General Computer Science II (320201) Spring 2006

Michael Kohlhase Jacobs University Bremen For Course Purposes Only

April 8, 2013

Contents

Assignment 1: Resolution Calculus (Given Feb. 13.)

Problem 1.1: Prove in the resolution calculus using derived rules:

 $\models A \land (B \lor C) \Rightarrow A \land B \lor A \land C$

Solution: Clause Normal Form transformation

$A \land (B \lor C) \Rightarrow A \land B \lor A \land C^{F}$
$\overline{A \land (B \lor C)^{T}; A \land B \lor A \land C^{F}}$
$\overline{A^{T}; B^{T} \vee C^{T}; A \wedge B^{F}; A \wedge C^{F}}$
$\overline{A^{T}; B^{T} \vee C^{T}; A^{F} \vee B^{F}; A^{F} \vee C^{F}}$

Resolution Proof

1	A '	initial
2	$B^{T} \vee C^{T}$	initial
3	$A^{F} \vee B^{F}$	initial
4	$A^{F} \vee C^{F}$	initial
5	B^{F}	with 1 and 3
6	C^{F}	with 1 and 4
7	C^{T}	with 2 and 5
8		with 6 and 7

Assignment 2: Combinatorial Circuit and its Graph (Given Feb. 20.)

Problem 2.2 (Combinational Circuit for Logical Equivalence) Logical equivalence can be expressed by the Boolean function

$$f: \{0,1\}^2 \to \{0,1\}; \langle i_1, i_2 \rangle \mapsto (\overline{i_1} + i_2) * (i_1 + \overline{i_2})$$

Draw the corresponding combinational circuit and write down its labeled graph $G = \langle V, E, f_g \rangle$ in explicit math notation.

 $12 \mathrm{pt}$

Assignment 3: Positional Number Systems (Given Feb. 27.)

12pt

Problem 3.3: Write down the last 4 digits of your matriculation number and (considering it as decimal number) represent it as binary, octal, and hexadecimal number.

Assignment 5: Virtual Machine (Given March. 20.)

12pt

Problem 5.4 (Even Odd Test)

Assume the data stack initialized with con n for some natural number n. Write a $\mathcal{L}(VM)$ program that returns on top of the stack 0 if n is even and 1 otherwise. Furthermore, draw the evolution of the stack during the execution of your program for n = 4 and n = 5.

5

Assignment 7: Search in Finite State Space (Given April. 24.)

Problem 7.5: Does a finite state space always lead to a finite search tree? How about a finite space state that is a tree? Justify your answers.