
General Computer Science

320201 GenCS I & II Lecture Notes

Fall 2011

Michael Kohlhase

School of Engineering & Science
Jacobs University, Bremen Germany

m.kohlhase@jacobs-university.de

office: Room 62, Research 1, phone: x3140

c©: Michael Kohlhase 1

1

m.kohlhase@jacobs-university.de
http://creativecommons.org/licenses/by-sa/2.5/

1 Preface

This document contains the course notes for the course General Computer Science I & II held at
Jacobs University Bremen1 in the academic years 2003-2011.

1.1 This Document

Contents: The document mixes the slides presented in class with comments of the instructor to
give students a more complete background reference.

Caveat: This document is made available for the students of this course only. It is still a draft,
and will develop over the course of the current course and in coming academic years.

Licensing: This document is licensed under a Creative Commons license that requires attribution,
forbids commercial use, and allows derivative works as long as these are licensed under the same
license.

Knowledge Representation Experiment: This document is also an experiment in knowledge repre-
sentation. Under the hood, it uses the STEX package [Koh08, Koh10], a TEX/LATEX extension for
semantic markup, which allows to export the contents into the eLearning platform PantaRhei.

Comments and extensions are always welcome, please send them to the author.

Other Resources: 1 2 EdNote:1
EdNote:2

1.2 Course Concept

Aims: The course 320101/2 “General Computer Science I/II” (GenCS) is a two-semester course
that is taught as a mandatory component of the “Computer Science” and “Electrical Engineering
& Computer Science” majors (EECS) at Jacobs University. The course aims to give these students
a solid (and somewhat theoretically oriented) foundation of the basic concepts and practices of
computer science without becoming inaccessible to ambitious students of other majors.

Context: As part of the EECS curriculum GenCS is complemented with a programming lab that
teaches the basics of C and C++ 3 from a practical perspective and a “Computer Architecture” EdNote:3
course in the first semester. As the programming lab is taught in three five-week blocks over the
first semester, we cannot make use of it in GenCS.

In the second year, GenCS, will be followed by a standard “Algorithms & Data structures”
course and a “Formal Languages & Logics” course, which it must prepare.

Prerequisites: The student body of Jacobs University is extremely diverse — in 2009, we have
students from over 100 nations on campus. In particular, GenCS students come from both sides
of the “digital divide”: Previous CS exposure ranges “almost computer-illiterate” to “professional
Java programmer” on the practical level, and from “only calculus” to solid foundations in dis-
crete Mathematics for the theoretical foundations. An important commonality of Jacobs students
however is that they are bright, resourceful, and very motivated.

As a consequence, the GenCS course does not make any assumptions about prior knowledge,
and introduces all the necessary material, developing it from first principles. To compensate
for this, the course progresses very rapidly and leaves much of the actual learning experience to
homework problems and student-run tutorials.

1.3 Course Contents

To reach the aim of giving students a solid foundation of the basic concepts and practices of Com-
puter Science we try to raise awareness for the three basic concepts of CS: “data/information”,

1International University Bremen until Fall 2006
1EdNote: describe the discussions in Panta Rhei
2EdNote: Say something about the problems
3EdNote: Check: Java Lab as well?

2

“algorithms/programs” and “machines/computational devices” by studying various instances, ex-
posing more and more characteristics as we go along.

Computer Science: In accordance to the goal of teaching students to “think first” and to bring
out the Science of CS, the general style of the exposition is rather theoretical; practical aspects
are largely relegated to the homework exercises and tutorials. In particular, almost all relevant
statements are proven mathematically to expose the underlying structures.

GenCS is not a programming course: even though it covers all three major programming paradigms
(imperative, functional, and declarative programming)4. The course uses SML as its primary pro- EdNote:4
gramming language as it offers a clean conceptualization of the fundamental concepts of recursion,
and types. An added benefit is that SML is new to virtually all incoming Jacobs students and helps
equalize opportunities.

GenCS I (the first semester): is somewhat oriented towards computation and representation. It
the first half of the semester the course introduces the dual concepts of induction and recursion,
first on unary natural numbers, and then on arbitrary abstract data types, and legitimizes them
by the Peano Axioms. The introduction and of the functional core of SML contrasts and explains
this rather abstract development. To highlight the role of representation, we turn to Boolean
expressions, propositional logic, and logical calculi in the second half of the semester. This gives
the students a first glimpse at the syntax/semantics distinction at the heart of CS.

GenCS II (the second semester): is more oriented towards exposing students to the realization of
computational devices. The main part of the semester is taken up by a “building an abstract com-
puter”, starting from combinational circuits, via a register machine which can be programmed in
a simple assembler language, to a stack-based machine with a compiler for a bare-bones functional
programming language. In contrast to the “computer architecture” course in the first semester,
the GenCS exposition abstracts away from all physical and timing issues and considers circuits
as labeled graphs. This reinforces the students’ grasp of the fundamental concepts and highlights
complexity issues. The course then progresses to a brief introduction of Turing machines and
discusses the fundamental limits of computation at a rather superficial level, which completes an
introductory “tour de force” through the landscape of Computer Science.

The remaining time, is spent on studying one class algorithms (search algorithms) in more detail
and introducing the notition of declarative programming that uses search and logical representation
as a model of computation.

1.4 Acknowledgments

Materials: Some of the material in this course is based on course notes prepared by Andreas Birk,
who held the course 320101/2 “General Computer Science” at IUB in the years 2001-03. Parts
of his course and the current course materials were based on the book “Hardware Design” (in
German [KP95]). The section on search algorithms is based on materials obtained from Bernhard
Beckert (Uni Koblenz), which in turn are based on Stuart Russell and Peter Norvig’s lecture slides
that go with their book “Artificial Intelligence: A Modern Approach” [RN95].

The presentation of the programming language Standard ML, which serves as the primary
programming tool of this course is in part based on the course notes of Gert Smolka’s excellent
course “Programming” at Saarland University, which will appear as a book (in German) soon.5 EdNote:5

Contributors: The preparation of the course notes has been greatly helped by Ioan Sucan, who
has done much of the initial editing needed for semantic preloading in STEX. Herbert Jaeger,
Christoph Lange, and Normen Müller have given advice on the contents.

GenCS Students: The following students have submitted corrections and suggestions to this and
earlier versions of the notes: Saksham Raj Gautam, Anton Kirilov, Philipp Meerkamp, Paul
Ngana, Darko Pesikan, Stojanco Stamkov, Nikolaus Rath, Evans Bekoe, Marek Laska, Moritz

4EdNote: termrefs!
5EdNote: this should be out, check the reference

3

Beber, Andrei Aiordachioaie, Magdalena Golden, Andrei Eugeniu Ioniţă, Semir Elezović, Dimi-
tar Asenov, Alen Stojanov, Felix Schlesinger, Ştefan Anca, Dante Stroe, Irina Calciu, Nemanja
Ivanovski, Abdulaziz Kivaza, Anca Dragan, Razvan Turtoi, Catalin Duta, Andrei Dragan, Dimitar
Misev, Vladislav Perelman, Milen Paskov, Kestutis Cesnavicius, Mohammad Faisal, Janis Beck-
ert, Karolis Uziela, Josip Djolonga, Flavia Grosan, Aleksandar Siljanovski, Iurie Tap, Barbara
Khalibinzwa, Darko Velinov, Anton Lyubomirov Antonov, Christopher Purnell, Maxim Rauwald,
Jan Brennstein, Irhad Elezovikj.

4

Contents

1 Preface 2
1.1 This Document . 2
1.2 Course Concept . 2
1.3 Course Contents . 2
1.4 Acknowledgments . 3

2 Getting Started with “General Computer Science” 7
2.1 Overview over the Course . 7
2.2 Administrativa . 9

2.2.1 Grades, Credits, Retaking . 9
2.2.2 Homeworks, Submission, and Cheating . 10
2.2.3 Resources . 12

2.3 Motivation and Introduction . 14

3 Elementary Discrete Math 23
3.1 Mathematical Foundations: Natural Numbers . 23
3.2 Talking (and writing) about Mathematics . 30
3.3 Naive Set Theory . 31

3.3.1 Definitions in Mathtalk . 33
3.4 Relations and Functions . 35

4 Computing with Functions over Inductively Defined Sets 41
4.1 Standard ML: Functions as First-Class Objects . 41
4.2 Inductively Defined Sets and Computation . 51
4.3 Inductively Defined Sets in SML . 54
4.4 A Theory of SML: Abstract Data Types and Term Languages 57

4.4.1 Abstract Data Types and Ground Constructor Terms 57
4.4.2 A First Abstract Interpreter . 59
4.4.3 Substitutions . 62
4.4.4 A Second Abstract Interpreter . 63
4.4.5 Evaluation Order and Termination . 65

4.5 More SML: Recursion in the Real World . 68
4.6 Even more SML: Exceptions and State in SML . 71

5 Encoding Programs as Strings 74
5.1 Formal Languages . 74
5.2 Elementary Codes . 76
5.3 Character Codes in the Real World . 78
5.4 Formal Languages and Meaning . 82

6 Boolean Algebra 85
6.1 Boolean Expressions and their Meaning . 85
6.2 Boolean Functions . 89
6.3 Complexity Analysis for Boolean Expressions . 92
6.4 The Quine-McCluskey Algorithm . 97
6.5 A simpler Method for finding Minimal Polynomials 104

7 Propositional Logic 107
7.1 Boolean Expressions and Propositional Logic . 107
7.2 Logical Systems and Calculi . 110
7.3 Proof Theory for the Hilbert Calculus . 114
7.4 A Calculus for Mathtalk . 120

5

8 Welcome and Administrativa 124
8.1 Recap from General CS I . 124

9 Machine-Oriented Calculi 126
9.1 Calculi for Automated Theorem Proving: Analytical Tableaux 126

9.1.1 Analytical Tableaux . 126
9.1.2 Practical Enhancements for Tableaux . 129
9.1.3 Correctness and Termination of Tableaux 131

9.2 Resolution for Propositional Logic . 133

10 Welcome and Administrativa 136
10.1 Recap from General CS I . 136

11 Circuits 138
11.1 Graphs and Trees . 138
11.2 Introduction to Combinatorial Circuits . 145
11.3 Realizing Complex Gates Efficiently . 148

11.3.1 Balanced Binary Trees . 148
11.3.2 Realizing n-ary Gates . 150

11.4 Basic Arithmetics with Combinational Circuits . 154
11.4.1 Positional Number Systems . 154
11.4.2 Adders . 156

11.5 Arithmetics for Two’s Complement Numbers . 165
11.6 Towards an Algorithmic-Logic Unit . 172

12 Sequential Logic Circuits and Memory Elements 174

13 Machines 179
13.1 How to build a Computer (in Principle) . 179
13.2 How to build a SML-Compiler (in Principle) . 184

13.2.1 A Stack-based Virtual Machine . 184
13.2.2 A Simple Imperative Language . 191
13.2.3 Compiling Basic Functional Programs . 201

13.3 A theoretical View on Computation . 204

14 Problem Solving and Search 210
14.1 Problem Solving . 210
14.2 Search . 216
14.3 Uninformed Search Strategies . 218
14.4 Informed Search Strategies . 232
14.5 Local Search . 240

15 Logic Programming 246
15.1 Programming as Search: Introduction to Logic Programming and PROLOG 246
15.2 Logic Programming as Resolution Theorem Proving 253

16 The Information and Software Architecture of the Internet and WWW 255
16.1 Overview . 255
16.2 Internet Basics . 257
16.3 Basics Concepts of the World Wide Web . 266
16.4 Introduction to Web Search . 272
16.5 Security by Encryption . 277
16.6 An Overview over XML Technologies . 281
16.7 More Web Resources . 286
16.8 The Semantic Web . 287

6

2 Getting Started with “General Computer Science”

Jacobs University offers a unique CS curriculum to a special student body. Our CS curriculum
is optimized to make the students successful computer scientists in only three years (as opposed
to most US programs that have four years for this). In particular, we aim to enable students to
pass the GRE subject test in their fifth semester, so that they can use it in their graduate school
applications.

The Course 320101/2 “General Computer Science I/II” is a one-year introductory course that
provides an overview over many of the areas in Computer Science with a focus on the foundational
aspects and concepts. The intended audience for this course are students of Computer Science,
and motivated students from the Engineering and Science disciplines that want to understand
more about the “why” than only the “how” of Computer Science, i.e. the “science part”.

2.1 Overview over the Course

Plot of “General Computer Science”

� Today: Motivation, Admin, and find out what you already know

� What is Computer Science?

� Information, Data, Computation, Machines

� a (very) quick walk through the topics

� Get a feeling for the math involved (* not a programming course!!!*)

� learn mathematical language (so we can talk rigorously)

� inductively defined sets, functions on them

� elementary complexity analysis

� Various machine models (as models of computation)

� (primitive) recursive functions on inductive sets

� combinational circuits and computer architecture

� Programming Language: Standard ML (great equalizer/thought provoker)

� Turing machines and the limits of computability

� Fundamental Algorithms and Data structures

c©: Michael Kohlhase 2

Overview: The purpose of this two-semester course is to give you an introduction to what the
Science in “Computer Science” might be. We will touch on a lot of subjects, techniques and
arguments that are of importance. Most of them, we will not be able to cover in the depth that
you will (eventually) need to know them. That will happen in your second year, where you will
see most of them again, with much more thorough treatment.

Computer Science: We are using the term “Computer Science” in this course, because it is the
traditional anglo-saxon term for our field. It is a bit of a misnomer, as it emphasizes the computer
alone as a computational device, which is only one of the aspects of the field. Other names that are
becoming increasingly popular are “Information Science”, “Informatics” or “Computing”, which
are broader, since they concentrate on the notion of information (irrespective of the machine basis:
hardware/software/wetware/alienware/vaporware) or on computation.

7

http://creativecommons.org/licenses/by-sa/2.5/

Definition 1 What we mean with Computer Science here is perhaps best represented by the
following quote from [Den00]:

The body of knowledge of computing is frequently described as the systematic study of
algorithmic processes that describe and transform information: their theory, analysis, de-
sign, efficiency, implementation, and application. The fundamental question underlying all
of computing is, What can be (efficiently) automated?

Not a Programming Course: Note “General CS” is not a programming course, but an attempt
to give you an idea about the “Science” of computation. Learning how to write correct, efficient,
and maintainable, programs is an important part of any education in Computer Science, but we
will not focus on that in this course (we have the Labs for that). As a consequence, we will not
concentrate on teaching how to program in “General CS” but introduce the SML language and
assume that you pick it up as we go along (however, the tutorials will be a great help; so go
there!).

Standard ML: We will be using Standard ML (SML), as the primary vehicle for programming in the
course. The primary reason for this is that as a functional programming language, it focuses more
on clean concepts like recursion or typing, than on coverage and libraries. This teaches students
to “think first” rather than “hack first”, which meshes better with the goal of this course. There
have been long discussions about the pros and cons of the choice in general, but it has worked well
at Jacobs University (even if students tend to complain about SML in the beginning).

A secondary motivation for SML is that with a student body as diverse as the GenCS first-years
at Jacobs2 we need a language that equalizes them. SML is quite successful in that, so far none
of the incoming students had even heard of the language (apart from tall stories by the older
students).

Algorithms, Machines, and Data: The discussion in “General CS” will go in circles around the
triangle between the three key ingredients of computation.

Algorithms are abstract representations of computation instructions

Data are representations of the objects the computations act on

Machines are representations of the devices the computations run on

The figure below shows that they all depend on each other; in the course of this course we will
look at various instantiations of this general picture.

Data

Machines

Algorithms

Figure 1: The three key ingredients of Computer Science

Representation: One of the primary focal items in “General CS” will be the notion of representa-
tion. In a nutshell the situation is as follows: we cannot compute with objects of the “real world”,
but be have to make electronic counterparts that can be manipulated in a computer, which we
will call representations. It is essential for a computer scientist to realize that objects and their
representations are different, and to be aware of their relation to each other. Otherwise it will
be difficult to predict the relevance of the results of computation (manipulating electronic objects
in the computer) for the real-world objects. But if cannot do that, computing loses much of its
utility.

Of course this may sound a bit esoteric in the beginning, but I will come back to this very
often over the course, and in the end you may see the importance as well.

2traditionally ranging from students with no prior programming experience to ones with 10 years of semi-pro
Java

8

2.2 Administrativa

We will now go through the ground rules for the course. This is a kind of a social contract between
the instructor and the students. Both have to keep their side of the deal to make learning and
becoming Computer Scientists as efficient and painless as possible.

2.2.1 Grades, Credits, Retaking

Now we come to a topic that is always interesting to the students: the grading scheme. The
grading scheme I am using has changed over time, but I am quite happy with it.

Prerequisites, Requirements, Grades

� Prerequisites: Motivation, Interest, Curiosity, hard work

� you can do this course if you want!

� Grades: (plan your work involvement carefully)

Monday Quizzes 30%
Graded Assignments 20%
Mid-term Exam 20%
Final Exam 30%

Note that for the grades, the percentages of achieved points are added with the weights
above, and only then the resulting percentage is converted to a grade.

� Monday Quizzes: (Almost) every monday, we will use the first 10 minutes for a brief quiz
about the material from the week before (you have to be there)

� Rationale: I want you to work continuously (maximizes learning)

c©: Michael Kohlhase 3

My main motivation in this grading scheme is that I want to entice you to learn continuously.
You cannot hope to pass the course, if you only learn in the reading week. Let us look at the
components of the grade. The first is the exams: We have a mid-term exam relatively early, so
that you get feedback about your performance; the need for a final exam is obvious and tradition
at Jacobs. Together, the exams make up 50% of your grade, which seems reasonable, so that you
cannot completely mess up your grade if you fail one.

In particular, the 50% rule means that if you only come to the exams, you basically have to
get perfect scores in order to get an overall passing grade. This is intentional, it is supposed to
encourage you to spend time on the other half of the grade. The homework assignments are a
central part of the course, you will need to spend considerable time on them. Do not let the 20%
part of the grade fool you. If you do not at least attempt to solve all of the assignments, you
have practically no chance to pass the course, since you will not get the practice you need to do
well in the exams. The value of 20% is attempts to find a good trade-off between discouraging
from cheating, and giving enough incentive to do the homework assignments. Finally, the monday
quizzes try to ensure that you will show up on time on mondays, and are prepared.

9

http://creativecommons.org/licenses/by-sa/2.5/

Advanced Placement

� Generally: AP let’s you drop a course, but retain credit for it (sorry no grade!)

� you register for the course, and take an AP exam

� * you will need to have very good results to pass *

� If you fail, you have to take the course or drop it!

� Specifically: AP exams (oral) some time next week (see me for a date)

� Be prepared to answer elementary questions about: discrete mathematics, terms,
substitution, abstract interpretation, computation, recursion, termination, elemen-
tary complexity, Standard ML, types, formal languages, Boolean expressions

(possible subjects of the exam)

� Warning: you should be very sure of yourself to try (genius in C++ insufficient)

c©: Michael Kohlhase 4

Although advanced placement is possible, it will be very hard to pass the AP test. Passing an AP
does not just mean that you have to have a passing grade, but very good grades in all the topics
that we cover. This will be very hard to achieve, even if you have studied a year of Computer
Science at another university (different places teach different things in the first year). You can still
take the exam, but you should keep in mind that this means considerable work for the instrutor.

2.2.2 Homeworks, Submission, and Cheating

Homework assignments

� Goal: Reinforce and apply what is taught in class.

� homeworks: will be small individual problem/programming/proof assignments
(but take time to solve)

� admin: To keep things running smoothly

� Homeworks will be posted on PantaRhei

� Homeworks are handed in electronically in grader (plain text, Postscript, PDF,. . .)

� go to the recitations, discuss with your TA (they are there for you!)

� Homework discipline:

� start early! (many assignments need more than one evening’s work)

� Don’t start by sitting at a blank screen

� Humans will be trying to understand the text/code/math when grading it.

c©: Michael Kohlhase 5

Homework assignments are a central part of the course, they allow you to review the concepts
covered in class, and practice using them.

10

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Homework Submissions, Grading, Tutorials

� Submissions: We use Heinrich Stamerjohanns’ grader system

� submit all homework assignments electronically to https://jgrader.de

� you can login with you Jacobs account (should have one!)

� feedback/grades to your submissions

� get an overview over how you are doing! (do not leave to midterm)

� Tutorials: select a tutorial group and actually go to it regularly

� to discuss the course topics after class (GenCS needs pre/postparation)

� to discuss your homework after submission (to see what was the problem)

� to find a study group (probably the most determining factor of success)

c©: Michael Kohlhase 6

The next topic is very important, you should take this very seriously, even it you think that this
is just a self-serving regulation made by the faculty.

All societies have their rules, written and unwritten ones, which serve as a social contract
among its members, protect their interestes, and optimize the functioning of the society as a
whole. This is also true for the community of scientists worldwide. This society is special, since it
balances intense cooperation on joint issues with fierce competition. Most of the rules are largely
unwritten; you are expected to follow them anyway. The code of academic integrity at Jacobs is
an attempt to put some of the aspects into writing.

It is an essential part of your academic education that you learn to behave like academics,
i.e. to function as a member of the academic community. Even if you do not want to become
a scientist in the end, you should be aware that many of the people you are dealing with have
gone through an academic education and expect that you (as a graduate of Jacobs) will behave
by these rules.

The Code of Academic Integrity

� Jacobs has a “Code of Academic Integrity”

� this is a document passed by the faculty (our law of the university)

� you have signed it last week (we take this seriously)

� It mandates good behavior and penalizes bad from both faculty and students

� honest academic behavior (we don’t cheat)

� respect and protect the intellectual property of others (no plagiarism)

� treat all Jacobs members equally (no favoritism)

� this is to protect you and build an atmosphere of mutual respect

� academic societies thrive on reputation and respect as primary currency

� The Reasonable Person Principle (one lubricant of academia)

� we treat each other as reasonable persons

� the other’s requests and needs are reasonable until proven otherwise

c©: Michael Kohlhase 7

11

https://jgrader.de
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

To understand the rules of academic societies it is central to realize that these communities are
driven by economic considerations of their members. However, in academic societies, the the
primary good that is produced and consumed consists in ideas and knowledge, and the primary
currency involved is academic reputation3. Even though academic societies may seem as altruistic
— scientists share their knowledge freely, even investing time to help their peers understand the
concepts more deeply — it is useful to realize that this behavior is just one half of an economic
transaction. By publishing their ideas and results, scientists sell their goods for reputation. Of
course, this can only work if ideas and facts are attributed to their original creators (who gain
reputation by being cited). You will see that scientists can become quite fierce and downright
nasty when confronted with behavior that does not respect other’s intellectual property.

One special case of academic rules that affects students is the question of cheating, which we will
cover next.

Cheating [adapted from CMU:15-211 (P. Lee, 2003)]

� There is no need to cheat in this course!! (hard work will do)

� cheating prevents you from learning (you are cutting your own flesh)

� if you are in trouble, come and talk to me (I am here to help you)

� We expect you to know what is useful collaboration and what is cheating

� you will be required to hand in your own original code/text/math for all assignments

� you may discuss your homework assignments with others, but if doing so impairs your
ability to write truly original code/text/math, you will be cheating

� copying from peers, books or the Internet is plagiarism unless properly attributed
(even if you change most of the actual words)

� more on this as the semester goes on . . .

� * There are data mining tools that monitor the originality of text/code. *

c©: Michael Kohlhase 8

We are fully aware that the border between cheating and useful and legitimate collaboration is
difficult to find and will depend on the special case. Therefore it is very difficult to put this into
firm rules. We expect you to develop a firm intuition about behavior with integrity over the course
of stay at Jacobs.

2.2.3 Resources

3Of course, this is a very simplistic attempt to explain academic societies, and there are many other factors at
work there. For instance, it is possible to convert reputation into money: if you are a famous scientist, you may
get a well-paying job at a good university,. . .

12

http://creativecommons.org/licenses/by-sa/2.5/

Textbooks, Handouts and Information, Forum

� No required textbook, but course notes, posted slides

� Course notes in PDF will be posted at http://kwarc.info/teaching/GenCS1.html

� Everything will be posted on Planet GenCS (Notes+assignments+course forum)

� announcements, contact information, course schedule and calendar

� discussion among your fellow students(careful, I will occasionally check for academic integrity!)

� http://gencs.kwarc.info (follow instructions there)

� if there are problems send e-mail to c.david@jacobs-university.de

c©: Michael Kohlhase 9

No Textbook: Due to the special circumstances discussed above, there is no single textbook that
covers the course. Instead we have a comprehensive set of course notes (this document). They
are provided in two forms: as a large PDF that is posted at the course web page and on the
Planet GenCS system. The latter is actually the preferred method of interaction with the course
materials, since it allows to discuss the material in place, to play with notations, to give feedback,
etc. The PDF file is for printing and as a fallback, if the Planet GenCS system, which is still under
development develops problems.

Software/Hardware tools

� You will need computer access for this course
(come see me if you do not have a computer of your own)

� we recommend the use of standard software tools

� the emacs and vi text editor (powerful, flexible, available, free)

� UNIX (linux, MacOSX, cygwin) (prevalent in CS)

� FireFox (just a better browser (for Math))

� learn how to touch-type NOW (reap the benefits earlier, not later)

c©: Michael Kohlhase 10

Touch-typing: You should not underestimate the amount of time you will spend typing during
your studies. Even if you consider yourself fluent in two-finger typing, touch-typing will give you
a factor two in speed. This ability will save you at least half an hour per day, once you master it.
Which can make a crucial difference in your success.

Touch-typing is very easy to learn, if you practice about an hour a day for a week, you will
re-gain your two-finger speed and from then on start saving time. There are various free typing
tutors on the network. At http://typingsoft.com/all_typing_tutors.htm you can find about
programs, most for windows, some for linux. I would probably try Ktouch or TuxType

Darko Pesikan recommends the TypingMaster program. You can download a demo version
from http://www.typingmaster.com/index.asp?go=tutordemo

You can find more information by googling something like ”learn to touch-type”. (goto http:

//www.google.com and type these search terms).

Next we come to a special project that is going on in parallel to teaching the course. I am using
the coures materials as a research object as well. This gives you an additional resource, but may
affect the shape of the coures materials (which now server double purpose). Of course I can use
all the help on the research project I can get.

13

http://kwarc.info/teaching/GenCS1.html
http://gencs.kwarc.info
c.david@jacobs-university.de
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://typingsoft.com/all_typing_tutors.htm
http://www.typingmaster.com/index.asp?go=tutordemo
http://www.google.com
http://www.google.com

Experiment: E-Learning with OMDoc/PantaRhei

� My research area: deep representation formats for (mathematical) knowledge

� Application: E-learning systems (represent knowledge to transport it)

� Experiment: Start with this course (Drink my own medicine)

� Re-Represent the slide materials in OMDoc (Open Math Documents)

� Feed it into the PantaRhei system (http://trac.mathweb.org/planetary)

� Try it on you all (to get feedback from you)

� Tasks (Unfortunately, I cannot pay you for this; maybe later)

� help me complete the material on the slides (what is missing/would help?)

� I need to remember “what I say”, examples on the board. (take notes)

� Benefits for you (so why should you help?)

� you will be mentioned in the acknowledgements (for all that is worth)

� you will help build better course materials (think of next-year’s freshmen)

c©: Michael Kohlhase 11

2.3 Motivation and Introduction

Before we start with the course, we will have a look at what Computer Science is all about. This
will guide our intuition in the rest of the course.

Consider the following situation, Jacobs University has decided to build a maze made of high
hedges on the the campus green for the students to enjoy. Of course not any maze will do, we
want a maze, where every room is reachable (unreachable rooms would waste space) and we want
a unique solution to the maze to the maze (this makes it harder to crack).

What is Computer Science about?

� For instance: Software! (a hardware example would also work)

� Example 2 writing a program to generate mazes.

� We want every maze to be solvable. (should have path from entrance to exit)

� Also: We want mazes to be fun, i.e.,

� We want maze solutions to be unique

� We want every “room” to be reachable

� How should we think about this?

c©: Michael Kohlhase 12

There are of course various ways to build such a a maze; one would be to ask the students from
biology to come and plant some hedges, and have them re-plant them until the maze meets our
criteria. A better way would be to make a plan first, i.e. to get a large piece of paper, and draw
a maze before we plant. A third way is obvious to most students:

14

http://trac.mathweb.org/planetary
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

An Answer:

Let’s hack

c©: Michael Kohlhase 13

However, the result would probably be the following:

* 2am in the IRC Quiet Study Area *

c©: Michael Kohlhase 14

If we just start hacking before we fully understand the problem, chances are very good that we
will waste time going down blind alleys, and garden paths, instead of attacking problems. So the
main motto of this course is:

* no, let’s think *

� “The GIGO Principle: Garbage In, Garbage Out” (– ca. 1967)

� “Applets, Not Crapletstm” (– ca. 1997)

c©: Michael Kohlhase 15

Thinking about a problem will involve thinking about the representations we want to use (after
all, we want to work on the computer), which computations these representations support, and
what constitutes a solutions to the problem.

This will also give us a foundation to talk about the problem with our peers and clients. Enabling
students to talk about CS problems like a computer scientist is another important learning goal
of this course.

15

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

We will now exemplify the process of “thinking about the problem” on our mazes example. It
shows that there is quite a lot of work involved, before we write our first line of code. Of course,
sometimes, explorative programming sometimes also helps understand the problem , but we would
consider this as part of the thinking process.

Thinking about the problem

� Idea: Randomly knock out walls until we get a good maze

� Think about a grid of rooms separated by walls.

� Each room can be given a name.

� Mathematical Formulation:

� a set of rooms: {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p}
� Pairs of adjacent rooms that have an open wall between them.

� Example 3 For example, 〈a, b〉 and 〈g, k〉 are pairs.

� Abstractly speaking, this is a mathematical structure called a graph.

c©: Michael Kohlhase 16

Of course, the “thinking” process always starts with an idea of how to attack the problem. In our
case, this is the idea of starting with a grid-like structure and knocking out walls, until we have a
maze which meets our requirements.

Note that we have already used our first representation of the problem in the drawing above: we
have drawn a picture of a maze, which is of course not the maze itself.

Definition 4 A representation is the realization of real or abstract persons, objects, circum-
stances, Events, or emotions in concrete symbols or models. This can be by diverse methods, e.g.
visual, aural, or written; as three-dimensional model, or even by dance.

Representations will play a large role in the course, we should always be aware, whether we are
talking about “the real thing” or a representation of it (chances are that we are doing the latter
in computer science). Even though it is important, to be able to always able to distinguish
representations from the objects they represent, we will often be sloppy in our language, and rely
on the ability of the reader to distinguish the levels.

From the pictorial representation of a maze, the next step is to come up with a mathematical
representation; here as sets of rooms (actually room names as representations of rooms in the
maze) and room pairs.

16

http://creativecommons.org/licenses/by-sa/2.5/

Why math?

� Q: Why is it useful to formulate the problem so that mazes are room sets/pairs?

� A: Data structures are typically defined as mathematical structures.

� A: Mathematics can be used to reason about the correctness and efficiency of data
structures and algorithms.

� A: Mathematical structures make it easier to think — to abstract away from unnecessary
details and avoid “hacking”.

c©: Michael Kohlhase 17

The advantage of a mathematical representation is that it models the aspects of reality we are
interested in in isolation. Mathematical models/representations are very abstract, i.e. they have
very few properties: in the first representational step we took we abstracted from the fact that
we want to build a maze made of hedges on the campus green. We disregard properties like maze
size, which kind of bushes to take, and the fact that we need to water the hedges after we planted
them. In the abstraction step from the drawing to the set/pairs representation, we abstracted
from further (accidental) properties, e.g. that we have represented a square maze, or that the
walls are blue.

As mathematical models have very few properties (this is deliberate, so that we can understand
all of them), we can use them as models for many concrete, real-world situations.

Intuitively, there are few objects that have few properties, so we can study them in detail. In our
case, the structures we are talking about are well-known mathematical objects, called graphs.

We will study graphs in more detail in this course, and cover them at an informal, intuitive level
here to make our points.

Mazes as Graphs

� Definition 5 Informally, a graph consists of a set of nodes and a set of edges.
(a good part of CS is about graph algorithms)

� Definition 6 A maze is a graph with two special nodes.

� Interpretation: Each graph node represents a room, and an edge from node x to node
y indicates that rooms x and y are adjacent and there is no wall in between them.
The first special node is the entry, and the second one the exit of the maze.

Can be represented as

〈
〈a, e〉, 〈e, i〉, 〈i, j〉,
〈f, j〉, 〈f, g〉, 〈g, h〉,
〈d, h〉, 〈g, k〉, 〈a, b〉
〈m,n〉, 〈n, o〉, 〈b, c〉
〈k, o〉, 〈o, p〉, 〈l, p〉

 , a, p

〉

c©: Michael Kohlhase 18

17

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Mazes as Graphs (Visualizing Graphs via Diagrams)

� Graphs are very abstract objects, we need a good, intuitive way of thinking about them.
We use diagrams, where the nodes are visualized as dots and the edges as lines between
them.

� Our maze

can be visualized as

� Note that the diagram is a visualization (a representation intended for humans to process
visually) of the graph, and not the graph itself.

c©: Michael Kohlhase 19

Now that we have a mathematical model for mazes, we can look at the subclass of graphs that
correspond to the mazes that we are after: unique solutions and all rooms are reachable! We will
concentrate on the first requirement now and leave the second one for later.

Unique solutions

� Q: What property must the graph have for the maze to have a solution?

� A: A path from a to p.

� Q: What property must it have for the maze to have a unique solution?

� A: The graph must be a tree.

c©: Michael Kohlhase 20

Trees are special graphs, which we will now define.

18

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Mazes as trees

� Definition 7 Informally, a tree is a graph:

� with a unique root node, and

� each node having a unique parent.

� Definition 8 A spanning tree is a tree that includes all of the nodes.

Q: Why is it good to have a spanning tree?

�� A: Trees have no cycles! (needed for uniqueness)

� A: Every room is reachable from the root!

c©: Michael Kohlhase 21

So, we know what we are looking for, we can think about a program that would find spanning
trees given a set of nodes in a graph. But since we are still in the process of “thinking about the
problems” we do not want to commit to a concrete program, but think about programs in the
abstract (this gives us license to abstract away from many concrete details of the program and
concentrate on the essentials).

The computer science notion for a program in the abstract is that of an algorithm, which we
will now define.

Algorithm

� Now that we have a data structure in mind, we can think about the algorithm.

� Definition 9 An algorithm is a series of instructions to control a (computation) process

� Example 10 (Kruskal’s algorithm, a graph algorithm for spanning trees) �

Randomly add a pair to the tree if it won’t create a cycle. (i.e. tear down a wall)

� Repeat until a spanning tree has been created.

c©: Michael Kohlhase 22

19

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Definition 11 An algorithm is a collection of formalized rules that can be understood and exe-
cuted, and that lead to a particular endpoint or result.

Example 12 An example for an algorithm is a recipe for a cake, another one is a rosary — a
kind of chain of beads used by many cultures to remember the sequence of prayers. Both the
recipe and rosary represent instructions that specify what has to be done step by step. The
instructions in a recipe are usually given in natural language text and are based on elementary
forms of manipulations like “scramble an egg” or “heat the oven to 250 degrees Celsius”. In
a rosary, the instructions are represented by beads of different forms, which represent different
prayers. The physical (circular) form of the chain allows to represent a possibly infinite sequence
of prayers.

The name algorithm is derived from the word al-Khwarizmi, the last name of a famous Persian
mathematician. Abu Ja’far Mohammed ibn Musa al-Khwarizmi was born around 780 and died
around 845. One of his most influential books is “Kitab al-jabr w’al-muqabala” or “Rules of
Restoration and Reduction”. It introduced algebra, with the very word being derived from a part
of the original title, namely “al-jabr”. His works were translated into Latin in the 12th century,
introducing this new science also in the West.

The algorithm in our example sounds rather simple and easy to understand, but the high-level
formulation hides the problems, so let us look at the instructions in more detail. The crucial one
is the task to check, whether we would be creating cycles.

Of course, we could just add the edge and then check whether the graph is still a tree, but this
would be very expensive, since the tree could be very large. A better way is to maintain some
information during the execution of the algorithm that we can exploit to predict cyclicity before
altering the graph.

Creating a spanning tree

� When adding a wall to the tree, how do we detect that it won’t create a cycle?

� When adding wall 〈x, y〉, we want to know if there is already a path from x to y in the
tree.

� In fact, there is a fast algorithm for doing exactly this, called “Union-Find”.

Definition 13 (Union Find Algorithm) � The Union Find Algorithm successively
puts nodes into an equivalence class if there is a path connecting them.

� Before adding an edge 〈x, y〉 to the tree, it makes sure that x and y are not in the
same equivalence class.

Example 14 A partially constructed maze

c©: Michael Kohlhase 23

Now that we have made some design decision for solving our maze problem. It is an important part
of “thinking about the problem” to determine whether these are good choices. We have argued
above, that we should use the Union-Find algorithm rather than a simple “generate-and-test”

20

http://creativecommons.org/licenses/by-sa/2.5/

approach based on the “expense”, by which we interpret temporally for the moment. So we ask
ourselves

How fast is our Algorithm?

� Is this a fast way to generate mazes?

� How much time will it take to generate a maze?

� What do we mean by “fast” anyway?

� In addition to finding the right algorithms, Computer Science is about analyzing the
performance of algorithms.

c©: Michael Kohlhase 24

In order to get a feeling what we mean by “fast algorithm”, we to some preliminary computations.

Performance and Scaling

� Suppose we have three algorithms to choose from. (which one to select)

� Systematic analysis reveals performance characteristics.

� For a problem of size n (i.e., detecting cycles out of n nodes) we have

n 100n µs 7n2 µs 2n µs

1 100 µs 7 µs 2 µs

5 .5 ms 175 µs 32 µs

10 1 ms .7 ms 1 ms

45 4.5 ms 14 ms 1.1 years

100

1 000

10 000

1 000 000

c©: Michael Kohlhase 25

What?! One year?

� 210 = 1 024 (1024 µs)

� 245 = 35 184 372 088 832 (·3.51013 µs = ·3.5107 s ≡ 1.1 years)

� we denote all times that are longer than the age of the universe with −

n 100n µs 7n2 µs 2n µs

1 100 µs 7 µs 2 µs

5 .5 ms 175 µs 32 µs

10 1 ms .7 ms 1 ms

45 4.5 ms 14 ms 1.1 years

100 100 ms 7 s 1016 years

1 000 1 s 12 min −
10 000 10 s 20 h −

1 000 000 1.6 min 2.5 mo −

c©: Michael Kohlhase 26

21

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

So it does make a difference for larger problems what algorithm we choose. Considerations like
the one we have shown above are very important when judging an algorithm. These evaluations
go by the name of complexity theory.

We will now briefly preview other concerns that are important to computer science. These are
essential when developing larger software packages. We will not be able to cover them in this
course, but leave them to the second year courses, in particular “software engineering”.

Modular design

� By thinking about the problem, we have strong hints about the structure of our program

� Grids, Graphs (with edges and nodes), Spanning trees, Union-find.

� With disciplined programming, we can write our program to reflect this structure.

� Modular designs are usually easier to get right and easier to understand.

c©: Michael Kohlhase 27

Is it correct?

� How will we know if we implemented our solution correctly?

� What do we mean by “correct”?

� Will it generate the right answers?

� Will it terminate?

� Computer Science is about techniques for proving the correctness of programs

c©: Michael Kohlhase 28

Let us summarize!

The science in CS: not “hacking”, but

� Thinking about problems abstractly.

� Selecting good structures and obtaining correct and fast algorithms/machines.

� Implementing programs/machines that are understandable and correct.

c©: Michael Kohlhase 29

In particular, the course “General Computer Science” is not a programming course, it is about
being able to think about computational problems and to learn to talk to others about these
problems.

22

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

3 Elementary Discrete Math

3.1 Mathematical Foundations: Natural Numbers

We have seen in the last section that we will use mathematical models for objects and data struc-
tures throughout Computer Science. As a consequence, we will need to learn some math before
we can proceed. But we will study mathematics for another reason: it gives us the opportunity
to study rigorous reasoning about abstract objects, which is needed to understand the “science”
part of Computer Science.

Note that the mathematics we will be studying in this course is probably different from the
mathematics you already know; calculus and linear algebra are relatively useless for modeling
computations. We will learn a branch of math. called “discrete mathematics”, it forms the
foundation of computer science, and we will introduce it with an eye towards computation.

Let’s start with the math!
Discrete Math for the moment

� Kenneth H. Rosen Discrete Mathematics and Its Applications, McGraw-Hill,
1990 [Ros90].

� Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of Computation,
Prentice Hall, 1998. [LP98]

� Paul R. Halmos, Naive Set Theory, Springer Verlag, 1974 [Hal74].

c©: Michael Kohlhase 30

The roots of computer science are old, much older than one might expect. The very concept of
computation is deeply linked with what makes mankind special. We are the only animal that
manipulates abstract concepts and has come up with universal ways to form complex theories and
to apply them to our environments. As humans are social animals, we do not only form these
theories in our own minds, but we also found ways to communicate them to our fellow humans.

The most fundamental abstract theory that mankind shares is the use of numbers. This theory
of numbers is detached from the real world in the sense that we can apply the use of numbers to
arbitrary objects, even unknown ones. Suppose you are stranded on an lonely island where you
see a strange kind of fruit for the first time. Nevertheless, you can immediately count these fruits.
Also, nothing prevents you from doing arithmetics with some fantasy objects in your mind. The
question in the following sections will be: what are the principles that allow us to form and apply
numbers in these general ways? To answer this question, we will try to find general ways to specify
and manipulate arbitrary objects. Roughly speaking, this is what computation is all about.

23

http://creativecommons.org/licenses/by-sa/2.5/

Something very basic:

� Numbers are symbolic representations of numeric quantities.

� There are many ways to represent numbers (more on this later)

� let’s take the simplest one (about 8,000 to 10,000 years old)

� we count by making marks on some surface.

� For instance //// stands for the number four (be it in 4 apples, or 4 worms)

� Let us look at the way we construct numbers a little more algorithmically,

� these representations are those that can be created by the following two rules.

o-rule consider ’ ’ as an empty space.

s-xrule given a row of marks or an empty space, make another / mark at the right end
of the row.

� Example 15 For ////, Apply the o-rule once and then the s-rule four times.

� Definition 16 we call these representations unary natural numbers.

c©: Michael Kohlhase 31

In addition to manipulating normal objects directly linked to their daily survival, humans also
invented the manipulation of place-holders or symbols. A symbol represents an object or a set
of objects in an abstract way. The earliest examples for symbols are the cave paintings showing
iconic silhouettes of animals like the famous ones of Cro-Magnon. The invention of symbols is not
only an artistic, pleasurable “waste of time” for mankind, but it had tremendous consequences.
There is archaeological evidence that in ancient times, namely at least some 8000 to 10000 years
ago, men started to use tally bones for counting. This means that the symbol “bone” was used to
represent numbers. The important aspect is that this bone is a symbol that is completely detached
from its original down to earth meaning, most likely of being a tool or a waste product from a
meal. Instead it stands for a universal concept that can be applied to arbitrary objects.

Instead of using bones, the slash / is a more convenient symbol, but it is manipulated in the same
way as in the most ancient times of mankind. The o-rule us to start with a blank slate or an
empty container like a bowl. The s- or successor-rule allows to put an additional bone into a bowl
with bones, respectively, to append a slash to a sequence of slashes. For instance //// stands for
the number four — be it in 4 apples, or 4 worms. This representation is constructed by applying

24

http://creativecommons.org/licenses/by-sa/2.5/

the o-rule once and than the s-rule four times.

�

A little more sophistication (math) please

� Definition 17 call /// the successor of //. (successors are created by s-rule)

� Definition 18 The following set of axioms are called the Peano Axioms
(Giuseppe Peano ∗(1858), †(1932))

� Axiom 19 (P1) “ ” (aka. “zero”) is a unary natural number.

� Axiom 20 (P2) Every unary natural number has a successor that is a unary natural
number and that is different from it.

� Axiom 21 (P3) Zero is not successor of any unary natural number.

� Axiom 22 (P4) Different unary natural numbers have different successors.

� Axiom 23 (P5: induction) Every unary natural number possesses property a P , if

� If the zero has property P and (base condition)

� the successor of every unary natural number that has property P also possesses prop-
erty P (step condition)

Question: Why is this a better way of saying things (why so complicated?)

c©: Michael Kohlhase 32

Definition 24 In general, an axiom or postulate is a starting point in logical reasoning with
the aim to prove a mathematical statement or conjecture. A conjecture that is proven is called a
theorem. In addition, there are two subtypes of theorems. The lemma is an intermediate theorem
that serves as part of a proof of a larger theorem. The corollary is a theorem that follows directly
from an other theorem. A logical system consists of axioms and rules that allow inference, i.e., that
allow to form new formal statements out of already proven ones. So, a proof of a conjecture starts
from the axioms that are transformed via the rules of inference until the conjecture is derived.

25

http://creativecommons.org/licenses/by-sa/2.5/

Reasoning about Natural Numbers

� The Peano axioms can be used to reason about natural numbers.

� Definition 25 An axiom is a statement about mathematical objects that we assume to
be true.

� Definition 26 A theorem is a statement about mathematical objects that we know to
be true.

� We reason about mathematical objects by inferring theorems from axioms or other the-
orems, e.g.

1. “ ” is a unary natural number (axiom P1)

2. / is a unary natural number (axiom P2 and 1.)

3. // is a unary natural number (axiom P2 and 2.)

4. /// is a unary natural number (axiom P2 and 3.)

� Definition 27 We call a sequence of inferences a derivation or a proof (of the last
statement).

c©: Michael Kohlhase 33

Let’s practice derivations and proofs

� Example 28 //////////// is a unary natural number

� Theorem 29 /// is a different unary natural number than //.

� Theorem 30 ///// is a different unary natural number than //.

� Theorem 31 There is a unary natural number of which /// is the successor

� Theorem 32 There are at least 7 unary natural numbers.

� Theorem 33 Every unary natural number is either zero or the successor of a unary
natural number. (we will come back to this later)

c©: Michael Kohlhase 34

26

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

This seems awfully clumsy, lets introduce some notation

� Idea: we allow ourselves to give names to unary natural numbers
(we use n, m, l, k, n1, n2, . . . as names for concrete unary natural numbers.)

� Remember the two rules we had for dealing with unary natural numbers

� Idea: represent a number by the trace of the rules we applied to construct it.
(e.g. //// is represented as s(s(s(s(o)))))

� Definition 34 We introduce some abbreviations

� we “abbreviate” o and ‘ ’ by the symbol ’0’ (called “zero”)

� we abbreviate s(o) and / by the symbol ’1’ (called “one”)

� we abbreviate s(s(o)) and // by the symbol ’2’ (called “two”)

� . . .

� we abbreviate s(s(s(s(s(s(s(s(s(s(s(s(o)))))))))))) and //////////// by the sym-
bol ’12’ (called “twelve”)

� . . .

� Definition 35 We denote the set of all unary natural numbers with N1.
(either representation)

c©: Michael Kohlhase 35

Induction for unary natural numbers

� Theorem 36 Every unary natural number is either zero or the successor of a unary
natural number.

� Proof: we make use of the induction axiom P5:

P.1 We use the property P of “being zero or a successor” and prove the statement by
convincing ourselves of the prerequisites of

P.2 ‘ ’ is zero, so ‘ ’ is “zero or a successor”.

P.3 Let n be a arbitrary unary natural number that “is zero or a successor”

P.4 Then its successor “is a successor”, so the successor of n is “zero or a successor”

P.5 Since we have taken n arbitrary (nothing in our argument depends on the choice)

we have shown that for any n, its successor has property P .

P.6 Property P holds for all unary natural numbers by P5, so we have proven the assertion

c©: Michael Kohlhase 36

This is a very useful fact to know, it tells us something about the form of unary natural numbers,
which lets us streamline induction proofs and bring them more into the form you may know from
school: to show that some property P holds for every natural number, we analyze an arbitrary
number n by its form in two cases, either it is zero (the base case), or it is a successor of another
number (the spfstep case). In the first case we prove the base condition and in the latter, we
prove thespfstep condition and use the induction axiom to conclude that all natural numbers have
property P . We will show the form of this proof in the domino-induction below.

27

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

The Domino Theorem

� Theorem 37 Let S0, S1, . . . be a linear sequence of dominos, such that for any unary
natural number i we know that

1. the distance between Si and Ss(i) is smaller than the height of Si,

2. Si is much higher than wide, so it is unstable, and

3. Si and Ss(i) have the same weight.

If S0 is pushed towards S1 so that it falls, then all dominos will fall.

• • • • • •

c©: Michael Kohlhase 37

The Domino Induction

� Proof: We prove the assertion by induction over i with the property P that “Si falls in
the direction of Ss(i)”.

P.1 We have to consider two cases

P.1.1 base case: i is zero:

P.1.1.1 We have assumed that “S0 is pushed towards S1, so that it falls”

P.1.2 step case: i = s(j) for some unary natural number j:

P.1.2.1 We assume that P holds for Sj , i.e. Sj falls in the direction of Ss(j) = Si.

P.1.2.2 But we know that Sj has the same weight as Si, which is unstable,

P.1.2.3 so Si falls into the direction opposite to Sj , i.e. towards Ss(i) (we have a linear
sequence of dominos)

P.2 We have considered all the cases, so we have proven that P holds for all unary natural
numbers i. (by induction)

P.3 Now, the assertion follows trivially, since if “Si falls in the direction of Ss(i)”, then
in particular “Si falls”.

c©: Michael Kohlhase 38

If we look closely at the proof above, we see another recurring pattern. To get the proof to go
through, we had to use a property P that is a little stronger than what we need for the assertion
alone. In effect, the additional clause “... in the direction ...” in property P is used to make the
step condition go through: we we can use the stronger inductive hypothesis in the proof of step
case, which is simpler.

Often the key idea in an induction proof is to find a suitable strengthening of the assertion to
get the step case to go through.

28

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

What can we do with unary natural numbers?

� So far not much (let’s introduce some operations)

� Definition 38 (the addition “function”) We “define” the addition operation pro-
cedurally (by an algorithm)

� adding zero to a number does not change it (n⊕ o = n)

� adding m to the successor of n yields the successor of m⊕n (m⊕ s(n) = s(m⊕ n))

Q: Is this “definition” well-formed? (does it characterize a mathematical object?)

�� Q: May we define “functions” by algorithms? (what is a function anyways?)

c©: Michael Kohlhase 39

Addition on unary natural numbers is associative

� Theorem 39 For all unary natural numbers n, m, and l, we have n ⊕ (m⊕ l) =
(n⊕m)⊕ l.

� Proof: we prove this by induction on l

P.1 The property of l is that n⊕ (m⊕ l) = (n⊕m)⊕ l holds.

P.2 We have to consider two cases base case:

P.2.1.1 n⊕ (m⊕ o) = n⊕m = (n⊕m)⊕ o

P.2.2 step case:

P.2.2.1 given arbitrary l, assume n ⊕ (m⊕ l) = (n⊕m) ⊕ l, show n ⊕ (m⊕ s(l)) =
(n⊕m)⊕ s(l).

P.2.2.2 We have n⊕ (m⊕ s(l)) = n⊕ s(m⊕ l) = s(n⊕ (m⊕ l))
P.2.2.3 By inductive hypothesis s((n⊕m)⊕ l) = (n⊕m)⊕ s(l)

c©: Michael Kohlhase 40

More Operations on Unary Natural Numbers

� Definition 40 The summation operation can be defined by the equations
⊕o

i=o ni = o

and
⊕s(m)

i=o =
⊕m

i=omi ⊕ ni.

� Definition 41 The multiplication operation can be defined by the equations n� o = o
and n� s(m) = n⊕ n�m.

� Definition 42 The product operation can be defined by the equations
⊕o

i=o ni = o

and
⊕s(m)

i=o =
⊕m

i=omi � ni.

� Definition 43 The exponentiation operation can be defined by the equations
exp(n, o) = s(o) and exp(n, s(m)) = n� exp(n,m).

c©: Michael Kohlhase 41

Talking (and writing) about Mathematics

29

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

3.2 Talking (and writing) about Mathematics

Before we go on, we need to learn how to talk and write about mathematics in a succinct way.
This will ease our task of understanding a lot.

Talking about Mathematics (MathTalk)

� Definition 44 Mathematicians use a stylized language that

� uses formulae to represent mathematical objects,6

� uses math idioms for special situations (e.g. iff, hence, let. . . be. . . , then. . .)

� classifies statements by role (e.g. Definition, Lemma, Theorem, Proof, Example)

We call this language mathematical vernacular.

� Definition 45 Abbreviations for Mathematical statements

� ∧ and “∨” are common notations for “and” and “or”

� “not” is in mathematical statements often denoted with ¬
� ∀x.P (∀x ∈ S.P) stands for “condition P holds for all x (in S)”

� ∃x.P (∃x ∈ S.P) stands for “there exists an x (in S) such that proposition P holds”

� 6 ∃x.P (6 ∃x ∈ S.P) stands for “there exists no x (in S) such that proposition P holds”

� ∃1x.P (∃1x ∈ S.P) stands for “there exists one and only one x (in S) such that
proposition P holds”

� “iff” as abbreviation for “if and only if”, symbolized by “⇔”

� the symbol “⇒” is used a as shortcut for “implies”

Observation: With these abbreviations we can use formulae for statements.

�� Example 46 ∀x.∃y.x = y ⇔ ¬(x 6= y) reads

“For all x, there is a y, such that x = y, iff (if and only if) it is not the case
that x 6= y.”

c©: Michael Kohlhase 42

fEdNote: think about how to reactivate this example

We will use mathematical vernacular throughout the remainder of the notes. The abbreviations
will mostly be used in informal communication situations. Many mathematicians consider it bad
style to use abbreviations in printed text, but approve of them as parts of formulae (see e.g.
Definition 3.3 for an example).

To keep mathematical formulae readable (they are bad enough as it is), we like to express mathe-
matical objects in single letters. Moreover, we want to choose these letters to be easy to remember;
e.g. by choosing them to remind us of the name of the object or reflect the kind of object (is it a
number or a set, . . .). Thus the 50 (upper/lowercase) letters supplied by most alphabets are not
sufficient for expressing mathematics conveniently. Thus mathematicians use at least two more
alphabets.

30

http://creativecommons.org/licenses/by-sa/2.5/

The Greek, Curly, and Fraktur Alphabets ; Homework

� Homework: learn to read, recognize, and write the Greek letters

α A alpha β B beta γ Γ gamma
δ ∆ delta ε E epsilon ζ Z zeta
η H eta θ, ϑ Θ theta ι I iota
κ K kappa λ Λ lambda µ M mu
ν N nu ξ Ξ Xi o O omicron
π,$ Π Pi ρ P rho σ Σ sigma
τ T tau υ Υ upsilon ϕ Φ phi
χ X chi ψ Ψ psi ω Ω omega

� we will need them, when the other alphabets give out.

� BTW, we will also use the curly Roman and “Fraktur” alphabets:
A,B, C,D, E ,F ,G,H, I,J ,K,L,M,N ,O,P,Q,R,S, T ,U ,V,W,X ,Y,Z
A,B,C,D,E,F,G,H, I, J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

c©: Michael Kohlhase 43

On our way to understanding functions

We need to understand sets first.

c©: Michael Kohlhase 44

Naive Set Theory

3.3 Naive Set Theory

We now come to a very important and foundational aspect in Mathematics: Sets. Their importance
comes from the fact that all (known) mathematics can be reduced to understanding sets. So it is
important to understand them thoroughly before we move on.

But understanding sets is not so trivial as it may seem at first glance. So we will just represent
sets by various descriptions. This is called “naive set theory”, and indeed we will see that it leads
us in trouble, when we try to talk about very large sets.

31

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

�

Understanding Sets

� Sets are one of the foundations of mathematics,

� and one of the most difficult concepts to get right axiomatically

� Definition 47 A set is “everything that can form a unity in the face of God”.
(Georg Cantor (∗(1845), †(1918)))

� For this course: no definition; just intuition (naive set theory)

� To understand a set S, we need to determine, what is an element of S and what isn’t.

� Notations for sets (so we can write them down)

� listing the elements within curly brackets: e.g. {a, b, c}
� to describe the elements by a property: {x | x has property P}
� by stating element-hood (a ∈ S) or not (b 6∈ S).

Warning: Learn to distinguish between objects and their representations!
({a, b, c} and {b, a, a, c} are different representations of the same set)

c©: Michael Kohlhase 45

Now that we can represent sets, we want to compare them. We can simply define relations between
sets using the three set description operations introduced above.

Relations between Sets

� set equality: A ≡ B :⇐⇒ ∀x.x ∈ A⇔ x ∈ B

� subset: A ⊆ B :⇐⇒ ∀x.x ∈ A⇒ x ∈ B

� proper subset: A ⊂ B :⇐⇒ (∀x.x ∈ A⇒ x ∈ B) ∧ (A 6= B)

� superset: A ⊇ B :⇐⇒ ∀x.x ∈ A⇒ x ∈ B

� proper superset: A ⊃ B :⇐⇒ (∀x.x ∈ A⇒ x ∈ B) ∧ (A 6= B)

c©: Michael Kohlhase 46

We want to have some operations on sets that let us construct new sets from existing ones. Again,
can define them.

32

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Operations on Sets

� union: A ∪B := {x | x ∈ A ∨ x ∈ B}

� union over a collection: Let I be a set and Si a family of sets indexed by I, then⋃
i∈I Si := {x | ∃i ∈ I.x ∈ Si}. We write

⋃n
i=1 Si for

⋃
i∈[1,n] Si

� intersection: A ∩B := {x | x ∈ A ∧ x ∈ B}

� intersection over a collection: Let I be a set and Si a family of sets indexed by I, then⋂
i∈I Si := {x | ∀i ∈ I.x ∈ Si}. We write

⋂n
i=1 Si for

⋂
i∈[1,n] Si

� set difference: A\B := {x | x ∈ A ∧ x 6∈ B}

� the power set: P(A) := {S | S ⊆ A}

� the empty set: ∀x.x 6∈ ∅

� Cartesian product: A×B := {〈a, b〉 | a ∈ A ∧ b ∈ B}, call 〈a, b〉 pair.

� n-fold Cartesian product: A1 × · · · ×An := {〈a1, . . . , an〉 | ∀i.ai ∈ Ai},
call 〈a1, . . . , an〉 an n-tuple

� n-dim Cartesian space: An := {〈a1, . . . , an〉 | ai ∈ A},
call 〈a1, . . . , an〉 a vector

c©: Michael Kohlhase 47

7 EdNote:7

These operator definitions give us a chance to reflect on how we do definitions in mathematics.

3.3.1 Definitions in Mathtalk

Mathematics uses a very effective technique for dealing with conceptual complexity. It usually
starts out with discussing simple, basic objects and their properties. These simple objects can be
combined to more complex, compound ones. Then it uses a definition to give a compound object
a new name, so that it can be used like a basic one. In particular, the newly defined object can be
used to form compound objects, leading to more and more complex objects that can be described
succinctly. In this way mathematics incrementally extends its vocabulary by add layers and layers
of definitions onto very simple and basic beginnings. We will now discuss four definition schemata
that will occur over and over in this course.

Definition 48 The simplest form of definition schema is the simple definition. This just intro-
duces a name (the definiendum) for a compound object (the definiens). Note that the name must
be new, i.e. may not have been used for anything else, in particular, the definiendum may not
occur in the definiens. We use the symbols := (and the inverse =:) to denote simple definitions in
formulae.

Example 49 We can give the unary natural number //// the name ϕ. In a formula we write
this as ϕ := //// or //// =: ϕ.

Definition 50 A somewhat more refined form of definition is used for operators on and relations
between objects. In this form, then definiendum is the operator or relation is applied to n distinct
variables v1, . . . , vn as arguments, and the definiens is an expression in these variables. When the
new operator is applied to arguments a1, . . . , an, then its value is the definiens expression where
the vi are replaced by the ai. We use the symbol := for operator definitions and :⇐⇒ for pattern
definitions.8 EdNote:8

7EdNote: need to define the big operators for sets
8EdNote: maybe better markup up pattern definitions as binding expressions, where the formal variables are bound.

33

http://creativecommons.org/licenses/by-sa/2.5/

Example 51 The following is a pattern definition for the set intersection operator ∩:

A ∩B := {x | x ∈ A ∧ x ∈ B}

The pattern variables areA andB, and with this definition we have e.g. ∅ ∩ ∅ = {x | x ∈ ∅ ∧ x ∈ ∅}.

Definition 52 We now come to a very powerful definition schema. An implicit definition (also
called definition by description) is a formula A, such that we can prove ∃1n.A, where n is a new
name.

Example 53 ∀x.x 6∈ ∅ is an implicit definition for the empty set ∅. Indeed we can prove unique
existence of ∅ by just exhibiting {} and showing that any other set S with ∀x.x 6∈ S we have S ≡ ∅.
IndeedS cannot have elements, so it has the same elements ad ∅, and thus S ≡ ∅.

Sizes of Sets

� We would like to talk about the size of a set. Let us try a definition

� Definition 54 The size #(A) of a set A is the number of elements in A.

� Intuitively we should have the following identities:

� #({a, b, c}) = 3

� #(N) =∞ (infinity)

� #(A ∪B) ≤ #(A) + #(B) (* cases with ∞)

� #(A ∩B) ≤ min(#(A),#(B))

� #(A×B) = #(A) ·#(B)

� But how do we prove any of them? (what does “number of elements” mean anyways?)

� Idea: We need a notion of “counting”, associating every member of a set with a unary
natural number.

� Problem: How do we “associate elements of sets with each other”?
(wait for bijective functions)

c©: Michael Kohlhase 48

But before we delve in to the notion of relations and functions that we need to associate set
members and counding let us now look at large sets, and see where this gets us.

Sets can be Mind-boggling

� sets seem so simple, but are really quite powerful (no restriction on the elements)

� There are very large sets, e.g. “the set S of all sets”

� contains the ∅, for each object O we have {O}, {{O}}, {O, {O}}, . . . ∈ S,. . .

� contains all unions, intersections, power sets, . . .

� contains itself: S ∈ S (scary!)

� Let’s make S less scary

c©: Michael Kohlhase 49

34

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

A less scary S?

� Idea: how about the “set S ′ of all sets that do not contain themselves”

� Question: is S ′ ∈ S ′? (were we successful?)

� suppose it is, then then we must have S ′ 6∈ S ′, since we have explicitly taken out the
sets that contain themselves

� suppose it is not, then have S ′ ∈ S ′, since all other sets are elements.

In either case, we have S ′ ∈ S ′ iff S ′ 6∈ S ′, which is a contradiction!
(Russell’s Antinomy [Bertrand Russell ’03])

� Does MathTalk help?: no: S ′ := {m | m 6∈ m}

� MathTalk allows statements that lead to contradictions, but are legal wrt. “vocabu-
lary” and “grammar”.

� We have to be more careful when constructing sets! (axiomatic set theory)

� for now: stay away from large sets. (stay naive)

c©: Michael Kohlhase 50

Even though we have seen that naive set theory is inconsistent, we will use it for this course.
But we will take care to stay away from the kind of large sets that we needed to constuct the
paradoxon.

3.4 Relations and Functions

Now we will take a closer look at two very fundamental notions in mathematics: functions and
relations. Intuitively, functions are mathematical objects that take arguments (as input) and
return a result (as output), whereas relations are objects that take arguments and state whether
they are related.

We have alread encountered functions and relations as set operations — e.g. the elementhood
relation ∈ which relates a set to its elements or the powerset function that takes a set and produces
another (its powerset).

35

http://creativecommons.org/licenses/by-sa/2.5/

Relations

� Definition 55 R ⊆ A×B is a (binary) relation between A and B.

� Definition 56 If A = B then R is called a relation on A.

� Definition 57 R ⊆ A×B is called total iff ∀x ∈ A.∃y ∈ B.〈x, y〉 ∈ R.

� Definition 58 (R)−1 := {〈y, x〉 | 〈x, y〉 ∈ R} is the converse relation of R.

� Note: (R)−1 ⊆ B ×A.

