identified by table name and individual components
of records by column name.

: 224 2025-06-05

As RDBMS constitute the backbone of of modern information technology, there are many many
implementations, commercial ones and open source ones as well. For our purposes, open-source
systems are completely sufficient, so we list the most important ones here.

Open-Source Relational Database Management Systems

�

Definition 9.2.5. MySQL is an open source RDBMS.
For simple data sets and web applications MySQL is
a fast and stable multi user system featuring an SQL
database server that can be accessed by multiple clients.

3EdNote: MK: In the last years, NoSQL databases and JSON have gained prominaence. Intro them at the end and
reference them here.

154 CHAPTER 9. DATABASES

�
Definition 9.2.6. PostgreSQL is an open source RDBMS with an
emphasis on extensibility, standards compliance, and scalability.

�

Definition 9.2.7. SQLite is an embeddable RDBMS.
Instead of a database server, SQLite uses a single
database file, therefore no server configuration is nec-
essary.

� Remark: At the level we use SQL in IWGS, all are equivalent.

� We will use SQLite in IWGS, since it is easiest to install and configure.

: 225 2025-06-05

Now that we have made our first steps in the SQL language and with RDBMS in general, let us
pick a concrete RDBMS to experiment with.

Working with SQLite (via the SQLite shell)

� In IWGS we will use SQLite, since it is very lightweight, easy to install, but feature
complete, and widely used.

� Download SQLite at https://www.sqlite.org/download.html,

� e.g. sqlite−dll−win64−x64−3280000.zip for windows.

� unzip it into a suitable location, start sqlite3.exe there

� this opens a command line interpreter: the SQLite shell. (all DBs have one)
test it with .help that tells you about more “dot commands”.

> sqlite3
SQLite version 3.24.0 2018−06−04 19:24:41
Enter ".help" for usage hints.
Connected to a transient in−memory database.
Use ".open FILENAME" to reopen on a persistent database.
sqlite> .help
.archive ... Manage SQL archives: ".archive −−help" for details
.auth ON|OFF Show authorizer callbacks
[...]

� If you have a database file books.db from ???, use that.
> sqlite3 books.db
SQLite version 3.24.0 2018−06−04 19:24:41
Enter ".help" for usage hints.
> .tables
Books
>select ∗ from Books;
Twain|Mark|1835|1910|Huckleberry Finn|1986|Penguin USA|NY
Twain|Mark|1835|1910|Tom Sawyer|1987|Viking|NY
Cather|Willa|1873|1947|My Antonia|1995|Library of America|NY
Hemingway|Ernest|1899|1961|The Sun Also Rises|1995|Scribner|NY
Wolfe|Thomas|1900|1938|Look Homeward, Angel|1995|Scribner|NY
Faulkner|William|1897|1962|The Sound and the Furry|1990|Random House |NY
Tolkien|John Ronald Reuel|1892|1973|The Hobbit|1937|George Allen Unwin|UK

� .tables shows the available tables
select ∗ from Books is SQL (see below); it shows all entries of the Books table.

https://www.sqlite.org/download.html

9.3. SQL – A STANDARDIZED INTERFACE TO RDBMS 155

: 226 2025-06-05

Interacting with SQLite via the database shell is nice, but can be quite tedious. Fortunately, there
are better alternatives.

A Graphical User Interface for SQLite

� Definition 9.2.8. A database browser is a graphical user interface for a RDBMS
that (typically) bundles an SQL instruction editor with displays for query results and
the database schema in separate windows.

� I will sometimes use one for SQLite in the slides: SQLite Studio (lots of others)

� download from https://sqlitestudio.pl

� Everything we can do with this, we can do with the database shell as well. (just
looks nicer)

: 227 2025-06-05

9.3 SQL – A Standardized Interface to RDBMS
Idea: To interact with RDBMSs, we need a language to describe tables to the system, so that
they can be created, read, updated, and deleted. In fact while we are at it, we need a language
for all RDBMS operations. The domain specific language SQL (pronounced like “sequel”) fills
this need. It is internationally standardized, so that it can be used as the lingua franca for all
RDBMSs, insulating users and application programmers against system internals.

SQL: The Structured Query Language

� Idea: We need a language for describing all operations of a RDBMSs.

� basics: creating, reading, updating, deleting database components (CRUD)

� querying: selecting from and inserting into the database

� access control: who can do what in a database

� transactions: ensuring a consistent database state.

https://sqlitestudio.pl

156 CHAPTER 9. DATABASES

Definition 9.3.1. SQL, the structured query language is a domain-specific language
for managing data held in a RDBMS. SQL instructions are directly executed by the
RDBMS to change the database state or compute answers to SQL queries.

�

: 228 2025-06-05

We start off with a fragment of SQL that is concerned with setting up the database schema, which
gives structure to the data in the database. This schema is used by the RDBMS to optimize
database access.

DDL: Data Definition Language

� Definition 9.3.2. The data definition language (DDL) is a subset of SQL instruc-
tions that address the creation and deletion of database objects.

� Definition 9.3.3. The SQL statement CREATE TABLE⟨⟨name⟩⟩ (⟨⟨coldefs⟩⟩) cre-
ates a table with name ⟨⟨name⟩⟩. ⟨⟨coldefs⟩⟩ are column specifications that specify
the columns: it is a comma-separated list of column names and SQL data type. The
totality of all column specifications of all tables in a database is called the database
schema.

� Example 9.3.4 (Creating a Table). The following SQL statement creates the
table from Example 9.2.3

CREATE TABLE Books (
LastN varchar(128), FirstN varchar(128),
YOB int, YOD int, Title varchar(255), YOP int,
Publisher varchar(128), City varchar(128)

);

� Other CREATE statements exist, e.g. CREATE DATABASE ⟨⟨name⟩⟩.

� Definition 9.3.5. The SQL statement DROP ⟨⟨obj⟩⟩ ⟨⟨name⟩⟩ deletes the database
object of class ⟨⟨obj⟩⟩ with name ⟨⟨name⟩⟩.

: 229 2025-06-05

We have seen above that the database schema needs a data type for every column. We give an
overview over the most important ones here.

SQL Data Types (for Column Specifications)

� Definition 9.3.6. SQL specifies data type for values including:

� VARCHAR (⟨⟨length⟩⟩): character strings, including Unicode, of a variable length
is up to the maximum length of ⟨⟨length⟩⟩.

� BOOL truth values: true, false and case variants.

� INT: Integers

� FLOAT: floating point numbers

� DATE: dates, e.g. DATE ’1999−01−01’ or DATE ’2000−2−2’

� TIME: time points in ISO format, e.g. TIME ’00:00:00’ or time ’23:59:59.99’

9.3. SQL – A STANDARDIZED INTERFACE TO RDBMS 157

� TIMESTAMP: a combination of DATE and TIME (separated by a blank).

� CLOB (⟨⟨length⟩⟩) (character large object) up to (typically) 2GiB

� BLOB (⟨⟨length⟩⟩) (binary large object) up to (typically) 2GiB

: 230 2025-06-05

We now come to the SQL commands for inserting content into the database tables we have created
above. This is quite straight-forward.

SQL: Adding Records to Tables

� Definition 9.3.7. SQL provides the INSERT INTO command for inserting records
into a table. This comes in two forms:

1. INSERT INTO ⟨⟨table⟩⟩ VALUES (⟨⟨vals⟩⟩); where ⟨⟨vals⟩⟩ is a comma-separated
list of values given in the order the columns were declared in the CREATE TABLE
instruction.

2. INSERT INTO ⟨⟨table⟩⟩ (⟨⟨cols⟩⟩) VALUES (⟨⟨vals⟩⟩) where ⟨⟨vals⟩⟩ is a comma-
separated list of values given in the order of ⟨⟨cols⟩⟩ (a subset of columns) all other
fields are filled with NULL

� Example 9.3.8 (Inserting into the Books Table). The given the table Books
from Example 9.3.4 we can add a record with

INSERT INTO Books
VALUES (’Tolkien’, ’John Ronald Reuel’, 1892, 1973, ’The Hobbit’, 1937,

’George Allen Unwin’, ’UK’);

� Example 9.3.9 (Inserting Partial Data). Using the second form of the INSERT
instruction, we can insert partial data. (all we have)

INSERT INTO Books (FirstN, LastN, YOB, title, YOP)
VALUES (’Michael’, ’Kohlhase’, 1964, ’IWGS Course Notes’, 2018);

: 231 2025-06-05

With an insert facility, we need to be able to delete records as well, again it is straight-forward,
with the exception that we have to identify which records to delete.

SQL: Deleting Records from Tables

� Definition 9.3.10. The SQL delete statement allows to change existing records.

DELETE FROM ⟨⟨table⟩⟩ WHERE ⟨⟨condition⟩⟩;

� Example 9.3.11. Deleting the record for “Huckleberry Finn”.

DELETE FROM Works WHERE Title = ’Huckleberry Finn’

� If we leave out the WHERE clause, all rows are deleted.

� Note: There is much more to the WHERE clause, we will get to that when we
come to SQL querying. (see ???)

158 CHAPTER 9. DATABASES

: 232 2025-06-05

And now we come to a variant of database insertion: record update. In principle, this could be
achieved by deleting the record and then re-inserting the changed one, but the update instruction
presented here is more efficient.

SQL: Updating Records in Tables

� Definition 9.3.12. The SQL update statement allows to change existing records.

UPDATE ⟨⟨table⟩⟩
SET ⟨⟨column⟩⟩1 = ⟨⟨value⟩⟩1, ⟨⟨column⟩⟩2 = ⟨⟨value⟩⟩2, . . .
WHERE ⟨⟨condition⟩⟩;

� Example 9.3.13. Updating the publisher in “Huckleberry Finn”.

UPDATE Books
SET Publisher = ’Chatto/Windus’, YOP = 1884, City = ’London’
WHERE Title = ’Huckleberry Finn’

� If we leave out the WHERE clause, all rows are updated.

: 233 2025-06-05

9.4 ER-Diagrams and Complex Database Schemata
We now come to a very important aspect of structured databases: designing the database schema

and with this determining the data efficiency and computational performance of the database itself.
We get glimpse of the standard tool: entity relationship diagrams here.

Avoiding Redundancy in Databases

� Recall the books table from Example 9.2.3:

LastN FirstN YOB YOD Title YOP Publisher City

Twain Mark 1835 1910 Huckleberry Finn 1986 Penguin USA NY
Twain Mark 1835 1910 Tom Sawyer 1987 Viking NY
Cather Willa 1873 1947 My Antonia 1995 Library of America NY
Hemingway Ernest 1899 1961 The Sun Also Rises 1995 Scribner NY
Wolfe Thomas 1900 1938 Look Homeward, Angel 1995 Scribner NY
Faulkner William 1897 1962 The Sound and the Fury 1990 Random House NY

� Observation: Some of the fields appear multiple times, e.g. “Mark Twain”.

� When the database grows this can lead to scalability problems:

� in querying: e.g. if we look for all works by Mark Twain

� in maintenance: e.g. if we want to replace the pen name “Mark Twain” by the
real name “Samuel Langhorne Clemens”.

� Idea: Separate concerns (here Authors, Works, and Publishers) into separate
entities, mark their relations.

� Develop a graphical notation for planning

� Implement that into the database

9.4. ER-DIAGRAMS AND COMPLEX DATABASE SCHEMATA 159

: 234 2025-06-05

After this discussion on why we need to design an efficient database schema to the entity relation-
ship diagram themselves.

Entity Relationship Diagrams

� Definition 9.4.1. An entity relationship diagram (ERD) illustrates the logical
structure of a database. It consists of entities that characterize (sets of) objects by
their attributes and relations between them.

� Example 9.4.2 (An ERD for Books). Recall the Books table from Example 9.2.3:

LastN FirstN YOB YOD Title YOP Publisher City

Twain Mark 1835 1910 Huckleberry Finn 1986 Penguin USA NY
Twain Mark 1835 1910 Tom Sawyer 1987 Viking NY
Cather Willa 1873 1947 My Antonia 1995 Library of America NY
Hemingway Ernest 1899 1961 The Sun Also Rises 1995 Scribner NY
Wolfe Thomas 1900 1938 Look Homeward, Angel 1995 Scribner NY
Faulkner William 1897 1962 The Sound and the Fury 1990 Random House NY

� Problem: We have duplicate information in the authors and publishers

� Idea: Spread the Books information over multiple tables.

Authors
Last Name
First Name
Birth Date
Death Date

Works
Title
PubDate

Publ
Name
Citywrit. by

wrote *
1 publ. by 1

publ.*

: 235 2025-06-05

Generally, a good database design is almost always worth the effort, since it makes the code and
maintenance of the applications based on this database much simpler and intuitive.
We are fully aware, that this little example completely under-sells entity relationship diagrams
and does not do this important topic justice. Fortunately, the DH students at FAU have the
mandatory course “Konzeptuelle Modellierung” which does.
We now come to the implementation of the ideas from the entity relationship diagrams. The key
idea is to have references between tables. These are mediated by special database columns types,
which we now introduce.

Linking Tables via Primary and Foreign Keys

� Definition 9.4.3. A column in a table can be designated as a primary key, if its
values are non-null and unique i.e. all distinct.

� In DDL, we just add the keyword PRIMARY KEY to the column specification.

� Definition 9.4.4. A foreign key is a column (or collection of columns) in one
table (called the child table) that refers to the primary key in another table (called
the reference table or parent table).

� Intuition: Together primary keys and foreign keys can be used to link tables or
(dually) to spread information over multiple tables.

160 CHAPTER 9. DATABASES

ERD Implementation

A
. . .

B
. . .

Parent
ID : primary
. . .

Child
fID : foreign
. . .

references

� BTW: Primary keys are great for identification in the WHERE clauses of SQL
instructions.

: 236 2025-06-05

We now fortify our intuition on primary and foreign keys by taking up Example 9.4.2 again.

Linking Tables via Primary and Foreign Keys (Example)

� Example 9.4.5. Continuing Example 9.4.2, we now implement

Authors
Last Name
First Name
Birth Date
Death Date

Works
Title
PubDate

Publ
Name
Citywrit. by

wrote *
1 publ. by 1

publ.*

by introducing primary keys in the Authors and Publishers tables and referencing
them by foreign keys in the Works table.

CREATE TABLE Authors (AuthorID int PRIMARY KEY,
LastN varchar(128), FirstN varchar(128), YOB int, YOD int);

CREATE TABLE Publishers (PublisherID int PRIMARY KEY,
Name varchar(128), City varchar(128));

CREATE TABLE Works (
Title varchar(255), YOP int, AuthorID int, PublisherID int,
FOREIGN KEY(AuthorID) REFERENCES Authors(AuthorID),
FOREIGN KEY(PublisherID) REFERENCES Publishers(PublisherID));

: 237 2025-06-05

Linking Tables via Primary and Foreign Keys (continued)

� Example 9.4.6 (Inserting into the Works Table). The given the tables Works
Authors, and Publishers from Example 9.4.5 we can add a record with

INSERT INTO Authors VALUES (1, ’Twain’, ’Mark’, 1835, 1910);
INSERT INTO Publishers VALUES (1, ’Penguin USA’, ’NY’);
INSERT INTO Works VALUES (’Huckleberry Finn’, 1986, 1, 1);

INSERT INTO Publishers VALUES (2,’Viking’, ’NY’);
INSERT INTO Works VALUES (’Tom Sawyer’, 1987, 1, 2);

9.5. RDBMS IN PYTHON 161

: 238 2025-06-05

Note: We have introduced new integer-typed columns for the primary key in the Authors and
Pubishers tables. In principle, we could have designated any existing column as a primary key
instead, if we were sure that the entries are unique – in our case an unreasonable assumption, even
for the publishers.

We have also chosen not to introduce a primary key in the Works table, which is probably a
design mistake in the long run, because this would be very important to have for deletions and
updates.

9.5 RDBMS in Python

Let us now see how we can interact with SQLite programmatically from Python instead of from
the SQLite shell or the database browser.

Using SQLite from Python

� We will use the PySQLite package

� install it locally with pip install pysqlite for Python 3.

� use import sqlite3 to import the library in your programs.

� Typical Python program with sqlite3:

import sqlite3
Open database connection
db = sqlite3.connect(⟨⟨DBname⟩⟩)
prepare a cursor object using cursor() method
cursor = db.cursor()
execute SQL commands using the execute() method.
cursor.execute("⟨⟨SQL⟩⟩")
⟨⟨data processing code⟩⟩
make sure data reaches disk
db.commit()
disconnect from server
db.close()

We will assume this as a wrapper for all code examples below.

: 239 2025-06-05

The script schema shows the normal way of setting up the interaction with a database using
sqlite3:

1. We connect to the database by specifying the database file in which the data is kept. Normally,
this will be a file on the local file system, but we can also use the string :memory: which results
in an in-memory database (no persistent storage). The result of the sqlite3.connect function is
a database object db.

2. Then we create a cursor object cursor (cf. slide 250 for more details) by using the cursor method
of the datebase object db.

3. Then we execute SQL instructions via cursor.execute and do the data processing we need for
our application.

162 CHAPTER 9. DATABASES

4. To make sure that the changes we made to the database are actually reflected on disk in the
database file ⟨⟨DBName⟩⟩, we commit the changes to disk via db.commit().

5. Finally, we close the database connection via the db.close method to make sure that all our
changes have reached the database file.

We will now put this schema to use using ??? as a basis.

Creating Tables in Python

� Example 9.5.1. Creating the table of Example 9.3.4
import sqlite3
our database file
database = "C:\\sqlite\db\books.db"
a string with the SQL instruction to create a table
create = """CREATE TABLE Books (

LastN varchar(128), FirstN varchar(128), YOB int, YOD int,
Title varchar(255), YOP int,Publisher varchar(128), City varchar(128));"""

insert1 = """INSERT INTO Books
VALUES (’Twain’, ’Mark’, ’1835’, ’1910’, ’Huckleberry Finn’, ’1986’,

’Penguin USA’, ’NY’);"""
insert2 = """INSERT INTO Books

VALUES (’Twain’, ’Mark’, ’1835’, ’1910’, ’Tom Sawyer’, ’1987’,
’Viking’, ’NY’);"""

connect to the SQLIte DB and make a cursor
db = sqlite3.connect(database)
cursor = db.cursor()
create Books table by executing the cursor
cursor.execute("DROP TABLE Books;")
cursor.execute(create)
cursor.execute(insert1)
cursor.execute(insert2)
db.commit() # commit to disk
db.close() # clean up by closing

: 240 2025-06-05

In this example we first create an SQL instruction as a string, so that we can give them as
arguments to the cursor.execute method conveniently.
Note that cursor.execute only executes a single SQL instructions (for safety reasons; see slide 253
– why does this help there?).
Note that we drop the Books table before (re)creating it, to be sure that we have the right structure
and avoiding errors, when we run the Python script above twice. An alternative would have been
to use CREATE TABLE IF NOT EXISTS, which only creates the table if there is none. But in our
example here, where we directly fill the table, dropping any old tables with the name Books seems
the right thing to do.
There is an issue that sometimes baffles beginners: I have created a table, inserted lots of data into
it, closed the database, and the next time I connect to the database, it is empty ; very annoying.

To understand this phenomenon, we have to understand a bit more how databases like SQLite
work and the tradeoffs face when working working with such systems.

To commit or not to commit?

� Recall: SQLite computes with tables in memory but uses files for persistence.

� Also Recall: Memory access is 100-10.000 times as fast as file access.

� Idea 1: Keep tables in memory, write to file only when necessary.

9.6. EXCURSION: PROGRAMMING WITH EXCEPTIONS IN PYTHON 163

� Idea 2: Give the user/programmer control over when to write to file

� db = sqlite3.connect(⟨⟨file⟩⟩) connects to ⟨⟨file⟩⟩, but computes in memory,

� db.commit() writes in-memory changes to ⟨⟨file⟩⟩.

� Problem: We can have multiple database connections to the same database file
in parallel, there may be race conditions and conflicts.

� Our Solution: Commit often enough! (your responsibility/fault)

� General Solution: RDBMS offer database transactions. (not covered in IWGS)

� Lazy Solution: Set the connection to autocommit mode: (system decides)
sqlite3.connect(⟨⟨file⟩⟩,isolation_level = None)

: 241 2025-06-05

Excursion: The general solution to the problem of accessing a database from multiple programs
or processes in parallel is solved by a complex technology called database transactions, which allow
users to define a sensible unit of work (via begin/end bracketing) called a transaction and makes
sure that the process

• behaves as if the user’s process has sole access to the database system for the duration of the
transaction (isolation)

• any changes made during the transaction can be rolled back if an error occurs during processing
(integrity).

Transactions are an essential, but complex technology that is beyond the scope of the IWGS
course. For our understanding, db.commit is essentially just the end bracket of a transaction.

9.6 Excursion: Programming with Exceptions in Python
Before we go on, we discuss how we can deal with errors in Python flexibly, so that our web

application will not drop into the Python level and present the user with a stack trace.
We first introduce what errors really are in the Python context and how they are raised and

handled. Then we look at what this means for our handling of database connections.

How to deal with Errors in Python

� Theorem 9.6.1 (Kohlhase’s Law). I can be an idiot, and I do make mistakes!

� Corollary 9.6.2. Programming languages need a good way to deal with all kinds
of errors!

� Definition 9.6.3. An exception is a special Python object. Raising an exception e
terminates computation and passes e to the next higher level.

� Example 9.6.4 (Division by Zero). The Python interpreter reports unhandled
exceptions.

>>> −3 / 0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
Zerodivisionerror: division by zero

164 CHAPTER 9. DATABASES

� Exceptions are first-class citizens in Python, in particular they

� are classified by their classes in a hierarchy.

� exception classes can be defined by the user, (they inherit from the Exception
class)

class DivByZero (Exception)
pass

� can be raised when an abnormal condition appears

if denominator == 0 :
raise DivByZero

else
⟨⟨computation⟩⟩

� can be handled in a try/except block (there can be multiple)

try:
⟨⟨tentative computation⟩⟩

except : ⟨⟨err⟩⟩1, . . ., ⟨⟨err⟩⟩n :
⟨⟨errorhandling⟩⟩

finally :
⟨⟨cleanup⟩⟩

: 242 2025-06-05

Let us now apply Python exceptions to our situation. Here the most important source of errors is
the database connection step, where a database file might be missing or a remote host with the
database file offline.

Playing it Safe with Databases

� Observation 9.6.5. Things can go wrong when connecting to a database! (e.g.
missing file)

� Idea: Raise exceptions and handle them.

� Example 9.6.6. We encapsulate a try/except block into a function for convenience

import sqlite3
from sqlite3 import Error
def sql_connection():

try:
db = sqlite3.connect(’:memory:’)
print("Connection is established: Database is created in memory")

except Error :
print(Error)

finally:
db.close()

The sqlite3 package provides its own exceptions, which we import separately.
Other errors can be handled in additional except clauses.

: 243 2025-06-05

9.7. QUERYING AND VIEWS IN SQL 165

9.7 Querying and Views in SQL
So far we have created, filled, and possibly updated databases, but we have not done anything

useful with them. That is the realm of querying in SQL, which we will now come to.
We will first cover SQL querying from a single table. There are many variants of the SELECT/-
FROM/WHERE instruction. We explain the most commonly used ones.

SQL Querying: The SELECT Statement

� SQL uses the SELECT instruction for retrieving data from a database.

� SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩ restricted to
the fields from ⟨⟨columns⟩⟩.

� Definition 9.7.1. The select instruction is the basic SQL query.

� Example 9.7.2. SELECT Title, YOP FROM Books;

Huckleberry Finn|1986
Tom Sawyer|1987
My Antonia|1995
The Sun Also Rises|1995
Look Homeward, Angel|1995
The Sound and the Furry|1990
The Hobbit|1937

� SELECT DISTINCT removes duplicate values

� SELECT ∗ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩.

� SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ WHERE ⟨⟨cond⟩⟩ returns all records that match
condition ⟨⟨cond⟩⟩

� Example 9.7.3. SELECT FirstN, LastN FROM Books WHERE YOP = 1995;

Willa|Cather
Ernest|Hemingway
Thomas|Wolfe

� SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ ORDER BY ⟨⟨colums⟩⟩ orders the results by
⟨⟨columns⟩⟩

� Example 9.7.4. Ordering can be ascending (ASC) or descending (DESC)
SELECT FirstN, LastN FROM Books ORDER BY LastN ASC, YOP DESC;

: 244 2025-06-05

There are some more variants, for instance we can add a GROUP BY clause, which allows to
group the result table according to various conditions.
We now generalize SQL queries by combining multiple tables into a virtual table from which we
aggregate the results. Snsjoin over that combine multiple tables in queries are the technique that
allows to split data into multiple tables in the first place: we can re recreate the “original big table”
via a query.
We will restrict ourselves to the simplest kind of table join: the inner join below. There are quite
a few variants of joins; we refer the reader to the literature on them.

166 CHAPTER 9. DATABASES

Joining Tables in Queries

� Problem: We can query single tables, how to do cross-table queries? E.g. in

Authors
AuthorID
Last Name
First Name
Birth Date
Death Date

Works
Title
PubDate
AuthorID
PublisherID

Publishers
PublisherID
Name
City

� Idea: Virtually join tables for the query! (as if we had the large books table)

� Definition 9.7.5. A table join (or simply join) is a means for combining columns
from one (self join) or more tables by using values common to each.

� Example 9.7.6. Joining all three tables from Example 9.4.2.
SELECT

Authors.LastN, Authors.FirstN, Authors.YOB, Authors.YOD,
Title, YOP, Publishers.Name, Publishers.City

FROM
Works

INNER JOIN Authors ON Authors.AuthorID = Works.AuthorID
INNER JOIN Publishers ON Publishers.PublisherID = Works.PublisherID

: 245 2025-06-05

The key idea in the query in Example 9.7.6 are the join statements in the last two lines. They
do two things: first the tell SQL to extend the Works table with data from the two tables Authors
and Publishers, and second they tell SQL how the extension should work: by making sure that in
the extension the records in the Works table are extended with the (unique!) record in the Authors
table, that has the same AuthorID, and analogously for the records from the Publishers table. Thus
the two joins implement the two arrows in the ER diagram at the top of the slide. The result of
this query is displayed on the next slide.

Joining Tables in Queries (Result)

� Example 9.7.7.

9.7. QUERYING AND VIEWS IN SQL 167

: 246 2025-06-05

Note that the result of the query from Example 9.7.6 shown in Example 9.7.7 exactly recreates the
original big Books table from Example 9.2.3. So we see that we have “lost nothing” by separating
the data into three more efficient and less redundant – tables.
We have seen above that we can join physical database tables to larger virtual ones whenever we
need it in a SQL query. This is good, but it can be made even better. RDBMS allow to persist
virtual table in the database schema itself as views.

Database Views: Persisting Queries

� Observation: Via the join in Example 9.7.6, the Works table queries like the
original Books table.

� Wouldn’t it be nice If we could also insert/update into that?

� Definition 9.7.8. A database view (or simply view) is a virtual table based on the
result set of a query. A view contains rows and columns, just like a real table. The
field in a view are fields from one or more real tables in the database.

� Remark 9.7.9. In many RDBMS we can even insert, delete, and update records in
a view, just as in any other table of the database.

The RDBMS achieves this by automatically translating any change to the view into
a set of changes to the underlying physical tables.

� but not in SQLite. (this is an omission due to simplicity)

: 247 2025-06-05

Remark: With views we can “have our cake and eat it too”: We can make our database schema
space efficient by removing redundancies using “small tables” and still have our “big tables” that
make our life convenient e.g. when inserting records. Consider our Books example again: we can
give the query from Example 9.7.6 a name and let the RDBMS treat it as a (virtual) table.

Database Views: Persisting Queries (Books Example)

168 CHAPTER 9. DATABASES

� Example 9.7.10. Use the query from Example 9.7.6 to define a view
CREATE VIEW Books AS
SELECT

Authors.LastN AS LastN, Authors.FirstN AS FirstN,
Authors.YOB AS YOB, Authors.YOD AS YOD,
Title, YOP,
Publishers.Name AS Publisher, Publishers.City AS City

FROM
Works

INNER JOIN Authors ON Authors.AuthorID = Works.AuthorID
INNER JOIN Publishers ON Publishers.PublisherID = Works.PublisherID

Use AS clauses in SELECT to specify column names.

: 248 2025-06-05

The proof is in the pudding. We see that Books view behaves exactly like the big (unstructured)
books table from above. On the right of the database browser window we can see that it is actually
a view.

Database Views: Persisting Queries (Books Example)

� Example 9.7.11.

: 249 2025-06-05

9.8 Querying via Python
Now it is time to turn to understanding querying programmatically in Python. The main concept

to grasp is that of a cursor.

Working with Cursors

� Definition 9.8.1. A cursor is a named object that encapsulates a set of query
results in a (virtual) database table.

9.8. QUERYING VIA PYTHON 169

� To work with a cursor in sqlite3,

� create a cursor object via the cursor method of your database object.

� Open the cursor to establish the result set via its execute method

� Fetch the data into local variables as needed from the cursor.

� The cursor class in sqlite3 provides additional methods:

� fetchone(): return one row as an array/list

� fetchall(): return all rows a list of lists.

� fetchsome(⟨⟨n⟩⟩): return ⟨⟨n⟩⟩ rows a list of lists.

� rowcount(): the number of rows in the cursor

� Intuition: Cursors allow programmers to repeatedly use a database query.

: 250 2025-06-05

Again, we fortify our intuitions by making a little example: we pretty-print the some of the
information by looping over result of fetching all the records from a given cursor.4

Extended Example: Listing Authors from the Books Table

� Example 9.8.2.
sql = ’SELECT FirstN, LastN, YOB FROM Books WHERE YOD < 1950;’
cursor.execute(sql)
print (’There are ’,cursor.rowcount,’ books, whose authors died before 1950:\n’)
for row in cursor.fetchall() :

print (row[0],’ ’,row[1], ’; born ’,row[3],’\n’)
print(’That is all; if you want more, add more to the database!’)

: 251 2025-06-05

If we have a large number of uniform SQL instructions, then we can bundle them, by iterating over
a list of parameters. In the example below, we explicitly write down the list, but in applications,
the list would be e.g. read from a metadata file.

Inserting Multiple Records (Example)

� The cursor.executemany method takes an SQL instruction with parameters and a
list of suitable tuples and executes them.

� Example 9.8.3. So the final form of insertion in ??? would be to define variable
with a list of book tuples:
booklist = [

(’Twain’, ’Mark’, 1835, 1910, ’Huckleberry Finn’, 1986, ’Penguin USA’, ’NY’),
(’Twain’, ’Mark’, 1835, 1910, ’Tom Sawyer’, 1987, ’Viking’, ’NY’),
(’Cather’, ’Willa’, 1873, 1947, ’My Antonia’, 1995, ’Library of America’, ’NY’),
(’Hemingway’, ’Ernest’, 1899, 1961, ’The Sun Also Rises’, 1995, ’Scribner’, ’NY’),
(’Wolfe’, ’Thomas’, 1900, 1938, ’Look Homeward, Angel’, 1995, ’Scribner’, ’NY’),
(’Faulkner’, ’William’, 1897, 1962, ’The Sound and the Furry’, 1990, ’Random House ’, ’NY’),
(’Tolkien’, ’John Ronald Reuel’, 1892, 1973, ’The Hobbit’, 1937,’George Allen Unwin’, ’UK’)]

4EdNote: MK: show the results

170 CHAPTER 9. DATABASES

and then insert it via a call of cursor.executemany:
cursor.executemany(’INSERT INTO Books VALUES (?,?,?,?,?,?,?,?)’,booklist)

: 252 2025-06-05

Now that we understand how to deal with databases programmatically, we can come to a real-
world menace: SQL injection attacks. A large portion of the “hacking” events, where a database
is taken over by malicious agents are based – at least in part – on such a technique. Therefore it is
important to understand the basic principles involved, if only to understand how we can safeguard
against them – see e.g. slide 254 below.

Beware of the Python/SQLite Interaction

� What have we learned?: At least you now understand the following web comic:
(https://xkcd.com/327/)

� Definition 9.8.4. We call this an SQL injection attack.

� Hint: Imagine a web application where you add student names for enrolment.

name = input("Please enter student name: ")
cursor.execute(f"INSERT INTO Students VALUES (... ,{Name}, ...);")

For the input Robert’); DROP TABLE Students; this has a Python line generates
and executes the SQL instructions
INSERT INTO Students VALUES (..., ’Robert’); DROP TABLE Students;

: 253 2025-06-05

Now we can understand why the restriction of cursor.execute to only one SQL instruction en-
hances security of the code: The hypothetical cursor.execute(’INSERT ...’) command expects one
instruction, but with the parameter substitution in the f string gets two. This would have raised
an exception and saved the school administration.
Finally we come back to the topic of preventing SQL injection attacks. We had seen that these
occur when we build the argument string for a cursor.execute call. While the single-instruction-
restriction of is some help, it is not enough. We essentially have to remove all the SQL instructions
from any input string we substitute with. Fortunately, SQL is standardized, so we can implement
that once and for all.

SQLite3 Parameter Substitution

� Observation 9.8.5. We often need variables as parameters in cursor.execute.

https://xkcd.com/327/

9.9. REAL-LIFE INPUT/OUTPUT: XML AND JSON 171

� Example 9.8.6. In Example 9.8.2 we can ask the user for a year.

� The python way would be to use f strings

year = input(’Books, whose author died before what year?’)
sql = f’SELECT FirstN, LastN, YOB FROM Books WHERE YOD < {year}’
cursor.execute(sql) # never use f−strings here −−> insecure

But this leads to vulnerability by SQL injection attacks. (; Bobby Tables)

� Definition 9.8.7. sqlite3 supplies a parameter substitution that SQL sanitizes
parameters (removes problematic SQL instructions).

� The sqlite3 way uses parameter substitution (multiple ? possible ; tuple)

year = input(’Books, whose author died before’)
select = ’SELECT Title FROM Books WHERE YOD < ?’
cursor.execute(select,(year,))

or in the “named style” ; order-independent (argument is a dictionary)

century = input(’Century of the books?’)
select = ’SELECT Title, YOP FROM Books WHERE YOP <= :start AND YOP > :end’
datadict = {’start’: (century − 1) ∗ 100, ’end’: century ∗ 100}
cursor.execute(select,datadict)

: 254 2025-06-05

9.9 Real-Life Input/Output: XML and JSON

We have seen how we can use Python programs to fill database tables programmatically. But
the treatment above did not map the dominant data management practices. In practice, databases
are filled from various information sources, usually CSV, XML, and JSON files. Conversely, the
data from a database is often exported to the same file formats for backup and/or communication.

To show the practices, we will see how to import data from an XML file into a data base,
and how to export data as JSON in Python; the latter is an important technique for modern web
applications.

Filling a DB from via XML (Specification)

� Idea: We want to make a database based web application for NYC museums.

� Recall the public catalog from ???, the XML file is online at
https://data.cityofnewyork.us/download/kcrm-j9hh/application/xml

<?xml version="1.0" encoding="UTF−8"?>
<museums>

<museum>
<name>American Folk Art Museum</name>
<phone>212−265−1040</phone>
<address>45 W. 53rd St. (at Fifth Ave.)</address>
<closing>Closed: Monday</closing>
<rates>admission: $9; seniors/students, $7; under 12, free</rates>
<specials>

Pay−what−you−wish: Friday after 5:30pm;
refreshments and music available

</specials>
</museum>

https://data.cityofnewyork.us/download/kcrm-j9hh/application/xml

172 CHAPTER 9. DATABASES

<museum>
<name>American Museum of Natural History</name>
<phone>212−769−5200</phone>
<address>Central Park West (at W. 79th St.)</address>
<closing>Closed: Thanksgiving Day and Christmas Day</closing>

� Idea: We need Python program that

� provides a SQLite database with a table ’museum’ with columns ’name’, ’phone’,
. . . , ’specials’ of appropriate type

� reads the XML file from the URL above and fills the table.

� Possible Enhancement: Encapsulate the functionality into a function, then we
could run this program each night and keep the database up to date.

: 255 2025-06-05

Let us actually implement this idea – after all, we have already seen all the building blocks already.
The program itself is relatively straightforward; we go through the process step by step.

Filling a DB from via XML (Implementation)

� Libraries: urllib [UL] to retrieve the file and lxml [LXMLa] to parse it.

from lxml import etree
from urllib.request import urlopen
url = ’https://data.cityofnewyork.us/download/kcrm−j9hh/application/xml’
document = urlopen(url).read()
tree = etree.fromstring(document)

We now have a (large) XML tree in tree!

� Collect all the XML tags in all the museums (for the column names)

tags = []
for museum in tree:

for info in museum:
if info.tag not in tags:

tags.append(info.tag)

� We create the SQLite database as discussed in slide 240.

� Then we assemble a table specification in a string columns:

columns = ""
for cn in tags:

All columns have their name and type TEXT
columns += f", {cn} TEXT"

� Create the Museums table from the specification in columns

cursor.execute("DROP TABLE IF EXISTS Museums;")
cursor.execute(f"""CREATE TABLE Museums

(Id INTEGER PRIMARY KEY {columns});""")

� Now the most important part: We fill the database

for museum in tree:
Find and sanitise the contents of all child nodes of this museum.
values = []
for tag in tags:

if museum.find(tag) != None:

9.9. REAL-LIFE INPUT/OUTPUT: XML AND JSON 173

values.append(str(museum.find(tag).text).strip())
else:

values.append("−")

Insert the data for this museum into the database.
cols = str(tuple(tags))

We need a tuple of one ? for each column.
vals = "(" + ("?, " ∗ len(tags))[:−2] + ")"

insert = f"INSERT INTO Museums {cols} VALUES {vals}"
cursor.execute(insert, tuple(values))

� We finalize the transaction as discussed in slide 240.

: 256 2025-06-05

If we want to get a sense of the size and complexity of the complete program, we can look at it in
one pice here:

The complete code in one block – a mere 51 lines
import sqlite3
from lxml import etree
from urllib.request import urlopen

Download the XML file and Parse it
url = ’https://data.cityofnewyork.us/download/kcrm−j9hh/application/xml’
document = urlopen(url).read()
tree = etree.fromstring(document)

First run−through of the XML: Collect the info types there,
tags = []
for museum in tree:

for info in museum:
if info.tag not in tags:

tags.append(info.tag)

Next, create database accordingly. First assemble a columns string.
columns = ""
for cn in tags:

All columns have their name and type TEXT
columns += f", {cn} TEXT"

Then, make the Museums table using that.
db = sqlite3.connect("./museums.sqlite")
cursor = db.cursor()
cursor.execute("DROP TABLE IF EXISTS Museums;")
cursor.execute(f"""CREATE TABLE Museums

(Id INTEGER PRIMARY KEY {columns});""")

Lastly, fill database.
for museum in tree:

Find and sanitise the contents of all child nodes of this museum.
values = []
for tag in tags:

if museum.find(tag) != None:
values.append(str(museum.find(tag).text).strip())

else:
values.append("−")

Insert the data for this museum into the database.
cols = str(tuple(tags))

174 CHAPTER 9. DATABASES

We need a tuple of one ? for each column.
vals = "(" + ("?, " ∗ len(tags))[:−2] + ")"

insert = f"INSERT INTO Museums {cols} VALUES {vals}"
cursor.execute(insert, tuple(values))

Finalise Transaction
db.commit()
db.close()

: 259 2025-06-05

We will use the output direction of the envisioned museums web application to introduce
another standard data representation format: JSON the preferred data interchange format for
web applications.

