
Logic-based Approaches to the Semantics of Natural
Language

Michael Kohlhase

School of Engineering & Science
Jacobs University, Bremen Germany
m.kohlhase@jacobs-university.de

Interdisciplinary College, March 6. - 8. 2016, Günne

i

m.kohlhase@jacobs-university.de


Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

1 An Introduction to Natural Language Semantics 1
1.1 Natural Language Understanding as Engineering . . . . . . . . . . . . . . . . . . . 3
1.2 Computational Semantics as a Natural Science . . . . . . . . . . . . . . . . . . . . 5
1.3 Looking at Natural Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Preview of the Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 The Method of Fragments: Fragment 1 11
2.1 Logic as a Tool for Modeling NL Semantics . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The Method of Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 The First Fragment: Setting up the Basics . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Calculi for Automated Theorem Proving: Analytical Tableaux . . . . . . . . . . . 25
2.5 Tableaux and Model Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Adding Context: Pronouns and World Knowledge 46
3.1 First Attempt: Adding Pronouns and World Knowledge as Variables . . . . . . . . 47
3.2 First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Abstract Consistency and Model Existence . . . . . . . . . . . . . . . . . . . . . . 62
3.4 First-Order Inference with Tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5 Model Generation with Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Fragment 3: Complex Verb Phrases 86
4.1 Fragment 3 (Handling Verb Phrases) . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Dealing with Functions in Logic and Language . . . . . . . . . . . . . . . . . . . . 87
4.3 Translation for Fragment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4 Simply Typed λ-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5 Computational Properties of λ-Calculus . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6 The Semantics of the Simply Typed λ-Calculus . . . . . . . . . . . . . . . . . . . . 101
4.7 Simply Typed λ-Calculus via Inference Systems . . . . . . . . . . . . . . . . . . . . 106

5 Fragment 4: Noun Phrases and Quantification 109
5.1 Overview/Summary so far . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Fragment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3 Quantifiers and Equality in Higher-Order Logic . . . . . . . . . . . . . . . . . . . . 112
5.4 Model Generation with Definite Descriptions . . . . . . . . . . . . . . . . . . . . . 115
5.5 Model Generation with a Unique Name Assumption . . . . . . . . . . . . . . . . . 118
5.6 Davidsonian Semantics: Treating Verb Modifiers . . . . . . . . . . . . . . . . . . . 118

6 Dynamic Approaches to NL Semantics 120
6.1 Discourse Representation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2 Higher-Order Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3 Dynamic Logic for Imperative Programs . . . . . . . . . . . . . . . . . . . . . . . . 141
6.4 Dynamic Model Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7 Conclusion 150

i



1 An Introduction to Natural Language Semantics

In this Section we will introduce the topic of this course and situate it in the larger field of natural
language understanding. But before we do that, let us briefly step back and marvel at the wonders
of natural language, perhaps one of the most human of abilities.

Fascination of Language

� Even more so than thinking, language is a skill that only humans have.

� It is a miracle that we can express complex thoughts in a sentence in a matter
of seconds.

� It is no less miraculous that a child can learn tens of thousands of words and
a complex grammar in a matter of a few years.

©:Michael Kohlhase 1

With this in mind, we will embark on the intellectual journey of building artificial systems that
can process (and possibly understand) natural language as well.

Language and Information

� humans use words (sentences, texts) in natural languages to represent infor-
mation

� but:

� what really counts is not the words themselves, but the meaning information
they carry.

� for questions/answers, it would be very useful to find out what words (sen-
tences/texts) mean.

� Interpretation of natural language utterances: three problems

language
utterance

semantic
intepretation

abstraction disambiguation composition

©:Michael Kohlhase 2

Meaning of Natural Language; e.g. Machine Translation

� Idee: Machine Translation is very simple! (we have good lexica)

� Example 1.1 Peter liebt Maria. ; Peter loves Mary.

� this only works for simple examples

1

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� Example 1.2 Wirf der Kuh das Heu über den Zaun.
6; Throw the cow the hay over the fence. (differing grammar)

� Grammar is not the only problem

� Der Geist ist willig, aber das Fleisch ist schwach!

� Der Schnaps ist gut, aber der Braten ist verkocht!

� We have to understand the meaning!

©:Michael Kohlhase 3

� The lecture begins at 11:00 am .

Utterance Meaning
relevant

information
of utterance

Grammar

Lexicon

Inference

World knowledge

©:Michael Kohlhase 4

� it starts at eleven.

Utterance
semantic
potential

utterance-
spezific
meaning

relevante
information
of utterance

Grammar

Lexicon

Inference

World/Context Knowledge

©:Michael Kohlhase 5

Semantics is not a Cure-It-All!

How many animals of each species did Moses take onto the ark?

2

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� Actually, it was Noah (But you understood the question anyways)

� The only thing that currently really helps is a restricted domain

� restricted vocabulary

� restricted world model

� Demo: Bahnauskunft unter 0241-604020

� Demo: DBPedia http://wikipedia.aksw.org/

©:Michael Kohlhase 6

1.1 Natural Language Understanding as Engineering

Even though this course concentrates on computational aspects of natural language semantics,
it is useful to see it in the context of the field of natural language processing.

Language Technology

� Language Assistance

� written language: Spell-/grammar-/style-checking

� spoken language: dictation systems and screen readers

� multilingual text: machine-supported text and dialog translation, eLearning

� Dialog Systems

� Information Systems: at airport, tele-banking, e-commerce, call centers

� Dialog interfaces for computers, robots, cars

� Information management:

� search and classification of documents

� information extraction, question answering.

3

http://wikipedia.aksw.org/
http://creativecommons.org/licenses/by-sa/2.5/


©:Michael Kohlhase 7

The field of natural language processing (NLP) is an engineering field at the intersection of com-
puter science, artificial intelligence, and linguistics which is concerned with the interactions be-
tween computers and human (natural) languages. Many challenges in NLP involve natural lan-
guage understanding– that is, enabling computers to derive meaning (representations) from human
or natural language input; this is the wider setting in our course. The dual side of NLP: natural
language generation which aims at generating natural language or speech from meaning represen-
tation requires similar foundations, but different techniques is less relevant for the purposes of this
course.1 EdN:1

What is Natural Language Processing?

� Generally: Studying of natural languages and development of systems that can
use/generate these.

� Here: Understanding natural language (but also generation: other way
around)

0) speech processing: acoustic signal ; word net

1) syntactic processing: word sequence ; phrase structure

2) semantics construction: phrase structure ; (quasi-)logical form

3) semantic-pragmatic analysis:
(quasi-)logical form ; knowledge representation

4) problem solving: using the generated knowledge (application-specific)

� In this course: steps 2) and 3).

©:Michael Kohlhase 8

The waterfall model shown above is of course only an engineering-centric model of natural language
understanding and not to be confused with a cognitive model; i.e. an account of what happens in
human cognition. Indeed, there is a lot of evidence that this simple sequential processing model
is not adequate, but it is the simplest one to implement and can therefore serve as a background
reference to situating the processes we are interested in.
There are currently two2 EdN:2

What is the State of the Art In NLU?

� Two avenues of of attack for the problem: knowledge-based and statistical
techniques (they are complementary)

1EdNote: mark up the keywords below with links.
2EdNote: continue; give more detailed overview

4

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Deep Knowledge-based Not there yet
We are here cooperation?

Shallow no-one wants this Statistical Methods
applications

Analysis ↑
vs. narrow wide

Coverage →

� We will cover foundational methods of deep processing in the course and a
mixture of deep and shallow ones in the lab.

©:Michael Kohlhase 9

1.2 Computational Semantics as a Natural Science

Overview: Formal natural language semantics is an approach to the study of meaning in natural
language which utilizes the tools of logic and model theory. Computational semantics adds to this
the task of representing the role of inference in interpretation. By combining these two different
approaches to the study of linguistic interpretation, we hope to expose you (the students) to the
best of both worlds.

Computational Semantics as a Natural Science

� In a nutshell: Logic studies formal languages, their relation with the world (in
particular the truth conditions). Computational logic adds the question about
the computational behavior of the relevant functions of the formal languages.

� This is almost the same as the task of natural language semantics!

� It is one of the key ideas that logics are good scientific models for natural
languages, since they simplify certain aspects so that they can be studied in
isolation. In particular, we can use the general scientific method of

1) observing

2) building formal theories for an aspect of reality,

3) deriving the consequences of the assumptions about the world in the the-
ories

4) testing the predictions made by the model against the real-world data.
If the model predicts the data, then this confirms the model, if not, we
refine the model, starting the process again at 2.

©:Michael Kohlhase 10

Excursion: In natural sciences, this is established practice; e.g. astronomers observe the planets,
and try to make predictions about the locations of the planets in the future. If you graph the
location over time, it appears as a complicated zig-zag line that is difficult to understand. In 1609
Johannes Kepler postulated the model that the planets revolve around the sun in ellipses, where
the sun is in one of the focal points. This model made it possible to predict the future whereabouts

5

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


of the planets with great accuracy by relatively simple mathematical computations. Subsequent
observations have confirmed this theory, since the predictions and observations match.

Later, the model was refined by Isaac Newton, by a theory of gravitation; it replaces the
Keplerian assumptions about the geometry of planetary orbits by simple assumptions about grav-
itational forces (gravitation decreases with the inverse square of the distance) which entail the
geometry.

Even later, the Newtonian theory of celestial mechanics was replaced by Einstein’s relativity
theory, which makes better predictions for great distances and high-speed objects.

All of these theories have in common, that they build a mathematical model of the physical
reality, which is simple and precise enough to compute/derive consequences of basic assumptions,
that can be tested against observations to validate or falsify the model/theory.
The study of natural language (and of course its meaning) is more complex than natural sciences,
where we only observe objects that exist independently of ourselves as observers. Language is an
inherently human activity, and deeply interdependent with human cognition (it is arguably one
of its motors and means of expression). On the other hand, language is used to communicate
about phenomena in the world around us, the world in us, and about hypothetical worlds we only
imagine.

Therefore, natural language semantics must necessarily be an intersective discipiline and a
trans-disciplinary endeavor, combining methods, results and insights from various disciplines.

NL Semantics as an Intersective Discipline

©:Michael Kohlhase 11

1.3 Looking at Natural Language

The next step will be to make some observations about natural language and its meaning, so that
we get and intuition of what problems we will have to overcome on the way to modeling natural
language.3 EdN:3

3EdNote: introduce meaning by truth conditions and consequences as an analysis tool.

6

http://creativecommons.org/licenses/by-sa/2.5/


Fun with Diamonds (are they real?) [Dav67b]

� This is a blue diamond (|= diamond, |= blue)

� This is a big diamond (|= diamond, 6|= big)

� This is a fake diamond (6|= diamond)

� This is a fake blue diamond (|= blue?, |= diamond?)

� Mary knows that this is a diamond (|= diamond)

� Mary believes that this is a diamond (6|= diamond)

©:Michael Kohlhase 12

Logical analysis vs. conceptual analysis: These examples — Mostly borrowed from [Dav67b]—
help us to see the difference between logical analysis and conceptual analysis. We observed that
from This is a big diamond. we cannot conclude This is big. Now consider the sentence Jane is a
beautiful dancer. Similarly, it does not follow from this that Jane is beautiful, but only that she
dances beautifully. Now, what it is to be beautiful or to be a beautiful dancer is a complicated
matter. To say what these things are is a problem of conceptual analysis. The job of semantics
is to uncover the logical form of these sentences. Semantics should tell us that the two sentences
have the same logical forms; and ensure that these logical forms make the right predictions about
the entailments and truth conditions of the sentences, specifically, that they don’t entail that the
object is big or that Jane is beautiful. But our semantics should provide a distinct logical form
for sentences of the type: This is a fake diamond. From which it follows that the thing is fake,
but not that it is a diamond.

Ambiguity (It could mean more than one thing)

� John went to the bank (river or financial?)

� You should have seen the bull we got from the pope (three-way!)

� I saw her duck (animal or action?)

� John chased the gangster in the red sports car (three-way too!)

©:Michael Kohlhase 13

One way to think about the examples of ambiguity on the previous slide is that they illustrate a
certain kind of indeterminacy in sentence meaning. But really what is indeterminate here is what
sentence is represented by the physical realization (the written sentence or the phonetic string).
The symbol duck just happens to be associated with two different things, the noun and the verb.
Figuring out how to interpret the sentence is a matter of deciding which item to select. Similarly
for the syntactic ambiguity represented by PP attachment. Once you, as interpreter, have selected
one of the options, the interpretation is actually fixed. (This doesn’t mean, by the way, that as
an interpreter you necessarily do select a particular one of the options, just that you can.)
A brief digression: Notice that this discussion is in part a discussion about compositionality, and
gives us an idea of what a non-compositional account of meaning could look like. The Radical
Pragmatic View is a non-compositional view: it allows the information content of a sentence to
be fixed by something that has no linguistic reflex.

To help clarify what is meant by compositionality, let me just mention a couple of other ways
in which a semantic account could fail to be compositional.

7

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


• Suppose your syntactic theory tells you that S has the structure [a[bc]] but your semantics
computes the meaning of S by first combining the meanings of a and b and then combining
the result with the meaning of c. This is non-compositional.

• Recall the difference between:4 EdN:4

1) Jane knows that George was late.

2) Jane believes that George was late.

Sentence 1entails that George was late; sentence 2doesn’t. We might try to account for
this by saying that in the environment of the verb believe, a clause doesn’t mean what it
usually means, but something else instead. Then the clause that George was late is assumed
to contribute different things to the informational content of different sentences. This is a
non-compositional account.

Quantifiers, Scope and Context

� Every man loves a woman (Keira Knightley or his mother!)

� Every car has a radio (only one reading!)

� Example 1.3 Some student in every course sleeps in every class at least
some of the time (how many readings?)

� Example 1.4 The president of the US is having an affair with an intern
(2002 or 2000?)

� Example 1.5 Everyone is here (who is everyone?)

©:Michael Kohlhase 14

Observation: If we look at the first sentence, then we see that it has two readings5:6 EdN:5
EdN:6

1) there is one woman who is loved by every man.

2) for each man there is one woman whom he loves.

These correspond to distinct situations (or possible worlds) that make the sentence true.
Observation: For the second example we only get one reading: the analogue of 2. The reason
for this lies not in the logical structure of the sentence, but in concepts involved. We interpret
the meaning of the word has7 as the relation “has as physical part”, which in our world carries a EdN:7
certain uniqueness condition: If a is a physical part of b, then it cannot be a physical part of c,
unless b is a physical part of c or vice versa. This makes the structurally possible analogue to 1
impossible in our world and we discard it.
Observation:

In the examples above, we have seen that (in the worst case), we can have one reading for every
ordering of the quantificational phrases in the sentence. So, in the third example, we have four
of them, we would get 4! = 12 readings. It should be clear from introspection8 that we (humans) EdN:8
do not entertain 12 readings when we understand and process this sentence. Our models should
account for such effects as well.

4EdNote: restore label/ref when that works again
5EdNote: explain the term “reading” somewhere
6EdNote: restore label/ref when this works again
7EdNote: fix the nlex macro, so that it can be used to specify which example a fragment has been taken from.
8EdNote: explain somewhere and reference

8

http://creativecommons.org/licenses/by-sa/2.5/


Context and Interpretation: It appears that the last two sentences have different informational
content on different occasions of use. Suppose I say Everyone is here. at the beginning of class.
Then I mean that everyone who is meant to be in the class is here. Suppose I say it later in the
day at a meeting; then I mean that everyone who is meant to be at the meeting is here. What
shall we say about this? Here are three different kinds of solution:

Radical Semantic View On every occasion of use, the sentence literally means that everyone
in the world is here, and so is strictly speaking false. An interpreter recognizes that the
speaker has said something false, and uses general principles to figure out what the speaker
actually meant.

Radical Pragmatic View What the semantics provides is in some sense incomplete. What the
sentence means is determined in part by the context of utterance and the speaker’s intentions.
The differences in meaning are entirely due to extra-linguistic facts which have no linguistic
reflex.

The Intermediate View The logical form of sentences with the quantifier every contains a
slot for information which is contributed by the context. So extra-linguistic information is
required to fix the meaning; but the contribution of this information is mediated by linguistic
form.

More Context: Anaphora

� John is a bachelor. His wife is very nice. (Uh, what?, who?)

� John likes his dog Spiff even though he bites him sometimes. (who bites?)

� John likes Spiff. Peter does too. (what to does Peter do?)

� John loves his wife. Peter does too. (whom does Peter love?)

� John loves golf, and Mary too. (who does what?)

©:Michael Kohlhase 15

Context is Personal and keeps changing

� The king of America is rich. (true or false?)

� The king of America isn’t rich. (false or true?)

� If America had a king, the king of America would be rich. (true or false!)

� The king of Buganda is rich. (Where is Buganda?)

� . . . Joe Smith. . . The CEO ofWestinghouse announced budget cuts.(CEO=J.S.!)

©:Michael Kohlhase 16

1.4 Preview of the Course

Plot of this Course

� Today: Motivation and find out what you already know

9

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� What is Natural Language Processing/Understanding/Semantics?

� quick walk through the topics (landscape of semantics/pragmatics)

� What is logic/Semantics

� improving models for NL Semantics/Pragmatics (repeat until over)

� Syntax (introduce a fragment)

� Semantics (construct the logical form)

� Pragmatics (construct/refine the interpretation)

� Evaluation of the model

� Recap, What have we learned (have a happy summer)

©:Michael Kohlhase 17

A Landscape of Formal Semantics

©:Michael Kohlhase 18

10

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


2 The Method of Fragments: Fragment 1

2.1 Logic as a Tool for Modeling NL Semantics

In this section we will briefly introduce formal logic and motivate how we will use it as a tool for
developing precise theories about natural language semantics.9 EdN:9

2.1.1 What is Logic?

What is Logic?

� formal languages, inference and their relation with the world

� Formal language FL: set of formulae (2 + 3/7, ∀x.x+ y = y + x)

� Formula: sequence/tree of symbols (x, y, f, g, p, 1, π,∈,¬, ∧∀,∃)
� Models: things we understand (e.g. number theory)

� Interpretation: maps formulae into models ([[three plus five]] = 8)

� Validity: M |= A, iff [[A]]
M

= T (five greater three is valid)

� Entailment: A |= B, iffM |= B for allM |= A. (generalize to H |= A)

� Inference: rules to transform (sets of) formulae (A,A⇒B ` B)

� Syntax: formulae, inference (just a bunch of symbols)

� Semantics: models, interpr., validity, entailment (math. structures)

� Important Question: relation between syntax and semantics?

©:Michael Kohlhase 19

So logic is the study of formal representations of objects in the real world, and the formal state-
ments that are true about them. The insistence on a formal language for representation is actually
something that simplifies life for us. Formal languages are something that is actually easier to
understand than e.g. natural languages. For instance it is usually decidable, whether a string is
a member of a formal language. For natural language this is much more difficult: there is still
no program that can reliably say whether a sentence is a grammatical sentence of the English
language.
We have already discussed the meaning mappings (under the monicker “semantics”). Meaning
mappings can be used in two ways, they can be used to understand a formal language, when we
use a mapping into “something we already understand”, or they are the mapping that legitimize a
representation in a formal language. We understand a formula (a member of a formal language)
A to be a representation of an object O, iff [[A]] = O.
However, the game of representation only becomes really interesting, if we can do something with
the representations. For this, we give ourselves a set of syntactic rules of how to manipulate the
formulae to reach new representations or facts about the world.
Consider, for instance, the case of calculating with numbers, a task that has changed from a difficult
job for highly paid specialists in Roman times to a task that is now feasible for young children.
What is the cause of this dramatic change? Of course the formalized reasoning procedures for
arithmetic that we use nowadays. These calculi consist of a set of rules that can be followed
purely syntactically, but nevertheless manipulate arithmetic expressions in a correct and fruitful
way. An essential prerequisite for syntactic manipulation is that the objects are given in a formal

9EdNote: also talk about Cresswell’s most certain principle of semantics

11

http://creativecommons.org/licenses/by-sa/2.5/


language suitable for the problem. For example, the introduction of the decimal system has been
instrumental to the simplification of arithmetic mentioned above. When the arithmetical calculi
were sufficiently well-understood and in principle a mechanical procedure, and when the art of
clock-making was mature enough to design and build mechanical devices of an appropriate kind,
the invention of calculating machines for arithmetic by Wilhelm Schickard (1623), Blaise Pascal
(1642), and Gottfried Wilhelm Leibniz (1671) was only a natural consequence.

We will see that it is not only possible to calculate with numbers, but also with representations
of statements about the world (propositions). For this, we will use an extremely simple example;
a fragment of propositional logic (we restrict ourselves to only one logical connective) and a small
calculus that gives us a set of rules how to manipulate formulae.
In computational semantics, the picture is slightly more complicated than in Physics. Where
Physics considers mathematical models, we build logical models, which in turn employ the term
“model”. To sort this out, let us briefly recap the components of logics, we have seen so far.10 EdN:10
Logics make good (scientific1) models for natural language, since they are mathematically precise

and relatively simple.

Formal languages simplify natural languages, in that problems of grammaticality no longer
arise. Well-formedness can in general be decided by a simple recursive procedure.

Semantic models simplify the real world by concentrating on (but not restricting itself to) math-
ematically well-understood structures like sets or numbers. The induced semantic notions of
validity and logical consequence are precisely defined in terms of semantic models and allow
us to make predictions about truth conditions of natural language.

The only missing part is that we can conveniently compute the predictions made by the model.
The underlying problem is that the semantic notions like validity and semantic consequence are
defined with respect to all models, which are difficult to handle.

Therefore, logics typically have a third part, an inference system, or a calculus, which is a
syntactic counterpart to the semantic notions. Formally, a calculus is just a set of rules (called
inference rules) that transform (sets of) formulae (the assumptions) into other (sets of) formulae
(the conclusions). A sequence of rule applications that transform the empty set of assumptions
into a formula T, is called a proof of A. To make these assumptions clear, let us look at a very
simple example.

2.1.2 Formal Systems

To prepare the ground for the particular developments coming up, let us spend some time on
recapitulating the basic concerns of formal systems.

Logical Systems The notion of a logical system is at the basis of the field of logic. In its most
abstract form, a logical system consists of a formal language, a class of models, and a satisfaction
relation between models and expressions of the formal lanugage. The satisfaction relation tells us
when an expression is deemed true in this model.

Logical Systems

� Definition 2.1 A logical system is a triple S := 〈L,K, |=〉, where L is a
formal language, K is a set and |=⊆K×L. Members of L are called formulae
of S, members of K models for S, and |= the satisfaction relation.

10EdNote: adapt notation
1Since we use the word “model” in two ways, we will sometimes explicitly label it by the attribute “scientific” to

signify that a whole logic is used to model a natural language phenomenon and with the attribute “semantic” for
the mathematical structures that are used to give meaning to formal languages

12



� Definition 2.2 Let S := 〈L,K, |=〉 be a logical system,M ∈ K be a model
and A ∈ L a formula, then we call A

� satisfied byM, iffM |= A

� falsified byM, iffM 6|= A

� satisfiable in K, iffM |= A for some modelM∈ K.
� valid in K (write |=M), iffM |= A for all modelsM∈ K
� falsifiable in K, iffM 6|= A for someM∈ K.
� unsatisfiable in K, iffM 6|= A for allM∈ K.

� Definition 2.3 Let S := 〈L,K, |=〉 be a logical system, then we define the
entailment relation |=⊆L×L. We say that A entails B (written A |= B), iff
we haveM |= B for all modelsM∈ K withM |= A.

� Observation 2.4 A |= B andM |= A implyM |= B.

©:Michael Kohlhase 20

Example 2.5 (First-Order Logic as a Logical System) Let L := wff o(Σ), K be the class of
first-order models, andM |= A :⇔ Iϕ(A) = T, then 〈L,K, |=〉 is a logical system in the sense of
Definition 2.1.

Note that central notions like the entailment relation (which is central for understanding reasoning
processes) can be defined independently of the concrete compositional setup we have used for first-
order logic, and only need the general assumptions about logical systems.
Let us now turn to the syntactical counterpart of the entailment relation: derivability in a calculus.
Again, we take care to define the concepts at the general level of logical systems.

Calculi, Derivations, and Proofs The intuition of a calculus is that it provides a set of
syntactic rules that allow to reason by considering the form of propositions alone. Such rules are
called inference rules, and they can be strung together to derivations — which can alternatively
be viewed either as sequences of formulae where all formulae are justified by prior formulae or as
trees of inference rule applications. But we can also define a calculus in the more general setting
of logical systems as an arbitrary relation on formulae with some general properties. That allows
us to abstract away from the homomorphic setup of logics and calculi and concentrate on the
basics.

Derivation Systems and Inference Rules

� Definition 2.6 Let S := 〈L,K, |=〉 be a logical system, then we call a relation
`⊆P(L)×L a derivation relation for S, if it

� is proof-reflexive, i.e. H ` A, if A ∈ H;
� is proof-transitive, i.e. if H ` A and H′ ∪{A} ` B, then H∪H′ ` B;

� admits weakening, i.e. H ` A and H⊆H′ imply H′ ` A.

� Definition 2.7 We call 〈L,K, |=,`〉 a formal system, iff S := 〈L,K, |=〉 is a
logical system, and ` a derivation relation for S.

13

http://creativecommons.org/licenses/by-sa/2.5/


� Definition 2.8 Let L be a formal language, then an inference rule over L

A1 · · · An

C
N

where A1, . . . ,An and C are formula schemata for L and N is a name.
The Ai are called assumptions, and C is called conclusion.

� Definition 2.9 An inference rule without assumptions is called an axiom (schema).

� Definition 2.10 Let S := 〈L,K, |=〉 be a logical system, then we call a set
C of inference rules over L a calculus for S.

©:Michael Kohlhase 21

With formula schemata we mean representations of sets of formulae, we use boldface uppercase
letters as (meta)-variables for formulae, for instance the formula schema A⇒B represents the set
of formulae whose head is ⇒.

Derivations and Proofs

� Definition 2.11 Let S := 〈L,K, |=〉 be a logical system and C a calculus for
S, then a C-derivation of a formula C ∈ L from a set H⊆L of hypotheses
(write H `C C) is a sequence A1, . . . ,Am of L-formulae, such that

� Am = C, (derivation culminates in C)

� for all 1≤i≤m, either Ai ∈ H, or (hypothesis)

� there is an inference rule
Al1 · · · Alk

Ai
in C with lj < i for all j≤k. (rule

application)

Observation: We can also see a derivation as a tree, where the Alj are the
children of the node Ak.

��

Example 2.12 In the propositional Hilbert cal-
culus H0 we have the derivation P `H0 Q⇒P :
the sequence is P ⇒Q⇒P , P ,Q⇒P and the
corresponding tree on the right.

K
P ⇒Q⇒P P

MP
Q⇒P

� Observation 2.13 Let S := 〈L,K, |=〉 be a logical system and C a calculus
for S, then the C-derivation relation `D defined in Definition 2.11 is a derivation
relation in the sense of Definition 2.6.11

� Definition 2.14 We call 〈L,K, |=, C〉 a formal system, iff S := 〈L,K, |=〉 is
a logical system, and C a calculus for S.

� Definition 2.15 A derivation ∅ `C A is called a proof of A and if one exists
(write `C A) then A is called a C-theorem.

� Definition 2.16 an inference rule I is called admissible in C, if the extension
of C by I does not yield new theorems.

©:Michael Kohlhase 22

kEdNote: MK: this should become a view!

Inference rules are relations on formulae represented by formula schemata (where boldface,

14

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


uppercase letters are used as meta-variables for formulae). For instance, in Example 2.12 the

inference rule
A⇒B A

B
was applied in a situation, where the meta-variables A and B were

instantiated by the formulae P and Q⇒P .
As axioms do not have assumptions, they can be added to a derivation at any time. This is just
what we did with the axioms in Example 2.12.

Properties of Calculi In general formulae can be used to represent facts about the world as
propositions; they have a semantics that is a mapping of formulae into the real world (propositions
are mapped to truth values.) We have seen two relations on formulae: the entailment relation and
the deduction relation. The first one is defined purely in terms of the semantics, the second one
is given by a calculus, i.e. purely syntactically. Is there any relation between these relations?

Soundness and Completeness

� Definition 2.17 Let S := 〈L,K, |=〉 be a logical system, then we call a
calculus C for S

� sound (or correct), iff H |= A, whenever H `C A, and

� complete, iff H `C A, whenever H |= A.

� Goal: ` A iff |=A (provability and validity coincide)

� To TRUTH through PROOF (CALCULEMUS [Leibniz ∼1680])

©:Michael Kohlhase 23

Ideally, both relations would be the same, then the calculus would allow us to infer all facts that
can be represented in the given formal language and that are true in the real world, and only
those. In other words, our representation and inference is faithful to the world.

A consequence of this is that we can rely on purely syntactical means to make predictions
about the world. Computers rely on formal representations of the world; if we want to solve a
problem on our computer, we first represent it in the computer (as data structures, which can be
seen as a formal language) and do syntactic manipulations on these structures (a form of calculus).
Now, if the provability relation induced by the calculus and the validity relation coincide (this will
be quite difficult to establish in general), then the solutions of the program will be correct, and
we will find all possible ones.
Of course, the logics we have studied so far are very simple, and not able to express interesting
facts about the world, but we will study them as a simple example of the fundamental problem of
Computer Science: How do the formal representations correlate with the real world.
Within the world of logics, one can derive new propositions (the conclusions, here: Socrates is
mortal) from given ones (the premises, here: Every human is mortal and Sokrates is human).
Such derivations are proofs.
In particular, logics can describe the internal structure of real-life facts; e.g. individual things,

15

http://creativecommons.org/licenses/by-sa/2.5/


actions, properties. A famous example, which is in fact as old as it appears, is illustrated in the
slide below.

The miracle of logics

� Purely formal derivations are true in the real world!

©:Michael Kohlhase 24

If a logic is correct, the conclusions one can prove are true (= hold in the real world) whenever
the premises are true. This is a miraculous fact (think about it!)

2.1.3 Using Logic to Model Meaning of Natural Language

Modeling Natural Language Semantics

� Problem: Find formal (logic) system for the meaning of natural language

� History of ideas

� Propositional logic [ancient Greeks like Aristotle]
*Every human is mortal

� First-Order Predicate logic [Frege ≤ 1900]
*I believe, that my audience already knows this.

� Modal logic [Lewis18, Kripke65]
*A man sleeps. He snores. ((∃X man(X)∧ sleep(X)))∧ snore(X)

� Various dynamic approaches (e.g. DRT, DPL)
*Most men wear black

� Higher-order Logic, e.g. generalized quantifiers

� . . .

©:Michael Kohlhase 25

16

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Let us now reconcider the role of all of this for natural language semantics. We have claimed
that the goal of the course is to provide you with a set of methods to determine the meaning of
natural language. If we look back, all we did was to establish translations from natural languages
into formal languages like first-order or higher-order logic (and that is all you will find in most
semantics papers and textbooks). Now, we have just tried to convince you that these are actually
syntactic entities. So, where is the semantics? .

Natural Language Semantics?

Comp Ling
NL

L = wff (Σ)

M = 〈D, I〉

|=NL⊆NL×NL

`C ⊆FL×FL

|=⊆FL×FL

Analysis

Iϕ

induces

induces

formulae

|= ≡ `C?

|=NL ≡ `C?

©:Michael Kohlhase 26

As we mentioned, the green area is the one generally covered by natural language semantics. In
the analysis process, the natural language utterances (viewed here as formulae of a language NL)
are translated to a formal language FL (a set wff (Σ) of well-formed formulae). We claim that
this is all that is needed to recapture the semantics even it this is not immediately obvious at first:
Theoretical Logic gives us the missing pieces.

Since FL is a formal language of a logical systems, it comes with a notion of model and an
interpretation function Iϕ that translates FL formulae into objects of that model. This induces
a notion of logical consequence2 as explained in12. It also comes with a calculus C acting on EdN:12
FL-formulae, which (if we are lucky) is correct and complete (then the mappings in the upper
rectangle commute).

What we are really interested in in natural language semantics is the truth conditions and
natural consequence relations on natural language utterances, which we have denoted by |=NL.
If the calculus C of the logical system 〈FL,K, |=〉 is adequate (it might be a bit presumptious to
say sound and complete), then it is a model of the relation |=NL. Given that both rectangles in
the diagram commute, then we really have a model for truth-conditions and logical consequence
for natural language utterances, if we only specify the analysis mapping (the green part) and the
calculus.

Logic-Based Knowledge Representation for NLP

� Logic (and related formalisms) allow to integrate world knowledge

� explicitly (gives more understanding than statistical methods)

� transparently (symbolic methods are monotonic)

2Relations on a set S are subsets of the cartesian product of S, so we use R ∈ (S∗)S to signify that R is a
(n-ary) relation on X.

12EdNote: crossref

17

http://creativecommons.org/licenses/by-sa/2.5/


� systematically (we can prove theorems about our systems)

� Signal + World knowledge makes more powerful model

� Does not preclude the use of statistical methods to guide inference

� Problems with logic-based approaches

� Where does the world knowledge come from? (Ontology problem)

� How to guide search induced by log. calculi (combinatorial explosion)

One possible answer: Description Logics. (next couple of times)

©:Michael Kohlhase 27

2.2 The Method of Fragments

We will proceed by the “method of fragments”, introduced by Richard Montague in [Mon70], where
he insists on specifying a complete syntax and semantics for a specified subset (“fragment”) of a
language, rather than writing rules for the a single construction while making implicit assumptions
about the rest of the grammar.

� In the present paper I shall accordingly present a precise treatment, culminating in a
theory of truth, of a formal language that I believe may be reasonably regarded as a
fragment of ordinary English. source=R. Montague 1970 [Mon70], p.188

The first step in defining a fragment of natural language is to define which sentences we want to
consider. We will do this by means of a context-free grammar. This will do two things: act as
an oracle deciding which sentences (of natural language) are OK, and secondly to build up syntax
trees, which we will later use for semantics construction.

Natural Language Fragments

� Idea: Formally identify a set (NL) sentences we want to study by a context-free
grammar.

� Idea: Use non-terminals to classify NL phrases

� Definition 2.18 We call a non-terminal of a context-free grammar a syntac-
tical category. We distinguish two kinds of rules

structural rules L : H → c1, . . ., cn with head H, label L, and a sequence
of phrase categories ci.

lexical rules L : H → t1|. . .|tn, where the ti are terminals (i.e. NL phrases)

©:Michael Kohlhase 28

We distinguish two grammar fragments: the structural grammar rules and the lexical rules, because
they are guided by differing intuitions. The former set of rules govern how NL phrases can be
composed to sentences (and later even to discourses). The latter rules are a simple representation
of a lexicon, i.e. a structure which tells us about words (the terminal objects of language): their
syntactical categories, their meaning, etc.

18

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Formal Natural Language Semantics with Fragments

� Idea: We will follow the picture we have discussed before

Comp Ling
NL

L = wff (Σ)

M = 〈D, I〉

|=NL⊆NL×NL

`C ⊆FL×FL

|=⊆FL×FL

Analysis

Iϕ

induces

induces

formulae

|= ≡ `C?

|=NL ≡ `C?

Choose a target logic L and specify a translation from syntax trees to formulae!

©:Michael Kohlhase 29

Semantics by Translation

� Idea: We translate sentences by translating their syntax trees via tree node
translation rules.

� Definition 2.19 We represent a node α in a syntax tree with children β1, . . . , βn
by [X1β1

, . . . , Xnβn ]α and write a translation rule as

L : [X1β1
, . . . , Xnβn ]α ; Φ(X1

′, . . . , Xn
′)

if the translation of the node α can be computed from those of the βi via a
semantical function Φ.

� Definition 2.20 For a natural language utterance A, we will use 〈A〉 for the
result of translating A.

� Definition 2.21 (Default Rule) For every word w in the fragment we as-
sue a constant w′ in the logic L and the “pseudo-rule” t1: w ; w′. (if no
other translation rule applies)

©:Michael Kohlhase 30

13 EdN:13

2.3 The First Fragment: Setting up the Basics

The first fragment will primarily be used for setting the stage, and introducing the method itself.
The coverage of the fragment is too small to do anything useful with it, but it will allow us to

13EdNote: Move discussion on compositionality here

19

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


discuss the salient features of the method, the particular setup of the grammars and semantics
before graduating to more useful fragments.

2.3.1 Natural Language Syntax

Structural Grammar Rules

� Definition 2.22 Fragment 1 knowls the following eight syntactical categories

S sentence NP noun phrase
N noun Npr proper name
V i intransitive verb V t transitive verb
conj connective Adj adjective

� Definition 2.23 We have the following grammar rules in fragment 1.

S1. S → NP V i

S2. S → NP V t NP
N1. NP → Npr
N2. NP → theN
S3. S → Itisnotthecasethat S
S4. S → S conj S
S5. S → NP is NP
S6. S → NP is Adj.

©:Michael Kohlhase 31

Lexical insertion rules for Fragment 1

� Definition 2.24 We have the following lexical insertion rules in Fragment 1.

L1. Npr → {Prudence, Ethel, Chester, Jo, Bertie, Fiona}
L2. N → {book, cake, cat, golfer, dog, lecturer, student, singer}
L3. V i → {ran, laughed, sang, howled, screamed}
L4. V t → {read, poisoned, ate, liked, loathed, kicked}
L5. conj → {and, or}
L6. Adj → {happy, crazy, messy, disgusting, wealthy}

� Note: We will adopt the convention that new lexical insertion rules can be
generated spontaneously as needed.

©:Michael Kohlhase 32

These rules represent a simple lexicon, they specify which words are accepted by the grammar
and what their syntactical categories are.

Syntax Example: Jo poisened the dog and Ethel laughed

� Observation 2.25 Jo poisened the dog and Ethel laughed is a sentence of
fragment 1

20

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� We can construct a syntax tree for it!

Jo poisened the dog and Ethel laughed

Npr V t N conj Npr V i

NP NP NP

S S

S

©:Michael Kohlhase 33

The next step will be to introduce the logical model we will use for Fragment 1: Predicate Logic
without Quantifiers. Syntactically, this logic is a fragment of first-order logic, but it’s expressivity
is equivalent to Propositional Logic. Therefore, we will introduce the syntax of full first-order
logic (with quantifiers since we will need if for Fragment 4 later), but for the semantics stick with
a setup without quantifiers. We will go into the semantic difficulties that they pose later (in
Subsection 4.0 and Section 4).

2.3.2 Predicate Logic Without Quantifiers

First-Order Predicate Logic (PL1)

� Coverage: We can talk about (All humans are mortal)

� individual things and denote them by variables or constants

� properties of individuals, (e.g. being human or mortal)

� relations of individuals, (e.g. sibling_of relationship)

� functions on individuals, (e.g. the father_of function)

We can also state the existence of an individual with a certain property, or the
universality of a property.

� But we cannot state assertions like

� There is a surjective function from the natural numbers into the reals.

� First-Order Predicate Logic has many good properties (complete calculi,
compactness, unitary, linear unification,. . . )

� But too weak for formalizing: (at least directly)

� natural numbers, torsion groups, calculus, . . .

� generalized quantifiers (most, at least three, some,. . . )

©:Michael Kohlhase 34

The formulae of first-order logic is built up from the signature and variables as terms (to represent
individuals) and propositions (to represent propositions). The latter include the propositional

21

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


connectives, but also quantifiers.

PL1 Syntax (Formulae)

� Definition 2.26 terms: A ∈ wff ι(Σι) (denote individuals: type ι)

� Vι⊆wff ι(Σι),

� if f ∈ Σfk and Ai ∈ wff ι(Σι) for i≤k, then f(A1, . . . ,Ak) ∈ wff ι(Σι).

� Definition 2.27 propositions: A ∈ wff o(Σ) (denote truth values: type o)

� if p ∈ Σpk and Ai ∈ wff ι(Σι) for i≤k, then p(A1, . . . ,Ak) ∈ wff o(Σ),

� if A,B ∈ wff o(Σ), then T ,A∧B,¬A,∀X A ∈ wff o(Σ).

� Definition 2.28 We define the connectives F ,∨,⇒,⇔ via the abbreviations
A∨B := ¬ (¬A∧¬B),A⇒B := ¬A∨B, (A⇔B) := (A⇒B)∧ (B⇒A),
and F := ¬T . We will use them like the primary connectives ∧ and ¬

� Definition 2.29 We use ∃X A as an abbreviation for ¬ (∀X ¬A). (exis-
tential quantifier)

� Definition 2.30 Call formulae without connectives or quantifiers atomic else
complex.

©:Michael Kohlhase 35

Note: that we only need e.g. conjunction, negation, and universal quantification, all other logical
constants can be defined from them (as we will see when we have fixed their interpretations).
Semantic Models for PLNQ: What the semantics of PLNQ will do is allow us to determine, for any
given sentence of the language, whether it is true or false. Now, in general, to know whether a
sentence in a language is true or false, we need to know what the world is like. The same is true
for PLNQ. But to make life easier, we don’t worry about the real world; we define a situation, a
little piece of the world, and evaluate our sentences relative to this situation. We do this using a
structure called a model.

What we need to know about the world is:

• What objects there are in the world.

• Which predicates are true of which objects, and which objects stand in which relations to
each other.

Definition 2.31 A model for PLNQ is an ordered pair 〈D, I〉 where:

• D is the domain, which specifies what objects there are in the model. (All kinds of things
can be objects.)

• I is an interpretation function. (Can uses the terms “denotation assignment function” and
“naming function.”)

An interpretation function for a language is a function whose arguments are the non-logical con-
stants of the language, and which give back as value a denotation or reference for the constant.
Specifically:

• To an individual constant, the interpretation function assigns an object from the model. I.e.
the interpretation function tells us which objects from the model are named by each of the
constants. (Note that the interpretation function can assign the same object to more than
one constant; but to each constant, it can assign at most one object as value.)

