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1 Circuits

We will now study a new model of computation that comes quite close to the circuits that ex-
ecute computation on today’s computers. Since the course studies computation in the context
of computer science, we will abstract away from all physical issues of circuits, in particular the
construction of gats and timing issues. This allows to us to present a very mathematical view
of circuits at the level of annotated graphs and concentrate on qualitative complexity of circuits.
Some of the material in this section is inspired by [?].

We start out our foray into circuits by laying the mathematical foundations of graphs and trees
in Subsection 1.1, and then build a simple theory of combinational circuits in Subsection 1.2 and
study their time and space complexity in Subsection 1.3. We introduce combinational circuits for
computing with numbers, by introducing positional number systems and addition in Subsection
1.4 and covering 2s-complement numbers and subtraction in Subsection 1.5. A basic introduction
to sequential logic circuits and memory elements in Subsection 1.6 concludes our study of circuits.
Graphs and Trees

1.1 Graphs and Trees

Some more Discrete Math: Graphs and Trees

� Remember our Maze Example from the Intro? (long time ago)

〈
〈a, e〉, 〈e, i〉, 〈i, j〉,
〈f, j〉, 〈f, g〉, 〈g, h〉,
〈d, h〉, 〈g, k〉, 〈a, b〉
〈m,n〉, 〈n, o〉, 〈b, c〉
〈k, o〉, 〈o, p〉, 〈l, p〉

 , a, p

〉

� We represented the maze as a graph for clarity.

� Now, we are interested in circuits, which we will also represent as graphs.

� Let us look at the theory of graphs first (so we know what we are doing)
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Graphs and trees are fundamental data structures for computer science, they will pop up in many
disguises in almost all areas of CS. We have already seen various forms of trees: formula trees,
tableaux, . . . . We will now look at their mathematical treatment, so that we are equipped to talk
and think about combinatory circuits.

We will first introduce the formal definitions of graphs (trees will turn out to be special graphs),
and then fortify our intuition using some examples.
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�

Basic Definitions: Graphs

� Definition 1 An undirected graph is a pair 〈V,E〉 such that

� V is a set of so-called vertices (or nodes) (draw as circles)

� E ⊆ {{v, v′} | v, v′ ∈ V, v 6= v′} is the set of its undirected edges (draw as lines)

� Definition 2 A directed graph (also called digraph) is a pair 〈V,E〉 such that

� V is a set of vertexes

� E ⊆ (V × V ) is the set of its directed edges

� Definition 3 Given a graph G = 〈V,E〉. The in-degree indeg(v) and the out-degree
outdeg(v) of a vertex v ∈ V are defined as

� indeg(v) = #({w | 〈w, v〉 ∈ E})
� outdeg(v) = #({w | 〈v, w〉 ∈ E})

Note: For an undirected graph, indeg(v) = outdeg(v) for all nodes v.
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We will mostly concentrate on directed graphs in the following, since they are most important for
the applications we have in mind. Many of the notions can be defined for undirected graphs with
a little imagination. For instance the definitions for indeg and outdeg are the obvious variants:
indeg(v) = #({w | {w, v} ∈ E}) and outdeg(v) = #({w | {v, w} ∈ E})

In the following if we do not specify that a graph is undirected, it will be assumed to be
directed.

This is a very abstract yet elementary definition. We only need very basic concepts like sets and
ordered pairs to understand them. The main difference between directed and undirected graphs
can be visualized in the graphic representations below:

Examples

� Example 4 An undirected graph G1 = 〈V1, E1〉, where V1 = {A,B,C,D,E} and
E1 = {{A,B}, {A,C}, {A,D}, {B,D}, {B,E}}

C D

A B E

� Example 5 A directed graph G2 = 〈V2, E2〉, where V2 = {1, 2, 3, 4, 5} and E2 =
{〈1, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 2〉, 〈2, 4〉, 〈5, 4〉}

1 2

3

4 5
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In a directed graph, the edges (shown as the connections between the circular nodes) have a
direction (mathematically they are ordered pairs), whereas the edges in an undirected graph do
not (mathematically, they are represented as a set of two elements, in which there is no natural
order).

Note furthermore that the two diagrams are not graphs in the strict sense: they are only pictures
of graphs. This is similar to the famous painting by René Magritte that you have surely seen
before.

The Graph Diagrams are not Graphs

They are pictures of graphs (of course!)
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If we think about it for a while, we see that directed graphs are nothing new to us. We have
defined a directed graph to be a set of pairs over a base set (of nodes). These objects we have seen
in the beginning of this course and called them relations. So directed graphs are special relations.
We will now introduce some nomenclature based on this intuition.
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Directed Graphs

� Idea: Directed Graphs are nothing else than relations

� Definition 6 Let G = 〈V,E〉 be a directed graph, then we call a node v ∈ V

� initial, iff there is no w ∈ V such that 〈w, v〉 ∈ E. (no predecessor)

� terminal, iff there is no w ∈ V such that 〈v, w〉 ∈ E. (no successor)

In a graph G, node v is also called a source (sink) of G, iff it is initial (terminal) in G.

� Example 7 The node 2 is initial, and the nodes 1 and 6 are terminal in

1

2

3

4

5

6

c©: Michael Kohlhase 6

For mathematically defined objects it is always very important to know when two representations
are equal. We have already seen this for sets, where {a, b} and {b, a, b} represent the same set:
the set with the elements a and b. In the case of graphs, the condition is a little more involved:
we have to find a bijection of nodes that respects the edges.

Graph Isomorphisms

� Definition 8 A graph isomorphism between two graphs G = 〈V,E〉 and G′ = 〈V ′, E′〉
is a bijective function ψ : V → V ′ with

directed graphs undirected graphs
〈a, b〉 ∈ E ⇔ 〈ψ(a), ψ(b)〉 ∈ E′ {a, b} ∈ E ⇔ {ψ(a), ψ(b)} ∈ E′

� Definition 9 Two graphs G and G′ are equivalent iff there is a graph-isomorphism ψ
between G and G′.

� Example 10 G1 and G2 are equivalent as there exists a graph isomorphism ψ :=
{a 7→ 5, b 7→ 6, c 7→ 2, d 7→ 4, e 7→ 1, f 7→ 3} between them.

1

2

3

4

5

6

ec

fd

a

b
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Note that we have only marked the circular nodes in the diagrams with the names of the elements
that represent the nodes for convenience, the only thing that matters for graphs is which nodes
are connected to which. Indeed that is just what the definition of graph equivalence via the
existence of an isomorphism says: two graphs are equivalent, iff they have the same number of
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nodes and the same edge connection pattern. The objects that are used to represent them are
purely coincidental, they can be changed by an isomorphism at will. Furthermore, as we have
seen in the example, the shape of the diagram is purely an artifact of the presentation; It does not
matter at all.

So the following two diagrams stand for the same graph, (it is just much more difficult to state
the graph isomorphism)

Note that directed and undirected graphs are totally different mathematical objects. It is easy
to think that an undirected edge {a, b} is the same as a pair 〈a, b〉, 〈b, a〉 of directed edges in
both directions, but a priory these two have nothing to do with each other. They are certainly
not equivalent via the graph equivalent defined above; we only have graph equivalence between
directed graphs and also between undirected graphs, but not between graphs of differing classes.

Now that we understand graphs, we can add more structure. We do this by defining a labeling
function from nodes and edges.

Labeled Graphs

� Definition 11 A labeled graph G is a triple 〈V,E, f〉 where 〈V,E〉 is a graph and
f : V ∪ E → R is a partial function into a set R of labels.

� Notation 12 write labels next to their vertex or edge. If the actual name of a vertex
does not matter, its label can be written into it.

� Example 13 G = 〈V,E, f〉 with V = {A,B,C,D,E}, where

� E = {〈A,A〉, 〈A,B〉, 〈B,C〉, 〈C,B〉, 〈B,D〉, 〈E,D〉}
� f : V ∪ E → {+,−, ∅} × {1, . . ., 9} with

� f(A) = 5, f(B) = 3, f(C) = 7, f(D) = 4, f(E) = 8,

� f(〈A,A〉) = −0, f(〈A,B〉) = −2, f(〈B,C〉) = +4,

� f(〈C,B〉) = −4, f(〈B,D〉) = +1, f(〈E,D〉) = +4

5 3

7

4 8
-2 +1 -4

+4-4

-0
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Note that in this diagram, the markings in the nodes do denote something: this time the labels
given by the labeling function f , not the objects used to construct the graph. This is somewhat
confusing, but traditional.

Now we come to a very important concept for graphs. A path is intuitively a sequence of nodes
that can be traversed by following directed edges in the right direction or undirected edges.
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Paths in Graphs

� Definition 14 Given a directed graph G = 〈V,E〉, then we call a vector
p = 〈v0, . . ., vn〉 ∈ V n+1 a path in G iff 〈vi−1, vi〉 ∈ E for all 1 ≤ i ≤ n, n > 0.

� v0 is called the start of p (write start(p))

� vn is called the end of p (write end(p))

� n is called the length of p (write len(p))

Note: Not all vi-s in a path are necessarily different.

�� Notation 15 For a graph G = 〈V,E〉 and a path p = 〈v0, . . ., vn〉 ∈ V n+1, write

� v ∈ p, iff v ∈ V is a vertex on the path (∃i.vi = v)

� e ∈ p, iff e = 〈v, v′〉 ∈ E is an edge on the path (∃i.(vi = v ∧ vi+1 = v′))

� Notation 16 We write Π(G) for the set of all paths in a graph G.

c©: Michael Kohlhase 9

An important special case of a path is one that starts and ends in the same node. We call it a
cycle. The problem with cyclic graphs is that they contain paths of infinite length, even if they
have only a finite number of nodes.

Cycles in Graphs

� Definition 17 Given a graph G = 〈V,E〉, then

� a path p is called cyclic (or a cycle) iff start(p) = end(p).

� a cycle 〈v0, . . ., vn〉 is called simple, iff vi 6= vj for 1 ≤ i, j ≤ n with i 6= j.

� graph G is called acyclic iff there is no cyclic path in G.

� Example 18 〈2, 4, 3〉 and 〈2, 5, 6, 5, 6, 5〉 are paths in

〈2, 4, 3, 1, 2〉 is not a path (no edge from vertex 1 to vertex 2)

The graph is not acyclic (〈5, 6, 5〉 is a cycle)

c©: Michael Kohlhase 10

Of course, speaking about cycles is only meaningful in directed graphs, since undirected graphs
can only be acyclic, iff they do not have edges at all. We will sometimes use the abbreviation
DAG for directed acyclic graph.
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Graph Depth

� Definition 19 Let G := 〈V,E〉 be a digraph, then the depth dp(v) of a vertex v ∈ V is
defined to be 0, if v is a source of G and sup{len(p) | indeg(start(p)) = 0 ∧ end(p) = v}
otherwise, i.e. the length of the longest path from a source of G to v.( can be infinite)

� Definition 20 Given a digraph G = 〈V,E〉. The depth (dp(G)) of G is defined as
sup{len(p) | p ∈ Π(G)}, i.e. the maximal path length in G.

� Example 21 The vertex 6 has depth two in the left graphs and infine depth in the right
one.

1

2

3

4

5

6 1

2

3

4

5

6

The left graph has depth three (cf. node 1), the right one has infinite depth (cf. nodes
5 and 6)

c©: Michael Kohlhase 11

We now come to a very important special class of graphs, called trees.

Trees

� Definition 22 A tree is a directed acyclic graph G = 〈V,E〉 such that

� There is exactly one initial node vr ∈ V (called the root)

� All nodes but the root have in-degree 1.

We call v the parent of w, iff 〈v, w〉 ∈ E (w is a child of v). We call a node v a leaf of
G, iff it is terminal, i.e. if it does not have children.

� Example 23 A tree with root A and leaves D, E, F , H, and J .

A

B

D E F

C

G

H I

J
F is a child of B and G is the parent of H and I.

� Lemma 24 For any node v ∈ V except the root vr, there is exactly one path p ∈ Π(G)
with start(p) = vr and end(p) = v. (proof by induction on the number of nodes)

c©: Michael Kohlhase 12

In Computer Science trees are traditionally drawn upside-down with their root at the top, and
the leaves at the bottom. The only reason for this is that (like in nature) trees grow from the root
upwards and if we draw a tree it is convenient to start at the top of the page downwards, since we
do not have to know the height of the picture in advance.
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Let us now look at a prominent example of a tree: the parse tree of a Boolean expression. In-
tuitively, this is the tree given by the brackets in a Boolean expression. Whenever we have an
expression of the form A ◦ B, then we make a tree with root ◦ and two subtrees, which are
constructed from A and B in the same manner.