� The composition of R ⊆ A×B and S ⊆ B × C is defined as S ◦R :=
{〈a, c〉 ∈ (A× C) | ∃b ∈ B.〈a, b〉 ∈ R ∧ 〈b, c〉 ∈ S}

� Example 59 relation ⊆, =, has color

� Note: we do not really need ternary, quaternary, . . . relations

� Idea: Consider A×B × C as A× (B × C) and 〈a, b, c〉 as 〈a, 〈b, c〉〉
� we can (and often will) see 〈a, b, c〉 as 〈a, 〈b, c〉〉 different representations of the same

object.

c©: Michael Kohlhase 51

We will need certain classes of relations in following, so we introduce the necessary abstract
properties of relations.

Properties of binary Relations

� Definition 60 A relation R ⊆ A×A is called

� reflexive on A, iff ∀a ∈ A.〈a, a〉 ∈ R
� symmetric on A, iff ∀a, b ∈ A.〈a, b〉 ∈ R⇒ 〈b, a〉 ∈ R
� antisymmetric on A, iff ∀a, b ∈ A.(〈a, b〉 ∈ R ∧ 〈b, a〉 ∈ R)⇒ a = b

� transitive on A, iff ∀a, b, c ∈ A.(〈a, b〉 ∈ R ∧ 〈b, c〉 ∈ R)⇒ 〈a, c〉 ∈ R
� equivalence relation on A, iff R is reflexive, symmetric, and transitive

� partial order on A, iff R is reflexive, antisymmetric, and transitive on A.

� a linear order on A, iff R is transitive and for all x, y ∈ A with x 6= y either 〈x, y〉 ∈ R
or 〈y, x〉 ∈ R

� Example 61 The equality relation is an equivalence relation on any set.

� Example 62 The ≤ relation is a linear order on N (all elements are comparable)

� Example 63 On sets of persons, the “mother-of” relation is an non-symmetric, non-
reflexive relation.

� Example 64 On sets of persons, the “ancestor-of” relation is a partial order that is not
linear.

c©: Michael Kohlhase 52

36

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

�

Functions (as special relations)

� Definition 65 f ⊆ X × Y , is called a partial function, iff for all x ∈ X there is at most
one y ∈ Y with 〈x, y〉 ∈ f .

� Notation 66 f : X ⇀ Y ;x 7→ y if 〈x, y〉 ∈ f (arrow notation)

� call X the domain (write dom(f)), and Y the codomain (codom(f))(come with f)

� Notation 67 f(x) = y instead of 〈x, y〉 ∈ f (function application)

� Definition 68 We call a partial function f : X ⇀ Y undefined at x ∈ X, iff 〈x, y〉 6∈ f
for all y ∈ Y . (write f(x) = ⊥)

� Definition 69 If f : X ⇀ Y is a total relation, we call f a total function and write
f : X → Y . (∀x ∈ X.∃1y ∈ Y .〈x, y〉 ∈ f)

� Notation 70 f : x 7→ y if 〈x, y〉 ∈ f (arrow notation)

*: this probably does not conform to your intuition about functions. Do not
worry, just think of them as two different things they will come together over time.

(In this course we will use “function” as defined here!)

c©: Michael Kohlhase 53

Function Spaces

� Definition 71 Given sets A and B We will call the set A→ B (A ⇀ B) of all (partial)
functions from A to B the (partial) function space from A to B.

� Example 72 Let B := {0, 1} be a two-element set, then

B→ B = {{〈0, 0〉, 〈1, 0〉}, {〈0, 1〉, 〈1, 1〉}, {〈0, 1〉, 〈1, 0〉}, {〈0, 0〉, 〈1, 1〉}}

B⇀ B = (B→ B) ∪ {∅, {〈0, 0〉}, {〈0, 1〉}, {〈1, 0〉}, {〈1, 1〉}}

� as we can see, all of these functions are finite (as relations)

a = b

= c

e = f

c©: Michael Kohlhase 54

37

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Lambda-Notation for Functions

� Problem: It is common mathematical practice to write things like fa(x) = ax2 +
3x + 5, meaning e.g. that we have a collection {fa | a ∈ A} of functions.

(is a an argument or jut a “parameter”?)

� Definition 73 To make the role of arguments extremely clear, we write functions in
λ-notation. For f = {〈x,E〉 | x ∈ X}, where E is an expression, we write λx ∈ X.E.

� Example 74 The simplest function we always try everything on is the identity function:

λn ∈ N.n = {〈n, n〉 | n ∈ N} = IdN

= {〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈3, 3〉, . . .}

� Example 75 We can also to more complex expressions, here we take the square function

λx ∈ N.(x2) = {〈x, x2〉 | x ∈ N}
= {〈0, 0〉, 〈1, 1〉, 〈2, 4〉, 〈3, 9〉, . . .}

� Example 76 λ-notation also works for more complicated domains. In this case we have
tuples as arguments.

λ〈x, y〉 ∈ N2.x+ y = {〈〈x, y〉, x+ y〉 | x ∈ N ∧ y ∈ N}
= {〈〈0, 0〉, 0〉, 〈〈0, 1〉, 1〉, 〈〈1, 0〉, 1〉,

〈〈1, 1〉, 2〉, 〈〈0, 2〉, 2〉, 〈〈2, 0〉, 2〉, . . .}

c©: Michael Kohlhase 55

9 EdNote:9

The three properties we define next give us information about whether we can invert functions.

9EdNote: define Idon and Bool somewhere else and import it here

38

http://creativecommons.org/licenses/by-sa/2.5/

Properties of functions, and their converses

� Definition 77 A function f : S → T is called

� injective iff ∀x, y ∈ S.f(x) = f(y)⇒ x = y.

� surjective iff ∀y ∈ T .∃x ∈ S.f(x) = y.

� bijective iff f is injective and surjective.

Note: If f is injective, then the converse relation (f)−1 is a partial function.

�� Note: If f is surjective, then the converse (f)−1 is a total relation.

� Definition 78 If f is bijective, call the converse relation (f)−1 the inverse function.

� Note: if f is bijective, then the converse relation (f)−1 is a total function.

� Example 79 The function ν : N1 → N with ν() = 0 and ν(s(n)) = ν(n) + 1 is a
bijection between the unary natural numbers and the natural numbers from highschool.

� Note: Sets that can be related by a bijection are often considered equivalent, and some-
times confused. We will do so with N1 and N in the future

c©: Michael Kohlhase 56

Cardinality of Sets

� Now, we can make the notion of the size of a set formal, since we can associate members
of sets by bijective functions.

� Definition 80 We say that a set A is finite and has cardinality #(A) ∈ N, iff there is
a bijective function f : A→ {n ∈ N | n < #(A)}.

� Definition 81 We say that a set A is countably infinite, iff there is a bijective function
f : A→ N.

� Theorem 82 We have the following identities for finite sets A and B

� #({a, b, c}) = 3 (e.g. choose f = {〈a, 0〉, 〈b, 1〉, 〈c, 2〉})
� #(A ∪B) ≤ #(A) + #(B)

� #(A ∩B) ≤ min(#(A),#(B))

� #(A×B) = #(A) ·#(B)

� With the definition above, we can prove them (last three ; Homework)

c©: Michael Kohlhase 57

Next we turn to a higher-order function in the wild. The composition function takes two functions
as arguments and yields a function as a result.

39

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Operations on Functions

� Definition 83 If f ∈ (A→ B) and g ∈ (B → C) are functions, then we call

g ◦ f : A→ C;x 7→ g(f(x))

the composition of g and f (read g “after” f).

� Definition 84 Let f ∈ (A→ B) and C ⊆ A, then we call the relation {〈c, b〉 |
c ∈ C ∧ 〈c, b〉 ∈ f} the restriction of f to C.

� Definition 85 Let f : A → B be a function, A′ ⊆ A and B′ ⊆ B, then we call
f(A′) := {b ∈ B | ∃a ∈ A′.〈a, b〉 ∈ f} the image of A′ under f and f−1(B′) :=
{a ∈ A | ∃b ∈ B′.〈a, b〉 ∈ f} the pre-image of B′ under f .

c©: Michael Kohlhase 58

40

http://creativecommons.org/licenses/by-sa/2.5/

4 Computing with Functions over Inductively Defined Sets

4.1 Standard ML: Functions as First-Class Objects

Enough theory, let us start computing with functions

We will use Standard ML for now

c©: Michael Kohlhase 59

We will use the language SML for the course. This has three reasons

• The mathematical foundations of the computational model of SML is very simple: it con-
sists of functions, which we have already studied. You will be exposed to an imperative
programming language (C) in the lab and later in the course.

• We call programming languages where procedures can be fully described in terms of their
input/output behavior functional.

• As a functional programming language, SML introduces two very important concepts in a
very clean way: typing and recursion.

• Finally, SML has a very useful secondary virtue for a course at Jacobs University, where stu-
dents come from very different backgrounds: it provides a (relatively) level playing ground,
since it is unfamiliar to all students.

Generally, when choosing a programming language for a computer science course, there is the
choice between languages that are used in industrial practice (C, C++, Java, FORTRAN, COBOL,. . .)
and languages that introduce the underlying concepts in a clean way. While the first category have
the advantage of conveying important practical skills to the students, we will follow the motto
“No, let’s think” for this course and choose ML for its clarity and rigor. In our experience, if the
concepts are clear, adapting the particular syntax of a industrial programming language is not
that difficult.

Historical Remark: The name ML comes from the phrase “Meta Language”: ML was developed as
the scripting language for a tactical theorem prover4 — a program that can construct mathematical
proofs automatically via “tactics” (little proof-constructing programs). The idea behind this is the
following: ML has a very powerful type system, which is expressive enough to fully describe proof
data structures. Furthermore, the ML compiler type-checks all ML programs and thus guarantees
that if an ML expression has the type A → B, then it implements a function from objects of
type A to objects of type B. In particular, the theorem prover only admitted tactics, if they were
type-checked with type P → P, where P is the type of proof data structures. Thus, using ML as
a meta-language guaranteed that theorem prover could only construct valid proofs.

The type system of ML turned out to be so convenient (it catches many programming errors
before you even run the program) that ML has long transcended its beginnings as a scripting
language for theorem provers, and has developed into a paradigmatic example for functional
programming languages.

4The “Edinburgh LCF” system

41

http://creativecommons.org/licenses/by-sa/2.5/

Standard ML (SML)

� Why this programming language?

� Important programming paradigm (Functional Programming (with static typing))

� because all of you are unfamiliar with it (level playing ground)

� clean enough to learn important concepts (e.g. typing and recursion)

� SML uses functions as a computational model (we already understand them)

� SML has an interpreted runtime system (inspect program state)

Book: SML for the working programmer by Larry Paulson

�� Web resources: see the post on the course forum

� Homework: install it, and play with it at home!

c©: Michael Kohlhase 60

Disclaimer: We will not give a full introduction to SML in this course, only enough to make the
course self-contained. There are good books on ML and various web resources:

• A book by Bob Harper (CMU) http://www-2.cs.cmu.edu/~rwh/smlbook/

• The Moscow ML home page, one of the ML’s that you can try to install, it also has many
interesting links http://www.dina.dk/~sestoft/mosml.html

• The home page of SML-NJ (SML of New Jersey), the standard ML http://www.smlnj.org/

also has a ML interpreter and links Online Books, Tutorials, Links, FAQ, etc. And of course
you can download SML from there for Unix as well as for Windows.

• A tutorial from Cornell University. It starts with ”Hello world” and covers most of the
material we will need for the course. http://www.cs.cornell.edu/gries/CSCI4900/ML/

gimlFolder/manual.html

• and finally a page on ML by the people who originally invented ML: http://www.lfcs.
inf.ed.ac.uk/software/ML/

One thing that takes getting used to is that SML is an interpreted language. Instead of transform-
ing the program text into executable code via a process called “compilation” in one go, the SML
interpreter provides a run time environment that can execute well-formed program snippets in a
dialogue with the user. After each command, the state of the run-time systems can be inspected
to judge the effects and test the programs. In our examples we will usually exhibit the input to
the interpreter and the system response in a program block of the form

- input to the interpreter
system response

42

http://creativecommons.org/licenses/by-sa/2.5/
http://www-2.cs.cmu.edu/~rwh/smlbook/
http://www.dina.dk/~sestoft/mosml.html
http://www.smlnj.org/
http://www.cs.cornell.edu/gries/CSCI4900/ML/gimlFolder/manual.html
http://www.cs.cornell.edu/gries/CSCI4900/ML/gimlFolder/manual.html
http://www.lfcs.inf.ed.ac.uk/software/ML/
http://www.lfcs.inf.ed.ac.uk/software/ML/

Programming in SML (Basic Language)

� Generally: start the SML interpreter, play with the program state.

� Definition 86 (Predefined objects in SML) (SML comes with a basic inventory)

� basic types int, real, bool, string , . . .

� basic type constructors ->, *,

� basic operators numbers, true, false, +, *, -, >, ^, . . . (* overloading)

� control structures if Φ then E1 else E2;

� comments (*this is a comment *)

c©: Michael Kohlhase 61

One of the most conspicuous features of SML is the presence of types everywhere.

Definition 87 types are program constructs that classify program objects into categories.

In SML, literally every object has a type, and the first thing the interpreter does is to determine
the type of the input and inform the user about it. If we do something simple like typing a number
(the input has to be terminated by a semicolon), then we obtain its type:

- 2;
val it = 2 : int

In other words the SML interpreter has determined that the input is a value, which has type
“integer”. At the same time it has bound the identifier it to the number 2. Generally it will
always be bound to the value of the last successful input. So we can continue the interpreter
session with

- it;
val it = 2 : int
- 4.711;
val it = 4.711 : real
- it;
val it = 4.711 : real

Programming in SML (Declarations)

� Definition 88 (Declarations) allow abbreviations for convenience

� value declarations val pi = 3.1415;

� type declarations type twovec = int * int;

� function declarations fun square (x:real) = x*x;

(leave out type, if unambiguous)

� SML functions that have been declared can be applied to arguments of the right type,
e.g. square 4.0, which evaluates to 4.0 * 4.0 and thus to 16.0.

� Local declarations: allow abbreviations in their scope (delineated by in and end)

- val test = 4;
val it = 4 : int
- let val test = 7 in test * test end;
val it = 49 :int
- test;
val it = 4 : int

c©: Michael Kohlhase 62

43

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

While the previous inputs to the interpreters do not change its state, declarations do: they bind
identifiers to values. In the first example, the identifier twovec to the type int * int, i.e. the
type of pairs of integers. Functions are declared by the fun keyword, which binds the identifier
behind it to a function object (which has a type; in our case the function type real -> real).
Note that in this example we annotated the formal parameter of the function declaration with a
type. This is always possible, and in this necessary, since the multiplication operator is overloaded
(has multiple types), and we have to give the system a hint, which type of the operator is actually
intended.

Programming in SML (Pattern Matching)

� Component Selection: (very convenient)

- val unitvector = (1,1);
val unitvector = (1,1) : int * int
- val (x,y) = unitvector
val x = 1 : int
val y = 1 : int

� Definition 89 anonymous variables (if we are not interested in one value)

- val (x,_) = unitvector;
val x = 1 :int

� Example 90 We can define the selector function for pairs in SML as

- fun first (p) = let val (x,_) = p in x end;
val first = fn : ’a * ’b -> ’a

� Note the type: SML supports universal types with type variables ’a, ’b,. . . .

� first is a function that takes a pair of type ’a*’b as input and gives an object of type
’a as output.

c©: Michael Kohlhase 63

Another unusual but convenient feature realized in SML is the use of pattern matching. In
pattern matching we allow to use variables (previously unused identifiers) in declarations with the
understanding that the interpreter will bind them to the (unique) values that make the declaration
true. In our example the second input contains the variables x and y. Since we have bound the
identifier unitvector to the value (1,1), the only way to stay consistent with the state of the
interpreter is to bind both x and y to the value 1.

Note that with pattern matching we do not need explicit selector functions, i.e. functions that
select components from complex structures that clutter the namespaces of other functional lan-
guages. In SML we do not need them, since we can always use pattern matching inside a let

expression. In fact this is considered better programming style in SML.

What’s next?

More SML constructs and general theory of functional programming.

c©: Michael Kohlhase 64

One construct that plays a central role in functional programming is the data type of lists. SML
has a built-in type constructor for lists. We will use list functions to acquaint ourselves with the
essential notion of recursion.

44

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

�

Using SML lists

� SML has a built-in “list type” (actually a list type constructor)

� given a type ty, list ty is also a type.

- [1,2,3];
val it = [1,2,3] : int list

� constructors nil and :: (nil =̂ empty list, :: =̂ list constructor “cons”)

- nil;
val it = [] : ’a list
- 9::nil;
val it = [9] : int list

� A simple recursive function: creating integer intervals

- fun upto (m,n) = if m>n then nil else m::upto(m+1,n);
val upto = fn : int * int -> int list
- upto(2,5);
val it = [2,3,4,5] : int list

Question: What is happening here, we define a function by itself? (circular?)

c©: Michael Kohlhase 65

A constructor is an operator that “constructs” members of an SML data type.

The type of lists has two constructors: nil that “constructs” a representation of the empty list,
and the “list constructor” :: (we pronounce this as “cons”), which constructs a new list h::l

from a list l by pre-pending an element h (which becomes the new head of the list).

Note that the type of lists already displays the circular behavior we also observe in the function
definition above: A list is either empty or the cons of a list. We say that the type of lists is
inductive or inductively defined.

In fact, the phenomena of recursion and inductive types are inextricably linked, we will explore
this in more detail below.

45

http://creativecommons.org/licenses/by-sa/2.5/

Defining Functions by Recursion

� SML allows to call a function already in the function definition.

fun upto (m,n) = if m>n then nil else m::upto(m+1,n);

� Evaluation in SML is “call-by-value” i.e. to whenever we encounter a function applied
to arguments, we compute the value of the arguments first.

� So we have the following evaluation sequence:

upto(2,4) ; 2::upto(3,4) ; 2::(3::upto(4,4)) ; 2::(3::(4::nil)) =
[2,3,4]

� Definition 91 We call an SML function recursive, iff the function is called in the func-
tion definition.

� Note that recursive functions need not terminate, consider the function

fun diverges (n) ; n + diverges(n+1);

which has the evaluation sequence

diverges(1) ; 1 + diverges(2) a; 1 + (2 + diverges(3)) ; . . .

c©: Michael Kohlhase 66

Defining Functions by cases

� Idea: Use the fact that lists are either nil or of the form X::Xs, where X is an element
and Xs is a list of elements.

� The body of an SML function can be made of several cases separated by the operator |.

� Example 92 Flattening lists of lists (using the infix append operator @)

- fun flat [] = [] (* base case *)
| flat (l::ls) = l @ flat ls; (* step case *)

val flat = fn : ’a list list -> ’a list
- flat [["When","shall"],["we","three"],["meet","again"]]
["When","shall","we","three","meet","again"]

c©: Michael Kohlhase 67

Defining functions by cases and recursion is a very important programming mechanism in SML.
At the moment we have only seen it for the built-in type of lists. In the future we will see that it
can also be used for user-defined data types. We start out with another one of SMLs basic types:
strings.

We will now look at the the string type of SML and how to deal with it. But before we do, let
us recap what strings are. Strings are just sequences of characters.

Therefore, SML just provides an interface to lists for manipulation.

46

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Lists and Strings

� some programming languages provide a type for single characters
(strings are lists of characters there)

� in SML, string is an atomic type

� function explode converts from string to char list

� function implode does the reverse

- explode "GenCS 1";
val it = [#"G",#"e",#"n",#"C",#"S",#" ",#"1"] : char list
- implode it;
val it = "GenCS 1" : string

Exercise: Try to come up with a function that detects palindromes like ’otto’ or ’anna’,
try also (more at [Pal])

� � ’Marge lets Norah see Sharon’s telegram’, or (up to case, punct and space)

� ’Ein Neger mit Gazelle zagt im Regen nie’ (for German speakers)

c©: Michael Kohlhase 68

The next feature of SML is slightly disconcerting at first, but is an essential trait of functional
programming languages: functions are first-class objects. We have already seen that they have
types, now, we will see that they can also be passed around as argument and returned as values.
For this, we will need a special syntax for functions, not only the fun keyword that declares
functions.

Higher-Order Functions

� Idea: pass functions as arguments (functions are normal values.)

� Example 93 Mapping a function over a list

- fun f x = x + 1;
- map f [1,2,3,4];
[2,3,4,5] : int list

� Example 94 We can program the map function ourselves!

fun mymap (f, nil) = nil
| mymap (f, h::t) = (f h) :: mymap (f,t);

� Example 95 declaring functions (yes, functions are normal values.)

- val identity = fn x => x;
val identity = fn : ’a -> ’a
- identity(5);
val it = 5 : int

� Example 96 returning functions: (again, functions are normal values.)

- val constantly = fn k => (fn a => k);
- (constantly 4) 5;
val it = 4 : int
- fun constantly k a = k;

c©: Michael Kohlhase 69

47

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

One of the neat uses of higher-order function is that it is possible to re-interpret binary functions as
unary ones using a technique called “Currying” after the Logician Haskell Brooks Curry (∗(1900),
†(1982)). Of course we can extend this to higher arities as well. So in theory we can consider
n-ary functions as syntactic sugar for suitable higher-order functions.

�

Cartesian and Cascaded Procedures

� We have not been able to treat binary, ternary,. . . procedures directly

� Workaround 1: Make use of (Cartesian) products (unary functions on tuples)

� Example 97 +: Z× Z→ Z with +(〈3, 2〉) instead of +(3, 2)

fun cartesian_plus (x:int,y:int) = x + y;
cartesian_plus : int * int -> int

Workaround 2: Make use of functions as results

�� Example 98 +: Z→ Z→ Z with +(3)(2) instead of +(3, 2).

fun cascaded_plus (x:int) = (fn y:int => x + y);
cascaded_plus : int -> (int -> int)

Note: cascaded_plus can be applied to only one argument: cascaded_plus 1 is the
function (fn y:int => 1 + y), which increments its argument.

c©: Michael Kohlhase 70

SML allows both Cartesian- and cascaded functions, since we sometimes want functions to be
flexible in function arities to enable reuse, but sometimes we want rigid arities for functions as
this helps find programming errors.

48

http://creativecommons.org/licenses/by-sa/2.5/

Cartesian and Cascaded Procedures (Brackets)

� Definition 99 Call a procedure Cartesian, iff the argument type is a product type, call
it cascadedcascadedprocedure, iff the result type is a function type.

� Example 100 the following function is both Cartesian and cascading

- fun both_plus (x:int,y:int) = fn (z:int) => x + y + z;
val both_plus (int * int) -> (int -> int)

Convenient: Bracket elision conventions

� � e1 e2 e3 ; (e1 e2) e3
10 (procedure application associates to the left)

� τ1 → τ2 → τ3 ; τ1 → (τ2 → τ3) (function types associate to the right)

� SML uses these elision rules

- fun both_plus (x:int,y:int) = fn (z:int) => x + y + z;
val both_plus int * int -> int -> int
cascaded_plus 4 5;

� Another simplification (related to those above)

- fun cascaded_plus x y = x + y;
val cascaded_plus : int -> int -> int

c©: Michael Kohlhase 71

jEdNote: Generla Problem: how to mark up SML syntax?

Folding Procedures

� Definition 101 SML provides the left folding operator to realize a recurrent computa-
tion schema

foldl : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b
foldl f s [x1,x2,x3] = f(x3,f(x2,f(x1,s)))

f

f

f

x3

x2

x1 s We call the procedure f the iterator and s the start value

� Example 102 Folding the iterator op+ with start value 0:

foldl op+ 0 [x1,x2,x3] = x3+(x2+(x1+0))

+

+

+

x3

x2

x1 0 Thus the procedure fun plus xs = foldl op+ 0 xs adds the
elements of integer lists.

c©: Michael Kohlhase 72

49

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Folding Procedures (continued)

� Example 103 (Reversing Lists) foldl op:: nil [x1,x2,x3] = x3 :: (x2 :: (x1:: nil))
::

::

::

x3

x2

x1 nil Thus the procedure fun rev xs = foldl op:: nil xs reverses
a list

c©: Michael Kohlhase 73

Folding Procedures (foldr)

� Definition 104 The right folding operator foldr is a variant of foldl that processes
the list elements in reverse order.

foldr : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b
foldr f s [x1,x2,x3] = f(x1,f(x2,f(x3,s)))

f

f

f

x1

x2

x3 s

� Example 105 (Appending Lists) foldr op:: ys [x1,x2,x3] = x1 :: (x2 :: (x3 :: ys))

::

::

::

x1

x2

x3 ys
fun append(xs,ys) = foldr op:: ys xs

c©: Michael Kohlhase 74

Now that we know some SML
SML is a “functional Programming Language”

What does this all have to do with functions?

Back to Induction, “Peano Axioms” and functions (to keep it simple)

c©: Michael Kohlhase 75

50

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

4.2 Inductively Defined Sets and Computation

Let us now go back to looking at concrete functions on the unary natural numbers. We want to
convince ourselves that addition is a (binary) function. Of course we will do this by constructing
a proof that only uses the axioms pertinent to the unary natural numbers: the Peano Axioms.

But before we can prove function-hood of the addition function, we must solve a problem: addition
is a binary function (intuitively), but we have only talked about unary functions. We could solve
this problem by taking addition to be a cascaded function, but we will take the intuition seriously
that it is a Cartesian function and make it a function from N× N to N.

What about Addition, is that a function?

� Problem: Addition takes two arguments (binary function)

� One solution: +: N× N→ N is unary

� +(〈n, o〉) = n (base) and +(〈m, s(n)〉) = s(+(〈m,n〉)) (step)

� Theorem 106 + ⊆ (N× N)× N is a total function.

� We have to show that for all 〈n,m〉 ∈ (N× N) there is exactly one l ∈ N with
〈〈n,m〉, l〉 ∈ +.

� We will use functional notation for simplicity

c©: Michael Kohlhase 76

Addition is a total Function

� Lemma 107 For all 〈n,m〉 ∈ (N× N) there is exactly one l ∈ N with +(〈n,m〉) = l.

� Proof: by induction on m. (what else)

P.1 we have two cases

P.1.1 base case (m = o):

P.1.1.1 choose l := n, so we have +(〈n, o〉) = n = l.

P.1.1.2 For any l′ = +(〈n, o〉), we have l′ = n = l.

P.1.2 step case (m = s(k)):

P.1.2.1 o assume that there is a unique r = +(〈n, k〉), choose l := s(r), so we have
+(〈n, s(k)〉) = s(+(〈n, k〉)) = s(r).

P.1.2.2 Again, for any l′ = +(〈n, s(k)〉) we have l′ = l.

� Corollary 108 +: N1 × N1 → N1 is a total function.

c©: Michael Kohlhase 77

The main thing to note in the proof above is that we only needed the Peano Axioms to prove
function-hood of addition. We used the induction axiom (P5) to be able to prove something about
“all unary natural numbers”. This axiom also gave us the two cases to look at. We have used the
distinctness axioms (P3 and P4) to see that only one of the defining equations applies, which in
the end guaranteed uniqueness of function values.

51

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Reflection: How could we do this?

� we have two constructors for N1: the base element o ∈ N1 and the successor function
s : N1 → N1

� Observation: Defining Equations for +: +(〈n, o〉) = n (base) and +(〈m, s(n)〉) =
s(+(〈m,n〉)) (step)

� the equations cover all cases: n is arbitrary, m = o and m = s(k)
(otherwise we could have not proven existence)

� but not more (no contradictions)

� using the induction axiom in the proof of unique existence.

� Example 109 Defining equations δ(o) = o and δ(s(n)) = s(s(δ(n)))

� Example 110 Defining equations µ(l, o) = o and µ(l, s(r)) = +(〈µ(l, r), l〉)

� Idea: Are there other sets and operations that we can do this way?

� the set should be built up by “injective” constructors and have an induction axiom
(“abstract data type”)

� the operations should be built up by case-complete equations

c©: Michael Kohlhase 78

The specific characteristic of the situation is that we have an inductively defined set: the unary nat-
ural numbers, and defining equations that cover all cases (this is determined by the constructors)
and that are non-contradictory. This seems to be the pre-requisites for the proof of functionality
we have looked up above.

As we have identified the necessary conditions for proving function-hood, we can now generalize
the situation, where we can obtain functions via defining equations: we need inductively defined
sets, i.e. sets with Peano-like axioms.

52

http://creativecommons.org/licenses/by-sa/2.5/

Peano Axioms for Lists L[N]
� Lists of natural numbers: [1, 2, 3], [7, 7], [], . . .

� nil-rule: start with the empty list []

� cons-rule: extend the list by adding a number n ∈ N1 at the front

� two constructors: nil ∈ L[N] and cons : N1 × L[N]→ L[N]

� Example 111 e.g. [3, 2, 1] =̂ cons(3, cons(2, cons(1, nil))) and []=̂ nil

� Definition 112 We will call the following set of axioms are called the Peano Axioms
for L[N] in analogy to the Peano Axioms in Definition 18

� Axiom 113 (LP1) nil ∈ L[N] (generation axiom (nil))

� Axiom 114 (LP2) cons : N1 × L[N]→ L[N] (generation axiom (cons))

� Axiom 115 (LP3) nil is not a cons-value

� Axiom 116 (LP4) cons is injective

� Axiom 117 (LP5) If the nil possesses property P and (Induction Axiom)

� for any list l with property P , and for any n ∈ N1, the list cons(n, l) has property P

then every list l ∈ L[N] has property P .

c©: Michael Kohlhase 79

Note: There are actually 10 (Peano) axioms for lists of unary natural numbers the original five
for N1 — they govern the constructors o and s, and the ones we have given for the constructors
nil and cons here.

Note that the Pi and the LPi are very similar in structure: they say the same things about the
constructors.

The first two axioms say that the set in question is generated by applications of the constructors:
Any expression made of the constructors represents a member of N1 and L[N] respectively.

The next two axioms eliminate any way any such members can be equal. Intuitively they can
only be equal, if they are represented by the same expression. Note that we do not need any
axioms for the relation between N1 and L[N] constructors, since they are different as members of
different sets.

Finally, the induction axioms give an upper bound on the size of the generated set. Intuitively
the axiom says that any object that is not represented by a constructor expression is not a member
of N1 and L[N].

53

http://creativecommons.org/licenses/by-sa/2.5/

Operations on Lists: Append

� The append function @: L[N]× L[N]→ L[N] concatenates lists
Defining equations: nil@l = l and cons(n, l)@r = cons(n, l@r)

� Example 118 [3, 2, 1]@[1, 2] = [3, 2, 1, 1, 2] and []@[1, 2, 3] = [1, 2, 3] = [1, 2, 3]@[]

� Lemma 119 For all l, r ∈ L[N], there is exactly one s ∈ L[N] with s = l@r.

� Proof: by induction on l. (what does this mean?)

P.1 we have two cases

P.1.1 base case: l = nil: must have s = r.

P.1.2 step case: l = cons(n, k) for some list k:

P.1.2.1 Assume that here is a unique s′ with s′ = k@r,

P.1.2.2 then s = cons(n, k)@r = cons(n, k@r) = cons(n, s′).

� Corollary 120 Append is a function (see, this just worked fine!)

c©: Michael Kohlhase 80

You should have noticed that this proof looks exactly like the one for addition. In fact, wherever
we have used an axiom Pi there, we have used an axiom LPi here. It seems that we can do
anything we could for unary natural numbers for lists now, in particular, programming by recursive
equations.

Operations on Lists: more examples

� Definition 121 λ(nil) = o and λ(cons(n, l)) = s(λ(l))

� Definition 122 ρ(nil) = nil and ρ(cons(n, l)) = ρ(l)@cons(n, nil).

c©: Michael Kohlhase 81

Now, we have seen that “inductively defined sets” are a basis for computation, we will turn to the
programming language see them at work in concrete setting.

4.3 Inductively Defined Sets in SML

We are about to introduce one of the most powerful aspects of SML, its ability to define data
types. After all, we have claimed that types in SML are first-class objects, so we have to have a
means of constructing them.

We have seen above, that the main feature of an inductively defined set is that it has Peano
Axioms that enable us to use it for computation. Note that specifying them, we only need to
know the constructors (and their types). Therefore the datatype constructor in SML only needs
to specify this information as well. Moreover, note that if we have a set of constructors of an
inductively defined set — e.g. zero : mynat and suc : mynat -> mynat for the set mynat, then
their codomain type is always the same: mynat. Therefore, we can condense the syntax even
further by leaving that implicit.

54

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Data Type Declarations

� concrete version of abstract data types in SML

- datatype mynat = zero | suc of mynat;
datatype mynat = suc of mynat | zero

� this gives us constructor functions zero : mynat and suc : mynat -> mynat.

� define functions by (complete) case analysis (abstract procedures)

fun num (zero) = 0 | num (suc(n)) = num(n) + 1;
val num = fn : mynat -> int
fun incomplete (zero) = 0;
stdIn:10.1-10.25 Warning: match nonexhaustive

zero => ...
val incomplete = fn : mynat -> int

fun ic (zero) = 1 | ic(suc(n))=2 | ic(zero)= 3;
stdIn:1.1-2.12 Error: match redundant

zero => ...
suc n => ...
zero => ...

c©: Michael Kohlhase 82

So, we can re-define a type of unary natural numbers in SML, which may seem like a somewhat
pointless exercise, since we have integers already. Let us see what else we can do.

Data Types Example (Enumeration Type)

� a type for weekdays (nullary constructors)

datatype day = mon | tue | wed | thu | fri | sat | sun;

� use as basis for rule-based procedure (first clause takes precedence)

- fun weekend sat = true
| weekend sun = true
| weekend _ = false

val weekend : day -> bool

� this give us

- weekend sun
true : bool
- map weekend [mon, wed, fri, sat, sun]
[false, false, false, true, true] : bool list

� nullary constructors describe values, enumeration types finite sets

c©: Michael Kohlhase 83

Somewhat surprisingly, finite enumeration types that are a separate constructs in most program-
ming languages are a special case of datatype declarations in SML. They are modeled by sets of
base constructors, without any functional ones, so the base cases form the finite possibilities in
this type. Note that if we imagine the Peano Axioms for this set, then they become very simple;
in particular, the induction axiom does not have step cases, and just specifies that the property
P has to hold on all base cases to hold for all members of the type.

55

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Let us now come to a real-world examples for data types in SML. Say we want to supply a library
for talking about mathematical shapes (circles, squares, and triangles for starters), then we can
represent them as a data type, where the constructors conform to the three basic shapes they are
in. So a circle of radius r would be represented as the constructor term Circle r (what else).

Data Types Example (Mathematical Shapes)

� describe three kinds of geometrical forms as mathematical objects

r

Circle (r)

a

Square (a)

c
ba

Triangle (a, b, c)

Mathematically: R+] R+] ((R+ × R+ × R+))

�� In SML: approximate R+ by the built-in type real.

datatype shape =
Circle of real

| Square of real
| Triangle of real * real * real

� This gives us the constructor functions

Circle : real -> shape
Square : real -> shape
Triangle : real * real * real -> shape

� some experiments

- Circle 4.0
Circle 4.0 : shape
- Square 3.0
Square 3.0 : shape
- Triangle(4.0, 3.0, 5.0)
Triangle(4.0, 3.0, 5.0) : shape

� a procedure that computes the area of a shape:

- fun area (Circle r) = Math.pi*r*r
| area (Square a) = a*a
| area (Triangle(a,b,c)) = let val s = (a+b+c)/2.0

in Math.sqrt(s*(s-a)*(s-b)*(s-c))
end

val area : shape -> real

New Construct: Standard structure Math (see [SML10])

�� some experiments

- area (Square 3.0)
9.0 : real
- area (Triangle(6.0, 6.0, Math.sqrt 72.0))
18.0 : real

c©: Michael Kohlhase 84

The beauty of the representation in user-defined types is that this affords powerful abstractions
that allow to structure data (and consequently program functionality). All three kinds of shapes

56

http://creativecommons.org/licenses/by-sa/2.5/

are included in one abstract entity: the type shape, which makes programs like the area function
conceptually simple — it is just a function from type shape to type real. The complexity — after
all, we are employing three different formulae for computing the area of the respective shapes —
is hidden in the function body, but is nicely compartmentalized, since the constructor cases in
systematically correspond to the three kinds of shapes.

We see that the combination of user-definable types given by constructors, pattern matching, and
function definition by (constructor) cases give a very powerful structuring mechanism for hetero-
geneous data objects. This makes is easy to structure programs by the inherent qualities of the
data. A trait that other programming languages seek to achieve by object-oriented techniques.

Now, we have seen that “inductively defined sets” are a basis for computation, we will turn to the
programming language see them at work in concrete setting.

4.4 A Theory of SML: Abstract Data Types and Term Languages

What’s next?

Let us now look at representations
and SML syntax
in the abstract!

c©: Michael Kohlhase 85

We will now develop a theory of the expressions we write down in functional programming lan-
guages.

4.4.1 Abstract Data Types and Ground Constructor Terms

Abstract data types are abstract objects that specify inductively defined sets by declaring their
constructors.

Abstract Data Types (ADT)

� Definition 123 Let S0 := {A1, . . . ,An} be a finite set of symbols, then we call the set
S the set of sorts over the set S0, if

� S0 ⊆ S (base sorts are sorts)

� If A,B ∈ S, then (A× B) ∈ S (product sorts are sorts)

� If A,B ∈ S, then (A→ B) ∈ S (function sorts are sorts)

� Definition 124 If c is a symbol and A ∈ S, then we call a pair [c : A] a constructor
declaration for c over S.

� Definition 125 Let S0 be a set of symbols and Σ a set of constructor declarations over
S, then we call the pair 〈S0,Σ〉 an abstract data type

� Example 126 〈{N}, {[o : N], [s : N→ N]}〉

� Example 127 〈{N,L(N)}, {[o : N], [s : N→ N], [nil : L(N)], [cons : N× L(N)→ L(N)]}〉 In
particular, the term cons(s(o), cons(o, nil)) represents the list [1, 0]

� Example 128 〈{S}, {[ι : S], [→ : S × S → S], [× : S × S → S]}〉

c©: Michael Kohlhase 86

57

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

In contrast to SML datatype declarations we allow more than one sort to be declared at one time.
So abstract data types correspond to a group of datatype declarations.

With this definition, we now have a mathematical object for (sequences of) data type declarations
in SML. This is not very useful in itself, but serves as a basis for studying what expressions we
can write down at any given moment in SML. We will cast this in the notion of constructor terms
that we will develop in stages next.

Ground Constructor Terms

� Definition 129 Let A := 〈S0,D〉 be an abstract data type, then we call a representa-
tion t a ground constructor term of sort T, iff

� T ∈ S0 and [t : T] ∈ D, or

� T = A×B and t is of the form 〈a, b〉, where a and b are ground constructor terms of
sorts A and B, or

� t is of the form c(a), where a is a ground constructor term of sort A and there is a
constructor declaration [c : A→ T] ∈ D.

We denote the set of all ground constructor terms of sort A with T gA (A) and use T g(A) :=⋃
A∈S T

g
A (A).

� Definition 130 If t = c(t′) then we say that the symbol c is the head of t (write
head(t)). If t = a, then head(t) = a; head(〈t1, t2〉) is undefined.

� Notation 131 We will write c(a, b) instead of c(〈a, b〉) (cf. binary function)

c©: Michael Kohlhase 87

The main purpose of ground constructor terms will be to represent data. In the data type from Ex-
ample 126 the ground constructor term s(s(o)) can be used to represent the unary natural number
2. Similarly, in the abstract data type from Example 127, the term cons(s(s(o)), cons(s(o),nil))
represents the list [2, 1].

Note: that to be a good data representation format for a set S of objects, ground constructor
terms need to

• cover S, i.e. that for every object s ∈ S there should be a ground constructor term that
represents s.

• be unambiguous, i.e. that we can decide equality by just looking at them, i.e. objects s ∈ S
and t ∈ S are equal, iff their representations are.

But this is just what our Peano Axioms are for, so abstract data types come with specialized
Peano axioms, which we can paraphrase as

Peano Axioms for Abstract Data Types

� Idea: Sorts represent sets!

� Axiom 132 if t is a constructor term of sort T, then t ∈ T

� Axiom 133 equality on constructor terms is trivial

� Axiom 134 only constructor terms of sort T are in T (induction axioms)

c©: Michael Kohlhase 88

58

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Example 135 (An Abstract Data Type of Truth Values) We want to build an abstract
data type for the set {T, F} of truth values and various operations on it: We have looked at the ab-
breviations ∧, ∨, ¬,⇒ for “and”, “or”, “not”, and “implies”. These can be interpreted as functions
on truth values: e.g. ¬(T) = F , We choose the abstract data type 〈{B}, {[T : B], [F : B]}〉,
and have the abstract procedures

∧ : 〈∧::B× B→ B ; {∧(T, T) ; T ,∧(T, F) ; F ,∧(F, T) ; F ,∧(F, F) ; F}〉.

∨ : 〈∨::B× B→ B ; {∨(T, T) ; T ,∨(T, F) ; T ,∨(F, T) ; T ,∨(F, F) ; F}〉.

¬ : 〈¬::B→ B ; {¬(T) ; F ,¬(F) ; T}〉,

⇒: 〈⇒::B× B→ B ; {⇒(ϕB, ψB) ; ∨(¬(ϕB), ψB)}〉

Note that A implies B, iff A is false or B is true.

Subterms

� Idea: Well-formed parts of constructor terms are constructor terms again
(maybe of a different sort)

� Definition 136 Let A be an abstract data type and s and b be terms over A, then we
say that s is an immediate subterm of t, iff t = f(s) or t = 〈s, b〉 or t = 〈b, s〉.

� Definition 137 We say that a s is a subterm of t, iff s = t or there is an immediate
subterm t′ of t, such that s is a subterm of t′.

� Example 138 f(a) is a subterm of the terms f(a) and h((g((f(a)), (f(b))))), and an
immediate subterm of h((f(a))).

c©: Michael Kohlhase 89

Now that we have established how to represent data, we will develop a theory of programs, which
will consist of directed equations in this case. We will do this as theories often are developed;
we start off with a very first theory will not meet the expectations, but the test will reveal how
we have to extend the theory. We will iterate this procedure of theorizing, testing, and theory
adapting as often as is needed to arrive at a successful theory.

4.4.2 A First Abstract Interpreter

Let us now come up with a first formulation of an abstract interpreter, which we will refine later
when we understand the issues involved. Since we do not yet, the notions will be a bit vague for
the moment, but we will see how they work on the examples.

59

http://creativecommons.org/licenses/by-sa/2.5/

But how do we compute?

� Problem: We can define functions, but how do we compute them?

� Intuition: We direct the equations (l2r) and use them as rules.

� Definition 139 If s, t ∈ T gT (〈S0,Σ〉) are ground constructor terms and head(s) = f ,
then we call s; t a rule for f .

� Example 140 turn λ(nil) = o and λ(cons(n, l)) = s(λ(l))
to λ(nil) ; o and λ(cons(n, l)) ; s(λ(l))

� Definition 141 Let A := 〈S0,D〉, then call a triple 〈f::A→ R ; R〉 an abstract proce-
dure, iff R is a set of rules for f . A is called the argument sort and R is called the result
sort of 〈f::A→ R ; R〉.

� Definition 142 A computation of an abstract procedure p is a sequence of ground
constructor terms t1 ; t2 ; . . . according to the rules of p. (whatever that means)

� Definition 143 An abstract computation is a computation that we can perform in our
heads. (no real world constraints like memory size, time limits)

� Definition 144 An abstract interpreter is an imagined machine that performs (abstract)
computations, given abstract procedures.

c©: Michael Kohlhase 90

The central idea here is what we have seen above: we can define functions by equations. But of
course when we want to use equations for programming, we will have to take some freedom of
applying them, which was useful for proving properties of functions above. Therefore we restrict
them to be applied in one direction only to make computation deterministic.

An Abstract Interpreter (preliminary version)

� Definition 145 (Idea) Replace equals by equals! (this is licensed by the rules)

� Input: an abstract procedure 〈f::A→ R ; R〉 and an argument a ∈ T gA (A).

� Output: a result r ∈ T gR (A).

� Process: take the term t := f(a), for each rule (l; r) ∈ R, match t against l

� If l matches a subterm s of t, instantiate r to r′, and replace s in t with r′. Take
the result as the new argument.

� if not, proceed with the next rule.

� Repeat this, until no rule applies

� Definition 146 We say that an abstract procedure 〈f::A→ R ; R〉 terminates (on a ∈
T gA (A)), iff the computation (starting with f(a)) reaches a state, where no rule applies.

c©: Michael Kohlhase 91

Let us now see how this works in an extended example; we use the abstract data type of lists from
Example 127 (only that we abbreviate unary natural numbers).

60

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Example: the functions ρ and @ on lists

� Consider the abstract procedures 〈ρ::L(N)→L(N) ; {ρ(cons(n,l));@(ρ(l),cons(n,nil)),ρ(nil);nil}〉

and 〈@::L(N)→L(N) ; {@(cons(1,nil),cons(2,nil));cons(1,@(nil,cons(2,nil))),@(nil,l);l}〉

� Then we have the following abstract computation

� ρ(cons(2, cons(1, nil))) ; @(ρ(cons(1, nil)), cons(2, nil))
(ρ(cons(n, l)) ; @(ρ(l), cons(n, nil)) with n = 2 and l = cons(1, nil))

� @(ρ(cons(1, nil)), cons(2, nil)) ; @(@(ρ(nil), cons(1, nil)), cons(2, nil))
(ρ(cons(n, l)) ; @(ρ(l), cons(n, nil)) with n = 1 and l = nil)

� @(@(ρ(nil), cons(1, nil)), cons(2, nil)) ; @(@(nil, cons(1, nil)), cons(2, nil))
(ρ(nil) ; nil)

� @(@(nil, cons(1, nil)), cons(2, nil)) ; @(cons(1, nil), cons(2, nil))
(@(nil, l) ; l with l = cons(1, nil))

� @(cons(1, nil), cons(2, nil)) ; cons(1,@(nil, cons(2, nil)))
(@(cons(n, l), r) ; cons(n,@(l, r)) with n = 1, l = nil, and r = cons(2, nil))

� cons(1,@(nil, cons(2, nil))) ; cons(1, cons(2, nil)) (@(nil, l) ; l with l = cons(2, nil))

� Aha: ρ terminates on the argument cons(2, cons(1, nil))

c©: Michael Kohlhase 92

Now let’s get back to theory, unfortunately we do not have the means to write down rules: they
contain variables, which are not allowed in ground constructor rules. So what do we do in this
situation, we just extend the definition of the expressions we are allowed to write down.

Constructor Terms with Variables

� Wait a minute!: what are these rules in abstract procedures?

� Answer: pairs of constructor terms (really constructor terms?)

� Idea: variables stand for arbitrary constructor terms (let’s make this formal)

� Definition 147 Let 〈S0,D〉 be an abstract data type. A (constructor term) variable is
a pair of a symbol and a base sort. E.g. xA, nN1

, xC3 ,. . . .

� Definition 148 We denote the current set of variables of sort A with VA, and use
V :=

⋃
A∈S0 VA for the set of all variables.

� Idea: add the following rule to the definition of constructor terms

� variables of sort A ∈ S0 are constructor terms of sort A.

� Definition 149 If t is a constructor term, then we denote the set of variables occurring
in t with free(t). If free(t) = ∅, then we say t is ground or closed.

c©: Michael Kohlhase 93

To have everything at hand, we put the whole definition onto one slide.

61

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Constr. Terms with Variables: The Complete Definition

� Definition 150 Let 〈S0,D〉 be an abstract data type and V a set of variables, then we
call a representation t a constructor term (with variables from V) of sort T, iff

� T ∈ S0 and [t : T] ∈ D, or

� t ∈ VT is a variable of sort T ∈ S0, or

� T = A × B and t is of the form 〈a, b〉, where a and b are constructor terms with
variables of sorts A and B, or

� t is of the form c(a), where a is a constructor term with variables of sort A and there
is a constructor declaration [c : A→ T] ∈ D.

We denote the set of all constructor terms of sort A with TA(A;V) and use T (A;V) :=⋃
A∈S TA(A;V).

c©: Michael Kohlhase 94

Now that we have extended our model of terms with variables, we will need to understand how to
use them in computation. The main intuition is that variables stand for arbitrary terms (of the
right sort). This intuition is modeled by the action of instantiating variables with terms, which in
turn is the operation of applying a “substitution” to a term.

4.4.3 Substitutions

Substitutions are very important objects for modeling the operational meaning of variables: ap-
plying a substitution to a term instantiates all the variables with terms in it. Since a substitution
only acts on the variables, we simplify its representation, we can view it as a mapping from vari-
ables to terms that can be extended to a mapping from terms to terms. The natural way to define
substitutions would be to make them partial functions from variables to terms, but the definition
below generalizes better to later uses of substitutions, so we present the real thing.

Substitutions

� Definition 151 Let A be an abstract data type and σ ∈ (V → T (A;V)), then we call
σ a substitution on A, iff σ(xA) ∈ TA(A;V), and supp(σ) := {xA ∈ VA | σ(xA) 6= xA}
is finite. supp(σ) is called the support of σ.

� Notation 152 We denote the substitution σ with supp(σ) = {xiAi | 1 ≤ i ≤ n} and

σ(xiAi) = ti by [t1/x
1
A1

], . . ., [tn/x
n
An].

� Definition 153 (Substitution Application) Let A be an abstract data type, σ a
substitution on A, and t ∈ T (A;V), then then we denote the result of systematically
replacing all variables xA in t by σ(xA) by σ(t). We call σ(t) the application of σ to t.

� With this definition we extend a substitution σ from a function σ : V → T (A;V) to a
function σ : T (A;V)→ T (A;V).

� Definition 154 Let s and t be constructor terms, then we say that s matches t, iff
there is a substitution σ, such that σ(s) = t. σ is called a matcher that instantiates s to
t.

� Example 155 [a/x], [(f(b))/y], [a/z] instantiates g(x, y, (h(z))) to
g(a, (f(b)), (h(a))). (sorts irrelevant here)

c©: Michael Kohlhase 95

62

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Note that we we have defined constructor terms inductively, we can write down substitution
application as a recursive function over the inductively defined set.

Substitution Application (The Recursive Definition)

� We give the defining equations for substitution application

� [t/xA](x) = t

� [t/xA](y) = y if x 6= y.

� [t/xA](〈a, b〉) = 〈[t/xA](a), [t/xA](b)〉
� [t/xA](f(a)) = f([t/xA](a))

� this definition uses the inductive structure of the terms.

� Definition 156 (Substitution Extension) Let σ be a substitution, then
we denote with σ, [t/xA] the function {〈yB, t〉 ∈ σ | yB 6= xA} ∪ {〈xA, t〉}.

(σ, [t/xA] coincides with σ off xA, and gives the result t there.)

� Note: If σ is a substitution, then σ, [t/xA] is also a substitution.

c©: Michael Kohlhase 96

The extension of a substitution is an important operation, which you will run into from time to
time. The intuition is that the values right of the comma overwrite the pairs in the substitution
on the left, which already has a value for xA, even though the representation of σ may not show
it.

Note that the use of the comma notation for substitutions defined in Notation 152 is consistent with
substitution extension. We can view a substitution [a/x], [(f(b))/y] as the extension of the empty
substitution (the identity function on variables) by [f(b)/y] and then by [a/x]. Note furthermore,
that substitution extension is not commutative in general.

Now that we understand variable instantiation, we can see what it gives us for the meaning of rules:
we get all the ground constructor terms a constructor term with variables stands for by applying
all possible substitutions to it. Thus rules represent ground constructor subterm replacement
actions in a computations, where we are allowed to replace all ground instances of the left hand
side of the rule by the corresponding ground instance of the right hand side.

4.4.4 A Second Abstract Interpreter

Unfortunately, constructor terms are still not enough to write down rules, as rules also contain
the symbols from the abstract procedures.

63

http://creativecommons.org/licenses/by-sa/2.5/

Are Constructor Terms Really Enough for Rules?

� Example 157 ρ(cons(n, l)) ; @(ρ(l), cons(n, nil)). (ρ is not a constructor)

� Idea: need to include defined functions.

� Definition 158 Let A := 〈S0,D〉 be an abstract data type with A ∈ S, f 6∈ D be a
symbol, then we call a pair [f : A] a parameter declaration for f over S.

We call a finite set Σ of parameter declarations a signature over A, if Σ is a partial
function. (unique sorts)

� add the following rules to the definition of constructor terms

� T ∈ S0 and [p : T] ∈ Σ, or

� t is of the form f(a), where a is a constructor term of sort A and there is a parameter
declaration [f : A→ T] ∈ Σ.

� we call the the resulting structures simply “terms” over A, Σ, and V (the set of variables
we use). We denote the set of terms of sort A with TA(A,Σ;V).

c©: Michael Kohlhase 97

Again, we combine all of the rules for the inductive construction of the set of terms in one slide
for convenience.

Terms: The Complete Definition

� Idea: treat parameters (from Σ) and constructors (from D) at the same time.

� Definition 159 Let 〈S0,D〉 be an abstract data type, and Σ a signature over A, then
we call a representation t a term of sort T (over A and Σ), iff

� T ∈ S0 and [t : T] ∈ (D ∪ Σ), or

� t ∈ VT and T ∈ S0, or

� T = A× B and t is of the form 〈a, b〉, where a and b are terms of sorts A and B, or

� t is of the form c(a), where a is a term of sort A and there is a declaration [c : A→ T] ∈
(D ∪ Σ).

c©: Michael Kohlhase 98

We have to strengthen the restrictions on what we allow as rules, so that matching of rule heads
becomes unique (remember that we want to take the choice out of interpretation).

Furthermore, we have to get a grip on the signatures involved with programming. The intuition
here is that each abstract procedure introduces a new parameter declaration, which can be used in
subsequent abstract procedures. We formalize this notion with the concept of an abstract program,
i.e. a sequence of abstract procedures over the underlying abstract data type that behave well
with respect to the induced signatures.

64

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Abstract Programs

� Definition 160 (Abstract Procedures (final version)) Let A := 〈S0,D〉 be an
abstract data type, Σ a signature over A, and f 6∈ (dom(D) ∪ dom(Σ)) a symbol, then
we call l ; r a rule for [f : A → B] over Σ, if l = f(s) for some s ∈ TA(D;V) that
has no duplicate variables and r ∈ TB(D,Σ;V). We say that the parameter declaration
[f : A→ B] is induced by s; t.

We call a quadruple P := 〈f::A→ R ; R〉 an abstract procedure over Σ, iff R is a set of
rules for [f : A→ R]. We say that P induces the parameter declaration [f : A→ R].

� Definition 161 (Abstract Programs) Let A := 〈S0,D〉 be an abstract data type,
and P := P1, . . . ,Pn a sequence of abstract procedures, then we call P an abstract
Program with signature Σ over A, if the Pi induce (the parameter declarations) in Σ and

� n = 0 and Σ = ∅ or

� P = P ′,Pn where P ′ is an abstract program over Σ′ and Pn is an abstract procedure
over Σ′.

c©: Michael Kohlhase 99

Now, we have all the prerequisites for the full definition of an abstract interpreter.

An Abstract Interpreter (second version)

� Definition 162 (Abstract Interpreter (second try)) Let a0 := a repeat the fol-
lowing as long as possible:

� choose (l; r) ∈ R, a subterm s of ai and matcher σ, such that σ(l) = s.

� let ai+1 be the result of replacing s in a with σ(r).

� Definition 163 We say that an abstract procedure P := 〈f::A→ R ; R〉 terminates
(on a ∈ TA(A,Σ;V)), iff the computation (starting with a) reaches a state, where no rule
applies. Then an is the result of P on a

Question: Do abstract procedures always terminate?

�� Question: Is the result an always a constructor term?

c©: Michael Kohlhase 100

4.4.5 Evaluation Order and Termination

To answer the questions remaining from the second abstract interpreter we will first have to think
some more about the choice in this abstract interpreter: a fact we will use, but not prove here is
we can make matchers unique once a subterm is chosen. Therefore the choice of subterm is all
that we need wo worry about. And indeed the choice of subterm does matter as we will see.

65

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Evaluation Order in SML

� Remember in the definition of our abstract interpreter:

� choose a subterm s of ai, a rule (l; r) ∈ R, and a matcher σ, such that σ(l) = s.

� let ai+1 be the result of replacing s in a with σ(r).

Once we have chosen s, the choice of rule and matcher become unique
(under reasonable side-conditions we cannot express yet)

�� Example 164 sometimes there we can choose more than one s and rule.

fun problem n = problem(n)+2;
datatype mybool = true | false;
fun myif(true,a,_) = a | myif(false,_,b) = b;
myif(true,3,problem(1));

� SML is a call-by-value language (values of arguments are computed first)

c©: Michael Kohlhase 101

As we have seen in the example, we have to make up a policy for choosing subterms in evaluation
to fully specify the behavior of our abstract interpreter. We will make the choice that corresponds
to the one made in SML, since it was our initial goal to model this language.

�

An abstract call-by-value Interpreter

� Definition 165 (Call-by-Value Interpreter (final)) We can now define a ab-
stract call-by-value interpreter by the following process:

� Let s be the leftmost (of the) minimal subterms s of ai, such that there is a rule
l; r ∈ R and a substitution σ, such that σ(l) = s.

� let ai+1 be the result of replacing s in a with σ(r).

Note: By this paragraph, this is a deterministic process, which can be implemented, once
we understand matching fully (not covered in GenCS)

c©: Michael Kohlhase 102

The name “call-by-value” comes from the fact that data representations as ground constructor
terms are sometimes also called “values” and the act of computing a result for an (abstract)
procedure applied to a bunch of argument is sometimes referred to as “calling an (abstract)
procedure”. So we can understand the “call-by-value” policy as restricting computation to the
case where all of the arguments are already values (i.e. fully computed to ground terms).

Other programming languages chose another evaluation policy called “call-by-reference”, which
can be characterized by always choosing the outermost subterm that matches a rule. The most
notable one is the Haskell language [Hut07, OSG08]. These programming languages are sometimes
“lazy languages”, since they are uniquely suited for dealing with objects that are potentially infinite
in some form. In our example above, we can see the function problem as something that computes
positive infinity. A lazy programming language would not be bothered by this and return the value
3.

Example 166 A lazy language language can even quite comfortably compute with possibly in-
finite objects, lazily driving the computation forward as far as needed. Consider for instance the
following program:

66

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

myif(problem(1) > 999,"yes","no");

In a “call-by-reference” policy we would try to compute the outermost subterm (the whole expres-
sion in this case) by matching the myif rules. But they only match if there is a true or false as
the first argument, which is not the case. The same is true with the rules for >, which we assume
to deal lazily with arithmetical simplification, so that it can find out that x+ 1000 > 999. So the
outermost subterm that matches is problem(1), which we can evaluate 500 times to obtain true.
Then and only then, the outermost subterm that matches a rule becomes the myif subterm and
we can evaluate the whole expression to true.

Let us now turn to the question of termination of abstract procedures in general. Termination is
a very difficult problem as Example 167 shows. In fact all cases that have been tried τ(n) diverges
into the sequence 4, 2, 1, 4, 2, 1, . . ., and even though there is a huge literature in mathematics
about this problem, a proof that τ diverges on all arguments is still missing.

Another clue to the difficulty of the termination problem is (as we will see) that there cannot be
a a program that reliably tells of any program whether it will terminate.

But even though the problem is difficult in full generality, we can indeed make some progress
on this. The main idea is to concentrate on the recursive calls in abstract procedures, i.e. the
arguments of the defined function in the right hand side of rules. We will see that the recursion
relation tells us a lot about the abstract procedure.

Analyzing Termination of Abstract Procedures

� Example 167 τ : N1 → N1, where τ(n) ; 3τ(n) + 1 for n odd and τ(n) ; τ(n)/2
for n even. (does this procedure terminate?)

� Definition 168 Let 〈f::A→ R ; R〉 be an abstract procedure, then we call a pair 〈a, b〉
a recursion step, iff there is a rule f(x) ; y, and a substitution ρ, such that ρ(x) = a
and ρ(y) contains a subterm f(b).

� Example 169 〈4, 3〉 is a recursion step for σ : N1 → N1 with σ(o) ; o and σ(s(n)) ;
n+ σ(n)

� Definition 170 We call an abstract procedure P recursive, iff it has a recursion step.
We call the set of recursion steps of P the recursion relation of P.

� Idea: analyze the recursion relation for termination.

c©: Michael Kohlhase 103

Now, we will define termination for arbitrary relations and present a theorem (which we do not
really have the means to prove in GenCS) that tells us that we can reason about termination of ab-
stract procedures — complex mathematical objects at best — by reasoning about the termination
of their recursion relations — simple mathematical objects.

67

http://creativecommons.org/licenses/by-sa/2.5/

Termination

� Definition 171 Let R ⊆ A2 be a binary relation, an infinite chain in R is a sequence
a1, a2, . . . in A, such that ∀n ∈ N1.〈an, an+1〉 ∈ R.

We say that R terminates (on a ∈ A), iff there is no infinite chain in R (that begins with
a). We say that P diverges (on a ∈ A), iff it does not terminate on a.

� Theorem 172 Let P = 〈f::A→ R ; R〉 be an abstract procedure and a ∈ TA(A,Σ;V),
then P terminates on a, iff the recursion relation of P does.

� Definition 173 Let P = 〈f::A→ R ; R〉 be an abstract procedure, then we call the
function {〈a, b〉 | a ∈ TA(A,Σ;V) and P terminates for a with b} in A ⇀ B the result
function of P.

� Theorem 174 Let P = 〈f::A→ B ; D〉 be a terminating abstract procedure, then its
result function satisfies the equations in D.

c©: Michael Kohlhase 104

We should read Theorem 174 as the final clue that abstract procedures really do encode func-
tions (under reasonable conditions like termination). This legitimizes the whole theory we have
developed in this section.

Abstract vs. Concrete Procedures vs. Functions

� An abstract procedure P can be realized as concrete procedure P ′ in a programming
language

� Correctness assumptions (this is the best we can hope for)

� If the P ′ terminates on a, then the P terminates and yields the same result on a.

� If the P diverges, then the P ′ diverges or is aborted (e.g. memory exhaustion or
buffer overflow)

� Procedures are not mathematical functions (differing identity conditions)

� compare σ : N1 → N1 with σ(o) ; o, σ(s(n)) ; n+ σ(n)
with σ′ : N1 → N1 with σ′(o) ; 0, σ′(s(n)) ; ns(n)/2

� these have the same result function, but σ is recursive while σ′ is not!

� Two functions are equal, iff they are equal as sets, iff they give the same results on
all arguments

c©: Michael Kohlhase 105

4.5 More SML: Recursion in the Real World

We will now look at some concrete SML functions in more detail. The problem we will consider is
that of computing the nth Fibonacci number. In the famous Fibonacci sequence, the nth element
is obtained by adding the two immediately preceding ones.

This makes the function extremely simple and straightforward to write down in SML. If we look
at the recursion relation of this procedure, then we see that it can be visualized a tree, as each
natural number has two successors (as the the function fib has two recursive calls in the step
case).

68

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Consider the Fibonacci numbers

� Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

� generally: fn+1 := fn + fn−1 plus start conditions

� easy to program in SML:

fun fib (0) = 0 |fib (1) = 1 | fib (n:int) = fib (n-1) + fib(n-2);

� Let us look at the recursion relation: {〈n, n− 1〉, 〈n, n− 2〉 | n ∈ N} (it is a tree!)

1 0

2 1 0

2

1 0

2

1 0

2 1 0

2

3

1

3

1

3

1

4

5 4

6

c©: Michael Kohlhase 106

Another thing we see by looking at the recursion relation is that the value fib(k) is computed
n−k+1 times while computing fib(k). All in all the number of recursive calls will be exponential
in n, in other words, we can only compute a very limited initial portion of the Fibonacci sequence
(the first 41 numbers) before we run out of time.

The main problem in this is that we need to know the last two Fibonacci numbers to com-
pute the next one. Since we cannot “remember” any values in functional programming we take
advantage of the fact that functions can return pairs of numbers as values: We define an auxiliary
function fob (for lack of a better name) does all the work (recursively), and define the function
fib(n) as the first element of the pair fob(n).

The function fob(n) itself is a simple recursive procedure with one! recursive call that returns
the last two values. Therefore, we use a let expression, where we place the recursive call in the
declaration part, so that we can bind the local variables a and b to the last two Fibonacci numbers.
That makes the return value very simple, it is the pair (b,a+b).

A better Fibonacci Function

� Idea: Do not re-compute the values again and again!