22

http://creativecommons.org/licenses/by-sa/2.5/


• To a one-place predicate, the interpretation function assigns a set of objects from the model.
Intuitively, these objects are the objects in the model of which the predicate is true.

• To a two-place predicate, the interpretation function assigns a set of pairs of objects from
the model. Intuitively, these pairs are the pairs of which the predicate is true. (Generalizing:
To an n-place predicate, the interpretation function assigns a set of n-tuples of objects from
the model.)

Example 2.32 Let L := {a, b, c, d, e, P,Q,R, S}, we set the domainD := {TRIANGLE,SQUARE,CIRCLE,DIAMOND},
and the interpretation function I by setting

• a 7→ TRIANGLE, b 7→ SQUARE, c 7→ CIRCLE, d 7→ DIAMOND, and e 7→ DIAMOND for
individual constants,

• P 7→ {TRIANGLE,SQUARE} and Q 7→ {SQUARE,DIAMOND}, for unary predicate con-
stants.

• R 7→ {〈CIRCLE,DIAMOND〉, 〈DIAMOND,CIRCLE〉}, and

• S 7→ {〈DIAMOND,SQUARE〉, 〈SQUARE,TRIANGLE〉} for binary predicate constants.

The valuation function, [[·]]M , fixes the value (for our purposes, the truth value) of sentences of
the language relative to a given model. The valuation function, as you’ll notice, is not itself part
of the model. The valuation function is the same for any model for a language based on PLNQ.

Definition 2.33 Let 〈D, I〉 be a model for a language L⊆PLNQ.

1) For any non-logical constant c of L, Iϕ(c) = I(c).

2) Atomic formulas: Let P be an n-place predicate constant, and t1, . . . , tn be individual con-
stants. Then Iϕ(P (t1, . . . , tn)) = T iff 〈Iϕ(t1), . . ., Iϕ(tn)〉 ∈ I(P ).

3) Complex formulas: Let ϕ and ψ be sentences. Then:

a. Iϕ(¬(A)) = T iff Iϕ(A) = F.
b. Iϕ(A∧B) = T iff Iϕ(A) = T and Iϕ(B) = T.
c. Iϕ(A∨B) = T iff Iϕ(A) = T or Iϕ(B) = T.
d. Iϕ(A⇒B) = T iff Iϕ(A) = F or Iϕ(B) = T.

PLNQ: Predicate Logic without variables and functions

� Idea: Study the fragment of first-order Logic without Quantifiers and functions

� Universes Do = {T,F} of truth values and Dι 6= ∅ of individuals

� interpretation I assigns values to constants, e.g.

� I(¬) : Do → Do;T 7→ F;F 7→ T and I(∧) = . . . (as in PL0)

� I : Σf0 → Dι (interpret individual constants as individuals)

� I : Σpk → P(Dιk) (interpret predicates as arbitrary relations)

� The value function I : wff o(Σ)→ Do assigns values to formulae (recursively)

� e.g. I(¬A) = I(¬)(I(A)) (just as in PL0)

� I(p(A1, . . . ,Ak)) := T, iff 〈I(A1), . . ., I(Ak)〉 ∈ I(p)

� Model: M = 〈Dι, I〉 varies in Dι and I.

23



� Theorem 2.34 PLNQ is isomorphic to PL0 (interpret atoms as prop.
variables)

©:Michael Kohlhase 36

Now that we have the target logic we can complete the analysis arrow in figure14. We do this EdN:14
again, by giving transformation rules.

2.3.3 Natural Language Semantics via Translation

Translation rules for non-basic expressions (NP and S)

� Definition 2.35 We have the following translation rules for internal nodes of
the syntax tree

T1. [XNP, YV i ]S =⇒ Y ′(X ′)
T2. [XNP, YV t , ZNP]S =⇒ Y ′(X ′, Z ′)
T3. [XNpr

]NP =⇒ X ′

T4. [the, XN ]NP =⇒ the X ′
T5. [ItisnotthecasethatXS ]S =⇒ ¬(X ′)
T6. [XS , Yconj, ZS ]S =⇒ Y ′(X ′, Z ′)
T7. [XNP, is, YNP]S =⇒ X ′ = Y ′

T8. [XNP, isYAdj]S =⇒ Y ′(X ′)

Read e.g. [Y, Z]X as a node with label X in the syntax tree with daughters X
and Y . Read X ′ as the translation of X via these rules.

� Note that we have exactly one tranlation per syntax rule.

©:Michael Kohlhase 37

Translation rule for basic lexical items

� Definition 2.36 The target logic for F1 is PLNQ, the fragment of PL1 with-
out quantifiers.

� Lexical Translation Rules for F1 Categories:

� If w is a proper name, then w′ ∈ Σf0 . (individual constant)

� If w is an intransitive verb, then w′ ∈ Σp1. (one-place predicate)

� If w is a transitive verb, w′ ∈ Σp2. (two-place predicate)

� If w is a noun phrase, then w′ ∈ Σf0 . (individual constant)

� Semantics by Translation: We translate sentences by translating their syntax
trees via tree node translation rules.

� For any non-logical word w, we have the “pseudo-rule” t1: w ; w′.

� Note: This rule does not apply to the syncategorematic items is and the.

14EdNote: reference

24

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� Translations for logical connectives

t2. and =⇒ ∧
t3. or =⇒ ∨
t4. itisnotthecasethat =⇒ ¬

©:Michael Kohlhase 38

Translation Example

� Observation 2.37 Jo poisened the dog and Ethel laughed is a sentence of
fragment 1

� We can construct a syntax tree for it!

Jo poisened the dog and Ethel laughed

Npr V t N conj Npr V i

NP NP NP

S S

S

Jo′poisened′ ∧ Ethel′laughed′

Jo′ thedog′ Ethel′

poisened′(Jo′, thedog′) laughed′(Ethel′)

poisened′(Jo′, thedog′)∧ laughed′(Ethel′)

©:Michael Kohlhase 39

2.4 Calculi for Automated Theorem Proving: Analytical Tableaux

In this section we will introduce tableau calculi for propositional logics. To make the reasoning
procedure more interesting, we will use first-order predicate logic without variables, function sym-
bols and quantifiers as a basis. This logic (we will call it PLNQ) allows us express simple natural
language sentences and to re-use our grammar for experimentation, without introducing the whole
complications of first-order inference.

The logic PLNQ is equivalent to propositional logic in expressivity: atomic formulae15 take the EdN:15
role of propositional variables.
Instead of deducing new formulae from axioms (and hypotheses) and hoping to arrive at the

desired theorem, we try to deduce a contradiction from the negation of the theorem. Indeed,
a formula A is valid, iff ¬A is unsatisfiable, so if we derive a contradiction from ¬A, then we
have proven A. The advantage of such “test-calculi” (also called negative calculi) is easy to see.
Instead of finding a proof that ends in A, we have to find any of a broad class of contradictions.
This makes the calculi that we will discuss now easier to control and therefore more suited for
mechanization.

15EdNote: introduced?, tie in with the stuff before

25

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


2.4.1 Analytical Tableaux

Before we can start, we will need to recap some nomenclature on formulae.

Recap: Atoms and Literals

� Definition 2.38 We call a formula atomic, or an atom, iff it does not contain
connectives. We call a formula complex, iff it is not atomic.

� Definition 2.39 We call a pair Aα a labeled formula, if α ∈ {T,F}. A
labeled atom is called literal.

� Definition 2.40 Let Φ be a set of formulae, then we use Φα := {Aα |A ∈ Φ}.

©:Michael Kohlhase 40

The idea about literals is that they are atoms (the simplest formulae) that carry around their
intended truth value.

Now we will also review some propositional identities that will be useful later on. Some of
them we have already seen, and some are new. All of them can be proven by simple truth table
arguments.

Test Calculi: Tableaux and Model Generation

� Idea: instead of showing ∅ ` Th, show ¬Th ` trouble (use ⊥ for trouble)

� Example 2.41 Tableau Calculi try to construct models.

Tableau Refutation (Validity) Model generation (Satisfiability)
|=P ∧Q⇒Q∧P |=P ∧ (Q∨¬R)∧¬Q

P ∧Q⇒Q∧P f

P ∧Qt

Q∧P f

P t

Qt

P f

⊥
Qf

⊥

P ∧ (Q∨¬R)∧¬Qt

P ∧ (Q∨¬R)t

¬Qt

Qf

P t

Q∨¬Rt

Qt

⊥
¬Rt

Rf

No Model Herbrand Model {P t, Qf , Rf}
ϕ := {P 7→ T, Q 7→ F, R 7→ F}

Algorithm: Fully expand all possible tableaux, (no rule can be applied)

� � Satisfiable, iff there are open branches (correspond to models)

©:Michael Kohlhase 41

Tableau calculi develop a formula in a tree-shaped arrangement that represents a case analysis on
when a formula can be made true (or false). Therefore the formulae are decorated with exponents
that hold the intended truth value.
On the left we have a refutation tableau that analyzes a negated formula (it is decorated with the
intended truth value F). Both branches contain an elementary contradiction ⊥.

On the right we have a model generation tableau, which analyzes a positive formula (it is
decorated with the intended truth value T. This tableau uses the same rules as the refutation

26

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


tableau, but makes a case analysis of when this formula can be satisfied. In this case we have a
closed branch and an open one, which corresponds a model).

Now that we have seen the examples, we can write down the tableau rules formally.

Analytical Tableaux (Formal Treatment of T0)

� formula is analyzed in a tree to determine satisfiability

� branches correspond to valuations (models)

� one per connective

A∧Bt

At

Bt

T0∧
A∧Bf

Af

∣∣∣ Bf
T0∨

¬At

Af
T0

T¬ ¬Af

At
T0

F¬

Aα

Aβ α 6= β

⊥ T0cut

� Use rules exhaustively as long as they contribute new material

� Definition 2.42 Call a tableau saturated, iff no rule applies, and a branch
closed, iff it ends in ⊥, else open. (open branches in saturated tableaux yield
models)

� Definition 2.43 (T0-Theorem/Derivability) A is a T0-theorem (`T0 A),
iff there is a closed tableau with AF at the root.

Φ⊆wff o(Vo) derives A in T0 (Φ `T0 A), iff there is a closed tableau starting
with AF and ΦT.

©:Michael Kohlhase 42

These inference rules act on tableaux have to be read as follows: if the formulae over the line
appear in a tableau branch, then the branch can be extended by the formulae or branches below
the line. There are two rules for each primary connective, and a branch closing rule that adds the
special symbol ⊥ (for unsatisfiability) to a branch.
We use the tableau rules with the convention that they are only applied, if they contribute new
material to the branch. This ensures termination of the tableau procedure for propositional logic
(every rule eliminates one primary connective).

Definition 2.44 We will call a closed tableau with the signed formula Aα at the root a tableau
refutation for Aα.

The saturated tableau represents a full case analysis of what is necessary to give A the truth value
α; since all branches are closed (contain contradictions) this is impossible.

Definition 2.45 We will call a tableau refutation for Af a tableau proof for A, since it refutes the
possibility of finding a model where A evaluates to F. Thus A must evaluate to T in all models,
which is just our definition of validity.

Thus the tableau procedure can be used as a calculus for propositional logic. In contrast to the
calculus in section ?sec.hilbert? it does not prove a theorem A by deriving it from a set of axioms,
but it proves it by refuting its negation. Such calculi are called negative or test calculi. Generally
negative calculi have computational advantages over positive ones, since they have a built-in sense
of direction.
We have rules for all the necessary connectives (we restrict ourselves to ∧ and ¬, since the others
can be expressed in terms of these two via the propositional identities above. For instance, we can
write A∨B as ¬ (¬A∧¬B), and A⇒B as ¬A∨B,. . . .)

27

http://creativecommons.org/licenses/by-sa/2.5/


We will now look at an example. Following our introduction of propositional logic in in ?impsem-
ex? we look at a formulation of propositional logic with fancy variable names. Note that
love(mary,bill) is just a variable name like P or X, which we have used earlier.

A Valid Real-World Example

� Example 2.46 If Mary loves Bill and John loves Mary, then John loves
Mary

love(mary,bill)∧ love(john,mary)⇒ love(john,mary)
f

¬ (¬¬ (love(mary,bill)∧ love(john,mary))∧¬ love(john,mary))
f

¬¬ (love(mary,bill)∧ love(john,mary))∧¬ love(john,mary)t

¬¬ (love(mary,bill)∧ love(john,mary))
t

¬ (love(mary,bill)∧ love(john,mary))
f

love(mary,bill)∧ love(john,mary)t

¬ love(john,mary)
t

love(mary,bill)
t

love(john,mary)
t

love(john,mary)
f

⊥

This is a closed tableau, so the love(mary,bill)∧ love(john,mary)⇒ love(john,mary)
is a T0-theorem.

As we will see, T0 is sound and complete, so love(mary,bill)∧ love(john,mary)⇒ love(john,mary)
is valid.

©:Michael Kohlhase 43

We could have used the entailment theorem (?entl-thm-cor?) here to show that If Mary loves Bill
and John loves Mary entails John loves Mary. But there is a better way to show entailment: we
directly use derivability in T0

Deriving Entailment in T0

� Example 2.47 Mary loves Bill and John loves Mary together entail that
John loves Mary

love(mary,bill)
t

love(john,mary)
t

love(john,mary)
f

⊥

This is a closed tableau, so the {love(mary,bill), love(john,mary)} `T0 love(john,mary),
again, as T0 is sound and complete we have {love(mary,bill), love(john,mary)} |=
love(john,mary)

©:Michael Kohlhase 44

Note: that we can also use the tableau calculus to try and show entailment (and fail). The nice
thing is that the failed proof, we can see what went wrong.

A Falsifiable Real-World Example

28

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� Example 2.48 *If Mary loves Bill or John loves Mary, then John loves
Mary
Try proving the implication (this fails)

(love(mary,bill)∨ love(john,mary))⇒ love(john,mary)
f

¬ (¬¬ (love(mary,bill)∨ love(john,mary))∧¬ love(john,mary))
f

¬¬ (love(mary,bill)∨ love(john,mary))∧¬ love(john,mary)t

¬ love(john,mary)
t

love(john,mary)
f

¬¬ (love(mary,bill)∨ love(john,mary))
t

¬ (love(mary,bill)∨ love(john,mary))
f

love(mary,bill)∨ love(john,mary)t

love(mary,bill)
t

love(john,mary)
t

⊥

Indeed we can make Iϕ(love(mary,bill)) = T but Iϕ(love(john,mary)) = F.

©:Michael Kohlhase 45

Obviously, the tableau above is saturated, but not closed, so it is not a tableau proof for our initial
entailment conjecture. We have marked the literals on the open branch green, since they allow us
to read of the conditions of the situation, in which the entailment fails to hold. As we intuitively
argued above, this is the situation, where Mary loves Bill. In particular, the open branch gives us
a variable assignment (marked in green) that satisfies the initial formula. In this case, Mary loves
Bill, which is a situation, where the entailment fails.
Again, the derivability version is much simpler

Testing for Entailment in T0

� Example 2.49 Does Mary loves Bill or John loves Mary entail that John
loves Mary?

love(mary,bill)∨ love(john,mary)t

love(john,mary)
f

love(mary,bill)
t

love(john,mary)
t

⊥

This saturated tableau has an open branch that shows that the interpreta-
tion with Iϕ(love(mary,bill)) = T but Iϕ(love(john,mary)) = F falsifies the
derivability/entailment conjecture.

©:Michael Kohlhase 46

2.4.2 Practical Enhancements for Tableaux

Propositional Identities

� Definition 2.50 Let T and F be new logical constants with I(T ) = T and
I(F ) = F for all assignments ϕ.

� We have to following identities:

29

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Name for ∧ for ∨
Idenpotence ϕ∧ϕ = ϕ ϕ∨ϕ = ϕ
Identity ϕ∧T = ϕ ϕ∨F = ϕ
Absorption I ϕ∧F = F ϕ∨T = T
Commutativity ϕ∧ψ = ψ ∧ϕ ϕ∨ψ = ψ ∨ϕ
Associativity ϕ∧ (ψ ∧ θ) = (ϕ∧ψ)∧ θ ϕ∨ (ψ∨ θ) = (ϕ∨ψ)∨ θ
Distributivity ϕ∧ (ψ ∨ θ) = ϕ∧ψ ∨ϕ∧ θ ϕ∨ψ ∧ θ = (ϕ∨ψ)∧ (ϕ∨ θ)
Absorption II ϕ∧ (ϕ∨ θ) = ϕ ϕ∨ϕ∧ θ = ϕ
De Morgan’s Laws ¬ (ϕ∧ψ) = ¬ϕ∨¬ψ ¬ (ϕ∨ψ) = ¬ϕ∧¬ψ
Double negation ¬¬ϕ = ϕ
Definitions ϕ⇒ψ = ¬ϕ∨ψ ϕ⇔ψ = (ϕ⇒ψ)∧ (ψ⇒ϕ)

©:Michael Kohlhase 47

We have seen in the examples above that while it is possible to get by with only the connectives
∨ and ¬, it is a bit unnatural and tedious, since we need to eliminate the other connectives first.
In this section, we will make the calculus less frugal by adding rules for the other connectives,
without losing the advantage of dealing with a small calculus, which is good making statements
about the calculus.
The main idea is to add the new rules as derived rules, i.e. inference rules that only abbreviate
deductions in the original calculus. Generally, adding derived inference rules does not change the
derivability relation of the calculus, and is therefore a safe thing to do. In particular, we will add
the following rules to our tableau system.
We will convince ourselves that the first rule is a derived rule, and leave the other ones as an
exercise.

Derived Rules of Inference

� Definition 2.51 Let C be a calculus, a rule of inference A1 · · · An

C
is called

a derived inference rule in C, iff there is a C-proof of A1, . . . ,An ` C.

� Definition 2.52 We have the following derived rules of inference

A⇒Bt

Af
∣∣∣ Bt

A⇒Bf

At

Bf

At

A⇒Bt

Bt

A∨Bt

At
∣∣∣ Bt

A∨Bf

Af

Bf

A⇔Bt

At

Bt

∣∣∣∣ Af

Bf

A⇔Bf

At

Bf

∣∣∣∣ Af

Bt

At

A⇒Bt

¬A∨Bt

¬ (¬¬A∧¬B)
t

¬¬A∧¬Bf

¬¬Af

¬At

Af

⊥

¬Bf

Bt

©:Michael Kohlhase 48

With these derived rules, theorem proving becomes quite efficient. With these rules, the tableau
(?tab:firsttab?) would have the following simpler form:

Tableaux with derived Rules (example)

30

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Example 2.53

love(mary,bill)∧ love(john,mary)⇒ love(john,mary)
f

love(mary,bill)∧ love(john,mary)t

love(john,mary)
f

love(mary,bill)
t

love(john,mary)
t

⊥

©:Michael Kohlhase 49

Another thing that was awkward in (?tab:firsttab?) was that we used a proof for an implication to
prove logical consequence. Such tests are necessary for instance, if we want to check consistency
or informativity of new sentences16. Consider for instance a discourse ∆ = D1, . . . ,Dn, where n EdN:16
is large. To test whether a hypothesis H is a consequence of ∆ (∆ |= H) we need to show that
C := (D1 ∧ . . .)∧Dn⇒H is valid, which is quite tedious, since C is a rather large formula, e.g.
if ∆ is a 300 page novel. Moreover, if we want to test entailment of the form (∆ |= H) often, –
for instance to test the informativity and consistency of every new sentence H, then successive
∆s will overlap quite significantly, and we will be doing the same inferences all over again; the
entailment check is not incremental.
Fortunately, it is very simple to get an incremental procedure for entailment checking in the
model-generation-based setting: To test whether ∆ |= H, where we have interpreted ∆ in a model
generation tableau T , just check whether the tableau closes, if we add ¬H to the open branches.
Indeed, if the tableau closes, then ∆∧¬H is unsatisfiable, so ¬ ((∆∧¬H)) is valid17, but this is EdN:17
equivalent to ∆⇒H, which is what we wanted to show.

Example 2.54 Consider for instance the following entailment in natural language.

Mary loves Bill. John loves Mary |= John loves Mary
18 We obtain the tableau EdN:18

love(mary,bill)
t

love(john,mary)
t

¬(love(john,mary))
t

love(john,mary)
f

⊥
which shows us that the conjectured entailment relation really holds.

2.4.3 Soundness and Termination of Tableaux

As always we need to convince ourselves that the calculus is sound, otherwise, tableau proofs do
not guarantee validity, which we are after. Since we are now in a refutation setting we cannot just
show that the inference rules preserve validity: we care about unsatisfiability (which is the dual
notion to validity), as we want to show the initial labeled formula to be unsatisfiable. Before we
can do this, we have to ask ourselves, what it means to be (un)-satisfiable for a labeled formula
or a tableau.

Soundness (Tableau)

� Idea: A test calculus is sound, iff it preserves satisfiability and the goal formulae

16EdNote: add reference to presupposition stuff
17EdNote: Fix precedence of negation
18EdNote: need to mark up the embedding of NL strings into Math

31

http://creativecommons.org/licenses/by-sa/2.5/


are unsatisfiable.

� Definition 2.55 A labeled formula Aα is valid under ϕ, iff Iϕ(A) = α.

� Definition 2.56 A tableau T is satisfiable, iff there is a satisfiable branch P
in T , i.e. if the set of formulae in P is satisfiable.

� Lemma 2.57 Tableau rules transform satisfiable tableaux into satisfiable ones.

� Theorem 2.58 (Soundness) A set Φ of propositional formulae is valid, if
there is a closed tableau T for Φf .

� Proof: by contradiction: Suppose Φ is not valid.

P.1 then the initial tableau is satisfiable (Φf satisfiable)

P.2 so T is satisfiable, by Lemma 3.98.

P.3 there is a satisfiable branch (by definition)

P.4 but all branches are closed (T closed)

©:Michael Kohlhase 50

Thus we only have to prove Lemma 3.98, this is relatively easy to do. For instance for the first
rule: if we have a tableau that contains A∧Bt and is satisfiable, then it must have a satisfiable
branch. If A∧Bt is not on this branch, the tableau extension will not change satisfiability, so we
can assue that it is on the satisfiable branch and thus Iϕ(A∧B) = T for some variable assignment
ϕ. Thus Iϕ(A) = T and Iϕ(B) = T, so after the extension (which adds the formulae At and Bt

to the branch), the branch is still satisfiable. The cases for the other rules are similar.
The next result is a very important one, it shows that there is a procedure (the tableau procedure)
that will always terminate and answer the question whether a given propositional formula is valid
or not. This is very important, since other logics (like the often-studied first-order logic) does not
enjoy this property.

Termination for Tableaux

� Lemma 2.59 The tableau procedure terminates, i.e. after a finite set of rule
applications, it reaches a tableau, so that applying the tableau rules will only
add labeled formulae that are already present on the branch.

� Let us call a labeled formulae Aα worked off in a tableau T , if a tableau rule
has already been applied to it.

� Proof:

P.1 It is easy to see tahat applying rules to worked off formulae will only add
formulae that are already present in its branch.

P.2 Let µ(T ) be the number of connectives in a labeled formulae in T that
are not worked off.

P.3 Then each rule application to a labeled formula in T that is not worked
off reduces µ(T ) by at least one. (inspect the rules)

P.4 at some point the tableau only contains worked off formulae and literals.

32

http://creativecommons.org/licenses/by-sa/2.5/


P.5 since there are only finitely many literals in T , so we can only apply the
tableau cut rule a finite number of times.

©:Michael Kohlhase 51

The Tableau calculus basically computes the disjunctive normal form: every branch is a disjunct
that is a conjunct of literals. The method relies on the fact that a DNF is unsatisfiable, iff each
monomial is, i.e. iff each branch contains a contradiction in form of a pair of complementary
literals.
For proving completeness of tableaux we will use the abstract consistency method introduced by
Raymond Smullyan — a famous logician who also wrote many books on recreational mathematics
and logic (most notably one is titled “What is the name of this book?”) which you may like.

2.4.4 Abstract Consistency and Model Existence

We will now come to an important tool in the theoretical study of reasoning calculi: the “abstract
consistency”/“model existence” method. This method for analyzing calculi was developed by Jaako
Hintikka, Raymond Smullyann, and Peter Andrews in 1950-1970 as an encapsulation of similar
constructions that were used in completeness arguments in the decades before.19 EdN:19
The basic intuition for this method is the following: typically, a logical system S = 〈L,K, |=〉 has
multiple calculi, human-oriented ones like the natural deduction calculi and machine-oriented ones
like the automated theorem proving calculi. All of these need to be analyzed for completeness (as
a basic quality assurance measure).

A completeness proof for a calculus C for S typically comes in two parts: one analyzes C-
consistency (sets that cannot be refuted in C), and the other construct K-models for C-consistent
sets.

In this situtation the “abstract consistency”/“model existence” method encapsulates the model
construction process into a meta-theorem: the “model existence” theorem. This provides a set of
syntactic (“abstract consistency”) conditions for calculi that are sufficient to construct models.

With the model existence theorem it suffices to show that C-consistency is an abstract consis-
tency property (a purely syntactic task that can be done by a C-proof transformation argument)
to obtain a completeness result for C.

Model Existence (Overview)

� Definition: Abstract consistency

� Definition: Hintikka set (maximally abstract consistent)

� Theorem: Hintikka sets are satisfiable

� Theorem: If Φ is abstract consistent, then Φ can be extended to a Hintikka
set.

� Corollary: If Φ is abstract consistent, then Φ is satisfiable

� Application: Let C be a calculus, if Φ is C-consistent, then Φ is abstract
consistent.

� Corollary: C is complete.

19EdNote: cite the original papers!

33

http://creativecommons.org/licenses/by-sa/2.5/


©:Michael Kohlhase 52

The proof of the model existence theorem goes via the notion of a Hintikka set, a set of formulae
with very strong syntactic closure properties, which allow to read off models. Jaako Hintikka’s
original idea for completeness proofs was that for every complete calculus C and every C-consistent
set one can induce a Hintikka set, from which a model can be constructed. This can be considered
as a first model existence theorem. However, the process of obtaining a Hintikka set for a set
C-consistent set Φ of sentences usually involves complicated calculus-dependent constructions.

In this situation, Raymond Smullyann was able to formulate the sufficient conditions for the
existence of Hintikka sets in the form of “abstract consistency properties” by isolating the calculus-
independent parts of the Hintikka set construction. His technique allows to reformulate Hintikka
sets as maximal elements of abstract consistency classes and interpret the Hintikka set construction
as a maximizing limit process.
To carry out the “model-existence”/”abstract consistency” method, we will first have to look at the
notion of consistency.
Consistency and refutability are very important notions when studying the completeness for calculi;
they form syntactic counterparts of satisfiability.

Consistency

� Let C be a calculus

� Definition 2.60 Φ is called C-refutable, if there is a formula B, such that
Φ `C B and Φ `C ¬B.

� Definition 2.61 We call a pair A and ¬A a contradiction.

� So a set Φ is C-refutable, if C can derive a contradiction from it.

� Definition 2.62 Φ is called C-consistent, iff there is a formula B, that is not
derivable from Φ in C.

� Definition 2.63 We call a calculus C reasonable, iff implication elimination
and conjunction introduction are admissible in C and A∧¬A⇒B is a C-
theorem.

� Theorem 2.64 C-inconsistency and C-refutability coincide for reasonable cal-
culi

©:Michael Kohlhase 53

It is very important to distinguish the syntactic C-refutability and C-consistency from satisfiability,
which is a property of formulae that is at the heart of semantics. Note that the former specify
the calculus (a syntactic device) while the latter does not. In fact we should actually say S-
satisfiability, where S = 〈L,K, |=〉 is the current logical system.

Even the word “contradiction” has a syntactical flavor to it, it translates to “saying against
each other” from its latin root.

Abstract Consistency

� Definition 2.65 Let ∇ be a family of sets. We call ∇ closed under subset s,
iff for each Φ ∈ ∇, all subsets Ψ⊆Φ are elements of ∇.

� Notation 2.66 We will use Φ ∗A for Φ∪{A}.

34

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� Definition 2.67 A family ∇ of sets of propositional formulae is called an
abstract consistency class, iff it is closed under subsets, and for each Φ ∈ ∇

∇c) P 6∈ Φ or ¬P 6∈ Φ for P ∈ Vo
∇¬) ¬¬A ∈ Φ implies Φ ∗A ∈ ∇
∇∨) (A∨B) ∈ Φ implies Φ ∗A ∈ ∇ or Φ ∗B ∈ ∇
∇∧) ¬ (A∨B) ∈ Φ implies (Φ∪{¬A,¬B}) ∈ ∇

� Example 2.68 The empty set is an abstract consistency class

� Example 2.69 The set {∅, {Q}, {P ∨Q}, {P ∨Q,Q}} is an abstract consis-
tency class

� Example 2.70 The family of satisfiable sets is an abstract consistency class.

©:Michael Kohlhase 54

So a family of sets (we call it a family, so that we do not have to say “set of sets” and we can
distinguish the levels) is an abstract consistency class, iff if fulfills five simple conditions, of which
the last three are closure conditions.

Think of an abstract consistency class as a family of “consistent” sets (e.g. C-consistent for some
calculus C), then the properties make perfect sense: They are naturally closed under subsets — if
we cannot derive a contradiction from a large set, we certainly cannot from a subset, furthermore,

∇c) If both P ∈ Φ and ¬P ∈ Φ, then Φ cannot be “consistent”.

∇¬) If we cannot derive a contradiction from Φ with ¬¬A ∈ Φ then we cannot from Φ ∗A, since
they are logically equivalent.

The other two conditions are motivated similarly.

Compact Collections

� Definition 2.71 We call a collection ∇ of sets compact, iff for any set Φ we
have
Φ ∈ ∇, iff Ψ ∈ ∇ for every finite subset Ψ of Φ.

� Lemma 2.72 If ∇ is compact, then ∇ is closed under subsets.

� Proof:

P.1 Suppose S⊆T and T ∈ ∇.
P.2 Every finite subset A of S is a finite subset of T .

P.3 As ∇ is compact, we know that A ∈ ∇.
P.4 Thus S ∈ ∇.

©:Michael Kohlhase 55

The property of being closed under subsets is a “downwards-oriented” property: We go from large
sets to small sets, compactness (the interesting direction anyways) is also an “upwards-oriented”
property. We can go from small (finite) sets to large (infinite) sets. The main application for the
compactness condition will be to show that infinite sets of formulae are in a family ∇ by testing
all their finite subsets (which is much simpler).

35

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


We will carry out the proof here, since it gives us practice in dealing with the abstract consistency
properties.
We now come to a very technical condition that will allow us to carry out a limit construction in
the Hintikka set extension argument later.

Compact Collections

� Definition 2.73 We call a collection ∇ of sets compact, iff for any set Φ we
have
Φ ∈ ∇, iff Ψ ∈ ∇ for every finite subset Ψ of Φ.

� Lemma 2.74 If ∇ is compact, then ∇ is closed under subsets.

� Proof:

P.1 Suppose S⊆T and T ∈ ∇.
P.2 Every finite subset A of S is a finite subset of T .

P.3 As ∇ is compact, we know that A ∈ ∇.
P.4 Thus S ∈ ∇.

©:Michael Kohlhase 56

The property of being closed under subsets is a “downwards-oriented” property: We go from large
sets to small sets, compactness (the interesting direction anyways) is also an “upwards-oriented”
property. We can go from small (finite) sets to large (infinite) sets. The main application for the
compactness condition will be to show that infinite sets of formulae are in a family ∇ by testing
all their finite subsets (which is much simpler).
The main result here is that abstract consistency classes can be extended to compact ones. The
proof is quite tedious, but relatively straightforward. It allows us to assume that all abstract consis-
tency classes are compact in the first place (otherwise we pass to the compact extension).

Compact Abstract Consistency Classes

� Lemma 2.75 Any abstract consistency class can be extended to a compact
one.

� Proof:

P.1 We choose ∇′ := {Φ⊆wff o(Vo) | every finite subset of Φ is in ∇}.
P.2 Now suppose that Φ ∈ ∇. ∇ is closed under subsets, so every finite subset

of Φ is in ∇ and thus Φ ∈ ∇′. Hence ∇⊆∇′.
P.3 Next let us show that each ∇′ is compact.

P.3.1 Suppose Φ ∈ ∇′ and Ψ is an arbitrary finite subset of Φ.

P.3.2 By definition of ∇′ all finite subsets of Φ are in ∇ and therefore Ψ ∈ ∇′.
P.3.3 Thus all finite subsets of Φ are in ∇′ whenever Φ is in ∇′.
P.3.4 On the other hand, suppose all finite subsets of Φ are in ∇′.
P.3.5 Then by the definition of ∇′ the finite subsets of Φ are also in ∇, so

Φ ∈ ∇′. Thus ∇′ is compact.

P.4 Note that ∇′ is closed under subsets by the Lemma above.

36

http://creativecommons.org/licenses/by-sa/2.5/


P.5 Now we show that if ∇ satisfies ∇∗, then ∇′ satisfies ∇∗.
P.5.1 To show ∇c, let Φ ∈ ∇′ and suppose there is an atom A, such that

{A,¬A}⊆Φ. Then {A,¬A} ∈ ∇ contradicting ∇c.
P.5.2 To show ∇¬, let Φ ∈ ∇′ and ¬¬A ∈ Φ, then Φ ∗A ∈ ∇′.
P.5.2.1 Let Ψ be any finite subset of Φ ∗A, and Θ := (Ψ\{A}) ∗¬¬A.

P.5.2.2 Θ is a finite subset of Φ, so Θ ∈ ∇.
P.5.2.3 Since ∇ is an abstract consistency class and ¬¬A ∈ Θ, we get

Θ ∗A ∈ ∇ by ∇¬.
P.5.2.4 We know that Ψ⊆Θ ∗A and ∇ is closed under subsets, so Ψ ∈ ∇.
P.5.2.5 Thus every finite subset Ψ of Φ ∗A is in ∇ and therefore by definition

Φ ∗A ∈ ∇′.
P.5.3 the other cases are analogous to ∇¬.

©:Michael Kohlhase 57

Hintikka sets are sets of sentences with very strong analytic closure conditions. These are motivated
as maximally consistent sets i.e. sets that already contain everything that can be consistently
added to them.

∇-Hintikka Set

� Definition 2.76 Let ∇ be an abstract consistency class, then we call a set
H ∈ ∇ a ∇-Hintikka Set, iff H is maximal in ∇, i.e. for all A with H∗A ∈ ∇
we already have A ∈ H.

� Theorem 2.77 (Hintikka Properties) Let ∇ be an abstract consistency
class and H be a ∇-Hintikka set, then

Hc) For all A ∈ wff o(Vo) we have A 6∈ H or ¬A 6∈ H
H¬) If ¬¬A ∈ H then A ∈ H
H∨) If (A∨B) ∈ H then A ∈ H or B ∈ H
H∧) If ¬ (A∨B) ∈ H then ¬A,¬B ∈ H

Proof:

� P.1 We prove the properties in turn

P.1.1 Hc: by induction on the structure of A

P.1.1.1.1 A ∈ Vo: Then A 6∈ H or ¬A 6∈ H by ∇c.
P.1.1.1.2 A = ¬B:

P.1.1.1.2.1 Let us assume that ¬B ∈ H and ¬¬B ∈ H,
P.1.1.1.2.2 then H∗B ∈ ∇ by ∇¬, and therefore B ∈ H by maximality.

P.1.1.1.2.3 So both B and ¬B are in H, which contradicts the inductive
hypothesis.

P.1.1.1.3 A = B∨C: similar to the previous case:

P.1.2 We prove H¬ by maximality of H in ∇.:

37

http://creativecommons.org/licenses/by-sa/2.5/


P.1.2.1 If ¬¬A ∈ H, then H∗A ∈ ∇ by ∇¬.
P.1.2.2 The maximality of H now gives us that A ∈ H.

P.1.3 other H∗ are similar:

©:Michael Kohlhase 58

The following theorem is one of the main results in the “abstract consistency”/”model existence”
method. For any abstract consistent set Φ it allows us to construct a Hintikka set H with Φ ∈ H.

Extension Theorem

� Theorem 2.78 If ∇ is an abstract consistency class and Φ ∈ ∇, then there
is a ∇-Hintikka set H with Φ⊆H.

� Proof:

P.1 Wlog. we assume that ∇ is compact (otherwise pass to compact
extension)

P.2 We choose an enumeration A1,A2, . . . of the set wff o(Vo)
P.3 and construct a sequence of sets Hi with H0 := Φ and

Hn+1 :=

{
Hn if Hn ∗An 6∈ ∇

Hn ∗An if Hn ∗An ∈ ∇

P.4 Note that all Hi ∈ ∇, choose H :=
⋃
i∈NH

i

P.5 Ψ⊆H finite implies there is a j ∈ N such that Ψ⊆Hj ,

P.6 so Ψ ∈ ∇ as ∇ closed under subsets and H ∈ ∇ as ∇ is compact.

P.7 Let H∗B ∈ ∇, then there is a j ∈ N with B = Aj , so that B ∈ Hj+1

and Hj+1⊆H
P.8 Thus H is ∇-maximal

©:Michael Kohlhase 59

Note that the construction in the proof above is non-trivial in two respects. First, the limit
construction for H is not executed in our original abstract consistency class ∇, but in a suitably
extended one to make it compact — the original would not have contained H in general. Second,
the set H is not unique for Φ, but depends on the choice of the enumeration of wff o(Vo). If
we pick a different enumeration, we will end up with a different H. Say if A and ¬A are both
∇-consistent20 with Φ, then depending on which one is first in the enumeration H, will contain EdN:20
that one; with all the consequences for subsequent choices in the construction process.

Valuation

� Definition 2.79 A function ν : wff o(Vo)→ Do is called a valuation, iff

� ν(¬A) = T, iff ν(A) = F

� ν(A∨B) = T, iff ν(A) = T or ν(B) = T

20EdNote: introduce this above

38

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� Lemma 2.80 If ν : wff o(Vo) → Do is a valuation and Φ⊆wff o(Vo) with
ν(Φ) = {T}, then Φ is satisfiable.

� Proof Sketch: ν|Vo : Vo → Do is a satisfying variable assignment.

� Lemma 2.81 If ϕ : Vo → Do is a variable assignment, then Iϕ : wff o(Vo)→
Do is a valuation.

©:Michael Kohlhase 60

Now, we only have to put the pieces together to obtain the model existence theorem we are
after.

Model Existence

� Lemma 2.82 (Hintikka-Lemma) If∇ is an abstract consistency class and
H a ∇-Hintikka set, then H is satisfiable.

� Proof:

P.1 We define ν(A) := T, iff A ∈ H
P.2 then ν is a valuation by the Hintikka properties

P.3 and thus ν|Vo is a satisfying assignment.

� Theorem 2.83 (Model Existence) If ∇ is an abstract consistency class
and Φ ∈ ∇, then Φ is satisfiable.

Proof:

� P.1 There is a ∇-Hintikka set H with Φ⊆H (Extension Theorem)

We know that H is satisfiable. (Hintikka-Lemma)

In particular, Φ⊆H is satisfiable.

©:Michael Kohlhase 61

2.4.5 A Completeness Proof for Propositional Tableaux

With the model existence proof we have introduced in the last section, the completeness proof for
first-order natural deduction is rather simple, we only have to check that Tableaux-consistency is
an abstract consistency property.
We encapsulate all of the technical difficulties of the problem in a technical Lemma. From that,
the completeness proof is just an application of the high-level theorems we have just proven.

P.2 P.3 Abstract Completeness for T0

� Lemma 2.84 {Φ |ΦT has no closed Tableau} is an abstract consistency class.

� Proof: Let’s call the set above ∇

P.1 We have to convince ourselves of the abstract consistency properties

P.1.1 ∇c: P,¬P ∈ Φ implies P f , P t ∈ ΦT.

P.1.2 ∇¬: Let ¬¬A ∈ Φ.

39

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


P.1.2.1 For the proof of the contrapositive we assume that Φ ∗A has a closed
tableau T and show that already Φ has one:

P.1.2.2 applying T0¬ twice allows to extend any tableau with ¬¬Bα by Bα.

P.1.2.3 any path in T that is closed with ¬¬Aα, can be closed by Aα.

P.1.3 ∇∨: Suppose (A∨B) ∈ Φ and both Φ ∗A and Φ ∗B have closed
tableaux

P.1.3.1 consider the tableaux:

ΦT

At

Rest1

ΦT

Bt

Rest2

ΨT

A∨Bt

At

Rest1
Bt

Rest2

P.1.4 ∇∧: suppose, ¬ (A∨B) ∈ Φ and Φ{¬A,¬B} have closed tableau T .
P.1.4.1 We consider

ΦT

Af

Bf

Rest

ΨT

A∨Bf

Af

Bf

Rest

where Φ = Ψ ∗¬ (A∨B).

©:Michael Kohlhase 62

Observation: If we look at the completeness proof below, we see that the Lemma above is the only
place where we had to deal with specific properties of the tableau calculus.

So if we want to prove completeness of any other calculus with respect to propositional logic,
then we only need to prove an analogon to this lemma and can use the rest of the machinery we
have already established “off the shelf”.

This is one great advantage of the “abstract consistency method”; the other is that the method
can be extended transparently to other logics.

Completeness of T0

� Corollary 2.85 T0 is complete.

� Proof: by contradiction

P.1 We assume that A ∈ wff o(Vo) is valid, but there is no closed tableau for
AF.

P.2 We have {¬A} ∈ ∇ as ¬AT = AF.

P.3 so ¬A is satisfiable by the model existence theorem (which is applicable
as ∇ is an abstract consistency class by our Lemma above)

P.4 this contradicts our assumption that A is valid.

©:Michael Kohlhase 63

40

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


2.5 Tableaux and Model Generation
2.5.1 Tableau Branches and Herbrand Models

We have claimed above that the set of literals in open saturated tableau branches corresponds to
a models. To gain an intuition, we will study our example above,

Model Generation and Interpretation

� Example 2.86 (from above) In Example 2.49 we claimed that

H := {love(john,mary)F, love(mary,bill)T}

constitutes a model

love(mary,bill)∨ love(john,mary)t

love(john,mary)
f

love(mary,bill)
t

love(john,mary)
t

⊥

� Recap: A modelM is a pair 〈D, I〉, where D is a set of individuals, and I is
an interpretation function.

