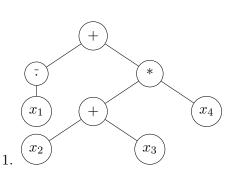
General Computer Science II (320201) Spring 2009

Michael Kohlhase Jacobs University Bremen For Course Purposes Only

April 8, 2013

Contents


Quiz 1: Graphs and Trees (Given Feb. 9.)

Problem 1.1 (Parse trees and isomorphism)

Let P_e be the parse-tree of $e := \overline{x_1} + (x_2 + x_3) * x_4$

- 1. Draw the graphic representation of P_e .
- 2. Write the mathematical representation of a graph G that is different but equivalent to P_e .

 $2. \ G := \langle \{A, B, C, D, 1, 2, 3, 4\}, \{\langle A, B \rangle, \langle A, C \rangle, \langle B, 1 \rangle, \langle C, D \rangle, \langle C, 4 \rangle, \langle D, 2 \rangle, \langle D, 3 \rangle \} \rangle$

Quiz 2: Positional Number Systems (Given Feb. 16.)

Problem 2.2 (Playing with bases)

Convert 2748 from decimal to hexadecimal, binary and octal representation.

Solution: Divide repeatedly 2748 by 16 and take the remainders - get ABC. A = 1010, B = 1011 and C = 1100, thus ABC = 101010111100. Starting from right to left convert every 3 bits to their corresponding octal value: 5274.

12pt

Quiz 3: Adders and TCN (Given Feb. 23.)

Problem 3.3 (Adding TCN numbers)

The numbers 16 and 7 are added using an adder:

1. What is the minimum number of bits necessary to represent these numbers in two's complement notation?

6pt

2. What is the minimum depth of a Carry Chain Adder that can sum these numbers?

Solution: 1. 6 2. $6 \cdot 3 = 18$

Problem 3.4 (Two's complement conversion)

- 1. Convert -42 to 12-bit two's complement.
- 2. Convert the two's complement number 111110110101 to decimal.

Solution:

- 1. 42 = 0101010, flip all bits \rightarrow 1010101, add 1 \rightarrow 1010110, duplicate sign bit until 12 bits \rightarrow 111111010110
- 2. 111110110101, subtract one \rightarrow 111110110100, flip all bits \rightarrow 000001001011 = 75.

Quiz 4: Memory (Given Mar 2.)

Problem 4.5 (3-bit Address Decoder)

Design a three-bit address decoder. Draw your circuit as a graph.

Quiz 5: Virtual Machine (Given March 9.)

Problem 5.6 (a mod b)

12pt

Assume the data stack is initialized with con a and con b for some natural number a and b. Write a $\mathcal{L}(VM)$ program that returns on top of the stack the value of $a \mod b$.

Solution: con a con b peek 0 peek 1 leq cjp 8; if b_ia peek 1; then a=a-b peek 0 sub poke 0 jp - 14; jump to third line peek 0; else push a halt

Quiz 6: SW Language (Given March 24.)

Problem 6.7 (SW program)

Write a program in Simple While Language which is equivalent to the following program in abstract syntax:

```
\begin{array}{l} \mbox{var } i := 0; \mbox{ var } a := 1; \mbox{ var } b := 1; \mbox{ var } f := 0; \\ \mbox{while } (i <= 10) \mbox{ do begin} \\ f := a + b; \\ a := b; \\ b := f; \\ i = i + 1; \\ \mbox{end} \\ \mbox{return } (a + b) * f; \end{array}
```

Quiz 7: Static Procedures (Given March 16)

Problem 7.8 (Towers of Hanoi)

 $12 \mathrm{pt}$

The Towers of Hanoi is a very famous mathematical puzzle. Given three pegs, one with a set of N disks of increasing size, determine the minimum (optimal) number of steps it takes to move all the disks from their initial position to another peg without placing a larger disk on top of a smaller one.

Write down a static procedure in $\mathcal{L}(\text{VMP})$ that computes the solution to the puzzle, given N.

Solution: proc 1 27 ;;if N=1 jump to the end con 1 arg 1 sub cjp 16 ;;h(n-1)*2+1 con 1 arg 1 sub call 0 con 2 mul con 1 add return

;;return 1 for N=1 con 1 return

Quiz 8: TM and Problem formulation (Given March 30)

Problem 8.9 (OR the Tape)

Design a TM that implements the n-ary OR operator on its tape: Started with a sequence of 0s and 1s on the tape, it writes the results at the end of this input and halts. For example, a tape with 111 on it will be transformed in 1111. Your TM needs to have at most 3 states, halting state included. Also, what you TM returns on the empty input is not important.

	Solution:
1,_ ł	1,0,>
1,1	2,1,>
1,0	1,0,>
	1,1,>
	2,1,>
	2,0,>

6pt

Quiz 9: Informed Search (Given April 20)

Problem 9.10 $(A^* \text{ Theory})$

n that makes 4* optimal? Does a heuristic

6pt

What is the condition on the heuristic function that makes A^* optimal? Does a heuristic with this condition always exist?

Solution: Admissible heuristic - always underestimates the real cost to the goal. This always exists: h(x) = 0.

Quiz 10: Local Search (Given April 27)

6pt

Problem 10.11 (Local Beam Search) What known algorithm does Local Beam Search become if k = 1?

Solution: The beam is 1, so there is only one starting point, so Hill Climbing.

12

Problem 10.12 (Greedy vs. Hill Climbing)

What is the fundamental difference between Greedy Search and Hill Climbing? Explain.

Solution: HC is local search, i.e. the path is not kept because we are only interested in finding a solution and not how we got there.

Quiz 11: Prolog (Given May 4)

Problem 11.13 (Knowledge Base)

What is the definition of a knowledge base?

Solution: The knowledge base given by a set of facts and rules is that set of facts that can be derived from it by Modus Ponens $(\Rightarrow I)$ and $\land I$.

Problem 11.14 (Reachability in ProLog)

In a graph, it is sometimes important to be able to tell if a given node is reachable from another node. Given a predicate edge(X, Y) that is true if there is an edge between nodes X and Y, define a predicate reachable(X, Y) that is true if there is a path from X to Y, or if X = Y.

Solution: reachable(X,X). reachable(X,Y):-edge(X,Y). reachable(X,Y):-edge(X,Z), reachable(Z,Y). 8pt

Quiz 12: Prolog (Given May 11)

Problem 12.15 (Arithmetics in ProLog)

- Give the definition of a ProLog rule triangle(A,B,C) that is true only if A, B and C can be the three sides of a triangle. You can assume that the three numbers are positive.
- What will ProLog return if you write the query ?-triangle(1,2,C).. Explain briefly.

Solution:

triangle(A,B,C) :- AB is A+B, BC is B+C, AC is A+C, A < BC, B < AC, C <AB.

The query ?-triangle(1,2,C). will result in an error since in BC = B+C, C will not be instantiated.

Problem 12.16 (Unification)

Give a most general unifier of the terms $\mathbf{A} = f(X, g(Y, X))$ and $\mathbf{B} = f(Y, Z)$. Give one more unifier that is NOT most general.

Solution:

- [Y/X], [g(Y,Y)/Z]
- [a/X], [a/Y], [g(a, a)/Z]