� keep them around so that we can re-use them.
(e.g. let fib compute the two last two numbers)

fun fob 0 = (0,1)
| fob 1 = (1,1)
| fob (n:int) =
let

val (a:int, b:int) = fob(n-1)
in

(b,a+b)
end;

fun fib (n) = let val (b:int,_) = fob(n) in b end;

� Works in linear time! (unfortunately, we cannot see it, because SML Int are too small)

c©: Michael Kohlhase 107

69

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

If we run this function, we see that it is indeed much faster than the last implementation. Unfor-
tunately, we can still only compute the first 44 Fibonacci numbers, as they grow too fast, and we
reach the maximal integer in SML.

Fortunately, we are not stuck with the built-in integers in SML; we can make use of more
sophisticated implementations of integers. In this particular example, we will use the module
IntInf (infinite precision integers) from the SML standard library (a library of modules that
comes with the SML distributions). The IntInf module provides a type IntINF.int and a set of
infinite precision integer functions.

A better, larger Fibonacci Function

� Idea: Use a type with more Integers (Fortunately, there is IntInf)

use "/usr/share/smlnj/src/smlnj-lib/Util/int-inf.sml";

val zero = IntInf.fromInt 0;
val one = IntInf.fromInt 1;

fun bigfob (0) = (zero,one)
| bigfob (1) = (one,one)
| bigfob (n:int) = let val (a, b) = bigfob(n-1) in (b,IntInf.+(a,b)) end;

fun bigfib (n) = let val (a, _) = bigfob(n) in IntInf.toString(a) end;

c©: Michael Kohlhase 108

We have seen that functions are just objects as any others in SML, only that they have functional
type. If we add the ability to have more than one declaration at at time, we can combine function
declarations for mutually recursive function definitions. In a mutually recursive definition we
define n functions at the same time; as an effect we can use all of these functions in recursive calls.
In our example below, we will define the predicates even and odd in a mutual recursion.

�

Mutual Recursion

� generally, we can make more than one declaration at one time, e.g.

- val pi = 3.14 and e = 2.71;
val pi = 3.14
val e = 2.71

� this is useful mainly for function declarations, consider for instance:

fun even (zero) = true
| even (suc(n)) = odd (n)

and odd (zero) = false
| odd(suc(n)) = even (n)

trace: (even(4) ; odd(3) ; even(2) ; odd(1) ; even(0) ; true)

c©: Michael Kohlhase 109

This mutually recursive definition is somewhat like the children’s riddle, where we define the “left
hand” as that hand where the thumb is on the right side and the “right hand” as that where the
thumb is on the right hand. This is also a perfectly good mutual recursion, only — in contrast to
the even/odd example above — the base cases are missing.

70

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

4.6 Even more SML: Exceptions and State in SML

Programming with Effects

� Until now, our procedures have been characterized entirely by their values on their
arguments (as a mathematical function behaves)

� This is not enough, therefore SML also considers effects, e.g. for

� input/output: the interesting bit about a print statement is the effect

� mutation: allocation and modification of storage during evaluation

� communication: data may be sent and received over channels

� exceptions: abort evaluation by signaling an exceptional condition

Idea: An effect is any action resulting from an evaluation that is not returning a value
(formal definition difficult)

�� Documentation: should always address arguments, values, and effects!

c©: Michael Kohlhase 110

Raising Exceptions

� Idea: Exceptions are generalized error codes

� Example 175 predefined exceptions (exceptions have names)

- 3 div 0;
uncaught exception divide by zero
raised at: <file stdIn>
- fib(100);
uncaught exception overflow
raised at: <file stdIn>

� Example 176 user-defined exceptions (exceptions are first-class objects)

- exception Empty;
exception Empty
- Empty;
val it = Empty : exn

� Example 177 exception constructors (exceptions are just like any other value)

- exception SysError of int;
exception SysError of int;
- SysError
val it = fn : int -> exn

c©: Michael Kohlhase 111

71

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Programming with Exceptions

� Example 178 A factorial function that checks for non-negative arguments
(just to be safe)

exception Factorial;
- fun safe_factorial n =

if n < 0 then raise Factorial
else if n = 0 then 1
else n * safe_factorial (n-1)

val safe_factorial = fn : int -> int
- safe_factorial(~1);
uncaught exception Factorial
raised at: stdIn:28.31-28.40

unfortunately, this program checks the argument in every recursive call

c©: Michael Kohlhase 112

Programming with Exceptions (next attempt)

� Idea: make use of local function definitions that do the real work

- local
fun fact 0 = 1 | fact n = n * fact (n-1)

in
fun safe_factorial n =
if n >= 0 then fact n else raise Factorial

end
val safe_factorial = fn : int -> int
- safe_factorial(~1);
uncaught exception Factorial
raised at: stdIn:28.31-28.40

this function only checks once, and the local function makes good use of pattern matching
(; standard programming pattern)

c©: Michael Kohlhase 113

72

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Handling Exceptions

� Definition 179 (Idea) Exceptions can be raised (through the evaluation pattern) and
handled somewhere above (throw and catch)

� Consequence: Exceptions are a general mechanism for non-local transfers of control.

� Definition 180 (SML Construct) exception handler: exp handle rules

� Example 181 Handling the Factorial expression

fun factorial_driver () =
let val input = read_integer ()

val result = toString (safe_factorial input)
in

print result
end
handle Factorial => print "Out of range."

| NaN => print "Not a Number!"

� For more information on SML: RTFM (read the fine manuals)

c©: Michael Kohlhase 114

Input and Output in SML

� Input and Output is handled via “streams” (think of infinite strings)

� there are two predefined streams TextIO.stdIn and TextIO.stdOut

(=̂ keyboard input and screen)

� Input: via {TextIO.inputLine : TextIO.instream -> string

- TextIO.inputLine(TextIO.stdIn);
sdflkjsdlfkj

val it = "sdflkjsdlfkj" : string

� Example 182 the read_integer function (just to be complete)

exception NaN; (* Not a Number *)
fun read_integer () =

let
val in = TextIO.inputLine(TextIO.stdIn);

in
if is_integer(in) then to_int(in) else raise NaN

end;

c©: Michael Kohlhase 115

73

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

5 Encoding Programs as Strings

With the abstract data types we looked at last, we studied term structures, i.e. complex mathe-
matical objects that were built up from constructors, variables and parameters. The motivation
for this is that we wanted to understand SML programs. And indeed we have seen that there is a
close connection between SML programs on the one side and abstract data types and procedures
on the other side. However, this analysis only holds on a very high level, SML programs are not
terms per se, but sequences of characters we type to the keyboard or load from files. We only
interpret them to be terms in the analysis of programs.

To drive our understanding of programs further, we will first have to understand more about se-
quences of characters (strings) and the interpretation process that derives structured mathematical
objects (like terms) from them. Of course, not every sequence of characters will be interpretable,
so we will need a notion of (legal) well-formed sequence.

5.1 Formal Languages

We will now formally define the concept of strings and (building on that) formal langauges.

The Mathematics of Strings

� Definition 183 An alphabet A is a finite set; we call each element a ∈ A a character,
and an n-tuple of s ∈ An a string (of length n over A).

� Definition 184 Note that A0 = {〈〉}, where 〈〉 is the (unique) 0-tuple. With the
definition above we consider 〈〉 as the string of length 0 and call it the empty string and
denote it with ε

� Note: Sets 6= Strings, e.g. {1, 2, 3} = {3, 2, 1}, but 〈1, 2, 3〉 6= 〈3, 2, 1〉.

� Notation 185 We will often write a string 〈c1, . . . , cn〉 as ”c1 . . . cn”, for instance ”abc”
for 〈a, b, c〉

� Example 186 Take A = {h, 1, /} as an alphabet. Each of the symbols h, 1, and / is
a character. The vector 〈/, /, 1, h, 1〉 is a string of length 5 over A.

� Definition 187 (String Length) Given a string s we denote its length with |s|.

� Definition 188 The concatenation conc(s, t) of two strings s = 〈s1, ..., sn〉 ∈ An and
t = 〈t1, ..., tm〉 ∈ Am is defined as 〈s1, ..., sn, t1, ..., tm〉 ∈ An+m.

We will often write conc(s, t) as s+ t or simply st
(e.g. conc(”text”, ”book”) = ”text” + ”book” = ”textbook”)

c©: Michael Kohlhase 116

We have multiple notations for concatenation, since it is such a basic operation, which is used
so often that we will need very short notations for it, trusting that the reader can disambiguate
based on the context.

Now that we have defined the concept of a string as a sequence of characters, we can go on to
give ourselves a way to distinguish between good strings (e.g. programs in a given programming
language) and bad strings (e.g. such with syntax errors). The way to do this by the concept of a
formal language, which we are about to define.

74

http://creativecommons.org/licenses/by-sa/2.5/

Formal Languages

� Definition 189 Let A be an alphabet, then we define the sets A+ :=
⋃
i∈N+ Ai of

nonempty strings and A∗ := A+ ∪ {ε} of strings.

� Example 190 If A = {a, b, c}, then A∗ = {ε, a, b, c, aa, ab, ac, ba, . . ., aaa, . . .}.

� Definition 191 A set L ⊆ A∗ is called a formal language in A.

� Definition 192 We use c[n] for the string that consists of n times c.

� Example 193 #[5] = 〈#,#,#,#,#〉

� Example 194 The set M = {ba[n] | n ∈ N} of strings that start with character b
followed by an arbitrary numbers of a’s is a formal language in A = {a, b}.

� Definition 195 The concatenation conc(L1, L2) of two languages L1 and L2 over the
same alphabet is defined as conc(L1, L2) := {s1s2 | s1 ∈ L1 ∧ s2 ∈ L2}.

c©: Michael Kohlhase 117

There is a common misconception that a formal language is something that is difficult to under-
stand as a concept. This is not true, the only thing a formal language does is separate the “good”
from the bad strings. Thus we simply model a formal language as a set of stings: the “good”
strings are members, and the “bad” ones are not.

Of course this definition only shifts complexity to the way we construct specific formal languages
(where it actually belongs), and we have learned two (simple) ways of constructing them by
repetition of characters, and by concatenation of existing languages.

Substrings and Prefixes of Strings

� Definition 196 Let A be an alphabet, then we say that a string s ∈ A∗ is a substring
of a string t ∈ A∗ (written s ⊆ t), iff there are strings v, w ∈ A∗, such that t = vsw.

� Example 197 conc(/, 1, h) is a substring of conc(/, /, 1, h, 1), whereas conc(/, 1, 1) is
not.

� Definition 198 A string p is a called a prefix of s (write p E s), iff there is a string t,
such that s = conc(p, t). p is a proper prefix of s (write p / s), iff t 6= ε.

� Example 199 text is a prefix of textbook = conc(text, book).

� Note: A string is never a proper prefix of itself.

c©: Michael Kohlhase 118

We will now define an ordering relation for formal languages. The nice thing is that we can induce
an ordering on strings from an ordering on characters, so we only have to specify that (which is
simple for finite alphabets).

75

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Lexical Order

� Definition 200 Let A be an alphabet and <A a partial order on A, then we define a
relation <lex on A∗ by

s <lex t :⇐⇒ s / t ∨ (∃u, v, w ∈ A∗.∃a, b ∈ A.s = wau ∧ t = wbv ∧ (a <A b))

for s, t ∈ A∗. We call <lex the lexical order induced by <A on A∗.

� Theorem 201 <lex is a partial order. If <A is defined as total order, then <lex is total.

� Example 202 Roman alphabet with a<b<c· · ·<z ; telephone book order
((computer <lex text), (text <lex textbook))

c©: Michael Kohlhase 119

Even though the definition of the lexical ordering is relatively involved, we know it very well, it is
the ordering we know from the telephone books.

The next task for understanding programs as mathematical objects is to understand the process
of using strings to encode objects. The simplest encodings or “codes” are mappings from strings
to strings. We will now study their properties.

5.2 Elementary Codes

The most characterizing property for a code is that if we encode something with this code, then
we want to be able to decode it again: We model a code as a function (every character should
have a unique encoding), which has a partial inverse (so we can decode). We have seen above,
that this is is the case, iff the function is injective; so we take this as the defining characteristic of
a code.

Character Codes

� Definition 203 Let A and B be alphabets, then we call an injective function c : A →
B+ a character code. A string c(w) ∈ {c(a) | a ∈ A} := B+ is called a codeword.

� Definition 204 A code is a called binary iff B = {0, 1}.

� Example 205 Let A = {a, b, c} and B = {0, 1}, then c : A → B+ with c(a) = 0011,
c(b) = 1101, c(c) = 0110 c is a binary character code and the strings 0011, 1101, and
0110 are the codewords of c.

� Definition 206 The extension of a code (on characters) c : A → B+ to a function
c′ : A∗ → B∗ is defined as c′(〈a1, . . . , an〉 = 〈c(a1), . . . , c(an)〉).

� Example 207 The extension c′ of c from the above example on the string ”bbabc”

c′(”bbabc”) = 1101︸︷︷︸
c(b)

, 1101︸︷︷︸
c(b)

, 0011︸︷︷︸
c(a)

, 1101︸︷︷︸
c(b)

, 0110︸︷︷︸
c(c)

c©: Michael Kohlhase 120

76

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Morse Code

� In the early days of telecommunication the “Morse Code” was used to transmit texts,
using long and short pulses of electricity.

� Definition 208 (Morse Code) The following table gives the Morse code for the text
characters:

A .- B -... C -.-. D -.. E .
F ..-. G –. H I .. J .—
K -.- L .-.. M – N -. O —
P .–. Q –.- R .-. S ... T -
U ..- V ...- W .– X -..- Y -.–
Z –..
1 .—- 2 ..— 3 ...– 4- 5
6 -.... 7 –... 8 —.. 9 —-. 0 —–

Furthermore, the Morse code uses .−.−.− for full stop (sentence termination), −−..−−
for comma, and ..−−.. for question mark.

� Example 209 The Morse Code in the table above induces a character code µ : R →
{.,−}.

c©: Michael Kohlhase 121

Codes on Strings

� Definition 210 A function c′ : A∗ → B∗ is called a code on strings or short string code
if c′ is an injective function.

� Theorem 211 (*) There are character codes whose extensions are not string codes.

� Proof: we give an example

P.1 Let A = {a, b, c}, B = {0, 1}, c(a) = 0, c(b) = 1, and c(c) = 01.

P.2 The function c is injective, hence it is a character code.

P.3 But its extension c′ is not injective as c′(ab) = 01 = c′(c).

Question: When is the extension of a character code a string code?
(so we can encode strings)

�� Definition 212 A (character) code c : A → B+ is a prefix code iff none of the code-
words is a proper prefix to an other codeword, i.e.,

∀x, y ∈ A.x 6= y ⇒ (c(x) 6/ c(y) ∧ c(y) 6/ c(x))

c©: Michael Kohlhase 122

We will answer the question above by proving one of the central results of elementary coding
theory: prefix codes induce string codes. This plays back the infinite task of checking that a string
code is injective to a finite task (checking whether a character code is a prefix code).

77

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Prefix Codes induce Codes on Strings

� Theorem 213 The extension c′ : A∗ → B∗ of a prefix code c : A → B+ is a string
code.

� Proof: We will prove this theorem via induction over the string length n

P.1 We show that c′ is injective (decodable) on strings of length n ∈ N.

P.1.1 n = 0 (base case): If |s| = 0 then c′(ε) = ε, hence c′ is injective.

P.1.2 n = 1 (another): If |s| = 1 then c′ = c thus injective, as c is char. code.

P.1.3 Induction step (n =⇒ n+ 1):

P.1.3.1 Let a = a0, . . ., an, and we only know c′(a) = c(a0), . . ., c(an).

P.1.3.2 It is easy to find c(a0) in c′(a): It is the prefix of c′(a) that is in c(A). This is uniquely
determined, since c is a prefix code. If there were two distinct ones, one would have to be
a prefix of the other, which contradicts our assumption that c is a prefix code.

P.1.3.3 If we remove c(a0) from c(a), we only have to decode c(a1), . . ., c(an), which we can
do by inductive hypothesis.

P.2 Thus we have considered all the cases, and proven the assertion.

c©: Michael Kohlhase 123

Now, checking whether a code is a prefix code can be a tedious undertaking: the naive algorithm
for this needs to check all pairs of codewords. Therefore we will look at a couple of properties of
character codes that will ensure a prefix code and thus decodeability.

Sufficient Conditions for Prefix Codes

� Theorem 214 If c is a code with |c(a)| = k for all a ∈ A for some k ∈ N, then c is
prefix code.

� Proof: by contradiction.

P.1 If c is not at prefix code, then there are a, b ∈ A with c(a) / c(b).

P.2 clearly |c(a)| < |c(b)|, which contradicts our assumption.

� Theorem 215 Let c : A → B+ be a code and ∗ 6∈ B be a character, then there is a
prefix code c∗ : A→ (B ∪ {∗})+, such that c(a) / c∗(a), for all a ∈ A.

� Proof: Let c∗(a) := c(a) + ”∗” for all a ∈ A.

P.1 Obviously, c(a) / c∗(a).

P.2 If c∗ is not a prefix code, then there are a, b ∈ A with c∗(a) / c∗(b).

P.3 So, c∗(b) contains the character ∗ not only at the end but also somewhere in the
middle.

P.4 This contradicts our construction c∗(b) = c(b) + ”∗”, where c(b) ∈ B+

c©: Michael Kohlhase 124

5.3 Character Codes in the Real World

We will now turn to a class of codes that are extremely important in information technology:
character encodings. The idea here is that for IT systems we need to encode characters from

78

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

our alphabets as bit strings (sequences of binary digist 0 and 1) for representation in computers.
Indeed the Morse code we have seen above can be seen as a very simple example of a character
encoding that is geared towards the manual transmission of natural languges over telegraph lines.
For the encoding of written texts we need more extensive codes that can e.g. distinguish upper
and lowercase letters.

The ASCII code we will introduce here is one of the first standardized and widely used character
encodings for a complete alphabet. It is still widely used today. The code tries to strike a balance
between a being able to encode a large set of characters and the representational capabiligies
in the time of punch cards (cardboard cards that represented sequences of binary numbers by
rectangular arrays of dots).11 EdNote:11

The ASCII Character Code

� Definition 216 The American Standard Code for Information Interchange (ASCII)
code assigns characters to numbers 0-127

Code ···0 ···1 ···2 ···3 ···4 ···5 ···6 ···7 ···8 ···9 ···A ···B ···C ···D ···E ···F
0··· NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1··· DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2··· ! ” # $ % & ′ () ∗ + , − . /
3··· 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4··· @ A B C D E F G H I J K L M N O

5··· P Q R S T U V W X Y Z [\] ˆ
6··· ‘ a b c d e f g h i j k l m n o

7··· p q r s t u v w x y z { | } ∼ DEL

The first 32 characters are control characters for ASCII devices like printers

�� Motivated by punchcards: The character 0 (binary 000000) carries no information NUL,
(used as dividers)

Character 127 (binary 1111111) can be used for deleting (overwriting) last value
(cannot delete holes)

� The ASCII code was standardized in 1963 and is still prevalent in computers today
(but seen as US-centric)

c©: Michael Kohlhase 125

11EdNote: is the 7-bit grouping really motivated by the cognitive limit?

79

http://creativecommons.org/licenses/by-sa/2.5/

A Punchcard

� A punch card is a piece of stiff paper that contains digital information represented by the
presence or absence of holes in predefined positions.

� Example 217 This punch card encoded the Fortran statement Z(1) = Y + W(1)

c©: Michael Kohlhase 126

The ASCII code as above has a variety of problems, for instance that the control characters are
mostly no longer in use, the code is lacking many characters of languages other than the English
language it was developed for, and finally, it only uses seven bits, where a byte (eight bits) is the
preferred unit in information technology. Therefore there have been a whole zoo of extensions,
which — due to the fact that there were so many of them — never quite solved the encoding
problem.

Problems with ASCII encoding

� Problem: Many of the control characters are obsolete by now (e.g. NUL,BEL, or DEL)

� Problem: Many European characters are not represented (e.g. è,ñ,ü,ß,. . .)

� European ASCII Variants: Exchange less-used characters for national ones

� Example 218 (German ASCII) remap e.g. [7→ Ä,] 7→ Ü in German ASCII

(“Apple][” comes out as “Apple ÜÄ”)

� Definition 219 (ISO-Latin (ISO/IEC 8859)) 16 Extensions of ASCII to 8-bit
(256 characters) ISO-Latin 1 =̂ “Western European”, ISO-Latin 6 =̂ “Arabic”,ISO-Latin 7 =̂

“Greek”. . .

� Problem: No cursive Arabic, Asian, African, Old Icelandic Runes, Math,. . .

� Idea: Do something totally different to include all the world’s scripts: For a scalable
architecture, separate

� what characters are available from the (character set)

� bit string-to-character mapping (character encoding)

c©: Michael Kohlhase 127

80

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

The goal of the UniCode standard is to cover all the worlds scripts (past, present, and future) and
provide efficient encodings for them. The only scripts in regular use that are currently excluded
are fictional scripts like the elvish scripts from the Lord of the Rings or Klingon scripts from the
Star Trek series.

An important idea behind UniCode is to separate concerns between standardizing the character
set — i.e. the set of encodable characters and the encoding itself.

Unicode and the Universal Character Set

� Definition 220 (Twin Standards) A scalable Architecture for representing all the
worlds scripts

� The Universal Character Set defined by the ISO/IEC 10646 International Standard,
is a standard set of characters upon which many character encodings are based.

� The Unicode Standard defines a set of standard character encodings, rules for nor-
malization, decomposition, collation, rendering and bidirectional display order

� Definition 221 Each UCS character is identified by an unambiguous name and an
integer number called its code point.

� The UCS has 1.1 million code points and nearly 100 000 characters.

� Definition 222 Most (non-Chinese) characters have code points in [1, 65536] (the basic
multilingual plane).

� Notation 223 For code points in the Basic Multilingual Plane (BMP), four digits are
used, e.g. U+0058 for the character LATIN CAPITAL LETTER X;

c©: Michael Kohlhase 128

Note that there is indeed an issue with space-efficient encoding here. UniCode reserves space for
232 (more than a million) characters to be able to handle future scripts. But just simply using
32 bits for every UniCode character would be extremely wasteful: UniCode-encoded versions of
ASCII files would be four times as large.

Therefore UniCode allows multiple encodings. UTF-32 is a simple 32-bit code that directly uses
the code points in binary form. UTF-8 is optimized for western languages and coincides with
the ASCII where they overlap. As a consequence, ASCII encoded texts can be decoded in UTF-8

without changes — but in the UTF-8 encoding, we can also address all other UniCode characters
(using multi-byte characters).

81

http://creativecommons.org/licenses/by-sa/2.5/

Character Encodings in Unicode

� Definition 224 A character encoding is a mapping from bit strings to UCS code points.

� Idea: Unicode supports multiple encodings (but not character sets) for efficiency

� Definition 225 (Unicode Transformation Format) � UTF-8, 8-bit, variable-
width encoding, which maximizes compatibility with ASCII.

� UTF-16, 16-bit, variable-width encoding (popular in Asia)

� UTF-32, a 32-bit, fixed-width encoding (for safety)

� Definition 226 The UTF-8 encoding follows the following encoding scheme

Unicode Byte1 Byte2 Byte3 Byte4

U+000000− U+00007F 0xxxxxxx

U+000080− U+0007FF 110xxxxx 10xxxxxx

U+000800− U+00FFFF 1110xxxx 10xxxxxx 10xxxxxx

U+010000− U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

� Example 227 $ = U+0024 is encoded as 00100100 (1 byte)

¢ = U+00A2 is encoded as 11000010,10100010 (two bytes)

e = U+20AC is encoded as 11100010,10000010,10101100 (three bytes)

c©: Michael Kohlhase 129

Note how the fixed bit prefixes in the encoding are engineered to determine which of the four cases
apply, so that UTF-8 encoded documents can be safely decoded..

5.4 Formal Languages and Meaning

After we have studied the elementary theory of codes for strings, we will come to string represen-
tations of structured objects like terms. For these we will need more refined methods.

As we have started out the course with unary natural numbers and added the arithmetical
operations to the mix later, we will use unary arithmetics as our running example and study
object.

82

http://creativecommons.org/licenses/by-sa/2.5/

A formal Language for Unary Arithmetics

� Goal: We want to develop a formal language that “means something”.

� Idea: Start with something very simple: Unary Arithmetics
(i.e. N with addition, multiplication, subtraction, and integer division)

� Eun is based on the alphabet Σun := Cun ∪ V ∪ F 2
un ∪B, where

� Cun := {/}∗ is a set of constant names,

� V := {x} × {1, . . . , 9} × {0, . . . , 9}∗ is a set of variable names,

� F 2
un := {add, sub,mul, div,mod} is a set of (binary) function names, and

� B := {(,)} ∪ {,} is a set of structural characters. (* “,”,”(“,”)” characters!)

� define strings in stages: Eun :=
⋃
i∈NE

i
un, where

� E1
un := Cun ∪ V

� Ei+1
un := {a, add(a,b), sub(a,b),mul(a,b), div(a,b),mod(a,b) | a, b ∈ Eiun}

We call a string in Eun an expression of unary arithmetics.

c©: Michael Kohlhase 130

The first thing we notice is that the alphabet is not just a flat any more, we have characters
with different roles in the alphabet. These roles have to do with the symbols used in the complex
objects (unary arithmetic expressions) that we want to encode.

The formal language Eun is constructed in stages, making explicit use of the respective roles of
the characters in the alphabet. Constants and variables form the basic inventory in E1

un, the
respective next stage is built up using the function names and the structural characters to encode
the applicative structure of the encoded terms.

Note that with this construction Eiun ⊆ Ei+1
un .

A formal Language for Unary Arithmetics (Examples)

� Example 228 add(//////,mul(x1902,///)) ∈ Eun

� Proof: we proceed according to the definition

P.1 We have ////// ∈ Cun, and x1902 ∈ V , and /// ∈ Cun by definition

P.2 Thus ////// ∈ E1
un, and x1902 ∈ E1

un and /// ∈ E1
un,

P.3 Hence, ////// ∈ E2
un and mul(x1902,///) ∈ E2

un

P.4 Thus add(//////,mul(x1902,///)) ∈ E3
un

P.5 And finally add(//////,mul(x1902,///)) ∈ Eun

� other examples:

� div(x201,add(////,x12))

� sub(mul(///,div(x23,///)),///)

� what does it all mean? (nothing, Eun is just a set of strings!)

c©: Michael Kohlhase 131

83

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

To show that a string is an expression s of unary arithmetics, we have to show that it is in the
formal language Eun. As Eun is the union over all the Eiun, the string s must already be a member
of a set Ejun for some j ∈ N. So we reason by the definintion establising set membership.

Of course, computer science has better methods for defining languages than the ones used here
(context free grammars), but the simple methods used here will already suffice to make the relevant
points for this course.

Syntax and Semantics (a first glimpse)

� Definition 229 A formal language is also called a syntax, since it only concerns the
“form” of strings.

� to give meaning to these strings, we need a semantics, i.e. a way to interpret these.

� Idea (Tarski Semantics): A semantics is a mapping from strings to objects we already
know and understand (e.g. arithmetics).

� e.g. add(//////,mul(x1902,///)) 7→ 6 + (x1907 · 3) (but what does this mean?)

� looks like we have to give a meaning to the variables as well, e.g. x1902 7→ 3, then
add(//////,mul(x1902,///)) 7→ 6 + (3 · 3) = 15

c©: Michael Kohlhase 132

So formal languages do not mean anything by themselves, but a meaning has to be given to them
via a mapping. We will explore that idea in more detail in the following.

84

http://creativecommons.org/licenses/by-sa/2.5/

6 Boolean Algebra

We will now look a formal language from a different perspective. We will interpret the language
of “Boolean expressions” as formulae of a very simple “logic”: A logic is a mathematical construct
to study the association of meaning to strings and reasoning processes, i.e. to study how humans5

derive new information and knowledge from existing one.

6.1 Boolean Expressions and their Meaning

In the following we will consider the Boolean Expressions as the language of “Propositional Logic”,
in many ways the simplest of logics. This means we cannot really express very much of interest,
but we can study many things that are common to all logics.

Let us try again (Boolean Expressions)

� Definition 230 (Alphabet) Ebool is based on the alphabet A :=
Cbool ∪ V ∪ F 1

bool ∪ F 2
bool ∪B, where Cbool = {0, 1}, F 1

bool = {−} and F 2
bool = {+, ∗}.

(V and B as in Eun)

� Definition 231 (Formal Language) Ebool :=
⋃
i∈NE

i
bool, where E1

bool := Cbool ∪ V
and
Ei+1

bool := {a, (−a), (a+b), (a∗b) | a, b ∈ Eibool}.

� Definition 232 Let a ∈ Ebool. The minimal i, such that a ∈ Eibool is called the depth
of a.

� e1 := ((−x1)+x3) (depth 3)

� e2 := ((−(x1∗x2))+(x3∗x4)) (depth 4)

� e3 := ((x1+x2)+((−((−x1)∗x2))+(x3∗x4))) (depth 6)

c©: Michael Kohlhase 133

5until very recently, humans were thought to be the only systems that could come up with complex argumenta-
tions. In the last 50 years this has changed: not only do we attribute more reasoning capabilities to animals, but
also, we have developed computer systems that are increasingly capable of reasoning.

85

http://creativecommons.org/licenses/by-sa/2.5/

Boolean Expressions as Structured Objects.

� Idea: As strings in in Ebool are built up via the “union-principle”, we can think of them
as constructor terms with variables

� Definition 233 The abstract data type

B := 〈{B}, {[1 : B], [0 : B], [− : B→ B], [+: B× B→ B], [∗ : B× B→ B]}〉

� via the translation

� Definition 234 σ : Ebool → TB(B;V) defined by

σ(1) := 1 σ(0) := 0
σ((−A)) := −(σ(A))
σ((A∗B)) := ∗(σ(A), σ(B)) σ((A+B)) := +(σ(A), σ(B))

� We will use this intuition for our treatment of Boolean expressions and treak the strings
and constructor terms synonymouslhy. (σ is a (hidden) isomorphism)

� Definition 235 We will write −(A) as A and ∗(A,B) as A ∗ B (and similarly for +).
Furthermore we will write variables such as x71 as x71 and elide brackets for sums and
products according to their usual precedences.

� Example 236 σ(((−(x1∗x2))+(x3∗x4))) = x1 ∗ x2 + x3 ∗ x4

� *: Do not confuse + and ∗ (Boolean sum and product) with their arithmetic counterparts.
(as members of a formal language they have no meaning!)

c©: Michael Kohlhase 134

Now that we have defined the formal language, we turn the process of giving the strings a meaning.
We make explicit the idea of providing meaning by specifying a function that assigns objects that
we already understand to representations (strings) that do not have a priori meaning.

The first step in assigning meaning is to fix a set of objects what we will assign as meanings: the
“universe (of discourse)”. To specify the meaning mapping, we try to get away with specifying
as little as possible. In our case here, we assign meaning only to the constants and functions and
induce the meaning of complex expressions from these. As we have seen before, we also have to
assign meaning to variables (which have a different ontological status from constants); we do this
by a special meaning function: a variable assignment.

86

http://creativecommons.org/licenses/by-sa/2.5/

Boolean Expressions: Semantics via Models

� Definition 237 A model 〈U , I〉 for Ebool is a set U of objects (called the universe)
together with an interpretation function I on A with I(Cbool) ⊆ U , I(F 1

bool) ⊆ F(U ;U),
and I(F 2

bool) ⊆ F(U2;U).

� Definition 238 A function ϕ : V → U is called a variable assignment.

� Definition 239 Given a model 〈U , I〉 and a variable assignment ϕ, the evaluation func-
tion Iϕ : Ebool → U is defined recursively: Let c ∈ Cbool, a, b ∈ Ebool, and x ∈ V , then

� Iϕ(c) = I(c), for c ∈ Cbool

� Iϕ(x) = ϕ(x), for x ∈ V
� Iϕ(a) = I(−)(Iϕ(a))

� Iϕ(a+ b) = I(+)(Iϕ(a), Iϕ(b)) and Iϕ(a ∗ b) = I(∗)(Iϕ(a), Iϕ(b))

� U = {T,F} with 0 7→ F, 1 7→ T,+ 7→ ∨, ∗ 7→ ∧,− 7→ ¬.

� U = Eun with 0 7→ /, 1 7→ //,+ 7→ div, ∗ 7→ mod,− 7→ λx.5.

� U = {0, 1} with 0 7→ 0, 1 7→ 1,+ 7→ min, ∗ 7→ max,− 7→ λx.1− x.

c©: Michael Kohlhase 135

Note that all three models on the bottom of the last slide are essentially different, i.e. there is
no way to build an isomorphism between them, i.e. a mapping between the universes, so that all
Boolean expressions have corresponding values.

To get a better intuition on how the meaning function works, consider the following example.
We see that the value for a large expression is calculated by calculating the values for its sub-
expressions and then combining them via the function that is the interpretation of the constructor
at the head of the expression.

Evaluating Boolean Expressions
� Let ϕ := [T/x1], [F/x2], [T/x3], [F/x4], and I = {0 7→ F, 1 7→ T,+ 7→ ∨, ∗ 7→ ∧,− 7→ ¬}, then

Iϕ((x1 + x2) + (x1 ∗ x2 + x3 ∗ x4))
= Iϕ(x1 + x2) ∨ Iϕ(x1 ∗ x2 + x3 ∗ x4)
= Iϕ(x1) ∨ Iϕ(x2) ∨ Iϕ(x1 ∗ x2) ∨ Iϕ(x3 ∗ x4)
= ϕ(x1) ∨ ϕ(x2) ∨ ¬(Iϕ(x1 ∗ x2)) ∨ Iϕ(x3 ∗ x4)
= (T ∨ F) ∨ (¬(Iϕ(x1) ∧ Iϕ(x2)) ∨ (Iϕ(x3) ∧ Iϕ(x4)))
= T ∨ ¬(¬(Iϕ(x1)) ∧ ϕ(x2)) ∨ (ϕ(x3) ∧ ϕ(x4))
= T ∨ ¬(¬(ϕ(x1)) ∧ F) ∨ (T ∧ F)
= T ∨ ¬(¬(T) ∧ F) ∨ F
= T ∨ ¬(F ∧ F) ∨ F
= T ∨ ¬(F) ∨ F = T ∨ T ∨ F = T

� What a mess!

c©: Michael Kohlhase 136

87

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

A better mouse-trap: Truth Tables

� Truth tables to visualize truth functions:

·
T F
F T

∗ T F
T T F
F F F

+ T F
T T T
F T F

� If we are interested in values for all assignments (e.g. of x123 ∗ x4 + x123 ∗ x72)

assignments intermediate results full
x4 x72 x123 e1 := x123 ∗ x72 e2 := e1 e3 := x123 ∗ x4 e3 + e2
F F F F T F T
F F T F T F T
F T F F T F T
F T T T F F F
T F F F T F T
T F T F T T T
T T F F T F T
T T T T F T T

c©: Michael Kohlhase 137

Boolean Algebra

� Definition 240 A Boolean algebra is Ebool together with the models

� 〈{T,F}, {0 7→ F, 1 7→ T,+ 7→ ∨, ∗ 7→ ∧,− 7→ ¬}〉.
� 〈{0, 1}, {0 7→ 0, 1 7→ 1,+ 7→ max, ∗ 7→ min,− 7→ λx.1− x}〉.

� BTW, the models are equivalent (0=̂F, 1=̂T)

� Definition 241 We will use B for the universe, which can be either {0, 1} or {T,F}

� Definition 242 We call two expressions e1, e2 ∈ Ebool equivalent (write e1 ≡ e2), iff
Iϕ(e1) = Iϕ(e2) for all I and ϕ.

� Theorem 243 e1 ≡ e2, iff (e1 + e2) ∗ (e1 + e2) is a theorem of Boolean Algebra.

c©: Michael Kohlhase 138

As we are mainly interested in the interplay between form and meaning in Boolean Algebra, we
will often identify Boolean expressions, if they have the same values in all situations (as specified
by the variable assignments). The notion of equivalent formulae formalizes this intuition.

88

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Boolean Equivalences

� Given a, b, c ∈ Ebool, ◦ ∈ {+, ∗}, let ◦̂ :=

{
+ if ◦ = ∗
∗ else

� We have the following equivalences in Boolean Algebra:

� a ◦ b ≡ b ◦ a (commutativity)

� (a ◦ b) ◦ c ≡ a ◦ (b ◦ c) (associativity)

� a ◦ (b◦̂c) ≡ (a ◦ b)◦̂(a ◦ c) (distributivity)

� a ◦ (a◦̂b) ≡ a (covering)

� (a ◦ b)◦̂(a ◦ b) ≡ a (combining)

� (a ◦ b)◦̂((a ◦ c)◦̂(b ◦ c)) ≡ (a ◦ b)◦̂(a ◦ c) (consensus)

� a ◦ b ≡ a◦̂b (De Morgan)

c©: Michael Kohlhase 139

6.2 Boolean Functions

We will now turn to “semantical” counterparts of Boolean expressions: Boolean functions. These
are just n-ary functions on the Boolean values.

Boolean functions are interesting, since can be used as computational devices; we will study
this extensively in the rest of the course. In particular, we can consider a computer CPU as
collection of Boolean functions (e.g. a modern CPU with 64 inputs and outputs can be viewed as
a sequence of 64 Boolean functions of arity 64: one function per output pin).

The theory we will develop now will help us understand how to “implement” Boolean functions
(as specifications of computer chips), viewing Boolean expressions very abstract representations of
configurations of logic gates and wiring. We will study the issues of representing such configurations
in more detail later12 EdNote:12

Boolean Functions

� Definition 244 A Boolean function is a function from Bn to B.

� Definition 245 Boolean functions f, g : Bn → B are called equivalent, (write f ≡ g),
iff f(c) = g(c) for all c ∈ Bn. (equal as functions)

� Idea: We can turn any Boolean expression into a Boolean function by ordering the
variables (use the lexical ordering on {X} × {1, . . . , 9}+ × {0, . . . , 9}∗)

� Definition 246 Let e ∈ Ebool and {x1, . . . , xn} the set of variables in e, then call
V L(e) := 〈x1, . . . , xn〉 the variable list of e, iff (xi <lex xj) where i ≤ j.

� Definition 247 Let e ∈ Ebool with V L(e) = 〈x1, . . . , xn〉, then we call the function

fe : Bn → B with fe : c 7→ Iϕc(e)

the Boolean function induced by e, where ϕ〈c1,...,cn〉 : xi 7→ ci.

� Theorem 248 e1 ≡ e2, iff fe1 = fe2 .

c©: Michael Kohlhase 140

12EdNote: make a forward reference here.

89

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

The definition above shows us that in theory every Boolean Expression induces a Boolean function.
The simplest way to compute this is to compute the truth table for the expression and then read
off the function from the table.

Boolean Functions and Truth Tables
� The truth table of a Boolean function is defined in the obvious way:

x1 x2 x3 fx1∗(x2+x3)
T T T T
T T F F
T F T T
T F F T
F T T F
F T F F
F F T F
F F F F

� compute this by assigning values and evaluating

� Question: can we also go the other way? (from function to expression?)

� Idea: read expression of a special form from truth tables (Boolean Polynomials)

c©: Michael Kohlhase 141

Computing a Boolean expression from a given Boolean function is more interesting — there are
many possible candidates to choose from; after all any two equivalent expressions induce the same
function. To simplify the problem, we will restrict the space of Boolean expressions that realize a
given Boolean function by looking only for expressions of a given form.

Boolean Polynomials

� special form Boolean Expressions

� a literal is a variable or the negation of a variable

� a monomial or product term is a literal or the product of literals

� a clause or sum term is a literal or the sum of literals

� a Boolean polynomial or sum of products is a product term or the sum of product
terms

� a clause set or product of sums is a sum term or the product of sum terms

For literals xi, write x1
i , for xi write x0

i . (* not exponentials, but intended truth values)

� Notation 249 Write xixj instead of xi ∗ xj . (like in math)

c©: Michael Kohlhase 142

Armed with this normal form, we can now define an way of realizing13 Boolean functions. EdNote:13

13EdNote: define that formally above

90

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Normal Forms of Boolean Functions

� Definition 250 Let f : Bn → B be a Boolean function and c ∈ Bn, then Mc :=∏n
j=1 x

cj
j and Sc :=

∑n
j=1 x

1−cj
j

� Definition 251 The disjunctive normal form (DNF) of f is
∑
c∈f−1(1)Mc

(also called the canonical sum (written as DNF(f)))

� Definition 252 The conjunctive normal form (CNF) of f is
∏
c∈f−1(0) Sc

(also called the canonical product (written as CNF(f)))

x1 x2 x3 f monomials clauses
0 0 0 1 x0

1 x
0
2 x

0
3

0 0 1 1 x0
1 x

0
2 x

1
3

0 1 0 0 x1
1 + x0

2 + x1
3

0 1 1 0 x1
1 + x0

2 + x0
3

1 0 0 1 x1
1 x

0
2 x

0
3

1 0 1 1 x1
1 x

0
2 x

1
3

1 1 0 0 x0
1 + x0

2 + x1
3

1 1 1 1 x1
1 x

1
2 x

1
3

� DNF of f : x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3

� CNF of f : (x1 + x2 + x3) (x1 + x2 + x3) (x1 + x2 + x3)

c©: Michael Kohlhase 143

Normal Boolean Expressions

� Definition 253 A monomial or clause is called normal, iff each variable appears at most
once.

� Note: Any monomial or clause can be reduced to a constant or a normal term.

� Given a monomial or clause T1 ◦ xc1 ◦ T2 ◦ xc2 ◦ T3 (◦ ∈ {+, ∗})
� we can rewrite to T = (T1 ◦ T2 ◦ T3)︸ ︷︷ ︸

T ′

◦ xc1 ◦ xc2

(using commutativity and associativity)

� simplify the subterm xc1 ◦ xc2 according to tables:

c1 c2 xc1 ∗ xc2 T
0 0 x0 T ′ ∗ x0

0 1 0 0
1 0 0 0
1 1 x1 T ′ ∗ x1

c1 c2 xc1 + xc2 T
0 0 x0 T ′ ∗ x0

0 1 1 1
1 0 1 1
1 1 x1 T ′ ∗ x1

c©: Michael Kohlhase 144

91

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

MinTerms and MaxTerms

� Definition 254 An n-variable minterm (maxterm) is a normal monomial (clause) with
n literals.

� Note: each monomial in the DNF of a Boolean function f is a minterm and each clause
in the CNF of f is a maxterm.

� Definition 255 Given a Boolean expression e with n variables and a vector x ∈ Bn.
The expression e covers x iff fe(x) = 1.

� Example 256 The expression x1 ∗ x2 + x3 covers 〈1, 1, 0〉.

� Note: Each minterm in a DNF covers exactly one vector. Namely, m = xc11 xc22 . . . xcnn
covers the value 〈c1, . . . , cn〉. So by definition of the DNF, each minterm m in the DNF
of a function f : Bn → B covers exactly one x ∈ Bn with f(x) = 1.

c©: Michael Kohlhase 145

In the light of the argument of understanding Boolean expressions as implementations of Boolean
functions, the process becomes interesting while realizing specifications of chips. In particular it
also becomes interesting, which of the possible Boolean expressions we choose for realizing a given
Boolean function. We will analyze the choice in terms of the “cost” of a Boolean expression.

Costs of Boolean Expressions

� Idea: Complexity Analysis is about the estimation of resource needs

� if we have two expressions for a Boolean function, which one to choose?

� Idea: Let us just measure the size of the expression(after all it needs to be written down)

� Better Idea: count the number of operators (computation elements)

� Definition 257 The cost C(e) of e ∈ Ebool is the number of operators in e.

� Example 258 C(x1 + x3) = 2, C(x1 ∗ x2 + x3 ∗ x4) = 4,
C((x1 + x2) + (x1 ∗ x2 + x3 ∗ x4)) = 7

� Definition 259 Let f : Bn → B be a Boolean function, then C(f) :=
min({C(e) | f = fe}) is the cost of f .

� Note: We can find expressions of arbitrarily high cost for a given Boolean function.
(e ≡ e ∗ 1)

� but how to find such an e with minimal cost for f?

c©: Michael Kohlhase 146

6.3 Complexity Analysis for Boolean Expressions

92

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

The Landau Notations (aka. “big-O” Notation)

� Definition 260 Let f, g : N→ N, we say that f is asymptotically bounded by g, written
as (f ≤a g), iff there is an n0 ∈ N, such that f(n) ≤ g(n) for all n > n0.

� Definition 261 The three Landau sets O(g),Ω(g),Θ(g) are defined as

� O(g) = {f | ∃k > 0.f ≤a k · g}
� Ω(g) = {f | ∃k > 0.f ≥a k · g}
� Θ(g) = O(g) ∩ Ω(g)

Intuition: The Landau sets express the “shape of growth” of the graph of a function.

� � If f ∈ O(g), then f grows at most as fast as g. (“f is in the order of g”)

� If f ∈ Ω(g), then f grows at least as fast as g. (“f is at least in the order of g”)

� If f ∈ Θ(g), then f grows as fast as g. (“f is strictly in the order of g”)

c©: Michael Kohlhase 147

Commonly used Landau Sets

�

Landau set class name rank Landau set class name rank
O(1) constant 1 O(n2) quadratic 4

O(log2(n)) logarithmic 2 O(nk) polynomial 5
O(n) linear 3 O(kn) exponential 6

� Theorem 262 These Ω-classes establish a ranking
(increasing rank ; increasing growth)

O(1)⊂O(log2(n))⊂O(n)⊂O(n2)⊂O(nk
′
)⊂O(kn)

where k′ > 2 and k > 1. The reverse holds for the Ω-classes

Ω(1)⊃Ω(log2(n))⊃Ω(n)⊃Ω(n2)⊃Ω(nk
′
)⊃Ω(kn)

� Idea: Use O-classes for worst-case complexity analysis and Ω-classes for best-case.

c©: Michael Kohlhase 148

Examples

� Idea: the fastest growth function in sum determines the O-class

� Example 263 (λn.263748) ∈ O(1)

� Example 264 (λn.26n+ 372) ∈ O(n)

� Example 265 (λn.7(n2)− 372n+ 92) ∈ O(n2)

� Example 266 (λn.857(n10) + 7342(n7) + 26(n2) + 902) ∈ O(n10)

� Example 267 (λn.3 · (2n) + 72) ∈ O(2n)

� Example 268 (λn.3 · (2n) + 7342(n7) + 26(n2) + 722) ∈ O(2n)

c©: Michael Kohlhase 149

93

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

With the basics of complexity theory well-understood, we can now analyze the cost-complexity of
Boolean expressions that realize Boolean functions. We will first derive two upper bounds for the
cost of Boolean functions with n variables, and then a lower bound for the cost.

The first result is a very naive counting argument based on the fact that we can always realize a
Boolean function via its DNF or CNF. The second result gives us a better complexity with a more
involved argument. Another difference between the proofs is that the first one is constructive,
i.e. we can read an algorithm that provides Boolean expressions of the complexity claimed by the
algorithm for a given Boolean function. The second proof gives us no such algorithm, since it is
non-constructive.

An Upper Bound for the Cost of BF with n variables

� Idea: Every Boolean function has a DNF and CNF, so we compute its cost.

� Example 269 Let us look at the size of the DNF or CNF for f ∈ (B3 → B).

x1 x2 x3 f monomials clauses
0 0 0 1 x0

1 x
0
2 x

0
3

0 0 1 1 x0
1 x

0
2 x

1
3

0 1 0 0 x1
1 + x0

2 + x1
3

0 1 1 0 x1
1 + x0

2 + x0
3

1 0 0 1 x1
1 x

0
2 x

0
3

1 0 1 1 x1
1 x

0
2 x

1
3

1 1 0 0 x0
1 + x0

2 + x1
3

1 1 1 1 x1
1 x

1
2 x

1
3

� Theorem 270 Any f : Bn → B is realized by an e ∈ Ebool with C(e) ∈ O(n · 2n).

� Proof: by counting (constructive proof (we exhibit a witness))

P.1 either en := CNF(f) has 2n

2 clauses or less or DNF(f) does monomials

P.2 take smaller one, multiply/sum the monomials/clauses at cost 2n−1 − 1

P.3 there are n literals per clause/monomial ei, so C(ei) ≤ 2n− 1

P.4 so C(en) ≤ 2n−1 − 1 + 2n−1 · (2n− 1) and thus C(en) ∈ O(n · 2n)

c©: Michael Kohlhase 150

For this proof we will introduce the concept of a “realization cost function” κ : N → N to save
space in the argumentation. The trick in this proof is to make the induction on the arity work
by splitting an n-ary Boolean function into two n− 1-ary functions and estimate their complexity
separately. This argument does not give a direct witness in the proof, since to do this we have to
decide which of these two split-parts we need to pursue at each level. This yields an algorithm for
determining a witness, but not a direct witness itself.

94

http://creativecommons.org/licenses/by-sa/2.5/

We can do better (if we accept complicated witness)

� Theorem 271 Let κ(n) := max({C(f) | f : Bn → B}), then κ ∈ O(2n).

� Proof: we show that κ(n) ≤ 2n + d by induction on n

P.1.1 base case: We count the operators in all members: B → B = {f1, f0, fx1 , fx1},
so κ(1) = 1 and thus κ(1) ≤ 21 + d for d = 0.

P.1.2 step case:

P.1.2.1 given f ∈ (Bn → B), then f(a1, . . . , an) = 1, iff either

� an = 0 and f(a1, . . . , an−1, 0) = 1 or

� an = 1 and f(a1, . . . , an−1, 1) = 1

P.1.2.2 Let fi(a1, . . . , an−1) := f(a1, . . . , an−1, i) for i ∈ {0, 1},
P.1.2.3 then there are ei ∈ Ebool, such that fi = fei and C(ei) = 2n−1 + d. (IH)

P.1.2.4 thus f = fe, where e := xn ∗ e0 + xn ∗ e1 and κ(n) = 2 · 2n−1 + 2d+ 4.

c©: Michael Kohlhase 151

The next proof is quite a lot of work, so we will first sketch the overall structure of the proof,
before we look into the details. The main idea is to estimate a cleverly chosen quantity from
above and below, to get an inequality between the lower and upper bounds (the quantity itself is
irrelevant except to make the proof work).

A Lower Bound for the Cost of BF with n Variables

� Theorem 272 κ ∈ Ω(2n

log2(n))

� Proof: Sketch (counting again!)

P.1 the cost of a function is based on the cost of expressions.

P.2 consider the set En of expressions with n variables of cost no more than κ(n).

P.3 find an upper and lower bound for #(En): (Φ(n) ≤ #(En) ≤ Ψ(κ(n)))

P.4 in particular: Φ(n) ≤ Ψ(κ(n))

P.5 solving for κ(n) yields κ(n) ≥ Ξ(n) so κ ∈ Ω(2n

log2(n))

� We will expand P.3 and P.5 in the next slides

c©: Michael Kohlhase 152

95

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

A Lower Bound For κ(n)-Cost Expressions

� Definition 273 En := {e ∈ Ebool | e has n variables and C(e) ≤ κ(n)}

� Lemma 274 #(En) ≥ #(Bn → B)

� Proof:

P.1 For all fn ∈ (Bn → B) we have C(fn) ≤ κ(n)

P.2 C(fn) = min({C(e) | fe = fn}) choose efn with C(efn) = C(fn)

P.3 all distinct: if eg ≡ eh, then feg = feh and thus g = h.

� Corollary 275 #(En) ≥ 2(2n)

� Proof: consider the n dimensional truth tables

P.1 2n entries that can be either 0 or 1, so 2(2n) possibilities

P.2 so #(Bn → B) = 2(2n)

c©: Michael Kohlhase 153

An Upper Bound For κ(n)-cost Expressions

� Idea: Estimate the number of Ebool strings that can be formed at a given cost by looking
at the length and alphabet size.

� Definition 276 Given a cost c let Λ(e) be the length of e considering variables as single
characters. We define

σ(c) := max({Λ(e) | e ∈ Ebool ∧ (C(e) ≤ c)})

� Lemma 277 σ(n) ≤ 5n for n > 0.

� Proof: by induction on n

P.1.1 base case: The cost 1 expressions are of the form (v◦w) and (−v), where v and
w are variables. So the length is at most 5.

P.1.2 step case: σ(n) = Λ((e1◦e2)) = Λ(e1) + Λ(e2) + 3, where C(e1) + C(e2) ≤ n− 1.

so σ(n) ≤ σ(i) + σ(j) + 3 ≤ 5 · C(e1) + 5 · C(e2) + 3 ≤ 5 · n− 1 + 5 = 5n

� Corollary 278 max({Λ(e) | e ∈ En}) ≤ 5 · κ(n)

c©: Michael Kohlhase 154

96

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

An Upper Bound For κ(n)-cost Expressions

� Idea: e ∈ En has at most n variables by definition.

� Let An := {x1, . . ., xn, 0, 1, ∗,+,−, (,)}, then #(An) = n+ 7

� Corollary 279 En ⊆
⋃5κ(n)
i=0 An

i and #(En) ≤ (n+7)5κ(n)+1−1
n+7

� Proof: Note that the Aj are disjoint for distinct n.

#(

5κ(n)⋃
i=0

Ani
) =

5κ(n)∑
i=0

#(Ani) =

5κ(n)∑
i=0

#(Ani) =

5κ(n)∑
i=0

(n + 7)i =
(n + 7)5κ(n)+1 − 1

n + 7

c©: Michael Kohlhase 155

Solving for κ(n)

� (n+7)5κ(n)+1−1
n+7 ≥ 2(2n)

� (n+ 7)
5κ(n)+1 ≥ 2(2n) (as (n+ 7)

5κ(n)+1 ≥ (n+7)5κ(n)+1−1
n+7)

� 5κ(n) + 1 · log2(n+ 7) ≥ 2n (as loga(x) = logb(x) · loga(b))

� 5κ(n) + 1 ≥ 2n

log2(n+7)

� κ(n) ≥ 1/5 · (2n)
log2(n+7) − 1

� κ(n) ∈ Ω(2n

log2(n))

c©: Michael Kohlhase 156

6.4 The Quine-McCluskey Algorithm

After we have studied the worst-case complexity of Boolean expressions that realize given Boolean
functions, let us return to the question of computing realizing Boolean expressions in practice. We
will again restrict ourselves to the subclass of Boolean polynomials, but this time, we make sure
that we find the optimal representatives in this class.

The first step in the endeavor of finding minimal polynomials for a given Boolean function is to
optimize monomials for this task. We have two concerns here. We are interested in monomials
that contribute to realizing a given Boolean function f (we say they imply f or are implicants),
and we are interested in the cheapest among those that do. For the latter we have to look at a way
to make monomials cheaper, and come up with the notion of a sub-monomial, i.e. a monomial
that only contains a subset of literals (and is thus cheaper.)

97

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

�

Constructing Minimal Polynomials: Prime Implicants

� Definition 280 We will use the following ordering on B: F ≤ T (remember 0 ≤ 1)

and say that that a monomial M ′ dominates a monomial M , iff fM (c) ≤ fM ′(c) for all
c ∈ Bn. (write M ≤M ′)

� Definition 281 A monomial M implies a Boolean function f : Bn → B (M is an
implicant of f ; write M � f), iff fM (c) ≤ f(c) for all c ∈ Bn′ .

� Definition 282 Let M = L1 · · ·Ln and M ′ = L′1 · · ·L′n′ be monomials, then M ′ is
called a sub-monomial of M (write M ′ ⊂M), iff M ′ = 1 or

� for all j ≤ n′, there is an i ≤ n, such that L′j = Li and

� there is an i ≤ n, such that Li 6= L′j for all j ≤ n

In other words: M is a sub-monomial of M ′, iff the literals of M are a proper subset of
the literals of M ′.

c©: Michael Kohlhase 157

With these definitions, we can convince ourselves that sub-monomials are dominated by their
super-monomials. Intuitively, a monomial is a conjunction of conditions that are needed to make
the Boolean function f true; if we have fewer of them, then we cannot approximate the truth-
conditions of f sufficiently. So we will look for monomials that approximate f well enough and
are shortest with this property: the prime implicants of f .

Constructing Minimal Polynomials: Prime Implicants

� Lemma 283 If M ′ ⊂M , then M ′ dominates M .

� Proof:

P.1 Given c ∈ Bn with fM (c) = T, we have, fLi(c) = T for all literals in M .

P.2 As M ′ is a sub-monomial of M , then fL′j (c) = T for each literal L′j of M ′.

P.3 Therefore, fM ′(c) = T.

� Definition 284 An implicant M of f is a prime implicant of f iff no sub-monomial of
M is an implicant of f .

c©: Michael Kohlhase 158

The following Theorem verifies our intuition that prime implicants are good candidates for con-
structing minimal polynomials for a given Boolean function. The proof is rather simple (if no-
tationally loaded). We just assume the contrary, i.e. that there is a minimal polynomial p that
contains a non-prime-implicant monomial Mk, then we can decrease the cost of the of p while still
inducing the given function f . So p was not minimal which shows the assertion.

98

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Prime Implicants and Costs

� Theorem 285 Given a Boolean function f 6= λx.F and a Boolean polynomial fp ≡ f
with minimal cost, i.e., there is no other polynomial p′ ≡ p such that C(p′) < C(p).
Then, p solely consists of prime implicants of f .

� Proof: The theorem obviously holds for f = λx.T.

P.1 For other f , we have f ≡ fp where p :=
∑n
i=1Mi for some n ≥ 1 monomials Mi.

P.2 Nos, suppose that Mi is not a prime implicant of f , i.e., M ′ � f for some M ′ ⊂Mk

with k < i.

P.3 Let us substitute Mk by M ′: p′ :=
∑k−1
i=1 Mi +M ′ +

∑n
i=k+1Mi

P.4 We have C(M ′) < C(Mk) and thus C(p′) < C(p) (def of sub-monomial)

P.5 Furthermore Mk ≤M ′ and hence that p ≤ p′ by Lemma 283.

P.6 In addition, M ′ ≤ p as M ′ � f and f = p.

P.7 similarly: Mi ≤ p for all Mi. Hence, p′ ≤ p.

P.8 So p′ ≡ p and fp ≡ f . Therefore, p is not a minimal polynomial.

c©: Michael Kohlhase 159

This theorem directly suggests a simple generate-and-test algorithm to construct minimal poly-
nomials. We will however improve on this using an idea by Quine and McCluskey. There are of
course better algorithms nowadays, but this one serves as a nice example of how to get from a
theoretical insight to a practical algorithm.

The Quine/McCluskey Algorithm (Idea)

� Idea: use this theorem to search for minimal-cost polynomials

� Determine all prime implicants (sub-algorithm QMC1)

� choose the minimal subset that covers f (sub-algorithm QMC2)

� Idea: To obtain prime implicants,

� start with the DNF monomials (they are implicants by construction)

� find submonomials that are still implicants of f .

� Idea: Look at polynomials of the form p := mxi +mxi (note: p ≡ m)

c©: Michael Kohlhase 160

Armed with the knowledge that minimal polynomials must consist entirely of prime implicants,
we can build a practical algorithm for computing minimal polynomials: In a first step we compute
the set of prime implicants of a given function, and later we see whether we actually need all of
them.

For the first step we use an important observation: for a given monomial m, the polynomials
mx+mx are equivalent, and in particular, we can obtain an equivalent polynomial by replace the
latter (the partners) by the former (the resolvent). That gives the main idea behind the first part
of the Quine-McCluskey algorithm. Given a Boolean function f , we start with a polynomial for f :
the disjunctive normal form, and then replace partners by resolvents, until that is impossible.

99

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

The algorithm QMC1, for determining Prime Implicants

� Definition 286 Let M be a set of monomials, then

� R(M) := {m | (mx) ∈M ∧ (mx) ∈M} is called the set of resolvents of M

� R̂(M) := {m ∈M | m has a partner in M} (nxi and nxi are partners)

� Definition 287 (Algorithm) Given f : Bn → B

� let M0 := DNF(f) and for all j > 0 compute (DNF as set of monomials)

� Mj := R(Mj−1) (resolve to get sub-monomials)

� Pj := Mj−1\R̂(Mj−1) (get rid of redundant resolution partners)

� terminate when Mj = ∅, return Pprime :=
⋃n
j=1 Pj

c©: Michael Kohlhase 161

We will look at a simple example to fortify our intuition.

Example for QMC1
x1 x2 x3 f monomials

F F F T x10 x20 x30

F F T T x10 x20 x31

F T F F
F T T F

T F F T x11 x20 x30

T F T T x11 x20 x31

T T F F

T T T T x11 x21 x31

Pprime =

3⋃
j=1

Pj = {x1x3, x2}

M0 = {x1 x2 x3︸ ︷︷ ︸
=: e01

, x1 x2 x3︸ ︷︷ ︸
=: e02

, x1 x2 x3︸ ︷︷ ︸
=: e03

, x1 x2 x3︸ ︷︷ ︸
=: e04

, x1 x2 x3︸ ︷︷ ︸
=: e05

}

M1 = { x1 x2︸ ︷︷ ︸
R(e01,e

0
2)

=: e11

, x2 x3︸ ︷︷ ︸
R(e01,e

0
3)

=: e12

, x2 x3︸ ︷︷ ︸
R(e02,e

0
4)

=: e13

, x1 x2︸ ︷︷ ︸
R(e03,e

0
4)

=: e14

, x1 x3︸ ︷︷ ︸
R(e04,e

0
5)

=: e15

}

P1 = ∅

M2 = { x2︸︷︷︸
R(e11,e

1
4)

, x2︸︷︷︸
R(e12,e

1
3)

}

P2 = {x1 x3}

M3 = ∅

P3 = {x2}

� But: even though the minimal polynomial only consists of prime implicants, it need not
contain all of them

c©: Michael Kohlhase 162

We now verify that the algorithm really computes what we want: all prime implicants of the
Boolean function we have given it. This involves a somewhat technical proof of the assertion
below. But we are mainly interested in the direct consequences here.

100

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Properties of QMC1

� Lemma 288 (proof by simple (mutual) induction)

1. all monomials in Mj have exactly n− j literals.

2. Mj contains the implicants of f with n− j literals.

3. Pj contains the prime implicants of f with n− j + 1 for j > 0 . literals

� Corollary 289 QMC1 terminates after at most n rounds.

� Corollary 290 Pprime is the set of all prime implicants of f .

c©: Michael Kohlhase 163

Note that we are not finished with our task yet. We have computed all prime implicants of a given
Boolean function, but some of them might be un-necessary in the minimal polynomial. So we
have to determine which ones are. We will first look at the simple brute force method of finding
the minimal polynomial: we just build all combinations and test whether they induce the right
Boolean function. Such algorithms are usually called generate-and-test algorithms.

They are usually simplest, but not the best algorithms for a given computational problem. This
is also the case here, so we will present a better algorithm below.

Algorithm QMC2: Minimize Prime Implicants Polynomial

� Definition 291 (Algorithm) Generate and test!

� enumerate Sp ⊆ Pprime, i.e., all possible combinations of prime implicants of f ,

� form a polynomial ep as the sum over Sp and test whether fep = f and the cost of
ep is minimal

� Example 292 Pprime = {x1x3, x2}, so ep ∈ {1, x1x3, x2, x1x3 + x2}.

� Only fx1 x3+x2 ≡ f , so x1x3 + x2 is the minimal polynomial

� Complaint: The set of combinations (power set) grows exponentially

c©: Michael Kohlhase 164

101

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

�

A better Mouse-trap for QMC2: The Prime Implicant Table

� Definition 293 Let f : Bn → B be a Boolean function, then the PIT consists of

� a left hand column with all prime implicants pi of f

� a top row with all vectors x ∈ Bn with f(x) = T

� a central matrix of all fpi(x)

� Example 294
FFF FFT TFF TFT TTT

x1x3 F F F T T
x2 T T T T F

� Definition 295 A prime implicant p is essential for f iff

� there is a c ∈ Bn such that fp(c) = T and

� fq(c) = F for all other prime implicants q.

Note: A prime implicant is essential, iff there is a column in the PIT, where it has a T
and all others have F.

c©: Michael Kohlhase 165

Essential Prime Implicants and Minimal Polynomials

� Theorem 296 Let f : Bn → B be a Boolean function, p an essential prime implicant
for f , and pmin a minimal polynomial for f , then p ∈ pmin.