JSON — JavaScript Object Notation

� Definition 9.9.1. JSON (JavaScript Object Notation) is an open standard file
format for interchange of structured data. JSON uses human readable text to store
and transmit data objects consisting of attribute–value pairs and sequences.

� JSON is very flexible, there need not be a regularizing schema.

� Intuition: JSON is for JavaScript as (nested) dictionaries are for Python.

� The browser can directly read JSON and use it via JavaScript.

� ; AJAX =̂ JavaScript can query the back-end for JSON data to update parts
of the DOM. (lightweight interaction)

� Consequence:

JSON is the dominant interchange format for web applications.

� Another Intuition: JSON objects are like database records, but less rigid.

� Idea: Build a special JSON database. (JSON I/O; efficient storage)

� Definition 9.9.2. mongoDB is the most popular NoSQL database system. (no
SQL inside)

: 260 2025-06-05

As always, we will now look at how we can deal with with the newly introduced concept in Python.
As always there is a special library that does nearly all the work; here it is (obviously named) json
library. It smoothes over the syntactic differences between Python dictionaries and JSON objects.

Dealing with JSON in Python

� Even though JSON concepts and syntax are similar to Python dictionaries, there
are (subtle) differences.

� Concretely: Python allows more data types in dictionaries, e.g.

9.9. REAL-LIFE INPUT/OUTPUT: XML AND JSON 175

Python JSON equivalent
True true
False false
float Number
int Number
None null
dict Object
list Array
tuple Array

� But these differences are systematic and can be overcome via the json library [JS].

� json.dumps(⟨⟨dict⟩⟩) takes a Python dictionary ⟨⟨dict⟩⟩, produces a JSON string.

� json.loads(⟨⟨json⟩⟩) takes a JSON string ⟨⟨json⟩⟩, produces a Python dictionary.

There are many ways to control the output (pretty-printing), see [JS].

: 261 2025-06-05

We now give an JSON export program for the NYC Museums database for reference. All the
technologies in this program have been covered above, so we just show it for self-study.

JSON Output for the NYC Museums DB

� Libraries: json for JSON [JS] and sqlite3 for the database.

import json
import sqlite3

� Connect to the SQLite database as usual and query the database for everything

db = sqlite3.connect("./museums.sqlite")
cursor = db.cursor()
cursor.execute("SELECT ∗ FROM Museums;")

� Initialize a dictionary and the list of Museums column names

data = {}
data[’museums’] = []
columns = [’name’, ’phone’, ’address’, ’closing’, ’rates’, ’specials’]

� For each of the rows in the Museums table build a row dictionary

for row in cursor.fetchall():
Generate a dictionary with columns as keys and entrys as values.
rowdict = { columns[n] : row[n] for n in range(6) }

Add that dictionary to the JSON data structure.
data[’museums’].append(rowdict)

� Dump the data dictionary as JSON into a file

with open(’museums.json’, ’w’) as outfile:
json.dump(data, outfile)

� Close the database as usual.

: 262 2025-06-05

We set the list variable columns manually for convenience. Of course, if the database schema

176 CHAPTER 9. DATABASES

should change, we have to adapt columns in or programs. Therefore a better way to handle this
would be to get this information from the database itself, which we could do by the following
command in SQLite:

PRAGMA table_info(Museums);
In our case, this gives us the following string, from which we can retrieve the information we need
by a simple regular expression.

0|Id|INTEGER|0||1
1|name|TEXT|0||0
2|phone|TEXT|0||0
3|address|TEXT|0||0
4|closing|TEXT|0||0
5|rates|TEXT|0||0
6|specials|TEXT|0||0
But note that the PRAGMA instruction is specific to SQLite; other systems have other ways of
getting to this information.

JSON Output for the NYC Museums DB
import json
import sqlite3

Connect to database and query database for everything.
db = sqlite3.connect("./museums.sqlite")
cursor = db.cursor()
cursor.execute("SELECT ∗ FROM Museums;")

Setup soon−to−be−JSON dictionary and the necessary columns
data = {}
data[’museums’] = []
columns = [’name’, ’phone’, ’address’, ’closing’, ’rates’, ’specials’]

For every row in the result, do the following:
for row in cursor.fetchall():

Generate a dictionary with columns as keys and entrys as values.
rowdict = { columns[n] : row[n] for n in range(6) }

Add that dictionary to the JSON data structure.
data[’museums’].append(rowdict)

Write collected JSON data to file.
with open(’museums.json’, ’w’) as outfile:

json.dump(data, outfile)

Close database
db.close()

: 263 2025-06-05

And now we can see the result of this export – at least an initial fragment for space reasons.

JSON Example (NYC Museums)

� Example 9.9.3. The NYC museums data from ??? as JSON:
We represent the data as a “sequence” of (nested) “dictionaries”

[
{"name": "American Folk Art Museum",
"phone": "212−265−1040",
"address": "45 W. 53rd St. (at Fifth Ave.)",
"closing": "Closed: Monday",

9.9. REAL-LIFE INPUT/OUTPUT: XML AND JSON 177

"rates": {
"admission": "$9",
"seniors/students": "$7",
"under 12": "free",

}
"specials": "Pay−what−you−wish: Friday after 5:30pm;

refreshments and music available"
}
{"name": "American Museum of Natural History",
"phone": "212−769−5200",
"address": "Central Park West (at W. 79th St.)"
"closing": "Closed: Thanksgiving Day and Christmas Day"
"rates": {

"admission": "$16",
"seniors/students": "$12",
"kids 2−12": "$9",
"under 2": "free"

}
}
...
]

: 264 2025-06-05

178 CHAPTER 9. DATABASES

Chapter 10

Project: A Web GUI for a Books
Database

In this chapter we will pull together the technologies we have learned into a simple web application
project. We will do so in multiple setups. We first make a bare-bones application (see ???) and
then step by step extend it with new features:

• Ajax techniques for selectively loading page fragments: ???

• Access control and management: ???

• Deploying Python applications as programs: ???

Bricolage Programming: With this project we want to demonstrate a common practice of
moderen programming: pulling together program fragments or solution ideas from various sources
(e.g. the IWGS lecture notes or various tutorials or even answers from stack overflow https:
//stackoverflow.com, a question and answer site for professional and enthusiast programmers)
and then adapting them to the current project and fitting them together into a coherent program
that works as expected.

This approach to programming is often called “bricoleur style” [Tur95] or bricolage program-
ming because it relies on handicraft-like tinkering with pieces of existing materials.

Contrary to what many classical programming courses still insinuate they seem to say that you
have to know everything before you can start with a project – the advent of the internet with its
multitude of high-quality programming related resources has made bricoleur style programming
effective and efficient.

Actually, bricolage is a technique that should be leaned and adopted as a tool, especially for
part-time programmers as practitioners in the digital humanities tend to be.

The web application project in this chapter is a bricolage project, only that we have almost all
the ideas in the IWGS course notes already and we do not have to google for them on the web.

10.1 A Basic Web Application
We bring together all we have learned into a basic web application that allows to list all the

books in a database, as well as add, edit, and delete book records.
We use our running example of the books table as a basis, and add a web application layer via

the bottle WSGI server-side scripting framework in Python.
We have intentionally kept the application very simple, so that it can serve as the basis of other

projects. The full source is available at https://gl.mathhub.info/courses/FAU/IWGS/blob/
master/source/databases/code/books-app.py. The respective template files are siblings.

179

https://stackoverflow.com
https://stackoverflow.com
https://gl.mathhub.info/courses/FAU/IWGS/blob/master/source/databases/code/books-app.py
https://gl.mathhub.info/courses/FAU/IWGS/blob/master/source/databases/code/books-app.py

180 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

Building a full Web Application with Database Back-end

� Observation 10.1.1. With the technology in ??? and ??? we can build a full web
application in less than

� 100 lines of Python code and (back-end/routes)

� less than 70 lines of HTML template files. (front-end)

� Functionality: Manage a database of books, in particular: (e.g. your library at
home)

� add a new book to the database

� delete a book from the database

� update (i.e. change) an existing book

� The source is at https://gl.mathhub.info/courses/FAU/IWGS/blob/master/
source/booksapp/code/books-app.py.

: 265 2025-06-05

Now, if you download the file books−app.py and all the sibling template files ∗.tpl at https:
//gl.mathhub.info/courses/FAU/IWGS/blob/master/source/booksapp/code/, you can start
the application from the terminal by typing python3 books−app.py. This will yield something like

> python3 books−app.py
Bottle v0.12.18 server starting up (using WSGIRefServer())...
Listening on http://localhost:8080/
Hit Ctrl−C to quit.

So enter the url http://localhost:8080/ into the URL bar of your browser, and test the setup.
But let us return to the implementation of the web application.
We do the usual things to set up the web application: we load the libraries, connect to the data
base, and so on.

The Books Application: Setup

� We have already seen how to set up the database in slide 252.

import sqlite3
from sqlite3 import Error
from bottle import route, run, debug, template, request, get, post

our database file
database = "books.db"
db = sqlite3.connect(database)

� But we want to receive result rows as dictionaries, not as tuples, so we add

db.row_factory = sqlite3.Row

� We give ourselves a cursor to work with

cursor = db.cursor()

� We start the bottle server

https://gl.mathhub.info/courses/FAU/IWGS/blob/master/source/booksapp/code/books-app.py
https://gl.mathhub.info/courses/FAU/IWGS/blob/master/source/booksapp/code/books-app.py
https://gl.mathhub.info/courses/FAU/IWGS/blob/master/source/booksapp/code/
https://gl.mathhub.info/courses/FAU/IWGS/blob/master/source/booksapp/code/
http://localhost:8080/

10.1. A BASIC WEB APPLICATION 181

run(host=’localhost’, port=8080, debug=True)

� And of course, we eventually commit and close the database in the end

db.commit()
db.close()

: 266 2025-06-05

The next step is to create a table for the books. This is a completely standard SQL CREATE
statement which we execute in the cursor we have established during setup.

The Books Application: Back-end

� We specify the database schema and create the Books table

bookstable = """
CREATE TABLE IF NOT EXISTS Books (

Last varchar(128), First varchar(128),
YOB int, YOD int, Title varchar(255), YOP int,
Publisher varchar(128), City varchar(128)

);
"""

cursor.execute(bookstable)

: 267 2025-06-05

The next step is strictly optional. But it is so annoying to have to start with an empty database
when the web application first comes up. So we provide a list of seven books. But, if we are
not careful, these books will be inserted into the database every time we start up the application.
Recall that we did not drop the Books table in the code above.

The Books Application: Books to Play With

� Data about books as a Python list of 8-tuples:
initialbooklist = [

(’Twain’, ’Mark’, 1835, 1910, ’Huckleberry Finn’, 1986, ’Penguin USA’, ’NY’),
(’Twain’, ’Mark’, 1835, 1910, ’Tom Sawyer’, 1987, ’Viking’, ’NY’),
(’Cather’, ’Willa’, 1873, 1947, ’My Antonia’, 1995, ’Library of America’, ’NY’),
(’Hemingway’, ’Ernest’, 1899, 1961, ’The Sun Also Rises’, 1995, ’Scribner’, ’NY’),
(’Wolfe’, ’Thomas’, 1900, 1938, ’Look Homeward, Angel’, 1995, ’Scribner’, ’NY’),
(’Faulkner’, ’William’, 1897, 1962, ’The Sound and the Fury’, 1990, ’Random House ’, ’NY’),
(’Tolkien’, ’John Ronald Reuel’, 1892, 1973, ’The Hobbit’, 1937,’George Allen Unwin’, ’UK’)]

� If the Books table is empty, we fill it with the tuples in initialbooklist:

row = cursor.execute(’SELECT ∗ FROM Books LIMIT 1’).fetchall()
if not row:

cursor.executemany(’INSERT INTO Books VALUES (?,?,?,?,?,?,?,?)’,initialbooklist)

� Idea: To find out if the table is empty (surprisingly clumsy)

� we fetch a list with at most one row (LIMIT 1);

� if Books is empty, row is the empty list which evaluates to false in a conditional.

182 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

: 268 2025-06-05

In a more complete version of the books application we would probably have used a keyword
argument like −−initbooks to the program. We will cover command line parsing – the technology
that enables behavior modifiers – ???. The next task is to create a route for the main page of
the application, i.e. the page booksapp.py serves at http://localhost:8080/. We want a listing
of all the books in the database in a table.

The Books Application Routes: The Application Root

� We only need to add the bottle routes for the various sub pages.

� The main page: Listing the book records in the database
@route(’/’)
def books():

query = ’SELECT rowid,Last,First,YOB,YOD,Title,YOP,Publisher,City FROM Books’
cursor.execute(query)
booklist = cursor.fetchall()
return template(’books’,books=booklist,num=len(booklist),cols=cols)

� This uses the following templates: the first generates a table of books from the
template file books.tpl

<p>There are {{num}} books in the database</p>
<table>

% include(’th.tpl’, cols=cols)
% for book in books : include(’book.tpl’,∗∗book,cols=cols) end
<tr><th><button>add a book</button></th></tr>

</table>

: 269 2025-06-05

The back-end of this is very simple: we fire up a simple SQL query that selects all the records
from the Books table. As we configured the database connection to return database records as
Python dictionaries, the variable booklist variable is a list of data dictionaries, which we can feed to
the STPL template books.tpl, which creates the return page for http://localhost:8080/. This
page consists of a paragraph which reports on the number of books in the database and then a
table which is built up from

1. a table header which is simply imported from a template file th.tpl

2. a body, which is created by iterating over booklist, feeding each row – a Python dictionary – to
the template book.tpl as keyword arguments via the double star operator, and

3. a table row with a link to the add route for adding new books.

Before we show the nested templates, let us inspect the result:

The Books Application Root: Result

� Here is the page of the books application in its initial state.

http://localhost:8080/
http://localhost:8080/

10.1. A BASIC WEB APPLICATION 183

: 270 2025-06-05

Indeed we have the report on the number of books and a table which ends in an “add a book” link.
The table header and rows contain the seven data cells and two more for possible actions on the
database records. The next two templates are responsible for that; they are called in the books
template above.

The Books Application Root: More Templates

� Recall: The books.tpl template file

<p>There are {{num}} books in the database</p>
<table>

% include(’th.tpl’, cols=cols)
% for book in books : include(’book.tpl’,∗∗book,cols=cols) end
<tr><th><button>add a book</button></th></tr>

</table>

that generates this result via the following two templates:

� It inserts the table header via th.tpl:

% for col in cols:
<th>{{col}}</th>

% end
<th rowspan="2">Action</th>

� and iterates over the list of books, using the template file book.tpl:
<tr>

<td>{{Last}}</td><td>{{First}}</td><td>{{YOB}}</td><td>{{YOD}}</td>
<td>{{Title}}</td><td>{{YOP}}</td><td>{{Publisher}}</td><td>{{City}}</td>
<td><button>edit</button></td>
<td><button >delete</button></td>

</tr>

� Row Id Trick: Note the slightly subtle use of the rowid column in this template.
It is (only) used in the two action buttons to specify which book to add/edit.

: 271 2025-06-05

The template th.tpl is completely elementary, book.tpl is called with keyword arguments whose
values substituted for the {{⟨⟨key⟩⟩}} template variables. The last two columns in the table are
the action links that point to the add and delete routes we present next.
The “add a book” functionality is distributed over two routes: a GET route for the path /add/

184 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

and a POST route for the same path. The first is responsible for showing the input form, whereas
the second parses the POST request generated by the first one and fills the database with the
results. Let us look at the implementation in detail.

The Books Application Routes: Adding Book Records

� We add a route for adding a books record (for the add button)

@get(’/add’)
def add():

return template(’add’,cols=cols)

Note that this is the route for the GET method on the path /add.

� This uses the template file add.tpl:
<form action="/add" method="post">

<table>
% include(’th.tpl’, cols=cols)
<tr>

% for td in cols:
<td><input type="text" name="{{td}}"/></td>
% end

</tr>
</table>
<input type="submit" value="Submit"/>

</form>

: 272 2025-06-05

The implementation is a rather straightforward application of a template that provides a HTML
form. The only interesting thing is that we can reuse the template th.tpl from above for the table
header. This not only saves effort, but also makes the user experience consistent over the various
parts of the application.

The Books Application Routes: Adding Book Records

� The result is

� The action in the HTML form is to POST to the path /add. Thus we need POST
route for /add as well:

@post(’/add’)
def addResponse():

data = parseResponse()
ins = ’’’INSERT INTO Books VALUES

(:Last,:First,:YOB,:YOD,:Title,:YOP,:Publisher,:City)’’’
cursor.execute(ins,data)
return template(’response’, data = data, cols=cols,

rowid = cursor.lastrowid,
text = ’New book record received’)

10.1. A BASIC WEB APPLICATION 185

Note the use of sqlite3 parameter substitution in addResponse!

: 273 2025-06-05

The addResponse function that answers the POST route for the path /add/ just inserts a new
database record in to the Books table. Note the use of the SQLite3 parameter substitution here.
We substitute the parameters :⟨⟨key⟩⟩ in the string ins with the corresponding values in the Python
dictionary data which we obtain as the result of the parseResponse function, which we will look at
next.

The Books Application Routes: Adding Book Records

� This uses the function parseResponse, which we will reuse later.

def parseResponse ():
data = {’Last’: request.forms.get(’Last’),

’First’: request.forms.get(’First’),
’YOB’: request.forms.get(’YOB’),
’YOD’: request.forms.get(’YOD’),
’Title’: request.forms.get(’Title’),
’YOP’: request.forms.get(’YOP’),
’Publisher’: request.forms.get(’Publisher’),

’City’: request.forms.get(’City’)}
return data

� and the template repsonse.tpl:

<form action=’/’>
<p>{{text}}; Thank you!</p>
<table>

% include(’th.tpl’,cols=cols)
% include(’book.tpl’,∗∗data,cols=cols)

</table>
<input type="submit" value="Continue"/>

</form>

: 274 2025-06-05

The parseResponse function is almost trivial, it just queries the response object that comes from
the POST request for the various components via the forms.get method and packages the results in
a Python dictionary that feeds the response.tpl template. The latter creates a HTML form without
text input fields we only use it to trigger a GET request to the path / (the application root that
displays the updated book list). Note that we re-use the templates th.tpl and books.tpl from above
again.

The Books Application Routes: Adding Book Records

� Here is the result after filling in Tolkien’s “Lord of the Rings”:

186 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

: 275 2025-06-05

The next relevant rout is the “delete a book” functionality. Here we use another new feature: when
creating a database table in SQLite3, the system creates an additional primary key column rowid.
In particular we have a rowid column in the Books table, which we make use of.

The Books Application Routes: Deleting Book Records

� We add a route for deleting book records (for the delete button)

@get(’/delete/<id:int>’)
def delete(id):

cursor.execute(’DELETE FROM Books WHERE rowid = ?’,(id,))
return template(’delete’)

Note that we have a dynamic route here: We use the named wildcard <id:int> to
obtain the rowid of the record to be deleted.

� The template file delete.tpl does the obvious:

<form action=’/’>
<p>Book record deleted; Thank you!</p>
<input type="submit" value="Continue"/>

</form>

: 276 2025-06-05

Note that the link on the “delete” buttons in the books table root (see template book.tpl above)
has the form <button href="/edit/{{rowid}}">edit</button>, i.e. it references the rowid column.
This is picked up in the GET route for /delete/<id:int> path via the named wildcard <id:int>.
This makes sure the right database record is deleted.
The routes for editing book records combine techniques from the ones for adding and deleting.
From the former we use the layout into a GET and POST route, from the latter, we use the
dynamic route

The Books Application Routes: Editing Book Records

� Idea: Combine techniques from the add and delete routes

@get(’/edit/<id:int>’)
def edit(id):

cursor.execute(’SELECT ∗ FROM Books WHERE rowid = ?’,(id,))
return template(’edit’,cursor.fetchone(),id = id,cols=cols)

10.1. A BASIC WEB APPLICATION 187

@post(’/edit/<id:int>’)
def editResponse(id):

data = parseResponse()
up = """UPDATE Books

SET Last = :Last, First = :First, YOB = :YOB, YOD = :YOD,
Title = :Title, YOP = :YOP, Publisher = :Publisher,
City = :City

WHERE rowid = :rowid"""
data.update({’rowid’: id})
cursor.execute(up,data)
return template(’response’,data=data,text=’Updated book record’,cols=cols)

: 277 2025-06-05

In this case we have a small subtlety: the update instruction and the template edit.tpl need a rowid
key/value pair. We solve this by updating the data dictionary suitably. Now we only have to give
the template edit.tpl, which is rather straightforward.

Books Application Routes: Editing Book Records (cont.)

� The template file edit.tpl is similar to add.tpl above, but pre-fills the input fields
with the database record values.
<form action="/edit/{{id}}" method="post">

<table>
% include(’th.tpl’, cols=cols)
<tr>

<td><input type="text" name="Last" value="{{Last}}"/></td>
<td><input type="text" name="First" value="{{First}}"/></td>
<td><input type="text" name="YOB" value="{{YOB}}"/></td>
<td><input type="text" name="YOD" value="{{YOD}}"/></td>
<td><input type="text" name="Title" value="{{Title}}"/></td>
<td><input type="text" name="YOP" value="{{YOP}}"/></td>
<td><input type="text" name="Publisher" value="{{Publisher}}"/></td>
<td><input type="text" name="City" value="{{City}}"/></td>
<td><input type="submit" value="Submit"/></td>

</tr>
</table>

</form>

: 278 2025-06-05

Books Application Routes: Editing Book Records (cont.)

� The result is

188 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

� Again, we use the template response.tpl, which we fill with a different message.

: 279 2025-06-05

The main message to take home from this experiment is that we can build a simple but complete
web application with less than 100 lines of Python code and less than 70 lines of HTML template
files.

10.2 Asynchronous Loading in Modern Web Apps
The web applications we have seen up to now have been relatively conventional, based mostly on

server-side scripting together with some client-side computation via JavaScript. This is a powerful
setup with one problem. Whenever the user needs new data from the server, the browser has to
request a new web page – even if only a small fragment of the original page needs to be changed.

The solution to this problem is to use JavaScript itself to load the new information and directly
integrate the result into the DOM, using a technology called Ajax. In this section we will introduce
Ajax by extending the database from ??? with a lightweight front-end web application.
Before we get into the example, we introduce Ajax as a technology itself and recap the idea of

client-side computation using the DOM. The code in this section will be considerably more
complex than what we have seen before. But it shows many of the characteristical ideas of modern
web application development in a nutshell. That should make it worthwile to study, even if that
may take more than one attempt.

AJAX for more responsive Web Pages

� Definition 10.2.1. Ajax, (also AJAX; short for “Asynchronous JavaScript and
XML”) is a set of client side techniques for creating asynchronous web applications.

� Definition 10.2.2. A process p is called asynchronous, iff the parent process (i.e.
the one that spawned p) continues processing without waiting for p to terminate.

� Intuition: With Ajax, web applications can send and retrieve data from a server
without interfering with the display and behaviour of the existing page.

� Application: By decoupling the data interchange layer from the presentation
layer, Ajax allows web pages and, by extension, web applications, to change content
dynamically without the need to reload the entire page.

� Observation: Almost all modern web application extensively utilize Ajax.

� Note: In practice, modern implementations commonly use JSON instead of XML.

: 280 2025-06-05

Recall the HTML rendering pipeline in browsers around the DOM we introduced for client-side
computation.

Background: Rendering Pipeline in browsers

� Observation: The nested markup codes turn HTML documents into trees.

� Definition 10.2.3. The document object model (DOM) is a data structure for the

10.2. ASYNCHRONOUS LOADING IN MODERN WEB APPS 189

HTML document tree together with a standardized set of access methods.

� Rendering Pipeline: Rendering a web page proceeds in three steps

1. the browser receives a HTML document,

2. parses it into an internal data structure, the DOM,

3. which is then painted to the screen. (repaint whenever DOM changes)

HTML Document DOM Browser
<html>

<head>
<title>Welcome</title>

</head>
<body>

<p>Hello World!</p>
</body>

</html>

html

head body

title p

Welcome
Hello World!

Welcome

Hello World!
parse

The DOM is notified of any user events. (resizing, clicks, hover,. . .)

: 281 2025-06-05

The most important concept to grasp here is the tight synchronization between the DOM and the
screen. The DOM is first established by parsing (i.e. interpreting) the input, and is synchronized
with the browser UI and document viewport. As the DOM is persistent and synchronized, any
change in the DOM is directly mirrored in the browser viewpoint, as a consequence we only need
to change the DOM to change its presentation in the browser. This exactly is the purpose of the
client side scripting language, which we will go into next.

We will put the abstract ideas about Ajax and JSON introduced above to practical use. This
will make our understanding much more concrete.
The first step in the development of a Ajax based front-end for the books application – as in any
software project – is to specify the intended behaviour of the front-end and plan the implementa-
tions.

Example: Details on Request via AJAX

� Idea: Use Ajax in a web application for the books application

� The start page just has a list of book titles, and

� details are fetched by an Ajax request and presented in line.

� Planning the Program: We need a bottle server with

1. a dynamic route that returns JSON-encoded data for a given book,

2. a route for the main page that lists the book titles,

3. stpl template files for list items with an Ajax request, and

4. a JavaScript function that reads the JSON and inserts it into the DOM.

: 282 2025-06-05

Here we see a mockup of what the result will look like:

190 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

The finished product (initial state)

: 283 2025-06-05

The finished product (with details loaded)

: 284 2025-06-05

Now we are ready to begin with the implementation. Fortunately, the first step – serving the main
page and the JSON data for a given book is very simple, indeed that is exactly what bottle was
created for, since it is a routine task for building modern web applications.

The Routes (Serving HTML and JSON)

� After setting up the database and co, we have a standard route:

@route(’/’)
def books():

cursor.execute(’SELECT rowid, Title, YoP FROM Books’)
rv = cursor.fetchall()
return template(’titles’, books=rv)

� JSON routes and APIs are very easy in bottle: we just return a dictionary.

10.2. ASYNCHRONOUS LOADING IN MODERN WEB APPS 191

@route(’/json/<id:int>’)
def book(id):

cursor.execute(f’SELECT ∗ FROM Books WHERE rowid={id}’)
row = cursor.fetchone() # Only one result, rowid is a primary key.
return dict(zip(row.keys(), row)) # Pair up column names with values.

� Dictionaries and JSON in Bottle: Bottle automatically transforms Python dic-
tionaries into JSON strings; sets the Content Type header to application/json.

: 285 2025-06-05

The Basic Templates

� The template titles.tpl is also standard

<html>
% include(’bookshead.tpl’)
<body>

<h1>Books by Title</h1>

% for bk in books: include(’title.tpl’,Id=bk[0], title=bk[1]) end

</body>
</html>

� The template title.tpl presents a single book title

{{title}}

<span class="interact" id="interact{{Id}}"

onclick="load_details({{Id}})">(show details)

The empty span will be filled by an Ajax call later!

� The interesting things happen in bookshead.tpl (up next)

: 286 2025-06-05

But now it becomes more tricky. We set up a couple of scripts in head of bookshead.tpl, which we
will now take a more detailed look at.

The Script load_details

� bookshead.tpl starts supplying jQuery and a jQuery templating library:
<script type="application/javascript"

src="http://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>
<script type="application/javascript"

src="https://cdn.jsdelivr.net/gh/codepb/jquery−template@1.5.10/dist/jquery.loadTemplate.min.js"></script>

� The main contribution of bookshead.tpl is the jQuery function load_details

async function load_details (numb) {
/∗ Request Info via JSON, feed it to template, update "show details" span ∗/
await $.getJSON("/json/" + numb,

192 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

function (data) {$("#content" + numb).loadTemplate($("#open"), data)});

which uses the jQuery Ajax call $.getJSON. This takes two arguments:

1. the URL for the HTTP GET request

2. a JavaScript function that is called if the GET request was successful.

The function (in argument 2) is then used to extend the result of $("#content"+
numb), i.e. that element in the DOM whose id attribute is contenti where i is the
value of the numb variable.

: 287 2025-06-05

The Script load_details Continued

� We also use jQuery to change the onlick behaviour of the span element (from
load_details to toggle_details, explained below) and the text contained therein.

interact = $("#interact" + numb)

/∗ change click behaviour of interaction span from show to toggle ∗/
interact.removeAttr(’onclick’);
interact.attr(’onClick’, ’toggle_details(’ + numb + ’);’);

/∗ also change included text appropriately ∗/
interact.html("(hide details)");

}

� Recall the structure of title.tpl: For every book we have a title, a content element
that starts out empty and gets filled when load_details is called, and a clickable
interaction element that triggers load_details.

{{title}}

<span class="interact" id="interact{{Id}}"

onclick="load_details({{Id}})">(show details)

� The toggle_details-function used above does nothing but setting the content ele-
ment to hidden or visible and changing the text of the interaction element.

function toggle_details (numb) {
/∗ hide or show appropriate content element ∗/

content = $("#content" + numb);
interact = $("#interact" + numb);

if(content.css(’display’) == ’none’) {
content.show();
interact.html("(hide details)");

} else {
content.hide();
interact.html("(show details)");

}
}

10.2. ASYNCHRONOUS LOADING IN MODERN WEB APPS 193

: 288 2025-06-05

Now let us look at this process in more detail. Apart from the fact that we are using jQuery
template processing and the syntax is different, this works exactly like bottle template processing,
which we have extensively practiced above. So just buckle up and enjoy the ride.

jQuery Template Processing

� Recall: We are still trying to understand
$("#content" + numb).loadTemplate($("#open’’),data)
It extends the empty in title.tpl with a details table:

� The loadTemplate method takes two arguments

1. a template; here the result of $(#open),i.e. the element in bookshead.tpl whose
id attribute is open (note the type attribute that makes it HTML)

<script type="text/html" id="open">
<table>

<tr>
<th>Author:</th>
<td>

(− −)

</td>
</tr>
<tr>

<th>Publisher:</th>
<td>, </td>

</tr>
</table>

</script>

2. a JavaScript data object: here the argument of the success function: the JSON
record provided by the server under route /json/i

{"Last": ’Twain’,
"First": ’Mark’,
"YoB": 1835,
"YoD": 1910,
"Title": ’Huckleberry Finn’,
"YoP": 1986,
"Publisher": ’Penguin USA’,
"City": ’NY’}

� The jQuery template processing places the value of the data−content attribute into
the . The resulting table constitutes the generated “detail view”:
<table>

<tr>
<th>Author:</th>
<td>

Mark Twain
(1835−1910)

</td>
</tr>
<tr>

<th>Publisher:</th>
<td>Penguin USA, NY</td>

</tr>
</table>

194 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

� Note: Both the JavaScript object in step 2. as well as the result of the tem-
plate processing show afterwards are virtual objects that exist only in memory. In
particular, we do not have to write them explicitly.

: 289 2025-06-05

Now, we will show you the code in its entirety, it is less than 100 lines. So with the right tools, a
modern web page| with Ajax is not that difficult (once you wrap your head around it).

Code: An AJAX-based Front-end for the Books App

� booksapp−ajax.py: the web server with two routes
import sqlite3
from bottle import route, run, template, static_file

Connect to database
db = sqlite3.connect("./books.db")
Row factory so we can have column names as keys.
db.row_factory = sqlite3.Row
cursor = db.cursor()

@route(’/’)
def books():

cursor.execute(’SELECT rowid, Title, YoP FROM Books’)
rv = cursor.fetchall()
return template(’titles’, books=rv)

JSON interfaces are very easy in bottle, just return a dictionary
@route(’/json/<id:int>’)
def book(id):

cursor.execute(f’SELECT ∗ FROM Books WHERE rowid={id}’)
row = cursor.fetchone() # Only one result, rowid is a primary key.
return dict(zip(row.keys(), row)) # Pair up column names with values.

run(host=’0.0.0.0’, port=32500, debug=True)
Close database
db.close()

� titles.tpl styles the list of book titles
<html>
% include(’bookshead.tpl’)
<body>

<h1>Books by Title</h1>

% for bk in books: include(’title.tpl’,Id=bk[0], title=bk[1]) end

</body>
</html>

� title.tpl styles a single book

{{title}}

<span class="interact" id="interact{{Id}}"

onclick="load_details({{Id}})">(show details)

� bookshead.tpl provides the whole head of the main page.
<head>

<title>Books with Ajax Details</title>
<meta charset="utf−8">

10.3. DEPLOYING THE BOOKS APPLICATION AS A PROGRAM 195

<style>.interact:hover { background−color: yellow; }</style>

<script type="application/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>

<script type="application/javascript"
src="https://cdn.jsdelivr.net/gh/codepb/jquery−template@1.5.10/dist/jquery.loadTemplate.min.js"></script>

<script type="text/html" id="open">
<table>

<tr>
<th>Author:</th>
<td>

(− −)

</td>
</tr>
<tr>

<th>Publisher:</th>
<td>, </td>

</tr>
</table>

</script>

<script type="text/javascript">
/∗ async because we’re waiting for the template magic to finish before appending ∗/
async function load_details (numb) {

/∗ Request Info via JSON, feed it to template, update "show details" span ∗/
await $.getJSON("/json/" + numb,

function (data) {$("#content" + numb).loadTemplate($("#open"), data)});

interact = $("#interact" + numb)

/∗ change click behaviour of interaction span from show to toggle ∗/
interact.removeAttr(’onclick’);
interact.attr(’onClick’, ’toggle_details(’ + numb + ’);’);

/∗ also change included text appropriately ∗/
interact.html("(hide details)");

}

function toggle_details (numb) {
/∗ hide or show appropriate content element ∗/

content = $("#content" + numb);
interact = $("#interact" + numb);

if(content.css(’display’) == ’none’) {
content.show();
interact.html("(hide details)");

} else {
content.hide();
interact.html("(show details)");

}
}
</script>
</head>

: 292 2025-06-05

10.3 Deploying the Books Application as a Program

Now we address the fact that a web appplication is usually deployed on a unix server, by
sysadmins who are accustomed the unix way of handling – configuring, starting, etc. – applications.
We will first introduce a way to make Python scripts as shell commands and give them arguments
optional and mandatory ones.

196 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

Deploying The Books Application as a Program

� Note: Having a Python script booksapp.py you start with python3 booksapp.py
is sufficient for development.

� If you want to deploy it on a web server, you want more: The sysadmin you deliver
your web application to wants to start and manage it like any other UNIX command.

� After all, your web server will most likely be a UNIX (e.g. linux) computer.

� In particular behavioural variants should be available via command line options, i.e.
strings starting with − after the command.

� Example 10.3.1. To run the books application without output (−q or −−quiet)
and initialized with the seven book records we want to run
booksapp −q −−initbooks

: 293 2025-06-05

Deploying The Books Application as a Program

� Example 10.3.2. If we forget the options, we need help:

> booksapp −−help
Usage: <yourscript> [options]

Options:
−h, −−help show this help message and exit
−q, −−quiet don’t print status messages to stdout
−l FILE, −−log=FILE write log reports to FILE
−−initbooks initialize with seven book records

� Definition 10.3.3. The command line option −−help or −h is traditionally used
for the help option.

: 294 2025-06-05

Deploying a Python Script as a Shell Command/Executable

� We can make our a Python script behave like a native shell command.

� The file extension .py is only used by convention, we can leave it out and simply
call the file booksapp.

� Then we can add a special Python comments in the first line

#!/usr/bin/python3

which the shell interprets as “call the program python3 on me”.

� Finally, we make the file hello executable, i.e. tell the shell the file should behave
like a shell command by issuing

10.3. DEPLOYING THE BOOKS APPLICATION AS A PROGRAM 197

chmod u+x booksapp

in the directory where the file booksapp is stored.

� We add the line
export PATH="./:${PATH}"

to the file .bashrc. This tells the shell where to look for programs (here the respective
current directory called .)

: 295 2025-06-05

Working with Options in Python

� We have the optparse library for dealing with command line options (install with
pip3)

� Example 10.3.4 (Options in the Books Application).

from optparse import OptionParser
parser = OptionParser()
parser.add_option("−l", "−−log", dest="logfile",

help="write logs to FILE", metavar="FILE")
parser.add_option("−q", "−−quiet",

action="store_false", dest="verbose", default=True,
help="don’t print status messages to stdout")

parser.add_option(’−−version’,dest="version",default=1.0,type="float",
help="the version of the books application")

options, args = parser.parse_args()
do something with the options and their args.
print (’VERSION :’, options.version)

: 296 2025-06-05

198 CHAPTER 10. PROJECT: A WEB GUI FOR A BOOKS DATABASE

Chapter 11

Image Processing

We will now begin a new topic on our way to a useful image database. In particular we will
see how computer scientists think about images, how digital images are represented in computer
memory and what we can do with them.

11.1 Basics of Image Processing

11.1.1 Image Representations

Images

� Example 11.1.1 (Zooming in on Augustus). A digital image taken by a
standard DSLR camera. Let’s zoom in on it!Images

And a bit more

199

200 CHAPTER 11. IMAGE PROCESSING
Images

When zooming in on an image, we start to see blocks of colors, which are organized
in a regular grid.

Images

: 297 2025-06-05

Images as Rasters of Pixels

� If we zoom in quite a bit more, we see

� Observation: The colors are arranged in a
two- dimensional grid (raster).

� Definition 11.1.2. We call the grid raster and each entry in it pixel (from “picture
element”).

: 298 2025-06-05

Colors

11.1. BASICS OF IMAGE PROCESSING 201Colors

Colors are usually stored in (R,G,B) format.
(3 channels)

R,G,B ∈ [0, 255] -> One Byte per channel per
pixel.

Images in this format can store
256 x 256 x 256 = 256³ Ƴ 16 million colors.

� Definition 11.1.3. Colors are usu-
ally represented in RGB format, i.e.
as triples ⟨R,G,B⟩ with three chan-
nels (also called bands).

� R,G,B ∈ [0,255] ; One Byte per
channel per pixel.

� Images in this format can store 256 ·
256 · 256 = 2563 (about 16 million)
colors.

: 299 2025-06-05

Each pixel stores color information. We can obtain the values stored in digital images using a
color picker. Image processing programs like Microsoft Paint or Adobe Photoshop provide color
pickers (pipettes), but there also exist standalone applications. In this example we are using Color
Cop 1.

According to the color picker, our pixel stores the value (151, 103, 87). Colors are organized
in the so-called RGB format, meaning a color is composed from a mixture of red (R), green (G)
and blue (B). We call these components channels or bands.

The value in each of these channels typically ranges from 0 to 255. This is because a single
Byte can store exactly this value range and a Byte was deemed enough for most applications. We
can deduce that a pixel has 256 × 256 × 256 distinct value combinations, which is just over 16
million colors an image in this format can display. You might have seen this number on product
descriptions of computer monitors or cameras.

Color Examples

� Example 11.1.4. A color can be represented by three numbers.
Color Examples

(255, 0, 0)
Red

(0, 255, 0)
Green

(0, 0, 255)
Blue

(255, 255, 255)
White

(255, 0, 255)
Magenta

(0, 255, 255)
Cyan

(255, 255, 0)
Yellow

(128, 128, 128)
Gray

R = G = B
Grayscale colors

1http://colorcop.net/

http://colorcop.net/

202 CHAPTER 11. IMAGE PROCESSING

� Definition 11.1.5. A color is called grayscale, iff R = G = B

: 300 2025-06-05

A channel value of 0 means no intensity in this channel, a value of 255 corresponds to full intensity.
Thus, in order to create a pure red we set the R channel to 255 and the other two to 0 (no green
or blue). Other colors are achieved in a similar fashion.

Secondary colors (e.g. magenta, cyan, yellow) are created by mixtures of red, green, and blue.
For example, we create magenta by mixing red and blue.

