
jupyter.kwarc.info Documentation
Jonas Betzendahl

jonas.betzendahl@fau.de

2022-12-09

1 Setup
1.1 Server
The server everything hereafter is based on is a virtual machine (with 4GB of RAM and around 50GB of disk
space for a course of roughly 30-50 students) running Debian Linux 10 (code name Buster). The VM runs on
university hardware and is monitored and maintained (with regular, scheduled backups) by the sysadmin of our
work group. This includes automated email notifications should the Server run low on disk space (which so far
has not happened) or RAM (which happens very rarely, usually in the week leading up to exams).

The Debian server runs an Apache webserver wich directs all traffic toward the JupyterHub Server (see
Section 1.3). For TLS, we use certificates from “Let’s Encrypt!” [LE16] which turned out to be fairly hassle-free
to setup.

1.2 Python
In our course, we aim to teach current and relevant technologies, so we decided to use Python 3.8 as the canonical
version that everyone would use. Since version 3.8 is not available in the standard repositories we had to build
this from sources1.

It proofed important nevertheless to teach the students about the difference between Python 2 and Python
3 since the normal python comman on Debian Buster will still give a Python 2 version and hence they had to
make sure to use the python3 command when outside a notebook environment.

There are several libraries that students would need over the course of IWGS, first and foremost the webserver
library bottle and the image manipulation library Pillow. We decided against pre-installing these for everyone
(although that is easily doable) so that students would eventually have to install them (locally, only for their
account) and get at least a passing familiarity with pip3 and the process of library management.

Upon request from the students, we also decided to install (this time for everyone) some standard industry
libraries (such as SciPy, pandas, . . .) for students to “play around” with after the more curious ones invariably
come into contact with them during their studies.

1.3 Jupyter
We use jupyterLab and jupyterHub (which are both part of project Jupyter [Jup]), largely as they come out of
the box (though there are numerous extensions available). A full explanation of the intricacies of these softwares
and how they play together is beyond the scope of this document, so we assume the reader to be familiar with
the basics2.

jupyterHub needs a software component for authenticating users plugged in. There are multiple so-called
authenticators available for different use-cases and setups3. We dediced to use nativeAuthenticator [NA]
since that allows a lot of control with little infrastucture.

Theoretically, any user can sign up via nativeAuthenticator after the server goes online. To avoid flooding
we decided to forego open signup and have every user be confirmed by an administrator (which is the default,
see Figure 1). The administrator must also create a user account on the Debian machine by the same name.
All files the user creates will be stored in that account’s home directory4.

1Which we did using these instructions: https://linuxize.com/post/how-to-install-python-3-8-on-debian-10/
2If you need a refresher: https://jupyterhub.readthedocs.io/slides/stable/index.html
3See a fairly complete list at https://github.com/jupyterhub/jupyterhub/wiki/Authenticators
4It is wise to spend some thought on UNIX groups and default access rights so one student can’t just copy this week’s homework

from their fellow student’s directory

1

mailto:jonas.betzendahl@fau.de
https://linuxize.com/post/how-to-install-python-3-8-on-debian-10/
https://jupyterhub.readthedocs.io/slides/stable/index.html
https://github.com/jupyterhub/jupyterhub/wiki/Authenticators

Figure 1: The normal signup flow for registering a new
user with nativeAuthenticator

jupyterLab gives access to Jupyter Notebooks as
well as Python REPLs and a shell on the underly-
ing Debian machine (in case students need to start a
webserver or another standalone application, which is
diffcult from inside a notebook). We found this quite
sufficient, but it can be extended to other languages
(even compiled ones like Haskell and C++).

1.4 Exercise Workflow
During lectures, the weekly routine would be that a
tutor develops a Jupyter notebook (which easily mixes
markdown and executable code segments, which we
found to be both intuitive and helpful since documen-
tation is not as far removed from the place where the
work happens) with exercises for the students to com-
plete.

These notebooks (and potentially also the exam-
ple solutions to last week’s exercises) would then be
placed in a directory on the account of the tutor. This directory would be synchronised to all other accounts at
the appropriate time via shell script (which can be found in Appendix A) so that the students would find the
latest exercises already available to them when logging in to Jupyter.

2 Known Issues
2.1 Crashes
For as-of-yet unknown reasons we observed that on our setup the jupyterHub server tends to crash roughly
once a day (though without a lot of predictability; sometimes it would run for a week, sometimes only for an
hour). This means all Jupyter Services were unreachable for users until the server was manually restarted.

