
i

General Information & Communication Technology

350101 GenICT I & II 2015

Partial Lecture Notes

Michael Kohlhase

School of Engineering & Science
Jacobs University, Bremen Germany
m.kohlhase@jacobs-university.de

September 20, 2015

m.kohlhase@jacobs-university.de


ii

Preface

This Document

This document contains the course notes for the those parts of the course General Information &
Communication Technology I & II held at Jacobs University Bremen in the academic year 2014.

Contents: The document mixes the slides presented in class with comments of the instructor to
give students a more complete background reference.

Caveat: This document is made available for the students of this course only. It is still a draft
and will develop over the course of the current course and in coming academic years.

Licensing: This document is licensed under a Creative Commons license that requires attribution,
allows commercial use, and allows derivative works as long as these are licensed under the same
license.

Course Concept

Aims: The course 350101 “General Information & Communication Technology I/II” (GenICT) is
a two-semester course that introduces concepts of Computer Science Concepts to non-CS students.
The course is co-taught by four Jacobs Computer Science Faculty each covering a quarter of the
materials.

Course Contents

Goal: We want to demonstrate both theoretical foundations of CS as Computer Science, and we
want to provide practical knowledge helping students to cope with understanding and handling
Computers, electronic documents and data, and the Web. Roughly the first half of the first
semester is devoted to theoretical foundations and core concepts (Kohlhase and Jaeger), and the
second half of the semester to the practical real-world stuff (Schnwlder and Baumann). Throughout
the semester, students will be introduced stepwise to one of the main programming languages of
today, Python.

Acknowledgments

Materials: The presentation of the programming language python uses materials prepared by Dr.
Heinrich Stamerjohanns and Dr. Florian Rabe for the ESM Phython modules.

GenICT Students: The following students have submitted corrections and suggestions to this and
earlier versions of the notes: Kim Philipp Jablonski, Tom Wiesing.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
This Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Course Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Course Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

1 Outline of the Course 1

2 Administrativa 3

I GenICT 1, Module 1: Programming & Documents 5

3 Introducction to Programming 9
3.1 Introduction to Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Programming in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Basic Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Characters & Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Computing with Documents 27

5 Structured and Web Documents 31
5.1 Multimedia Documents on the World Wide Web . . . . . . . . . . . . . . . . . . . 31
5.2 Web Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

iii



Chapter 1

Outline of the Course

This course gives a broad (and in a few places, also a bit more in-depth) introduction to Computer
Science for non-CS students. We want to demonstrate both theoretical foundations of CS as
Computer Science, and we want to provide practical knowledge helping students to cope with
understanding and handling Computers, electronic documents and data, and the Web. Roughly
the first half of the semester is devoted to theoretical foundations and core concepts, and the second
half of the semester to the practical real-world stuff. Throughout the semester, students will be
introduced stepwise to one of the main programming languages of today, Python.

Outline of the Course I: Theory

� Introduction to Information Processing (Michael Kohlhase)

� Introduction to Programming in general and python as the course language

� Encoding and computing numbers on the computer

� Encoding and translating characters and documents (also known as
“texts”. . . )

� Describing the structure of programs and documents (regular expressions,
XML)

� Legal foundations of Intellectual Property (Copyright, etc.)

� From Symbols to Computing (Herbert Jaeger)

� Boolean logic (what “bits” are and how to combine them to to “digital
computation”)

� Complexity: some computer programs take very long to load or complete,
others are fast – must this be so?

©:Michael Kohlhase 1

Outline of the Course I: Applications

� Computer Architecture and Distributed Systems (Jürgen Schönwälder)

� Computer components (processor, core, memory, parallel and serial
busses)

1

http://creativecommons.org/licenses/by-sa/2.5/


2 CHAPTER 1. OUTLINE OF THE COURSE

� Interpreter / compiler / emulator / virtual machines

� Program execution (processes), system level view on processes

� Resource management (memory, cpu) and interprocess communication

� Introduction to the Internet (IP addresses, domain names, autonomous
systems, content caches, . . . )

� Network (in)security (TLS, VPNs, PGP, wifi security, . . . )

� Databases and Web Applications (Peter Baumann)

� Databases: what is a database; tables; the database query language SQL

� Web services: WWW, http, HTML, Web requests

� Security: Web, mail, databases

©:Michael Kohlhase 2

http://creativecommons.org/licenses/by-sa/2.5/


Chapter 2

Administrativa

We will now go through the ground rules for the course. This is a kind of a social contract between
the instructor and the students. Both have to keep their side of the deal to make learning about
Computer Science concepts as efficient and painless as possible.

Grading and Exams

� The course is taught in four sections.

� Every section ends with an exam (∼45 minutes) covering the content of the
ending section.

� Each exam is worth 20% of the final grade. (80% together)

� The homeworks in each section will count 5% of the final grade. (20%
together)

©:Michael Kohlhase 3

Homework Submissions, Grading, Tutorials

� Submissions: We use Heinrich Stamerjohanns’ JGrader system

� submit all homework assignments electronically to https://jgrader.de.

� you can login with your Jacobs account and password. (should have one!)

� feedback/grades to your submissions

� get an overview over how you are doing! (do not leave to midterm)

� Tutorials: select a tutorial group and actually go to it regularly

� to discuss the course topics after class (lectures need pre/postparation)

� to discuss your homework after submission (to see what was the problem)

� to find a study group (probably the most determining factor of success)

©:Michael Kohlhase 4

Even though the lecture itself will be the main source of information in the course, there are
various resources from which to study the material.

3

http://creativecommons.org/licenses/by-sa/2.5/
https://jgrader.de
http://creativecommons.org/licenses/by-sa/2.5/


4 CHAPTER 2. ADMINISTRATIVA

Textbooks, Handouts and Information, Forum

� No required textbook, but course notes, posted slides

� Course notes in PDF will be posted at http://minds.jacobs-university.
de/teaching/GenICTFall2015

� Everything will be posted on PantaRhei (Notes+assignments+course forum)

� announcements, contact information, course schedule and calendar

� discussion among your fellow students(careful, I will occasionally check for
academic integrity!)

� http://panta.kwarc.info (use your Jacobs login)

Set Up PantaRhei Access: to get notifications

� 1) Log into PantaRhei,

2) find the course GenICT Fall 2015,

3) request membership (I will approve you)

� if there are problems send e-mail me (mkohlhase@jacobs-university.de)

©:Michael Kohlhase 5

No Textbook: There is no single textbook that covers the course. Instead we have a comprehensive
set of course notes (this document). They are provided in two forms: as a large PDF that is posted
at the course web page and on the PantaRhei system. The latter is actually the preferred method
of interaction with the course materials, since it allows to discuss the material in place, to play
with notations, to give feedback, etc. The PDF file is for printing and as a fallback, if the PantaRhei
system, which is still under development, develops problems.

But of course, there is a wealth of literature on the subject, and the references at the end of the
lecture notes can serve as a starting point for further reading. We will try to point out the relevant
literature throughout the notes.

http://minds.jacobs-university.de/teaching/GenICTFall2015
http://minds.jacobs-university.de/teaching/GenICTFall2015
http://panta.kwarc.info
mkohlhase@jacobs-university.de
http://creativecommons.org/licenses/by-sa/2.5/


Part I

GenICT 1, Module 1:
Programming & Documents

5





7

We start off the course by giving a very brief introduction to programming. We use python as
the main programming language. As many students already have experience through the python
lab, we will only briefly recap – and introduce to those students who have no experience yet – the
python language



8



Chapter 3

Introducction to Programming

To understand programming we need to understand a bit about computers – the devices programs
run on first

3.1 Introduction to Programming

Programming is an important and distinctive part of “Information and Communication Technol-
ogy” – the topic of this course. Before we delve into learning Python, we will review some of the
basics of computing to situate the discussion.