Different shades of gray are obtained, when R=G=B. White is the brightest gray we can
achieve, by setting all values to 255. Black on the other hand has all channels set to 0 (meaning
no light/intensity).
When processing colors it is often beneficial to think about normalized colors. We normalize colors
by dividing by 255 (the highest value). Resulting color values are now between 0 and 1.

Normalized Color Values

� Observation 11.1.6. For color representations, only the relative contribution of
the band is imporant.

� Definition 11.1.7. Normalized colors use pixel values between 0 and 1.

� Idea: Values are still stored as Bytes, but normalized before use: v′ = v/255

� Example 11.1.8.

Normalized Color Values

(1, 0, 0)
Red

(0, 1, 0)
Green

(0, 0, 1)
Blue

(1, 1, 1)
White

(1, 0, 1)
Magenta

(0, 1, 1)
Cyan

(1, 1, 0)
Yellow

(0.5, 0.5, 0.5)
Gray

Rather than thinking of a pixel value of being between 0 and 255, it
is beneficial to think in terms of normalized color values, between
0 and 1.
Values are still stored as Bytes, but normalized before use:
v' = v / 255

Kohlhase: Inf. Werkzeuge @ G/SW 2 299 June 21, 2020

: 301 2025-06-05

HTML Color Codes

� HTML uses a shorthand notation for colors using hexadecimal numbers.

� Example 11.1.9.

11.1. BASICS OF IMAGE PROCESSING 203

HTML Color Codes
Shorthand notation for colors.
Encode (R,G,B) as hexadecimal numbers.

#FF0000
Red

#00FF00
Green

#0000FF
Blue

#FFFFFF
White

#FF00FF
Magenta

#00FFFF
Cyan

#FFFF00
Yellow

#808080
Gray

Kohlhase: Inf. Werkzeuge @ G/SW 2 299 June 21, 2020
: 302 2025-06-05

Recall from last semester: In HTML and CSS we often express colors in HTML color codes.
This is the same principle as before, however the values are not expressed in decimal numbers but
instead in hexadecimal.
Quick detour into the real world: Let’s explore where the RGB format comes from.

The Human Eye

� Definition 11.1.10 (The Human Eye). Light from our surroundings enters our
eye through the lens and then hits the retina on the back of our eye.

The retina has cones and rods, which are responsible for color and brightness vision,
respectively.

� Since we are interested in colors here, we will ignore the rods for the purpose of
this course.

: 303 2025-06-05

Light is an electromagnetic radiation. Only a small part of this radiation is visible to the human
visual system (wavelengths around 380 to 740 nanometers).

The Human Eye – Three Types of Cones

204 CHAPTER 11. IMAGE PROCESSING

� Sensitivity of the Three Cones:

210 CHAPTER 12. IMAGE PROCESSING

The Human Eye – Three Types of Cones

C. Abraham, ƈA Beginnerƅs GYide to (CIE) Colorimetr],Ɖ Hipster Color
Science, 10-Sep-2016. Available: https://medium.com/hipster-color-
science/a-beginners-guide-to-colorimetry-401f1830b65a.
[Accessed: 13-May-2019].

Slide 305

Light is an electromagnetic radiation. Only a small part of this radiation is visible to the human
visual system (wavelengths around 380 to 740 nanometers).

There are three types of cones, which react to different areas in this spectrum. They roughly
correspond to the wavelengths, which we perceive as red, green, and blue (or rather long, middle,
and short wavelengths).

: 304 2025-06-05

There are three types of cones, which react to different areas in this spectrum. They roughly
correspond to the wavelengths, which we perceive as red, green, and blue (or rather long, middle,
and short wavelengths).

The Human Eye – Three Types of Cones

� Example 11.1.11 (We see Yellow).

211

The Human Eye – Three Types of Cones

Example: Yellow
Both ƈredƉ and ƈgreenƉ cone are stimulated.

Eye cannot distinguish between yellow light and mixture
of red and green! (both look yellow)

C. Abraham, ƈA Beginnerƅs GYide to (CIE) Colorimetr],Ɖ Hipster Color
Science, 10-Sep-2016. Available: https://medium.com/hipster-color-
science/a-beginners-guide-to-colorimetry-401f1830b65a.
[Accessed: 13-May-2019].

Slide 306

When we now see yellow light for example, the two cones responsible for long and medium length
wavelengths are stimulated. Our brain converts this stimulus to yellow.

However, let’s imagine we perceive a mixture from red and green light. In this case these two
cones will be stimulated, too! Our brain is incapable of distinguishing between these two scenarios,
since the physical stimulus on our eye is the exact same!

It turns out that we can create all colors as a mixture of red, green, and blue light.

� Observation 11.1.12. We can create all (human-visible) colors as a mixture of
red, green, and blue light.

: 305 2025-06-05

When we now see yellow light for example, the two cones responsible for long and medium length
wavelengths are stimulated. Our brain converts this stimulus to yellow.

However, let’s imagine we perceive a mixture from red and green light. In this case these two
cones will be stimulated, too! Our brain is incapable of distinguishing between these two scenarios,
since the physical stimulus on our eye is the exact same!
Monitors take advantage of this, since they usually also have pixels.

Monitors

� Definition 11.1.13. A computer monitor (or just monitor)is an output device for
visual information.

� Monitors (usually) have pixels, too!

11.1. BASICS OF IMAGE PROCESSING 205

� Definition 11.1.14. In color monitors, pixels typically consist not of a single light
source, but three distinct subpixels.

� If these subpixels are small enough and close together, our eye cannot see that the
light actually comes from different points and thus perceives the mixture color.

: 306 2025-06-05

Image Size

� Example 11.1.15 (Augustus again).

Image: 1440× 746 pixels
Expected file size:
Width ·Height · Channels
1440 · 746 · 3 = 3, 222, 720B ≊ 3MiB

� But if we look onto our disk we see somthing completely different:

� On disk, images are usually compressed (JPEG, PNG, GIF,WebP etc). JPEG file
size is smaller than PNG, but image quality is lost.

: 307 2025-06-05

This is because images on disc are usually compressed and stored in an image file format like
JPEG or PNG. Be careful with JPEG compression! JPEG sacrifices image quality in order to
achieve smaller file sizes!

JPEG Compression Artefacts

� Example 11.1.16 (Augustus again). Here, the Augustus image is saved with a
very high jpeg compression. The file size is tiny (27 KB, compare to 440 KB on
previous slide). However, the image quality suffers.

JPEG creates blocks of pixels, and approximates the colors in this block with as few
bits as possible (according to compression ratio).

206 CHAPTER 11. IMAGE PROCESSING

: 308 2025-06-05

In this example we turned the JPEG compression very high, which leads to a tiny file size but
strong artefacts in the image quality.

11.1.2 Basic Image Processing in Python
When processing digital images programatically, we have to load them from disc and then perform
operations on them. In IWGS we will use Pillow library for this task. The example shows
howimages are loaded from disc.

The Pillow Library for Image Processing in Python

� We will use the Pillow library in IWGS.

� Definition 11.1.17. Pillow is a fork (a version) of the old Python library PIL
(Python Image Library). (hence the name)

� Details at https://pillow.readthedocs.io/slides/stable/

� Install: pip install Pillow

� Example 11.1.18. Determine the color of a particular pixel

from PIL import Image
load image
im = Image.open(’image.jpg’)
im.show()
access color at pixel (x, y)
x = 15
y = 300
r, g, b = im.getpixel((x, y))

� Example 11.1.19. Directly use the image object in jupyter notebooks:

from PIL import Image
load image
im = Image.open(’image.jpg’)
im # in Jupyter Notebooks, we can directly use the variable

https://pillow.readthedocs.io/slides/stable/

11.1. BASICS OF IMAGE PROCESSING 207

The notebooks shows the image in a new cell.

: 309 2025-06-05

Loading here means that the file is read, and that the compression is reversed, i.e. the digital
image is decompressed. This means that the image which was before stored in JPEG compression
is now present in memory. You can think about the loaded image as a long Python list of pixel
values, i.e. one pixel after the other.

Grayscale Images

� Recall: A color is grayscale, iff R=G=B.

216 CHAPTER 12. IMAGE PROCESSING

Grayscale Images

(1, 1, 1)
White

(0.5, 0.5, 0.5)
Gray

(0, 0, 0)
Black

R = G = B

If all channels have the same value, why store all three?
Grayscale images usually have only one channel.

Slide 312

We said before that in colors, which represent shades of gray, all channels have the same value. If
this is true for all colors in an image, we call them grayscale images.

Since it is pointless to store each value three times, grayscale images usually only store one
value per pixel, which is then tripled before display.

� Idea: If all channels have the same value, why store all three?

� Grayscale images usually have only one channel.

: 310 2025-06-05

Since it is pointless to store each value three times, grayscale images usually only store one value
per pixel, which is then tripled before display.
Conversion from color to grayscale images is a common operation, which most image processing
tools (Photoshop etc.) support. It serves as a first example of what we can do with digital images.

Grayscale Conversion

� Observation 11.1.20. Humans are very sensitive to green, less to red, and least
to blue.

� Definition 11.1.21. To convert an image to an grayscale image (grayscale con-
version), we compute Gray = 0.21R+ 0.71G+ 0.08B

� Example 11.1.22 (Grayscale Conversion).

208 CHAPTER 11. IMAGE PROCESSING

217

Color to Grayscale Conversion

Gray = 0.21 x R + 0.71 x G + 0.08 x B

Humans are very sensitive to green.
Green is therefore weighted higher than red and blue.

Slide 313

Conversion from color to grayscale images is a common operation, which most image processing
tools (Photoshop etc.) support. It serves as a first example of what we can do with images.

Grayscale conversion is a weighted sum of the three channel values. This means, each channel
value is multiplied with a factor and then the values are added to form a single value. Since
humans are very sensitive to green, the G channel has the highest weight.

: 311 2025-06-05

Grayscale conversion is a weighted sum of the three channel values. This means, each channel
value is multiplied with a factor and then the values are summed up to form a single value. Since
humans are very sensitive to green, the G channel has the highest weight.
We now show some more image operations.

More Image Operations

� Example 11.1.23 (More Image Operations).

218 CHAPTER 12. IMAGE PROCESSING

Some more Image Operations

Original SepiaGrayscale Inverse

Threshold Red Channel
Extraction

Each pixel is
processed separately!

Slide 314

Displayed here are some more image operations. All of these process each pixel separately. Im-
plementation of these operations is very simple in Python. Since we store all our pixels in a large
list, we can simply create a for-loop over this list, do our calculation and store the result in a new
image at the same pixel coordinate.

� As for grayscale conversion of these process each pixel separately.

: 312 2025-06-05

Implementation of these operations is very simple in Python. Since we store all our pixels in a
large list in Pillow, we can simply create a for-loop over this list, do our calculation and store the
result in a new image at the same pixel coordinate.

Image Operations in Pillow

11.1. BASICS OF IMAGE PROCESSING 209

� The pillow library supports many image operations out of the box.

� Example 11.1.24 (Grayscale Conversion and Inversion in Pillow).

from PIL import Image, ImageOps
im = Image.open (’image.jpg’)
convert to grayscale
gray = ImageOps.grayscale(im)
invert image
inverse = ImageOps.invert(im)

� Complete List: https://pillow.readthedocs.io/en/stable/reference/ImageOps.
html

: 313 2025-06-05

Transparency is an important operation. In this example we want to layer two digital images on
top of each other. We thus need to store for each pixel a measure of how transparent it is.

We expand our RGB notion to RGBA, by introducing a fourth channel A. A stands for alpha
and corresponds to the opacity of a pixel, i.e. a value of 0 means zero opacity (fully transparent),
a value of 1 (normalized) means fully opaque (no transparency).

Transparency and Image Composition

� Sometimes we want to overlay images ; layers.

� We need a notion of how transparent a pixel is.

� Definition 11.1.25. We introduce a fourth channel: A (for alpha). Alpha is the
opacity (inverse of transparency). A pixel is now ⟨R,G,B,A⟩.

� Example 11.1.26 (Combining Images).

219

Slide 315

Pillow supports many image operations. This slide displays two examples. Refer to the docu-
mentation for a complete list.

Transparency
Sometimes we want to overlay images -> Layers
We need a notion of how transparent a pixel is.

We introduce a fourth channel: A (for alpha).
Alpha is the Opacity (inverse of transparency).
A pixel is now (R,G,B,A).

Order of layers is important here! The Augustus image is below the other image!
The Augustus image has NO transparency, the second image does!

+ =

� Note: The order of layers is important here: The Augustus image is below the
other image! The Augustus image has no transparency, the second image does!

: 314 2025-06-05

See examples for the opacity here. Fully transparent regions (visualized by the checkerboard),
have an alpha value of 0. Fully opaque regions have a value of 1. Intermediate values are possible
which correspond to partial transparency.

Transparency (continued)

� Example 11.1.27 (Combining Images).

https://pillow.readthedocs.io/en/stable/reference/ImageOps.html
https://pillow.readthedocs.io/en/stable/reference/ImageOps.html

210 CHAPTER 11. IMAGE PROCESSING

220 CHAPTER 12. IMAGE PROCESSING

Slide 316

Transparency is an important operation. In this example we want to layer two images on top of
each other. We thus need to store for each pixel a measure of how transparent it is.

We expand our RGB notion to RGBA, by introducing a fourth channel A. A stands for alpha
and corresponds to the opacity of a pixel, i.e. a value of 0 means zero opacity (fully transparent),
a value of 1 (normalized) means fully opaque (no transparency).

Transparency

(R,G,B,A) = (1, 1, 0, 1)
Full yellow

(R,G,B,A) = (0, 0, 0, 0)
Full transparent

+ =

(R,G,B,A) = (0.6, 0.0, 1.0, 0.5)
Half transparent purple

Rtarget = (1-A) x Raugustus + A x Rpurple,yellow

Gtarget = (1-A) x Gaugustus + A x Gpurple,yellow

Btarget = (1-A) x Baugustus + A x Bpurple,yellow

Slide 317

See examples for the opacity here. Fully transparent regions (visualized by the checkerboard),
have an alpha value of 0. Fully opaque regions have a value of 1. Intermediate values are possible
which correspond to partial transparency.

The final image is then composed by deciding for each pixel how much color from each source
image should contribute.

Note that this is again a per-pixel operation, which can easily be implemented with a simple
for-loop.

: 315 2025-06-05

The final image is then composed by deciding for each pixel how much color from each source image
should contribute. Note that this is again a per-pixel operation, which can easily be implemented
with a simple for-loop.

11.1.3 Edge Detection
We will now look at more interesting image operations. A typical example especially important
for object recognition in digital images is to find features i.e. areas in the image, which are
recognizable.

For example, let’s say we want to find so-called edges in our image, i.e. areas where the color
changes rapidly. Edges often correspond to object outlines. We will see an example later.

Edge Detection

� Goal: Find interesting parts of image (features).

� Definition 11.1.28. Edge detection is the process of finding edges, i.e. image
sections, where color changes rapidly.

� Example 11.1.29 (Edge Detection).

221

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Slide 318

We will now look at more interesting image operations. A typical example especially important
for object recognition in images is to find features. Features are areas in the image, which are
recognizable.

For example, let’s say we want to find so-called edges in our image, i.e. areas where the color
changes rapidly. Edges often correspond to object outlines. We will see an example later.

11.1. BASICS OF IMAGE PROCESSING 211

222 CHAPTER 12. IMAGE PROCESSING

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Clearly there is an edge in this image.
How do we detect it automatically?

Slide 319

In this (admittedly simple) example image, we can clearly see, that there is an edge present,
where the color shifts fast from dark to light. We will now explore, how we can detect such an
edge automatically.

Clearly there is an edge in this image. How do we detect it automatically?

222 CHAPTER 12. IMAGE PROCESSING

Slide 319

In this (admittedly simple) example image, we can clearly see, that there is an edge present,
where the color shifts fast from dark to light. We will now explore, how we can detect such an
edge automatically.

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Decide for each pixel, if it is an edge.
Here: Is marked pixel an edge pixel?

Decide for each pixel, whether it is on an edge. Here: Is marked pixel an edge pixel?

222 CHAPTER 12. IMAGE PROCESSING

Slide 319

In this (admittedly simple) example image, we can clearly see, that there is an edge present,
where the color shifts fast from dark to light. We will now explore, how we can detect such an
edge automatically.

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Decide for each pixel, if it is an edge.
Here: Is marked pixel an edge pixel?

Inspect neighbor pixels.

� Definition 11.1.30. We call a pixel a horizontal edge pixel, iff

lB − IT + IBL − ITL + IBR − ITR > τ

for some threshold τ and a vertical edge pixel, iff

lR − IL + ITR − ITL + IBR − IBL > τ

: 316 2025-06-05

In this (admittedly simple) example image, we can clearly see, that there is an edge present,
where the color shifts fast from dark to light. We will now explore, how we can detect such an
edge automatically.
The idea is to decide for each pixel if it is part of an edge or not (binary decision, yes or no). Let’s
take the marked pixel as example, but rememb er that the following operations are performed on
each pixel in the image.

212 CHAPTER 11. IMAGE PROCESSING

The idea for this edge detection algorithm is to compare the pixel column left to our marked pixel
to the column to the right. If the difference between the two columns is large, we know that we
are observing a vertical edge.

Analogous we can do the same for horizontal edges, by comparing the row above to the row
below our marked pixel.

We could perform this operation using only the pixels marked by L, R, B, and T, so only the
direct neighbors. By taking the diagonal pixels into consideration, too, we make sure we only
detect larger features.

Algorithm: Sobel Filter

� Idea: There is a general algorithm that computes this.

� Definition 11.1.31. Given a 3×3 matrix M , the Sobel filter computes a new pixel
value by getting the pixel value of each neighbor in 3x3 window, multiply with the
components in M and adding everything up.

� Observation 11.1.32. Given a suitable matrix M , the Sobel filter computes the
quantities from ???.

� Example 11.1.33 (Edge Tests via Sobel Filters).

225

Edge Detection

Usually the center row or column is more important and is thus
higher weighted.

Algorithm: Get pixel value of each neighbor in 3x3 window,
multiply with following weights and add everything up.

-1 -2 -1

0 0

1 2 1

0

Horizontal edge test:

-1 0 1

-2 2

-1 0 1

0

Vertical edge test:

Slide 323

The operation we described here is called Sobel filter 2, named after Irwin Sobel.

Usually the direct neighbors are deemed more important than the diagonal neighbors. The
pixel values of the neighbor pixels are thus weighted, such that the direct neighbors contribute
more.

2https://en.wikipedia.org/wiki/Sobel_operator

: 317 2025-06-05

The operation we described here is called Sobel filter, named after Irwin Sobel.
Usually the direct neighbors are deemed more important than the diagonal neighbors. The

pixel values of the neighbor pixels are thus weighted, such that the direct neighbors contribute
more.
Here we see an example of edge detection. White pixels in the right image are pixels, which were
classified as edge pixels, i.e. pixels where large changes in color are present. Black pixels are no
edges.

Edge-Detection in Pillow

� Example 11.1.34 (Augustus and his Edges).

11.1. BASICS OF IMAGE PROCESSING 213

� Example 11.1.35 (Edge Detection in Pillow).

from PIL import Image, ImageFilter
im = Image.open(’augustus.jpg’)
edges = im.filter(ImageFilter.FIND_EDGES)
edges.show() # or just edges in Jupyter

: 318 2025-06-05

11.1.4 Scalable Vector Graphics
The digital images we talked about so far store colors in a large grid of pixels (a raster). A common
problem with these types of images is that we cannot zoom in on them as far as we want, without
loosing quality. At a certain point we start to see the individual pixels.

Vector graphics are an alternative way of storing digital images, which solve this problem.

Vector Graphics

� Problem: Raster images store colors in pixel grid. Quality deteriorates when image
is zoomed into.

� Vector graphics solve this problem!

214 CHAPTER 11. IMAGE PROCESSING

Original Zoomed In

Raster images

Vector graphics

: 319 2025-06-05

The idea of vector graphics is fundamentally different than the idea of raster images. Instead of
storing pixels, we now store shape information!

For example, for a circle we don’t store a color for each pixel, but we rather just store where
the circle is, along with its radius, color, etc.

Vector Graphics (Definition)

� Definition 11.1.36. Image representation formats that store shape information
instead of individual pixels, are refered to as vector graphics.

� Example 11.1.37. For a circle, just store

� center

� radius

� line width

� line color

� fill color

� Example 11.1.38. For a line, store

� start and end point

� line width

� line color

: 320 2025-06-05

Note that most monitors cannot display vector graphics. There are vector monitors, but they are
not common.

Vector Graphics Display

� There are devices that directly display vector graphics.

� Example 11.1.39.

11.1. BASICS OF IMAGE PROCESSING 215

� Definition 11.1.40. For monitors, vector graphics must be rasterized – i.e. con-
verted into a raster image before display.

� Example 11.1.41.

: 321 2025-06-05

The monitor displayed in Example 11.1.39 here does not have pixels. It instead moves a laser and
traces a polygon (the asteroids and spaceship). The laser stimulates a phosphor layer, which then
glows.
Common monitors work with pixels. Vector graphics are thus rasterized (i.e. turned into raster
images) just before being displayed. The rasterizer decides for each pixel, whether it is inside or
outside the shape and thus what RGB value to display.
On the edges of Example 11.1.41, we see pixels whose barycenter is outside the triangle but that
are colored in a very light variant of the adjoining pixels. This technique is called anti-aliasing and
is used to make the jagged lines created by rasterization less noticeable to the human eye.
We now introduce a concrete representation format for vector graphics.

SVG is one image format for vector graphics. Since it is XML based we are able to read it. As
described above, we can create circles by specifying a position, radius, and style (color etc).

Scalable Vector Graphics (SVG)

� Definition 11.1.42. Scalable Vector Graphics (SVG) is an XML-based markup
format for vector graphics.

� Example 11.1.43.

<svg xmlns="http://www.w3.org/2000/svg"
width="100" height="100" >

<circle cx="50" cy="50" r="50"
style="fill:#1cffff; stroke:#000000; stroke−width:0.1" />

</svg>

216 CHAPTER 11. IMAGE PROCESSING

� The <svg> tag starts the SVG document, width, height declare its size.

� The <circle> tag starts a circle. cx, cy is the center point, r is the radius. style
describes how the circle looks.

As the SVG size is 100x100 and the circle is at (50,50) with radius 50, it is centered
and fills the whole region.

: 322 2025-06-05

More SVG Primitives

� Example 11.1.44 (Rectangle).

<rect x="..." y="..." width="..." height="..." style="..." />

� Example 11.1.45 (Ellipse).

<ellipse cx="..." cy="..." rx="..." ry="..." style="..." />

� Example 11.1.46 (Line).

<line x1="..." y1="..." x2="..." y2="..." style="..." />

� Example 11.1.47 (Text).

<text x="..." y="..." style="...">This is my text!</text>

� Example 11.1.48 (Image).

<image xlink:href="..." x="..." y="..." width="..." height="..." />

: 323 2025-06-05

We can draw arbitrary polygons by specifying a list of coordinates.

SVG Polygons

� Example 11.1.49 (An SVG Triangle).

<svg height="210" width="500" xmlns="http://www.w3.org/2000/svg">
<polygon points="200,10 250,190 160,210"

style="fill:lime;stroke:purple;stroke−width:1"/>
</svg>

11.1. BASICS OF IMAGE PROCESSING 217

� Example 11.1.50 (An SVG Pentagram).

<svg height="210" width="210" xmlns="http://www.w3.org/2000/svg">
<polygon points="100,10 40,198 190,78 10,78 160,198"

style="fill:lime;stroke:purple;stroke−width:5;fill−rule:nonzero;"/>
</svg>

: 324 2025-06-05

SVG can directly be embedded in HTML!

SVG in HTML

� SVG can be used in dedicated files (file ending .svg)
and referenced in a tag.

� It can however also be written directly in HTML files.

� Example 11.1.51. Triangle from ??? embedded in HTML file

<html>
<body>

<svg height="210" width="500" xmlns="http://www.w3.org/2000/svg">
<polygon points="200,10 250,190 160,210"

style="fill:lime;stroke:purple;stroke−width:1" />
</svg>

</body>
</html>

: 325 2025-06-05

We now explore a useful attribute of SVG called viewBox. We said that we can zoom in onto
vector graphics as far as we want without loosing quality, so let’s give ourselves the possibility to
do so.

The SVG viewBox Attribute

� Idea: The SVG viewBox attribute allows us to zoom into an image.

218 CHAPTER 11. IMAGE PROCESSING

� Example 11.1.52.
<svg width="200" height="200" xmlns="...">

<circle cx="50" cy="50" r="50" style="..." />
</svg>

Here, the width and height are scaled by a factor of 2
to give us a little more room. Sometimes we want to
specify a larger image, but only display a section of it.

232 CHAPTER 12. IMAGE PROCESSING

Slide 331

SVG can directly be embedded in HTML!

The SVG viewBox Attribute

<svg width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

In this example the width and height are scaled by a
factor of 2 to give us a little more room.
Sometimes we want to specify a larger image, but
only display a section of it.

Introducing viewBox:

viewBox specifies a region inside our canvas. Only
things inside this region are drawn. The resulting
image is then stretched to the canvas size (zoom
effect).
https://www.sarasoueidan.com/blog/svg-coordinate-systems/

<svg viewBox="0 0 100 100" width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

200

20
0

(50,50)
50

100

10
0 50

(50,50)

Slide 332

� Example 11.1.53.
<svg width="200" height="200" xmlns="..."

viewBox="0 0 100 100" >
<circle cx="50" cy="50" r="50" style="..." />

</svg>

viewBox specifies a region inside our canvas. Only
things inside that are drawn. The resulting image is
then stretched to the canvas size (zoom effect).

232 CHAPTER 12. IMAGE PROCESSING

Slide 331

SVG can directly be embedded in HTML!

The SVG viewBox Attribute

<svg width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

In this example the width and height are scaled by a
factor of 2 to give us a little more room.
Sometimes we want to specify a larger image, but
only display a section of it.

Introducing viewBox:

viewBox specifies a region inside our canvas. Only
things inside this region are drawn. The resulting
image is then stretched to the canvas size (zoom
effect).
https://www.sarasoueidan.com/blog/svg-coordinate-systems/

<svg viewBox="0 0 100 100" width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

200

20
0

(50,50)
50

100

10
0 50

(50,50)

Slide 332

: 326 2025-06-05

The top example shows a 200 by 200 units large SVG canvas. In the top left quadrant we draw a
circle.

The second code snippet employs the viewBox attribute, which specifies an area of the image
we want to display. In this example we give it a region from (0,0) to (100,100), meaning we specify
exactly this upper left quadrant.

viewBox now does two things: First, it only draws objects inside this region, i.e. it discards
everything outside. Second, it stretches this region to the whole SVG canvas. This means, that
our final image is still 200 by 200 units (pixels) in size, but we only see a region of our original
image. This gives a zoom effect.

11.2 Project: An Image Annotation Tool

Project: Kirmes Image Annotation Tool

� Problem: Our Books-App project was a fully functional web application, but does
not do anything useful for DigiHumS.

� Idea: Extend/Adapt it to a database for image annotation like LabelMe [LM].

� Setting: Prof. Peter Bell (formerly at FAU) conducts research on baroque paint-
ings on parish fairs (Kirmes) and the iconography in these paintings. We want to
build an annotation system for this research.

� Project Goals:

1. Collect kirmes images in a database and display them,

2. mark interesting areas and provide meta data,

3. display/edit/search annotated information.

1. is analogous to Books-App, for 2/3. we need to know more

� Plan: Lern the necessary technologies in class, build the system in exercises

11.2. PROJECT: AN IMAGE ANNOTATION TOOL 219

: 327 2025-06-05

In our quest for an image annotation technology, we will first explore HTML image maps.

HTML Image Maps

� Definition 11.2.1. HTML image maps mark areas in an digital image and assign
names and links to them.

� Example 11.2.2. An image map adds hover and on click behavior

Clicking on the pupil leads to: Clicking on the vitreous body leads to:
https://en.wikipedia.org/wiki/Pupil https://en.wikipedia.org/wiki/

Vitreous_body

<html>
<body>

<map name="image−map">

<area title="Pupil"
href="https://en.wikipedia.org/wiki/Pupil"
coords="102,117,143,219" shape="rect"/>

<area title="Vitreous Body"
href="https://en.wikipedia.org/wiki/Vitreous_body"
coords="242,166,107" shape="circle"/>

</map>
</body>

</html>

� Easy creation of image maps: https://www.image-map.net/

: 328 2025-06-05

Image maps provide a way to mark areas in an image. These areas act as links, i.e. clicking on
them leads to different URLs. For example in this case there are two regions in the image (pupil
and vitreous body), which - when clicked on - direct your browser to the respective Wikipedia
articles.
 tag specifies image as always, but we no add a new attribute usemap that specifies the
name of an image map to use (here image−map).

The map itself is defined by the <map> element (with the same name!). Inside the map we
define our areas for the two parts of the eye we want to annotate. In this example we use a
rectangle for the pupil and a circle for the vitreous body.

This is specified by the two <area> elements, which have a title attribute (shown on hover)
and a link (href). The shapes are specified by the shape attribute with values rect, circle, poly,
. . . and some coordinates specified in the coords attribute.
Image maps are useful for certain tasks, but aren’t quite what we want for our annotation tool.
They are somewhat difficult to work with, especially if you want the areas to react to your mouse.

https://en.wikipedia.org/wiki/Pupil
https://en.wikipedia.org/wiki/Vitreous_body
https://en.wikipedia.org/wiki/Vitreous_body
https://www.image-map.net/

220 CHAPTER 11. IMAGE PROCESSING

Problems of HTML Image Maps

� Problem: Image maps do not allow interaction:

� the name attribute can only contain unstructured information.

� no integrated highlight for image maps area,

� no onclick or onmouseover attributes.

But the whole point is to have (arbitrarily) complex metadata for image regions.

� New Plan: Use a newer technology: SVG and CSS.

: 329 2025-06-05

We therefore go a different route, by using SVG and CSS: The whole functionality of the annota-
tion tool will be implemented in a single SVG image where CSS provides the interactivity.
First we implement the equivalent of an image map by including a raster graphic (our image) and
four rectangles for the annotation areas. Coordinates of the rectangles can be read out from any
image processing tool like Microsoft Paint or GIMP.

Handcrafting better Image Annotations with SVG and CSS

� Idea: Integrate the image and the areas into one SVG and make areas interactive
via CSS.

� Example 11.2.3 (Paper Prototype). Highlight regions and display information
on hover.

: 330 2025-06-05

Displayed here is our goal behavior, which we will pursue on the following slides. As we have not
implemented this, we could have created this in an image processing program, e.g. photoshop or
GIMP. We call such a mockup for informing our design intuition a paper prototype.

The rectangles mark certain parts of our image and react to the mouse being moved over them.
On the one hand the area is highlighted by the white rectangles. Additionally descriptive text is
displayed below the image (in this case the name of the respective president).

SVG Annotation Implementation Areas

� Implementing Areas as Rectangles:

11.2. PROJECT: AN IMAGE ANNOTATION TOOL 221

<svg xmlns="http://www.w3.org/2000/svg" width="1536" height="1024" >
<!−− Image −−>
<image width="1536" height="1024" xlink:href="mount_rushmore.jpg" />
<!−− Areas in image as rects. −−>
<rect x="300" y="125" width="250" height="300"/>
<rect x="550" y="225" width="200" height="300"/>
<rect x="750" y="375" width="200" height="300"/>
<rect x="999" y="375" width="200"height="300"/>

</svg>

Add four <rect>s (one for each president).

: 331 2025-06-05

Note again: The image is not a vector graphic. Even though it is embedded in a SVG envi-
ronment, it will not have the benefits of a vector graphic, i.e. it will lose quality when zoomed in
on.
Note furthermore: the order of elements in our SVG matters! Here the <rect> tags are
specified after the image. SVG draws the elements from top to bottom. The rectangles are
therefore drawn on top of the image.

Swapping this order would lead to the image being drawn on top of the rectangles. This means,
that the rectangles would not be visible!

SVG Annotation Implementation Result

� Areas as Rectangles – Result: Now the rectangles are visible

: 332 2025-06-05

The rectangles are now visible in our SVG. Their color defaults to black, so let’s fix this next, so
that we can actually see our image again.
We add a CSS stylesheet to our site. This can either be defined in a separate file (like in this
example), or be specified directly in the HTML inside of <style> tags.

Adding CSS for the Areas

222 CHAPTER 11. IMAGE PROCESSING

� Example 11.2.4 (Adding CSS).

rect {fill−opacity:0; stroke:white; stroke−opacity:1; stroke−width:5px}

: 333 2025-06-05

Our goal is to give the rectangles a solid white border, but no inner color. We thus change the
stroke (border) parameters.

The fill opacity is set to zero, in order to make it completely transparent so we see the presidents’
heads again. However, the rectangles are always visible and do not react to our mouse input. We
will fix this next.

Selectively Highlighting Areas

� Problem: Now the rectangles are always visible.

� Idea: make the rectangles invisible by default only show them on hover.

� CSS: We set the stroke opacity to zero by default and add a hover selector.

rect {fill−opacity:0; stroke:white; stroke−opacity:0; stroke−width:5px}
rect:hover {stroke−opacity:1}

243

SVG Annotation Implementation – Hover Effect

Michael MSll, ƈDie Präsidenten am Mount Rushmore,Ɖ https://www.dieweltenbummler.de/, 2017.
Available: https://www.dieweltenbummler.de/wp-content/uploads/2017/05/Mount-Rushmore-von-unten-1536x1024.jpg.
[Accessed: 11-June-2019].

Slide 346

The rectangles are now invisible, expect when hovered over by the mouse.

Slide 347

11.2. PROJECT: AN IMAGE ANNOTATION TOOL 223

: 334 2025-06-05

The hover selector of the rectangles specifies their style, whenever the mouse is over the element.
This allows us to specialize the appearance for this case: we set the opacity back to one, meaning
full opacity and thus visibility.
Net Effect: The rectangles are now invisible, expect when hovered over by the mouse.
We will now add the description text to each of our annotation areas. Since our text should
appear below the image, let’s start by giving ourselves a bit more room in the SVG canvas. We
thus increase the SVG height by a bit. Note, that this does not impact the image (because it has
an own height).

Adding Annotation Text

� Adding Annotation Text and making space for it.

<svg xmlns="http://www.w3.org/2000/svg" width="1536" height="1224" >
<!−− Image −−>
<image width="1536" height="1024" xlink:href="mount_rushmore.jpg" />
<!−− Areas in image as rects, text below −−>
<rect x="300" y="125" width="250" height="300" />
<text x="100" y="1200">George Washington</text>
<rect x="550" y="225" width="200" height="300" />
<text x="100" y="1200">Thomas Jefferson</text>
<rect x="750" y="375" width="200" height="300" />
<text x="100" y="1200">Theodore Roosevelt</text>
<rect x="999" y="375" width="200" height="300" />
<text x="100" y="1200">Abraham Lincoln</text>

</svg>

and we add some CSS:
text {fill:black; opacity:1; font−size:100px}

: 335 2025-06-05

We then add the text. Note, that all text elements have the exact same position below the image.
They only differ in the text they display (the name of the president).

We write each text element directly below the corresponding rectangle tag, for reasons we will
explain in a bit!
We also style the text: The text color is specified by the fill attribute. This is the default, so
it’s not really necessary to specify this. However, oftentimes it is advisable to be as verbose as
possible with certain attributes, because this more clearly shows our intention.

Adding Annotation Text – Result

� Adding Annotation Text – Result:

224 CHAPTER 11. IMAGE PROCESSING

245

SVG Annotation Implementation – Annotation Text

Michael MSll, ƈDie Präsidenten am Mount Rushmore,Ɖ https://www.dieweltenbummler.de/, 2017.
Available: https://www.dieweltenbummler.de/wp-content/uploads/2017/05/Mount-Rushmore-von-unten-1536x1024.jpg.
[Accessed: 11-June-2019].

Slide 349

We have text! It is not particularly pretty, mainly because all texts are right above each other,
but this is expected so far, since we specified all text tags to have the same position. Our main
problem is, that the text does not react to our mouse input yet. Remember: Our goal is that each
text element is only displayed, when the corresponding rectangle in the image is hovered by the
mouse.

: 336 2025-06-05

The text is still unreadable, mainly because all texts are right above each other, but this is expected
so far, since we specified all text tags to have the same position. Our main problem is, that the
text does not react to our mouse input yet. Remember: Our goal is that each text element is only
displayed, when the corresponding rectangle in the image is hovered by the mouse.
Our approach is analogous to the hovering of the rectangles we did previously. We text a default
opacity of zero, and a hover opacity of one.

Remember though, that the hover selector always influences the element it is specified on, i.e.
when writing text:hover, and then changing the opacity, this changes the opacity when we hover
over the text, not when we hover the rectangle. We thus introduce the CSS sibling operator, +.

Selectively Showing Annotations

� Problem: Now the annotations are always visible.

� Idea: Add CSS hover effect for <rect>s, which effects the |<text>|.

� Definition 11.2.5. The CSS sibling operator + modifies a selector so that it (only)
affects following sibling elements (same level).

� Example 11.2.6. In the CSS directive

246 CHAPTER 12. IMAGE PROCESSING

SVG Annotation Implementation – Hover Annotation

rect {
fill-opacity: 0;
stroke: white;
stroke-opacity: 0;
stroke-width: 5px;

}

rect:hover {
stroke-opacity: 1;

}

text {
fill: black;
opacity: 0;
font-size: 100px;

}

rect:hover + text {
opacity: 1;

}

Add CSS hover effect for <rect>s,
which effects the <text>.

Syntax:
rect:hover + text {<rules>}

Sibling operatorSelector Target

Note, that the + operator only affects
siblings (same level), which are
directly after the selector element.
The order of elements in the HTML is
therefore important!

Slide 350

Our approach is analogous to the hovering of the rectangles we did previously. Let’s give our text
a default opacity of zero, and a hover opacity of one.

Remember though, that the hover selector always influences the element it is specified on, i.e.
when writing text:hover, and then changing the opacity, this changes the opacity when we hover
over the text, not when we hover the rectangle. We thus introduce the CSS sibling operator, +.

Using the sibling operator, it is possible to change another element’s style when a certain
element is hovered (or interacted with in a different way). In this case, we give the rectangle a
hover selector, which then influences the text.

The sibling operator influences the next element of the specified type (in our case text) in the
HTML/SVG. This is why earlier we put the text elements always directly after the rectangle.

This way, when a rectangle is hovered over, the next text element is always the corresponding
description and will thus become visible.

the rules affect the SVG <text> directly after the <rect> element.

� Again: The order of elements in the HTML is important!

� CSS: We set the opacity to zero by default and add a hover selector for the
following <text> sibling.

text {fill:black; opacity:0; font−size:100px}
rect:hover + text {opacity: 1}

11.3. FUN WITH IMAGE OPERATIONS: CSS FILTERS 225

: 337 2025-06-05

The sibling operator influences the next element of the specified type (in our case text) in the
HTML/SVG. This is why earlier we put the text nodes always directly after the rectangle.

This way, when a rectangle is hover over, the next text node is always the corresponding
description and will thus become visible.

Image Annotation Tool – Final Result

� Now our annotation tool works as expected!

� Example 11.2.7 (Final Result). Highlight regions and display information on
hover.

: 338 2025-06-05

11.3 Fun with Image Operations: CSS Filters
Let’s explore more the capabilities CSS has to offer for applying operations to digital images. In
this example we make an image gray, by specifying a grayscale filter attribute. The argument of
the filter gives us the possibility to make the image only a litte gray. Since it is set to 100% in
this example, the image is converted to perfect grayscale.

