A Glossary for IWGS (Auto-Generated)

Michael Kohlhase
Computer Science, FAU Erlangen-Nürnberg
https://kwarc.info/kohlhase

December 16, 2021

Preface

This document contains an English glossary for the course Informatische Werkzeuge in den Geistesund Sozialwissenschaften at FAU Erlangen-Nürnberg (IWGS). It is automatically generated from the sources of the IWGS course notes and should be up-to-date with the course progress.

The glossary contains definitions for all technical terms used in the course, both the ones defined in the course, as well as the ones presupposed. The latter should be relatively few, since IWGS is intended as a beginner's course.

1 Glossary for IWGS

To make the role of arguments extremely clear, we write functions in λ-notation. For $f=\{(x, E) \mid x \in X\}$, where E is an expression, we write $\lambda x \in X . E$.
 call $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ a vector
sional Cartesian space An n-dimensional Cartesian product $A_{1} \times \ldots \times A_{n}$ is called a n-dimensional Cartesian space over A (and denoted A^{n}) iff $A_{i}=A$ for some set A for all i. We call $\left\langle a_{1}, \ldots, a_{n}\right\rangle \in A^{n}$ a vector.
old Cartesian product Let $A:=\left\{A_{i} \mid 1 \leq i \leq n\right\}$ be a collection of sets, then the n-fold Cartesian product $A_{1} \times \ldots \times A_{n}$ is $\left\{\left\langle a_{1}, \ldots, a_{n}\right\rangle \mid a_{i} \in A_{i}\right.$ for all $\left.1 \leq i \leq n\right\}$, we call $\left\langle a_{1}, \ldots, a_{n}\right\rangle \in A_{1} \times \ldots \times A_{n}$ an n-tuple. n is called the dimension of $A_{1} \times \ldots \times A_{n}$.
old Cartesian product n-fold Cartesian product: $A_{1} \times \ldots \times A_{n}:=\left\{\left\langle a_{1}, \ldots, a_{n}\right\rangle \mid \forall i .1 \leq i \leq n \Rightarrow a_{i} \in A_{i}\right\}$,
call $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ an n-tuple
n-fold composition We write the n-fold composition of the relation R as R^{n} and define it by $R^{1}:=R$ and $R^{i+1}:=\left\{S \circ R \mid S \in R^{i}\right\}$
n-tuple Defined along with n-fold Cartesian product
n-tuple Defined along with n-fold Cartesian product
p-closure Let p be a properties and $R \subseteq A \times B$ a relation, then we call the smallest (in terms of the $\subseteq)$ relation $R^{\prime} \supseteq R$ that has property p the p-closure of R.
p-closure Let p be one of the properties above and R be a relation, then we call the smallest relation $\supseteq R^{\prime} R$ (in terms of the \subseteq) that has property p the p-closure of R.

ADT See abstract data type
AI See Artificial Intelligence
AI Defined along with Artificial Intelligence
AI See Artificial Intelligence
ALU Defined along with central processing unit
API See application programming interface
formation Interchange The American Standard Code for Information Interchange (ASCII) is a character code that assigns characters to numbers 0-127

Code	$\cdots 0$	$\cdots 1$	$\cdots 2$	$\cdots 3$	$\cdots 4$	$\cdots 5$	$\cdots 6$	$\cdots 7$	$\cdots 8$	$\cdots 9$	$\cdots A$	$\cdots B$	$\cdots \mathrm{C}$	$\cdots D$	$\cdots E$	$\cdots F$
0...	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI
1*	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2 \cdots		!	"	\#	\$	\%	\&	,	()	*	+	,	-	.	/
3 \cdots	0	1	2	3	4	5	6	7	8	9	:	;	<	$=$	>	?
4 \cdots	@	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
5 \cdots	P	Q	R	S	T	U	V	W	X	Y	Z	[\backslash]	-	-
6\%	'	a	b	c	d	e	f	g	h	i	j	k	1	m	n	\bigcirc
7\%	p	q	r	s	t	u	v	w	x	y	z	\{	1	\}		DEL

Artificial Intelligence Artificial Intelligence (AI) is intelligence exhibited by machines

Artificial Intelligence Artificial Intelligence (AI) is a sub-field of Computer Science that is concerned with the automation of intelligent behavior.

Artificial Intelligence Artificial Intelligence (AI) studies how we can make the computer do things that humans can still do better at the moment.

Boolean Defined along with integer
CLI See command-line interface
CPU See central processing unit
CS See computer science
Cartesian product The Cartesian product of an arbitrary (possibly infinite) indexed family of sets is defined as $\prod_{i \in I} X_{i}:=\left\{f: I \rightarrow \bigcup_{i \in I} X_{i} \mid f(i) \in X_{i}\right\}$.

Cartesian product Cartesian product: $A \times B:=\{(a, b) \mid a \in A \wedge b \in B\}$, call (a, b) pair.
Content MathML Defined along with Mathematics Markup Language
DAG We will sometimes use the abbreviation DAG for "directed acyclic graph".
DAG Defined along with cyclic
DELETE Defined along with method
DOM See document object model
DTM Defined along with nondeterministic Turing machine

ble Markup Language See XML

FLOSS See Free/Libre/Open-Source Software
Open-Source Software Free/Libre/Open-Source Software (FLOSS or just open source) is software that is and licensed via licenses that ensure that its source code is available.

GET Defined along with method
Gregorian calendar The Gregorian calendar is a solar calendar that takes the birth of Christ is taken as the year 1 and has a complicated rule for leap years: Every year that is exactly divisible by four is a leap year, except for years that are exactly divisible by 100 ; the centurial years that are exactly divisible by 400 are still leap years.

HTML See HyperText Markup Labnguage
HTML5 See HyperText Markup Language
HTTP See Hypertext Transfer Protocol
HTTP request Defined along with user agent
xt Markup Labnguage The HyperText Markup Labnguage (HTML), is a representation format for web pages [Hic +14$]$.
ext Markup Language The HyperText Markup Language (HTML5), is believed to be the next generation of HTML. It is defined by the W3C and the WhatWG.
ext Transfer Protocol The Hypertext Transfer Protocol (HTTP) is an application layer protocol for distributed, collaborative, hypermedia information systems.

IDE See integrated development environment
ISO-Latin 16 Extensions of ASCII to 8-bit (256 characters) ISO-Latin $1 \hat{=}$ "Western European", ISO-Latin $6 \widehat{=}$ "Arabic",ISO-Latin $7 \widehat{=}$ "Greek". . .
ional System of Units The International System of Units (SI) is the modern form of the metric system and is generally a system of units of measurement devised around seven base units and corresponding dimensions.

Internet The Internet is a worldwide computer network that connects hundreds of thousands of smaller networks.
(The mother of all networks)
Kleene closure The operation of passing from an alphabet A to A^{*} is called Kleene closure, Kleene operation, or Kleene star. The operation ${ }^{+}$is called Kleene plus.

Kleene operation See Kleene closure
Kleene plus See Kleene closure
Kleene star See Kleene closure
Landau set The three Landau sets $\mathcal{O}(g), \Omega(g), \Theta(g)$ are defined as
$-\mathcal{O}(g)=\left\{f \mid \exists k>0 . f \leq_{a} k \cdot g\right\}$
$-\Omega(g)=\left\{f \mid \exists k>0 . f \leq_{a} k \cdot g\right\}$
$-\Theta(g)=\mathcal{O}(g) \cap \Omega(g)$
Landau set Let $g: \mathbb{N} \rightarrow \mathbb{N}$, then we define the three Landau sets $\mathcal{O}(g), \Omega(g), \Theta(g)$ as

$$
\begin{aligned}
& -\mathcal{O}(g):=\left\{g: \mathbb{N} \rightarrow \mathbb{N} \mid \exists k>0 . f \leq_{a} k \cdot g\right\} \\
& -\Omega(g):=\left\{g: \mathbb{N} \rightarrow \mathbb{N} \mid \exists k>0 . f \geq_{a} k \cdot g\right\} \\
& -\Theta(g):=\mathcal{O}(g) \cap \Omega(g)
\end{aligned}
$$

If $G \in\{\mathcal{O}(g), \Omega(g), \Theta(g)\}$, we often say that $f: \mathbb{N} \rightarrow \mathbb{N}$ is (of complexity) G, iff $f \in G$, accordingly we often write $f=G$ by a certain abuse of notation.
Given a particular function, e.g. $g: \mathbb{N} \rightarrow \mathbb{N} ; n \mapsto n^{3}$, we often write $\mathcal{O}(g)$ as $\mathcal{O}\left(n^{3}\right)$, and analogously for $\Omega(g)$ and $\Theta(g)$.

MathTalk Abbreviations for Mathematical statements in MathTalk
$-\wedge$ and \vee are common notations for and and or

- not is in mathematical statements often denoted with \neg
$-\forall x . P(\forall x \in S . P)$ stands for condition P holds for all x (in S)
$-\exists x . P(\exists x \in S . P)$ stands for there exists an x (in S) such that proposition P holds
$-\nexists x . P(\nexists x \in S . P)$ stands for there exists no x (in S) such that proposition P holds
$-\exists^{1} x . P\left(\exists^{1} x \in S . P\right)$ stands for there exists one and only one x (in S) such that proposition P holds
- iff as abbreviation for if and only if, symbolized by \Leftrightarrow
- the symbol \Rightarrow is used a as shortcut for implies
ics Markup Language The Mathematics Markup Language (MathML) is an integrated framework for content and presentation in web-based mathematics.
Presentation MathML covers the basic font, box, grouping primitives for presenting the two-dimensional layout of mathematical formulae
Content MathML provides the an infrastructure for marking up the functional/logical structure of formulae as applications, variables, constants, and binding expressions.

NTM See nondeterministic Turing machine
ODF Defined along with Office Open XML
OOP See object-oriented programming
OOXML See Office Open XML
OS See operating system
Office Open XML Popular word processors include

- MS Word, an elaborated word processor for Windows, whose native format is Office Open XML (OOXML; file extension docx).
- OpenOffice and LibreOffice are similar word processors using the ODF format (Open Office Format; file extension .odf) natively, but can also import other formats..
- Pages, a word processors for Mac OS X it uses a proprietary format.
- Office Online and GoogleDocs are browser-based real-time collaborative word processors.

Open Office Format Defined along with Office Open XML
PDF See Protable document format
PGS work Defined along with copyrightable work
POST Defined along with method
PUT Defined along with method
Peano axioms The following set of axioms are called the Peano axioms (Giuseppe Peano $* 1858, \dagger 1932$)
Presentation MathML Defined along with Mathematics Markup Language
able document format Protable document format (PDF) is a document format that mixes text and graphics with a variety of content including logical structuring elements, interactive elements such as annotations and form-fields, layers, rich media (including video content), and three-dimensional objects using U3D or PRC, and various other data formats. The PDF specification also provides for encryption and digital signatures, file attachments, and metadata to enable workflows requiring these features.

REPL See read-eval-print loop
RTFM RTFM (气 "read those fine manuals")
RTFM RTFM ($\widehat{=}$ "read the fine manuals")
SI See International System of Units
SVG See Scalable Vector Graphics
lable Vector Graphics Scalable Vector Graphics (SVG) is an XML-based markup format for vector graphics.
Turing complete An information processing system is said to be Turing complete or computationally universal if it can be used to simulate any Turing machine.

Turing machine A Turing machine consists of

- An tape with infinitely many cells, each of which contains a symbol from a finite alphabet \mathcal{A} with $\#(\mathcal{A}) \geq 2$.
- A head that can read/write symbols on the tape and move left/right.
- A state register that stores the state of the Turing machine. The set of states is finite, the state register is initialized with a special start state.
- An action table (or program]) that - given the symbol it has just read from the tape and the state it is currently in - specifies the next action, i.e. what symbol to write, how to move the head and the next state. If no entry applicable the machine halts.
UCS See universal character set
UI See user interface
URI See uniform resource identifier
URL A uniform resource locator (URL) is a URI that that gives access to a web resource, by specifying an access method or location. All other URIs are called uniform resource names (URN).
URL See uniform resource locator
URN Defined along with uniform resource locator
UTF-8 The UTF-8 encoding encodes each character in one to four octets (8-bit bytes):

1. One byte is needed to encode the 128 US-ASCII characters (Unicode range $\mathrm{U}+0000$ to $\mathrm{U}+007 F)$.
2. Two bytes are needed for Latin letters with diacritics and for characters from Greek, Cyrillic, Armenian, Hebrew, Arabic, Syriac and Thaana alphabets (Unicode range $\mathrm{U}+0080$ to $\mathrm{U}+07 F F$).
3. Three bytes are needed for the rest of the Basic Multilingual Plane (which contains virtually all characters in common use).
4. Four bytes are needed for characters in the other planes of Unicode, which are rarely used in practice.

WFH See work made for hire
WWW See World Wide Web
WWWeb See World Wide Web
World Wide Web The World Wide Web (WWW or WWWeb) is an open source information space where documents and other web resources are identified by URLs, interlinked by hypertext links, and can be accessed via the Internet.

XHTML XHTML is the XML version of HTML. (just make it valid XML)

XML XML (short for Extensible Markup Language) is a framework for markup formats for electronic documents and structured data.

XML document tree The XML document tree is made up of element nodes, attribute nodes, text nodes (and namespace declarations, comments,...)

XML literal We call any string that is well-formed XML an XML literal.
XML namespace An XML namespace is a string that identifies an XML vocabulary. Every element and attribute name in XML consists of a local name and a namespace.

XML path language The XML path language (XPath) is a language framework for specifying fragments of XML trees.