To understand programming, it is important to realize that that computers are universal machines.
Unlike a conventional tool – e.g a spade – which has a limited number of purposes/behaviors –
digging holes in case of a spade, maybe hitting someone over the head, a computer can be given
arbitrary1 purposes/behaviors by specifying them in form of a “program”.

Computer Hardware/Software & Programming

� Definition 3.1.1 computer hard-
ware consists of devices that execute
commands/instructions:

� central processing unit (CPU)

� memory: e.g. RAM, Disks, . . .

� input: e.g. keyboard, touch-
screen, . . .

� output: e.g. screen, earphone,
. . .

� software = programs and data

� programs input, manipulate, output
data

� hardware stores data and runs pro-
grams

Data

Machines

Algorithms

� Programming = writing programs (Telling the computer what to do)

� The computer does exactly as told

1as long as they are “computable”, not all are.

9



10 CHAPTER 3. INTRODUCCTION TO PROGRAMMING

� extremely fast extremely reliable

� completely stupid: will not do what you mean unless you tell it exactly

� Programming can be extremely fun/frustrating/addictive (try it)

©:Michael Kohlhase 6

hardware-software-programming

Programming Languages

� The language in which we write the program

� formal, symbolic, precise meaning

� There are lots of programming languages

� design huge effort in computer science

� all programming languages equally strong

� each is more or less appropriate for a specific task depending on the cir-
cumstances

� Lots of paradigms: imperative, functional programming, logic programming,
object oriented programming

� Everybody who tells you that one PL is the best has no idea what they’re
talking about

©:Michael Kohlhase 7

Program Execution

� Algorithm: informal description of what to do (good enough for humans)

� Program: formal version of the algorithm (needed for computers)

� Interpreter: reads a program and executes it directly

� special case: interactive interpretation (lets you experiment easily)

� Compiler: translates a program (the source) into another program (the binary)
in a much simpler language for optimized execution on hardware directly.

� Observation 3.1.2 Compilers are more efficient, but more cumbersome for
development

©:Michael Kohlhase 8

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


3.2. PROGRAMMING IN PYTHON 11

3.2 Programming in Python

In this section we will introduce the basics of the python language. python will be used as
our means to express algorithms and to explore the computational properties of the objects we
introduce in GenICT.

Before we get into the syntax and meaning of python, let us recap why we chose this particular
language for GenICT.

python in a Nutshell

� Why python?:

� general purpose programming language

� imperative interactive interpreter

� syntax very easy to learn (spend more time on problem solving)

� scales well

� easy for beginners to write simple programs

� but advanced software can be written with it as well

� Interactive mode: The python shell IDLE3

� Homework: install python (version 3.4.?) from http://python.org (not
2.?.?, that has different syntax)

©:Michael Kohlhase 9

Installing python: python can be installed from http://python.org ; “Downloads”, as a
Windows installer or a MacOSX disk image. For linux it is best installed via the package manager.

The download will install the python interpreter and the python shell IDLE3 that can be used
for interacting with the interpreter directly. The latter also comes with an integrated editor for
writing python programs. This editor gives you python syntax highlighting, and interpreter and
debugger integration. In short, IDLE3 is an integrated development environment for python.

Arithmetic Expressions in python

http://python.org
http://creativecommons.org/licenses/by-sa/2.5/
http://python.org


12 CHAPTER 3. INTRODUCCTION TO PROGRAMMING

� Integers (numbers without a decimal point)

� Floats (numbers with a decimal point)

� Division yields a float

� Special // operator for integer division

� Special % (modulo) operator (remainder)

©:Michael Kohlhase 10

A first program in python

� A classic “Hello World” program:
start IDLE3, type print("Hello World") (print a string)

� Alternatively: treat it as a program in a file

� Open an editor of your choice (any editor; but use “text mode”)

� Type your program,

# My first python program
print("Hello world")

� Save as hello.py, run the python interpreter on it from a shell

python3 hello.py

©:Michael Kohlhase 11

Comments in python

� It is highly advisable to insert comments into your programs

� Single line comments start with a #

http://creativecommons.org/licenses/by-sa/2.5/
hello.py
http://creativecommons.org/licenses/by-sa/2.5/


3.2. PROGRAMMING IN PYTHON 13

� Multiline comments start and end with three quotes (single or double: """ or
’’’)

� Comments are ignored by python but are useful information for the programmer

©:Michael Kohlhase 12

Variables in python

� Idea: values (of expressions) can be given a name for later reference

� Definition 3.2.1 A variable is a storage location which contains a value and
an associated identifier – the variable name.

� A variable name can be used in expressions everywhere its value could be.

� in python:

� = declares variable name and assigns value.

� variable names start with letter or _, cannot be keywords (case-sensitive)

� Example 3.2.2 (Swapping Variables)

a = 45
b= 0
print("a =", a, "b =", b)
print("Swap the contents of a and b")
swap = a
a= b
b = swap
print("a =", a, "b =", b)

©:Michael Kohlhase 13

Data Types in python

� programs process data, which can be combined by operators

� Data types group data into types

� 1, 2, 3, etc. are data of type “integer”

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


14 CHAPTER 3. INTRODUCCTION TO PROGRAMMING

� hello is data of type “string”

� Data types determine which operators can be applied

� In python, every value has a type, variables can have any type

� Definition 3.2.3 python has the following three basic data types

Data type Name Example

Integers int 1, -5, 0
Floats float 1.2, .125, -1.0
Strings str "Hello", ’Hello’, "123", ’a’

� The type of a variable is automatically determined when first used

firstVariable = 23 # integer
weight = 3.45 # float
first = ’Hello’ # str

� Observation 3.2.4 python is strongly typed, i.e. types have to match

� Use datatye conversion functions int(), float(), and str() to adjust types

� Example 3.2.5 >>> 3+"hello"
Traceback (most recent call last):
File "<pyshell#1>", line 1, in <module>
3+"hello"

TypeError: unsupported operand type(s) for +: ’int’ and ’str’
>>> str(4)+"hello"
’4Hello’

©:Michael Kohlhase 14

Functions in python

� Observation: sometimes programming tasks are repetitive

print("Hello Peter, how are you today? How about some GenICT?")
print("Hello Roxana, how are you today? How about some GenICT?")
print("Hello Frodo, how are you today? How about some GenICT?)
...

� Idea: We can automate the repetitive part by functions

� Definition 3.2.6 A python function is defined by a code snippet of the form

def f(p1,. . .,pn):
"""{docstring, what does this function do on parameters

:param pi: document arguments}
"""
{this is the code in the function}
{more code, it can contain p1, . . . , pn, and f}
return {value (e.g. text or number) of the function call}

{some code outside the function}

http://creativecommons.org/licenses/by-sa/2.5/


3.2. PROGRAMMING IN PYTHON 15

� the indented part is called the body of f , ( : whitespace matters in
python)

� the pi are called parameters, and n the arity of f .