CSS Image Filters

� Goal: Apply image filters (grayscale etc.) directly in CSS.

� Example 11.3.1 (Image Effects via inline CSS).

226 CHAPTER 11. IMAGE PROCESSING

� Disadvantage: The original image is delivered to client. When a user saves the
image, they get the original!

: 339 2025-06-05

One extremely important thing to keep in mind is that CSS is executed on the client (the user’s
browser). The original image or text is delivered to the client, where the filter is applied. You can
try this out by right-clicking a filtered image on a web site and saving it to your hard drive. Note,
that the original digital image is saved!

The implication here is, that for certain content it is best to perform the filter on the server and
then deliver the filtered content to the user, so that he or she does not even have the possibility
to get the original. This however also means more computation on the server, which might be
expensive.
Rule of thumb: Perform as much as possible on the client (CSS and JavaScript) and as much
as necessary on the server (for example python in bottle).
Here are more examples of image filters. The CSS selectors here start with dots. This makes them
influence HTML elements of the respective class name, i.e. the selector .shadow gives the HTML
element with class shadow a drop shadow.

Some more CSS Filters

� Example 11.3.2 (Image Effects via CSS Style sheets).

11.3. FUN WITH IMAGE OPERATIONS: CSS FILTERS 227

: 340 2025-06-05

Blurring: Blur is an image operation, which mixes each pixel’s color with the colors of its
neighbor. The operation is thus similar to our edge detection example from earlier, but with
different weights per neighbor pixel.

Also, for blur it is possible to specify larger neighborhoods. In this case the radius of our
neighborhood is 4 pixels, meaning that we mix the colors of a region with radius 4.
Contrast: Contrast makes dark colors darker and light colors lighter for arguments over 100%.
This increases the range between the darkest and lightest pixel.

For arguments under 100%, the contrast shrinks.
Hue Rotation: The color wheel at the top might look familiar to you. It is a standard way of
displaying colors. The outer ring is roughly equivalent with the colors of the rainbow (with some
exceptions; purple for example is not a rainbow color).

The hue-rotate filter rotates this color wheel, such that each color lands in a different spot. In
our example (90deg), red becomes green. This effect can be observed on Augustus’ cloak.
Another useful thing is the combination of CSS filters. For example you can blur an image and
then convert it to grayscale, as showcased in the example.

Combining CSS Filters

� Idea: We can also combine image filters flexibly. The easist way is when we define
CSS classes for that.

� Example 11.3.3 (Tie CSS Filters to Classes).

<html>
<head>

<style type="text/css">

228 CHAPTER 11. IMAGE PROCESSING

.blur { filter: blur(4px); }

.brightness { filter: brightness(0.30); }

.contrast { filter: contrast(180%); }

.grayscale { filter: grayscale(100%); }

.huerotate { filter: hue−rotate(180deg); }

.invert { filter: invert(100%); }

.opacity { filter: opacity(50%); }

.saturate { filter: saturate(7); }

.sepia { filter: sepia(100%); }

.shadow { filter: drop−shadow(8px 8px 10px green); }
</style>

</head>
<body>

</body>

</html>

� Note: The order is important: Changing the order of filters yields different results.

: 341 2025-06-05

Digital image are not the only HTML element which can be filtered. It turns out that you can
apply filters to nearly everything in HTML, for example text. Note that here we are using the
blur class from earlier.

Filtering Everyghing Else

� Note: CSS filters don’t just apply to images! (Almost) everything can be filtered.

� Example 11.3.4 (Filtering Text (Blurring)).

<p style="filter: blur(3px)">A severely blurred Text</p>

: 342 2025-06-05

A fun thing to play around with are CSS animations.

CSS Animations

� Definition 11.3.5. CSS animations change state of an object over time.

� Example 11.3.6 (Inverting an image).

img {animation: invertAnimation 1s forwards}

@keyframes invertAnimation {
from {filter: none}
to {filter: invert(100%)}

}

11.3. FUN WITH IMAGE OPERATIONS: CSS FILTERS 229

: 343 2025-06-05

In this case we define an animation called invertAnimation which applies an inversion-filter. The
syntax specifies that at the beginning of the animation, no filter should be applied and in the end
we want the image to be completely inverted.

We then apply the animation to all elements of tag . We declare that the animation
should run one second (1s), so the image is inverted after one second.

The last attribute specifies what should happen after the animation is completed. forwards
means that the element should simply stay how it is, so it stays inverted after the one second.

SVG Filters

� Note: Unfortunately in SVG the filtering works differently from CSS.

� Example 11.3.7 (Blurring Mt. Rushmore in SVG).

<svg xmlns="http://www.w3.org/2000/svg" width="1536" height="1024">
<style> image {filter: url(#myCustomFilter)}</style>
<image width="1536" height="1024" xlink:href="mount_rushmore.jpg" />
<!−− Image filter −−>
<filter id="myCustomFilter">

<feGaussianBlur stdDeviation="5" />
</filter>

</svg>

� Example 11.3.8 (SVG Filters can be combined).

<filter id="myCustomFilter">
<feGaussianBlur stdDeviation="5" />
<feColorMatrix type="saturate" values="0.1" />

</filter>

: 344 2025-06-05

In the first example we define a filter at the bottom. We give it a name (myCustomFilter), which
we can then reference in the CSS snippet above. With the url function we can apply a filter with
the given name to all images.

The Gaussian Blur filter here is similar to the blur filter in CSS.
Similarly to HTML, we can combine filters in SVG as well. In the second example we apply a
saturation filter after the blur. This is similar to a grayscale filter.

230 CHAPTER 11. IMAGE PROCESSING

Chapter 12

Ontologies, Semantic Web for
Cultural Heritage

In the last chapter IWGS, we will discuss a virtual research environment for cultural heritage.
Before we present the system itself, we take a close look at the underlying technology: ontologies,
semantic web technologies, and linked open data.

12.1 Documenting our Cultural Heritage

Before we even start talking about the WissKI system, we should become clear on the concepts
involved. We start out with the notion of cultural heritage itself.

Documenting our Cultural Heritage

� Definition 12.1.1. Cultural heritage is the legacy of physical artifacts cultural
artefacts and practices, representations, expressions, knowledge, or skills – intangible
cultural heritage (ICH) of a group or society that is inherited from past generations.

� Problem: How can we understand, conserve, and learn from our cultural heritage?

� Traditional Answer: We collect cultural artefacts, study them carefully, relate
them to other artefacts, discuss the findings, and publish the results. We display
the artefacts in museums and galleries, and educate the next generation.

� DigHumS Answer: In “Digital Humanities and Social Sciences”, we want to
represent our cultural heritage digitally, and utilize computational tools to do so.

� Practical Question: What are the best representation formats and tools?

: 345 2025-06-05

There is another context in which we want to understand the WissKI system: that of research
data. We will introduce the basic concepts now.

Research Data in a Nutshell

� Definition 12.1.2. Research data is any information that has been collected, ob-

231

232 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

served, generated or created to validate original research findings. Although usually
digital, research data also includes non-digital formats such as laboratory notebooks
and diaries.

� Types of research data:

� documents, spreadsheets, laboratory notebooks, field notebooks, diaries,

� questionnaires, transcripts, codebooks, test responses,

� audiotapes, videotapes, photographs, films,

� cultural artefacts, specimens, samples,

� data files, database contents (video, audio, text, images), digital outputs,

� models, algorithms, scripts,

� contents of an application (input, output, logfiles, schemata),

� methodologies and workflows, standard operating procedures, and protocols,

� Non-digital Research Data such as cultural artefacts, laboratory notebooks, ice-
core samples, or sketchbooks is often unique. Materials could be digitized, but this
may not be possible for all types of data.

: 346 2025-06-05

The very idea of research data is they are retained to justify the published research: in particular
just publishing tables of results and experiment descriptions in journals is not enough.

In the past, this has led to the practice of keeping meticulous lab books in the experimental
sciences, and in recent times to the practice of publishing original data together with the results,
so that experiments can be replicated and derived results can be re-calculated. This being pushed
through the scientific organizations in the last decades.

But publishing raw data is also insufficient: experiments can only be replicated and deriva-
tions can only be checked if the underlying data can be obtained in practice, are complete and
correct, and can be interpreted by the reader. This led to substantial institutional attention and
– consequently – to many new developments:

FAIR Research Data: The Next Big Thing

� Principle: Scientific experiments must be replicated, and derivations must be
checkable to be trustworthy. (consensus of scientific community)

� Intuition: Research data must be retained for justification, shared for synergies!

� Consequence: Virtually all scientific funding agencies now require some kind of
research data strategy in proposals. (tendency: getting stricter)

� Problem: Not all forms of data are actually useable in practice.

� Definition 12.1.3 (Gold Standard Criteria). Research data should be FAIR:

� Findable: easy to identify and find for both humans and computers, e.g. with
metadata that facilitate searching for specific datasets,

� Accessible: stored for long term so that they can easily be accessed and/or down-
loaded with well-defined access conditions, whether at the level of metadata, or
at the level of the actual data,

12.1. DOCUMENTING OUR CULTURAL HERITAGE 233

� Interoperable: ready to be combined with other datasets by humans or comput-
ers, without ambiguities in the meanings of terms and values,

� Reusable: ready to be used for future research and to be further processed using
computational methods.

Consensus in the research data community; for details see [FAIR18; Wil+16].

� Open Question: How can we achieve FAIR-ness in a discipline in practice?

: 347 2025-06-05

After these general considerations about research data, let us come back our primary concern in
IWGS: research data in the humanities and social sciences.
If we look at the categories of research data we can expect in the humanities and social sciences,
then we can categorize them into four broad categories. And we can see that we have already
learned about many of them in IWGS.

Categories of Data in DigiHumS and their Formats

� We distinguish four broad categories of data in DigiHumS.

� Definition 12.1.4. Concrete data: digital representations of artefacts in terms of
simple data,

� e.g. raster images as pixel arrays in JPEG. (see ???)

� e.g. books identified by author/title/publisher/pubyear. (see ???)

� Definition 12.1.5. Narrative data: documents and text fragments used for com-
municating knowledge to humans.

� e.g. plain text and formatted text with markup code (see chapter 4)

� Definition 12.1.6. Symbolic data: descriptions of object and facts in a formal
language

� e.g. 3+5 in Python (see ???)

� Definition 12.1.7. Metadata: “data about data”, e.g. who has created these facts,
images, or documents, how do they relate to each other? (not covered yet)

� Observation 12.1.8. Metadata are the resources, DigiHumS results are made of
(; support that)
The other categories digitize artefacts and auxiliary data.

� Observation 12.1.9. We will need all of these – and their combinations – to do
DigiHumS.

: 348 2025-06-05

The last kind – metadata – is arguably the most important kind in the it concerns the relations
between artefacts, which are usually digitized into concrete data.

WissKI: a Virtual Research Env. for Cultural Heritage

� Definition 12.1.10. WissKI is a virtual research environment (VRE) for managing

234 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

scholarly data and documenting cultural heritage.

� Requirements: For a virtual research environment for cultural heritage, we need

� scientific communication about and documentation of the cultural heritage

� networking knowledge from different disciplines (transdisciplinarity)

� high-quality data acquisition and analysis

� safeguarding authorship, authenticity, persistence

� support of scientific publication

� WissKI was developed by the research group of Prof. Günther Görtz at FAU
Erlangen-Nürnberg and is now used in hundreds of DH projects across Germany.

� FAU supports cultural heritage research by providing hosted WissKI instances.

� See https://wisski.data.fau.de for details

� We will use an instance for the Kirmes paintings in the homework assignments.

: 349 2025-06-05

This leads to the following plan for the rest of the chapter.

Documenting Cultural Heritage: Current State/Preview

� Pre-DH State of cultural heritage documentation:

� scientific communication/documentation by journal articles/books

� persistence: paper records, file cards, databases (like our KirmesDB)

� Analysis: manual examination of artefacts in museums/archives.

� Idea: Use more technology to do better.

� Preview: WissKI uses semantic web technologies to do just that. We will now

� Motivate the semantic web (why do we need more than the WWW)

� introduce ontologies, linked open data and their technology stacks

� show off WissKI and offer a little project based on Kirmes corpus.

: 350 2025-06-05

12.2 Systems for Documenting the Cultural Heritage

Let us now have a look at how we can use digital systems to document the cultural heritage.
This is the backdrop against which we need to position the WissKI system.
The traditional methods of documenting cultural artefacts is in form of often handwritten – ledgers
that inventory the collections of museums.

Documenting Cultural Artefacts: Inventory Books

� Definition 12.2.1. An inventory book is a ledger that identifies, describes, and

https://wisski.data.fau.de

12.2. SYSTEMS FOR DOCUMENTING THE CULTURAL HERITAGE 235

records provenance of the artefacts in the collection of a museum.

� Example 12.2.2 (An Inventory Book).

� Problems: non-digital, only single-user access, institution-local, no querying, . . .

: 351 2025-06-05

If we want to improve on – or just digitize inventory books, the most obvious idea at least with
what we have learned in IWGS – is to put the data into a database for persistence and use a web
application for the user interface. Instead of surveying the multitude existing systems we want to
improve on, let us briefly show an example.

Cultural Artefacts in Databases: Example

� Example 12.2.3. A typical database for cultural artefacts: (HiDa/MIDAS)

: 352 2025-06-05

The system we see above is an instance of the HiDa/MIDAS system, which is in use in many

236 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

museums for managing their collections. HiDa [HiDa] is a conventional (and commercial) rela-
tional database with a sophisticated user interface for data acquisition, reporing, exporting, and
publication. Database schemata can be chosen from a set of options; here we see the MIDAS
schema [BHK16].

The HiDa/MIDAS system is by no means the only one on the market, but the architecture is
typical for the state of the art in most cultural institutions worldwide.

Cultural Artefacts in Databases: Pro/Con

� Databases of Cultural Artefacts – Advantages:

� persistence, multi-user access, structured data,

� web/catalog publication, standardized exports,

� standardized performant query language.

� Databases of Cultural Artefacts – Problems:

� identifiers are database local ; no trans database relations,

� database schemata are inflexible ⇝we need extensions in practice,

� free text as an un-structured, untapped resource.

� Idea: Relational databases impose structure, let’s try something very unstruc-
tured: the world wide web. (up
next)

: 353 2025-06-05

Here is another example.

Cultural Artefacts in Databases II

� Example 12.2.4. Another database for cultural artefacts:

: 354 2025-06-05

12.2. SYSTEMS FOR DOCUMENTING THE CULTURAL HERITAGE 237

Let us see whether this idea has merit.

Using the Web for the Cultural Heritage

� Idea: Why not use the world wide web as a tool?

� it is inherently distributed and networked,

� the data formats HTML and XML are highly flexible,

� gives us instantaneous access to information/images/. . . ,

� allows collaboration and discussion. (wikis, fora, blogs)

: 355 2025-06-05

Again, an example is in order to help understand the issues at hand.

Cultural Artefacts on the Web

� Example 12.2.5. A text about a cultural artefact (an etching by Dürer)

� Question: Just how does the etching discussed here relate to Albrecht Dürer?

: 356 2025-06-05

We collect the properties of the various approaches to documenting cultural artefacts to see how
to proceed.

Using the Web for Cultural Heritage

� Problems: with using the Web as a resource

� Information is often of dubious quality (imprecise, typos, incomplete, . . .)

� Information is primarily written for human consumption

� ; not machine-actionable, but full text search works (e.g. Google)
� sometimes we can use established structures (e.g. Infobox in Wikipedia)

238 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

� Evaluation: The web is complementary to databases on the structure-vs-flexibility
tradeoff scale for cultural heritage systems. (we need both)

� Idea: Use the semantic web for cultural heritage

� Goal: Make information accessible for humans and machines

� meaning capture by reference to real-world objects

� globally unique identifiers of cultural artefacts (=̂ URIs)

� inference (get out more than you put in!)

: 357 2025-06-05

12.3 The Semantic Web
In this section we will introduce the semantic web. That tries to transform the World Wide Web

from a human understandable web of multimedia documents into a “web of machine understandable
data”. In this context, “machine-understandable” means that machines can draw inferences from
data they have access to, so that they can make use of the knowledge that is implicit – i.e. not
explicitly stated, but can be derived from other information (by humans) – in the web.
We will now define the term semantic web and discuss the pertinent ideas involved. There are two
central ones, we will cover here:

• Information and data come in different levels of explicitness; this is usually visualized by a
“ladder” of information.

• if information is sufficiently machine-understandable, then we can automate drawing conclu-
sions.

The Semantic Web

� Definition 12.3.1. The semantic web is the result including of semantic content
in web pages with the aim of converting the WWW into a machine-understandable
“web of data”, where inference based services can add value to the ecosystem.

� Idea: Move web content up the ladder, use inference to make connections.

� Example 12.3.2. Information not explicitly represented (in one place)

Query: “Who was US president when Barak Obama was born? ”

Google: “ . . . BIRTH DATE: August 04, 1961. . . ”

Query: “Who was US president in 1961? ”

Google: “President: Dwight D. Eisenhower [. . .] John F. Kennedy (starting Jan. 20.)”

Humans understand the text and combine the information to get the answer. Ma-
chines need more than just text ; semantic web technology.

12.3. THE SEMANTIC WEB 239

: 358 2025-06-05

The term “semantic web” was coined by Tim Berners Lee in analogy to semantic networks, only
applied to the world wide web. And as for semantic networks, where we have inference processes
that allow us the recover information that is not explicitly represented from the network (here the
world-wide-web).
To see that problems have to be solved, to arrive at the semantic web, we will now look at a
concrete example about the “semantics” in web pages. Here is one that looks typical enough.

What is the Information a User sees?

� Example 12.3.3. Take the following web-site with a conference announcement

WWW2002
The eleventh International World Wide Web Conference
Sheraton Waikiki Hotel
Honolulu, Hawaii, USA
7-11 May 2002

Registered participants coming from
Australia, Canada, Chile Denmark, France, Germany, Ghana, Hong Kong, In-
dia,
Ireland, Italy, Japan, Malta, New Zealand, The Netherlands, Norway,
Singapore, Switzerland, the United Kingdom, the United States, Vietnam, Zaire

On the 7th May Honolulu will provide the backdrop of the eleventh
International World Wide Web Conference.

Speakers confirmed
Tim Berners-Lee: Tim is the well known inventor of the Web,
Ian Foster: Ian is the pioneer of the Grid, the next generation internet.

: 359 2025-06-05

But as for semantic networks, what you as a human can see (“understand” really) is deceptive, so
let us obfuscate the document to confuse your “semantic processor”. This gives an impression of
what the computer “sees”.

What the machine sees

� Example 12.3.4. Here is what the machine “sees” from the conference announce-
ment:

WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉
S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕
H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA
7↖∞∞M⊣†∈′′∈

R⌉}⟩∫⊔⌉∇⌉⌈√⊣∇⊔⟩⌋⟩√⊣\⊔∫⌋≀⇕⟩\}{∇≀⇕

A⊓∫⊔∇⊣↕⟩⊣⇔C⊣\⊣⌈⊣⇔C⟨⟩↕⌉D⌉\⇕⊣∇∥⇔F∇⊣\⌋⌉⇔G⌉∇⇕⊣\†⇔G⟨⊣\⊣⇔H≀\}K≀\}⇔I\⌈⟩⊣⇔

240 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

I∇⌉↕⊣\⌈⇔I⊔⊣↕†⇔J⊣√⊣\⇔M⊣↕⊔⊣⇔N⌉⊒Z⌉⊣↕⊣\⌈⇔T⟨⌉N⌉⊔⟨⌉∇↕⊣\⌈∫⇔N≀∇⊒⊣†⇔

S⟩\}⊣√≀∇⌉⇔S⊒⟩⊔‡⌉∇↕⊣\⌈⇔⊔⟨⌉U\⟩⊔⌉⌈K⟩\}⌈≀⇕⇔⊔⟨⌉U\⟩⊔⌉⌈S⊔⊣⊔⌉∫⇔V⟩⌉⊔\⊣⇕⇔Z⊣⟩∇⌉

O\⊔⟨⌉7⊔⟨M⊣†H≀\≀↕⊓↕⊓⊒⟩↕↕√∇≀⊑⟩⌈⌉⊔⟨⌉⌊⊣⌋∥⌈∇≀√≀{⊔⟨⌉⌉↕⌉⊑⌉\⊔⟨

I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉↙

S√⌉⊣∥⌉∇∫⌋≀\{⟩∇⇕⌉⌈

T⟩⇕B⌉∇\⌉∇∫↖L⌉⌉¬T⟩⇕⟩∫⊔⟨⌉⊒⌉↕↕∥\≀⊒\⟩\⊑⌉\⊔≀∇≀{⊔⟨⌉W⌉⌊⇔
I⊣\F≀∫⊔⌉∇¬I⊣\⟩∫⊔⟨⌉√⟩≀\⌉⌉∇≀{⊔⟨⌉G∇⟩⌈⇔⊔⟨⌉\⌉§⊔}⌉\⌉∇⊣⊔⟩≀\⟩\⊔⌉∇\⌉⊔↙

: 360 2025-06-05

Obviously, there is not much the computer understands, and as a consequence, there is not a lot
the computer can support the reader with. So we have to “help” the computer by providing some
meaning. Conventional wisdom is that we add some semantic/functional markup. Here we pick
XML without loss of generality, and characterize some fragments of text e.g. as dates.

Solution: XML markup with “meaningful” Tags

� Example 12.3.5. Let’s annotate (parts of) the meaning via XML markup

<title>WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉</title>
<place>S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA</place>
<date>7↖∞∞M⊣†∈′′∈</date>
<participants>R⌉}⟩∫⊔⌉∇⌉⌈√⊣∇⊔⟩⌋⟩√⊣\⊔∫⌋≀⇕⟩\}{∇≀⇕

A⊓∫⊔∇⊣↕⟩⊣⇔C⊣\⊣⌈⊣⇔C⟨⟩↕⌉D⌉\⇕⊣∇∥⇔F∇⊣\⌋⌉⇔G⌉∇⇕⊣\†⇔G⟨⊣\⊣⇔H≀\}K≀\}⇔I\⌈⟩⊣⇔
I∇⌉↕⊣\⌈⇔I⊔⊣↕†⇔J⊣√⊣\⇔M⊣↕⊔⊣⇔N⌉⊒Z⌉⊣↕⊣\⌈⇔T⟨⌉N⌉⊔⟨⌉∇↕⊣\⌈∫⇔N≀∇⊒⊣†⇔

S⟩\}⊣√≀∇⌉⇔S⊒⟩⊔‡⌉∇↕⊣\⌈⇔⊔⟨⌉U\⟩⊔⌉⌈K⟩\}⌈≀⇕⇔⊔⟨⌉U\⟩⊔⌉⌈S⊔⊣⊔⌉∫⇔V⟩⌉⊔\⊣⇕⇔Z⊣⟩∇⌉

</participants>
<introduction>O\⊔⟨⌉7⊔⟨M⊣†H≀\≀↕⊓↕⊓⊒⟩↕↕√∇≀⊑⟩⌈⌉⊔⟨⌉⌊⊣⌋∥⌈∇≀√≀{⊔⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇↖

\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉↙</introduction>
<program>S√⌉⊣∥⌉∇∫⌋≀\{⟩∇⇕⌉⌈

<speaker>T⟩⇕B⌉∇\⌉∇∫↖L⌉⌉¬T⟩⇕⟩∫⊔⟨⌉⊒⌉↕↕∥\≀⊒\⟩\⊑⌉\⊔≀∇≀{⊔⟨⌉W⌉⌊</speaker>
<speaker>I⊣\F≀∫⊔⌉∇¬I⊣\⟩∫⊔⟨⌉√⟩≀\⌉⌉∇≀{⊔⟨⌉G∇⟩⌈⇔⊔⟨⌉\⌉§⊔}⌉\⌉∇⊣⊔⟩≀\⟩\⊔⌉∇\⌉⊔<speaker>

</program>

: 361 2025-06-05

But does this really help? Is conventional wisdom correct?

What can we do with this?

� Example 12.3.6. Consider the following fragments:

ℜ⊔⟩⊔↕⌉⊤WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉ℜ∝⊔⟩⊔↕⌉⊤
ℜ√↕⊣⌋⌉⊤S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USAℜ∝√↕⊣⌋⌉⊤

ℜ⌈⊣⊔⌉⊤7↖∞∞M⊣†∈′′∈ℜ∝⌈⊣⊔⌉⊤

12.3. THE SEMANTIC WEB 241

Given the markup above, a machine agent can

� parse 7∞∞M⊣†∈′′∈ as the date May 7 11 2002 and add this to the user’s calendar,

� parse S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA as a destination and find flights.

� But: do not be deceived by your ability to understand English!

: 362 2025-06-05

To understand what a machine can understand we have to obfuscate the markup as well, since it
does not carry any intrinsic meaning to the machine either.

What the machine sees of the XML

� Example 12.3.7. Here is what the machine sees of the XML

<title>WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉</⊔⟩⊔↕⌉>
<√↕⊣⌋⌉>S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA</√↕⊣⌋⌉>

<⌈⊣⊔⌉>7↖∞∞M⊣†∈′′∈</⌈⊣⊔⌉>
<√⊣∇⊔⟩⌋⟩√⊣\⊔∫>R⌉}⟩∫⊔⌉∇⌉⌈√⊣∇⊔⟩⌋⟩√⊣\⊔∫⌋≀⇕⟩\}{∇≀⇕

A⊓∫⊔∇⊣↕⟩⊣⇔C⊣\⊣⌈⊣⇔C⟨⟩↕⌉D⌉\⇕⊣∇∥⇔F∇⊣\⌋⌉⇔G⌉∇⇕⊣\†⇔G⟨⊣\⊣⇔H≀\}K≀\}⇔I\⌈⟩⊣⇔
I∇⌉↕⊣\⌈⇔I⊔⊣↕†⇔J⊣√⊣\⇔M⊣↕⊔⊣⇔N⌉⊒Z⌉⊣↕⊣\⌈⇔T⟨⌉N⌉⊔⟨⌉∇↕⊣\⌈∫⇔N≀∇⊒⊣†⇔

S⟩\}⊣√≀∇⌉⇔S⊒⟩⊔‡⌉∇↕⊣\⌈⇔⊔⟨⌉U\⟩⊔⌉⌈K⟩\}⌈≀⇕⇔⊔⟨⌉U\⟩⊔⌉⌈S⊔⊣⊔⌉∫⇔V⟩⌉⊔\⊣⇕⇔Z⊣⟩∇⌉

</√⊣∇⊔⟩⌋⟩√⊣\⊔∫>

<⟩\⊔∇≀⌈⊓⌋⊔⟩≀\>O\⊔⟨⌉7⊔⟨M⊣†H≀\≀↕⊓↕⊓⊒⟩↕↕√∇≀⊑⟩⌈⌉⊔⟨⌉⌊⊣⌋∥⌈∇≀√≀{⊔⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣↖

⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉↙</⟩\⊔∇≀⌈⊓⌋⊔⟩≀\>
<√∇≀}∇⊣⇕>S√⌉⊣∥⌉∇∫⌋≀\{⟩∇⇕⌉⌈

<∫√⌉⊣∥⌉∇>T⟩⇕B⌉∇\⌉∇∫↖L⌉⌉¬T⟩⇕⟩∫⊔⟨⌉⊒⌉↕↕∥\≀⊒\⟩\⊑⌉\⊔≀∇≀{⊔⟨⌉W⌉⌊</∫√⌉⊣∥⌉∇>

<∫√⌉⊣∥⌉∇>I⊣\F≀∫⊔⌉∇¬I⊣\⟩∫⊔⟨⌉√⟩≀\⌉⌉∇≀{⊔⟨⌉G∇⟩⌈⇔⊔⟨⌉\⌉§⊔}⌉\⌉∇⊣⊔⟩≀\⟩\⊔⌉∇\⌉⊔<∫√⌉⊣∥⌉∇>

</√∇≀}∇⊣⇕>

: 363 2025-06-05

So we have not really gained much either with the markup, we really have to give meaning to the
markup as well, this is where techniques from semenatic web come into play.
To understand how we can make the web more semantic, let us first take stock of the current status
of (markup on) the web. It is well-known that world-wide-web is a hypertext, where multimedia
documents (text, images, videos, etc. and their fragments) are connected by hyperlinks. As we
have seen, all of these are largely opaque (non-understandable), so we end up with the following
situation (from the viewpoint of a machine).

The Current Web

242 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

� Resources: identified by
URIs, untyped

� Links: href, src, . . . limited,
non-descriptive

� User: Exciting world - se-
mantics of the resource, how-
ever, gleaned from content

� Machine: Very little infor-
mation available - significance
of the links only evident from
the context around the anchor.

: 364 2025-06-05

Let us now contrast this with the envisioned semantic web.

The Semantic Web
� Resources: Globally iden-

tified by URIs or Locally
scoped (Blank), Extensible,
Relational.

� Links: Identified by URIs, Ex-
tensible, Relational.

� User: Even more exciting
world, richer user experience.

� Machine: More processable
information is available (Data
Web).

� Computers and peo-
ple: Work, learn and
exchange knowledge effec-
tively.

: 365 2025-06-05

Essentially, to make the web more machine-processable, we need to classify the resources by the
concepts they represent and give the links a meaning in a way, that we can do inference with that.
The ideas presented here gave rise to a set of technologies jointly called the “semantic web”, which
we will now summarize before we return to our logical investigations of knowledge representation
techniques.

Towards a “Machine-Actionable Web”

� Recall: We need external agreement on meaning of annotation tags.

� Idea: standardize them in a community process (e.g. DIN or ISO)

� Problem: Inflexible, Limited number of things can be expressed

� Better: Use ontologies to specify meaning of annotations

12.4. SEMANTIC NETWORKS AND ONTOLOGIES 243

� Ontologies provide a vocabulary of terms

� New terms can be formed by combining existing ones

� Meaning (semantics) of such terms is formally specified

� Can also specify relationships between terms in multiple ontologies

� Inference with annotations and ontologies (get out more than you put in!)

� Standardize annotations in RDF [KC04] or RDFa [Her+13b] and ontologies on
OWL [OWL09]

� Harvest RDF and RDFa in to a triplestore or OWL reasoner.

� Query that for implied knowledge(e.g. chaining multiple facts from Wikipedia)

SPARQL: Who was US President when Barack Obama was Born?
DBPedia: John F. Kennedy (was president in August 1961)

: 366 2025-06-05

12.4 Semantic Networks and Ontologies
To get a feeling for ontologies and how they enable the “machine-actionable web” and how that
helps us in DH, we take a look at “semantic networks”, which are an early form of ontologies. They
allow us to explain many of the basic functionalities of the “semantic web” without getting too
much into details of the technologies involved. We will preview that at the end of this section and
go into details ???.
Semantic networks are a very simple way of arranging knowledge about objects and concepts and
their relationships in a graph.

Semantic Networks [CQ69]

� Definition 12.4.1. A semantic network is a directed graph for representing knowl-
edge:

� nodes represent objects and concepts (classes of objects)
(e.g. John (object) and bird (concept))

� edges (called links) represent relations between these (isa, father_of,
belongs_to)

� Example 12.4.2. A semantic network for birds and persons:

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

� Problem: How do we derive new information from such a network?

� Idea: Encode taxonomic information about objects and concepts in special links
(“isa” and “inst”) and specify property inheritance along them in the process model.

244 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

: 367 2025-06-05

Even though the network in Example 12.4.2 is very intuitive (we immediately understand the
concepts depicted), it is unclear how we (and more importantly a machine that does not asso-
ciate meaning with the labels of the nodes and edges) can draw inferences from the “knowledge”
represented.

Deriving Knowledge Implicit in Semantic Networks

� Observation 12.4.3. There is more knowledge in a semantic network than is
explicitly written down.

� Example 12.4.4. In the network below, we “know” that “robins have wings” and
in particular, “Jack has wings”.

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

� Idea: Links labeled with “isa” and “inst” are special: they propagate properties
encoded by other links.

� Definition 12.4.5. We call links labeled by

� “isa” an inclusion or isa link (inclusion of concepts)

� “inst” instance or inst link (concept membership)

: 368 2025-06-05

We now make the idea of “propagating properties” rigorous by defining the notion of derived
relations, i.e. the relations that are left implicit in the network, but can be added without changing
its meaning.

Deriving Knowledge Semantic Networks

� Definition 12.4.6 (Inference in Semantic Networks). We call all link labels
except “inst” and “isa” in a semantic network relations.

Let N be a semantic network and R a relation in N such that A
isa−→ B

R−→ C or
A

inst−→ B
R−→ C, then we can derive a relation A

R−→ C in N .

The process of deriving new concepts and relations from existing ones is called
inference and concepts/relations that are only available via inference implicit (in a
semantic network).

� Intuition: Derived relations represent knowledge that is implicit in the network;
they could be added, but usually are not to avoid clutter.

� Example 12.4.7. Derived relations in Example 12.4.4

12.4. SEMANTIC NETWORKS AND ONTOLOGIES 245

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

has_part
has_part

isa/

� Slogan: Get out more knowledge from a semantic networks than you put in.

: 369 2025-06-05

Note that Definition 12.4.6 does not quite allow to derive that “Jack is a bird ” (did you spot
that “isa” is not a relation that can be inferred?), even though we know it is true in the world.
This shows us that inference in semantic networks has be to very carefully defined and may not
be “complete”, i.e. there are things that are true in the real world that our inference procedure
does not capture.

Dually, if we are not careful, then the inference procedure might derive properties that are not
true in the real world even if all the properties explicitly put into the network are. We call such
an inference procedure unsound or incorrect.

These are two general phenomena we have to keep an eye on.
Another problem is that semantic networks (e.g. in ???) confuse two kinds of concepts: individuals
(represented by proper names like “John” and “Jack ”) and concepts (nouns like “robin” and “bird ”).
Even though the isa and inst link already acknowledge this distinction, the “has_part” and “loves”
relations are at different levels entirely, but not distinguished in the networks.

Terminologies and Assertions

� Remark 12.4.8. We should distinguish concepts from objects.

� Definition 12.4.9. We call the subgraph of a semantic network N spanned by the
isa links and relations between concepts the terminology (or TBox, or the famous
Isa Hierarchy) and the subgraph spanned by the inst links and relations between
objects, the assertions (together the ABox) of N .

� Example 12.4.10. In this semantic network we keep objects concept apart nota-
tionally:

ABox ClydeRexRoy

TBox

elephant graytigerstriped

higher animal
headlegs

amoeba

moveanimal

instinstinst

color

isaisa

pattern

has_parthas_part

isaisa

can

eat

eat
eat

color

In particular we have objects “Rex”, “Roy”, and “Clyde”, which have (derived) rela-
tions (e.g. “Clyde” is “gray ”).

: 370 2025-06-05

But there are severe shortcomings of semantic networks: the suggestive shape and node names
give (humans) a false sense of meaning, and the inference rules are only given in the process model

246 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

(the implementation of the semantic network processing system).
This makes it very difficult to assess the strength of the inference system and make assertions

e.g. about completeness.

Limitations of Semantic Networks

� What is the meaning of a link?

� link labels are very suggestive (misleading for humans)

� meaning of link types defined in the process model (no denotational semantics)

� Problem: No distinction of optional and defining traits!

� Example 12.4.11. Consider a robin that has lost its wings in an accident:

wings

robin

bird

jack

has_part

isa

inst

wings

robin

joe

bird
has_part

inst

isa
cancel

“Cancel-links” have been proposed, but their status and process model are debatable.

: 371 2025-06-05

To alleviate the perceived drawbacks of semantic networks, we can contemplate another notation
that is more linear and thus more easily implemented: function/argument notation.

Another Notation for Semantic Networks

� Definition 12.4.12. Function/argument notation for semantic networks

� interprets nodes as arguments (reification to individuals)

� interprets links as functions (predicates actually)

� Example 12.4.13.

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

isa(robin,bird)
haspart(bird,wings)
inst(Jack,robin)
owner_of(John, robin)
loves(John,Mary)

� Evaluation:

+ linear notation (equivalent, but better to implement on a computer)

+ easy to give process model by deduction (e.g. in Prolog)

– worse locality properties (networks are associative)

: 372 2025-06-05

Indeed the function/argument notation is the immediate idea how one would naturally represent
semantic networks for implementation.

This notation has been also characterized as subject/predicate/object triples, alluding to simple

12.4. SEMANTIC NETWORKS AND ONTOLOGIES 247

(English) sentences. This will play a role in the “semantic web” later. The next slide is a bit
outside of the scope of IWGS, but we want to go into this anyway.

We have been talking about the “procedural model” of a semantic network, which essentially
specifies the inference algorithm that derives new knowledge in a network. There is an alternative
to this: we can map the network language – function/argument notation for networks is an essential
step for this – into a known language with an inference system. We call this kind of a mapping a
“denotational semantics”, here into a language called first-order logic.
Building on the function/argument notation from above, we can now give a formal semantics for
semantic network: we translate them into first-order logic and use the semantics of that.

A Denotational Semantics for Semantic Networks

� Observation: If we handle isa and inst links specially in function/argument nota-
tion

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

robin ⊆ bird
haspart(bird,wings)
Jack ∈ robin
owner_of(John, Jack)
loves(John,Mary)

it looks like first-order logic, if we take

� a ∈ S to mean S(a) for an object a and a concept S.

� A ⊆ B to mean ∀X.A(X)⇒B(X) and concepts A and B

� R(A,B) to mean ∀X.A(X)⇒ (∃Y .B(Y) ∧R(X,Y)) for a relation R.

� Idea: Take first-order deduction as process model (gives inheritance for free)

: 373 2025-06-05

Indeed, the semantics induced by the translation to first-order logic, gives the intuitive meaning
to the semantic networks. Note that this only holds only for the features of semantic networks that
are representable in this way, e.g. the “cancel links” shown above are not (and that is a feature,
not a bug).
But even more importantly, the translation to first-order logic gives a first process model: we
can use first-order inference to compute the set of inferences that can be drawn from a semantic
network.

Based on the intuitions from semantic networks we can now come to general (semantic web)
ontologies.

What is an Ontology

� Definition 12.4.14. An ontology is a formal model of (an aspect of) the world. It

� introduces a vocabulary for the objects, concepts, and relations of a given do-
main,

� specifies intended meaning of vocabulary in a description logic using

� a set of axioms describing structure of the model
� a set of facts describing some particular concrete situation

The vocabulary together with the collection of axioms is often called a terminology
(or TBox) and the collection of facts an ABox (assertions).

248 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

In addition to the represented axioms and facts, the description logic determines a
number of derived ones.

� Definition 12.4.15. A vocabulary often includes names for classes and relationships
(also called concepts, and properties).

� Remark 12.4.16. If the description logic has a reasoner, we can automatically

� detect inconsistent axiom systems

� compute class membership and taxonomies.

: 374 2025-06-05

There is a whole collection of standardized languages and interoperable systems that facilitate
dealing with (very large) ontologies in practice. We will only give a summary preview here,
leaving the detailed discussion to ???.

Semantic Web Technology in a Nutshell

� Ontologies have become one of the standard devices for representing information
about the Web and the world.

� Definition 12.4.17. This is facilitated and standardized by the semantic web
technology stack:

� URIs for representing objects,

� RDF triples for representing facts,

� RDFa for annotating RDF triples in XML documents,

� OWL for representing TBoxes,

� triplestores for storing (lots of) RDF triples,

� SPARQL for querying ontologies,

� description logic reasoners for deciding ontology consistency and concept sub-
sumption,

� Protégé for authoring and maintaining ontologies,

� Details ???.