This allows us to view Boolean expressions as trees and apply all the mathematics (nomencla-
ture and results) we will develop for them.

The Parse-Tree of a Boolean Expression

� Definition 25 The parse-tree Pe of a Boolean expression e is a labeled tree Pe =
〈Ve, Ee, fe〉, which is recursively defined as

� if e = e′ then Ve := Ve′ ∪ {v}, Ee := Ee′ ∪ {〈v, v′r〉}, and fe := fe′ ∪ {v 7→ −}, where
Pe′ = 〈Ve′ , Ee′〉 is the parse-tree of e′, v′r is the root of Pe′ , and v is an object not in Ve′ .

� if e = e1 ◦ e2 with ◦ ∈ {∗,+} then Ve := Ve1 ∪ Ve2 ∪ {v}, Ee :=
Ee1 ∪ Ee2 ∪ {〈v, vr1〉, 〈v, vr2〉}, and fe := fe1 ∪ fe2 ∪ {v 7→ ◦}, where the Pei = 〈Vei , Eei〉
are the parse-trees of ei and vri is the root of Pei and v is an object not in Ve1 ∪ Ve2 .

� if e ∈ (V ∪ C) then, Ve = {e} and Ee = ∅.

� Example 26 the parse tree of x1 ∗ x2 + x3 ∗ x1 + x4 is

*

+

*

x1 x2

x3

·

+

x1 x4
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Introduction to Combinatorial Circuits

1.2 Introduction to Combinatorial Circuits

We will now come to another model of computation: combinatorial circuits (also called combina-
tional circuits). These are models of logic circuits (physical objects made of transistors (or cathode
tubes) and wires, parts of integrated circuits, etc), which abstract from the inner structure for the
switching elements (called gates) and the geometric configuration of the connections. Thus, com-
binatorial circuits allow us to concentrate on the functional properties of these circuits, without
getting bogged down with e.g. configuration- or geometric considerations. These can be added to
the models, but are not part of the discussion of this course.
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Combinatorial Circuits as Graphs

� Definition 27 A combinatorial circuit is a labeled acyclic graph G = 〈V,E, fg〉 with
label set {OR,AND,NOT}, such that

� indeg(v) = 2 and outdeg(v) = 1 for all nodes v ∈ (fg)
−1({AND,OR})

� indeg(v) = outdeg(v) = 1 for all nodes v ∈ (fg)
−1({NOT})

We call the set I(G) (O(G)) of initial (terminal) nodes in G the input (output) vertexes,
and the set F (G) := V \(I(G) ∪O(G)) the set of gates.

� Example 28 The following graph Gcir1 = 〈V,E〉 is a combinatorial circuit

i1

g1 AND

g2 OR

i2 i3

g3 OR

g4 NOT

o1 o2

� Definition 29 Add two special input nodes 0, 1 to a combinatorial circuit G to form a
combinatorial circuit with constants. (will use this from now on)
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So combinatorial circuits are simply a class of specialized labeled directed graphs. As such, they
inherit the nomenclature and equality conditions we introduced for graphs. The motivation for
the restrictions is simple, we want to model computing devices based on gates, i.e. simple compu-
tational devices that behave like logical connectives: the AND gate has two input edges and one
output edge; the the output edge has value 1, iff the two input edges do too.

Since combinatorial circuits are a primary tool for understanding logic circuits, they have their
own traditional visual display format. Gates are drawn with special node shapes and edges are
traditionally drawn on a rectangular grid, using bifurcating edges instead of multiple lines with
blobs distinguishing bifurcations from edge crossings. This graph design is motivated by readability
considerations (combinatorial circuits can become rather large in practice) and the layout of early
printed circuits.
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Using Special Symbols to Draw Combinatorial Circuits

� The symbols for the logic gates AND, OR, and NOT.

AND


OR


NOT


o1


o2


i1


i2


i3


� Junction Symbols as shorthands for several edges

a

c

b
 a


c

b


=


o1


o2


i1


i2


i3
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In particular, the diagram on the lower right is a visualization for the combinatory circuit Gcirc1
from the last slide.

To view combinatorial circuits as models of computation, we will have to make a connection
between the gate structure and their input-output behavior more explicit. We will use a tool for
this we have studied in detail before: Boolean expressions. The first thing we will do is to annotate
all the edges in a combinatorial circuit with Boolean expressions that correspond to the values on
the edges (as a function of the input values of the circuit).

Computing with Combinatorial Circuits

� Combinatorial Circuits and parse trees for Boolean expressions look similar

� Idea: Let’s annotate edges in combinatorial circuit with Boolean Expressions!

� Definition 30 Given a combinatorial circuit G = 〈V,E, fg〉 and an edge e = 〈v, w〉 ∈
E, the expression label fL((e)) is defined as

fL(〈v, w〉) if
v v ∈ I(G)

fL(〈u, v〉) fg(v) = NOT
fL(〈u, v〉) ∗ fL(〈u′, v〉) fg(v) = AND
fL(〈u, v〉) + fL(〈u′, v〉) fg(v) = OR

o1


o2


i1


i2


i3


i1


i2


i3


(
i1
*
i2
)


(
i2
+
i3
)


((
i1
*
i2
)+
i3
)


(
i2
+
i3
)
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Armed with the expression label of edges we can now make the computational behavior of combi-
natory circuits explicit. The intuition is that a combinatorial circuit computes a certain Boolean
function, if we interpret the input vertices as obtaining as values the corresponding arguments
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and passing them on to gates via the edges in the circuit. The gates then compute the result from
their input edges and pass the result on to the next gate or an output vertex via their output
edge.

Computing with Combinatorial Circuits

� Definition 31 A combinatorial circuit G = 〈V,E, fg〉 with input vertices i1, . . . , in and
output vertices o1, . . . , om computes an n-ary Boolean function

f : {0, 1}n → {0, 1}m; 〈i1, . . . , in〉 7→ 〈fe1(i1, . . ., in), . . ., fem(i1, . . ., in)〉

where ei = fL(〈v, oi〉).

� Example 32 The circuit example on the last slide defines the Boolean function
f : {0, 1}3 → {0, 1}2; 〈i1, i2, i3〉 7→ 〈fi1∗i2+i3 , fi2∗i3〉

� Definition 33 The cost C(G) of a circuit G is the number of gates in G.

� Problem: For a given boolean function f , find combinational circuits of minimal cost
and depth that compute f .
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Note: The opposite problem, i.e., the conversion of a Boolean function into a combinatorial circuit,
can be solved by determining the related expressions and their parse-trees. Note that there is a
canonical graph-isomorphism between the parse-tree of an expression e and a combinatorial circuit
that has an output that computes fe.

Realizing Complex Gates Efficiently

1.3 Realizing Complex Gates Efficiently

The main properties of combinatory circuits we are interested in studying will be the the number
of gates and the depth of a circuit. The number of gates is of practical importance, since it is
a measure of the cost that is needed for producing the circuit in the physical world. The depth
is interesting, since it is an approximation for the speed with which a combinatory circuit can
compute: while in most physical realizations, signals can travel through wires at at (almost) the
speed of light, gates have finite computation times.

Therefore we look at special configurations for combinatory circuits that have good depth and cost.
These will become important, when we build actual combinatorial circuits with given input/output
behavior.

1.3.1 Balanced Binary Trees

12
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Balanced Binary Trees

� Definition 34 A binary tree is a tree where all nodes have out-degree 2 or 0.

� Definition 35 A binary tree G is called balanced iff the depth of all leaves differs by at
most by 1. (fully balanced, iff depth difference 0)

� Constructing a binary tree Gbbt = 〈V,E〉 with n leaves

� step 1: select a u ∈ V as root, (V1 := {u}, E1 := ∅)
� step 2: select v, w ∈ V not yet in V , (Vi = Vi−1 ∪ {v, w})
� step 3: add two edges 〈u, v〉 and 〈u,w〉 where u is the leftmost of the shallowest

nodes with outdeg(u) = 0, (Ei := Ei−1 ∪ {〈u, v〉, 〈u,w〉})
� repeat steps 2 and 3 until i = n (V = Vn, E = En)

� Example 36 7 leaves

c©: Michael Kohlhase 18

We will now establish a few properties of these balanced binary trees that show that they are good
building blocks for combinatory circuits.

Size Lemma for Balanced Trees

� Lemma 37 Let G = 〈V,E〉 be a balanced binary tree of depth n > i, then the set
Vi := {v ∈ V | dp(v) = i} of vertexes at depth i has cardinality 2i.

� Proof: via induction over the depth i.

P.1 We have to consider two cases

P.1.1 i = 0: then Vi = {vr}, where vr is the root, so #(V0) = #({vr}) = 1 = 20.

P.1.2 i > 0: then Vi−1 contains 2i−1 vertexes (IH)

P.1.2.2 By the definition of a binary tree, each v ∈ Vi−1 is a leaf or has two children
that are at depth i.

P.1.2.3 as G is balanced and dp(G) = n > i, Vi−1 cannot contain leaves

P.1.2.4 thus #(Vi) = 2 ·#(Vi−1) = 2 · 2i−1 = 2i

� Corollary 38 A fully balanced tree of depth d has 2d+1 − 1 nodes.

� Proof:

P.1 Let G := 〈V,E〉 be a fully balanced tree

P.2 Then #(V ) =
∑d
i=1 2i = 2d+1 − 1.

c©: Michael Kohlhase 19
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This shows that balanced binary trees grow in breadth very quickly, a consequence of this is that
they are very shallow (and this compute very fast), which is the essence of the next result.

Depth Lemma for Balanced Trees

� Lemma 39 Let G = 〈V,E〉 be a balanced binary tree, then dp(G) = blog2(#(V ))c.

� Proof: by calculation

P.1 Let V ′ := V \W , where W is the set of nodes at level d = dp(G)

P.2 By the size lemma, #(V ′) = 2d−1+1 − 1 = 2d − 1

P.3 then #(V ) = 2d − 1 + k, where k = #(W ), 1 ≤ k ≤ 2d

P.4 so #(V ) = c · 2d where c ∈ R and 1 ≤ c < 2, or 0 ≤ log2(c) < 1

P.5 thus log2(#(V )) = log2(c · 2d) = log2(c) + d and

P.6 hence d = log2(#(V ))− log2(c) = blog2(#(V ))c.

c©: Michael Kohlhase 20

Leaves of Binary Trees

� Lemma 40 Any binary tree with m leaves has 2m− 1 vertexes.

� Proof: by induction on m.

P.1 We have two cases m = 1: then V = {vr} and #(V ) = 1 = 2 · 1− 1.

P.1.2 m > 1:

P.1.2.1 then any binary tree G with m− 1 leaves has 2m− 3 vertexes (IH)

P.1.2.2 To get m leaves, add 2 children to some leaf of G. (add two to get one more)

P.1.2.3 Thus #(V ) = 2m− 3 + 2 = 2m− 1.

c©: Michael Kohlhase 21

In particular, the size of a binary tree is independent of the its form if we fix the number of leaves.
So we can optimimze the depth of a binary tree by taking a balanced one without a size penalty.
This will become important for building fast combinatory circuits.

1.3.2 Realizing n-ary Gates

We now use the results on balanced binary trees to build generalized gates as building blocks for
combinational circuits.

14
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n-ary Gates as Subgraphs

� Idea: Identify (and abbreviate) frequently occurring subgraphs

� Definition 41 ANDx1, . . ., xn :=
∏n
i=1 xi and ORx1, . . ., xn :=

∑n
i=1 xi

� Note: These can be realized as balanced binary trees Gn

� Corollary 42 C(Gn) = n− 1 and dp(Gn) = blog2(n)c.

� Notation 43
AND
 OR


c©: Michael Kohlhase 22

Using these building blocks, we can establish a worst-case result for the depth of a combinatory
circuit computing a given Boolean function.

Worst Case Depth Theorem for Combinatorial Circuits

� Theorem 44 The worst case depth dp(G) of a combinatorial circuit G which realizes
an k × n-dimensional boolean function is bounded by dp(G) ≤ n+ dlog2(n)e+ 1.