� Proof: by contradiction: let p /∈ pmin

P.1 We know that f = fpmin and pmin =
∑n
j=1 pj for some n ∈ N and prime implicants

pj .

P.2 so for all c ∈ Bn with f(c) = T there is a j ≤ n with fpj (c) = T.

P.3 so p cannot be essential

c©: Michael Kohlhase 166

Let us now apply the optimized algorithm to a slightly bigger example.

A complex Example for QMC (Function and DNF)

x1 x2 x3 x4 f monomials
F F F F T x10 x20 x30 x40

F F F T T x10 x20 x30 x41

F F T F T x10 x20 x31 x40

F F T T F
F T F F F
F T F T T x10 x21 x30 x41

F T T F F
F T T T F
T F F F F
T F F T F
T F T F T x11 x20 x31 x40

T F T T T x11 x20 x31 x41

T T F F F
T T F T F
T T T F T x11 x21 x31 x40

T T T T T x11 x21 x31 x41

c©: Michael Kohlhase 167

102

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

A complex Example for QMC (QMC1)
M0 = {x10 x20 x30 x40, x10 x20 x30 x41, x10 x20 x31 x40,

x10 x21 x30 x41, x11 x20 x31 x40, x11 x20 x31 x41,
x11 x21 x31 x40, x11 x21 x31 x41}

M1 = {x10 x20 x30, x10 x20 x40, x10 x30 x41, x11 x20 x31,
x11 x21 x31, x11 x31 x41, x20 x31 x40, x11 x31 x40}

P1 = ∅

M2 = {x11 x31}
P2 = {x10 x20 x30, x10 x20 x40, x10 x30 x41, x20 x31 x40}

M3 = ∅
P3 = {x11 x31}

Pprime = {x1x2x3, x1x2x4, x1x3x4, x2x3x4, x1x3}

c©: Michael Kohlhase 168

A better Mouse-trap for QMC1: optimizing the data structure

� Idea: Do the calculations directly on the DNF table

x1 x2 x3 x4 monomials
F F F F x10 x20 x30 x40

F F F T x10 x20 x30 x41

F F T F x10 x20 x31 x40

F T F T x10 x21 x30 x41

T F T F x11 x20 x31 x40

T F T T x11 x20 x31 x41

T T T F x11 x21 x31 x40

T T T T x11 x21 x31 x41

� Note: the monomials on the right hand side are only for illustration

� Idea: do the resolution directly on the left hand side

� Find rows that differ only by a single entry. (first two rows)

� resolve: replace them by one, where that entry has an X (canceled literal)

� Example 297 〈F,F,F,F〉 and 〈F,F,F,T〉 resolve to 〈F,F,F, X〉.

c©: Michael Kohlhase 169

103

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

A better Mouse-trap for QMC1: optimizing the data structure

� One step resolution on the table
x1 x2 x3 x4 monomials

F F F F x10 x20 x30 x40

F F F T x10 x20 x30 x41

F F T F x10 x20 x31 x40

F T F T x10 x21 x30 x41

T F T F x11 x20 x31 x40

T F T T x11 x20 x31 x41

T T T F x11 x21 x31 x40

T T T T x11 x21 x31 x41

;

x1 x2 x3 x4 monomials

F F F X x10 x20 x30

F F X F x10 x20 x40

F X F T x10 x30 x41

T F T X x11 x20 x31

T T T X x11 x21 x31

T X T T x11 x31 x41

X F T F x20 x31 x40

T X T F x11 x31 x40

� Repeat the process until no more progress can be made

x1 x2 x3 x4 monomials

F F F X x10 x20 x30

F F X F x10 x20 x40

F X F T x10 x30 x41

T X T X x11 x31

X F T F x20 x31 x40

� This table represents the prime implicants of f

c©: Michael Kohlhase 170

A complex Example for QMC (QMC1)

� The PIT:

FFFF FFFT FFTF FTFT TFTF TFTT TTTF TTTT

x1 x2 x3 T T F F F F F F
x1 x2 x4 T F T F F F F F
x1 x3 x4 F T F T F F F F
x2 x3 x4 F F T F T F F F
x1 x3 F F F F T T T T

� x1x2x3 is not essential, so we are left with
FFFF FFFT FFTF FTFT TFTF TFTT TTTF TTTT

x1 x2 x4 T F T F F F F F
x1 x3 x4 F T F T F F F F
x2 x3 x4 F F T F T F F F
x1 x3 F F F F T T T T

� here x2, x3, x4 is not essential, so we are left with
FFFF FFFT FFTF FTFT TFTF TFTT TTTF TTTT

x1 x2 x4 T F T F F F F F
x1 x3 x4 F T F T F F F F
x1 x3 F F F F T T T T

� all the remaining ones (x1x2x4, x1x3x4, and x1x3) are essential

� So, the minimal polynomial of f is x1x2x4 + x1x3x4 + x1x3.

c©: Michael Kohlhase 171

* The following section about KV-Maps was only taught until fall 2008, it is included here just
for reference*

6.5 A simpler Method for finding Minimal Polynomials

104

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Simple Minimization: Karnaugh-Veitch Diagram

� The QMC algorithm is simple but tedious (not for the back of an envelope)

� KV-maps provide an efficient alternative for up to 6 variables

� Definition 298 A Karnaugh-Veitch map (KV-map) is a rectangular table filled with
truth values induced by a Boolean function. Minimal polynomials can be read of KV-
maps by systematically grouping equivalent table cells into rectangular areas of size 2k.

� Example 299 (Common KV-map schemata)

2 vars 3 vars 4 vars

A A

B

B

AB AB AB AB

C

C

AB AB AB AB

CD m0 m4 m12 m8

CD m1 m5 m13 m9

CD m3 m7 m15 m11

CD m2 m6 m14 m10

square ring torus
2/4-groups 2/4/8-groups 2/4/8/16-groups

� Note: Note that the values in are ordered, so that exactly one variable flips sign between
adjacent cells (Gray Code)

c©: Michael Kohlhase 172

105

http://creativecommons.org/licenses/by-sa/2.5/

KV-maps Example: E(6, 8, 9, 10, 11, 12, 13, 14)

Example 300

A B C D V

0 F F F F F
1 F F F T F
2 F F T F F
3 F F T T F
4 F T F F F
5 F T F T F
6 F T T F T
7 F T T T F
8 T F F F T
9 T F F T T
10 T F T F T
11 T F T T T
12 T T F F T
13 T T F T T
14 T T T F T
15 T T T T F

� The corresponding KV-map:

AB AB AB AB

CD F F T T

CD F F T T

CD F F F T

CD F T T T

� in the red/brown group

� A does not change, so include A

� B changes, so do not include it

� C does not change, so include C

� D changes, so do not include it

So the monomial is AC

� in the green/brown group we have AB

� in the blue group we have BC D

� The minimal polynomial for E(6, 8, 9, 10, 11, 12, 13, 14) is AB +AC +BC D

c©: Michael Kohlhase 173

KV-maps Caveats

� groups are always rectangular of size 2k (no crooked shapes!)

� a group of size 2k induces a monomial of size n− k (the bigger the better)

� groups can straddle vertical borders for three variables

� groups can straddle horizontal and vertical borders for four variables

� picture the the n-variable case as a n-dimensional hypercube!

c©: Michael Kohlhase 174

106

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

7 Propositional Logic

Boolean Expressions and Propositional Logic

7.1 Boolean Expressions and Propositional Logic

We will now look at Boolean expressions from a different angle. We use them to give us a very
simple model of a representation language for

• knowledge — in our context mathematics, since it is so simple, and

• argumentation — i.e. the process of deriving new knowledge from older knowledge

Still another Notation for Boolean Expressions

� Idea: get closer to MathTalk

� Use ∨, ∧, ¬, ⇒, and ⇔ directly (after all, we do in MathTalk)

� construct more complex names (propositions) for variables
(Use ground terms of sort B in an ADT)

� Definition 301 Let Σ = 〈S,D〉 be an abstract data type, such that B ∈ S and
[¬ : B→ B], [∨ : B× B→ B] ∈ D, then we call the set T gB (Σ) of ground Σ-terms of
sort B a formulation of Propositional Logic.

� We will also call this formulation Predicate Logic without Quantifiers and denote it with
PLNQ.

� Definition 302 Call terms in T gB (Σ) without ∨, ∧, ¬, ⇒, and ⇔ atoms.(write A(Σ))

� Note: Formulae of propositional logic “are” Boolean Expressions

� replace A⇔ B by (A⇒ B) ∧ (B⇒ A) and A⇒ B by ¬A ∨B. . .

� Build print routine ·̂ with Â ∧B = Â ∗ B̂, and ¬̂A = Â and that turns atoms into
variable names. (variables and atoms are countable)

c©: Michael Kohlhase 175

Conventions for Brackets in Propositional Logic

� we leave out outer brackets: A⇒ B abbreviates (A⇒ B).

� implications are right associative: A1 ⇒ · · · ⇒ An ⇒ C abbreviates A1 ⇒
(· · · ⇒ (· · · ⇒ (An ⇒ C)))

� a stands for a left bracket whose partner is as far right as is consistent with existing
brackets (A⇒ C ∧D = A⇒ (C ∧D))

c©: Michael Kohlhase 176

We will now use the distribution of values of a Boolean expression under all (variable) assignments
to characterize them semantically. The intuition here is that we want to understand theorems,
examples, counterexamples, and inconsistencies in mathematics and everyday reasoning6.

6Here (and elsewhere) we will use mathematics (and the language of mathematics) as a test tube for under-
standing reasoning, since mathematics has a long history of studying its own reasoning processes and assumptions.

107

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

The idea is to use the formal language of Boolean expressions as a model for mathematical
language. Of course, we cannot express all of mathematics as Boolean expressions, but we can at
least study the interplay of mathematical statements (which can be true or false) with the copula
“and”, “or” and “not”.

Semantic Properties of Boolean Expressions

� Definition 303 Let M := 〈U , I〉 be our model, then we call e

� true under ϕ in M, iff Iϕ(e) = T (write M |=ϕ e)

� false under ϕ in M, iff Iϕ(e) = F (write M 6|=ϕ e)

� satisfiable in M, iff Iϕ(e) = T for some assignment ϕ

� valid in M, iff M |=ϕ e for all assignments ϕ (write M |= e)

� falsifiable in M, iff Iϕ(e) = F for some assignments ϕ

� unsatisfiable in M, iff Iϕ(e) = F for all assignments ϕ

� Example 304 x ∨ x is satisfiable and falsifiable.

� Example 305 x ∨ ¬x is valid and x ∧ ¬x is unsatisfiable.

� Notation 306 (alternative) Write [[e]]
M
ϕ for Iϕ(e), if M = 〈U , I〉.

(and [[e]]
M, if e is ground, and [[e]], if M is clear)

� Definition 307 (Entailment) (aka. logical consequence)

We say that e entails f (e |= f), iff Iϕ(f) = T for all ϕ with Iϕ(e) = T
(i.e. all assignments that make e true also make f true)

c©: Michael Kohlhase 177

Let us now see how these semantic properties model mathematical practice.
In mathematics we are interested in assertions that are true in all circumstances. In our model

of mathematics, we use variable assignments to stand for circumstances. So we are interested
in Boolean expressions which are true under all variable assignments; we call them valid. We
often give examples (or show situations) which make a conjectured assertion false; we call such
examples counterexamples, and such assertions “falsifiable”. We also often give examples for
certain assertions to show that they can indeed be made true (which is not the same as being
valid yet); such assertions we call “satisfiable”. Finally, if an assertion cannot be made true in any
circumstances we call it “unsatisfiable”; such assertions naturally arise in mathematical practice in
the form of refutation proofs, where we show that an assertion (usually the negation of the theorem
we want to prove) leads to an obviously unsatisfiable conclusion, showing that the negation of the
theorem is unsatisfiable, and thus the theorem valid.

108

http://creativecommons.org/licenses/by-sa/2.5/

Example: Propositional Logic with ADT variables

� Idea: We use propositional logic to express things about the world
(PLNQ =̂ Predicate Logic without Quantifiers)

� Abstract Data Type: 〈{B, I}, {. . ., [love : I× I→ B], [bill : I], [mary : I], . . .}〉

� ground terms:

� g1 := love(bill,mary) (how nice)

� g2 := love(mary, bill) ∧ ¬love(bill,mary) (how sad)

� g3 := love(bill,mary) ∧ love(mary, john)⇒ hate(bill, john) (how natural)

� Semantics: by mapping into known stuff, (e.g. I to persons B to {T,F})

� Idea: Import semantics from Boolean Algebra (atoms “are” variables)

� only need variable assignment ϕ : A(Σ)→ {T,F}

� Example 308 Iϕ(love(bill,mary) ∧ (love(mary, john)⇒ hate(bill, john))) = T if
ϕ(love(bill,mary)) = T, ϕ(love(mary, john)) = F, and ϕ(hate(bill, john)) = T

� Example 309 g1 ∧ g3 ∧ love(mary, john) |= hate(bill, john)

c©: Michael Kohlhase 178

What is Logic?

� formal languages, inference and their relation with the world

� Formal language FL: set of formulae (2 + 3/7, ∀x.x+ y = y + x)

� Formula: sequence/tree of symbols (x, y, f, g, p, 1, π,∈,¬, ∧ ∀,∃)

� Models: things we understand (e.g. number theory)

� Interpretation: maps formulae into models ([[three plus five]] = 8)

� Validity: M |= A, iff [[A]]
M

= T (five greater three is valid)

� Entailment: A |= B, iff M |= B for all M |= A. (generalize to H |= A)

� Inference: rules to transform (sets of) formulae (A,A⇒ B ` B)

� Syntax: formulae, inference (just a bunch of symbols)

� Semantics: models, interpr., validity, entailment (math. structures)

� Important Question: relation between syntax and semantics?

c©: Michael Kohlhase 179

So logic is the study of formal representations of objects in the real world, and the formal state-
ments that are true about them. The insistence on a formal language for representation is actually
something that simplifies life for us. Formal languages are something that is actually easier to
understand than e.g. natural languages. For instance it is usually decidable, whether a string is
a member of a formal language. For natural language this is much more difficult: there is still
no program that can reliably say whether a sentence is a grammatical sentence of the English
language.

109

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

We have already discussed the meaning mappings (under the monicker “semantics”). Meaning
mappings can be used in two ways, they can be used to understand a formal language, when we
use a mapping into “something we already understand”, or they are the mapping that legitimize
a representation in a formal language. We understand a formula (a member of a formal language)
A to be a representation of an object O, iff [[A]] = O.

However, the game of representation only becomes really interesting, if we can do something with
the representations. For this, we give ourselves a set of syntactic rules of how to manipulate the
formulae to reach new representations or facts about the world.

Consider, for instance, the case of calculating with numbers, a task that has changed from a difficult
job for highly paid specialists in Roman times to a task that is now feasible for young children.
What is the cause of this dramatic change? Of course the formalized reasoning procedures for
arithmetic that we use nowadays. These calculi consist of a set of rules that can be followed
purely syntactically, but nevertheless manipulate arithmetic expressions in a correct and fruitful
way. An essential prerequisite for syntactic manipulation is that the objects are given in a formal
language suitable for the problem. For example, the introduction of the decimal system has been
instrumental to the simplification of arithmetic mentioned above. When the arithmetical calculi
were sufficiently well-understood and in principle a mechanical procedure, and when the art of
clock-making was mature enough to design and build mechanical devices of an appropriate kind,
the invention of calculating machines for arithmetic by Wilhelm Schickard (1623), Blaise Pascal
(1642), and Gottfried Wilhelm Leibniz (1671) was only a natural consequence.

We will see that it is not only possible to calculate with numbers, but also with representations
of statements about the world (propositions). For this, we will use an extremely simple example;
a fragment of propositional logic (we restrict ourselves to only one logical connective) and a small
calculus that gives us a set of rules how to manipulate formulae.

Logical Systems and Calculi

7.2 Logical Systems and Calculi

110

A simple System: Prop. Logic with Hilbert-Calculus

� Formulae: built from prop. variables: P,Q,R, . . . and implication: ⇒

� Semantics: Iϕ(P) = ϕ(P) and Iϕ(A⇒ B) = T, iff Iϕ(A) = F or Iϕ(B) = T.

� K := P ⇒ Q⇒ P , S := (P ⇒ Q⇒ R)⇒ (P ⇒ Q)⇒ P ⇒ R

� A⇒ B A

B
MP

A

[B/X](A)
Subst

� Let us look at a H0 theorem (with a proof)

� C⇒ C (Tertium non datur)

� Proof:

P.1 (C⇒ (C⇒ C)⇒ C)⇒ (C⇒ C⇒ C)⇒ C ⇒ C
(S with [C/P], [C⇒ C/Q], [C/R])

P.2 C⇒ (C⇒ C)⇒ C (K with [C/P], [C⇒ C/Q])

P.3 (C⇒ C⇒ C)⇒ C⇒ C (MP on P.1 and P.2)

P.4 C⇒ C⇒ C (K with [C/P], [C/Q])

P.5 C⇒ C (MP on P.3 and P.4)

P.6 We have shown that ∅ `H0 C⇒ C (i.e. C⇒ C is a theorem) (is is also valid?)

c©: Michael Kohlhase 180

This is indeed a very simple logic, that with all of the parts that are necessary:

• A formal language: expressions built up from variables and implications.

• A semantics: given by the obvious interpretation function

• A calculus: given by the two axioms and the two inference rules.

The calculus gives us a set of rules with which we can derive new formulae from old ones. The
axioms are very simple rules, they allow us to derive these two formulae in any situation. The
inference rules are slightly more complicated: we read the formulae above the horizontal line as
assumptions and the (single) formula below as the conclusion. An inference rule allows us to derive
the conclusion, if we have already derived the assumptions.

Now, we can use these inference rules to perform a proof. A proof is a sequence of formulae that
can be derived from each other. The representation of the proof in the slide is slightly compactified
to fit onto the slide: We will make it more explicit here. We first start out by deriving the formula

(P ⇒ Q⇒ R)⇒ (P ⇒ Q)⇒ P ⇒ R (1)

which we can always do, since we have an axiom for this formula, then we apply the rule subst,
where A is this result, B is C, and X is the variable P to obtain

(C⇒ Q⇒ R)⇒ (C⇒ Q)⇒ C⇒ R (2)

Next we apply the rule subst to this where B is C ⇒ C and X is the variable Q this time to
obtain

(C⇒ (C⇒ C)⇒ R)⇒ (C⇒ C⇒ C)⇒ C⇒ R (3)

111

http://creativecommons.org/licenses/by-sa/2.5/

And again, we apply the rule subst this time, B is C and X is the variable R yielding the first
formula in our proof on the slide. To conserve space, we have combined these three steps into one
in the slide. The next steps are done in exactly the same way.

The name MP comes from the Latin name “modus ponens” (the “mode of putting” [new facts]),
this is one of the classical syllogisms discovered by the ancient Greeks. The name Subst is just
short for substitution, since the rule allows to instantiate variables in formulae with arbitrary
other formulae.

We will now generalize what we have seen in the example so that we can talk about calculi and
proofs in other situations and see what was specific to the example.

Derivations and Proofs

� Definition 310 A derivation of a formula C from a set H of hypotheses (write H ` C)
is a sequence A1, . . . ,Am of formulae, such that

� Am = C (derivation culminates in C)

� for all (1 ≤ i ≤ m), either Ai ∈ H (hypothesis)

or there is an inference rule
Al1 · · · ; Alk

Ai
, where lj < i for all j ≤ k.

� Example 311 In the propositional calculus of natural deduction we have A ` B⇒ A:
the sequence is A⇒ B⇒ A,A,B⇒ A

Ax
A⇒ B⇒ A A

⇒ E
B⇒ A

� Definition 312 A derivation ∅ `C A is called a proof of A and if one exists (`C A)
then A is called a C-theorem.

� Definition 313 an inference rule I is called admissible in C, if the extension of C by I
does not yield new theorems.

c©: Michael Kohlhase 181

With formula schemata we mean representations of sets of formulae. In our example above, we
used uppercase boldface letters as (meta)-variables for formulae. For instance, the the “modus
ponens” inference rule stands for

As an axiom does not have assumptions, it can be added to a proof at any time. This is just
what we did with the axioms in our example proof.

In general formulae can be used to represent facts about the world as propositions; they have
a semantics that is a mapping of formulae into the real world (propositions are mapped to truth
values.) We have seen two relations on formulae: the entailment relation and the deduction
relation. The first one is defined purely in terms of the semantics, the second one is given by a
calculus, i.e. purely syntactically.

The main question we must ask ourselves: is there any relation between these relations?
Ideally, both relations would be the same, then the calculus would allow us to infer all facts

that can be represented in the given formal language and that are true in the real world, and only
those. In other words, our representation and inference is faithful to the world.

A consequence of this is that we can rely on purely syntactical means to make predictions
about the world. Computers rely on formal representations of the world; if we want to solve a
problem on our computer, we first represent it in the computer (as data structures, which can be
seen as a formal language) and do syntactic manipulations on these structures (a form of calculus).
Now, if the provability relation induced by the calculus and the validity relation coincide (this will

112

http://creativecommons.org/licenses/by-sa/2.5/

be quite difficult to establish in general), then the solutions of the program will be correct, and
we will find all possible ones.

Of course, the logics we have studied so far are very simple, and not able to express interesting
facts about the world, but we will study them as a simple example of the fundamental problem of
Computer Science: How do the formal representations correlate with the real world.

Properties of Calculi (Theoretical Logic)

� Correctness: (provable implies valid)

� H ` B implies H |= B (equivalent: ` A implies |=A)

� Completeness: (valid implies provable)

� H |= B implies H ` B (equivalent: |=A implies ` A)

� Goal: ` A iff |=A (provability and validity coincide)

� To TRUTH through PROOF (CALCULEMUS [Leibniz ∼1680])

c©: Michael Kohlhase 182

Within the world of logics, one can derive new propositions (the conclusions, here: Socrates is
mortal) from given ones (the premises, here: Every human is mortal and Sokrates is human).
Such derivations are proofs.

Logics can describe the internal structure of real-life facts; e.g. individual things, actions, prop-
erties. A famous example, which is in fact as old as it appears, is illustrated in the slide below.

If a logic is correct, the conclusions one can prove are true (= hold in the real world) whenever
the premises are true. This is a miraculous fact (think about it!)

113

http://creativecommons.org/licenses/by-sa/2.5/

The miracle of logics

Purely formal derivations are true in the real world!
c©: Michael Kohlhase 183

7.3 Proof Theory for the Hilbert Calculus

We now show one of the meta-properties (correctness) for the Hilbert calculus H0. The statement
of the result is rather simple: it just says that the set of provable formulae is a subset of the set of
valid formulae. In other words: If a formula is provable, then it must be valid (a rather comforting
property for a calculus).

H0 is correct (first version)

� Theorem 314 ` A implies |=A for all propositions A.

� Proof: show by induction over proof length

P.1 Axioms are valid (we already know how to do this!)

P.2 inference rules preserve validity (let’s think)

P.2.1 Subst: complicated, see next slide

P.2.2 MP:

P.2.2.1 Let A⇒ B be valid, and ϕ : Vo → {T,F} arbitrary

P.2.2.2 then Iϕ(A) = F or Iϕ(B) = T (by definition of ⇒).

P.2.2.3 Since A is valid, Iϕ(A) = T 6= F, so Iϕ(B) = T.

P.2.2.4 As ϕ was arbitrary, B is valid.

c©: Michael Kohlhase 184

To complete the proof, we have to prove two more things. The first one is that the axioms are
valid. Fortunately, we know how to do this: we just have to show that under all assignments, the
axioms are satisfied. The simplest way to do this is just to use truth tables.

114

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

H0 axioms are valid
� Lemma 315 The H0 axioms are valid.

� Proof: We simply check the truth tables

P.1

P Q Q⇒ P P ⇒ Q⇒ P
F F T T
F T F T
T F T T
T T T T

P.2

P Q R A := P ⇒ Q⇒ R B := P ⇒ Q C := P ⇒ R A⇒ B⇒ C
F F F T T T T
F F T T T T T
F T F T T T T
F T T T T T T
T F F T F F T
T F T T F T T
T T F F T F T
T T T T T T T

c©: Michael Kohlhase 185

The next result encapsulates the soundness result for the substitution rule, which we still owe. We
will prove the result by induction on the structure of the formula that is instantiated. To get the
induction to go through, we not only show that validity is preserved under instantiation, but we
make a concrete statement about the value itself.

A proof by induction on the structure of the formula is something we have not seen before. It
can be justified by a normal induction over natural numbers; we just take property of a natural
number n to be that all formulae with n symbols have the property asserted by the theorem. The
only thing we need to realize is that proper subterms have strictly less symbols than the terms
themselves.

Substitution Value Lemma and Correctness

� Lemma 316 Let A and B be formulae, then Iϕ([B/X](A)) = Iψ(A), where ψ =
ϕ, [Iϕ(B)/X]

� Proof: by induction on the depth of A (number of nested ⇒ symbols)

P.1 We have to consider two cases

P.1.1 depth=0, then A is a variable, say Y .:

P.1.1.1 We have two cases

P.1.1.1.1 X = Y : then Iϕ([B/X](A)) = Iϕ([B/X](X)) = Iϕ(B) = ψ(X) = Iψ(X) =
Iψ(A).

P.1.1.1.2 X 6= Y : then Iϕ([B/X](A)) = Iϕ([B/X](Y)) = Iϕ(Y) = ϕ(Y) = ψ(Y) =
Iψ(Y) = Iψ(A).

P.1.2 depth> 0, then A = C⇒ D:

P.1.2.1 We have Iϕ([B/X](A)) = T, iff Iϕ([B/X](C)) = F or Iϕ([B/X](D)) = T.

P.1.2.2 This is the case, iff Iψ(C) = F or Iψ(D) = T by IH (C and D have smaller depth than
A).

P.1.2.3 In other words, Iψ(A) = Iψ(C⇒ D) = T, iff Iϕ([B/X](A)) = T by definition.

P.2 We have considered all the cases and proven the assertion.

c©: Michael Kohlhase 186

Armed with the substitution value lemma, it is quite simple to establish the correctness of the
substitution rule. We state the assertion rather succinctly: “Subst preservers validity”, which

115

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

means that if the assumption of the Subst rule was valid, then the conclusion is valid as well, i.e.
the validity property is preserved.

Correctness of Substitution

� Lemma 317 Subst preserves validity.

� Proof: We have to show that [B/X](A) is valid, if A is.

P.1 Let A be valid, B a formula, ϕ : Vo → {T,F} a variable assignment, and ψ :=
ϕ, [Iϕ(B)/X].

P.2 then Iϕ([B/X](A)) = Iϕ,[Iϕ(B)/X](A) = T, since A is valid.

P.3 As the argumentation did not depend on the choice of ϕ, [B/X](A) valid and we
have proven the assertion.

c©: Michael Kohlhase 187

The next theorem shows that the implication connective and the entailment relation are closely
related: we can move a hypothesis of the entailment relation into an implication assumption in the
conclusion of the entailment relation. Note that however close the relationship between implication
and entailment, the two should not be confused. The implication connective is a syntactic formula
constructor, whereas the entailment relation lives in the semantic realm. It is a relation between
formulae that is induced by the evaluation mapping.

The Entailment Theorem

� Theorem 318 If H,A |= B, then H |= (A⇒ B).

� Proof: We show that Iϕ(A⇒ B) = T for all assignments ϕ with Iϕ(H) = T whenever
H,A |= B

P.1 Let us assume there is an assignment ϕ, such that Iϕ(A⇒ B) = F.

P.2 Then Iϕ(A) = T and Iϕ(B) = F by definition.

P.3 But we also know that Iϕ(H) = T and thus Iϕ(B) = T, since H,A |= B.

P.4 This contradicts our assumption Iϕ(B) = T from above.

P.5 So there cannot be an assignment ϕ that Iϕ(A⇒ B) = F; in other words, A⇒ B
is valid.

c©: Michael Kohlhase 188

Now, we complete the theorem by proving the converse direction, which is rather simple.

116

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

The Entailment Theorem (continued)

� Corollary 319 H,A |= B, iff H |= (A⇒ B)

� Proof: In the light of the previous result, we only need to prove thatH,A |= B, whenever
H |= (A⇒ B)

P.1 To prove that H,A |= B we assume that Iϕ(H,A) = T.

P.2 In particular, Iϕ(A⇒ B) = T since H |= (A⇒ B).

P.3 Thus we have Iϕ(A) = F or Iϕ(B) = T.

P.4 The first cannot hold, so the second does, thus H,A |= B.

c©: Michael Kohlhase 189

The entailment theorem has a syntactic counterpart for some calculi. This result shows a close
connection between the derivability relation and the implication connective. Again, the two should
not be confused, even though this time, both are syntactic.

The main idea in the following proof is to generalize the inductive hypothesis from proving A⇒ B
to proving A⇒ C, where C is a step in the proof of B. The assertion is a special case then, since
B is the last step in the proof of B.

The Deduction Theorem

� Theorem 320 If H,A ` B, then H ` A⇒ B

� Proof: By induction on the proof length

P.1 Let C1, . . . ,Cm be a proof of B from the hypotheses H.

P.2 We generalize the induction hypothesis: For all l (1 ≤ i ≤ m) we construct proofs
H ` A⇒ Ci. (get A⇒ B for i = m)

P.3 We have to consider three cases

P.3.1 Case 1: Ci axiom or Ci ∈ H:

P.3.1.1 Then H ` Ci by construction and H ` Ci ⇒ A⇒ Ci by Subst from Axiom 1.

P.3.1.2 So H ` A⇒ Ci by MP.

P.3.2 Case 2: Ci = A:

P.3.2.1 We have already proven ∅ ` A⇒ A, so in particular H ` A⇒ Ci.
(more hypotheses do not hurt)

P.3.3 Case 3: everything else:

P.3.3.1 Ci is inferred by MP from Cj and Ck = Cj ⇒ Ci for j, k < i

P.3.3.2 We have H ` A⇒ Cj and H ` A⇒ Cj ⇒ Ci by IH

P.3.3.3 Furthermore, (A⇒ Cj ⇒ Ci)⇒ (A⇒ Cj)⇒ A⇒ Ci by Axiom 2 and Subst

P.3.3.4 and thus H ` A⇒ Ci by MP (twice).

P.4 We have treated all cases, and thus proven H ` A⇒ Ci for (1 ≤ i ≤ m).

P.5 Note that Cm = B, so we have in particular proven H ` A⇒ B.

c©: Michael Kohlhase 190

117

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

In fact (you have probably already spotted this), this proof is not correct. We did not cover all
cases: there are proofs that end in an application of the Subst rule. This is a common situation,
we think we have a very elegant and convincing proof, but upon a closer look it turns out that
there is a gap, which we still have to bridge.

This is what we attempt to do now. The first attempt to prove the subst case below seems to
work at first, until we notice that the substitution [B/X] would have to be applied to A as well,
which ruins our assertion.

The missing Subst case

� Oooops: The proof of the deduction theorem was incomplete
(we did not treat the Subst case)

� Let’s try:

� Proof: Ci is inferred by Subst from Cj for j < i with [B/X].

P.1 So Ci = [B/X](Cj); we have H ` A⇒ Cj by IH

P.2 so by Subst we have H ` [B/X](A⇒ Cj). (Oooops! 6= A⇒ Ci)

c©: Michael Kohlhase 191

In this situation, we have to do something drastic, like come up with a totally different proof.
Instead we just prove the theorem we have been after for a variant calculus.

Repairing the Subst case by repairing the calculus

� Idea: Apply Subst only to axioms (this was sufficient in our example)

� H1 Axiom Schemata: (infinitely many axioms)

A⇒ B⇒ A, (A⇒ B⇒ C)⇒ (A⇒ B)⇒ A⇒ C
Only one inference rule: MP.

� Definition 321 H1 introduces a (potentially) different derivability relation than H0 we
call them `H0 and `H1

c©: Michael Kohlhase 192

Now that we have made all the mistakes, let us write the proof in its final form.

118

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Deduction Theorem Redone

� Theorem 322 If H,A `H1 B, then H `H1 A⇒ B

� Proof: Let C1, . . . ,Cm be a proof of B from the hypotheses H.

P.1 We construct proofs H `H1 A⇒ Ci for all (1 ≤ i ≤ n) by induction on i.

P.2 We have to consider three cases

P.2.1 Ci is an axiom or hypothesis:

P.2.1.1 Then H `H1 Ci by construction and H `H1 Ci ⇒ A⇒ Ci by Ax1.

P.2.1.2 So H `H1 Ci by MP

P.2.2 Ci = A:

P.2.2.1 We have proven ∅ `H0 A⇒ A, (check proof in H1)

We have ∅ `H1 A⇒ Ci, so in particular H `H1 A⇒ Ci

P.2.3 else:

P.2.3.1 Ci is inferred by MP from Cj and Ck = Cj ⇒ Ci for j, k < i

P.2.3.2 We have H `H1 A⇒ Cj and H `H1 A⇒ Cj ⇒ Ci by IH

P.2.3.3 Furthermore, (A⇒ Cj ⇒ Ci)⇒ (A⇒ Cj)⇒ A⇒ Ci by Axiom 2

P.2.3.4 and thus H `H1 A⇒ Ci by MP (twice). (no Subst)

c©: Michael Kohlhase 193

The deduction theorem and the entailment theorem together allow us to understand the claim that
the two formulations of correctness (A ` B implies A |= B and ` A implies |=B) are equivalent.
Indeed, if we have A ` B, then by the deduction theorem ` A⇒ B, and thus |=A ⇒ B by
correctness, which gives us A |= B by the entailment theorem. The other direction and the
argument for the corresponding statement about completeness are similar.

Of course this is still not the version of the proof we originally wanted, since it talks about the
Hilbert Calculus H1, but we can show that H1 and H0 are equivalent.

But as we will see, the derivability relations induced by the two caluli are the same. So we can
prove the original theorem after all.

119

http://creativecommons.org/licenses/by-sa/2.5/

The Deduction Theorem for H0

� Lemma 323 `H1 = `H0

� Proof:

P.1 All H1 axioms are H0 theorems. (by Subst)

P.2 For the other direction, we need a proof transformation argument:

P.3 We can replace an application of MP followed by Subst by two Subst applications
followed by one MP.

P.4 . . .A⇒ B . . .A . . .B . . . [C/X](B) . . . is replaced by

. . .A⇒ B . . . [C/X](A)⇒ [C/X](B) . . .A . . . [C/X](A) . . . [C/X](B) . . .

P.5 Thus we can push later Subst applications to the axioms, transforming a H0 proof
into a H1 proof.

� Corollary 324 H,A `H0 B, iff H `H0 A⇒ B.

� Proof Sketch: by MP and `H1 = `H0

c©: Michael Kohlhase 194

We can now collect all the pieces and give the full statement of the correctness theorem for H0

H0 is correct (full version)

� Theorem 325 For all propositions A, B, we have A `H0 B implies A |= B.

� Proof:

P.1 By deduction theorem A `H0 B, iff ` A⇒ C,

P.2 by the first correctness theorem this is the case, iff |=A⇒ B,

P.3 by the entailment theorem this holds, iff A |= C.

c©: Michael Kohlhase 195

A Calculus for Mathtalk

7.4 A Calculus for Mathtalk

In our introduction to Subsection 7.1 we have positioned Boolean expressions (and proposition
logic) as a system for understanding the mathematical language “mathtalk” introduced in Sub-
section 3.2. We have been using this language to state properties of objects and prove them all
through this course without making the rules the govern this activity fully explicit. We will rectify
this now: First we give a calculus that tries to mimic the the informal rules mathematicians use
int their proofs, and second we show how to extend this “calculus of natural deduction” to the
full langauge of “mathtalk”.

We will now introduce the “natural deduction” calculus for propositional logic. The calculus was
created in order to model the natural mode of reasoning e.g. in everyday mathematical practice.
This calculus was intended as a counter-approach to the well-known Hilbert style calculi, which
were mainly used as theoretical devices for studying reasoning in principle, not for modeling
particular reasoning styles.

120

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Rather than using a minimal set of inference rules, the natural deduction caluculus provides
two/three inference rules for every connective and quantifier, one “introduction rule” (an inference
rule that derives a formula with that symbol at the head) and one “elimination rule” (an inference
rule that acts on a formula with this head and derives a set of subformulae).

Calculi: Natural Deduction (ND0) [Gentzen’30]

� Idea: ND0 tries to mimic human theorem proving behavior (non- minimal)

� Definition 326 The ND0 calculus has rules for the introduction and elimination of

connectives

Introduction Elimination Axiom

A B

A ∧B
∧I A ∧B

A
∧El

A ∧B

B
∧Er

A ∨ ¬A
TND

[A]1

B

A⇒ B
⇒ I1 A⇒ B A

B
⇒ E

� TND is used only in classical logic (otherwise constructive/intuitionistic)

c©: Michael Kohlhase 196

The most characactersic rule in the natural deduction calculus is the ⇒ I rule. It corresponds to
the mathematical way of proving an implication A ⇒ B: We assume that A true and show B
from this assumption. When we can do this we discharge (get rid of) the assumption and conclude
A⇒ B. This mode of reasoning is called hypothetical reasoning.

Let us now consider an example of hypothetical reasoning in action.

Natural Deduction: Examples

� Inference with local hypotheses

[A ∧B]1

∧Er
B

[A ∧B]1

∧El
A
∧I

B ∧A
⇒ I1

A ∧B⇒ B ∧A

c©: Michael Kohlhase 197

Another characteristic of the natural deduction calculus is that it has inference rules (introduction
and elimination rules) for all connectives. So we extend the set of rules from Definition 326 for
disjunction, negation and falsity.

121

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

More Rules for Natural Deduction

� Definition 327 ND0 has the following additional rules for the remaining connectives.

A

A ∨B
∨Il

B

A ∨B
∨Ir

A ∨B

[A]
...
C

[B]
...
C

C
∨E

[A]
...
F
¬A
¬I ¬¬A

A
¬E

¬A A

F
FI

F

A
FE

c©: Michael Kohlhase 198

The next step now is to extend the language of propositional logic to include the quantifiers ∀
and ∃. To do this, we will extend the language PLNQ with formulae of the form ∀xA and ∃xA,
where x is a variable and A is a formula. This system (which ist a little more involved than we
make believe now) is called “first-order logic”.14 EdNote:14

Building on the calculus ND0, we define a first-order calculus for “mathtalk” by providing intro-
duction and elimination rules for the quantifiers.

First-Order Natural Deduction

� Rules for propositional connectives just as always

� Definition 328 (New Quantifier Rules) The ND extends ND0 by the following

four rules

A

∀X.A
∀I∗ ∀X.A

[B/X](A)
∀E

[B/X](A)

∃X.A
∃I

∃X.A

[[c/X](A)]
...
C

C
∃E

∗ means that A does not de-

pend on any hypothesis in which X is free.

c©: Michael Kohlhase 199

The intuition behind the rule ∀I is that a formula A with a (free) variable X can be generalized
to ∀X.A, if X stands for an arbitrary object, i.e. there are no restricting assumptions about X.
The ∀E rule is just a substitution rule that allows to instantiate arbitrary terms B for X in A.
The ∃I rule says if we have a witness B for X in A (i.e. a concrete term B that makes A true),
then we can existentially close A. The ∃E rule corresponds to the common mathematical practice,
where we give objects we know exist a new name c and continue the proof by reasoninb about this
concrete object c. Anything we can prove from the assumption [c/X](A) we can prove outright if
∃X.A is known.

With the ND calculus we have given a set of inference rules that are (empirically) complete for
all the proof we need for the General Computer Science courses. Indeed Mathematicians are

14EdNote: give a forward reference

122

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

convinced that (if pressed hard enough) they could transform all (informal but rigorous) proofs
into (formal) ND proofs. This is however seldom done in practice because it is extremely tedious,
and mathematicians are sure that peer review of mathematical proofs will catch all relevant errors.

In some areas however, this quality standard is not safe enough, e.g. for programs that control nu-
clear power plants. The field of “Formal Methods” which is at the intersection of mathematics and
Computer Science studies how the behavior of programs can be specified formally in special logics
and how fully formal proofs of safety properties of programs can be developed semi-automatically.
Note that given the discussion in Subsection 7.2 fully formal proofs (in correct calculi) can be that
can be checked by machines since their correctness only depends on the form of the formulae in
them.

123

8 Welcome and Administrativa

Happy new year! and Welcome Back!

� I hope you have recovered over the last 6 weeks (slept a lot)

� I hope that those of you who had problems last semester have caught up on the material
(We will need much of it this year)

� I hope that you are eager to learn more about Computer Science (I certainly am!)

c©: Michael Kohlhase 200

Your Evaluations

� First: thanks for filling out the forms (to all 15/62 of you!)

Evaluations are a good tool for optimizing teaching/learning

� Second: I have read all of them, and I will take action on some of them.

� Change the instructor next year! (not your call)

� nice course. SML rulez! I really learned recursion (thanks)

� To improve this course, I would remove its “ML part” (let me explain,. . .)

� He doesnnt’ care about teaching. He simply comes unprepared to the lectures
(have you ever attended?)

� the slides tell simple things in very complicated ways (this is a problem)

� The problem is with the workload, it is too much
(I agree, but we want to give you a chance to become Computer Scientists)

� More examples should be provided, (will try to this; e.g. worked problems)

c©: Michael Kohlhase 201

8.1 Recap from General CS I

124

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Recap from GenCSI: Discrete Math and SML

� MathTalk (Rigorous communication about sets, relations,functions)

� unary natural numbers. (we have to start with something)

� Axiomatic foundation, in particular induction (Peano Axioms)

� constructors s, o, defined functions like +

� Abstract Data Types (ADT) (generalize natural numbers)

� sorts, constructors, (defined) parameters, variables, terms, substitutions

� define parameters by (sets of) recursive equations (rules)

� abstract interpretation, termination,

� Programming in SML (ADT on real machines)

� strong types, recursive functions, higher-order syntax, exceptions, . . .

� basic data types/algorithms: numbers, lists, strings,

c©: Michael Kohlhase 202

Recap from GenCSI: Formal Languages and Boolean Algebra

� Formal Languages and Codes (models of “real” programming languages)

� string codes, prefix codes, uniform length codes

� formal language for unary arithmetics (onion architecture)

� syntax and semantics (. . . by mapping to something we understand)

� Boolean Algebra (special syntax, semantics, . . .)

� Boolean functions vs. expressions (syntax vs. semantics again)

� Normal forms (Boolean polynomials, clauses, CNF, DNF)

� Complexity analysis (what does it cost in the limit?)

� Landau Notations (aka. “big-O”) (function classes)

� upper/lower bounds on costs for Boolean functions (all exponential)

� Constructing Minimal Polynomials (simpler than general minimal expressions)

� Prime implicants, Quine McCluskey (you really liked that. . .)

� Propositional Logic and Theorem Proving (A simple Meta-Mathematics)

� Models, Calculi (Hilbert,Tableau,Resolution,ND), Soundness, Completeness

c©: Michael Kohlhase 203

125

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

9 Machine-Oriented Calculi

Now we have studied the Hilbert-style calculus in some detail, let us look at two calculi that work
via a totally different principle. Instead of deducing new formulae from axioms (and hypotheses)
and hoping to arrive at the desired theorem, we try to deduce a contradiction from the negation
of the theorem. Indeed, a formula A is valid, iff ¬A is unsatisfiable, so if we derive a contradiction
from ¬A, then we have proven A. The advantage of such “test-calculi” (also called negative
calculi) is easy to see. Instead of finding a proof that ends in A, we have to find any of a broad
class of contradictions. This makes the calculi that we will discuss now easier to control and
therefore more suited for mechanization.

9.1 Calculi for Automated Theorem Proving: Analytical Tableaux

9.1.1 Analytical Tableaux

Before we can start, we will need to recap some nomenclature on formulae.

Recap: Atoms and Literals

� Definition 329 We call a formula atomic, or an atom, iff it does not contain connec-
tives. We call a formula complex, iff it is not atomic.

� Definition 330 We call a pair Aα a labeled formula, if α ∈ {T,F}. A labeled atom is
called literal.

� Definition 331 Let Φ be a set of formulae, then we use Φα := {Aα | A ∈ Φ}.

c©: Michael Kohlhase 204

The idea about literals is that they are atoms (the simplest formulae) that carry around their
intended truth value.

Now we will also review some propositional identities that will be useful later on. Some of
them we have already seen, and some are new. All of them can be proven by simple truth table
arguments.

126

http://creativecommons.org/licenses/by-sa/2.5/

Test Calculi: Tableaux and Model Generation

� Idea: instead of showing ∅ ` Th, show ¬Th ` trouble (use ⊥ for trouble)

� Example 332

Tableau Refutation (Validity) Model generation (Satisfiability)
|=P ∧Q⇒ Q ∧ P |=P ∧ (Q ∨ ¬R) ∧ ¬Q

P ∧Q⇒ Q ∧ P F

P ∧QT

Q ∧ P F

PT

QT

P F

⊥
QF

⊥

P ∧ (Q ∨ ¬R) ∧ ¬QT

P ∧ (Q ∨ ¬R)T

¬QT

QF

PT

Q ∨ ¬RT

QT

⊥
¬RT

RF

No Model Herbrand Model {PT, QF, RF}
ϕ := {P 7→ T, Q 7→ F, R 7→ F}

� Algorithm: Fully expand all possible tableaux, (no rule can be applied)

� Satisfiable, iff there are open branches (correspond to models)

c©: Michael Kohlhase 205

Tableau calculi develop a formula in a tree-shaped arrangement that represents a case analysis on
when a formula can be made true (or false). Therefore the formulae are decorated with exponents
that hold the intended truth value.

On the left we have a refutation tableau that analyzes a negated formula (it is decorated with the
intended truth value F). Both branches contain an elementary contradiction ⊥.

On the right we have a model generation tableau, which analyzes a positive formula (it is
decorated with the intended truth value T. This tableau uses the same rules as the refutation
tableau, but makes a case analysis of when this formula can be satisfied. In this case we have a
closed branch and an open one, which corresponds a model).

Now that we have seen the examples, we can write down the tableau rules formally.

127

http://creativecommons.org/licenses/by-sa/2.5/

Analytical Tableaux (Formal Treatment of T0)

� formula is analyzed in a tree to determine satisfiability

� branches correspond to valuations (models)

� one per connective

A ∧BT

AT

BT

T0∧
A ∧BF

AF

∣∣∣ BF
T0∨

¬AT

AF
T0¬T ¬AF

AT
T0¬F

Aα

Aβ α 6= β

⊥ T0cut

� Use rules exhaustively as long as they contribute new material

� Definition 333 Call a tableau saturated, iff no rule applies, and a branch closed, iff it
ends in ⊥, else open. (open branches in saturated tableaux yield models)

� Definition 334 (T0-Theorem/Derivability) A is a T0-theorem (`T0 A), iff there
is a closed tableau with AF at the root.

Φ ⊆ wff o(Vo) derives A in T0 (Φ `T0 A), iff there is a closed tableau starting with AF

and ΦT.

c©: Michael Kohlhase 206

These inference rules act on tableaux have to be read as follows: if the formulae over the line
appear in a tableau branch, then the branch can be extended by the formulae or branches below
the line. There are two rules for each primary connective, and a branch closing rule that adds the
special symbol ⊥ (for unsatisfiability) to a branch.

We use the tableau rules with the convention that they are only applied, if they contribute new
material to the branch. This ensures termination of the tableau procedure for propositional logic
(every rule eliminates one primary connective).

Definition 335 We will call a closed tableau with the signed formula Aα at the root a tableau
refutation for Aα.

The saturated tableau represents a full case analysis of what is necessary to give A the truth value
α; since all branches are closed (contain contradictions) this is impossible.

Definition 336 We will call a tableau refutation for AF a tableau proof for A, since it refutes the
possibility of finding a model where A evaluates to F. Thus A must evaluate to T in all models,
which is just our definition of validity.

Thus the tableau procedure can be used as a calculus for propositional logic. In contrast to the
calculus in section ?? it does not prove a theorem A by deriving it from a set of axioms, but
it proves it by refuting its negation. Such calculi are called negative or test calculi. Generally
negative calculi have computational advanages over positive ones, since they have a built-in sense
of direction.

We have rules for all the necessary connectives (we restrict ourselves to ∧ and ¬, since the others
can be expressed in terms of these two via the propositional identities above. For instance, we can
write A ∨B as ¬(¬A ∧ ¬B), and A⇒ B as ¬A ∨B,. . . .)

We will now look at an example. Following our introduction of propositional logic in in Exam-
ple 308 we look at a formulation of propositional logic with fancy variable names. Note that
love(mary,bill) is just a variable name like P or X, which we have used earlier.

128

http://creativecommons.org/licenses/by-sa/2.5/

A Valid Real-World Example

� Example 337 Mary loves Bill and John loves Mary entails John loves Mary

love(mary, bill) ∧ love(john,mary)⇒ love(john,mary)
F

¬(¬¬(love(mary, bill) ∧ love(john,mary)) ∧ ¬love(john,mary))
F

¬¬(love(mary, bill) ∧ love(john,mary)) ∧ ¬love(john,mary)T

¬¬(love(mary, bill) ∧ love(john,mary))
T

¬(love(mary, bill) ∧ love(john,mary))
F

love(mary, bill) ∧ love(john,mary)T

¬love(john,mary)
T

love(mary, bill)T

love(john,mary)T

love(john,mary)F

⊥

Then use the entailment theorem (Corollary 319)

c©: Michael Kohlhase 207

We have used the entailment theorem here: Instead of showing that A |= B, we have shown that
A⇒ B is a theorem. Note that we can also use the tableau calculus to try and show entailment
(and fail). The nice thing is that the failed proof, we can see what went wrong.

A Falsifiable Real-World Example

� Example 338 Mary loves Bill or John loves Mary does not entail John loves Mary
Try proving the implication (this fails)

(love(mary, bill) ∨ love(john,mary))⇒ love(john,mary)
F

¬(¬¬(love(mary, bill) ∨ love(john,mary)) ∧ ¬love(john,mary))
F

¬¬(love(mary, bill) ∨ love(john,mary)) ∧ ¬love(john,mary)T

¬love(john,mary)
T

love(john,mary)F

¬¬(love(mary, bill) ∨ love(john,mary))
T

¬(love(mary, bill) ∨ love(john,mary))
F

love(mary, bill) ∨ love(john,mary)T

love(mary, bill)T love(john,mary)T

⊥

Then again the entailment theorem (Corollary 319) yields the assertion. Indeed we can
make Iϕ(love(mary, bill) ∨ love(john,mary)) = T but Iϕ(love(john,mary)) = F .

c©: Michael Kohlhase 208

Obviously, the tableau above is saturated, but not closed, so it is not a tableau proof for our initial
entailment conjecture. We have marked the literals on the open branch green, since they allow us
to read of the conditions of the situation, in which the entailment fails to hold. As we intuitively
argued above, this is the situation, where Mary loves Bill. In particular, the open branch gives
us a variable assignment (marked in green) that satisfies the initial formula. In this case, Mary
loves Bill, which is a situation, where the entailment fails. Practical Enhancements for
TableauxPractical Enhancements for Tableaux

9.1.2 Practical Enhancements for Tableaux

129

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Propositional Identities

� Definition 339 Let > and ⊥ be new logical constants with I(>) = T and I(⊥) = F
for all assignments ϕ.

� We have to following identities:

Name for ∧ for ∨
Idenpotence ϕ ∧ ϕ = ϕ ϕ ∨ ϕ = ϕ
Identity ϕ ∧ > = ϕ ϕ ∨ ⊥ = ϕ
Absorption I ϕ ∧ ⊥ = ⊥ ϕ ∨ > = >
Commutativity ϕ ∧ ψ = ψ ∧ ϕ ϕ ∨ ψ = ψ ∨ ϕ
Associativity ϕ ∧ (ψ ∧ θ) = (ϕ ∧ ψ) ∧ θ ϕ ∨ (ψ ∨ θ) = (ϕ ∨ ψ) ∨ θ
Distributivity ϕ ∧ (ψ ∨ θ) = ϕ ∧ ψ ∨ ϕ ∧ θ ϕ ∨ ψ ∧ θ = (ϕ ∨ ψ) ∧ (ϕ ∨ θ)
Absorption II ϕ ∧ (ϕ ∨ θ) = ϕ ϕ ∨ ϕ ∧ θ = ϕ
De Morgan’s Laws ¬(ϕ ∧ ψ) = ¬ϕ ∨ ¬ψ ¬(ϕ ∨ ψ) = ¬ϕ ∧ ¬ψ
Double negation ¬¬ϕ = ϕ
Definitions ϕ⇒ ψ = ¬ϕ ∨ ψ ϕ⇔ ψ = (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ)

c©: Michael Kohlhase 209

We have seen in the examples above that while it is possible to get by with only the connectives
∨ and ¬, it is a bit unnatural and tedious, since we need to eliminate the other connectives first.
In this section, we will make the calculus less frugal by adding rules for the other connectives,
without losing the advantage of dealing with a small calculus, which is good making statements
about the calculus.

The main idea is to add the new rules as derived rules, i.e. inference rules that only abbreviate
deductions in the original calculus. Generally, adding derived inference rules does not change the
derivability relation of the calculus, and is therefore a safe thing to do. In particular, we will add
the following rules to our tableau system.

We will convince ourselves that the first rule is a derived rule, and leave the other ones as an
exercise.

Derived Rules of Inference

� Definition 340 Let C be a calculus, a rule of inference
A1 . . . An

C
is called a derived

inference rule in C, iff there is a C-proof of A1, . . . ,An ` C.

� Definition 341 We have th following derived rules of inference

A⇒ BT

AF
∣∣∣ BT

A⇒ BF

AT

BF

AT

A⇒ BT

BT

A ∨BT

AT
∣∣∣ BT

A ∨BF

AF

BF

A⇔ BT

AT

BT

∣∣∣∣ AF

BF

A⇔ BF

AT

BF

∣∣∣∣ AF

BT

AT

A⇒ BT

¬A ∨BT

¬(¬¬A ∧ ¬B)
T

¬¬A ∧ ¬BF

¬¬AF

¬AT

AF

⊥

¬BF

BT

c©: Michael Kohlhase 210

130

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

With these derived rules, theorem proving becomes quite efficient. With these rules, the tableau
(??) would have the following simpler form:

Tableaux with derived Rules (example)

Example 342

love(mary, bill) ∧ love(john,mary)⇒ love(john,mary)
F

love(mary, bill) ∧ love(john,mary)T

love(john,mary)F

love(mary, bill)T

love(john,mary)T

⊥

c©: Michael Kohlhase 211

Another thing that was awkward in (??) was that we used a proof for an implication to prove
logical consequence. Such tests are necessary for instance, if we want to check consistency or
informativity of new sentences15. Consider for instance a discourse ∆ = D1, . . . ,Dn, where n is EdNote:15
large. To test whether a hypothesis H is a consequence of ∆ (∆ |= H) we need to show that
C := (D1 ∧ . . .) ∧Dn ⇒ H is valid, which is quite tedious, since C is a rather large formula, e.g.
if ∆ is a 300 page novel. Moreover, if we want to test entailment of the form (∆ |= H) often, –
for instance to test the informativity and consistency of every new sentence H, then successive
∆s will overlap quite significantly, and we will be doing the same inferences all over again; the
entailment check is not incremental.

Fortunately, it is very simple to get an incremental procedure for entailment checking in the
model-generation-based setting: To test whether ∆ |= H, where we have interpreted ∆ in a model
generation tableau T , just check whether the tableau closes, if we add ¬H to the open branches.
Indeed, if the tableau closes, then ∆ ∧ ¬H is unsatisfiable, so ¬((∆ ∧ ¬H)) is valid16, but this is EdNote:16
equivalent to ∆⇒ H, which is what we wanted to show.

Example 343 Consider for instance the following entailment in natural langauge.

Mary loves Bill. John loves Mary |= John loves Mary

17 We obtain the tableau EdNote:17
love(mary,bill)T

love(john,mary)T

¬(love(john,mary))T

love(john,mary)F

⊥
which shows us that the conjectured entailment relation really holds.

9.1.3 Correctness and Termination of Tableaux

As always we need to convince ourselves that the calculus is correct, otherwise, tableau proofs do
not guarantee validity, which we are after. Since we are now in a refutation setting we cannot just
show that the inference rules preserve validity: we care about unsatisfiability (which is the dual
notion to validity), as we want to show the initial labeled formula to be unsatisfiable. Before we
can do this, we have to ask ourselves, what it means to be (un)-satisfiable for a labeled formula
or a tableau.

15EdNote: add reference to presupposition stuff
16EdNote: Fix precedence of negation
17EdNote: need to mark up the embedding of NL strings into Math

131

http://creativecommons.org/licenses/by-sa/2.5/

Correctness (Tableau)

� Idea: A test calculus is correct, iff it preserves satisfiability and the goal formulae are
unsatisfiable.

� Definition 344 A labeled formula Aα is valid under ϕ, iff Iϕ(A) = α.

� Definition 345 A tableau T is satisfiable, iff there is a satisfiable branch P in T , i.e.
if the set of formulae in P is satisfiable.

� Lemma 346 Tableau rules transform satisfiable tableaux into satisfiable ones.

� Theorem 347 (Correctness) A set Φ of propositional formulae is valid, if there is a
closed tableau T for ΦF.

� Proof: by contradiction: Suppose Φ is not valid.

P.1 then the initial tableau is satisfiable (ΦF satisfiable)

P.2 T satisfiable, by our Lemma.

P.3 there is a satisfiable branch (by definition)

P.4 but all branches are closed (T closed)

c©: Michael Kohlhase 212

Thus we only have to prove Lemma 118, this is relatively easy to do. For instance for the first EdNote:18
rule: if we have a tableau that contains A ∧BT and is satisfiable, then it must have a satisfiable
branch. If A ∧BT is not on this branch, the tableau extension will not change satisfiability, so we
can assue that it is on the satisfiable branch and thus Iϕ(A ∧B) = T for some variable assignment
ϕ. Thus Iϕ(A) = T and Iϕ(B) = T, so after the extension (which adds the formulae AT and BT

to the branch), the branch is still satisfiable. The cases for the other rules are similar.

The next result is a very important one, it shows that there is a procedure (the tableau procedure)
that will always terminate and answer the question whether a given propositional formula is valid
or not. This is very important, since other logics (like the often-studied first-order logic) does not
enjoy this property.

18EdNote: how do we do assertion refs? (mind the type)

132

http://creativecommons.org/licenses/by-sa/2.5/

Termination for Tableaux

� Lemma 348 The tableau procedure terminates, i.e. after a finite set of rule applications,
it reaches a tableau, so that applying the tableau rules will only add labeled formulae that
are already present on the branch.

� Let us call a labeled formulae Aα worked off in a tableau T , if a tableau rule has already
been applied to it.

� Proof:

P.1 It is easy to see tahat applying rules to worked off formulae will only add formulae
that are already present in its branch.

P.2 Let µ(T) be the number of connectives in a labeled formulae in T that are not
worked off.

P.3 Then each rule application to a labeled formula in T that is not worked off reduces
µ(T) by at least one. (inspect the rules)

P.4 at some point the tableau only contains worked off formulae and literals.

P.5 since there are only finitely many literals in T , so we can only apply the tableau cut
rule a finite number of times.

c©: Michael Kohlhase 213

The Tableau calculus basically computes the disjunctive normal form: every branch is a disjunct
that is a conjunct of literals. The method relies on the fact that a DNF is unsatisfiable, iff each
monomial is, i.e. iff each branch contains a contradiction in form of a pair of complementary
literals.

9.2 Resolution for Propositional Logic

The next calculus is a test calculus based on the conjunctive normal form. In contrast to the
tableau method, it does not compute the normal form as it goes along, but has a pre-processing
step that does this and a single inference rule that maintains the normal form. The goal of this
calculus is to derive the empty clause (the empty disjunction), which is unsatisfiable.

Another Test Calculus: Resolution

� Definition 349 A clause is a disjunction of literals. We will use 2 for the empty
disjunction (no disjuncts) and call it the empty clause.

� Definition 350 (Resolution Calculus) The resolution calculus operates a clause
sets via a single inference rule:

PT ∨A P F ∨B

A ∨B

This rule allows to add the clause below the line to a clause set which contains the two
clauses above.

� Definition 351 (Resolution Refutation) Let S be a clause set, and D : S `R T a
R derivation then we call D resolution refutation, iff 2 ∈ T .

c©: Michael Kohlhase 214

133

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

A calculus for CNF Transformation

� Definition 352 (Transformation into Conjunctive Normal Form) The CNF
transformation calculus CNF consists of the following four inference rules on clause
sets.

C ∨ (A ∨B)
T

C ∨AT ∨BT

C ∨ (A ∨B)
F

C ∨AF; C ∨BF

C ∨ ¬AT

C ∨AF

C ∨ ¬AF

C ∨AT

� Definition 353 We write CNF (A) for the set of all clauses derivable from AF via the
rules above.

� Definition 354 (Resolution Proof) We call a resolution refutation P : CNF (A) `R
T a resolution sproof for A ∈ wff o(Vo).

c©: Michael Kohlhase 215

Note: Note that the C-terms in the definition of the resolution calculus are necesary, since we
assumed that the assumptions of the inference rule must match full formulae. The C-terms
are used with the convention that they are optional. So that we can also simplify (A ∨B)

T
to

AT ∨BT.
The background behind this notation is that A and T ∨A are equivalent for any A. That

allows us to interpret the C-terms in the assumptions as T and thus leave them out.

The resolution calculus as we have formulated it here is quite frugal; we have left out rules for the
connectives ∨, ⇒, and ⇔, relying on the fact that formulae containing these connectives can be
translated into ones without before CNF transformation. The advantage of having a calculus with
few inference rules is that we can prove meta-properties like soundness and completeness with
less effort (these proofs usually require one case per inference rule). On the other hand, adding
specialized inference rules makes proofs shorter and more readable.

Fortunately, there is a way to have your cake and eat it. Derived inference rules have the property
that they are formally redundant, since they do not change the expressive power of the calculus.
Therefore we can leave them out when proving meta-properties, but include them when actually
using the calculus.

134

http://creativecommons.org/licenses/by-sa/2.5/

Derived Rules of Inference

� Definition 355 Let C be a calculus, a rule of inference
A1 . . . An

C
is called a derived

inference rule in C, iff there is a C-proof of A1, . . . ,An ` C.

� Example 356

C ∨ (A⇒ B)
T

C ∨ (¬A ∨B)
T

C ∨ ¬AT ∨BT

C ∨AF ∨BT

7→ C ∨ (A⇒ B)
T

C ∨AF ∨BT

� Others:

C ∨ (A⇒ B)
T

C ∨AF ∨BT

C ∨ (A⇒ B)
F

C ∨AT; C ∨BF

C ∨A ∧BT

C ∨AT; C ∨BT

C ∨A ∧BF

C ∨AF ∨BF

c©: Michael Kohlhase 216

With these derived rules, theorem proving becomes quite efficient. To get a better understanding
of the calculus, we look at an example: we prove an axiom of the Hilbert Calculus we have studied
above.

Example: Proving Axiom S

� Example 357 Clause Normal Form transformation

(P ⇒ Q⇒ R)⇒ (P ⇒ Q)⇒ P ⇒ RF

P ⇒ Q⇒ RT; (P ⇒ Q)⇒ P ⇒ RF

P F ∨ (Q⇒ R)
T

;P ⇒ QT;P ⇒ RF

P F ∨QF ∨RT;P F ∨QT;PT;RF

CNF = {P F ∨QF ∨RT , P F ∨QT , PT , RF}

� Example 358 Resolution Proof 1 P F ∨QF ∨RT initial
2 P F ∨QT initial
3 PT initial
4 RF initial
5 P F ∨QF resolve 1.3 with 4.1
6 QF resolve 5.1 with 3.1
7 P F resolve 2.2 with 6.1
8 2 resolve 7.1 with 3.1

c©: Michael Kohlhase 217

135

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

10 Welcome and Administrativa

Happy new year! and Welcome Back!

� I hope you have recovered over the last 6 weeks (slept a lot)

� I hope that those of you who had problems last semester have caught up on the material
(We will need much of it this year)

� I hope that you are eager to learn more about Computer Science (I certainly am!)

c©: Michael Kohlhase 218

Your Evaluations

� First: thanks for filling out the forms (to all 15/62 of you!)

Evaluations are a good tool for optimizing teaching/learning

� Second: I have read all of them, and I will take action on some of them.