� Problem: Find D and I

©:Michael Kohlhase 64

So the first task is to find a domain D of interpretation. Our formula mentions Mary, John, and
Bill, which we assume to refer to distinct individuals so we need (at least) three individuals in the
domain; so let us take D := {A,B,C} and fix I(mary) = A, I(bill) = B, I(john) = C.

So the only task is to find a suitable interpretation for the predicate love that makes love(john,mary)
false and love(mary,bill) true. This is simple: we just take I(love) = {〈A,B〉}. Indeed we have

Iϕ(love(mary,bill)∨ love(john,mary)) = T

but Iϕ(love(john,mary)) = F according to the rules in21. EdN:21

Model Generation and Models

� Idea: Choose the Universe D as the set Σf0 of constants, choose I = IdΣf0
,

interpret p ∈ Σpk via I(p) := {〈a1, . . . , ak〉 | p(a1, . . . , ak) ∈ H}.

� Definition 2.87 We call a model a Herbrand model, iff D = Σf0 and I =
IdΣf0

.

� Lemma 2.88 Let H be a set of atomic formulae, then setting I(p) :=
{〈a1, . . . , ak〉 | p(a1, . . . , ak) ∈ H}. yields a Herbrand Model that satisfies H.

(proof trivial)

� Corollary 2.89 Let H be a consistent (i.e. ∇c holds) set of atomic formulae,
then there is a Herbrand Model that satisfies H. (take HT)

21EdNote: crossref

41

http://creativecommons.org/licenses/by-sa/2.5/


©:Michael Kohlhase 65

In particular, the literals of an open saturated tableau branch B are a Herbrand model H, as
we have convinced ourselves above. By inspection of the inference rules above, we can further
convince ourselves, that H satisfies all formulae on B. We must only check that if H satisfies the
succedents of the rule, then it satisfies the antecedent (which is immediate from the semantics of
the principal connectives).

In particular, H is a model for the root formula of the tableau, which is on B by construction.
So the tableau procedure is also a procedure that generates explicit (Herbrand) models for the root
literal of the tableau. Every branch of the tableau corresponds to a (possibly) different Herbrand
model. We will use this observation in the next section in an application to natural language
semantics.

2.5.2 Using Model Generation for Interpretation

We will now use model generation directly as a tool for discourse interpretation.

Using Model Generation for Interpretation

� Idea: communication by natural language is a process of transporting parts of
the mental model of the speaker into the the mental model of the hearer

� therefore: the interpretation process on the part of the hearer is a process of
integrating the meaning of the utterances of the speaker into his mental model.

� model discourse understanding as a process of generating Herbrand models for
the logical form of an utterance in a discourse by our tableau procedure.

� Advantage: capture ambiguity by generating multiple models for input logical
forms.

©:Michael Kohlhase 66

Tableaux Machine

� takes the logical forms (with salience expressions) as input,

� adds them to all/selected open branches,

� performs tableau inferences until some resource criterion is met

� output is application dependent; some choices are

� the preferred model given as all the (positive) literals of the preferred branch;

� the literals augmented with all non-expanded formulae
(from the discourse); (resource-bound was reached)

� machine answers user queries (preferred model |= query?)

� model generation mode (guided by resources and strategies)

� theorem proving mode (2 for side conditions; using tableau rules)

42

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


©:Michael Kohlhase 67

Model Generation Mode

� each proof rule comes with rule costs.

� Ultimately we want bounded optimization regime [Russell’91]:
expansion as long as expected gain in model quality outweighs proof costs

� Here: each sentence in the discourse has a fixed inference budget
Expansion until budget used up.

Effect: Expensive rules are rarely applied.

�� Warning: Finding appropriate values for the rule costs is a major open problem
of our approach.

©:Michael Kohlhase 68

Concretely, we treat discourse understanding as an online process that receives as input the logical
forms of the sentences of the discourse one by one, and maintains a tableau that represents the
current set of alternative models for the discourse. Since we are interested in the internal state of
the machine (the current tableau), we do not specify the output of the tableau machine. We also
assume that the tableau machine has a mechanism for choosing a preferred model from a set of
open branches and that it maintains a set of deferred branches that can be re-visited, if extension
of the the preferred model fails.
Upon input, the tableau machine will append the given logical form as a leaf to the preferred
branch. (We will mark input logical forms in our tableaux by enclosing them in a box.) The
machine then saturates the current tableau branch, exploring the set of possible models for the
sequence of input sentences. If the subtableau generated by this saturation process contains open
branches, then the machine chooses one of them as the preferred model, marks some of the other
open branches as deferred, and waits for further input. If the saturation yields a closed sub-tableau,
then the machine backtracks, i.e. selects a new preferred branch from the deferred ones, appends
the input logical form to it, saturates, and tries to choose a preferred branch. Backtracking
is repeated until successful, or until some termination criterion is met, in which case discourse
processing fails altogether.

Two Readings

� Example 2.90 Peter loves Mary and Mary sleeps or Peter snores (syntac-
tically ambigous)

Reading 1 love(peter,mary)∧ (sleep(mary)∨ snore(peter))

Reading 2 love(peter,mary)∧ sleep(mary)∨ snore(peter)

� Let us first consider the first reading in Example 2.90. Let us furthermore
assume that we start out with the empty tableau, even though this is cognitively

43

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


implausible, since it simplifies the presentation.

love(peter,mary)∧ (sleep(mary)∨ snore(peter))

love(peter,mary)
t

sleep(mary)∨ snore(peter)t

sleep(mary)
t

snore(peter)
t

� Observation: We have two models, so we have a case of semantical ambiguity.

©:Michael Kohlhase 69

We see that model generation gives us two models; in both Peter loves Mary, in the first, Mary
sleeps, and in the second one Peter snores. If we get a logically different input, e.g. the second
reading in Example 2.90, then we obtain different models.

The other Reading

love(peter,mary)∧ sleep(mary)∨ snore(peter)

love(peter,mary)∧ sleep(mary)t

love(peter,mary)
t

sleep(mary)
t

snore(peter)
t

©:Michael Kohlhase 70

In a discourse understanding system, both readings have to considered in parallel, since they
pertain to a genuine ambiguity. The strength of our tableau-based procecdure is that it keeps the
different readings around, so they can be acted upon later.
Note furthermore, that the overall (syntactical and semantic ambiguity) is not as bad as it looks:
the left models of both readings are identical, so we only have three semantic readings not four.

Continuing the Discourse

� Example 2.91 Peter does not love Mary
then the second tableau would be extended to

love(peter,mary)∧ sleep(mary)∨ snore(peter)

love(peter,mary)∧ sleep(mary)t

love(peter,mary)
t

sleep(mary)
t

¬ love(peter,mary)

love(peter,mary)
f

⊥

snore(peter)
t

¬ love(peter,mary)

and the first tableau closes altogether.

� In effect the choice of models has been reduced to one, which consitutes the
intuitively correct reading of the discourse

©:Michael Kohlhase 71

44

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Model Generation models Discourse Understanding

� Conforms with psycholinguistic findings:

� [Zwaan’98]: listeners not only represent logical form, but also models contain-
ing referents

� [deVega’95]: online, incremental process

� [Singer’94]: enriched by background knowledge

� [Glenberg’87]: major function is to provide basis for anaphor resolution

©:Michael Kohlhase 72

2.5.3 Adding Equality to F1

We will now extend PLNQ by equality, which is a very important relation in natural language.
Generally, extending a logic with a new logical constant – equality is counted as a logical constant,
since it semantics is fixed in all models – involves extending all three components of the logical
system: the language, semantics, and the calculus.

PL=
NQ: Adding Equality to PLNQ

� Syntax: Just another binary predicate constant =

� Semantics: fixed as Iϕ(a = b) = T, iff Iϕ(a) = Iϕ(b). (logical symbol)

� Definition 2.92 (Tableau Calculus T =
NQ) add two additional inference

rules (a positive and a negative) to T0

a ∈ H
a = aT

T =
NQsym

a = bT

A [a]
α
p

[b/p]Aα
T =
NQrep

where

� H =̂ the Herbrand Base, i.e. the set of constants occurring on the branch

� we write C [A]p to indicate that C|p = A (C has subterm A at position
p).

� [A/p]C is obtained from C by replacing the subterm at position p with A.

©:Michael Kohlhase 73

If we simplify the translation of definite descriptions, so that the phrase the teacher is translates
to a concrete individual constant, then we can interpret (??) as (??).

Example:Mary is the teacher. Peter likes the teacher.

� Interpret as logical forms: mary = the_teacher and like(peter, the_teacher)
and feed to tableau machine in turn.

45

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� Model generation tableau

mary = the_teacherT

like(peter, the_teacher)T

like(peter,mary)F

� test whether this entails that Peter likes Mary

mary = the_teacherT

like(peter, the_teacher)T

like(peter,mary)F

like(peter, the_teacher)F

⊥

©:Michael Kohlhase 74

Fragment 1

� Fragment F1 of English (defined by grammar + lexicon)

� Logic PLNQ (serves as a mathematical model for F1)

� Formal Language (individuals, predicates, ¬,∧,∨,⇒)

� Semantics Iϕ defined recursively on formula structure
(; validity, entailment)

� Tableau calculus for validity and entailment (Calculemus!)

� Analysis function F1 ; PLNQ (Translation)

� Test the Model by checking predictions (calculate truth conditions)

� Coverage: Extremely Boring!(accounts for 0 examples from the intro) but the
conceptual setup is fascinating

©:Michael Kohlhase 75

3 Adding Context: Pronouns and World Knowledge

In this Section we will extend the model generation system by facilities for dealing with world
knowledge and pronouns. We want to cover discourses like Peter loves Fido. Even though he bites
him sometimes. The idea here is to take the ideas from section 22 seriously and integrate them EdN:22
into the model generation system. As we already observed there, we crucially need a notion of
context which determines the meaning of the pronoun. Furthermore, the example shows us that
we will need to take into account world knowledge as A way to integrate world knowledge to filter
out one interpretation, i.e. Humans don’t bite dogs.
In Subsection 3.0 we define the syntax and semantics of a new natural language fragment F2 which
extends F1 by pronouns, which are translated to free variables in a suitlable extension of PLNQ

22EdNote: crossref fol.8

46

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


and its inference procedures. But this naive approach does not allow us to model enough world
knowledge to do anything bigger. So we forge ahead and introduce first-order logic (Subsection 3.1)
and its inference procedures (Subsection 3.2 and Subsection 3.4). This allows us to

3.1 First Attempt: Adding Pronouns and World Knowledge as Vari-
ables

3.1.1 Fragment 2: Pronouns and Anaphora

Fragment 2 (F2 = F1 + Pronouns)

� Want to cover: Peter loves Fido. He bites him. (almost intro)

� We need: Translation and interpretation for he, she, him,. . . .

� Also: A way to integrate world knowledge to filter out one interpretation
(i.e. Humans don’t bite dogs.)

� Idea: Integrate variables into PLNQ (work backwards from that)

� Logical System: PLVNQ = PLNQ +variables (Translate pronouns to variables)

©:Michael Kohlhase 76

New Grammar in Fragment 2 (Pronouns)

� Definition 3.1 We have the following structural grammar rules in fragment
2.

S1. S → NPV i

S2. S → NPV t NP
N1. NP → Npr
N2. NP → Pron
N3. NP → theN
S3. S → Itisnotthecasethat S
S4. S → S conj S
S5. S → NP is NP
S6. S → NP is Adj.

and one additional lexical rule:

L7. Pron → {he, she, it, we, they}

©:Michael Kohlhase 77

Translation for F2 (first attempt)

� Idea: Pronouns are translated into new variables (so far)

� The syntax/semantic trees for Peter loves Fido and he bites him. are straightforward.
(almost intro)

47

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Peter loves Fido and he bites him

Npr V t N conj Pron V t Pron

NP NP NP NP

S S

S

Peter loves Fido and he bites him

Peter′ loves′ Fido′ ∧ X bites′ Y

Peter′ Fido′ X Y

loves′(Peter′, F ido′) bites′(X,Y )

loves′(Peter′, F ido′)∧ bites′(X,Y )

©:Michael Kohlhase 78

Predicate Logic with Variables (but no quantifiers)

� Logical System PLVNQ: PLVNQ := PLNQ +variables

� Definition 3.2 (PLV
NQ Syntax) category V = {X,Y, Z,X1, X2, . . .} of

variables (allow variables wherever individual constants were allowed)

� Definition 3.3 (PLV
NQ Semantics) ModelM = 〈D, I〉 (need to evaluate

variables)

� variable assignment: ϕ : Vι → D
� evaluation function Iϕ(X) = ϕ(X) (defined like I elsewhere)

� call A ∈ wff o(Σ,VT ) valid inM under ϕ, iff Iϕ(A) = T,

� call A ∈ wff o(Σ,VT ) satisfiable inM, iff there is a variable assignment ϕ,
such that Iϕ(A) = T

©:Michael Kohlhase 79

3.1.2 A Tableau Calculus for PLNQ with Free Variables

The main idea here is to extend the fragment of first-order logic we use as a model for natural
language to include free variables, and assume that pronouns like he, she, it, and they are translated
to distinct free variables. Note that we do not allow quantifiers yet – that will come in 23, EdN:23
as quantifiers will pose new problems, and we can already solve some linguistically interesting
problems without them.
To allow for world knowledge, we generalize the notion of an initial tableau 24. Instead of allowing EdN:24
only the initial signed formula at the root node, we allow a linear tree whose nodes are labeled
with signed formulae representing the world knowledge. As the world knowledge resides in the
initial tableau (intuitively before all input), we will also speak of background knowledge.
We will use free variables for two purposes in our new fragment. Free variables in the input will
stand for pronouns, their value will be determined by random instantiation. Free variables in the

23EdNote: crossref
24EdNote: crossref

48

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


world knowledge allow us to express schematic knowledge. For instance, if we want to express
Humans don’t bite dogs., then we can do this by the formula human(X)∧dog(Y )⇒¬bite(X,Y ).
Of course we will have to extend our tableau calculus with new inference rules for the new language
capabilities.

A Tableau Calculus for PLVNQ

� Definition 3.4 (Tableau Calculus for PLV
NQ) T

p
V = T0 + new tableau

rules for formulae with variables

...
Aα

...

c ∈ H

[c/X](A)
α T pV :WK

...
Aα

H = {a1, . . . , an}
free(A) = {X1, . . . , Xm}

σ1(A)
α
∣∣∣ . . . ∣∣∣ σmn(A)

α
T pV :Ana

H is the set of ind. constants in the branch above (Herbrand Base)

and the σi are substitutions that instantiate the Xj with any combinations of
the ak (there are mn of them).

� the first rule is used for world knowledge (up in the branch)

� the second rule is used for input sentences · · ·
this rule has to be applied eagerly (while they are still at the leaf)

©:Michael Kohlhase 80

Let us look at two examples.
To understand the role of background knowledge we interpret Peter snores with respect to the
knowledge that Only sleeping people snore.

Some Examples in F2

� Example 3.5 (Peter snores) (Only sleeping people snore)

snore(X)⇒ sleep(X)T

snore(peter)T

snore(peter)⇒ sleep(peter)T

sleep(peter)T

� Example 3.6 (Peter sleeps. John walks. He snores) (who snores?)

sleep(peter)T

walk(john)T

snore(X)T

snore(peter)T snore(john)T

49

http://creativecommons.org/licenses/by-sa/2.5/


©:Michael Kohlhase 81

The background knowledge is represented in the schematic formula in the first line of the tableau.
Upon receiving the input, the tableau instantiates the schema to line three and uses the chaining
rule from 25 to derive the fact that peter must sleep. EdN:25
The third input formula contains a free variable, which is instantiated by all constants in the
Herbrand base (two in our case). This gives rise to two models that correspond to the two
readings of the discourse.
Let us now look at an example with more realistic background knowledge.
Say we know that birds fly, if they are not penguins. Furthermore, eagles and penguins are birds,
but eagles are not penguins. Then we can answer the classic question Does Tweety fly? by the
following two tableaux.

Does Tweety fly?

Tweety is a bird Tweety is an eagle

bird(X)⇒ fly(X)∨ penguin(X)T

eagle(X)⇒ bird(X)T

eagle(X)⇒¬(penguin(X))T

penguin(X)⇒¬(fly(X))T

bird(tweety)T

fly(tweety)∨ penguin(tweety)T

fly(tweety)T penguin(tweety)T

¬(fly(tweety))T

fly(tweety)F

bird(X)⇒fly(X)∨penguin(X)T

eagle(X)⇒bird(X)T

eagle(X)⇒¬(penguin(X))T

penguin(X)⇒¬(fly(X))T

eagle(tweety)T

fly(tweety)∨ penguin(tweety)T

fly(tweety)T penguin(tweety)T

¬(eagle(tweety))T

eagle(tweety)F

⊥

©:Michael Kohlhase 82

3.1.3 Case Study: Peter loves Fido, even though he sometimes bites him

Let us now return to the motivating example from the introduction, and see how our system fares
with it (this allows us to test our computational/linguistic theory). We will do this in a completely
naive manner and see what comes out.
The first problem we run into immediately is that we do not know how to cope with even though
and sometimes, so we simplify the discourse to Peter loves Fido and he bites him..

Finally: Peter loves Fido. He bites him.

� Let’s try it naively (worry about the problems later.)

l(p, f)T

b(X,Y )T

b(p, p)T b(p, f)T b(f, p)T b(f, f)T

� Problem: We get four readings instead of one!

� Idea: We have not specified enough world knowledge

25EdNote: crossref

50

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


©:Michael Kohlhase 83

The next problem is obvious: We get four readings instead of one (or two)! What has happened?
If we look at the models, we see that we did not even specify the background knowledge that was
supposed filter out the one intended reading.
We try again with the additional knowledge that Nobody bites himself and Humans do not bite
dogs.

Peter and Fido with World Knowledge

� Nobody bites himself, humans do not bite dogs.

dog(f)T

man(p)T

b(X,X)F

dog(X)∧man(Y )⇒¬(b(Y,X))T

l(p, f)T

b(X,Y )T

b(p, p)T

b(p, p)F

⊥

b(p, f)T

dog(f)∧man(p)⇒¬(b(p, f))T

b(p, f)F

⊥

b(f, p)T b(f, f)T

b(f, f)F

⊥

� Observation: Pronoun resolution introduces ambiguities.

� Pragmatics: Use world knowledge to filter out impossible readings.

©:Michael Kohlhase 84

We observe that our extended tableau calculus was indeed able to handle this example, if we only
give it enough background knowledge to act upon.
But the world knowledge we can express in PL=

NQ is very limited. We can say that humans do not
bite dogs, but we cannot provide the background knowledge to understand a sentence like Peter
was late for class today, the car had a flat tire., which needs the

3.1.4 The computational Role of Ambiguities

In the case study, we have seen that pronoun resolution introduces ambiguities, and we can use
world knowledge to filter out impossible readings. Generally in the traditional waterfall model of
language processing, 3 every processing stage introduces ambiguities that need to be resolved in
this stage or later.

The computational Role of Ambiguities

� Observation: (in the traditional waterfall model) Every processing stage
introduces ambiguities that need to be resolved.

� Syntax: e.g. Peter chased the man in the red sports car (attachment)

� Semantics: e.g. Peter went to the bank (lexical)

3which posits that NL understanding is a process that analyzes the input in stages: syntax, semantics composi-
tion, pragmatics

51

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� Pragmatics: e.g. Two men carried two bags (collective vs. distributive)

� Question: Where does pronoun-ambiguity belong? (much less clear)

� Answer: we have freedom to choose

1) resolve the pronouns in the syntax (generic waterfall model)

; multiple syntactic representations (pragmatics as filter)

2) resolve the pronouns in the pragmatics (our model here)

; need underspecified syntactic representations (e.g. variables)
; pragmatics needs ambiguity treatment (e.g. tableaux)

©:Michael Kohlhase 85

For pronoun ambiguities, this is much less clear. In a way we have the freedom to choose. We can

1) resolve the pronouns in the syntax as in the generic waterfall model, then we arrive at
multiple syntactic representations, and can use pragmatics as filter to get rid of unwanted
readings

2) resolve the pronouns in the pragmatics (our model here) then we need underspecified syntac-
tic representations (e.g. variables) and pragmatics needs ambiguity treatment (in our case
the tableaux).

We will continue to explore the second alternative in more detail, and refine the approach. One
of the advantages of treating the anaphoric ambiguities in the syntax is that syntactic agreement
information like gender can be used to disambiguate. Say that we vary the example from section ??
to Peter loves Mary. She loves him..

Translation for F2

� Idea: Pronouns are translated into new variables (so far)

� Problem: Peter loves Mary. She loves him.

love(peter,mary)T

love(X,Y )T

love(peter,peter)T love(peter,mary)T love(mary,peter)T love(mary,mary)T

� Idea: attach world knowledge to pronouns (just as with Peter and Fido)

� use the world knowledge to distinguish gender by predicates masc and fem

� Idea: attach world knowledge to pronouns (just as with Peter and Fido)

� Problem: properties of

� proper names are given in the model,

� pronouns must be given by the syntax/semantics interface

52

http://creativecommons.org/licenses/by-sa/2.5/


� How to generate love(X,Y )∧ (masc(X)∧ fem(Y )) compositionally?

©:Michael Kohlhase 86

The tableau (over)-generates the full set of pronoun readings. At first glance it seems that we can
fix this just like we did in section ?? by attaching world knowledge to pronouns, just as with Peter
and Fido. Then we could use the world knowledge to distinguish gender by predicates, say masc
and fem.

But if we look at the whole picture of building a system, we can see that this idea will not
work. The problem is that properties of proper names like Fido are given in the background
knowledge, whereas the relevant properties of pronouns must be given by the syntax/semantics
interface. Concretely, we would need to generate love(X,Y )∧ (masc(X)∧ fem(Y )) for She loves
him. How can we do such a thing compositionally?

Again we basically have two options, we can either design a clever syntax/semantics interface,
or we can follow the lead of Montague semantics26 and extend the logic, so that compositionality EdN:26
becomes simpler to achieve. We will explore the latter option in the next section.
The problem we stumbled across in the last section is how to associate certain properties (in this
case agreement information) with variables compositionally. Fortunately, there is a ready-made
logical theory for it. Sorted first-order logic. Actually there are various sorted first-order logics,
but we will only need the simplest one for our application at the moment.
Sorted first-order logic extends the language with a set S of sorts A,B,C, . . ., which are just special
symbols that are attached to all terms in the language.

Syntactically, all constants, and variables are assigned sorts, which are annotated in the lower
index, if they are not clear from the context. Semantically, the universe Dι is subdivided into
subsets DA⊆Dι, which denote the objects of sort A; furthermore, the interpretation function I
and variable assignment ϕ have to be well-sorted. Finally, on the calculus level, the only change
we have to make is to restrict instantiation to well-sorted substitutions:

Sorts refine World Categories

� Definition 3.7 (Sorted Logics) (in our case PL1
S)

assume a set of sorts S := {A,B,C, . . .} (everything well-sorted)

� Syntax: variables and constants are sorted XA, YB, Z
1
C! 1 . . ., aA, bA, . . .

� Semantics: subdivide the Universe Dι into subsets DA⊆Dι
Interpretation I and variable assignment ϕ have to be well-sorted I(aA), ϕ(XA) ∈
DA.

� Calculus: substitutions must be well-sorted [aA/XA] OK, [aA/XB] not.

� Observation: Sorts do not add expressivity in principle (just practically)

� Translate R(XA)∧¬(P (ZC)) to RA(X)∧RC(Z)⇒R(X)∧¬(P (Z)) in
world knowledge.

� Translate R(XA)∧¬(P (ZC)) to RA(X)∧RC(Z)∧R(X ∧Y )∧¬(P (Z))
in input.

� Meaning is preserved, but translation is compositional!

©:Michael Kohlhase 87

26EdNote: crossref

53

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


3.2 First-Order Logic

First-order logic is the most widely used formal system for modelling knowledge and inference
processes. It strikes a very good bargain in the trade-off between expressivity and conceptual
and computational complexity. To many people first-order logic is “the logic”, i.e. the only logic
worth considering, its applications range from the foundations of mathematics to natural language
semantics.

First-Order Predicate Logic (PL1)

� Coverage: We can talk about (All humans are mortal)

� individual things and denote them by variables or constants

� properties of individuals, (e.g. being human or mortal)

� relations of individuals, (e.g. sibling_of relationship)

� functions on individuals, (e.g. the father_of function)

We can also state the existence of an individual with a certain property, or the
universality of a property.

� But we cannot state assertions like

� There is a surjective function from the natural numbers into the reals.

� First-Order Predicate Logic has many good properties (complete calculi,
compactness, unitary, linear unification,. . . )

� But too weak for formalizing: (at least directly)

� natural numbers, torsion groups, calculus, . . .

� generalized quantifiers (most, at least three, some,. . . )

©:Michael Kohlhase 88

We will now introduce the syntax and semantics of first-order logic. This introduction differs
from what we commonly see in undergraduate textbooks on logic in the treatment of substitutions
in the presence of bound variables. These treatments are non-syntactic, in that they take the
renaming of bound variables (α-equivalence) as a basic concept and directly introduce capture-
avoiding substitutions based on this. But there is a conceptual and technical circularity in this
approach, since a careful definition of α-equivalence needs substitutions.

In this Subsection we follow Peter Andrews’ lead from [And02] and break the circularity by
introducing syntactic substitutions, show a substitution value lemma with a substitutability con-
dition, use that for a soundness proof of α-renaming, and only then introduce capture-avoiding
substitutions on this basis. This can be done for any logic with bound variables, we go through
the details for first-order logic here as an example.

3.2.1 First-Order Logic: Syntax and Semantics

The syntax and semantics of first-order logic is systematically organized in two distinct layers: one
for truth values (like in propositional logic) and one for individuals (the new, distinctive feature
of first-order logic).
The first step of defining a formal language is to specify the alphabet, here the first-order signatures
and their components.

54

http://creativecommons.org/licenses/by-sa/2.5/


PL1 Syntax (Signature and Variables)

� Definition 3.8 First-order logic (PL1), is a formal logical system extensively
used in mathematics, philosophy, linguistics, and computer science. It combines
propositional logic with the ability to quantify over individuals.

� PL1 talks about two kinds of objects: (so we have two kinds of symbols)

� truth values; sometimes annotated by type o (like in PL0)

� individuals; sometimes annotated by type ι(numbers, foxes, Pokémon,. . . )

� Definition 3.9 A first-order signature consists of (all disjoint; k ∈ N)

� connectives: Σo = {T , F ,¬,∨,∧,⇒,⇔, . . .} (functions on truth values)

� function constants: Σfk = {f, g, h, . . .} (functions on individuals)

� predicate constants: Σpk = {p, q, r, . . .} (relations among inds.)

� (Skolem constants: Σskk = {fk1 , fk2 , . . .}) (witness constructors; countably
∞)

� We take the signature Σ to be all of these together: Σ := Σo ∪Σf ∪Σp ∪Σsk,
where Σ∗ :=

⋃
k∈N Σ∗k.

� We assume a set of individual variables: Vι = {Xι, Yι, Z,X
1
ι, X

2} (countably
∞)

©:Michael Kohlhase 89

We make the deliberate, but non-standard design choice here to include Skolem constants into
the signature from the start. These are used in inference systems to give names to objects and
construct witnesses. Other than the fact that they are usually introduced by need, they work
exactly like regular constants, which makes the inclusion rather painless. As we can never predict
how many Skolem constants we are going to need, we give ourselves countably infinitely many for
every arity. Our supply of individual variables is countably infinite for the same reason.
The formulae of first-order logic is built up from the signature and variables as terms (to represent
individuals) and propositions (to represent propositions). The latter include the propositional
connectives, but also quantifiers.

PL1 Syntax (Formulae)

� Definition 3.10 terms: A ∈ wff ι(Σι) (denote individuals: type ι)

� Vι⊆wff ι(Σι),

� if f ∈ Σfk and Ai ∈ wff ι(Σι) for i≤k, then f(A1, . . . ,Ak) ∈ wff ι(Σι).

� Definition 3.11 propositions: A ∈ wff o(Σ) (denote truth values: type o)

� if p ∈ Σpk and Ai ∈ wff ι(Σι) for i≤k, then p(A1, . . . ,Ak) ∈ wff o(Σ),

� if A,B ∈ wff o(Σ), then T ,A∧B,¬A,∀X A ∈ wff o(Σ).

55

http://creativecommons.org/licenses/by-sa/2.5/


� Definition 3.12 We define the connectives F ,∨,⇒,⇔ via the abbreviations
A∨B := ¬ (¬A∧¬B),A⇒B := ¬A∨B, (A⇔B) := (A⇒B)∧ (B⇒A),
and F := ¬T . We will use them like the primary connectives ∧ and ¬

� Definition 3.13 We use ∃X A as an abbreviation for ¬ (∀X ¬A). (exis-
tential quantifier)

� Definition 3.14 Call formulae without connectives or quantifiers atomic else
complex.

©:Michael Kohlhase 90

Note: that we only need e.g. conjunction, negation, and universal quantification, all other logical
constants can be defined from them (as we will see when we have fixed their interpretations).
The introduction of quantifiers to first-order logic brings a new phenomenon: variables that are
under the scope of a quantifiers will behave very differently from the ones that are not. Therefore
we build up a vocabulary that distinguishes the two.

Free and Bound Variables

� Definition 3.15 We call an occurrence of a variable X bound in a formula
A, iff it occurs in a sub-formula ∀X B of A. We call a variable occurrence
free otherwise.

For a formula A, we will use BVar(A) (and free(A)) for the set of bound
(free) variables of A, i.e. variables that have a free/bound occurrence in A.

� Definition 3.16 We define the set free(A) of free variables of a formula A
inductively:

free(X) := {X}
free(f(A1, . . . ,An)) :=

⋃
1≤i≤n free(Ai)

free(p(A1, . . . ,An)) :=
⋃

1≤i≤n free(Ai)

free(¬A) := free(A)
free(A∧B) := free(A)∪ free(B)
free(∀X A) := free(A)\{X}

� Definition 3.17 We call a formula A closed or ground, iff free(A) = ∅. We
call a closed proposition a sentence, and denote the set of all ground terms
with cwff ι(Σι) and the set of sentences with cwff o(Σι).

©:Michael Kohlhase 91

We will be mainly interested in (sets of) sentences – i.e. closed propositions – as the representations
of meaningful statements about individuals. Indeed, we will see below that free variables do
not gives us expressivity, since they behave like constants and could be replaced by them in all
situations, except the recursive definition of quantified formulae. Indeed in all situations where
variables occur freely, they have the character of meta-variables, i.e. syntactic placeholders that
can be instantiated with terms when needed in an inference calculus.
The semantics of first-order logic is a Tarski-style set-theoretic semantics where the atomic syn-
tactic entities are interpreted by mapping them into a well-understood structure, a first-order
universe that is just an arbitrary set.

56

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Semantics of PL1 (Models)

� We fix the Universe Do = {T,F} of truth values.

� We assume an arbitrary universe Dι 6= ∅ of individuals (this choice is a
parameter to the semantics)

� Definition 3.18 An interpretation I assigns values to constants, e.g.

� I(¬) : Do → Do with T 7→ F, F 7→ T, and I(∧) = . . . (as in PL0)

� I : Σfk → F(Dιk;Dι) (interpret function symbols as arbitrary functions)

� I : Σpk → P(Dιk) (interpret predicates as arbitrary relations)

� Definition 3.19 A variable assignment ϕ : Vι → Dι maps variables into the
universe.

� A first-order ModelM = 〈Dι, I〉 consists of a universeDι and an interpretationI.

©:Michael Kohlhase 92

We do not have to make the universe of truth values part of the model, since it is always the same;
we determine the model by choosing a universe and an interpretation function.
Given a first-order model, we can define the evaluation function as a homomorphism over the
construction of formulae.

Semantics of PL1 (Evaluation)

� Given a model 〈D, I〉, the value function Iϕ is recursively defined:(two parts:
terms & propositions)

� Iϕ : wff ι(Σι)→ Dι assigns values to terms.

� Iϕ(X) := ϕ(X) and
� Iϕ(f(A1, . . . ,Ak)) := I(f)(Iϕ(A1), . . . , Iϕ(Ak))

� Iϕ : wff o(Σ)→ Do assigns values to formulae:

� Iϕ(T ) = I(T ) = T, Iϕ(¬A) = I(¬)(Iϕ(A)) Iϕ(A∧B) = I(∧)(Iϕ(A), Iϕ(B))

(just as in PL0)
� Iϕ(p(A1, . . . ,Ak)) := T, iff 〈Iϕ(A1), . . ., Iϕ(Ak)〉 ∈ I(p)

� Iϕ(∀X A) := T, iff Iϕ,[a/X](A) = T for all a ∈ Dι.

©:Michael Kohlhase 93

The only new (and interesting) case in this definition is the quantifier case, there we define the value
of a quantified formula by the value of its scope – but with an extended variable assignment. Note
that by passing to the scope A of ∀x A, the occurrences of the variable x in A that were bound
in ∀x A become free and are amenable to evaluation by the variable assignment ψ := ϕ, [a/X].
Note that as an extension of ϕ, the assignment ψ supplies exactly the right value for x in A.
This variability of the variable assignment in the definition value function justifies the somewhat
complex setup of first-order evaluation, where we have the (static) interpretation function for the
symbols from the signature and the (dynamic) variable assignment for the variables.
Note furthermore, that the value Iϕ(∃x A) of ∃x A, which we have defined to be ¬ (∀x ¬A) is
true, iff it is not the case that Iϕ(∀x ¬A) = Iψ(¬A) = F for all a ∈ Dι and ψ := ϕ, [a/X]. This

57

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


is the case, iff Iψ(A) = T for some a ∈ Dι. So our definition of the existential quantifier yields the
appropriate semantics.

3.2.2 First-Order Substitutions

We will now turn our attention to substitutions, special formula-to-formula mappings that oper-
ationalize the intuition that (individual) variables stand for arbitrary terms.

Substitutions on Terms

� Intuition: If B is a term and X is a variable, then we denote the result of
systematically replacing all occurrences of X in a term A by B with [B/X](A).

� Problem: What about [Z/Y ], [Y/X](X), is that Y or Z?

� Folklore: [Z/Y ], [Y/X](X) = Y , but [Z/Y ]([Y/X](X)) = Z of course.
(Parallel application)

� Definition 3.20 We call σ : wff ι(Σι)→ wff ι(Σι) a substitution, iff σ(f(A1, . . . ,An)) =
f(σ(A1), . . . , σ(An)) and the support supp(σ) := {X |σ(X) 6= X} of σ is
finite.

� Observation 3.21 Note that a substitution σ is determined by its values on
variables alone, thus we can write σ as σ|Vι = {[σ(X)/X] |X ∈ supp(σ)}.

� Notation 3.22 We denote the substitution σ with supp(σ) = {xi | 1≤i≤n}
and σ(xi) = Ai by [A1/x

1], . . ., [An/x
n].

� Example 3.23 [a/x], [f(b)/y], [a/z] instantiates g(x, y, h(z)) to g(a, f(b), h(a)).

� Definition 3.24 We call intro(σ) :=
⋃
X∈supp(σ) free(σ(X)) the set of vari-

ables introduced by σ.

©:Michael Kohlhase 94

The extension of a substitution is an important operation, which you will run into from time
to time. Given a substitution σ, a variable x, and an expression A, σ, [A/x] extends σ with a
new value for x. The intuition is that the values right of the comma overwrite the pairs in the
substitution on the left, which already has a value for x, even though the representation of σ may
not show it.

Substitution Extension

� Notation 3.25 (Substitution Extension) Let σ be a substitution, then
we denote with σ, [A/X] the function {(Y,A) ∈ σ |Y 6= X}∪ {(X,A)}.

(σ, [A/X] coincides with σ of X, and gives the result A there.)

� Note: If σ is a substitution, then σ, [A/X] is also a substitution.

� Definition 3.26 If σ is a substitution, then we call σ, [A/X] the extension
of σ by [A/X].

� We also need the dual operation: removing a variable from the support

58

http://creativecommons.org/licenses/by-sa/2.5/


� Definition 3.27 We can discharge a variable X from a substitution σ by
σ−X := σ, [X/X].

©:Michael Kohlhase 95

Note that the use of the comma notation for substitutions defined in Notation 3.22 is consis-
tent with substitution extension. We can view a substitution [a/x], [f(b)/y] as the extension of
the empty substitution (the identity function on variables) by [f(b)/y] and then by [a/x]. Note
furthermore, that substitution extension is not commutative in general.
For first-order substitutions we need to extend the substitutions defined on terms to act on propo-
sitions. This is technically more involved, since we have to take care of bound variables.

Substitutions on Propositions

� Problem: We want to extend substitutions to propositions, in particular to
quantified formulae: What is σ(∀X A)?

� Idea: σ should not instantiate bound variables. ([A/X](∀X B) = ∀A B′

ill-formed)

� Definition 3.28 σ(∀X A) := (∀X σ−X(A)).

� Problem: This can lead to variable capture: [f(X)/Y ](∀X p(X,Y )) would
evaluate to ∀X p(X, f(X)), where the second occurrence of X is bound after
instantiation, whereas it was free before.

� Definition 3.29 Let B ∈ wff ι(Σι) and A ∈ wff o(Σ), then we call B sub-
stitutable for X in A, iff A has no occurrence of X in a subterm ∀Y C with
Y ∈ free(B).

� Solution: Forbid substitution [B/X]A, when B is not substitutable for X in
A.

� Better Solution: Rename away the bound variable X in ∀X p(X,Y ) before
applying the substitution. (see alphabetic renaming later.)

©:Michael Kohlhase 96

Here we come to a conceptual problem of most introductions to first-order logic: they directly
define substitutions to be capture-avoiding by stipulating that bound variables are renamed in
the to ensure subsitutability. But at this time, we have not even defined alphabetic renaming
yet, and cannot formally do that without having a notion of substitution. So we will refrain from
introducing capture-avoiding substitutions until we have done our homework.
We now introduce a central tool for reasoning about the semantics of substitutions: the “substitution-
value Lemma”, which relates the process of instantiation to (semantic) evaluation. This result will
be the motor of all soundness proofs on axioms and inference rules acting on variables via sub-
stitutions. In fact, any logic with variables and substitutions will have (to have) some form of
a substitution-value Lemma to get the meta-theory going, so it is usually the first target in any
development of such a logic.

We establish the substitution-value Lemma for first-order logic in two steps, first on terms,
where it is very simple, and then on propositions, where we have to take special care of substi-
tutability.

59

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Substitution Value Lemma for Terms

� Lemma 3.30 Let A and B be terms, then Iϕ([B/X]A) = Iψ(A), where
ψ = ϕ, [Iϕ(B)/X].

� Proof: by induction on the depth of A:

P.1.1 depth=0:

P.1.1.1 Then A is a variable (say Y ), or constant, so we have three cases

P.1.1.1.1 A = Y = X: then Iϕ([B/X](A)) = Iϕ([B/X](X)) = Iϕ(B) =
ψ(X) = Iψ(X) = Iψ(A).

P.1.1.1.2 A = Y 6= X: then Iϕ([B/X](A)) = Iϕ([B/X](Y )) = Iϕ(Y ) =
ϕ(Y ) = ψ(Y ) = Iψ(Y ) = Iψ(A).

P.1.1.1.3 A is a constant: analogous to the preceding case (Y 6= X)

P.1.1.2 This completes the base case (depth = 0).

P.1.2 depth> 0: then A = f(A1, . . . ,An) and we have

Iϕ([B/X](A)) = I(f)(Iϕ([B/X](A1)), . . . , Iϕ([B/X](An)))

= I(f)(Iψ(A1), . . . , Iψ(An))

= Iψ(A).

by inductive hypothesis

P.1.2.2 This completes the inductive case, and we have proven the assertion

©:Michael Kohlhase 97

We now come to the case of propositions. Note that we have the additional assumption of substi-
tutability here.

Substitution Value Lemma for Propositions

� Lemma 3.31 Let B ∈ wff ι(Σι) be substitutable for X in A ∈ wff o(Σ), then
Iϕ([B/X](A)) = Iψ(A), where ψ = ϕ, [Iϕ(B)/X].

� Proof: by induction on the number n of connectives and quantifiers in A

P.1.1 n = 0: then A is an atomic proposition, and we can argue like in the
inductive case of the substitution value lemma for terms.

P.1.2 n>0 and A = ¬B or A = C ◦D: Here we argue like in the inductive
case of the term lemma as well.

P.1.3 n>0 andA = ∀X C: then Iψ(A) = Iψ(∀X C) = T, iff Iψ,[a/X](C) =
Iϕ,[a/X](C) = T, for all a ∈ Dι, which is the case, iff Iϕ(∀X C) =
Iϕ([B/X](A)) = T.

P.1.4 n>0 and A = ∀Y C where X 6= Y : then Iψ(A) = Iψ(∀Y C) = T,
iff Iψ,[a/Y ](C) = Iϕ,[a/Y ]([B/X](C)) = T, by inductive hypothesis. So

60

http://creativecommons.org/licenses/by-sa/2.5/


Iψ(A) = Iϕ(∀Y [B/X](C)) = Iϕ([B/X](∀Y C)) = Iϕ([B/X](A))

©:Michael Kohlhase 98

To understand the proof full, you should look out where the substitutability is actually used.
Armed with the substitution value lemma, we can now define alphabetic renaming and show it to
be sound with respect to the semantics we defined above. And this soundness result will justify
the definition of capture-avoiding substitution we will use in the rest of the course.

3.2.3 Alpha-Renaming for First-Order Logic

Armed with the substitution value lemma we can now prove one of the main representational facts
for first-order logic: the names of bound variables do not matter; they can be renamed at liberty
without changing the meaning of a formula.