� Proof: The main trick behind this bound is that AND and OR are associative and that
the according gates can be arranged in a balanced binary tree.

P.1 Function f corresponding to the output oj of the circuit G can be transformed in
DNF

P.2 each monomial consists of at most n literals

P.3 the possible negation of inputs for some literals can be done in depth 1

P.4 for each monomial the ANDs in the related circuit can be arranged in a balanced
binary tree of depth dlog2(n)e

P.5 there are at most 2n monomials which can be ORed together in a balanced binary
tree of depth dlog2(2n)e = n.

c©: Michael Kohlhase 23

Of course, the depth result is related to the first worst-case complexity result for Boolean expres-
sions (??); it uses the same idea: to use the disjunctive normal form of the Boolean function.
However, instead of using a Boolean expression, we become more concrete here and use a combi-
natorial circuit.

15
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An example of a DNF circuit

=

if L
i
=
X
i


if L
i
=
X
i


X
1


X
2


X
3


X
n


O
j


M
1
 M
2
 M
3
 M
k
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In the circuit diagram above, we have of course drawn a very particular case (as an example
for possible others.) One thing that might be confusing is that it looks as if the lower n-ary
conjunction operators look as if they have edges to all the input variables, which a DNF does not
have in general.

Of course, by now, we know how to do better in practice. Instead of the DNF, we can always com-
pute the minimal polynomial for a given Boolean function using the Quine-McCluskey algorithm
and derive a combinatorial circuit from this. While this does not give us any theoretical mileage
(there are Boolean functions where the DNF is already the minimal polynomial), but will greatly
improve the cost in practice.

Until now, we have somewhat arbitrarily concentrated on combinational circuits with AND, OR,
and NOT gates. The reason for this was that we had already developed a theory of Boolean
expressions with the connectives ∨, ∧, and ¬ that we can use. In practical circuits often other
gates are used, since they are simpler to manufacture and more uniform. In particular, it is
sufficient to use only one type of gate as we will see now.

16
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Other Logical Connectives and Gates

� Are the gates AND, OR, and NOT ideal?

� Idea: Combine NOT with the binary ones to NAND, NOR (enough?)

NAND


NOR
 NAND 0 1
0 1 1
1 1 0

NOR 0 1
0 1 0
1 0 0

� Corresponding logical conectives are written as ↑ (NAND) and ↓ (NOR).

� We will also need the exclusive or (XOR) connective that returns 1 iff either of its

operands is 1.
XOR 0 1

0 0 1
1 1 0

� The gate is written as , the logical connective as ⊕.

c©: Michael Kohlhase 25

The Universality of NAND and NOR

� Theorem 45 NAND and NOR are universal; i.e. any Boolean function can be expressed
in terms of them.

� Proof: express AND, OR, and NOT via NAND and NOR respectively
NOT(a) NAND(a, a) NOR(a, a)
AND(a, b) NAND(NAND(a, b),NAND(a, b)) NOR(NOR(a, a),NOR(b, b))
OR(a, b) NAND(NAND(a, a),NAND(b, b)) NOR(NOR(a, b),NOR(a, b))

� here are the corresponding diagrams for the combinational circuits.

a


a


b


a


b


NOT(a)


(a OR b)


(a AND b)


a


a


b


a


b


NOT(a)


(a AND b)


(a OR b)
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Of course, a simple substitution along these lines will blow up the cost of the circuits by a factor of
up to three and double the depth, which would be prohibitive. To get around this, we would have
to develop a theory of Boolean expressions and complexity using the NAND and NOR connectives,
along with suitable replacements for the Quine-McCluskey algorithm. This would give cost and
depth results comparable to the ones developed here. This is beyond the scope of this course.

Basic Arithmetics with Combinational Circuits

17
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1.4 Basic Arithmetics with Combinational Circuits

We have seen that combinational circuits are good models for implementing Boolean functions:
they allow us to make predictions about properties like costs and depths (computation speed),
while abstracting from other properties like geometrical realization, etc.

We will now extend the analysis to circuits that can compute with numbers, i.e. that implement
the basic arithmetical operations (addition, multiplication, subtraction, and division on integers).
To be able to do this, we need to interpret sequences of bits as integers. So before we jump into
arithmetical circuits, we will have a look at number representations.

1.4.1 Positional Number Systems

Positional Number Systems

� Problem: For realistic arithmetics we need better number representations than the unary
natural numbers ((|ϕn(unary)|) ∈ Θ(n) [number of /])

� Recap: the unary number system

� build up numbers from /es (start with ’ ’ and add /)

� addition ⊕ as concatenation (�,⊕, exp, . . . defined from that)

Idea: build a clever code on the unary numbers

� � interpret sequences of /es as strings: ε stands for the number 0

� Definition 46 A positional number system N is a triple N = 〈Db, ϕb, ψb〉 with

� Db is a finite alphabet of b so-called digits. (b := #(Db) base or radix of N )

� ϕb : Db → {ε, /, . . ., /[b−1]} is bijective (first b unary numbers)

� ψb : Db
+ → {/}∗; 〈nk, . . . , n1〉 7→

⊕k
i=1((ϕb(ni)� exp(/[b], /[i−1])))

(extends ϕb to string code)

c©: Michael Kohlhase 27

In the unary number system, it was rather simple to do arithmetics, the most important oper-
ation (addition) was very simple, it was just concatenation. From this we can implement the
other operations by simple recursive procedures, e.g. in SML or as abstract procedures in abstract
data types. To make the arguments more transparent, we will use special symbols for the arith-
metic operations on unary natural numbers: ⊕ (addition), � (multiplication),

⊕n
1 () (sum over n

numbers), and
⊙n

1 () (product over n numbers).

The problem with the unary number system is that it uses enormous amounts of space, when
writing down large numbers. Using the Landau notation we introduced earlier, we see that for
writing down a number n in unary representation we need n slashes. So if |ϕn(unary)| is the “cost
of representing n in unary representation”, we get (|ϕn(unary)|) ∈ Θ(n). Of course that will never
do for practical chips. We obviously need a better encoding.

If we look at the unary number system from a greater distance (now that we know more CS, we can
interpret the representations as strings), we see that we are not using a very important feature of
strings here: position. As we only have one letter in our alphabet (/), we cannot, so we should use
a larger alphabet. The main idea behind a positional number system N = 〈Db, ϕb, ψb〉 is that we
encode numbers as strings of digits (characters in the alphabet Db), such that the position matters,
and to give these encoding a meaning by mapping them into the unary natural numbers via a
mapping ψb. This is the the same process we did for the logics; we are now doing it for number
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systems. However, here, we also want to ensure that the meaning mapping ψb is a bijection, since
we want to define the arithmetics on the encodings by reference to The arithmetical operators on
the unary natural numbers.

We can look at this as a bootstrapping process, where the unary natural numbers constitute
the seed system we build up everything from.

Just like we did for string codes earlier, we build up the meaning mapping ψb on characters from
Db first. To have a chance to make ψ bijective, we insist that the “character code” ϕb is is a
bijection from Db and the first b unary natural numbers. Now we extend ϕb from a character code
to a string code, however unlike earlier, we do not use simple concatenation to induce the string
code, but a much more complicated function based on the arithmetic operations on unary natural
numbers. We will see later1 that this give us a bijection between Db

+ and the unary natural EdNote(1)
numbers.

Commonly Used Positional Number Systems

� Example 47 The following positional number systems are in common use.

name set base digits example

unary N1 1 / 1

binary N2 2 0,1 01010001112
octal N8 8 0,1,. . . ,7 630278
decimal N10 10 0,1,. . . ,9 16209810 or 162098
hexadecimal N16 16 0,1,. . . ,9,A,. . . ,F FF3A1216

� Notation 48 attach the base of N to every number from N . (default: decimal)

Trick: Group triples or quadruples of binary digits into recognizable chunks

(add leading zeros as needed)

� � 1100011010111002 = 01102︸ ︷︷ ︸
616

00112︸ ︷︷ ︸
316

01012︸ ︷︷ ︸
516

11002︸ ︷︷ ︸
C16

= 635C16

� 1100011010111002 = 1102︸ ︷︷ ︸
68

0012︸ ︷︷ ︸
18

1012︸ ︷︷ ︸
58

0112︸ ︷︷ ︸
38

1002︸ ︷︷ ︸
48

= 615348

� F3A16 = F16︸︷︷︸
11112

316︸︷︷︸
00112

A16︸︷︷︸
10102

= 1111001110102, 47218 = 48︸︷︷︸
1002

78︸︷︷︸
1112

28︸︷︷︸
0102

18︸︷︷︸
0012

= 1001110100012

c©: Michael Kohlhase 28

We have all seen positional number systems: our decimal system is one (for the base 10). Other
systems that important for us are the binary system (it is the smallest non-degenerate one) and
the octal- (base 8) and hexadecimal- (base 16) systems. These come from the fact that binary
numbers are very hard for humans to scan. Therefore it became customary to group three or four
digits together and introduce we (compound) digits for them. The octal system is mostly relevant
for historic reasons, the hexadecimal system is in widespread use as syntactic sugar for binary
numbers, which form the basis for circuits, since binary digits can be represented physically by
current/no current.

Now that we have defined positional number systems, we want to define the arithmetic operations
on the these number representations. We do this by using an old trick in math. If we have
an operation fT : T → T on a set T and a well-behaved mapping ψ from a set S into T , then
we can “pull-back” the operation on fT to S by defining the operation fS : S → S by fS(s) :=
ψ−1(fT (ψ(s))) according to the following diagram.

1EdNote: reference
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S

S

T

T

ψ

ψ−1

ψ

fS = ψ−1 ◦ fT ◦ ψ fT

Obviously, this construction can be done in any case, where ψ is bijective (and thus has an inverse
function). For defining the arithmetic operations on the positional number representations, we
do the same construction, but for binary functions (after we have established that ψ is indeed a
bijection).

The fact that ψb is a bijection a posteriori justifies our notation, where we have only indicated the
base of the positional number system. Indeed any two positional number systems are isomorphic:
they have bijections ψb into the unary natural numbers, and therefore there is a bijection between
them.

Arithmetics for PNS

� Lemma 49 Let N := 〈Db, ϕb, ψb〉 be a PNS, then ψb is bijective.

� Proof: construct ψb
−1 by successive division modulo the base of N .

Idea: use this to define arithmetics on N .

�� Definition 50 Let N := 〈Db, ϕb, ψb〉 be a PNS of base b, then we define a binary
function +b : Nb × Nb → Nb by x+by := ψb

−1(ψb(x)⊕ ψb(y)).

� Note: The addition rules (carry chain addition) generalize from the decimal system to
general PNS

� Idea: Do the same for other arithmetic operations. (works like a charm)

� Future: Concentrate on binary arithmetics. (implement into circuits)

c©: Michael Kohlhase 29

1.4.2 Adders

The next step is now to implement the induced arithmetical operations into combinational circuits,
starting with addition. Before we can do this, we have to specify which (Boolean) function we
really want to implement. For convenience, we will use the usual decimal (base 10) representations
of numbers and their operations to argue about these circuits. So we need conversion functions
from decimal numbers to binary numbers to get back and forth. Fortunately, these are easy to
come by, since we use the bijections ψ from both systems into the unary natural numbers, which
we can compose to get the transformations.

20

http://creativecommons.org/licenses/by-sa/2.5/


Arithmetic Circuits for Binary Numbers

� Idea: Use combinational circuits to do basic arithmetics.

� Definition 51 Given the (abstract) number a ∈ N, B(a) denotes from now on the
binary representation of a.

For the opposite case, i.e., the natural number represented by a binary string
a = 〈an−1, . . . , a0〉 ∈ Bn, the notation 〈〈a〉〉 is used, i.e.,

〈〈a〉〉 = 〈〈an−1, . . . , a0〉〉 =

n−1∑
i=0

ai · 2i

� Definition 52 An n-bit adder is a circuit computing the function fn+2
: Bn × Bn →

Bn+1 with
fn+2

(a; b) := B(〈〈a〉〉+ 〈〈b〉〉)

c©: Michael Kohlhase 30

If we look at the definition again, we see that we are again using a pull-back construction. These
will pop up all over the place, since they make life quite easy and safe.

Before we actually get a combinational circuit for an n-bit adder, we will build a very use-
ful circuit as a building block: the half adder (so-called, since it will take two to build a full
adder).

