
General Information & Communication Technology I

(350101) Fall 2015

Michael Kohlhase
Jacobs University Bremen

http://kwarc.info/kohlhase

September 9. 2015

Abstract

This document accompanies the python tutorial in GenICT. It contains a sequence of
simple (but increasingly difficult) problems designed to practice the art of recursive program-
ming.

The problems in this document are intended for self-study, they are supplied with solutions.
As most students have never programmed python (or programmed at all), most students

only manage to solve the first five. This is to be expected, and sufficient, since the purpose
of the tutorial is to get students started at all and jointly remove the first roadblocks, so that
they can continue alone (or in groups) after that.

The problems from the first three assignments should be doable after the first two lectures
on python, the later problems can be tackled as the lecture progresses.

Practice Problems 1: Python Basics

Problem 1.1 (Maximum)
Define a function mymax that takes two numbers as arguments and returns the larger of them.

Use the if-then-else construct available in python.

Note: It is true that Python has the max function built in, but writing it yourself is nevertheless a good
exercise.

Solution: We make an if statement and check which number is bigger.

def mymax(a, b):
if a > b:

return a
else:

return b

It is easily possible to write this in one line.

def mymax_smart(a, b):
return a if a > b else b

Problem 1.2 (Sum to 10)
Write a function makes10 that takes two integer arguments and returns True, iff their sum is 10.
Solution:

The idea is to define a function and then make an if statement.

def makes10(a, b):
if a+b == 10:

return True
else:

return False

1

http://kwarc.info/kohlhase

We can also condense this into one line:

def makes10_smart(a, b):
return a+b == 10

Problem 1.3 (Positive/Negative)
Write a function posneg that takes two arguments and returns True, iff one is negative and one

is positive.
Solution: We can just use and if statement:

def posneg(a, b):

if (a < 0 and b > 0) or (a > 0 and b < 0):
return True

else:
return False

Alternatively can also use the mathematical property that the product of two numbers is negative iff
exactly one of them is negative:

def posneg_smart(a, b):
return a*b < 0

Problem 1.4 (Squares)
Write a python program that prints all the square numbers from 1 to 10.

Solution:

for i in range(1, 11):
print(i*i)

We can also use list comprehensions:

[print(i**2) for i in range(1, 11)]

Problem 1.5 (Printing a Square of Stars)
Write a function printSquare that takes an integer n as argument and prints a square with n×n

stars. For instance printSquare(6) would yield

Solution: We can do a straightforward loop:

def print_square(n):
for i in range(n):

for j in range(n):
print("*",end="") # The end argument stops print from printing a newline or space

print() # Print a newline

We can also use string multiplication.

def print_square_smart(n):
print((("*"*n+"\n")*n)[:-1])

Problem 1.6 (Squares to file)
Write a program that prints all the square numbers from 1 to 10 to a file named squares.txt.
Solution:

def squares_to_file():
with open("squares.txt", "w") as squares_file:

for i in range(1, 11):
print(i*i, file=squares_file)

def squares_to_file_smart():
open("squares.txt", "w").write("\n".join([str(i*i) for i in range(1, 11)]))

2

Problem 1.7 (Membership)
Write a function member that takes a value (i.e. a number, string, etc.) x and a list l of values

and returns True if x is a member of l and False otherwise.

Note: For example member(1,[1,2,3]) returns True.

Note: Note that this is exactly what the in operator does, but for the sake of the exercise you should
pretend python lacks this operator. A for/in loop is OK though.

Solution: We can iterate through the list and check each element. If we do not find the element we are
searching for we return False.

def member(x, the_list):
for element in the_list:

if element == x:
return True

return False

Python also has a built-in operator to do this in a smarter way:

def member_smart(x, the_list):
return x in the_list

Problem 1.8 (Guessing Numbers)
Write a program where you guess a number. The program should draw an integer number (use
n = random.randint(1, 100)) and then you should guess the number by inputting a number
on the keyboard. The program should tell you then whether the your guessed number is smaller
or bigger than the hidden number, and let you try again until you have sucessfully guessed the
number.

Note: Keep in mind that you need to import the random module.

Solution:

def guess_me():
we get a random number
the_number = random.randint(1, 100)

print("I picked a random number between 1 and 100. ")

we make a first guess
while True:

the_guess = input("Guess: ")
try:

the_guess = int(the_guess)
break

except:
print("That is not a number. Try again. ")

while the guess is not correct, we keep guessing
while the_guess != the_number:

if the_guess < the_number:
if the guess is smaller than the number
print("The number is bigger than", the_guess)

else:
if not, it has to be bigger
print("The number is smaller than", the_guess)

so we need to keep guessing
while True:

the_guess = input("Guess: ")
try:

the_guess = int(the_guess)
break

except:
print("That is not a number. Try again. ")

print("That’s right, the number is", the_number)

It is also possible to shorten this code:

3

def guess_me_smart():
get a random number between 1 and 100
the_number = random.randint(1, 100)

print("I picked a random number between 1 and 100. ")

we define a function that reads a guess from the input
def read_guess():

while True:
try:

return int(input("Guess: "))
except:

print("That is not a number. Try again. ")

and then we keep reading the number until
the_guess = read_guess()
while the_guess != the_number:

we also shorten the code for printing a message.
print("The number is %s than %d\n" % (’smaller’ if the_guess > the_number else ’bigger’, the_guess))
the_guess = read_guess()

we can say it is the right one
print("That’s right, the number is", the_number)

Problem 1.9 (99 Bottles)
“99 Bottles of Beer” is a traditional song in the United States and Canada. It is popular to sing

on long trips, as it has a very repetitive format which is easy to memorize, and can take a long
time to sing. The song’s simple lyrics are as follows:

99 bottles of beer on the wall, 99 bottles of beer.
Take one down, pass it around, 98 bottles of beer on the wall.

The same verse is repeated, each time with one fewer bottle. The song is completed when the
singer or singers reach zero.

Your task here is write a python program capable of generating all the verses of the song.
Solution: We can just iterate over the number 0 to 99 in reverse order and then for each number print
the appropriate line.

def ninety_nine_bottles():
"""Prints the lyrics to "99 Bottles of Beer". """
for i in range(99, 0, -1):

print(i, "bottles of beer on the wall,", i, "bottles of beer.")
print("Take one down, pass it around,", i-1, "bottles of beer on the wall.")

Using list comprehensions we can write this in one print statement

def ninety_nine_bottles_smart():
[print("%d bottles of beer on the wall, %d bottles of beer. \n" +

"Take one down, pass it around, %d bottles of beer on the wall. "
% (i, i, i-1)) for i in range(0, 99, -1)]

Problem 1.10 (Recognizing Palindromes)
Define a function palindrome that recognizes palindromes (i.e. words that look the same written

backwards). For example, palindrome("radar") should return True.

Solution:

def is_palindrome(word):
first we need to reverse the word
here we treat the string as a list, reverse that and then put it back together
reversed_word = "".join(reversed(word))

now we check if the reversed word is equal to the normal word
return word == reversed_word

4