Alphabetic Renaming

� Lemma 3.32 Bound variables can be renamed: If Y is substitutable for X
in A, then Iϕ(∀X A) = Iϕ(∀Y [Y/X](A))

� Proof: by the definitions:

P.1 Iϕ(∀X A) = T, iff

P.2 Iϕ,[a/X](A) = T for all a ∈ Dι, iff
P.3 Iϕ,[a/Y ]([Y/X](A)) = T for all a ∈ Dι, iff (by substitution value lemma)

P.4 Iϕ(∀Y [Y/X](A)) = T.

� Definition 3.33 We call two formulae A and B alphabetical variants (or
α-equal; write A =α B), iff A = ∀X C and B = ∀Y [Y/X](C) for some
variables X and Y .

©:Michael Kohlhase 99

We have seen that naive substitutions can lead to variable capture. As a consequence, we always
have to presuppose that all instantiations respect a substitutability condition, which is quite
tedious. We will now come up with an improved definition of substitution application for first-
order logic that does not have this problem.

Avoiding Variable Capture by Built-in α-renaming

� Idea: Given alphabetic renaming, we will consider alphabetical variants as
identical

� So: Bound variable names in formulae are just a representational device (we
rename bound variables wherever necessary)

� Formally: Take cwff o(Σι) (new) to be the quotient set of cwff o(Σι) (old)
modulo =α. (formulae as syntactic representatives of equivalence classes)

� Definition 3.34 (Capture-Avoiding Substitution Application) Let σ
be a substitution, A a formula, and A′ an alphabetical variant of A, such

61

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


that intro(σ)∩BVar(A) = ∅. Then [A]=α = [A′]=α and we can define
σ([A]=α) := [σ(A′)]=α .

� Notation 3.35 After we have understood the quotient construction, we will
neglect making it explicit and write formulae and substitutions with the under-
standing that they act on quotients.

©:Michael Kohlhase 100

3.3 Abstract Consistency and Model Existence

We will now come to an important tool in the theoretical study of reasoning calculi: the “abstract
consistency”/“model existence” method. This method for analyzing calculi was developed by Jaako
Hintikka, Raymond Smullyann, and Peter Andrews in 1950-1970 as an encapsulation of similar
constructions that were used in completeness arguments in the decades before.27 EdN:27
The basic intuition for this method is the following: typically, a logical system S = 〈L,K, |=〉 has
multiple calculi, human-oriented ones like the natural deduction calculi and machine-oriented ones
like the automated theorem proving calculi. All of these need to be analyzed for completeness (as
a basic quality assurance measure).

A completeness proof for a calculus C for S typically comes in two parts: one analyzes C-
consistency (sets that cannot be refuted in C), and the other construct K-models for C-consistent
sets.

In this situtation the “abstract consistency”/“model existence” method encapsulates the model
construction process into a meta-theorem: the “model existence” theorem. This provides a set of
syntactic (“abstract consistency”) conditions for calculi that are sufficient to construct models.

With the model existence theorem it suffices to show that C-consistency is an abstract consis-
tency property (a purely syntactic task that can be done by a C-proof transformation argument)
to obtain a completeness result for C.

Model Existence (Overview)

� Definition: Abstract consistency

� Definition: Hintikka set (maximally abstract consistent)

� Theorem: Hintikka sets are satisfiable

� Theorem: If Φ is abstract consistent, then Φ can be extended to a Hintikka
set.

� Corollary: If Φ is abstract consistent, then Φ is satisfiable

� Application: Let C be a calculus, if Φ is C-consistent, then Φ is abstract
consistent.

� Corollary: C is complete.

©:Michael Kohlhase 101

The proof of the model existence theorem goes via the notion of a Hintikka set, a set of formulae
with very strong syntactic closure properties, which allow to read off models. Jaako Hintikka’s

27EdNote: cite the original papers!

62

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


original idea for completeness proofs was that for every complete calculus C and every C-consistent
set one can induce a Hintikka set, from which a model can be constructed. This can be considered
as a first model existence theorem. However, the process of obtaining a Hintikka set for a set
C-consistent set Φ of sentences usually involves complicated calculus-dependent constructions.

In this situation, Raymond Smullyann was able to formulate the sufficient conditions for the
existence of Hintikka sets in the form of “abstract consistency properties” by isolating the calculus-
independent parts of the Hintikka set construction. His technique allows to reformulate Hintikka
sets as maximal elements of abstract consistency classes and interpret the Hintikka set construction
as a maximizing limit process.
To carry out the “model-existence”/”abstract consistency” method, we will first have to look at the
notion of consistency.
Consistency and refutability are very important notions when studying the completeness for calculi;
they form syntactic counterparts of satisfiability.

Consistency

� Let C be a calculus

� Definition 3.36 Φ is called C-refutable, if there is a formula B, such that
Φ `C B and Φ `C ¬B.

� Definition 3.37 We call a pair A and ¬A a contradiction.

� So a set Φ is C-refutable, if C can derive a contradiction from it.

� Definition 3.38 Φ is called C-consistent, iff there is a formula B, that is not
derivable from Φ in C.

� Definition 3.39 We call a calculus C reasonable, iff implication elimination
and conjunction introduction are admissible in C and A∧¬A⇒B is a C-
theorem.

� Theorem 3.40 C-inconsistency and C-refutability coincide for reasonable cal-
culi

©:Michael Kohlhase 102

It is very important to distinguish the syntactic C-refutability and C-consistency from satisfiability,
which is a property of formulae that is at the heart of semantics. Note that the former specify
the calculus (a syntactic device) while the latter does not. In fact we should actually say S-
satisfiability, where S = 〈L,K, |=〉 is the current logical system.

Even the word “contradiction” has a syntactical flavor to it, it translates to “saying against
each other” from its latin root.
The notion of an “abstract consistency class” provides the a calculus-independent notion of “con-
sistency”: A set Φ of sentences is considered “consistent in an abstract sense”, iff it is a member of
an abstract consistency class ∇.

Abstract Consistency

� Definition 3.41 Let ∇ be a family of sets. We call ∇ closed under subsets,
iff for each Φ ∈ ∇, all subsets Ψ⊆Φ are elements of ∇.

� Notation 3.42 We will use Φ ∗A for Φ∪{A}.

63

http://creativecommons.org/licenses/by-sa/2.5/


� Definition 3.43 A family ∇⊆wff o(Σ) of sets of formulae is called a (first-
order) abstract consistency class, iff it is closed under subsets, and for each
Φ ∈ ∇

∇c) A 6∈ Φ or ¬A 6∈ Φ for atomic A ∈ wff o(Σ).

∇¬) ¬¬A ∈ Φ implies Φ ∗A ∈ ∇
∇∧) (A∧B) ∈ Φ implies (Φ∪{A,B}) ∈ ∇
∇∨) ¬ (A∧B) ∈ Φ implies Φ ∗¬A ∈ ∇ or Φ ∗¬B ∈ ∇
∇∀) If (∀X A) ∈ Φ, then Φ ∗ [B/X](A) ∈ ∇ for each closed term B.

∇∃) If ¬ (∀X A) ∈ Φ and c is an individual constant that does not occur in
Φ, then Φ ∗¬ [c/X](A) ∈ ∇

©:Michael Kohlhase 103

The conditions are very natural: Take for instance ∇c, it would be foolish to call a set Φ of
sentences “consistent under a complete calculus”, if it contains an elementary contradiction. The
next condition ∇¬ says that if a set Φ that contains a sentence ¬¬A is “consistent”, then we
should be able to extend it by A without losing this property; in other words, a complete calculus
should be able to recognize A and ¬¬A to be equivalent.
We will carry out the proof here, since it gives us practice in dealing with the abstract consistency
properties.
Actually we are after abstract consistency classes that have an even stronger property than just
being closed under subsets. This will allow us to carry out a limit construction in the Hintikka
set extension argument later.

Compact Collections

� Definition 3.44 We call a collection ∇ of sets compact, iff for any set Φ we
have
Φ ∈ ∇, iff Ψ ∈ ∇ for every finite subset Ψ of Φ.

� Lemma 3.45 If ∇ is compact, then ∇ is closed under subsets.

� Proof:

P.1 Suppose S⊆T and T ∈ ∇.
P.2 Every finite subset A of S is a finite subset of T .

P.3 As ∇ is compact, we know that A ∈ ∇.
P.4 Thus S ∈ ∇.

©:Michael Kohlhase 104

The property of being closed under subsets is a “downwards-oriented” property: We go from large
sets to small sets, compactness (the interesting direction anyways) is also an “upwards-oriented”
property. We can go from small (finite) sets to large (infinite) sets. The main application for the
compactness condition will be to show that infinite sets of formulae are in a family ∇ by testing
all their finite subsets (which is much simpler).
The main result here is that abstract consistency classes can be extended to compact ones. The
proof is quite tedious, but relatively straightforward. It allows us to assume that all abstract
consistency classes are compact in the first place (otherwise we pass to the compact extension).

64

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Compact Abstract Consistency Classes

� Lemma 3.46 Any first-order abstract consistency class can be extended to a
compact one.

� Proof:

P.1 We choose ∇′ := {Φ⊆ cwff o(Σι) | every finite subset of Φis in ∇}.
P.2 Now suppose that Φ ∈ ∇. ∇ is closed under subsets, so every finite subset

of Φ is in ∇ and thus Φ ∈ ∇′. Hence ∇⊆∇′.
P.3 Let us now show that each ∇′ is compact.

P.3.1 Suppose Φ ∈ ∇′ and Ψ is an arbitrary finite subset of Φ.

P.3.2 By definition of ∇′ all finite subsets of Φ are in ∇ and therefore Ψ ∈ ∇′.
P.3.3 Thus all finite subsets of Φ are in ∇′ whenever Φ is in ∇′.
P.3.4 On the other hand, suppose all finite subsets of Φ are in ∇′.
P.3.5 Then by the definition of ∇′ the finite subsets of Φ are also in ∇, so

Φ ∈ ∇′. Thus ∇′ is compact.

P.4 Note that ∇′ is closed under subsets by the Lemma above.

P.5 Next we show that if ∇ satisfies ∇∗, then ∇′ satisfies ∇∗.
P.5.1 To show ∇c, let Φ ∈ ∇′ and suppose there is an atom A, such that

{A,¬A}⊆Φ. Then {A,¬A} ∈ ∇ contradicting ∇c.
P.5.2 To show ∇¬, let Φ ∈ ∇′ and ¬¬A ∈ Φ, then Φ ∗A ∈ ∇′.
P.5.2.1 Let Ψ be any finite subset of Φ ∗A, and Θ := (Ψ\{A}) ∗¬¬A.

P.5.2.2 Θ is a finite subset of Φ, so Θ ∈ ∇.
P.5.2.3 Since ∇ is an abstract consistency class and ¬¬A ∈ Θ, we get

Θ ∗A ∈ ∇ by ∇¬.
P.5.2.4 We know that Ψ⊆Θ ∗A and ∇ is closed under subsets, so Ψ ∈ ∇.
P.5.2.5 Thus every finite subset Ψ of Φ ∗A is in ∇ and therefore by definition

Φ ∗A ∈ ∇′.
P.5.3 the other cases are analogous to ∇¬.

©:Michael Kohlhase 105

Hintikka sets are sets of sentences with very strong analytic closure conditions. These are motivated
as maximally consistent sets i.e. sets that already contain everything that can be consistently
added to them.

∇-Hintikka Set

� Definition 3.47 Let ∇ be an abstract consistency class, then we call a set
H ∈ ∇ a ∇-Hintikka Set, iff H is maximal in ∇, i.e. for all A with H∗A ∈ ∇
we already have A ∈ H.

� Theorem 3.48 (Hintikka Properties) Let ∇ be an abstract consistency
class and H be a ∇-Hintikka set, then

Hc) For all A ∈ wff o(Σ) we have A 6∈ H or ¬A 6∈ H.

65

http://creativecommons.org/licenses/by-sa/2.5/


H¬) If ¬¬A ∈ H then A ∈ H.
H∧) If (A∧B) ∈ H then A,B ∈ H.
H∨) If ¬ (A∧B) ∈ H then ¬A ∈ H or ¬B ∈ H.
H∀) If (∀X A) ∈ H, then [B/X](A) ∈ H for each closed term B.

H∃) If ¬ (∀X A) ∈ H then ¬ [B/X](A) ∈ H for some term closed term B.

Proof:

� P.1 We prove the properties in turn

Hc goes by induction on the structure of A

P.2P.2.1 A atomic: Then A 6∈ H or ¬A 6∈ H by ∇c.
P.2.2 A = ¬B:

P.2.2.1 Let us assume that ¬B ∈ H and ¬¬B ∈ H,
P.2.2.2 then H∗B ∈ ∇ by ∇¬, and therefore B ∈ H by maximality.

P.2.2.3 So {B,¬B}⊆H, which contradicts the inductive hypothesis.

P.2.3 A = B∨C: similar to the previous case

We prove H¬ by maximality of H in ∇.
P.3P.3.1 If ¬¬A ∈ H, then H∗A ∈ ∇ by ∇¬.
P.3.2 The maximality of H now gives us that A ∈ H.

The other H∗ are similar

©:Michael Kohlhase 106

The following theorem is one of the main results in the “abstract consistency”/”model existence”
method. For any abstract consistent set Φ it allows us to construct a Hintikka set H with Φ ∈ H.

P.4 Extension Theorem

� Theorem 3.49 If ∇ is an abstract consistency class and Φ ∈ ∇ finite, then
there is a ∇-Hintikka set H with Φ⊆H.

� Proof: Wlog. assume that ∇ compact (else use compact extension)

P.1 Choose an enumeration A1,A2, . . . of cwff o(Σι) and c1, c2, . . . of Σsk0 .

P.2 and construct a sequence of sets Hi with H0 := Φ and

Hn+1 :=

 Hn if Hn ∗An 6∈ ∇
Hn ∪{An,¬ [cn/X](B)} if Hn ∗An ∈ ∇ and An = ¬ (∀X B)

Hn ∗An else

P.3 Note that all Hi ∈ ∇, choose H :=
⋃
i∈NH

i

P.4 Ψ⊆H finite implies there is a j ∈ N such that Ψ⊆Hj ,

P.5 so Ψ ∈ ∇ as ∇ closed under subsets and H ∈ ∇ as ∇ is compact.

P.6 Let H∗B ∈ ∇, then there is a j ∈ N with B = Aj , so that B ∈ Hj+1

and Hj+1⊆H
P.7 Thus H is ∇-maximal

66

http://creativecommons.org/licenses/by-sa/2.5/


©:Michael Kohlhase 107

Note that the construction in the proof above is non-trivial in two respects. First, the limit
construction for H is not executed in our original abstract consistency class ∇, but in a suitably
extended one to make it compact — the original would not have contained H in general. Second,
the set H is not unique for Φ, but depends on the choice of the enumeration of cwff o(Σι). If
we pick a different enumeration, we will end up with a different H. Say if A and ¬A are both
∇-consistent28 with Φ, then depending on which one is first in the enumeration H, will contain EdN:28
that one; with all the consequences for subsequent choices in the construction process.

Valuation

� Definition 3.50 A function ν : cwff o(Σι)→ Do is called a (first-order) val-
uation, iff

� ν(¬A) = T, iff ν(A) = F

� ν(A∧B) = T, iff ν(A) = T and ν(B) = T

� ν(∀X A) = T, iff ν([B/X](A)) = T for all closed terms B.

� Lemma 3.51 If ϕ : Vι → D is a variable assignment, then Iϕ : cwff o(Σι)→
Do is a valuation.

� Proof Sketch: Immediate from the definitions

©:Michael Kohlhase 108

Thus a valuation is a weaker notion of evaluation in first-order logic; the other direction is also
true, even though the proof of this result is much more involved: The existence of a first-order
valuation that makes a set of sentences true entails the existence of a model that satisfies it.29 EdN:29

Valuation and Satisfiability

� Lemma 3.52 If ν : cwff o(Σι) → Do is a valuation and Φ⊆ cwff o(Σι) with
ν(Φ) = {T}, then Φ is satisfiable.

� Proof: We construct a model for Φ.

P.1 Let Dι := cwff ι(Σι), and

� I(f) : Dιk → Dι ; 〈A1, . . . ,Ak〉 7→ f(A1, . . . ,Ak) for f ∈ Σf

� I(p) : Dιk → Do; 〈A1, . . . ,Ak〉 7→ ν(p(A1, . . . ,An)) for p ∈ Σp.

P.2 Then variable assignments into Dι are ground substitutions.

P.3 We show Iϕ(A) = ϕ(A) for A ∈ wff ι(Σι) by induction on A

P.3.1 A = X: then Iϕ(A) = ϕ(X) by definition.

P.3.2 A = f(A1, . . . ,An): then Iϕ(A) = I(f)(Iϕ(A1), . . . , Iϕ(An)) =

I(f)(ϕ(A1), . . . , ϕ(An)) = f(ϕ(A1), . . . , ϕ(An)) = ϕ(f(A1, . . . ,An)) =
ϕ(A)

P.4 We show Iϕ(A) = ν(ϕ(A)) for A ∈ wff o(Σ) by induction on A

28EdNote: introduce this above
29EdNote: I think that we only get a semivaluation, look it up in Andrews.

67

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


P.4.1 A = p(A1, . . . ,An): then Iϕ(A) = I(p)(Iϕ(A1), . . . , Iϕ(An)) =

I(p)(ϕ(A1), . . . , ϕ(An)) = ν(p(ϕ(A1), . . . , ϕ(An))) = ν(ϕ(p(A1, . . . ,An))) =
ν(ϕ(A))

P.4.2 A = ¬B: then Iϕ(A) = T, iff Iϕ(B) = ν(ϕ(B)) = F, iff ν(ϕ(A)) =

T.

P.4.3 A = B∧C: similar

P.4.4 A = ∀X B: then Iϕ(A) = T, iff Iψ(B) = ν(ψ(B)) = T, for all
C ∈ Dι, where ψ = ϕ, [C/X]. This is the case, iff ν(ϕ(A)) = T.

P.5 Thus Iϕ(A) = ν(ϕ(A)) = ν(A) = T for all A ∈ Φ.

P.6 HenceM |= A forM := 〈Dι, I〉.

©:Michael Kohlhase 109

Now, we only have to put the pieces together to obtain the model existence theorem we are after.

Model Existence

� Theorem 3.53 (Hintikka-Lemma) If ∇ is an abstract consistency class
and H a ∇-Hintikka set, then H is satisfiable.

� Proof:

P.1 we define ν(A) := T, iff A ∈ H,
P.2 then ν is a valuation by the Hintikka set properties.

P.3 We have ν(H) = {T}, so H is satisfiable.

� Theorem 3.54 (Model Existence) If ∇ is an abstract consistency class
and Φ ∈ ∇, then Φ is satisfiable.

Proof:

� P.1 There is a ∇-Hintikka set H with Φ⊆H (Extension Theorem)

We know that H is satisfiable. (Hintikka-Lemma)

In particular, Φ⊆H is satisfiable.

©:Michael Kohlhase 110

3.4 First-Order Inference with Tableaux
3.4.1 First-Order Tableaux

P.2 P.3 Test Calculi: Tableaux and Model Generation

� Idea: instead of showing ∅ ` Th, show ¬Th ` trouble (use ⊥ for trouble)

� Example 3.55 Tableau Calculi try to construct models.

68

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Tableau Refutation (Validity) Model generation (Satisfiability)
|=P ∧Q⇒Q∧P |=P ∧ (Q∨¬R)∧¬Q

P ∧Q⇒Q∧P f

P ∧Qt

Q∧P f

P t

Qt

P f

⊥
Qf

⊥

P ∧ (Q∨¬R)∧¬Qt

P ∧ (Q∨¬R)t

¬Qt

Qf

P t

Q∨¬Rt

Qt

⊥
¬Rt

Rf

No Model Herbrand Model {P t, Qf , Rf}
ϕ := {P 7→ T, Q 7→ F, R 7→ F}

Algorithm: Fully expand all possible tableaux, (no rule can be applied)

� � Satisfiable, iff there are open branches (correspond to models)

©:Michael Kohlhase 111

Tableau calculi develop a formula in a tree-shaped arrangement that represents a case analysis on
when a formula can be made true (or false). Therefore the formulae are decorated with exponents
that hold the intended truth value.
On the left we have a refutation tableau that analyzes a negated formula (it is decorated with the
intended truth value F). Both branches contain an elementary contradiction ⊥.

On the right we have a model generation tableau, which analyzes a positive formula (it is
decorated with the intended truth value T. This tableau uses the same rules as the refutation
tableau, but makes a case analysis of when this formula can be satisfied. In this case we have a
closed branch and an open one, which corresponds a model).

Now that we have seen the examples, we can write down the tableau rules formally.

Analytical Tableaux (Formal Treatment of T0)

� formula is analyzed in a tree to determine satisfiability

� branches correspond to valuations (models)

� one per connective

A∧Bt

At

Bt

T0∧
A∧Bf

Af

∣∣∣ Bf
T0∨

¬At

Af
T0

T¬ ¬Af

At
T0

F¬

Aα

Aβ α 6= β

⊥ T0cut

� Use rules exhaustively as long as they contribute new material

� Definition 3.56 Call a tableau saturated, iff no rule applies, and a branch
closed, iff it ends in ⊥, else open. (open branches in saturated tableaux yield
models)

� Definition 3.57 (T0-Theorem/Derivability) A is a T0-theorem (`T0 A),
iff there is a closed tableau with AF at the root.

Φ⊆wff o(Vo) derives A in T0 (Φ `T0 A), iff there is a closed tableau starting
with AF and ΦT.

69

http://creativecommons.org/licenses/by-sa/2.5/


©:Michael Kohlhase 112

These inference rules act on tableaux have to be read as follows: if the formulae over the line
appear in a tableau branch, then the branch can be extended by the formulae or branches below
the line. There are two rules for each primary connective, and a branch closing rule that adds the
special symbol ⊥ (for unsatisfiability) to a branch.
We use the tableau rules with the convention that they are only applied, if they contribute new
material to the branch. This ensures termination of the tableau procedure for propositional logic
(every rule eliminates one primary connective).

Definition 3.58 We will call a closed tableau with the signed formula Aα at the root a tableau
refutation for Aα.

The saturated tableau represents a full case analysis of what is necessary to give A the truth value
α; since all branches are closed (contain contradictions) this is impossible.

Definition 3.59 We will call a tableau refutation for Af a tableau proof for A, since it refutes the
possibility of finding a model where A evaluates to F. Thus A must evaluate to T in all models,
which is just our definition of validity.

Thus the tableau procedure can be used as a calculus for propositional logic. In contrast to the
calculus in section ?sec.hilbert? it does not prove a theorem A by deriving it from a set of axioms,
but it proves it by refuting its negation. Such calculi are called negative or test calculi. Generally
negative calculi have computational advantages over positive ones, since they have a built-in sense
of direction.
We have rules for all the necessary connectives (we restrict ourselves to ∧ and ¬, since the others
can be expressed in terms of these two via the propositional identities above. For instance, we can
write A∨B as ¬ (¬A∧¬B), and A⇒B as ¬A∨B,. . . .)
We will now extend the propositional tableau techiques to first-order logic. We only have to add
two new rules for the universal quantifiers (in positive and negative polarity).

First-Order Standard Tableaux (T1)

� Refutation calculus based on trees of labeled formulae

� Tableau-Rules: T0 (propositional tableau rules) plus

∀X At C ∈ cwff ι(Σι)

[C/X](A)
t T1:∀

∀X Af c ∈ (Σsk0 \H)

[c/X](A)
f

T1:∃

©:Michael Kohlhase 113

The rule T1:∀ rule operationalizes the intuition that a universally quantified formula is true, iff
all of the instances of the scope are. To understand the T1:∃ rule, we have to keep in mind that
∃X A abbreviates ¬ (∀X ¬A), so that we have to read ∀X AF existentially — i.e. as ∃X ¬AT,
stating that there is an object with property ¬A. In this situation, we can simply give this
object a name: c, which we take from our (infinite) set of witness constants Σsk0 , which we have
given ourselves expressly for this purpose when we defined first-order syntax. In other words
[c/X](¬A)T = [c/X](A)F holds, and this is just the conclusion of the T1:∃ rule.
Note that the T1:∀ rule is computationally extremely inefficient: we have to guess an (i.e. in a
search setting to systematically consider all) instance C ∈ wff ι(Σι) for X. This makes the rule
infinitely branching.

70

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


3.4.2 Free Variable Tableaux

In the next calculus we will try to remedy the computational inefficiency of the T1:∀ rule. We do
this by delaying the choice in the universal rule.

Free variable Tableaux (T f1 )

� Refutation calculus based on trees of labeled formulae

� T0 (propositional tableau rules) plus
� Quantifier rules:

∀X At Y new

[Y/X](A)t
T f1 :∀ ∀X Af free(∀X A) = {X1, . . . , Xk} f ∈ Σskk

[f(X1, . . . , Xk)/X](A)f
T f1 :∃

� Generalized cut rule T f1 :⊥ instantiates the whole tableau by σ.

Aα

Bβ α 6= β σ(A) = σ(B)

⊥
T f1 :⊥

Advantage: no guessing necessary in T f1 :∀-rule

�� New: find suitable substitution (most general unifier)

©:Michael Kohlhase 114

Metavariables: Instead of guessing a concrete instance for the universally quantified variable as in
the T1:∀ rule, T f1 :∀ instantiates it with a new meta-variable Y , which will be instantiated by need
in the course of the derivation.
Skolem terms as witnesses: The introduction of meta-variables makes is necessary to extend the
treatment of witnesses in the existential rule. Intuitively, we cannot simply invent a new name,
since the meaning of the body A may contain meta-variables introduced by the T f1 :∀ rule. As we
do not know their values yet, the witness for the existential statement in the antecedent of the
T f1 :∃ rule needs to depend on that. So witness it using a witness term, concretely by applying a
Skolem function to the meta-variables in A.
Instantiating Metavariables: Finally, the T f1 :⊥ rule completes the treatment of meta-variables, it
allows to instantiate the whole tableau in a way that the current branch closes. This leaves us
with the problem of finding substitutions that make two terms equal.

Multiplicity in Tableaux

� Observation 3.60 All T f1 rules except T f1 :∀ only need to be applied once.

� Example 3.61 A tableau proof for (p(a)∨ p(b))⇒ (∃x p(x)).

71

http://creativecommons.org/licenses/by-sa/2.5/


Start, close branch use T f1 :∀ again

(p(a)∨ p(b))⇒ (∃x p(x))
f

p(a)∨ p(b)t
∃x p(x)

f

∀x ¬ p(x)
t

¬ p(y)
t

p(y)
f

p(a)
t

⊥ : [a/x]
p(b)

t

(p(a)∨ p(b))⇒ (∃x p(x))
f

p(a)∨ p(b)t
∃x p(x)

f

∀x ¬ p(x)
t

¬ p(a)
t

p(a)
f

p(a)
t

⊥
p(b)

t

¬ p(z)t

p(z)
f

⊥ : [b/z]

� Definition 3.62 Let T be a tableau forA, and a positive occurrence of ∀x B
in A, then we call the number of applications of T f1 :∀ to ∀x B its multiplicity.

� Observation 3.63 Given a prescribed multiplicity for each positive ∀, satu-
ration with T f1 terminates.

� Proof Sketch: All T f1 rules reduce the number of connectives and negative ∀
or the multiplicity of positive ∀.

� Theorem 3.64 T f1 is only complete with unbounded multiplicities.

� Proof Sketch: Otherwise validity in PL1 would be decidable.

©:Michael Kohlhase 115

Treating T f1 :⊥

� The T f1 :⊥ rule instantiates the whole tableau.

� There may be more than one T f1 :⊥ opportunity on a branch

� Example 3.65 Choosing which matters – this tableau does not close!

∃x (p(a)∧ p(b)⇒ p(x))∧ (q(b)⇒ q(x))
f

(p(a)∧ p(b)⇒ p(y))∧ (q(b)⇒ q(y))f

p(a)⇒ p(b)⇒ p(y)
f

p(a)
t

p(b)
t

p(y)
f

⊥ : [a/y]

q(b)⇒ q(y)
f

q(b)
t

q(y)
f

choosing the other T f1 :⊥ in the left branch allows closure.

� Two ways of systematic proof search in T f1 :

� backtracking search over T f1 :⊥ opportunities

� saturate without T f1 :⊥ and find spanning matings (later)

©:Michael Kohlhase 116

72

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Spanning Matings for T f1 :⊥

� Observation 3.66 T f1 without T f1 :⊥ is terminating and confluent for given
multiplicities.

� Idea: Saturate without T f1 :⊥ and treat all cuts at the same time.

� Definition 3.67 Let T be a T f1 tableau, then we call a unification problem
E := (A1 =? A1 ∧ . . .∧An =? Bn) a mating for T , iff At

i and Bf
i occur in T .

We say that E is a spanning mating, if E is unifiable and every branch B of T
contains At

i and Bf
i for some i.

� Theorem 3.68 A T f1 -tableau with a spanning mating induces a closed T1-
tableau.

� Proof Sketch: Just apply the unifier of the spanning mating.

� Idea: Existence is sufficient, we do not need to compute the unifier

� Implementation: Saturate without T f1 :⊥, backtracking search for spanning
matings with DU , adding pairs incrementally.

©:Michael Kohlhase 117

3.4.3 First-Order Unification

We will now look into the problem of finding a substitution σ that make two terms equal (we
say it unifies them) in more detail. The presentation of the unification algorithm we give here
“transformation-based” this has been a very influential way to treat certain algorithms in theoret-
ical computer science.
A transformation-based view of algorithms: The “transformation-based” view of algorithms divides
two concerns in presenting and reasoning about algorithms according to Kowalski’s slogan30 EdN:30

computation = logic + control

The computational paradigm highlighted by this quote is that (many) algorithms can be thought
of as manipulating representations of the problem at hand and transforming them into a form
that makes it simple to read off solutions. Given this, we can simplify thinking and reasoning
about such algorithms by separating out their “logical” part, which deals with is concerned with
how the problem representations can be manipulated in principle from the “control” part, which
is concerned with questions about when to apply which transformations.

It turns out that many questions about the algorithms can already be answered on the “logic”
level, and that the “logical” analysis of the algorithm can already give strong hints as to how to
optimize control.
In fact we will only concern ourselves with the “logical” analysis of unification here.
The first step towards a theory of unification is to take a closer look at the problem itself. A first
set of examples show that we have multiple solutions to the problem of finding substitutions that
make two terms equal. But we also see that these are related in a systematic way.

30EdNote: find the reference, and see what he really said

73

http://creativecommons.org/licenses/by-sa/2.5/


Unification (Definitions)

� Problem: For given terms A and B find a substitution σ, such that σ(A) =
σ(B).

� Notation 3.69 We write term pairs as A=? B e.g. f(X) =? f(g(Y ))

� Solutions (e.g. [g(a)/X], [a/Y ], [g(g(a))/X], [g(a)/Y ], or [g(Z)/X], [Z/Y ])
are called unifiers, U(A=? B) := {σ |σ(A) = σ(B)}

� Idea: find representatives in U(A=? B), that generate the set of solutions

� Definition 3.70 Let σ and θ be substitutions and W ⊆Vι, we say that a
substitution σ is more general than θ (on W write σ ≤ θ[W ]), iff there is a
substitution ρ, such that θ = ρ ◦σ[W ], where σ = ρ[W ], iff σ(X) = ρ(X) for
all X ∈W .

� Definition 3.71 σ is called a most general unifier ofA andB, iff it is minimal
in U(A=? B) wrt. ≤ [free(A)∪ free(B)].

©:Michael Kohlhase 118

The idea behind a most general unifier is that all other unifiers can be obtained from it by (further)
instantiation. In an automated theorem proving setting, this means that using most general
unifiers is the least committed choice — any other choice of unifiers (that would be necessary for
completeness) can later be obtained by other substitutions.
Note that there is a subtlety in the definition of the ordering on substitutions: we only compare
on a subset of the variables. The reason for this is that we have defined substitutions to be total
on (the infinite set of) variables for flexibility, but in the applications (see the definition of a most
general unifiers), we are only interested in a subset of variables: the ones that occur in the initial
problem formulation. Intuitively, we do not care what the unifiers do off that set. If we did not
have the restriction to the set W of variables, the ordering relation on substitutions would become
much too fine-grained to be useful (i.e. to guarantee unique most general unifiers in our case).
Now that we have defined the problem, we can turn to the unification algorithm itself. We will
define it in a way that is very similar to logic programming: we first define a calculus that generates
“solved forms” (formulae from which we can read off the solution) and reason about control later.
In this case we will reason that control does not matter.

Unification (Equational Systems)

� Idea: Unification is equation solving.

� Definition 3.72 We call a formulaA1 =? B1 ∧ . . .∧An =? Bn an equational
system iff Ai,Bi ∈ wff ι(Σι,Vι).

� We consider equational systems as sets of equations (∧ is ACI), and equations
as two-element multisets (=? is C).

©:Michael Kohlhase 119

In principle, unification problems are sets of equations, which we write as conjunctions, since all of
them have to be solved for finding a unifier. Note that it is not a problem for the “logical view” that
the representation as conjunctions induces an order, since we know that conjunction is associative,

74

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


commutative and idempotent, i.e. that conjuncts do not have an intrinsic order or multiplicity,
if we consider two equational problems as equal, if they are equivalent as propositional formulae.
In the same way, we will abstract from the order in equations, since we know that the equality
relation is symmetric. Of course we would have to deal with this somehow in the implementation
(typically, we would implement equational problems as lists of pairs), but that belongs into the
“control” aspect of the algorithm, which we are abstracting from at the moment.

Solved forms and Most General Unifiers

� Definition 3.73 We call a pair A=? B solved in a unification problem E , iff
A = X, E = X =? A∧E , and X 6∈ (free(A)∪ free(E)). We call an unification
problem E a solved form, iff all its pairs are solved.

� Lemma 3.74 Solved forms are of the formX1 =? B1 ∧ . . .∧Xn =? Bn where
the Xi are distinct and Xi 6∈ free(Bj).

� Definition 3.75 Any substitution σ = [B1/X1], . . ., [Bn/Xn] induces a solved
unification problem Eσ := (X1 =? B1 ∧ . . .∧Xn =? Bn).

� Lemma 3.76 If E = X1 =? B1 ∧ . . .∧Xn =? Bn is a solved form, then E
has the unique most general unifier σE := [B1/X1], . . ., [Bn/Xn].

� Proof: Let θ ∈ U(E)

P.1 then θ(Xi) = θ(Bi) = θ ◦σE(Xi)

P.2 and thus θ = θ ◦σE [supp(σ)].

Note: we can rename the introduced variables in most general unifiers!

©:Michael Kohlhase 120

It is essential to our “logical” analysis of the unification algorithm that we arrive at equational prob-
lems whose unifiers we can read off easily. Solved forms serve that need perfectly as Lemma 3.76
shows.
Given the idea that unification problems can be expressed as formulae, we can express the algo-
rithm in three simple rules that transform unification problems into solved forms (or unsolvable
ones).

� Unification Algorithm

� Definition 3.77 Inference system U

E ∧ f(A1, . . . ,An) =? f(B1, . . . ,Bn)

E ∧A1 =? B1 ∧ . . .∧An =? Bn
U dec

E ∧A=? A

E
U triv

E ∧X =? A X 6∈ free(A) X ∈ free(E)

[A/X](E)∧X =? A
U elim

� Lemma 3.78 U is correct: E `U F implies U(F)⊆U(E)

� Lemma 3.79 U is complete: E `U F implies U(E)⊆U(F)

� Lemma 3.80 U is confluent: the order of derivations does not matter

75

http://creativecommons.org/licenses/by-sa/2.5/


� Corollary 3.81 First-Order Unification is unitary: i.e. most general unifiers
are unique up to renaming of introduced variables.

� Proof Sketch: the inference system U is trivially branching

©:Michael Kohlhase 121

The decomposition rule U dec is completely straightforward, but note that it transforms one unifi-
cation pair into multiple argument pairs; this is the reason, why we have to directly use unification
problems with multiple pairs in U .

Note furthermore, that we could have restricted the U triv rule to variable-variable pairs, since
for any other pair, we can decompose until only variables are left. Here we observe, that constant-
constant pairs can be decomposed with the U dec rule in the somewhat degenerate case without
arguments.

Finally, we observe that the first of the two variable conditions in U elim (the “occurs-in-check”)
makes sure that we only apply the transformation to unifiable unification problems, whereas the
second one is a termination condition that prevents the rule to be applied twice.
The notion of completeness and correctness is a bit different than that for calculi that we compare
to the entailment relation. We can think of the “logical system of unifiability” with the model
class of sets of substitutions, where a set satisfies an equational problem E , iff all of its members
are unifiers. This view induces the soundness and completeness notions presented above.
The three meta-properties above are relatively trivial, but somewhat tedious to prove, so we leave
the proofs as an exercise to the reader.
We now fortify our intuition about the unification calculus by two examples. Note that we only
need to pursue one possible U derivation since we have confluence.

Unification Examples

Example 3.82 Two similar unification problems:

f(g(x, x), h(a)) =? f(g(a, z), h(z))
U dec

g(x, x) =? g(a, z)∧h(a) =? h(z)
U dec

x=? a∧x=? z ∧h(a) =? h(z)
U dec

x=? a∧x=? z ∧ a=? z
U elim

x=? a∧ a=? z ∧ a=? z
U elim

x=? a∧ z=? a∧ a=? a
U triv

x=? a∧ z=? a

f(g(x, x), h(a)) =? f(g(b, z), h(z))
U dec

g(x, x) =? g(b, z)∧h(a) =? h(z)
U dec

x=? b∧x=? z ∧h(a) =? h(z)
U dec

x=? b∧x=? z ∧ a=? z
U elim

x=? b∧ b=? z ∧ a=? z
U elim

x=? a∧ z=? a∧ a=? b

MGU: [a/x], [a/z] a=? b not unifiable

©:Michael Kohlhase 122

We will now convince ourselves that there cannot be any infinite sequences of transformations in
U . Termination is an important property for an algorithm.

The proof we present here is very typical for termination proofs. We map unification problems
into a partially ordered set 〈S,≺〉 where we know that there cannot be any infinitely descending
sequences (we think of this as measuring the unification problems). Then we show that all trans-
formations in U strictly decrease the measure of the unification problems and argue that if there

76

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


were an infinite transformation in U , then there would be an infinite descending chain in S, which
contradicts our choice of 〈S,≺〉.

The crucial step in in coming up with such proofs is finding the right partially ordered set.
Fortunately, there are some tools we can make use of. We know that 〈N, <〉 is terminating, and
there are some ways of lifting component orderings to complex structures. For instance it is well-
known that the lexicographic ordering lifts a terminating ordering to a terminating ordering on
finite-dimensional Cartesian spaces. We show a similar, but less known construction with multisets
for our proof.

Unification (Termination)

� Definition 3.83 Let S and T be multisets and ≺ a partial ordering on S ∪T .
Then we define (S ≺m T ), iff S = C ] T ′ and T = C ] {t}, where s ≺ t for
all s ∈ S′. We call ≺m the multiset ordering induced by ≺.

� Lemma 3.84 If ≺ is total/terminating on S, then ≺m is total/terminating
on P(S).

� Lemma 3.85 U is terminating (any U-derivation is finite)

� Proof: We prove termination by mapping U transformation into a Noetherian
space.

P.1 Let µ(E) := 〈n,N〉, where
� m is the number of unsolved variables in E
� N is the multiset of term depths in E

P.2 The lexicographic order ≺ on pairs µ(E) is decreased by all inference rules.

P.2.1 U dec and U triv decrease the multiset of term depths without increasing
the unsolved variables

P.2.2 U elim decreases the number of unsolved variables (by one), but may
increase term depths.

©:Michael Kohlhase 123

But it is very simple to create terminating calculi, e.g. by having no inference rules. So there is
one more step to go to turn the termination result into a decidability result: we must make sure
that we have enough inference rules so that any unification problem is transformed into solved
form if it is unifiable.

Unification (decidable)

� Definition 3.86 We call an equational problem E U-reducible, iff there is a
U-step E `U F from E .

� Lemma 3.87 If E is unifiable but not solved, then it is U-reducible

� Proof: We assume that E is unifiable but unsolved and show the U rule that
applies.

P.1 There is an unsolved pair A=? B in E = E ′ ∧A=? B.

P.2 we have two cases

77

http://creativecommons.org/licenses/by-sa/2.5/


P.2.1 A,B 6∈ Vι: then A = f(A1 . . .An) and B = f(B1 . . .Bn), and thus
U dec is applicable

P.2.2 A = X ∈ free(E): then U elim (if B 6= X) or U triv (if B = X) is
applicable.

� Corollary 3.88 Unification is decidable in PL1.

� Proof Idea: U-irreducible sets of equations can be obtained in finite time by
Lemma 3.85 and are either solved or unsolvable by Lemma 3.87, so they provide
the answer.

©:Michael Kohlhase 124

3.4.4 Efficient Unification

Complexity of Unification

� Observation: Naive unification is exponential in time and space.

� consider the terms

sn = f(f(x0, x0), f(f(x1, x1), f(. . . , f(xn−1, xn−1)) . . .))

tn = f(x1, f(x2, f(x3, f(. . . , xn) . . .)))

� The most general unifier of sn and tn is

[f(x0, x0)/x1], [f(f(x0, x0), f(x0, x0))/x2], [f(f(f(x0, x0), f(x0, x0)), f(f(x0, x0), f(x0, x0)))/x3], . . .