The Half-Adder

� There are different ways to implement an adder. All of them build upon two basic
components, the half-adder and the full-adder.

�

Definition 53 A half adder is a circuit HA implement-
ing the function fHA in the truth table on the right.

fHA : B2 → B2 〈a, b〉 7→ 〈c, s〉

s is called the sum bit and c the carry bit.

a b c s
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

� Note: The carry can be computed by a simple AND, i.e., c = AND(a, b), and the sum
bit by a XOR function.

c©: Michael Kohlhase 31
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Building and Evaluating the Half-Adder

a
b

s

c

� So, the half-adder corresponds to the Boolean function fHA : B2 → B2; 〈a, b〉 7→
〈a⊕ b, a ∧ b〉

� Note: fHA(a, b) = B(〈〈a〉〉+ 〈〈b〉〉), i.e., it is indeed an adder.

� We count XOR as one gate, so C(HA) = 2 and dp(HA) = 1.
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Now that we have the half adder as a building block it is rather simple to arrive at a full adder
circuit.

, in the diagram for the full adder, and in the following, we will sometimes use a variant gate

symbol for the OR gate: The symbol . It has the same outline as an AND gate, but the
input lines go all the way through.

The Full Adder

� Definition 54 The 1-bit full adder is a circuit FA1

that implements the function f1
FA : B× B× B → B2

with FA1(a, b, c′) = B(〈〈a〉〉+ 〈〈b〉〉+ 〈〈c′〉〉)

� The result of the full-adder is also denoted with 〈c, s〉,
i.e., a carry and a sum bit. The bit c′ is called the input
carry.

� the easiest way to implement a full adder is to use two
half adders and an OR gate.

� Lemma 55 (Cost and Depth) C(FA1) =
2C(HA) + 1 = 5 and dp(FA1) = 2dp(HA) + 1 = 3

a b c′ c s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

HA

HA

s

c
b

a

c’

s

c

c

s
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Note: Note that in the right hand graphics, we use another notation for the OR gate.2 EdNote(2)

Of course adding single digits is a rather simple task, and hardly worth the effort, if this is all we
can do. What we are really after, are circuits that will add n-bit binary natural numbers, so that
we arrive at computer chips that can add long numbers for us.

Full n-bit Adder

� Definition 56 An n-bit full adder (n > 1) is a circuit that corresponds to
fnFA : Bn × Bn × B→ B× Bn; 〈a, b, c′〉 7→ B(〈〈a〉〉+ 〈〈b〉〉+ 〈〈c′〉〉)

� Notation 57 We will draw the n-bit full adder with the following symbol in circuit
diagrams.

Note that we are abbreviating n-bit input and output edges with a single one that has a

slash and the number n next to it.

� There are various implementations of the full n-bit adder, we will look at two of them

c©: Michael Kohlhase 34

This implementation follows the intuition behind elementary school addition (only for binary
numbers): we write the numbers below each other in a tabulated fashion, and from the least
significant digit, we follow the process of

• adding the two digits with carry from the previous column

• recording the sum bit as the result, and

• passing the carry bit on to the next column

until one of the numbers ends.

2EdNote: Todo: introduce this earlier, or change the graphics here (or both)
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The Carry Chain Adder

� The inductively designed circuit of the carry chain adder.

� n = 1: the CCA1 consists of a full adder

� n > 1: the CCAn consists of an (n − 1)-bit carry chain adder CCAn−1 and a full
adder that sums up the carry of CCAn−1 and the last two bits of a and b

� Definition 58 An n-bit carry chain adder CCAn is inductively defined as

� f1
CCA(a0, b0, c) = FA1(a0, b0, c)

� fnCCA(〈an−1, . . . , a0〉, 〈bn−1, . . . , b0〉, c′) = 〈c, sn−1, . . ., s0〉 with

� 〈c, sn−1〉 = FAn−1(an−1, bn−1, cn−1)

� 〈cn−1, . . . , cs〉0 = fn−1
CCA (〈an−2, . . . , a0〉, 〈bn−2, . . . , b0〉, c′)

� C(CCAn) = C(CCAn−1) + C(FA1) = C(CCAn−1) + 5 = 5n = O(n)

� Lemma 59 (Depth) dp(CCAn) = dp(CCAn−1)+dp(FA1) = dp(CCAn−1)+3 = 3n =
O(n)

� The carry chain adder is simple, but cost and depth are high. (depth is critical (speed))

� Question: Can we do better?

� Problem: the carry ripples up the chain (upper parts wait for carries from lower part)

c©: Michael Kohlhase 35

A consequence of using the carry chain adder is that if we go from a 32-bit architecture to a 64-bit
architecture, the speed of additions in the chips would not increase, but decrease (by 50%). Of
course, we can carry out 64-bit additions now, a task that would have needed a special routine
at the software level (these typically involve at least 4 32-bit additions so there is a speedup for
such additions), but most addition problems in practice involve small (under 32-bit) numbers, so
we will have an overall performance loss (not what we really want for all that cost).

If we want to do better in terms of depth of an n-bit adder, we have to break the dependency
on the carry, let us look at a decimal addition example to get the idea. Consider the following
snapshot of an carry chain addition

first summand 3 4 7 9 8 3 4 7 9 2
second summand 2? 5? 1? 8? 1? 7? 81 71 20 10

partial sum ? ? ? ? ? ? ? ? 5 1 3

We have already computed the first three partial sums. Carry chain addition would simply go on
and ripple the carry information through until the left end is reached (after all what can we do?
we need the carry information to carry out left partial sums). Now, if we only knew what the
carry would be e.g. at column 5, then we could start a partial summation chain there as well.
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The central idea in the so-called “conditional sum adder” we will pursue now, is to trade time
for space, and just compute both cases (with and without carry), and then later choose which
one was the correct one, and discard the other. We can visualize this in the following schema.

first summand 3 4 7 9 8 3 4 7 9 2
second summand 2? 50 11 8? 1? 7? 81 71 20 10

lower sum ? ? 5 1 3
upper sum. with carry ? ? ? 9 8 0
upper sum. no carry ? ? ? 9 7 9

Here we start at column 10 to compute the lower sum, and at column 6 to compute two upper
sums, one with carry, and one without. Once we have fully computed the lower sum, we will know
about the carry in column 6, so we can simply choose which upper sum was the correct one and
combine lower and upper sum to the result.

Obviously, if we can compute the three sums in parallel, then we are done in only five steps not ten
as above. Of course, this idea can be iterated: the upper and lower sums need not be computed
by carry chain addition, but can be computed by conditional sum adders as well.

The Conditional Sum Adder

� Idea: pre-compute both possible upper sums (e.g. upper half) for carries 0 and 1, then
choose (via MUX) the right one according to lower sum.

� the inductive definition of the circuit of a conditional sum adder (CSA).

� Definition 60 An n-bit conditional sum adder CSAn is recursively defined as

� fnCSA(〈an−1, . . . , a0〉, 〈bn−1, . . . , b0〉, c′) = 〈c, sn−1, . . ., s0〉 where

� 〈cn/2, sn/2−1, . . ., s0〉 = f
n/2
CSA(〈an/2−1, . . ., a0〉, 〈bn/2−1, . . ., b0〉, c′)

� 〈c, sn−1, . . ., sn/2〉 =

{
f
n/2
CSA(〈an−1, . . ., an/2〉, 〈bn−1, . . ., bn/2〉, 0) if cn/2 = 0

f
n/2
CSA(〈an−1, . . ., an/2〉, 〈bn−1, . . ., bn/2〉, 1) if cn/2 = 1

� f1
CSA(a0, b0, c) = FA1(a0, b0, c)

c©: Michael Kohlhase 36

The only circuit that we still have to look at is the one that chooses the correct upper sums.
Fortunately, this is a rather simple design that makes use of the classical trick that “if C, then A,
else B” can be expressed as “(C and A) or (¬C and B)”.
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The Multiplexer

� Definition 61 An n-bit multiplexer MUXn is a circuit which implements the function
fnMUX : Bn × Bn × B→ Bn with

f(an−1, . . . , a0, bn−1, . . . , b0, s) =

{
〈an−1, . . . , a0〉 if s = 0
〈bn−1, . . . , b0〉 if s = 1

� Idea: A multiplexer chooses between two n-bit input vectors A and B depending on the
value of the control bit s.

s

o

a ba b

...

o 0

0 0n−1 n−1

n−1

� Cost and depth: C(MUXn) = 3n+ 1 and dp(MUXn) = 3.
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Now that we have completely implemented the conditional lookahead adder circuit, we can analyze
it for its cost and depth (to see whether we have really made things better with this design).
Analyzing the depth is rather simple, we only have to solve the recursive equation that combines
the recursive call of the adder with the multiplexer. Conveniently, the 1-bit full adder has the
same depth as the multiplexer.

The Depth of CSA

� dp(CSAn) = dp(CSAn/2) + dp(MUXn/2+1)

� solve the recursive equation:

dp(CSAn) = dp(CSAn/2) + dp(MUXn/2+1)

= dp(CSAn/2) + 3

= dp(CSAn/4) + 3 + 3

= dp(CSAn/8) + 3 + 3 + 3
. . .

= dp(CSAn2−i

) + 3i

= dp(CSA1) + 3log2(n)
= 3log2(n) + 3

c©: Michael Kohlhase 38

The analysis for the cost is much more complex, we also have to solve a recursive equation, but a
more difficult one. Instead of just guessing the correct closed form, we will use the opportunity to
show a more general technique: using Master’s theorem for recursive equations. There are many
similar theorems which can be used in situations like these, going into them or proving Master’s
theorem would be beyond the scope of the course.
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The Cost of CSA

� C(CSAn) = 3C(CSAn/2) + C(MUXn/2+1).

� Problem: How to solve this recursive equation?

� Solution: Guess a closed formula, prove by induction. (if we are lucky)

� Solution2: Use a general tool for solving recursive equations.

� Theorem 62 (Master’s Theorem for Recursive Equations) Given the recur-
sively defined function f : N→ R, such that f(1) = c ∈ R and f(bk) = af(bk−1)+g(bk)

for some a ∈ R, 1 ≤ a, k ∈ N, and g : N→ R, then f(bk) = cak +
∑k−1
i=0 a

ig(bk−i)

� We have C(CSAn) = 3C(CSAn/2)+C(MUXn/2+1) = 3C(CSAn/2)+3(n/2 + 1) + 1 =

3C(CSAn/2) + 3
2n+ 4

� So, C(CSAn) is a function that can be handled via Master’s theorem with a = 3, b = 2,
n = bk, g(n) = 3/2n+ 4, and c = C(f1

CSA) = C(FA1) = 5

� thus C(CSAn) = 5 · 3log2(n) +
∑log2(n)−1
i=0 3i · 3

2n · 2
−i + 4

� Note: alog2(n) = 2log2(a)log2(n)
= 2log2(a)·log2(n) = 2log2(n)log2(a)

= nlog2(a)

C(CSAn) = 5 · 3log2(n) +
∑log2(n)−1

i=0 (3i · 3
2
n · 2−i + 4)

= 5nlog2(3) +
∑log2(n)

i=1 n 3
2

i
n+ 4

= 5nlog2(3) + n ·
∑log2(n)

i=1
3
2

i
+ 4log2(n)

= 5nlog2(3) + 2n · ( 3
2

log2(n)+1 − 1) + 4log2(n)

= 5nlog2(3) + 3n · nlog2(
3
2
) − 2n+ 4log2(n)

= 8nlog2(3) − 2n+ 4log2(n) ∈ O(nlog2(3))

� Theorem 63 The cost and the depth of the conditional sum adder are in the following
complexity classes:

C(CSAn) ∈ O(nlog2(3)) dp(CSAn) ∈ O(log2(n))

� Compare with: C(CCAn) ∈ O(n) dp(CCAn) ∈ O(n)

� So, the conditional sum adder has a smaller depth than the carry chain adder. This
smaller depth is paid with higher cost.

� There is another adder that combines the small cost of the carry chain adder with the
low depth of the conditional sum adder. This carry lookahead adder CLAn has a cost
C(CLAn) ∈ O(n) and a depth of dp(CLAn) ∈ O(log2(n)).

c©: Michael Kohlhase 39

Instead of perfecting the n-bit adder further (and there are lots of designs and optimizations out
there, since this has high commercial relevance), we will extend the range of arithmetic operations.
The next thing we come to is subtraction.