A function f can be called on arguments a1, . . . , an by writing the expression
f(a1, ..., an). This executes the body of f where the (formal) parameters pi
are replaced by the arguments ai.

� Example 3.2.7

def greet (who):
print("Hello",who,"how are you today? How about some GenICT?")

greet("Peter")
greet("Roxana")
greet("Frodo")
greet(input ("Who are you?"))
...

� functions can be a very powerful tool for structuring and documenting programs
(if used correctly)

©:Michael Kohlhase 15

Branching and Looping in python

� Up to now programs seem to execute all the instructions in sequence, from
the first to the last (a linear program)

� Change the control flow of a program with branching and statements.

� Definition 3.2.8 Branching allows to execute (or not to execute) certain
parts of a program depending on conditions.

� Definition 3.2.9 Looping allows to execute certain parts of a program mul-
tiple times depending on conditions.

� Definition 3.2.10 A condition (or Boolean expression) is a python expression
that can be evaluated to True o False.

� Example 3.2.11 Conditions are constructed by applying a Boolean operator
to arguments, e.g. 3>5, x==3, x!=3, . . .
or by combining simpler conditions by Boolean connectives, e.g. x>5 or x<3

©:Michael Kohlhase 16

Branching in python

� Definition 3.2.12 Branching via if/then/else statements

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


16 CHAPTER 3. INTRODUCCTION TO PROGRAMMING

� Binary branching:

if 〈〈condition〉〉 :
〈〈then-part〉〉

else :
〈〈else-part〉〉

〈〈more code〉〉

� multiple branching:

if 〈〈condition〉〉 :
〈〈then-part〉〉

elif 〈〈condition〉〉 :
〈〈other else-part〉〉

else :
〈〈else-part〉〉

� conditional parts indented!

Start

cond

then else

end

True False

©:Michael Kohlhase 17

Looping in python

� Definition 3.2.13 Looping via while-blocks

syntax of the while loop
while 〈〈condition〉〉 :
〈〈body〉〉

〈〈more code〉〉

� breaking out of loops with
break

� body must be indented!

Start

cond body

end

True

False

©:Michael Kohlhase 18

Lists in python

� Definition 3.2.14 A list is a finite enumeration of objects

� In python lists can be written as a list of comma-separated expressions between
square brackets.

� Example 3.2.15 (Three lists) (elements can be of different types in
python)

list1 = [’physics’, ’chemistry’, 1997, 2000];
list2 = [1, 2, 3, 4, 5 ];
list3 = ["a", "b", "c", "d"];

� Example 3.2.16 List elements can be assessed by specifying ranges

>>> list1[0]

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


3.3. BASIC DATA STRUCTURES 17

’physics’
>>> list1[-2]
1997
>>> list2[1:4]
[2, 3, 4]

� Example 3.2.17 lists can be constructed by python functions

>>> list(range(1,6,2))
[1,3,5]

range(1,6,2) makes a range object from 1 to 6 with step 2, list makes a
list from it.

©:Michael Kohlhase 19

Iterating over Lists in python

� Definition 3.2.18 A for loop iterates a program fragment over a list (or
list-like object)

python uses the following general syntax

for 〈〈var〉〉 in 〈〈range〉〉:
〈〈body〉〉

〈〈other code〉〉

� Example 3.2.19 for x in range(0, 3):
print ("we tell you",x,"time(s)")

� Lists and strings can also act as ranges

Example 3.2.20 def mirror (x) :
for i in x :

print(i)
for i in reversed(list(x)) :

print(i)

©:Michael Kohlhase 20

Now that we have acquired some basic programming skills, we will drill into how the basic data
structures – numbers and strings – are actually represented in the computer. This will give us
some insights on how to deal with them in practice.

3.3 Basic Data Structures

In our basic introduction to programming above we have convinced ourselves that we need some
basic objects to compute with, e.g. Boolean values for conditionals, numbers to calculate with,
and characters to form strings for input and output. In this section we will look at how these
are represented in the computer, which in principle can only store binary digits – voltage or no
noltage on a wire – which we think of as 1 and 0.

In this section we look at the representation of the basic data types of programming languages
(numbers and characters) in the computer; Boolean values (“True” and “False”) can directly be
encoded as binary digits.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


18 CHAPTER 3. INTRODUCCTION TO PROGRAMMING

3.3.1 Numbers

We start with the representation of numbers. There are multiple number systems, as we are
interested in the principles only, we restrict ourselves to the natural numbers – all other number
systems can be built on top of these. But even there we have choices about represesentation,
which influence the space we need and how we compute with natural numbers.

Natural Numbers

� Numbers are symbolic representations of numeric quantities.

� There are many ways to represent numbers (more on this later)

� let’s take the simplest one (about 8,000 to 10,000 years old)

� we count by making marks on some surface.

� For instance //// stands for the number four (be it in 4 apples, or 4 worms)

©:Michael Kohlhase 21

Unary Natural Numbers on the Computer

� Definition 3.3.1 We call the representation of natural numbers by slashes
on a surface the unary natural numbers

� Question: How do we represent them on a computer? (not bones or walls)

� Idea: If we have a memory bank of n binary digits, initialize all by 0, represent
each slash by a 1 from the right.

� Example 3.3.2 Memory bank with 32 binary digits, represening 11.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

Problem: For realistic arithmetics we need better number representations than
the unary natural numbers (e.g. for representing the number of EU citizens =̂
100 000 pages of /)

http://creativecommons.org/licenses/by-sa/2.5/


3.3. BASIC DATA STRUCTURES 19

©:Michael Kohlhase 22

In addition to manipulating normal objects directly linked to their daily survival, humans also
invented the manipulation of place-holders or symbols. A symbol represents an object or a set of
objects in an abstract way. The earliest examples for symbols are the cave paintings showing iconic
silhouettes of animals like the famous ones of Cro-Magnon. The invention of symbols is not only
an artistic, pleasurable “waste of time” for mankind, but it had tremendous consequences. There
is archaeological evidence that in ancient times, namely at least some 8000 to 10000 years ago,
men started to use tally bones for counting. This means that the symbol “bone with marks” was
used to represent numbers. The important aspect is that this bone is a symbol that is completely
detached from its original down to earth meaning, most likely of being a tool or a waste product
from a meal. Instead it stands for a universal concept that can be applied to arbitrary objects.

� Positional Number Systems

� Problem: Find a better representation system for natural numbers.

� Idea: build a clever code on the unary numbers, use position information and
addition, multiplication, and exponentiation.

� Definition 3.3.3 A positional number system N is a pair N = 〈Db, ϕb〉 with

� Db is a finite alphabet of b digits. b is called the base or radix of N
� assign each digit d ∈ Db a number ϕb(d) between 0 and b− 1.

� Extend ϕb to sequences of digits by ϕb(〈nk, . . . , n1〉) :=
∑k

i=1 ϕb(ni) · bi−1

� Example 3.3.4 〈{a, b, c}, ϕ〉 with with ϕ(a) := 0, ϕ(b) := 1, and ϕ(c) := 2
is a positional number system for base three. We have

ϕ(〈c, a, b〉) = 2 · 32 + 0 · 31 + 1 · 30 = 18 + 0 + 1 = 19

� Observation 3.3.5 To convert a number n to base b, use successive integer
division (division with remainder) by b:

i := n; repeat (record imod b, i := i div b) until i = 0.