� it contains
∑n
i=1 2i = 2n+1 − 2 occurrences of the variable x0. (exponential)

� Problem: the variable x0 has been copied too often

� Idea: Find a term representation that re-uses subterms

©:Michael Kohlhase 125

Directed Acyclic Graphs (DAGs)

� use directed acyclic graphs for the term representation

� variables my only occur once in the DAG

� subterms can be referenced multiply

� Observation 3.89 Terms can be transformed into DAGs in linear time

� Example 3.90 s3, t3, σ3(s3)

78

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


x1 x2 x3

x0 f f

ff

f f

f

s3 t3

x0

f

f

f

f

f

σ3(t3)

©:Michael Kohlhase 126

DAG Unification Algorithm

� Definition 3.91 We say that X1 =? B1 ∧ . . .∧Xn =? Bn is a DAG solved
form, iff the Xi are distinct and Xi 6∈ free(Bj) for i≤j

� Definition 3.92 The inference system DU contains rules U dec and U triv
from U plus the following:

E ∧X =? A∧X =? B A,B 6∈ Vι |A|≤|B|
E ∧X =? A∧A=? B

DU merge

E ∧X =? Y X 6= Y X, Y ∈ free(E)

[Y/X](E)∧X =? Y
DU evar

where |A| is the number of symbols in A.

©:Michael Kohlhase 127

Unification by DAG-chase

� Idea: Extend the Input-DAGs by edges that represent unifiers.

� write n.a, if a is the symbol of node n.

� auxiliary procedures: (all linear or constant time)

� find(n) follows the path from n and returns the end node

� union(n,m) adds an edge between n and m.

� occur(n,m) determines whether n.x occurs in the DAG with root m.

©:Michael Kohlhase 128

Algorithm unify

� Input: symmetric pairs of nodes in DAGs
fun unify(n,n) = true

| unify(n.x,m) = if occur(n,m) then true else union(n,m)

79

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


| unify(n.f,m.g) = if g!=f then false
else forall (i,j) => unify(find(i),find(j)) (chld m,chld n)
end

� linear in space, since no new nodes are created, and at most one link per
variable.

� consider terms f(sn, f(t′n, xn)), f(tn, f(s′n, yn))), where s′n = [yi/xi](sn) und
t′n = [yi/xi](tn).

� unify needs exponentially many recursive calls to unify the nodes xn and yn.
(they are unified after n calls, but checking needs the time)

� Idea: Also bind the function nodes, if the arguments are unified.
unify(n.f,m.g) = if g!=f then false

else union(n,m);
forall (i,j) => unify(find(i),find(j)) (chld m,chld n)

end

� this only needs linearly many recursive calls as it directly returns with true or
makes a node inaccessible for find.

� linearly many calls to linear procedures give quadratic runtime.

©:Michael Kohlhase 129

Spanning Matings for T f1 :⊥

� Observation 3.93 T f1 without T f1 :⊥ is terminating and confluent for given
multiplicities.

� Idea: Saturate without T f1 :⊥ and treat all cuts at the same time.

� Definition 3.94 Let T be a T f1 tableau, then we call a unification problem
E := (A1 =? A1 ∧ . . .∧An =? Bn) a mating for T , iff At

i and Bf
i occur in T .

We say that E is a spanning mating, if E is unifiable and every branch B of T
contains At

i and Bf
i for some i.

� Theorem 3.95 A T f1 -tableau with a spanning mating induces a closed T1-
tableau.

� Proof Sketch: Just apply the unifier of the spanning mating.

� Idea: Existence is sufficient, we do not need to compute the unifier

� Implementation: Saturate without T f1 :⊥, backtracking search for spanning
matings with DU , adding pairs incrementally.

©:Michael Kohlhase 130

Now that we understand basic unification theory, we can come to the meta-theoretical properties
of the tableau calculus, which we now discuss to make the understanding of first-order inference
complete.

80

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


3.4.5 Soundness and Completeness of First-Order Tableaux

For the soundness result, we recap the definition of soundness for test calculi from the propositional
case.

Soundness (Tableau)

� Idea: A test calculus is sound, iff it preserves satisfiability and the goal formulae
are unsatisfiable.

� Definition 3.96 A labeled formula Aα is valid under ϕ, iff Iϕ(A) = α.

� Definition 3.97 A tableau T is satisfiable, iff there is a satisfiable branch P
in T , i.e. if the set of formulae in P is satisfiable.

� Lemma 3.98 Tableau rules transform satisfiable tableaux into satisfiable ones.

� Theorem 3.99 (Soundness) A set Φ of propositional formulae is valid, if
there is a closed tableau T for Φf .

� Proof: by contradiction: Suppose Φ is not valid.

P.1 then the initial tableau is satisfiable (Φf satisfiable)

P.2 so T is satisfiable, by Lemma 3.98.

P.3 there is a satisfiable branch (by definition)

P.4 but all branches are closed (T closed)

©:Michael Kohlhase 131

Thus we only have to prove Lemma 3.98, this is relatively easy to do. For instance for the first
rule: if we have a tableau that contains A∧Bt and is satisfiable, then it must have a satisfiable
branch. If A∧Bt is not on this branch, the tableau extension will not change satisfiability, so we
can assue that it is on the satisfiable branch and thus Iϕ(A∧B) = T for some variable assignment
ϕ. Thus Iϕ(A) = T and Iϕ(B) = T, so after the extension (which adds the formulae At and Bt

to the branch), the branch is still satisfiable. The cases for the other rules are similar.
The soundness of the first-order free-variable tableaux calculus can be established a simple induc-
tion over the size of the tableau.

Soundness of T f1
� Lemma 3.100 Tableau rules transform satisfiable tableaux into satisfiable
ones.

� Proof:

P.1 we examine the tableau rules in turn

P.1.1 propositional rules: as in propositional tableaux

P.1.2 T f1 :∃: by Lemma 3.102

P.1.3 T f1 :⊥: by Lemma 3.31 (substitution value lemma)

P.1.4 T f1 :∀:

81

http://creativecommons.org/licenses/by-sa/2.5/


P.1.4.1 Iϕ(∀X A) = T, iff Iψ(A) = T for all a ∈ Dι
P.1.4.2 so in particular for some a ∈ Dι 6= ∅.

� Corollary 3.101 T f1 is correct.

©:Michael Kohlhase 132

The only interesting steps are the cut rule, which can be directly handled by the substitution value
lemma, and the rule for the existential quantifier, which we do in a separate lemma.

Soundness of T f1 :∃

� Lemma 3.102 T f1 :∃ transforms satisfiable tableaux into satisfiable ones.

� Proof: Let T ′ be obtained by applying T f1 :∃ to ∀X Af in T , extending it with
[f(X1, . . . , Xn)/X](A)

f , where W := free(∀X A) = {X1, . . . , Xk}

P.1 Let T be satisfiable inM := 〈D, I〉, then Iϕ(∀X A) = F.

P.2 We need to find a modelM′ that satisfies T ′ (find interpretation for f)

P.3 By definition Iϕ,[a/X](A) = F for some a ∈ D (depends on ϕ|W )

P.4 Let g : Dk → D be defined by g(a1, . . . , ak) := a, if ϕ(Xi) = ai

P.5 chooseM′ = 〈D, I ′〉 with I ′ := I, [g/f ], then by subst. value lemma

I ′ϕ([f(X1, . . . , Xk)/X](A)) = I ′ϕ,[I′ϕ(f(X1,...,Xk))/X](A)

= I ′ϕ,[a/X](A) = F

P.6 So [f(X1, . . . , Xk)/X](A)
f satisfiable inM′

©:Michael Kohlhase 133

This proof is paradigmatic for soundness proofs for calculi with Skolemization. We use the axiom
of choice at the meta-level to choose a meaning for the Skolem function symbol.
Armed with the Model Existence Theorem for first-order logic (Theorem 3.54), the complete-
ness of first-order tableaux is similarly straightforward. We just have to show that the collec-
tion of tableau-irrefutable sentences is an abstract consistency class, which is a simple proof-
transformation exercise in all but the universal quantifier case, which we postpone to its own
Lemma.

Completeness of (T f1 )

� Theorem 3.103 T f1 is refutation complete.

� Proof: We show that ∇ := {Φ |ΦT has no closed Tableau} is an abstract
consistency class

P.1 (∇c, ∇¬, ∇∨, and ∇∧)as for propositional case.
P.2 (∇∀)by the lifting lemma below

82

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


P.3 (∇∃)Let T be a closed tableau for ¬ (∀X A) ∈ Φ and ΦT ∗ [c/X](A)F ∈
∇.

ΨT

∀X Af

[c/X](A)
f

Rest

ΨT

∀X Af

[f(X1, . . . , Xk)/X](A)
f

[f(X1, . . . , Xk)/c](Rest)

©:Michael Kohlhase 134

So we only have to treat the case for the universal quantifier. This is what we usually call a
“lifting argument”, since we have to transform (“lift”) a proof for a formula θ(A) to one for A. In
the case of tableaux we do that by an induction on the tableau refutation for θ(A) which creates
a tableau-isomorphism to a tableau refutation for A.

Tableau-Lifting

� Theorem 3.104 If Tθ is a closed tableau for a st θ(Φ) of formulae, then there
is a closed tableau T for Φ.

� Proof: by induction over the structure of Tθ we build an isomorphic tableau
T , and a tableau-isomorphism ω : T → Tθ, such that ω(A) = θ(A).

P.1 only the tableau-substitution rule is interesting.

P.2 Let θ(Ai)
t and θ(Bi)

f cut formulae in the branch Θi
θ of Tθ

P.3 there is a joint unifier σ of θ(A1) =? θ(B1)∧ . . .∧ θ(An) =? θ(Bn)

P.4 thus σ ◦ θ is a unifier of A and B

P.5 hence there is a most general unifier ρ of A1 =? B1 ∧ . . .∧An =? Bn

P.6 so Θ is closed

©:Michael Kohlhase 135

Again, the “lifting lemma for tableaux” is paradigmatic for lifting lemmata for other refutation
calculi.

3.5 Model Generation with Quantifiers

Since we have introduced new logical constants, we have to extend the model generation cal-
culus by rules for these. To keep the calculus simple, we will treat ∃X A as an abbreviation of
¬ (∀X ¬A). Thus we only have to treat the universal quantifier in the rules.

Model Generation (RM Calculus [Konrad’98])

� Idea: Try to generate domain-minimal (i.e. fewest individuals) models(for NL
interpretation)

� Problem: Even one function symbol makes Herbrand base infinite (solution:
leave them out)

83

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� Definition 3.105 Add ground quantifier rules to these

∀X At c ∈ H
[c/X](A)

t RM:∀ ∀X Af H = {a1, . . . , an} w 6∈ H new

[a1/X](A)
f

. . . [an/X](A)
f

[w/X](A)
f

RM:∃

� RM:∃ rule introduces new witness constant w to Herbrand baseH of branch

� Apply RM:∀ exhaustively (for new w reapply all RM:∀ rules on branch!)

©:Michael Kohlhase 136

The rule RM:∀ allows to instantiate the scope of the quantifier with all the instances of the
Herbrand base, whereas the rule RM:∃ makes a case distinction between the cases that the scope
holds for one of the already known individuals (those in the Herbrand base) or a currently unknown
one (for which it introduces a witness constant w ∈ Σsk0 ).
Note that in order to have a complete calculus, it is necessary to apply the RM:∀ rule to all universal
formulae in the tree with the new constant w. With this strategy, we arrive at a complete calculus
for (finite) satisfiability in first-order logic, i.e. if a formula has a (finite) Model, then this calculus
will find it. Note that this calculus (in this simple form) does not necessarily find minimal models.

Generating infinite models (Natural Numbers)

� We have to re-apply the RM:∀ rule for any new constant

� Example 3.106 This leads to the generation of infinite modesl

∀x ¬x > x∧ . . .t
N(0)t

∀x N(x)⇒ (∃y y > x)
t

N(0)⇒ (∃y y > 0)
t

N(0)f

⊥
∃y y > 0t

0 > 0t

0 > 0f

⊥

1t > 0
N(1)⇒ (∃y y > 1)

t

N(1)f

...
⊥

∃y y > 1t

0 > 1t

...
⊥

1 > 1t

1 > 2t

⊥

2 > 1t

...

©:Michael Kohlhase 137

The rules RM:∀ and RM:∃ may remind you of the rules we introduced for PLVNQ. In fact the
rules mainly differ in their scoping behavior. We will use RM:∀ as a drop-in replacement for the
world-knowledge rule T pV :WK, and express world knowledge as universally quantified sentences.
The rules T pV :Ana and RM:∃ differ in that the first may only be applied to input formulae and does
not introduce a witness constant. (It should not, since variables here are anaphoric). We need the
rule RM:∃ to deal with rule-like world knowledge.

Example: Peter is a man. No man walks

84

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


without sorts with sort M ale
man(peter)

¬ (∃X man(X)∧walk(X))

∃X man(X)∧walk(X)
f

man(peter)∧walk(peter)f

man(peter)
f

⊥
walk(peter)

f

man(peter)

¬ (∃XM ale walk(X))

∃XM ale walk(X)
f

walk(peter)
f

problem: 1000 men
⇒

1000 closed branches

� Herbrand-model
{man(peter)

t
,walk(peter)

f}

©:Michael Kohlhase 138

Anaphor resolution A man sleeps. He snores

∃X.man(X)∧ sleep(X)

man(c1M an)
t

sleep(c1M an)
t

∃YM an snore(Y )

snore(c1M an)
t

minimal
snore(c2M an)

t

deictic

In a situation without men (but maybe thousands of women) ©:Michael Kohlhase 139

Anaphora with World Knowledge

� Mary is married to Jeff. Her husband is not in town.

� ∃UF emale, VM ale U = mary∧married(U, V )∧V = jeff ∧ (∃WM ale,W
′
F emale hubby(W,W ′)¬ intown(W ))

� World knowledge

� if woman X is married to man Y , then Y is the only husband of X.

� ∀XF emale, YM ale married(X,Y )⇒hubby(Y,X)∧ (∀Z hubby(Z,X)⇒Z
.
= Y )

� model generation gives tableau, all branches contain

{married(mary, jeff)
t
,hubby(jeff,mary)

t
intown(jeff)

f}

� Differences: additional negative facts e.g. married(mary,mary)
f .

©:Michael Kohlhase 140

85

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


A branch without world knowledge

∃XF emale, YM ale X
.
= mary∧married(X,Y )∧Y .

= jeff
t

∃Y mary
.
= mary∧married(mary, Y )∧Y .

= jeff
t

mary
.
= mary,married(mary, jeff), jeff

.
= jefft

mary
.
= maryt

married(mary, jeff)t

jeff
.
= jefft

∃ZM ale, Z′F emale hubby(Z,Z′)∧¬ intown(Z)t

∃Z′ hubby(c1M ale, Z
′)∧¬ intown(c1M ale)

t

hubby(c1M ale,mary)∧¬ intown(c1M ale)
t

hubby(c1M ale,mary)t

¬ intown(c1M ale)
t

intown(c1M ale)
f

� Problem: Bigamy

� c1M ale and jeff hus-
bands of Mary!

©:Michael Kohlhase 141

4 Fragment 3: Complex Verb Phrases

4.1 Fragment 3 (Handling Verb Phrases)

New Data (Verb Phrases)

� Ethel howled and screamed.

� Ethel kicked the dog and poisoned the cat.

� Fiona liked Jo and loathed Ethel and tolerated Prudence.

� Fiona kicked the cat and laughed.

� Prudence kicked and scratched Ethel.

� Bertie didn’t laugh.

� Bertie didn’t laugh and didn’t scream.

� Bertie didn’t laugh or scream.

� Bertie didn’t laugh or kick the dog.

©:Michael Kohlhase 142

New Grammar in Fragment 3 (Verb Phrases)

� To account for the syntax we come up with the concept of a verb-phrase (VP)

� Definition 4.1 F3 has the following rules:

86

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


S1. S → NPVP+fin

S2. S → S conjS

V1. VP±fin → V i±fin
V2. VP±fin → V t±fin,NP
V3. VP±fin → VP±fin, conj, VP±fin
V4. VP+fin → BE=,NP
V5. VP+fin → BEpred,Adj.
V6. VP+fin → didn’t VP−fin
N1. NP → Npr

N2. NP → Pron
N3. NP → the N

L8. BE= → {is}
L9. BEpred → {is}
L10. V i−fin → {run, laugh, sing,. . . }
L11. V t−fin → {read, poison,eat,. . . }

� Limitations of F3:

� The rule for didn’t over-generates: *John didn’t didn’t run (need tense
for that)

� F3 does not allow coordination of transitive verbs (problematic anyways)

©:Michael Kohlhase 143

The main extension of the fragment is the introduction of the new category VP , we have to
interpret. Intuitively, VP s denote functions that can be applied to the NP meanings (rule 1).
Complex VP functions can be constructed from simpler ones by NL connectives acting as functional
operators.
Given the discussion above, we have to deal with various kinds of functions in the semantics. NP
meanings are individuals, VP meanings are functions from individuals to individuals, and conj
meanings are functionals that map functions to functions. It is a tradition in logic to distinguish
such objects (individuals and functions of various kinds) by assigning them types.

4.2 Dealing with Functions in Logic and Language

So we need to have a logic that can deal with functions and functionals (i.e. functions that
construct new functions from existing ones) natively. This goes beyond the realm of first-order
logic we have studied so far. We need two things from this logic:

1) a way of distinguishing the respective individuals, functions and functionals, and

2) a way of constructing functions from individuals and other functions.

There are standard ways of achieving both, which we will combine in the following to get the
“simply typed lambda calculus” which will be the workhorse logic for F3.
The standard way for distinguishing objects of different levels is by introducing types, here we can
get by with a very simple type system that only distinguishes functions from their arguments

Types

� Types are semantic annotations for terms that prevent antinomies

� Definition 4.2 Given a set B T of base types, construct function types: α→
β is the type of functions with domain type α and range type β. We call the
closure T of B T under function types the set of types over B T .

� Definition 4.3 We will use ι for the type of individuals and o for the type of
truth values.

87

http://creativecommons.org/licenses/by-sa/2.5/


� The type constructor is used as a right-associative operator, i.e. we use
α→ β → γ as an abbreviation for α→ (β → γ)

� We will use a kind of vector notation for function types, abbreviating α1 → . . .→ αn →
β with αn → β.

©:Michael Kohlhase 144

Syntactical Categories and Types

� Now, we can assign types to syntactical categories.

Cat Type Intuition
S o truth value

NP ι individual
Npr ι individuals
VP ι→ o property
V i ι→ o unary predicate
V t ι→ ι→ o binary relation

� For the category conj, we cannot get by with a single type. Depending on
where it is used, we need the types

� o→ o→ o for S-coordination in rule S2: S → S, conj, S

� (ι→ o)→ (ι→ o)→ (ι→ o) for VP -coordination in V 3: VP → VP , conj, VP .

� Note: Computational Linguistics, often uses a different notation for types:
e for ι, t for o, and 〈α, β〉 for α→ β (no bracket elision convention).
So the type for VP -coordination has the form 〈〈e, t〉, 〈〈e, t〉, 〈e, t〉〉〉

©:Michael Kohlhase 145

For a logic which can really deal with functions, we have to have two properties, which
we can already read off the language of mathematics (as the discipine that deals with functions
and funcitonals professionally): We

1) need to be able to construct functions from expressions with variables, as in f(x) = 3x2 +
7x+ 5, and

2) consider two functions the same, iff the return the same values on the same arguments.

In a logical system (let us for the moment assume a first-order logic with types that can quantify
over functions) this gives rise to the following axioms:

Comprehension ∃Fα→β ∀Xα FX = Aβ

Extensionality ∀Fα→β ∀Gα→β (∀Xα FX = GX)⇒F = G

The comprehension axioms are computationally very problematic. First, we observe that they
are equality axioms, and thus are needed to show that two objects of PLΩ are equal. Second
we observe that there are countably infinitely many of them (they are parametric in the term A,
the type α and the variable name), which makes dealing with them difficult in practice. Finally,
axioms with both existential and universal quantifiers are always difficult to reason with.

88

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Therefore we would like to have a formulation of higher-order logic without comprehension axioms.
In the next slide we take a close look at the comprehension axioms and transform them into a
form without quantifiers, which will turn out useful.

From Comprehension to β-Conversion

� ∃Fα→β ∀Xα FX = Aβ for arbitrary variable Xα and term A ∈ wff β(Σ,VT )
(for each term A and each variable X there is a function f ∈ Dα→β , with
f(ϕ(X)) = Iϕ(A))

� schematic in α, β, Xα and Aβ , very inconvenient for deduction

� Transformation in HΩ

� ∃Fα→β ∀Xα FX = Aβ

� ∀Xα (λXα A)X = Aβ (∃E)
Call the function F whose existence is guaranteed “(λXα A)”

� (λXα A)B = [B/X]Aβ (∀E), in particular for B ∈ wff α(Σ,VT ).

� Definition 4.4 Axiom of β-equality: (λXα A)B = [B/X](Aβ)

� new formulae (λ-calculus [Church 1940])

©:Michael Kohlhase 146

In a similar way we can treat (functional) extensionality.

From Extensionality to η-Conversion

� Definition 4.5 Extensionality Axiom: ∀Fα→β ∀Gα→β (∀Xα FX = GX)⇒F = G

� Idea: Maybe we can get by with a simplified equality schema here as well.

� Definition 4.6 We say that A and λXα AX are η-equal, (write Aα→β =η

(λXα AX), if), iff X 6∈ free(A).

� Theorem 4.7 η-equality and Extensionality are equivalent

� Proof: We show that η-equality is special case of extensionality; the converse
entailment is trivial

P.1 Let ∀Xα AX = BX, thus AX = BX with ∀E
P.2 λXα AX = λXα BX, therefore A = B with η

P.3 Hence ∀Fα→β ∀Gα→β (∀Xα FX = GX)⇒F = G by twice ∀I.

� Axiom of truth values: ∀Fo ∀Go (F ⇔G)⇔F = G unsolved.

©:Michael Kohlhase 147

The price to pay is that we need to pay for getting rid of the comprehension and extensionality
axioms is that we need a logic that systematically includes the λ-generated names we used in the
transformation as (generic) witnesses for the existential quantifier. Alonzo Church did just that
with his “simply typed λ-calculus” which we will introduce next.
This is all very nice, but what do we actually translate into?

89

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


4.3 Translation for Fragment 3
4.3.1 Translation from F3 into Λ→

Translations for Fragment 3

� We will look at the new translation rules (the rest stay the same).

T1 [XNP, YVP ]S =⇒ VP ′(NP′)
T3 [XVP , Yconj, ZVP ]VP =⇒ conj′(VP ′, VP ′)

T4 [XV t , YNP]VP =⇒ V t
′
(NP′)

� The lexical insertion rules will give us two items each for is, and, and or,
corresponding to the two types we have given them.

word type term case
BEpred (ι→ o) → ι→ o λPι→o P adjective
BEeq ι→ ι→ o λXιYι X = Y verb
and o→ o→ o ∧ S-coord.
and (ι→ o) → (ι→ o) → ι→ o λFι→oGι→oXι F (X)∧G(X) VP -coord.
or o→ o→ o ∨ S-coord.
or (ι→ o) → (ι→ o) → ι→ o λFι→oGι→oXι F (X)∨G(X) VP -coord.
didn′t (ι→ o) → ι→ o λPι→oXι ¬ (PX)

Need to assume the logical connectives as constants of the λ-calculus.

� Note: With these definitions, it is easy to restrict ourselves to binary branching
in the syntax of the fragment.

©:Michael Kohlhase 148

• Definition 4.8 (Translation of non-branching nodes) If ϕ is a non-branching node
with daughter ψ, then the translation ϕ′ of ϕ is given by the translation ψ′ of ψ.

• Definition 4.9 (Translation of branching nodes (Function Application)) If ϕ is a
branching node with daughters ψ and θ, where ψ′ is an expression of type α → β and θ′ is
an expression of type α, then ϕ′ = ψ′θ′.

• Note on notation: We now have higher-order constants formed using words from the frag-
ment, which are not (or are not always) translations of the words from which they are
formed. We thus need some new notation to represent the translation of an expression from
the fragment. We will use the notation introduced above, i.e. john′ is the translation of the
word John. We will continue to use primes to indicate that something is an expression (e.g.
john). Words of the fragment of English should be either underlined or italicized.

Translation Example

� Example 4.10 Ethel howled and screamed to

(λFι→oGι→oXι F (X)∧G(X))howlscreamethel

→β (λGι→oXι howl(X)∧G(X))screamethel

→β (λXι howl(X)∧ scream(X))ethel

→β howl(ethel)∧ scream(ethel)

90

http://creativecommons.org/licenses/by-sa/2.5/


©:Michael Kohlhase 149

Higher-Order Logic without Quantifiers (HOLNQ)

� Problem: Need a logic like PLNQ, but with λ-terms to interpret F3 into.

� Idea: Re-use the syntactical framework of Λ→.

� Definition 4.11 Let HOLNQ be an instance of Λ→, with B T = {ι, o},
∧ ∈ Σo→o→o, ¬ ∈ Σo→o, and = ∈ Σα→α→o for all types α.

� Idea: To extend this to a semantics forHOLNQ, we only have to say something
about the base type o, and the logical constants ¬o→o, ∧o→o→o, and =α→α→o.

� Definition 4.12 We define the semantics of HOLNQ by setting

1) Do = {T,F}; the set of truth values

2) I(¬) ∈ D(o→o), is the function {F 7→ T,T 7→ F}
3) I(∧) ∈ D(o→o→o) is the function with I(∧) @ 〈a, b〉 = T, iff a = T and

b = T.

4) I(=) ∈ D(α→α→o) is the identity relation on Dα.

©:Michael Kohlhase 150

You may be worrying that we have changed our assumptions about the denotations of predicates.
When we were working with PLNQ as our translation language, we assumed that one-place pred-
icates denote sets of individuals, that two-place predicates denote sets of pairs of individuals, and
so on. Now, we have adopted a new translation language, HOLNQ, which interprets all predicates
as functions of one kind or another.

The reason we can do this is that there is a systematic relation between the functions we now
assume as denotations, and the sets we used to assume as denotations. The functions in question
are the characteristic functions of the old sets, or are curried versions of such functions.

Recall that we have characterized sets extensionally, i.e. by saying what their members are. A
characteristic function of a set A is a function which “says” which objects are members of A. It
does this by giving one value (for our purposes, the value 1) for any argument which is a member
of A, and another value, (for our purposes, the value 0), for anything which is not a member of
the set.

Definition 4.13 (Characteristic function of a set) fS is the characteristic function of the set
S iff fS(a) = T if a ∈ S and fS(a) = F if a 6∈ S.

Thus any function in Dι→o will be the characteristic function of some set of individuals. So, for
example, the function we assign as denotation to the predicate run will return the value T for some
arguments and F for the rest. Those for which it returns T correspond exactly to the individuals
which belonged to the set run in our old way of doing things.

Now, consider functions in Dι→ι→o. Recall that these functions are equivalent to two-place
relations, i.e. functions from pairs of entities to truth values. So functions of this kind are
characteristic functions of sets of pairs of individuals.

In fact, any function which ultimately maps an argument to Do is a characteristic function of
some set. The fact that many of the denotations we are concerned with turn out to be characteristic
functions of sets will be very useful for us, as it will allow us to go backwards and forwards between
“set talk” and “function talk,” depending on which is easier to use for what we want to say.

91

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


4.4 Simply Typed λ-Calculus

In this section we will present a logic that can deal with functions – the simply typed λ-calculus.
It is a typed logic, so everything we write down is typed (even if we do not always write the types
down).

Simply typed λ-Calculus (Syntax)

� Signature Σ =
⋃
α∈T Σα (includes countably infinite Signatures ΣSkα of Skolem

contants).

� VT =
⋃
α∈T Vα, such that Vα are countably infinite

� Definition 4.14 We call the set wff α(Σ,VT ) defined by the rules

� Vα ∪Σα⊆wff α(Σ,VT )

� If C ∈ wff α→β(Σ,VT ) and A ∈ wff α(Σ,VT ), then (CA) ∈ wff β(Σ,VT )

� If A ∈ wff α(Σ,VT ), then (λXβ A) ∈ wff β→α(Σ,VT )

the set of well-typed formula e of type α over the signature Σ and use wff T (Σ,VT ) :=⋃
α∈T wff α(Σ,VT ) for the set of all well-typed formulae.

� Definition 4.15 We will call all occurrences of the variable X in A bound
in λX A. Variables that are not bound in B are called free in B.

� Substitutions are well-typed, i.e. σ(Xα) ∈ wff α(Σ,VT ) and capture-avoiding.

� Definition 4.16 (Simply Typed λ-Calculus) The simply typed λ-calculus
Λ→ over a signature Σ has the formulae wff T (Σ,VT ) (they are called λ-terms)
and the following equalities:

� α conversion: (λX A) =α (λY [Y/X](A))

� β conversion: (λX A)B =β [B/X](A)

� η conversion: (λX AX) =η A

©:Michael Kohlhase 151

The intuitions about functional structure of λ-terms and about free and bound variables are
encoded into three transformation rules Λ→: The first rule (α-conversion) just says that we can
rename bound variables as we like. β-conversion codifies the intuition behind function application
by replacing bound variables with argument. The equality relation induced by the η-reduction is
a special case of the extensionality principle for functions (f = g iff f(a) = g(a) for all possible
arguments a): If we apply both sides of the transformation to the same argument – say B and
then we arrive at the right hand side, since (λXα AX)B =β AB.
We will use a set of bracket elision rules that make the syntax of Λ→ more palatable. This makes Λ→

expressions look much more like regular mathematical notation, but hides the internal structure.
Readers should make sure that they can always reconstruct the brackets to make sense of the
syntactic notions below.

Simply typed λ-Calculus (Notations)

� Notation 4.17 (Application is left-associative) We abbreviate (((FA1)A2). . .)An

with FA1. . .An eliding the brackets and further with FAn in a kind of vector

92

http://creativecommons.org/licenses/by-sa/2.5/


notation.

� A stands for a left bracket whose partner is as far right as is consistent with
existing brackets; i.e. ABC abbreviates A(BC).

� Notation 4.18 (Abstraction is right-associative) We abbreviate λX1 λX2 · · ·λXn A · · ·
with λX1. . .Xn A eliding brackets, and further to λXn A in a kind of vector
notation.

� Notation 4.19 (Outer brackets) Finally, we allow ourselves to elide outer
brackets where they can be inferred.

©:Michael Kohlhase 152

Intuitively, λX A is the function f , such that f(B) will yield A, where all occurrences of the
formal parameter X are replaced by B.31 EdN:31

In this presentation of the simply typed λ-calculus we build-in α-equality and use capture-
avoiding substitutions directly. A clean introduction would followed the steps in Subsection 3.1
by introducing substitutions with a substitutability condition like the one in Definition 3.29, then
establishing the soundness of α conversion, and only then postulating defining capture-avoiding
substitution application as in Definition 3.34. The development for Λ→ is directly parallel to the
one for PL1, so we leave it as an exercise to the reader and turn to the computational properties
of the λ-calculus.
Computationally, the λ-calculus obtains much of its power from the fact that two of its three
equalities can be oriented into a reduction system. Intuitively, we only use the equalities in one
direction, i.e. in one that makes the terms “simpler”. If this terminates (and is confluent), then
we can establish equality of two λ-terms by reducing them to normal forms and comparing them
structurally. This gives us a decision procedure for equality. Indeed, we have these properties in
Λ→ as we will see below.

αβη-Equality (Overview)

� reduction with
{
β : (λX A)B→β [B/X](A)
η : (λX AX)→ηA

under =α :
λX A

=α

λY [Y/X](A)

� Theorem 4.20 βη-reduction is well-typed, terminating and confluent in the
presence of =α-conversion.

� Definition 4.21 (Normal Form) We call a λ-term A a normal form (in a
reduction system E), iff no rule (from E) can be applied to A.

� Corollary 4.22 βη-reduction yields unique normal forms (up to α-equivalence).

©:Michael Kohlhase 153

We will now introduce some terminology to be able to talk about λ-terms and their parts.

Syntactic Parts of λ-Terms

� Definition 4.23 (Parts of λ-Terms) We can always write a λ-term in the
form T = λX1. . .Xk HA1 . . .An, where H is not an application. We call

31EdNote: rationalize the semantic macros for syntax!

93

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� H the syntactic head of T

� HA1. . .An the matrix of T, and

� λX1. . .Xk (or the sequence X1, . . . , Xk) the binder of T

� Definition 4.24 Head Reduction always has a unique β redex

(λXn (λY A)B1. . .Bn)→h
β (λXn [B1/Y ](A)B2. . .Bn)

� Theorem 4.25 The syntactic heads of β-normal forms are constant or vari-
ables.

� Definition 4.26 Let A be a λ-term, then the syntactic head of the β-normal
form of A is called the head symbol of A and written as head(A). We call a
λ-term a j-projection, iff its head is the jth bound variable.

� Definition 4.27 We call a λ-term a η-long form, iff its matrix has base type.

� Definition 4.28 η-Expansion makes η-long forms

η
[
(λX

1. . .Xn A)
]

:= (λX
1. . .Xn

λY
1. . .Y m AY 1. . .Y m)

� Definition 4.29 Long βη-normal form, iff it is β-normal and η-long.

©:Michael Kohlhase 154

η long forms are structurally convenient since for them, the structure of the term is isomorphic
to the structure of its type (argument types correspond to binders): if we have a term A of type
αn → β in η-long form, where β ∈ B T , then A must be of the form λXα

n B, where B has type
β. Furthermore, the set of η-long forms is closed under β-equality, which allows us to treat the
two equality theories of Λ→ separately and thus reduce argumentational complexity.

4.5 Computational Properties of λ-Calculus

As we have seen above, the main contribution of the λ-calculus is that it casts the comprehension
and (functional) extensionality axioms in a way that is more amenable to automation in reasoning
systems, since they can be oriented into a confluent and terminating reduction system. In this
Subsection we prove the respective properties. We start out with termination, since we will need
it later in the proof of confluence.

4.5.1 Termination of β-reduction

We will use the termination of β reduction to present a very powerful proof method, called the
“logical relations method”, which is one of the basic proof methods in the repertoire of a proof
theorist, since it can be extended to many situations, where other proof methods have no chance
of succeeding.
Before we start into the termination proof, we convince ourselves that a straightforward induction
over the structure of expressions will not work, and we need something more powerful.

Termination of β-Reduction

� only holds for the typed case
(λX XX)(λX XX)→β (λX XX)(λX XX)

94

http://creativecommons.org/licenses/by-sa/2.5/


� Theorem 4.30 (Typed β-Reduction terminates) For allA ∈ wff α(Σ,VT ),
the chain of reductions from A is finite.

� proof attempts:

� Induction on the structure A must fail, since this would also work for the
untyped case.

� Induction on the type of A must fail, since β-reduction conserves types.

� combined induction on both: Logical Relations [Tait 1967]

©:Michael Kohlhase 155

The overall shape of the proof is that we reason about two relations: SR and LR between
λ-terms and their types. The first is the one that we are interested in, LR(A, α) essentially states
the property that βη reduction terminates at A. Whenever the proof needs to argue by induction
on types it uses the “logical relation” LR, which is more “semantic” in flavor. It coincides with SR
on base types, but is defined via a functionality property.

Relations SR and LR

� Definition 4.31 A is called strongly reducing at type α (write SR(A, α)),
iff each chain β-reductions from A terminates.

� We define a logical relationLR inductively on the structure of the type

� α base type: LR(A, α), iff SR(A, α)

� LR(C, α→ β), iff LR(CA, β) for all A ∈ wff α(Σ,VT ) with LR(A, α).

Proof: Termination Proof

� P.1 LR⊆SR (Lemma 4.33 b))

A ∈ wff α(Σ,VT ) implies LR(A, α) (Theorem 4.37 with σ = ∅)
thus SR(A, α).

P.2 P.3� Lemma 4.32 (SR is closed under subterms) If SR(A, α) and Bβ is a
subterm of A, then SR(B, β).

� Proof Idea: Every infinite β-reduction from B would be one from A.

©:Michael Kohlhase 156

The termination proof proceeds in two steps, the first one shows that LR is a sub-relation of SR,
and the second that LR is total on λ-terms. Togther they give the termination result.
The next result proves two important technical side results for the termination proofs in a joint
induction over the structure of the types involved. The name “rollercoaster lemma” alludes to the
fact that the argument starts with base type, where things are simple, and iterates through the
two parts each leveraging the proof of the other to higher and higher types.

LR⊆SR (Rollercoaster Lemma)

� Lemma 4.33 (Rollercoaster Lemma)

95

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


a) If h is a constant or variable of type αn → α and SR(Ai, αi), then
LR(hAn, α).

b) LR(A, α) implies SR(A, α).

Proof: we prove both assertions by simultaneous induction on α

� P.1.1 α base type:

P.1.1.1.1 a): hAn is strongly reducing, since the Ai are (brackets!)

P.1.1.1.1.2 so LR(hAn, α) as α is a base type (SR = LR)

P.1.1.1.2 b): by definition

α = β → γ:

P.1.2P.1.2.1.1 a): Let LR(B, β).

P.1.2.1.1.2 by IH b) we have SR(B, β), and LR((hAn)B, γ) by IH a)

P.1.2.1.1.3 so LR(hAn, α) by definition.

P.1.2.1.2 b): Let LR(A, α) and Xβ /∈ free(A).

P.1.2.1.2.2 LR(X,β) by IH a) with n = 0, thus LR(AX, γ) by definition.

P.1.2.1.2.3 By IH b) we have SR(AX, γ) and by Lemma 4.32 SR(A, α).

©:Michael Kohlhase 157

The part of the rollercoaster lemma we are really interested in is part b). But part a) will become
very important for the case where n = 0; here it states that constants and variables are LR.
The next step in the proof is to show that all well-formed formulae are LR. For that we need to

prove closure of LR under =β expansion

β-Expansion Lemma

� Lemma 4.34 If LR([B/X](A), α) and LR(B, β) for Xβ 6∈ free(B), then
LR((λXα A)B, α).

� Proof:

P.1 Let α = γi → δ where δ base type and LR(Ci, γi)

P.2 It is sufficient to show that SR(((λX A)B)C, δ), as δ base type

P.3 We have LR([B/X](A)C, δ) by hypothesis and definition of LR.
P.4 thus SR([B/X](A)C, δ), as δ base type.

P.5 in particular SR([B/X](A), α) and SR(Ci, γi) (subterms)

P.6 SR(B, β) by hypothesis and Lemma 4.33

P.7 So an infinite reduction from ((λX A)B)C cannot solely consist of re-
dexes from [B/X](A) and the Ci.

96

http://creativecommons.org/licenses/by-sa/2.5/


P.8 so an infinite reduction from ((λX A)B)C must have the form

((λX A)B)C →∗β ((λX A′)B′)C′

→1
β [B′/X](A′)C′

→∗β . . .

where A→∗βA′, B→∗β B′ and Ci→∗β Ci′

P.9 so we have [B/X](A)→∗β [B′/X](A′)

P.10 so we have the infinite reduction

[B/X](A)C →∗β [B′/X](A′)C′

→∗β . . .

which contradicts our assumption

� Lemma 4.35 (LR is closed under β-expansion)
If C→βD and LR(D, α), so is LR(C, α).

©:Michael Kohlhase 158

Note that this Lemma is one of the few places in the termination proof, where we actually look
at the properties of =β reduction.
We now prove that every well-formed formula is related to its type by LR. But we cannot prove
this by a direct induction. In this case we have to strengthen the statement of the theorem – and
thus the inductive hypothesis, so that we can make the step cases go through. This is common for
non-trivial induction proofs. Here we show instead that every instance of a well-formed formula is
related to its type by LR; we will later only use this result for the cases of the empty substitution,
but the stronger assertion allows a direct induction proof.

A ∈ wff α(Σ,VT ) implies LR(A, α)

� Definition 4.36 We write LR(σ) if LR(σ(Xα), α) for all X ∈ supp(σ).

� Theorem 4.37 If A ∈ wff α(Σ,VT ), then LR(σ(A), α) for any substitution
σ with LR(σ).

� Proof: by induction on the structure of A

P.1.1 A = Xα ∈ supp(σ): then LR(σ(A), α) by assumption

P.1.2 A = X /∈ supp(σ): then σ(A) = A and LR(A, α) by Lemma 4.33
with n = 0.

P.1.3 A ∈ Σ: then σ(A) = A as above

P.1.4 A = BC: by IH LR(σ(B), γ → α) and LR(σ(C), γ)

P.1.4.2 so LR(σ(B)σ(C), α) by definition of LR.

P.1.5 A = λXβ Cγ : Let LR(B, β) and θ := σ, [B/X], then θ meets the
conditions of the IH.

P.1.5.2 Moreover σ(λXβ Cγ)B→β σ, [B/X](C) = θ(C).

P.1.5.3 Now, LR(θ(C), γ) by IH and thus LR(σ(A)B, γ) by Lemma 4.35.

97

http://creativecommons.org/licenses/by-sa/2.5/


P.1.5.4 So LR(σ(A), α) by definition of LR.

©:Michael Kohlhase 159

In contrast to the proof of the roller coaster Lemma above, we prove the assertion here by an
induction on the structure of the λ-terms involved. For the base cases, we can directly argue with
the first assertion from Lemma 4.33, and the application case is immediate from the definition of
LR. Indeed, we defined the auxiliary relation LR exclusively that the application case – which
cannot be proven by a direct structural induction; remember that we needed induction on types
in Lemma 4.33– becomes easy.

The last case on λ-abstraction reveals why we had to strengthen the inductive hypothesis: =β

reduction introduces a substitution which may increase the size of the subterm, which in turn
keeps us from applying the inductive hypothesis. Formulating the assertion directly under all
possible LR substitutions unblocks us here.
This was the last result we needed to complete the proof of termiation of β-reduction.

Remark: If we are only interested in the termination of head reductions, we can get by with a
much simpler version of this lemma, that basically relies on the uniqueness of head β reduction.

Closure under Head β-Expansion (weakly reducing)

� Lemma 4.38 (LR is closed under head β-expansion) IfC→h
β D and

LR(D, α), so is LR(C, α).