Arithmetics for Two’s Complement Numbers
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1.5 Arithmetics for Two’s Complement Numbers

This of course presents us with a problem directly: the n-bit binary natural numbers, we have
used for representing numbers are closed under addition, but not under subtraction: If we have
two n-bit binary numbers B(n), and B(m), then B(n+m) is an n+ 1-bit binary natural number.
If we count the most significant bit separately as the carry bit, then we have a n-bit result. For
subtraction this is not the case: B(n−m) is only a n-bit binary natural number, if m ≥ n
(whatever we do with the carry). So we have to think about representing negative binary natural
numbers first. It turns out that the solution using sign bits that immediately comes to mind is
not the best one.

Negative Numbers and Subtraction

� Note: So far we have completely ignored the existence of negative numbers.

� Problem: Subtraction is a partial operation without them.

� Question: Can we extend the binary number systems for negative numbers?

� Simple Solution: Use a sign bit. (additional leading bit that indicates whether the number is positive)

� Definition 64 ((n + 1)-bit signed binary number system)

〈〈an, . . . , a0〉〉− :=

{
〈〈an−1, . . . , a0〉〉 if an = 0
−〈〈an−1, . . . , a0〉〉 if an = 1

� Note: We need to fix string length to identify the sign bit. (leading zeroes)

� Example 65 In the 8-bit signed binary number system

� 10011001 represents -25 (〈〈10011001〉〉− = −(24 + 23 + 20))

� 00101100 corresponds to a positive number: 44
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Here we did the naive solution, just as in the decimal system, we just added a sign bit, which
specifies the polarity of the number representation. The first consequence of this that we have to
keep in mind is that we have to fix the width of the representation: Unlike the representation for
binary natural numbers which can be arbitrarily extended to the left, we have to know which bit
is the sign bit. This is not a big problem in the world of combinational circuits, since we have a
fixed width of input/output edges anyway.
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Problems of Sign-Bit Systems

� Generally: An n-bit signed binary number system allows to represent the integers from
−2n−1 + 1 to +2n−1 − 1.

� 2n−1 − 1 positive numbers, 2n−1 − 1 negative numbers, and the zero

� Thus we represent #({〈〈s〉〉− | s ∈ Bn}) = 2 · (2n−1− 1) + 1 = 2n− 1 numbers all in all

� One number must be represented twice (But there are 2n strings of length n.)

� 10 . . . 0 and 00 . . . 0 both represent the zero as −1 · 0 = 1 · 0.

signed binary Z
0 1 1 1 7
0 1 1 0 6
0 1 0 1 5
0 1 0 0 4
0 0 1 1 3
0 0 1 0 2
0 0 0 1 1
0 0 0 0 0
1 0 0 0 -0
1 0 0 1 -1
1 0 1 0 -2
1 0 1 1 -3
1 1 0 0 -4
1 1 0 1 -5
1 1 1 0 -6
1 1 1 1 -7

� We could build arithmetic circuits using this, but there is a more elegant way!
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All of these problems could be dealt with in principle, but together they form a nuisance, that at
least prompts us to look for something more elegant. The so-called two’s complement representa-
tion also uses a sign bit, but arranges the lower part of the table in the last slide in the opposite
order, freeing the negative representation of the zero. The technical trick here is to use the sign
bit (we still have to take into account the width n of the representation) not as a mirror, but to
translate the positive representation by subtracting 2n.
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The Two’s Complement Number System

� Definition 66 Given the binary string a = 〈an, . . . , a0〉 ∈ Bn+1, where n > 1. The
integer represented by a in the (n+ 1)-bit two’s complement, written as 〈〈a〉〉2s

n , is defined
as

〈〈a〉〉2s
n = −an · 2n + 〈〈a[n− 1, 0]〉〉

= −an · 2n +

n−1∑
i=0

ai · 2i

� Notation 67 Write B2s
n (z) for the binary string that represents z in the two’s comple-

ment number system, i.e., 〈〈B2s
n (z)〉〉2s

n = z.

2’s compl. Z
0 1 1 1 7
0 1 1 0 6
0 1 0 1 5
0 1 0 0 4
0 0 1 1 3
0 0 1 0 2
0 0 0 1 1
0 0 0 0 0
1 1 1 1 -1
1 1 1 0 -2
1 1 0 1 -3
1 1 0 0 -4
1 0 1 1 -5
1 0 1 0 -6
1 0 0 1 -7
1 0 0 0 -8
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We will see that this representation has much better properties than the naive sign-bit representa-
tion we experimented with above. The first set of properties are quite trivial, they just formalize
the intuition of moving the representation down, rather than mirroring it.

Properties of Two’s Complement Numbers (TCN)

� Let b = 〈bn, . . . , b0〉 be a number in the n+ 1-bit two’s complement system, then

� Positive numbers and the zero have a sign bit 0, i.e., bn = 0⇔ 〈〈b〉〉2s
n ≥ 0.

� Negative numbers have a sign bit 1, i.e., bn = 1⇔ 〈〈b〉〉2s
n < 0.

� For positive numbers, the two’s complement representation corresponds to the normal
binary number representation, i.e., bn = 0⇔ 〈〈b〉〉2s

n = 〈〈b〉〉

� There is a unique representation of the number zero in the n-bit two’s complement
system, namely B2s

n (0) = 〈0, . . ., 0〉.

� This number system has an asymmetric range R2s
n := {−2n, . . ., 2n − 1}.
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The next property is so central for what we want to do, it is upgraded to a theorem. It says that
the mirroring operation (passing from a number to it’s negative sibling) can be achieved by two
very simple operations: flipping all the zeros and ones, and incrementing.
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The Structure Theorem for TCN

� Theorem 68 Let a ∈ Bn+1 be a binary string, then −〈〈a〉〉2s
n = 〈〈a〉〉2s

n + 1.

� Proof: by calculation using the definitions

〈〈an, an−1, . . ., a0〉〉2s
n = −an · 2n + 〈〈an−1, . . ., a0〉〉

= an · (−2n) +

n−1∑
i=0

ai · 2i

= (1− an) · (−2n) +

n−1∑
i=0

(1− ai) · 2i

= (1− an) · (−2n) +

n−1∑
i=0

2i −
n−1∑
i=0

ai · 2i

= −2n + an · 2n + 2n−1 − 〈〈an−1, . . . , a0〉〉
= (−2n + 2n) + an · 2n − 〈〈an−1, . . . , a0〉〉 − 1

= −(an · (−2n) + 〈〈an−1, . . . , a0〉〉)− 1

= −〈〈a〉〉2s
n − 1
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A first simple application of the TCN structure theorem is that we can use our existing conversion
routines (for binary natural numbers) to do TCN conversion (for integers).

Application: Converting from and to TCN?

� to convert an integer −z ∈ Z with z ∈ N into an n-bit TCN

� generate the n-bit binary number representation B(z) = 〈bn−1, . . . , b0〉
� complement it to B(z), i.e., the bitwise negation bi of B(z)

� increment (add 1) B(z), i.e. compute B(〈〈B(z)〉〉+ 1)

� to convert a negative n-bit TCN b = 〈bn−1, . . . , b0〉, into an integer

� decrement b, (compute B(〈〈b〉〉 − 1))

� complement it to B(〈〈b〉〉 − 1)

� compute the decimal representation and negate it to −〈〈B(〈〈b〉〉 − 1)〉〉

c©: Michael Kohlhase 45
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Subtraction and Two’s Complement Numbers

� Idea: With negative numbers use our adders directly

� Definition 69 An n-bit subtracter is a circuit that implements the function
fnSUB : Bn × Bn × B→ B× Bn such that

fnSUB(a, b, b′) = B2s
n (〈〈a〉〉2s

n − 〈〈b〉〉2s
n − b′)

for all a, b ∈ Bn and b′ ∈ B. The bit b′ is the so-called input borrow bit.

� Note: We have 〈〈a〉〉2s
n − 〈〈b〉〉2s

n = 〈〈a〉〉2s
n + (−〈〈b〉〉2s

n ) = 〈〈a〉〉2s
n + 〈〈b〉〉2s

n + 1

� Idea: Can we implement an n-bit subtracter as fnSUB(a, b, b′) = FAn(a, b, b′)?

� not immediately: We have to make sure that the full adder plays nice with twos comple-
ment numbers
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In addition to the unique representation of the zero, the two’s complement system has an additional
important property. It is namely possible to use the adder circuits introduced previously without
any modification to add integers in two’s complement representation.

Addition of TCN

� Idea: use the adders without modification for TCN arithmetic

� Definition 70 An n-bit two’s complement adder (n > 1) is a circuit that corre-
sponds to the function fnTCA : Bn × Bn × B → B× Bn, such that fnTCA(a, b, c′) =
B2s
n (〈〈a〉〉2s

n + 〈〈b〉〉2s
n + c′) for all a, b ∈ Bn and c′ ∈ B.

� Theorem 71 fnTCA = fnFA (first prove some Lemmas)
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It is not obvious that the same circuits can be used for the addition of binary and two’s complement
numbers. So, it has to be shown that the above function TCAcircFNn and the full adder function
fnFA from definition?? are identical. To prove this fact, we first need the following lemma stating
that a (n + 1)-bit two’s complement number can be generated from a n-bit two’s complement
number without changing its value by duplicating the sign-bit:
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TCN Sign Bit Duplication Lemma

� Idea: An n+ 1-bit TCN can be generated from a n-bit TCN without changing its value
by duplicating the sign-bit.

� Lemma 72 Let a = 〈an, . . . , a0〉 ∈ Bn+1 be a binary string, then 〈〈an, . . . , a0〉〉2s
n+1 =

〈〈an−1, . . . , a0〉〉2s
n .

� Proof: by calculation

〈〈an, . . . , a0〉〉2s
n+1 = −an · 2n+1 + 〈〈an, . . . , a0〉〉

= −an · 2n+1 + an · 2n + 〈〈an−1, . . . , a0〉〉
= an · (−2n+1 + 2n) + 〈〈an−1, . . . , a0〉〉
= an · (−2 · 2n + 2n) + 〈〈an−1, . . . , a0〉〉
= −an · 2n + 〈〈an−1, . . . , a0〉〉
= 〈〈an−1, . . . , a0〉〉2s

n
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We will now come to a major structural result for two’s complement numbers. It will serve two
purposes for us:

1. It will show that the same circuits that produce the sum of binary numbers also produce
proper sums of two’s complement numbers.

2. It states concrete conditions when a valid result is produced, namely when the last two
carry-bits are identical.

The TCN Main Theorem

� Definition 73 Let a, b ∈ Bn+1 and c ∈ B with a = 〈an, . . . , a0〉 and b = 〈bn, . . . , b0〉,
then we call ick(a, b, c), the k-th intermediate carry of a, b, and c, iff

〈〈ick(a, b, c), sk−1, . . ., s0〉〉 = 〈〈ak−1, . . . , a0〉〉+ 〈〈bk−1, . . . , b0〉〉+ c

for some si ∈ B.

� Theorem 74 Let a, b ∈ Bn and c ∈ B, then

1. 〈〈a〉〉2s
n + 〈〈b〉〉2s

n + c ∈ R2s
n , iff icn+1(a, b, c) = icn(a, b, c).

2. If icn+1(a, b, c) = icn(a, b, c), then 〈〈a〉〉2s
n + 〈〈b〉〉2s

n + c = 〈〈s〉〉2s
n , where

〈〈icn+1(a, b, c), sn, . . ., s0〉〉 = 〈〈a〉〉+ 〈〈b〉〉+ c.
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Unfortunately, the proof of this attractive and useful theorem is quite tedious and technical

33

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Proof of the TCN Main Theorem
Proof: Let us consider the sign-bits an and bn separately from the value-bits a′ =
〈an−1, . . . , a0〉 and b′ = 〈bn−1, . . . , b0〉.

P.1 Then 〈〈a′〉〉+ 〈〈b′〉〉+ c = 〈〈an−1, . . ., a0〉〉+ 〈〈bn−1, . . ., b0〉〉+ c
= 〈〈icn(a, b, c), sn−1 . . ., s0〉〉

and an + bn + icn(a, b, c) = 〈〈icn+1(a, b, c), sn〉〉.