� Example 3.3.6 (Convert 456 to base 8) Result: 7108

456 div 8 = 57 456 mod 8 = 0
57 div 8 = 7 57 mod 8 = 1
7 div 8 = 0 7 mod 8 = 7

©:Michael Kohlhase 23

The problem with the unary number system is that it uses enormous amounts of space, when
writing down large numbers. We obviously need a better encoding.

If we look at the unary number system from a greater distance, we see that we are not using a
very important feature of strings here: position. As we only have one letter in our alphabet (/),
we cannot, so we should use a larger alphabet. The main idea behind a positional number system
N = 〈Db, ϕb〉 is that we encode numbers as strings of digits in Db, such that the position matters,
and to give these encoding a meaning by mapping them into the unary natural numbers via a
mapping ϕb. This is the the same process we did for the logics; we are now doing it for number

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


20 CHAPTER 3. INTRODUCCTION TO PROGRAMMING

systems. However, here, we also want to ensure that the meaning mapping ϕb is a bijection, since
we want to define the arithmetics on the encodings by reference to The arithmetical operators on
the unary natural numbers.

Commonly Used Positional Number Systems

� Example 3.3.7 The following positional number systems are in common use.

name set base digits example

unary N1 1 / /////1
binary N2 2 0,1 01010001112
octal N8 8 0,1,. . . ,7 630278
decimal N10 10 0,1,. . . ,9 16209810 or 162098
hexadecimal N16 16 0,1,. . . ,9,A,. . . ,F FF3A1216

� Notation 3.3.8 attach the base of N to every number from N . (default:
decimal)

Trick: Group triples or quadruples of binary digits into recognizable chunks(add
leading zeros as needed)

� � 1100011010111002 = 01102︸ ︷︷ ︸
616

00112︸ ︷︷ ︸
316

01012︸ ︷︷ ︸
516

11002︸ ︷︷ ︸
C16

= 635C16

� 1100011010111002 = 1102︸ ︷︷ ︸
68

0012︸ ︷︷ ︸
18

1012︸ ︷︷ ︸
58

0112︸ ︷︷ ︸
38

1002︸ ︷︷ ︸
48

= 615348

� F3A16 = F16︸︷︷︸
11112

316︸︷︷︸
00112

A16︸︷︷︸
10102

= 1111001110102, 47218 = 48︸︷︷︸
1002

78︸︷︷︸
1112

28︸︷︷︸
0102

18︸︷︷︸
0012

= 1001110100012

©:Michael Kohlhase 24

We have all seen positional number systems: our decimal system is one (for the base 10). Other
systems that important for us are the binary system (it is the smallest non-degenerate one) and
the octal- (base 8) and hexadecimal- (base 16) systems. These come from the fact that binary
numbers are very hard for humans to scan. Therefore it became customary to group three or four
digits together and introduce we (compound) digits for them. The octal system is mostly relevant
for historic reasons, the hexadecimal system is in widespread use as syntactic sugar for binary
numbers, which form the basis for circuits, since binary digits can be represented physically by
current/no current.

Arithmetics in Positional Number Systems

� For arithmetics just follow elementery school rules (for the right base)

� Tom Lehrer’s “New Math”

� Example 3.3.9

Addition base 4 binary multiplication

1 2 3
+ 11 21 3

3 1 2

1 0 1 0
∗ 1 1 0

0 0 0 0
1 0 1 0

1 0 1 0
1 1 1 1 0 0

http://creativecommons.org/licenses/by-sa/2.5/
https://www.youtube.com/watch?v=DfCJgC2zezw


3.3. BASIC DATA STRUCTURES 21

©:Michael Kohlhase 25

3.3.2 Characters & Strings

IT systems need to encode characters from our alphabets as bit strings (sequences of binary digits
(bits) 0 and 1) for representation in computers. To understand the current state – the unicode
standard – we will take a historical perspective.

It is important to understand that encoding and decoding of characters is an activity that requires
standardization in multi-device settings – be it sending a file to the printer or sending an e-mail to
a friend on another continent. Concretely, the recipient wants to use the same character mapping
for decoding the sequence of bits as the sender used for encoding them – otherwise the message is
garbled.

We observe that we cannot just specify the encoding table in the transmitted document it-
self, (that information would have to be en/decoded with the other content), so we need to rely
document-external external methods like standardization or encoding negotiation at the meta-
level. In this subsection we will focus on the former.

The ASCII code we will introduce here is one of the first standardized and widely used character
encodings for a complete alphabet. It is still widely used today. The code tries to strike a balance
between a being able to encode a large set of characters and the representational capabilities in
the time of punch cards (see below).

The ASCII Character Code

� Definition 3.3.10 The American Standard Code for Information Interchange
(ASCII) code assigns characters to numbers 0-127

Code ···0 ···1 ···2 ···3 ···4 ···5 ···6 ···7 ···8 ···9 ···A ···B ···C ···D ···E ···F
0··· NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1··· DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2··· ! ” # $ % & ′ ( ) ∗ + , − . /
3··· 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4··· @ A B C D E F G H I J K L M N O

5··· P Q R S T U V W X Y Z [ \ ] ˆ
6··· ‘ a b c d e f g h i j k l m n o

7··· p q r s t u v w x y z { | } ∼ DEL

The first 32 characters are control characters for ASCII devices like printers

�� Motivated by punchcards: The character 0 (binary 0000000) carries no infor-
mation NUL, (used as dividers)
Character 127 (binary 1111111) can be used for deleting (overwriting) last
value (cannot delete holes)

� The ASCII code was standardized in 1963 and is still prevalent in computers
today (but seen as US-centric)

©:Michael Kohlhase 26

Punch cards were the the preferred medium for long-term storage of programs up to the late
1970s, since they could directly be produced by card punchers and automatically read by comput-
ers.

A Punchcard

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


22 CHAPTER 3. INTRODUCCTION TO PROGRAMMING

� A punch card is a piece of stiff paper that contains digital information repre-
sented by the presence or absence of holes in predefined positions.

� Example 3.3.11 This punch card encoded the FORTRAN statement Z(1) = Y + W(1)

©:Michael Kohlhase 27

Up to the 1970s, computers were batch machines, where the programmer delivered the program to
the operator (a person behind a counter who fed the programs to the computer) and collected the
printouts the next morning. Essentially, each punch card represented a single line (80 characters)
of program code. Direct interaction with a computer is a relatively young mode of operation.

Playing with Strings and Characters in python

� : in python, characters are just strings of length 1.

� ord gives the ASCII number of the character, chr ASCII character for a
number.

� Example 3.3.12 (Playing with Characters) def lc(c) :
return chr(ord(c) + 32)

def uc(c) :
return chr(ord(c) - 32)

>>> uc(’d’)
’D’
>>> lc(’D’)
’d’

� strings can be accessed by ranges [i:j] ([i] =̂ [i:i])

� Example 3.3.13 taking strings apart and re-assembling them.

def cap(s) :
return uc(s[0]) + s[1:len(s)]

>>> cap(’genICT’)
’GenICT’

©:Michael Kohlhase 28

Note: Example 3.3.12 and Example 3.3.13 (or any other examples in this lecture) is not

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


3.3. BASIC DATA STRUCTURES 23

production code, but didactially motivated – to show you what you can do with the objects we
are presenting in python.