XPath See XML path language
absolute value The absolute value $|r|$ of an integer r is defined as $\left\{\begin{aligned} r & \text { if } r \geq 0 \\ -(r) & \text { else }\end{aligned}\right.$.
absolute value The absolute value $|r|$ of an rational number $\frac{a}{b}$ is defined as $\frac{|a|}{|b|}$.
absolute value The absolute value $|r|$ of a number r is defined as $\left\{\begin{aligned} r & \text { if } r \geq 0 \\ -(r) & \text { else }\end{aligned}\right.$.
absolute value Real absolute value, addition, subtraction, multiplication, division, and exponentiation, square roots, r-th roots, and the ordering relations are extended to the real numbers, so that they respect limits.
abstract data type An abstract data type (ADT) is a mathematical model for a data types, which specifies a container by its behavior from the point of view of a user of the data, specifically in terms of possible value, possible operations on data of this type, and the behavior of these operations.
accepted unit Some units that have important contemporary application worldwide, or are otherwise commonly encountered worldwide and can be expressed as scalar multiples of derived units. They have been given the status of accepted units in the SI system.
accepting state Defined along with nondeterministic Turing machine
action Defined along with Turing machine
action table Defined along with Turing machine
acyclic Defined along with cyclic
acyclic Defined along with cyclic
addition Addition is extended to the integers by defining the sum as

$$
a+b:=\left\{\begin{aligned}
|a|+|b| & \text { if } a, b \in \mathbb{N}^{\prime} \\
(-(|a|+|b|) & \text { if } a, b \in \mathbb{Z}^{-} \\
|a|+(-(|b|)) & \text { if }(a \geq b) \\
|b|+(-(|a|)) & \text { if }(a<b)
\end{aligned}\right.
$$

addition We define addition on the rational numbers: the sum $\frac{a}{b}+\frac{c}{d}$ is $\frac{a \cdot d+b \cdot c}{b \cdot d}$.
addition Addition + computes the sum of $a+b$ of natural numbers a and b. It defined by the equations $x+0=x$ and $x+s(y)=s(x+y)$, where s is the successor function.
addition Addition + computes the sum of $a+b$ of numbers a and b.
addition Defined along with absolute value
addition operation We "define" the addition operation \oplus procedurally
(by an algorithm)

- adding zero to a number does not change it. written as an equation: $n \oplus o=n$
- adding m to the successor of n yields the successor of $m \oplus n$. written as an equation: $m \oplus s(n)=s(m \oplus n)$
algorithm An algorithm is a formal or informal specification for solving a problem by executing a finite sequence of instructions (concrete or imaginary/abstract) information processing systems.
alphabet Defined along with formal language
alphabet An alphabet A is a finite set; we call each element $a \in A$ a character, and an n-tuple of $s \in A^{n}$ a word (or string) of over A. We will often write a string $\left\langle c_{1}, \ldots, c_{n}\right\rangle$ as " $c_{1} \ldots c_{n}$ " or even as $c_{1} \ldots c_{n}$. We write the empty word (empty string) in A^{0} with ϵ.
alphabet Defined along with nondeterministic Turing machine
amount Defined along with length
ancestor The ancestor and descendant relations are the transitive closures of the parent and child relations respectively.
anonymous function python also allows to make anonymous functions via the lambda constructor for function objects:
lambda $\left(p_{1}, \ldots, p_{n}\right):\langle\langle\mathrm{expr}\rangle\rangle$
anti-reflexive Defined along with reflexive
antisymmetric Defined along with symmetric
antisymmetric Defined along with reflexive
application Defined along with partial function
application layer The application layer of the internet protocol suite contains all protocols and methods that fall into the realm of process-to-process communications via an Internet Protocol (IP) network using the Transport Layer protocols to establish underlying host-to-host connections.
rogramming interface An application programming interface (API) is an interface that defines interactions between multiple software intermediaries. It defines the kinds of calls or requests that can be made, how to make them, the data formats that should be used, the conventions to follow, etc.
arbitrary Defined along with variable
arc Defined along with graph
architectural work Defined along with copyrightable work
argument Defined along with subroutine
argument Defined along with partial function
arithmetic/logic unit Defined along with central processing unit
arity A python function is defined by a code snippet of the form

```
def f( }\mp@subsup{p}{1,\ldots,\mp@subsup{p}{n}{}):}{
    """docstring, what does this function do on parameters
                :param p}\mp@subsup{p}{i}{}\mathrm{ : document arguments}
        """
        <body》# # it can contain }\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{n}{}\mathrm{ , and even }
        return \<value\# value of the function call (e.g text or number)
    <<more code\\rangle
```

- the indented part is called the body of f, \quad (仓: whitespace matters in python)
- the p_{i} are called parameters, and n the arity of f.

A function f can be called on arguments a_{1}, \ldots, a_{n} by writing the expression $f\left(a_{1}, \ldots, a_{n}\right)$. This executes the body of f where the (formal) parameters p_{i} are replaced by the arguments a_{i}.
arity Defined along with subroutine
assign Defined along with variable assignment
associative array See dictionary
asymmetric Defined along with symmetric
asymmetric Defined along with reflexive
ymptotically bounded Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$, we say that f is asymptotically bounded by g, written as $f \leq_{a} g$, iff there is an $n_{0} \in \mathbb{N}$, such that $f(n) \leq g(n)$ for all $n>n_{0}$.
ymptotically bounded Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$, we say that f is asymptotically bounded by g (write $f \leq_{a} g$), iff there is an $n_{0} \in \mathbb{N}$, such that $f(n) \leq g(n)$ for all $n>n_{0}$.
atto Defined along with prefixes
attribute Defined along with opening tag
attribute Defined along with object-oriented programming
attribute node Defined along with XML document tree
audiovisual work Defined along with copyrightable work
aural markup Defined along with visual markup
authority Defined along with uniform resource identifier
auxiliary storage See secondary storage
axiom An axiom (or postulate) is a statement about mathematical objects that we assume to be true.
base Defined along with positional number system
base Defined along with positional number system
base Defined along with exponentiation
base Defined along with positional number system
base Defined along with exponentiation
base Defined along with exponentiation
base Defined along with exponentiation
base equation Error: The
defi does not appear to be inside a definition environment. line 75:3
base name Defined along with file system
base set We call a structure $\langle S, \leq\rangle$ of a set S (the base set) equipped with a preorder r an preordered set or proset.
base unit Defined along with International System of Units
asic multilingual plane Most (non-Chinese) characters have code points in $[1,65536]$ (the basic multilingual plane).
begin tag Defined along with tag
bijection Defined along with bijective
bijective Defined along with injective
bijective A function $f: S \rightarrow T$ is called bijective (or a bijection or a one-to-one correspondence), iff f is injective and surjective.
binary Defined along with source
binary Defined along with unary
binary A code is a called binary iff $B=\{0,1\}$.
binary file Defined along with text file
binary unit prefix The following binary unit prefix es are used for units of information because they are similar to the SI unit prefixes.

prefix	symbol	2^{n}	decimal	\sim SI prefix	Symbol
kibi	Ki	2^{10}	1024	kilo	k
mebi	Mi	2^{20}	1048576	mega	M
gibi	Gi	2^{30}	1.074×10^{9}	giga	G
tebi	Ti	2^{40}	1.1×10^{12}	tera	T
pebi	Pi	2^{50}	1.125×10^{15}	peta	P
exbi	Ei	2^{60}	1.153×10^{18}	exa	E
zebi	Zi	2^{70}	1.181×10^{21}	zetta	Z
yobi	Yi	2^{80}	1.209×10^{24}	yotta	Y

bit A bit (a contraction of "binary digit") is the basic unit of capacity of a data storage device or communication channel. The capacity of a system which can exist in only two states, is one bit (written as 1 b)
blank symbol Defined along with nondeterministic Turing machine
body Defined along with loop
body Defined along with function definition
body Defined along with subroutine
bound An occurrence of a variable v is called bound in an expression E, iff it is in a variable binding that binds v. Variables that are not bound in an expression E are called free in E. We often write an expression E in which variables x_{1}, \ldots, x_{n} occur freely, as $E\left[x_{1}, \ldots, x_{n}\right]$.
branch A path in a tree that starts with the root is called a branch.
branch Defined along with graph
branches Defined along with conditional execution
branching factor Defined along with in-degree
browsing Defined along with hypertext
byte The byte is a derived unit for information capacity: $1 \mathrm{~B}=8 \mathrm{~b}$.
calendar A calendar is a system of organizing dates. This is done by giving names to periods of time, typically days, weeks, month and years. A date is the designation of a single, specific day within such a system.
called Defined along with subroutine
canonical projection Defined along with equivalence class
canonical surjection Defined along with equivalence class
cardinality Defined along with finite
cell Jupyter notebooks consist of cells which come in three forms

- a raw cell shows text as is
- a markdown cell interprets the contents as markdown text
(later more)
- a code cell interprets the contents as (e.g. python) code
cell Defined along with Turing machine
centi Defined along with prefixes
entral processing unit A central processing unit (CPU), also called a central processor or main processor, is the electronic circuitry within a computer that carries out the instructions of a program by performing the basic arithmetic, logic, controlling, and input/output (I/O) operations specified by the instructions.
A CPU that consists of a
- control unit that interprets the program and controls the flow of machine instructions and
- a arithmetic/logic unit (ALU) that does the actual computations internally.
central processor See central processing unit
character Defined along with universal character set
character Defined along with alphabet
character code Let A and B be alphabets, then we call an injective function $c: A \rightarrow B^{+}$a character code. A string $c(w) \in\{c(a) \mid a \in A\}$ is called a codeword.
character encoding A character encoding is a mapping from bit strings to UCS code points.
character name Defined along with code point
character properties Defined along with code point
characteristic Defined along with floating point number
child Defined along with tree
child Defined along with tree
choreographic work Defined along with copyrightable work
civil law tradition Legal systems in the civil law tradition are usually based on explicitly codified laws (civil codes).
class In object-oriented programming, a class is a program construct for creating objects as well as providing the fields with initial values and the methods with implementations.
client A client is a piece of computer hardware or software that accesses a service made available by a server.
nt-server architecture In the client-server architecture a single overall computation is distributed across multiple processes or computers.
A single server can serve multiple clients, and a single client can use multiple servers. A client may run on the same computer or may connect over a network to a server on a different computer.
closed Defined along with opened
closed An expression is called closed or ground, iff it does not contain free variables.
closing tag Defined along with opening tag
cloud IDE See web IDE
code See computer code
code A code is a system of rules to convert information - such as a letter, word, sound, image, or gesture - into another form, sometimes shortened or secret, for communication via a communication medium or storage in a storage medium.

The process of encoding applies a code for communication or storage, whereas the process of decoding applies it in reverse to restore the original information
code cell Defined along with cell
code point Each UCS character is identified by an unambiguous name and an integer number called its code point.
code point For each character UniCode defines a code point (a number written in hexadecimal as $\mathrm{U}+A B C D)$, a character name, and a set of character properties.
codeword Defined along with character code
coding The implementation of an algorithm in a chosen programming language is called coding.
codomain Defined along with domain
codomain Defined along with partial function
coefficient Defined along with floating point number
coefficient Defined along with scientific notation
collection See container
command Defined along with command-line interface
command line Defined along with command-line interface
ommand-line interface A command-line interface (CLI) is a means of interacting with a computer program where the user (or client) issues instructions (called commands in a CLI) to the program in the form of successive lines of text (command line). The program which handles this user interface is called a command-line interpreter or command-line processor.
Imand-line interpreter Defined along with command-line interface
mmand-line processor Defined along with command-line interface
common law tradition Legal systems in the common law tradition are usually based on case law, they are often derived from the British system.
nathematical language Defined along with formulae
communication Communication is the act of conveying information from one group of subjects to another.
mmunication medium A communication medium is a channel or system of communication - the means by which information (the message) is transmitted between a speaker or writer (the sender) and an audience (the receiver).
compile Defined along with compiler
compiler A compiler is a program that translates (compiles)code written in one programming language (the source language) into another language (the target language).
complement See set difference
complex numbers The set \mathbb{C} of complex numbers contains expressions of the form $c=(a+b i)$, where $a, b \in \mathbb{R}$. $\operatorname{Re}(c):=a$ is called the real part and $\operatorname{Im}(c):=b$ the imaginary part of c; we call i the imaginary unit.
complexes Defined along with integer
component Defined along with uniform resource identifier
component Defined along with mathematical structure
composable We call two relations $R \subseteq A \times B$ and $S \subseteq C \times D$ composable, iff $B=C$
compose Defined along with composition principle
composition The composition of two relations $R \subseteq A \times B$ and $S \subseteq B \times C$ is defined as

$$
S \circ R:=\{(a, c) \in A \times C \mid \text { there is a } b \in B \text { with }(a, b) \in R \text { and }(b, c) \in S\}
$$

composition The composition of $R \subseteq A \times B$ and $S \subseteq B \times C$ is defined as $S \circ R:=\{(a, c) \in A \times C \mid \exists b \in B \cdot(a, b) \in R \wedge(b, c) \in S\}$
composition principle All programming languages provide composition principles that allow to compose smaller program fragments into larger ones in such a way, that the semantics of the larger is determined by the semantics of the smaller ones and that of the composition principle employed.
putationally universal See Turing complete
computer See computing device
computer code We call any well-formed fragments of a program computer code or program code, or just code.
mputer programming Computer programming (or just programming) is the process of designing and building a program for accomplishing a specific computing task.
It involves sub-processes, such as: analysis, generating algorithms, profiling algorithms' resource consumption, proving algorithm properties, coding, and program verification.
computer science Computer science (or short CS) is the study of algorithms and information processing system in theory and practice. A CS professional is called a computer scientist.
computer scientist Defined along with computer science
computing device A computing device or simply a computer is an physical (usually electrical or electronic) information processing system that can automatically execute a sequence of machine instructions i.e. arithmetic or logical operations that change state of the system.
A computer consists of physical parts (its hardware) and a set of programs and data, its software.
concatenation The concatenation $\operatorname{conc}\left(L_{1}, L_{2}\right)$ of two languages L_{1} and L_{2} over the same alphabet is defined as $\operatorname{conc}\left(L_{1}, L_{2}\right):=\left\{s_{1} s_{2} \mid s_{1} \in L_{1} \wedge s_{2} \in L_{2}\right\}$.
concatenation The concatenation $\operatorname{conc}(s, t)$ of two strings $s=\left\langle s_{1}, \ldots, s_{n}\right\rangle \in A^{n}$ and $t=\left\langle t_{1}, \ldots, t_{m}\right\rangle \in A^{m}$ is defined as $\left\langle s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{m}\right\rangle \in A^{(n+m)}$.
We will often write $\operatorname{conc}(s, t)$ as $s+t$ or simply $s t$.
condition A condition is a Boolean expression in a control structure.
conditional execution Conditional execution allows to execute (or not to execute) certain parts of a program (the branches) depending on a condition. We call a code block that enables conditional execution a conditional statement.
conditional statement Defined along with conditional execution
conjecture Error: The
defi does not appear to be inside a definition environment. line 43:51
connective Defined along with formulae
constant A constant is a memory location which contains a value that cannot be altered by the program during normal execution. It is referenced by an identifier - the constant name.
constant name Defined along with constant
container A container or collection is a grouping of some variable number (possibly zero) of data items - the elements of the container - that need to be operated upon together in some controlled fashion.
control flow The control flow of a program is the sequence of execution of the program instructions. It is specified via special program instructions called control structures.
control structure Defined along with control flow
control unit Defined along with central processing unit
control word Defined along with document markup
converse $\quad R^{-1}:=\{(y, x) \mid(x, y) \in R\}$ is the converse relation of R.
converse relation $\quad R^{-1}:=\{(y, x) \mid(x, y) \in R\}$ is the converse relation of $R \subseteq A \times B$.
copyright Defined along with intellectual property
copyright holder The copyright holder is the legal entity that owns the copyright to a copyrighted work.
opyright infringement The use of a copyrighted material, by anyone other than the owner of the copyright, amounts to copyright infringement only when the use is such that it conflicts with any one or more of the exclusive rights conferred to the owner of the copyright.
copyrightable work A copyrightable work is any artefact of human labor that fits into one of the following eight categories:

- Literary works: Any work expressed in letters, numbers, or symbols, regardless of medium.
(Computer source code is also considered to be a literary work.)
- Musical works: Original musical compositions.
- Sound recordings of musical works.
(different licensing)
- Dramatic works: literary works that direct a performance through written instructions.
- Choreographic works must be "fixed," either through notation or video recording.
- Pictorial, graphic and sculptural work (PGS works): Any two-dimensional or threedimensional art work
- Audiovisual works: work that combines audio and visual components. (e.g. films, television programs)
- Architectural works. (copyright only extends to aesthetics)
copyrighted Defined along with public domain
corollary Error: The
defi does not appear to be inside a definition environment. line 49:3
countable We say that a set A is countable (otherwise uncountable), iff there is an bijective function $f: A \rightarrow N$ with $N \subseteq \mathbb{N}$.
countably infinite We say that a set A is countably infinite, iff there is a bijective function $f: A \rightarrow \mathbb{N}$.
current Defined along with length
cycle Defined along with cyclic
cycle Defined along with cyclic
cyclic Given a graph $G=\langle V, E\rangle$, then
- a path p is called cyclic (or a cycle) iff $\operatorname{start}(p)=\operatorname{end}(p)$.
- a cycle $\left\langle v_{0}, \ldots, v_{n}\right\rangle$ is called simple, iff $v_{i} \neq v_{j}$ for $1 \leq i, j \leq n$ with $i \neq j$.
- graph G is called acyclic iff there is no cyclic path in G.
cyclic Given a directed graph $G:=\langle V, E\rangle$,
- a path p is called cyclic (or a cycle) iff $\operatorname{start}(p)=\operatorname{end}(p)$.
- a cycle $\left\langle v_{0}, \ldots, v_{n}\right\rangle$ is called simple, iff $v_{i} \neq v_{j}$ for $1 \leq i, j \leq n$ with $i \neq j$.
- G is called acyclic (or a DAG: directed acyclic graph) iff there is no cycle in G.
dashboard A dashboard is a user interface that organizes and presents system information give an overview over the state of a complex system and its services.
data Data is information that is used to represent objects by giving values to their relevant attributes and stating their relationships.
data language A data language is a formal language for specifying data in an information processing system. data languages are not Turing complete.
data structure A data structure is a data organization, management, and storage format that enables efficient access and modification.
data type A data type or simply type is an programming language attribute of data which tells the compiler or interpreter how the programmer intends to use the data.
A type constrains the values a variable or function can might take and defines the operators that can be applied to it.
date Defined along with calendar
day Defined along with minute
deca Defined along with prefixes
deci Defined along with prefixes
decimal Defined along with unary
decimal point Defined along with floating point number
decoding Defined along with code
1amespace declaration Defined along with namespace declaration
default value Defined along with keyword argument
defined at We call a partial function $f: X \rightharpoonup Y$
- defined at $x \in X$, iff $(x, y) \in f$ for some $y \in Y$ and
- undefined at $x \in X$ (write $f(x)=\perp$), iff $(x, y) \notin f$ for all $y \in Y$.
defined piecewise A function m is defined piecewise, we write

$$
m(x)=\left\{\begin{aligned}
a_{1} & \text { if } A_{1} \\
\vdots & \vdots \\
a_{n} & \text { if } A_{n} \\
o & \text { else }
\end{aligned}\right.
$$

where A_{i} are conditions involving x, if $m(x)=a_{i}$ for all x with A_{i} and o otherwise.
definiendum Error: The
defi does not appear to be inside a definition environment. line 22:26
definiendum Defined along with definitional equation
definiens Error: The
defi does not appear to be inside a definition environment. line 23:3
definiens Defined along with definitional equation
definite integral Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and an interval $[a, b] \subset \mathbb{R}$, then the definite integral $\int_{b}^{a} f(x) d x$ is defined to be the signed area of the region in the plane bounded by the graph of f, the x-axis, and the vertical lines $x=a$ and $x=b$, such that area above the x-axis adds to the total, and that below the x-axis subtracts from the total.
finition by description Error: The
defi does not appear to be inside a definition environment. line 58:16
definitional equation If a does not occur in A, we call a pair $a:=A$ a definitional equation and $a: \Leftrightarrow A$ a definitional equivalence with definiendum a and definiens A.
efinitional equivalence Defined along with definitional equation
denominator Defined along with rational number
depth The depth of a node n in a tree t is the length of the path that links n with the root of t.
dereferencing Defined along with reference
derivation Defined along with inference
derived unit A derived unit is formed as a product of integer powers of base units.
descendant Defined along with tree
descendant Defined along with ancestor
nistic Turing machine Defined along with nondeterministic Turing machine
diagonal See identity function
dictionary A dictionary (also called associative array, map, symbol table) is an abstract data type composed of a set of key/value pairs, such that each possible key appears at most once in the container.
difference Defined along with subtraction
digit Defined along with positional number system
digit Defined along with positional number system
digit Defined along with positional number system
digital text An electronic document that contains a digital encoding of textual material that can be read by the end user by simply presenting the encoded characters is called digital text.
digraph Defined along with graph
digraph Defined along with directed graph
dimension Defined along with n-fold Cartesian product
dimension Defined along with International System of Units
directed acyclic graph Defined along with cyclic
directed edge Defined along with directed graph
directed graph Defined along with graph
directed graph A directed graph (also called digraph) is a pair $\langle V, E\rangle$ such that

- V is a set of vertices
- $E \subseteq V \times V$ is the set of its directed edges
division The division operator computes the quotient a / b of $a \in \mathbb{Q}$ and $b \in \mathbb{Q}$. On \mathbb{Q} we define $\frac{a}{b} / \frac{c}{d}:=\frac{a \cdot c}{b \cdot d}$.
division Division computes the modulus $n \operatorname{div} m$ of two natural numbers n and m. $n \operatorname{div} m$ is defined as that $q \in \mathbb{N}$, such that $n=m \cdot q+r$ for some $r \leq 0<m$. The number r is called the remainder and is written as $n \bmod m$.
division Division computes the quotient a / b of a and b. It is defined as is that $c-$ if it exists, such that $a c=b$.
division Defined along with absolute value
document format A document format is a file format for electronic documents.
document markup Document markup (or just markup) is the process of adding control words (special character sequences also called markup codes) to a plain text to control the structure, formatting, or the relationship among its parts, making it a formatted text. All characters of a formatted text that are not control words constitute its textual content.
ocument object model The document object model (DOM) is a data structure for storing marked-up electronic documents as trees together with a standardized set of access methods for manipulating them.
document renderer Defined along with electronic document
document root As a document is a tree, the XML specification mandates that there must be a unique document root.
document type Defined along with markup format
domain call X the domain (write $\operatorname{dom}(f))$, and Y the codomain ($\operatorname{codom}(f)$) (come with f)
domain Defined along with partial function
dot notation Defined along with object
double star operator The double star operator unpacks a dictionary into a sequence of keyword arguments.
dramatic work Defined along with copyrightable work
edge Defined along with graph
electronic document An electronic document is any electronic media content that is intended to be used via a document renderer, i.e. a program or computing device that transforms it into a form that can be directy perceived by the end user.
element Defined along with set
element Defined along with set
element Defined along with container
element node Defined along with XML document tree
elementhood Defined along with set
embedded system An embedded system is a computing device with a dedicated function within a larger mechanical or electrical system.
empty Defined along with empty set
empty element tag Defined along with opening tag
empty set the empty set: $\forall x . x \notin \emptyset$
empty set The empty set \emptyset (also written as $\}$) is the set without elements. A set is called empty, iff it is \emptyset, and non-empty or (inhabited) otherwise.
empty string Defined along with alphabet
empty tag Defined along with tag
empty word Defined along with alphabet
encoding Defined along with code
encoding scheme UniCode defines various encoding schemes for characters, the most important is UTF-8.
end Defined along with path
end Defined along with path
end tag Defined along with tag
end user An end user is a person who ultimately uses or is intended to ultimately use a computation device or program.
user license agreement Software vendors usually license software under extensive end-user license agreement (EULA) entered into upon the installation of that software on a computer. The license authorizes the user to install the software on a limited number of computers.
equal Two sets A and B are equal (written $A \equiv B$), iff they have the same elements.
equal We call two mathematical objects a and b equal, (written $a=b$), iff there are no properties that discern them.
equivalence class Let S be a set and R be an equivalence relation on S, then for any we call $x \in S$ we call the set $[x]_{R}:=\{y \in S \mid R(x, y)\}$ the equivalence class of x (under R), and the set $S / R:=\left\{[x]_{R} \mid x \in S\right\}$ the quotient space of S (under R).
equivalence class Let S be a set and R be an equivalence relation on S, then for any we call $x \in S$ we call the set $[x]_{R}:=\{y \in S \mid R(x, y)\}$ the equivalence class of x (under R), and the set $S / R:=\left\{[x]_{R} \mid x \in S\right\}$ the quotient space or quotient set of S (under R), it is often read as S "modulo R ". The element x is called the representative of $[x]_{R} \in S / R$.
The mapping $\pi_{R}: S \rightarrow S / R ; x \mapsto[x]_{R}$ is called the canonical projection or canonical surjection of S to S / R.
equivalence relation Defined along with reflexive
equivalence relation A relation $R \subseteq A \times A$ is an equivalence relation on A, iff R is reflexive, symmetric, and transitive.
escape character Defined along with string literal
escape sequence Defined along with string literal
evaluation Defined along with expression
exa Defined along with prefixes
exbi Defined along with binary unit prefix
execute Defined along with interpreter
execute Defined along with computing device
exploitation rights Defined along with personal rights
exponent Defined along with floating point number
exponent Defined along with exponentiation
exponentiation The exponentiation operation raises a number a (the base) to the power n (the exponent). We define it as

$$
a^{n}:=\left\{\begin{aligned}
b^{n} & \text { if } a \in \mathbb{Z}^{-} \text {and }(n=2 \cdot k) \\
\left(-\left(b^{n}\right)\right. & \text { if } a \in \mathbb{Z}^{-} \text {and }(n=2 \cdot k+1)
\end{aligned}\right.
$$

exponentiation Exponentiation raises a number $a \in \mathbb{Q}$ (the base) to the power $n \in \mathbb{Q}$ (the exponent). We define

$$
\frac{a \frac{n}{m}}{b}:=\frac{\sqrt[m]{a^{n}}}{\sqrt[m]{b^{n}}}
$$

exponentiation Exponentiation raises a natural number a (the base) to the n-th power a^{n} ($n \in \mathbb{N}$ is called the exponent). We define $a^{0}:=1$ and $a^{s(n)}:=a a^{n}$.
exponentiation Exponentiation raises a number a (the base) to the n-th power a^{n} (n is called the exponent). exponentiation Defined along with absolute value
expression An expression in a programming language is a combination of one or more constants, variables, operators, and functions that the programming language computes to produce a value. This process is called evaluation.
expression An expression is a finite construction composed of variables and names of mathematical objects/concepts composed by operator application and variable binding according to rules that depend of the (mathematical) context.
extension The extension of a code (on characters) $c: A \rightarrow B^{+}$to a function $c^{\prime}: A^{*} \rightarrow B^{*}$ is defined as $c^{\prime}\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle=\left\langle c\left(a_{1}\right), \ldots, c\left(a_{n}\right)\right\rangle\right)$.
extension Defined along with file system
external memory See secondary storage
f-string See formatted string literal
f-string See formatted string literal
fair use doctrine Case law in common law traditions has established a fair use doctrine, which allows e.g.

- making safety copies of software and audiovisual data,
- lending of books in public libraries,
- citing for scientific and educational purposes, or
- excerpts in search engine.

Fair use is established in court on a case-by-case taking into account the purpose (commercial/educational), the nature of the work the amount of the excerpt, the effect on the marketability of the work.
false Defined along with truth value
falsum Defined along with truth value
femto Defined along with prefixes
field Defined along with object-oriented programming
file A file is a resource for recording data in a storage device.
file format A file format is a standard way that information is encoded for storage in a computer file. It specifies how bits are used to encode information in a storage device.
file object python uses file objects to encapsulate all file input/output functionality.
file system A file system is a program that organizes space on a storage device and makes it acessible as files. A file name usually consists of a base name and an extension separated by a dot.
final state Defined along with nondeterministic Turing machine
finite We say that a set A is finite and has cardinality (or size) $\#(A) \in \mathbb{N}$, iff there is a bijective function $f: A \rightarrow\{n \in \mathbb{N} \mid n<\#(A)\}$.
The cardinality of a set A is also written as $|A|, \operatorname{card}(A), n(A)$, or $\overline{\bar{A}}$.
finite sequence Defined along with sequence
first component Let $p:=(a, b)$ be a pair, then we call $p^{1}:=a$ the first component and $p^{2}:=b$ the second component of p.
float Defined along with integer
float See floating point number
floating point number A floating point number (or short a float) is a quintuple $n:=\left\langle\sigma, s_{1}, s_{2}, b, e\right\rangle$, where

1. the sign σ is unit sequence - or the empty sequence, and the s_{i} are sequence of digits of base b. Together, (i.e. concatenated with a decimal point between s_{1} and s_{2}) σ, s_{1}, and s_{2} make up the significand s (also called the mantissa or coefficient.
2. an exponent $e \in \mathbb{Z}$ (also referred to as the characteristic, or scale), which modifies the magnitude of the number n.