P.2 We have to consider three cases

P.2.1 an = bn = 0:

P.2.1.1 〈〈a〉〉2s
n and 〈〈b〉〉2s

n are both positive, so icn+1(a, b, c) = 0 and furthermore

icn(a, b, c) = 0 ⇔ 〈〈a′〉〉+ 〈〈b′〉〉+ c ≤ 2n − 1
⇔ 〈〈a〉〉2s

n + 〈〈b〉〉2s
n + c ≤ 2n − 1

P.2.1.2 Hence, 〈〈a〉〉2s
n + 〈〈b〉〉2s

n + c = 〈〈a′〉〉+ 〈〈b′〉〉+ c
= 〈〈sn−1, . . . , s0〉〉
= 〈〈0, sn−1, . . ., s0〉〉 = 〈〈s〉〉2s

n

P.2.2 an = bn = 1:

P.2.2.1 〈〈a〉〉2s
n and 〈〈b〉〉2s

n are both negative, so icn+1(a, b, c) = 1 and furthermore
icn(a, b, c) = 1, iff 〈〈a′〉〉+ 〈〈b′〉〉+ c ≥ 2n, which is the case, iff 〈〈a〉〉2s

n + 〈〈b〉〉2s
n + c =

−2n+1 + 〈〈a′〉〉+ 〈〈b′〉〉+ c ≥ −2n

P.2.2.2 Hence, 〈〈a〉〉2s
n + 〈〈b〉〉2s

n + c = −2n + 〈〈a′〉〉+−2n + 〈〈b′〉〉+ c
= −2n+1 + 〈〈a′〉〉+ 〈〈b′〉〉+ c
= −2n+1 + 〈〈1, sn−1, . . ., s0〉〉
= −2n + 〈〈sn−1, . . . , s0〉〉
= 〈〈s〉〉2s

n

P.2.3 an 6= bn:

P.2.3.1 Without loss of generality assume that an = 0 and bn = 1.
(then icn+1(a, b, c) = icn(a, b, c))

P.2.3.2 Hence, the sum of 〈〈a〉〉2s
n and 〈〈b〉〉2s

n is in the admissible range R2s
n as

〈〈a〉〉2s
n + 〈〈b〉〉2s

n + c = 〈〈a′〉〉+ 〈〈b′〉〉+ c− 2n

and 0 ≤ 〈〈a′〉〉+ 〈〈b′〉〉+ c ≤ 2n+1 − 1

P.2.3.3 So we have 〈〈a〉〉2s
n + 〈〈b〉〉2s

n + c = −2n + 〈〈a′〉〉+ 〈〈b′〉〉+ c
= −2n + 〈〈icn(a, b, c), sn−1, . . ., s0〉〉
= −(1− icn(a, b, c)) · 2n + 〈〈sn−1, . . . , s0〉〉
= 〈〈icn(a, b, c), sn−1, . . ., s0〉〉2s

n

P.2.3.4 Furthermore, we can conclude that 〈〈icn(a, b, c), sn−1, . . ., s0〉〉2s
n = 〈〈s〉〉2s

n as sn =
an ⊕ bn ⊕ icn(a, b, c) = 1⊕ icn(a, b, c) = icn(a, b, c).

P.3 Thus we have considered all the cases and completed the proof.
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The Main Theorem for TCN again

� Given two (n + 1)-bit two’s complement numbers a and b. The above theorem tells
us that the result s of an (n + 1)-bit adder is the proper sum in two’s complement
representation iff the last two carries are identical.

� If not, a and b were too large or too small. In the case that s is larger than 2n − 1, we
say that an overflow occurred.In the opposite error case of s being smaller than −2n, we
say that an underflow occurred.
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The most important application of the main TCN theorem is that we can build a combinatorial
circuit that can add and subtract (depending on a control bit). This is actually the first instance
of a concrete programmable computation device we have seen up to date (we interpret the control
bit as a program, which changes the behavior of the device). The fact that this is so simple, it
only runs two programs should not deter us; we will come up with more complex things later.

Building an Add/Subtract Unit

� Idea: Build a Combinational Circuit that can add and subtract (sub = 1 ; subtract)

� If sub = 0, then the circuit acts like an adder (a⊕ 0 = a)

� If sub = 1, let S := 〈〈a〉〉2s
n + 〈〈bn−1, . . ., b0〉〉2s

n + 1 (a⊕ 0 = 1− a)

� For s ∈ R2s
n the TCN main theorem and the TCN structure theorem together guarantee

s = 〈〈a〉〉2s
n + 〈〈bn−1, . . ., b0〉〉2s

n + 1

= 〈〈a〉〉2s
n − 〈〈b〉〉2s

n − 1 + 1

n

A

n+1

n

n

s

sub

a b bn−1 0

� Summary: We have built a combinational circuit that can perform 2 arithmetic operations
depending on a control bit.

� Idea: Extend this to a arithmetic logic unit (ALU) with more operations
(+, -, *, /, n-AND, n-OR,. . . )
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In fact extended variants of the very simple Add/Subtract unit are at the heart of any computer.
These are called arithmetic logic units.

Sequential Logic Circuits and Memory Elements

1.6 Sequential Logic Circuits and Memory Elements

So far we have considered combinatorial logic, i.e. circuits for which the output depends only
on the inputs. In many instances it is desirable to have the next output depend on the current
output.

Sequential Logic Circuits

� In combinational circuits, outputs only depend on inputs (no state)

� We have disregarded all timing issues (except for favoring shallow circuits)

� Definition 75 Circuits that remember their current output or state are often called
sequential logic circuits.

� Example 76 A counter , where the next number to be output is determined by the
current number stored.

� Sequential logic circuits need some ability to store the current state
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Clearly, sequential logic requires the ability to store the current state. In other words, memory
is required by sequential logic circuits. We will investigate basic circuits that have the ability to
store bits of data. We will start with the simplest possible memory element, and develop more
elaborate versions from it.

The circuit we are about to introduce is the simplest circuit that can keep a state, and thus act
as a (precursor to) a storage element. Note that we are leaving the realm of acyclic graphs here.
Indeed storage elements cannot be realized with combinational circuits as defined above.

RS Flip-Flop

� Definition 77 A RS-flipflop (or RS-latch)is constructed by feeding the outputs of two
NOR gates back to the other NOR gates input. The inputs R and S are referred to as the

Reset and Set inputs, respectively.

R S Q Q′ Comment

0 1 1 0 Set

1 0 0 1 Reset

0 0 Q Q′ Hold state

1 1 ? ? Avoid

� Note: the output Q’ is simply the inverse of Q. (supplied for convenience)

� Note: An RS flipflop can also be constructed from NAND gates.
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↓ 0 1
0 1 0
1 0 0

To understand the operation of the RS-flipflop we first reminde ourselves of the
truth table of the NOR gate on the right: If one of the inputs is 1, then the output
is 0, irrespective of the other. To understand the RS-flipflop, we will go through
the input combinations summarized in the table above in detail. Consider the
following scenarios:

36

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


S = 1 and R = 0 The output of the bottom NOR gate is 0, and thus Q′ = 0 irrespective of the
other input. So both inputs to the top NOR gate are 0, thus, Q = 1. Hence, the input
combination S = 1 and R = 0 leads to the flipflop being set to Q = 1.

S = 0 and R = 1 The argument for this situation is symmetric to the one above, so the outputs
become Q = 0 and Q′ = 1. We say that the flipflop is reset .

S = 0 and R = 0 Assume the flipflop is set (Q = 1 and Q′ = 0), then the output of the top
NOR gate remains at Q = 1 and the bottom NOR gate stays at Q′ = 0. Similarly, when
the flipflop is in a reset state (Q = 0 and Q′ = 1), it will remain there with this input
combination. Therefore, with inputs S = 0 and R = 0, the flipflop remains in its state.

S = 1 and R = 1 This input combination will be avoided, we have all the functionality (set , reset ,
and hold) we want from a memory element.

An RS-flipflop is rarely used in actual sequential logic. However, it is the fundamental building
block for the very useful D-flipflop.

The D-Flipflop: the simplest memory device

� Recap: A RS-flipflop can store a state (set Q to 1 or reset Q to 0)

� Problem: We would like to have a single data input and avoid R = S states.

� Idea: Add interface logic to do just this

� Definition 78 A D-Flipflop is an RS-flipflop with interface logic as below.

E D R S Q Comment

1 1 0 1 1 set Q to 1
1 0 1 0 0 reset Q to 0
0 D 0 0 Q hold Q

The inputs D and E

are called the data and enable inputs.

� When E = 1 the value of D determines the value of the output Q, when E returns to
0, the most recent input D is “remembered.”
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Sequential logic circuits are constructed from memory elements and combinatorial logic gates.
The introduction of the memory elements allows these circuits to remember their state. We will
illustrate this through a simple example.
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Example: On/Off Switch

� Problem: Pushing a button toggles a LED between on and off.
(first push switches the LED on, second push off,. . . )

� Idea: Use a D-flipflop (to remember whether the LED is currently on or off) connect its
Q′ ouput to its D input (next state is inverse of current state)
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In the on/off circuit, the external inputs (buttons) were connected to the E input.

Definition 79 Such circuits are often called asynchronous as they keep track of events that occur
at arbitrary instants of time, synchronous circuits in contrast operate on a periodic basis and the
Enable input is connected to a common clock signal.

Random Access Memory Chips

� Random access memory (RAM) is used for storing a large number of bits.

� RAM is made up of storage elements similar to the D-flipflops we discussed.

� Principally, each storage element has a unique number or address represented in binary
form.

� When the address of the storage element is provided to the RAM chip, the corresponding
memory element can be written to or read from.

� We will consider the following questions:

� What is the physical structure of RAM chips?

� How are addresses used to select a particular storage element?

� What do individual storage elements look like?

� How is reading and writing distinguished?

c©: Michael Kohlhase 57
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Address Decoder Logic

� Idea: Need a circuit that activates the storage element given the binary address:

� At any time, only 1 output line is “on” and all others are off.

� The line that is “on” specifies the desired element

� Definition 80 The n-bit address decoder ADLn has a n inputs and 2n outputs.
fmADL(a) = 〈b1, . . ., b2n〉, where bi = 1, iff i = 〈〈a〉〉.

� Example 81 (Address decoder logic for 2-bit addresses)
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Storage Elements

� Idea (Input): Use a D-flipflop connect its E input to the ADL output.
Connect the D-input to the common RAM data input line. (input only if addressed)

� Idea (Output): Connect the flipflop output to common RAM output line. But first AND
with ADL output (output only if addressed)

� Problem: The read process should leave the value of the gate unchanged.

� Idea: Introduce a “write enable” signal(protect data during read) AND it with the ADL
output and connect it to the flipflop’s E input.

� Definition 82 A Storage Element is given by the foolowing diagram

c©: Michael Kohlhase 59
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Remarks

� The storage elements are often simplified to reduce the number of transistors.

� For example, with care one can replace the flipflop by a capacitor.

� Also, with large memory chips it is not feasible to connect the data input and output
and write enable lines directly to all storage elements.

� Also, with care one can use the same line for data input and data output.

� Today, multi-gigabyte RAM chips are on the market.

� The capacity of RAM chips doubles approximately every year.
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Layout of Memory Chips

� To take advantage of the two-dimensional nature of the chip, storage elements are ar-
ranged on a square grid. (columns and rows of storage elements)

� For example, a 1 Megabit RAM chip has of 1024 rows and 1024 columns.

� idenfity storage element by its row and column “coordinates”.(AND them for addressing)

� Hence, to select a particular storage location the address information must be translated
into row and column specification.

� The address information is divided into two halfs; the top half is used to select the row
and the bottom half is used to select the column.
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2 Machines

2.1 How to build a Computer (in Principle)

In this part of the course, we will learn how to use the very simple computational devices we
built in the last section and extend them to fully programmable devices using the so-called “von
Neumann Architecture”. For this, we need random access memory (RAM).

For our purposes, we just understand n-bit memory cells as devices that can store n binary
values. They can be written to, (after which they store the n values at their n input edges), and
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they can be queried: then their output edges have the n values that were stored in the memory
cell. Querying a memory cell does not change the value stored in it.

Our notion of time is similarly simple, in our analysis we assume a series of discrete clock ticks
that synchronize all events in the circuit. We will only observe the circuits on each clock tick and
assume that all computational devices introduced for the register machine complete computation
before the next tick. Real circuits, also have a clock that synchronizes events (the clock frequency
(currently around 3 GHz for desktop CPUs) is a common approximation measure of processor
performance), but the assumption of elementary computations taking only one click is wrong in
production systems.