In parcticular, if we “lowercase” a character that is already lowercase – e.g. by lc(’c’), then
we get out of the range of the ASCII code: the answer is \x83, which is the character with the
hexadecimal code 83 (decimal 130).

In production code (e.g. the python lower method), we would have some range checks, etc.

The ASCII code as above has a variety of problems, for instance that the control characters are
mostly no longer in use, the code is lacking many characters of languages other than the English
language it was developed for, and finally, it only uses seven bits, where a byte (eight bits) is the
preferred unit in information technology. Therefore there have been a whole zoo of extensions,
which — due to the fact that there were so many of them — never quite solved the encoding
problem.

Problems with ASCII encoding

� Problem: Many of the control characters are obsolete by now (e.g. NUL,BEL,
or DEL)

� Problem: Many European characters are not represented (e.g. è,ñ,ü,ß,. . . )

� European ASCII Variants: Exchange less-used characters for national ones

� Example 3.3.14 (German ASCII) remap e.g. [ 7→ Ä, ] 7→ Ü in German
ASCII (“Apple ][” comes out as “Apple ÜÄ”)

� Definition 3.3.15 (ISO-Latin (ISO/IEC 8859)) 16 Extensions of ASCII
to 8-bit (256 characters) ISO-Latin 1 =̂ “Western European”, ISO-Latin 6 =̂ “Arabic”,ISO-

Latin 7 =̂ “Greek”. . .

� Problem: No cursive Arabic, Asian, African, Old Icelandic Runes, Math,. . .

� Idea: Do something totally different to include all the world’s scripts: For a
scalable architecture, separate

� what characters are available from the (character set)

� bit string-to-character mapping (character encoding)

©:Michael Kohlhase 29

The goal of the UniCode standard is to cover all the worlds scripts (past, present, and future) and
provide efficient encodings for them. The only scripts in regular use that are currently excluded
are fictional scripts like the elvish scripts from the Lord of the Rings or Klingon scripts from the
Star Trek series.

An important idea behind UniCode is to separate concerns between standardizing the character
set — i.e. the set of encodable characters and the encoding itself.

Unicode and the Universal Character Set

� Definition 3.3.16 (Twin Standards) A scalable Architecture for repre-
senting all the worlds scripts

� The Universal Character Set defined by the ISO/IEC 10646 International

http://creativecommons.org/licenses/by-sa/2.5/


24 CHAPTER 3. INTRODUCCTION TO PROGRAMMING

Standard, is a standard set of characters upon which many character en-
codings are based.

� The Unicode Standard defines a set of standard character encodings, rules
for normalization, decomposition, collation, rendering and bidirectional dis-
play order

� Definition 3.3.17 Each UCS character is identified by an unambiguous name
and an integer number called its code point.

� The UCS has 1.1 million code points and nearly 100 000 characters.

� Definition 3.3.18 Most (non-Chinese) characters have code points in [1, 65536]
(the basic multilingual plane).

� Notation 3.3.19 For code points in the Basic Multilingual Plane (BMP),
four digits are used, e.g. U+0058 for the character LATIN CAPITAL LETTER X;

©:Michael Kohlhase 30

Note that there is indeed an issue with space-efficient encoding here. UniCode reserves space for
232 (more than a million) characters to be able to handle future scripts. But just simply using
32 bits for every UniCode character would be extremely wasteful: UniCode-encoded versions of
ASCII files would be four times as large.

Therefore UniCode allows multiple encodings. UTF-32 is a simple 32-bit code that directly uses
the code points in binary form. UTF-8 is optimized for western languages and coincides with
the ASCII where they overlap. As a consequence, ASCII encoded texts can be decoded in UTF-8
without changes — but in the UTF-8 encoding, we can also address all other UniCode characters
(using multi-byte characters).

Character Encodings in Unicode

� Definition 3.3.20 A character encoding is a mapping from bit strings to
UCS code points.

� Idea: Unicode supports multiple encodings (but not character sets) for effi-
ciency

� Definition 3.3.21 (Unicode Transformation Format)

� UTF-8, 8-bit, variable-width encoding, which maximizes compatibility with
ASCII.

� UTF-16, 16-bit, variable-width encoding (popular in Asia)

� UTF-32, a 32-bit, fixed-width encoding (for safety)

� Definition 3.3.22 The UTF-8 encoding follows the following encoding scheme

Unicode Byte1 Byte2 Byte3 Byte4

U+000000− U+00007F 0xxxxxxx

U+000080− U+0007FF 110xxxxx 10xxxxxx

U+000800− U+00FFFF 1110xxxx 10xxxxxx 10xxxxxx

U+010000− U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

http://creativecommons.org/licenses/by-sa/2.5/


3.3. BASIC DATA STRUCTURES 25

� Example 3.3.23 $ = U+0024 is encoded as 00100100 (1 byte)

¢ = U+00A2 is encoded as 11000010,10100010 (two bytes)

e = U+20AC is encoded as 11100010,10000010,10101100 (three bytes)

©:Michael Kohlhase 31

Note how the fixed bit prefixes in the encoding are engineered to determine which of the four cases
apply, so that UTF-8 encoded documents can be safely decoded..

Now that we understand the “theory” of encodings, let us work out how to program with them.

Programming with UniCode strings is particularly simple, strings in python are UTF-8-encoded
UniCode strings and all operations on them are UniCode-based2 This makes the introduction to
UniCode in python very short, we only have to know how to produce non-ASCII characters –
which are on regular keyboards.

Unicode in python

� the python str data type is UniCode encoded as UTF-8.

� How to write UniCode characters?: there are four ways

� write them in your editor (make sure that it uses UTF-8)

� otherwise use python escape sequences (try it!)

>>> "\N{GREEK CAPITAL LETTER DELTA}" # Using the character name
’\u0394’
>>> "\u0394" # Using a 16-bit hex value
’\u0394’
>>> "\U00000394" # Using a 32-bit hex value
’\u0394’

©:Michael Kohlhase 32

2Older programming languages have ASCII strings only, and UniCode strings are supplied by external modules.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


26 CHAPTER 3. INTRODUCCTION TO PROGRAMMING



Chapter 4

Computing with Documents

In this chapter we introduce methods to automatically deal with documents – actually large strings
for the moment. We introduce “regular expressions”, a domain-specific language for locating
substrings of a particular form in a document. Regular expressions are useful in many document-
related tasks, e.g. advanced searching and replacing, therefore most programming languages –
python is no exception – integrate them as a sublanguage.

There are several dialects of regular expression languages that differ in details, but share the
general setup and syntax. Here we introduce the UNIX variant.

Regular Expressions, see [RE]

� Definition 4.0.1 A regular expression (also called regexp) is a formal expres-
sion that specifies a set of strings.

� Definition 4.0.2 (Meta-Characters for Regexps)

char denotes

. any single character
ˆ beginning of a string
$ end of a string
[. . . ] any single character in the brackets
[ˆ . . . ] any single character not in the brackets
(. . . ) marks a group
\n the nth group
| disjunction
∗ matches the preceding element zero or more times
+ matches the preceding element one or more times
? matches the preceding element zero or one times
{n,m} matches the preceding element between n and m times
\s whitespace character
\S non-whitespace character

All other characters match themselves, to match e.g. a ?, escape with a \: \?.