� Change the instructor next year! (not your call)

� nice course. SML rulez! I really learned recursion (thanks)

� To improve this course, I would remove its “ML part” (let me explain,. . .)

� He doesnnt’ care about teaching. He simply comes unprepared to the lectures
(have you ever attended?)

� the slides tell simple things in very complicated ways (this is a problem)

� The problem is with the workload, it is too much
(I agree, but we want to give you a chance to become Computer Scientists)

� More examples should be provided, (will try to this; e.g. worked problems)

c©: Michael Kohlhase 219

10.1 Recap from General CS I

136

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Recap from GenCSI: Discrete Math and SML

� MathTalk (Rigorous communication about sets, relations,functions)

� unary natural numbers. (we have to start with something)

� Axiomatic foundation, in particular induction (Peano Axioms)

� constructors s, o, defined functions like +

� Abstract Data Types (ADT) (generalize natural numbers)

� sorts, constructors, (defined) parameters, variables, terms, substitutions

� define parameters by (sets of) recursive equations (rules)

� abstract interpretation, termination,

� Programming in SML (ADT on real machines)

� strong types, recursive functions, higher-order syntax, exceptions, . . .

� basic data types/algorithms: numbers, lists, strings,

c©: Michael Kohlhase 220

Recap from GenCSI: Formal Languages and Boolean Algebra

� Formal Languages and Codes (models of “real” programming languages)

� string codes, prefix codes, uniform length codes

� formal language for unary arithmetics (onion architecture)

� syntax and semantics (. . . by mapping to something we understand)

� Boolean Algebra (special syntax, semantics, . . .)

� Boolean functions vs. expressions (syntax vs. semantics again)

� Normal forms (Boolean polynomials, clauses, CNF, DNF)

� Complexity analysis (what does it cost in the limit?)

� Landau Notations (aka. “big-O”) (function classes)

� upper/lower bounds on costs for Boolean functions (all exponential)

� Constructing Minimal Polynomials (simpler than general minimal expressions)

� Prime implicants, Quine McCluskey (you really liked that. . .)

� Propositional Logic and Theorem Proving (A simple Meta-Mathematics)

� Models, Calculi (Hilbert,Tableau,Resolution,ND), Soundness, Completeness

c©: Michael Kohlhase 221

137

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

11 Circuits

We will now study a new model of computation that comes quite close to the circuits that ex-
ecute computation on today’s computers. Since the course studies computation in the context
of computer science, we will abstract away from all physical issues of circuits, in particular the
construction of gats and timing issues. This allows to us to present a very mathematical view
of circuits at the level of annotated graphs and concentrate on qualitative complexity of circuits.
Some of the material in this section is inspired by [KP95].

We start out our foray into circuits by laying the mathematical foundations of graphs and trees in
Subsection 11.1, and then build a simple theory of combinational circuits in Subsection 11.2 and
study their time and space complexity in Subsection 11.3. We introduce combinational circuits for
computing with numbers, by introducing positional number systems and addition in Subsection
11.4 and covering 2s-complement numbers and subtraction in Subsection 11.5. A basic introduction
to sequential logic circuits and memory elements in Section 12 concludes our study of circuits.
Graphs and Trees

11.1 Graphs and Trees

Some more Discrete Math: Graphs and Trees

� Remember our Maze Example from the Intro? (long time ago)

〈
〈a, e〉, 〈e, i〉, 〈i, j〉,
〈f, j〉, 〈f, g〉, 〈g, h〉,
〈d, h〉, 〈g, k〉, 〈a, b〉
〈m,n〉, 〈n, o〉, 〈b, c〉
〈k, o〉, 〈o, p〉, 〈l, p〉

 , a, p

〉

� We represented the maze as a graph for clarity.

� Now, we are interested in circuits, which we will also represent as graphs.

� Let us look at the theory of graphs first (so we know what we are doing)

c©: Michael Kohlhase 222

Graphs and trees are fundamental data structures for computer science, they will pop up in many
disguises in almost all areas of CS. We have already seen various forms of trees: formula trees,
tableaux, We will now look at their mathematical treatment, so that we are equipped to talk
and think about combinatory circuits.

We will first introduce the formal definitions of graphs (trees will turn out to be special graphs),
and then fortify our intuition using some examples.

138

http://creativecommons.org/licenses/by-sa/2.5/

�

Basic Definitions: Graphs

� Definition 359 An undirected graph is a pair 〈V,E〉 such that

� V is a set of vertices (or nodes) (draw as circles)

� E ⊆ {{v, v′} | v, v′ ∈ V ∧ (v 6= v′)} is the set of its undirected edges(draw as lines)

� Definition 360 A directed graph (also called digraph) is a pair 〈V,E〉 such that

� V is a set of vertexes

� E ⊆ V × V is the set of its directed edges

� Definition 361 Given a graph G = 〈V,E〉. The in-degree indeg(v) and the out-degree
outdeg(v) of a vertex v ∈ V are defined as

� indeg(v) = #({w | 〈w, v〉 ∈ E})
� outdeg(v) = #({w | 〈v, w〉 ∈ E})

Note: For an undirected graph, indeg(v) = outdeg(v) for all nodes v.

c©: Michael Kohlhase 223

We will mostly concentrate on directed graphs in the following, since they are most important for
the applications we have in mind. Many of the notions can be defined for undirected graphs with
a little imagination. For instance the definitions for indeg and outdeg are the obvious variants:
indeg(v) = #({w | {w, v} ∈ E}) and outdeg(v) = #({w | {v, w} ∈ E})

In the following if we do not specify that a graph is undirected, it will be assumed to be
directed.

This is a very abstract yet elementary definition. We only need very basic concepts like sets and
ordered pairs to understand them. The main difference between directed and undirected graphs
can be visualized in the graphic representations below:

Examples

� Example 362 An undirected graph G1 = 〈V1, E1〉, where V1 = {A,B,C,D,E} and
E1 = {{A,B}, {A,C}, {A,D}, {B,D}, {B,E}}

C D

A B E

� Example 363 A directed graph G2 = 〈V2, E2〉, where V2 = {1, 2, 3, 4, 5} and E2 =
{〈1, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 2〉, 〈2, 4〉, 〈5, 4〉}

1 2

3

4 5

c©: Michael Kohlhase 224

139

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

In a directed graph, the edges (shown as the connections between the circular nodes) have a
direction (mathematically they are ordered pairs), whereas the edges in an undirected graph do
not (mathematically, they are represented as a set of two elements, in which there is no natural
order).

Note furthermore that the two diagrams are not graphs in the strict sense: they are only pictures
of graphs. This is similar to the famous painting by René Magritte that you have surely seen
before.

The Graph Diagrams are not Graphs

They are pictures of graphs (of course!)

c©: Michael Kohlhase 225

If we think about it for a while, we see that directed graphs are nothing new to us. We have
defined a directed graph to be a set of pairs over a base set (of nodes). These objects we have seen
in the beginning of this course and called them relations. So directed graphs are special relations.
We will now introduce some nomenclature based on this intuition.

140

http://creativecommons.org/licenses/by-sa/2.5/

Directed Graphs

� Idea: Directed Graphs are nothing else than relations

� Definition 364 Let G = 〈V,E〉 be a directed graph, then we call a node v ∈ V

� initial, iff there is no w ∈ V such that 〈w, v〉 ∈ E. (no predecessor)

� terminal, iff there is no w ∈ V such that 〈v, w〉 ∈ E. (no successor)

In a graph G, node v is also called a source (sink) of G, iff it is initial (terminal) in G.

� Example 365 The node 2 is initial, and the nodes 1 and 6 are terminal in

1

2

3

4

5

6

c©: Michael Kohlhase 226

For mathematically defined objects it is always very important to know when two representations
are equal. We have already seen this for sets, where {a, b} and {b, a, b} represent the same set:
the set with the elements a and b. In the case of graphs, the condition is a little more involved:
we have to find a bijection of nodes that respects the edges.

Graph Isomorphisms

� Definition 366 A graph isomorphism between two graphs G = 〈V,E〉 and G′ =
〈V ′, E′〉 is a bijective function ψ : V → V ′ with

directed graphs undirected graphs
〈a, b〉 ∈ E ⇔ 〈ψ(a), ψ(b)〉 ∈ E′ {a, b} ∈ E ⇔ {ψ(a), ψ(b)} ∈ E′

� Definition 367 Two graphs G and G′ are equivalent iff there is a graph-isomorphism
ψ between G and G′.

� Example 368 G1 and G2 are equivalent as there exists a graph isomorphism ψ :=
{a 7→ 5, b 7→ 6, c 7→ 2, d 7→ 4, e 7→ 1, f 7→ 3} between them.

1

2

3

4

5

6

ec

fd

a

b

c©: Michael Kohlhase 227

Note that we have only marked the circular nodes in the diagrams with the names of the elements
that represent the nodes for convenience, the only thing that matters for graphs is which nodes
are connected to which. Indeed that is just what the definition of graph equivalence via the

141

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

existence of an isomorphism says: two graphs are equivalent, iff they have the same number of
nodes and the same edge connection pattern. The objects that are used to represent them are
purely coincidental, they can be changed by an isomorphism at will. Furthermore, as we have
seen in the example, the shape of the diagram is purely an artifact of the presentation; It does not
matter at all.

So the following two diagrams stand for the same graph, (it is just much more difficult to state
the graph isomorphism)

Note that directed and undirected graphs are totally different mathematical objects. It is easy
to think that an undirected edge {a, b} is the same as a pair 〈a, b〉, 〈b, a〉 of directed edges in
both directions, but a priory these two have nothing to do with each other. They are certainly
not equivalent via the graph equivalent defined above; we only have graph equivalence between
directed graphs and also between undirected graphs, but not between graphs of differing classes.

Now that we understand graphs, we can add more structure. We do this by defining a labeling
function from nodes and edges.

Labeled Graphs

� Definition 369 A labeled graph G is a triple 〈V,E, f〉 where 〈V,E〉 is a graph and
f : V ∪ E → R is a partial function into a set R of labels.

� Notation 370 write labels next to their vertex or edge. If the actual name of a vertex
does not matter, its label can be written into it.

� Example 371 G = 〈V,E, f〉 with V = {A,B,C,D,E}, where

� E = {〈A,A〉, 〈A,B〉, 〈B,C〉, 〈C,B〉, 〈B,D〉, 〈E,D〉}
� f : V ∪ E → {+,−, ∅} × {1, . . . , 9} with

� f(A) = 5, f(B) = 3, f(C) = 7, f(D) = 4, f(E) = 8,

� f(〈A,A〉) = −0, f(〈A,B〉) = −2, f(〈B,C〉) = +4,

� f(〈C,B〉) = −4, f(〈B,D〉) = +1, f(〈E,D〉) = −4

5 3

7

4 8
-2 +1 -4

+4-4

-0

c©: Michael Kohlhase 228

Note that in this diagram, the markings in the nodes do denote something: this time the labels
given by the labeling function f , not the objects used to construct the graph. This is somewhat
confusing, but traditional.

Now we come to a very important concept for graphs. A path is intuitively a sequence of nodes
that can be traversed by following directed edges in the right direction or undirected edges.

142

http://creativecommons.org/licenses/by-sa/2.5/

Paths in Graphs

� Definition 372 Given a directed graph G = 〈V,E〉, then we call a vector
p = 〈v0, . . . , vn〉 ∈ V n+1 a path in G iff 〈vi−1, vi〉 ∈ E for all (1 ≤ i ≤ n), n > 0.

� v0 is called the start of p (write start(p))

� vn is called the end of p (write end(p))

� n is called the length of p (write len(p))

Note: Not all vi-s in a path are necessarily different.

�� Notation 373 For a graph G = 〈V,E〉 and a path p = 〈v0, . . . , vn〉 ∈ V n+1, write

� v ∈ p, iff v ∈ V is a vertex on the path (∃i.vi = v)

� e ∈ p, iff e = 〈v, v′〉 ∈ E is an edge on the path (∃i.vi = v ∧ vi+1 = v′)

� Notation 374 We write Π(G) for the set of all paths in a graph G.

c©: Michael Kohlhase 229

An important special case of a path is one that starts and ends in the same node. We call it a
cycle. The problem with cyclic graphs is that they contain paths of infinite length, even if they
have only a finite number of nodes.

Cycles in Graphs

� Definition 375 Given a graph G = 〈V,E〉, then

� a path p is called cyclic (or a cycle) iff start(p) = end(p).

� a cycle 〈v0, . . . , vn〉 is called simple, iff vi 6= vj for 1 ≤ i, j ≤ n with i 6= j.

� graph G is called acyclic iff there is no cyclic path in G.

� Example 376 〈2, 4, 3〉 and 〈2, 5, 6, 5, 6, 5〉 are paths in

1

2

3

4

5

6

〈2, 4, 3, 1, 2〉 is not a path (no edge from vertex 1 to vertex 2)

The graph is not acyclic (〈5, 6, 5〉 is a cycle)

c©: Michael Kohlhase 230

Of course, speaking about cycles is only meaningful in directed graphs, since undirected graphs
can only be acyclic, iff they do not have edges at all. We will sometimes use the abbreviation
DAG for directed acyclic graph.

143

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Graph Depth

� Definition 377 Let G := 〈V,E〉 be a digraph, then the depth dp(v) of a vertex v ∈ V is
defined to be 0, if v is a source of G and sup{len(p) | indeg(start(p)) = 0 ∧ end(p) = v}
otherwise, i.e. the length of the longest path from a source of G to v.(* can be infinite)

� Definition 378 Given a digraph G = 〈V,E〉. The depth (dp(G)) of G is defined as
sup{len(p) | p ∈ Π(G)}, i.e. the maximal path length in G.

� Example 379 The vertex 6 has depth two in the left graph and infine depth in the
right one.

1

2

3

4

5

6 1

2

3

4

5

6

The left graph has depth three (cf. node 1), the right one has infinite depth (cf. nodes
5 and 6)

c©: Michael Kohlhase 231

We now come to a very important special class of graphs, called trees.

Trees

� Definition 380 A tree is a directed acyclic graph G = 〈V,E〉 such that

� There is exactly one initial node vr ∈ V (called the root)

� All nodes but the root have in-degree 1.

We call v the parent of w, iff 〈v, w〉 ∈ E (w is a child of v). We call a node v a leaf of
G, iff it is terminal, i.e. if it does not have children.

� Example 381 A tree with root A and leaves D, E, F , H, and J .

A

B

D E F

C

G

H I

J
F is a child of B and G is the parent of H and I.

� Lemma 382 For any node v ∈ V except the root vr, there is exactly one path p ∈ Π(G)
with start(p) = vr and end(p) = v. (proof by induction on the number of nodes)

c©: Michael Kohlhase 232

In Computer Science trees are traditionally drawn upside-down with their root at the top, and
the leaves at the bottom. The only reason for this is that (like in nature) trees grow from the root

144

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

upwards and if we draw a tree it is convenient to start at the top of the page downwards, since we
do not have to know the height of the picture in advance.

Let us now look at a prominent example of a tree: the parse tree of a Boolean expression. In-
tuitively, this is the tree given by the brackets in a Boolean expression. Whenever we have an
expression of the form A ◦ B, then we make a tree with root ◦ and two subtrees, which are
constructed from A and B in the same manner.

This allows us to view Boolean expressions as trees and apply all the mathematics (nomencla-
ture and results) we will develop for them.

The Parse-Tree of a Boolean Expression

� Definition 383 The parse-tree Pe of a Boolean expression e is a labeled tree Pe =
〈Ve, Ee, fe〉, which is recursively defined as

� if e = e′ then Ve := Ve′ ∪ {v}, Ee := Ee′ ∪ {〈v, v′r〉}, and fe := fe′ ∪ {v 7→ · }, where
Pe′ = 〈Ve′ , Ee′〉 is the parse-tree of e′, v′r is the root of Pe′ , and v is an object not in Ve′ .

� if e = e1 ◦ e2 with ◦ ∈ {∗,+} then Ve := Ve1 ∪ Ve2 ∪ {v}, Ee :=
Ee1 ∪ Ee2 ∪ {〈v, vr1〉, 〈v, vr2〉}, and fe := fe1 ∪ fe2 ∪ {v 7→ ◦}, where the Pei = 〈Vei , Eei〉
are the parse-trees of ei and vri is the root of Pei and v is an object not in Ve1 ∪ Ve2 .

� if e ∈ (V ∪ C) then, Ve = {e} and Ee = ∅.

� Example 384 the parse tree of (x1 ∗ x2 + x3) ∗ x1 + x4 is

*

+

*

x1 x2

x3

·

+

x1 x4

c©: Michael Kohlhase 233

Introduction to Combinatorial Circuits

11.2 Introduction to Combinatorial Circuits

We will now come to another model of computation: combinatorial circuits (also called combina-
tional circuits). These are models of logic circuits (physical objects made of transistors (or cathode
tubes) and wires, parts of integrated circuits, etc), which abstract from the inner structure for the
switching elements (called gates) and the geometric configuration of the connections. Thus, com-
binatorial circuits allow us to concentrate on the functional properties of these circuits, without
getting bogged down with e.g. configuration- or geometric considerations. These can be added to
the models, but are not part of the discussion of this course.

145

http://creativecommons.org/licenses/by-sa/2.5/

Combinatorial Circuits as Graphs

� Definition 385 A combinatorial circuit is a labeled acyclic graph G = 〈V,E, fg〉 with
label set {OR,AND,NOT}, such that

� indeg(v) = 2 and outdeg(v) = 1 for all nodes v ∈ (fg)
−1({AND,OR})

� indeg(v) = outdeg(v) = 1 for all nodes v ∈ (fg)
−1({NOT})

We call the set I(G) (O(G)) of initial (terminal) nodes in G the input (output) vertexes,
and the set F (G) := V \((I(G) ∪O(G))) the set of gates.

� Example 386 The following graph Gcir1 = 〈V,E〉 is a combinatorial circuit

i1

g1 AND

g2 OR

i2 i3

g3 OR

g4 NOT

o1 o2

� Definition 387 Add two special input nodes 0, 1 to a combinatorial circuit G to form
a combinatorial circuit with constants. (will use this from now on)

c©: Michael Kohlhase 234

So combinatorial circuits are simply a class of specialized labeled directed graphs. As such, they
inherit the nomenclature and equality conditions we introduced for graphs. The motivation for
the restrictions is simple, we want to model computing devices based on gates, i.e. simple compu-
tational devices that behave like logical connectives: the AND gate has two input edges and one
output edge; the the output edge has value 1, iff the two input edges do too.

Since combinatorial circuits are a primary tool for understanding logic circuits, they have their
own traditional visual display format. Gates are drawn with special node shapes and edges are
traditionally drawn on a rectangular grid, using bifurcating edges instead of multiple lines with
blobs distinguishing bifurcations from edge crossings. This graph design is motivated by readability
considerations (combinatorial circuits can become rather large in practice) and the layout of early
printed circuits.

146

http://creativecommons.org/licenses/by-sa/2.5/

Using Special Symbols to Draw Combinatorial Circuits

� The symbols for the logic gates AND, OR, and NOT.

AND

OR

NOT

o1

o2

i1

i2

i3

� Junction Symbols as shorthands for several edges

a

c

b
 a

c

b

=

o1

o2

i1

i2

i3

c©: Michael Kohlhase 235

In particular, the diagram on the lower right is a visualization for the combinatory circuit Gcirc1
from the last slide.

To view combinatorial circuits as models of computation, we will have to make a connection
between the gate structure and their input-output behavior more explicit. We will use a tool for
this we have studied in detail before: Boolean expressions. The first thing we will do is to annotate
all the edges in a combinatorial circuit with Boolean expressions that correspond to the values on
the edges (as a function of the input values of the circuit).

Computing with Combinatorial Circuits

� Combinatorial Circuits and parse trees for Boolean expressions look similar

� Idea: Let’s annotate edges in combinatorial circuit with Boolean Expressions!

� Definition 388 Given a combinatorial circuit G = 〈V,E, fg〉 and an edge e = 〈v, w〉 ∈
E, the expression label fL(e) is defined as

fL(〈v, w〉) if
v v ∈ I(G)

fL(〈u, v〉) fg(v) = NOT
fL(〈u, v〉) ∗ fL(〈u′, v〉) fg(v) = AND
fL(〈u, v〉) + fL(〈u′, v〉) fg(v) = OR

o1

o2

i1

i2

i3

i1

i2

i3

(
i1
*
i2
)

(
i2
+
i3
)

((
i1
*
i2
)+
i3
)

(
i2
+
i3
)

c©: Michael Kohlhase 236

Armed with the expression label of edges we can now make the computational behavior of combi-
natory circuits explicit. The intuition is that a combinatorial circuit computes a certain Boolean
function, if we interpret the input vertices as obtaining as values the corresponding arguments

147

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

and passing them on to gates via the edges in the circuit. The gates then compute the result from
their input edges and pass the result on to the next gate or an output vertex via their output
edge.

Computing with Combinatorial Circuits

� Definition 389 A combinatorial circuit G = 〈V,E, fg〉 with input vertices i1, . . . , in
and output vertices o1, . . . , om computes an n-ary Boolean function

f : {0, 1}n → {0, 1}m; 〈i1, . . . , in〉 7→ 〈fe1(i1, . . . , in), . . . , fem(i1, . . . , in)〉

where ei = fL(〈v, oi〉).

� Example 390 The circuit example on the last slide defines the Boolean function
f : {0, 1}3 → {0, 1}2; 〈i1, i2, i3〉 7→ 〈fi1∗i2+i3 , fi2∗i3〉

� Definition 391 The cost C(G) of a circuit G is the number of gates in G.

� Problem: For a given boolean function f , find combinational circuits of minimal cost
and depth that compute f .

c©: Michael Kohlhase 237

Note: The opposite problem, i.e., the conversion of a Boolean function into a combinatorial circuit,
can be solved by determining the related expressions and their parse-trees. Note that there is a
canonical graph-isomorphism between the parse-tree of an expression e and a combinatorial circuit
that has an output that computes fe.

Realizing Complex Gates Efficiently

11.3 Realizing Complex Gates Efficiently

The main properties of combinatory circuits we are interested in studying will be the the number
of gates and the depth of a circuit. The number of gates is of practical importance, since it is
a measure of the cost that is needed for producing the circuit in the physical world. The depth
is interesting, since it is an approximation for the speed with which a combinatory circuit can
compute: while in most physical realizations, signals can travel through wires at at (almost) the
speed of light, gates have finite computation times.

Therefore we look at special configurations for combinatory circuits that have good depth and cost.
These will become important, when we build actual combinatorial circuits with given input/output
behavior.

11.3.1 Balanced Binary Trees

148

http://creativecommons.org/licenses/by-sa/2.5/

Balanced Binary Trees

� Definition 392 (Binary Tree) A binary tree is a tree where all nodes have out-
degree 2 or 0.

� Definition 393 A binary tree G is called balanced iff the depth of all leaves differs
by at most by 1, and fully balanced, iff the depth difference is 0.

� Constructing a binary tree Gbbt = 〈V,E〉 with n leaves

� step 1: select some u ∈ V as root, (V1 := {u}, E1 := ∅)
� step 2: select v, w ∈ V not yet in Gbbt and add them, (Vi = Vi−1 ∪ {v, w})
� step 3: add two edges 〈u, v〉 and 〈u,w〉 where u is the leftmost of the shallowest

nodes with outdeg(u) = 0, (Ei := Ei−1 ∪ {〈u, v〉, 〈u,w〉})
� repeat steps 2 and 3 until i = n (V = Vn, E = En)

� Example 394 7 leaves

c©: Michael Kohlhase 238

We will now establish a few properties of these balanced binary trees that show that they are good
building blocks for combinatory circuits.

Size Lemma for Balanced Trees

� Lemma 395 Let G = 〈V,E〉 be a balanced binary tree of depthn > i, then the set
Vi := {v ∈ V | dp(v) = i} of nodes at depth i has cardinality 2i.

� Proof: via induction over the depth i.

P.1 We have to consider two cases

P.1.1 i = 0: then Vi = {vr}, where vr is the root, so #(V0) = #({vr}) = 1 = 20.

P.1.2 i > 0: then Vi−1 contains 2i−1 vertexes (IH)

P.1.2.2 By the definition of a binary tree, each v ∈ Vi−1 is a leaf or has two children
that are at depth i.

P.1.2.3 As G is balanced and dp(G) = n > i, Vi−1 cannot contain leaves.

P.1.2.4 Thus #(Vi) = 2 ·#(Vi−1) = 2 · (2i−1) = 2i.

� Corollary 396 A fully balanced tree of depth d has 2d+1 − 1 nodes.

� Proof:

P.1 Let G := 〈V,E〉 be a fully balanced tree

P.2 Then #(V) =
∑d
i=1 2i = 2d+1 − 1.

c©: Michael Kohlhase 239

149

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

This shows that balanced binary trees grow in breadth very quickly, a consequence of this is that
they are very shallow (and this compute very fast), which is the essence of the next result.

Depth Lemma for Balanced Trees

� Lemma 397 Let G = 〈V,E〉 be a balanced binary tree, then dp(G) = blog2(#(V))c.

� Proof: by calculation

P.1 Let V ′ := V \W , where W is the set of nodes at level d = dp(G)

P.2 By the size lemma, #(V ′) = 2d−1+1 − 1 = 2d − 1

P.3 then #(V) = 2d − 1 + k, where k = #(W) and (1 ≤ k ≤ 2d)

P.4 so #(V) = c · (2d) where c ∈ R and 1≤c<2, or 0≤log2(c)<1

P.5 thus log2(#(V)) = log2(c · (2d)) = log2(c) + d and

P.6 hence d = log2(#(V))− log2(c) = blog2(#(V))c.

c©: Michael Kohlhase 240

Leaves of Binary Trees

� Lemma 398 Any binary tree with m leaves has 2m− 1 vertexes.

� Proof: by induction on m.

P.1 We have two cases m = 1: then V = {vr} and #(V) = 1 = 2 · 1− 1.

P.1.2 m > 1:

P.1.2.1 then any binary tree G with m− 1 leaves has 2m− 3 vertexes (IH)

P.1.2.2 To get m leaves, add 2 children to some leaf of G. (add two to get one more)

P.1.2.3 Thus #(V) = 2 ·m− 3 + 2 = 2 ·m− 1.

c©: Michael Kohlhase 241

In particular, the size of a binary tree is independent of the its form if we fix the number of leaves.
So we can optimimze the depth of a binary tree by taking a balanced one without a size penalty.
This will become important for building fast combinatory circuits.

11.3.2 Realizing n-ary Gates

We now use the results on balanced binary trees to build generalized gates as building blocks for
combinational circuits.

150

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

n-ary Gates as Subgraphs

� Idea: Identify (and abbreviate) frequently occurring subgraphs

� Definition 399 AND(x1, . . . , xn) := 1
∏n
i=1 xi and OR(x1, . . . , xn) := 1

∑n
i=1 xi

� Note: These can be realized as balanced binary trees Gn

� Corollary 400 C(Gn) = n− 1 and dp(Gn) = blog2(n)c.

� Notation 401
AND
 OR

c©: Michael Kohlhase 242

Using these building blocks, we can establish a worst-case result for the depth of a combinatory
circuit computing a given Boolean function.

Worst Case Depth Theorem for Combinatorial Circuits

� Theorem 402 The worst case depth dp(G) of a combinatorial circuit G which realizes
an k × n-dimensional boolean function is bounded by dp(G) ≤ n+ dlog2(n)e+ 1.

� Proof: The main trick behind this bound is that AND and OR are associative and that
the according gates can be arranged in a balanced binary tree.

P.1 Function f corresponding to the output oj of the circuit G can be transformed in
DNF

P.2 each monomial consists of at most n literals

P.3 the possible negation of inputs for some literals can be done in depth 1

P.4 for each monomial the ANDs in the related circuit can be arranged in a balanced
binary tree of depth dlog2(n)e

P.5 there are at most 2n monomials which can be ORed together in a balanced binary
tree of depth dlog2(2n)e = n.

c©: Michael Kohlhase 243

Of course, the depth result is related to the first worst-case complexity result for Boolean expres-
sions (Theorem 272); it uses the same idea: to use the disjunctive normal form of the Boolean
function. However, instead of using a Boolean expression, we become more concrete here and use
a combinatorial circuit.

151

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

An example of a DNF circuit

=

if L
i
=
X
i

if L
i
=
X
i

X
1

X
2

X
3

X
n

O
j

M
1
 M
2
 M
3
 M
k

c©: Michael Kohlhase 244

In the circuit diagram above, we have of course drawn a very particular case (as an example
for possible others.) One thing that might be confusing is that it looks as if the lower n-ary
conjunction operators look as if they have edges to all the input variables, which a DNF does not
have in general.

Of course, by now, we know how to do better in practice. Instead of the DNF, we can always com-
pute the minimal polynomial for a given Boolean function using the Quine-McCluskey algorithm
and derive a combinatorial circuit from this. While this does not give us any theoretical mileage
(there are Boolean functions where the DNF is already the minimal polynomial), but will greatly
improve the cost in practice.

Until now, we have somewhat arbitrarily concentrated on combinational circuits with AND, OR,
and NOT gates. The reason for this was that we had already developed a theory of Boolean
expressions with the connectives ∨, ∧, and ¬ that we can use. In practical circuits often other
gates are used, since they are simpler to manufacture and more uniform. In particular, it is
sufficient to use only one type of gate as we will see now.

152

http://creativecommons.org/licenses/by-sa/2.5/

Other Logical Connectives and Gates

� Are the gates AND, OR, and NOT ideal?

� Idea: Combine NOT with the binary ones to NAND, NOR (enough?)

�

NAND

NOR
 NAND 1 0
1 0 1
0 1 1

and
NOR 1 0

1 0 0
0 0 1

� Corresponding logical conectives are written as ↑ (NAND) and ↓ (NOR).

� We will also need the exclusive or (XOR) connective that returns 1 iff either of its

operands is 1.
XOR 1 0

1 1 0
0 0 1

� The gate is written as , the logical connective as ⊕.

c©: Michael Kohlhase 245

The Universality of NAND and NOR

� Theorem 403 NAND and NOR are universal; i.e. any Boolean function can be ex-
pressed in terms of them.

� Proof: express AND, OR, and NOT via NAND and NOR respectively
NOT(a) NAND(a, a) NOR(a, a)
AND(a, b) NAND(NAND(a, b),NAND(a, b)) NOR(NOR(a, a),NOR(b, b))
OR(a, b) NAND(NAND(a, a),NAND(b, b)) NOR(NOR(a, b),NOR(a, b))

� here are the corresponding diagrams for the combinational circuits.

a

a

b

a

b

NOT(a)

(a OR b)

(a AND b)

a

a

b

a

b

NOT(a)

(a AND b)

(a OR b)

c©: Michael Kohlhase 246

Of course, a simple substitution along these lines will blow up the cost of the circuits by a factor of
up to three and double the depth, which would be prohibitive. To get around this, we would have
to develop a theory of Boolean expressions and complexity using the NAND and NOR connectives,
along with suitable replacements for the Quine-McCluskey algorithm. This would give cost and
depth results comparable to the ones developed here. This is beyond the scope of this course.

Basic Arithmetics with Combinational Circuits

153

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

11.4 Basic Arithmetics with Combinational Circuits

We have seen that combinational circuits are good models for implementing Boolean functions:
they allow us to make predictions about properties like costs and depths (computation speed),
while abstracting from other properties like geometrical realization, etc.

We will now extend the analysis to circuits that can compute with numbers, i.e. that implement
the basic arithmetical operations (addition, multiplication, subtraction, and division on integers).
To be able to do this, we need to interpret sequences of bits as integers. So before we jump into
arithmetical circuits, we will have a look at number representations.

11.4.1 Positional Number Systems

Positional Number Systems

� Problem: For realistic arithmetics we need better number representations than the unary
natural numbers (|ϕn(unary)| ∈ Θ(n) [number of /])

� Recap: the unary number system

� build up numbers from /es (start with ’ ’ and add /)

� addition ⊕ as concatenation (�,⊕, exp, . . . defined from that)

Idea: build a clever code on the unary numbers

� � interpret sequences of /es as strings: ε stands for the number 0

� Definition 404 A positional number system N is a triple N = 〈Db, ϕb, ψb〉 with

� Db is a finite alphabet of b digits. (b := #(Db) base or radix of N)

� ϕb : Db → {ε, /, . . . , /[b−1]} is bijective (first b unary numbers)

� ψb : Db
+ → {/}∗; 〈nk, . . . , n1〉 7→

⊕k
i=1 ϕb(ni)� exp(/[b], /[i−1])
(extends ϕb to string code)

c©: Michael Kohlhase 247

In the unary number system, it was rather simple to do arithmetics, the most important oper-
ation (addition) was very simple, it was just concatenation. From this we can implement the
other operations by simple recursive procedures, e.g. in SML or as abstract procedures in abstract
data types. To make the arguments more transparent, we will use special symbols for the arith-
metic operations on unary natural numbers: ⊕ (addition), � (multiplication),

⊕n
i=1 (sum over n

numbers), and
⊙n

i=1 (product over n numbers).

The problem with the unary number system is that it uses enormous amounts of space, when
writing down large numbers. Using the Landau notation we introduced earlier, we see that for
writing down a number n in unary representation we need n slashes. So if |ϕn(unary)| is the “cost
of representing n in unary representation”, we get |ϕn(unary)| ∈ Θ(n). Of course that will never
do for practical chips. We obviously need a better encoding.

If we look at the unary number system from a greater distance (now that we know more CS, we can
interpret the representations as strings), we see that we are not using a very important feature of
strings here: position. As we only have one letter in our alphabet (/), we cannot, so we should use
a larger alphabet. The main idea behind a positional number system N = 〈Db, ϕb, ψb〉 is that we
encode numbers as strings of digits (characters in the alphabet Db), such that the position matters,
and to give these encoding a meaning by mapping them into the unary natural numbers via a
mapping ψb. This is the the same process we did for the logics; we are now doing it for number

154

http://creativecommons.org/licenses/by-sa/2.5/

systems. However, here, we also want to ensure that the meaning mapping ψb is a bijection, since
we want to define the arithmetics on the encodings by reference to The arithmetical operators on
the unary natural numbers.

We can look at this as a bootstrapping process, where the unary natural numbers constitute
the seed system we build up everything from.

Just like we did for string codes earlier, we build up the meaning mapping ψb on characters from
Db first. To have a chance to make ψ bijective, we insist that the “character code” ϕb is is a
bijection from Db and the first b unary natural numbers. Now we extend ϕb from a character code
to a string code, however unlike earlier, we do not use simple concatenation to induce the string
code, but a much more complicated function based on the arithmetic operations on unary natural
numbers. We will see later19 that this give us a bijection between Db

+ and the unary natural EdNote:19
numbers.

Commonly Used Positional Number Systems

� Example 405 The following positional number systems are in common use.

name set base digits example

unary N1 1 / /////1
binary N2 2 0,1 01010001112
octal N8 8 0,1,. . . ,7 630278
decimal N10 10 0,1,. . . ,9 16209810 or 162098
hexadecimal N16 16 0,1,. . . ,9,A,. . . ,F FF3A1216

� Notation 406 attach the base of N to every number from N . (default: decimal)

Trick: Group triples or quadruples of binary digits into recognizable chunks

(add leading zeros as needed)

� � 1100011010111002 = 01102︸ ︷︷ ︸
616

00112︸ ︷︷ ︸
316

01012︸ ︷︷ ︸
516

11002︸ ︷︷ ︸
C16

= 635C16

� 1100011010111002 = 1102︸ ︷︷ ︸
68

0012︸ ︷︷ ︸
18

1012︸ ︷︷ ︸
58

0112︸ ︷︷ ︸
38

1002︸ ︷︷ ︸
48

= 615348

� F3A16 = F16︸︷︷︸
11112

316︸︷︷︸
00112

A16︸︷︷︸
10102

= 1111001110102, 47218 = 48︸︷︷︸
1002

78︸︷︷︸
1112

28︸︷︷︸
0102

18︸︷︷︸
0012

= 1001110100012

c©: Michael Kohlhase 248

We have all seen positional number systems: our decimal system is one (for the base 10). Other
systems that important for us are the binary system (it is the smallest non-degenerate one) and
the octal- (base 8) and hexadecimal- (base 16) systems. These come from the fact that binary
numbers are very hard for humans to scan. Therefore it became customary to group three or four
digits together and introduce we (compound) digits for them. The octal system is mostly relevant
for historic reasons, the hexadecimal system is in widespread use as syntactic sugar for binary
numbers, which form the basis for circuits, since binary digits can be represented physically by
current/no current.

Now that we have defined positional number systems, we want to define the arithmetic operations
on the these number representations. We do this by using an old trick in math. If we have
an operation fT : T → T on a set T and a well-behaved mapping ψ from a set S into T , then
we can “pull-back” the operation on fT to S by defining the operation fS : S → S by fS(s) :=
(ψ)−1(fT (ψ(s))) according to the following diagram.

19EdNote: reference

155

http://creativecommons.org/licenses/by-sa/2.5/

S

S

T

T

ψ

(ψ)−1

ψ

fS = (ψ)−1 ◦ fT ◦ ψ fT

Obviously, this construction can be done in any case, where ψ is bijective (and thus has an inverse
function). For defining the arithmetic operations on the positional number representations, we
do the same construction, but for binary functions (after we have established that ψ is indeed a
bijection).

The fact that ψb is a bijection a posteriori justifies our notation, where we have only indicated the
base of the positional number system. Indeed any two positional number systems are isomorphic:
they have bijections ψb into the unary natural numbers, and therefore there is a bijection between
them.

Arithmetics for PNS

� Lemma 407 Let N := 〈Db, ϕb, ψb〉 be a PNS, then ψb is bijective.

� Proof: construct (ψb)
−1 by successive division modulo the base of N .

Idea: use this to define arithmetics on N .

�� Definition 408 Let N := 〈Db, ϕb, ψb〉 be a PNS of base b, then we define a binary
function +b : Nb × Nb → Nb by x+by := (ψb)

−1(ψb(x)⊕ ψb(y)).

� Note: The addition rules (carry chain addition) generalize from the decimal system to
general PNS

� Idea: Do the same for other arithmetic operations. (works like a charm)

� Future: Concentrate on binary arithmetics. (implement into circuits)

c©: Michael Kohlhase 249

11.4.2 Adders

The next step is now to implement the induced arithmetical operations into combinational circuits,
starting with addition. Before we can do this, we have to specify which (Boolean) function we
really want to implement. For convenience, we will use the usual decimal (base 10) representations
of numbers and their operations to argue about these circuits. So we need conversion functions
from decimal numbers to binary numbers to get back and forth. Fortunately, these are easy to
come by, since we use the bijections ψ from both systems into the unary natural numbers, which
we can compose to get the transformations.

156

http://creativecommons.org/licenses/by-sa/2.5/

Arithmetic Circuits for Binary Numbers

� Idea: Use combinational circuits to do basic arithmetics.

� Definition 409 Given the (abstract) number a ∈ N, B(a) denotes from now on the
binary representation of a.

For the opposite case, i.e., the natural number represented by a binary string
a = 〈an−1, . . . , a0〉 ∈ Bn, the notation 〈〈a〉〉 is used, i.e.,

〈〈a〉〉 = 〈〈an−1, . . . , a0〉〉 =

n−1∑
i=0

ai · (2i)

� Definition 410 An n-bit adder is a circuit computing the function fn+2
: Bn × Bn →

Bn+1 with
fn+2

(a; b) := B(〈〈a〉〉+ 〈〈b〉〉)

c©: Michael Kohlhase 250

If we look at the definition again, we see that we are again using a pull-back construction. These
will pop up all over the place, since they make life quite easy and safe.

Before we actually get a combinational circuit for an n-bit adder, we will build a very useful circuit
as a building block: the “half adder” (it will take two to build a full adder).

The Half-Adder

� There are different ways to implement an adder. All of them build upon two basic
components, the half-adder and the full-adder.

�

Definition 411 A half adder is a circuit HA imple-
menting the function fHA in the truth table on the right.

fHA : B2 → B2 〈a, b〉 7→ 〈c, s〉

s is called the sum bit and c the carry bit.

a b c s
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

� Note: The carry can be computed by a simple AND, i.e., c = AND(a, b), and the sum
bit by a XOR function.

c©: Michael Kohlhase 251

157

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Building and Evaluating the Half-Adder

a
b

s

c

� So, the half-adder corresponds to the Boolean function fHA : B2 → B2; 〈a, b〉 7→
〈a⊕ b, a ∧ b〉

� Note: fHA(a, b) = B(〈〈a〉〉+ 〈〈b〉〉), i.e., it is indeed an adder.

� We count XOR as one gate, so C(HA) = 2 and dp(HA) = 1.

c©: Michael Kohlhase 252

Now that we have the half adder as a building block it is rather simple to arrive at a full adder
circuit.

*, in the diagram for the full adder, and in the following, we will sometimes use a variant gate

symbol for the OR gate: The symbol . It has the same outline as an AND gate, but the
input lines go all the way through.

The Full Adder

� Definition 412 The 1-bit full adder is a circuit FA1

that implements the function f1
FA : B× B× B → B2

with (FA1(a, b, c′)) = B(〈〈a〉〉+ 〈〈b〉〉+ 〈〈c′〉〉)

� The result of the full-adder is also denoted with 〈c, s〉,
i.e., a carry and a sum bit. The bit c′ is called the input
carry.

� the easiest way to implement a full adder is to use two
half adders and an OR gate.

� Lemma 413 (Cost and Depth)
C(FA1) = 2C(HA) + 1 = 5 and
dp(FA1) = 2dp(HA) + 1 = 3

a b c′ c s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

HA

HA

s

c
b

a

c’

s

c

c

s

c©: Michael Kohlhase 253

158

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Note: Note that in the right hand graphics, we use another notation for the OR gate.20 EdNote:20

Of course adding single digits is a rather simple task, and hardly worth the effort, if this is all we
can do. What we are really after, are circuits that will add n-bit binary natural numbers, so that
we arrive at computer chips that can add long numbers for us.

Full n-bit Adder

� Definition 414 An n-bit full adder (n > 1) is a circuit that corresponds to
fnFA : Bn × Bn × B→ B× Bn; 〈a, b, c′〉 7→ B(〈〈a〉〉+ 〈〈b〉〉+ 〈〈c′〉〉)

� Notation 415 We will draw the n-bit full adder with the following symbol in circuit
diagrams.

Note that we are abbreviating n-bit input and output edges with a single one that has a

slash and the number n next to it.

� There are various implementations of the full n-bit adder, we will look at two of them

c©: Michael Kohlhase 254

This implementation follows the intuition behind elementary school addition (only for binary
numbers): we write the numbers below each other in a tabulated fashion, and from the least
significant digit, we follow the process of

• adding the two digits with carry from the previous column

• recording the sum bit as the result, and

• passing the carry bit on to the next column

until one of the numbers ends.

20EdNote: Todo: introduce this earlier, or change the graphics here (or both)

159

http://creativecommons.org/licenses/by-sa/2.5/

The Carry Chain Adder

� The inductively designed circuit of the carry chain adder.

� n = 1: the CCA1 consists of a full adder

� n > 1: the CCAn consists of an (n − 1)-bit carry chain adder CCAn−1 and a full
adder that sums up the carry of CCAn−1 and the last two bits of a and b

� Definition 416 An n-bit carry chain adder CCAn is inductively defined as

� (f1
CCA(a0, b0, c)) = (FA1(a0, b0, c))

� (fnCCA(〈an−1, . . . , a0〉, 〈bn−1, . . . , b0〉, c′)) = 〈c, sn−1, . . . , s0〉 with

� 〈c, sn−1〉 = (FAn−1(an−1, bn−1, cn−1))

� 〈cn−1, . . . , cs〉0 = (fn−1
CCA (〈an−2, . . . , a0〉, 〈bn−2, . . . , b0〉, c′))

� Lemma 417 (Cost) C(CCAn) ∈ O(n)

� Proof Sketch: C(CCAn) = C(CCAn−1) + C(FA1) = C(CCAn−1) + 5 = 5n

� Lemma 418 (Depth) dp(CCAn) ∈ O(n)

� Proof Sketch: dp(CCAn) ≤ dp(CCAn−1) + dp(FA1) ≤ dp(CCAn−1) + 3 ≤ 3n

� The carry chain adder is simple, but cost and depth are high. (depth is critical (speed))

� Question: Can we do better?

� Problem: the carry ripples up the chain (upper parts wait for carries from lower part)

c©: Michael Kohlhase 255

A consequence of using the carry chain adder is that if we go from a 32-bit architecture to a 64-bit
architecture, the speed of additions in the chips would not increase, but decrease (by 50%). Of
course, we can carry out 64-bit additions now, a task that would have needed a special routine
at the software level (these typically involve at least 4 32-bit additions so there is a speedup for
such additions), but most addition problems in practice involve small (under 32-bit) numbers, so
we will have an overall performance loss (not what we really want for all that cost).

If we want to do better in terms of depth of an n-bit adder, we have to break the dependency on the
carry, let us look at a decimal addition example to get the idea. Consider the following snapshot of

an carry chain addition
first summand 3 4 7 9 8 3 4 7 9 2
second summand 2? 5? 1? 8? 1? 7? 81 71 20 10

partial sum ? ? ? ? ? ? ? ? 5 1 3
We have already computed the first three partial sums. Carry chain addition would simply go on
and ripple the carry information through until the left end is reached (after all what can we do?
we need the carry information to carry out left partial sums). Now, if we only knew what the
carry would be e.g. at column 5, then we could start a partial summation chain there as well.

160

http://creativecommons.org/licenses/by-sa/2.5/

The central idea in the “conditional sum adder” we will pursue now, is to trade time for space, and
just compute both cases (with and without carry), and then later choose which one was the correct

one, and discard the other. We can visualize this in the following schema.

first summand 3 4 7 9 8 3 4 7 9 2
second summand 2? 50 11 8? 1? 7? 81 71 20 10

lower sum ? ? 5 1 3
upper sum. with carry ? ? ? 9 8 0
upper sum. no carry ? ? ? 9 7 9

Here we start at column 10 to compute the lower sum, and at column 6 to compute two upper
sums, one with carry, and one without. Once we have fully computed the lower sum, we will know
about the carry in column 6, so we can simply choose which upper sum was the correct one and
combine lower and upper sum to the result.

Obviously, if we can compute the three sums in parallel, then we are done in only five steps not ten
as above. Of course, this idea can be iterated: the upper and lower sums need not be computed
by carry chain addition, but can be computed by conditional sum adders as well.

The Conditional Sum Adder

� Idea: pre-compute both possible upper sums (e.g. upper half) for carries 0 and 1, then
choose (via MUX) the right one according to lower sum.

� the inductive definition of the circuit of a conditional sum adder (CSA).

� Definition 419 An n-bit conditional sum adder CSAn is recursively defined as

� (fnCSA(〈an−1, . . . , a0〉, 〈bn−1, . . . , b0〉, c′)) = 〈c, sn−1, . . . , s0〉 where

� 〈cn/2, sn/2−1, . . . , s0〉 = (f
n/2
CSA(〈an/2−1, . . . , a0〉, 〈bn/2−1, . . . , b0〉, c′))

� 〈c, sn−1, . . . , sn/2〉 =

{
(f
n/2
CSA(〈an−1, . . ., an/2〉, 〈bn−1, . . . , bn/2〉, 0)) if cn/2 = 0

(f
n/2
CSA(〈an−1, . . ., an/2〉, 〈bn−1, . . . , bn/2〉, 1)) if cn/2 = 1

� (f1
CSA(a0, b0, c)) = (FA1(a0, b0, c))

c©: Michael Kohlhase 256

The only circuit that we still have to look at is the one that chooses the correct upper sums.
Fortunately, this is a rather simple design that makes use of the classical trick that “if C, then A,
else B” can be expressed as “(C and A) or (not C and B)”.

161

http://creativecommons.org/licenses/by-sa/2.5/

The Multiplexer

� Definition 420 An n-bit multiplexer MUXn is a circuit which implements the function
fnMUX : Bn × Bn × B→ Bn with

f(an−1, . . . , a0, bn−1, . . . , b0, s) =

{
〈an−1, . . . , a0〉 if s = 0
〈bn−1, . . . , b0〉 if s = 1

� Idea: A multiplexer chooses between two n-bit input vectors A and B depending on the
value of the control bit s.

s

o

a ba b

...

o 0

0 0n−1 n−1

n−1

� Cost and depth: C(MUXn) = 3n+ 1 and dp(MUXn) = 3.

c©: Michael Kohlhase 257

Now that we have completely implemented the conditional lookahead adder circuit, we can analyze
it for its cost and depth (to see whether we have really made things better with this design).
Analyzing the depth is rather simple, we only have to solve the recursive equation that combines
the recursive call of the adder with the multiplexer. Conveniently, the 1-bit full adder has the
same depth as the multiplexer.

The Depth of CSA

� dp(CSAn) ≤ dp(CSAn/2) + dp(MUXn/2+1)

� solve the recursive equation:

dp(CSAn) ≤ dp(CSAn/2) + dp(MUXn/2+1)

≤ dp(CSAn/2) + 3

≤ dp(CSAn/4) + 3 + 3

≤ dp(CSAn/8) + 3 + 3 + 3

. . .

≤ dp(CSAn2−i) + 3i

≤ dp(CSA1) + 3log2(n)

≤ 3log2(n) + 3

c©: Michael Kohlhase 258

The analysis for the cost is much more complex, we also have to solve a recursive equation, but a
more difficult one. Instead of just guessing the correct closed form, we will use the opportunity to
show a more general technique: using Master’s theorem for recursive equations. There are many

162

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

similar theorems which can be used in situations like these, going into them or proving Master’s
theorem would be beyond the scope of the course.

163

The Cost of CSA

� C(CSAn) = 3C(CSAn/2) + C(MUXn/2+1).

� Problem: How to solve this recursive equation?

� Solution: Guess a closed formula, prove by induction. (if we are lucky)

� Solution2: Use a general tool for solving recursive equations.

� Theorem 421 (Master’s Theorem for Recursive Equations) Given the recur-
sively defined function f : N→ R, such that f(1) = c ∈ R and f(bk) = af(bk−1)+g(bk)

for some a ∈ R, 1 ≤ a, k ∈ N, and g : N→ R, then f(bk) = cak +
∑k−1
i=0 a

ig(bk−i)

� We have C(CSAn) = 3C(CSAn/2) + C(MUXn/2+1) = 3C(CSAn/2) + 3(n/2 + 1) + 1 = 3C(CSAn/2) + 3
2n+ 4

� So, C(CSAn) is a function that can be handled via Master’s theorem with a = 3, b = 2,
n = bk, g(n) = 3/2n+ 4, and c = C(f1

CSA) = C(FA1) = 5

� thus C(CSAn) = 5 · (3log2(n)) +
∑log2(n)−1
i=0 (3i) · 3

2n · (2
−i) + 4

� Note: alog2(n) = (2log2(a))
log2(n)

= 2log2(a)·log2(n) = (2log2(n))
log2(a)

= nlog2(a)

C(CSAn) = 5 · (3log2(n)) +

log2(n)−1∑
i=0

(3i) · 3

2
n · (2−i) + 4

= 5(nlog2(3)) +

log2(n)∑
i=1

n
3

2

i

n+ 4

= 5(nlog2(3)) + n ·
log2(n)∑
i=1

(
3

2

i

) + 4log2(n)

= 5(nlog2(3)) + 2n · (3

2

log2(n)+1

)− 1 + 4log2(n)

= 5(nlog2(3)) + 3n · (nlog2(
3
2
))− 2n+ 4log2(n)

= 8(nlog2(3))− 2n+ 4log2(n) ∈ O(nlog2(3))

� Theorem 422 The cost and the depth of the conditional sum adder are in the following
complexity classes:

C(CSAn) ∈ O(nlog2(3)) dp(CSAn) ∈ O(log2(n))

� Compare with: C(CCAn) ∈ O(n) dp(CCAn) ∈ O(n)

� So, the conditional sum adder has a smaller depth than the carry chain adder. This
smaller depth is paid with higher cost.

� There is another adder that combines the small cost of the carry chain adder with the
low depth of the conditional sum adder. This carry lookahead adder CLAn has a cost
C(CLAn) ∈ O(n) and a depth of dp(CLAn) ∈ O(log2(n)).

c©: Michael Kohlhase 259

164

http://creativecommons.org/licenses/by-sa/2.5/

Instead of perfecting the n-bit adder further (and there are lots of designs and optimizations out
there, since this has high commercial relevance), we will extend the range of arithmetic operations.
The next thing we come to is subtraction. Arithmetics for Two’s Complement Numbers

11.5 Arithmetics for Two’s Complement Numbers

This of course presents us with a problem directly: the n-bit binary natural numbers, we have
used for representing numbers are closed under addition, but not under subtraction: If we have
two n-bit binary numbers B(n), and B(m), then B(n+m) is an n+ 1-bit binary natural number.
If we count the most significant bit separately as the carry bit, then we have a n-bit result. For
subtraction this is not the case: B(n−m) is only a n-bit binary natural number, if m ≥ n
(whatever we do with the carry). So we have to think about representing negative binary natural
numbers first. It turns out that the solution using sign bits that immediately comes to mind is
not the best one.

Negative Numbers and Subtraction

� Note: So far we have completely ignored the existence of negative numbers.

� Problem: Subtraction is a partial operation without them.

� Question: Can we extend the binary number systems for negative numbers?

� Simple Solution: Use a sign bit. (additional leading bit that indicates whether the number is positive)

� Definition 423 ((n + 1)-bit signed binary number system)

〈〈an, . . . , a0〉〉− :=

{
〈〈an−1, . . . , a0〉〉 if an = 0
−〈〈an−1, . . . , a0〉〉 if an = 1

� Note: We need to fix string length to identify the sign bit. (leading zeroes)

� Example 424 In the 8-bit signed binary number system

� 10011001 represents -25 ((〈〈10011001〉〉−) = −(24 + 23 + 20))

� 00101100 corresponds to a positive number: 44

c©: Michael Kohlhase 260

Here we did the naive solution, just as in the decimal system, we just added a sign bit, which
specifies the polarity of the number representation. The first consequence of this that we have to
keep in mind is that we have to fix the width of the representation: Unlike the representation for
binary natural numbers which can be arbitrarily extended to the left, we have to know which bit
is the sign bit. This is not a big problem in the world of combinational circuits, since we have a
fixed width of input/output edges anyway.

165

http://creativecommons.org/licenses/by-sa/2.5/

Problems of Sign-Bit Systems

� Generally: An n-bit signed binary number system allows to represent the integers from
−2n−1 + 1 to +2n−1 − 1.

� 2n−1 − 1 positive numbers, 2n−1 − 1 negative numbers, and the zero

� Thus we represent #({〈〈s〉〉− | s ∈ Bn}) = 2 · ((2n−1)− 1) + 1 = 2n − 1 numbers all in
all

� One number must be represented twice (But there are 2n strings of length n.)

� 10 . . . 0 and 00 . . . 0 both represent the zero as −1 · 0 = 1 · 0.

signed binary Z
0 1 1 1 7
0 1 1 0 6
0 1 0 1 5
0 1 0 0 4
0 0 1 1 3
0 0 1 0 2
0 0 0 1 1
0 0 0 0 0
1 0 0 0 -0
1 0 0 1 -1
1 0 1 0 -2
1 0 1 1 -3
1 1 0 0 -4
1 1 0 1 -5
1 1 1 0 -6
1 1 1 1 -7

� We could build arithmetic circuits using this, but there is a more elegant way!

c©: Michael Kohlhase 261

All of these problems could be dealt with in principle, but together they form a nuisance, that at
least prompts us to look for something more elegant. The two’s complement representation also
uses a sign bit, but arranges the lower part of the table in the last slide in the opposite order,
freeing the negative representation of the zero. The technical trick here is to use the sign bit (we
still have to take into account the width n of the representation) not as a mirror, but to translate
the positive representation by subtracting 2n.

166

http://creativecommons.org/licenses/by-sa/2.5/

The Two’s Complement Number System

� Definition 425 Given the binary string a = 〈an, . . . , a0〉 ∈ Bn+1, where n > 1. The
integer represented by a in the (n+ 1)-bit two’s complement, written as 〈〈a〉〉2s

n , is defined
as

〈〈a〉〉2s
n = −an · (2n) + 〈〈an−1, . . . , a0〉〉

= −an · (2n) +

n−1∑
i=0

ai · (2i)

� Notation 426 Write B2s
n (z) for the binary string that represents z in the two’s com-

plement number system, i.e., 〈〈B2s
n (z)〉〉2s

n = z.

2’s compl. Z
0 1 1 1 7
0 1 1 0 6
0 1 0 1 5
0 1 0 0 4
0 0 1 1 3
0 0 1 0 2
0 0 0 1 1
0 0 0 0 0
1 1 1 1 -1
1 1 1 0 -2
1 1 0 1 -3
1 1 0 0 -4
1 0 1 1 -5
1 0 1 0 -6
1 0 0 1 -7
1 0 0 0 -8

c©: Michael Kohlhase 262

We will see that this representation has much better properties than the naive sign-bit representa-
tion we experimented with above. The first set of properties are quite trivial, they just formalize
the intuition of moving the representation down, rather than mirroring it.

Properties of Two’s Complement Numbers (TCN)

� Let b = 〈bn, . . . , b0〉 be a number in the n+ 1-bit two’s complement system, then

� Positive numbers and the zero have a sign bit 0, i.e., bn = 0⇔ (〈〈b〉〉2s
n ≥ 0).

� Negative numbers have a sign bit 1, i.e., bn = 1⇔ 〈〈b〉〉2s
n < 0.

� For positive numbers, the two’s complement representation corresponds to the normal
binary number representation, i.e., bn = 0⇔ 〈〈b〉〉2s

n = 〈〈b〉〉

� There is a unique representation of the number zero in the n-bit two’s complement
system, namely B2s

n (0) = 〈0, . . ., 0〉.

� This number system has an asymmetric range R2s
n := {−2n, . . . , 2n − 1}.

c©: Michael Kohlhase 263

The next property is so central for what we want to do, it is upgraded to a theorem. It says that
the mirroring operation (passing from a number to it’s negative sibling) can be achieved by two
very simple operations: flipping all the zeros and ones, and incrementing.

167

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

The Structure Theorem for TCN

� Theorem 427 Let a ∈ Bn+1 be a binary string, then −〈〈a〉〉2sn = 〈〈a〉〉2sn + 1, where a is
the pointwise bit complement of a.

� Proof: by calculation using the definitions

〈〈an, an−1, . . . , a0〉〉2s
n = −an · (2n) + 〈〈an−1, . . . , a0〉〉

= an · −(2n) +

n−1∑
i=0

ai · (2i)

= 1− an · −(2n) +

n−1∑
i=0

1− ai · (2i)

= 1− an · −(2n) +

n−1∑
i=0

2i −
n−1∑
i=0

ai · (2i)

= −2n + an · (2n) + 2n−1 − 〈〈an−1, . . . , a0〉〉
= (−2n + 2n) + an · (2n)− 〈〈an−1, . . . , a0〉〉 − 1

= −(an · −(2n) + 〈〈an−1, . . . , a0〉〉)− 1

= −〈〈a〉〉2s
n − 1

c©: Michael Kohlhase 264

A first simple application of the TCN structure theorem is that we can use our existing conversion
routines (for binary natural numbers) to do TCN conversion (for integers).

Application: Converting from and to TCN?

� to convert an integer −z ∈ Z with z ∈ N into an n-bit TCN

� generate the n-bit binary number representation B(z) = 〈bn−1, . . . , b0〉
� complement it to B(z), i.e., the bitwise negation bi of B(z)

� increment (add 1) B(z), i.e. compute B(〈〈B(z)〉〉+ 1)

� to convert a negative n-bit TCN b = 〈bn−1, . . . , b0〉, into an integer

� decrement b, (compute B(〈〈b〉〉 − 1))

� complement it to B(〈〈b〉〉 − 1)

� compute the decimal representation and negate it to −〈〈B(〈〈b〉〉 − 1)〉〉

c©: Michael Kohlhase 265

168

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Subtraction and Two’s Complement Numbers

� Idea: With negative numbers use our adders directly

� Definition 428 An n-bit subtracter is a circuit that implements the function
fnSUB : Bn × Bn × B→ B× Bn such that

fnSUB(a, b, b′) = B2s
n (〈〈a〉〉2s

n − 〈〈b〉〉2s
n − b′)

for all a, b ∈ Bn and b′ ∈ B. The bit b′ is called the input borrow bit.

� Note: We have 〈〈a〉〉2s
n − 〈〈b〉〉2s

n = 〈〈a〉〉2s
n + (−〈〈b〉〉2s

n) = 〈〈a〉〉2s
n + 〈〈b〉〉2s

n + 1

� Idea: Can we implement an n-bit subtracter as fnSUB(a, b, b′) = (FAn(a, b, b′))?

� not immediately: We have to make sure that the full adder plays nice with twos comple-
ment numbers

c©: Michael Kohlhase 266

In addition to the unique representation of the zero, the two’s complement system has an additional
important property. It is namely possible to use the adder circuits introduced previously without
any modification to add integers in two’s complement representation.

Addition of TCN

� Idea: use the adders without modification for TCN arithmetic

� Definition 429 An n-bit two’s complement adder (n > 1) is a circuit that cor-
responds to the function fnTCA : Bn × Bn × B → B× Bn, such that fnTCA(a, b, c′) =
B2s
n (〈〈a〉〉2s

n + 〈〈b〉〉2s
n + c′) for all a, b ∈ Bn and c′ ∈ B.

� Theorem 430 fnTCA = fnFA (first prove some Lemmas)

c©: Michael Kohlhase 267

It is not obvious that the same circuits can be used for the addition of binary and two’s complement
numbers. So, it has to be shown that the above function TCAcircFNn and the full adder function
fnFA from definition?? are identical. To prove this fact, we first need the following lemma stating
that a (n + 1)-bit two’s complement number can be generated from a n-bit two’s complement
number without changing its value by duplicating the sign-bit:

169

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

TCN Sign Bit Duplication Lemma

� Idea: An n+ 1-bit TCN can be generated from a n-bit TCN without changing its value
by duplicating the sign-bit.

� Lemma 431 Let a = 〈an, . . . , a0〉 ∈ Bn+1 be a binary string, then 〈〈an, . . . , a0〉〉2sn+1 =
〈〈an−1, . . . , a0〉〉2sn .

� Proof: by calculation

〈〈an, . . . , a0〉〉2s
n+1 = −an · (2n+1) + 〈〈an, . . . , a0〉〉

= −an · (2n+1) + an · (2n) + 〈〈an−1, . . . , a0〉〉
= an · (−(2n+1) + (2n)) + 〈〈an−1, . . . , a0〉〉
= an · (−2 · (2n) + (2n)) + 〈〈an−1, . . . , a0〉〉
= −an · (2n) + 〈〈an−1, . . . , a0〉〉
= 〈〈an−1, . . . , a0〉〉2s

n

c©: Michael Kohlhase 268

We will now come to a major structural result for two’s complement numbers. It will serve two
purposes for us:

1. It will show that the same circuits that produce the sum of binary numbers also produce
proper sums of two’s complement numbers.

2. It states concrete conditions when a valid result is produced, namely when the last two
carry-bits are identical.

The TCN Main Theorem

� Definition 432 Let a, b ∈ Bn+1 and c ∈ B with a = 〈an, . . . , a0〉 and b = 〈bn, . . . , b0〉,
then we call (ick(a, b, c)), the k-th intermediate carry of a, b, and c, iff

〈〈ick(a, b, c), sk−1, . . . , s0〉〉 = 〈〈ak−1, . . . , a0〉〉+ 〈〈bk−1, . . . , b0〉〉+ c

for some si ∈ B.

� Theorem 433 Let a, b ∈ Bn and c ∈ B, then

1. 〈〈a〉〉2sn + 〈〈b〉〉2sn + c ∈ R2s
n , iff (icn+1(a, b, c)) = (icn(a, b, c)).

2. If (icn+1(a, b, c)) = (icn(a, b, c)), then 〈〈a〉〉2sn + 〈〈b〉〉2sn + c = 〈〈s〉〉2sn , where
〈〈icn+1(a, b, c), sn, . . . , s0〉〉 = 〈〈a〉〉+ 〈〈b〉〉+ c.

c©: Michael Kohlhase 269

Unfortunately, the proof of this attractive and useful theorem is quite tedious and technical

170

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Proof of the TCN Main Theorem
Proof: Let us consider the sign-bits an and bn separately from the value-bits a′ =
〈an−1, . . . , a0〉 and b′ = 〈bn−1, . . . , b0〉.