: 375 2025-06-05

Indeed, this list can be read as a technology roadmap for the WissKI system. We have already
seen the most of the concepts in ???, we will discuss the technologies ???, but first we will have a
look at the CIDOC CRM ontology that is used in WissKI.

12.5 CIDOC CRM: An Ontology for Cultural Heritage

We have seen that databases are not the only choice for representing data about cultural
heritage. Indeed, the WissKI system chooses ontologies as a basis for representation and querying.

To ensure interoperability, WissKI is based on the ISO-standardized CIDOC CRM ontology,
which we will now introduce and explore.
Now, we can instantiate what we have learned about ontology-based information systems to cul-
tural heritage disciplines. We collect all the bits and pieces and hint at the technologies (details

12.5. CIDOC CRM: AN ONTOLOGY FOR CULTURAL HERITAGE 249

???).

Ontologies for Cultural Artefacts
� Idea: Use ontologies for documenting

cultural heritage.

� flexible schemata (Erlangen
CRM/OWL)

� easy data sharing

� open standards, free tools

� semantic querying via SPARQL

� Idea: We can use RDF like a Mindmap:
RDF can

� represent relations between objects

� classify objects (web resources)

RDFa for document annotation

Formate: RDF

(Resource Description Framework)

● RDF ist ein Framework zur Repräsentation

von Metadaten

● RDF ist ähnlich einer Mindmap

– Beziehungen zwischen

Dingen (Web Resources)

– Adhoc Verknüpfungen

erstellen

– Dinge klassifizieren

● RDF Datenbank:

Triple Store

Martin Scholz, FAU, Informatik 8 17

� Reference ontologies for interoperability:

� SUMO (Suggested Upper Model Ontology) [SUMO] for common knowledge,

� FOAF (Friend-of-a-Friend) [FOAF14] for persons and relations,

� CIDOC CRM for documentation of cultural heritage. (up next)

: 376 2025-06-05

So let us look at the CIDOC CRM ontology in more detail. It has been developed by the Docu-
mentation Committee of the ICOM (International Council of Museums) over more than 20 years
and has been standardized by the ISO. Even more importantly for our purposes here, the CIDOC
CRM has been implemented in the Erlangen CRM/OWL format, which gives us the use of the
semantic web technology stack.

CIDOC CRM (Conceptual Reference Model)

� Definition 12.5.1. CIDOC CRM provides an extensible ontology for concepts and
information in cultural heritage and museum documentation. It is the international
standard (ISO 21127:2014) for the controlled exchange of cultural heritage infor-
mation. The central classes include

� space time specified by title/identifier, place, era/period, time-span, and rela-
tionship to persistent items

� events specified by title/identifier, beginning/ending of existence, participants
(people, either individually or in groups), creation/modification of things (phys-
ical or conceptional), and relationship to persistent items

� material things specified by title/identifier, place, the information object the
material thing carries, part-of relationships, and relationship to persistent items

� immaterial things specified by title/identifier, information objects (propositional
or symbolic), conceptional things, and part-of relationships

250 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

� Definition 12.5.2. Erlangen CRM/OWL implements CIDOC CRM in Erlangen
CRM/OWL

� Details about CIDOC CRM can be found at [CC] and about Erlangen CRM/OWL
at [ECRMb; ECRMa].

: 377 2025-06-05

One of the advantages of having CIDOC CRM in OWL is that we can use semantic web tech-
nologies to deal with it. Here we use one of the practically most important tools: Protégé.

Protégé, an IDE for Ontology Development

� Definition 12.5.3. Protégé [Pro] is an integrated development environment for
ontologies represented in the OWL family. It comprises

� a visual user interface for exploring and editing ontologies,

� a inference component to ensure ontology consistency and minimality,

� a facility for querying the loaded ontologies.

� Example 12.5.4 (CIDOC CRM in Protégé).

: 378 2025-06-05

The backbone of the CIDOC CRM ontology is formed by the concepts (called “classes” in Erlangen
CRM/OWL). They form an inheritance hierarchy – of which the top part is shown on the left
of the Protégé window below. The ontology provides – usually relatively abstract classes for all
objects related to cultural artefacts, their properties, and provenance.

CIDOC CRM Explored (Classes)

� Idea: Use semantic web technology to explore Erlangen CRM/OWL.

� CIDOC CRM Classes: concept =̂ Erlangen CRM/OWL “Class” (shown in
Protege)

12.5. CIDOC CRM: AN ONTOLOGY FOR CULTURAL HERITAGE 251

: 379 2025-06-05

The concepts are complemented by the relations called “object properties” in Erlangen CR-
M/OWL.

CIDOC CRM Explored (Relations)

� CIDOC CRM Relations: relation =̂ Erlangen CRM/OWL “Object Property”
(shown in Protege)

: 380 2025-06-05

There are also a small number of “data properties”, i.e. properties whose values are concrete data

252 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

like numbers, dates, or strings. They are less interesting structurally, but important in practice.
We can summarize the structure of the CIDOC CRM ontology in the following diagram.

CIDOC CRM Structure (Overview)

participate in

Actors Conceptual Objects

Physical Entities

Temporal Entities

affect

Types

refine

A
pp

el
la

tio
ns

id
en

tif
y/

na
m

e

location

occur at within

Time-Spans
Places

CIDOC CRM$
Top Level Classes$

© T. Gill$
G. Goerz, FAU, Inf. 8$

: 381 2025-06-05

Now that we understand the CIDOC CRM ontology, we look into the process of modeling cultural
artefacts.

CIDOC-CRM Modeling

� This is all good and dandy but how do I concretely model cultural artefacts?

� Answer: CIDOC CRM is only a TBox, we add an ABox of objects and facts.

� Example 12.5.5. “Albrecht Dürer painted Melencolia 1 in Nürnberg ”
We have two units of information here: (model separately in CIDOC CRM)

1. “Albrecht Dürer painted Melencolia 1 ”
CIDOC CRM modeling decisions:
(a) A painting m is an “Information Carrier” (E84)
(b) It was created in an “Production Event” q (E12)
(c) m is related to q via the “was produced by” relation (P108i)
(d) q was “carried out by” a “person” d (P14 E21)
(e) d “is identified by” an “actor appellation” a (P131 E82)
(f) a “has note” the string "Albrecht Dürer”. (P3)

2. “this happened in the city of Nürnberg ”
CIDOC CRM modeling decisions:
(a) A painting m is an “Information Carrier” (E84)
(b) It was created in an “Production Event” q (E12)
(c) m is related to q via the “ produced by” relation (P108i)
(d) q “took place at” a “place” p (P7 E53)

12.5. CIDOC CRM: AN ONTOLOGY FOR CULTURAL HERITAGE 253

(e) p “is identified by” a “place name” n (P48 E3)
(f) n “has note” the string "Nürnberg”. (P3)

: 382 2025-06-05

If we look more closely at the objects and relations ???, we see that

• a typical information unit results in a whole chain of objects connected by ontology relations

• parts of these chains are shared between information units

We address this now and introduce the concept of ontology groups and ontology paths for that.

CIDOC CRM Modelling (Ontology Paths)

� Modeling “Albrecht Dürer painted Melencolia 1 in Nürnberg ”
in CIDOC CRM

m : E84 q : E12
P108i

d : E21P14 a : E82
P131

"A. Dürer"
P3

p : E53

P7

n : E48
P87 "Nürnberg"P3

Note that we need to create the intermediary objects q, d, a, and n.

� Problem: That is a lot of work for something very simple.

� Definition 12.5.6. We call sequence of facts si
pi−→ oi, where si = oi−1 an

ontology path and any subtree an ontology group.

� Problem Reformulated: A simple statement like “Albrecht Dürer painted Melen-
colia 1 ” becomes a whole ontology path in CIDOC CRM.

� But: we can reuse intermediary objects and facts, and need fine grained models
for flexibility.

� Idea: Maybe systems can take some of the pain out of modeling. (; WissKI)

: 383 2025-06-05

In ???, we have already seen one of the peculiarities of modeling complex situations in ontologies:
the use of events as intermediate objects. This is a general phenomenon when modeling with
ontologies, which we have to get used. to

Event-Oriented Modeling in CIDOC CRM

� Observation 12.5.7. Ontologies make it easy to model facts with transitive verbs,
e.g. “Albrecht Dürer created Melencolia 1” (binary relation)

� Problem: What about more complex situations with more arguments? E.g.

1. “Albrecht Dürer created Melencolia 1 with an etching needle” (ternary)

2. “Albrecht Dürer created Melencolia 1 with an etching needle in Nürnberg ” (four
arguments)

254 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

3. “Albrecht Dürer created Melencolia 1 with an etching needle in Nürnberg out of
boredom” (five)

� Standard Solution: Introduce “events” tied to the verb and describe those

� Example 12.5.8. There was a creation event e with

1. “Albrecht Dürer ” as the agent,

2. “Melencolia 1 ” as the product,

3. “an etching needle” as the means,

4. “boredom” as the reason,

� Consequence: More than 1/3 of CIDOC CRM classes are events of some kind.

: 384 2025-06-05

This “event-oriented” thinking is unfamiliar at first and takes practice to become natural. As
a rule of thumb one should proceed as in the Melencolia example above. We first identify the
“participants” in the situation, if these are more than two, we need to introduce an appropriate
event (select from the ones provided by CIDOC CRM) and then connect the event to the object
currently under consideration, and all the “participants” to the event.

12.6 The Semantic Web Technology Stack
In this section we discuss how we can apply description logics in the real world, in particular,

as a conceptual and algorithmic basis of the semantic web. That tries to transform the World
Wide Web from a human-understandable web of multimedia documents into a “web of machine-
understandable data”. In this context, “machine-understandable” means that machines can draw
inferences from data they have access to. Note that the discussion in this digression is not
a full-blown introduction to RDF and OWL, we leave that to [SR14; Her+13a; Hit+12] and the
respective W3C recommendations. Instead we introduce the ideas behind the mappings from a
perspective of the description logics we have discussed above.
The most important component of the semantic web is a standardized language that can represent
“data” about information on the Web in a machine-oriented way.

Resource Description Framework

� Definition 12.6.1. The Resource Description Framework (RDF) is a framework for
describing resources on the web. It is an XML vocabulary developed by the W3C.

� Note: RDF is designed to be read and understood by computers, not to be
displayed to people. (it shows)

� Example 12.6.2. RDF can be used for describing (all “objects on the WWW”)

� properties for shopping items, such as price and availability

� time schedules for web events

� information about web pages (content, author, created and modified date)

� content and rating for web pictures

� content for search engines

� electronic libraries

12.6. THE SEMANTIC WEB TECHNOLOGY STACK 255

: 385 2025-06-05

Note that all these examples have in common that they are about “objects on the Web”, which is
an aspect we will come to now.
“Objects on the Web” are traditionally called “resources”, rather than defining them by their
intrinsic properties – which would be ambitious and prone to change – we take an external property
to define them: everything that has a URI is a web resource. This has repercussions on the design
of RDF.

Resources and URIs

� RDF describes resources with properties and property values.

� RDF uses Web identifiers (URIs) to identify resources.

� Definition 12.6.3. A resource is anything that can have a URI, such as http:
//www.fau.de.

� Definition 12.6.4. A property is a resource that has a name, such as “author ”
or “homepage”, and a property value is the value of a property, such as “Michael
Kohlhase” or http://kwarc.info/kohlhase. (a property value can be another
resource)

� Definition 12.6.5. A RDF statement s (also known as a triple) consists of a
resource (the subject of s), a property (the predicate of s), and a property value
(the object of s). A set of RDF triples is called an RDF graph.

� Example 12.6.6. Statements: “[This slide]subj has been [author]preded by [Michael
Kohlhase]obj”

: 386 2025-06-05

The crucial observation here is that if we map “subjects” and “objects” to “individuals”, and
“predicates” to “relations”, the RDF triples are just relational ABox statements of description
logics. As a consequence, the techniques we developed apply.
Note: Actually, a RDF graph is technically a labeled multigraph, which allows multiple edges
between any two nodes (the resources) and where nodes and edges are labeled by URIs.
We now come to the concrete syntax of RDF. This is a relatively conventional XML syntax that
combines RDF statements with a common subject into a single “description” of that resource.

XML Syntax for RDF

� RDF is a concrete XML vocabulary for writing statements

� Example 12.6.7. The following RDF document could describe the slides as a
resource
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"

xmlns:dc= "http://purl.org/dc/elements/1.1/">
<rdf:Description about="https://.../CompLog/kr/en/rdf.tex">

<dc:creator>Michael Kohlhase</dc:creator>
<dc:source>http://www.w3schools.com/rdf</dc:source>

</rdf:Description>
</rdf:RDF>

http://www.fau.de
http://www.fau.de
http://kwarc.info/kohlhase

256 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

This RDF document makes two statements:

� The subject of both is given in the about attribute of the rdf:Description element

� The predicates are given by the element names of its children

� The objects are given in the elements as URIs or literal content.

� Intuitively: RDF is a web-scalable way to write down ABox information.

: 387 2025-06-05

Note that XML namespaces play a crucial role in using element to encode the predicate URIs.
Recall that an element name is a qualified name that consists of a namespace URI and a proper
element name (without a colon character). Concatenating them gives a URI in our example the
predicate URI induced by the dc:creator element is http://purl.org/dc/elements/1.1/creator.
Note that as URIs go RDF URIs do not have to be URLs, but this one is and it references (is
redirected to) the relevant part of the Dublin Core elements specification [DCM12].
RDF was deliberately designed as a standoff markup format, where URIs are used to annotate
web resources by pointing to them, so that it can be used to give information about web resources
without having to change them. But this also creates maintenance problems, since web resources
may change or be deleted without warning.

RDFa gives authors a way to embed RDF triples into web resources and make keeping RDF
statements about them more in sync.

RDFa as an Inline RDF Markup Format

� Problem: RDF is a standoff markup format (annotate by URIs pointing into
other files)

Definition 12.6.8. RDFa (RDF annotations) is a markup scheme for inline anno-
tation (as XML attributes) of RDF triples.

� Example 12.6.9.
<div xmlns:dc="http://purl.org/dc/elements/1.1/" id="address">

<h2 about="#address" property="dc:title">RDF as an Inline RDF Markup Format</h2>
<h3 about="#address" property="dc:creator">Michael Kohlhase</h3>
<em about="#address" property="dc:date" datatype="xsd:date"

content="2009−11−11">November 11., 2009
</div>

https://svn.kwarc.info/.../CompLog/kr/slides/rdfa.tex

RDFa as an Inline RDF Markup Format

2009−11−11 (xsd:date)

Michael Kohlhase

http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/date

http://purl.org/dc/elements/1.1/creator

: 388 2025-06-05

In the example above, the about and property attributes are reserved by RDFa and specify the
subject and predicate of the RDF statement. The object consists of the body of the element,
unless otherwise specified e.g. by the content and datatype attributes for literals content.
Let us now come back to the fact that RDF is just an XML syntax for ABox statements.

http://purl.org/dc/elements/1.1/creator
https://svn.kwarc.info/.../CompLog/kr/slides/rdfa.tex
http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/date
http://purl.org/dc/elements/1.1/creator

12.6. THE SEMANTIC WEB TECHNOLOGY STACK 257

RDF as an ABox Language for the Semantic Web

� Idea: RDF triples are ABox entries h R s or h:φ.

� Example 12.6.10. h is the resource for Ian Horrocks, s is the resource for Ulrike
Sattler, R is the relation “hasColleague”, and φ is the class foaf:Person

<rdf:Description about="some.uri/person/ian_horrocks">
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<hasColleague resource="some.uri/person/uli_sattler"/>

</rdf:Description>

� Idea: Now, we need an similar language for TBoxes (based on ALC)

: 389 2025-06-05

In this situation, we want a standardized representation language for TBox information; OWL
does just that: it standardizes a set of knowledge representation primitives and specifies a variety
of concrete syntaxes for them. OWL is designed to be compatible with RDF, so that the two
together can form an ontology language for the web.

OWL as an Ontology Language for the Semantic Web

� Task: Complement RDF (ABox) with a TBox language.

� Idea: Make use of resources that are values in rdf:type. (called Classes)

� Definition 12.6.11. OWL (the ontology web language) is a language for encoding
TBox information about RDF classes.

� Example 12.6.12 (A concept definition for “Mother”). Mother=Woman ⊓
Parent is represented as

XML Syntax Functional Syntax

<EquivalentClasses>
<Class IRI="Mother"/>
<ObjectIntersectionOf>

<Class IRI="Woman"/>
<Class IRI="Parent"/>

</ObjectIntersectionOf>
</EquivalentClasses>

EquivalentClasses(
:Mother
ObjectIntersectionOf(

:Woman
:Parent

)
)

: 390 2025-06-05

But there are also other syntaxes in regular use. We show the functional syntax which is inspired
by the mathematical notation of relations.

Extended OWL Example in Functional Syntax

� Example 12.6.13. The semantic network from Example 12.4.4 can be expressed
in OWL (in functional syntax)

258 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

ClassAssertion (:Jack :robin)
ClassAssertion(:John :person)
ClassAssertion (:Mary :person)
ObjectPropertyAssertion(:loves :John :Mary)
ObjectPropertyAssertion(:owner :John :Jack)
SubClassOf(:robin :bird)
SubClassOf (:bird ObjectSomeValuesFrom(:hasPart :wing))

� ClassAssertion formalizes the “inst” relation,

� ObjectPropertyAssertion formalizes relations,

� SubClassOf formalizes the “isa” relation,

� for the “has_part” relation, we have to specify that “all birds have a part that is
a wing ” or equivalently “the class of birds is a subclass of all objects that have
some wing ”.

: 391 2025-06-05

We have introduced the ideas behind using description logics as the basis of a “machine-oriented
web of data”. While the first OWL specification (2004) had three sublanguages “OWL Lite”, “OWL
DL” and “OWL Full”, of which only the middle was based on description logics, with the OWL2
Recommendation from 2009, the foundation in description logics was nearly universally accepted.

The semantic web hype is by now nearly over, the technology has reached the “plateau of
productivity” with many applications being pursued in academia and industry. We will not go
into these, but briefly instroduce one of the tools that make this work.

SPARQL an RDF Query language

� Definition 12.6.14. SPARQL, the “SPARQL Protocol and RDF Query Language”
is an RDF query language, able to retrieve and manipulate data stored in RDF.
The SPARQL language was standardized by the World Wide Web Consortium in
2008 [PS08].

� SPARQL is pronounced like the word “ “sparkle” ”.

� Definition 12.6.15. A system is called a SPARQL endpoint, iff it answers SPARQL
queries.

� Example 12.6.16. Query for person names and their e-mails from a triplestore
with FOAF data.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?email
WHERE {

?person a foaf:Person.
?person foaf:name ?name.
?person foaf:mbox ?email.

12.6. THE SEMANTIC WEB TECHNOLOGY STACK 259

}

: 392 2025-06-05

SPARQL end-points can be used to build interesting applications, if fed with the appropriate data.
An interesting – and by now paradigmatic – example is the DBPedia project, which builds a large
ontology by analyzing Wikipedia fact boxes. These are in a standard HTML form which can be
analyzed e.g. by regular expressions, and their entries are essentially already in triple form: The
subject is the Wikipedia page they are on, the predicate is the key, and the object is either the
URI on the object value (if it carries a link) or the value itself.

SPARQL Applications: DBPedia

� Typical Application: DBPedia screen-scrapes
Wikipedia fact boxes for RDF triples and uses SPARQL
for querying the induced triplestore.

� Example 12.6.17 (DBPedia Query). People who
were born in Erlangen before 1900
(http://dbpedia.org/snorql)

SELECT ?name ?birth ?death ?person WHERE {
?person dbo:birthPlace :Erlangen .
?person dbo:birthDate ?birth .
?person foaf:name ?name .
?person dbo:deathDate ?death .
FILTER (?birth < "1900−01−01"^^xsd:date) .

}
ORDER BY ?name

� The answers include Emmy Noether and Georg Simon
Ohm.

: 393 2025-06-05

A more complex DBPedia Query

� Demo: DBPedia http://dbpedia.org/snorql/
Query: Soccer players born in a country with more than 10 M inhabitants, who play
as goalie in a club that has a stadium with more than 30.000 seats.
Answer: computed by DBPedia from a SPARQL query

http://dbpedia.org/snorql
http://dbpedia.org/snorql/
https://goo.gl/2i3ng1

260 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

: 394 2025-06-05

We conclude our survey of the semantic web technology stack with the notion of a triplestore,
which refers to the database component, which stores vast collections of ABox triples.

Triple Stores: the Semantic Web Databases

� Definition 12.6.18. A triplestore or RDF store is a purpose-built database for
the storage RDF graphs and retrieval of RDF triples usually through variants of
SPARQL.

� Common triplestores include

� Virtuoso: https://virtuoso.openlinksw.com/ (used in DBpedia)

� GraphDB: http://graphdb.ontotext.com/ (often used in WissKI)

� blazegraph: https://blazegraph.com/ (open source; used in WikiData)

� Definition 12.6.19. A description logic reasoner implements of reaonsing services
based on a satisfiabiltiy test for description logics.

� Common description logic reasoners include

� FACT++: http://owl.man.ac.uk/factplusplus/

� HermiT: http://www.hermit-reasoner.com/

� Intuition: Triplestores concentrate on querying very large ABoxes with partial
consideration of the TBox, while DL reasoners concentrate on the full set of ontology
inference services, but fail on large ABoxes.

https://virtuoso.openlinksw.com/
http://graphdb.ontotext.com/
https://blazegraph.com/
http://owl.man.ac.uk/factplusplus/
http://www.hermit-reasoner.com/

12.7. ONTOLOGIES VS. DATABASES 261

: 395 2025-06-05

12.7 Ontologies vs. Databases

To understand ontologies better and contrast them to database systems to understand their
respective possible role in documenting cultural artefacts. We start off with a definition of the
concept and components of an ontology.

We will still keep our presentation of the material at a general level without committing to a
particular ontology language or system.
We now consolidate our understanding of all these concepts with an example. We build an ontology
by first contstructing a TBox and then a corresponding ABox.

Example: Hogwarts Ontology

� Example 12.7.1. Axioms describe the structure of the world,

Class HogwartsStudent = Student and attendsSchool Hogwarts
Class: HogwartsStudent ⊑ hasPet only (Owl or Cat or Toad)
ObjectProperty: hasPet Inverses: isPetOf
Class: Phoenix ⊑ isPetOf only Wizard

� Example 12.7.2. Facts describe some particular concrete situation,

Individual: Hedwig
Types: Owl

Individual: HarryPotter
Types: HogwartsStudent
Facts: hasPet Hedwig

Individual: Fawkes
Types: Phoenix
Facts: isPetOf Dumbledore

: 396 2025-06-05

It is very instructive to compare ontologies to databases. There are some similarities induced by
the joint intention to represent structured data, but also some important differences, which will
play a crucial role in our discussion later on.

Ontologies vs. Databases

� Obvious Analogy: In an ontology:

� axioms analogous to DB schema (structure and constraints on data)

� facts analogous to DB data

� data instantiates schema, is consistent with schema constraints

� But there are also important differences:

262 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

Database:

� Closed world assumption (CWA)

� Missing information treated as
false

� Unique name assumption (UNA)

� Each individual has a single,
unique name

� Schema behaves as constraints on
structure of data

� Define legal database states.

Ontology:

� Open world assumption (OWA)

� Missing information treated as
unknown

� No UNA

� Individuals may have more
than one name

� Ontology axioms behave like im-
plications (inference rules)

� Entail implicit information

: 397 2025-06-05

Let us elucidate these quite abstract concdepts and differences using a simple example, which we
again take from the Hogwarts ontology (see Example 12.7.1 and Example 12.7.2).

DB vs. Ontology by Example (Querying)

� Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley

hasFriend HermioneGranger
hasPet Hedwig

Individual: Draco Malfoy

� Query: Is Draco Malfoy a friend of HarryPotter?

� DB: No

� Ontology: Don’t Know (OWA: didn’t say Draco was not Harry’s friend)

� Counting Query: How many friends does Harry Potter have?

� DB: 2

� Ontology: at least 1 (No UNA: Ron and Hermione may be 2 names for same
person)

� How about: if we add
DifferentIndividuals: RonWeasley HermioneGranger

� DB: 2

� Ontology: at least 2 (OWA: Harry may have more friends we didn’t mention
yet)

� And: if we also add
Individual: HarryPotter

Types: hasFriend only RonWeasley or HermioneGranger

12.7. ONTOLOGIES VS. DATABASES 263

� DB: 2

� Ontology: 2

: 398 2025-06-05

We continue our example with the behavior if we insert new information to the Hogwarts ontology.
Again, databases and ontology systems react differently.

DB vs. Ontology by Example (Insertion)

� Given: the ontology from Example 12.7.1 and Example 12.7.2 insert

Individual: Dumbledore
Individual: Fawkes

Types: Phoenix
Facts: isPetOf Dumbledore

� System Response:

� DB: Update rejected: constraint violation

� Range of hasPet is Human; Dumbledore is not (CWA)

� Ontology Reasoner:

� Infer that Dumbledore is Human
� Also infer that Dumbledore is a Wizard (only a Wizard can have a phoenix

as a pet)

: 399 2025-06-05

Finally, we come to one of the central disciplines in which to compare databases and ontology
based information systems: query answering. Here we see a crucial difference: ontology queries
are semantic, i.e. they take both axioms and facts into account.

DB vs. Ontology by Example: Query Answering

� DB schema plays no role in query answering (efficiently implementable)

� Ontology axioms play a powerful and crucial role in QA

� Answer may include implicitly derived facts

� Can answer conceptual as well as extensional queries
E.g., “Can a Muggle have a Phoenix for a pet”?

� May have very high worst case complexity (=̂ terrible running time)
Implementations may still behave well in typical cases.

� Definition 12.7.3. We call a query language semantic, iff query answering involves
derived axioms and facts.

� Observation 12.7.4. Ontology queries are semantic, while database queries are
not.

: 400 2025-06-05

We will now summarize what we have learned about ontology-based information systems.

264 CHAPTER 12. ONTOLOGIES, SEMANTIC WEB FOR CULTURAL HERITAGE

Summary: Ontology Based Information Systems

� Analogous to relational database management systems
Ontology =̂ schema; instances =̂ data

� Some important (dis)advantages

+ (Relatively) easy to maintain and update schema.

� Schema plus data are integrated in a logical theory.

+ Query results reflect both schema and data

+ Can deal with incomplete information

+ Able to answer both intensional and extensional queries

– Semantics may be counter-intuitive or even inappropriate

� Open -vs- closed world; axioms -vs- constraints.

– Query answering much more difficult. (based on logical entailment)

� Can lead to scalability problems.

� In a nutshell they deliver more valuable answers at cost of efficiency.

: 401 2025-06-05

Chapter 13

The WissKI System: A Virtual
Research Environment for Cultural
Heritage

We will now come to the WissKI system itself, which positions itself as a virtual research
environment for cultural heritage. Indeed it is a comprehensive, ontology-based information system
for documenting, studying, and presenting our cultural heritage.

Before we go into the technicalities of the WissKI system itself, let us recall the requirements
and motivations.

WissKI: a Virtual Research Env. for Cultural Heritage

� Definition 13.0.1. WissKI is a virtual research environment (VRE) for managing
scholarly data and documenting cultural heritage.

� Requirements: For a virtual research environment for cultural heritage, we need

� scientific communication about and documentation of the cultural heritage

� networking knowledge from different disciplines (transdisciplinarity)

� high-quality data acquisition and analysis

� safeguarding authorship, authenticity, persistence

� support of scientific publication

� WissKI was developed by the research group of Prof. Günther Görtz at FAU
Erlangen-Nürnberg and is now used in hundreds of DH projects across Germany.

� FAU supports cultural heritage research by providing hosted WissKI instances.

� See https://wisski.data.fau.de for details

� We will use an instance for the Kirmes paintings in the homework assignments.

: 402 2025-06-05

13.1 WissKI extends Drupal
The first thing about the WissKI system is that it is realized as an extension of the drupal web

265

https://wisski.data.fau.de

266 CHAPTER 13. THE WISSKI SYSTEM

content management system, which already provides many of the features (e.g. user management,
web authoring, collaboration, . . .) a VRE needs to implement.

WissKI System Architecture

� Software basis: drupal CMS (content management system)

� large, active community, extensible by drupal modules

� provides much of the functionality of a VRE out of the box.

: 403 2025-06-05

We now give a general overview of the drupal system, and introduce the concepts we need for
understanding WissKI system. Naturally, this does now do the drupal WCMS justice. For an
introduction we refer readers to [Gla17; Tom17] and the drupal web site [Dru].

Drupal: A Web Content Managemt Framework

� Definition 13.1.1. Drupal is an open source web content management application.
It combines CMS functionality with knowledge management via RDF.

� Definition 13.1.2. Drupal allows to configure web pages modularly from content
blocks, which can be

� static content, i.e. supplied by a module,

� user supplied content, or

� views, i.e. listings of content fragments from other blocks.

These can be assembled into web pages via a visual interface: the config bar.

: 404 2025-06-05

To fortify our intuition about the concepts introduced above, let us try to find them in an existing
web page.

13.1. WISSKI EXTENDS DRUPAL 267

Assembling a Web Site via Drupal Blocks (Example)

� Example 13.1.3 (Greenpeace via Drupal). Can you find the blocks?

: 405 2025-06-05

We now come to one of the most important features used in WissKI: drupal is modular and
extensible; this allows us to build the features for an ontology-based information system as drupal
modules.

Drupal Modules and Themes

� Idea: Drupal is designed to be modular and extensible (so it can adapt to the
ever-changing web)

� Definition 13.1.4 (Modular Design). Drupal functionality is structured into

� drupal core – the basic CMS functionality

� modules which contribute e.g. new block types (∼ 45.000)

� themes which contribute new UI layouts (∼ 2800)

Drupal core is the vanilla system as downloaded, modules and themes must be
installed and configured separately via the config bar.

� The drupal core functionalities include

� user/account management

� menu management,

� RSS feeds,

� taxonomy,

� page layout customization (via blocks and views),

268 CHAPTER 13. THE WISSKI SYSTEM

� system administration

: 406 2025-06-05

This brings us to the central data acquisition subsystem in drupal, which we will use to build our
system. Much of the actual data in the drupal system is internally stored in terms of dictionaries:
systems of key/value pairs.

Bundles and Fields in Drupal (Data Entry)
� Definition 13.1.5. Drupal has a special

data type called a bundle, which is essen-
tially a dictionary: it contains key/value
pairs called fields.

� bundles can be nested ; sub bun-
dles.

� fields also have data type informa-
tion, etc. to support editing.

� drupal presents bundles as

� HTML lists for reading

� HTML forms for data entry/editing

� Drupal bundles induce blocks that can
be used for data entry and presentation.

Semantified Data Entry Form

06.09.2011 Georg Hohmann: WissKI - CIDOC 2011 - Sibiu, Romania 12

Albrecht Dürer

Nürnberg

E84 Information Carrier
ĺ P108i was produced by ĺ
E12 Production
ĺ P14 carried out by ĺ
E21 Person
ĺ P131 is identified by ĺ
E82 Actor Appellation
ĺ P3 has note ĺ
ÄAlbrecht Dürer³

E84 Information Carrier
ĺ P108i was produced by ĺ
E12 Production
ĺ P7 took place at ĺ
E53 Place
ĺ P87 is identified by ĺ
E48 Place Name
ĺ P3 has note ĺ
ÄNürnberg ³

: 407 2025-06-05

Now we can summarize the WissKI architecture in a simple equation. While this glosses over
many of finer points in the system, it is important to keep this in mind for working with the
system in practice.

WissKI System Architecture (Recap)

� WissKI = drupal + CIDOC CRM + triplestore + WissKI modules

06.09.2011 Georg Hohmann: WissKI - CIDOC 2011 - Sibiu, Romania 4

Drupal

Modules

Third-Party

Database

WissKI

Triple Store

Import/Export API

OWL/RDF System

Core

WikiTools

WysiwygAPI

Views

CCK

...

ImageAPI

...

Authority Files Management

Automatic Text Annotator

Discussion System

All software used is available under free software licences.

13.2. DEALING WITH ONTOLOGY PATHS: THE WISSKI PATHBUILDER 269

� Note: Much of WissKI functionality is configurable via the drupal config bar.

: 408 2025-06-05

13.2 Dealing with Ontology Paths: The WissKI Pathbuilder

We now come to what is probably the defining feature of WissKI: the WissKI path builder. It
solves the problem that with ontologies, even for simple facts we have to generate entire ontology
paths.

The WissKI Path Builder (Idea)

� Recall: “Albrecht Dürer painted Melencolia 1 in Nürnberg ”

m : E84 q : E12
P108i

d : E21P14 a : E82
P131

"A. Dürer"
P3

p : E53

P7

n : E48
P87 "Nürnberg"P3

� Idea: Hide the complexity induced by the ontology from the user

� Form-based interaction with categories and fields (as in a RDBMS UI)

� Definition 13.2.1. The WissKI path builder maps ontology groups and ontology
paths to drupal bundles and fields.

� ontology groups become data entry forms (bundles) for the root entities,

� their fields are mapped to ontology paths.

� subtrees in the ontology become sub-bundles. (shared objects)

: 409 2025-06-05

Even though we have introduced all the necessary concepts above, the best way of understanding
this is to look at our running example again: the path builder induces a data entry form that
allows us to enter a whole set of ontology paths, introducing and sharing intermediary objects
along the way.

The WissKI Path Builder (Example)

� Example 13.2.2 (A WissKI Group).

270 CHAPTER 13. THE WISSKI SYSTEM
Semantified Data Entry Form

06.09.2011 Georg Hohmann: WissKI - CIDOC 2011 - Sibiu, Romania 12

Albrecht Dürer

Nürnberg

E84 Information Carrier
→ P108i was produced by →
E12 Production
→ P14 carried out by →
E21 Person
→ P131 is identified by →
E82 Actor Appellation
→ P3 has note →
„Albrecht Dürer“

E84 Information Carrier
→ P108i was produced by →
E12 Production
→ P7 took place at →
E53 Place
→ P87 is identified by →
E48 Place Name
→ P3 has note →
„Nürnberg “

: 410 2025-06-05

If we look at the data entry form on the left of ???, then we see that we only enter strings, not the
objects we mean. So there is the problem of disambiguating which objects that are then linked to
some object via CIDOC CRM relations we actually mean with the string.

Sharing and Disambiguation in Path Builders

� Observation 13.2.3. Sometimes we want to refer to existing entities in WissKI.

� Example 13.2.4 (Referring to Nürnberg). (We love tab completion)

� Example 13.2.5 (To What). Albrecht Dürer created all his etchings in Nürnberg.

� Problem: (In paths) we are creating lots of objects, which ones to offer?

� Idea: Mark the entities we might want to reuse on paths while specifying them.

� Definition 13.2.6. A disambiguation point in a path marks an entity that can be
re used in data acquisition.

� Example 13.2.7. Disambiguation points are highlighted in red on paths.

m : E84 q : E12
P108i

d : E21P14 a : E82
P131

"A. Dürer"
P3

p : E53

P7

n : E48
P87 "Nürnberg"P3

13.2. DEALING WITH ONTOLOGY PATHS: THE WISSKI PATHBUILDER 271

: 411 2025-06-05

Now we can have a look at how drupal sees (and shows) path builders

Specifying/Maintaining WissKI Path Builders

� Recall: A WissKI path builder maps ontology groups and ontology paths to drupal
bundles and fields.

� Example 13.2.8 (Specifying a WissKI Path Builder).

: 412 2025-06-05

Of course all paths of an ontology group can be visualized as a graph. WissKI supports this as
well.

WissKI Path Builders as Graphs

� Example 13.2.9 (A WissKI Path Builder as a Graph).

Graph-Ansicht

� Very nice and helpful, but does not work currently!

272 CHAPTER 13. THE WISSKI SYSTEM

: 413 2025-06-05

And finally, a path builder can be seen as a set of triples indeed this is the default export format
for path builders.
Of course all paths of an ontology group can be visualized as a graph. WissKI supports this as
well.

WissKI Path Builders as Triples

� Of course we can view path builders as sets of triples.

� Example 13.2.10 (A WissKI Path Builder as Triples).

Triples-Ansicht

� Such an export also allows standardized communication.

: 414 2025-06-05

But of course, path builders can not only be used as data acquisition devices. They also define
drupal blocks which can be used for data visualization (akin to fact boxes in Wikipedia).

Data Presentation using Path Builders in WissKI

� Path builders can be used as drupal blocks for data presentation.

� For every object o, aggregate the values of the paths starting in o.

� Example 13.2.11 (Compressed View).

Komprimierte

Ansicht

: 415 2025-06-05

13.3. THE WISSKI LINK BLOCK 273

13.3 The WissKI Link Block

The WissKI Link Block (Idea)

� Observation 13.3.1. For an entity in a RDF graph, both the outgoing and the
incoming edges are important for understanding.

� Example 13.3.2. This view only shows the outgoing edges!

Komprimierte

Ansicht

� Idea: Add a block with “incoming links” to the page, use the path builder.

: 416 2025-06-05

Link Blocks (Definition)

� Definition 13.3.3. Let p be a drupal page for an ontology group g, then a WissKI
link block is a special drupal block with associated path builder, whose ontology
paths all end in g.

� Example 13.3.4 (A link block for Images).

Note the difference between

� a “work” – the original painting Pieter Brueghel created in 1628

� and an “image of the work” – a b/w photograph of the “work”.

This particular link block mediates between these two.

: 417 2025-06-05

274 CHAPTER 13. THE WISSKI SYSTEM

A Link Block in the Wild (the full Picture)

� Example 13.3.5 (A link block for Images).

� outgoing relations be-
low the image,

� incoming ones in the
link block

: 418 2025-06-05

Making Link Blocks via the Path Builder

� How to make a link block in page p for group g? (Details at [WH])

1. create a block via the config bar and place it on p.

2. associate it with a link block path builder

3. model paths into g in the path builder (various source groups)

� Idea: You essentially know link block paths already: If you have already modeled
a path g, r1, . . ., rn, s for a group s, then you have a path s, r−1

n , . . ., r−1
1 , g, where

r−1
i are the inverse roles of ri (exist in CIDOC CRM)

m : E84 q : E12
P108i

P108

d : E21P14

P14i

a : E82
P131

"A. Dürer"
P3

p : E53

P7

P7i n : E48
P87 "Nürnberg"P3

� Note: With this setup, you never have to fill out the link block paths!

: 419 2025-06-05

13.4 Cultural Heritage Research: Querying WissKI Resources

So far, we have concentrated on the WissKI system, and how that can be used for data

13.4. CULTURAL HERITAGE RESEARCH: QUERYING WISSKI RESOURCES 275

acquisition and documentation of cultural artefacts. While we did this we lost view of the most
important aspect: what are we doing data acquisition for? Arguably this is cultural heritage
research – and we mean this in an inclusive manner – this could be academic research or researching
for a school project or article in a newspaper.

This research and how the WissKI system can support is what we will go into now.

Research in WissKI

� So far we have seen how to acquire complex knowledge about cultural artefacts
using CIDOC CRM ABoxes.

� Question: But how do we do research using WissKI?

� Answer: Finding patterns, inherent connections, . . . in the data.

� But how?: That depends on the kind of research you want to do. Here are some
WissKI research tools

1. we can use drupal search on the data.

2. We can formulate our own queries in SPARQL

3. We can pre-configure various queries in drupal views.

: 420 2025-06-05

The simplest form of “research” is just being able to search over the objects that have been created.
This is one of the basic facilities WissKI offers out of the box. Already that can be quite useful.

Drupal Search in WissKI

� Example 13.4.1.