To remedy this situation and allow for a semblance of stability, we added a cron job for the superuser that
runs a shell script every minute. The full script can be found in Appendix B. This has as a consequence that
users might momentarily loose connection and need to refresh their session, which can be inconvenient. We
hope to find the cause and a cure for this problem in the future.

3 Further Explored Ideas
We were at one point considering to switch off nativeAuthenticator in favour of the university’s Single-Sign-on
(SSO) mechanism, to reduce the number of accounts new students had to sign up for and keep track of.

However, this idea was abandoned for multiple reasons. Integrating with the SSO would mean non-trivial
engineering work at the interface ob JupyterHub and the university’s infrastructure, since no such systems
already exist.

It would also make it possible to associate the data of every account on our Jupyter server with a concrete
person (in a way in which the current system does not, since we allow and encourage pseudonyminous account
names), which raises GDPR compliance concerns.

Lastly, we plan on removing one year’s students’ accounts and data befor the next batch signs up. A SSO
connection, however, would make the accounts permanent even though the students finished the course, leading
to a buildup of abandoned accounts over the years.

References
[Jup] Project Jupyter. url: http://www.jupyter.org (visited on 08/28/2020).
[LE16] Internet Security Research Group. Let’s Encrypt. 2016. url: https://letsencrypt.org/.
[NA] Leticia Portella. NativeAuthenticator for JupyterHub. url: https : / / github . com / jupyterhub /

nativeauthenticator.

2

http://www.jupyter.org
https://letsencrypt.org/
https://github.com/jupyterhub/nativeauthenticator
https://github.com/jupyterhub/nativeauthenticator

A Shell script: sync_ex.sh

#!/bin/bash
exsource="/path/to/your/source/directory/here"
echo "Removing .ipynb_checkpoints"
find $exsource -type d -exec rm -rf {}/.ipynb_checkpoints \;
while read theuser
do

Do not sync to source
if [$theuser != "youradmin"] ; then

echo "Synching exercises for $theuser"
rsync -h -v -r -og --chown=$theuser:all_user

--ignore-existing $exsource /home/$theuser
echo "----------"

fi
done < /root/resources/accounts.txt

3

B Shell script: jptrhb.sh

#!/bin/bash
We want this to be executable via cron, so we have to make sure
the environment is there.
. /etc/profile
. /root/.bashrc
URL="https://jupyter.kwarc.info"
Wellness-check
curl -L -I -X GET $URL 2>/dev/null 1>/root/logs/http.log
WELLNESS=""
Checks if file is empty. If it is, server is probably down.
if [-s /root/logs/http.log]; then
while read line; do
if [[$line == "HTTP/1.1 5"*]]; then
If any line in the curl response indicates a 5xx respond code,
we assume server died.
WELLNESS="HTTP response code of 500"
fi
done </root/logs/http.log
else
WELLNESS="Server down"
fi

if [[$WELLNESS == ""]]; then
echo "Everything seems fine to me."
else
echo "There was something wrong!"
echo "Restarting JupyterHub and logging timestamp."

Delete old logs.
find /root/logs -mtime +5 -type f -delete

Kill current jupyterhub
pkill -f jupyterhub

Restart with new log

used to have a --debug after the config, if it misbehaves again,
consider putting back in (will make logs quite large).
jupyterhub -f /etc/jupyterhub/jupyterhub_config.py --debug 2>1| tee -a /root/logs/jupyterhub-(date−
Im).logLogtimestampofrestartecho(date -Im)": "WELLNESS >> /root/logs/restarts.logfi

References
[Jup] Project Jupyter. url: http://www.jupyter.org (visited on 08/28/2020).
[LE16] Internet Security Research Group. Let’s Encrypt. 2016. url: https://letsencrypt.org/.
[NA] Leticia Portella. NativeAuthenticator for JupyterHub. url: https : / / github . com / jupyterhub /

nativeauthenticator.

4

http://www.jupyter.org
https://letsencrypt.org/
https://github.com/jupyterhub/nativeauthenticator
https://github.com/jupyterhub/nativeauthenticator

	Setup
	Server
	Python
	Jupyter
	Exercise Workflow

	Known Issues
	Crashes

	Further Explored Ideas
	Shell script: sync_ex.sh
	Shell script: jptrhb.sh