P.1 Then

〈〈a′〉〉+ 〈〈b′〉〉+ c = 〈〈an−1, . . . , a0〉〉+ 〈〈bn−1, . . . , b0〉〉+ c

= 〈〈icn(a, b, c), sn−1, . . . , s0〉〉

and an + bn + (icn(a, b, c)) = 〈〈icn+1(a, b, c), sn〉〉.

P.2 We have to consider three cases

P.2.1 an = bn = 0:

P.2.1.1 〈〈a〉〉2s
n and 〈〈b〉〉2s

n are both positive, so (icn+1(a, b, c)) = 0 and furthermore

(icn(a, b, c)) = 0 ⇔ 〈〈a′〉〉+ 〈〈b′〉〉+ c ≤ 2n − 1

⇔ 〈〈a〉〉2s
n + 〈〈b〉〉2s

n + c ≤ 2n − 1

P.2.1.2 Hence,

〈〈a〉〉2s
n + 〈〈b〉〉2s

n + c = 〈〈a′〉〉+ 〈〈b′〉〉+ c

= 〈〈sn−1, . . . , s0〉〉
= 〈〈0, sn−1, . . . , s0〉〉 = 〈〈s〉〉2s

n

P.2.2 an = bn = 1:

P.2.2.1 〈〈a〉〉2s
n and 〈〈b〉〉2s

n are both negative, so (icn+1(a, b, c)) = 1 and furthermore
(icn(a, b, c)) = 1, iff 〈〈a′〉〉+ 〈〈b′〉〉+ c ≥ 2n, which is the case, iff 〈〈a〉〉2s

n + 〈〈b〉〉2s
n + c =

−2n+1 + 〈〈a′〉〉+ 〈〈b′〉〉+ c ≥ −2n

P.2.2.2 Hence,

〈〈a〉〉2s
n + 〈〈b〉〉2s

n + c = −2n + 〈〈a′〉〉+−2n + 〈〈b′〉〉+ c

= −2n+1 + 〈〈a′〉〉+ 〈〈b′〉〉+ c

= −2n+1 + 〈〈1, sn−1, . . . , s0〉〉
= −2n + 〈〈sn−1, . . . , s0〉〉
= 〈〈s〉〉2s

n

P.2.3 an 6= bn:

P.2.3.1 Without loss of generality assume that an = 0 and bn = 1.
(then (icn+1(a, b, c)) = (icn(a, b, c)))

P.2.3.2 Hence, the sum of 〈〈a〉〉2s
n and 〈〈b〉〉2s

n is in the admissible range R2s
n as

〈〈a〉〉2s
n + 〈〈b〉〉2s

n + c = 〈〈a′〉〉+ 〈〈b′〉〉+ c− 2n

and (0 ≤ 〈〈a′〉〉+ 〈〈b′〉〉+ c ≤ 2n+1 − 1)

P.2.3.3 So we have

〈〈a〉〉2s
n + 〈〈b〉〉2s

n + c = −2n + 〈〈a′〉〉+ 〈〈b′〉〉+ c

= −2n + 〈〈icn(a, b, c), sn−1, . . . , s0〉〉
= −(1− (icn(a, b, c))) · (2n) + 〈〈sn−1, . . . , s0〉〉
= 〈〈icn(a, b, c), sn−1, . . . , s0〉〉2s

n

P.2.3.4 Furthermore, we can conclude that 〈〈icn(a, b, c), sn−1, . . . , s0〉〉2s
n = 〈〈s〉〉2s

n as sn =
an ⊕ bn ⊕ (icn(a, b, c)) = 1⊕ (icn(a, b, c)) = icn(a, b, c).

P.3 Thus we have considered all the cases and completed the proof.

c©: Michael Kohlhase 270

171

http://creativecommons.org/licenses/by-sa/2.5/

The Main Theorem for TCN again

� Given two (n + 1)-bit two’s complement numbers a and b. The above theorem tells
us that the result s of an (n + 1)-bit adder is the proper sum in two’s complement
representation iff the last two carries are identical.

� If not, a and b were too large or too small. In the case that s is larger than 2n − 1, we
say that an overflow occurred.In the opposite error case of s being smaller than −2n, we
say that an underflow occurred.

c©: Michael Kohlhase 271

11.6 Towards an Algorithmic-Logic Unit

The most important application of the main TCN theorem is that we can build a combinatorial
circuit that can add and subtract (depending on a control bit). This is actually the first instance
of a concrete programmable computation device we have seen up to date (we interpret the control
bit as a program, which changes the behavior of the device). The fact that this is so simple, it
only runs two programs should not deter us; we will come up with more complex things later.

172

http://creativecommons.org/licenses/by-sa/2.5/

Building an Add/Subtract Unit

� Idea: Build a Combinational Circuit that can add and subtract (sub = 1 ; subtract)

� If sub = 0, then the circuit acts like an adder (a⊕ 0 = a)

� If sub = 1, let S := 〈〈a〉〉2s
n + 〈〈bn−1, . . . , b0〉〉2s

n + 1 (a⊕ 0 = 1− a)

� For s ∈ R2s
n the TCN main theorem and the TCN structure theorem together guarantee

s = 〈〈a〉〉2s
n + 〈〈bn−1, . . . , b0〉〉2s

n + 1

= 〈〈a〉〉2s
n − 〈〈b〉〉2s

n − 1 + 1

n

A

n+1

n

n

s

sub

a b bn−1 0

� Summary: We have built a combinational circuit that can perform 2 arithmetic operations
depending on a control bit.

� Idea: Extend this to a arithmetic logic unit (ALU) with more operations
(+, -, *, /, n-AND, n-OR,. . .)

c©: Michael Kohlhase 272

In fact extended variants of the very simple Add/Subtract unit are at the heart of any computer.
These are called arithmetic logic units.

173

http://creativecommons.org/licenses/by-sa/2.5/

12 Sequential Logic Circuits and Memory Elements

So far we have considered combinatorial logic, i.e. circuits for which the output depends only
on the inputs. In many instances it is desirable to have the next output depend on the current
output.

Sequential Logic Circuits

� In combinational circuits, outputs only depend on inputs (no state)

� We have disregarded all timing issues (except for favoring shallow circuits)

� Definition 434 Circuits that remember their current output or state are often called
sequential logic circuits.

� Example 435 A counter , where the next number to be output is determined by the
current number stored.

� Sequential logic circuits need some ability to store the current state

c©: Michael Kohlhase 273

Clearly, sequential logic requires the ability to store the current state. In other words, memory
is required by sequential logic circuits. We will investigate basic circuits that have the ability to
store bits of data. We will start with the simplest possible memory element, and develop more
elaborate versions from it.

The circuit we are about to introduce is the simplest circuit that can keep a state, and thus act
as a (precursor to) a storage element. Note that we are leaving the realm of acyclic graphs here.
Indeed storage elements cannot be realized with combinational circuits as defined above.

RS Flip-Flop

� Definition 436 A RS-flipflop (or RS-latch)is constructed by feeding the outputs
of two NOR gates back to the other NOR gates input. The inputs R and S

are referred to as the Reset and Set inputs, respectively.
R S Q Q′ Comment

0 1 1 0 Set

1 0 0 1 Reset

0 0 Q Q′ Hold state

1 1 ? ? Avoid

� Note: the output Q’ is simply the inverse of Q. (supplied for convenience)

� Note: An RS flipflop can also be constructed from NAND gates.

c©: Michael Kohlhase 274

↓ T F
0 1 0
1 0 0

To understand the operation of the RS-flipflop we first reminde ourselves of the
truth table of the NOR gate on the right: If one of the inputs is 1, then the output
is 0, irrespective of the other. To understand the RS-flipflop, we will go through
the input combinations summarized in the table above in detail. Consider the
following scenarios:

174

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

S = 1 and R = 0 The output of the bottom NOR gate is 0, and thus Q′ = 0 irrespective of the
other input. So both inputs to the top NOR gate are 0, thus, Q = 1. Hence, the input
combination S = 1 and R = 0 leads to the flipflop being set to Q = 1.

S = 0 and R = 1 The argument for this situation is symmetric to the one above, so the outputs
become Q = 0 and Q′ = 1. We say that the flipflop is reset .

S = 0 and R = 0 Assume the flipflop is set (Q = 1 and Q′ = 0), then the output of the top
NOR gate remains at Q = 1 and the bottom NOR gate stays at Q′ = 0. Similarly, when
the flipflop is in a reset state (Q = 0 and Q′ = 1), it will remain there with this input
combination. Therefore, with inputs S = 0 and R = 0, the flipflop remains in its state.

S = 1 and R = 1 This input combination will be avoided, we have all the functionality (set , reset ,
and hold) we want from a memory element.

An RS-flipflop is rarely used in actual sequential logic. However, it is the fundamental building
block for the very useful D-flipflop.

The D-Flipflop: the simplest memory device

� Recap: A RS-flipflop can store a state (set Q to 1 or reset Q to 0)

� Problem: We would like to have a single data input and avoid R = S states.

� Idea: Add interface logic to do just this

� Definition 437 A D-Flipflop is an RS-flipflop with interface logic as below.

E D R S Q Comment

1 1 0 1 1 set Q to 1
1 0 1 0 0 reset Q to 0
0 D 0 0 Q hold Q

The inputs D and E

are called the data and enable inputs.

� When E = 1 the value of D determines the value of the output Q, when E returns to
0, the most recent input D is “remembered.”

c©: Michael Kohlhase 275

Sequential logic circuits are constructed from memory elements and combinatorial logic gates.
The introduction of the memory elements allows these circuits to remember their state. We will
illustrate this through a simple example.

175

http://creativecommons.org/licenses/by-sa/2.5/

Example: On/Off Switch

� Problem: Pushing a button toggles a LED between on and off.
(first push switches the LED on, second push off,. . .)

� Idea: Use a D-flipflop (to remember whether the LED is currently on or off) connect its
Q′ ouput to its D input (next state is inverse of current state)

c©: Michael Kohlhase 276

In the on/off circuit, the external inputs (buttons) were connected to the E input.

Definition 438 Such circuits are often called asynchronous as they keep track of events that
occur at arbitrary instants of time, synchronous circuits in contrast operate on a periodic basis
and the Enable input is connected to a common clock signal.

Random Access Memory Chips

� Random access memory (RAM) is used for storing a large number of bits.

� RAM is made up of storage elements similar to the D-flipflops we discussed.

� Principally, each storage element has a unique number or address represented in binary
form.

� When the address of the storage element is provided to the RAM chip, the corresponding
memory element can be written to or read from.

� We will consider the following questions:

� What is the physical structure of RAM chips?

� How are addresses used to select a particular storage element?

� What do individual storage elements look like?

� How is reading and writing distinguished?

c©: Michael Kohlhase 277

176

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Address Decoder Logic

� Idea: Need a circuit that activates the storage element given the binary address:

� At any time, only 1 output line is “on” and all others are off.

� The line that is “on” specifies the desired element

� Definition 439 The n-bit address decoder ADLn has a n inputs and 2n outputs.
fmADL(a) = 〈b1, . . . , b2n〉, where bi = 1, iff i = 〈〈a〉〉.

� Example 440 (Address decoder logic for 2-bit addresses)

c©: Michael Kohlhase 278

Storage Elements

� Idea (Input): Use a D-flipflop connect its E input to the ADL output.
Connect the D-input to the common RAM data input line. (input only if addressed)

� Idea (Output): Connect the flipflop output to common RAM output line. But first AND
with ADL output (output only if addressed)

� Problem: The read process should leave the value of the gate unchanged.

� Idea: Introduce a “write enable” signal(protect data during read) AND it with the ADL
output and connect it to the flipflop’s E input.

� Definition 441 A Storage Element is given by the foolowing diagram

c©: Michael Kohlhase 279

177

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Remarks

� The storage elements are often simplified to reduce the number of transistors.

� For example, with care one can replace the flipflop by a capacitor.

� Also, with large memory chips it is not feasible to connect the data input and output
and write enable lines directly to all storage elements.

� Also, with care one can use the same line for data input and data output.

� Today, multi-gigabyte RAM chips are on the market.

� The capacity of RAM chips doubles approximately every year.

c©: Michael Kohlhase 280

Layout of Memory Chips

� To take advantage of the two-dimensional nature of the chip, storage elements are ar-
ranged on a square grid. (columns and rows of storage elements)

� For example, a 1 Megabit RAM chip has of 1024 rows and 1024 columns.

� idenfity storage element by its row and column “coordinates”.(AND them for addressing)

� Hence, to select a particular storage location the address information must be translated
into row and column specification.

� The address information is divided into two halfs; the top half is used to select the row
and the bottom half is used to select the column.

c©: Michael Kohlhase 281

178

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

13 Machines

13.1 How to build a Computer (in Principle)

In this part of the course, we will learn how to use the very simple computational devices we
built in the last section and extend them to fully programmable devices using the “von Neumann
Architecture”. For this, we need random access memory (RAM).

For our purposes, we just understand n-bit memory cells as devices that can store n binary
values. They can be written to, (after which they store the n values at their n input edges), and
they can be queried: then their output edges have the n values that were stored in the memory
cell. Querying a memory cell does not change the value stored in it.

Our notion of time is similarly simple, in our analysis we assume a series of discrete clock ticks
that synchronize all events in the circuit. We will only observe the circuits on each clock tick and
assume that all computational devices introduced for the register machine complete computation
before the next tick. Real circuits, also have a clock that synchronizes events (the clock frequency
(currently around 3 GHz for desktop CPUs) is a common approximation measure of processor
performance), but the assumption of elementary computations taking only one click is wrong in
production systems.

How to Build a Computer (REMA; the Register Machine)

� Take an n-bit arithmetic logic unit (ALU)

� add registers: few (named) n-bit memory cells near the ALU

� program counter (PC) (points to current command in program store)

� accumulator (ACC) (the a input and output of the ALU)

� add RAM: lots of random access memory (elsewhere)

� program store: 2n-bit memory cells (addressed by P : N→ B2n)

� data store: n-bit memory cells (words addressed by D : N→ Bn)

� add a memory management unit(MMU) (move values between RAM and registers)

� program it in assembler language (lowest level of programming)

c©: Michael Kohlhase 282

We have three kinds of memory areas in the REMA register machine: The registers (our architecture
has two, which is the minimal number, real architectures have more for convenience) are just simple
n-bit memory cells.

The programstore is a sequence of up to 2n memory 2n-bit memory cells, which can be accessed
(written to and queried) randomly i.e. by referencing their position in the sequence; we do not have
to access them by some fixed regime, e.g. one after the other, in sequence (hence the name random
access memory: RAM). We address the Program store by a function P : N→ B2n. The data store
is also RAM, but a sequence or n-bit cells, which is addressed by the function D : N→ Bn.

The value of the program counter is interpreted as a binary number that addresses a 2n-bit cell
in the program store. The accumulator is the register that contains one of the inputs to the ALU
before the operation (the other is given as the argument of the program instruction); the result of
the ALU is stored in the accumulator after the instruction is carried out.

179

http://creativecommons.org/licenses/by-sa/2.5/

Memory Plan of a Register Machine

ACC (accumulator)

IN1 (index register 1)

IN2 (index register 2)

PC (program counter)

save

load

P
r
o
g
r
a
m

Addresses

Program Store

2n−bit Cells

Data Store
CPU

Addresses

2

3

1
0 Operation Argument

n−bit Cells

3

2

1
0

c©: Michael Kohlhase 283

The ALU and the MMU are control circuits, they have a set of n-bit inputs, and n-bit outputs,
and an n-bit control input. The prototypical ALU, we have already seen, applies arithmetic or
logical operator to its regular inputs according to the value of the control input. The MMU is
very similar, it moves n-bit values between the RAM and the registers according to the value at
the control input. We say that the MMU moves the (n-bit) value from a register R to a memory
cell C, iff after the move both have the same value: that of R. This is usually implemented as a
query operation on R and a write operation to C. Both the ALU and the MMU could in principle
encode 2n operators (or commands), in practice, they have fewer, since they share the command
space.

Circuit Overview over the CPU

ALU

Operation Argument

ACC

Program Store

Logic
Address

PC

c©: Michael Kohlhase 284

In this architecture (called the register machine architecture), programs are sequences of 2n-
bit numbers. The first n-bit part encodes the instruction, the second one the argument of the
instruction. The program counter addresses the current instruction (operation + argument).

We will now instantiate this general register machine with a concrete (hypothetical) realization,
which is sufficient for general programming, in principle. In particular, we will need to identify a
set of program operations. We will come up with 18 operations, so we need to set n ≥ 5. It is
possible to do programming with n = 4 designs, but we are interested in the general principles
more than optimization.

180

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

The main idea of programming at the circuit level is to map the operator code (an n-bit binary
number) of the current instruction to the control input of the ALU and the MMU, which will then
perform the action encoded in the operator.

Since it is very tedious to look at the binary operator codes (even it we present them as hexadecimal
numbers). Therefore it has become customary to use a mnemonic encoding of these in simple word
tokens, which are simpler to read, the “assembler language”.

Assembler Language

� Idea: Store program instructions as n-bit values in program store, map these to control
inputs of ALU, MMU.

� Definition 442 assembler language (ASM)as mnemonic encoding of n-bit binary codes.
instruction effect PC comment

LOAD i ACC : = D(i) PC : = PC +1 load data
STORE i D(i) : = ACC PC : = PC +1 store data
ADD i ACC : = ACC +D(i) PC : = PC +1 add to ACC
SUB i ACC : = ACC −D(i) PC : = PC +1 subtract from ACC

LOADI i ACC : = i PC : = PC +1 load number
ADDI i ACC : = ACC +i PC : = PC +1 add number
SUBI i ACC : = ACC −i PC : = PC +1 subtract number

c©: Michael Kohlhase 285

Definition 443 The meaning of the program instructions are specified in their ability to change
the state of the memory of the register machine. So to understand them, we have to trace the
state of the memory over time (looking at a snapshot after each clock tick; this is what we do
in the comment fields in the tables on the next slide). We speak of an imperative programming
language, if this is the case.

Example 444 This is in contrast to the programming language SML that we have looked at
before. There we are not interested in the state of memory. In fact state is something that we
want to avoid in such functional programming languages for conceptual clarity; we relegated all
things that need state into special constructs: effects.

To be able to trace the memory state over time, we also have to think about the initial state of the
register machine (e.g. after we have turned on the power). We assume the state of the registers
and the data store to be arbitrary (who knows what the machine has dreamt). More interestingly,
we assume the state of the program store to be given externally. For the moment, we may assume
(as was the case with the first computers) that the program store is just implemented as a large
array of binary switches; one for each bit in the program store. Programming a computer at that
time was done by flipping the switches (2n) for each instructions. Nowadays, parts of the initial
program of a computer (those that run, when the power is turned on and bootstrap the operating
system) is still given in special memory (called the firmware) that keeps its state even when power
is shut off. This is conceptually very similar to a bank of switches.

181

http://creativecommons.org/licenses/by-sa/2.5/

Example Programs

� Example 445 Exchange the values of cells 0 and 1 in the data store

P instruction comment

0 LOAD 0 ACC : = D(0) = x
1 STORE 2 D(2) : = ACC = x
2 LOAD 1 ACC : = D(1) = y
3 STORE 0 D(0) : = ACC = y
4 LOAD 2 ACC : = D(2) = x
5 STORE 1 D(1) : = ACC = x

� Example 446 Let D(1) = a, D(2) = b, and D(3) = c, store a+ b+ c in data cell 4

P instruction comment

0 LOAD 1 ACC : = D(1) = a
1 ADD 2 ACC : = ACC +D(2) = a+ b
2 ADD 3 ACC : = ACC +D(3) = a+ b+ c
3 STORE 4 D(4) : = ACC = a+ b+ c

� use LOADI i, ADDI i, SUBI i to set/increment/decrement ACC (impossible otherwise)

c©: Michael Kohlhase 286

So far, the problems we have been able to solve are quite simple. They had in common that we had
to know the addresses of the memory cells we wanted to operate on at programming time, which
is not very realistic. To alleviate this restriction, we will now introduce a new set of instructions,
which allow to calculate with addresses.

Index Registers

� Problem: Given D(0) = x and D(1) = y, how to we store y into cell x of the data store?
(impossible, as we have only absolute addressing)

� Definition 447 (Idea) introduce more registers and register instructions
(IN1, IN2 suffice)

instruction effect PC comment

LOADIN j i ACC : = D(INj+i) PC : = PC +1 relative load
STOREIN j i D(INj+i) : = ACC PC : = PC +1 relative store
MOVE S T T : = S PC : = PC +1 move register S (source)

to register T (target)

� Problem Solution:

P instruction comment

0 LOAD 0 ACC : = D(0) = x
1 MOVE ACC IN1 IN1: = ACC = x
2 LOAD 1 ACC : = D(1) = y
3 STOREIN 1 0 D(x) = D(IN1 +0): = ACC = y

c©: Michael Kohlhase 287

Note that the LOADIN are not binary instructions, but that this is just a short notation for unary
instructions LOADIN 1 and LOADIN 2 (and similarly for MOVE S T).

Note furthermore, that the addition logic in LOADIN j is simply for convenience (most assembler

182

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

languages have it, since working with address offsets is commonplace). We could have always
imitated this by a simpler relative load command and an ADD instruction.

A very important ability we have to add to the language is a set of instructions that allow us to
re-use program fragments multiple times. If we look at the instructions we have seen so far, then
we see that they all increment the program counter. As a consequence, program execution is a
linear walk through the program instructions: every instruction is executed exactly once. The
set of problems we can solve with this is extremely limited. Therefore we add a new kind of
instruction. Jump instructions directly manipulate the program counter by adding the argument
to it (note that this partially invalidates the circuit overview slide above21, but we will not worry EdNote:21
about this).

Another very important ability is to be able to change the program execution under certain
conditions. In our simple language, we will only make jump instructions conditional (this is
sufficient, since we can always jump the respective instruction sequence that we wanted to make
conditional). For convenience, we give ourselves a set of comparison relations (two would have
sufficed, e.g. = and <) that we can use to test.

Jump Instructions

� Problem: Until now, we can only write linear programs
(A program with n steps executes n instructions)

� Idea: Need instructions that manipulate the PC directly

� Definition 448 Let R ∈ {<,=, >,≤, 6=,≥} be a comparison relation
instruction effect PC comment

JUMP i PC : = PC +i jump forward i steps

JUMPR i PC : =

{
PC +i if R(ACC, 0)
PC +1 else

conditional jump

� Definition 449 (Two more)
instruction effect PC comment

NOP i PC : = PC +1 no operation
STOP i stop computation

c©: Michael Kohlhase 288

The final addition to the language are the NOP (no operation) and STOP operations. Both do not
look at their argument (we have to supply one though, so we fit our instruction format). the NOP

instruction is sometimes convenient, if we keep jump offsets rational, and the STOP instruction
terminates the program run (e.g. to give the user a chance to look at the results.)

21EdNote: reference

183

http://creativecommons.org/licenses/by-sa/2.5/

Example Program

� Now that we have completed the language, let us see what we can do.

� Example 450 Let D(0) = n, D(1) = a, and D(2) = b, copy the values of cells
a, . . . , a+ n− 1 to cells b, . . . , b+ n− 1, while a, b ≥ 3 and |a− b| ≥ n.

P instruction comment P instruction comment

0 LOAD 1 ACC : = a 10 MOVE ACC IN1 IN1: = IN1 +1
1 MOVE ACC IN1 IN1: = a 11 MOVE IN2 ACC
2 LOAD 2 ACC : = b 12 ADDI 1
3 MOVE ACC IN2 IN2: = b 13 MOVE ACC IN2 IN2: = IN2 +1
4 LOAD 0 ACC : = n 14 LOAD 0
5 JUMP= 13 if n = 0 then stop 15 SUBI 1
6 LOADIN 1 0 ACC : = D(IN1) 16 STORE 0 D(0) : = D(0)− 1
7 STOREIN 2 0 D(IN2) : = ACC 17 JUMP − 12 goto step 5
8 MOVE IN1 ACC 18 STOP 0 Stop
9 ADDI 1

� Lemma 451 We have D(0) = n− (i− 1), IN1 = a+ i− 1, and IN2 = b+ i− 1 for
all (1 ≤ i ≤ n+ 1). (the program does what we want)

� proof by induction on n.

� Definition 452 The induction hypotheses are called loop invariants.

c©: Michael Kohlhase 289

13.2 How to build a SML-Compiler (in Principle)

13.2.1 A Stack-based Virtual Machine

In this part of the course, we will build a compiler for a simple functional programming language.
A compiler is a program that examines a program in a high-level programming language and
transforms it into a program in a language that can be interpreted by an existing computation
engine, in our case, the register machine we discussed above.

We have seen that our register machine runs programs written in assembler, a simple machine
language expressed in two-word instructions. Machine languages should be designed such that on
the processors that can be built machine language programs can execute efficiently. On the other
hand machine languages should be built, so that programs in a variety of high-level programming
languages can be transformed automatically (i.e. compiled) into efficient machine programs. We
have seen that our assembler language ASM is a serviceable, if frugal approximation of the first goal
for very simple processors. We will now show that it also satisfies the second goal by exhibiting a
compiler for a simple SML-like language.

In the last 20 years, the machine languages for state-of-the art processors have hardly changed.
This stability was a precondition for the enormous increase of computing power we have witnessed
during this time. At the same time, high-level programming languages have developed consider-
ably, and with them, their needs for features in machine-languages. This leads to a significant
mismatch, which has been bridged by the concept of a virtual machine.

Definition 453 A virtual machine is a simple machine-language program that interprets a slightly
higher-level program — the “byte code” — and simulates it on the existing processor.

Byte code is still considered a machine language, just that it is realized via software on a real
computer, instead of running directly on the machine. This allows to keep the compilers simple
while only paying a small price in efficiency.

In our compiler, we will take this approach, we will first build a simple virtual machine (an ASM

program) and then build a compiler that translates functional programs into byte code.

184

http://creativecommons.org/licenses/by-sa/2.5/

Virtual Machines

� Question: How to run high-level programming languages (like SML) on REMA?

� Answer: By providing a compiler, i.e. an ASM program that reads SML programs (as
data) and transforms them into ASM programs.

� But: ASM is optimized for building simple, efficient processors, not as a translation target!

� Idea: Build an ASM program VM that interprets a better translation target language
(interpret REMA+VM as a “virtual machine”)

� Definition 454 An ASM program VM is called a virtual machine for L(VM), iff VM inputs
a L(VM) program (as data) and runs it on REMA.

� Plan: Instead of building a compiler for SML to ASM, build a virtual machine VM for REMA
and a compiler from SML to L(VM). (simpler and more transparent)

c©: Michael Kohlhase 290

A Virtual Machine for Functional Programming

� We will build a stack-based virtual machine; this will have four components

Command Interpreter

Stack Program Store

VPC

� The stack is a memory segment operated as a “last-in-first-out” LIFO sequence

� The program store is a memory segment interpreted as a sequence of instructions

� The command interpreter is a ASM program that interprets commands from the pro-
gram store and operates on the stack.

� The virtual program counter (VPC) is a register that acts as a the pointer to the
current instruction in the program store.

� The virtual machine starts with the empty stack and VPC at the beginning of the
program.

c©: Michael Kohlhase 291

185

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

A Stack-Based VM language (Arithmetic Commands)

� Definition 455 VM Arithmetic Commands act on the stack

instruction effect VPC

con i pushes i onto stack VPC : = VPC + 2
add pop x, pop y, push x+ y VPC : = VPC + 1
sub pop x, pop y, push x− y VPC : = VPC + 1
mul pop x, pop y, push x · y VPC : = VPC + 1
leq pop x, pop y, if x ≤ y push 1, else push 0 VPC : = VPC + 1

� Example 456 The L(VM) program “con 4 con 7 add” pushes 7 + 4 = 11 to the stack.

� Example 457 Note the order of the arguments: the program “con 4 con 7 sub” first
pushes 4, and then 7, then pops x and then y (so x = 7 and y = 4) and finally pushes
x− y = 7− 4 = 3.

� Stack-based operations work very well with the recursive structure of arithmetic expres-
sions: we can compute the value of the expression 4 · 3− 7 · 2 with

con 2 con 7 mul 7 · 2
con 3 con 4 mul 4 · 3
sub 4 · 3− 7 · 2

c©: Michael Kohlhase 292

Note: A feature that we will see time and again is that every (syntactically well-formed) expression
leaves only the result value on the stack. In the present case, the computation never touches the
part of the stack that was present before computing the expression. This is plausible, since the
computation of the value of an expression is purely functional, it should not have an effect on the
state of the virtual machine VM (other than leaving the result of course).

A Stack-Based VM language (Control)

� Definition 458 Control operators

instruction effect VPC

jp i VPC : = VPC + i
cjp i pop x if x = 0, then VPC : = VPC + i else VPC : = VPC + 2
halt —

� cjp is a “jump on false”-type expression.(if the condition is false, we jump else we continue)

� Example 459 For conditional expressions we use the conditional jump expressions: We
can express “if 1 ≤ 2 then 4− 3 else 7 · 5” by the program

con 2 con 1 leq cjp 9 if 1 ≤ 2
con 3 con 4 sub jp 7 then 4− 3
con 5 con 7 mul else 7 · 5
halt

c©: Michael Kohlhase 293

In the example, we first push 2, and then 1 to the stack. Then leq pops (so x = 1), pops again

186

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

(making y = 2) and computes x ≤ y (which comes out as true), so it pushes 1, then it continues
(it would jump to the else case on false).

Note: Again, the only effect of the conditional statement is to leave the result on the stack. It
does not touch the contents of the stack at and below the original stack pointer.

A Stack-Based VM language (Imperative Variables)

� Definition 460 Imperative access to variables: Let S(i) be the number at stack position
i.

instruction effect VPC

peek i push S(i) VPC : = VPC + 2
poke i pop x S(i) : = x VPC : = VPC + 2

� Example 461 The program “con 5 con 7 peek 0 peek 1 add poke 1 mul halt”
computes 5 · (7 + 5) = 60.

c©: Michael Kohlhase 294

Of course the last example is somewhat contrived, this is certainly not the best way to compute
5 · (7 + 5) = 60, but it does the trick.

Extended Example: A while Loop

� Example 462 Consider the following program that computes (12)! and the correspond-
ing L(VM) program:

var n := 12; var a := 1; con 12 con 1
while 2 <= n do (peek 0 con 2 leq cjp 18
a := a * n; peek 0 peek 1 mul poke 1
n := n - 1; con 1 peek 0 sub poke 0

) jp −21
return a; peek 1 halt

� Note that variable declarations only push the values to the stack, (memory allocation)

� they are referenced by peeking the respective stack position

� they are assigned by pokeing the stack position (must remember that)

c©: Michael Kohlhase 295

We see that again, only the result of the computation is left on the stack. In fact, the code snippet
consists of two variable declarations (which extend the stack) and one while statement, which
does not, and the return statement, which extends the stack again. In this case, we see that
even though the while statement does not extend the stack it does change the stack below by the
variable assignments (implemented as poke in L(VM)). We will use the example above as guiding
intuition for a compiler from a simple imperative language to L(VM) byte code below. But first we
build a virtual machine for L(VM).

We will now build a virtual machine for L(VM) along the specification above.

187

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

A Virtual Machine for L(VM)
� We need to build a concrete ASM program that acts as a virtual machine for L(VM).

� Choose a concrete register machine size: e.g. 32-bit words (like in a PC)

� Choose memory layout in the data store

� the VM stack: D(8) to D(224 − 1), and (need the first 8 cells for VM data)

� the L(VM) program store: D(224) to D(232 − 1)

� We represent the virtual program counter VPC by the index register IN1 and the
stack pointer by the index register IN2 (with offset 8).

� We will use D(0) as an argument store.

� choose a numerical representation for the L(VM) instructions: (have lots of space)

halt 7→ 0, add 7→ 1, sub 7→ 2, . . .

c©: Michael Kohlhase 296

Recall that the virtual machine VM is a ASM program, so it will reside in the REMA program store.
This is the program executed by the register machine. So both the VM stack and the L(VM) program
have to be stored in the REMA data store (therefore we treat L(VM) programs as sequences of words
and have to do counting acrobatics for instructions of differing length). We somewhat arbitrarily
fix a boundary in the data store of REMA at cell number 224 − 1. We will also need a little piece
of scratch-pad memory, which we locate at cells 0-7 for convenience (then we can simply address
with absolute numbers as addresses).

Memory Layout for the Virtual Machine

Scratch Area

Program

Stack

Program Store

2n−bit Cells

CPU

Operation Argument

Data Store

ACC (accumulator)

IN1 (VM prog. cnt.)

PC (program counter)

IN3 (frame pointer)

IN2 (stack pointer)

for VM
ASM Program

n−bit Cells

c©: Michael Kohlhase 297

188

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Extending REMA and ASM

� Give ourselves another register IN3 (and LOADIN 3, STOREIN 3, MOVE ∗ IN3,
MOVE IN3 ∗)

� We will use a syntactic variant of ASM for transparency

� JUMP and JUMPR with labels of the form 〈foo〉
(compute relative jump distances automatically)

� inc R for MOVE R ACC, ADDI 1, MOVE ACC R (dec R similar)

� note that inc R and dec R overwrite the current ACC (take care of it)

� All additions can be eliminated by substitution.

c©: Michael Kohlhase 298

With these extensions, it is quite simple to write the ASM code that implements the virtual machine
VM. The first part is a simple jump table, a piece of code that does nothing else than distributing
the program flow according to the (numerical) instruction head. We assume that this program
segment is located at the beginning of the program store, so that the REMA program counter points
to the first instruction. This initializes the VM program counter and its stack pointer to the first
cells of their memory segments. We assume that the L(VM) program is already loaded in its proper
location, since we have not discussed input and output for REMA.

Starting VM: the Jump Table

label instruction effect comment
LOADI 224 ACC : = 224 load VM start address
MOVE ACC IN1 VPC : = ACC set VPC
LOADI 7 ACC : = 7 load top of stack address
MOVE ACC IN2 SP : = ACC set SP

〈jt〉 LOADIN 1 0 ACC : = D(IN1) load instruction
JUMP= 〈halt〉 goto 〈halt〉
SUBI 1 next instruction code
JUMP= 〈add〉 goto 〈add〉
SUBI 1 next instruction code
JUMP= 〈sub〉 goto 〈sub〉
...

...
...

〈halt〉 STOP 0 stop
...

...
...

c©: Michael Kohlhase 299

Now it only remains to present the ASM programs for the individual L(VM) instructions. We
will start with the arithmetical operations. The code for con is absolutely straightforward: we
increment the VM program counter to point to the argument, read it, and store it to the cell the
(suitably incremented) VM stack pointer points to. Once procedure has been executed we increment
the VM program counter again, so that it points to the next L(VM) instruction, and jump back to
the beginning of the jump table.

For the add instruction we have to use the scratch pad area, since we have to pop two values
from the stack (and we can only keep one in the accumulator). We just cache the first value in
cell 0 of the program store.

189

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Implementing Arithmetic Operators

label instruction effect comment
〈con〉 inc IN1 VPC : = VPC + 1 point to arg

inc IN2 SP : = SP + 1 prepare push
LOADIN 1 0 ACC : = D(VPC) read arg
STOREIN 2 0 D(SP) : = ACC store for push
inc IN1 VPC : = VPC + 1 point to next
JUMP 〈jt〉 jump back

〈add〉 LOADIN 2 0 ACC : = D(SP) read arg 1
STORE 0 D(0) : = ACC cache it
dec IN2 SP : = SP− 1 pop
LOADIN 2 0 ACC : = D(SP) read arg 2
ADD 0 ACC : = ACC +D(0) add cached arg 1
STOREIN 2 0 D(SP) : = ACC store it
inc IN1 VPC : = VPC + 1 point to next
JUMP 〈jt〉 jump back

� sub, mul, and leq similar to add.

c©: Michael Kohlhase 300

For example, mul could be implemented as follows:

label instruction effect comment
〈mul〉 dec IN2 SP: = SP− 1

LOADI 0
STORE 1 D(1) : = 0 initialize result
LOADIN 2 1 ACC : = D(SP + 1) read arg 1
STORE 0 D(0) : = ACC initialize counter to arg 1

〈loop〉 JUMP= 〈end〉 if counter=0, we are finished
LOADIN 2 0 ACC : = D(SP) read arg 2
ADD 1 ACC : = ACC +D(1) current sum increased by arg 2
STORE 1 D(1) : = ACC cache result
LOAD 0
SUBI 1
STORE 0 D(0) : = D(0)− 1 decrease counter by 1
JUMP loop repeat addition

〈end〉 LOAD 1 load result
STOREIN 2 0 push it on stack
inc IN1
JUMP 〈jt〉 back to jump table

Note that mul is the only instruction whose corresponding piece of code is not of the unit
complexity. For the jump instructions, we do exactly what we would expect, we load the jump
distance, add it to the register IN1, which we use to represent the VM program counter VPC.
Incidentally, we can use the code for jp for the conditional jump cjp.

190

http://creativecommons.org/licenses/by-sa/2.5/

Control Instructions
label instruction effect comment
〈jp〉 MOVE IN1 ACC ACC : = VPC

STORE 0 D(0) : = ACC cache VPC
LOADIN 1 1 ACC : = D(VPC + 1) load i
ADD 0 ACC : = ACC +D(0) compute new VPC value
MOVE ACC IN1 IN1: = ACC update VPC
JUMP 〈jt〉 jump back

〈cjp〉 dec IN2 SP : = SP− 1 update for pop
LOADIN 2 1 ACC : = D(SP + 1) pop value to ACC
JUMP= 〈jp〉 perform jump if ACC = 0
MOVE IN1 ACC otherwise, go on
ADDI 2
MOVE ACC IN1 VPC : = VPC + 2 point to next
JUMP 〈jt〉 jump back

c©: Michael Kohlhase 301

Imperative Stack Operations: peek

label instruction effect comment
〈peek〉 MOVE IN1 ACC ACC : = IN1

STORE 0 D(0) : = ACC cache VPC
LOADIN 1 1 ACC : = D(VPC + 1) load i
MOVE ACC IN1 IN1: = ACC
inc IN2 prepare push
LOADIN 1 8 ACC : = D(IN1 +8) load S(i)
STOREIN 2 0 push S(i)
LOAD 0 ACC : = D(0) load old VPC
ADDI 2 compute new value
MOVE ACC IN1 update VPC
JUMP 〈jt〉 jump back

c©: Michael Kohlhase 302

Imperative Stack Operations: poke

label instruction effect comment
〈poke〉 MOVE IN1 ACC ACC : = IN1

STORE 0 D(0) : = ACC cache VPC
LOADIN 1 1 ACC : = D(VPC + 1) load i
MOVE ACC IN1 IN1: = ACC
LOADIN 2 0 ACC : = S(i) pop to ACC
STOREIN 1 8 D(IN1 +8): = ACC store in S(i)
dec IN2 IN2: = IN2−1
LOAD 0 ACC : = D(0) get old VPC
ADD 2 ACC : = ACC +2 add 2
MOVE ACC IN1 update VPC
JUMP 〈jt〉 jump back

c©: Michael Kohlhase 303

13.2.2 A Simple Imperative Language

We will now build a compiler for a simple imperative language to warm up to the task of building
one for a functional one. We will write this compiler in SML, since we are most familiar with this.
The first step is to define the language we want to talk about.

191

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

A very simple Imperative Programming Language

� Plan: Only consider the bare-bones core of a language.
(we are only interested in principles)

� We will call this language SW (Simple While Language)

� no types: all values have type int, use 0 for false all other numbers for true.

� only worry about abstract syntax (we do not want to build a parser) We will realize
this as an SML data type.

c©: Michael Kohlhase 304

The following slide presents the SML data types for SW programs.

Abstract Syntax of SW

� Definition 463 type id = string (* identifier *)

datatype exp = (* expression *)
Con of int (* constant *)

| Var of id (* variable *)
| Add of exp* exp (* addition *)
| Sub of exp * exp (* subtraction *)
| Mul of exp * exp (* multiplication *)
| Leq of exp * exp (* less or equal test *)

datatype sta = (* statement *)
Assign of id * exp (* assignment *)

| If of exp * sta * sta (* conditional *)
| While of exp * sta (* while loop *)
| Seq of sta list (* sequentialization *)

type declaration = id * exp

type program = declaration list * sta * exp

c©: Michael Kohlhase 305

A SW program (see the next slide for an example) first declares a set of variables (type declaration),
executes a statement (type sta), and finally returns an expression (type exp). Expressions of SW
can read the values of variables, but cannot change them. The statements of SW can read and
change the values of variables, but do not return values (as usual in imperative languages). Note
that SW follows common practice in imperative languages and models the conditional as a state-
ment.

Concrete vs. Abstract Syntax of a SW Program

var n:= 12; var a:= 1;
while 2<=n do
a:= a*n;
n:= n-1

end
return a

([("n", Con 12), ("a", Con 1)],
While(Leq(Con 2, Var"n"),

Seq [Assign("a", Mul(Var"a", Var"n")),
Assign("n", Sub(Var"n", Con 1))]

),
Var"a")

c©: Michael Kohlhase 306

192

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

As expected, the program is represented as a triple: the first component is a list of declarations, the
second is a statement, and the third is an expression (in this case, the value of a single variable).
We will use this example as the guiding intuition for building a compiler.

Before we can come to the implementation of the compiler, we will need an infrastructure for
environments.

Needed Infrastructure: Environments

� Need a structure to keep track of the values of declared identifiers.
(take shadowing into account)

� Definition 464 An environment is a finite partial function from keys (identifiers) to
values.

� We will need the following operations on environments:

� creation of an empty environment (; the empty function)

� insertion of a key/value pair 〈k, v〉 into an environment ϕ: (; ϕ, [v/k])

� lookup of the value v for a key k in ϕ (; ϕ(k))

� Realization in SML by a structure with the following signature

type ’a env (* a is the value type *)
exception Unbound of id (* Unbound *)
val empty : ’a env
val insert : id * ’a * ’a env -> ’a env (* id is the key type *)
val lookup : id * ’a env -> ’a

c©: Michael Kohlhase 307

We will also need an SML type for L(VM) programs. Fortunately, this is very simple.

An SML Data Type for L(VM) Programs
type index = int
type noi = int (* number of instructions *)

datatype instruction =
con of int

| add | sub | mul (* addition, subtraction, multiplication *)
| leq (* less or equal test *)
| jp of noi (* unconditional jump *)
| cjp of noi (* conditional jump *)
| peek of index (* push value from stack *)
| poke of index (* update value in stack *)
| halt (* halt machine *)

type code = instruction list

fun wlen (xs:code) = foldl (fn (x,y) => wln(x)+y) 0 xs
fun wln(con _)=2 | wln(add)=1 | wln(sub)=1 | wln(mul)=1 | wln(leq)=1
| wln(jp _)=2 | wln(cjp _)=2
| wln(peek _)=2 | wln(poke _)=2 | wln(halt)=1

c©: Michael Kohlhase 308

The next slide has the main SML function for compiling SW programs. Its argument is a SW program
(type program) and its result is an expression of type code, i.e. a list of L(VM) instructions. From

193

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

there, we only need to apply a simple conversion (which we omit) to numbers to obtain L(VM)
byte code.

Compiling SW programs

� SML function from SW programs (type program) to L(VM) programs (type code).

� uses three auxiliary functions for compiling declarations (compileD), statements
(compileS), and expressions (compileE).

� these use an environment to relate variable names with their stack index.

� the initial environment is created by the declarations.
(therefore compileD has an environment as return value)

type env = index env
fun compile ((ds,s,e) : program) : code =
let
val (cds, env) = compileD(ds, empty, ~1)

in
cds @ compileS(s,env) @ compileE(e,env) @ [halt]

end

c©: Michael Kohlhase 309

The next slide has the function for compiling SW expressions. It is realized as a case statement
over the structure of the expression.

Compiling SW Expressions

� constants are pushed to the stack.

� variables are looked up in the stack by the index determined by the environment (and
pushed to the stack).

� arguments to arithmetic operations are pushed to the stack in reverse order.

fun compileE (e:exp, env:env) : code =
case e of
Con i => [con i]

| Var i => [peek (lookup(i,env))]
| Add(e1,e2) => compileE(e2, env) @ compileE(e1, env) @ [add]
| Sub(e1,e2) => compileE(e2, env) @ compileE(e1, env) @ [sub]
| Mul(e1,e2) => compileE(e2, env) @ compileE(e1, env) @ [mul]
| Leq(e1,e2) => compileE(e2, env) @ compileE(e1, env) @ [leq]

c©: Michael Kohlhase 310

Compiling SW statements is only slightly more complicated: the constituent statements and ex-
pressions are compiled first, and then the resulting code fragments are combined by L(VM) control
instructions (as the fragments already exist, the relative jump distances can just be looked up).
For a sequence of statements, we just map compileS over it using the respective environment.

194

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Compiling SW Statements
fun compileS (s:sta, env:env) : code =

case s of
Assign(i,e) => compileE(e, env) @ [poke (lookup(i,env))]

| If(e,s1,s2) =>
let
val ce = compileE(e, env)
val cs1 = compileS(s1, env)
val cs2 = compileS(s2, env)

in
ce @ [cjp (wlen cs1 + 4)] @ cs1 @ [jp (wlen cs2 + 2)] @ cs2

end
| While(e, s) =>

let
val ce = compileE(e, env)
val cs = compileS(s, env)
in
ce @ [cjp (wlen cs + 4)] @ cs @ [jp (~(wlen cs + wlen ce + 2))]
end

| Seq ss => foldr (fn (s,c) => compileS(s,env) @ c) nil ss

c©: Michael Kohlhase 311

As we anticipated above, the compileD function is more complex than the other two. It gives
L(VM) program fragment and an environment as a value and takes a stack index as an additional
argument. For every declaration, it extends the environment by the key/value pair k/v, where k
is the variable name and v is the next stack index (it is incremented for every declaration). Then
the expression of the declaration is compiled and prepended to the value of the recursive call.

Compiling SW Declarations
fun compileD (ds: declaration list, env:env, sa:index): code*env =

case ds of
nil => (nil,env)

| (i,e)::dr => let
val env’ = insert(i, sa+1, env)
val (cdr,env’’) = compileD(dr, env’, sa+1)

in
(compileE(e,env) @ cdr, env’’)

end

c©: Michael Kohlhase 312

This completes the compiler for SW (except for the byte code generator which is trivial and an
implementation of environments, which is available elsewhere). So, together with the virtual
machine for L(VM) we discussed above, we can run SW programs on the register machine REMA.

If we now use the REMA simulator from exercise22, then we can run SW programs on our com- EdNote:22
puters outright.

One thing that distinguishes SW from real programming languages is that it does not support
procedure declarations. This does not make the language less expressive in principle, but makes
structured programming much harder. The reason we did not introduce this is that our virtual
machine does not have a good infrastructure that supports this. Therefore we will extend L(VM)
with new operations next.

Note that the compiler we have seen above produces L(VM) programs that have what is often
called “memory leaks”. Variables that we declare in our SW program are not cleaned up before the
program halts. In the current implementation we will not fix this (We would need an instruction

22EdNote: include the exercises into the course materials and reference the right one here

195

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

for our VM that will “pop” a variable without storing it anywhere or that will simply decrease
virtual stack pointer by a given value.), but we will get a better understanding for this when we
talk about the static procedures next.

Compiling the Extended Example: A while Loop

� Example 465 Consider the following program that computes (12)! and the correspond-
ing L(VM) program:

var n := 12; var a := 1; con 12 con 1
while 2 <= n do (peek 0 con 2 leq cjp 18
a := a * n; peek 0 peek 1 mul poke 1
n := n - 1; con 1 peek 0 sub poke 0

) jp −21
return a; peek 1 halt

� Note that variable declarations only push the values to the stack, (memory allocation)

� they are referenced by peeking the respective stack position

� they are assigned by pokeing the stack position (must remember that)

c©: Michael Kohlhase 313

Definition 466 In general, we need an environment and an instruction sequence to represent a
procedure, but in many cases, we can get by with an instruction sequence alone. We speak of
static procedures in this case.

Example 467 Some programming languages like C or Pascal are designed so that all procedures
can be represented as static procedures. SML and Java do not restrict themselves in this way.

We will now extend the virtual machine by four instructions that allow to represent static proce-
dures with arbitrary numbers of arguments. We will explain the meaning of these extensions via
an example: the procedure on the next slide, which computes 102.

Adding (Static) Procedures

� We have a full compiler for a very simple imperative programming language

� Problem: No support for subroutines/procedures.
(no support for structured programming)

� Extensions to the Virtual Machine

type index = int
type noi = int (* number of instructions *)
type noa = int (* number of arguments *)
type ca = int (* code address *)

datatype instruction =
· · ·

| proc of noa*noi (* begin of procedure code *)
| arg of index (* push value from frame *)
| call of ca (* call procedure *)
| return (* return from procedure call *)

c©: Michael Kohlhase 314

196

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

New Commands for L(VM)
� Definition 468 proc a l contains information about the number a of arguments and

the length l of the procedure in the number of words needed to store it, together with
the length of proc a l itself (3).

� Definition 469 arg i pushes the ith argument from the current frame to the stack.

� Definition 470 call p pushes the current program address (opens a new frame), and
jumps to the program address p.

� Definition 471 return takes the current frame from the stack, jumps to previous
program address.

c©: Michael Kohlhase 315

Translation of a Static Procedure

� Example 472

[proc 2 26, (* fun exp(x,n) = *)
con 0, arg 2, leq, cjp 5, (*
if n<=0 3 *)
con 1, return, (* then 1 *)
con 1, arg 2, sub, arg 1, (*
else x*exp(x,n-1) *)
call 0, arg 1, mul,
return, (* in *)
con 2, con 10, call 0, (*
exp(10,2) *)
halt] (* end *)

c©: Michael Kohlhase 316

197

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Static Procedures (Simulation)

Example 473 �

proc 2 26,

[con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

empty stack

� proc jumps over the body of the procedure declaration
(with the help of its second argument.)

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, jp 13,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2

10

� We push the arguments onto the stack

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2 -2

10 -1

32 0

� call pushes the return address (of the call statement in the L(VM) program)

� then it jumps to the first body instruction.

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2 -2

10 -1

32 0

0

2

� arg i pushes the ith argument onto the stack

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2 -2

10 -1

32 0

0

� Comparison turns out false, so we push 0.

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2 -2

10 -1

32 0

� cjp pops the truth value and jumps (on false).

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2 -2

10 -1

32 0

1

2

� we first push 1

� then we push the second argument (from the call frame position −2)

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2 -2

10 -1

32 0

1

� we subtract

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2 -2

10 -1

32 0

1

10

� then we push the second argument (from the call frame position −1)

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2

10

32

1 -2

10 -1

22 0

� call jumps to the first body instruction,

� and pushes the return address (22 this time) onto the stack.

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2

10

32

1 -2

10 -1

22 0

0

1

� we augment the stack

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2

10

32

1 -2

10 -1

22 0

� we compare the qtop two, and jump ahead (on false)

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2

10

32

1 -2

10 -1

22 0

1

1

� we augment the stack again

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2

10

32

1 -2

10 -1

22 0

0

10

� subtract and push the first argument

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2

10

32

1

10

22

0 -2

10 -1

22 0

� call pushes the return address and moves the current frame up

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2

10

32

1

10

22

0 -2

10 -1

22 0

0

0

� we augment the stack again,

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2

10

32

1

10

22

0 -2

10 -1

22 0

� leq compares the top two numbers, cjp pops the result and does not jump.

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2

10

32

1

10

22

0 -2

10 -1

22 0

1

� we push the result value 1

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2

10

32

1 -2

10 -1

22 0

1

� return interprets the top of the stack as the result,

� it jumps to the return address memorized right below the top of the stack,

� deletes the current frame

� and puts the result back on top of the remaining stack.

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2

10

32

1 -2

10 -1

22 0

1

10

� arg pushes the first argument from the (new) current frame

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2

10

32

1 -2

10 -1

22 0

10

� mul multiplies, pops the arguments and pushes the result.

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2 -2

10 -1

32 0

10

� return interprets the top of the stack as the result,

� it jumps to the return address,

� deletes the current frame

� and puts the result back on top of the remaining stack.

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

2 -2

10 -1

32 0

100

� we push argument 1 (in this case 10), multiply the top two numbers, and push the
result to the stack

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

100

� return interprets the top of the stack as the result,

� it jumps to the return address (32 this time),

� deletes the current frame

� and puts the result back on top of the remaining stack (which is empty here).

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt]

100

� we are finally done; the result is on the top of the stack. Note that the stack below
has not changed.

c©: Michael Kohlhase 317

198

http://creativecommons.org/licenses/by-sa/2.5/

What have we seen?

� The four new VM commands allow us to model static procedures.

proc a l contains information about the number a of arguments and the length l of the
procedure

arg i pushes the ith argument from the current frame to the stack.
(Note that arguments are stored in reverse order on the stack)

call p pushes the current program address (opens a new frame), and jumps to the pro-
gram address p

return takes the current frame from the stack, jumps to previous program address.
(which is cached in the frame)

� call and return jointly have the effect of replacing the arguments by the result of the
procedure.

c©: Michael Kohlhase 318

We will now extend our implementation of the virtual machine by the new instructions.

Realizing Call Frames on the Stack

� Problem: How do we know what the current frame is? (after all, return has to pop it)

� Idea: Maintain another register: the frame pointer (FP), and cache information about
the previous frame and the number of arguments in the frame.

last argument -n

first argument -1

argument number

previous frame

return address 0
frame pointer

� Add two internal cells to the frame, that are hidden to the outside. The upper one is
called the anchor cell.

� In the anchor cell we store the stack address of the anchor cell of the previous frame.

� The frame pointer points to the anchor cell of the uppermost frame.

c©: Michael Kohlhase 319

199

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Realizing proc

� proc a l jumps over the procedure with the help of the length l of the procedure.

label instruction effect comment
〈proc〉 MOVE IN1 ACC ACC : = VPC

STORE 0 D(0) : = ACC cache VPC
LOADIN 1 2 ACC : = D(VPC + 2) load length
ADD 0 ACC : = ACC +D(0) compute new VPC value
MOVE ACC IN1 IN1: = ACC update VPC
JUMP 〈jt〉 jump back

c©: Michael Kohlhase 320

Realizing arg

� arg i pushes the ith argument from the current frame to the stack.

� use the register IN3 for the frame pointer. (extend for first frame)

label instruction effect comment
〈arg〉 LOADIN 1 1 ACC : = D(VPC + 1) load i

STORE 0 D(0) : = ACC cache i
MOVE IN3 ACC
STORE 1 D(1) : = FP cache FP
SUBI 1
SUB 0 ACC : = FP− 1− i load argument position
MOVE ACC IN3 FP : = ACC move it to FP
inc IN2 SP : = SP + 1 prepare push
LOADIN 3 0 ACC : = D(FP) load arg i
STOREIN 2 0 D(SP) : = ACC push arg i
LOAD 1 ACC : = D(1) load FP
MOVE ACC IN3 FP : = ACC recover FP
MOVE IN1 ACC
ADDI 2
MOVE ACC IN1 VPC : = VPC + 2 next instruction
JUMP 〈jt〉 jump back

c©: Michael Kohlhase 321

Realizing call

� call p pushes the current program address, and jumps to the program address p
(pushes the internal cells first!)

label instruction effect comment
〈call〉 MOVE IN1 ACC

STORE 0 D(0) : = IN1 cache current VPC
inc IN2 SP : = SP + 1 prepare push for later
LOADIN 1 1 ACC : = D(VPC + 1) load argument
ADDI 224 + 3 ACC : = ACC +224 + 3 add displacement and skip proc a l
MOVE ACC IN1 VPC : = ACC point to the first instruction
LOADIN 1 − 2 ACC : = D(VPC− 2) stealing a from proc a l
STOREIN 2 0 D(SP) : = ACC push the number of arguments
inc IN2 SP : = SP + 1 prepare push
MOVE IN3 ACC ACC : = IN3 load FP
STOREIN 2 0 D(SP) : = ACC create anchor cell
MOVE IN2 IN3 FP : = SP update FP
inc IN2 SP : = SP + 1 prepare push
LOAD 0 ACC : = D(0) load VPC
ADDI 2 ACC : = ACC +2 point to next instruction
STOREIN 2 0 D(SP) : = ACC push the return address
JUMP 〈jt〉 jump back

c©: Michael Kohlhase 322

200

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Note that with these instructions we have maintained the linear quality. Thus the virtual machine
is still linear in the speed of the underlying register machine REMA.

Realizing return

� return takes the current frame from the stack, jumps to previous program address.
(which is cached in the frame)

label instruction effect comment
〈return〉 LOADIN 2 0 ACC : = D(SP) load top value

STORE 0 D(0) : = ACC cache it
LOADIN 2 − 1 ACC : = D(SP− 1) load return address
MOVE ACC IN1 IN1: = ACC set VPC to it
LOADIN 3 − 1 ACC : = D(FP− 1) load the number n of arguments
STORE 1 D(1) : = D(FP− 1) cache it
MOVE IN3 ACC ACC : = FP ACC = FP
SUBI 1 ACC : = ACC −1 ACC = FP− 1
SUB 1 ACC : = ACC −D(1) ACC = FP− 1− n
MOVE ACC IN2 IN2: = ACC SP = ACC
LOADIN 3 0 ACC : = D(FP) load anchor value
MOVE ACC IN3 IN3: = ACC point to previous frame
LOAD 0 ACC : = D(0) load cached return value
STOREIN 2 0 D(IN2) : = ACC pop return value
JUMP 〈jt〉 jump back

c©: Michael Kohlhase 323

Note that all the realizations of the L(VM) instructions are linear code segments in the assembler
code, so they can be executed in linear time. Thus the virtual machine language is only a constant
factor slower than the clock speed of REMA. This is a characteristic of most virtual machines.

13.2.3 Compiling Basic Functional Programs

We now have the prerequisites to model procedures calls in a programming language. Instead of
adding them to a imperative programming language, we will study them in the context of a func-
tional programming language. For this we choose a minimal core of the functional programming
language SML, which we will call µML. For this language, static procedures as we have seen them
above are enough.

µML, a very simple Functional Programming Language

� Plan: Only consider the bare-bones core of a language (we only interested in principles)

� We will call this language µML (micro ML)

� no types: all values have type int, use 0 for false all other numbers for true.

� only worry about abstract syntax (we do not want to build a parser) We will realize
this as an SML data type.

c©: Michael Kohlhase 324

201

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Abstract Syntax of µML
type id = string (* identifier
*)

datatype exp = (* expression
*)

Con of int (* constant
*)

| Id of id (* argument
*)

| Add of exp * exp (* addition
*)

| Sub of exp * exp (* subtraction
*)

| Mul of exp * exp (* multiplication
*)

| Leq of exp * exp (* less or equal test *)
| App of id * exp list (* application

*)
| If of exp * exp * exp (* conditional

*)

type declaration = id * id list * exp

type program = declaration list * exp

c©: Michael Kohlhase 325

Concrete vs. Abstract Syntax of µML

� A µML program first declares procedures, then evaluates expression for the return value.

let
fun exp(x,n) =
if n<=0
then 1
else x*exp(x,n-1)

in
exp(2,10)

end

([
("exp", ["x", "n"],
If(Leq(Id"n", Con 0),

Con 1,
Mul(Id"x", App("exp", [Id"x", Sub(Id"n", Con 1)]))))

],
App("exp", [Con 2, Con 10])
)

c©: Michael Kohlhase 326

The next step is to build a compiler for µML into programs in the extended L(VM). Just as above,
we will write this compiler in SML.

202

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Compiling µML Expressions
exception Error of string
datatype idType = Arg of index | Proc of ca
type env = idType env

fun compileE (e:exp, env:env, tail:code) : code =
case e of
Con i => [con i] @ tail

| Id i => [arg((lookupA(i,env)))] @ tail
| Add(e1,e2) => compileEs([e1,e2], env) @ [add] @ tail
| Sub(e1,e2) => compileEs([e1,e2], env) @ [sub] @ tail
| Mul(e1,e2) => compileEs([e1,e2], env) @ [mul] @ tail
| Leq(e1,e2) => compileEs([e1,e2], env) @ [leq] @ tail
| If(e1,e2,e3) => let

val c1 = compileE(e1,env,nil)
val c2 = compileE(e2,env,tail)
val c3 = compileE(e3,env,tail)

in if null tail
then c1 @ [cjp (4+wlen c2)] @ c2

@ [jp (2+wlen c3)] @ c3
else c1 @ [cjp (2+wlen c2)] @ c2 @ c3

end
| App(i, es) => compileEs(es,env) @ [call (lookupP(i,env))] @ tail

c©: Michael Kohlhase 327

Compiling µML Expressions (Continued)
and (* mutual recursion with compileE *)

fun compileEs (es : exp list, env:env) : code =
foldl (fn (e,c) => compileE(e, env, nil) @ c) nil es

fun lookupA (i,env) =
case lookup(i,env) of
Arg i => i

| _ => raise Error("Argument expected: " \^ i)

fun lookupP (i,env) =
case lookup(i,env) of
Proc ca => ca

| _ => raise Error("Procedure expected: " \^ i)

c©: Michael Kohlhase 328

203

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Compiling µML Expressions (Continued)
fun insertArgs’ (i, (env, ai)) = (insert(i,Arg ai,env), ai+1)

fun insertArgs (is, env) = (foldl insertArgs’ (env,1) is)

fun compileD (ds: declaration list, env:env, ca:ca) : code*env =
case ds of
nil => (nil,env)

| (i,is,e)::dr =>
let
val env’ = insert(i, Proc(ca+1), env)
val env’’ = insertArgs(is, env’)
val ce = compileE(e, env’’, [return])
val cd = [proc (length is, 3+wlen ce)] @ ce

(* 3+wlen ce = wlen cd *)
val (cdr,env’’) = compileD(dr, env’, ca + wlen cd)

in
(cd @ cdr, env’’)

end

c©: Michael Kohlhase 329

Compiling µML
fun compile ((ds,e) : program) : code =
let
val (cds,env) = compileD(ds, empty, ~1)

in
cds @ compileE(e,env,nil) @ [halt]

end
handle
Unbound i => raise Error("Unbound identifier: " \^ i)

c©: Michael Kohlhase 330

Where To Go Now?

� We have completed a µML compiler, which generates L(VM) code from µML programs.

� µML is minimal, but Turing-Complete (has conditionals and procedures)

c©: Michael Kohlhase 331

13.3 A theoretical View on Computation

Now that we have seen a couple of models of computation, computing machines, programs, . . . ,
we should pause a moment and see what we have achieved.

204

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

What have we achieved

� what have we done? We have sketched

� a concrete machine model (combinatory circuits)

� a concrete algorithm model (assembler programs)

Evaluation: (is this good?)

� � how does it compare with SML on a laptop?

� Can we compute all (string/numerical) functions in this model?

� Can we always prove that our programs do the right thing?

� Towards Theoretical Computer Science (as a tool to answer these)

� look at a much simpler (but less concrete) machine model (Turing Machine)

� show that TM can [encode/be encoded in] SML, assembler, Java,. . .

� Conjecture 474 [Church/Turing] (unprovable, but accepted)

All non-trivial machine models and programming languages are equivalent

c©: Michael Kohlhase 332

The idea we are going to pursue here is a very fundamental one for Computer Science: The Turing
Machine. The main idea here is that we want to explore what the “simplest” (whatever that
may mean) computing machine could be. The answer is quite surprising, we do not need wires,
electricity, silicon, etc; we only need a very simple machine that can write and read to a tape
following a simple set of rules.

Of course such machines can be built (and have been), but this is not the important aspect here.
Turing machines are mainly used for thought experiments, where we simulate them in our heads.

Note that the physical realization of the machine as a box with a (paper) tape is immaterial, it
is inspired by the technology at the time of its inception (in the late 1940ties; the age of ticker-tape
commuincation).

205

http://creativecommons.org/licenses/by-sa/2.5/

Turing Machines

� Idea: Simulate a machine by a person executing a well-defined procedure!

� Setup: Person changes the contents of an infinite amount of ordered paper sheets that
can contain one of a finite set of symbols.