The number $\left\langle\sigma, s_{1}, s_{2}, b, e\right\rangle$ represents the rational number $\frac{s}{b^{p-1}} \cdot b^{e}$ ．
The length $p:=\operatorname{len}\left(s_{1}\right)+\operatorname{len}\left(s_{2}\right)$ of the significand determines the precision to which numbers can be represented．
for loop A for loop iterates a program fragment over a sequence；we call the process iteration．python uses the following general syntax
for $\langle\langle v a r\rangle\rangle$ in $\langle\langle$ range $\rangle\rangle$ ：《body》
《／other code》〉
form action Defined along with input element
form data The HTML form element groups the layout and input elements：
$-<$ form action＝＂$\langle\langle U R I\rangle\rangle$＂method＝＂$\langle\langle$ req $\rangle ">$ specifies the form action in terms of a HTTP request $\langle\langle r e q\rangle$ to the URI 《URI》．
－The form data consists of a string $\left\langle\langle\right.$ data \rangle of the form $n_{1}=v_{1} \& \cdots \& n_{k}=v_{k}$ ，where
＊n_{i} are the values of the name attributes of the input fields
＊and v_{i} are their values at the time of submission．

- ＜input type＝＂submit＂．．．／＞triggers the form action：it composes a HTTP request
＊If $\langle\langle r e q\rangle$ is get（the default），then the browser issues a GET request $\langle\langle\mathrm{URI}\rangle\rangle ?\langle\langle$ data $\rangle\rangle$ ．
＊If $\langle\langle r e q\rangle\rangle$ is post，then the browser issues a POST request to $\langle\langle\mathrm{URI}\rangle\rangle$ with document content $\langle\langle$ data $\rangle\rangle$ ．
formal language A set $L \subseteq A^{*}$ is called a formal language in A ．
formal language A formal language（or simply language）over an alphabet \mathcal{A} is a set $\mathcal{L} \subseteq \mathcal{A}^{*}$ of words over \mathcal{A} ．
ormatted string literal Formatted string literals（aka．f－strings）are string literals can contain python expressions that will be replaced with their values at runtime．

F－strings are prefixed by a prefix f or F ，the expressions are delimited by curly braces，and the characters $\{$ and $\}$ themselves are represented by $\{\{$ and $\}\}$ ．
formatted text Defined along with plain text
formulae Mathematicians use a stylized language that
－uses formulae to represent mathematical objects，e．g． $\int_{1}^{0} x^{3 / 2} d x$
－uses math idioms for special situations（e．g．iff，hence，let．．．be．．．，then．．．）
－classifies statements by role（e．g．Definition，Lemma，Theorem，Proof，Example）
We call this language mathematical vernacular or common mathematical language．
For the use in formulae we use abbreviations（special symbols）for many of the connectives：
$-\wedge$ and \vee and \neg are common notations for and and or
－not is in mathematical statements often denoted with \neg
－iff as abbreviation for if and only if，symbolized by \Leftrightarrow
－the symbol \Rightarrow is used a as shortcut for implies or if．．．，then ．．．．
and quantifiers：
$-\forall x . P(\forall x \in S . P)$ stands for P holds for all x (in S)
$-\exists x . P(\exists x \in S . P)$ stands for there exists an x (in S) such that P holds
$-\exists x . P(\nexists x \in S . P)$ stands for there exists no x (in S) such that P holds
$-\exists^{1} x . P\left(\exists^{1} x \in S . P\right)$ stands for there exists one and only one x (in S) such that P holds
fraction Defined along with rational number
fragment identifier Defined along with uniform resource identifier
free Defined along with bound
function Defined along with subroutine
function If we do not want to specify whether a partial function is total, then we simply speak of a function.
function definition The function definition $f\left(a_{1}, \ldots, a_{n}\right):=B\left[a_{1}, \ldots, a_{n}\right]$ defines a n-ary function f by its behavior on the (formal) arguments a_{1}, \ldots, a_{n}. Here we call $f\left(a_{1}, \ldots, a_{n}\right)$ the function pattern and $B\left[a_{1}, \ldots, a_{n}\right]$ the body- an expression that can contain the arguments a_{1}, \ldots, a_{n} as free variables.
A relation p is defined analogously via definitional equivalence $p\left(a_{1}, \ldots, a_{n}\right): \Leftrightarrow B\left[a_{1}, \ldots, a_{n}\right]$.
function object Defined along with anonymous function
function pattern Defined along with function definition
function space Given sets A and B We will call the set $A \rightarrow B(A \rightharpoonup B)$ of all (partial) functions from A to B the (partial) function space from A to B.
function space Defined along with partial function space
ral-purpose computer A general-purpose computer is one that, given the appropriate Software and the required time, should be able to perform arbitrary computing tasks.
gibi Defined along with binary unit prefix
giga Defined along with prefixes
graph A graph is a pair $G:=\langle V, E\rangle$ such that V is a set and $E \subseteq V \times V$ is a relation on V. We call V the vertices (or nodes, points, junctions) and E the edges (or lines, branches, arcs) of G.

If E is symmetric, we call G an undirected graph, else a directed graph or digraph. In the former we consider the pairs $(a, b),(b, a) \in E$ together as an unordered pair $\{a, b\}$.
raphical user interface A graphical user interface is a user interface that includes graphical elements, such as windows, icons, and buttons.
greater than Defined along with less than
ground See closed
halt Defined along with Turing machine
handle See identifier
hardware Defined along with computing device
head Defined along with Turing machine
hecto Defined along with prefixes
height The height of a node n in a tree t is the length of the longest path that links n to a leaf of t. The height of t is the height of its root.
height Defined along with height
hexadecimal Defined along with unary
higher-order function We call a function a higher-order function, iff it takes a function as argument.
hour Defined along with minute
hyperlink A hyperlink is a reference to data that can immediately be followed by the user or that is followed automatically by a user agent.
hypertext A collection text documents with hyperlinks that point to text fragments within the collection is called a hypertext. The action of following hyperlinks in a hypertext is called browsing or navigating the hypertext.
idempotent We call a HTTP request idempotent, iff executing it twice has the same effect as executing it once.
identifier An identifier (also called handle) is reference to a resource.
identity function The identity function on a set A is defined as $\operatorname{Id}_{A}:=\{(a, a) \mid a \in A\}$.
identity function For a set A, the identity function $\operatorname{Id}_{A}: A \rightarrow A$ on A maps any $a \in A$ to itself. If we think of Id_{A} as a relation on A, then we call it the identity relation or diagonal on A and write it as Δ_{A}.
identity relation See identity function
iff Defined along with MathTalk
iff Defined along with formulae
image Let $f: A \rightarrow B$ be a function, $A^{\prime} \subseteq A$, and $B^{\prime} \subseteq B$, then we call
$-f\left(A^{\prime}\right):=\left\{b \in B \mid(a, b) \in f\right.$ for some $\left.a \in A^{\prime}\right\}$ the image of A^{\prime} under f,
$-\operatorname{Im}(f):=f(A)$ the image of f, and
$-f^{-1}\left(B^{\prime}\right):=\left\{a \in A \mid(a, b) \in f\right.$ for some $\left.b \in B^{\prime}\right\}$ the pre-image of B^{\prime} under f.
image Defined along with image
imaginary part Defined along with complex numbers
imaginary unit Defined along with complex numbers
immutable Defined along with mutable
implicit definition Error: The
defi does not appear to be inside a definition environment. line 57:56
in-degree Given a graph $G=\langle V, E\rangle$. The in-degree $\operatorname{indeg}(v)$ and the out-degree outdeg (v) (or branching factor) of a vertex $v \in V$ are defined as
$-\operatorname{indeg}(v)=\#(\{w \mid(w, v) \in E\})$
$-\operatorname{outdeg}(v)=\#(\{w \mid(v, w) \in E\})$
indegree Let $G:=\langle V, E\rangle$ be a directed graph and $v \in V$ a node in G, then we define
$-\operatorname{indegree} \operatorname{indeg}(v)$ of v as $\#(\{w \mid(w, v) \in E\})$

- outdegree $\operatorname{outdeg}(v)$ of v as $\#(\{w \mid(v, w) \in E\})$
ıced undirected graph Let $G:=\langle V, E\rangle$ be a graph, and E^{\prime} the symmetric closure of E, then we call $\left\langle V, E^{\prime}\right\rangle$ the induced undirected graph of G.
industrial design right Defined along with intellectual property
inference We call a sequence of inferences a derivation or a proof (of the last statement).
infinite A set that is not finite is called infinite.
infinite sequence Defined along with sequence
infinity Infinity (written ∞) is an abstract concept describing something without any limit. In mathematics is is usually treated like a number.
information Information consists of a sequence of symbols or states.
ion processing system An information processing system (or information processor) is a stateful system (be it electrical, mechanical or biological) which takes information in one form and transforms it into another form.
An information processing system S is made up of four subsystems:

1. the input subsystem channels information into S,
2. the processor executes the transformation in a sequence of operations called instructions on the processor state,
3. the storage subsystem stores information, and
4. the output subsystem channels the transformed information out of S.
information processor See information processing system
inhabited Defined along with empty set
initial Let $G:=\langle V, E\rangle$ be a directed graph, then we call a node $v \in V$

- initial (or a source) in G, iff there is no $w \in V$ such that $(w, v) \in E$.
- terminal (or a sink) in G, iff there is no $w \in V$ such that $(v, w) \in E$.
initial Let $G=\langle V, E\rangle$ be a directed graph, then we call a node $v \in V$
- initial, iff there is no $w \in V$ such that $(w, v) \in E . \quad$ (no predecessor)
- terminal, iff there is no $w \in V$ such that $(v, w) \in E . \quad$ (no successor)

In a graph G, node v is also called a source (sink) of G, iff it is initial (terminal) in G.
initial state Defined along with nondeterministic Turing machine
injection Given a tuple $v \in A_{1} \times \ldots \times A_{(i-1)} \times A_{(i+1)} \times \ldots \times A_{n}$ we call the function $\iota_{v}^{i}: A_{i} \rightarrow$ $A_{1} \times \ldots \times A_{n} ; a_{i} \mapsto\left\langle a_{1}, \ldots, a_{n}\right\rangle$ the $\left(i^{\text {th }}\right)$ injection induced by v.
injective A function $f: S \rightarrow T$ is called

- injective iff $\forall x, y \in S . f(x)=f(y) \Rightarrow x=y$.
- surjective iff $\forall y \in T . \exists x \in S . f(x)=y$.
- bijective iff f is injective and surjective.
injective A function $f: S \rightarrow T$ is called injective or one-to-one, iff $f(x)=f(y)$ entails $x=y$ for all $x, y \in S$.
inner node Defined along with path
input element The HTML form element groups the layout and input elements:
$-<$ form action="《URI》" $\ldots>$ specifies the form action (as a web page address).
- <input type="submit".../> triggers the form action: it sends the form data to web page specified there.
input subsystem Defined along with information processing system
input symbol Defined along with nondeterministic Turing machine
instruction Defined along with information processing system
integer python has the following five basic data types

Data type	Keyword	contains	Examples
integers	int	bounded integers	$1,-5,0, \ldots$
floats	float	floating point numbers	$1.2, .125,-1.0, \ldots$
strings	str	strings	"Hello",'Hello, "123", 'a', \ldots
Booleans	bool	truth values	True, False
complexess	complex	complex numbers	$2+3 \mathrm{j}, \ldots$

integer See integer number
integer division Integer division computes the integer quotient (or modulus) n div m of two integers. n div m is defined as that $q \in \mathbb{Z}$, such that $n m \cdot q+r$ for some $0 \leq r<m$. The number r is called the remainder and is written as $n \bmod m$.
integer interval We define the integer interval as a set of consecutive integers: $[a, b]:=\{x \in \mathbb{Z} \mid x \leq a \leq b\}$
integer number The set \mathbb{Z} of integer numbers (or integers) is defined as $\mathbb{Z}:=\mathbb{N} \cup\left\{-n \mid n \in \mathbb{N}^{+}\right\}$.
integer quotient Defined along with integer division
elopment environment An integrated development environment (IDE) is a program that provides comprehensive facilities to computer programmers for software development. An IDE normally consists of at least a source code editor, build automation tools, and a debugger.
intellectual property The concept of intellectual property motivates a set of laws that regulate property rights rights on intangible objects, in particular

- Patents grant exploitation rights on original ideas.
- Copyrights grant personal and exploitation rights on expressions of ideas.
- Industrial design rights protect the visual design of objects beyond their function.
- Trademarks protect the signs that identify a legal entity or its products to establish brand recognition.
interactive toplevel See read-eval-print loop
interface See user interface
interpreter An interpreter is a program that directly executes instructions written in a programming language, without requiring them previously to have been compiled into a machine language program.
intersection intersection: $A \cap B:=\{x \mid x \in A \wedge x \in B\}$
intersection Let A and B be sets, then the intersection $A \cap B$ of A and B is $\{x \mid x \in A$ and $x \in B\}$.
intersection Let I be a set and S_{i} a family of sets indexed by I, then the intersection $\bigcap_{i \in I} S_{i}$ over I is $\left\{x \mid x \in S_{i}\right.$ for all $\left.i \in I\right\}$.
ction over a collection intersection over a collection: Let I be a set and S_{i} a family of sets indexed by I, then $\bigcap_{i \in I} S_{i}:=\left\{x \mid \forall i \in I . x \in S_{i}\right\}$.
interval We define four kinds of intervals as subsets of the real numbers:
$-[a, b]:=\{x \in \mathbb{R} \mid(a \leq x)$ and $(x \leq b)\}$
$-[a, b):=\{x \in \mathbb{R} \mid(a \leq x)$ and $(x<b)\}$
$-(a, b]:=\{x \in \mathbb{R} \mid(a<x)$ and $(x \leq b)\}$
$-(a, b):=\{x \in \mathbb{R} \mid(a<x)$ and $(x<b)\}$
intransitive Defined along with transitive
inverse function If f is bijective, call the converse relation inverse function, we (also) write it as f^{-1}.
inverse function If $f: A \rightarrow B$ is injective, then the converse relation is a partial function $f^{-1}: B \rightarrow A$, we call it the inverse function of f. If f is bijective total function, then f^{-1} is a total function.
invoke Defined along with subroutine
invoker Defined along with subroutine
irreflexive Defined along with reflexive
irreflexive Defined along with reflexive
is (of complexity) Defined along with Landau set
iterate Defined along with for loop
iteration Defined along with for loop
junction Defined along with graph
key Defined along with dictionary
keyword argument The last $k \leq n$ of n parameters of a function can be keyword arguments of the form $p_{i}=\left\langle\langle\text { val }\rangle_{i}\right.$: If no argument a_{i} is given in the function call, the default value $\langle\langle v a l\rangle\rangle_{i}$ is taken.
keyword argument python functions can take keyword arguments:
if k is a sequence of key/value pairs then def $f\left(p_{1}, \ldots, p_{n}, * * k\right)$, binds the keys to values in the body of f.
kibi Defined along with binary unit prefix
kilo Defined along with prefixes
language See formal language
language shell See read-eval-print loop
leaf Defined along with tree
leaf Defined along with tree
leap year Defined along with year
lemma Error: The
defi does not appear to be inside a definition environment. line 47:67
length Defined along with sequence
length Defined along with path
length The length $|s|$ of a word $s \in A^{n}$ is n.
length Defined along with path
length The seven dimensions of SI base units are length (L), mass (M), time (T), current (I), temperature (Θ), luminous intensity (J), and amount (N).
less than We define the order relation $<_{\mathbb{Z}}$ (n is less than m also written as $<$) by

$$
<_{\mathbb{Z}}:=<_{\mathbb{N}} \cup\left\{(n, m) \mid n \in \mathbb{Z}^{-} \text {and } m \in \mathbb{N}\right\} \cup\left\{(-(n),-(m)) \mid n, m \in \mathbb{N}^{+} \text {and } m<_{\mathbb{N}} n\right\}
$$

