Quizzes for General CS II (320102) Spring 2015 $\,$

Michael Kohlhase Jacobs University Bremen For Course Purposes Only

April 16, 2015

Contents

Quiz 1 (Graphs and Trees) Given Feb. 9. 2015

Problem 1.1 (Parse Tree)

Draw the parse tree of the expression $\overline{x_1} + x_2 * \overline{x_3}$ and provide a mathematical representation of 4pt it.

Problem 1.2 (BBT of Depth 8)

Let \mathcal{T} be a balanced binary tree with depth 8, how many nodes and leaves does \mathcal{T} have minimally 8pt and maximally (we expect 4 numbers), justify your answer.

Quiz 2 (Adders) Given Feb. 16. 2015

Problem 2.1 (CSA and CCA Theory)

Draw the basic building blocks for the following circuit elements:

12 pt

- 1. *n*-bit Carry Chain Adder
- 2. n-bit Conditional Sum Adder

For both of the circuit elements given above, state their

- $\bullet~{\rm cost}$ and
- \bullet depth

in Landau notation.

Quiz 3 (Circuits and TCN) Given Feb. 23. 2015

Problem 3.1 (Binary Arithmetics)

Let A = 367, B = 38.

- 1. Convert A and B into an n-bit TCN system. What is the minimal n to encode both A and B?
- 2. Perform binary operations A + B and A B. Check the result by converting back to the decimal system.

Problem 3.2 ("2-bit Address Decoder")

Draw the circuit for a 2-bit address decoder using AND, NOT and/or OR gates.

 $6 \mathrm{pt}$

 $6 \mathrm{pt}$

Quiz 4 (ASM Language) Given Mar. 2. 2015

Problem 4.1 (Swapping numbers)

Given x > 2 in D(0) and y > 2 in D(1), write an ASM program that swaps the values of D(x) = 12 pt and D(y). You are allowed to use either version of the language, as long as you are consistent.

Quiz 5 (LVMP and MicroML) Given Mar. 9. 2015

Problem 5.1

Translate the following μ ML code to $\mathcal{L}(\text{VMP})$.

12pt

```
let 

fun f(a) = g(a, a+1, a+2);

fun g(a, b, c) = if a+b<c then a*c-b else (a+c)*b;

val y=10;

in

f(y)

end;
```

Quiz 6 (LVMP and MicroML) Given Mar. 16. 2015

Problem 6.1

Given an alphabet $\{0, 1, \#\}$ write the transition table for a Turing Machine that checks whether the input, written in binary, is a power of two. The input will be surrounded by #s. You can assume the head is at the first non-# character. The machine should halt in the 'yes' state if the input is a power of two and in the 'no' state otherwise.

12pt

Quiz 7 (Internet and the WWW) Given Apr. 13. 2015

Problem 7.1 (Uniform Resource Identifiers)

What is an URI? Explain what is the syntax of an URI. You can use the following example to 6pt help you in your explanation:

http://thelast.net:80/problem?course=gencs2#solution

Problem 7.2 (Internet Protocol Suite)

What is the *Internet Protocol Suite*? Define its structure as detailed as possible.

6pt