� Memory: The person needs to remember one of a finite set of states

� Procedure: “If your state is 42 and the symbol you see is a ’0’ then replace this with a
’1’, remember the state 17, and go to the following sheet.”

c©: Michael Kohlhase 333

�

More Precisely: Turing machine

� Definition 475 A Turing Machine consists of

� An infinite tape which is divided into cells, one next to the other
(each cell contains a symbol from a finite alphabet L with #(L) ≥ 2 and 0 ∈ L)

� A head that can read/write symbols on the tape and move left/right.

� A state register that stores the state of the Turing machine.
(finite set of states, register initialized with a special start state)

� An action table (or transition function) that tells the machine what sym-
bol to write, how to move the head and what its new state will be, given
the symbol it has just read on the tape and the state it is currently in.

(If no entry applicable the machine will halt)

Note: every part of the machine is finite, but it is the potentially unlimited amount of
tape that gives it an unbounded amount of storage space.

c©: Michael Kohlhase 334

206

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Turing Machine

Example 476 with Alphabet {0, 1}

� Given: a series of 1s on the tape (with head initially on the leftmost)

� Computation: doubles the 1’s with a 0 in between, i.e., ”111” becomes ”1110111”.

� The set of states is {s1, s2, s3, s4, s5} (s1 start state)

� actions:

Old Read Wr. Mv. New Old Read Wr. Mv. New
s1 1 0 R s2 s4 1 1 L s4
s2 1 1 R s2 s4 0 0 L s5
s2 0 0 R s3 s5 1 1 L s5
s3 1 1 R s3 s5 0 1 R s1
s3 0 1 L s4

� state machine:

51 2 3 4

1 0 0 0

0

0,R 0,R 1,L 0,L

1,R

1,R 1,R 1,L 1,L1 1 1 1

c©: Michael Kohlhase 335

Example Computation

� T starts out in s1, replaces
the first 1 with a 0, then

� uses s2 to move to the right,
skipping over 1’s and the first
0 encountered.

� s3 then skips over the next
sequence of 1’s (initially there
are none) and replaces the
first 0 it finds with a 1.

� s4 moves back left, skipping
over 1’s until it finds a 0 and
switches to s5.

Step State Tape Step State Tape

1 s1 1 1 9 s2 10 0 1

2 s2 0 1 10 s3 100 1

3 s2 01 0 11 s3 1001 0

4 s3 010 0 12 s4 100 1 1

5 s4 01 0 1 13 s4 10 0 11

6 s5 0 1 01 14 s5 1 0 011

7 s5 0 101 15 s1 11 0 11

8 s1 1 1 01 — halt —

� s5 then moves to the left, skipping over 1’s until it finds the 0 that was originally written by s1.

� It replaces that 0 with a 1, moves one position to the right and enters s1 again for another round
of the loop.

� This continues until s1 finds a 0 (this is the 0 right in the middle between the two strings of 1’s)
at which time the machine halts

c©: Michael Kohlhase 336

207

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

What can Turing Machines compute?

� Empirically: anything any other program can also compute

� Memory is not a problem (tape is infinite)

� Efficiency is not a problem (purely theoretical question)

� Data representation is not a problem (we can use binary, or whatever symbols we like)

� All attempts to characterize computation have turned out to be equivalent

� primitive recursive functions ([Gödel, Kleene])

� lambda calculus ([Church])

� Post production systems ([Post])

� Turing machines ([Turing])

� Random-access machine

� Conjecture 477 ([Church/Turing]) (unprovable, but accepted)

Anything that can be computed at all, can be computed by a Turing Machine

c©: Michael Kohlhase 337

Is there anything that cannot be computed by a TM

� Theorem 478 No Turing machine can infallibly tell if another Turing machine will get
stuck in an infinite loop on some given input.

�

Coded description
of some TM

Input for TM

Loop−detector
Turing Machine

"yes, it will halt"

"no, it will not halt"

� Proof:

P.1 let’s do the argument with SML instead of a TM
assume that there is a loop detector program written in SML

"yes, it will halt"

"no, it will not halt"

SML Program

Loop−detector
SML Program

Input for Program

c©: Michael Kohlhase 338

208

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Testing the Loop Detector Program Proof:

P.1 The general shape of the Loop detector program

fun will_halt(program,data) =
... lots of complicated code ...
if (... more code ...) then true else false;

will_halt : (int -> int) -> int -> bool

test programs behave exactly as we anticipated

fun halter (n) = 1;
halter : int -> int
fun looper (n) = looper(n+1);
looper : int -> int

will_halt(halter,1);
val true : bool
will_halt(looper,1);
val false : bool

P.2 Consider the following Program

function turing (prog) = if will_halt(prog,prog) then looper(1) else 1;

P.3 Yeah, so what? what happens, if we feed the turing function to itself?

c©: Michael Kohlhase 339

What happens indeed? Proof:

P.1 function turing (prog) = if will_halt(prog,prog) then looper(1) else 1;

the turing function uses will_halt to analyze the function given to it.

� If the function halts when fed itself as data, the turing function goes into an infinite
loop.

� If the function goes into an infinite loop when fed itself as data, the turing function
immediately halts.

P.2 But if the function happens to be the turing function itself, then

� the turing function goes into an infinite loop if the turing function halts
(when fed itself as input)

� the turing function halts if the turing function goes into an infinite loop
(when fed itself as input)

P.3 This is a blatant logical contradiction! Thus there cannot be a will_halt function

c©: Michael Kohlhase 340

209

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Universal Turing machines

� Note: A Turing machine computes a fixed partial string function.

� In that sense it behaves like a computer with a fixed program.

� Idea: we can encode the action table of any Turing machine in a string.

� try to construct a Turing machine that expects on its tape

� a string describing an action table followed by

� a string describing the input tape, and then

� computes the tape that the encoded Turing machine would have computed.

� Theorem 479 such a Turing machine is indeed possible(e.g. with 2 states, 18 symbols)

� Definition 480 call it a universal Turing machine. (it can simulate any TM)

� UTM accepts a coded description of a Turing machine and simulates the behavior of
the machine on the input data.

� The coded description acts as a program that the UTM executes, the UTM’s own
internal program is fixed.

� The existence of the UTM is what makes computers fundamentally different from other
machines such as telephones, CD players, VCRs, refrigerators, toaster-ovens, or cars.

c©: Michael Kohlhase 341

14 Problem Solving and Search

14.1 Problem Solving

In this section, we will look at a class of algorithms called search algorithms. These are algorithms
that help in quite general situations, where there is a precisely described problem, that needs to
be solved.

Before we come to the algorithms, we need to get a grip on the problems themselves, and the
problem solving process.

The first step is to classify the problem solving process by the amount of knowledge we have
available. It makes a difference, whether we know all the factors involved in the problem before
we actually are in the situation. In this case, we can solve the problem in the abstract, i.e. make
a plan before we actually enter the situation (i.e. offline), and then when the problem arises, only
execute the plan. If we do not have complete knowledge, then we can only make partial plans, and

210

http://creativecommons.org/licenses/by-sa/2.5/

have to be in the situation to obtain new knowledge (e.g. by observing the effects of our actions or
the actions of others). As this is much more difficult we will restrict ourselves to offline problem
solving.

Problem solving

� Problem: Find algorithms that help solving problems in general

� Idea: If we can describe/represent problems in a standardized way, we may have a chance
to find general algorithms.

We will use the following two concepts to describe problems

States A set of possible situations in in our problem domain

Actions A set of possible actions that get us from one state to another.

Using these, we can view a sequence of actions as a solution, if it brings us into a situation,
where the problem is solved.

� Definition 481 Offline problem solving: Acting only with complete knowledge of prob-
lem and solution

� Definition 482 Online problem solving: Acting without complete knowledge

� Here: we are concerned with offline problem solving only.

c©: Michael Kohlhase 342

We will use the following problem as a running example. It is simple enough to fit on one slide
and complex enough to show the relevant features of the problem solving algorithms we want to
talk about.

Example: Traveling in Romania

� Scenario: On holiday in Romania; currently in Arad, Flight leaves tomorrow from
Bucharest.

� Formulate problem: States: various cities Actions: drive between cities

� Solution: Appropriate sequence of cities, e.g.: Arad, Sibiu, Fagaras, Bucharest

c©: Michael Kohlhase 343

211

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Problem Formulation

� The problem formulation models the situation at an appropriate level of abstraction.
(do not model things like “put on my left sock”, etc.)

� it describes the initial state (we are in Arad)

� it also limits the objectives. (excludes, e.g. to stay another couple of weeks.)

� Finding the right level of abstraction and the required (not more!) information is often
the key to success.

� Definition 483 A problem (formulation) P := 〈S,O, I,G〉 consists of a set S of states
and a set O of operators that specify how states can be accessed from each other. Certain
states in S are designated as goal states (G ⊆ S) and there is a unique initial state I.

� Definition 484 A solution for a problem P consists of a sequence of actions that bring
us from I to a goal state.

c©: Michael Kohlhase 344

Problem types

� Single-state problem

� observable (at least the initial state)

� deterministic (i.e. the successor of each state is determined)

� static (states do not change other than by our own actions)

� discrete (a countable number of states)

Multiple-state problem:

� � initial state not/partially observable (multiple initial states?)

� deterministic, static, discrete

Contingency problem:

� � non-deterministic (solution can branch, depending on contingencies)

� unknown state space (like a baby, agent has to learn about states and actions)

c©: Michael Kohlhase 345

We will explain these problem types with another example. The problem P is very simple: We
have a vacuum cleaner and two rooms. The vacuum cleaner is in one room at a time. The floor
can be dirty or clean.

The possible states are determined by the position of the vacuum cleaner and the information,
whether each room is dirty or not. Obviously, there are eight states: S = {1, 2, 3, 4, 5, 6, 7, 8} for
simplicity.

The goal is to have both rooms clean, the vacuum cleaner can be anywhere. So the set G of
goal states is {7,8}. In the single-state version of the problem, [right, suck] shortest solution, but
[suck, right, suck] is also one. In the multiple-state version we have [right({2, 4, 6, 8}), suck({4, 8}), left({3, 7}), suck({7})].

212

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Example: vacuum-cleaner world

� Single-state Problem:

� Start in 5

� Solution: [right, suck]

� Multiple-state Problem:

� Start in {1, 2, 3, 4, 5, 6, 7, 8}
� Solution: [right, suck, left, suck] right → {2, 4, 6, 8}

suck → {4, 8}
left → {3, 7}
suck → {7}

c©: Michael Kohlhase 346

Example: vacuum-cleaner world (continued)

� Contingency Problem:

� Murphy’s Law: suck can dirty a clean carpet

� Local sensing: dirty / notdirty at location only

� Start in: {1, 3}
� Solution: [suck, right, suck] suck → {5, 7}

right → {6, 8}
suck → {6, 8}

� better: [suck, right, if dirt then suck] (decide whether in 6 or 8 using local sensing)

c©: Michael Kohlhase 347

213

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

In the contingency version of P a solution is the following: [suck({5, 7}), right→ ({6, 8}), suck → ({6, 8})],
[suck({5, 7})], etc. Of course, local sensing can help: narrow {6, 8} to {6} or {8}, if we are in the
first, then suck.

Single-state problem formulation

� Defined by the following four items

1. Initial state: (e.g. Arad)

2. Successor function S: (e.g. S(Arad) = {〈goZer, Zerind〉, 〈goSib, Sibiu〉, . . .})
3. Goal test: (e.g. x = Bucharest (explicit test)

noDirt(x) (implicit test)
)

4. Path cost (optional): (e.g. sum of distances, number of operators executed, etc.)

� Solution: A sequence of operators leading from the initial state to a goal state

c©: Michael Kohlhase 348

“Path cost”: There may be more than one solution and we might want to have the “best” one in
a certain sense.

Selecting a state space

� Abstraction: Real world is absurdly complex
State space must be abstracted for problem solving

� (Abstract) state: Set of real states

� (Abstract) operator: Complex combination of real actions

� Example: Arad→ Zerind represents complex set of possible routes

� (Abstract) solution: Set of real paths that are solutions in the real world

c©: Michael Kohlhase 349

“State”: e.g., we don’t care about tourist attractions found in the cities along the way. But this is
problem dependent. In a different problem it may well be appropriate to include such information
in the notion of state.

“Realizability”: one could also say that the abstraction must be sound wrt. reality.

214

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Example: The 8-puzzle

States integer locations of tiles
Actions left, right, up, down
Goal test = goal state?
Path cost 1 per move

c©: Michael Kohlhase 350

How many states are there? N factorial, so it is not obvious that the problem is in NP. One
needs to show, for example, that polynomial length solutions do always exist. Can be done by
combinatorial arguments on state space graph (really ?).

Example: Vacuum-cleaner

States integer dirt and robot locations
Actions left, right, suck, noOp
Goal test notdirty?
Path cost 1 per operation (0 for noOp)

c©: Michael Kohlhase 351

215

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Example: Robotic assembly

States real-valued coordinates of
robot joint angles and parts of the object to be assembled

Actions continuous motions of robot joints
Goal test assembly complete?
Path cost time to execute

c©: Michael Kohlhase 352

14.2 Search

Tree search algorithms

� Simulated exploration of state space in a search tree by generating successors of already-
explored states (Offline Algorithm)

procedure Tree-Search (problem, strategy) : <a solution or failure>
<initialize the search tree using the initial state of problem>
loop

if <there are no candidates for expansion> <return failure> end if
<choose a leaf node for expansion according to strategy>
if <the node contains a goal state> return <the corresponding solution>
else <expand the node and add the resulting nodes to the search tree>
end if

end loop
end procedure

c©: Michael Kohlhase 353

Tree Search: Example

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad

c©: Michael Kohlhase 354

216

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Tree Search: Example

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad

c©: Michael Kohlhase 355

Tree Search: Example

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad

c©: Michael Kohlhase 356

Tree Search: Example

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad

c©: Michael Kohlhase 357

Implementation: States vs. nodes

� A (representation of) a physical configuration

� A data structure constituting part of a search tree
(includes parent, children, depth, path cost, etc.)

c©: Michael Kohlhase 358

217

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Implementation of search algorithms
procedure Tree_Search (problem,strategy)
fringe := insert(make_node(initial_state(problem)))
loop
if fringe <is empty> fail end if
node := first(fringe,stratety)
if NodeTest(State(node)) return State(node)
else fringe := insert_all(expand(node,problem),strategy)
end if

end loop
end procedure

� Definition 485 The fringe is a list nodes not yet considered. It is ordered by the search
strategy (see below)

c©: Michael Kohlhase 359

State gives the state that is represented by node
Expand = creates new nodes by applying possible actions to node
A node is a data structure representing states, will be explained in a moment.
Make-Queue creates a queue with the given elements.
fringe holds the queue of nodes not yet considered.
Remove-First returns first element of queue and as a side effect removes it from fringe.
State gives the state that is represented by node.
Expand applies all operators of the problem to the current node and yields a set of new nodes.
Insert inserts an element into the current fringe queue. This can change the behavior of the

search.
Insert-All Perform Insert on set of elements.

Search strategies

� Strategy: Defines the order of node expansion

� Important properties of strategies:

completeness does it always find a solution if one exists?
time complexity number of nodes generated/expanded
space complexity maximum number of nodes in memory
optimality does it always find a least-cost solution?

� Time and space complexity measured in terms of:

b maximum branching factor of the search tree
d depth of a solution with minimal distance to root
m maximum depth of the state space (may be ∞)

c©: Michael Kohlhase 360

Complexity means here always worst-case complexity.
Note that there can be infinite branches, see the search tree for Romania.

14.3 Uninformed Search Strategies

218

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Uninformed search strategies

� Definition 486 (Uninformed search) Use only the information available in the
problem definition

� Frequently used strategies:

� Breadth-first search

� Uniform-cost search

� Depth-first search

� Depth-limited search

� Iterative deepening search

c©: Michael Kohlhase 361

The opposite of uninformed search is informed or heuristic search. In the example, one could add,
for instance, to prefer cities that lie in the general direction of the goal (here SE).

Uninformed search is important, because many problems do not allow to extract good heuris-
tics.

Breadth-first search

� Idea: Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the queue

A

B C

D E F G

H I J K L M N O

c©: Michael Kohlhase 362

219

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Breadth-First Search

� Idea: Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the queue

A

B C

D E F G

H I J K L M N O

c©: Michael Kohlhase 363

Breadth-First Search

� Idea: Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the queue

A

B C

D E F G

H I J K L M N O

c©: Michael Kohlhase 364

Breadth-First Search

� Idea: Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the queue

A

B C

D E F G

H I J K L M N O

c©: Michael Kohlhase 365

220

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Breadth-First Search

� Idea: Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the queue

A

B C

D E F G

H I J K L M N O

c©: Michael Kohlhase 366

Breadth-First Search

� Idea: Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the queue

A

B C

D E F G

H I J K L M N O

c©: Michael Kohlhase 367

We will now apply the breadth-first search strategy to our running example: Traveling in Romania.
Note that we leave out the green dashed nodes that allow us a preview over what the search tree
will look like (if expanded). This gives a much

Breadth-First Search: Romania

Arad

c©: Michael Kohlhase 368

221

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Breadth-First Search: Romania

Arad

Sibiu Timisoara Zerind

c©: Michael Kohlhase 369

Breadth-First Search: Romania

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea

c©: Michael Kohlhase 370

Breadth-First Search:Romania

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj

c©: Michael Kohlhase 371

Breadth-First Search:Romania

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad

c©: Michael Kohlhase 372

222

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Breadth-first search: Properties

Complete Yes (if b is finite)
Time 1 + b+ (b2) + (b3) + . . .+ (bd) + b((bd)− 1) ∈ O(bd+1)

i.e. exponential in d
Space O(bd+1) (keeps every node in memory)
Optimal Yes (if cost = 1 per step), not optimal in general

� Disadvantage: Space is the big problem(can easily generate nodes at 5MB/sec so 24hrs = 430GB)

� Optimal?: if cost varies for different steps, there might be better solutions below the
level of the first solution.

� An alternative is to generate all solutions and then pick an optimal one. This works only,
if m is finite.

c©: Michael Kohlhase 373

The next idea is to let cost drive the search. For this, we will need a non-trivial cost function: we
will take the distance between cities, since this is very natural. Alternatives would be the driving
time, train ticket cost, or the number of tourist attractions along the way.

Of course we need to update our problem formulation with the necessary information.

Romania with Step Costs as Distances

c©: Michael Kohlhase 374

Uniform-cost search

� Idea: Expand least-cost unexpanded node

� Implementation: fringe is queue ordered by increasing path cost.

� Note: Equivalent to breadth-first search if all step costs are equal (DFS: see below)

Arad

c©: Michael Kohlhase 375

223

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Uniform Cost Search: Romania

� Idea: Expand least-cost unexpanded node

� Implementation: fringe is queue ordered by increasing path cost.

� Note: Equivalent to breadth-first search if all step costs are equal (DFS: see below)

Arad

Sibiu

140

Timisoara

118

Zerind

75

c©: Michael Kohlhase 376

Uniform Cost Search: Romania

� Idea: Expand least-cost unexpanded node

� Implementation: fringe is queue ordered by increasing path cost.

� Note: Equivalent to breadth-first search if all step costs are equal (DFS: see below)

Arad

Sibiu

140

Timisoara

118

Zerind

75

Oradea

71

Arad

75

c©: Michael Kohlhase 377

Uniform Cost Search: Romania

� Idea: Expand least-cost unexpanded node

� Implementation: fringe is queue ordered by increasing path cost.

� Note: Equivalent to breadth-first search if all step costs are equal (DFS: see below)

Arad

Sibiu

140

Timisoara

118

Zerind

75

Arad

118

Lugoj

111

Oradea

71

Arad

75

c©: Michael Kohlhase 378

224

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Uniform Cost Search: Romania

� Idea: Expand least-cost unexpanded node

� Implementation: fringe is queue ordered by increasing path cost.

� Note: Equivalent to breadth-first search if all step costs are equal (DFS: see below)

Arad

Sibiu

140

Timisoara

118

Zerind

75

Arad

140

Fagaras

99

Oradea

151

R. Vilcea

80

Arad

118

Lugoj

111

Oradea

71

Arad

75

c©: Michael Kohlhase 379

Note that we must sum the distances to each leaf. That is, we go back to the first level after step
3.

Uniform-cost search: Properties

Complete Yes (if step costs ≥ ε > 0)
Time number of nodes with past-cost less than that of optimal solution
Space number of nodes with past-cost less than that of optimal solution
Optimal Yes

c©: Michael Kohlhase 380

If step cost is negative, the same situation as in breadth-first search can occur: later solutions may
be cheaper than the current one.

If step cost is 0, one can run into infinite branches. UC search then degenerates into depth-first
search, the next kind of search algorithm. Even if we have infinite branches, where the sum of
step costs converges, we can get into trouble23 EdNote:23

Worst case is often worse than BF search, because large trees with small steps tend to be
searched first. If step costs are uniform, it degenerates to BF search.

Depth-first search

� Idea: Expand deepest unexpanded node

� Implementation: fringe is a LIFO queue (a stack), i.e. successors go in at front of queue

� Note: Depth-first search can perform infinite cyclic excursions
Need a finite, non-cyclic search space (or repeated-state checking)

c©: Michael Kohlhase 381

23EdNote: say how

225

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Depth-First Search
A

B C

D E F G

H I J K L M N O
c©: Michael Kohlhase 382

Depth-First Search
A

B C

D E F G

H I J K L M N O
c©: Michael Kohlhase 383

Depth-First Search
A

B C

D E F G

H I J K L M N O
c©: Michael Kohlhase 384

Depth-First Search
A

B C

D E F G

H I J K L M N O
c©: Michael Kohlhase 385

226

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Depth-First Search
A

B C

D E F G

H I J K L M N O
c©: Michael Kohlhase 386

Depth-First Search
A

B C

D E F G

H I J K L M N O
c©: Michael Kohlhase 387

Depth-First Search
A

B C

D E F G

H I J K L M N O
c©: Michael Kohlhase 388

Depth-First Search
A

B C

D E F G

H I J K L M N O
c©: Michael Kohlhase 389

227

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Depth-First Search
A

B C

D E F G

H I J K L M N O
c©: Michael Kohlhase 390

Depth-First Search
A

B C

D E F G

H I J K L M N O
c©: Michael Kohlhase 391

Depth-First Search
A

B C

D E F G

H I J K L M N O
c©: Michael Kohlhase 392

Depth-First Search
A

B C

D E F G

H I J K L M N O
c©: Michael Kohlhase 393

228

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Depth-First Search
A

B C

D E F G

H I J K L M N O
c©: Michael Kohlhase 394

Depth-First Search
A

B C

D E F G

H I J K L M N O
c©: Michael Kohlhase 395

Depth-First Search: Romania

Arad

c©: Michael Kohlhase 396

Depth-First Search: Romania

Arad

Sibiu Timisoara Zerind

c©: Michael Kohlhase 397

Depth-First Search: Romania

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea

c©: Michael Kohlhase 398

229

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Depth-First Search: Romania

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea

Sibiu Timisoara Zerind

c©: Michael Kohlhase 399

Depth-first search: Properties

Complete Yes: if state space finite
No: if state contains infinite paths or loops

Time O(bm)
(we need to explore until max depth m in any case!)

Space O(b ·m) (i.e. linear space)
(need at most store m levels and at each level at most b nodes)

Optimal No (there can be many better solutions in the
unexplored part of the search tree)

� Disadvantage: Time terrible if m much larger than d.

� Advantage: Time may be much less than breadth-first search if solutions are dense.

c©: Michael Kohlhase 400

Iterative deepening search

� Depth-limited search: Depth-first search with depth limit

� Iterative deepening search: Depth-limit search with ever increasing limits

procedure Tree_Search (problem)
<initialize the search tree using the initial state of problem>
for depth = 0 to ∞
result := Depth_Limited_search(problem,depth)
if depth 6= cutoff return result end if

end for
end procedure

c©: Michael Kohlhase 401

Iterative Deepening Search at Limit Depth 0

A A

c©: Michael Kohlhase 402

230

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Iterative Deepening Search at Limit Depth 1

A

B C

A

B C

A

B C

A

B C

c©: Michael Kohlhase 403

Iterative Deepening Search at Limit Depth 2

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

c©: Michael Kohlhase 404

Iterative Deepening Search at Limit Depth 3

c©: Michael Kohlhase 405

231

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Iterative deepening search: Properties

Complete Yes
Time (d+ 1)(b0) + d(b1) + (d− 1)(b2) + . . .+ (bd) ∈ O(bd+1)
Space O(bd)
Optimal Yes (if step cost = 1)

� (Depth-First) Iterative-Deepening Search often used in practice for search spaces of large,
infinite, or unknown depth.

� Comparison:

Criterion
Breadth-

first
Uniform-

cost
Depth-

first
Iterative

deepening

Complete? Yes∗ Yes∗ No Yes
Time bd+1 ≈ bd bm bd

Space bd+1 ≈ bd bm bd
Optimal? Yes∗ Yes No Yes

c©: Michael Kohlhase 406

Note: To find a solution (at depth d) we have to search the whole tree up to d. Of course since we
do not save the search state, we have to re-compute the upper part of the tree for the next level.
This seems like a great waste of resources at first, however, iterative deepening search tries to be
complete without the space penalties.

However, the space complexity is as good as depth-first search, since we are using depth-first
search along the way. Like in breadth-first search, the whole tree on level d (of optimal solution)
is explored, so optimality is inherited from there. Like breadth-first search, one can modify this
to incorporate uniform cost search.

As a consequence, variants of iterative deepening search are the method of choice if we do not
have additional information.

Comparison

Breadth-first search Iterative deepening search

c©: Michael Kohlhase 407

14.4 Informed Search Strategies

232

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Summary: Uninformed Search/Informed Search

� Problem formulation usually requires abstracting away real-world details to define a state
space that can feasibly be explored

� Variety of uninformed search strategies

� Iterative deepening search uses only linear space and not much more time than other
uninformed algorithms

� Next Step: Introduce additional knowledge about the problem (informed search)

� Best-first-, A∗-search (guide the search by heuristics)

� Iterative improvement algorithms

c©: Michael Kohlhase 408

Best-first search

� Idea: Use an evaluation function for each node (estimate of “desirability”) Expand
most desirable unexpanded node

� Implementation: fringe is a queue sorted in decreasing order of desirability

� Special cases: Greedy search, A∗ search

c©: Michael Kohlhase 409

This is like UCS, but with evaluation function related to problem at hand replacing the path cost
function.

If the heuristics is arbitrary, we expect incompleteness!
Depends on how we measure “desirability”.
Concrete examples follow.

Romania with step costs in km

c©: Michael Kohlhase 410

233

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Greedy search

� Definition 487 A heuristic is an evaluation function h on nodes that estimates of cost
from n to the nearest goal state.

Idea: Greedy search expands the node that appears to be closest to goal

� Example 488 hSLD(n) = straight-line distance from n to Bucharest

� Note: Unlike uniform-cost search the node evaluation function has nothing to do with
the nodes explored so far

internal search control → external search control
partial solution cost → goal cost estimation

c©: Michael Kohlhase 411

In greedy search we replace the objective cost to construct the current solution with a heuristic or
subjective measure from which we think it gives a good idea how far we are from a solution. Two
things have shifted:

• we went from internal (determined only by features inherent in the search space) to an
external/heuristic cost

• instead of measuring the cost to build the current partial solution, we estimate how far we
are from the desired goal

Greedy Search: Romania

Arad

366

c©: Michael Kohlhase 412

Greedy Search: Romania

Arad

366

Sibiu

253

Timisoara

329

Zerind

374

c©: Michael Kohlhase 413

Greedy Search: Romania

Arad

366

Sibiu

253

Timisoara

329

Zerind

374

Arad

366

Fagaras

176

Oradea

380

R. Vilcea

193

c©: Michael Kohlhase 414

234

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Greedy Search: Romania

Arad

366

Sibiu

253

Timisoara

329

Zerind

374

Arad

366

Fagaras

176

Oradea

380

R. Vilcea

193

Sibiu

253

Bucharest

0

c©: Michael Kohlhase 415

Greedy search: Properties

Complete No: Can get stuck in loops
Complete in finite space with repeated-state checking

Time O(bm)
Space O(bm)
Optimal No

� Example 489 Greedy search can get stuck going from Iasi to Oradea:
Iasi → Neamt → Iasi → Neamt → · · ·

� Worst-case time same as depth-first search,

� Worst-case space same as breadth-first

� But a good heuristic can give dramatic improvement

c©: Michael Kohlhase 416

Greedy Search is similar to UCS. Unlike the latter, the node evaluation function has nothing to
do with the nodes explored so far. This can prevent nodes from being enumerated systematically
as they are in UCS and BFS.

For completeness, we need repeated state checking as the example shows. This enforces complete
enumeration of state space (provided that it is finite), and thus gives us completeness.

Note that nothing prevents from all nodes nodes being searched in worst case; e.g. if the
heuristic function gives us the same (low) estimate on all nodes except where the heuristic mis-
estimates the distance to be high. So in the worst case, greedy search is even worse than BFS,
where d (depth of first solution) replaces m.

The search procedure cannot be optional, since actual cost of solution is not considered.
For both, completeness and optimality, therefore, it is necessary to take the actual cost of

partial solutions, i.e. the path cost, into account. This way, paths that are known to be expensive
are avoided.

235

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

A∗ search

� Idea: Avoid expanding paths that are already expensive (make use of actual cost)

The simplest way to combine heuristic and path cost is to simply add them.

� Definition 490 The evaluation function for A∗-search is given by f(n) = g(n) +h(n),
where g(n) is the path cost for n and h(n) is the estimated cost to goal from n.

� Thus f(n) is the estimated total cost of path through n to goal

� Definition 491 Best-First-Search with evaluation function g+h is called astarSearch
search.

c©: Michael Kohlhase 417

This works, provided that h does not overestimate the true cost to achieve the goal. In other
words, h must be optimistic wrt. the real cost h∗. If we are too pessimistic, then non-optimal
solutions have a chance.

A∗ search: Admissibility

� Definition 492 (Admissibility of heuristic) h(n) is called admissible if (0 ≤
h(n) ≤ h∗(n)) for all nodes n, where h∗(n) is the true cost from n to goal.

(In particular: h(G) = 0 for goal G)

� Example 493 Straight-line distance never overestimates the actual road distance
(triangle inequality)

Thus hSLD(n) is admissible.

c©: Michael Kohlhase 418

A∗ Search: Admissibility

� Theorem 494 A∗ search with admissible heuristic is optimal

� Proof: We show that sub-optimal nodes are never selected by A∗

P.1 Suppose a suboptimal goal G has been generated then we are in the following situ-
ation:

start

n

O G

P.2 Let n be an unexpanded node on a path to an optimal goal O, then

f(G) = g(G) since h(G) = 0
g(G) > g(O) since G suboptimal
g(O) = g(n) + h∗(n) n on optimal path
g(n) + h∗(n) ≥ g(n) + h(n) since h is admissible
g(n) + h(n) = f(n)

P.3 Thus, f(G) > f(n) and astarSearch never selects G for expansion.

c©: Michael Kohlhase 419

236

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

A∗ Search Example

Arad

366=0+366

c©: Michael Kohlhase 420

A∗ Search Example

Arad

Sibiu

393=140+253

Timisoara

447=118+329

Zerind

449=75+374

c©: Michael Kohlhase 421

A∗ Search Example

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras

415=239+176

Oradea

671=291+380

R. Vilcea

413=220+193

c©: Michael Kohlhase 422

A∗ Search Example

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras

415=239+176

Oradea

671=291+380

R. Vilcea

Craiova

526=366+160

Pitesti

417=317+100

Sibiu

553=300+253

c©: Michael Kohlhase 423

237

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

A∗ Search Example

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras Oradea

671=291+380

R. Vilcea

Craiova

526=366+160

Pitesti

417=317+100

Sibiu

553=300+253

Sibiu

591=338+253

Bucharest

450=450+0

c©: Michael Kohlhase 424

A∗ Search Example

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras Oradea

671=291+380

R. Vilcea

Craiova

526=366+160

Pitesti Sibiu

553=300+253

Sibiu

591=338+253

Bucharest

450=450+0

Bucharest

418=418+0

Craiova

615=455+160

Sibiu

607=414+193

c©: Michael Kohlhase 425

A∗ search: f -contours

� A∗ gradually adds “f -contours” of nodes

c©: Michael Kohlhase 426

238

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

A∗ search: Properties

Complete Yes (unless there are infinitely many nodes n with f(n) ≤ f(0))
Time Exponential in [relative error in h × length of solution]
Space Same as time (variant of BFS)
Optimal Yes

� A∗ expands all (some/no) nodes with f(n) < h∗(n)

� The run-time depends on how good we approximated the real cost h∗ with h.

c©: Michael Kohlhase 427

Since the availability of admissible heuristics is so important for informed search (particularly for
A∗), let us see how such heuristics can be obtained in practice. We will look at an example, and
then derive a general procedure from that.

Admissible heuristics: Example 8-puzzle

� Example 495 Let h1(n) be the number of misplaced tiles in node n (h1(S) = 6)

� Example 496 Let h2(n) be the total manhattan distance from desired location of each
tile. (h2(S) = 2 + 0 + 3 + 1 + 0 + 1 + 3 + 4 = 14)

� Observation 497 (Typical search costs) (IDS =̂ iterative deepening search)

nodes explored IDS A∗(h1) A∗(h2)

d = 14 3,473,941 539 113
d = 24 too many 39,135 1,641

c©: Michael Kohlhase 428

Dominance

� Definition 498 Let h1 and h2 be two admissible heuristics we say that h2 dominates
h1 if h2(n) ≥ h1(n) or all n.

� Theorem 499 If h2 dominates h1, then h2 is better for search than h1.

c©: Michael Kohlhase 429

239

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Relaxed problems

� Finding good admissible heuristics is an art!

� Idea: Admissible heuristics can be derived from the exact solution cost of a relaxed
version of the problem.

� Example 500 If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then we get heuristic h1.

� Example 501 If the rules are relaxed so that a tile can move to any adjacent square,
then we get heuristic h2.

� Key point: The optimal solution cost of a relaxed problem is not greater than the optimal
solution cost of the real problem

c©: Michael Kohlhase 430

Relaxation means to remove some of the constraints or requirements of the original problem, so
that a solution becomes easy to find. Then the cost of this easy solution can be used as an
optimistic approximation of the problem.

14.5 Local Search

Local Search Problems

� Idea: Sometimes the path to the solution is irrelevant

� Example 502 (8 Queens Problem) Place 8 queens on a chess board, so that no
two queens threaten each other.

� This problem has various solutions, e.g. the one on the right

� Definition 503 A local search algorithm is a search algorithm that operates on a single
state, the current state (rather than multiple paths). (advantage: constant space)

� Typically local search algorithms only move to successors of the current state, and do
not retain search paths.

� Applications include: integrated circuit design, factory-floor layout, job-shop scheduling,
portfolio management, fleet deployment,. . .

c©: Michael Kohlhase 431

240

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Local Search: Iterative improvement algorithms

� Definition 504 (Traveling Salesman Problem) Find shortest trip through set of
cities such that each city is visited exactly once.

� Idea: Start with any complete tour, perform pairwise exchanges

� Definition 505 (n-queens problem) Put n queens on n×n board such that no two
queens in the same row, columns, or diagonal.

� Idea: Move a queen to reduce number of conflicts

c©: Michael Kohlhase 432

Hill-climbing (gradient ascent/descent)

� Idea: Start anywhere and go in the direction of the steepest ascent.

� Depth-first search with heuristic and w/o memory

procedure Hill-Climbing (problem) (* a state that is a local minimum *)
local current, neighbor (* nodes *)
current := Make-Node(Initial-State[problem])
loop
neighbor := <a highest−valued successor of current>
if Value[neighbor] < Value[current]
return [current]
current := neighbor

end if
end loop

end procedure

� Like starting anywhere in search tree and making a heuristically guided DFS.

� Works, if solutions are dense and local maxima can be escaped.

c©: Michael Kohlhase 433

In order to understand the procedure on a more intuitive level, let us consider the following
scenario: We are in a dark landscape (or we are blind), and we want to find the highest hill. The
search procedure above tells us to start our search anywhere, and for every step first feel around,
and then take a step into the direction with the steepest ascent. If we reach a place, where the
next step would take us down, we are finished.

Of course, this will only get us into local maxima, and has no guarantee of getting us into
global ones (remember, we are blind). The solution to this problem is to re-start the search at
random (we do not have any information) places, and hope that one of the random jumps will get
us to a slope that leads to a global maximum.

241

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Example Hill-Climbing with 8 Queens

� Idea: Heuristic function h is number of queens that threaten each other.

� Example 506 An 8-queens state with heuristic cost estimate h = 17 showing h-values
for moving a queen within its column

� Problem: The state space has local minima. e.g. the board on the right has h = 1 but
every successor has h > 1.

c©: Michael Kohlhase 434

Hill-climbing

� Problem: Depending on initial state, can get stuck on local maxima/minima and plateaux

� “Hill-climbing search is like climbing Everest in thick fog with amnesia”

� Idea: Escape local maxima by allowing some “bad” or random moves.

� Example 507 local search, simulated annealing. . .

� Properties: All are incomplete, non-optimal.

� Sometimes performs well in practice (if (optimal) solutions are dense)

c©: Michael Kohlhase 435

Recent work on hill-climbing algorithms tries to combine complete search with randomization to
escape certain odd phenomena occurring in statistical distribution of solutions.

242

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Simulated annealing (Idea)

� Definition 508 Ridges are ascending successions of local maxima

� Problem: They are extremely difficult to navigate for local search algorithms

� Idea: Escape local maxima by allowing some “bad” moves, but gradually decrease their
size and frequency

� Annealing is the process of heating steel and let it cool gradually to give it time to grow
an optimal cristal structure.

� Simulated Annealing is like shaking a ping-pong ball occasionally on a bumpy surface to
free it. (so it does not get stuck)

� Devised by Metropolis et al., 1953, for physical process modelling

� Widely used in VLSI layout, airline scheduling, etc.

c©: Michael Kohlhase 436

Simulated annealing (Implementation)
procedure Simulated-Annealing (problem,schedule) (* a solution state *)
local node, next (* nodes*)
local T (*a ‘‘temperature’’ controlling prob.~of downward steps *)
current := Make-Node(Initial-State[problem])
for t :=1 to ∞
T := schedule[t]
if T = 0 return current end if
next := <a randomly selected successor of current>

∆(E) := Value[next]-Value[current]
if ∆(E) > 0 current := next
else

current := next <only with probability> e∆(E)/T

end if
end for

end procedure

a problem schedule is a mapping from time to “temperature”

c©: Michael Kohlhase 437

243

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Properties of simulated annealing

� At fixed “temperature” T , state occupation probability reaches Boltzman distribution

p(x) = αe
E(x)
kT

T decreased slowly enough =⇒ always reach best state x∗ because e
E(x∗)
kT

e
E(x)
kT =e

E(x∗)−E(x)
kT

� 1

for small T .

� Is this necessarily an interesting guarantee?

c©: Michael Kohlhase 438

Local beam search

� Idea: Keep k states instead of 1; choose top k of all their successors

� Not the same as k searches run in parallel!
(Searches that find good states recruit other searches to join them)

� Problem: quite often, all k states end up on same local hill

� Idea: Choose k successors randomly, biased towards good ones.
(Observe the close analogy to natural selection!)

c©: Michael Kohlhase 439

Genetic algorithms (very briefly)

� Idea: Use local beam search (keep a population of k) randomly modify population
(mutation) generate successors from pairs of states (sexual reproduction) optimize a

fitness function (survival of the fittest)

�

c©: Michael Kohlhase 440

244

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Genetic algorithms (continued)

� Problem: Genetic Algorithms require states encoded as strings (GPs use programs)

� Crossover helps iff substrings are meaningful components

� Example 509 (Evolving 8 Queens)

� GAs 6= evolution: e.g., real genes encode replication machinery!

c©: Michael Kohlhase 441

245

http://creativecommons.org/licenses/by-sa/2.5/

15 Logic Programming

15.1 Programming as Search: Introduction to Logic Programming and
PROLOG

We will now learn a new programming paradigm: “logic programming” (also called “Declarative
Programming”), which is an application of the search techniques we looked at last, and the logic
techniques. We are going to study ProLog (the oldest and most widely used) as a concrete example
of the ideas behind logic programming.

Logic Programming is a programming style that differs from functional and imperative program-
ming in the basic procedural intuition. Instead of transforming the state of the memory by issuing
instructions (as in imperative programming), or comupting the value of a function on some ar-
guments, logic programming interprets the program as a body of knowledge about the respective
situation, which can be queried for consequences. This is actually a very natural intuition; after
all we only run (imperative or functional) programs if we want some question answered.

Logic Programming

� Idea: Use logic as a programming language!

� We state what we know about a problem (the program) and then ask for results (what
the program would compute)

� Example 510
Program Leibniz is human x+ 0 = x

Sokrates is is human If x+ y = z then x+ s(y) = s(z)
Sokrates is a greek 3 is prime
Every human is fallible

Query Are there fallible greeks? is there a z with s(s(0)) + s(0) = z

Answer Yes, Sokrates! yes s(s(s(0)))

� How to achieve this?: Restrict the logic calculus sufficiently that it can be used as
computational procedure.

� Slogan: Computation = Logic + Control ([Kowalski ’73])

� We will use the programming language ProLog as an example

c©: Michael Kohlhase 442

ProLog is a simple logic programming language that exemplifies the ideas we want to discuss quite
nicely. We will not introduce the language formally, but in concrete examples as we explain the
theortical concepts. For a complete reference, please consult the online book by Blackburn & Bos
& Striegnitz http://www.coli.uni-sb.de/~kris/learn-prolog-now/.

Of course, this the whole point of writing down a knowledge base (a program with knowledge about
the situation), if we do not have to write down all the knowledge, but a (small) subset, from which
the rest follows. We have already seen how this can be done: with logic. For logic programming
we will use a logic called “first-order logic” which we will not formally introduce here. We have
already seen that we can formulate propositional logic using terms from an abstract data type
instead of propositional variables. For our purposes, we will just use terms with variables instead
of the ground terms used there. 24 EdNote:24

24EdNote: reference

246

http://creativecommons.org/licenses/by-sa/2.5/
http://www.coli.uni-sb.de/~kris/learn-prolog-now/

Representing a Knowledge base in ProLog

� A knowledge base is represented (symbolically) by a set of facts and rules.

� Definition 511 A fact is a statement written as a term that is unconditionally true of
the domain of interest. (write with a term followed by a “.”)

� Example 512 We can state that Mia is a woman as woman(mia).

� Definition 513 A rule states information that is conditionally true in the domain.

� Example 514 Write “something is a car if it has a motor and four wheels” as
(car(X) : −has motor(X), has wheels(X, 4)) (variables are upper-case)

this is just an ASCII notation for m(x) ∧ w(x, 4)⇒ car(x)

� Definition 515 The knowledge base given by a set of facts and rules is that set of facts
that can be derived from it by Modus Ponens (MP) and ∧I.

A A⇒ B

B
MP

A B

A ∧B
∧ I A

[B/X](A)
Subst

c©: Michael Kohlhase 443

Knowledge Base (Example)

� Example 516 car(c). is in the knowlege base generated by

has_motor(c).
has_wheels(c,4).
car(X):- has_motor(X),has_wheels(X,4).

m(c) w(c, 4)
∧I

m(c) ∧ w(c, 4)

m(x) ∧ w(x, 4)⇒ car(x)
Subst

m(c) ∧ w(c, 4)⇒ car(c)
MP

car(c)

c©: Michael Kohlhase 444

247

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Querying the Knowledge base

� Idea: We want to see whether a fact is in the knowledge base.

� Definition 517 A query or goal is a statement of which we want to know whether it is
in the knowledge base. (write as ?− A., if A statement)

� Problem: Knowledge bases can be big and even infinite.

� Example 518 The the knowledge base induced by the program

nat(zero).
nat(s(X)) :- nat(X).

is the set {nat(zero), nat(s(zero)), nat(s(s(zero))), . . .}.

� Idea: interpret this as a search problem.

� state = tuple of goals; goal state = empty list (of goals).

� next(〈G, R1, . . . Rl〉) := 〈σ(B1), . . ., σ(Bm), R1, . . ., Rl〉 (backchaining) if there is a
rule H : −B1, . . . Bm. and a substitution σ with σ(H) = σ(G).

?- nat(s(s(zero))).
?- nat(s(zero)).
?- nat(zero).
Yes

� If a query contains variables, then ProLog will return an answer substitution.

has_wheels(mybmw,4).
has_motor(mybmw).
car(X):-has_wheels(X,4),has_motor(X).
?- car(Y)
?- has_wheels(Y,4),has_motor(Y).
Y = mybmw
?- has_motor(mybmw).
Y = mybmw
Yes

� If no instance of the statement in a query can be derived from the knowledge base, then
the ProLog interpreter reports failure.

?- nat(s(s(0))).
?- nat(s(0)).
?- nat(0).
FAIL
No

c©: Michael Kohlhase 445

248

http://creativecommons.org/licenses/by-sa/2.5/

PROLOG: Are there Fallible Greeks?

� Program:

human(sokrates).
human(leibniz).
greek(sokrates).
fallible(X) :- human(X).

� Example 519 (Query) ?− fallible(X), greek(X).

� Answer substitution: [sokrates/X]

c©: Michael Kohlhase 446

We will now discuss how to use a ProLog interpreter to get to know the language. The SWI
ProLog interpreter can be downloaded from http://www.swi-prolog.org/. To start the ProLog

interpreter with pl or prolog or swipl from the shell. The SWI manual is available at http:

//gollem.science.uva.nl/SWI-Prolog/Manual/

We will introduce working with the interpreter using unary natural numbers as examples: we first
add the fact 7 to the knowledge base

unat(zero).

which asserts that the predicate unat8 is true on the term zero. Generally, we can add a fact to
the knowledge base either by writing it into a file (e.g. example.pl) and then “consulting it” by
writing one of the following commands into the interpreter:

[example]
consult(’example.pl’).

or by directly typing

assert(unat(zero)).

into the ProLog interpreter. Next tell ProLog about the following rule

assert(unat(suc(X)) :- unat(X)).

which gives the ProLog runtime an initial (infinite) knowledge base, which can be queried by

?- unat(suc(suc(zero))).
Yes

Running ProLog in an emacs window is incredibly nicer than at the command line, because you
can see the whole history of what you have done. Its better for debugging too. If you’ve never
used emacs before, it still might be nicer, since its pretty easy to get used to the little bit of emacs
that you need. (Just type “emacs \&” at the UNIX command line to run it; if you are on a remote
terminal like putty, you can use “emacs -nw”.).

If you don’t already have a file in your home directory called “.emacs” (note the dot at the front),
create one and put the following lines in it. Otherwise add the following to your existing .emacs

file:

(autoload ’run-prolog "prolog" "Start a Prolog sub-process." t)

(autoload ’prolog-mode "prolog" "Major mode for editing Prolog programs." t)

(setq prolog-program-name "swipl") ; or whatever the prolog executable name is

(add-to-list ’auto-mode-alist ’("\\pl$" . prolog-mode))

7for “unary natural numbers”; we cannot use the predicate nat and the constructor functions here, since their
meaning is predefined in ProLog

8for “unary natural numbers”.

249

http://creativecommons.org/licenses/by-sa/2.5/
http://www.swi-prolog.org/
http://gollem.science.uva.nl/SWI-Prolog/Manual/
http://gollem.science.uva.nl/SWI-Prolog/Manual/

The file prolog.el, which provides prolog-mode should already be installed on your machine,
otherwise download it at http://turing.ubishops.ca/home/bruda/emacs-prolog/

Now, once you’re in emacs, you will need to figure out what your “meta” key is. Usually its the
alt key. (Type “control” key together with “h” to get help on using emacs). So you’ll need a
“meta-X” command, then type “run-prolog”. In other words, type the meta key, type “x”, then
there will be a little window at the bottom of your emacs window with “M-x”, where you type
run-prolog9. This will start up the SWI ProLog interpreter, . . . et voilà!

The best thing is you can have two windows “within” your emacs window, one where you’re
editing your program and one where you’re running ProLog. This makes debugging easier.

Depth-First Search with Backtracking

� So far, all the examples led to direct success or to failure. (simpl. KB)

� Search Procedure: top-down, left-right depth-first search

� Work on the queries in left-right order.

� match first query with the head literals of the clauses in the program in top-down
order.

� if there are no matches, fail and backtrack to the (chronologically) last point.

� otherwise backchain on the first match , keep the other matches in mind for
backtracking. (backtracking points)

c©: Michael Kohlhase 447

Note: We have seen before25 that depth-first search has the problem that it can go into loops. EdNote:25
And in fact this is a necessary feature and not a bug for a programming language: we need to
be able to write non-terminating programs, since the langugage would not be Turing-complete
ogtherwise. The argument can be sketched as follows: we have seen that for Turing machines the
halting problem26 is undecidable. So if all ProLog programs were terminating, then ProLog would EdNote:26
be weaker than Turing machines and thus not Turing complete.

Backtracking by Example
has_wheels(mytricycle,3).
has_wheels(myrollerblade,3).
has_wheels(mybmw,4).
has_motor(mybmw).
car(X):-has_wheels(X,3),has_motor(X). % cars sometimes have 3 wheels
car(X):-has_wheels(X,4),has_motor(X).
?- car(Y).
?- has_wheels(Y,3),has_motor(Y). % backtrack point 1
Y = mytricycle % backtrack point 2
?- has_motor(mytricycle).
FAIL % fails, backtrack to 2
Y = myrollerblade % backtrack point 2
?- has_motor(myrollerblade).
FAIL % fails, backtrack to 1
?- has_wheels(Y,4),has_motor(Y).
Y = mybmw
?- has_motor(mybmw).
Y=mybmw
Yes

c©: Michael Kohlhase 448

9Type “control” key together with “h” then press “m” to get an exhaustive mode help.
25EdNote: reference
26EdNote: reference

250

http://turing.ubishops.ca/home/bruda/emacs-prolog/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Can We Use This For Programming?

� Question: What about functions? E.g. the addition function?

� Question: We do not have (binary) functions, in ProLog

� Idea (back to math): use a three-place predicate.

Example 520 add(X,Y,Z) stands for X+Y=Z

� Now we can directly write the recursive equations X+0 = X (base case) and X+s(Y) =
s(X + Y) into the knowledge base.

add(X,zero,X).
add(X,s(Y),s(Z)) :- add(X,Y,Z).

� similarly with multiplication and exponentiation.

mult(X,o,o).
mult(X,s(Y),Z) :- mult(X,Y,W), add(X,W,Z).
expt(X,o,s(o)).
expt(X,s(Y),Z) :- expt(X,Y,W), mult(X,W,Z).

c©: Michael Kohlhase 449

Note: Viewed through the right glasses logic programming is very similar to functional program-
ming; the only difference is that we are using n+1-ary relations rather than n-ary functions. To see
how this works let us consider the addition function/relation example above: instead of a binary
function + we program a ternary relation add, where relation add(X,Y, Z) means X + Y = Z.
We start with the same defining equations for addition, rewriting them to relational style.

The first equation is straight-foward via our correspondance and we get the ProLog fact
add(X, zero, X).. For the equation X + s(Y) = s(X + Y) we have to work harder, the straight-
forward relational translation add(X, s(Y), s(X + Y)) is impossible, since we have only partially
replaced the function + with the relation add. Here we take refuge in a very simple trick that we
can always do in logic (and mathematics of course): we introduce a new name Z for the offending
expression X + Y (using a variable) so that we get the fact add(X, s(Y), s(Z)). Of course this
is not universally true (remember that this fact would say that “X + s(Y) = s(Z) for all X, Y ,
and Z”), so we have to extend it to a ProLog rule (add(X, s(Y), s(Z)) : −add(X,Y, Z)) which
relativizes to mean “X + s(Y) = s(Z) for all X, Y , and Z with X + Y = Z”.

Indeed the rule implements addition as a recursive predicate, we can see that the recursion
relation is terminating, since the left hand sides are have one more constructor for the successor
function. The examples for multiplication and exponentiation can be developed analogously, but
we have to use the naming trick twice.

251

http://creativecommons.org/licenses/by-sa/2.5/

More Examples from elementary Arithmetics

� Example 521 We can also use the add relation for subtraction without changing the
implementation. We just use variables in the “input positions” and ground terms in the
other two (possibly very inefficient since “generate-and-test approach”)

?-add(s(zero),X,s(s(s(zero)))).
X = s(s(zero))
Yes

� Example 522 Computing the the nth Fibonacci Number (0,1,1,2,3,5,8,13,. . . ; add the
last two to get the next), using the addition predicate above.

fib(zero,zero).
fib(s(zero),s(zero)).
fib(s(s(X)),Y):-fib(s(X),Z),fib(X,W),add(Z,W,Y).

� Example 523 using ProLog’s internal arithmetic: a goal of the form ?− D is e. where
e is a ground arithmetic expression binds D to the result of evaluating e.

fib(0,0).
fib(1,1).
fib(X,Y):- D is X - 1, E is X - 2,fib(D,Z),fib(E,W), Y is Z + W.

c©: Michael Kohlhase 450

Note: Note that the is relation does not allow “generate-and-test” inversion as it insists on the
right hand being ground. In our example above, this is not a problem, if we call the fib with the
first (“input”) argument a ground term. Indeed, if match the last rule with a goal ?− fib(g, Y).,
where g is a ground term, then g− 1 and g− 2 are ground and thus D and E are bound to the
(ground) result terms. This makes the input arguments in the two recursive calls ground, and
we get ground results for Z and W, which allows the last goal to succeed with a ground result for
Y. Note as well that re-ordering the body literals of the rule so that the recursive calls are called
before the computation literals will lead to failure.

Adding Lists to ProLog

� Lists are represented by terms of the form [a,b,c,. . .]

� first/rest representation [F|R], where R is a rest list.

� predicates for member, append and reverse of lists in default ProLog representation.

member(X,[X|_]).
member(X,[_|R]):-member(X,R).
append([],L,L).
append([X|R],L,[X|S]):-append(R,L,S).
reverse([],[]).
reverse([X|R],L):-reverse(R,S),append(S,[X],L).

c©: Michael Kohlhase 451

252

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Relational Programming Techniques

� Parameters have no unique direction “in” or “out”

:- rev(L,[1,2,3]).
:- rev([1,2,3],L1).
:- rev([1,X],[2,Y]).

� Symbolic programming by structural induction

rev([],[]).
rev([X,Xs],Ys) :- ...

� Generate and test

sort(Xs,Ys) :- perm(Xs,Ys), ordered(Ys).

c©: Michael Kohlhase 452

15.2 Logic Programming as Resolution Theorem Proving

We know all this already

� Goals, goal-sets, rules, and facts are just clauses. (called “Horn clauses”)

� Observation 524 (rule) H : −B1, . . . , Bn. corresponds to H ∨ ¬B1 ∨ . . . ∨ ¬Bn
(head the only positive literal)

� Observation 525 (goal setid) ?− G1, . . . , Gn. corresponds to ¬G1, . . . ,¬Gn

� Observation 526 (fact) F. corresponds to the unit clause F.

� Definition 527 A Horn clause is a clause with at most one positive literal.

� Note: backchaining becomes (hyper)-resolution (special case for rule with facts)

PT ∨A P F ∨B

A ∨B

H : −B1, . . . , Bn. B1 . . . Bn
H

positive unit-resulting hyperresolution (PURR)

c©: Michael Kohlhase 453

PROLOG (Horn clauses)

� Definition 528 Each clause contains at most one positive literal

� B1 ∨ . . . ∨Bn ∨ ¬A ((A : −B1, . . ., Bn))

� Rule clause: (fallible(X) : −human(X))

� Fact clause: human(sokrates).

� Program: set of rule and fact clauses

� Query: ?− fallible(X), greek(X).

c©: Michael Kohlhase 454

253

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

PROLOG: Our Example

� Program:

human(sokrates).
human(leibniz).
greek(sokrates).
fallible(X) :- human(X).

� Example 529 (Query) ?− fallible(X), greek(X).

� Answer substitution: [sokrates/X]

c©: Michael Kohlhase 455

Three Principal Modes of Inference

� Deduction: knowledge extension
rains⇒ wet street rains

wet street
D

� Abduction explanation
rains⇒ wet street wet street

rains
A

� Induction learning rules
wet street rains

rains⇒ wet street
I

c©: Michael Kohlhase 456

254

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

16 The Information and Software Architecture of the In-
ternet and WWW

We will now look at the information and software architecture of the Internet and the World Wide
Web (WWW) from the ground up.

16.1 Overview

The Internet and the Web

� Definition 530 The Internet is a worldwide computer network that connects hundreds
of thousands of smaller networks. (The mother of all networks)

� Definition 531 The World Wide Web is the interconnected system of servers that
support multimedia documents, i.e. the multimedia part of the Internet.

� The Internet and WWWeb form critical infrastructure for modern society and commerce.

� The Internet/WWW is huge:

Year Web Deep Web eMail

1999 21 TB 100 TB 11TB
2003 167 TB 92 PB 447 PB
2010 ???? ????? ?????

� We want to understand how it works (services and scalability issues)

.

c©: Michael Kohlhase 457

255

http://creativecommons.org/licenses/by-sa/2.5/

Units of Information
Bit (b) binary digit 0/1
Byte (B) 8 bit
2 Bytes A Unicode character.
10 Bytes your name.
Kilobyte (KB) 1,000 bytes OR 103 bytes
2 Kilobytes A Typewritten page.
100 Kilobytes A low-resolution photograph.
Megabyte (MB) 1,000,000 bytes OR 106 bytes
1 Megabyte A small novel OR a 3.5 inch floppy disk.
2 Megabytes A high-resolution photograph.
5 Megabytes The complete works of Shakespeare.
10 Megabytes A minute of high-fidelity sound.
100 Megabytes 1 meter of shelved books.
500 Megabytes A CD-ROM.
Gigabyte (GB) 1,000,000,000 bytes or 109 bytes
1 Gigabyte a pickup truck filled with books.
20 Gigabytes A good collection of the works of Beethoven.
100 Gigabytes A library floor of academic journals.

Terabyte (TB) 1,000,000,000,000 bytes or 1012 bytes
1 Terabyte 50000 trees made into paper and printed.
2 Terabytes An academic research library.
10 Terabytes The print collections of the U.S. Library of Congress.
400 Terabytes National Climactic Data Center (NOAA) database.
Petabyte (PB) 1,000,000,000,000,000 bytes or 1015 bytes
1 Petabyte 3 years of EOS data (2001).
2 Petabytes All U.S. academic research libraries.
20 Petabytes Production of hard-disk drives in 1995.
200 Petabytes All printed material (ever).
Exabyte (EB) 1,000,000,000,000,000,000 bytes or 1018 bytes
2 Exabytes Total volume of information generated in 1999.
5 Exabytes All words ever spoken by human beings ever.
300 Exabytes All data stored digitally in 2007.
Zettabyte (EB) 1,000,000,000,000,000,000,000 bytes or 1021 bytes
2 Zettabytes Total volume digital data transmitted in 2011
100 Zettabytes Data equivalent to the human Genome in one body.

c©: Michael Kohlhase 458

The information in this table is compiled from various studies, most recently [HL11].

256

http://creativecommons.org/licenses/by-sa/2.5/

A Timeline of the Internet and the Web

� Early 1960s: introduction of the network concept

� 1970: ARPANET, scholarly-aimed networks

� 62 computers in 1974

� 1975: Ethernet developed by Robert Metcalf

� 1980: TCP/IP

� 1982: The first computer virus, Elk Cloner, spread via Apple II floppy disks

� 500 computers in 1983

� 28,000 computers in 1987

� 1989: Web invented by Tim Berners-Lee

� 1990: First Web browser based on HTML developed by Berners-Lee

� Early 1990s: Andreesen developed the first graphical browser (Mosaic)

� 1993: The US White House launches its Web site

� 1993 –: commercial/public web explodes

c©: Michael Kohlhase 459

We will now look at the information and software architecture of the Internet and the World Wide
Web (WWW) from the ground up.

16.2 Internet Basics

We will show aspects of how the Internet can cope with this enormous growth of numbers of
computers, connections and services.

The growth of the Internet rests on three design decisions taken very early on. The Internet

1. is a packet-switched network rather than a network, where computers communicate via
dedicated physical communication lines.

2. is a network, where control and administration are decentralized as much as possible.

3. is an infrastructure that only concentrates on transporting packets/datagrams between com-
puters. It does not provide special treatment to any packets, or try to control the content
of the packets.

The first design decision is a purely technical one that allows the existing communication lines to
be shared by multiple users, and thus save on hardware resources. The second decision allows the
administrative aspects of the Internet to scale up. Both of these are crucial for the scalability of
the Internet. The third decision (often called “net neutrality”) is hotly debated. The defenders
cite that net neutrality keeps the Internet an open market that fosters innovation, where as
the attackers say that some uses of the network (illegal file sharing) disprortionately consum
resources.

257

http://creativecommons.org/licenses/by-sa/2.5/

Package-Switched Networks

� Definition 532 A packet-switched network divides messages into small network packets
that are transported separately and re-assembled at the target.

� Advantages:

� many users can share the same physical communication lines.

� packets can be routed via different paths. (bandwidth utilization)

� bad packets can be re-sent, while good ones are sent on. (network reliability)

� packets can contain information about their sender, destination.

� no central management instance necessary (scalability, resilience)

c©: Michael Kohlhase 460

These ideas are implemented in the Internet Protocol Suite, which we will present in the rest of the
section. A main idea of this set of protocols is its layered design that allows to separate concerns
and implement functionality separately.

258

http://creativecommons.org/licenses/by-sa/2.5/

The Intenet Protocol Suite

� Definition 533 The Internet Protocol Suite (commonly known as TCP/IP) is the set of
communications protocols used for the Internet and other similar networks. It structured
into 4 layers.

Layer e.g.

Application Layer HTTP, SSH
Transport Layer UDP,TCP
Internet Layer IPv4, IPsec
Link Layer Ethernet, DSL

� Layers in TCP/IP: TCP/IP uses encapsulation to provide abstraction of protocols and
services.
An application (the highest level of the model) uses a set of protocols
to send its data down the layers, being further encapsulated at each level.

� Example 534 (TCP/IP Scenario) Consider a situation with two Internet host
computers communicate across local network boundaries.

� network boundaries are constituted by internetworking gateways (routers).

� Definition 535 A router is a purposely customized computer used to forward data
among computer networks beyond directly connected devices.

� A router implements the link and internet layers only and has two network connections.

c©: Michael Kohlhase 461

259

http://creativecommons.org/licenses/by-sa/2.5/

We will now take a closer look at each of the layers shown above, starting with the lowest one.

Instead of going into network topologies, protocols, and their implementation into physical signals
that make up the link layer, we only discuss the devices that deal with them. Network Interface
controllers are specialized hardware that encapsulate all aspects of link-level communication, and
we take them as black boxes for the purposes of this course.

Network Interfaces

� The nodes in the Internet are computers, the edges communication channels

� Definition 536 A network interface controller (NIC) is a hardware device that handles
an interface to a computer network and thus allows a network-capable device to access
that network.

� Definition 537 Each NIC contains a unique number, the media access control address
(MAC address), identifies the device uniquely on the network.

� MAC addresses are usually 48-bit numbers issued by the manufacturer, they are usually
displayed to humans as six groups of two hexadecimal digits, separated by hyphens (-) or
colons (:), in transmission order, e.g. 01-23-45-67-89-AB, 01:23:45:67:89:AB.

� Definition 538 A network interface is a software component in the operating system
that implements the higher levels of the network protocol (the NIC handles the lower
ones).

Layer e.g.

Application Layer HTTP, SSH
Transport Layer TCP
Internet Layer IPv4, IPsec
Link Layer Ethernet, DSL

� A computer can have more than one network interface. (e.g. a router)

c©: Michael Kohlhase 462

The next layer ist he Internet Layer.

260

http://creativecommons.org/licenses/by-sa/2.5/

Internet Protocol and IP Addresses

� Definition 539 The Internet Protocol (IP) is a protocol used for communicating data
across a packet-switched internetwork. The Internet Protocol defines addressing methods
and structures for datagram encapsulation. The Internet Protocol also routes data packets
between networks

� Definition 540 An Internet Protocol (IP) address is a numerical label that is assigned
to devices participating in a computer network, that uses the Internet Protocol for com-
munication between its nodes.