We define the relation $>_{\mathbb{Z}}$ (greater than) via $(n>m): \Leftrightarrow(m<n)$ and the relations $\leq_{\mathbb{Z}}$ and $\leq_{\mathbb{Z}}$ as the reflexive extensions.
less than $T h e<$ relation is the transitive closure of the relation $\{(n, s(n)) \mid n \in \mathbb{N}\}$, and \leq its transi-tive-reflexive closure. $>$ and \leq are the corresponding converse relations.
For $a<b$ we say that a is less than $b .^{1}$
library A python library is a python file with a collection of functions, classes, and methods. It can be loaded via the import command.
license A license is an authorization (by the licensor) to use the licensed material (by the licensee).
licensee Defined along with license
licensor Defined along with license
line See text line
line Defined along with graph
line feed character Defined along with text line
line number Defined along with text line
linear ordering We call a partial ordering R a linear ordering (or simple ordering or total ordering), iff $a \leq b$ or $b \leq a$ for all $a, b \in A$.
linearly ordered set We call a structure $\langle S, \leq\rangle$ of a set S and a total ordering \leq a linearly or totally ordered set.

[^0]linked Defined along with path
list A list or sequence is an abstract data type that represents a finite number of ordered elements, where the same value may occur more than once.
list See sequence
list constructor We call $[\langle\langle\mathrm{seq}\rangle\rangle]$ the list constructor.
literary work Defined along with copyrightable work
local name Defined along with XML namespace
logical reasoning Error: The defi does not appear to be inside a definition environment. line 42:54
logical system Error: The defi does not appear to be inside a definition environment. line 51:5
loop A loop is a control structure that allows to execute certain parts of a program (the body) multiple times depending on conditions.
lower bound Defined along with summation
luminous intensity Defined along with length
machine instruction Defined along with computing device
main processor See central processing unit
mantissa Defined along with floating point number
mantissa Defined along with scientific notation map See dictionary
markdown cell Defined along with cell
markup See document markup
markup code Defined along with document markup
markup format The control words and composition rules for a particular kind of markup system determine a markup format. The markup format used in an electronic document is called its document type.
mass Defined along with length
math idiom Mathematicians use a stylized language that

- uses formulae to represent mathematical objects, e.g. $\int_{1}^{0} x^{3 / 2} d x$
- uses math idioms for special situations (e.g. iff, hence, let...be..., then...)
- classifies statements by role (e.g. Definition, Lemma, Theorem, Proof, Example)

We call this language mathematical vernacular.
math idiom Defined along with formulae
athematical structure A mathematical structure combines multiple mathematical objects (the components) into a new object. Structures are usually given as finite enumerations, where the components have names by which they can be referenced.
thematical vernacular Defined along with math idiom
thematical vernacular Defined along with formulae
maximum Defined along with minimum
maximum Defined along with minimum
mebi Defined along with binary unit prefix
media See medium
media content Defined along with medium
medium A medium (plural media) is a communication medium or storage medium. The information conveyed or stored is called the media content.
mega Defined along with prefixes
member Defined along with set
membership Defined along with set
memory The memory (also primary storage) is a storage subsystem in a computer that stores information for immediate use by its CPU.
message Defined along with communication medium
netasyntactic variable Defined along with pseudocode
method Most important HTTP request methods.
(5 more less prominent)

GET	Requests a representation of the specified re- source.	safe
PUT	Uploads a representation of the specified resource.	idempotent
DELETE	Deletes the specified resource.	idempotent
POST	Submits data to be processed (e.g., from a web form) to the identified resource.	

method Defined along with object-oriented programming
micro Defined along with prefixes
milli Defined along with prefixes
minimum The minimum $\min S$ (maximum $\max S$) of an ordered set S is that element m (if it exists), such that all other members of S are smaller (larger) than m. We write min $\left(a_{1}, \ldots, a_{n}\right)$ for $\min \left\{a_{1}, \ldots, a_{n}\right\}$ and $\max \left(a_{1}, \ldots, a_{n}\right)$ for $\max \left\{a_{1}, \ldots, a_{n}\right\}$.
If e is an expression and φ a condition (in a variable x), we write $\max _{\varphi}(e)$ for $\max \{e \mid \varphi\}$ and call it the maximum for e over φ. Analogously, we write $\min _{\varphi}(e)$ for $\min \{\varphi \mid e\}$ and call it the minimum for e over φ
minimum Defined along with minimum
minute A minute is 60 seconds, an hour is 60 minutes, a day is 24 hours, and a week is seven days. modulo Defined along with equivalence class
modulus Defined along with integer division
modulus Defined along with division
month A month is between 27 and 31 day, depending on which month of the calendar and year it is.
lti-relation expression A multi-relation expression is built up from binary relations via conjunction: $a R b S c \ldots$ holds, iff $R(a, b)$ holds and also $b S c . \ldots$
multiplication Multiplication is extended to \mathbb{Z} by defining the product by cases:

$$
a \cdot b:=\left\{\begin{aligned}
|a| \cdot|b| & \text { if } a, b \in \mathbb{N} \text { or } a, b \in \mathbb{Z}^{-} \\
(-(|a| \cdot|b|) & \text { else }
\end{aligned}\right.
$$

multiplication We define multiplication on \mathbb{Q} : The product $\frac{a}{b} \cdot \frac{c}{d}$ is $\frac{a \cdot c}{b \cdot d}$.
multiplication Multiplication computes the product $a \cdot b$ (also written as $a b$ or $a \times b$) of natural numbers a and b. It is defined by the equations $x \cdot 0=0$ and $x+s(y)=x+x \cdot y$.
multiplication Multiplication computes the product $a b$ of numbers a and b.
multiplication Defined along with absolute value
musical work Defined along with copyrightable work
mutable The last two items touch a somewhat delicate subject in programming. Mutable an immutable data structures: the former can be changed in-place - as we have above with the .set method, and the latter cannot. Both have their justification and respective advantages. Immutable data structures are "safe" in the sense that they cannot be changed unexpectedly by another part of the program, they have the disadvantage that every time we want to have a variant, we have to copy the whole object. Mutable ones do not - we can change in place - but we have to be very careful about who accesses them when.
This is also the reason why we spoke of "dictionary-like interface" to XML trees in Ixml: dictionaries are immutable, while XML trees are not.
mutually recursive Defined along with recursive
name Defined along with subroutine
namepsace prefix Defined along with namespace declaration
namespace declaration Defined along with XML document tree
1amespace declaration namespace declaration is an attribute $x m \operatorname{lns}:\langle\langle p r e f i x\rangle\rangle|=|$ whose value is an XML namespace n on an XML element e. The first associates the namepsace prefix $\langle\langle$ prefix \rangle with the namespace n in e : Then, any XML element in e with a prefixed name $\langle\langle$ prefix $\rangle\rangle:\langle\langle n a m e\rangle\rangle$ has namespace n and local name $\langle\langle$ name $\rangle\rangle$.
A default namespace declaration $\mathrm{xm} \operatorname{lns}=d$ on an element e gives all elements in e whose name is not prefixed, the namepsace d.
Namespace declarations on subtrees shadow the ones on supertrees.
nano Defined along with prefixes
natural number The set \mathbb{N} of natural numbers is the set $\{0,1,2, \ldots\}$. They are constructed by iteration of the successor function over zero.
navigating Defined along with hypertext
negative integer Defined along with non-negative integer
ative rational number Defined along with positive rational number
negative real number Defined along with positive real number
node Defined along with graph
node Defined along with undirected graph
non-empty Defined along with empty set
non-negative integer We use $\mathbb{Z}_{0}^{+}:=\mathbb{N}$ and $\mathbb{Z}_{0}^{-}:=\{x \in \mathbb{Z} \mid x=(-y)$ for some $y \in \mathbb{N}\}$ and call them the nonnegative integers and non-positive integers respectively. Analogously, we use $\mathbb{Z}^{+}:=\left\{x \in \mathbb{Z}_{0}^{+} \mid x \neq 0\right\}$ and $\mathbb{Z}^{-}:=\left\{x \in \mathbb{Z}_{0}^{-} \mid x \neq 0\right\}$ for the positive integers and negative integers.
ative rational number Defined along with positive rational number
-negative real number Defined along with positive real number
non-positive integer Defined along with non-negative integer
sitive rational number Defined along with positive rational number
-positive real number Defined along with positive real number
nistic Turing machine A nondeterministic Turing machine (NTM) is a septuple $\mathcal{M}:=\left\langle\mathcal{A}, \mathcal{S}, b, \Sigma, s_{0}, \mathcal{F}, \mathcal{R}\right\rangle$, where