: 421 2025-06-05

276 CHAPTER 13. THE WISSKI SYSTEM

SPARQL Endpoint in WissKI

� Example 13.4.2. Find kirmes paintings and their painters and count them

: 422 2025-06-05

Data Presentation via Views in WissKI

� Example 13.4.3 (Configuring a View). This makes a drupal block.

13.5. APPLICATION ONTOLOGIES IN WISSKI 277

Drupal generates a SPARQL query, aggregates results into a block.

: 423 2025-06-05

This Research is WissKI-instance-local

� Observation 13.4.4. All these research queries only work in the current WissKI
instance.

� Observation 13.4.5. There is probably much more about the entities you are
interested in outside your particular WissKI instance.

� Problem: How to make use of this?

� Solution: We need to do two things

1. Make use of other people’s ABoxes

2. Provide your ABox to other people.

This practice is called linked open data. (up next)

: 424 2025-06-05

13.5 Application Ontologies in WissKI

WissKI Information Architecture (Ontologies)

� Ontologies, instances, and export formats

278 CHAPTER 13. THE WISSKI SYSTEM

Martin Scholz, FAU, Informatik 8 33

: 425 2025-06-05

Application Ontologies extend CIDOC CRM

� Observation 13.5.1. Sometimes we need more than CIDOC CRM.

� Definition 13.5.2. A WissKI application ontology is one that extends CIDOC
CRM, without changing it.

� Example 13.5.3 (Behaim Application Ontology).

Referenzontologie:

Erlangen CRM

Applikationsontologie:

Behaim-Globus

: 426 2025-06-05

Making an Application Ontology

13.6. THE LINKED OPEN DATA CLOUD 279

� The “current ontology” of a WissKI instance can be configured via the config bar
via the “WissKI ontology” module.

� The application ontology should import CIDOC CRM.

� Idea: Use Protégé for that.

: 427 2025-06-05

13.6 The Linked Open Data Cloud

Linked Open Data

� Definition 13.6.1. Linked data is structured data in which classified objects are
interlinked via relations with other objects so that the data becomes more useful
through semantic queries and access methods.

� Definition 13.6.2. Linked open data (LOD) is linked data which is released under
an open license, which does not impede its reuse by the community.

� Definition 13.6.3. Given the semantic web technology stack, we can create inter-
operable ontologies and interlinked data sets, we call their totality the linked open
data cloud.

� Recall the LOD Incentives:

� incentivize other authors to extend/improve the LOD
; more/better data can be generated at a lower cost.

� generate attention to the LOD and recognition for authors
; this gives alternative revenue models for authors.

: 428 2025-06-05

By ??? the linked open data cloud is the totality of linked open data that has been published.
[LOD] tracks (the larger parts of) it. This gives us a sense of the extent of this giant network of
knowledge expressed as triples.

The Linked Open Data Cloud

� The linked open data cloud in 2014 (today much bigger, but unreadable)

280 CHAPTER 13. THE WISSKI SYSTEM

: 429 2025-06-05

We now “zoom in” on this picture to get a better sense”. Each of the circles in the picture is a
data set of at least 1000 triples. The DBPedia in the center of this fragment has 3 billion triples
alone (in 2014).

The Linked Open Data Cloud

� Zooming in (data sets and their – interlinked – ontologies)

: 430 2025-06-05

The ideas of the linked open data cloud directly apply knowledge about cultural artefacts as we
formalize them in the WissKI system: we can directly reference objects from the cloud in WissKI.

Using the LOD-Cloud in WissKI

13.6. THE LINKED OPEN DATA CLOUD 281

� Idea: Do not re-model entities that already exist (in the LOD Cloud)

� Problem: Most of the LOD Cloud is about things we do not want.

� But there are some sources that are useful

� the GND (Gemeinsame Normdatei [GND]), an authority file for personal/corpo-
rate names and keywords from literary catalogs,

� geonames[GN], a geographical database with more than 25M names and loca-
tions

� Wikipedia

� Observation 13.6.4. All of them provide URIs for real world entities, which is just
what we need for objects in RDF triples.

� Definition 13.6.5. WissKI provides special modules called adapters for GND and
geonames.

: 431 2025-06-05

Using linked open data in WissKI actually makes for higher-quality digitizations, as they are more
interoperable. Unfortunately, WissKI only supports the two adapters we mention above. There
are many many more that would be useful.
Let us now see how to concretely use an adapter, here for the geonames service.

Using Geonames in WissKI (Example)

1. Example 13.6.6. We want to use the “Meilwald” (Erlangen) in WissKI.

2. make a sub-ontology groups “norm data” in the WissKI path builder

3. The induced sub-bundle looks like this:

4. We enter https://geodata.org for “Normdatei” and go there to find out the URI
for “Meilwald” which goes into “Normdatum URI”.

https://geodata.org

282 CHAPTER 13. THE WISSKI SYSTEM

5. there may be multiple results (here only one)

6. Select/click the intended one, check the details

7. Enter the URL from the URL bar into “Normdatum URI”.

: 432 2025-06-05

If we – as we did here – tell the story of using authority files in WissKI from a linked open data
perspective, a curious asymmetry becomes apparent: WissKI is using LOD resources, but is – by
and large – not contributing LOD resources back to the “public domain” of linked open cultural

13.6. THE LINKED OPEN DATA CLOUD 283

heritage data.

Towards a WissKI Commons in the LOD Cloud

� Recap: We can directly refer to (URIs of) external objects in WissKI.

� Observation 13.6.7. The most interesting source for references to cultural arte-
facts are other WissKI instances.

� Problem: A WissKI is an island, unless it exports its data! (few do)

� Idea: We need a LOD cloud of cultural heritage research data under to foster
object centric research in the humanities.

� Definition 13.6.8. We call the part of this resource that can be created by aggre-
gating WissKI exports the WissKI commons.

� Observation 13.6.9. WissKI exports meet the FAIR principles quite nicely already.

� We will be working on a FAU WissKI commons in the next years. (help wanted)

: 433 2025-06-05

This asymmetry is a very serious problem, since cultural heritage research is not profiting as
much from digitizations as it could. Keeping data in WissKI silos – this is what we do when we
are not exporting WissKI data and referencing objects from other WissKI instances – leads to
fragmentation of the research community and to duplication of work.

284 CHAPTER 13. THE WISSKI SYSTEM

Chapter 14

Legal Foundations of Information
Technology

In this chapter, we cover a topic that is a very important secondary aspect of our work as
knowledge workers that – at best – create immaterial things: the legal foundations that regulate
how the fruits of our labor are appreciated (and – importantly – recompensated), and what we
have to do to respect people’s personal data. The content of this chapter are about legal
matters, but are written by a computer scientist, i.e. not a legal expert. They should considered
as an introduction of the fundamental concepts involved, and definitely not as legal advice. For
that, contact an intellectual property lawyer.
That being said, we expect that understanding the concepts covered in this chapter will help you
with getting most out of this conversation.

14.1 Intellectual Property

The first complex of questions centers around the assessment of the products of work of knowl-
edge/information workers, which are largely intangible, and about questions of recompensation
for such work.

Intellectual Property: Concept

� Question: Intellectual labour creates (intangible) objects, can they be owned?

� Answer: Yes: in certain circumstances they are property like tangible objects.

� Definition 14.1.1. The concept of intellectual property motivates a set of laws
that regulate property rights rights on intangible objects, in particular

� Patents grant exploitation rights on original ideas.

� Copyrights grant personal and exploitation rights on expressions of ideas.

� Industrial design rights protect the visual design of objects beyond their function.

� Trademarks protect the signs that identify a legal entity or its products to es-
tablish brand recognition.

� Intent: Property like treatment of intangibles will foster innovation by giving
individuals and organizations material incentives.

: 434 2025-06-05

285

286 CHAPTER 14. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY

To understand intellectual property better, let us recap the concepts of property and ownership
in general.

Background: Property and Ownership in General

� Definition 14.1.2. Ownership is the state or fact of exclusive rights and control
over property, which may be a physical object, land/real estate or intangible object.

� Definition 14.1.3. Ownership involves multiple rights (the property rights), which
may be separated and held by different parties.

� Definition 14.1.4. There are various legal entities (e.g. persons, states, companies,
associations, . . .) that can have ownership over a property p. We call them the
owners of p.

� Remark 14.1.5. Depending on the nature of the property, an owner of property has
the right to consume, alter, share, redefine, rent, mortgage, pawn, sell, exchange,
transfer, give away or destroy it, or to exclude others from doing these things, as
well as to perhaps abandon it.

� Remark 14.1.6. The process and mechanics of ownership are fairly complex: one
can gain, transfer, and lose ownership of property in a number of ways.

: 435 2025-06-05

These concepts are the basis for many other concepts such as money, trade, debt, bankruptcy, and
the criminality of theft. Ownership is the key building block in the development of the capitalist
socio-economic system, must influentially developed in Adam Smith’s book An Inquiry into the
Nature and Causes of the Wealth of Nations [Smi76] from 1776.
Naturally, many of the concepts are hotly debated. Especially due to the fact that intuitions
and legal systems about property have evolved around the more tangible forms of properties
that cannot be simply duplicated and indeed multiplied by copying them. In particular, other
intangibles like physical laws or mathematical theorems cannot be property.

Intellectual Property: Problems

� Delineation Problems: How can we distinguish the product of human work, from
“discoveries”, of e.g. algorithms, facts, genome, algorithms. (not property)

� Philosophical Problems: The implied analogy with physical property (like land or
an automobile) fails because physical property is generally rivalrous while intellectual
works are non-rivalrous (the enjoyment of the copy does not prevent enjoyment of
the original).

� Practical Problems: There is widespread criticism of the concept of intellectual
property in general and the respective laws in particular.

� (Software) patents are often used to stifle innovation in practice. (patent trolls)

� Copyright is seen to help big corporations and to hurt the innovating individuals.

: 436 2025-06-05

We will not go into the philosophical debates around intellectual property here, but concentrate on
the legal foundations that are in force now and regulate IP issues. We will see that groups holding
alternative views of intellectual properties have learned to use current IP laws to their advantage

14.1. INTELLECTUAL PROPERTY 287

and have built systems and even whole sections of the software economy on this basis.
Many of the concepts we will discuss here are regulated by laws, which are (ultimately) subject
to national legislative and juridicative systems. Therefore, none of them can be discussed without
an understanding of the different jurisdictions. Of course, we cannot go into particulars here,
therefore we will make use of the classification of jurisdictions into two large legal traditions to
get an overview. For any concrete decisions, the details of the particular jurisdiction have to be
checked.

Legal Traditions

� The various legal systems of the world can be grouped into “traditions”.

� Definition 14.1.7. Legal systems in the common law tradition are usually based
on case law, they are often derived from the British system.

� Definition 14.1.8. Legal systems in the civil law tradition are usually based on
explicitly codified laws (civil codes).

� As a rule of thumb all English-speaking countries have systems in the common law
tradition, whereas the rest of the world follows a civil law tradition.

: 437 2025-06-05

Another prerequisite for understanding intellectual property concepts is the historical development
of the legal frameworks and the practice how intellectual property law is synchronized interna-
tionally.

Historic/International Aspects of Intellectual Property Law

� Early History: In late antiquity and the middle ages IP matters were regulated by
royal privileges

� History of Patent Laws: First in Venice 1474, Statutes of Monopolies in England
1624, US/France 1790/1. . .

� History of Copyright Laws: Statue of Anne 1762, France: 1793, . . .

� Problem: In an increasingly globalized world, national IP laws are not enough.

� Definition 14.1.9. The Berne convention process is a sequence of international
treaties that try to harmonize international IP laws. It started with the original
Berne convention 1886 and went through revision in 1896, 1908, 1914, 1928, 1948,
1967, 1971, and 1979.

� The World Intellectual Property Organization Copyright Treaty was adopted in
1996 to address the issues raised by information technology and the internet, which
were not addressed by the Berne Convention.

� Definition 14.1.10. The Anti Counterfeiting Trade Agreement (ACTA) is a multi-
national treaty on international standards for intellectual property rights enforce-
ment.

� With its focus on enforcement ACTA is seen my many to break fundamental
human information rights, criminalize FLOSS.

288 CHAPTER 14. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY

: 438 2025-06-05

14.2 Copyright

In this section, we go into more detail about a central concept of intellectual property law:
copyright is the component most of IP law applicable to the individual computer scientist. There-
fore a basic understanding should be part of any CS education. We start with a definition of
what works can be copyrighted, and then progress to the rights this affords to the copyright
holder.

Copyrightable Works

� Definition 14.2.1. A copyrightable work is any artefact of human labor that fits
into one of the following eight categories:

� Literary works: Any work expressed in letters, numbers, or symbols, regardless
of medium. (computer source code is also considered to be a literary work.)

� Musical works: Original musical compositions.

� Sound recordings of musical works. (different licensing)

� Dramatic works: literary works that direct a performance through written in-
structions.

� Choreographic works must be “fixed,” either through notation or video recording.

� Pictorial, graphic and sculptural work (PGS works): Any two dimensional or
three dimensional art work

� Audiovisual works: work that combines audio and visual components. (e.g.
films, television programs)

� Architectural works. (copyright only extends to aesthetics)

� The categories are interpreted quite liberally (e.g. for computer code).

� There are various additional requirements to make a work copyrightable: it has to

� exhibit a certain originality. (“Schöpfungshöhe”)

� require a certain amount of labor and diligence. (“sweat of the brow” doctrine)

: 439 2025-06-05

In short almost all products of intellectual work are copyrightable, but this does not mean
copyright applies to all those works. Indeed there is a large body of works that are “out of
copyright”, and can be used by everyone. Indeed it is one of the intentions of intellectual property
laws to increase the body of intellectual resources a society a draw upon to create wealth. Therefore
copyright is limited by regulations that limit the duration of copyright and exempts some classes
of works from copyright (e.g. because they have already been paid for by society).

Limitations of Copyrightabilitiy: The Public Domain

� Definition 14.2.2. A work is said to be in the public domain, if no copyright
applies, otherwise it is called copyrighted.

14.2. COPYRIGHT 289

� Example 14.2.3. Works made by US government employees (in their work time)
are in the public domain directly. (Rationale: taxpayer already paid for them)

� Copyright expires: usually 70 years after the death of the creator.

� Example 14.2.4 (US Copyright Terms). Some people claim that US copyright
terms are extended, whenever Disney’s Mickey Mouse would become public domain.

: 440 2025-06-05

Now that we have established, which works are copyrighted — i.e. to which works are intellectual
property, we now turn to the rights owning such a property entails.

Rights under Copyright Law

� Definition 14.2.5. The copyright is a collection of rights on a copyrighted work;

� Personal rights: the owner of the copyright may

� determine whether and how the work is published (right to publish)
� determine whether and how her authorship is acknowledged. (right of

attribution)
� to object to any distortion, mutilation or other modification of the work,

which would be prejudicial to his honor or reputation. (droit de respect)

� Exploitation rights: the owner of a copyright has the exclusive right to do, or
authorize to do any of the following:

� to reproduce the copyrighted work in copies (or phonorecords);
� to prepare derivative works based upon the copyrighted work;
� to distribute copies of the work to the public by sale, rental, lease, or lending;
� to perform the copyrighted work publicly;
� to display the copyrighted work publicly; and
� to perform the copyrighted work publicly by means of a digital-audio trans-

mission.

� Remark 14.2.6. Formally, it is not the copyrightable work that can be owned itself,
but the copyright.

� Definition 14.2.7. The use of a copyrighted material, by anyone other than the
owner of the copyright, amounts to copyright infringement only when the use is

290 CHAPTER 14. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY

such that it conflicts with any one or more of the exclusive rights conferred to the
owner of the copyright.

: 441 2025-06-05

Initially, and by default the copyright of an intellectual work is owned by the creator. But – as
with any property – copyrights can be transferred. We will now go into the details.

Copyright Holder

� Definition 14.2.8. The copyright holder is the legal entity that own the copyright
to a copyrighted work.

� By default, the original creator of a copyrightable work holds the copyright.

� In most jurisdictions, no registration or declaration is necessary. (but copyright
ownership may be difficult to prove in court)

� Copyright is considered intellectual property, and can be transferred to others.
(e.g. sold to a publisher or bequeathed)

� Definition 14.2.9 (Work for Hire). A work made for hire (WFH) is a work created
by an employee as part of his or her job, or under the explicit guidance or under the
terms of a contract.

� Observation 14.2.10. In jurisdictions from the common law tradition, the copy-
right holder of a WFH is the employer, in jurisdictions from the civil law tradition,
the author, unless the respective contract regulates it otherwise.

: 442 2025-06-05

Again, the rights of the copyright holder are mediated by usage rights of society; recall that
intellectual property laws are originally designed to increase the intellectual resources available to
society.

Limitations of Copyright (Citation/Fair Use)

� There are limitations to the exclusivity of rights of the copyright holder. (some
things cannot be forbidden)

� Citation Rights: Civil law jurisdictions allow citations of (extracts of) copyrighted
works for scientific or artistic discussions. (note that the right of attribution still
applies)

� In the civil law tradition, there are similar rights:

� Definition 14.2.11 (Fair Use/Fair Dealing Doctrines). Case law in common
law traditions has established a fair use doctrine, which allows e.g.

� making safety copies of software and audiovisual data,

� lending of books in public libraries,

� citing for scientific and educational purposes, or

� excerpts in search engine.

14.3. LICENSING 291

Fair use is established in court on a case-by-case taking into account the purpose
(commercial/educational), the nature of the work the amount of the excerpt, the
effect on the marketability of the work.

: 443 2025-06-05

14.3 Licensing

Given that intellectual property law grants a set of exclusive rights to the owner, we will now
look at ways and mechanisms how usage rights can be bestowed on others. This process is called
licensing, and it has enormous effects on the way software is produced, marketed, and consumed.
Again, we will focus on copyright issues and how innovative license agreements have created the
open source movement and economy.

Licensing: the Transfer of Rights

� Remember: The copyright holder has exclusive rights to a copyrighted work.

� In particular: All others have only fair use rights. (but we can transfer rights)

� Definition 14.3.1. A license is a contract in which the licensor authorizes the
licensee to use the licensed material.

� Note: A license is a regular contract (about intellectual property) that is handled
just like any other contract. (it can stipulate anything the licensor and licensees
agree on) in particular a license may

� involve term, territory, or renewal provisions,

� require paying a fee and/or proving a capability, or

� require to keep the licensor informed on a type of activity, and to give them the
opportunity to set conditions and limitations.

� Mass Licensing of Computer Software: Software vendors usually license soft-
ware under extensive end user license agreement (EULA) entered into upon the
installation of that software on a computer. The license authorizes the user to
install the software on a limited number of computers.

: 444 2025-06-05

Copyright law was originally designed to give authors of literary works — e.g. novelists and
playwrights — revenue streams and regulate how publishers and theatre companies can distribute
and display them so that society can enjoy more of their work.

With the inclusion of software as “literary works” under copyright law the basic parameters of
the system changed considerably:

• modern software development is much more a collaborative and diversified effort than literary
writing,

• re-use of software components is a decisive factor in software,

• software can be distributed in compiled form to be executable which limits inspection and re-use,
and

• distribution costs for digital media are negligible compared to printing.

292 CHAPTER 14. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY

As a consequence, much software development has been industrialized by large enterprises, who
become copyright holder as the software was created as work for hire. This has led to software
quasi-monopolies, which are prone to stifling innovation and thus counteract the intentions of
intellectual property laws. The Free/Open Source Software movement attempts to use the
intellectual property laws themselves to counteract their negative side effects on innovation and
collaboration and the (perceived) freedom of the programmer.

Free/Libre/Open-Source Licenses

� Recall: Software is treated as literary works wrt. copyright law.

� But: Software is different from literary works wrt. distribution channels. (and
that is what copyright law regulates)

� In particular: When literary works are distributed, you get all there is, software is
usually distributed in binary format, you cannot understand/cite/modify/fix it.

� So: Compilation can be seen as a technical means to enforce copyright. (seen as
an impediment to freedom of fair use)

� Recall: IP laws (in particular patent law) was introduced explicitly for two things:

� incentivize innovation, (by granting exclusive exploitation rights)

� spread innovation. (by publishing ideas and processes)

Compilation breaks the second tenet! (and may thus stifle innovation)

� Idea: We should create a public domain of source code.

� Definition 14.3.2. Free/Libre/Open Source Software (FLOSS or just open source)
is software that is and licensed via licenses that ensure that its source code is
available.

� Almost all of the internet infrastructure is (now) FLOSS; so are the Linux and
Android operating systems and applications like OpenOffice and The GIMP.

: 445 2025-06-05

The relatively complex name Free/Libre/Open Source comes from the fact that the English1
word “free” has two meanings: free as in “freedom” and free as in “free beer”. The initial name “free
software” confused issues and thus led to problems in public perception of the movement. Indeed
Richard Stallman’s initial motivation was to ensure the freedom of the programmer to create
software, and only used cost-free software to expand the software public domain. To disambiguate
some people started using the French “libre” which only had the “freedom” reading of “free”. The
term “open source” was eventually adopted in 1998 to have a politically less loaded label.
The main tool in brining about a public domain of open source software was the use of licenses
that are cleverly crafted to guarantee usage rights to the public and inspire programmers to license
their works as open source systems. The most influential license here is the GNU public license
which we cover as a paradigmatic example.

GPL/Copyleft: Creating a FLOSS Public Domain?

� Problem: How do we get people to contribute source code to the FLOSS public

1the movement originated in the USA

14.3. LICENSING 293

domain?

� Idea: Use special licenses to:

� allow others to use/fix/modify our source code and (derivative works)

� require them to release modifications to the FLOSS public domain if they do.

� Definition 14.3.3. A copyleft license is a license which requires that allows deriva-
tive works, but requires that they be licensed with the same license.

� Definition 14.3.4. The General Public License (GPL) is a copyleft license for
FLOSS software originally written by Richard Stallman in 1989. It requires that the
source code of GPL-licensed software be made available.

� The GPL was the first copyleft license to see extensive use, and continues to dom-
inate the licensing of FLOSS software.

� FLOSS based development can reduce development and testing costs. (but
community involvement must be managed)

� Various software companies have developed successful business models based on
FLOSS licensing models. (e.g. Red Hat, Mozilla, IBM, . . .)

: 446 2025-06-05

Note: The GPL does not make any restrictions on possible uses of the software. In particular, it
does not restrict commercial use of the copyrighted software. Indeed it tries to allow commercial use
without restricting the freedom of programmers. If the unencumbered distribution of source code
makes some business models (which are considered as “extortion” by the open-source proponents)
intractable, this needs to be compensated by new, innovative business models. Indeed, such
business models have been developed, and have led to an “open-source economy” which now
constitutes a non-trivial part of the software industry.
With the great success of open source software, the central ideas have been adapted to other
classes of copyrightable works; again to create and enlarge a public domain of resources that allow
re-use, derived works, and distribution.

Open Content/Data via Open Licenses

� Recall: FLOSS licenses have created a vibrant public domain for software.

� How about: (not so different from software)

� other copyrightable works: musics, videos, literatures, technical documents.

� data (including research data).

� Idea: Adapt the FLOSS license ideas to the particular domain X ; open X.

� Open content: pictures, music, video, documents, . . . ; Creative Commons

� Open data: data from science, government, and organizations, . . .
; Open Data Commons [ODC].

� Open licenses for many other domains X.

� Why open communities grow: Open X licenses give strong incentives to join:
they

294 CHAPTER 14. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY

� incentivize other authors to extend/improve the X
; more/better X can be generate at a lower cost.

� generate attention to the X andrecognition for authors
; this gives alternative revenue models for authors.

� Open X Slogan: Publish X early, publish X often!

: 447 2025-06-05

We will now discuss the probably most prominent example of a system of “open X licenses”: the
Creative Commons licenses. This system of licenses has been adapted from the software-oriented
licenses by some of the most prominent IP lawyers of their time.

Creative Commons a System of Open Content Licenses

�

Definition 14.3.5. The Creative Commons licenses are

� a common legal vocabulary for sharing content

� to create a kind of “public domain” using licensing

� presented in three layers (human/lawyer/machine)-
readable

� Definition 14.3.6. The CC licenses stipulate that (cf.
http://www.creativecommons.org)

� Creators retain the copyright on their works.

� Creators license their works to the world with under the CC provisions:

+/- attribuition (must reference the author)
+/- commercial use (can be restricted)
+/- derivative works (can allow modification)
+/- share alike (copyleft) (modifications must be donated back)

: 448 2025-06-05

The Creative Commons licenses are continually gaining traction, as they give copyright holders
strong secondary incentives (and the moral high ground). Correspondingly, the Creative Commons
of freely usable works is continually growing, which is exactly what the CC licenses were created
for.

14.4 Information Privacy
The last big topic in this chapter is information privacy. This affects us in IWGS in a different

way than the previous ones. As providers of information systems we are subject to regulations
that require us to keep user’s personal data private to the extent possible and keep inform users
informed of what happens to it.

Information/Data Privacy

� Definition 14.4.1. The principle of information privacy (also called data privacy)
comprises the idea that humans have the right to control who can access their

http://www.creativecommons.org

14.4. INFORMATION PRIVACY 295

personal data.

� Information privacy concerns exist wherever personal data is collected and stored –
in digital form or otherwise. In particular in the following contexts:

� healthcare records,

� criminal justice investigations and proceedings,

� financial institutions and transactions,

� biological traits, such as ethnicity or genetic material, and

� residence and geographic records.

� Information privacy is becoming a growing concern with the advent of the internet
and web search engines that make access to information easy and efficient.

� The “reasonable expectation of privacy” is regulated by special laws.

� These laws differ considerably by jurisdiction; The EU has particularly stringent
regulations. (and you are subject to these.)

� Intuition: Acquisition and storage of personal data is only legal for the purposes of
the respective transaction, must be minimized, and distribution of personal data is
generally forbidden with few exceptions. Users have to be informed about collection
of personal data.

: 449 2025-06-05

The legal basis for information privacy at least for the EU – is the GDPR, the most current
information privacy legislation. We will go into the details in the next couple of slides.

The General Data Protection Regulation (GDPR)

� Definition 14.4.2. The General Data Protection Regulation (GDPR) is a EU reg-
ulation created in 2016 to harmonize information privacy regulations within Europe.

The GDPR applies to data controllers, i.e organizations that process personal data
of EU citizens (the data subjects).

� Remark: The GDPR sanctions violations to its mandates with substantial punish-
ments up to 20€ or 4% of annual worldwide turnover.

� Remark 14.4.3. As an EU regulation, the GDPR is directly effective in all EU
member countries. (enforced since 2018)

� Axiom 14.4.4. The GDPR applies to data controllers outside the EU, iff they

1. offer goods or services to EU citizens, or

2. monitor their behavior.

: 450 2025-06-05

Organizational Measures for Information Privacy (GDPR)

� Definition 14.4.5. Physical access control: Unauthorized persons may not be

296 CHAPTER 14. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY

granted physical access to data processing equipment that process personal data.
(; locks, access control systems)

� Definition 14.4.6. System access control: Unauthorized users may not use systems
that process personal data. (; passwords, firewalls, . . .)

� Definition 14.4.7. Information access control: Users may only access those data
they are authorized to access. (; access control lists, safe boxes for storage
media, encryption)

� Definition 14.4.8. Data transfer control: Personal data may not be copied during
transmission between systems. (; encryption)

� Definition 14.4.9. Input control: It must be possible to review retroactively who
entered, changed, or deleted personal data. (; authentication, journaling)

� Definition 14.4.10. Availability control: Personal data have to be protected
against loss and accidental destruction. (; physical/building safety, backups)

� Definition 14.4.11. Obligation of separation: Personal data that was acquired for
separate purposes has to be processed separately.

: 451 2025-06-05

Personally Data (GDPR)

� Definition 14.4.12. A person is called identifiable if it can be identified by a
direct identifier (e.g., passport information) that can identify a person uniquely, or
a combination of one or more quasi-identifiers, i.e. factors specific to the physical,
physiological, genetic, mental, economic, cultural or social identity of that allow to
recognize that person; we call such a combination identifying.

� Definition 14.4.13. We collectively call direct identifiers and identifying collections
of quasi-identifiers personally identifying information (PII).

Definition 14.4.14. Anonymization is the process of deleting PII from a document.

Definition 14.4.15. Pseudonymization is the process of replacing PII in a document
with aliases.

� Example 14.4.16. Quasi-identifiers include name, date of birth, race, location,
. . .

� Definition 14.4.17. Personal data (also called personal information) is any infor-
mation relating to an identified or identifiable person.

� Example 14.4.18. The color name “red” by itself is not personal data, but stored
as part of a data subject’s record as their “favorite color” is personal data; it is the
connection to the person that makes it personal data, not the value itself.

� Axiom 14.4.19. Under the GDPR, any personal data a site collects must be
either anonymized, i.e. PII deleted, or 4fpseudonymized (with the data subject’s PII
consistently replaced with aliases).

� Intuition: With pseudonymization data controllers can still do data analysis that
would be impossible with anonymization.

14.4. INFORMATION PRIVACY 297

: 452 2025-06-05

Customer-Service Requirements (GDPR)

� Visitors must be notified of data the site collects from them and explicitly consent
to that information-gathering. (This site uses cookies ; Agree)

� Data controllers must notify data subjects in a timely way (72h) if any of their
personal data held by the site is breached.

� The data controller needs to specify a data-protection officer (DPO).

� Data subjects have the right to have their presence on the site erased.

� Data subjects can request the disclosure all data the data controller collected on
them. (if the request is in writing, the answer must be on paper)

: 453 2025-06-05

298 CHAPTER 14. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY

Chapter 15

Version Control, Collaboration, and
Project Management

To facilitate group work – both for the IWGS-II project and future projects down the line, we
will start off the semester by looking at state-of-the art project and content management systems
and directly use that in the project.

We will concentrate on two parts of such a system:

• collaborative, versioned document/program development via GIT (see ???)

• issue tracking and management via GitHub/GitLab (???).

Systems like GitLab or GitHub also offer additional features like developer communication, contin-
uous integration, automated deployment, monitoring and security management (collectively called
DevOps) which are way beyond the scope of IWGS.

15.1 Revision Control Systems
We address a very important topic for project management: supporting the life-cycle of project
documents, data, and software in a collaborative process. In this section we discuss how we can use
a set of tools that have been developed for supporting collaborative development of large program
collections can be used for general project artefact management.
We will first introduce the problems and attempts at solutions and the introduce two classes of
revision control systems and discuss their paradigmatic systems.

15.1.1 Dealing with Large/Distributed Projects and Document Collec-
tions

In this subsection we will look at problems in managing the artefacts of large projects. Such
projects range from technical documentation for complex systems over knowledge collections like
the Wikipedia, to software collections like the Linux kernel. They have in common that a large
group of authors/developers manage a large artefact collection over a long period of time.

Web Development Scenario

� Example 15.1.1.

1. Your boss told you to develop an interactive website.

2. You already have an early prototype.

299

300CHAPTER 15. VERSION CONTROL, COLLABORATION, AND PROJECTMANAGEMENT

3. You have a great idea for a new feature and you want to surprise your boss with
an even better prototype, so you have worked on it for two days.

� Problem 1: When you present it to your boss, she only wants the basics done.
What do you do? Idea 1: You make a copy of your file, store it away and
delete the feature from your current document. Problem 2: What if you
worked on the html, css and the .js files for the new feature? Idea 2: You make
a copy of your folder, store it away and delete the feature from all your current
documents. Problem 3: What if you finished the basics and now your boss
wants the cool feature? Idea 3: You go to the stored-away folder, search for the
code fragments of the feature and you copy them over to the newest version of your
files. Problem 4: What if your boss notices that you need help programming
and employs someone? Idea 4: Your colleague will get a copy of your latest folder
and both of you work on the project. At some point you will join the most current
files and the most current code fragments. Problem 5: Let‘s say that you use
dropbox for collaboration.

� What if your colleague introduced a bug?

� What if your colleague deleted a file by accident?

Intuition: Sharing is fine, (bug) tracking not, backup is also not possible on a
broad scale.

: 454 2025-06-05

How do we collaborate?

� Direct collaboration (the human-to-human aspect)

� meetings for brainstorming/conflict management

� calls for current hot problem solving

� Indirect, artefact-based collaboration (the system aspect)

� mails, messages, reports, links, . . . , code fragments

� Idea: Support by artefact-based collaboration by a computer system:

� Communication management

� Project management via issue tracking

� Local and distributed change management

� Such systems are called revision control systems a.k.a. RCS.

: 455 2025-06-05

Collaboration Support by RCS

� Revisions: A revision control system (RCS) copies snapshots of all project changes
in files/subfolders for you.

� Control: A RCS helps you control all collaborators’s revisions over time.

15.1. REVISION CONTROL SYSTEMS 301

� Complexity is hidden

� Tools for browsing your project history

� Tools for collaborating in a project

� System:

� Repository =̂ collection of all revisions + special information (order, what, who)
for a project.

� You decide on which changes count toward a version e.g. code fragments in
index.html and style.css for one feature, but not your list of passwords.

� Committing =̂ the act of telling the RCS that you are finished (for now).

: 456 2025-06-05

Architecture of Revision Control Systems

� Observation: We distinguish three large classes of RCS.

� In local RCS, a working copy uses a repository on the same machine.

� In a centralized RCS, the repository is on a central repository server.

� In a distributed RCS, working copy, use local repositories, which can communicate
change to the web server or other local repositories.

� We will go through these in explaining the respective features as we go along.

: 457 2025-06-05

302CHAPTER 15. VERSION CONTROL, COLLABORATION, AND PROJECTMANAGEMENT

GIT as a Revision Control System for IWGS

� GIT is a powerful distributed revision control system.

� GIT is the current dominant RCS, exceeding 90% adoption in open source projects
and high utilization in industry.

� GIT features a well-designed set of primitive revision control actions, from which
complex behaviours can be composed.

� In particular,

the GIT revision control actions can implement local, centralized, and distributed
revision control.

� We use GIT as the model for revision control systems in IWGS.

: 458 2025-06-05

15.1.2 Local Revision Control: Versioning
We start out with the basics of local revision control systems. This architecture essentially

provides access to past versions with minimal hassle.
We first introduce the concepts and then make them concrete using the git system, which we

will use throughout the IWGS course.

Revision Control Systems

� Definition 15.1.2. A revision control system (RCS) a software system that tracks
the change process of a document collection via a federation of repositories. Each
step in the development history is called a revision.

� Definition 15.1.3. In a RCS, users do not directly work on the repository, but on
a working copy that is synchronized with the repository.

� Definition 15.1.4. A local RCS supports the following revision control actions:
1. initialize: creates a new repository with empty head revision

(a.k.a. head).

2. checkout: given a revision identifier – by default the head
creates a new working copy from the repository.

3. add: places a file in the working copy under control of the
RCS.

4. commit: transmits the differences between the head and
the working copy to the repository, which patches the head.

� Observation 15.1.5. The user’s commits determine the revisions in a RCS.

� Remark: Revision control systems usually store the head revision explicitly and
can compute development histories via reverse diffs.

: 459 2025-06-05

Definition 15.1.2 and Definition 15.1.3 are very general, so that they can cover a wide variety of

15.1. REVISION CONTROL SYSTEMS 303

architectures.
Don’t drink and write code!: RCS even allow to checkout to a specific revision that is not
the head, e.g. if an author wants to base her work on that – or wants to revert some changes.
In fact, most RCS support branching: committing different development lines to the repository,
but we will not go into this here and leave the discussion for later when we discuss distributed
revision control systems where branching is the main mechanism of operation. Before
we become more concrete, let us have a look at the basic ingredient of revision control systems:
computing differences, applying them to documents, and reconciling differences.

Computing and Managing Differences with diff & patch

� Definition 15.1.6. diff is a file comparison utility that computes differencess
between two strings or text files: the source f1 and the target f2. Differencess are
output linewise in a differences δ(f1, f2).

� Definition 15.1.7. patch is a sister utility that applies a differences δ := δ(f1, f2)
to f1 – resulting in f2; we say it patches f1 with δ.

� Example 15.1.8. We compare two simple text files:

The quick brown
fox jumps over
the lazy dog

The quack brown

fox jumps over
the loozy dog

1c1,2
< The quick brown
−−−
> The quack brown
>
3c4
< the lazy dog
−−−
> the loozy dog

� Definition 15.1.9. A differences consists of a sequence of hunks that in turn
consist of a locator which indicates the source line number followed by the lines
deleted in the source and added in the target.

: 460 2025-06-05

In practice, – unlike in our didactic example – differencess are usually (much) smaller than either
the source or the target. This makes the design decision of passing around differencess instead of
files in revision control systems efficient.

15.1.3 GIT as a local Revision Control System
Now that we understand the concepts, let us see how we can use them in practice. For this

we assume that students have installed GIT on their computers, so that they can use it; [CS14,
section 1.5] gives an excellent introduction. For this subsection, we explain GIT workflows for
local revision control, e.g. for a single user who wants to keep track (and revive) past versions of
their code or document collections.

We we explain GIT functionality “from scratch”, and do not presuppose a repository manage-
ment system.

Working with GIT

� Observation: GIT can be used in many situations.

304CHAPTER 15. VERSION CONTROL, COLLABORATION, AND PROJECTMANAGEMENT

� On your Laptop: for software development

� Download GIT from https://git-scm.com/downloads, install (you want to
use it on your local machine)

� We will use GIT from the shell on your system (macOS or linux) or GitBash,
a shell that comes with your GIT download (MSWindows). (graphical front-ends
exist but often hinder understanding)

� Test whether your installation works: git version

� In jupyterLab: For the IWGS homeworks.

� You can use the jupyterLab terminal (the resident shell)

� There is a visual GIT integration into jupyterLab, see the GIT logo on the
left.

: 461 2025-06-05

In all of our concrete examples, we will use UNIX shell commands; for MSWindows users should use
the GIT shell, a GIT enhanced version of the UNIX shell that comes with the GIT distribution, and
not the MSWindows command prompt. There are graphical front-ends for the GIT client, but our
experience shows that using shell commands helps understand the concepts and workflows much
better.

Working with GIT (Initializing a Local Repository)

� Download GIT from https://qgit-scm.com/downloads, install (you want to
use it on your local machine)

� We will use git from the shell on your system (macOS or linux) or GitBash that
comes with your GIT download (MSWindows).(graphical front-ends exist but hinder
understanding)

� Test whether your installation works: git version (should be ≥ 2.30)

� Definition 15.1.10. git init initializes a local repository:

� git init turns the current directory into a GIT working copy by adding a local
repository as a hidden .git folder.

� git init ⟨⟨name⟩⟩ makes working copy + local repository in the ⟨⟨name⟩⟩ subdi-
rectory.

: 462 2025-06-05

We will now come to a GIT peculiarity that is important to understand for working with GIT:
Often we only want to commit only a subset of the changed files – e.g. because the changes
already constitute a achievement of their own or we want to split the development into multiple
commits. There are essentially two ways of achieving this.

1. giving the commit action a list of files to be committed, or

2. marking files for a future commit this is called staging.