� An IP address serves two principal functions: host or network interface identification and
location addressing.

� Definition 541 The global IP address space allocations are managed by the Internet
Assigned Numbers Authority (IANA), delegating allocate IP address blocks to five Re-
gional Internet Registries (RIRs) and further to Internet service providers (ISPs).

� Definition 542 The Internet mainly uses Internet Protocol Version 4 (IPv4) [RFC80],
which uses 32-bit numbers (IPv4 addresses) for identification of network interfaces of
Computers.

� IPv4 was standardized in 1980, it provides 4,294,967,296 (232) possible unique addresses.
With the enormous growth of the Internet, we are fast running out of IPv4 addresses

� Definition 543 Internet Protocol Version 6 (IPv6) [DH98], which uses 128-bit numbers
(IPv6 addresses) for identification.

� Although IP addresses are stored as binary numbers, they are usually displayed in human-
readable notations, such as 208.77.188.166 (for IPv4), and 2001:db8:0:1234:0:567:1:1 (for
IPv6).

c©: Michael Kohlhase 463

The Internet infrastructure is currently undergoing a dramatic retooling, because we are moving
from IPv4 to IPv6 to counter the depletion of IP addresses. Note that this means that all routers
and switches in the Internet have to be upgraded. At first glance, it would seem that that this
problem could have been avoided if we had only anticipated the need for more the 4 million
computers. But remember that TCP/IP was developed at a time, where the Internet did not exist
yet, and it’s precursor had about 100 computers. Also note that the IP addresses are part of every
packet, and thus reserving more space for them would have wasted bandwidth in a time when it
was scarce.

261

http://creativecommons.org/licenses/by-sa/2.5/

The Transport Layer

� Definition 544 The transport layer is responsible for delivering data to the appropriate
application process on the host computers by forming data packets, and adding source
and destination port numbers in the header.

� Definition 545 The internet protocol mainly suite uses the Transmission Control Pro-
tocol (TCP) and User Datagram Protocol (UDP) protocols at the transport layer.

� TCP is used for communication, UDP for multicasting and broadcasting.

� TCP supports virtual circuits, i.e. provide connection oriented communication over an
underlying packet oriented datagram network. (hide/reorder packets)

� TCP provides end-to-end reliable communication (error detection & automatic repeat)

c©: Michael Kohlhase 464

The Application Layer

� Definition 546 The application layer of the internet protocol suite contains all protocols
and methods that fall into the realm of process-to-process communications via an Internet
Protocol (IP) network using the Transport Layer protocols to establish underlying host-
to-host connections.

� Example 547 (Some Application Layer Protocols and Services)
BitTorrent Peer-to-peer Atom Syndication

DHCP Dynamic Host Configuration DNS Domain Name System

FTP File Transfer Protocol HTTP HyperText Transfer

IMAP Internet Message Access IRCP Internet Relay Chat

NFS Network File System NNTP Network News Transfer

NTP Network Time Protocol POP Post Office Protocol

RPC Remote Procedure Call SMB Server Message Block

SMTP Simple Mail Transfer SSH Secure Shell

TELNET Terminal Emulation WebDAV Write-enabled Web

c©: Michael Kohlhase 465

Domain Names

� Definition 548 The DNS (Domain Name System) is a distributed set of servers that
provides the mapping between (static) IP addresses and domain names.

� Example 549 e.g. www.kwarc.info stands for the IP address 212.201.49.189.

� networked computers can have more than one DNS name. (virtual servers)

� Domain names must be registered to ensure uniqueness
(registration fees vary, cybersquatting)

� Definition 550 ICANN is a non-profit organization was established to regulate human-
friendly domain names. It approves domain name registrars and delegates the actual
registration to them.

c©: Michael Kohlhase 466

262

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
www.kwarc.info
http://creativecommons.org/licenses/by-sa/2.5/

Domain Name Top-Level Domains

� .com (.commercial) is a generic top-level domain. It was one of the original top-level
domains, and has grown to be the largest in use.

� .org (“organization”) is a generic top-level domain, and is mostly associated with non-
profit organizations. It is also used in the charitable field, and used by the open-source
movement. Government sites and Political parties in the US have domain names ending
in .org

� .net (“network”) is a generic top-level domain and is one of the original top-level do-
mains. Initially intended to be used only for network providers (such as Internet service
providers). It is still popular with network operators, it is often treated as a second .com.
It is currently the third most popular top-level domain.

� .edu (“education”) is the generic top-level domain for educational institutions, primarily
those in the United States. One of the first top-level domains, .edu was originally intended
for educational institutions anywhere in the world. Only post-secondary institutions that
are accredited by an agency on the U.S. Department of Education’s list of nationally
recognized accrediting agencies are eligible to apply for a .edu domain.

� .info (“information”) is a generic top-level domain intended for informative website’s,
although its use is not restricted. It is an unrestricted domain, meaning that anyone can
obtain a second-level domain under .info. The .info was one of many extension(s) that
was meant to take the pressure off the overcrowded .com domain.

� .gov (“government”) a generic top-level domain used by government entities in the
United States. Other countries typically use a second-level domain for this purpose, e.g.,
.gov.uk for the United Kingdom. Since the United States controls the .gov Top Level
Domain, it would be impossible for another country to create a domain ending in .gov.

� .biz (“business”) the name is a phonetic spelling of the first syllable of “business”. A
generic top-level domain to be used by businesses. It was created due to the demand for
good domain names available in the .com top-level domain, and to provide an alternative
to businesses whose preferred .com domain name which had already been registered by
another.

� .xxx (“porn”) the name is a play on the verdict “X-rated” for movies. A generic top-level
domain to be used for sexually explicit material. It was created in 2011 in the hope to
move sexually explicit material from the “normal web”. But there is no mandate for porn
to be restricted to the .xxx domain, this would be difficult due to problems of definition,
different jurisdictions, and free speech issues.

c©: Michael Kohlhase 467

263

http://creativecommons.org/licenses/by-sa/2.5/

Ports

� Definition 551 To separate the services and protocols of the network application layer,
network interfaces assign them specific port, referenced by a number.

�

Port use comment

22 SSH remote shell
53 DNS Domain Name System
80 HTTP World Wide Web
443 HTTPS HTTP over SSL

c©: Michael Kohlhase 468

264

http://creativecommons.org/licenses/by-sa/2.5/

A Protocol Example: SMTP over telnet

� We call up the telnet service on the Jacobs mail server

telnet exchange.jacobs-university.de 25

� it identifies itself (have some patience, it is very busy)

Trying 10.70.0.128...
Connected to exchange.jacobs-university.de.
Escape character is ’^]’.
220 SHUBCAS01.jacobs.jacobs-university.de
Microsoft ESMTP MAIL Service ready at Tue, 3 May 2011 13:51:23 +0200

� We introduce ourselves politely (but we lie about our identity)

helo mailhost.domain.tld

� It is really very polite.

250 SHUBCAS04.jacobs.jacobs-university.de Hello [10.222.1.5]

� We start addressing an e-mail (again, we lie about our identity)

mail from: user@domain.tld

� this is acknowledged

250 2.1.0 Sender OK

� We set the recipient (the real one, so that we really get the e-mail)

rcpt to: m.kohlhase@jacobs-university.de

� this is acknowledged

250 2.1.0 Recipient OK

� we tell the mail server that the mail data comes next
data

� this is acknowledged

354 Start mail input; end with <CRLF>.<CRLF>

� Now we can just type the a-mail, optionally with Subject, date,...

Subject: Test via SMTP

and now the mail body itself
.

� And a dot on a line by itself sends the e-mail off

250 2.6.0 <ed73c3f3-f876-4d03-98f2-e5ad5bbb6255@SHUBCAS04.jacobs.jacobs-university.de>
[InternalId=965770] Queued mail for delivery

� That was almost all, but we close the connection (this is a telnet command)

quit

� our terminal server (the telnet program) tells us

221 2.0.0 Service closing transmission channel
Connection closed by foreign host.

c©: Michael Kohlhase 469

265

http://creativecommons.org/licenses/by-sa/2.5/

Internet Governance

� The Internet is a critical infrastructure for world society and commerce.
(by far the biggest marketplace on the world)

� Someone has to regulate what goes on there. (to keep users safe)

c©: Michael Kohlhase 470

One of the main services of the Internet nowadays is the facilitation of the World Wide Web, a
vast document storage and retrieval service at the application layer.

16.3 Basics Concepts of the World Wide Web

The world wide web is a service on the Internet based on specific protocols and markup formats
for documents.

�

Uniform Resource Identifier (URI), Plumbing of the Web

� Definition 552 A uniform resource identifier is a global identifiers of network-retrievable
documents (web resources). URIs adhere a uniform syntax (grammar) defined in RFC-
3986 [BLFM05]. Rules contain: URI :== scheme, ′ :′, hierPart, [′?′ query], [′#′ fragment]

hier − part :== ′//′ (pathAbempty | pathAbsolute | pathRootless | pathEmpty)

� Example 553 The following are two example URIs and their component parts:

http :// example.com :8042/ over/there?name=ferret#nose
__/ ______________ /\ _________/ _________/ __/
| | | | |

scheme authority path query fragment
|___ __________________|__________

/ \ / \
mailto:m.kohlhase@jacobs -university.de

Note: URIs only identify documents, they do not have to be provide access to them (e.g.
in a browser).

c©: Michael Kohlhase 471

266

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Uniform Resource Locators and relative URIs

� Definition 554 A uniform resource locator is a URI that that gives access to a web
resource via the http protocol.

� Example 555 The following URI is a URL (try it in your browser)

http: //kwarc.info/kohlhase/index.html

� Note: URI/URLs are one of the core features of the web infrastructure, they are consid-
ered to be the plumbing of the WWWeb. (direct the flow of data)

� Definition 556 URIs can be abbreviated to relative URIs; missing parts are filled in
from the context

� Example 557

relative URI abbreviates in context
#foo 〈〈current file〉〉#foo curent file
../bar.txt file : ///home/kohlhase/foo/bar.txt file system
../bar.html http : //example.org/foo/bar.html on the web

c©: Michael Kohlhase 472

Web Browsers

� Definition 558 A web Browser is a software application for retrieving, presenting, and
traversing information resources on the World Wide Web, enabling users to view Web
pages and to jump from one page to another.

� Practical Browser Tools:

� Status Bar: security info, page load progress

� Favorites (bookmarks)

� View Source: view the code of a Web page

� Tools/Internet Options, history, temporary Internet files, home page, auto complete,
security settings, programs, etc.

� Example 559 e.g. IE, Mozilla Firefox, Safari, etc.

� Definition 560 A web page is a document on the Web that can include multimedia
data

� Definition 561 A web site is a collection of related Web pages usually designed or
controlled by the same individual or company.

� a web site generally shares a common domain name.

c©: Michael Kohlhase 473

267

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

HTTP: Hypertext Transfer Protocol

� Definition 562 The Hypertext Transfer Protocol (HTTP) is an application layer pro-
tocol for distributed, collaborative, hypermedia information systems.

� June 1999: HTTP/1.1 is defined in RFC 2616 [FGM+99]

Definition 563 HTTP is used by a client (called user agent) to access web resources
(addressed by Uniform Resource Locators (URLs)) via a http request. The web server
answers by supplying the resource

� Most important HTTP requests (5 more less prominent)

GET Requests a representation of the specified resource. safe

PUT Uploads a representation of the specified resource. idempotent

DELETE Deletes the specified resource. idempotent

POST Submits data to be processed (e.g., from a web
form) to the identified resource.

� Definition 564 We call a HTTP request safe, iff it does not change the state in the
web server. (except for server logs, counters,. . . ; no side effects)

� Definition 565 We call a HTTP request idempotent, iff executing it twice has the
same effect as executing it once.

� HTTP is a stateless protocol (very memory-efficient for the server.)

c©: Michael Kohlhase 474

Overview: A http request in the browser

c©: Michael Kohlhase 475

268

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Example: An http request in real life

� Connect to the web server (port 80) (so that we can see what is happening)

telnet www.kwarc.info 80

� Send off the GET request

GET /teaching/GenCS2.html http/1.1
Host: www.kwarc.info
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.6; en-US; rv:1.9.2.4)
Gecko/20100413 Firefox/3.6.4

� Response from the server

HTTP/1.1 200 OK
Date: Mon, 03 May 2010 06:48:36 GMT
Server: Apache/2.2.9 (Debian) DAV/2 SVN/1.5.1 mod_fastcgi/2.4.6 PHP/5.2.6-1+lenny8 with

Suhosin-Patch mod_python/3.3.1 Python/2.5.2 mod_ssl/2.2.9 OpenSSL/0.9.8g
Last-Modified: Sun, 02 May 2010 13:09:19 GMT
ETag: "1c78b-db1-4859c2f221dc0"
Accept-Ranges: bytes
Content-Length: 3505
Content-Type: text/html

<!--This file was generated by ws2html.xsl. Do NOT edit manually! -->
<html xmlns="http://www.w3.org/1999/xhtml"><head>...</head></html>

c©: Michael Kohlhase 476

269

http://creativecommons.org/licenses/by-sa/2.5/

HTML: Hypertext Markup Language

� Definition 566 The HyperText Markup Language (HTML), is a representation format
for web pages. Current version 4.01 is defined in [RHJ98].

� Definition 567 (Main markup tagsof HTML) HTML marks up the structure
and apearance of text with tags of the form <el> (begin) and </el> (end), where el is
one of the following

structure html,head, body metadata title, link, meta
headings h1, h2, . . . , h6 paragraphs p, br
lists ul, ol, dl, . . . , li hyperlinks a

images img tables table, th, tr, td, . . .
CSS style style, div, span old style b, u, tt, i, . . .
interaction script forms form, input, button

� Example 568 A (very simple) HTML file.

<html>
<body>
<p>Hello GenCSII!</p>

</body>
</html>

� Example 569 Forms contain input fields and explanations.

<form name="input" action="html_form_submit.asp" method="get">
Username: <input type="text" name="user" />
<input type="submit" value="Submit" />

</form>

The result is a form with three elements: a text, an input field, and a submit button, that
will trigger a HTTP GET request.

c©: Michael Kohlhase 477

HTML5: The Next Generation HTML

� Definition 570 The HyperText Markup Language (HTML5), is believed to be the next
generation of HTML. It is defined by the W3C and the WhatWG.

� HTML5 includes support for video and MathML (without namespaces).

c©: Michael Kohlhase 478

270

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

CSS: Cascading Style Sheets

� Idea: Separate structure/function from appearance.

Definition 571 The Cascading Style Sheets (CSS), is a style sheet language that allows
authors and users to attach style (e.g., fonts and spacing) to structured documents.
Current version 2.1 is defined in [BCHL09].

� Example 572 Our text file from Example 568 with embedded CSS

<html>
<head>
<style type="text/css">

body {background-color:#d0e4fe;}
h1 {color:orange;

text-align:center;}
p {font-family:"Verdana";

font-size:20px;}
</style>
</head>
<body>
<h1>CSS example</h1>
<p>Hello GenCSII!.</p>

</body>
</html>

c©: Michael Kohlhase 479

Dynamic HTML

� Idea: generate some of the web page dynamically. (embed interpreter into browser)

Definition 573 JavaScript is an object-oriented scripting language mostly used to en-
able programmatic access to the document object model in a web browser, providing en-
hanced user interfaces and dynamic websites. Current version is standardized by ECMA
in [ECM09].

� Example 574 We write the some text into a HTML document object (the document
API)

<html>
<head>

<script type="text/javascript">document.write("This is my first JavaScript!");</script>
</head>
<body>

<!-- nothing here; will be added by the script later -->
</body>
</html>

c©: Michael Kohlhase 480

271

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Applications and useful tricks in Dynamic HTML

� hide document parts by setting CSS style attributes to display:none

<html>
<head>

<style type="text/css">#dropper { display: none; }</style>
<script language="JavaScript" type="text/javascript">

function toggleDiv(element){
if(document.getElementById(element).style.display = ’none’)

{document.getElementById(element).style.display = ’block’}
else if(document.getElementById(element).style.display = ’block’)

{document.getElementById(element).style.display = ’none’}}
</script>

</head>
<body>

<div onClick="toggleDiv(’dropper’);">...more </div>
<div id="dropper">

<p>Now you see it!</p>
</div>

</body>
</html>

� precompute input fields from browser caches and cookies

� write “gmail” or “google docs” in JavaScript web applicaitions.

c©: Michael Kohlhase 481

Cookies

� Definition 575 A cookie is a little text files left on your hard disk by some websites
you visit.

� cookies are data not programs, they do not generate pop-ups or behave like viruses, but
they can include your log-in name and browser preferences

� cookies can be convenient, but they can be used to gather information about you and
your browsing habits

� Definition 576 third party cookies are used by advertising companies to track users
across multiple sites

c©: Michael Kohlhase 482

We have now seen the basic architecture and protocols of the World Wide Web. This covers basic
interaction with web pages via browsing of links, as has been prevalent until around 1995. But
this is not now we interact with the web nowadays; instead of browsing we use web search engines
like Google or Yahoo, we will cover next how they work.

16.4 Introduction to Web Search

272

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Web Search Engines

� Definition 577 A web search engine is a web application designed to search for infor-
mation on the World Wide Web.

� Web search engines usually operate in four phases/components

1. Data Acquisition: a web crawler finds and retrieves (changed) web pages

2. Search in Index: write an index and search there.

3. Sort the hits: e.g. by importance

4. Answer composition: present the hits (and add advertisement)

c©: Michael Kohlhase 483

273

http://creativecommons.org/licenses/by-sa/2.5/

Data Acquisition for Web Search Engines: Web Crawlers

� Definition 578 A web crawler or spider is a computer probram that browses the
WWWebin an automated, orderly fashion for the purpose of information gathering.

� Web crawlers are mostly used for data acquisition of web search engines, but can also
automate web maintenance jobs (e.g. link checking).

� The WWWeb changes: 20% daily, 30% monthly, 50% never

� A Web crawler cycles over the following actions

1. reads web page

2. reports it home

3. finds hyperlinks

4. follows them

c©: Michael Kohlhase 484

Types of Search Engines

Human-organized Documents are categorized by subject-area experts, smaller databases,
more accurate search results, e.g. Open Directory, About

Computer-created Software spiders crawl the web for documents and categorize pages,
larger databases, ranking systems, e.g. Google

Hybrid Combines the two categories above

Metasearch or clustering Direct queries to multiple search engines and cluster results,
e.g. Copernic, Vivisimo, Mamma Topic-specific e.g. WebMD

c©: Michael Kohlhase 485

274

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Searching for Documents

� Problem: We cannot search the WWWeb linearly (even with 106 compuers: ≥ 1015B)

� Idea: Write an “index” and search that instead. (like the index in a book)

� Definition 579 Search engine indexing analyzes data and stores key/data pairs in a
special data structure (the search index to facilitate efficient and accurate information
retrieval.

� Idea: Use the words of a document as index (multiword index) The key

for a document is the vector of word frequencies.

term 1

term 2

term 3

D1(t1,1, t1,2, t1,3)

D2(t2,1, t2,2, t2,3)

c©: Michael Kohlhase 486

Ranking Search Hits: e.g. Google’s Pagerank

� Problem: There are many hits, need to sort them by some criterion (e.g. importance)

� Idea: A web site is important, . . . if many other hyperlink to it.

� Refinement: . . . , if many important web pages hyperlink to it.

� Definition 580 Let A be a web page that is hyperlinkef from web pages S1, . . . , Sn,
then

PR(A) = 1− d+ d

(
PR(S1)

C(S1)
+ · · · PR(Sn)

C(Sn)

)
where C(W) is the number of links in a page W and d = 0.85.

c©: Michael Kohlhase 487

275

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Answer Composition in Search Engines

� Answers: To present the search results we need to address:

� Hits and their context

� format conversion

� caching

� Advertizing: to finance the service

� advertizer can buy search terms

� ads correspond to search interest

� advertizer pays by click.

c©: Michael Kohlhase 488

Web Search: Advanced Search Options:

� Searches for various information formats & types, e.g. image search, scholarly search

� Advanced query operators and wild cards

? (e.g. science? means search for the keyword “science” but I am not
sure of the spelling)

* (wildcard, e.g. comput* searches for keywords starting with comput
combined with any word ending)

AND (both terms must be present)
OR (at least one of the terms must be esent)

c©: Michael Kohlhase 489

276

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

How to run

� Google Hardware: estimated 2003

� 79,112 Computers (158,224 CPUs)

� 316,448 Ghz computation power

� 158,224 GB RAM

� 6,180 TB Hard disk space

� 2010 Estimate: ∼ 2 MegaCPU

� Google Software: Custom Linux Distribution

c©: Michael Kohlhase 490

16.5 Security by Encryption

277

http://creativecommons.org/licenses/by-sa/2.5/

Security by Encryption

� Problem: In open packet-switched networks like the Internet, anyone

� can inspect the packets (and see their contents via packet sniffers)

� create arbitrary packets (and forge their metadata)

� can combine both to falsify communication (man-in-the-middle attack)

In “dedicated line networks” (e.g. old telephone) you needed switch room access.

� But there are situations where we want our communication to be confidential,

� Internet Banking (obviously, other criminals would like access to your account)

� Whistle-blowing (your employer should not know what you sent to WikiLeaks)

� Login to Campus.net (wouldn’t you like to know my password to “correct” grades?)

� Idea: Encrypt packet content (so that only the recipients can decrypt)
an build this into the fabric of the Internet (so that users don’t have to know)

� Definition 581 Encryption is the process of transforming information (referred to as
plaintext) using an algorithm to make it unreadable to anyone except those possessing
special knowledge, usually referred to as a key. The result of encryption is called cypher-
text, and the reverse process that transforms cyphertext to plaintext: decryption.

c©: Michael Kohlhase 491

Symmetric Key Encryption

� Definition 582 Symmetric-key algorithms are a class of cryptographic algorithms that
use essentially identical keys for both decryption and encryption.

� Example 583 Permute the ASCII table by a bijective function ϕ : {0, . . . , 127} →
{0, . . . , 127} (ϕ is the shared key)

� Example 584 The AES algorithm (Advanced Encryption Standard [AES01]) is a widely
used symmetric-key algorithm that is approved by US government organs for transmitting
top-secret information.

� Note: For trusted communication sender and recipient need access to shared key.

� Problem: How to initiate safe communication over the internet?(far, far apart) Need to
exchange shared key (chicken and egg problem)

� Pipe dream: Wouldn’t it be nice if I could just publish a key publicly and use that?

� Actually: this works, just (obviously) not with symmetric-key encryption.

c©: Michael Kohlhase 492

278

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Public Key Encryption

� Definition 585 In an asymmetric-key encryption method, the key needed to encrypt a
message is different from the key for decryption. Such a method is called a public-key
encryption if the encryption key (called the public key) is very difficult to reconstruct from
the decryption key (the private key).

� Preparation: The person who anticipates receiving messages first creates both a public
key and an associated private key, and publishes the public key.

� Application: Confidential Messaging: To send a confidential message the sender encrypts
it using the intended recipient’s public key; to decrypt the message, the recipient uses the
private key.

� Application: Digital Signatures: A message signed with a sender’s private key can be
verified by anyone who has access to the sender’s public key, thereby proving that the
sender had access to the private key (and therefore is likely to be the person associated
with the public key used), and the part of the message that has not been tampered with.

c©: Michael Kohlhase 493

The confidential messaging is analogous to a locked mailbox with a mail slot. The mail slot is
exposed and accessible to the public; its location (the street address) is in essence the public key.
Anyone knowing the street address can go to the door and drop a written message through the
slot; however, only the person who possesses the key can open the mailbox and read the message.

An analogy for digital signatures is the sealing of an envelope with a personal wax seal. The
message can be opened by anyone, but the presence of the seal authenticates the sender.

Encryption by Trapdoor Functions

� Idea: Mathematically, encryption can be seen as an injective function. Use functions for
which the inverse (decryption) is difficult to compute.

� Definition 586 A one-way function is a function that is “easy” to compute on every
input, but “hard” to invert given the image of a random input.

� In theory: “easy” and “hard” are understood wrt. computational complexity theory,
specifically the theory of polynomial time problems. E.g. “easy” =̂ O(n) and “hard” =̂
Ω(2n)

� Remark: It is open whether one-way functions exist (≡̂ to P = NP conjecture)

� In practice: “easy” is typically interpreted as “cheap enough for the legitimate users”
and “prohibitively expensive for any malicious agents”.

� Definition 587 A trapdoor function is a one-way function that is easy to invert given
a piece of information called the trapdoor.

� Example 588 Consider a padlock, it is easy to change from “open” to closed, but very
difficult to change from “closed” to open unless you have a key (trapdoor).

c©: Michael Kohlhase 494

279

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Candidates for one-way/trapdoor functions

� Multiplication and Factoring: The function f takes as inputs two prime numbers p and
q in binary notation and returns their product. This function can be computed in O(n2)
time where n is the total length (number of digits) of the inputs. Inverting this function
requires finding the factors of a given integer N . The best factoring algorithms known

for this problem run in time 2O((log(N)
1
3)(log(log(N))

2
3)).

� Modular squaring and square roots: The function f takes two positive integers x and N ,
where N is the product of two primes p and q, and outputs x2 div N . Inverting this func-
tion requires computing square roots modulo N ; that is, given y and N , find some x such
that x2 mod N = y. It can be shown that the latter problem is computationally equivalent
to factoring N (in the sense of polynomial-time reduction) (used in RSA encryption)

� Discrete exponential and logarithm: The function f takes a prime number p and an
integer x between 0 and p − 1; and returns the 2x div p. This discrete exponential
function can be easily computed in time O(n3) where n is the number of bits in p.
Inverting this function requires computing the discrete logarithm modulo p; namely, given
a prime p and an integer y between 0 and p− 1, find x such that 2x = y.

c©: Michael Kohlhase 495

Example: RSA-129 problem

c©: Michael Kohlhase 496

280

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Classical- and Quantum Computers for RSA-129

c©: Michael Kohlhase 497

16.6 An Overview over XML Technologies

Excursion: XML (EXtensible Markup Language)

� XML is language family for the Web

� tree representation language (begin/end brackets)

� restrict instances by Doc. Type Def. (DTD) or Schema (Grammar)

� Presentation markup by style files (XSL: XML Style Language)

� XML is extensible HTML & simplified SGML

� logic annotation (markup) instead of presentation!

� many tools available: parsers, compression, data bases, . . .

� conceptually: transfer of directed graphs instead of strings.

� details at http://www.w3c.org

c©: Michael Kohlhase 498

281

http://creativecommons.org/licenses/by-sa/2.5/
http://www.w3c.org
http://creativecommons.org/licenses/by-sa/2.5/

XML is Everywhere (E.g. document metadata)

� Example 589 Open a PDF file in AcrobatReader, then cklick on
File↘ DocumentProperties↘ DocumentMetadata↘ V iewSource, you get
the following text: (showing only a small part)

<rdf:RDF xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
xmlns:iX=’http://ns.adobe.com/iX/1.0/’>

<rdf:Description xmlns:pdf=’http://ns.adobe.com/pdf/1.3/’>
<pdf:CreationDate>2004-09-08T16:14:07Z</pdf:CreationDate>
<pdf:ModDate>2004-09-08T16:14:07Z</pdf:ModDate>
<pdf:Producer>Acrobat Distiller 5.0 (Windows)</pdf:Producer>
<pdf:Author>Herbert Jaeger</pdf:Author>
<pdf:Creator>Acrobat PDFMaker 5.0 for Word</pdf:Creator>
<pdf:Title>Exercises for ACS 1, Fall 2003</pdf:Title>

</rdf:Description>
. . .
<rdf:Description xmlns:dc=’http://purl.org/dc/elements/1.1/’>
<dc:creator>Herbert Jaeger</dc:creator>
<dc:title>Exercises for ACS 1, Fall 2003</dc:title>

</rdf:Description>
</rdf:RDF>

c©: Michael Kohlhase 499

This is an excerpt from the document metadata which AcrobatDistiller saves along with each
PDF document it creates. It contains various kinds of information about the creator of the doc-
ument, its title, the software version used in creating it and much more. Document metadata is
useful for libraries, bookselling companies, all kind of text databases, book search engines, and
generally all institutions or persons or programs that wish to get an overview of some set of books,
documents, texts. The important thing about this document metadata text is that it is not written
in an arbitrary, PDF-proprietary format. Document metadata only make sense if these metadata
are independent of the specific format of the text. The metadata that MSWord saves with each
Word document should be in the same format as the metadata that Amazon saves with each of
its book records, and again the same that the British library uses, etc.

XML is Everywhere (E.g. Web Pages)

� Example 590 Open web page file in FireFox, then click on V iew ↘ PageSource,
you get the following text: (showing only a small part and reformatting)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Michael Kohlhase</title>
<meta name="generator"

content="Page generated from XML sources with the WSML package"/>
</head>
<body>. . .
<p>
<i>Professor of Computer Science</i>

Jacobs University

Mailing address - Jacobs (except Thursdays)

School of Engineering & Science

. . .

</p>. . .
</body>

</html>

c©: Michael Kohlhase 500

282

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

�

XML Documents as Trees

� Idea: An XML Document is a Tree

<omtext xml:id="foo"
xmlns=". . ."
xmlns:om=". . .">
<CMP xml:lang=’en’>
The number
<om:OMOBJ>
<om:OMS cd="nums1"

name="pi"/>
<om:OMOBJ>
is irrational.
</CMP>

</omtext>

omtext

CMP

xml:id foo

xml:lang en

text
The number

text
is irrational.

om:OMOBJ

om:OMS

cd nums1name pi

xmlns . . .

xmlns:om . . .

� Definition 591 The XML document tree is made up of element nodes, attribute nodes,
text nodes (and namespace declarations, comments,. . .)

� Definition 592 For communication this tree is serialized into a balanced bracketing
structure, where

� an element el is represented by the brackets <el> (called the opening tag) and </el>

(called the closing tag).

� The leaves of the tree are represented by empty elements (serialized as <el></el>,
which can be abbreviated as <el/>

� and text nodes (serialized as a sequence of UniCode characters).

� An element node can be annotated by further information using attribute nodes —
serialized as an attribute in its opening tag

Note: As a document is a tree, the XML specification mandates that there must be a
unique document root.

c©: Michael Kohlhase 501

283

http://creativecommons.org/licenses/by-sa/2.5/

UniCode, the Alphabet of the Web

� Definition 593 The unicode standard (UniCode) is an industry standard allowing com-
puters to consistently represent and manipulate text expressed in any of the world’s writing
systems. (currently about 100.000 characters)

� Definition 594 For each character UniCode defines a code point (a number writting
in hexadecimal as U+ABCD), a character name, and a set of character properties.

� Definition 595 UniCode defines various encoding schemes for characters, the most
important is UTF-8.

� Example 596

char point name UTF-8 Web
A U+0041 CAPITAL A 41 A
α U+03B1 GREEK SMALL LETTER ALPHA 03 B1 α

� UniCode also supplies rules for text normalization, decomposition, collation (sorting),
rendering and bidirectional display order (for the correct display of text containing both
right-to-left scripts, such as Arabic or Hebrew, and left-to-right scripts).

� Definition 597 The UTF-8 encoding encodes each character in one to four octets
(8-bit bytes):

1. One byte is needed to encode the 128 US-ASCII characters (Unicode range U+0000
to U+007F).

2. Two bytes are needed for Latin letters with diacritics and for characters from Greek,
Cyrillic, Armenian, Hebrew, Arabic, Syriac and Thaana alphabets (Unicode range
U+0080 to U+07FF).

3. Three bytes are needed for the rest of the Basic Multilingual Plane (which contains
virtually all characters in common use).

4. Four bytes are needed for characters in the other planes of Unicode, which are rarely
used in practice.

c©: Michael Kohlhase 502

284

http://creativecommons.org/licenses/by-sa/2.5/

XPath, A Language for talking about XML Tree Fragments

� Definition 598 The XML path language (XPath) is a language framework for specifying
fragments of XML trees.

� Example 599

omtext

CMP

xml:id foo

xml:lang en

text
The number

text
is irrational.

om:OMOBJ

om:OMS

cd nums1name pi

xmlns . . .

xmlns:om . . .

XPath exp. fragment

/ root

omtext/CMP/∗ all CMP children

//@name the name attribute
on the om:OMS ele-
ment

//CMP/ ∗ [1] the first child of all
OMS elements

// ∗ [@cd =′ nums1′] all elements whose
cd has value
nums1

c©: Michael Kohlhase 503

The Dual Role of Grammar in XML (I)

� The XML specification [XML] contains a large character-level grammar.(81 productions)

NameChar :== Letter | Digit | ′.′ | ′−′ | ′ ′ | ′ :′ | CombiningChar | Extender

Name :== (Letter | ′ ′ | ′ :′) (NameChar)∗

element :== EmptyElementTag | STag content ETag

STag :== ′ <′ (S)∗ Name (S)∗ attribute (S)∗ ′ >′

ETag :== ′ < /′ (S)∗ Name (S)∗ ′ >′

EmptyElementTag :== ′ <′ (S)∗ Name (S)∗ attribute (S)∗ ′/ >′

� use these to parse well-formed XML document into a tree data structure

� use these to serialize a tree data structure into a well-formed XML document

� Idea: Integrate XML parsers/serializers into all programming languages to communicate
trees instead of strings. (more structure =̂ better CS)

c©: Michael Kohlhase 504

285

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

The Dual Role of Grammar in XML (II)

� Idea: We can define our own XML language by defining our own elements and attributes.

� Validation: Specify your language with a tree grammar (works like a charm)

� Definition 600 Document Type Definitions (DTDs) are grammars that are built into
the XML framework.

Put <!DOCTYPE foo PUBLIC "foo.dtd"> into the second line of the document to val-
idate.

� Definition 601 RelaxNG is a modern XML grammar/schema framework on top of the
XML framework.

c©: Michael Kohlhase 505

RelaxNG, A tree Grammar for XML

� Definition 602 Relax NG (RelaxNG: Regular Language for XML Next Generation) is
a tree grammar framework for XML documents.

A RelaxNG schema is itself an XML document; however, RelaxNG also offers a popular,
non-XML compact syntax.

� Example 603 The RelaxNG grammars validate the left document
document RelaxNG in XML RelaxNG compact
<lecture>
<slide id="foo">
first slide

</slide>
<slide id="bar">
second one

</slide>
</lecture>

<grammar>
<start>
<element name="lecture">
<oneOrMore>
<ref name="slide"/>

</oneOrMore>
</element>

</start>
<define name="slide">
<element name="slide">
<text/>

</element>
<attribute name="id">
<text/>

</attribute>
</define>

</grammar>

start = element lecture
{slide+}

slide = element slide
{attribute id {text}
text}

c©: Michael Kohlhase 506

16.7 More Web Resources

Wikis

� Definition 604 (Wikis) A Wiki is a website on which authoring and editing can be
done by anyone at anytime using a simple browser.

� Example 605 Wikipedia, Wikimedia, Wikibooks, Citizendium, etc.(accuracy concerns)

� Allow individuals to edit content to facilitate

c©: Michael Kohlhase 507

286

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Internet Telephony (VoIP)

� Definition 606 VoIP uses the Internet to make phone calls, videoconferences

� Example 607 Providers include Vonage, Verizon, Skype, etc.

� Long-distance calls are either very inexpensive or free
(Quality, security, and reliability concerns)

c©: Michael Kohlhase 508

Social Networks

� Definition 608 A social network service is an Internet service that focuses on building
and reflecting of social networks or social relations among people, e.g., who share interests
and/or activities.

� A social network service essentially consists of a representation of each user (often a
profile), his/her social links, and a variety of additional services. Most social network
services provide means for users to interact over the internet, such as e-mail and instant
messaging.

� Example 609 MySpace, Facebook, Friendster, Orkut, etc.

c©: Michael Kohlhase 509

Really Simple Syndication (RSS)

� FireAnt, i-Fetch, RSS Captor, etc.

� Built-in Web browser RSS features

c©: Michael Kohlhase 510

Instant messaging (IM) and real-time chat (RTC)

� Multi-protocol IM clients (AIM)

� Web-based IM systems (Forum, chat room)

� Podcasting, Blogs

� Blogger, Xanga, LiveJournal, etc.

� Types: Microblog, vlog, photoblog, sketchblog, linklog, etc.

� Blog search engines

� Blogs and advertising, implications of ad blocking software

� Do bloggers have the same rights as journalists?

c©: Michael Kohlhase 511

16.8 The Semantic Web

287

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

The Current Web

� Resources: identified by URI’s, untyped

� Links: href, src, . . . limited, non-descriptive

� User: Exciting world - semantics of the resource, however, gleaned from content

� Machine: Very little information available - significance of the links only evident from
the context around the anchor.

c©: Michael Kohlhase 512

The Semantic Web

� Resources: Globally Identified by URI’s or Locally scoped (Blank), Extensible, Relational

� Links: Identified by URI’s, Extensible, Relational

� User: Even more exciting world, richer user experience

� Machine: More processable information is available (Data Web)

� Computers and people: Work, learn and exchange knowledge effectively

c©: Michael Kohlhase 513

288

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

What is the Information a User sees?

WWW2002
The eleventh international world wide web conference
Sheraton waikiki hotel
Honolulu, hawaii, USA
7-11 may 2002
1 location 5 days learn interact

Registered participants coming from
australia, canada, chile denmark, france, germany, ghana, hong kong, india,
ireland, italy, japan, malta, new zealand, the netherlands, norway,
singapore, switzerland, the united kingdom, the united states, vietnam, zaire

On the 7th May Honolulu will provide the backdrop of the eleventh
international world wide web conference. This prestigious event ?
Speakers confirmed
Tim Berners-Lee: Tim is the well known inventor of the Web, ?
Ian Foster: Ian is the pioneer of the Grid, the next generation internet ?

c©: Michael Kohlhase 514

What the machine sees

WWW∈′′∈
T〈eeleve\t〈〉\te∇\at〉o\alwo∇ldw〉dewebco\{e∇e\ce
S〈e∇ato\wa〉‖〉‖〉〈otel
Ho\olulu⇔〈awa〉〉⇔USA
7↖∞∞ma†∈′′∈

Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om

au∫t∇al〉a⇔ca\ada⇔c〈〉lede\ma∇‖⇔{∇a\ce⇔}e∇ma\†⇔}〈a\a⇔〈o\}‖o\}⇔〉\d〉a⇔
〉∇ela\d⇔〉tal†⇔|a√a\⇔malta⇔\ew‡eala\d⇔t〈e\et〈e∇la\d∫⇔\o∇wa†⇔

∫〉\}a√o∇e⇔∫w〉t‡e∇la\d⇔t〈eu\〉ted‖〉\}dom⇔t〈eu\〉ted∫tate∫⇔v〉et\am⇔‡a〉∇e

O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈

〉\te∇\at〉o\alwo∇ldw〉dewebco\{e∇e\ce↙T〈〉∫√∇e∫t〉}〉ou∫eve\t⊥

S√ea‖e∇∫co\{〉∇med

T〉mbe∇\e∇∫↖lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb⇔⊥
Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\te∇\et⊥

c©: Michael Kohlhase 515

289

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Solution: XML markup with “meaningful” Tags

<title>WWW∈′′∈T〈eeleve\t〈〉\te∇\at〉o\alwo∇ldw〉dewebco\{e∇e\ce</title>
<place>S〈e∇ato\Wa〉‖〉‖〉〈otelHo\olulu⇔〈awa〉〉⇔USA</place>
<date>7↖∞∞ma†∈′′∈</date>
<participants>Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om

au∫t∇al〉a⇔ca\ada⇔c〈〉lede\ma∇‖⇔{∇a\ce⇔}e∇ma\†⇔}〈a\a⇔〈o\}‖o\}⇔〉\d〉a⇔
〉∇ela\d⇔〉tal†⇔|a√a\⇔malta⇔\ew‡eala\d⇔t〈e\et〈e∇la\d∫⇔\o∇wa†⇔

∫〉\}a√o∇e⇔∫w〉t‡e∇la\d⇔t〈eu\〉ted‖〉\}dom⇔t〈eu\〉ted∫tate∫⇔v〉et\am⇔

‡a〉∇e</participants>
</introduction>O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈〉\↖

te∇\at〉o\alwo∇ldw〉dewebco\{e∇e\ce↙</introduction>
<program>S√ea‖e∇∫co\{〉∇med

<speaker>T〉mbe∇\e∇∫↖lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb</speaker>
<speaker>Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\te∇↖

\et<speaker></program>

c©: Michael Kohlhase 516

What the machine sees of the XML

<t〉tle>WWW∈′′∈T〈eeleve\t〈〉\te∇\at〉o\alwo∇ldw〉dewebco\{e∇e\ce</t〉tle>
<√lace>S〈e∇ato\Wa〉‖〉‖〉〈otelHo\olulu⇔〈awa〉〉⇔USA</√lace>

<date>7↖∞∞ma†∈′′∈</date>
<√a∇t〉c〉√a\t∫>Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om

au∫t∇al〉a⇔ca\ada⇔c〈〉lede\ma∇‖⇔{∇a\ce⇔}e∇ma\†⇔}〈a\a⇔〈o\}‖o\}⇔〉\d〉a⇔
〉∇ela\d⇔〉tal†⇔|a√a\⇔malta⇔\ew‡eala\d⇔t〈e\et〈e∇la\d∫⇔\o∇wa†⇔

∫〉\}a√o∇e⇔∫w〉t‡e∇la\d⇔t〈eu\〉ted‖〉\}dom⇔t〈eu\〉ted∫tate∫⇔v〉et\am⇔

‡a〉∇e</√a∇t〉c〉√a\t∫>

</〉\t∇oduct〉o\>O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈〉\te∇↖

\at〉o\alwo∇ldw〉dewebco\{e∇e\ce↙</〉\t∇oduct〉o\>
<√∇o}∇am>S√ea‖e∇∫co\{〉∇med

<∫√ea‖e∇>T〉mbe∇\e∇∫↖lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb</∫√ea‖e∇>

<∫√ea‖e∇>Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\te∇↖

\et<∫√ea‖e∇></√∇o}∇am>

c©: Michael Kohlhase 517

290

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Need to add “Semantics”

� External agreement on meaning of annotations E.g., Dublin Core

� Agree on the meaning of a set of annotation tags

� Problems with this approach: Inflexible, Limited number of things can be expressed

� Use Ontologies to specify meaning of annotations

� Ontologies provide a vocabulary of terms

� New terms can be formed by combining existing ones

� Meaning (semantics) of such terms is formally specified

� Can also specify relationships between terms in multiple ontologies

c©: Michael Kohlhase 518

‘

291

http://creativecommons.org/licenses/by-sa/2.5/

References

[AES01] Announcing the ADVANCED ENCRYPTION STANDARD (AES), 2001.

[BCHL09] Bert Bos, Tantek Celik, Ian Hickson, and Høakon Wium Lie. Cascading style sheets
level 2 revision 1 (CSS 2.1) specification. W3C Candidate Recommendation, World
Wide Web Consortium (W3C), 2009.

[BLFM05] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform resource identifier
(URI): Generic syntax. RFC 3986, Internet Engineering Task Force (IETF), 2005.

[Den00] Peter Denning. Computer science: The discipline. In A. Ralston and D. Hem-
mendinger, editors, Encyclopedia of Computer Science, pages 405–419. Nature Pub-
lishing Group, 2000.

[DH98] S. Deering and R. Hinden. Internet protocol, version 6 (IPv6) specification. RFC 2460,
Internet Engineering Task Force (IETF), 1998.

[ECM09] ECMAScript language specification, December 2009. 5th Edition.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext transfer protocol – HTTP/1.1. RFC 2616, Internet Engineering Task
Force (IETF), 1999.

[Hal74] Paul R. Halmos. Naive Set Theory. Springer Verlag, 1974.

[HL11] Martin Hilbert and Priscila López. The world’s technological capacity to store, com-
municate, and compute information. Science, 331, feb 2011.

[Hut07] Graham Hutton. Programming in Haskell. Cambridge University Press, 2007.

[Koh08] Michael Kohlhase. Using LATEX as a semantic markup format. Mathematics in Com-
puter Science, 2(2):279–304, 2008.

[Koh10] Michael Kohlhase. sTeX: Semantic markup in TEX/LATEX. Technical report, Compre-
hensive TEX Archive Network (CTAN), 2010.

[KP95] Paul Keller and Wolfgang Paul. Hardware Design. Teubner Leibzig, 1995.

[LP98] Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Computa-
tion. Prentice Hall, 1998.

[OSG08] Bryan O’Sullivan, Don Stewart, and John Goerzen. Real World Haskell. O’Reilly,
2008.

[Pal] Neil/Fred’s gigantic list of palindromes. web page at http://www.derf.net/

palindromes/.

[RFC80] DOD standard internet protocol, 1980.

[RHJ98] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.0 Specification. W3C
Recommendation REC-html40, World Wide Web Consortium (W3C), April 1998.

[RN95] Stuart J. Russell and Peter Norvig. Artificial Intelligence — A Modern Approach.
Prentice Hall, Upper Saddle River, NJ, 1995.

[Ros90] Kenneth H. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill, 1990.

[SML10] The Standard ML basis library, 2010.

[XML] Extensible Markup Language (XML) 1.0 (Fourth Edition). Web site at http://www.

w3.org/TR/REC-xml/.

292

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.w3.org/TR/CSS2
http://www.w3.org/TR/CSS2
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.sciencemag.org/content/331/6018/692.full.pdf
http://www.sciencemag.org/content/331/6018/692.full.pdf
https://svn.kwarc.info/repos/stex/doc/mcs08/stex.pdf
http://www.ctan.org/get/macros/latex/contrib/stex/sty/stex.pdf
http://www.derf.net/palindromes/
http://www.derf.net/palindromes/
http://www.derf.net/palindromes/
http://tools.ietf.org/rfc/rfc760.txt
http://www.w3.org/TR/PR-xml.html
http://www.standardml.org/Basis/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/

Index

λ-notation, 38

abstract
call-by-value

interpreter, 66
computation, 60
data

type, 57
interpreter, 60
procedure, 65
Program, 65

access
random (), 179

accumulator, 179
acyclic, 143

directed (), 143
adder, 157

carry chain, 160
conditional sum, 161
full, 158
half, 157
twos-complement, 169

addition
carry chain, 156
operation, 29
rules, 156

address
decoder, 177
IPv4, 261
IPv6, 261
MAC, 260

admissible, 112, 236
agent

user, 268
algebra

Boolean, 88
algorithm, 19

generate-and-test, 101
search, 210

algorithm, 20
alphabet, 74
ALU, 173, 179–181
anchor

cell, 199
anonymous

variables, 44
answer

substitution, 248
antisymmetric, 36
append

function, 54

application
layer, 262

argument, 60
arithmetic, 110

logic
unit, 173

American Standard Code for Information Inter-
change, 79

assembler, 184
language, 179, 181

assignment
variable, 87

astarSearch search, 236
asymptotically

bounded, 93
asynchronous, 176
atom, 107, 126
atomic, 126
attribute, 279

node, 279
axiom, 26
Axioms

Peano, 58

balanced
binary

tree, 149
bracketing

structure, 279
fully (), 149

base, 154
case, 27
condition, 25, 27
knowledge, 247
sort, 57

basic
multilingual

plane, 81
operator, 43
type, 43

constructor, 43
bijection, 155
bijective, 39
binary, 76

balanced (), 149
natural

number, 165
tree, 149

bit
carry, 157
most significant, 165

293

sign, 165
sum, 157

Blaise Pascal, 110
Boolean

algebra, 88
expressions, 147
function, 89
polynomial, 90
sum, 86

bootstrapping
process, 155

borrow
input (), 169

bounded
asymptotically, 93

bracketing
balanced (), 279

branch
closed, 128
open, 128

Browser
web, 267

by description
definition, 34

byte
code, 184, 194

C, 196
calculus

complete, 113
correct, 113
resolution, 133

call-by-value
abstract (), 66

canonical
product, 91
sum, 91

card
punch, 80

cardinality, 39
carry

bit, 157
input, 158
intermediate, 170

carry chain
adder, 160
addition, 156

Cartesian
n-dim (nCartSpace), 33
n-fold (nCartProd), 33
procedure, 49
product, 33

case
base, 27

spfstep, 27
cell

anchor, 199
internal, 199

chain
infinite, 68

character, 74
code, 76, 155
encoding, 82
name, 280
properties, 280
structural, 83

child, 144
circuit

combinational, 145
combinatorial, 145, 146

clause, 90, 133
empty, 133
fact, 253
Horn, 253
rule, 253
set, 90

clock, 176
closed, 61

branch, 128
closing

tag, 279
CNF, 91
code

byte, 184, 194
character, 76, 155
Morse, 77
on strings, 77
point, 81, 280
prefix, 77
string, 77, 155

codeword, 76
codomain, 37
combinational

circuit, 145
combinatorial

circuit, 145, 146
command interpreter, 185
compact

syntax, 282
compiler, 184, 185
complete

calculus, 113
complex, 126
complexity

theory, 22
composition, 36
computation, 60

abstract, 60

294

Computer
Science, 8

computes, 148
concatenation, 74, 75
condition

base, 25, 27
spfstep, 27
step, 25, 28

conditional sum
adder, 161

conjecture, 25
conjunctive

normal
form, 91, 133

constant
name, 83

constructive
proof, 94

constructor, 45
declaration, 57
ground (), 58
term, 62

control, 162
structure, 43

converse, 36
cookie, 272
cookies

third party, 272
corollary, 25
correct

calculus, 113
cost, 148
countably

infinite, 39
counter

program, 179, 180
counterexamples, 108
covers, 92
CPU, 179
crawler

web, 274
Cascading Style Sheets, 271
current

instruction, 180
state, 240

Currying, 48
cycle, 143
cyclic, 143

DAG, 143
data

abstract (), 57
store, 179

declaration

constructor, 57
function, 43
namespace, 279
parameter, 64
type, 43
value, 43

decoder
address, 177

defined
inductively, 45

definiendum, 33
definiens, 33
definition

implicit, 34
simple, 33

definition
by description, 34

depth, 85
derivation, 26, 112
derived

inference
rule, 130, 135

rule, 130
derives, 128
difference

set, 33
digit, 154
digraph, 139
directed

acyclic
graph, 143

edge, 139
graph, 139, 140

disjunctive
normal

form, 91, 133
diverges, 68
DNF, 91, 133, 152
DNS, 262
document

root, 279
XML (), 279

Document Type Definition, 282
domain, 37
Domain Name System, 262
dominates, 98, 239
DTD, 282

edge, 140
directed, 139
undirected, 139

edges, 17
element

empty, 279

295

node, 279
empty

clause, 133
element, 279
set, 33
string, 74

encoding
character, 82
scheme, 280

end, 143
environment, 193
equality

set, 32
equivalence

relation, 36
equivalence class, 20
equivalent, 88, 89

graph, 141
essential, 102
evaluation

function, 87, 236
exception

handler, 73
exclusive

or, 153
expression, 83

label, 147
cost, 92
expressions

Boolean, 147
extension, 76

fact, 247
clause, 253

falsifiable, 108
Fibonacci

number, 68
sequence, 68

finite, 39
firmware, 181
folding

left (), 49
right (), 50

formal
language, 75

formula
labeled, 126

frame
pointer, 199

fringe, 218
full

n-bit (nbitfulladder), 159
adder, 158

fully

balanced
tree, 149

function
append, 54
Boolean, 89
declaration, 43
evaluation, 87, 236
interpretation, 87
inverse, 39
name, 83
partial, 37
result, 68
selector, 44
sort, 57
space, 37
total, 37

composition, 40
cost, 92
functional

programming
language, 41, 181

gate, 146
generate-and-test, 20

algorithm, 101
goal, 248

state, 212
Gottfried Wilhelm Leibniz, 110
graph, 16

directed, 139, 140
equivalent, 141
isomorphism, 141
labeled, 142
undirected, 139, 140

depth, 144
greedy

search, 234
ground, 61

constructor
term, 58

half
adder, 157

handled, 73
handler

exception, 73
head, 58
heuristic, 234
hexadecimal

numbers, 181
Horn

clause, 253
HyperText Markup Language, 270
HyperText Markup Language, 270

296

HTTP, 268
Hypertext Transfer Protocol, 268
http

request, 268
hypothetical

reasoning, 121

IANA, 261
Internet Assigned Numbers Authority, 261
ICANN, 262
idempotent, 268
idiom

math, 30
image, 40
immediate

subterm, 59
imperative

programming
language, 181

implicant, 98
prime, 98

implicit
definition, 34

implies, 98
in-degree, 139
index

search, 275
indexing, 275
induced, 89
induced by, 65
inductive, 45
inductively

defined, 45
inference, 25, 26

derived (), 130, 135
rule, 133

infinite
chain, 68
countably, 39

infinite precision
integers, 70

initial, 141
node, 141
state, 212

injective, 39
input

borrow
bit, 169

carry, 158
vertex, 146

instantiates, 62
instruction

current, 180
program, 181

integers
infinite precision, 70

interface
network, 260

intermediate
carry, 170

internal
cell, 199

Internet, 255
Internet Protocol, 261
interpretation

function, 87
interpreter

abstract, 60
intersection, 33
intersection over a collection, 33
invariants

loop, 184
inverse

function, 39
IP, 261
IPv4, 261

address, 261
Internet Protocol Version 4, 261
IPv6, 261

address, 261
Internet Protocol Version 6, 261
isomorphism

graph, 141
iterator, 49

Java, 196
jump

table, 189

Karnaugh-Veitch
map, 105

key, 193, 275
knowledge

base, 247
KV-map, 105

label, 142
expression, 147

labeled
formula, 126
graph, 142

λ-notation, 38
Landau

set, 93
language

assembler, 179, 181
formal, 75

layer

297

application, 262
transport, 262

leaf, 144
leak

memory, 195
left

folding
operator, 49

lemma, 25
length, 143
lexical

order, 76
LIFO, 185
linear

order, 36
list

variable, 89
literal, 90, 126, 129
local

search, 240
logic

arithmetic (), 173
sequential (), 174

logical
program, 253
reasoning, 25
system, 25

loop
invariants, 184

MAC
address, 260

media access control address, 260
machine, 184

register, 179, 180, 184
virtual, 184, 185

management
memory (), 179

map
Karnaugh-Veitch, 105

matcher, 62
matching

pattern, 44
math

idiom, 30
mathematical

vernacular, 30
maxterm, 92
maze, 17
memory

leak, 195
management

unit, 179
random access, 179

minimal
polynomial, 152

minterm, 92
MMU, 179–181
model, 87
monomial, 90, 133
Morse

code, 77
most significant

bit, 165
multilingual

basic (), 81
multiplexer, 162

n-tuple, 33
name

character, 280
constant, 83
function, 83
variable, 83

namespace
declaration, 279

natural
binary (), 165
unary (), 24

n-bit
full

adder, 159
n-fold

Cartesian
product, 33

n-dim
Cartesian

space, 33
negative, 128
network

interface, 260
packet-switched, 258
packets, 258

NIC, 260
network interface controller, 260
node, 139, 140

attribute, 279
element, 279
initial, 141
root, 19
terminal, 141
text, 279

nodes, 17
nonempty

string, 75
normal, 91

conjunctive (), 91, 133
disjunctive (), 91, 133

298

number
Fibonacci, 68
positional (), 154

numbers
hexadecimal, 181

off
worked, 133

offline
problem

solving, 211
on

relation, 36
on strings

code, 77
one, 27
open

branch, 128
opening

tag, 279
operation

addition, 29
operator, 212

basic, 43
or

exclusive, 153
order

lexical, 76
linear, 36
partial, 36

ordered
pair, 139, 140

out-degree, 139
output

vertex, 146
overflow, 172

packet-switched
network, 258

packets
network, 258

page
web, 267

pair, 33, 139
ordered, 139, 140

parameter
declaration, 64

parent, 144
parse-tree, 145
partial

function, 37
order, 36

Pascal, 196
path, 143

XML (), 281
pattern

matching, 44
Peano

Axioms, 58
point

code, 81, 280
pointer

frame, 199
stack, 188

polarity, 165
polynomial

Boolean, 90
minimal, 152

port, 264
positional

number
system, 154

positive
unit-resulting

hyperresolution, 253
postulate, 25
power

set, 33
pre-image, 40
prefix, 75

code, 77
proper, 75

abstract
procedure, 60

argument
sort, 60

result
sort, 60

rule, 60
prime

implicant, 98
problem

offline (), 211
procedure

abstract, 60, 65
Cartesian, 49
static, 196

process
bootstrapping, 155

product, 86
canonical, 91
Cartesian, 33
sort, 57
term, 90

product of
sums, 90

products
sum of, 90

299

Program
abstract, 65

program, 179
counter, 179, 180
instruction, 181
logical, 253
store, 179

program store, 185
programming

functional (), 41, 181
imperative (), 181

proof, 25, 26, 112
constructive, 94
tableau, 128

proper
prefix, 75

proper subset, 32
proper superset, 32
properties

character, 280
proposition, 107
pull-back, 155, 157
punch

card, 80

query, 248, 253
Quine-McCluskey, 152

radix, 154
raised, 73
RAM, 179, 180
random access

memory, 179
random

access
memory, 179

random access
memory, 179

reasoning
hypothetical, 121
logical, 25

recipe, 20
recursion

relation, 67
step, 67

recursive, 46, 67
reflexive, 36
refutation

resolution, 133
tableau, 128

register, 179, 180
machine, 179, 180, 184

relation, 36, 140
equivalence, 36

on, 36
recursion, 67

relative
URI, 267

Relax NG, 282
RelaxNG, 282

schema, 282
representation, 16
request

http, 268
resolution

calculus, 133
refutation, 133
sproof, 134

resolvent, 100
resource

uniform (), 266, 267
web, 266

restriction, 40
result, 60

function, 68
Ridge, 243
right

folding
operator, 50

root, 144
document, 279
node, 19

rosary, 20
router, 259
RS-flipflop, 174
RS-latch, 174
rule, 247

clause, 253
derived, 130
inference, 133

rule, 65
rules

addition, 156

safe, 268
satisfiable, 108
saturated, 128
schema

RelaxNG, 282
scheme

encoding, 280
Science

Computer, 8
search

algorithm, 210
greedy, 234
index, 275
local, 240

300

strategy, 218
web (), 273

selector
function, 44

semantics, 84
sequence

Fibonacci, 68
sequential

logic
circuit, 174

server
web, 268

set, 139
clause, 90
difference, 33
empty, 33
equality, 32
Landau, 93
power, 33

sign
bit, 165

signature, 64
simple

definition, 33
sink, 141
site

web, 267
size, 34
solution, 212
sort

argument, 60
base, 57
function, 57
product, 57
result, 60

sorts, 57
source, 141
space

function, 37
spanning

tree, 19
spfstep

case, 27
condition, 27

sproof
resolution, 134

stack, 185
pointer, 188

Standard
Unicode, 81

standard
unicode, 280

start, 143
value, 49

state, 212
current, 240
goal, 212
initial, 212

static
procedure, 196

step
condition, 25, 28
recursion, 67

store
data, 179
program, 179

strategy
search, 218

String, 46
string, 74, 75

code, 77, 155
empty, 74
nonempty, 75

structural
character, 83

structure
control, 43

sub-monomial, 98
subset, 32
substitution, 62

answer, 248
substring, 75
subterm, 59

immediate, 59
subtracter, 169
successor, 25
sum

bit, 157
Boolean, 86
canonical, 91
term, 90

sum of
products, 90

sums
product of, 90

superset, 32
support, 62
surjective, 39
symmetric, 36
synchronous, 176
syntax, 84

compact, 282
system

logical, 25

table
jump, 189

tableau

301

proof, 128
refutation, 128

tag
closing, 279
opening, 279

TCP, 262
Transmission Control Protocol, 262
Internet Protocol Suite, 259
TCP/IP, 259
term, 64

constructor, 62
product, 90
sum, 90

terminal, 141
node, 141

terminates, 60, 65
terminates, 68
test calculi, 128
text

node, 279
theorem, 25, 26, 112
theory

complexity, 22
third party

cookies, 272
total, 36

function, 37
transitive, 36
transport

layer, 262
tree, 18, 144

binary, 149
spanning, 19

Turing
universal (), 210

twelve, 27
two, 27
twos-complement

adder, 169
two’s complement, 167
type, 43

basic, 43
basic (), 43
declaration, 43
universal, 44

Universal Character Set, 81
UDP, 262
User Datagram Protocol, 262
unary

natural
numbers, 24

underflow, 172
undirected

edge, 139
graph, 139, 140

Unicode
Standard, 81

unicode
standard, 280

uniform
resource

identifier, 266
locator, 267

union, 33
union over a collection, 33
Union-Find, 20
unit-resulting

positive (), 253
universal

Turing
machine, 210

type, 44
universe, 87
unsatisfiable, 108, 133
URI

relative, 267
user

agent, 268
UTF-8, 280

valid, 108
value

declaration, 43
start, 49

variable, 61
assignment, 87
list, 89
name, 83

variables
anonymous, 44

vector, 33
vernacular

mathematical, 30
vertex, 139

input, 146
output, 146

depth, 144
virtual

machine, 184
virtual program counter, 185
visualization, 18
virtual

machine, 185
VPC, 185

web
Browser, 267

302

crawler, 274
page, 267
resource, 266
search

engine, 273
server, 268
site, 267

spider, 274
Wilhelm Schickard, 110
word, 179, 184
worked

off, 133
World Wide Web, 255

XML
document

tree, 279
path

language, 281

zero, 27

303

	Preface
	This Document
	Course Concept
	Course Contents
	Acknowledgments

	Getting Started with ``General Computer Science''
	Overview over the Course
	Administrativa
	Grades, Credits, Retaking
	Homeworks, Submission, and Cheating
	Resources

	Motivation and Introduction

	Elementary Discrete Math
	Mathematical Foundations: Natural Numbers
	Talking (and writing) about Mathematics
	Naive Set Theory
	Definitions in Mathtalk

	Relations and Functions

	Computing with Functions over Inductively Defined Sets
	Standard ML: Functions as First-Class Objects
	Inductively Defined Sets and Computation
	Inductively Defined Sets in SML
	A Theory of SML: Abstract Data Types and Term Languages
	Abstract Data Types and Ground Constructor Terms
	A First Abstract Interpreter
	Substitutions
	A Second Abstract Interpreter
	Evaluation Order and Termination

	More SML: Recursion in the Real World
	Even more SML: Exceptions and State in SML

	Encoding Programs as Strings
	Formal Languages
	Elementary Codes
	Character Codes in the Real World
	Formal Languages and Meaning

	Boolean Algebra
	Boolean Expressions and their Meaning
	Boolean Functions
	Complexity Analysis for Boolean Expressions
	The Quine-McCluskey Algorithm
	A simpler Method for finding Minimal Polynomials

	Propositional Logic
	Boolean Expressions and Propositional Logic
	Logical Systems and Calculi
	Proof Theory for the Hilbert Calculus
	A Calculus for Mathtalk

	Welcome and Administrativa
	Recap from General CS I

	Machine-Oriented Calculi
	Calculi for Automated Theorem Proving: Analytical Tableaux
	Analytical Tableaux
	Practical Enhancements for Tableaux
	Correctness and Termination of Tableaux

	Resolution for Propositional Logic

	Welcome and Administrativa
	Recap from General CS I

	Circuits
	Graphs and Trees
	Introduction to Combinatorial Circuits
	Realizing Complex Gates Efficiently
	Balanced Binary Trees
	Realizing n-ary Gates

	Basic Arithmetics with Combinational Circuits
	Positional Number Systems
	Adders

	Arithmetics for Two's Complement Numbers
	Towards an Algorithmic-Logic Unit

	Sequential Logic Circuits and Memory Elements
	Machines
	How to build a Computer (in Principle)
	How to build a SML-Compiler (in Principle)
	A Stack-based Virtual Machine
	A Simple Imperative Language
	Compiling Basic Functional Programs

	A theoretical View on Computation

	Problem Solving and Search
	Problem Solving
	Search
	Uninformed Search Strategies
	Informed Search Strategies
	Local Search

	Logic Programming
	Programming as Search: Introduction to Logic Programming and PROLOG
	Logic Programming as Resolution Theorem Proving

	The Information and Software Architecture of the Internet and WWW
	Overview
	Internet Basics
	Basics Concepts of the World Wide Web
	Introduction to Web Search
	Security by Encryption
	An Overview over XML Technologies
	More Web Resources
	The Semantic Web