- \mathcal{A} is a set called the alphabet,
$-\mathcal{S}$ is a set of states,
$-b \in \mathcal{A}$ the blank symbol.
$-\Sigma \subseteq \mathcal{A}$ the input symbols
$-s_{0} \in \mathcal{S}$ is the initial state,
$-\mathcal{F} \subseteq \mathcal{S}$ is the set of accepting or final states,
- and $\mathcal{R} \subseteq((\mathcal{S} \backslash \mathcal{F}) \times \mathcal{A}) \times(\mathcal{S} \times \mathcal{A} \times\{R, L\})$; it is called the transition relation.
\mathcal{M} is called a deterministic Turing machine (DTM) if \mathcal{R} is a function $\mathcal{R}:(\mathcal{S} \backslash \mathcal{F}) \times \mathcal{A} \rightarrow$ $\mathcal{S} \times \mathcal{A} \times\{R, L\}$, then it is called the transition function.
If it is irrelevant - or clear from the context - whether \mathcal{M} is deterministic or not, we often just speak of Turing machines without a qualifier.
nonempty string Let A be an alphabet, then we define the sets $A^{+}:=\bigcup_{i \in \mathbb{N}^{+}} A^{i}$ of nonempty strings and $A^{*}:=A^{+} \cup\{\epsilon\}$ of strings.
nonempty word Let A be an alphabet, then we define the sets $A^{+}:=\bigcup_{i \in \mathbb{N}^{+}} A^{i}$ of nonempty words (nonempty strings) and $A^{*}:=A^{+} \cup\{\epsilon\}$ of words (strings).
normalized Defined along with scientific notation
not fully specified Defined along with variable
number A number is a mathematical object used to count or measure other objects.
number system A number system is simply a set of numbers.
numeral The representation of a number in a numeral system is called a numeral.
numeral system A numeral system (or system of numeration) is a writing system for expressing numbers, that is, a mathematical notation for representing numbers of a given set, using symbols in a consistent manner.
numerator Defined along with rational number
object In python all values belong to a class, which provide special functions we call methods. Values are also called objects, to emphasise class aspects. Method application is written with dot notation: $\langle\langle\mathrm{obj}\rangle\rangle \cdot\langle\langle\mathrm{meth}\rangle\rangle(\langle\langle\mathrm{args}\rangle\rangle)$ corresponds to $\langle\langle\mathrm{meth}\rangle\rangle(\langle\langle\mathrm{obj}\rangle\rangle,\langle\langle\operatorname{args}\rangle\rangle)$.
object Defined along with object-oriented programming
oriented programming Object-oriented programming (OOP) is a programming paradigm based on the concept of an objects. Objects can contain data, in the form of fields (often known as attribute or properties) to represent object properties. Object behavior is specified via procedures (called methods in OOP).
octal Defined along with unary
on Defined along with path
one Defined along with zero
one-to-one See injective
o-one correspondence See bijective
onto See surjective
open source See Free/Libre/Open-Source Software
opened Once a file has been opened, the CPU can write to it and read from it. After use a file should be closed to protect it from accidental reads and writes.
opening tag For communication this tree is serialized into a balanced bracketing structure, where
- an inner element node is represented by the brackets <el> (called the opening tag) and </el> (called the closing tag),
- the leaves of the XML tree are represented by empty element tags (serialized as <el></el>, which can be abbreviated as <el/>,
- and text nodes (serialized as a sequence of UniCode characters).
- An element node can be annotated by further information using attribute nodes serialized as an attribute in its opening tag.
operating system An operating system (OS) is a system program that manages computer hardware, software resources, and provides common services for computer programs.
operator An operator is a function that differs syntactically (e.g. by using infix notation) or semantically (in evaluation strategy or argument passing mode) from usual functions.
operator application Defined along with expression
out-degree Defined along with in-degree
outdegree Defined along with indegree
output subsystem Defined along with information processing system
owner There are various legal entities (e.g. persons, states, companies, associations, ...) that can have ownership over a property p. We call them the owners of p.
ownership Ownership is the state or fact of exclusive rights and control over property, which may be a physical object, land/real estate or intangible object.
pair Defined along with Cartesian product
pair Defined along with set of pairs
pair set See unordered pair
parameter Defined along with subroutine
parent Defined along with tree
parent Defined along with tree
partial function $f \subseteq X \times Y$, is called a partial function, iff for all $x \in X$ there is at most one $y \in Y$ with $(x, y) \in f$.
partial function A relation $f \subseteq X \times Y$, is called a partial function with domain X (write dom (f)) and codomain $Y($ write $\operatorname{codom}(f))$, iff for all $x \in X$ there is at most one $y \in Y$ with $(x, y) \in f$. We write $f: X \rightharpoonup Y ; x \mapsto y$ and $f(x)=y$ instead of $(x, y) \in f$. We say that $f(x)$ is the application of f to x and call x the argument of f.
partial function space Given sets A and B we will call the set $A \rightarrow B(A \rightharpoonup B)$ of all (partial) functions from A to B the (partial) function space from A to B.
partial order See partial ordering
partial ordering We call a preorder $\leq \subseteq A \times A$ on A a partial ordering (or partial order), iff it is antisymmetric. We associate with \leq a strict ordering $<:=\{(a, b) \in \leq \mid a \neq b\}$.
We often also use the converse relations \geq and $>$.
partially ordered set We call a structure $\langle S, \leq\rangle$ of a set S and a partial ordering \leq an partially ordered set or poset.
patent Defined along with intellectual property
path Given a directed graph $G=\langle V, E\rangle$, then we call a vector $p=\left\langle v_{0}, \ldots, v_{n}\right\rangle \in V^{n+1}$ a path in G iff $\left(v_{i-1}, v_{i}\right) \in E$ for all $1 \leq i \leq n, n>0$.
- v_{0} is called the start of p
(write start (p))
$-v_{n}$ is called the end of $p \quad \quad($ write end $(p))$
$-n$ is called the length of $p \quad$ (write len (p))
path Given a directed graph $G:=\langle V, E\rangle a$ we call a $n+1$-tuple $p=\left\langle v_{0}, \ldots, v_{n}\right\rangle \in V^{n+1}$ a path in G iff $\left(v_{i-1}, v_{i}\right) \in E$ for all $1 \leq i \leq n$ and $n>0$.
- We say that the v_{i} are nodes on p and that v_{0} and v_{n} are linked by p.
$-v_{0}$ and v_{n} are called the start and end of $p(\operatorname{write} \operatorname{start}(p)$ and end $(p))$, the other v_{i} are called inner nodes of p.
- n is called the length of $p($ write $\operatorname{len}(p))$.
- We denote the set of paths in G with $\Pi(G)$
path Defined along with uniform resource identifier
pebi Defined along with binary unit prefix
personal rights The copyright is a collection of rights on a copyrighted work;
- Personal rights: the owner of the copyright may
* determine whether and how the work is published (right to publish)
* determine whether and how her authorship is acknowledged. (right of attribution)
* to object to any distortion, mutilation or other modification of the work, which would be prejudicial to his honor or reputation. (droit de respect)
- Exploitation rights: the owner of a copyright has the exclusive right to do, or authorize to do any of the following:
* to reproduce the copyrighted work in copies (or phonorecords);
* to prepare derivative works based upon the copyrighted work;
* to distribute copies of the work to the public by sale, rental, lease, or lending;
* to perform the copyrighted work publicly;
* to display the copyrighted work publicly; and
* to perform the copyrighted work publicly by means of a digital-audio transmission.
peta Defined along with prefixes
physical quantity A physical quantity is a physical property of a phenomenon, body, or substance, that can be quantified by measurement.
pico Defined along with prefixes
c and sculptural work Defined along with copyrightable work
pixel Defined along with raster
place-value notation Defined along with positional number system
plain text Digital text is subdivided into plain text, where all characters carry the textual information and formatted text, which also contains instructions to the document renderer.
point Defined along with graph
poset See partially ordered set
positional notation Defined along with positional number system
tional number system A positional number system \mathcal{N} is a pair $\mathcal{N}=\left\langle D_{b}, \varphi_{b}\right\rangle$ with
- D_{b} is a finite alphabet of b digits. b is called the base or radix of \mathcal{N}
- assign each digit $d \in D_{b}$ a number $\varphi_{b}(d)$ between 0 and $b-1$.
- Extend φ_{b} to sequences of digits by $\varphi_{b}\left(\left\langle n_{k}, \ldots, n_{1}\right\rangle\right):=\sum_{i=1}^{k} \varphi_{b}\left(n_{i}\right) \cdot b^{i-1}$
tional number system A positional number system \mathcal{N} is a triple $\mathcal{N}=\left\langle D_{b}, \varphi_{b}, \psi_{b}\right\rangle$ with
- D_{b} is a finite alphabet of b digits. $\quad\left(b:=\#\left(D_{b}\right)\right.$ base or radix of $\left.\mathcal{N}\right)$
$-\varphi_{b}: D_{b} \rightarrow\left\{\epsilon, /, \ldots, /{ }^{[b-1]}\right\}$ is bijective (first b unary numbers)
$-\psi_{b}: D_{b}{ }^{+} \rightarrow\{/\}^{*} ;\left\langle n_{k}, \ldots, n_{1}\right\rangle \mapsto \bigoplus_{i=1}^{k} \varphi_{b}\left(n_{i}\right) \odot \exp \left(/[b], /{ }^{[i-1]}\right) \quad$ (extends φ_{b} to string code)
tional number system A positional number system is a numeral system that uses positional notation (also called place-value notation) to encode a number by a sequence of digits.
A positional number system for a number system N is given as a pair $P:=\langle D, \varphi\rangle$, where D is a finite set D of digits (we call $b:=\#(D)$ the base or radix of P) and a injective mapping from D to N.
Positional Notation extends φ to a bijective mapping from finite sequences over D to N using the arithmetics of N by interpreting a finite sequence a_{0}, \ldots, a_{n} as a sum of successive powers b^{i} multiplied by $\varphi\left(a_{i}\right)$. Details vary with N.
positive integer Defined along with non-negative integer
sitive natural number The set \mathbb{N}^{+}of positive natural numbers is the set $\{1,2,3, \ldots\}$.
sitive rational number We use $\mathbb{Q}^{+}:=\left\{\left.\frac{p}{q} \in \mathbb{Q} \right\rvert\, p>0\right\}$ and $\mathbb{Q}^{-}:=\left\{\left.\frac{p}{q} \in \mathbb{Q} \right\rvert\, p<0\right\}$ sets of positive rational numbers and negative rational numbers and $\mathbb{Q}_{0}^{-}:=\left\{\left.\frac{p}{q} \in \mathbb{Q} \right\rvert\, p \leq 0\right\}$ and $\mathbb{Q}_{0}^{-}:=\left\{\left.\frac{p}{q} \in \mathbb{Q} \right\rvert\, p \geq 0\right\}$ sets of non-positive rational numbers and non-negative rational numbers.
positive real number We use \mathbb{R}^{+}and \mathbb{R}^{-}sets of positive real numbers and negative real numbers and \mathbb{R}_{0}^{-}and \mathbb{R}_{0}^{+}sets of non-positive real numbers and non-negative real numbers. Here a real number is called positive/negative, iff all rational numbers that approximate it are.
postulate See axiom
power Defined along with exponentiation
power set the power set: $\mathcal{P}(A):=\{S \mid S \subseteq A\}$
power set Let A be a set, then the power set $\mathcal{P}(A)$ of A is $\{S \mid S \subseteq A\}$.
pre-image Defined along with image
precision Defined along with floating point number
predecessor Defined along with successor
prefix A string p is a called a prefix of $s($ write $p \unlhd s)$, iff there is a string t, such that $s=\operatorname{conc}(p, t)$. p is a proper prefix of s (write $p \triangleleft s$), iff $t \neq \epsilon$.
prefix Defined along with subword
prefix code A (character) code $c: A \rightarrow B^{+}$is a prefix code iff none of the codewords is a proper prefix to an other codeword, i.e.,

$$
\forall x, y \in A . x \neq y \Rightarrow(c(x) \nless c(y) \wedge c(y) \nless c(x))
$$

prefixed name Defined along with namespace declaration
prefixed unit Defined along with prefixes
prefixes The SI system defines a set of 19 prefixes, which transform a unit into a prefixed unit by multiplying it with a power of 10 .

Prefix	Symbol	10^{n}
yotta	Y	10^{24}
zetta	Z	10^{21}
exa	E	10^{18}
peta	P	10^{15}
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deca	da	10^{1}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
femto	f	10^{-15}
atto	a	10^{-18}
zepto	z	10^{-21}
yocto	y	10^{-24}

preorder We call a binary relation $\leq \subseteq A \times A$ on A a preorder (or quasiorder), iff it is reflexive and transitive.
preordered set Defined along with base set
presentation MathML Defined along with Mathematics Markup Language
primary storage See memory
primitive In a programming language, a primitive is a "basic unit of processing", i.e. the simplest element that can be given a procedural meaning (its semantics) of its own.
procedure Defined along with subroutine
process A process is an instance of a program that is being executed.
processor Defined along with information processing system
product Defined along with multiplication
program Defined along with programming language
program Defined along with Turing machine
program code See computer code
programmer A person involved in programming is called a programmer.
programming See computer programming
rogramming language A programming language L is a formal language for specifying sequences information processing system instructions. A word in L is called a program of L.
cogramming paradigm Programming paradigms are a way to classify programming languages based on their features. Languages can be classified into multiple paradigms.
projection We call the function $\pi_{i}: A_{1} \times \ldots \times A_{n} \rightarrow A_{i} ;\left\langle a_{1}, \ldots, a_{n}\right\rangle \mapsto a_{i}$ the $\left(i^{\mathrm{th}}\right)$ projection.
proof Defined along with inference
proper prefix Defined along with prefix
proper prefix Defined along with subword
proper subgraph Defined along with subgraph
proper subset $\quad \mathrm{A}$ set A is a proper subset of a set B (written $A \subset B$), iff $A \subseteq B$ but $A \not \equiv B$.
proper substring Defined along with subword
proper subword Defined along with subword
proper suffix Defined along with subword
proper superset A set A is a proper superset of a set $B($ written $A \supset B)$, iff $B \subset A$.
property Defined along with object-oriented programming
property Defined along with ownership
property right Ownership involves multiple rights (the property rights), which may be separated and held by different parties.
proset Defined along with base set
pseudocode Pseudocode is a plain language description of the steps in an algorithm or another system. Pseudocode often uses structural conventions of a normal programming language, but is intended for human reading rather than machine reading.
In pseudocode we often use metasyntactic variables, i.e. is a specific word or set of words identified as a placeholder that is intended to be modified or substituted before real-world usage.
public domain A work is said to be in the public domain, if no copyright applies, otherwise it is called copyrighted.
punch card A punch card is a piece of stiff paper that contains digital information represented by the presence or absence of holes in predefined positions.
python console The JupyterLab python console, i.e. a python interpreter in your browser. (use this for python interaction and testing.)

quantifier Defined along with formulae
quasiorder See preorder
query Defined along with uniform resource identifier
quotient Defined along with division
quotient Defined along with division
quotient Defined along with rational number
quotient set Defined along with equivalence class
quotient space Defined along with equivalence class
quotient space Defined along with equivalence class
radix Defined along with positional number system
radix Defined along with positional number system
radix Defined along with positional number system
range A range is a finite sequence of numbers it can conveniently be constructed by the range function: range $(\langle$ start $\rangle\rangle,\langle\langle$ stop $\rangle,,\langle\langle$ step $\rangle\rangle)$ construts a range from $\langle\langle$ start \rangle to $\langle\langle$ stop \rangle with step size $\langle\langle s t e p\rangle$.
range Defined along with variable
raster We call the grid raster and each entry in it pixel (from "picture element").
rational number The set \mathbb{Q} of rational numbers is defined as $\left(\mathbb{Z} \times \mathbb{N}^{+}\right) / \sim$, where $\left(\left(p_{1}, q_{1}\right) \sim\left(p_{2}, q_{3}\right)\right)$, iff $p_{1} q_{2}=q_{2} q_{1}$. We call $\frac{n}{m}:=(n, m)$ a fraction or quotient; it denotes the rational number $[(n, m)]_{\sim}$. In a fraction $\frac{n}{d}, n$ is called the numerator and d the denominator.
raw cell Defined along with cell
raw string literal Defined along with string literal
read Defined along with opened
read-eval-print loop A read-eval-print loop (REPL), also termed an interactive toplevel or language shell, is a simple, interactive user interface that takes single user inputs (i.e., single expressions or instructions), evaluates or executes) them, and returns the result to the user.
real number The set \mathbb{R} of real numbers is defined as the completion of \mathbb{Q}.
real part Defined along with complex numbers
receiver Defined along with communication medium
recursion Defined along with recursive
recursive We call a problem recursive, if its solution depends on solutions to smaller instances of the same problem.