� Proof: by induction over the structure of α

P.1.1 α base type:

P.1.1.1 we have SR(D, α) by definition

P.1.1.2 so SR(C, α), since head reduction is unique

P.1.1.3 and thus LR(C, α).

P.1.2 α = β → γ:

P.1.2.1 Let LR(B, β), by definition we have LR(DB, γ).

P.1.2.2 but CB→h
β DB, so LR(CB, γ) by IH

P.1.2.3 and LR(C, α) by definition.

Note: This result only holds for weak reduction (any chain of β head reductions
terminates) for strong reduction we need a stronger Lemma.

©:Michael Kohlhase 160

For the termination proof of head β-reduction we would just use the same proof as above, just
for a variant of SR, where SRAα that only requires that the head reduction sequence out of
A terminates. Note that almost all of the proof except Lemma 4.32 (which holds by the same
argument) is invariant under this change. Indeed Rick Statman uses this observation in [Sta85] to
give a set of conditions when logical relations proofs work.

4.5.2 Confluence of βη Conversion

We now turn to the confluence for βη, i.e. that the order of reductions is irrelevant. This entails

98

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


the uniqueness of βη normal forms, which is very useful.
Intuitively confluence of a relation R means that “anything that flows apart will come together
again.” – and as a consequence normal forms are unique if they exist. But there is more than one
way of formalizing that intuition.

� Confluence

� Definition 4.39 (Confluence) Let R⊆A2 be a relation on a set A, then
we say that

� has a diamond property, iff for every a, b, c ∈ A with a→1
R b a→1

R c there
is a d ∈ A with b→1

R d and c→1
R d.

� is confluent, iff for every a, b, c ∈ A with a→∗R b a→∗R c there is a d ∈ A
with b→∗R d and c→∗R d.

� weakly confluent iff for every a, b, c ∈ A with a →1
R b a →1

R c there is a
d ∈ A with b→∗R d and c→∗R d.

diamond confluent weakly
property confluent

a

b c

d

a

b c

d

* *

* *

a

b c

d* *

©:Michael Kohlhase 161

The diamond property is very simple, but not many reduction relations enjoy it. Confluence is
the notion that that directly gives us unique normal forms, but is difficult to prove via a digram
chase, while weak confluence is amenable to this, does not directly give us confluence.
We will now relate the three notions of confluence with each other: the diamond property (some-
times also called strong confluence) is stronger than confluence, which is stronger than weak
confluence

Relating the notions of confluence

� Observation 4.40 If a rewrite relation has a diamond property, then it is
weakly confluent.

� Theorem 4.41 If a rewrite relation has a diamond property, then it is con-
fluent.

� Proof Idea: by a tiling argument, composing 1 × 1 diamonds to an n × m
diamond.

� Theorem 4.42 (Newman’s Lemma) If a rewrite relation is terminating
and weakly confluent, then it is also confluent.

©:Michael Kohlhase 162

Note that Newman’s Lemma cannot be proven by a tiling argument since we cannot control the
growth of the tiles. There is a nifty proof by Gérard Huet [Hue80] that is worth looking at.

99

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


After this excursion into the general theory of reduction relations, we come back to the case at
hand: showing the confluence of βη-reduction.
η is very well-behaved – i.e. confluent and terminating

η-Reduction ist terminating and confluent

� Lemma 4.43 η-Reduction ist terminating

� Proof: by a simple counting argument

� Lemma 4.44 η-reduction is confluent.

� Proof Idea: We show that η-reduction has the diamond property by diagram
chase over

λX AX

A λX A′X

A′

where A→ηA′. Then the assertion follows by Theorem 4.41.

©:Michael Kohlhase 163

For β-reduction the situation is a bit more involved, but a simple diagram chase is still sufficient
to prove weak confluence, which gives us confluence via Newman’s Lemma

β is confluent

� Lemma 4.45 β-Reduction is weakly confluent.

� Proof Idea: by diagram chase over

(λX A)B

(λX A′)B (λX A)B′ [B/X](A)

(λX A′)B′ [B′/X](A)

[B′/X](A′)

*

� Corollary 4.46 β-Reduction is confluent.

� Proof Idea: by Newman’s Lemma.

©:Michael Kohlhase 164

There is one reduction in the diagram in the proof of Lemma 4.45 which (note that B can occur
multiple times in [B/X](A)) is not necessary single-step. The diamond property is broken by the

100

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


outer two reductions in the diagram as well.
We have shown that the β and η reduction relations are terminating and confluent and terminating
individually, now, we have to show that βη is a well. For that we introduce a new concept.

Commuting Relations
� Definition 4.47 Let A be a set, then we say that rela-
tions R ∈ A2 and S ∈ A2 commute, if X →R Y and
X →S Z entail the existence of a W ∈ A with Y →S W
and Z →R W .

� Observation 4.48 If R and S commute, then →R and
→S do as well.

X

Y Z

W

R S

S R

� Observation 4.49 R is confluent, if R commutes with itself.

� Lemma 4.50 If R and S are terminating and confluent relations such that
→∗R and →∗S commute, then →∗R∪S is confluent.

� Proof Sketch: As R and S commute, we can reorder any reduction sequence
so that all R-reductions precede all S-reductions. As R is terminating and
confluent, the R-part ends in a unique normal form, and as S is normalizing it
must lead to a unique normal form as well.

©:Michael Kohlhase 165

This directly gives us our goal.

β η is confluent

� Lemma 4.51→∗β and →∗η commute.

� Proof Sketch: diagram chase

©:Michael Kohlhase 166

4.6 The Semantics of the Simply Typed λ-Calculus

The semantics of Λ→ is structured around the types. Like the models we discussed before, a model
(we call them “algebras”, since we do not have truth values in Λ→) is a pair 〈D, I〉, where D is the
universe of discourse and I is the interpretation of constants.

Semantics of Λ→

� Definition 4.52 We call a collection DT := {Dα |α ∈ T } a typed collection
(of sets) and a collection fT : DT → ET , a typed function, iff fα : Dα → Eα.

� Definition 4.53 A typed collectionDT is called a frame, iffDα→β ⊆Dα → Dβ

� Definition 4.54 Given a frame DT , and a typed function I : Σ → D, then
we call Iϕ : wff T (Σ,VT )→ D the value function induced by I, iff

101

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� Iϕ|VT = ϕ, Iϕ|Σ = I
� Iϕ(AB) = Iϕ(A)(Iϕ(B))

� Iϕ(λXα A) is that function f ∈ Dα→β , such that f(a) = Iϕ,[a/X](A)
for all a ∈ Dα

� Definition 4.55 We call a frame 〈D, I〉 comprehension-closed or a Σ-algebra,
iff Iϕ : wff T (Σ,VT )→ D is total. (every λ-term has a value)

©:Michael Kohlhase 167

4.6.1 Soundness of the Simply Typed λ-Calculus

We will now show is that αβη-reduction does not change the value of formulae, i.e. if A =αβη B,
then Iϕ(A) = Iϕ(B), for all D and ϕ. We say that the reductions are sound. As always, the main
tool for proving soundess is a substitution value lemma. It works just as always and verifies that
we the definitions are in our semantics plausible.

Substitution Value Lemma for λ-Terms

� Lemma 4.56 (Substitution Value Lemma) LetA andB be terms, then
Iϕ([B/X](A)) = Iψ(A), where ψ = ϕ, [Iϕ(B)/X]

� Proof: by induction on the depth of A

P.1 we have five cases

P.1.1 A = X: Then Iϕ([B/X](A)) = Iϕ([B/X](X)) = Iϕ(B) = ψ(X) =
Iψ(X) = Iψ(A).

P.1.2 A = Y 6= X and Y ∈ VT : then Iϕ([B/X](A)) = Iϕ([B/X](Y )) =
Iϕ(Y ) = ϕ(Y ) = ψ(Y ) = Iψ(Y ) = Iψ(A).

P.1.3 A ∈ Σ: This is analogous to the last case.

P.1.4 A = CD: then Iϕ([B/X](A)) = Iϕ([B/X](CD)) = Iϕ([B/X](C)[B/X](D)) =
Iϕ([B/X](C))(Iϕ([B/X](D))) = Iψ(C)(Iψ(D)) = Iψ(CD) = Iψ(A)

P.1.5 A = λYα C:

P.1.5.1 We can assume that X 6= Y and Y /∈ free(B)

P.1.5.2 Thus for all a ∈ Dα we have Iϕ([B/X](A))(a) = Iϕ([B/X](λY C))(a) =
Iϕ(λY [B/X](C))(a) = Iϕ,[a/Y ]([B/X](C)) = Iψ,[a/Y ](C) = Iψ(λY C)(a) =
Iψ(A)(a)

©:Michael Kohlhase 168

Soundness of αβη-Equality

� Theorem 4.57 Let A := 〈D, I〉 be a Σ-algebra and Y 6∈ free(A), then
Iϕ(λX A) = Iϕ(λY [Y/X]A) for all assignments ϕ.

102

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� Proof: by substitution value lemma

Iϕ(λY [Y/X]A) @ a = Iϕ,[a/Y ]([Y/X](A))
= Iϕ,[a/X](A)
= Iϕ(λX A) @ a

� Theorem 4.58 If A := 〈D, I〉 is a Σ-algebra and X not bound in A, then
Iϕ((λX A)B) = Iϕ([B/X](A)).

� Proof: by substitution value lemma again

Iϕ((λX A)B) = Iϕ(λX A) @ Iϕ(B)
= Iϕ,[Iϕ(B)/X](A)
= Iϕ([B/X](A))

©:Michael Kohlhase 169

Soundness of αβη (continued)

� Theorem 4.59 If X 6∈ free(A), then Iϕ(λX AX) = Iϕ(A) for all ϕ.

� Proof: by calculation

Iϕ(λX AX) @ a = Iϕ,[a/X](AX)
= Iϕ,[a/X](A) @ Iϕ,[a/X](X)
= Iϕ(A) @ Iϕ,[a/X](X) as X 6∈ free(A).
= Iϕ(A) @ a

� Theorem 4.60 αβη-equality is sound wrt. Σ-algebras. (if A =αβη B, then
Iϕ(A) = Iϕ(B) for all assignments ϕ)

©:Michael Kohlhase 170

4.6.2 Completeness of αβη-Equality

We will now show is that αβη-equality is complete for the semantics we defined, i.e. that whenever
Iϕ(A) = Iϕ(B) for all variable assignments ϕ, then A =αβη B. We will prove this by a model
existence argument: we will construct a modelM := 〈D, I〉 such that if A 6=αβη B then Iϕ(A) 6=
Iϕ(B) for some ϕ.
As in other completeness proofs, the model we will construct is a “ground term model”, i.e. a
model where the carrier (the frame in our case) consists of ground terms. But in the λ-calculus,
we have to do more work, as we have a non-trivial built-in equality theory; we will construct the
“ground term model” from sets of normal forms. So we first fix some notations for them.

Normal Forms in the simply typed λ-calculus

� Definition 4.61 We call a term A ∈ wff T (Σ,VT ) a β normal form iff there
is no B ∈ wff T (Σ,VT ) with A→β B.

We call N a β normal form of A, iff N is a β-normal form and A→βN.

103

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


We denote the set of β-normal forms with wff T (Σ,VT )
y
β η

.

� We have just proved that βη-reduction is terminating and confluent, so we
have

� Corollary 4.62 (Normal Forms) Every A ∈ wff T (Σ,VT ) has a unique
β normal form (βη, long βη normal form), which we denote by A↓β (A↓β η
A↓lβ η)

©:Michael Kohlhase 171

The term frames will be a quotient spaces over the equality relations of the λ-calculus, so we
introduce this construction generally.

Frames and Quotients

� Definition 4.63 Let D be a frame and ∼ a typed equivalence relation on D,
then we call ∼ a congruence on D, iff f ∼ f ′ and g ∼ g′ imply f(g) ∼ f ′(g′).

� Definition 4.64 We call a congruence ∼ functional, iff for all f, g ∈ Dα→β
the fact that f(a) ∼ g(a) holds for all a ∈ Dα implies that f ∼ g.

� Example 4.65 =β (=βη) is a (functional) congruence on cwff T (Σ) by def-
inition.

� Theorem 4.66 Let D be a Σ-frame and ∼ a functional congruence on D,
then the quotient space D/∼ is a Σ-frame.

� Proof:

P.1 D/∼ = {[f ]∼ | f ∈ D}, define [f ]∼([a]∼) := [f(a)]∼.

P.2 This only depends on equivalence classes: Let f ′ ∈ [f ]∼ and a′ ∈ [a]∼.

P.3 Then [f(a)]∼ = [f ′(a)]∼ = [f ′(a′)]∼ = [f(a′)]∼

P.4 To see that we have [f ]∼ = [g]∼, iff f ∼ g, iff f(a) = g(a) since ∼ is
functional.

P.5 This is the case iff [f(a)]∼ = [g(a)]∼, iff [f ]∼([a]∼) = [g]∼([a]∼) for all
a ∈ Dα and thus for all [a]∼ ∈ D/∼.

©:Michael Kohlhase 172

To apply this result, we have to establish that βη-equality is a functional congruence.
We first establish βη as a functional congruence on wff T (Σ,VT ) and then specialize this result to
show that is is also functional on cwff T (Σ) by a grounding argument.

βη-Equivalence as a Functional Congruence

� Lemma 4.67 βη-equality is a functional congruence on wff T (Σ,VT ).

� Proof: Let AC =βη BC for all C and X ∈ (Vγ\(free(A)∪ free(B))).

P.1 then (in particular) AX =βη BX, and

P.2 (λX AX) =βη (λX BX), since βη-equality acts on subterms.

104

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


P.3 By definition we have A=η(λXα AX)=βη(λXα BX)=ηB.

� Definition 4.68 We call an injective substitution σ : free(C)→ Σ a ground-
ing substitution for C ∈ wff T (Σ,VT ), iff no σ(X) occurs in C.

Observation: They always exist, since all Σα are infinite and free(C) is finite.

�� Theorem 4.69 βη-equality is a functional congruence on cwff T (Σ).

� Proof: We use Lemma 4.67

P.1 Let A,B ∈ cwff (α→β)(Σ), such that A 6=βη B.

P.2 As βη is functional on wff T (Σ,VT ), there must be aC withAC 6=βη BC.

P.3 Now let C′ := σ(C), for a grounding substitution σ.

P.4 Any βη conversion sequence for AC′ 6=βη BC′ induces one for AC 6=βη

BC.

P.5 Thus we have shown that A 6=βη B entails AC′ 6=βη BC′.

©:Michael Kohlhase 173

Note that: the result for cwff T (Σ) is sharp. For instance, if Σ = {cι}, then (λX X) 6=βη (λX c),
but (λX X)c=βηc=βη(λX c)c, as {c} = cwff ι(Σ) (it is a relatively simple exercise to extend
this problem to more than one constant). The problem here is that we do not have a constant
dι that would help distinguish the two functions. In wff T (Σ,VT ) we could always have used a
variable.
This completes the preparation and we can define the notion of a term algebra, i.e. a Σ-algebra
whose frame is made of βη-normal λ-terms.

A Herbrand Model for Λ→

� Definition 4.70 We call Tβη := 〈cwff T (Σ)
y
β η
, Iβ η〉 the Σ term algebra,

if Iβ η = IdΣ.

� The name “term algebra” in the previous definition is justified by the following

� Theorem 4.71 Tβη is a Σ-algebra

� Proof: We use the work we did above

P.1 Note that cwff T (Σ)
y
β η

= cwff T (Σ)/=βη and thus a Σ-frame by Theo-
rem 4.66 and Lemma 4.67.

P.2 So we only have to show that the value function Iβ η = IdΣ is total.

P.3 Let ϕ be an assignment into cwff T (Σ)
y
β η

.

P.4 Note that σ := (ϕ|free(A)) is a substitution, since free(A) is finite.

P.5 A simple induction on the structure of A shows that Iβ ηϕ (A) = σ(A)
y
β η

.

P.6 So the value function is total since substitution application is.

©:Michael Kohlhase 174

And as always, once we have a term model, showing completeness is a rather simple exercise.

105

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


We can see that αβη-equality is complete for the class of Σ-algebras, i.e. if the equation A = B
is valid, then A =αβη B. Thus αβη equivalence fully characterizes equality in the class of all
Σ-algebras.

Completetness of αβη-Equality

� Theorem 4.72 A = B is valid in the class of Σ-algebras, iff A =αβη B.

� Proof: For A, B closed this is a simple consequence of the fact that Tβη is a
Σ-algebra.

P.1 If A = B is valid in all Σ-algebras, it must be in Tβη and in particular
A↓β η = Iβ η(A) = Iβ η(B) = B↓β η and therefore A =αβη B.

P.2 If the equation has free variables, then the argument is more subtle.

P.3 Let σ be a grounding substitution for A and B and ϕ the induced variable
assignment.

P.4 Thus Iβ ηϕ(A) = Iβ ηϕ(B) is the βη-normal form of σ(A) and σ(B).

P.5 Since ϕ is a structure preserving homomorphism on well-formed formulae,
ϕ−1(Iβ ηϕ(A)) is the is the βη-normal form of both A and B and thus
A =αβη B.

©:Michael Kohlhase 175

Theorem 4.72 and Theorem 4.60 complete our study of the sematnics of the simply-typed λ-
calculus by showing that it is an adequate logic for modeling (the equality) of functions and their
applications.

4.7 Simply Typed λ-Calculus via Inference Systems

Now, we will look at the simply typed λ-calculus again, but this time, we will present it as an
inference system for well-typedness jugdments. This more modern way of developing type theories
is known to scale better to new concepts.

Simply Typed λ-Calculus as an Inference System: Terms

� Idea: Develop the λ-calculus in two steps

� A context-free grammar for “raw λ-terms” (for the structure)

� Identify the well-typed λ-terms in that (cook them until well-typed)

� Definition 4.73 A grammar for the raw terms of the simply typed λ-calculus:

α :== c | α→ α
Σ :== · | Σ, [c : type] | Σ, [c : α]
Γ :== · | Γ, [x : α]
A :== c | X | A1A2 | λXα A

� Then: Define all the operations that are possible at the “raw terms level”, e.g.
realize that signatures and contexts are partial functions to types.

106

http://creativecommons.org/licenses/by-sa/2.5/


©:Michael Kohlhase 176

Simply Typed λ-Calculus as an Inference System: Judgments

� Definition 4.74 Judgments make statements about complex properties of
the syntactic entities defined by the grammar.

� Definition 4.75 Judgments for the simply typed λ-calculus

` Σ : sig Σ is a well-formed signature
Σ ` α : type α is a well-formed type given the type assumptions in Σ
Σ ` Γ : ctx Γ is a well-formed context given the type assumptions in Σ
Γ `Σ A : α A has type α given the type assumptions in Σ and Γ

©:Michael Kohlhase 177

Simply Typed λ-Calculus as an Inference System: Rules

� A ∈ wff α(Σ,VT ), iff Γ `Σ A : α derivable in

Σ ` Γ : ctx Γ(X) = α

Γ `Σ X : α
wff:var

Σ ` Γ : ctx Σ(c) = α

Γ `Σ c : α
wff:const

Γ `Σ A : β → α Γ `Σ B : β

Γ `Σ AB : α
wff:app

Γ, [X : β] `Σ A : α

Γ `Σ λXβ A : β → α
wff:abs

Oops: this looks surprisingly like a natural deduction calculus. (; Curry
Howard Isomorphism)

�� To be complete, we need rules for well-formed signatures, types and contexts

` · : sig
sig:empty

` Σ : sig

` Σ, [α : type] : sig
sig:type

` Σ : sig Σ ` α : type

` Σ, [c : α] : sig
sig:const

Σ ` α : type Σ ` β : type

Σ ` α→ β : type
typ:fn

` Σ : sig Σ(α) = type

Σ ` α : type
typ:start

` Σ : sig

Σ ` · : ctx
ctx:empty

Σ ` Γ : ctx Σ ` α : type

Σ ` Γ, [X : α] : ctx
ctx:var

©:Michael Kohlhase 178

Example: A Well-Formed Signature

� Let Σ := [α : type], [f : α→ α→ α], then Σ is a well-formed signature, since

107

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


we have derivations A and B

` · : sig
sig:type

` [α : type] : sig

A [α : type](α) = type
typ:start

[α : type] ` α : type

and with these we can construct the derivation C

A

B
B B

typ:fn
[α : type] ` α→ α : type

typ:fn
[α : type] ` α→ α→ α : type

sig:const
` Σ : sig

©:Michael Kohlhase 179

Example: A Well-Formed λ-Term

� using Σ from above, we can show that Γ := [X : α] is a well-formed context:

C ctx:empty
Σ ` · : ctx

C Σ(α) = type
typ:start

Σ ` α : type
ctx:var

Σ ` Γ : ctx

We call this derivation G and use it to show that

� λXα fXX is well-typed and has type α→ α in Σ. This is witnessed by the
type derivation

C Σ(f) = α→ α→ α
wff:const

Γ `Σ f : α→ α→ α

G
wff:var

Γ `Σ X : α
wff:app

Γ `Σ fX : α→ α

G
wff:var

Γ `Σ X : α
wff:app

Γ `Σ fXX : α
wff:abs

· `Σ λXα fXX : α→ α

©:Michael Kohlhase 180

β η-Equality by Inference Rules: One-Step Reduction

� One-step Reduction (+ ∈ {α, β, η})

108

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Γ `Σ A : α Γ `Σ B : β

Γ `Σ (λX A)B→1
β [B/X](A)

wffβ:top

Γ `Σ A : β → α X 6∈ dom(Γ)

Γ `Σ λX AX →1
η A

wffη:top

Γ `Σ A→1
+ B Γ `Σ AC : α

Γ `Σ AC→1
+ BC

tr:appfn

Γ `Σ A→1
+ B Γ `Σ CA : α

Γ `Σ CA→1
+ CB

tr:apparg

Γ, [X : α] `Σ A→1
+ B

Γ `Σ λX A→1
+ λX B

tr:abs

©:Michael Kohlhase 181

β η-Equality by Inference Rules: Multi-Step Reduction

� Multi-Step-Reduction (+ ∈ {α, β, η})

Γ `Σ A→1
+ B

Γ `Σ A→∗+ B
ms:start

Γ `Σ A : α

Γ `Σ A→∗+ A
ms:ref

Γ `Σ A→∗+ B Γ `Σ B→∗+ C

Γ `Σ A→∗+ C
ms:trans

� Congruence Relation
Γ `Σ A→∗+ B

Γ `Σ A =+ B
eq:start

Γ `Σ A =+ B

Γ `Σ B =+ A
eq:sym

Γ `Σ A =+ B Γ `Σ B =+ C

Γ `Σ A =+ C
eq:trans

©:Michael Kohlhase 182

5 Fragment 4: Noun Phrases and Quantification

5.1 Overview/Summary so far

Where we started: A VP -less fragment and PLNQ.:

PLNQ Fragment of English
Syntax: Definition of wffs Syntax: Definition of allowable sentences
Semantics: Model theory SEMANTICS BY TRANSLATION

What we did:

• Tested the translation by testing predictions: semantic tests of entailment.

• More testing: syntactic tests of entailment. For this, we introduced the model generation
calculus. We can make this move from semantic proofs to syntactic ones safely, because we
know that PLNQ is sound and complete.

• Moving beyond semantics: Used model generation to predict interpretations of semantically
under-determined sentence types.

109

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Where we are now: A fragment with a VP and HOLNQ.: We expanded the fragment and began
to consider data which demonstrate the need for a VP in any adequate syntax of English, and the
need for connectives which connect VP s and other expression types. At this point, the resources
of PLNQ no longer sufficed to provide adequate compositional translations of the fragment. So we
introduced a new translation language, HOLNQ. However, the general picture of the table above
does not change; only the translation language itself changes.
Some discoveries:

• The task of giving a semantics via translation for natural language includes as a subtask the
task of finding an adequate translation language.

• Given a typed language, function application is a powerful and very useful tool for modeling
the derivation of the interpretation of a complex expression from the interpretations of
its parts and their syntactic arrangement. To maintain a transparent interface between
syntax and semantics, binary branching is preferable. Happily, this is supported by syntactic
evidence.

• Syntax and semantics interact: Syntax forces us to introduce VP . The assumption of com-
positionality then forces us to translate and interpret this new category.

• We discovered that the “logical operators” of natural language can’t always be translated
directly by their formal counterparts. Their formal counterparts are all sentence connectives;
but English has versions of these connectives for other types of expressions. However, we can
use the familiar sentential connectives to derive appropriate translations for the differently-
typed variants.

Some issues about translations: HOLNQ provides multiple syntactically and semantically equiv-
alent versions of many of its expressions. For example:

1) Let run be an HOLNQ constant of type ι→ o. Then run = λX run(X)

2) Let love be an HOLNQ constant of type ι→ ι→ o. Then love = λX λY love(X,Y )

3) Similarly, love(a) = λY love(a, Y )

4) And love(jane, george) = ((λX λY love(X,Y ))jane)george

Logically, both sides of the equations are considered equal, since η-equality (remember (λX AX)→ηA,
if X 6∈ free(A)) is built into HOLNQ. In fact all the right-hand sides are η-expansions of the left-
hand sides. So you can use both, as you choose in principle.

But practically, you like to know which to give when you are asked for a translation? The
answer depends on what you are using it for. Let’s introduce a distinction between reduced
translations and unreduced translations. An unreduced translation makes completely explicit the
type assignment of each expression and the mode of composition of the translations of complex
expressions, i.e. how the translation is derived from the translations of the parts. So, for example,
if you have just offered a translation for a lexical item (say, and as a V t connective), and now
want to demonstrate how this lexical item works in a sentence, give the unreduced translation of
the sentence in question and then demonstrate that it reduces to the desired reduced version.

The reduced translations have forms to which the deduction rules apply. So always use reduced
translations for input in model generation: here, we are assuming that we have got the translation
right, and that we know how to get it, and are interested in seeing what further deductions can
be performed.
Where we are going: We will continue to enhance the fragment both by introducing additional
types of expressions and by improving the syntactic analysis of the sentences we are dealing with.
This will require further enrichments of the translation language. Next steps:

• Analysis of NP.

110



• Treatment of adjectives.

• Quantification

5.2 Fragment 4

New Data (more Noun Phrases)

� We want to be able to deal with the following sentences (without the “the-NP”
trick)

1) Peter loved the cat.

2) but not *Peter loved the the cat.

3) John killed a cat with a hammer.

4) Peter loves every cat.

5) Every man loves a woman.

©:Michael Kohlhase 183

New Grammar in Fragment 4 (Common Noun Phrases)

� To account for the syntax we extend the functionality of noun phrases.

� Definition 5.1 F4 adds the rules on the right to F3 (on the left):

S1. S → NP, VP+fin

S2. S → S,Sconj

V1. VP±fin → V i±fin
V2. VP±fin → V t±fin,CNP
V3. VP±fin → VP±fin,VPconj±fin
V4. VP+fin → BE=,NP
V5. VP+fin → BEpred,Adj.
V6. VP+fin → didn’t VP−fin
N1. NP → Npr

N2. NP → Pron

N3. NP → (Det) CNP

N4. CNP → N
N5. CNP → PP
P1. PP → P,NP
S3. Sconj → conj, S
V4. VPconj±fin → conj, VP±fin
L1. P → {with,of,. . . }

� Definition 5.2 A common noun is a
noun that describes a type, for example
woman, or philosophy rather than an in-
dividual, such as Amelia Earhart (proper
name).

©:Michael Kohlhase 184

Notes:

• Parentheses indicate optionality of a constituent.

• We assume appropriate lexical insertion rules without specification.

If we assume that ∀X boy(X)⇒ run(X) is an adequate translation of Every boy runs, and
∃X boy(X)∧ run(X) one for Some boy runs, Then we obtain the translations of the determiners
by by straightforward β-expansion.

Translation of Determiners and Quantifiers

111

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� Idea: We establish the semantics of quantifying determiners by β-expansion.

1) assume that we are translating into a λ-calculus with quantifiers and that
∀X boy(X)⇒ run(X) translates Every boy runs, and ∃X boy(X)∧ run(X)
for Some boy runs

2) ∀∀ := (λPι→oQι→o (∀X P (X)⇒Q(X))) for every (subset relation)

3) ∃∃ := (λPι→oQι→o (∃X P (X)∧Q(X))) for some (nonempty
intersection)

� Problem: Linguistic Quantifiers take two arguments (restriction and scope),
logical ones only one! (in logics, restriction is the universal set)

� We cannot treat the with regular quantifiers(new logical constant; see below)

� We translate the to τ := (λPι→oQι→o Q(ιP )), where ι is a new operator
that given a set returns its (unique) member.

� Example 5.3 This translates The pope spoke to τ(pope, speak), which β-
reduces to speak(ιpope).

©:Michael Kohlhase 185

Note that if we interpret objects of type ι → o as sets, then the denotations of boy and run are
sets (of boys and running individuals). Then the denotation of every is a relation between sets;
more specifically the subset relation. As a consequence, All boys run is true if the set of boys is
a subset of the set of running individuals. For some the relation is the non-empty intersection
relation, some boy runs is true if the intersection of set of boys and the set of running individuals
is non-empty.
Note that there is a mismatch in the “arity” of linguistic and logical notions of quantifiers here.
Linguistic quantifiers take two arguments, the restriction (in our example boy) and the predication
(run). The logical quantifiers only take one argument, the predication A in ∀X A. In a way, the
restriction is always the universal set. In our model, we have modeled the linguistic quantifiers by
adding the restriction with a connective (implication for the universal quantifier and conjunction
for the existential one).

5.3 Quantifiers and Equality in Higher-Order Logic

There is a more elegant way to treat quantifiers in HOL→. It builds on the realization that
the λ-abstraction is the only variable binding operator we need, quantifiers are then modeled
as second-order logical constants. Note that we do not have to change the syntax of HOL→ to
introduce quantifiers; only the “lexicon”, i.e. the set of logical constants. Since Πα and Σα are
logical constants, we need to fix their semantics.

Higher-Order Abstract Syntax

� Idea: In HOL→, we already have variable binder: λ, use that to treat quan-
tification.

� Definition 5.4 We assume logical constants Πα and Σα of type (α→ o)→
o.

Regain quantifiers as abbreviations:

(∀Xα A) :=
α

Π(λXα A) (∃Xα A) :=
α

Σ(λXα A)

112

http://creativecommons.org/licenses/by-sa/2.5/


� Definition 5.5 We must fix the semantics of logical constants:

1) I(Πα)(p) = T, iff p(a) = T for all a ∈ Dα (i.e. if p is the universal set)

2) I(Σα)(p) = T, iff p(a) = T for some a ∈ Dα (i.e. iff p is non-empty)

� With this, we re-obtain the semantics we have given for quantifiers above:

Iϕ(∀Xι A) = Iϕ(
ι

Π(λXι A)) = I(
ι

Π)(Iϕ(λXι A)) = T

iff Iϕ(λXι A)(a) = I[a/X],ϕ(A) = T for all a ∈ Dα

©:Michael Kohlhase 186

Equality

� “Leibniz equality” (Indiscernability) QαAαBα = ∀Pα→o PA⇔PB

� not that ∀Pα→o PA⇒PB (get the other direction by instantiating P with
Q, where QX⇔¬PX)

� Theorem 5.6 IfM = 〈D, I〉 is a standard model, then Iϕ(Qα) is the iden-
tity relation on Dα.

� Notation 5.7 We write A = B for QAB (A and B are equal, iff there is
no property P that can tell them apart.)

� Proof:

P.1 Iϕ(QAB) = Iϕ(∀P PA⇒PB) = T, iff
Iϕ,[r/P ](PA⇒PB) = T for all r ∈ Dα→o.

P.2 For A = B we have Iϕ,[r/P ](PA) = r(Iϕ(A)) = F or Iϕ,[r/P ](PB) =
r(Iϕ(B)) = T.

P.3 Thus Iϕ(QAB) = T.

P.4 Let Iϕ(A) 6= Iϕ(B) and r = {Iϕ(A)}
P.5 so r(Iϕ(A)) = T and r(Iϕ(B)) = F

P.6 Iϕ(QAB) = F, as Iϕ,[r/P ](PA⇒PB) = F, since Iϕ,[r/P ](PA) =
r(Iϕ(A)) = T and Iϕ,[r/P ](PB) = r(Iϕ(B)) = F.

©:Michael Kohlhase 187

Alternative: HOL=

� only one logical constant qα ∈ Σα→α→o with I(qα)(a, b) = T, iff a = b.

� Definitions (D) and Notations (N)

113

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


N Aα = Bα for qαAαBα

D T for qo = qo

D F for (λXo T ) = (λXo Xo)
D Πα for q(α→o)(λXα T )
N ∀Xα A for Πα(λXα A)
D ∧ for λXo λYo (λGo→o→o GT T ) = (λGo→o→o GXY )
N A∧B for ∧AoBo

D ⇒ for λXo λYo X = X ∧Y
N A⇒B for ⇒AoBo

D ¬ for qoF
D ∨ for λXo λYo ¬ (¬X ∧¬Y )
N A∨B for ∨AoBo

D ∃Xα Ao for ¬ (∀Xα ¬A)
N Aα 6= Bα for ¬ (qαAαBα)

� yield the intuitive meanings for connectives and quantifiers.

©:Michael Kohlhase 188

We have managed to deal with the determiners every and some in a compositional fashion, using
the familiar first order quantifiers. However, most natural language determiners cannot be treated
so straightforwardly. Consider the determiner most, as in:

1) Most boys run.

There is clearly no simple way to translate this using ∀ or ∃ in any way familiar from first order
logic. As we have no translation at hand, then, let us consider what the truth conditions of this
sentence are.

Generalized Quantifiers

� Problem: What about Most boys run.: linguistically most behaves exactly
like every or some.

� Idea: Most boys run is true just in case the number of boys who run is greater
than the number of boys who do not run.

#(Iϕ(boy)∩Iϕ(run)) > #(Iϕ(boy)\Iϕ(run))

� Definition 5.8 #(A)>#(B), iff there is no surjective function from B to A,
so we can define

most′ := (λAB ¬ (∃F ∀X A(X)∧¬B(X)⇒ (∃Y A(Y )∧B(Y )∧X = F (Y ))))

©:Michael Kohlhase 189

The NP most boys thus must denote something which, combined with the denotation of a VP,
gives this statement. In other words, it is a function from sets (or, equivalently, from functions in
Dι→o) to truth values which gives true just in case the argument stands in the relevant relation
to the denotation of boy. This function is itself a characteristic function of a set of sets, namely:

{X |#(Iϕ(boy), X)>#(Iϕ(boy)\X)}

Note that this is just the same kind of object (a set of sets) as we postulated above for the
denotation of every boy.

114

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Now we want to go a step further, and determine the contribution of the determiner most itself.
most must denote a function which combines with a CNP denotation (i.e. a set of individuals or,
equivalently, its characteristic function) to return a set of sets: just those sets which stand in the
appropriate relation to the argument.

The function most′ is the characteristic function of a set of pairs:

{〈X,Y 〉 |#(X ∩Y )>#(X\Y )}

Conclusion: most denotes a relation between sets, just as every and some do. In fact, all natural
language determiners have such a denotation. (The treatment of the definite article along these
lines raises some issues to which we will return.)

Back to every and some (set characterization)

� We can now give an explicit set characterization of every and some:

1) every denotes {〈X,Y 〉 |X ⊆Y }
2) some denotes {〈X,Y 〉 |X ∩Y 6= ∅}

� The denotations can be given in equivalent function terms, as demonstrated
above with the denotation of most.

©:Michael Kohlhase 190

5.4 Model Generation with Definite Descriptions

Semantics of Definite Descriptions

� Problem: We need a semantics for the determiner the, as in the boy runs

� Idea (Type): the boy behaves like a proper name (e.g. Peter), i.e. has type ι.
Applying the to a noun (type ι → o) yields ι. So the has type (α→ o) → α,
i.e. it takes a set as argument.

� Idea (Semantics): the has the fixed semantics that this function returns the
single member of its argument if the argument is a singleton, and is otherwise
undefined. (new logical constant)

� Definition 5.9 We introduce a new logical constant ι. I(ι) is the function
f ∈ D((α→o)→α), such that f(s) = a, iff s ∈ D(α→o) is the singleton set {a},
and is otherwise undefined.(remember that we can interpret predicates as sets)

� Axioms for ι: ∀Xα X = ι(=X)
∀P,Q Q((ιP ))∧ (∀X,Y P (X)∧P (Y )⇒X = Y )⇒ (∀Z P (Z)⇒Q(Z))

©:Michael Kohlhase 191

Note: The first axiom is an equational characterization of ι. It uses the fact that the singleton set
with member X can be written as =X (or λY = XY , which is η-equivalent). The second axiom
says that if we have Q(ιP ) and P is a singleton (i.e. all X,Y ∈ P are identical), then Q holds on
any member of P . Surprisingly, these two axioms are equivalent in HOL→.

115

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


More Axioms for HOL→

� Definition 5.10 unary conditional w ∈ Σo→α→α
wAoBα means: “If A, then B”

� Definition 5.11 binary conditional if ∈ Σo→α→α→α
ifAoBαCα means: “if A, then B else C”.

� Definition 5.12 description operator ι ∈ Σ(α→o)→α
if P is a singleton set, then ιPα→o is the element in P,

� Definition 5.13 choice operator γ ∈ Σ(α→o)→α
if P is non-empty, then γPα→o is an arbitrary element from P

� Definition 5.14 (Axioms for these Operators)

� unary conditional: ∀ϕo ∀Xα ϕ⇒wϕX = X

� conditional: ∀ϕo ∀Xα, Yα, Zα (ϕ⇒ ifϕXY = X)∧ (¬ϕ⇒ ifϕZX = X)

� description ∀Pα→o (∃1Xα PX)⇒ (∀Yα PY ⇒ ιP = Y )

� choice ∀Pα→o (∃Xα PX)⇒ (∀Yα PY ⇒ γP = Y )

Idea: These operators ensure a much larger supply of functions in Henkin
models.

©:Michael Kohlhase 192

�More on the Description Operator

� ι is a weak form of the choice operator (only works on singleton sets)

� Alternative Axiom of Descriptions: ∀Xα ια(=X) = X.

� use that I[a/X](=X) = {a}
� we only need this for base types 6= o

� Define ιo := =(λXo X) or ιo := (λGo→o GT ) or ιo := =(=T )

� ια→β := (λH(α→β)→oXα ιβ(λZβ (∃Fα→β (HF )∧ (FX) = Z)))

©:Michael Kohlhase 193

To obtain a model generation calculus for HOLNQ with descriptions, we could in principle add
one of these axioms to the world knowledge, and work with that. It is better to have a dedicated
inference rule, which we present here.

A Model Generation Rule for ι

116

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


�
P (c)T

Q(ιP )α
H = {c, a1, . . ., an}

RM :ι
Q(c)α

P (a1)⇒ c = a1
t

...
P (an)⇒ c = an

t

� Intuition: If we have a member c of P and Q(ιP ) is defined (it has truth value
α ∈ {T,F}), then P must be a singleton (i.e. all other members X of P are
identical to c) and Q must hold on c. So the rule RM :ι forces it to be by
making all other members of P equal to c.

©:Michael Kohlhase 194

Mary owned a lousy computer. The hard drive crashed.

∀X comp(X)⇒ (∃Y hd(Y )∧part_of(Y,X))
t

∃X comp(X)∧ lousy(X)∧ own(mary, X)
t

comp(c)
t

lousy(c)
t

own(mary, c)
t

hd(d)
t

part_of(d, c)
t

crash(ιhd)
t

crash(d)
t

hd(mary)⇒mary = dt

hd(c)⇒ c = dt

©:Michael Kohlhase 195

Definition 5.15 In this example, we have a case of what is called a bridging reference, following
H. Clark (1977): intuitively, we build an inferential bridge from the computer whose existence is
asserted in the first sentence to the hard drive invoked in the second.

By incorporating world knowledge into the tableau, we are able to model this kind of inference,
and provide the antecedent needed for interpreting the definite.
Now let us use the RM :ι rule for interpreting The dog barks in a situation where there are two
dogs: Fido and Chester. Intuitively, this should lead to a closed tableau, since the uniqueness
presupposition is violated. Applying the rules, we get the following tableau.

Another Example The dog barks

117

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� In a situation, where there are two dogs: Fido and Chester

dog(fido)
t

dog(chester)
t

bark(ιdog)
t

bark(fido)
t

dog(chester)⇒ chester = fidot

dog(chester)
f

⊥
chester = fidot

(1)

� Note that none of our rules allows us to close the right branch, since we do not
know that Fido and Chester are distinct. Indeed, they could be the same dog
(with two different names). But we can eliminate this possibility by adopting
a new assumption.

©:Michael Kohlhase 196

5.5 Model Generation with a Unique Name Assumption

Normally (i.e. in natural languages) we have the default assumption that names are unique. In
principle, we could do this by adding axioms of the form n = mF to the world knowledge for all
pairs of names n and m. Of course the cognitive plausibility of this approach is very questionable.
As a remedy, we can build a Unique-Name-Assumption (UNA) into the calculus itself.

Model Generation with Unique Name Assumption (UNA)

� Problem: Names are unique (usually in natural language)

� Idea: Add background knowledge of the form n = mF (n and m names)

� Better Idea: Build UNA into the calculus: partition the Herbrand base H =
U ∪W into subsets U for constants with a unique name assumption, and W
without. (treat them differently)

� Definition 5.16 (Model Generation with UNA) We add the follow-
ing two rules to the RM calculus to deal with the unique name assumption.

a = bt

Aα a ∈ W b ∈ H

[b/a](A)
α RM:subst

a = bt a, b ∈ U
⊥

RM:una

©:Michael Kohlhase 197

In effect we make the T0subst rule directional; it only allows the substitution for a constant
without the unique name assumption. Finally, RM:una mechanizes the unique name assumption
by allowing a branch to close if two different constants with unique names are claimed to be equal.
All the other rules in our model generation calculus stay the same. Note that with RM:una, we
can close the right branch of tableau (1), in accord with our intuition about the discourse.