The second method is more flexible, since we do not have to remember which files participate in
a commit and we can stage files as we go along. Therefore GIT uses this method, even though it
adds conceptual complexity – actually, the first method can be recovered by syntactic sugar.

https://git-scm.com/downloads
https://qgit-scm.com/downloads

15.1. REVISION CONTROL SYSTEMS 305

Working with GIT (Staging and Committing)

� Overview: GIT local workflow: staging files for commit using git add

Working
Copy

Staging
Area

.git directory
(repository)

Your work here
normal file system

You collect/stage
changes locally

You commit
changes locally

add
commit

checkout

commits acts only on staged files ; git add foo.tex (GIT must know about them)

: 463 2025-06-05

Working with GIT (Staging and Committing)

� Basic GIT commands: (many variants and options ; study them)

git add ⟨⟨file/dir⟩⟩ stages a file or directory ⟨⟨file/dir⟩⟩
git add −−all stages all changes in the current folder
git reset HEAD ⟨⟨file/dir⟩⟩ unstages ⟨⟨file/dir⟩⟩
git commit −m’⟨⟨msg⟩⟩’ commits staged files with commit message ⟨⟨msg⟩⟩
git status gives information about the working copy.

: 464 2025-06-05

We have only shown the most basic commands here. There are many other commands an options
that make your life much easier. For instance, the −a option is very useful for git commit: it
automatically stages all the changed files. git commit −am’foo’ commits all your change in the
current directory (which is often what you want).
Let us now fortify our intuition on working with GIT by exhibiting a typical (but elementary)
workflow.

An Example Git Workflow

� Example 15.1.11. A typical, elementary workflow in GIT in a shell.

306CHAPTER 15. VERSION CONTROL, COLLABORATION, AND PROJECTMANAGEMENT

> git init
Initialized empty Git repository in /tmp
> echo "1,2,3" > test.txt
> git add test.txt
> git commit −m’initializing’

> echo "1,3" > test.txt
> git status
On branch master
Changes not staged for commit:

(use "git add <file>..." to update ...
(use "git checkout −− <file>..." to...

modified: test.txt
no changes added to commit
(use "git add" and/or "git commit −a")

> git add test.txt
> git commit −m’bla’ test.txt
> echo "1,3,4" > test.txt
> git add test.txt 1,3,4 1,3,4 1,3

1,3,4 1,3

1,3 1,3 1,3

1,3 1,3 1,2.3

1,3 1,2,3

1,2,3 1,2,3 1,2,3

1,2,3 1,2,3

1,2,3

Workspace Stage Repository

change

add

change

commit

add

add

commit

: 465 2025-06-05

Note that the shell command echo ⟨⟨string⟩⟩ > ⟨⟨file⟩⟩ updates the contents of the file ⟨⟨file⟩⟩ to
⟨⟨string⟩⟩ or creates ⟨⟨file⟩⟩ with this content in the first place. We use this command to make the
file changes visible in the shell on the left side.

15.1.4 Centralized Revision Control: Collaboration
With this, we can now understand the revision control worfklows in our concrete system.
In its simplest form, a revision control system, can be understood using the Subversion system
that is heavily used in open source projects that have a relatively hierarchical development model.

Collaboration via Centralized RCS

� Definition 15.1.12. A centralized revision control system features

� a single, central repository server (for current revision and reverse diffs)

� local working copies (asynchronous checkouts, updates, commits)

They are kept synchronized by passing around diffs and patching the repository and
working copies. Conflicts are resolved by (three-way) merge.

The revision control actions are those of a local RCS plus

� clone: fetch the current revision from repository server and checkout a new
working copy.

� pull: fetch the pending differences between the revision of the working copy and
the revision of the repository server and merges them into the working copy.

15.1. REVISION CONTROL SYSTEMS 307

� push: if the working copy and the repository are based on the same revision,
then transmit the differences to the repository server and update the revision
there.

fetch and push are dual operations. Just as fetch is integrated into the pull, push is
usually integrated into commit for centralized RCS.

: 466 2025-06-05

For revision control systems we need more than just diff and patch. When we are sending
around diffs along non-linear development histories, then we also have to reconcile diffs that come
via different paths.

Merging Differences

� There are basically two ways of merging the differences of files into one.

� Definition 15.1.13. In two way merge, an automated procedure tries to combine
two different files by copying over differences by guessing or asking the user.

� Definition 15.1.14. In a three way merge the files are f1 and f2 are assumed to
be created by changing a joint original (the parent) p by editing.

If there are hunks h1 in δ(f1, p) and h1 in δ(f2, p) that affect the same line in p,
then we call the pair (h1,h2) a conflict.

The result of a three way merge are two diffs µ3
i(f1, f2, p), which contain the non-

conflicting differences of δ(f i, p) and (representations called conflict markers of) the
conflicts.

� Note: In revision control systems conflicts must be resolved by choosing one
of the alternatives or creating a manually merged revision before changes can be
commited.

: 467 2025-06-05

Merging Differences with merge3

� Definition 15.1.15. The merge3 tool computes a three way merge.

� Example 15.1.16. We compare two simple text files with a parent:

mine.txt your.txt parent.txt conflict marker

This is the file.
Hello

This is the file.
hello

This is the file.
hi

This is the file.
<<<<<<< mine.txt
Hello
||||||| parent.txt
hi
=======
hello
>>>>>>> your.txt

� Remark: The conflict markers in actual RCSs are similar, but may vary.

308CHAPTER 15. VERSION CONTROL, COLLABORATION, AND PROJECTMANAGEMENT

� Note: There are good visual merge3 tools that help you cope with merges. Some
text editors also have support for resolving conflict markers.

� Remark: There are analoga to diff and patch for other file formats, but in
practice, revision control is mostly restricted to text files.

: 468 2025-06-05

Collaboration via Centralized RCS (Example)

� Example 15.1.17 (A Workflow with three Working Copies).

repository

LC1(∅) LC2(O) LC3(O + δ2)

clone O commit δ1 pull δ1 pull δ1

commit cr(δ1, δ2)

: 469 2025-06-05

In the workflow of Example 15.1.17 is a typical one:

1. A first user checks out a new working copy LC1, from the empty repository, adds a couple of
files – we denote the new document collection at this point with O, and commits the difference
δ1 between the working copy and O to the repository which δ1 logs it as “revision 1”.

2. There is another repository LC2, which has been checked out earlier (i.e. based on “revision
0”), and which is now no longer in sync with the repository. So we can pull (i.e. patch) it to
“revision 1” by transferring δ1 to LC2, which thus has same content as LC1, namely O.

3. For a third repository LC3 which has been checked out at “revision 0” we assume that it has
been changed by adding different files, the difference being δ2. Note that as these changes are
relative to “revision 0”, they cannot simply be committed to the repository. Therefore we need
to pull it. As LC3 already contains changes, this amounts to a merge of δ1 and δ2 to get a
new local copy that is essentially O+ δ2, which is now relative to “revision 1”. This can now be
committed to the repository to form “revision 2”.

Note: that in all of this it does not matter who the authors of the respective changes and the
owners of the respective working copies are. They might be different persons, or a single author
might have multiple working copies, e.g. one one the work computer, one on a laptop, and one on
the home desktop. They are all held in sync by pulls, commits.
With this basic mechanism, we can already model quite complex and collaborative workflows. The
basic idea is simple: we just use the pull/commit cycle to synchronize a set of working copies.

Collaboration via Revision Control

� Idea: We can use revision control for collaboration with multiple working copies.

� Diff-Based Collaboration: Centralized RCS takes care of the synchronization:

15.1. REVISION CONTROL SYSTEMS 309

R19

WC1(O17) . . .

up

ci

WCn(O19)

up
ci

� you can only commit, if your revision is the head (otherwise update)

� update merges the changes into your working copy.

� If there are changes on the same line, you have a conflict, which must be resolved.

: 470 2025-06-05

Note: that these collaborative workflows can be asynchronous. In particular working copies can
lag behind the repository as long as they want – they only have to synchronize for commits. This
gives a lot of freedom in the development process.
Also note: that unless the repository and the working copies are on the same computer which is
somewhat unlikely. Commits and updates are only possible while online, this sometimes prevents
authors/developers from grouping changes logically as they have to collect them until they are
online again.

15.1.5 GIT as a centralized RCS
In this subsection, we cover GIT-based collaborative workflows for centralized revision con-

trol, as they occur in small collaborative projects, where a simple centralized structure suffices.
Again, we we explain GIT functionality “from scratch” without using a repository management
system.

Recap: Centralized RCS

� Idea: In a centralized RCS, the repository resides on a repository server.

� Problem: We need some generalizations over local RCS:

� Identifying the repository server.

� Pushing and fetching over the network.

: 471 2025-06-05

Working with GIT (Remote Repositories)

� Recap: A repository can be connected to one or several remote repositories.

� GIT commands for working with remote repositories:

310CHAPTER 15. VERSION CONTROL, COLLABORATION, AND PROJECTMANAGEMENT

git remote add ⟨⟨name⟩⟩ ⟨⟨URI⟩⟩ gives the repos at ⟨⟨URI⟩⟩ the name ⟨⟨name⟩⟩
git remote shows names of all remote repositories

� git remote −v shows the remote repositories e.g.

MiKo:collaboration kohlhase$ git remote −v
origin https://gitlab.cs.fau.de/iwgs−ss19/collaboration.git (fetch)
origin https://gitlab.cs.fau.de/iwgs−ss19/collaboration.git (push)

� git remote add ⟨⟨name⟩⟩ ⟨⟨URI⟩⟩ adds remote repositories e.g.

kohlhase$ git remote add upstream git@gl.kwarc.info:test/collab.git
kohlhase$ git remote −v
origin https://gitlab.cs.fau.de/iwgs−ss19/collaboration.git (fetch)
origin https://gitlab.cs.fau.de:iwgs−ss19/collaboration.git (push)
upstream https://gl.kwarc.info:test/collab.git (fetch)
upstream https://gl.kwarc.info:test/collab.git (push)

� We can now pull/push to the new remote repository, e.g. git push upstream master

� Note: git push is just syntactic sugar for git push origin master

: 472 2025-06-05

Before you start, you should configure some global options for GIT to make your life easier and
the documentation of your interactions on the repository server more systematic.

Configuring GIT on your Computer

� Background: Configuration sets sensible defaults. (Saves you typing)

� Definition 15.1.18. git config allows to view and set configuration options

git config −−list shows configuration
git config ⟨⟨key⟩⟩ ⟨⟨value⟩⟩ sets config option ⟨⟨key⟩⟩ to value ⟨⟨value⟩⟩

� Example 15.1.19 (Name and E-Mail).

git config −−global user.name "John Doe"
git config −−global user.email johndoe@example.com

� Example 15.1.20 (Default Repositories and Branches). Always pull the branch
called main from the repository called origin.

git config branch.master.remote origin
git config branch.master.merge refs/heads/master

Replace git push origin master with a simple git push.

: 473 2025-06-05

Working with Remote Repositories: Pushing and Pulling

� GIT commands for working with remote repositories

15.1. REVISION CONTROL SYSTEMS 311

git clone ⟨⟨URI⟩⟩ clones the repos at ⟨⟨URI⟩⟩
git push ⟨⟨repos⟩⟩ ⟨⟨branch⟩⟩ pushes all commits to branch ⟨⟨branch⟩⟩ on ⟨⟨repos⟩⟩
git pull ⟨⟨repos⟩⟩ ⟨⟨branch⟩⟩ fetches and merges branch ⟨⟨branch⟩⟩ from ⟨⟨repos⟩⟩

� Overview: GIT centralized workflow: pushing and pulling to a remote repository

Working
Copy

Staging
Area

.git directory
(repository)

GitLab Repository
= remote repos

Your work here
normal file system

You collect/stage
changes locally

You commit
changes locally

You push
changes remotely

add
commit push

fetchmerge

pull

: 474 2025-06-05

Working with GIT (Cloning a Remote Repository)

� Alternative: Clone a remote repository, i.e. git init + git pull

git clone https://gitlab.cs.fau.de/iwgs−ss19/collaboration.git
Cloning into ’collaboration’...
Username for ’https://gitlab.cs.fau.de’: yp70uzyj
Password for ’https://yp70uzyj@gitlab.cs.fau.de’:
...

: 475 2025-06-05

15.1.6 Distributed Revision Control
We now introduce distributed revision control systems using the GIT system as an example.

Distributed Version Control

� Problems with Centralized Revision Control:

1. We can only commit when online! (but we work on the train)

2. All collaboration goes via one, central repository. (prescribes workflow)

� Idea: Distribute the repositories and move patches between them.

R19 headless

WC1(Oδ
17) R1(O17)

merge

commit

. . .
fetch

push

WCn(Oδ′

19)Rn(O19)

merge

commitfetch push

merge

1. local commits to local repositories

2. all repositories created equal (flexible organization)

312CHAPTER 15. VERSION CONTROL, COLLABORATION, AND PROJECTMANAGEMENT

� Definition 15.1.21. We call a revision control system distributed, iff it allows
multiple repositories that can exchanged patches.

� Definition 15.1.22. We call a repository headless (or bare), if used without a
working copy.

� Observation: Putting a headless repository onto a web server, yields a repository
server.

: 476 2025-06-05

The concept of distributed revision control systems is motivated by the two shortcomings at the
top of the slide, which can be remedies by a single – if relatively radical idea: allowing lots of
repositories that can communicate with each other by exchanging patches. Local repositories allow
commits while offline and distributed repositories allow for flexible architectures.
We now come to the most prominent of the distributed revision control system: GIT. It implements
the concepts motivated above. Somewhat paradoxically, the distributed nature of the workflows
makes it simpler and more efficient to implement.

Distributed Version Control with GIT

� Definition 15.1.23. GIT is a distributed revision control system that features

� local repositories for each working copy.

� multiple remote repositories connected to a local repository

� clone a remote repository ; make local repository+working copy
� local repository changes can be fetched from and pushed to a remote repos-

itory (the upstream/downstream repositories).

� branches and forks (remote upstream repository)

� Software Support: Facilitates working with GIT:

� GitHub, a repository hosting service at http://GitHub.com (free
public/private repositories)

� GitLab, an open source repository management system and repository hosting
service at http://GitLab.com (free public/private repositories)

: 477 2025-06-05

15.1.7 Working with GIT in large Projects

In this subsection, we will (further) discuss the concepts for using GIT in large, long-lived

http://GitHub.com
http://GitLab.com

15.1. REVISION CONTROL SYSTEMS 313

projects. This is less important for IWGS, since projects are rather small. But we want to at least
make students aware of GIT branching and the GIT flow paradigm, and we want to clear up the
mystery of which GIT often speaks of master.
We can now come back to the topic, where GIT really shines: branching. The main reason for
this is that merging is so well supported in GIT. Together with the distributed “local-repository”
architecture, this allows for very flexible organization of workflows. We will discuss the basics of
branch-based and fork-based workflows here.

GIT Branches and Forks

� GIT special commands for making, switching, and merging branches.

git branch ⟨⟨branch⟩⟩ makes a branch with name ⟨⟨name⟩⟩
git checkout ⟨⟨branch⟩⟩ switches a working copy to branch ⟨⟨branch⟩⟩
git branch −v shows all branches
git branch −d ⟨⟨branch⟩⟩ deletes branch ⟨⟨branch⟩⟩

� Intuition: In GIT branches are very similar to repositories, but more lightweight.

Repositories can have different permissions; branches inhert these.

� Fork-based Collaboration: If you want to contribute to a repository R you have
no push-rights on,

1. clone R to a new repository R′ you own (i.e. fork it; R′ is a fork of R)

2. develop your contribution on R′.

3. ask Rs owners to pull from R′ (pull request)

GIT repository management systems like GitHub and GitLab support this.

: 478 2025-06-05

What we have seen above, let us briefly discuss an elaborate workflow suitable for large develop-
ment teams, which has become known under the name “GitFlow”.

GitFlow: An Elaborate Development Model based on GIT

314CHAPTER 15. VERSION CONTROL, COLLABORATION, AND PROJECTMANAGEMENT

� Definition 15.1.24 (Development
Model). [Dri10] suggests GIT flow, which
includes:

� A main branch called main that all other
branches merge into.

� New functionality is developed “feature-
by-feature” on feature branches.

� A development branch (usually called
devel) that integrates all feature branches
and is merged into master once the inte-
grated functionality is stable.

� (possibly) release branches for every re-
lease; they collect bugfixes, but no new
features.

� Most large software development projects
adopt aspects of GIT flow.

: 479 2025-06-05

15.2 Working with GIT and GitLab/GitHub

In principle we know all we need for running GIT in practice. But if we want to make use of
remote repositories – and without that, we lack most of the advantages of revision control systems
– we have to deploy a web server which takes on the upstream repositories.

Even though this is relatively simple to set up, there are now dedicated web applications that
supply repositories and additional project managment infrastructure.

Working with GitLab/GitHub

� GIT it sufficient to set up a remote repository. (but tedious [CS14, chapter 4])

� Idea: Use a GIT repository manager like GitLab/GitHub (we use GitLab)

� Definition 15.2.1. A repository management system is an web application that
supports the administration of a repository server and manages authentication and
authorization.

� Example 15.2.2. GitLab is an open source repository management system and
repository hosting service at http://GitLab.com.(free public/private repositories)

� Definition 15.2.3. A repository hosting service is a web based repository manage-
ment system that also offers storage space for repositories.

� Example 15.2.4. GitHub is a repository hosting service at http://GitHub.com.
(free public repositories)

GitHub is now the default hosting service for open source software development, it
hosts more than 190 Million repositories (March 2020).

: 480 2025-06-05

We could be using GitHub for IWGS – and we would probably do so for an open-source software

http://GitLab.com
http://GitHub.com

15.2. WORKING WITH GIT AND GITLAB/GITHUB 315

proejct – but we will use the FAU offering: a GitLab instance that offers repository hosting to all
FAU members and log in via FAU IDM. The instructors of IWGS have installed a special group
for repository hosting.

Working with GitLab/GitHub (continued)

� Definition 15.2.5. Often, repository management systems organize repositories
(called projects in GitLab) hierarchically into groups (also called namespaces) and
provide a personal group to all users.

� Concretely: we use the FAU GitLab: https://gitlab.cs.fau.de

1. sign in with the FAU Single Sign On (aka. FAU IDM account)

2. this makes an account there and gives you a personal group https://gitlab.
cs.fau.de/⟨⟨SSID⟩⟩

3. IWGS has a course group https://gitlab.cs.fau.de/iwgs-ss19(the course
project goes there)

4. Note that the SSO credentials are only for log in! You will have to set a
password (or upload an SSH Key, see below) seperately to push. Using the SSO
credentials for authentication during push will not work!

: 481 2025-06-05

Now we are ready to play with GitLab, and please do, there is nothing you can do wrong. And
– that is the beauty of revision control systems – few things you cannot undo.

Making Repositories on GitLab

� Make a new project with , play with it (you can always delete it)

� Definition 15.2.6. Group/project visibility can be one of three states:

� Private: Project access must be granted explicitly to each user.

� Internal: The project can be accessed by any authenticated user.

� Public: The project can be accessed without any authentication.

Private and public make most sense in our setting.

� Exercise: Make a repository, clone it locally, add a file to it, commit that, let your
friends clone/change/commit it, merge their changes, . . . (see the homework)

: 482 2025-06-05

Using GitLab for the IWGS Project

� Make a in a member

: 483 2025-06-05

To understand what these visibility levels mean, we have to talk about authorization in GitLab,
i.e. how we can manage what interactions a particular (class of) user is allowed to do.

https://gitlab.cs.fau.de
https://gitlab.cs.fau.de/users/auth/saml
https://gitlab.cs.fau.de/
https://gitlab.cs.fau.de/
https://gitlab.cs.fau.de/iwgs-ss19
https://gitlab.cs.fau.de/users/auth/saml

316CHAPTER 15. VERSION CONTROL, COLLABORATION, AND PROJECTMANAGEMENT

Authorization in GitLab: Managing Access Permissions

� Definition 15.2.7. Authorization refers to a set of rules that determine who is
allowed to do what.

� Definition 15.2.8. Authorization is often operationalized by assigning permission
levels and binding the authorization to execute particular interactions to permission
levels.

� Definition 15.2.9. GitLab has five permission levels for repositories:

1. guests can clone and see/report issues . . .

2. reporters can also assign issues . . .

3. developers can also push, create branches . . .

4. maintainers can also assign permission levels . . .

5. owners can also delete repository . . .

� Intuition: In a public repository, everyone is guest, in a internal one, logged in
users are.

: 484 2025-06-05

15.3 Excursion: Authentication with SSH

We now come to a topic that is of practical relevance, whenever we work with web applications
that work with restricted resources – in this case the content of your private repositories: au-
thentication. Generally, there are two authentication methods: the one via passwords built into
HTTPS and ssh-authentication, which we will briefly discuss here, since it is the more convenient
method for interacting with GitLab (and GitHub).

Before we come to ssh-authentication, let us clarify the concept of authentication in gen-
eral.

Authentication

� Definition 15.3.1. Authentication is the process of ascertaining that somebody
really is who they claim to be.

� Definition 15.3.2. Authentication can be performed by assertaining an authenti-
cation factor, i.e. testing for something the user

� knows, e.g. a password or answer to a security question – kwowledge factor

� has, e.g. an ID card, key, implanted device, software token, – ownership factorx

� is or does, e.g. a fingerprint, retinal pattern, DNA sequence, or voice – inheri-
tance factor.

� Note: Password-based authentication is known to be problematic. (and you have
to remember/type it)

� One Problem: Server and user must both know the password to authenticate
passwords are symmetric keys: the server can leak them.

: 485 2025-06-05

15.3. EXCURSION: AUTHENTICATION WITH SSH 317

We now come to an authentication method that leaves the user out of the loop completely.
It workd via cryptographic keys, which are exchanged between the GIT client and server. In this
particular setup, we make use of public key cryptography, which only transfers public keys and
keeps the private keys local; minimizing the user of passwords and leakage.

The details of this are quite involved, so we only give a very brief introduction of the moving
parts.

Authentication by Cryptographic Public Keys

� Definition 15.3.3. Cryptography is the practice of transmitting a plain text t by
encoding it into a cipher text t′, to hide its content from anyone but the legitimate
reciever who can decode t′ to t.

� Definition 15.3.4. Public key cryptography split the key into an encode key e and
a decode key d

� key e can encode a text t to t′, but only d can decode t′ to t.

� Definition 15.3.5 (Public Key Authentication). built into the SSH communi-
cation protocol.

1. user generates key pair (e,d), deposits d on server as certificate, keeps e secret.

2. user encodes a text t with e to t′ send t+ t′ to server

3. server decodes t′ to t′′ with d and verifies t = t′′ ; OK, iff t = t′′.

� Advantage: Passwords canot be leaked, need not be transmitted, retyped.

: 486 2025-06-05

In practice, working with SSH-based authentication is quite easy to work with: we have to
generate a public/private key pair – there are standard utilities for that, deposit the public key in
GitLab, and then use clone using the SSH URI supplied by GitLab.

Working with GIT (Cloning a Remote Repository with SSH)

� Alternative: Clone a remote repository via SSH URL

kohlhase$ git clone git@gitlab.cs.fau.de:iwgs−ss19/collaboration.git
Cloning into ’collaboration’...
remote: Enumerating objects: 12, done.
remote: Counting objects: 100% (12/12), done.
remote: Compressing objects: 100% (5/5), done.
remote: Total 12 (delta 1), reused 0 (delta 0)
Receiving objects: 100% (12/12), done.
Resolving deltas: 100% (1/1), done.

� But we need a key pair for this to work.
Go to https://gitlab.cs.fau.de/profile/keys and follow the instructions
there

� essentially: generate a key pair, copy one into GitLab.

: 487 2025-06-05

https://gitlab.cs.fau.de/profile/keys

318CHAPTER 15. VERSION CONTROL, COLLABORATION, AND PROJECTMANAGEMENT

We will now complement revision control systems, as discussed above, with issue tracking
systems. The former support dealing with changes in the collaborative development of document
collections, the latter support the collaboratie management of issues the reasons for changes.

15.4 Bug/Issue Tracking Systems

In this section we will discuss issue tracking systems, which support the collaborative manage-
ment of reports on a particular problem, feature request or general task, as well as its its status
and other relevant data. These systems originated from tracking systems for help desks and in
software engineering, but have evolved into general project planning systems.

issue tracking systems
We will mainly look at systems that originate from software engineering applications here.

Bug/Issue Tracking Systems

� Definition 15.4.1. An issue tracker (also called issue tracking system simply bug-
tracker) is a software application that keeps track of reported issues i.e. software
bugs, tasks, and feature requests – in software development projects.

� Example 15.4.2. There are many open-source and commercial bugtrackers

� bugzilla: http://bugzilla.org (Mozilla’s bugtracker)

� TRAC: http://trac.edgewall.org (mostly for Subversion)

� GitHub: http://github.com (probably the most used)

� GitLab: http://gitlab.com (open source version of GitHub)

� JIRA: https://www.atlassian.com/software/jira (proprietary)

� Most bugtrackers are web applications and also integrate a wiki and integrate a
revision control system via extended markdown.

: 488 2025-06-05

It is no coincidence that issue trackers often come bundled with revision control systems; they form
the perfect complement: while the latter track large digital artefacts over extended development
cycles, the issue trackers track the tasks induced by the development over the same time frame. It
is natural that the two should be well-synchronized for a successful development project.
Issue trackers manage issues and track their status over its whole lifetime – from the initial report
to its resolution. This results in a particular set of components that are present in all systems.

The Anatomy of an Issue

� Definition 15.4.3. An issue (or bug report) specifies

� title: a short and descriptive overview (one line)

� description: a precise description of the expected and actual behavior, giving
exact reference to the component, version, and environment in which the bug
occurs. (bugs must be reproducible and localizable)

� issue metadata: who, when, what, why, state, . . . (see below)

� conversation: a forum like facility for disussing an issue.

http://bugzilla.org
http://trac.edgewall.org
http://github.com
http://gitlab.com
https://www.atlassian.com/software/jira

15.4. BUG/ISSUE TRACKING SYSTEMS 319

� attachment: e.g. a screen shot, set of inputs, etc.

� Definition 15.4.4. A feature request is an issue that only specifies the expected
behavior and proposes ways of implementing that.

: 489 2025-06-05

The conversation of an issue is a lightweight text category, which should be efficient to write,
but has some structure to make reading and understanding the concepts and details involved. In
particular, it is important to be able to refer to the program code, other issues, other developers,
commits, etc.

Most bugtrackers use the markdown format, which strikes a good balance between structure
and brevity of markup codes and extend it with bugtrackers specific markup.

We use the opportunity to introduce markdown in general before we come to the exten-
sions.

Markdown a simple Markup Format Generating HTML
.

� Idea: We can translate between markup formats.

� Definition 15.4.5. Markdown is a family of markup formats whose control words
are unobtrusive and easy to write in a text editor. It is intended to be converted to
HTML and other formats for display.

� Example 15.4.6. Markdown is used in applications that want to make user input
easy and efficient, e.g. wikis and issue tracking systems.

� Workflow: Users write markdown, which is formatted to HTML and then served
for display.

� A good cheet-sheet for markdown control words can be found at https://github.
com/adam-p/markdown-here/wiki/Markdown-Cheatsheet.

: 490 2025-06-05

Instead of introducing the markdown syntax systematically, let us look at an example that shows
the most prominent control words in action and see how things look in a markdown-based appli-
cation (and behind the scenes as HTML).

Markdown a simple Markup Language Generating HTML

� Example 15.4.7. We show the most important Markdown commands.

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

320CHAPTER 15. VERSION CONTROL, COLLABORATION, AND PROJECTMANAGEMENT

Markdown syntax Generated HTML
Heading
Sub−heading
Another deeper heading

Paragraphs are separated
by a blank line.

Two spaces at the end of a
line leave a line break.

Text attributes _italic_,
∗∗bold∗∗, ‘monospace‘.

Bullet list:
∗ apples
∗ oranges
∗ pears

Numbered list:
1. apples
2. oranges
3. pears

A [link](http://example.com). <h1>Heading</h1>
<h2>Sub−heading</h2>
<h3>Another deeper heading</h3>
<p>Paragraphs are separated by a blank line.</p>
<p>Two spaces at the end of a

line leave a
 line break.</p>
<p>Text attributes italic,
bold,
<code>monospace</code>.</p>
<p>Bullet list:</p>

apples
oranges
pears

<p>Numbered list:</p>

apples
oranges
pears

<p>A link.</p>

: 491 2025-06-05

Markdown was originally developed for wikis, and its markup infrastructure reflects that. For
use in issue tracking systems, we need to also reference to the program code, other issues, other
developers, commits, etc.

GitHub flavored markdown: Tracker Specific Extensions

� Remark 15.4.8. Source code hosting systems offer special extensions for referencing
their components.

� Definition 15.4.9. GitHub flavored markdown (GFM) is a markdown dialect ex-
tended for the use in GIT-based issue tracking systems; see [Gfm] for the specifica-
tion.

� Example 15.4.10. GitHub/GitLab recognize most of GFM, most usefully

� @foo for team members (@all for all project members), e.g. “cc: @miko”

� #123 for issues, e.g. “depends on #4711 ”

� !123 for merge requests, e.g. “but merge #19 first”

� $123 for code snippets, e.g. “see $123 for an example usage”

� 1234567 for commits, e.g. “fixed by 4c0decb yesterday ”.

15.4. BUG/ISSUE TRACKING SYSTEMS 321

� [file](path/to/file) for file references,
e.g. “as we see in [pre.tex](../lib/pre.tex) ”

� Observation 15.4.11. Very useful for project planning and reporting in GitLab
and GitHub.

: 492 2025-06-05

The anatomy of an issue only enables/restricts the form of an issue, not what would help the
project along. We will explore that – to get you thinking – in a counter-example and the show
what would have helped the developers.

Issues – How to Write a Good One

� The descriptions or issues should be concise, but describe all pertinent aspects of
the situation leading to the unexpected behavior.

� Example 15.4.12 (A bad bug report description).My browser crashed. I think
I was on foo.com. I think that this is a really bad problem and you should fix it or
else nobody will use your browser.

� Example 15.4.13 (A good one).I crash each time I go to foo.com (Mozilla build
20000609, Win NT 4.0SP5). This link will crash Firefox reproducibly unless you
remove the border=0 attribute:

� Remember: Developers are also human (try to minimize their work)
Think about what would help you understand and reproduce the problem.

: 493 2025-06-05

Let us now survey the typical workflow supported by a issue tracking systems by presenting the
typical life-cycle of an issue.

Bugtracker Workflow

� Definition 15.4.14 (Typical Workflow). supported by all bugtrackers

� user reports issue (files report in the system)

� other users extend/discuss/up/downvote issue

� QA engineer triages issues by classification, remove duplicates, identify depen-
dencies, tie to component, . . . and assign to developer.

� developer accept or reassigns issue (fixes who is responsible primarily)

� project planning by identification of sub-issues, dependencies (new issues)

� bug fixing (design, implementation, testing)

� issue landing (sign-off, integration into code base)

� release of the fix (in the next revision)

� QA engineer or developer closes issue

� Observation 15.4.15. An issue tracker can serve as a full blown project planning
system, if used accordingly.

322CHAPTER 15. VERSION CONTROL, COLLABORATION, AND PROJECTMANAGEMENT

� Definition 15.4.16. For timing work plans, most issue trackers provide milestones
that issues can be targeted to.

: 494 2025-06-05

The workflow presented on the last slide is supported by metadata recorded in the issue, most
importantly some kind representation of a issue state.

Administrative Metadata for Issues

� To make the issue based workflows work we need data.

� Definition 15.4.17 (Administrative Metadata). Issue metadata can specify

� issue number: for referencing with e.g. #15

� an assignee: a developer currently responsible

� participants: people who get notified of changes/comments

� labels: for specializing bug search

� a state: e.g. one of new, assigned, fixed/closed, reopened.

� a resolution for fixed bugs, e.g.

� FIXED: source updated and tested
� INVALID: not a bug in the code
� WONTFIX: “feature”, not a bug
� DUPLICATE: already reported elsewhere; include reference
� WORKSFORME: couldn’t reproduce issue

� dependencies: which issues does this one depend on/block?

: 495 2025-06-05

The resolutions can be realized in different ways in different bugtrackers. The ones shown here
are hard coded in bugzilla. GitHub and GitLab use a system of developer-definable labels and a
set of issue boards which are inspired by Kanban boards to assign and move between states and
resolutions.

Chapter 16

What did we learn in IWGS?

Outline of IWGS 1:

� Programming in Python: (main tool in IWGS)

� Systematics and culture of programming

� Program and control structures

� Basic data structures like numbers and wordsstring, character encodings, uni-
code, and regular expressions

� Electronic documents and document processing:

� text files

� markup systems, HTML, and CSS

� XML: Documents are trees.

� Web technologies for interactive documents and web applications

� internet infrastructure: web browsers and server

� server-side computation: bottle routing and

� client-side interaction: dynamic HTML, JavaScript, HTML forms

� Web application project (fill in the blanks to obtain a working web app)

: 496 2025-06-05

Outline of IWGS-II:

� Databases

� CRUD operations, querying, and python embedding

� XML and JSON for file based data storage

� BooksApp: a Books Application with persistent storage

� Image processing

� Basics

323

324 CHAPTER 16. WHAT DID WE LEARN IN IWGS?

� Image transformations, Image Understanding

� Ontologies, semantic web, and WissKI

� Ontologies (inference ; get out more than you put in)

� semantic web Technologies (standardize ontology formats and inference)

� Using semantic web Tech for cultural heritage research data ; the WissKI
System

� Legal Foundations of Information Systems

� Copyright & Licensing

� Data Protection (GDPR)

: 497 2025-06-05

Bibliography

[All18] Jay Allen. New User Tutorial: Basic Shell Commands. 2018. url: https://www.
liquidweb.com/kb/new- user- tutorial- basic- shell- commands/ (visited on
10/22/2018).

[BHK16] Jens Bove, Lutz Heusinger, and Angela Kailus.Marburger Informations-, Dokumentations-
und Administrations-System (MIDAS): Handbuch und CD. 4th ed. K.G.Saur, 2016.
doi: 10.11588/artdok.00003770.

[BLFM05] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform Resource Identifier
(URI): Generic Syntax. RFC 3986. Internet Engineering Task Force (IETF), 2005.
url: http://www.ietf.org/rfc/rfc3986.txt.

[CC] CIDOC CRM - The CIDOC Conceptual Reference Model. url: http://www.cidoc-
crm.org/ (visited on 07/13/2020).

[CQ69] Allan M. Collins and M. Ross Quillian. “Retrieval time from semantic memory”. In:
Journal of verbal learning and verbal behavior 8.2 (1969), pp. 240–247. doi: 10.1016/
S0022-5371(69)80069-1.

[CS14] Scott Chacon and Ben Straub. Pro Git. 2nd Edition. APress, 2014. isbn: 978-1484200773.
url: https://git-scm.com/book/en/v2.

[CSSa] All CSS Specifications. url: https://www.w3.org/Style/CSS/specs.en.html
(visited on 01/12/2020).

[CSSb] CSS Specificity. url: https : / / en . wikipedia . org / wiki / Cascading _ Style _
Sheets#Specificity (visited on 12/03/2018).

[CSSc] CSS Tutorial. url: https://www.w3schools.com/css/default.asp (visited on
12/02/2018).

[DCM12] DCMI Usage Board. DCMI Metadata Terms. DCMI Recommendation. Dublin Core
Metadata Initiative, June 14, 2012. url: http://dublincore.org/documents/
2012/06/14/dcmi-terms/.

[DH98] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC
2460. Internet Engineering Task Force (IETF), 1998. url: http://www.ietf.org/
rfc/rfc2460.txt.

[Dri10] Vincent Driessen. A successful Git branching model. online at http://nvie.com/
posts/a- successful- git- branching- model/. 2010. url: http://nvie.com/
posts/a-successful-git-branching-model/ (visited on 03/19/2015).

[Dru] Drupal.org – Community plumbing. url: http://drupal.org (visited on 02/14/2015).

[Ecm] ECMAScript Language Specification. ECMA Standard. 5th Edition. Dec. 2009.

[ECRMa] erlangen-crm. url: https://github.com/erlangen-crm (visited on 07/13/2020).

[ECRMb] Erlangen CRM/OWL - An OWL DL 1.0 implementation of the CIDOC Conceptual
Reference Model (CIDOC CRM). url: http://erlangen- crm.org/ (visited on
07/13/2020).

325

https://www.liquidweb.com/kb/new-user-tutorial-basic-shell-commands/
https://www.liquidweb.com/kb/new-user-tutorial-basic-shell-commands/
https://doi.org/10.11588/artdok.00003770
http://www.ietf.org/rfc/rfc3986.txt
http://www.cidoc-crm.org/
http://www.cidoc-crm.org/
https://doi.org/10.1016/S0022-5371(69)80069-1
https://doi.org/10.1016/S0022-5371(69)80069-1
https://git-scm.com/book/en/v2
https://www.w3.org/Style/CSS/specs.en.html
https://en.wikipedia.org/wiki/Cascading_Style_Sheets#Specificity
https://en.wikipedia.org/wiki/Cascading_Style_Sheets#Specificity
https://www.w3schools.com/css/default.asp
http://dublincore.org/documents/2012/06/14/dcmi-terms/
http://dublincore.org/documents/2012/06/14/dcmi-terms/
http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc2460.txt
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
http://drupal.org
https://github.com/erlangen-crm
http://erlangen-crm.org/

326 BIBLIOGRAPHY

[ET] xml.etree.ElementTree – The ElementTree XML API. url: https://docs.python.
org/3/library/xml.etree.elementtree.html (visited on 04/15/2021).

[FAIR18] European Commission Expert Group on FAIR Data. Turning FAIR into reality. 2018.
doi: 10.2777/1524.

[Fie+99] R. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. Internet En-
gineering Task Force (IETF), 1999. url: http://www.ietf.org/rfc/rfc2616.txt.

[FOAF14] FOAF Vocabulary Specification 0.99. Namespace Document. The FOAF Project,
Jan. 14, 2014. url: http://xmlns.com/foaf/spec/.

[Gfm] GitHub Flavored Markdown Spec. url: https://github.github.com/gfm/ (visited
on 05/10/2020).

[Gla17] Matt Glaman. Drupal 8 Development Cookbook – Harness the power of Drupal 8 with
this recipe-based practical guide. 2nd ed. Packt Publishing, 2-17. isbn: 9781788290401.

[GN] Geonames. url: https://www.geonames.org/ (visited on 07/29/2020).

[GND] DNB – The Integrated Authority File (GND). url: https://www.dnb.de/EN/
Professionell/Standardisierung/GND/gnd_node.html (visited on 07/29/2020).

[Her+13a] Ivan Herman et al. RDF 1.1 Primer (Second Edition). Rich Structured Data Markup
for Web Documents. W3CWorking Group Note. WorldWideWeb Consortium (W3C),
2013. url: http://www.w3.org/TR/rdfa-primer.

[Her+13b] Ivan Herman et al. RDFa 1.1 Primer – Second Edition. Rich Structured Data Markup
for Web Documents. W3CWorking Goup Note. World Wide Web Consortium (W3C),
Apr. 19, 2013. url: http://www.w3.org/TR/xhtml-rdfa-primer/.

[Hic+14] Ian Hickson et al. HTML5. A Vocabulary and Associated APIs for HTML and XHTML.
W3C Recommentation. World Wide Web Consortium (W3C), Oct. 28, 2014. url:
http://www.w3.org/TR/html5/.

[HiDa] HiDa. url: https://www.startext.de/produkte/hida (visited on 07/12/2020).

[Hit+12] Pascal Hitzler et al. OWL 2 Web Ontology Language Primer (Second Edition). W3C
Recommendation. World Wide Web Consortium (W3C), 2012. url: http://www.
w3.org/TR/owl-primer.

[HL11] Martin Hilbert and Priscila López. “The World’s Technological Capacity to Store,
Communicate, and Compute Information”. In: Science 331 (2011). doi: 10.1126/
science.1200970. url: http://www.sciencemag.org/content/331/6018/692.
full.pdf.