How to Build a Computer (REMA; the Register Machine)

� Take an n-bit arithmetic logic unit (ALU)

� add registers: few (named) n-bit memory cells near the ALU

� program counter (PC) (points to current command in program store)

� accumulator (ACC) (the a input and output of the ALU)

� add RAM: lots of random access memory (elsewhere)

� program store: 2n-bit memory cells (addressed by P : N→ B2n)

� data store: n-bit memory cells (words addressed by D : N→ Bn)

� add a memory management unit(MMU) (move values between RAM and registers)

� program it in assembler language (lowest level of programming)
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We have three kinds of memory areas in the REMA register machine: The registers (our architecture
has two, which is the minimal number, real architectures have more for convenience) are just simple
n-bit memory cells.

The programstore is a sequence of up to 2n memory 2n-bit memory cells, which can be accessed
(written to and queried) randomly i.e. by referencing their position in the sequence; we do not have
to access them by some fixed regime, e.g. one after the other, in sequence (hence the name random
access memory: RAM). We address the Program store by a function P : N→ B2n. The data store
is also RAM, but a sequence or n-bit cells, which is addressed by the function D : N→ Bn.

The value of the program counter is interpreted as a binary number that addresses a 2n-bit cell
in the program store. The accumulator is the register that contains one of the inputs to the ALU
before the operation (the other is given as the argument of the program instruction); the result of
the ALU is stored in the accumulator after the instruction is carried out.
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Memory Plan of a Register Machine

ACC (accumulator)

IN1 (index register 1)

IN2 (index register 2)

PC (program counter)
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The ALU and the MMU are control circuits, they have a set of n-bit inputs, and n-bit outputs,
and an n-bit control input. The prototypical ALU, we have already seen, applies arithmetic or
logical operator to its regular inputs according to the value of the control input. The MMU is
very similar, it moves n-bit values between the RAM and the registers according to the value at
the control input. We say that the MMU moves the (n-bit) value from a register R to a memory
cell C, iff after the move both have the same value: that of R. This is usually implemented as a
query operation on R and a write operation to C. Both the ALU and the MMU could in principle
encode 2n operators (or commands), in practice, they have fewer, since they share the command
space.

Circuit Overview over the CPU

ALU

Operation Argument

ACC

Program Store

Logic
Address

PC
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In this architecture (called the register machine architecture), programs are sequences of 2n-
bit numbers. The first n-bit part encodes the instruction, the second one the argument of the
instruction. The program counter addresses the current instruction (operation + argument).

We will now instantiate this general register machine with a concrete (hypothetical) realization,
which is sufficient for general programming, in principle. In particular, we will need to identify a
set of program operations. We will come up with 18 operations, so we need to set n ≥ 5. It is
possible to do programming with n = 4 designs, but we are interested in the general principles
more than optimization.
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The main idea of programming at the circuit level is to map the operator code (an n-bit binary
number) of the current instruction to the control input of the ALU and the MMU, which will then
perform the action encoded in the operator.

Since it is very tedious to look at the binary operator codes (even it we present them as hexadecimal
numbers). Therefore it has become customary to use a mnemonic encoding of these in simple word
tokens, which are simpler to read, the so-called assembler language.

Assembler Language

� Idea: Store program instructions as n-bit values in program store, map these to control
inputs of ALU, MMU.

� Definition 83 assembler language as mnemonic encoding of n-bit binary codes.
instruction effect PC comment

LOAD i ACC : = D(i) PC : = PC + 1 load data
STORE i D(i) : = ACC PC : = PC + 1 store data
ADD i ACC : = ACC +D(i) PC : = PC + 1 add to ACC
SUB i ACC : = ACC−D(i) PC : = PC + 1 subtract from ACC

LOADI i ACC : = i PC : = PC + 1 load number
ADDI i ACC : = ACC + i PC : = PC + 1 add number
SUBI i ACC : = ACC− i PC : = PC + 1 subtract number
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Definition 84 The meaning of the program instructions are specified in their ability to change
the state of the memory of the register machine. So to understand them, we have to trace the
state of the memory over time (looking at a snapshot after each clock tick; this is what we do
in the comment fields in the tables on the next slide). We speak of an imperative programming
language, if this is the case.

Example 85 This is in contrast to the programming language SML that we have looked at before.
There we are not interested in the state of memory. In fact state is something that we want to
avoid in such functional programming languages for conceptual clarity; we relegated all things
that need state into special constructs: effects.

To be able to trace the memory state over time, we also have to think about the initial state of the
register machine (e.g. after we have turned on the power). We assume the state of the registers
and the data store to be arbitrary (who knows what the machine has dreamt). More interestingly,
we assume the state of the program store to be given externally. For the moment, we may assume
(as was the case with the first computers) that the program store is just implemented as a large
array of binary switches; one for each bit in the program store. Programming a computer at that
time was done by flipping the switches (2n) for each instructions. Nowadays, parts of the initial
program of a computer (those that run, when the power is turned on and bootstrap the operating
system) is still given in special memory (called the firmware) that keeps its state even when power
is shut off. This is conceptually very similar to a bank of switches.
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Example Programs

� Example 86 Exchange the values of cells 0 and 1 in the data store

P instruction comment

0 LOAD 0 ACC : = D(0) = x
1 STORE 2 D(2) : = ACC = x
2 LOAD 1 ACC : = D(1) = y
3 STORE 0 D(0) : = ACC = y
4 LOAD 2 ACC : = D(2) = x
5 STORE 1 D(1) : = ACC = x

� Example 87 Let D(1) = a, D(2) = b, and D(3) = c, store a+ b+ c in data cell 4

P instruction comment

0 LOAD 1 ACC : = D(1) = a
1 ADD 2 ACC : = ACC +D(2) = a+ b
2 ADD 3 ACC : = ACC +D(3) = a+ b+ c
3 STORE 4 D(4) : = ACC = a+ b+ c

� use LOADI i, ADDI i, SUBI i to set/increment/decrement ACC (impossible otherwise)
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So far, the problems we have been able to solve are quite simple. They had in common that we had
to know the addresses of the memory cells we wanted to operate on at programming time, which
is not very realistic. To alleviate this restriction, we will now introduce a new set of instructions,
which allow to calculate with addresses.

Index Registers

� Problem: Given D(0) = x and D(1) = y, how to we store y into cell x of the data store?
(impossible, as we have only absolute addressing)

� Idea: introduce more registers and register instructions (IN1, IN2 suffice)

instruction effect PC comment

LOADIN j i ACC : = D(INj + i) PC : = PC + 1 relative load
STOREIN j i D(INj + i) : = ACC PC : = PC + 1 relative store
MOVE S T T : = S PC : = PC + 1 move register S (source)

to register T (target)

� Problem Solution:

P instruction comment

0 LOAD 0 ACC : = D(0) = x
1 MOVE ACC IN1 IN1 : = ACC = x
2 LOAD 1 ACC : = D(1) = y
3 STOREIN 1 0 D(x) = D(IN1 + 0): = ACC = y
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Note that the LOADIN are not binary instructions, but that this is just a short notation for unary
instructions LOADIN 1 and LOADIN 2 (and similarly for MOVE S T ).

Note furthermore, that the addition logic in LOADIN j is simply for convenience (most assembler
languages have it, since working with address offsets is commonplace). We could have always
imitated this by a simpler relative load command and an ADD instruction.
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A very important ability we have to add to the language is a set of instructions that allow us to
re-use program fragments multiple times. If we look at the instructions we have seen so far, then
we see that they all increment the program counter. As a consequence, program execution is a
linear walk through the program instructions: every instruction is executed exactly once. The
set of problems we can solve with this is extremely limited. Therefore we add a new kind of
instruction. Jump instructions directly manipulate the program counter by adding the argument
to it (note that this partially invalidates the circuit overview slide above3, but we will not worry EdNote(3)
about this).

Another very important ability is to be able to change the program execution under certain
conditions. In our simple language, we will only make jump instructions conditional (this is
sufficient, since we can always jump the respective instruction sequence that we wanted to make
conditional). For convenience, we give ourselves a set of comparison relations (two would have
sufficed, e.g. = and <) that we can use to test.

Jump Instructions

� Problem: Until now, we can only write linear programs
(A program with n steps executes n instructions)

� Idea: Need instructions that manipulate the PC directly

� Let R ∈ {<,=, >,≤, 6=,≥} be a comparison relation
instruction effect PC comment

JUMP i PC : = PC + i jump forward i steps

JUMPR i PC : =

{
PC + i if R(ACC, 0)
PC + 1 else

conditional jump

� Two more:
instruction effect PC comment

NOP i PC : = PC + 1 no operation
STOP i stop computation
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The final addition to the language are the NOP (no operation) and STOP operations. Both
do not look at their argument (we have to supply one though, so we fit our instruction for-
mat). the NOP instruction is sometimes convenient, if we keep jump offsets rational, and the
STOP instruction terminates the program run (e.g. to give the user a chance to look at the
results.)

3EdNote: reference
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Example Program

� Example 88 Let D(0) = n, D(1) = a, and D(2) = b, copy the values of cells a, . . . , a+
n− 1 to cells b, . . . , b+ n− 1, while a, b ≥ 3 and |a− b| ≥ n.

P instruction comment P instruction comment

0 LOAD 1 ACC : = a 10 MOVE ACC IN1 IN1 : = IN1 + 1
1 MOVE ACC IN1 IN1 : = a 11 MOVE IN2 ACC
2 LOAD 2 ACC : = b 12 ADDI 1
3 MOVE ACC IN2 IN2 : = b 13 MOVE ACC IN2 IN2 : = IN2 + 1
4 LOAD 0 ACC : = n 14 LOAD 0
5 JUMP= 13 if n = 0 then stop 15 SUBI 1
6 LOADIN 1 0 ACC : = D(IN1) 16 STORE 0 D(0) : = D(0)− 1
7 STOREIN 2 0 D(IN2) : = ACC 17 JUMP − 12 goto step 5
8 MOVE IN1 ACC 18 STOP 0 Stop
9 ADDI 1

� Lemma 89 We have D(0) = n− (i− 1), IN1 = a+ i− 1, and IN2 = b+ i− 1 for all
1 ≤ i ≤ n+ 1. (the program does what we want)

� proof by induction on n.

� Definition 90 The induction hypotheses are called loop invariants.
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2.2 How to build a SML-Compiler (in Principle)

2.2.1 A Stack-based Virtual Machine

In this part of the course, we will build a compiler for a simple functional programming language.
A compiler is a program that examines a program in a high-level programming language and
transforms it into a program in a language that can be interpreted by an existing computation
engine, in our case, the register machine we discussed above.

We have seen that our register machine runs programs written in assembler, a simple machine
language expressed in two-word instructions. Machine languages should be designed such that on
the processors that can be built machine language programs can execute efficiently. On the other
hand machine languages should be built, so that programs in a variety of high-level programming
languages can be transformed automatically (i.e. compiled) into efficient machine programs. We
have seen that our assembler language ASM is a serviceable, if frugal approximation of the first goal
for very simple processors. We will now show that it also satisfies the second goal by exhibiting a
compiler for a simple SML-like language.

In the last 20 years, the machine languages for state-of-the art processors have hardly changed.
This stability was a precondition for the enormous increase of computing power we have witnessed
during this time. At the same time, high-level programming languages have developed consider-
ably, and with them, their needs for features in machine-languages. This leads to a significant
mismatch, which has been bridged by the concept of a virtual machine.

A virtual machine is a simple machine-language program that interprets a slightly higher-level
program — the “byte code” — and simulates it on the existing processor. Byte code is still
considered a machine language, just that it is realized via software on a real computer, instead
of running directly on the machine. This allows to keep the compilers simple while only paying a
small price in efficiency.

In our compiler, we will take this approach, we will first build a simple virtual machine (an
ASM program) and then build a compiler that translates functional programs into byte code.
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Virtual Machines

� Question: How to run high-level programming languages (like SML) on REMA?

� Answer: By providing a compiler, i.e. an ASM program that reads SML programs (as
data) and transforms them into ASM programs.

� But: ASM is optimized for building simple, efficient processors, not as a translation target!

� Idea: Build an ASM program VM that interprets a better translation target language
(interpret REMA+VM as a “virtual machine”)

� Definition 91 An ASM program VM is called a virtual machine for a language L(VM), iff
VM inputs a L(VM) program (as data) and runs it on REMA.