5.6 Davidsonian Semantics: Treating Verb Modifiers

118

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Event semantics: Davidsonian Systems

� Problem: How to deal with argument structure of (action verbs) and their
modifiers

� John killed a cat with a hammer.

� Idea: Just add an argument to kill for express the means

� Problem: But there may be more modifiers

1) Peter killed the cat in the bathroom with a hammer.

2) Peter killed the cat in the bathroom with a hammer at midnight.

So we would need a lot of different predicates for the verb killed.(impractical)

� Idea: Extend the argument structure of (action) verbs contains a ’hidden’ argu-
ment, the event argument, then tread modifiers as predicates over events [Dav67a].

� Example 5.17 1) ∃e ∃x, y br(x)∧ hammer(y)∧ kill(e, peter, ιcat)∧ in(e, x)∧with(e, y)

2) ∃e ∃x, y br(x)∧ hammer(y)∧ kill(e, peter, ιcat)∧ in(e, x)∧with(e, y)∧ at(e, 24 : 00)

©:Michael Kohlhase 198

Event semantics: Neo-Davidsonian Systems

� Idea: Take apart the Davidsonian predicates even further, add event partici-
pants via thematic roles (from [Par90]).

� Example 5.18 Translate John killed a cat with a hammer. as
∃e ∃x hammer(x)∧ killing(e)∧ ag(e,peter)∧pat(e, ιcat)∧with(e, x)

� Further Elaboration: Events can be broken down into sub-events and modifiers
can predicate over sub-events.

� Example 5.19 The “process” of climbing Mt. Everest starts with the “event”
of (optimistically) leaving the base camp and culminates with the “achievement”
of reaching the summit (being completely exhausted).

� Note: This system can get by without functions, and only needs unary and
binary predicates. (well-suited for model generation)

©:Michael Kohlhase 199

Event types and properties of events

� Example 5.20 (Problem) Some (temporal) modifiers are incompatible with
some events, e.g. in English progressive:

1) He is eating a sandwich and He is pushing the cart., but not

119

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


2) *He is being tall. or *He is finding a coin.

� Definition 5.21 (Types of Events) There are different types of events
that go with different temporal modifiers. [Ven57]distinguishes

1) states: e.g. know the answer, stand in the corner

2) process es: e.g.run, eat, eat apples, eat soup

3) accomplishments: e.g. run a mile, eat an apple, and

4) achievements: e.g. reach the summit

Observations:

� 1) activities and accomplishments appear in the progressive (1),

2) states and achievements do not (2).

The for/in Test:

� 1) states and activities, but not accomplishments and achievements are com-
patible with for-adverbials

2) whereas the opposite holds for in-adverbials (5).

� Example 5.22 1) run a mile in an hour vs. *run a mile for an hour, but

2) *reach the summit for an hour vs reach the summit in an hour

©:Michael Kohlhase 200

6 Dynamic Approaches to NL Semantics

In this Section we tackle another level of language, the discourse level, where we look especially at
the role of cross-sentential anaphora. This is an aspect of natural language that cannot (composi-
tionally) be modeled in first-order logic, due to the strict scoping behavior of quantifiers. This has
led to the developments of dynamic variants of first-order logic: the “file change semantics” [Hei82]
by Irene Heim and (independently) “discourse representation theory” (DRT [Kam81]) by Hans
Kamp, which solve the problem by re-interpreting indefinites to introduce representational ob-
jects – called “discourse referents in DRT” – that are not quantificationally bound variables and
can therefore have a different scoping behavior. These approaches have been very influential in
the representation of discourse – i.e. multi-sentence – phenomena.
In this Section, we will introduce discourse logics taking DRT as a starting point since it was
adopted more widely than file change semantics and the later “dynamic predicate logics” (DPL [GS91]).
Subsection 6.0 gives an introduction to dynamic language phenomena and how they can be mod-
eled in DRT. Subsection 6.2 relates the linguistically motivated logics to modal logics used for
modeling imperative programs and draws conclusions about the role of language in cognition.
Subsection 6.3 extends our primary inference system – model generation – to DRT and relates the
concept of discourse referents to Skolem constants. Dynamic model generation also establishes a
natural system of “direct deduction” for dynamic semantics. Finally Subsection 6.1 discusses how
dynamic approaches to NL semantics can be combined with ideas Montague Semantics to arrive
at a fully compositional approach to discourse semantics.

6.1 Discourse Representation Theory

In this Subsection we introduce Discourse Representation Theory as the most influential framework
for aproaching dynamic phenomena in natural language. We will only cover the basic ideas here

120

http://creativecommons.org/licenses/by-sa/2.5/


and leave the coverage of larger fragments of natural language to [KR93].
Let us look at some data about effects in natural languages that we cannot really explain with
our treatment of indefinite descriptions in fragment 4 (see Section 4).

Anaphora and Indefinites revisited (Data)

� Peter1 is sleeping. He1 is snoring. (normal anaphoric reference)

� A man1 is sleeping. He1 is snoring. (Scope of existential?)

� Peter has a car1. It1 is parked outside. (even it this worked)

� *Peter has no car1. It1 is parked outside. (what about negation?)

� There is a book1 that Peter does not own. It1 is a novel. (OK)

� *Peter does not own every book1. It1 is a novel. (equivalent in PL1)

� If a farmer1 owns a donkey2, he1 beats it2. (even inside sentences)

©:Michael Kohlhase 201

In the first example, we can pick up the subject Peter of the first sentence with the anaphoric
reference He in the second. We gloss the intended anaphoric reference with the labels in upper and
lower indices. And indeed, we can resolve the anaphoric reference in the semantic representation
by translating He to (the translation of) Peter. Alternatively we can follow the lead of fragment 2
(see Subsubsection 3.1.0) and introduce variables for anaphora and adding a conjunct that equates
the respective variable with the translation of Peter. This is the general idea of anaphora resolution
we will adopt in this Subsection.

Dynamic Effects in Natural Language

� Problem: E.g. Quantifier Scope

� *A man sleeps. He snores.

� (∃X man(X)∧ sleep(X))∧ snore(X)

� X is bound in the first conjunct, and free in the second.

� Problem: Donkey sentence: If a farmer owns a donkey, he beats it.
∀X,Y farmer(X)∧donkey(Y )∧ own(X,Y )⇒beat(X,Y )

� Ideas:

� composition of sentences by conjunction inside the scope of existential
quantifiers (non-compositional, . . . )

� Extend the scope of quantifiers dynamically (DPL)

� Replace existential quantifiers by something else (DRT)

©:Michael Kohlhase 202

Intuitively, the second example should work exactly the same – it should not matter, whether the
subject NP is given as a proper name or an indefinite description. The problem with the indefinite
descriptions is that that they are translated into existential quantifiers and we cannot refer to

121

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


the bound variables – see below. Note that this is not a failure of our envisioned treatment of
anaphora, but of our treatment of indefinite descriptions; they just do not generate the objects
that can be referred back to by anaphoric references (we will call them “referents”). We will speak
of the “anaphoric potential” for this the set of referents that can be anaphorically referred to.
The second pair of examples is peculiar in the sense that if we had a solution for the indefinite
description in Peter has a car, we would need a solution that accounts for the fact that even
though Peter has a car puts a car referent into the anaphoric potential Peter has no car – which
we analyze compositionally as It is not the case that Peter has a car does not. The interesting
effect is that the negation closes the anaphoric potential and excludes the car referent that Peter
has a car introduced.
The third pair of sentences shows that we need more than PL1 to represent the meaning of quan-
tification in natural language while the sentence There is a book that peter does not own. induces
a book referent in the dynamic potential, but the sentence Peter does not own every book does not,
even though their translations ∃x ∧book(x),¬ own(peter, x) and ¬ (∀x book(x)⇒ own(peter, x))
are logically equivalent.
The last sentence is the famous “donkey sentence” that shows that the dynamic phenomena we
have seen above are not limited to inter-sentential anaphora.
The central idea of Discourse Representation Theory (DRT), is to eschew the first-order quantifi-
cation and the bound variables it induces altogether and introduce a new representational device:
a discourse referents, and manage its visibility (called accessibility in DRT) explicitly.
We will introduce the traditional, visual “box notation” by example now before we turn to a
systematic definition based on a symbolic notation later.

Discourse Representation Theory (DRT)

� Discourse referents

� are kept in a dynamic context(Accessibility)

� are declared e.g. in indefinite nominals

� A student owns a book.

X,Y
stud(X)
book(Y )
own(X,Y )

� Discourse representation structures (DRS)
A student owns a book. He reads it. If a farmer owns a donkey, he beats it.

X,Y,R, S
stud(X)
book(Y )
own(X,Y )
read(R,S)
X = R
Y = S

X, Y
farmer(X)
donkey(Y )
own(X,Y )

⇒⇒
beat(Y,X)

©:Michael Kohlhase 203

These examples already show that there are three kinds of objects in DRT: The meaning of
sentences is given as DRSes, which are denoted as “file cards” that list the discourse referents (the
participants in the situation described in the DRS) at the top of the “card” and state a couple
of conditions on the discourse referents. The conditions can contain DRSes themselves, e.g. in
conditional conditions.
With this representational infrastructure in place we can now look at how we can construct dis-
course DRSes – i.e. DRSes for whole discourses. The sentence composition problem was – after

122

http://creativecommons.org/licenses/by-sa/2.5/


all – the problem that led to the development of DRT since we could not compositionally solve it
in first-order logic.

Discourse DRS Construction

� Problem: How do we construct DRSes for multi-sentence discourses?

� title=Solution We construct sentence DRSes individually and merge them
(DRSes and conditions separately)

� Example 6.1 A three-sentence discourse. (not quite Shakespeare)

Mary sees John John kills a cat Mary calls a cop merge

see(mary, john)

U
cat(U)
kill(john, U)

V
cop(V )
calls(mary, V )

U, V
see(mary, john)
cat(U)
kill(john, U)
cop(V )
calls(mary, V )

Sentence composition via the DRT Merge Operator ⊗. (acts on DRSes)

©:Michael Kohlhase 204

Note that – in contrast to the “smuggling-in”-type solutions we would have to dream up for first-
order logic – sentence composition in DRT is compositional: We construct sentence DRSes4 and
merge them. We can even introduce a “logic operator” for this: the merge operator ⊗, which can
be thought of as the “full stop” punctuation operator.
Now we can have a look at anaphor resolution in DRT. This is usually considered as a separate
process – part of semantic-pragmatic analysis. As we have seen, anaphora are

Anaphor Resolution in DRT

� Problem: How do we resolve anaphora in DRT?

� Solution: Two phases

� translate pronouns into discourse referents (semantics construction)

� identify (equate) coreferring discourse referents, (maybe) simplify (seman-
tic/pragmatic analysis)

� Example 6.2 A student owns a book. He reads it.

A student1 owns a book2. He1 reads it2 resolution simplify

X,Y,R, S
stud(X)
book(Y )
read(R,S)

X,Y,R, S
stud(X)
book(Y )
read(R,S)
X = R
Y = S

X, Y
stud(X)
book(Y )
read(X,Y )

4We will not go into the sentence semantics construction process here

123

http://creativecommons.org/licenses/by-sa/2.5/


©:Michael Kohlhase 205

We will sometime abbreviate the anaphor resolution process and directly use the simplified version
of the DRSes for brevity.
Using these examples, we can now give a more systematic introduction of DRT using a more
symbolic notation. Note that the grammar below over-generates, we still need to specify the
visibility of discourse referents.

DRT (Syntax)

� Definition 6.3 Given a set DR of discourse referents, discourse representa-
tion structures (DRSes) are given by the following grammar:

conditions C → p(a1, . . . , an)|(C1 ∧C2)|¬¬D|(D1 ∨∨D2)|(D1⇒⇒D2)
DRSes D → ( δ U1, . . . , Un C)|(D1⊗D2)|(D1 ;;D2)

� ⊗ and ;; are for sentence composition (⊗ from DRT, ;; from DPL)

� Example 6.4 δ U, V farmer(U)∧donkey(V )∧ own(U, V )∧beat(U, V )

� Definition 6.5 The meaning of ⊗ and ;; is given operationally by τ -Equality:

δX C1⊗ δ Y C2 →τ δX ,Y C1 ∧C2
δX C1 ;; δ Y C2 →τ δX ,Y C1 ∧C2

� Discourse Referents used instead of bound variables (specify scoping
independently of logic)

� Idea: Semantics by mapping into first-order Logic.

©:Michael Kohlhase 206

We can now define the notion of accessibility in DRT, which in turn determines the (predicted)
dynamic potential of a DRS: A discourse referent has to be accessible in order to be picked up by
an anaphoric reference.
We will follow the classical exposition and introduce accessibility as a derived concept induced by
a non-structural notion of sub-DRS.

Sub-DRSes and Accessibility

� Problem: Formally define accessibility (to make predictions)

� Idea: make use of the structural properties of DRT

� Definition 6.6 A referent is accessible in all sub-DRS of the declaring DRS.

� If D = δ U1, . . . , Un C, then any sub-DRS of C is a sub-DRS of D.
� If D = D1⊗D2, then D1 is a sub-DRS of D2 and vice versa.

� If D = D1 ;;D2, then D2 is a sub-DRS of D1.

� If C is of the form C1 ∧C2, or ¬¬D, or D1 ∨∨D2, or D1⇒⇒D2, then any
sub-DRS of the Ci, and the Di is a sub-DRS of C.

124

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� If D = D1⇒⇒D2, then D2 is a sub-DRS of D1

� Definition 6.7 (Dynamic Potential) (which referents can be picked
up?)

A referent U is in the dynamic potential of a DRS D, iff it is accessible in

D⊗
p(U)

� Definition 6.8 We call a DRS static, iff the dynamic potential is empty, and
dynamic, if it is not.

Observation: Accessibility gives DRSes the flavor of binding structures. (with
non-standard scoping!)

�� Idea: Apply the usual heuristics binding heuristics to DRT, e.g.

� reject DRSes with unbound discourse referents.

� Questions: if view of discourse referents as “nonstandard bound variables”

� what about renaming referents?

©:Michael Kohlhase 207

The meaning of DRSes is (initially) given by a translation to PL1. This is a convenient way to
specify meaning, but as we will see, it has its costs, as we will see.

Translation from DRT to FOL

� Definition 6.9 For τ -normal (fully merged) DRSes use

δ U1, . . . , Un C = ∃U1, . . . , Un C
¬¬D = ¬D
D∨∨E = D∨E
D∧E = D∧E

( δ U1, . . . , Un C1)⇒⇒ ( δ V 1, . . . , V m C2) = ∀U1, . . . , Un C1⇒ (∃V 1, . . . , V l C2)

� Example 6.10 ∃X man(X)∧ sleep(X)∧ snore(X)

� Consequence: Validity of DRSes can be checked by translation.

� Question: Why not use first-order logic directly?

� Answer: Only translate at the end of a discourse (translation closes all
dynamic contexts: frequent re-translation).

©:Michael Kohlhase 208

We can now test DRT as a logical system on the data and see whether it makes the right predictions
about the dynamic effects identified at the beginning of the Subsection.

125

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Properties of Dynamic Scope

� Idea: Test DRT on the data above for the dynamic phenomena

� Example 6.11 (Negation Closes Dynamic Potential)
Peter has no1 car. *It1 is parked outside.

¬¬
U

car(U)
own(peter, U)

⊗
park(U)

¬ (∃U car(U)∧ own(peter, U)). . .

� Example 6.12 (Universal Quantification is Static)
Peter does not own every book1. *It1 is a novel.

¬¬ U

book(U)
⇒⇒

own(peter, U)

⊗
novel(U)

¬ (∀U book(U)⇒ own(peter, U)). . .

� Example 6.13 (Existential Quantification is Dynamic)
There is a book1 that Peter does not own. It1 is a novel.
V

book(V )
¬ own(peter, V )

⊗
novel(V )

∃U book(U)∧¬ own(peter, U)∧novel(U)

©:Michael Kohlhase 209

Example 6.11 shows that negation closes off the dynamic potential. Indeed, the referent U is not
accessible in the second argument of ⊗. Example 6.12 makes predicts the inaccessibility of U for
the same reason. In contrast to that, U is accessible in Example 6.13, since it is not under the
scope of a dynamic negation. Incidentally, the
The examples above, and in particular the difference between Example 6.12 and Example 6.13
show that DRT forms a representational level above – recall that we can translate down – PL1,
which serves as the semantic target language. Indeed DRT makes finer distinctions than PL1,
and supports an incremental process of semantics construction: DRS construction for sentences
followed by DRS merging via τ -reduction.

DRT as a Representational Level

� DRT adds a level to the knowledge representation which provides anchors (the
discourse referents) for anaphors and the like

� propositional semantics by translation into PL1

126

http://creativecommons.org/licenses/by-sa/2.5/


a
A

a,b
A
B

a,b,c
A
B
C

· · ·
· · ·

∀a.A ∀a, b.A ∧B ∀a, b, c.A ∧B ∧ C · · ·

+s +s +s

? ? ?

τ τ τ

Repn.
Layer

Logic
Layer

� Anaphor resolution works incrementally on the representational level.

©:Michael Kohlhase 210

We will now introduce a “direct semantics” for DRT: a notion of “model” and an evaluation mapping
that interprets DRSes directly – i.e. not via a translation of first-order logic. The main idea is that
atomic conditions and conjunctions are interpreted largely like first-order formulae, while DRSes
are interpreted as sets of assignments to discourse referents that make the conditions true. A DRS
is satisfied by a model, if that set is non-empty.

A Direct Semantics for DRT (Dyn. Interpretation Iδϕ)

� Definition 6.14 Let M = 〈U , I〉 be a FO Model and ϕ,ψ : DR → U be
referent assignments, then we say that ψ extends ϕ on X ⊆DR (write ϕ [X ]ψ),
if ϕ(U) = ψ(U) for all U 6∈ X .

� Idea: Conditions as truth values; DRSes as pairs (X ,S) (S set of states)

� Definition 6.15 (Meaning of complex formulae) � Iδϕ(p(a1, . . . , an))
as always.

� Iδϕ(A∧B) = T, iff Iδϕ(A) = T and Iδϕ(B) = T.

� Iδϕ(¬¬D) = T, if Iδϕ(D)
2

= ∅.

� Iδϕ(D∨∨E) = T, if Iδϕ(D)
2 6= ∅ or Iδϕ(E)

2 6= ∅.

� Iδϕ(D⇒⇒E) = T, if for all ψ ∈ Iδϕ(D)
2 there is a τ ∈ Iδϕ(E)

2 with

ψ
[
Iδϕ(E)

1
]
τ .

� Iδϕ(δX C) = (X , {ψ |ϕ [X ]ψ and Iδψ(C) = T}).

� Iδϕ(D⊗E) = Iδϕ(D ;; E) = (Iδϕ(D)
1 ∪Iδϕ(E)

1
, Iδϕ(D)

2 ∩Iδϕ(E)
2
)

©:Michael Kohlhase 211

We can now fortify our intuition by computing the direct semantics of two sentences, which differ
in their dynamic potential.

Examples (Computing Direct Semantics)

127

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� Example 6.16 Peter owns a car

Iδ
ϕ

(δ U car(U)∧ own(peter, U))

= ({U}, {ψ |ϕ [X ]ψ and Iδ
ψ

(car(U)∧ own(peter, U)) = T})

= ({U}, {ψ |ϕ [X ]ψ and Iδ
ψ

(car(U)) = T and Iδ
ψ

(own(peter, U)) = T})

= ({U}, {ψ |ϕ [X ]ψ and ψ(U) ∈ car and (ψ(U),peter) ∈ own})

The set of states [a/U ], such that a is a car and is owned by Peter

� Example 6.17 For Peter owns no car we look at the condition:

Iδ
ϕ

(¬¬ ( δ U car(U)∧ own(peter, U))) = T

⇔ Iδ
ϕ

(δ U car(U)∧ own(peter, U))
2

= ∅

⇔ ({U}, {ψ |ϕ [X ]ψ and ψ(U) ∈ car and (ψ(U),peter) ∈ own})2 = ∅
⇔ {ψ |ϕ [X ]ψ and ψ(U) ∈ car and (ψ(U),peter) ∈ own} = ∅

i.e. iff there are no a, that are cars and that are owned by Peter.

©:Michael Kohlhase 212

The first thing we see in Example 6.62 is that the dynamic potential can directly be read off
the direct interpretation of a DRS: it is the domain of the states in the first component. In
Example 6.63, the interpretation is of the form (∅, Iδϕ(C)), where C is the condition we compute
the truth value of in Example 6.63.
The cost we had to pay for being able to deal with discourse phenomena is that we had to abandon
the compositional treatment of natural language we worked so hard to establish in fragments 3
and 4. To have this, we would have to have a dynamic λ calculus that would allow us to raise
the respective operators to the functional level. Such a logical system is non-trivial, since the
interaction of structurally scoped λ-bound variables and dynamically bound discourse referents is
non-trivial.

6.2 Higher-Order Dynamics

In this Subsection we will develop a typed λ calculus that extend DRT-like dynamic logics like
the simply typed λ calculus extends first-order logic.

6.2.1 Introduction

We start out our development of a Montague-like compositional treatment of dynamic semantics
construction by naively “adding λs” to DRT and deriving requirements from that.

Making Montague Semantics Dynamic

� Example 6.18 A man sleeps.

a_man = λQ (
U
man(U)

⊗Q(U))

sleep = λX
sleep(X)

Application and β-reduction:

128

http://creativecommons.org/licenses/by-sa/2.5/


a_man_sleep = a_man(sleep)

→β
U
man(U)

⊗
sleep(U)

→τ

U
man(U)
sleep(U)

©:Michael Kohlhase 213

At the sentence level we just disregard that we have no idea how to interpret λ-abstractions over
DRSes and just proceed as in the static (first-order) case. Somewhat surprisingly, this works
rather well, so we just continue at the discourse level.

Coherent Text (Capturing Discourse Referents)

� Example 6.19 A man1 sleeps. He1 snores.

(λPQ (P ⊗Q)) a_man_sleep he_snore

→β

λQ U
man(U)
sleep(U)

⊗Q


snore(U)

→τ

U
man(U)
sleep(U)

⊗
snore(U)

→τ

U
man(U)
sleep(U)
snore(U)

� Example 6.20 (Linear notation)
(λQ ( δ U man(U)∧ sleep(U)∧Q(U)))he_snore −→βτ δ U man(U)∧ sleep(U)∧ snore(U)

©:Michael Kohlhase 214

Here we have our first surprise: the second β reduction seems to capture the discourse referent U :
intuitively it is “free” in δ snore()U and after β reduction it is under the influence of a δ declaration.
In the λ-calculus tradition variable capture is the great taboo, whereas in our example, it seems
to drive/enable anaphor resolution.
Considerations like the ones above have driven the development of many logical systems attempting
the compositional treatment of dynamic logics. All were more or less severely flawed.

Compositional Discourse Representation Theories

� Many logical systems

� Compositional DRT (Zeevat, 1989 [Zee89]

� Dynamic Montague Grammar (DMG Gronendijk/Stokhof 1990 [GS90])

� CDRT (Muskens 1993/96 [Mus96])

� λ-DRT (Kohlhase/Kuschert/Pinkal 1995 [KKP96])

� TLS (van Eijck 1996 [vE97])

129

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Problem: Difficult to tell the differences or make predictions!

�� One Answer: Dynamic λ-calculus [Kohlhase&Kuschert&Müller’96,98]

� Augment type system by information on referents: a meta-logic that models
different forms of accessibility as a parameter.

©:Michael Kohlhase 215

Here we will look at a system that makes the referent capture the central mechanism using an
elaborate type system to describe referent visibility and thus accessibility. This generalization
allows to understand and model the interplay of λ-bound variables and discourse referents without
being distracted by linguistic modeling questions (which are relegated to giving appropriate types
to the operators).
Another strong motivation for a higher-order treatment of dynamic logics is that maybe the
computational semantic analysis methods based on higher-order features (mostly higher-order
unification) can be analogously transferred to the dynamic setting.

Motivation for the Future

� Higher-Order Unification Analyses of

� Ellipsis (Dalrymple/Shieber/Pereira 1991 [DSP91])

� Focus (Pulman 1994 [Pul94], Gardent/Kohlhase 1996 [GK96])

� Corrections (Gardent/Kohlhase/van Leusen 1996 [GKvL96])

� Underspecification (Pinkal 1995 [Pin96])

� are based on static type theory [Mon74]

� Higher-Order Dynamic Unification needed for dynamic variants of these

©:Michael Kohlhase 216

To set the stage for the development of a higher-order system for dynamic logic, let us remind
ourselves of the setup of the static system

Recap: Simple Type Theory

� Structural layer: simply typed λ-calculus

� types, well-formed formulae, λ-abstraction

� Theory: αβη-conversion, Operational: Higher-Order Unification

� Logical layer: higher-order logic

� special types ι, o

� logical constants ∧o→o→o,⇒,∀, . . . with fixed semantics

� Theory: logical theory, Operational: higher-order theorem proving

Goal: Develop two-layered approach to compositional discourse theories.

130

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


�� Application: Dynamic Higher-Order Unification (DHOU) with structural layer
only.

©:Michael Kohlhase 217

This separation of concerns: structural properties of functions vs. a propositional reasoning level
has been very influential in modeling static, intra-sentential properties of natural language, there-
fore we want to have a similar system for dynamic logics as well. We will use this as a guiding
intuition below.

6.2.2 Setting Up Higher-Order Dynamics

To understand what primitives a language for higher-order dynamics should provide, we will
analyze one of the attempts – λ-DRT – to higher-order dynamics
λ-DRT is a relatively straightforward (and naive) attempt to “sprinkle λs over DRT” and give
that a semantics. This is mirrored in the type system, which had a primitive types for DRSes and
“intensions” (mappings from states to objects). To make this work we had to introduce “intensional
closure”, a semantic device akin to type raising that had been in the folklore for some time. We
will not go into intensions and closure here, since this did not lead to a solution and refer the
reader to [KKP96] and the references there.

Recap: λ-DRT (simplified)

� Types: ι (individuals), o (conditions), t (DRSes), α → β (functions), s → α
(intensions)

� Syntax: if Uι a referent and A an expression of type o, then δ Uι A a DRS
(type t).

� αβη-reduction for the λ-calculus part, and further:

� (δX A⊗ δ Y B)→τ ( δX ∪Y A∧B)

� ∨∧A→µ A

Observations:

� � complex interaction of λ and δ
� alphabetical change for δ-bound “variables” (referents)?

� need intensional closure for βη-reduction to be correct

©:Michael Kohlhase 218

In hindsight, the contribution of λ-DRT was less the proposed semantics – this never quite worked
beyond correctness of αβη equality – but the logical questions about types, reductions, and the
role of states it raised, and which led to further investigations.
We will now look at the general framework of “a λ-calculus with discourse referents and δ-binding”
from a logic-first perspective and try to answer the questions this raises. The questions of modeling
dynamic phenomena of natural language take a back-seat for the moment.

Finding the right Dynamic Primitives

� Need to understand Merge Reduction: (→τ -reduction)

131

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� Why do we have (δ U A⊗B)→τ ( δ U A∧B)

� but not ( δ U A)⇒⇒B→τ ( δ U A⇒⇒B)

� and Referent Scoping: (ρ-equivalence)

� When are the meanings of C [δ U A]π and C [δ V [V/U ](A)]π equal?

� OK for C = ¬¬ and C = λP ( δW A⇒⇒P )

� Not for C = λP P and C = λP P ∧¬¬P .

Observation: There must be a difference of⊗,¬¬, λ P ( δW A⇒⇒P ), λ P P ∧¬¬P
wrt. the behavior on referents

�� Intuitively: ⊗, λ P ( δW A⇒⇒P ) transport U , while ¬¬, λ P P ∧¬¬P do
not

� Idea: Model this in the types (rest of the talk/lecture)

©:Michael Kohlhase 219

A particularly interesting phenomenon is that of referent capture as the motor or anaphor resolu-
tion, which have already encountered above.

Variable/Referent Capture

� Example 6.21 (Anaphor Resolution Revisited) Let us revisit ?anaphor-
resolution.ex?

A student1 owns a book2.
He1 reads it2

resolution simplify

X,Y
stud(X)
book(Y )

⊗ R,S
read(R,S)

X,Y
stud(X)
book(Y )

⊗

R,S
read(R,S)
R = X
S = Y

X, Y
stud(X)
book(Y )
read(X,Y )

� Example 6.22 (λP
U
¬¬ P

)
r(U)

(functor has dynamic binding

power)

� Variable capture (or rather referent capture)

� is the motor of dynamicity

� is a structural property

Idea: Code the information for referent capture in the type system

©:Michael Kohlhase 220

In Example 6.21 we see that with the act of anaphor resolution, the discourse referents induced by
the anaphoric pronouns get placed under the influence of the dynamic binding in the first DRS –
which is OK from an accessibility point of view, but from a λ-calculus perspective this constitutes
a capturing event, since the binding relation changes. This becomes especially obvious, if we look

132

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


at the simplified form, where the discourse referents introduced in the translation of the pronouns
have been eliminated altogether.
In Example 6.22 we see that a capturing situation can occur even more explicitly, if we allow λs
– and αβη equality – in the logic. We have to deal with this, and again, we choose to model it in
the type system.
With the intuitions sharpened by the examples above, we will now start to design a type system
that can take information about referents into account. In particular we are interested in the
capturing behavior identified above. Therefore we introduce information about the “capturing
status” of discourse referents in the respective expressions into the types.

� Types in DLC

� Requirements: In the types we need information about

� δ-bound referents (they do the capturing)

� free referents (they are liable to be captured)

� Definition 6.23 New type (moded type) Γ #α where

� mode Γ = V −, U+, . . . (V is a free and U a capturing referent)

� term type α (type in the old sense)

� What about functional types? (Look at example)

©:Michael Kohlhase 221

To see how our type system for DLC fares in real life, we see whether we can capture the referent
dynamics of λ-DRT. Maybe this also tells us what we still need to improve.

Rational Reconstruction of λ-DRT (First Version)

� Two-level approach

� model structural properties (e.g. accessibility relation) in the types

� leave logical properties (e.g. negation flips truth values) for later

� Types: ι, o, α→ β only. Γ # o is a DRS.

� Idea: Use mode constructors ↓ and ] to describe the accessibility relation.

� Definition 6.24 ↓ closes off the anaphoric potential and makes the referents
classically bound (↓U+, V + = U◦, V ◦)

� Definition 6.25 The prioritized union operator combines two modes by let-
ting + overwrite −. (U+, V − ]U−, V + = U+, V +)

� Example 6.26 (DRT Operators) Types of DRT connectives (indexed by
Γ,∆):

� ¬¬ has type Γ # o→↓Γ # o (intuitively like t→ o)

� ⊗ has type Γ # o→ ∆ # o→ Γ]∆ # o (intuitively like t→ t→ t)

� ∨∨ has type Γ # o→ ∆ # o→↓Γ]↓∆ # o

�⇒⇒ has type Γ # o→ ∆ # o→↓Γ]↓∆ # o

133

http://creativecommons.org/licenses/by-sa/2.5/


©:Michael Kohlhase 222

We can already see with the experiment of modeling the DRT operators that the envisioned type
system gives us a way of specifying accessibility and how the dynamic operators handle discourse
referents. So we indeed have the beginning of a structural level for higher-order dynamics, and at
the same time a meta-logic flavor, since we can specify other dynamic logics in a λ-calculus.

6.2.3 A Type System for Referent Dynamics

We will now take the ideas above as the basis for a type system for DLC.
The types above have the decided disadvantage that they mix mode information with information
about the order of the operators. They also need free mode variables, which turns out to be a
problem for designing the semantics. Instead, we will employ two-dimensional types, where the
mode part is a function on modes and the other a normal simple type.

Types in DLC (Final Version)

� Problem: A type like Γ # o → Γ−# o mixes mode information with simple
type information.

� Alternative formulation: ↓# o→ o (use a mode operator for the mode part)

� Definition 6.27 DLC types are pairs A#α, where

� A is a mode specifier, α is a simple type; A is functional, iff α is.

Idea: Use the simply typed λ-calculus for mode specifiers

�� Other connectives (new version)

� ¬¬ gets type λF ↓F # o→ o

� ⊗ gets type ]# o→ o→ o

�⇒⇒ gets type λFG ↓(F ]↓G) # o→ o→ o

©:Michael Kohlhase 223

With this idea, we can re-interpret the DRT types from Example 6.26

A λ-Calculus for Mode Specifiers

� Definition 6.28 New base type µ for modes; α̃ is α with ι, o replaced by µ.

� mode specifiers A,B,C are simply typed λ-terms built up from mode variables
F,G, F 1, . . . and

� Definition 6.29 (Mode constants) � the empty mode ∅ of type µ

� the elementary modes U+, U− and U◦ of type µ for all referents U ∈ R
� the mode functions ·+, ·−, ↓·, +·, and −· of type µ→ µ, and

� the mode function ] of type µ→ µ→ µ.

� Theory of mode equality specifies the meaning of mode constants
(e.g. (U+, V −,W− ]U−, V +)→µ U+, V +,W−)

134

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


©:Michael Kohlhase 224

Type Inference for DLC (two dimensions)

� Definition 6.30

c ∈ Σα
A `Σ c : α

A(X) = F #α A(F ) = α̃

A `Σ X : F #α

U ∈ Rα A(U) = ∅#α

A `Σ U : U−#α

A, [X : F #β], [F : β̃] `Σ A : A#α

A `Σ λXF # β A : λF A#β → α

A `Σ A : A#β → γ A `Σ B : B#β

A `Σ AB : AB# γ

A `Σ A : A#α A `Σ βηµ =A B
A `Σ A : B#α

A `Σ A : λF A#α A `Σ A : µ

A `Σ δ Uβ A : λF (U+ ]A) #α

where A is a variable context mapping variables and referents to types

©:Michael Kohlhase 225

Example (Identity)

� We have the following type derivation for the identity.

[F : α̃], [X : F #α] `Σ X : F #α

`Σ λXF #α X : λFα̃ F #α→ α

� (λXF #α→α X)(λXG#α X) has typeA `Σ (λFµ→µ F )(λGµ G) #α→ α =βηµ

λGµ G#α→ α

� Theorem 6.31 (Principal Types) For any given variable context A and
formula A, there is at most one type A#α (up to mode βηµ-equality) such
that A `Σ A : A#α is derivable in DLC.

©:Michael Kohlhase 226

Linguistic Example

� Example 6.32 No man sleeps.

135

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Assume U ∈ Rι and man, sleep ∈ RλF F # ι→o.

...

A `Σ man(U) : U−# o

A `Σ δ U man(U) : U+ # o

...

A `Σ sleep(U) : U−# o

A `Σ δ U man(U)∧ sleep(U) : U+ ]U−# o

A `Σ ¬¬ ( δ U man(U)∧ sleep(U)) : ↓(U+ ]U−) # o

A `Σ ¬¬ ( δ U man(U)∧ sleep(U)) : U◦# o

©:Michael Kohlhase 227

A Further (Tricky) Example: A¬¬ := (λX X ∧¬¬X)

� a referent declaration in the argument of A¬¬ will be copied, and the two
occurrences will have a different status
A¬¬( δ U man(U))→β ( δ U man(U)∧¬¬ ( δ U man(U)))

� assuming A(X) = F # o gives

A `Σ X : F # o

A `Σ X : F # o

A `Σ ¬¬X : ↓F # o

A `Σ X ∧¬¬X : F ]↓F # o

A `Σ λX X ∧¬¬X : λF (F ]↓F ) # o→ o

� thus, assumingA `Σ δ U man(U) : U+ # o, we deriveA `Σ A¬¬( δ U man(U)) : U+, U◦# o

©:Michael Kohlhase 228

A Further Example: Generalised Coordination

� We may define a generalised and:
λR1. . .Rn λX1. . .Xm (R1X1. . .Xm⊗ . . .⊗RnX1. . .Xm)
with type
λF 1. . .Fn (F 1 ] . . .]Fn) # (βm → o) → (βm → o)

� thus from john := (λP (δ U U = j⊗P (U)))
and mary := (λP (δ V V = m⊗P (V )))

� we get john andmary = λP (δ U U = j⊗P (U)⊗ δ V V = m⊗P (V ))

� combine this with own a donkey:

λX (δW donkey(W )⊗ own(W,X)⊗ δ U U = j⊗ δW donkey(W )⊗ own(W,U)⊗ δ V V = m⊗ δW donkey(W )⊗ own(W,V ))

136

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


©:Michael Kohlhase 229

6.2.4 Modeling Higher-Order Dynamics

Discourse Variants =δ

� The order and multiplicity of introduction of discourse referents is irrelevant

� ( δ U δ V A) =δ ( δ V δ U A)

� ( δ U δ U A) =δ ( δ U A).

� This is needed to model DRT, where discourse referents appear in sets.

� functional and dynamic binding can be interchanged

� λX ( δ U A) =δ ( δ U λX A)

� This is useful for convenient η-long-forms (DHOU).

©:Michael Kohlhase 230

Renaming of Discourse Referents?

� Consider A := (λXY Y )( δ U U)

� δU cannot have any effect on the environment, since it can be deleted by
β-reduction.

� A has type λF F #α→ α (U does not occur in it).

Idea: Allow to rename U in A, if “A is independent of U ”

�� Similar effect for B := ¬¬ ( δ U man(U)), this should equal ¬¬ ( δ V man(V ))

� Definition 6.33 =ρ-renaming is induced by the following inference rule:

V ∈ Rβ fresh Uβ 6∈ DP(A)

A =ρ CVU (A)

Where CVU (A) is the result of replacing all referents U by V .

©:Michael Kohlhase 231

Dynamic Potential

� The binding effect of an expression A can be read off its modality A

� A modality A may be simplified by βηµ-reduction (where µ-equality reflects
the semantics of the mode functions, e.g. U+ ] U− =µ U

+).

� Definition 6.34 The dynamic binding potential of A:
DP(A) := {U |U+ ∈ occ(A′) or U− ∈ occ(A′)}, where A′ is the βηµ-normal
form of A.

137

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� Definition 6.35 If U 6∈ DP(A), then U is called independent of A.

©:Michael Kohlhase 232

Some Examples for Dynamic Potential

� Example 6.36

Formula Modality DP
δ U P U+ {U}
λP ( δ U P ) λF (U+ ]F ) {U}
¬¬ ( δ U man(U)) U◦ ∅
λP ¬¬ ( δ U P ) λF ↓(U+), F {U}
λX U λF U− {U}
(λX X)U (λF F )U− {U}
λP man(U)∧P λF (F ]U−) {U}
λP P λF F ∅
λXY Y λFG G ∅
(λXY Y )( δ U U) λG G ∅
λP P (λQ ¬¬ ( δ U Q))(λR ( δ U R)) {U}

©:Michael Kohlhase 233

Reductions

� βη-reduction:
(λX A)B→β [B/X](A)

and
X 6∈ free(A)

(λX AX)→ηA

� Dynamic Reduction:
A `Σ A : A#α U+ ∈ Trans(A)

A( δ U B)→τ ( δ U AB)

� Example 6.37 Merge-Reduction (δ U A⊗ δ V B)→τ ( δ U δ V (A⊗B))

� Intuition: The merge operator is just dynamic conjunction!

� Observation: Sequential merge ;; of type
→
]# o→ o→ o does not transport

V in the second argument.

©:Michael Kohlhase 234

6.2.5 Direct Semantics for Dynamic λ Calculus

Higher-Order Dynamic Semantics (Static Model)

� Frame D = {Dα |α ∈ T }

� Dµ is the set of modes (mappings from variables to signs)

� Do is the set of truth values {T,F}.
� Dι is an arbitrary universe of individuals.

� Dα→β ⊆F(Dα;Dβ)

138

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� Interpretation I of constants, assignment ϕ of variables.

� Iϕ(c) = I(c), for a constant c

� Iϕ(X) = ϕ(X), for a variable X

� Iϕ(AB) = Iϕ(A)(Iϕ(B)))

� Iϕ(λX B)(a) = Iϕ,[a/X](B).

©:Michael Kohlhase 235

Dynamic Semantics (Frames)

� Two approaches: “Dynamic” (Amsterdam ) and “Static” (Saarbrücken)

� Will show that they are equivalent (later)

� Use the static semantics for DLC now.

� What is the denotation of a dynamic object?

� “Static Semantics”: essentially a set of states (considers only type o)
(equivalently function from states to Do: characteristic function)

� generalize this to arbitrary base type:
DΓ
α = F(BΓ;Dα), where BΓ is the set of Γ-states

� Γ-states: well-typed referent assignments s : Dom±(Γ)→ D
s|∆ is s coerced into a ∆-state.

� For expressions of functional type: DΦ
α→β =

⋃
Ψ∈Dα̃ F(DΨ

α ;DΦ(Ψ)
β )

©:Michael Kohlhase 236

Dynamic Semantics (Evaluation)

� Standard Tool: Intensionalization (guards variables by delaying evaluation of
current state)

� Idea: Ideal for semantics of variable capture

� guard all referents

� make this part of the semantics (thus implicit in syntax)

� Evaluation of variables and referents

� If X ∈ V, then Iϕ(X) = ϕ(X)

� If U ∈ R, then Iϕ(U) = Λs ∈ BU− .s(U) (implicit intensionalization!)

� Iϕ(δ U BB# β) = Λs ∈ B(Iϕ(Bµ)]U+).Iϕ(B)s|Iϕ(Bµ).

� Iϕ(BC) = Iϕ(B)(Iϕ(C)).

� Iϕ(λXγ B) = ΛΦa ∈ DΦ
γ .I(ϕ,[a/X])(B)

139

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� Referent names crucial in dynamic objects

� Well actually: Iϕ(δ U BΛFn.Bµ # β) = Λan.(Λs ∈ B(Iϕ(Bµ)]U+).Iϕ(B)s|Iϕ(Bµ)).