[HWC] The Hello World Collection. url: http://helloworldcollection.de/ (visited on
11/23/2018).

[JKI] Jonas Betzendahl. juptyter.kwarc.info Documentation. url: https://kwarc.
info/teaching/IWGS/jupyter-documentation.pdf (visited on 08/29/2020).

[JS] json – JSON encoder and decoder. url: https://docs.python.org/3/library/
json.html (visited on 04/16/2021).

[Kar] Folgert Karsdorp. Python Programming for the Humanities. url: http : / / www .
karsdorp.io/python-course/ (visited on 10/14/2018).

[KC04] Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF): Con-
cepts and Abstract Syntax. W3C Recommendation. World Wide Web Consortium
(W3C), Feb. 10, 2004. url: http://www.w3.org/TR/2004/REC-rdf-concepts-
20040210/.

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathematical documents
[Version 1.2]. LNAI 4180. Springer Verlag, Aug. 2006. url: http://omdoc.org/
pubs/omdoc1.2.pdf.

https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.python.org/3/library/xml.etree.elementtree.html
https://doi.org/10.2777/1524
http://www.ietf.org/rfc/rfc2616.txt
http://xmlns.com/foaf/spec/
https://github.github.com/gfm/
https://www.geonames.org/
https://www.dnb.de/EN/Professionell/Standardisierung/GND/gnd_node.html
https://www.dnb.de/EN/Professionell/Standardisierung/GND/gnd_node.html
http://www.w3.org/TR/rdfa-primer
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/html5/
https://www.startext.de/produkte/hida
http://www.w3.org/TR/owl-primer
http://www.w3.org/TR/owl-primer
https://doi.org/10.1126/science.1200970
https://doi.org/10.1126/science.1200970
http://www.sciencemag.org/content/331/6018/692.full.pdf
http://www.sciencemag.org/content/331/6018/692.full.pdf
http://helloworldcollection.de/
https://kwarc.info/teaching/IWGS/jupyter-documentation.pdf
https://kwarc.info/teaching/IWGS/jupyter-documentation.pdf
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
http://www.karsdorp.io/python-course/
http://www.karsdorp.io/python-course/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://omdoc.org/pubs/omdoc1.2.pdf
http://omdoc.org/pubs/omdoc1.2.pdf

BIBLIOGRAPHY 327

[Koh08] Michael Kohlhase. “Using LATEX as a Semantic Markup Format”. In: Mathematics in
Computer Science 2.2 (2008), pp. 279–304. url: https://kwarc.info/kohlhase/
papers/mcs08-stex.pdf.

[LM] LabelMe: the open annotation tool. url: http://labelme.csail.mit.edu (visited
on 08/28/2020).

[LOD] The Linked Open Data Cloud. url: https://lod-cloud.net/ (visited on 08/19/2020).

[LP] Learn Python – Free Interactive Python Tutorial. url: https://www.learnpython.
org/ (visited on 10/24/2018).

[LXMLa] lxml – XML and HTML with Python. url: https://lxml.de (visited on 12/09/2019).

[LXMLb] lxml API. url: https://lxml.de/api/ (visited on 12/09/2019).

[LXMLc] The lxml.etree Tutorial. url: https://lxml.de/tutorial.html (visited on 12/09/2019).

[Nor+18a] Emily Nordmann et al. Lecture capture: Practical recommendations for students and
lecturers. 2018. url: https://osf.io/huydx/download.

[Nor+18b] Emily Nordmann et al.Vorlesungsaufzeichnungen nutzen: Eine Anleitung für Studierende.
2018. url: https://osf.io/e6r7a/download.

[ODC] Open Data Commons – Legal Tools For Open Data. url: https://opendatacommons.
org/ (visited on 07/29/2020).

[OWL09] OWL Working Group. OWL 2 Web Ontology Language: Document Overview. W3C
Recommendation. World Wide Web Consortium (W3C), Oct. 27, 2009. url: http:
//www.w3.org/TR/2009/REC-owl2-overview-20091027/.

[P3D] Python 3 Documentation. url: https://docs.python.org/3/ (visited on 09/02/2014).

[PMDA] Python – MySQL Database Access. url: https : / / www . tutorialspoint . com /
python/python_database_access.htm (visited on 11/18/2018).

[Pro] Protégé. Project Home page at http://protege.stanford.edu. url: http://
protege.stanford.edu.

[PRR97] G. Probst, St. Raub, and Kai Romhardt. Wissen managen. 4 (2003). Gabler Verlag,
1997.

[PS08] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF. W3C
Recommendation. World Wide Web Consortium (W3C), Jan. 15, 2008. url: http:
//www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/.

[PyRegex] Rodolfo Carvalho. PyRegex - Your Python Regular Expression’s Best Buddy. url:
http://www.pyregex.com/ (visited on 12/03/2018).

[Pyt] re – Regular expression operations. online manual at https://docs.python.org/2/
library/re.html. url: https://docs.python.org/2/library/re.html.

[Rfc] DOD Standard Internet Protocol. RFC. 1980. url: http://tools.ietf.org/rfc/
rfc760.txt.

[RHJ98] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.0 Specification. W3C Rec-
ommendation REC-html40. World Wide Web Consortium (W3C), Apr. 1998. url:
http://www.w3.org/TR/PR-xml.html.

[She24] Esther Shein. 2024. url: https://cacm.acm.org/news/the-impact-of-ai-on-
computer-science-education/.

[Smi76] Adam Smith. An Inquiry into the Nature and Causes of the Wealth of Nations. W.
Strahan and T. Cadell, 1776.

[SR14] Guus Schreiber and Yves Raimond. RDF 1.1 Primer. W3C Working Group Note.
World Wide Web Consortium (W3C), 2014. url: http://www.w3.org/TR/rdf-
primer.

https://kwarc.info/kohlhase/papers/mcs08-stex.pdf
https://kwarc.info/kohlhase/papers/mcs08-stex.pdf
http://labelme.csail.mit.edu
https://lod-cloud.net/
https://www.learnpython.org/
https://www.learnpython.org/
https://lxml.de
https://lxml.de/api/
https://lxml.de/tutorial.html
https://osf.io/huydx/download
https://osf.io/e6r7a/download
https://opendatacommons.org/
https://opendatacommons.org/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
https://docs.python.org/3/
https://www.tutorialspoint.com/python/python_database_access.htm
https://www.tutorialspoint.com/python/python_database_access.htm
http://protege.stanford.edu
http://protege.stanford.edu
http://protege.stanford.edu
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.pyregex.com/
https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html
http://tools.ietf.org/rfc/rfc760.txt
http://tools.ietf.org/rfc/rfc760.txt
http://www.w3.org/TR/PR-xml.html
https://cacm.acm.org/news/the-impact-of-ai-on-computer-science-education/
https://cacm.acm.org/news/the-impact-of-ai-on-computer-science-education/
http://www.w3.org/TR/rdf-primer
http://www.w3.org/TR/rdf-primer

328 BIBLIOGRAPHY

[SSU04] Susan Schreibman, Ray Siemens, and John Unsworth, eds. A Companion to Digi-
tal Humanities. Wiley-Blackwell, 2004. isbn: 978-1-405-10321-3. url: http://www.
digitalhumanities.org/companion.

[sTeX] sTeX: A semantic Extension of TeX/LaTeX. url: https://github.com/sLaTeX/
sTeX (visited on 05/11/2020).

[Sth] A Beginner’s Python Tutorial. http://www.sthurlow.com/python/. seen 2014-09-
02. url: http://www.sthurlow.com/python/.

[STPL] Simple Template Engine. url: https : / / bottlepy . org / docs / dev / stpl . html
(visited on 12/08/2018).

[SUMO] Suggested Upper Merged Ontology. url: http://www.adampease.org/OP/ (visited
on 01/25/2019).

[Swe13] Al Sweigart. Invent with Python: Learn to program by making computer games. 2nd ed.
online at http://inventwithpython.com. 2013. isbn: 978-0-9821060-1-3. url: http:
//inventwithpython.com.

[Tom17] Todd Tomlinson. Enterprise Drupal 8 Development – For Advanced Projects and
Large Development Teams. Apress, 2017. isbn: 9781484202548.

[Tur95] Sherry Turkle. Life on the Screen: Identity in the Age of the Internet. Simon & Schus-
ter, 1995.

[UL] urllib – URL handling modules. url: https://docs.python.org/3/library/
urllib.html (visited on 04/15/2021).

[WH] WissKI Handbuch. url: http://wiss-ki.eu/documentation/wisski_handbuch
(visited on 07/23/2020).

[Wil+16] Mark D. Wilkinson et al. “The FAIR Guiding Principles for scientific data manage-
ment and stewardship”. In: Scientific Data 3 (2016). doi: 10.1038/sdata.2016.18.

[Xam] apache friends - Xampp. http://www.apachefriends.org/en/xampp.html. url:
http://www.apachefriends.org/en/xampp.html.

http://www.digitalhumanities.org/companion
http://www.digitalhumanities.org/companion
https://github.com/sLaTeX/sTeX
https://github.com/sLaTeX/sTeX
http://www.sthurlow.com/python/
http://www.sthurlow.com/python/
https://bottlepy.org/docs/dev/stpl.html
http://www.adampease.org/OP/
http://inventwithpython.com
http://inventwithpython.com
http://inventwithpython.com
https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/urllib.html
http://wiss-ki.eu/documentation/wisski_handbuch
https://doi.org/10.1038/sdata.2016.18
http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html

Part III

Excursions

329

331

As this course is predominantly an overview over (some) CS tools useful in the humanities and
social sciences and not about the theoretical underpinnings, we give the discussion about these as
a “suggested readings” part here.

332

Appendix A

Internet Basics

We will show aspects of how the internet can cope with this enormous growth of numbers
of computers, connections and services. The growth of the internet rests on three design
decisions taken very early on. The internet

1. is a packet-switched network rather than a network, where computers communicate via dedi-
cated physical communication lines.

2. is a network, where control and administration are decentralized as much as possible.

3. is an infrastructure that only concentrates on transporting packets/datagrams between com-
puters. It does not provide special treatment to any packets, or try to control the content of
the packets.

The first design decision is a purely technical one that allows the existing communication lines to
be shared by multiple users, and thus save on hardware resources. The second decision allows the
administrative aspects of the internet to scale up. Both of these are crucial for the scalability of the
internet. The third decision (often called “net neutrality”) is hotly debated. The defenders cite that
net neutrality keeps the Internet an open market that fosters innovation, where as the attackers
say that some uses of the network (illegal file sharing) disproportionately consume resources.

Package-Switched Networks

� Definition A.0.1. A packet switched network divides messages into small network
packets that are transported separately and re assembled at the target.

� Advantages:

� many users can share the same physical communication lines.

� packets can be routed via different paths. (bandwidth utilization)

� bad packets can be re-sent, while good ones are sent on. (network reliability)

� packets can contain information about their sender, destination.

� no central management instance necessary (scalability, resilience)

: 498 2025-06-05

These ideas are implemented in the Internet Protocol Suite, which we will present in the rest
of the chapter. A main idea of this set of protocols is its layered design that allows to separate
concerns and implement functionality separately.

333

334 APPENDIX A. INTERNET BASICS

The Intenet Protocol Suite

�

Definition A.0.2. The Internet
Protocol Suite (commonly known as
TCP/IP) is the set of communications
protocols used for the internet and
other similar networks. It structured
into 4 layers.

Layer e.g.
Application Layer HTTP, SSH
Transport Layer UDP, TCP
Internet Layer IPv4, IPsec
Link Layer Ethernet, DSL

�

Layers in TCP/IP: TCP/IP uses encap-
sulation to provide abstraction of proto-
cols and services.
An application (the highest level of the
model) uses a set of protocols to send its
data down the layers, being further en-
capsulated at each level.

: 499 2025-06-05

The Internet as a Network of Networks
� Example A.0.3 (TCP/IP Sce-

nario). Consider a situation
with two internet host computers
communicate across local network
boundaries.

� Network boundaries are consti-
tuted by internetworking gateways
(routers).

� Definition A.0.4. A router
is a purposely customized com-
puter used to forward data among
computer networks beyond directly
connected devices.

� A router implements the link and
internet layers only and has two
network connections.

: 500 2025-06-05

We will now take a closer look at each of the layers shown above, starting with the lowest
one.
Instead of going into network topologies, protocols, and their implementation into physical signals
that make up the link layer, we only discuss the devices that deal with them. Network Interface
controllers are specialized hardware that encapsulate all aspects of link-level communication, and
we take them as black boxes for the purposes of this course.

335

Network Interfaces

� The nodes in the internet are computers, the edges communication channels

� Definition A.0.5. A network interface controller (NIC) is a hardware device that
handles an interface to a computer network and thus allows a network-capable device
to access that network.

� Definition A.0.6. Each NIC contains a unique number, the media access control
address (MAC address), identifies the device uniquely on the network.

� MAC addresses are usually 48-bit numbers issued by the manufacturer, they are
usually displayed to humans as six groups of two hexadecimal digits, separated by hy-
phens (-) or colons (:), in transmission order, e.g. 01-23-45-67-89-AB, 01:23:45:67:89:AB.

�

Definition A.0.7. A network interface
is a software component in the operat-
ing system that implements the higher
levels of the network protocol (the NIC
handles the lower ones).

Layer e.g.
Application Layer HTTP, SSH
Transport Layer TCP
Internet Layer IPv4, IPsec
Link Layer Ethernet, DSL

� A computer can have more than one network interface. (e.g. a router)

: 501 2025-06-05

The next layer ist he Internet Layer, it performs two parts: addressing and packing packets.

Internet Protocol and IP Addresses

� Definition A.0.8. The Internet Protocol (IP) is a protocol used for communicating
data across a packet-switched internetwork. The Internet Protocol defines address-
ing methods and structures for datagram encapsulation. The Internet Protocol also
routes data packets between networks

� Definition A.0.9. An IP address is a numerical label that is assigned to devices par-
ticipating in a computer network, that uses the Internet Protocol for communication
between its nodes.

� An IP address serves two principal functions: host or network interface identification
and location addressing.

� Definition A.0.10. The global IP address space allocations are managed by the
Internet Assigned Numbers Authority (IANA), delegating allocate IP address blocks
to five Regional Internet Registries (RIRs) and further to Internet service providers
(ISPs).

: 502 2025-06-05

Internet Protocol and IP Addresses

� Definition A.0.11. The internet mainly uses Internet Protocol Version 4 (IPv4)
[Rfc], which uses 32 bit numbers (IPv4 addresses) for identification of network

336 APPENDIX A. INTERNET BASICS

interfaces of computers.

� IPv4 was standardized in 1980, it provides 4,294,967,296 (232) possible unique
addresses. With the enormous growth of the internet, we are fast running out of
IPv4 addresses.

� Definition A.0.12. Internet Protocol Version 6 [DH98] (IPv6), which uses 128 bit
numbers (IPv6 addresses) for identification.

� Although IP addresses are stored as binary numbers, they are usually displayed in
human-readable notations, such as 208.77.188.166 (for IPv4), and 2001:db8:0:1234:0:567:1:1
(for IPv6).

: 503 2025-06-05

The internet infrastructure is currently undergoing a dramatic retooling, because we are moving
from IPv4 to IPv6 to counter the depletion of IP addresses. Note that this means that all routers
and switches in the internet have to be upgraded. At first glance, it would seem that this problem
could have been avoided if we had only anticipated the need for more the 4 million computers.
But remember that TCP/IP was developed at a time, where the internet did not exist yet, and
it’s precursor had about 100 computers. Also note that the IP addresses are part of every packet,
and thus reserving more space for them would have wasted bandwidth in a time when it was
scarce.
We will now go into the detailed structure of the IP packets as an example of how a low-level
protocol is structured. Basically, an IP packet has two parts: the “header”, whose sequence of
bytes is strictly standardized, and the “payload”, a segment of bytes about which we only know
the length, which is specified in the header.

The Structure of IP Packets

� Definition A.0.13. IP packets are composed of a 160b header and a payload. The
IPv4 packet header consists of:

b name comment
4 version IPv4 or IPv6 packet
4 Header Length in multiples 4 bytes (e.g., 5 means 20 bytes)
8 QoS Quality of Service, i.e. priority
16 length of the packet in bytes
16 fragid to help reconstruct the packet from fragments,
3 fragmented DF =̂ “Don’t fragment”/MF =̂ “More Fragments”
13 fragment offset to identify fragment position within packet
8 TTL Time to live (router hops until discarded)
8 protocol TCP, UDP, ICMP, etc.
16 Header Checksum used in error detection,
32 Source IP
32 target IP
. . . optional flags according to header length

� Note that delivery of IP packets is not guaranteed by the IP protocol.

: 504 2025-06-05

As the internet protocol only supports addressing, routing, and packaging of packets, we need
another layer to get services like the transporting of files between specific computers. Note that

337

the IP protocol does not guarantee that packets arrive in the right order or indeed arrive at all,
so the transport layer protocols have to take the necessary measures, like packet re-sending or
handshakes,

The Transport Layer

� Definition A.0.14. The transport layer is responsible for delivering data to the
appropriate application process on the host computers by forming data packets, and
adding source and destination port numbers in the header.

� Definition A.0.15. The internet protocol mainly uses suite the Transmission Con-
trol Protocol (TCP) and User Datagram Protocol (UDP) protocols at the transport
layer.

� TCP is used for communication, UDP for multicasting and broadcasting.

� TCP supports virtual circuits, i.e. provide connection oriented communication over
an underlying packet oriented datagram network. (hide/reorder packets)

� TCP provides end-to-end reliable communication (error detection & automatic
repeat)

: 505 2025-06-05

We will see that there are quite a lot of services at the network application level. And indeed,
many web-connected computers run a significant subset of them at any given time, which could
lead to problems of determining which packets should be handled by which service. The answer
to this problem is a system of “ports” (think pigeon holes) that support finer-grained addressing
to the various services.

Ports

� Definition A.0.16. To separate the services and protocols of the network applica-
tion layer, network interfaces assign them specific port, referenced by a number.

� Example A.0.17. We have the following ports in common use on the internet

Port use comment
22 SSH remote shell
53 DNS Domain Name System
80 HTTP World Wide Web
443 HTTPS HTTP over SSL

: 506 2025-06-05

On top of the transport-layer services, we can define even more specific services. From the
perspective of the internet protocol suite this layer is unregulated, and application-specific. From
a user perspective, many useful services are just “applications” and live at the application layer.

The Application Layer

338 APPENDIX A. INTERNET BASICS

� Definition A.0.18. The application layer of the internet protocol suite contains all
protocols and methods that fall into the realm of process-to-process communications
via an Internet Protocol (IP) network using the Transport Layer protocols to establish
underlying host-to-host connections.

� Example A.0.19 (Some Application Layer Protocols and Services).

BitTorrent Peer-to-peer Atom Syndication
DHCP Dynamic Host Configuration DNS Domain Name System
FTP File Transfer Protocol HTTP HyperText Transfer
IMAP Internet Message Access IRCP Internet Relay Chat
NFS Network File System NNTP Network News Transfer
NTP Network Time Protocol POP Post Office Protocol
RPC Remote Procedure Call SMB Server Message Block
SMTP Simple Mail Transfer SSH Secure Shell
TELNET Terminal Emulation WebDAV Write-enabled Web

: 507 2025-06-05

The domain name system is a sort of telephone book of the internet that allows us to use symbolic
names for hosts like kwarc.info instead of the IP number 212.201.49.189.

Domain Names

� Definition A.0.20. The DNS (Domain Name System) is a distributed set of servers
that provides the mapping between (static) IP addresses and domain names.

� Example A.0.21. e.g. www.kwarc.info stands for the IP address 212.201.49.189.

� Definition A.0.22. Domain names are hierarchically organized, with the most
significant part (the top level domain TLD) last.

� networked computers can have more than one DNS name. (virtual servers)

� Domain names must be registered to ensure uniqueness (registration fees vary,
cybersquatting)

� Definition A.0.23. ICANN is a non profit organization was established to regulate
human friendly domain names. It approves top-level domains, and corresponding
domain name registrars and delegates the actual registration to them.

: 508 2025-06-05

Let us have a look at a selection of the top-level domains in use today.

Domain Name Top-Level Domains

� .com (“commercial”) is a generic top-level domain. It was one of the original top-
level domains, and has grown to be the largest in use.

� .org (“organization”) is a generic top-level domain, and is mostly associated with
non-profit organizations. It is also used in the charitable field, and used by the open-
source movement. Government sites and Political parties in the US have domain
names ending in .org

kwarc.info
www.kwarc.info

339

� .net (“network”) is a generic top-level domain and is one of the original top-level
domains. Initially intended to be used only for network providers (such as Internet
service providers). It is still popular with network operators, it is often treated as a
second .com. It is currently the third most popular top-level domain.

� .edu (“education”) is the generic top-level domain for educational institutions, pri-
marily those in the United States. One of the first top-level domains, .edu was
originally intended for educational institutions anywhere in the world. Only post-
secondary institutions that are accredited by an agency on the U.S. Department of
Education’s list of nationally recognized accrediting agencies are eligible to apply for
a .edu domain.

: 509 2025-06-05

Domain Name Top-Level Domains

� .info (“information”) is a generic top-level domain intended for informative web-
site’s, although its use is not restricted. It is an unrestricted domain, meaning that
anyone can obtain a second-level domain under .info. The .info was one of many
extension(s) that was meant to take the pressure off the overcrowded .com domain.

� .gov (“government”) a generic top-level domain used by government entities in the
United States. Other countries typically use a second-level domain for this purpose,
e.g., .gov.uk for the United Kingdom. Since the United States controls the .gov
Top Level Domain, it would be impossible for another country to create a domain
ending in .gov.

� .biz (“business”) the name is a phonetic spelling of the first syllable of “business”. A
generic top-level domain to be used by businesses. It was created due to the demand
for good domain names available in the .com top-level domain, and to provide an
alternative to businesses whose preferred .com domain name which had already been
registered by another.

� .xxx (“porn”) the name is a play on the verdict “X-rated” for movies. A generic
top-level domain to be used for sexually explicit material. It was created in 2011 in
the hope to move sexually explicit material from the “normal web”. But there is no
mandate for porn to be restricted to the .xxx domain, this would be difficult due to
problems of definition, different jurisdictions, and free speech issues.

: 510 2025-06-05

Note: Anybody can register a domain name from a registrar against a small yearly fee. Domain
names are given out on a first-come-first-serve basis by the domain name registrars, which usually
also offer services like domain name parking, DNS management, URL forwarding, etc.

The telnet Protocol

� Problem: We need a way to remotely operate networked computers via a shell.

� Idea: Send shell instructions and responses as text messages between a terminal
client (a program on the local host) and a terminal server (a program on the remote
host).

340 APPENDIX A. INTERNET BASICS

� Definition A.0.24. The telnet protocol uses TCP directly to send text based
messages two networked computers. It customarily uses port 25.

� Remark:

telnet is one of the oldest protocols in the TCP/IP protocol suite. It is no longer
used much by itself (it is superseded by rsh and ssh), but still serves as a basis for
other protocols, e.g. HTTP.

: 511 2025-06-05

The next application-level service is the SMTP protocol used for sending e-mail. It is based on
the telnet protocol for remote terminal emulation which we do not discuss here.

A Protocol Example: SMTP over telnet

� Definition A.0.25. The Simple Mail Transfer Protocol (SMTP) is a communica-
tion protocol for electronic mail transmission based on telnet.

� Example A.0.26. The SMTP protocol starts out by establishing identity

� We call up the telnet service on the Jacobs mail server
telnet exchange.jacobs-university.de 25

� it identifies itself (have some patience, it is very busy)

Trying 10.70.0.128...
Connected to exchange.jacobs-university.de.
Escape character is ’^]’.
220 SHUBCAS01.jacobs.jacobs-university.de
Microsoft ESMTP MAIL Service ready at Tue, 3 May 2011 13:51:23 +0200

� We introduce ourselves politely (but we lie about our identity)
helo mailhost.domain.tld

� It is really very polite.
250 SHUBCAS04.jacobs.jacobs-university.de Hello [10.222.1.5]

: 512 2025-06-05

SMTP over telnet: The e mail itself

� Example A.0.27 (Continued). After identity is established, the e-mail is specified.

� We start addressing an e-mail (again, we lie about our identity)
mail from: user@domain.tld

� this is acknowledged
250 2.1.0 Sender OK

� We set the recipient (the real one, so that we really get the e-mail)
rcpt to: m.kohlhase@jacobs-university.de

� this is acknowledged
250 2.1.0 Recipient OK

� we tell the mail server that the mail data comes next
data

� this is acknowledged
354 Start mail input; end with <CRLF>.<CRLF>

� Now we can just type the a-mail, optionally with Subject, date,...

341

Subject: Test via SMTP

and now the mail body itself
.

� And a dot on a line by itself sends the e mail off
250 2.6.0 <ed73c3f3-f876-4d03-98f2-e5ad5bbb6255@SHUBCAS04.jacobs.jacobs-university.de>
[InternalId=965770] Queued mail for delivery

: 513 2025-06-05

SMTP over telnet: Disconnecting

� Example A.0.28 (Continued).

� That was almost all, but we close the connection (this is a telnet command)
quit

� our terminal server (the telnet program) tells us
221 2.0.0 Service closing transmission channel
Connection closed by foreign host.

: 514 2025-06-05

Essentially, the SMTP protocol mimics a conversation of polite computers that exchange messages
by reading them out loud to each other (including the addressing information). We could go on
for quite a while with understanding one Internet protocol after each other, but this is beyond the
scope of this course (indeed there are specific courses that do just that). Here we only answer the
question where these protocols come from, and where we can find out more about them.

Internet Standardization

� Question: Where do all the protocols come from?(someone has to manage that)

� Definition A.0.29. The Internet Engineering Task Force (IETF) is an open stan-
dards organization that develops and standardizes internet standards, in particular
the TCP/IP and Internet protocol suite.

� All participants in the IETF are volunteers (usually paid by their employers)

� Rough Consensus and Running Code: Standards are determined by the “rough
consensus method” (consensus preferred, but not all members need agree) IETF is
interested in practical, working systems that can be quickly implemented.

� Idea: running code leads to rough consensus or vice versa.

� Definition A.0.30. The standards documents of the IETF are called Request for
Comments (RFC). (more than 6300 so far; see http://www.rfceditor.org/)

: 515 2025-06-05

http://www.rfc editor.org/

342 APPENDIX A. INTERNET BASICS

Appendix B

ALeA – AI-Supported Learning

In this chapter we introduce the ALeA (Adaptive Learning Assistant) system, a learning support
system we will use to support students in IWGS.

ALeA: Adaptive Learning Assistant

� Idea: Use AI methods to help teach/learn AI (AI4AI)

� Concretely: Provide HTML versions of the IWGS slides/lecture notes and embed
learning support services into them. (for pre/postparation of lectures)

� Definition B.0.1. Call a document active, iff it is interactive and adapts to specific
information needs of the readers. (lecture notes on steroids)

� Intuition: ALeA serves active course materials. (PDF mostly inactive)

� Goal: Make ALeA more like a instructor + study group than like a book!

� Example B.0.2 (Course Notes). =̂ Slides + Comments

; yellow parts in table of contents (left) already covered in lectures.

: 516 2025-06-05

The central idea in the AI4AI approach – using AI to support learning AI – and thus the ALeA
system is that we want to make course materials – i.e. what we give to students for preparing and
postparing lectures – more like teachers and study groups (only available 24/7) than like static
books.

343

344 APPENDIX B. ALEA – AI-SUPPORTED LEARNING

VoLL-KI Portal at https://courses.voll-ki.fau.de

� Portal for ALeA Courses: https://courses.voll-ki.fau.de

� IWGS in ALeA: https://courses.voll-ki.fau.de/course-home/iwgs-2

� All details for the course.

� recorded syllabus (keep track of material covered in course)

� syllabus of the last semesters (for over/preview)

� ALeA Status: The ALeA system is deployed at FAU for over 1000 students
taking eight courses

� (some) students use the system actively (our logs tell us)

� reviews are mostly positive/enthusiastic (error reports pour in)

: 517 2025-06-05

The ALeA IWGS page is the central entry point for working with the ALeA system. You can
get to all the components of the system, including two presentations of the course contents (notes-
and slides-centric ones), the flashcards, the localized forum, and the quiz dashboard.
We now come to the heart of the ALeA system: its learning support services, which we will now
briefly introduce. Note that this presentation is not really sufficient to undertstand what you may
be getting out of them, you will have to try them, and interact with them sufficiently that the
learner model can get a good estimate of your competencies to adapt the results to you.

Learning Support Services in ALeA

� Idea: Embed learning support services into active course materials.

� Example B.0.3 (Definition on Hover). Hovering on a (cyan) term reference
reminds us of its definition. (even works recursively)

https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de/course-home/iwgs-2

345

� Example B.0.4 (More Definitions on Click). Clicking on a (cyan) term reference
shows us more definitions from other contexts.

� Example B.0.5 (Guided Tour). A guided tour for a concept c assembles defini-

346 APPENDIX B. ALEA – AI-SUPPORTED LEARNING

tions/etc. into a self-contained mini-course culminating at c.

c = count-
able ;

� . . . your idea here . . . (the sky is the limit)

: 518 2025-06-05

Note that this is only an initial collection of learning support services, we are constantly working

on additional ones. Look out for feature notifications () on the upper right hand of
the ALeA screen.

(Practice/Remedial) Problems Everywhere

� Problem: Learning requires a mix of understanding and test-driven practice.

� Idea: ALeA supplies targeted practice problems everywhere.

� Concretely: Revision markers at the end of sections.

� A relatively non-intrusive overview over competency

� Click to extend it for details.

� Practice problems as usual. (targeted to your specific competency)

347

: 519 2025-06-05

While the learning support services up to now have been adressed to individual learners, we
now turn to services addressed to communities of learners, ranging from study groups with three
learners, to whole courses, and even – eventually – all the alumni of a course, if they have not
de-registered from ALeA.

Currently, the community aspect of ALeA only consists in localized interactions with the course
materials.
The ALeA system uses the semantic structure of the course materials to localize some interactions
that are otherwise often from separate applications. Here we see two:

1. one for reporting content errors – and thus making the material better for all learners – and‘’

2. a localized course forum, where forum threads can be attached to learning objects.

Localized Interactions with the Community

� Selecting text brings up localized – i.e. anchored on the selection – interactions:
� post a (public) comment or take (private) note

� report an error to the course authors/instructors

� Localized comments induce a thread in the ALeA forum (like the StudOn
Forum, but targeted towards specific learning objects.)

348 APPENDIX B. ALEA – AI-SUPPORTED LEARNING

� Answering questions gives karma =̂ a public measure of user helpfulness.

� Notes can be anonymous (; generate no karma)

: 520 2025-06-05

We can use the same four models discussed in the space of guided tours to deploy additional
learning support services, which we now discuss.

New Feature: Drilling with Flashcards

� Flashcards challenge you with a task (term/problem) on the front. . .

. . . and the definition/answer is on the back.

� Self-assessment updates the learner model (before/after)

� Idea: Challenge yourself to a card stack, keep drilling/assessing flashcards until
the learner model eliminates all.

� Bonus: Flashcards can be generated from existing semantic markup (educational
equivalent to free beer)

: 521 2025-06-05

We have already seen above how the learner model can drive the drilling with flashcards. It can
also be used for the configuration of card stacks by configuring a domain e.g. a section in the
course materials and a competency threshold. We now come to a very important issue
that we always face when we do AI systems that interface with humans. Most web technology
companies that take one the approach “the user pays for the services with their personal data,
which is sold on” or integrate advertising for renumeration. Both are not acceptable in university
setting.

But abstaining from monetizing personal data still leaves the problem how to protect it from
intentional or accidental misuse. Even though the GDPR has quite extensive exceptions for
research, the ALeA system – a research prototype – adheres to the principles and mandates of
the GDPR. In particular it makes sure that personal data of the learners is only used in learning
support services directly or indirectly initiated by the learners themselves.

Learner Data and Privacy in ALeA

349

� Observation: Learning support services in ALeA use the learner model; they

� need the learner model data to adapt to the invidivual learner!

� collect learner interaction data (to update the learner model)

� Consequence: You need to be logged in (via your FAU IDM credentials) for useful
learning support services!

� Problem: Learner model data is highly sensitive personal data!

� ALeA Promise: The ALeA team does the utmost to keep your personal data
safe. (SSO via FAU IDM/eduGAIN, ALeA trust zone)

� ALeA Privacy Axioms:

1. ALeA only collects learner models data about logged in users.

2. Personally identifiable learner model data is only accessible to its subject
(delegation possible)

3. Learners can always query the learner model about its data.

4. All learner model data can be purged without negative consequences (except
usability deterioration)

5. Logging into ALeA is completely optional.

� Observation: Authentication for bonus quizzes are somewhat less optional, but
you can always purge the learner model later.

: 522 2025-06-05

So, now that you have an overview over what the ALeA system can do for you, let us see what
you have to concretely do to be able to use it.

Concrete Todos for ALeA

� Recall: You will use ALeA for the prepquizzes (or lose bonus points)
All other use is optional. (but AI-supported pre/postparation can be helpful)

� To use the ALeA system, you will have to log in via SSO: (do it now)

� go to https://courses.voll-ki.fau.de/course-home/iwgs-2,

� in the upper right hand corner you see ,

� log in via your FAU IDM credentials. (you should have them by now)

� You get access to your personal ALeA profile via
(plus feature notifications, manual, and language chooser)

� Problem: Most ALeA services depend on the learner model. (to adapt to you)

� Solution: Initialize your learner model with your educational history!

� Concretely: enter taken CS courses (FAU equivalents) and grades.

� ALeA uses that to estimate your CS/AI competencies. (for your benefit)

� then ALeA knows about you; I don’t! (ALeA trust zone)

https://courses.voll-ki.fau.de/course-home/iwgs-2

350 APPENDIX B. ALEA – AI-SUPPORTED LEARNING

: 523 2025-06-05

Even if you did not understand some of the AI jargon or the underlying methods (yet), you
should be good to go for using the ALeA system in your day-to-day work.

	0.1 Preface
	0.1.1 Course Concept
	0.1.2 Course Contents
	0.1.3 Programming Exercises and JuptyterLab as a Web IDE
	0.1.4 This Document
	0.1.5 Acknowledgments

	0.2 Recorded Syllabus
	1 Preliminaries
	1.1 Administrativa
	1.2 Getting Most out of courseacronym
	1.3 Learning Resources for courseacronym
	1.4 Goals, Culture, & Outline of the Course
	1.5 ALeA – AI-Supported Learning

	I IWGS-1: Programming, Documents, Web Applications
	2 Introduction to Programming
	2.1 What is Programming?
	2.2 Programming in courseacronym
	2.3 Programming in Python
	2.3.1 Hello courseacronym
	2.3.2 JupyterLab, a Python Web IDE for IWGS
	2.3.3 Variables and Types
	2.3.4 Python Control Structures

	2.4 Some Thoughts about Computers and Programs
	2.5 More about Python
	2.5.1 Sequences and Iteration
	2.5.2 Input and Output
	2.5.3 Functions and Libraries in Python
	2.5.4 A Final word on Programming in courseacronym

	3 Numbers, Characters, and Strings
	3.1 Representing and Manipulating Numbers
	3.2 Characters and their Encodings: ASCII and UniCode
	3.3 More on Computing with Strings
	3.4 More on Functions in Python
	3.5 Regular Expressions: Patterns in Strings

	4 Documents as Digital Objects
	4.1 Representing & Manipulating Documents on a Computer
	4.2 Measuring Sizes of Documents/Units of Information
	4.3 Hypertext Markup Language
	4.3.1 Introduction
	4.3.2 Interacting with HTML in Web Broswers
	4.3.3 A Worked Example: The Contact Form

	4.4 Documents as Trees
	4.5 An Overview over XML Technologies
	4.5.1 Introduction to XML
	4.5.2 Computing with XML in Python
	4.5.3 XML Namespaces
	4.5.4 XPath: Specifying XML Subtrees

	5 Web Applications
	5.1 Web Applications: The Idea
	5.2 Basic Concepts of the World Wide Web
	5.2.1 Preliminaries
	5.2.2 Addressing on the World Wide Web
	5.2.3 Running the World Wide Web

	5.3 Recap: HTML Forms Data Transmission
	5.4 Generating HTML on the Server
	5.4.1 Routing and Argument Passing in Bottle
	5.4.2 Templating in Python via STPL
	5.4.3 Completing the Contact Form

	6 Front-end Technologies
	6.1 Dynamic HTML: Client-side Manipulation of HTML Documents
	6.1.1 JavaScript in HTML

	6.2 Cascading Stylesheets
	6.2.1 Separating Content from Layout
	6.2.2 Worked Example: The Contact Form
	6.2.3 A small but useful Fragment of CSS
	6.2.4 CSS Tools

	6.3 jQuery: Write Less, Do More

	7 What did we learn in IWGS-1?

	II IWGS-II: DH Project Tools
	8 Semester Change-Over
	8.1 Administrativa
	8.2 Getting Most out of courseacronym
	8.3 Learning Resources for courseacronym

	9 Databases
	9.1 Introduction
	9.2 Relational Databases
	9.3 SQL – A Standardized Interface to RDBMS
	9.4 ER-Diagrams and Complex Database Schemata
	9.5 RDBMS in Python
	9.6 Excursion: Programming with Exceptions in Python
	9.7 Querying and Views in SQL
	9.8 Querying via Python
	9.9 Real-Life Input/Output: XML and JSON

	10 Project: A Web GUI for a Books Database
	10.1 A Basic Web Application
	10.2 Asynchronous Loading in Modern Web Apps
	10.3 Deploying the Books Application as a Program

	11 Image Processing
	11.1 Basics of Image Processing
	11.1.1 Image Representations
	11.1.2 Basic Image Processing in Python
	11.1.3 Edge Detection
	11.1.4 Scalable Vector Graphics

	11.2 Project: An Image Annotation Tool
	11.3 Fun with Image Operations: CSS Filters

	12 Ontologies, Semantic Web for Cultural Heritage
	12.1 Documenting our Cultural Heritage
	12.2 Systems for Documenting the Cultural Heritage
	12.3 The Semantic Web
	12.4 Semantic Networks and Ontologies
	12.5 CIDOC CRM: An Ontology for Cultural Heritage
	12.6 The Semantic Web Technology Stack
	12.7 Ontologies vs. Databases

	13 The WissKI System
	13.1 WissKI extends Drupal
	13.2 Dealing with Ontology Paths: The WissKI Pathbuilder
	13.3 The WissKI Link Block
	13.4 Cultural Heritage Research: Querying WissKI Resources
	13.5 Application Ontologies in WissKI
	13.6 The Linked Open Data Cloud

	14 Legal Foundations of Information Technology
	14.1 Intellectual Property
	14.2 Copyright
	14.3 Licensing
	14.4 Information Privacy

	15 Version Control, Collaboration, and Project Management
	15.1 Revision Control Systems
	15.1.1 Dealing with Large/Distributed Projects and Document Collections
	15.1.2 Local Revision Control: Versioning
	15.1.3 GIT as a local Revision Control System
	15.1.4 Centralized Revision Control: Collaboration
	15.1.5 GIT as a centralized RCS
	15.1.6 Distributed Revision Control
	15.1.7 Working with GIT in large Projects

	15.2 Working with GIT and GitLab/GitHub
	15.3 Excursion: Authentication with SSH
	15.4 Bug/Issue Tracking Systems

	16 What did we learn in IWGS?

	III Excursions
	A Internet Basics
	B ALeA – AI-Supported Learning