Recursion solves recursive problems by (mutually) recursive functions or types.
We call a set $F=\left\{f_{1}, \ldots, f_{n}\right\}$ of functions or types mutually recursive if they call each other in their bodies.
We call a functions or types f recursive, $\operatorname{iff}\{f\}$ is mutually recursive.
recursive Defined along with recursive
refer Defined along with reference
reference A reference is a value that enables a program to indirectly access a particular datum in the computer's memory or in some other storage device. The reference is said to refer to the datum, and accessing the datum is called dereferencing the reference.
reflexive A relation $R \subseteq A \times A$ is called

- reflexive on A, iff $(a, a) \in R$ for all $a \in A$, and
- irreflexive (or anti-reflexive) on A, iff $(a, a) \notin R$ for all $a \in A$.
reflexive A relation $R \subseteq A \times A$ is called
- reflexive on A, iff $\forall a \in A .(a, a) \in R$
- irreflexive on A, iff $\forall a \in A .(a, a) \notin R$
- symmetric on A, iff $\forall a, b \in A .(a, b) \in R \Rightarrow(b, a) \in R$
- asymmetric on A, iff $\forall a, b \in A .(a, b) \in R \Rightarrow(b, a) \notin R$
- antisymmetric on A, iff $\forall a, b \in A .((a, b) \in R \wedge(b, a) \in R) \Rightarrow a=b$
- transitive on A, iff $\forall a, b, c \in A .((a, b) \in R \wedge(b, c) \in R) \Rightarrow(a, c) \in R$
- equivalence relation on A, iff R is reflexive, symmetric, and transitive.
reflexive extension A relation R on A is reflexive, $\operatorname{iff}^{\operatorname{Id}}{ }_{A} \subseteq R$, so we call $R \cup \operatorname{Id}_{A}$ the reflexive extension of R.
regexp See regular expression
regular expression A regular expression (also called regexp) is a formal expression that specifies a set of strings.
relation $\quad R \subseteq A \times B$ is a (binary) relation between A and B.
If $A=B$ then R is called a relation on A.
relation $\quad R \subseteq A \times B$ is a (binary) relation between A and B.
relation on Defined along with relation
relation on If $A=B$ then R is called a relation on A.
relative complement See set difference
remainder Defined along with integer division
remainder Defined along with division
renewal provision Defined along with term provision
representative Defined along with equivalence class
resource See system resource
return Defined along with subroutine
return value Defined along with subroutine
root Defined along with tree
root $\operatorname{For} b \in \mathbb{Z}, r \in \mathbb{Z}$ is a b-th root of $a \in \mathbb{Z}$ (we write $\sqrt[b]{a}$), if $r^{b}=a$. The square root $\sqrt[2]{a}$ is written as \sqrt{a}.
root Defined along with tree
root For $b \in \mathbb{Q}, r \in \mathbb{Q}$ is a b-th root of $a \in \mathbb{Q}$ (we write $\sqrt[b]{a}$), if $r^{b}=a$. The square root $\sqrt[2]{a}$ is written as \sqrt{a}.
root The n-th root $\sqrt[n]{a}$ of a number $a \in \mathbb{N}$ is the $r \in \mathbb{N}$ - if it exists, such that $r^{n}=a$. The square root $\sqrt[2]{a}$ is written as \sqrt{a}.
root The n-th root $\sqrt[n]{a}$ of a number a is that r - if it exists, such that $r^{n}=a$. The second root is also called the square root and is written as \sqrt{a}.
root Defined along with absolute value
routine See subroutine
safe We call a HTTP request safe, iff it does not change the state in the web server.(except for server logs, counters,...; no side effects)
scalar fraction Defined along with scalar multiple
scalar multiple For a quantity $q \in Q$ and a scalar r we define the scalar multiple $r \cdot q$ of r and q to be $r \cdot q:=r, s u$, if $q=s u$ for some $u \in U$.
Similarly, we define the scalar fraction q / q^{\prime} of two quantities q and q^{\prime} to be that $\left(r / r^{\prime}\right) \in \mathbb{R}$, such that if $q=r u$ and $q^{\prime}=r^{\prime} u$ for some $u \in U$. Note that both operations are well-defined by the axioms above.
scale Defined along with floating point number
scheme Defined along with uniform resource identifier
scientific notation In scientific notation all numbers are written in the form of $a \times 10^{b},(a \in \mathbb{R}$ times 10 raised to the power of $b \in \mathbb{Z}), a$ is called the significand, mantissa, or coefficient.
$a \times 10^{b}$ is called normalized, iff $1 \leq|a|<10$
second Since 1967, the second has been defined as exactly the duration of $9,192,631,770$ periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium- 133 atom (at a temperature of $0^{\circ} \mathrm{K}$).
second component Defined along with first component
secondary storage Secondary storage (also known as external memory or auxiliary storage), refers to any form of storage device and media that it is not directly accessible by the CPU.
semantics Defined along with primitive
sender Defined along with communication medium
sequence python has more types that behave just like lists, they are called sequence types.
sequence See list
sequence A sequence (also called a list), $\left(a_{n}\right)_{n \in S}$, is a function whose domain is a countable, totally ordered set S (e.g. \mathbb{N}, then we often write $\left.\left(a_{i}\right)\right)$. If S is infinite, we call any sequence $\left(a_{i}\right)_{i \in S}$ on S an infinite sequence, and finite sequence otherwise. Then the cardinality of S is called the length of $\left(a_{i}\right)_{i \in S}$.
Sequences are writen as
$-1,2,3,4$ for a concrete finite sequence,
$-1,2,3,4, \ldots, 10$ for a finite sequence with ellipsis,
$-x^{1}, \ldots, x^{n}$ and x_{1}, \ldots, x_{n} for a sequence of upper/lower-indexed variables of length n,
$-1,2,3,4, \ldots$ for an infinite sequence,
$-x^{1}, x^{2}, \ldots$ and x_{1}, x_{2}, \ldots for a sequence of upper/lower-indexed variables of length n,
Given a sequence $a: S \rightarrow T$, and $a \in S$ we write the $i^{\text {th }}$ element of a as S_{i}.
server A server is a program or a computer that provides functionality - called a service- for other programs or computers, called clients.
service Defined along with server
set A set is a collection of elements. We can represent sets by

1. listing the elements (also called member) within curly brackets: e.g. $\{a, b, c\}$
2. describing the elements via selection from another set S using a property $P:\{x \in S \mid x$ has property $P\}$. We use $\{x \mid x$ has property $P\}$ as a shorthand, if the set to be selected from is obvious from the context.
3. stating elementhood (also called membership; written $a \in S$) or not ($b \notin S$) outright.
set comprehension Indeed it is very difficult to define something as foundational as a set. We want sets to be collections of objects, and we want to be as unconstrained as possible as to what their elements can be. But what then to say about them? Cantor's intuition is one attempt to do this, but of course this is not how we want to define concepts in math.
a
$A A b$
b
So instead of defining sets, we will directly work with representations of sets. For that we only have to agree on how we can write down sets. Note that with this practice, we introduce a hidden assumption: called set comprehension, i.e. that every set we can write down actually exists. We will see below that we cannot hold this assumption.
set difference set difference: $A \backslash B:=\{x \mid x \in A \wedge x \notin B\}$
set difference Let A and B be sets, then the set difference $A \backslash B$ of A and B is $\{x \mid x \in A$ and $x \notin B\}$.
We also call $A \backslash B$ the relative complement or simply complement of B in A. If A is clear from the context, we write \bar{B} for the complement of B in A.
set inclusion Defined along with subset
t of nonempty strings See nonempty word
set of pairs Let A and B be sets, then the set of pairs $A \times B$ of A and B is defined as $\{(a, b) \mid a \in A, b \in B\}$, we call $(a, b) \in A \times B$ a pair. $(a, b)=(c, d)$, iff $a=c$ and $b=d$.
set of str ings Defined along with nonempty word
set of words Defined along with nonempty word
shell A shell is a command-line interface for accessing the services of a computer's operating system.
sign Defined along with floating point number
significand Defined along with floating point number
significand Defined along with scientific notation
simple Defined along with cyclic
simple Defined along with cyclic
simple definition Error: The
defi does not appear to be inside a definition environment. line 21:49
simple ordering See linear ordering
sink Defined along with initial
sink Defined along with initial
size Defined along with finite
size The size $\#(A)$ of a set A is the number of elements in A.
software Defined along with computing device
solar A solar or tropical year is the time between successive spring or autumn equinoxes, or winter or summer solstices, roughly 365 days, 5 hours, 48 minutes, and 46 seconds.
solar calendar A solar calendar assigns a day to each solar day and often aligns years with the solar years.
solar day A solar day is the length of time which elapses between the sun reaching its highest point in the sky two consecutive times. The solar day on Earth is roghly 86400s.
sound recording Defined along with copyrightable work
source Compiler: translates a program (the source) into another program (the binary) in a much simpler programming language for optimized execution on hardware directly.
source See initial
source Defined along with initial
source language Defined along with compiler
square root Defined along with root
square root Defined along with absolute value
star operator The star operator unpacks a list into an argument sequence.
start Defined along with path
start Defined along with path
state Defined along with nondeterministic Turing machine
state Defined along with stateful
state register Defined along with Turing machine
stateful A system S is described as stateful if it is designed to remember preceding events. The totality of remembered events is called the state of S.
step equation Error: The
defi does not appear to be inside a definition environment. line 75:48
storage device A storage device is any type of hardware that stores (i.e. records with the purpose of later returning) data in a (fixed or removable) storage medium.
storage medium A storage medium is a physical material that holds (stores) information.
storage subsystem Defined along with information processing system
store Defined along with storage device
store Defined along with storage medium
stream Many operating systems use files as a primary computational metaphor, also treating other resources like files. This leads to an abstraction of files called streams, which encompass files as well as e.g. keyboards, printers, and the screen, which are seen as objects that can be read from (keyboards) and written to (e.g. screens). This practice allows flexible use of programs, e.g. re-directing a the (screen) output of a program to a file by simply changing the output stream.
strict ordering Defined along with partial ordering
string Defined along with integer
string python strings are sequences of UniCode characters.
string Defined along with nonempty string
string Defined along with alphabet
string literal python uses string literals, i.e character sequences surrounded by one, two, or three sets of matched single or double quotes for string input. The content can contain escape sequences, i.e. the escape character backslash followed by a code character for problematic characters:

Seq	Meaning	Seq	Meaning
$\backslash \backslash$	Backslash (
)	$\backslash{ }^{\prime}$	Single quote (')	
$\backslash \prime$	Double quote (")	$\backslash a$	Bell (BEL)
$\backslash b$	Backspace (BS)	$\backslash f$	Form-feed (FF)
$\backslash n$	Linefeed (LF)	$\backslash r$	Carriage Return (CR)
$\backslash t$	Horizontal Tab (TAB)	$\backslash v$	Vertical Tab (VT)

In triple-quoted string literals, unescaped newlines and quotes are honored, except that three unescaped quotes in a row terminate the literal.
Prefixing a string literal with a r or R turns it into a raw string literal, in which backslashes have no special meaning.
subgraph Let $G:=\langle V, E\rangle$ and $G^{\prime}:=\left\langle V^{\prime}, E^{\prime}\right\rangle$ be two graphs. If $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$, then G^{\prime} is a subgraph of G, written $G^{\prime} \subseteq G$. If $G^{\prime} \subseteq G$ and $G^{\prime} \neq G$, then G^{\prime} is a proper subgraph of G; we write $G^{\prime} \subset G$.
subprogram See subroutine
subroutine A subroutine (also called routine or subprogram) is a program fragment in a program P that performs a specific task, packaged as a unit in so that it can be executed (called, or invoked) by P.
A subroutine p consists of an identifier (its name), a sequence $x x_{1}, \ldots, x_{n}$ of local identifiers called parameters, and a program fragment (called the body of p). The length n of x is called the arity of p.
When P (the invoker) calls p, then it supplies a list of values (called arguments) to p : the parameters are replaced by the arguments, and the body is executed in the context where it is called. p may or may not return values v to P, the return values. If it does, it is called a function otherwise a procedure.
subset $\quad \mathrm{A}$ set A is a subset of a set B (written $A \subseteq B$), iff all $x \in A$ are members of B. The relation \subseteq is called set inclusion.
substring Let A be an alphabet, then we say that a string $s \in A^{*}$ is a substring of a string $t \in A^{*}$ (written $s \subseteq t$), iff there are strings $v, w \in A^{*}$, such that $t=v s w$.
substring See subword
subsystem An entity S^{\prime} in a system S that is a system itself is called a subsystem of S.
subtraction Subtraction computes the difference $a-b$ of a and b which is defined as $a+(-(b))$.
subtraction The subtraction operator computes the difference $a-b$ of $a \in \mathbb{Q}$ and $\frac{b}{c} \in \mathbb{Q}$ which is defined as $a+\frac{(-(b))}{c}$.
subtraction Subtraction - computes the difference $a b$ of natural numbers a and b. It is defined as is that natural number c - if it exists, such that $a+c=b$.
subtraction Subtraction - computes the difference $a b$ of a and b. It is defined as is that number c-if it exists, such that $a+c=b$.
subtraction Defined along with absolute value
subtree A subgraph of a tree that is itself a tree is called a subtree.
subword Let A be an alphabet, then we say that a word $s \in A^{*}$ is a subword (substring) of a word $t \in A^{*}$ (written $s \subseteq t$), iff there are words $v, w \in A^{*}$, such that $t=v s w$. If $v \neq \epsilon$ or $w \neq \epsilon$, then we call s a proper subword (proper substring) of t and write $s \subset t$.
If $v=\epsilon$, then we call s a prefix of t and write $s \unlhd t$, if additionally $w \neq \epsilon$ we call s a proper prefix of t and write $s \triangleleft t$. Similarly, if $w \neq \epsilon$, then we call s a suffix of t, if additionally $v \neq \epsilon$ a proper suffix of t.
successor We call a unary natural number the successor (predecessor) of another, if it can be constructing by adding (removing) a slash.
(successors are created by the s-rule)
successor function Defined along with natural number
suffix Defined along with subword
sum Defined along with addition
sum Defined along with summation
sum Defined along with addition
sum Defined along with addition
sum Defined along with addition
summation Summation is iterated addition, we define the sum over a sequnce a_{i} by

$$
\sum_{i=n}^{m} a_{i}:= \begin{cases}0 & \text { if }(n \leq m) \\ a_{n}+\left(\sum_{i=(n+1)}^{m} a_{i}\right) & \text { else }\end{cases}
$$

The variable i is called the summation index and n and m the lower bound and upper bound of the sum respectively, together the specify the range of summation.
There are variant summation operators $\sum_{\varphi} a_{i}$ and $\sum_{i \in S} a_{i}$. The first one specifies the range of the summation via a formula φ in i and the second one directly by giving a set S.
summation index Defined along with summation
summation range Defined along with summation
supergraph If G is a subgraph of G^{\prime}, then we call G^{\prime} a supergraph of G.
superset $\quad \mathrm{A}$ set A is a superset of a set $B($ written $A \supseteq B)$, iff $B \subseteq A$.
supertree If T is a subtree of T^{\prime}, then we call T^{\prime} a supertree of T.
surjective Defined along with injective
surjective A function $f: S \rightarrow T$ is called surjective or onto, iff for all $y \in T$ there is a $x \in S$ with $f(x)=y$.
symbol A symbol is a mark, sign or word that indicates, signifies, or is understood as representing an idea, object, or relationship.
symbol table See dictionary
symmetric A relation $R \subseteq A \times A$ is called