©:Michael Kohlhase 237

Metatheoretic Results

� Theorem 6.38 (Normalization) βητ -Reduction is terminating and con-
fluent (modulo αρδ).

� Theorem 6.39 (Substitution is type-preserving) IfX 6∈ dom(A), then
A, [X : F #β] `Σ A : A#α andA `Σ B : B#β implyA `Σ [B/X](A) : [B/F ](A) #α.

� Theorem 6.40 (Subject Reduction) IfA `Σ A : A#α andA `Σ A =βητ

B, then A `Σ B : A#α.

� Theorem 6.41 (Soundness of Reduction) If A `Σ A =αβδητρ B, then
Iϕ(A) = Iϕ(B).

� Conjecture 6.42 (Completeness) If Iϕ(A) = Iϕ(B), thenA `Σ A =αβδητρ

B (just needs formalisation of equality of logical operators.)

©:Michael Kohlhase 238

6.2.6 Dynamic λ Calculus outside Linguistics

Conclusion

� Basis for compositional discourse theories

� two-layered approach (only use theorem proving where necessary)

� functional and dynamic information can be captured structurally

� comprehensive equality theory (interaction of func. and dyn. part)

� In particular

� new dynamic primitives (explain others)

� simple semantics (compared to other systems)

� This leads to

� dynamification of existing linguistic analyses (DHOU)

� rigorous comparison of different dynamic systems (Meta-Logic)

©:Michael Kohlhase 239

140

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Future Directions

� Generalize DLC to a true mode calculus:

� turn δ into a logical constant δU : (use type declaration and application)

A `Σ A : A#α

A `Σ δ Uβ A : U+ ]Aµ #α

`Σ δU : λF (U+ ]F ) #α→ α A `Σ A : A#α

A `Σ δUA : U+ ]Aµ #α

� this allows for more than one δ-like operator

� Better still (?) go for a dependent type discipline (implement in LF?)

� δ of type λUF (U+ ]F ) #α→ α yields δ(U)=̂δU

©:Michael Kohlhase 240

Use DLC as a model for Programming

� Remember dynamic binding in LISP?
((lambda (F) (let ((U 1)) (F 1)))(lambda (X) (+ X U))→ 2
((lambda (F) (let ((U 0)) (F 1)))(lambda (X) (+ X U))→ 1

� Ever wanted to determine the \$PRINTER environment variable in a Java
applet? (sorry forbidden, since the semantics of dynamic binding are unclear.)

� DLC is ideal for that (about time too!)

� Example 6.43 (LISP) give letU the type λF F ⇑◦U , where (A, U−)⇑◦U=
A, U◦. (no need for U+ in LISP)

� Example 6.44 (Java) If you want to keep your \$EDITOR variable private
(pirated?)

only allow applets of type A#α, where $EDITOR 6∈ DP(A).

� It is going to be a lot of fun!

©:Michael Kohlhase 241

We will now contrast DRT with a modal logic for modeling imperative programs – incidentally
also called “dynamic logic”. This will give us new insights into the nature of dynamic phenomena
in natural language.

6.3 Dynamic Logic for Imperative Programs

Dynamic Program Logic (DL)

� Modal logics for argumentation about imperative, non-deterministic programs

� Idea: Formalize the traditional argumentation about program correctness:

141

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


tracing the variable assignments (state) across program statements

� Example 6.45 (Fibonacci)
α := 〈Y,Z〉 ←7 〈1, 1〉;while X 6= 0 do 〈X,Y, Z〉 ←7 〈X − 1, Z, Y + Z〉 end

� States: 〈4,_,_〉, 〈4, 1, 1〉, 〈3, 1, 2〉, 〈2, 2, 3〉, 〈1, 3, 5〉, 〈0, 5, 8〉

� Assertions:

� Correctness: for positive X, running α with input 〈X,_,_〉 we end with
〈0, F ib(X − 1), F ib(X)〉

� Termination: α does not terminate on input 〈−1,_,_〉.

©:Michael Kohlhase 242

Multi-Modal Logic fits well

� States as possible worlds, program statements as accessibility relation

� two syntactic categories: programs α and formulae A.

� [α]A as If α terminates, then A holds afterwards

� 〈α〉A as α terminates and A holds afterwards.

� Example 6.46 Assertions about Fibonacci (α)

� ∀X,Y [α]Z = Fib(X)

� ∀X,Y (X≥0)⇒〈α〉Z = Fib(X)

©:Michael Kohlhase 243

Levels of Description in Dynamic Logic

� Definition 6.47 Propositional Dynamic Logic (DL0) (independent of
variable assignments)

� |= [α]A∧ [α]B⇔ [α](A∧B)

� |= [while A∨B do α end]C⇔ [while A do α end;while B do α;while A do α end end]C

first-order uninterpreted dynamic logic (DL1) (function, predicates
uninterpreted)

� � Example 6.48 |= p(f(X))⇒ g(Y, f(X))⇒〈Z ←7 f(X)〉p(Z, g(Y,Z))

� Example 6.49 |= Z = Y ∧ (∀X f(g(X)) = X)⇒ [while p(Y ) do Y ←7 g(Y ) end]〈while Y 6= Z do Y ←7 f(Y ) end〉T

interpreted first-order dynamic logic (functions, predicates interpreted)

� � ∀X 〈while X 6= 1 do if even(X) then X ←7 X2 elseX ←7 3X + 1 end end〉T

©:Michael Kohlhase 244

142

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


DL0 Syntax

� Definition 6.50 Propositional Dynamic Logic (DL0) is PL0 extended by

� program variables Vπ = {α, β, γ, . . .}, modality [α], 〈α〉.
� program constructors Σπ = {;,∪, ∗, ?} (minimal set)

α ;β execute first α, then β sequence
α∪β execute (non-deterministically) either α or β distribution
∗α (non-deterministically) repeat α finitely often iteration
A ? proceed if |= A, else error test

� standard program primitives as derived concepts

Construct as
if A then α elseβ end (A ? ;α)∪ (¬A ? ;β)
while A do α end ∗ (A ? ;α) ;¬A ?
repeat α until A end ∗ (α ;¬A ?) ;A ?

©:Michael Kohlhase 245

DL0 Semantics

� Definition 6.51 A model for DL0 consists of a set W of states (possible
worlds)

� Definition 6.52 DL0 variable assignments come in two parts:

� ϕ : Vo×W → {T,F} (for propositional variables)

� π : Vo → P(W×W) (for program variables)

� Definition 6.53 The meaning of complex formulae is given by the following
value function Iwϕ : wff o(Vo)→ Do

� Iwϕ,π(V ) = ϕ(w, V ) for V ∈ Vo and Iwϕ,π(V ) = π(V ) for V ∈ Vπ.
� Iwϕ,π(¬A) = T iff Iwϕ,π(A) = F

� Iwϕ,π([α]A) = T iff Iw′ϕ,π(A) = T for all w′ ∈ W with wIwϕ,π(α)w′.

� Iwϕ,π(α ;β) = Iwϕ,π(α) ◦ Iwϕ,π(β) (sequence)

� Iwϕ,π(α∪β) = Iwϕ,π(α)∪Iwϕ,π(β) (choice)

� Iwϕ,π(∗α) = Iwϕ,π(α)
∗ (transitive closure)

� Iwϕ,π(A ?) = {〈w,w〉 | Iwϕ,π(A) = T} (test)

©:Michael Kohlhase 246

First-Order Program Logic (DL1)

� logic variables, constants, functions and predicates (uninterpreted), but no

143

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


program variables

� Definition 6.54 (Assignments) � nondeterministic assignment X := ?

� deterministic assignment X := A

� Example 6.55 |= p(f(X))⇒ g(Y, f(X))⇒〈Z := f(X)〉p(Z, g(Y,Z))

� Example 6.56 |= Z = Y ∧ (∀X p(f(g(X)) = X))⇒ [while p(Y ) do Y := g(Y ) end]〈while Y 6= Z do Y := f(Y ) end〉T

©:Michael Kohlhase 247

DL1 Semantics

� Definition 6.57 Let M = 〈D, I〉 be a first-order model then we take the
States (possible worlds) are variable assignments: W = {ϕ |ϕ : Vι → D}

� Definition 6.58 Write ϕ [X ]ψ, iff ϕ(X) = ψ(X) for all X 6∈ X .

� Definition 6.59 The meaning of complex formulae is given by the following
value function Iwϕ : wff o(Σ)→ Do

� Iwϕ (A) = Iϕ(A) if A term or atom.

� Iwϕ (¬A) = T iff Iwϕ (A) = F

�
...

� Iwϕ (X := ?) = {〈ϕ,ψ〉 |ϕ [X]ψ}
� Iwϕ (X := A) = {〈ϕ,ψ〉 |ϕ [X]ψ and ψ(X) = Iϕ(A)}.

� Iϕ([X := A]B) = Iϕ,[Iϕ(A)/X](B)

� ∀X A abbreviates [X := ?]A

©:Michael Kohlhase 248

We will now establish a method for direct deduction on DRT, i.e. deduction at the representational
level of DRT, without having to translate – and retranslate – before deduction.

6.4 Dynamic Model Generation

Deduction in Dynamic Logics

� Mechanize the dynamic entailment relation (with anaphora)

� Use dynamic deduction theorem to reduce (dynamic) entailment to (dynamic)
satisfiability

� Direct Deduction on DRT (or DPL)
[Saurer’93, Gabbay& Reyle’94, Monz& deRijke’98,. . . ]

(++) Specialized Calculi for dynamic representations

(– –) Needs lots of development until we have efficient implementations

� Translation approach (used in our experiment)

144

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


(–) Translate to FOL

(++) Use off-the-shelf theorem prover (in this case MathWeb)

©:Michael Kohlhase 249

An Opportunity for Off-The-Shelf ATP?

� Pro: ATP is mature enough to tackle applications

� Current ATP are highly efficient reasoning tools

� Full automation is needed for NL processing (ATP as an oracle)

� ATP as logic engines is one of the initial promises of the field

� Contra: ATP are general logic systems

1) NLP uses other representation formalisms (DRT, Feature Logic,. . . )

2) ATP optimized for mathematical (combinatorially complex) proofs

3) ATP (often) do not terminate

Experiment: [Blackburn & Bos & Kohlhase & Nivelle’98]
Use translation approach for 1. to test 2. and 3. (Wow, it works!) Play with
http://www.coli.uni-sb.de/~bos/doris

©:Michael Kohlhase 250

� Excursion: Incrementality in Dynamic Calculi

� For applications, we need to be able to check for

� consistency (∃M M |= A), validity (∀M M |= A) and

� entailment (H |= A, iffM |= H impliesM |= A for allM)

Deduction Theorem: H |= A, iff |= H⇒A. (valid for first-order Logic and
DPL)

�� Problem: AnalogueH1⊗ · · ·⊗Hn |= A is not equivalent to |= (H1⊗ · · ·⊗Hn)⇒⇒A
in DRT, since ⊗ symmetric.

� Thus: validity check cannot be used for entailment in DRT.

� Solution: Use sequential merge ;; (from DPL) for sentence composition

©:Michael Kohlhase 251

Model Generation for Dynamic Logics

� Problem: Translation approach is not incremental

145

http://creativecommons.org/licenses/by-sa/2.5/
http://www.coli.uni-sb.de/~bos/doris
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� For each check, the DRS for the whole discourse has to be translated

� Can become infeasible, once discourses get large (e.g. novel)

� This applies for all other approaches for dynamic deduction too

� Idea: Extend model generation techniques instead!

� Remember: A DRS D is valid inM = 〈D, Iδ〉, iff Iδ∅(D)
2 6= ∅

� Find a modelM and state ϕ, such that ϕ ∈ Iδ∅(D)
2.

� Adapt first-order model generation technology for that

©:Michael Kohlhase 252

We will now introduce a “direct semantics” for DRT: a notion of “model” and an evaluation mapping
that interprets DRSes directly – i.e. not via a translation of first-order logic. The main idea is that
atomic conditions and conjunctions are interpreted largely like first-order formulae, while DRSes
are interpreted as sets of assignments to discourse referents that make the conditions true. A DRS
is satisfied by a model, if that set is non-empty.

A Direct Semantics for DRT (Dyn. Interpretation Iδϕ)

� Definition 6.60 Let M = 〈U , I〉 be a FO Model and ϕ,ψ : DR → U be
referent assignments, then we say that ψ extends ϕ on X ⊆DR (write ϕ [X ]ψ),
if ϕ(U) = ψ(U) for all U 6∈ X .

� Idea: Conditions as truth values; DRSes as pairs (X ,S) (S set of states)

� Definition 6.61 (Meaning of complex formulae) � Iδϕ(p(a1, . . . , an))
as always.

� Iδϕ(A∧B) = T, iff Iδϕ(A) = T and Iδϕ(B) = T.

� Iδϕ(¬¬D) = T, if Iδϕ(D)
2

= ∅.

� Iδϕ(D∨∨E) = T, if Iδϕ(D)
2 6= ∅ or Iδϕ(E)

2 6= ∅.

� Iδϕ(D⇒⇒E) = T, if for all ψ ∈ Iδϕ(D)
2 there is a τ ∈ Iδϕ(E)

2 with

ψ
[
Iδϕ(E)

1
]
τ .

� Iδϕ(δX C) = (X , {ψ |ϕ [X ]ψ and Iδψ(C) = T}).

� Iδϕ(D⊗E) = Iδϕ(D ;; E) = (Iδϕ(D)
1 ∪Iδϕ(E)

1
, Iδϕ(D)

2 ∩Iδϕ(E)
2
)

©:Michael Kohlhase 253

We can now fortify our intuition by computing the direct semantics of two sentences, which differ
in their dynamic potential.

Examples (Computing Direct Semantics)

146

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� Example 6.62 Peter owns a car

Iδ
ϕ

(δ U car(U)∧ own(peter, U))

= ({U}, {ψ |ϕ [X ]ψ and Iδ
ψ

(car(U)∧ own(peter, U)) = T})

= ({U}, {ψ |ϕ [X ]ψ and Iδ
ψ

(car(U)) = T and Iδ
ψ

(own(peter, U)) = T})

= ({U}, {ψ |ϕ [X ]ψ and ψ(U) ∈ car and (ψ(U),peter) ∈ own})

The set of states [a/U ], such that a is a car and is owned by Peter

� Example 6.63 For Peter owns no car we look at the condition:

Iδ
ϕ

(¬¬ ( δ U car(U)∧ own(peter, U))) = T

⇔ Iδ
ϕ

(δ U car(U)∧ own(peter, U))
2

= ∅

⇔ ({U}, {ψ |ϕ [X ]ψ and ψ(U) ∈ car and (ψ(U),peter) ∈ own})2 = ∅
⇔ {ψ |ϕ [X ]ψ and ψ(U) ∈ car and (ψ(U),peter) ∈ own} = ∅

i.e. iff there are no a, that are cars and that are owned by Peter.

©:Michael Kohlhase 254

The first thing we see in Example 6.62 is that the dynamic potential can directly be read off
the direct interpretation of a DRS: it is the domain of the states in the first component. In
Example 6.63, the interpretation is of the form (∅, Iδϕ(C)), where C is the condition we compute
the truth value of in Example 6.63.

Dynamic Herbrand Interpretation

� Definition 6.64 We call a dynamic interpretation M = 〈U , I, Iδϕ〉 a dy-
namic Herbrand interpretation, if 〈U , I〉 is a Herbrand model.

� Can representM as a triple 〈X ,S,B〉, where B is the Herbrand base for 〈U , I〉.

� Definition 6.65M is called finite, iff U is finite.

� Definition 6.66M is minimal, iff for allM′ the following holds: (B(M′)⊆B(M))⇒M′ =M.

� Definition 6.67M is domain minimal if for all M′ the following holds:
#(U(M))≤#(U(M′)).

©:Michael Kohlhase 255

Sorted DRT=DRT++ (Syntax)

� Two syntactic categories
Conditions C → p(a1, . . . , an)|(C1 ∧C2)|¬¬D|(D1 ∨∨D2)|(D1⇒⇒D2)
DRSes D → ( δ U1

A1
, . . . , UnAn C)|(D1)D2|(D1)D2

� Example 6.68 δ UH, VN farmer(U)∧donkey(V )∧ own(U, V )∧beat(U, V )

147

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


� τ -Equality:

δX C1⊗ δ Y C2 →τ δX ,Y C1 ∧C2
δX C1 ;; δ Y C2 →τ δX ,Y C1 ∧C2

� Discourse Referents used instead of bound variables
(specify scoping independently of logic)

� Idea: Semantics by mapping into sorted first-order Logic

©:Michael Kohlhase 256

Dynamic Model Generation Calculus

� Use a tableau framework, extend by state information and rules for DRSes.

δ UA At H = {a1, . . . , an} w 6∈ H new
[a1/U ]

¬ [a1/U ](A)
t

∣∣∣ . . . ∣∣∣ [an/U ]
¬ [an/U ](A)

t

∣∣∣ [w/U ]
¬ [w/U ](A)

t

RM:δ

� Mechanize ;; by adding representation at all leaves

� Treat conditions by translation

¬¬D
¬¬D

D⇒⇒D′

D⇒⇒D′
D∨∨D′

D∨∨D′

©:Michael Kohlhase 257

Example: Peter is a man. No man walks

without sorts with sort M ale
man(peter)

¬¬ ( δ U man(U)∧walk(U))

∀X man(X)∧walk(X)
f

man(peter)∧walk(peter)f

man(peter)
f

⊥
walk(peter)

f

man(peter)

¬¬ ( δ UM ale walk(U))

∃XM ale walk(X)
f

walk(peter)
f

problem: 1000 men
⇒

1000 closed branches

� Dynamic Herbrand Interpretation:

〈{UA}, {[peter/UA]}, {man(peter)
t
,walk(peter)

f}〉

©:Michael Kohlhase 258

148

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Example: Anaphora Resolution
A man sleeps. He snores

δ UM an man(U)∧ sleep(U)

[c1M an/UM an]
man(c1M an)

t

sleep(c1M an)
t

δ VM an snore(V )

[c1M an/VM an]
snore(c1M an)

t

minimal

[c2M an/VM an]
snore(c2M an)

t

deictic

©:Michael Kohlhase 259

Anaphora with World Knowledge

� Mary is married to Jeff. Her husband is not in town.

� δ UF, VM U = mary∧married(U, V )∧V = jeff ;; δWM,W
′
F hubby(W,W ′)∧¬ intown(W )

� World knowledge

� if a female X is married to a male Y , then Y is X’s only husband

� ∀XF, YM married(X,Y )⇒hubby(Y,X)∧ (∀Z hubby(Z,X)⇒Z = Y )

� Model generation yields tableau, all branches contain

〈{U, V,W,W ′}, {[mary/U ], [jeff/V ], [jeff/W ], [mary/W ′]},H〉

with

H = {married(mary, jeff)
t
,hubby(jeff,mary)

t
,¬ intown(jeff)

t}

� they only differ in additional negative facts, e.g. married(mary,mary)
f .

©:Michael Kohlhase 260

Model Generation models Discourse Understanding

� Conforms with psycholinguistic findings:

� [Zwaan’98]: listeners not only represent logical form, but also models contain-
ing referents

� [deVega’95]: online, incremental process

� [Singer’94]: enriched by background knowledge

� [Glenberg’87]: major function is to provide basis for anaphor resolution

149

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


©:Michael Kohlhase 261

7 Conclusion

NL Semantics as an Intersective Discipline

©:Michael Kohlhase 262

A landscape of formal semantics

150

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


©:Michael Kohlhase 263

Modeling Natural Language Semantics

� Problem: Find formal (logic) system for the meaning of natural language

� History of ideas

� Propositional logic [ancient Greeks like Aristotle]
*Every human is mortal

� First-Order Predicate logic [Frege ≤ 1900]
*I believe, that my audience already knows this.

� Modal logic [Lewis18, Kripke65]
*A man sleeps. He snores. ((∃X man(X)∧ sleep(X)))∧ snore(X)

� Various dynamic approaches (e.g. DRT, DPL)
*Most men wear black

� Higher-order Logic, e.g. generalized quantifiers

� . . .

©:Michael Kohlhase 264

Let us now reconcider the role of all of this for natural language semantics. We have claimed
that the goal of the course is to provide you with a set of methods to determine the meaning of
natural language. If we look back, all we did was to establish translations from natural languages
into formal languages like first-order or higher-order logic (and that is all you will find in most
semantics papers and textbooks). Now, we have just tried to convince you that these are actually
syntactic entities. So, where is the semantics? .

151

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Natural Language Semantics?

Comp Ling
NL

L = wff (Σ)

M = 〈D, I〉

|=NL⊆NL×NL

`C ⊆FL×FL

|=⊆FL×FL

Analysis

Iϕ

induces

induces

formulae

|= ≡ `C?

|=NL ≡ `C?

©:Michael Kohlhase 265

As we mentioned, the green area is the one generally covered by natural language semantics. In
the analysis process, the natural language utterances (viewed here as formulae of a language NL)
are translated to a formal language FL (a set wff (Σ) of well-formed formulae). We claim that
this is all that is needed to recapture the semantics even it this is not immediately obvious at first:
Theoretical Logic gives us the missing pieces.

Since FL is a formal language of a logical systems, it comes with a notion of model and an
interpretation function Iϕ that translates FL formulae into objects of that model. This induces
a notion of logical consequence5 as explained in32. It also comes with a calculus C acting on EdN:32
FL-formulae, which (if we are lucky) is correct and complete (then the mappings in the upper
rectangle commute).

What we are really interested in in natural language semantics is the truth conditions and
natural consequence relations on natural language utterances, which we have denoted by |=NL.
If the calculus C of the logical system 〈FL,K, |=〉 is adequate (it might be a bit presumptious to
say sound and complete), then it is a model of the relation |=NL. Given that both rectangles in
the diagram commute, then we really have a model for truth-conditions and logical consequence
for natural language utterances, if we only specify the analysis mapping (the green part) and the
calculus.

Where to from here?

� We can continue the exploration of semantics in two different ways:

� Look around for additional logical systems and see how they can be applied
to various linguistic problems. (The logician’s approach)

� Look around for additional linguistic forms and wonder about their truth
conditions, their logical forms, and how to represent them. (The linguist’s
approach)

� Here are some possibilities...

5Relations on a set S are subsets of the cartesian product of S, so we use R ∈ (S∗)S to signify that R is a
(n-ary) relation on X.

32EdNote: crossref

152

http://creativecommons.org/licenses/by-sa/2.5/


©:Michael Kohlhase 266

Semantics of Plurals

1) The dogs were barking.

2) Fido and Chester were barking. (What kind of an object do the subject
NPs denote?)

3) Fido and Chester were barking. They were hungry.

4) Jane and George came to see me. She was upset. (Sometimes we need to
look inside a plural!)

5) Jane and George have two children. (Each? Or together?)

6) Jane and George got married. (To each other? Or to other people?)

7) Jane and George met. (The predicate makes a difference to how we
interpret the plural)

©:Michael Kohlhase 267

Reciprocals

� What’s required to make these true?

1) The men all shook hands with one another.

2) The boys are all sitting next to one another on the fence.

3) The students all learn from each other.

©:Michael Kohlhase 268

Presuppositional expressions

� What are presuppositions?

� What expressions give rise to presuppositions?

� Are all apparent presuppositions really the same thing?

1) The window in that office is open.

2) The window in that office isn’t open.

3) George knows that Jane is in town.

4) George doesn’t know that Jane is in town.

5) It was / wasn’t George who upset Jane.

6) Jane stopped / didn’t stop laughing.

7) George is / isn’t late.

153

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


©:Michael Kohlhase 269

Presupposition projection

1) George doesn’t know that Jane is in town.

2) Either Jane isn’t in town or George doesn’t know that she is.

3) If Jane is in town, then George doesn’t know that she is.

4) Henry believes that George knows that Jane is in town.

©:Michael Kohlhase 270

Conditionals

� What are the truth conditions of conditionals?

1) If Jane goes to the game, George will go.

� Intuitively, not made true by falsity of the antecedent or truth of
consequent independent of antecedent.

2) If John is late, he must have missed the bus.

� Generally agreed that conditionals are modal in nature. Note presence of modal
in consequent of each conditional above.

©:Michael Kohlhase 271

Counterfactual conditionals

� And what about these??

1) If kangaroos didn’t have tails, they’d topple over. (David Lewis)

2) If Woodward and Bernstein hadn’t got on the Watergate trail, Nixon
might never have been caught.

3) If Woodward and Bernstein hadn’t got on the Watergate trail, Nixon
would have been caught by someone else.

� Counterfactuals undoubtedly modal, as their evaluation depends on which al-
ternative world you put yourself in.

©:Michael Kohlhase 272

Before and after

� These seem easy. But modality creeps in again...

1) Jane gave up linguistics after she finished her dissertation. (Did she
finish?)

154

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


2) Jane gave up linguistics before she finished her dissertation. (Did she
finish? Did she start?)

©:Michael Kohlhase 273

References
[And02] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth

Through Proof. Kluwer Academic Publishers, second edition, 2002.

[BB05] Patrick Blackburn and Johan Bos. Representation and Inference for Natural Language.
A First Course in Computational Semantics. CSLI, 2005.

[Dav67a] Donald Davidson. The logical form of action sentences. In N. Rescher, editor, The logic
of decision and action, pages 81–95. Pittsburgh University Press, Pittsburgh, 1967.

[Dav67b] Donald Davidson. Truth and meaning. Synthese, 17, 1967.

[DSP91] Mary Dalrymple, Stuart Shieber, and Fernando Pereira. Ellipsis and higher-order uni-
fication. Linguistics & Philosophy, 14:399–452, 1991.

[Gam91a] L. T. F. Gamut. Logic, Language and Meaning, Volume I, Introduction to Logic, vol-
ume 1. University of Chicago Press, Chicago, 1991.

[Gam91b] L. T. F. Gamut. Logic, Language and Meaning, Volume II, Intensional Logic and
Logical Grammar, volume 2. University of Chicago Press, Chicago, 1991.

[GK96] Claire Gardent and Michael Kohlhase. Focus and higher–order unification. In Proceed-
ings of the 16th International Conference on Computational Linguistics, pages 268–279,
Copenhagen, 1996.

[GKvL96] Claire Gardent, Michael Kohlhase, and Noor van Leusen. Corrections and Higher-Order
Unification. In Proceedings of KONVENS’96, pages 268–279, Bielefeld, Germany, 1996.
De Gruyter.

[Gol81] Warren D. Goldfarb. The undecidability of the second-order unification problem. The-
oretical Computer Science, 13:225–230, 1981.

[GS90] Jeroen Groenendijk and Martin Stokhof. Dynamic Montague Grammar. In L. Kálmán
and L. Pólos, editors, Papers from the Second Symposium on Logic and Language, pages
3–48. Akadémiai Kiadó, Budapest, 1990.

[GS91] Jeroen Groenendijk and Martin Stokhof. Dynamic predicate logic. Linguistics & Phi-
losophy, 14:39–100, 1991.

[Hei82] Irene Heim. The Semantics of Definite and Indefinite Noun Phrases. PhD thesis,
University of Massachusetts, 1982.

[HK00] Dieter Hutter and Michael Kohlhase. Managing structural information by higher-order
colored unification. Journal of Automated Reasoning, 25(2):123–164, 2000.

[Hue76] Gérard P. Huet. Résolution d’Équations dans des Langages d’ordre 1,2,...,w. Thèse
d‘état, Université de Paris VII, 1976.

[Hue80] Gérard Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the ACM (JACM), 27(4):797–821, 1980.

155

http://creativecommons.org/licenses/by-sa/2.5/


[Kam81] Hans Kamp. A theory of truth and semantic representation. In J. Groenendijk, Th.
Janssen, and M. Stokhof, editors, Formal Methods in the Study of Language, pages
277–322. Mathematisch Centrum Tracts, Amsterdam, Netherlands, 1981.

[KKP96] Michael Kohlhase, Susanna Kuschert, and Manfred Pinkal. A type-theoretic semantics
for λ-DRT. In P. Dekker and M. Stokhof, editors, Proceedings of the 10th Amsterdam
Colloquium, pages 479–498, Amsterdam, 1996. ILLC.

[Koh08] Michael Kohlhase. Using LATEX as a semantic markup format. Mathematics in Computer
Science, 2(2):279–304, 2008.

[Koh15] Michael Kohlhase. sTeX: Semantic markup in TEX/LATEX. Technical report, Compre-
hensive TEX Archive Network (CTAN), 2015.

[KR93] Hans Kamp and Uwe Reyle. From Discourse to Logic: Introduction to Model-Theoretic
Semantics of Natural Language, Formal Logic and Discourse Representation Theory.
Kluwer, Dordrecht, 1993.

[Lew73] David K. Lewis. Counterfactuals. Blackwell Publishers, 1973.

[Mat70] Ju. V. Matijasevič. Enumerable sets are diophantine. Soviet Math. Doklady, 11:354–358,
1970.

[Mon70] R. Montague. English as a Formal Language, chapter Linguaggi nella Societa e nella
Tecnica, B. Visentini et al eds, pages 189–224. Edizioni di Communita, Milan, 1970.
Reprinted in [Tho74], 188–221.

[Mon74] Richard Montague. The proper treatment of quantification in ordinary English. In
R. Thomason, editor, Formal Philosophy. Selected Papers. Yale University Press, New
Haven, 1974.

[Mus96] Reinhard Muskens. Combining Montague semantics and discourse representation. Lin-
guistics & Philosophy, 14:143 – 186, 1996.

[Par90] Terence Parsons. Events in the Semantics of English: A Study in Subatomic Semantics,
volume 19 of Current Studies in Linguistics. MIT Press, 1990.

[Pin96] Manfred Pinkal. Radical underspecification. In P. Dekker and M. Stokhof, editors, Pro-
ceedings of the 10th Amsterdam Colloquium, pages 587–606, Amsterdam, 1996. ILLC.

[Pul94] Stephen G. Pulman. Higher order unification and the interpretation of focus. Technical
Report CRC-049, SRI Cambridge, UK, 1994.

[Sta68] Robert C. Stalnaker. A theory of conditionals. In Studies in Logical Theory, American
Philosophical Quarterly, pages 98–112. Blackwell Publishers, 1968.

[Sta85] Rick Statman. Logical relations and the typed lambda calculus. Information and
Computation, 65, 1985.

[Tho74] R. Thomason, editor. Formal Philosophy: selected Papers of Richard Montague. Yale
University Press, New Haven, CT, 1974.

[vE97] Jan van Eijck. Type logic with states. Logic Journal of the IGPL, 5(5), September
1997.

[Ven57] Zeno Vendler. Verbs and times. Philosophical Review, 56:143–160, 1957.

[Zee89] Henk Zeevat. A compositional approach to DRT. Linguistics & Philosophy, 12:95–131,
1989.

156



Index
C-consistent, 38, 67
C-derivation, 18
C-refutable, 38, 67
∇-Hintikka Set, 41, 69
∇-model

canonical, 147
*, 49, 52
discourse

renaming, 166
renaming

discourse, 166
equality

merge, 153
merge

equality, 153
β-equality

Axiom of, 93
Axiom of

β-equality, 93
equal

eta, 93
eta

equal, 93
Σ-algebra, 106
alpha

conversion, 96
beta

conversion, 96
conversion

alpha, 96
beta, 96
eta, 96

eta
conversion, 96

β normal form of A, 107
β normal form, 107
alpha

equal, 65
equal

alpha, 65
βη-normal

Long (form), 98
η-Expansion, 98
η-long

form, 98
Long

βη-normal
form, 98

form
η-long, 98

algebra

term, 109
term

algebra, 109
U-reducible, 81

abstract
consistency, 39, 68, 146

accessibility
relation, 143

accessible, 153
accomplishment, 124
achievement, 124
addition

Church, 187
adjective, 24
admissible, 18
admits

weakening, 17
alphabetical

variants, 65
ambiguity

semantical, 48
analysis

conceptual, 11
logical, 11
semantic-pragmatic, 8

arithmetic, 15
assignment

deterministic, 173
nondeterministic, 173
referent, 156, 175
variable, 52, 61, 143, 172

assumption, 18
atom, 30
atomic, 30

formula, 26, 60
Axiom

Extensionality, 93
axiom, 18

base
type, 91

binary
conditional, 120

binder, 98
binding

dynamic (potential), 166
imitation, 185
operator, 130
projection, 185

Blaise Pascal, 16

157



bound, 96
classically, 162
variable, 60

branch
closed, 31, 73
open, 31, 73

bridging
reference, 121

calculus, 18
canonical

∇-model, 147
categories

syntactical, 24
category

syntactical, 22
choice

operator, 120
Church

addition, 187
multiplication, 187
numeral, 187

classically
bound, 162

closed, 60
branch, 31, 73

closed under
subset, 38
subsets, 67

cognitive
model, 8

collection
typed, 105

color, 193
common

noun, 115
commute, 105
compact, 39, 40, 68
complete, 19, 79, 144

set of unifiers, 182
complex, 30

formula, 26, 60
composition, 130
comprehension-closed, 106
conceptual

analysis, 11
conclusion, 18
condition, 153

truth, 9
conditional

binary, 120
unary, 120

confluent, 103
weakly, 103

congruence, 108
functional, 108

connective, 24, 59
consistency

abstract (class), 39, 68, 146
constant

function, 59
predicate, 59
Skolem, 59

construction
semantics, 8

constructor
program, 172

contant
Skolem, 96

contradiction, 38, 67
correct, 19, 79, 144

DAG
solved, 83

derivation
relation, 17

derived
inference, 34
rule, 34

derives, 31, 73
description

operator, 120
deterministic

assignment, 173
diamond

property, 103
Diophantine

equation, 187
discharge, 63
discourse

referent, 153
representation, 153

disjunctive
normal, 37

DNF, 37
domain

minimal, 176
type, 91

DRS, 153
Dynamic

Propositional (Logic), 171, 172
dynamic, 154

binding, 166
first-order uninterpreted (logic), 171
Herbrand, 176
interpreted first-order (logic), 171
potential, 154

158



elementary
mode, 163

empty
mode, 163

entailment
relation, 17

entails, 17
equality

mode, 164
equation

Diophantine, 187
equational

system, 78
evaluation

function, 52
extends, 156, 175
extension, 62
Extensionality

Axiom, 93

falsifiable, 17
falsified byM, 17
finite, 176
first-order

logic, 59
signature, 59

first-order uninterpreted
dynamic, 171

first-order
modal, 143

modal
first-order (first-order), 143

form
normal, 97
pre-solved, 191
solved, 79, 182

formal
system, 17, 18

formula, 16
atomic, 26, 60
complex, 26, 60
labeled, 30
well-typed, 96

fragment, 22
frame, 105
free, 96

variable, 60
function

constant, 59
evaluation, 52
type, 91
typed, 105
value, 27, 61, 105, 143, 149, 172, 173

functional

congruence, 108
translation, 145

general
more, 78, 182

Gottfried Wilhelm Leibniz, 16
grammar

rule, 24
ground, 60
grounding

substitution, 109

Head
Reduction, 98

head, 22
symbol, 98
syntactic, 98

Herbrand
dynamic (interpretation), 176
model, 45

higher-order
simplification, 183

hypotheses, 18

imitation
binding, 185

independent, 167
individual, 59

variable, 59
individuals, 27, 61

type of, 91
inference

derived (rule), 34
rule, 18

insertion
lexical (rule), 24

interpretation, 27, 61
interpreted first-order

dynamic, 171
intransitive

verb, 24
introduced, 62

Judgment, 111

Kripke
model, 143

label, 22
labeled

formula, 30
lambda

term, 96
language

natural (generation), 8

159



natural (processing), 8
natural (understanding), 8

lexical
insertion, 24
rule, 22

literal, 30, 33
logic

first-order, 59
morphism, 144

logical
analysis, 11
relation, 99
system, 16

mating, 77, 84
spanning, 77, 84

matrix, 98
measure

unification, 188
most general

unifier, 182
unifier

most general, 182
minimal, 176

domain, 176
modalities, 172
mode, 162

elementary, 163
empty, 163
equality, 164
specifier, 163

moded
type, 162

Model, 27, 61
model, 16

cognitive, 8
Herbrand, 45
Kripke, 143

modes, 163
monomial, 37
more

general, 78, 182
morphism

logic, 144
most general

unifier, 78
multiplication

Church, 187
multiplicity, 76
multiset

ordering, 81

name
proper, 24, 115

natural
language, 8

Necessitation, 144
necessity, 143
negative, 31, 74
nondeterministic

assignment, 173
normal

disjunctive (form), 37
form, 97

noun, 24
common, 115
phrase, 24

numeral
Church, 187

occurrence
symbol, 193

off
worked, 36

open
branch, 31, 73

operator
binding, 130
choice, 120
description, 120

ordering
multiset, 81

part
physical, 12

phrase
noun, 24

physical
part, 12

possibility, 143
possible

worlds, 143
potential

dynamic, 154
pre-solved, 191

form, 191
predicate

constant, 59
prioritized

union, 162
problem

solving, 8
unification, 179

process, 124
processing

speech, 8
syntactic, 8

program

160



constructor, 172
variable, 172

projection, 98
binding, 185

proof, 18
tableau, 31, 74

proof-reflexive, 17
proof-transitive, 17
proper

name, 24, 115
property

diamond, 103
modal

propositional (propositional), 143
propositional

modal, 143
proposition, 26, 59
Propositional

Dynamic, 171, 172

range
type, 91

reasonable, 38, 67
reducing

strongly, 99
Reduction

Head, 98
reference

bridging, 121
referent

assignment, 156, 175
discourse, 153

refutation
tableau, 31, 74

relation
accessibility, 143
derivation, 17
entailment, 17
logical, 99
satisfaction, 16

representation
discourse (structure), 153

rule
derived, 34
grammar, 24
inference, 18
lexical, 22
structural, 22

satisfaction
relation, 16

satisfiable, 17, 52
satisfied byM, 17
saturated, 31, 73

semantic-pragmatic
analysis, 8

semantical
ambiguity, 48

semantics
construction, 8

sentence, 24, 60
set of

unifiers, 179
set of unifiers

complete, 182
signature, 96

first-order, 59
simplification

higher-order (transformations), 183
Skolem

constant, 59
contant, 96

solved, 79
DAG (form), 83
form, 79, 182

solving
problem, 8

sorts, 57
sound, 19
spanning

mating, 77, 84
specifier

mode, 163
speech

processing, 8
state, 124, 172
static, 154
step

subst-prescribed, 189
stlc, 96
strongly

reducing, 99
structural

rule, 22
sub-DRS, 153
subset

closed under, 38
subsets

closed under, 67
subst-prescribed

step, 189
substitutable, 63
substitution, 62

grounding, 109
support, 62
symbol

head, 98
occurrence, 193

161



syntactic
head, 98
processing, 8

syntactical
categories, 24
category, 22

system
equational, 78
formal, 17, 18
logical, 16

T0-theorem, 31, 73
tableau

proof, 31, 74
refutation, 31, 74

term, 26, 59
lambda, 96
type, 162

test calculi, 31, 74
theorem, 18
transitive

verb, 24
translation

functional, 145
truth

condition, 9
value, 27, 59, 61

truth values
type of, 91

type, 91
base, 91
domain, 91
function, 91
moded, 162
range, 91
term, 162

type of
individuals, 91
truth values, 91

type-raising, 128
typed

collection, 105
function, 105

unary
conditional, 120

unification
measure, 188
problem, 179

unifier, 78, 179
most general, 78

unifiers
set of, 179

union

prioritized, 162
unitary, 80
Universe, 27, 61
universe, 61
unsatisfiable, 17, 37

valid, 17, 52
valuation, 42, 71
value

function, 27, 61, 105, 143, 149, 172, 173
truth, 27, 59, 61

variable
assignment, 52, 61, 143, 172
bound (bound), 60
free, 60
free (free), 60
individual, 59
program, 172

variants
alphabetical, 65

verb
intransitive, 24
transitive, 24

weakening
admits, 17

weakly
confluent, 103

well-sorted, 57
well-typed

formula, 96
Wilhelm Schickard, 16
worked

off, 36
worlds

possible, 143

162


	Preface
	This Document
	Acknowledgments

	1 An Introduction to Natural Language Semantics
	1.1 Natural Language Understanding as Engineering
	1.2 Computational Semantics as a Natural Science
	1.3 Looking at Natural Language
	1.4 Preview of the Course

	2 The Method of Fragments: Fragment 1
	2.1 Logic as a Tool for Modeling NL Semantics
	2.2 The Method of Fragments
	2.3 The First Fragment: Setting up the Basics
	2.4 Calculi for Automated Theorem Proving: Analytical Tableaux
	2.5 Tableaux and Model Generation

	3 Adding Context: Pronouns and World Knowledge
	3.1 First Attempt: Adding Pronouns and World Knowledge as Variables
	3.2 First-Order Logic
	3.3 Abstract Consistency and Model Existence
	3.4 First-Order Inference with Tableaux
	3.5 Model Generation with Quantifiers

	4 Fragment 3: Complex Verb Phrases
	4.1 Fragment 3 (Handling Verb Phrases)
	4.2 Dealing with Functions in Logic and Language
	4.3 Translation for Fragment 3
	4.4 Simply Typed -Calculus
	4.5 Computational Properties of -Calculus
	4.6 The Semantics of the Simply Typed -Calculus
	4.7 Simply Typed -Calculus via Inference Systems

	5 Fragment 4: Noun Phrases and Quantification
	5.1 Overview/Summary so far
	5.2 Fragment 4
	5.3 Quantifiers and Equality in Higher-Order Logic
	5.4 Model Generation with Definite Descriptions
	5.5 Model Generation with a Unique Name Assumption
	5.6 Davidsonian Semantics: Treating Verb Modifiers

	6 Dynamic Approaches to NL Semantics
	6.1 Discourse Representation Theory
	6.2 Higher-Order Dynamics
	6.3 Dynamic Logic for Imperative Programs
	6.4 Dynamic Model Generation

	7 Conclusion