©:Michael Kohlhase 33

Let us now fortify our intuition with some (simple) examples.

27

http://creativecommons.org/licenses/by-sa/2.5/


28 CHAPTER 4. COMPUTING WITH DOCUMENTS

Regular Expression Examples

� Example 4.0.3 (Regular Expressions and their Values)

regexp values

car car

.at cat, hat, mat, . . .
[hc]at cat, hat
[^c]at hat, mat, . . . (but not cat)
^[hc]at hat, cat, but only at the beginning of the line
[0-9] Digits
[1-9][0-9]* natural numbers
(.*)\1 mama, papa, wakawaka
cat|dog cat, dog

� A regular expression can be interpreted by a regular expression processor (a pro-
gram that identifies parts that match the provided specification) or a compiled
by a parser generator.

� Example 4.0.4 (A more complex example) The following regexp times
in a variety of formats, such as 10:22am, 21:10, 08h55, and 7.15 pm.

^(?:([0]?\d|1[012])|(?:1[3-9]|2[0-3]))[.:h]?[0-5]
\d(?:\s?(?(1)(am|AM|pm|PM)))?$

©:Michael Kohlhase 34

As we have seen regular expressions can become quite cryptic and long (cf. e.g. Example 4.0.4),
so we need help in developing them. One way is to use one of the many regexp testers online

Playing with Regular Expressions

� If you want to play with regexps, go e.g. to http://regex101.com

http://creativecommons.org/licenses/by-sa/2.5/
http://regex101.com


29

©:Michael Kohlhase 35

The sed stream editor is an example of a standalone utility – it is shipped with most operating
systems – that uses regular expressions. It can be used to automate repetitive editing operations
on files.

The sed Stream Editor

� Definition 4.0.5 The sed utility is a stream editor, it takes a stream (think
file) and some regexp replacement commands as an input and gives a stream
as a output.

� Example 4.0.6 A sed command is of the form

� s/〈〈regexp〉〉/〈〈replacement〉〉/ (replace once), or

� s/〈〈regexp〉〉/〈〈replacement〉〉/g (replace globally).

� To invoke sed in a shell (e.g. on linux, MacOSX, or cygwin on Windows)

sed -e ’s/oldstuff/newstuff/g’ inputFileName > outputFileName

or (if sedfile.sed contains many sed commands)

sed −f sedfile.sed inputFileName > outputFileName

� Example 4.0.7 (Update the Jacobs Web Site)

sed −e ’s/International Univ/Jacobs Univ/g;s/IUB/Jacobs/g’ index.html > index.html

� Example 4.0.8 (Stalin eliminates Trotzki) Let cleanse.sed be the sed

file

s/Leon Trotzki//g;s/Trotzki//g
s/Lev Davidovich Bronstein//g;s/Davidovich//g;s/Bronstein//g

then Stalin can just use the following shell script to cleanse Kreml documents

find / −name −E ”.∗\.html|.∗\.txt” −exec ’sed −f cleanse.sed {} > {} \;

©:Michael Kohlhase 36

Example 4.0.8 shows the power of sed in combination with other utilities. Here we use the UNIX

find utility that searches a file system for files with certain characteristics – here file names that
match the regexp .*\.html.*ṫxt— and executes the sed script cleanse we defined earlier.

Regular Expressions in python

� We can use regular expressions directly in python by importing the re module
(just add import re at the beginning)

� As python has UniCode strings, regular expressions support UniCode as well.

� Useful python functions that use regular expressions.

� re.findall(p,s): Return a list of non-overlapping matches of p in —s—.

>>> re.findall(r"[h|c|r]at,’the cat ate the rat on the mat’)

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


30 CHAPTER 4. COMPUTING WITH DOCUMENTS

[’cat’,’rat’]

� re.sub(p,r,s): Replace substrings that match p in s by r

>>> re.sub(r’\sAND\s’, ’ & ’, ’Baked Beans and Spam’)
’Baked Beans & Spam’

� re.split(p,s): Split s into substrings that match p.

>>> re.split(r’\W+’,’When shall we three meet again?’))
[’When’,’shall’,’we’,’three’,’meet’,’again’]

©:Michael Kohlhase 37

We will now see what we can do with regular expressions in a practical example.

Example: Correcting and Anonymizing Documents

� Example 4.0.9 We write an a program that makes simple corrections on
documents and also crosses out all names.

� The worst president of the US,arguably was George W. Bush, right?

� However,are you famILIar with Paul Erdős or Henri Poincaré?(Unicode)

Here is the program:

� we first initialize and load modules

#!/usr/bin/env python3
import re
import sys

� then we decode the argument and put it into a variable

s = sys.argv[1]

� We put put a space after a comma, (use r string prefix for “raw strings”)

s = re.sub(r",(\S)", r", \1", s)

� capitalize the first letter of a new sentence,

s = re.sub(r"([\.\?!])\w*(\S)",
lambda (m):m.group(1),r" ".upper()+m.group(2), s)

� next we make abbreviations for regular expressions to save space

c = "[A-Z]"
l = "[a-z]"

� remove capital letters in the middle of words

s = re.sub("({l})({c}+)({l})"
.format(l=l, c=c),
lambda (m):"{0}{1}{2}".format(m.group(1), m.group(2).lower(),
m.group(3)), s)

� and we cross-out for official public versions of government documents,

http://creativecommons.org/licenses/by-sa/2.5/


31

s = re.sub(r"({c}{l}+ ({c}{l}*(\.?) )?{c}{l}+)"
.format(l=l, c=c),
lambda (m):re.sub("\S", "X", m.group(1)),
s)

� finally, we print the result

print(s)

The worst president of the US,arguably was George W. Bush, right? be-
comes
The worst president of the US, arguably was XXXXXX XX XXXX, right?

©:Michael Kohlhase 38

http://creativecommons.org/licenses/by-sa/2.5/


32 CHAPTER 4. COMPUTING WITH DOCUMENTS



Chapter 5

Structured and Web Documents

5.1 Multimedia Documents on the World Wide Web

We have seen the client-server infrastructure of the WWWeb, which essentially specifies how
hypertext documents are retrieved. Now we look into the documents themselves.

In ?character-encodings? have already discussed how texts can be encoded in files. But for the
rich docments we see on the WWWeb, we have to realize that documents are more than just
sequences of characters. This is traditionally captured in the notion of document markup.

Document Markup

� Definition 5.1.1 (Document Markup) Document markupmarkup is the
process of adding codes (special, standardized character sequences) to a docu-
ment to control the structure, formatting, or the relationship among its parts.

� Example 5.1.2 A text with markup codes (for printing)

©:Michael Kohlhase 39

There are many systems for document markup ranging from informal ones as in Definition 5.1.1
that specify the intended document appearance to humans – in this case the printer – to technical
ones which can be understood by machines but serving the same purpose.

WWWeb documents have a specialized markup language that mixes markup for document struc-
ture with layout markup, hyper-references, and interaction. The HTML markup elements always
concern text fragments, they can be nested but may not otherwise overlap. This essentially turns
a text into a document tree.

33

http://creativecommons.org/licenses/by-sa/2.5/


34 CHAPTER 5. STRUCTURED AND WEB DOCUMENTS

HTML: Hypertext Markup Language

� Definition 5.1.3 The HyperText Markup Language (HTML), is a represen-
tation format for web pages. Current version 4.01 is defined in [RHJ98].