- symmetric on A, iff $(b, a) \in R$ for all $a, b \in A$ with $(a, b) \in R$.
- asymmetric on A, iff $(b, a) \notin R$ for all $a, b \in A$ with $(a, b) \in R$.
- antisymmetric on A, iff $(a, b) \in R$ and $(b, a) \in R$ imply $a=b$.
symmetric Defined along with reflexive
symmetric difference The symmetric difference $A \Delta B$ of sets A and B is defined as $(A \backslash B) \cup(B \backslash A)$; it is also written as $A \oplus B$ or $A \ominus B$.
syntax Programming language syntax describes the surface form of the program: the admissible character sequences. It is also a composition of the syntax for the primitives.
system A system is a group of interacting or interrelated entities that form a unified whole. A system is delineated by its spatial and temporal boundaries, surrounded and influenced by its environment, described by its structure and purpose and expressed in its functioning.
system of numeration See numeral system
system resource A system resource, or simply resource, is any physical or virtual component of limited availability within a computer system or connected to it.
tag HTML marks up the structure and appearance of text with tags of the form <el> (begin tag), </el> (end tag), and <el/> (empty tag), where el is one of the following

structure	html, head, body	metadata	title, link, meta
headings	h1, h2, .., h6	paragraphs	p, br
lists	ul, ol, dl, .., li	hyperlinks	a
multimedia	img, video, audio	tables	table, th, tr, td, ..
styling	style, div, span	old style	b, u, tt, i, ...
interaction	script	forms	form, input, button
Math	MathML (formu- lae)	interactive graphics	vector graphics (SVG) and canvas (2D bitmapped)

tape Defined along with Turing machine
tape See tape specification
tape specification A tape specification (also called tape) for a Turing machine $\mathcal{M}:=\left\langle\mathcal{A}, \mathcal{S}, b, \Sigma, s_{0}, \mathcal{F}, \mathcal{R}\right\rangle$ is a sequence $t: \mathbb{N} \rightarrow \mathcal{A}$, such that $t^{-1}(c)$ is finite for all $c \in \mathbf{A}$ except b.
target language Defined along with compiler
tebi Defined along with binary unit prefix
temperature Defined along with length
tera Defined along with prefixes
term provision a license is a regular contract (about intellectual property) that is handled just like any other contract. (it can stipulate anything the licensor and licensees agree on) in particular a license may

- involve term, territory, or renewal provisions,
- require paying a fee and/or proving a capability, or
- require to keep the licensor informed on a type of activity, and to give them the opportunity to set conditions and limitations.
terminal The JupyterLab terminal, i.e. a UNIX shell in your browser. (use this for managing files)

terminal Defined along with initial
terminal Defined along with initial
territory provision Defined along with term provision
text editor A text editor is a program used for rendering and manipulating text files.
text file A text file is a file that is structured as a sequence of encoded characters. Computer files that are not text files are called binary files.
text line In practice, text files are often processed as a sequence of text lines (or just lines), i.e. substrings separated by the line feed character U+000A; LINE FEED (LF). The line number is just the position in the sequence.
text node Defined along with XML document tree
text node The main remaining functionality in XML is the treatment of text. XML treats text as special kinds of node in the tree: text nodes. They can be treated just like any other node in the XML tree in the etree library.
textual content Defined along with document markup
theorem A theorem is a statement about mathematical objects that we know to be true.
time Time can be measured by observing a certain number of repetitions of one or another standard cyclical event. Every such event (e.g. the passage of a free-swinging pendulum) constitutes one standard unit.
time Defined along with length
total A relation $R \subseteq A \times B$ is called total iff for all $x \in A$ there is a $y \in B$, such that $(x, y) \in R$.
total $\quad R \subseteq A \times B$ is called total iff $\forall x \in A . \exists y \in B .(x, y) \in R$.
total function If $f: X \rightharpoonup Y$ is a total relation, we call f a total function and write $f: X \rightarrow Y . \quad(\forall x \in$ $\left.X . \exists^{1} y \in Y .(x, y) \in f\right)$
total function If $f: X \rightharpoonup Y$ is a total relation (i.e. for all $x \in X$ there is a unique $y \in Y$ with $(x, y) \in f)$, we call f a total function and write $f: X \rightarrow Y$.
total ordering See linear ordering
totally ordered set See linearly ordered set
trademark Defined along with intellectual property
transition function Defined along with nondeterministic Turing machine
transition relation Defined along with nondeterministic Turing machine
transitive A relation $R \subseteq A \times A$ is called transitive (else intransitive) on A, iff $(a, c) \in R$ for all $a, b, c \in A$ with $(a, b) \in R$ and $(b, c) \in R$.
transitive Defined along with reflexive
transitive closure Let R be a binary relation, then we call the smallest
- the smallest transitive relation that contains R the transitive closure of R.
- the smallest transitive and reflexive relation that contains R the transitive-reflexive closure of R we denote it with R^{*}.
sitive-reflexive closure Defined along with transitive closure
sitive-reflexive closure Let R be a binary relation, then we call the smallest transitive relation that contains R the transitive-reflexive closure of R we denote it with R^{*}.
tree A tree is a DAG $G=\langle V, E\rangle$ such that
- There is exactly one initial node $v_{r} \in V$ (called the root)
- All nodes but the root have in-degree 1.

We call v the parent of w, iff $(v, w) \in E(w$ is a child of $v)$. We call a node v a leaf of G, iff it is terminal, i.e. if it does not have children.
tree A tree is a directed acyclic graph $G:=\langle V, E\rangle$ such that

- there is exactly one initial node $v_{r} \in V$ (called the root), and
- all nodes but the root have indegree 1 .

We call v the parent of w, iff $(v, w) \in E$ (w is a child of v). We call a node v a leaf of G, iff it is terminal, i.e. if it does not have children. An ancestor is an iterated parent, and a descendant an interated child.
tropical year See solar
true Defined along with truth value
truth value There are two truth values: true (also called verum, denoted by T, 1, or T) and false (or untrue, also falsum); written as $F, 0$, or \perp). The set $\{T, F\}$ of truth values is denoted with \mathbb{B}.
twelve Defined along with zero
two Defined along with zero
type See data type
type Defined along with variable
unary The following positional number systems are in common use.

name	set	base	digits	example
unary	\mathbb{N}_{1}	1	$/$	$/ / / / /_{1}$
binary	\mathbb{N}_{2}	2	0,1	0101000111_{2}
octal	\mathbb{N}_{8}	8	$0,1, \ldots, 7$	63027_{8}
decimal	\mathbb{N}_{10}	10	$0,1, \ldots, 9$	162098_{10} or 162098
hexadecimal	\mathbb{N}_{16}	16	$0,1, \ldots, 9, \mathrm{~A}, \ldots, \mathrm{~F}$	$F F 3 A 12_{16}$

unary exponentiation The unary exponentiation operation can be defined by the equations $\exp (n, o)=s(o)$ and $\exp (n, s(m))=n \odot \exp (n, m)$.
unary multiplication The unary multiplication operation can be defined by the equations $n \odot o=o$ and $n \odot s(m)=$ $n \oplus n \odot m$.
nary natural numbers We call the representation of natural numbers by slashes on a surface the unary natural numbers
nary natural numbers we call these representations unary natural numbers.
unary product The unary product operation can be defined by the equations $\bigodot_{i=o}^{o} n_{i}=s(o)$ and $\bigodot_{i=o}^{s(m)} n_{i}=$ $n_{s(m)} \odot \bigodot_{i=o}^{m} n_{i}$.
unary summation The unary summation operation can be defined by the equations $\bigoplus_{i=o}^{o} n_{i}=o$ and $\bigoplus_{i=o}^{s(m)} n_{i}=$ $n_{s(m)} \oplus \bigoplus_{i=o}^{m} n_{i}$.
uncountable Defined along with countable
undefined at We call a partial function $f: X \rightharpoonup Y$ undefined at $x \in X$, iff $(x, y) \notin f$ for all $y \in Y$. (write $f(x)=\perp)$
undefined at Defined along with defined at
undirected edge Defined along with undirected graph
undirected graph Defined along with graph
undirected graph An undirected graph is a pair $\langle V, E\rangle$ such that

- V is a set of vertices (or nodes) (draw as circles)
- $E \subseteq\left\{\left\{v, v^{\prime}\right\} \mid v, v^{\prime} \in V \wedge\left(v \neq v^{\prime}\right)\right\}$ is the set of its undirected edges (draw as lines)
unicode Standard Defined along with universal character set
unicode standard The unicode standard (UniCode) is an industry standard allowing computers to consistently represent and manipulate text expressed in any of the world's writing systems. (currently about 100.000 characters)
rm resource identifier A uniform resource identifier (URI) is a global identifiers of local or network-retrievable documents, or media files (web resources). URIs adhere a uniform syntax (grammar) defined in RFC-3986 [BLFM05].
A URI is made up of the following components:
- a scheme that specifies the protocol governing the resource
- an authority: the host (authentication there) that provides the resource.
- a path in the hierarchically organized resources on the authority.
- a query in the non-hierarchically organized part of the host data.
- a fragment identifier in the resource.
iform resource locator A uniform resource locator (URL) is a URI that that gives access to a web resource, by specifying an access method or location. All other URIs are called uniform resource names (URN).
niform resource name Defined along with uniform resource locator
union Let A and B be sets, then the union $A \cup B$ of A and B is defined as $\{x \mid x \in A$ or $x \in B\}$.
union Let I be a set and $\left\{S_{i} \mid i \in I\right\}$ a family of sets, then the union $\bigcup_{i \in I} S_{i}$ over the collection S is $\left\{x \mid x \in S_{i}\right.$ for some $\left.i \in I\right\}$.
union union: $A \cup B:=\{x \mid x \in A \vee x \in B\}$
inion over a collection union over a collection: Let I be a set and S_{i} a family of sets indexed by I, then $\bigcup_{i \in I} S_{i}:=$ $\left\{x \mid \exists i \in I . x \in S_{i}\right\}$.
unit See unit of measurement
unit of measurement A unit of measurement (or just unit) is a definite magnitude of a physical quantity, defined and adopted by convention and/or by law, that is used as a standard for measurement of the same physical quantity. Any other value of the physical quantity can be expressed as a simple multiple of the unit of measurement.
iniversal character set A scalable architecture for representing all the worlds scripts
- The universal character set (UCS) defined by the ISO/IEC 10646 International Standard, is a standard set of characters upon which many character encodings are based.
- The unicode Standard defines a set of standard character encodings, rules for normalization, decomposition, collation, rendering and bidirectional display order
unknown Defined along with variable
unordered pair If A is a set and $x, y \in A$, then the unordered pair or pair set $\{x, y\}$ is the $p \subseteq A$, such that $z \in p$, iff $z=x$ or $z=y$. The set of all pair sets is sometimes denoted with $\binom{\bar{A}}{2}$).
untrue Defined along with truth value
upper bound Defined along with summation
user Defined along with user interface
user agent HTTP is used by a client (called user agent) to access web resources (addressed by uniform resource locators (URLs)) via a HTTP request. The web server answers by supplying the resource (and metadata).
user interface A user interface (UI or simply interface), is the means in which a person (the user) controls a software application or hardware device.
value Defined along with dictionary
value Defined along with variable
value A value is the representation of some entity that can be manipulated by a program.
variable A variable is a memory location which contains a value. It is referenced by an identifier the variable name.
variable A variable is a memory location which contains a value. It is referenced by an identifier the variable name.
variable A variable is an alphabetic character representing a mathematical object, called the value of the variable, which is either arbitrary (but fixed) or not fully specified or unknown - in this case the variable is called an unknown. The set of objects a variable v can stand for is called the range or type.
variable assignment A variable assignment $\langle\langle v a r\rangle\rangle=\langle$ val $\rangle\rangle$ assigns a value.
variable binding Defined along with expression
variable name Defined along with variable
variable name Defined along with variable
vector Defined along with n-dim Cartesian space
vector Defined along with n-dimensional Cartesian space
vector graphics Image representation formats that store shape information instead of individual pixels, are refered to as vector graphics.
vertex Defined along with graph
vertex Defined along with undirected graph
verum Defined along with truth value
visual markup Markup is by no means limited to visual markup for documents intended for printing as ?document-markup.ex? may suggest. There are aural markup formats that instruct document renderers that transform documents to audio streams of e.g. reading speeds, intonation, and stress.
web IDE A web IDE or cloud IDE, is a browser-based integrated development environment.
web browser A web browser is a software application for retrieving (via HTTP), presenting, and traversing information resources on the WWWeb, enabling users to view web pages and to jump from one page to another.
web page A web page is a document (usually marked up in HTML) on the WWWeb that can include multimedia data and hyperlinks.
web resource Defined along with uniform resource identifier
web server Defined along with user agent
web site A web site is a collection of related web pages usually designed or controlled by the same individual or company.
week Defined along with minute
word Defined along with alphabet
word processor A word processor is a software application, that - apart from being a document renderer also supports the tasks of composition, editing, formatting, printing of electronic documents.
work made for hire A work made for hire (WFH) is a work created by an employee as part of his or her job, or under the explicit guidance or under the terms of a contract.
write Defined along with opened
year A year is either 364 or 365 day depending whether is is a leap year or not.
yobi Defined along with binary unit prefix
yocto Defined along with prefixes
yotta Defined along with prefixes
zebi Defined along with binary unit prefix
zepto Defined along with prefixes
zero We introduce some abbreviations

- we "abbreviate" o and ' ' by the symbol '0'	(called "zero")
- we abbreviate $s(o)$ and / by the symbol '1'	(called "one")
- we abbreviate $s(s(o))$ and // by the symbol '2'	(called "two")

$-\ldots$

- we abbreviate $s(s(s(s(s(s(s(s(s(s(s(s(o))))))))))))$ and /////////// by the symbol '12'
- ...
zero Defined along with natural number
zero Error: The
defi does not appear to be inside a definition environment. line 40:39
zetta Defined along with prefixes

References

[BLFM05] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform Resource Identifier (URI): Generic Syntax. RFC 3986. Internet Engineering Task Force (IETF), 2005. URL: http://www.ietf.org/rfc/rfc3986.txt.
[Hic +14] Ian Hickson et al. HTML5. A Vocabulary and Associated APIs for HTML and XHTML. W3C Recommentation. World Wide Web Consortium (W3C), Oct. 28, 2014. UrL: http://www.w3.org/TR/html5/.

[^0]: ${ }^{1}$ EdNote: continue for the others