� Definition 5.1.4 (Main markup elements of HTML) HTML marks up
the structure and appearance of text with tags of the form <el> (begin) and
</el> (end), where el is one of the following

structure html,head, body metadata title, link, meta
headings h1, h2, . . . , h6 paragraphs p, br
lists ul, ol, dl, . . . , li hyperlinks a

images img tables table, th, tr, td, . . .
styling style, div, span old style b, u, tt, i, . . .
interaction script forms form, input, button

� Example 5.1.5 A (very simple) HTML file with a single paragraph.

<html>
<body>
<p>Hello GenCS students!</p>

</body>
</html>

©:Michael Kohlhase 40

HTML was created in 1990 and standardized in version 4 in 1997. Since then there has HTML
has been basically stable, even though the WWWeb has evolved considerably from a web of static
web pages to a Web in which highly dynamic web pages become user interfaces for web-based
applications and even mobile applets. Acknowledging the growing discrepancy, the W3C has
started the standardization of version 5 of HTML.

HTML5: The Next Generation HTML

� Definition 5.1.6 The HyperText Markup Language (HTML5), is believed to
be the next generation of HTML. It is defined by the W3C and the WhatWG.

� HTML5 includes support for

� audio/video without plugins,

� a canvas element for scriptable, 2D, bitmapped graphics

� SV G for Scalable Vector Graphics

� MathML inline and display-style mathematical formulae

� The W3C is expected to issue a “recommendation” that standardizes HTML5
in 2014.

� Even though HTML5 is not formally standardized yet, almost all major web
browsers already implement almost all of HTML5.

©:Michael Kohlhase 41

As the WWWeb evolved from a hypertext system purely aimed at human readers to an Web of
multimedia documents, where machines perform added-value services like searching or aggregating,

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


5.2. WEB APPLICATIONS 35

it became more important that machines could understand critical aspects web pages. One way
to facilitate this is to separate markup that specifies the content and functionality from markup
that specifies human-oriented layout and presentation (together called “styling”). This is what
“cascading style sheets” set out to do. Another motivation for CSS is that we often want the
styling of a web page to be customizable (e.g. for vision-impaired readers).

CSS: Cascading Style Sheets

� Idea: Separate structure/function from appearance.

Definition 5.1.7 The Cascading Style Sheets (CSS), is a style sheet language
that allows authors and users to attach style (e.g., fonts and spacing) to struc-
tured documents. Current version 2.1 is defined in [BCHL09].

� Example 5.1.8 Our text file from Example 5.1.5 with embedded CSS

<html>
<head>a
<style type="text/css">

body {background-color:#d0e4fe;}
h1 {color:orange;

text-align:center;}
p {font-family:"Verdana";

font-size:20px;}
</style>
</head>
<body>
<h1>CSS example</h1>
<p>Hello GenCSII!.</p>

</body>
</html>

©:Michael Kohlhase 42

5.2 Web Applications

In this section we show how with a few additions to the basic WWWeb infrastructure introduced
in ?www-basics?, we can turn web pages into web-based applications that can be used without
having to install additional software.

The first thing we need is a means to send information back to the web server, which can be used
as input for the web application. Fortunately, this is already forseen by the HTML format.

HTML Forms: Submitting Information to the Web Server

� Example 5.2.1 Forms contain input fields and explanations.

<form name="input" action="html_form_submit.asp" method="get">
Username: <input type="text" name="user" />
<input type="submit" value="Submit" />

</form>

The result is a form with three elements: a text, an input field, and a submit
button, that will trigger a HTTP GET request to the URL specified in the
action attribute.

http://creativecommons.org/licenses/by-sa/2.5/


36 CHAPTER 5. STRUCTURED AND WEB DOCUMENTS

©:Michael Kohlhase 43

As the WWWeb is based on a client-server architecture, computation in web applications can be
executed either on the client (the web browser) or the server (the web server). For both we have
a special technology; we start with computation on the web server.

Server-Side Scripting: Programming Web Pages

� Idea: Why write HTML pages if we can also program them! (easy to do)

� Definition 5.2.2 A server-side scripting framework is a web server extension
that generates web pages upon HTTP GET requests.

� Example 5.2.3 perl is a scripting language with good string manipulation
facilities. perl CGI is an early server-side scripting framework based on this.

� Server-side scripting frameworks allow to make use of external resources (e.g.
databases or data feeds) and computational services during web page genera-
tion.

� Problem: Most web page content is static (page head, text blocks, etc.) (and
no HTML editing support in program editors)

� Idea: Embed program snippets into HTML pages. (only execute these, copy
rest)

� Definition 5.2.4 A server-side scripting language is a server side scripting
framework where web pages are generated from HTML documents with em-
bedded program fragments that are executed in context during web page gen-
eration.

� Note: No program code is left in the resulting web page after generation
(important security concern)

©:Michael Kohlhase 44

To get a concrete intuition on the possibilities of server-side scripting frameworks, we will present
PHP, a commonly used open source scripting framework. There are many other examples, but
they mainly differ on syntax and advanced features.

PHP, a Server-Side Scripting Language

� Definition 5.2.5 PHP (originally “Programmable Home Page Tools”, later
“PHP: Hypertext Processor”) is a server-side scripting language with a C-like
syntax. PHP code is embedded into HTML via special “tags” <?php and ?>

� Example 5.2.6 The following PHP program uses echo for string output

<html>
<body><?php echo ’Hello world’;?></body>

</html>

� Example 5.2.7 We can access the server clock in PHP (and manipulate it)

<?php

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


5.2. WEB APPLICATIONS 37

$tomorrow = mktime(0,0,0,date("m"),date("d")+1,date("Y"));
echo "Tomorrow is ".date("d. m. Y", $tomorrow);
?>
This fragment inserts tomorrow’s date into a web page

� Example 5.2.8 We can generate pages from a database (here MySQL)

<?php
$con = mysql_connect("localhost","peter","abc123");
if (!$con)
{
die(’Could not connect: ’ . mysql_error());
}

mysql_select_db("my_db", $con);

$result = mysql_query("SELECT * FROM Persons");

while($row = mysql_fetch_array($result))
{
echo $row[’FirstName’] . " " . $row[’LastName’];
echo "<br />";
}

mysql_close($con);
?>

� Example 5.2.9 We can even send e-mail via this e-mail form.

<html><body>
<?php
if (isset($_REQUEST[’email’]))//if "email" is filled out, send email
{//send email
$email = $_REQUEST[’email’] ;
$subject = $_REQUEST[’subject’] ;
$message = $_REQUEST[’message’] ;
mail("someone@example.com", $subject,
$message, "From:" . $email);
echo "Thank you for using our mail form";}

else //if "email" is not filled out, display the form
{echo "<form method=’post’ action=’mailform.php’>
Email: <input name=’email’ type=’text’ /><br />
Subject: <input name=’subject’ type=’text’ /><br />
Message:<br />
<textarea name=’message’ rows=’15’ cols=’40’>
</textarea><br />
<input type=’submit’ />
</form>";}

?>
</body></html>

©:Michael Kohlhase 45

What would we do in python

� Example 5.2.10 (HTML Hello World in python)

print("</html>")
print("<body>Hello world</body>")
print("</html>")

� Why is this not as good as PHP?

� If HTML markup dominate, want to use a HTML editor (mode)

http://creativecommons.org/licenses/by-sa/2.5/


38 CHAPTER 5. STRUCTURED AND WEB DOCUMENTS

� e.g. for HTML syntax highlighting/indentation/completion/checking

©:Michael Kohlhase 46

With server-side scripting frameworks like PHP, we can already build web applications, which we
now define.

Web Applications: Using Applications without Installing

� Definition 5.2.11 A web application is a website that serves as a user inter-
face for a server-based application using a web browser as the client.

� Example 5.2.12 Commonly used web applications include

� http://ebay.com; auction pages are generated from databases

� http://www.weather.com; weather information generated weather feeds

� http://slashdot.org; aggregation of news feeds/discussions

� http://github.com; source code hosting and project management

Common Traits: pages generated from databases and external feeds, content
submission via HTML forms, file upload

�� Definition 5.2.13 A web application framework is a software framework for
creating web applications.

� Example 5.2.14 The LAMP stack is a web application framework based on
linux, apache, MySQL, and PHP.

� Example 5.2.15 A variant of the LAMP stack is available for Windows as
XAMPP [XAM].

©:Michael Kohlhase 47

Indeed, the first web applications were essentially built in this way. Note however, that as we
remarked above, no PHP code remains in the generated web pages, which thus “look like” static
web pages to the client, even though they were generated dynamically on the server.

There is one problem however with web applications that is difficult to solve with the technologies
so far. We want web applications to give the user a consistent user experience even though they
are made up of multiple web pages. In a regular application we we only want to login once and
expect the application to remember e.g. our username and password over the course of the various
interactions with the system. For web applications this poses a technical problem which we now
discuss.

State in Web Applications and Cookies

� Recall: Web applications contain multiple pages, HTTP is a stateless protocol.

� Problem: how do we pass state between pages? (e.g. username, password)

� Simple Solution: Pass information along in query part of page URLs.

� Example 5.2.16 (HTTP GET for Single Login) Since we are gener-
ating pages we can generated augmented links

http://creativecommons.org/licenses/by-sa/2.5/
http://ebay.com
http://www.weather.com
http://slashdot.org
http://github.com
http://creativecommons.org/licenses/by-sa/2.5/


5.2. WEB APPLICATIONS 39

<a href="http://example.org/more.html?user=joe,pass=hideme">... more</a>

Problem: only works for limited amounts of information and for a single session

�� Other Solution: Store state persistently on the client hard disk

� Definition 5.2.17 A cookie is a text file stored on the client hard disk by the
web browser. Web servers can request the browser to store and send cookies.

� Note: cookies are data not programs, they do not generate pop-ups or behave
like viruses, but they can include your log-in name and browser preferences.

� Note: cookies can be convenient, but they can be used to gather information
about you and your browsing habits.

� Definition 5.2.18 third party cookies are used by advertising companies to
track users across multiple sites. (but you can turn off, and even delete
cookies)

©:Michael Kohlhase 48

Note that that both solutions to the state problem are not ideal, for usernames and passwords the
URL-based solution is particularly problematic, since HTTP transmits URLs in GET requests
without encryption, and in our example passwords would be visible to anybody with a packet
sniffer. Here cookies are little better as cookies, since they can be requested by any website you
visit.

We now turn to client-side computation

One of the main advantages of moving documents from their traditional ink-on-paper form into
an electronic form is that we can interact with them more directly. But there are many more
interactions than just browsing hyperlinks we can think of: adding margin notes, looking up
definitions or translations of particular words, or copy-and-pasting mathematical formulae into
a computer algebra system. All of them (and many more) can be made, if we make documents
programmable. For that we need three ingredients: i) a machine-accessible representation of
the document structure, and ii) a program interpreter in the web browser, and iii) a way to send
programs to the browser together with the documents. We will sketch the WWWeb solution to
this in the following.

Dynamic HTML

� Observation: The nested, markup codes turn HTML documents into trees.

� Definition 5.2.19 The document object model (DOM) is a data structure for
the HTML document tree together with a standardized set of access methods.

� Note: All browsers implement the DOM and parse HTML documents into it;
only then is the DOM rendered for the user.

� Idea: generate parts of the web page dynamically by manipulating the DOM.

� Definition 5.2.20 JavaScript is an object-oriented scripting language mostly
used to enable programmatic access to the DOM in a web browser.

http://creativecommons.org/licenses/by-sa/2.5/


40 CHAPTER 5. STRUCTURED AND WEB DOCUMENTS

� JavaScript is standardized by ECMA in [ECM09].

� Example 5.2.21 We write the some text into a HTML document object (the
document API)

<html>
<head>
<script type="text/javascript">document.write("Dynamic HTML!");</script>
</head>
<body><!-- nothing here; will be added by the script later --></body>
</html>

©:Michael Kohlhase 49

Let us fortify our intuition about dynamic HTML by going into a more involved example.

Applications and useful tricks in Dynamic HTML

� Example 5.2.22 hide document parts by setting CSS style attribs to display:none

<html>
<head>

<style type="text/css">#dropper { display: none; }</style>
<script language="JavaScript" type="text/javascript">
window.onload = function toggleDiv(element){

if(document.getElementById(element).style.display == ’none’)
{document.getElementById(element).style.display = ’block’}

else if(document.getElementById(element).style.display == ’block’)
{document.getElementById(element).style.display = ’none’}}

</script>
</head>
<body>

<button onclick="toggleDiv(’dropper’)">...more </button>
<div id="dropper"><p>Now you see it!</p></div>

</body>
</html>

Application: write “gmail” or “google docs” as JavaScript enhanced web
applications. (client-side computation for immediate reaction)

�� Current Megatrend: Computation in the “cloud”, browsers (or “apps”) as
user interfaces

©:Michael Kohlhase 50

Current web applications include simple office software (word processors, online spreadsheets, and
presentation tools), but can also include more advanced applications such as project management,
computer-aided design, video editing and point-of-sale. These are only possible if we carefully
balance the effects of server-side and client-side computation. The former is needed for compu-
tational resources and data persistence (data can be stored on the server) and the latter to keep
personal information near the user and react to local context (e.g. screen size).

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Bibliography

[BCHL09] Bert Bos, Tantek Celik, Ian Hickson, and Høakon Wium Lie. Cascading style sheets
level 2 revision 1 (CSS 2.1) specification. W3C Candidate Recommendation, World
Wide Web Consortium (W3C), 2009.

[ECM09] ECMAScript language specification, December 2009. 5th Edition.

[RE] re - regular expression operations. online manual at https://docs.python.org/2/

library/re.html.

[RHJ98] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.0 Specification. W3C
Recommendation REC-html40, World Wide Web Consortium (W3C), April 1998.

[XAM] apache friends - xampp. http://www.apachefriends.org/en/xampp.html.

41

https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html
http://www.apachefriends.org/en/xampp.html

	Preface
	This Document
	Course Concept
	Course Contents
	Acknowledgments

	1 Outline of the Course
	2 Administrativa
	I GenICT 1, Module 1: Programming & Documents
	3 Introducction to Programming
	3.1 Introduction to Programming
	3.2 Programming in Python
	3.3 Basic Data Structures
	3.3.1 Numbers
	3.3.2 Characters & Strings


	4 Computing with Documents
	5 Structured and Web Documents
	5.1 Multimedia Documents on the World Wide Web
	5.2 Web Applications