� Plan: Instead of building a compiler for SML to ASM, build a virtual machine VM for REMA
and a compiler from SML to L(VM). (simpler and more transparent)
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A Virtual Machine for Functional Programming

� We will build a stack-based virtual machine; this will have four components

Command Interpreter

Stack Program Store

VPC

� The stack is a memory segment operated as a “last-in-first-out” LIFO sequence

� The program store is a memory segment interpreted as a sequence of instructions

� The command interpreter is a ASM program that interprets commands from the program
store and operates on the stack.

� The virtual program counter (VPC) is a register that acts as a the pointer to the current
instruction in the program store.

� The virtual machine starts with the empty stack and VPC at the beginning of the pro-
gram.
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A Stack-Based VM language (Arithmetic Commands)

� Definition 92 VM Arithmetic Commands act on the stack

instruction effect VPC

con i pushes i onto stack VPC : = VPC + 2
add pop x, pop y, push x+ y VPC : = VPC + 1
sub pop x, pop y, push x− y VPC : = VPC + 1
mul pop x, pop y, push x · y VPC : = VPC + 1
leq pop x, pop y, if x ≤ y push 1, else push 0 VPC : = VPC + 1

� Example 93 The L(VM) program “con 4 con 7 add” pushes 7 + 4 = 11 to the stack.

� Example 94 Note the order of the arguments: the program “con 4 con 7 sub” first
pushes 4, and then 7, then pops x and then y (so x = 7 and y = 4) and finally pushes
x− y = 7− 4 = 3.

� Stack-based operations work very well with the recursive structure of arithmetic expres-
sions: we can compute the value of the expression 4 · 3− 7 · 2 with

con 2 con 7 mul 7 · 2
con 3 con 4 mul 4 · 3
sub 4 · 3− 7 · 2
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Note: A feature that we will see time and again is that every (syntactically well-formed) expression
leaves only the result value on the stack. In the present case, the computation never touches the
part of the stack that was present before computing the expression. This is plausible, since the
computation of the value of an expression is purely functional, it should not have an effect on the
state of the virtual machine VM (other than leaving the result of course).

A Stack-Based VM language (Control)

� Definition 95 Control operators

instruction effect VPC

jp i VPC : = VPC + i
cjp i pop x if x = 0, then VPC : = VPC + i else VPC : = VPC + 2
halt —

� cjp is a “jump on false”-type expression.(if the condition is false, we jump else we continue)

� Example 96 For conditional expressions we use the conditional jump expressions: We
can express “if 1 ≤ 2 then 4− 3 else 7 · 5” by the program

con 2 con 1 leq cjp 9 if 1 ≤ 2
con 3 con 4 sub jp 7 then 4− 3
con 5 con 7 mul else 7 · 5
halt
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In the example, we first push 2, and then 1 to the stack. Then leq pops (so x = 1), pops again
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(making y = 2) and computes x ≤ y (which comes out as true), so it pushes 1, then it continues
(it would jump to the else case on false).

Note: Again, the only effect of the conditional statement is to leave the result on the stack. It
does not touch the contents of the stack at and below the original stack pointer.

A Stack-Based VM language (Imperative Variables)

� Definition 97 Imperative access to variables: Let S(i) be the number at stack position
i.

instruction effect VPC

peek i push S(i) VPC : = VPC + 2
poke i pop x S(i) : = x VPC : = VPC + 2

� Example 98 The program “con 5 con 7 peek 0 peek 1 add poke 1 mul halt”
computes 5 · (7 + 5) = 60.
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Of course the last example is somewhat contrived, this is certainly not the best way to compute
5 · (7 + 5) = 60, but it does the trick.

Extended Example: A while Loop

� Example 99 Consider the following program that computes 12! and the corresponding
L(VM) program:

var n := 12; var a := 1; con 12 con 1
while 2 <= n do ( peek 0 con 2 leq cjp 18

a := a ∗ n; peek 0 peek 1 mul poke 1
n := n − 1; con 1 peek 0 sub poke 0

) jp −21
return a; peek 1 halt

� Note that variable declarations only push the values to the stack, (memory allocation)

� they are referenced by peeking the respective stack position

� they are assigned by pokeing the stack position (must remember that)
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We see that again, only the result of the computation is left on the stack. In fact, the code
snippet consists of two variable declarations (which extend the stack) and one while statement,
which does not, and the return statement, which extends the stack again. In this case, we see that
even though the while statement does not extend the stack it does change the stack below by the
variable assignments (implemented as poke in L(VM)). We will use the example above as guiding
intuition for a compiler from a simple imperative language to L(VM) byte code below. But first we
build a virtual machine for L(VM).

We will now build a virtual machine for L(VM) along the specification above.
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A Virtual Machine for L(VM)
� We need to build a concrete ASM program that acts as a virtual machine for L(VM).

� Choose a concrete register machine size: e.g. 32-bit words (like in a PC)

� Choose memory layout in the data store

� the VM stack: D(8) to D(224 − 1), and (need the first 8 cells for VM data)

� the L(VM) program store: D(224) to D(232 − 1)

� We represent the virtual program counter VPC by the index register IN1 and the stack
pointer by the index register IN2 (with offset 8).

� We will use D(0) as an argument store.

� choose a numerical representation for the L(VM) instructions: (have lots of space)

halt 7→ 0, add 7→ 1, sub 7→ 2, . . .
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Recall that the virtual machine VM is a ASM program, so it will reside in the REMA program store.
This is the program executed by the register machine. So both the VM stack and the L(VM) program
have to be stored in the REMA data store (therefore we treat L(VM) programs as sequences of words
and have to do counting acrobatics for instructions of differing length). We somewhat arbitrarily
fix a boundary in the data store of REMA at cell number 224 − 1. We will also need a little piece
of scratch-pad memory, which we locate at cells 0-7 for convenience (then we can simply address
with absolute numbers as addresses).

Memory Layout for the Virtual Machine

Scratch Area

Program

Stack

Program Store

2n−bit Cells

CPU

Operation Argument

Data Store

ACC (accumulator)

IN1 (VM prog. cnt.)

PC (program counter)

IN3 (frame pointer)

IN2 (stack pointer)

for VM
ASM Program 

n−bit Cells
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Extending REMA and ASM

� Give ourselves another register IN3 (and LOADIN 3, STOREIN 3, MOVE ∗ IN3, MOVE IN3 ∗)

� We will use a syntactic variant of ASM for transparency

� JUMP and JUMPR with labels (compute relative jump distances automatically)

� inc R for MOVE R ACC, ADDI 1, MOVE ACC R (dec R similar)

� note that inc R and dec R overwrite the current ACC (take care of it)

� All additions can be eliminated by substitution.
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With these extensions, it is quite simple to write the ASM code that implements the virtual machine
VM. The first part is a simple jump table, a piece of code that does nothing else than distributing
the program flow according to the (numerical) instruction head. We assume that this program
segment is located at the beginning of the program store, so that the REMA program counter points
to the first instruction. This initializes the VM program counter and its stack pointer to the first
cells of their memory segments. We assume that the L(VM) program is already loaded in its proper
location, since we have not discussed input and output for REMA.

Starting VM: the Jump Table

label instruction effect comment
LOADI 224 ACC : = 224 load VM start address
MOVE ACC IN1 VPC : = ACC set VPC
LOADI 7 ACC : = 7 load top of stack address
MOVE ACC IN2 SP : = ACC set SP

〈jt〉 LOADIN 1 0 ACC : = D(IN1) load instruction
JUMP= 〈halt〉 goto 〈halt〉
SUBI 1 next instruction code
JUMP= 〈add〉 goto 〈add〉
SUBI 1 next instruction code
JUMP= 〈sub〉 goto 〈sub〉
...

...
...

〈halt〉 STOP 0 stop
...

...
...
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Now it only remains to present the ASM programs for the individual L(VM) instructions. We
will start with the arithmetical operations. The code for con is absolutely straightforward: we
increment the VM program counter to point to the argument, read it, and store it to the cell the
(suitably incremented) VM stack pointer points to. Once procedure has been executed we increment
the VM program counter again, so that it points to the next L(VM) instruction, and jump back to
the beginning of the jump table.

For the add instruction we have to use the scratch pad area, since we have to pop two values
from the stack (and we can only keep one in the accumulator). We just cache the first value in
cell 0 of the program store.
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Implementing Arithmetic Operators

label instruction effect comment
〈con〉 inc IN1 VPC : = VPC + 1 point to arg

inc IN2 SP : = SP + 1 prepare push
LOADIN 1 0 ACC : = D(VPC) read arg
STOREIN 2 0 D(SP) : = ACC store for push
inc IN1 VPC : = VPC + 1 point to next
JUMP 〈jt〉 jump back

〈add〉 LOADIN 2 0 ACC : = D(SP) read arg 1
STORE 0 D(0) : = ACC cache it
dec IN2 SP : = SP− 1 pop
LOADIN 2 0 ACC : = D(SP) read arg 2
ADD 0 ACC : = ACC +D(0) add cached arg 1
STOREIN 2 0 D(SP) : = ACC store it
inc IN1 VPC : = VPC + 1 point to next
JUMP 〈jt〉 jump back

� sub, mul, and leq similar to add.
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For example, mul could be implemented as follows:

label instruction effect comment
〈mul〉 dec IN2 SP: = SP− 1

LOADI 0
STORE 1 D(1) : = 0 initialize result
LOADIN 2 1 ACC: = D(SP + 1) read arg 1
STORE 0 D(0) : = ACC initialize counter to arg 1

〈loop〉 JUMP= 〈end〉 if counter=0, we are finished
LOADIN 2 0 ACC: = D(SP) read arg 2
ADD 1 ACC: = ACC +D(1) current sum increased by arg 2
STORE 1 D(1) : = ACC cache result
LOAD 0
SUBI 1
STORE 0 D(0) : = D(0)− 1 decrease counter by 1
JUMP loop repeat addition

〈end〉 LOAD 1 load result
STOREIN 2 0 push it on stack
inc IN1
JUMP 〈jt〉 back to jump table

Note that mul is the only instruction whose corresponding piece of code is not of the unit
complexity. For the jump instructions, we do exactly what we would expect, we load the jump
distance, add it to the register IN1, which we use to represent the VM program counter VPC.
Incidentally, we can use the code for jp for the conditional jump cjp.
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Control Instructions
label instruction effect comment
〈jp〉 MOVE IN1 ACC ACC : = VPC

STORE 0 D(0) : = ACC cache VPC
LOADIN 1 1 ACC : = D(VPC + 1) load i
ADD 0 ACC : = ACC +D(0) compute new VPC value
MOVE ACC IN1 IN1 : = ACC update VPC
JUMP 〈jt〉 jump back

〈cjp〉 dec IN2 SP : = SP− 1 update for pop
LOADIN 2 1 ACC : = D(SP + 1) pop value to ACC
JUMP= 〈jp〉 perform jump if ACC = 0
MOVE IN1 ACC otherwise, go on
ADDI 2
MOVE ACC IN1 VPC : = VPC + 2 point to next
JUMP 〈jt〉 jump back
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Imperative Stack Operations: peek

label instruction effect comment
〈peek〉 MOVE IN1 ACC ACC : = IN1

STORE 0 D(0) : = ACC cache VPC
LOADIN 1 1 ACC : = D(VPC + 1) load i
MOVE ACC IN1 IN1 : = ACC
inc IN2 prepare push
LOADIN 1 8 ACC : = D(IN1 + 8) load S(i)
STOREIN 2 0 push S(i)
LOAD 0 ACC : = D(0) load old VPC
ADDI 2 compute new value
MOVE ACC IN1 update VPC
JUMP 〈jt〉 jump back
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Imperative Stack Operations: poke

label instruction effect comment
〈poke〉 MOVE IN1 ACC ACC : = IN1

STORE 0 D(0) : = ACC cache VPC
LOADIN 1 1 ACC : = D(VPC + 1) load i
MOVE ACC IN1 IN1 : = ACC
LOADIN 2 0 ACC : = S(i) pop to ACC
STOREIN 1 8 D(IN1 + 8): = ACC store in S(i)
dec IN2 IN2 : = IN2− 1
LOAD 0 ACC : = D(0) get old VPC
ADD 2 ACC : = ACC + 2 add 2
MOVE ACC IN1 update VPC
JUMP 〈jt〉 jump back
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2.2.2 A Simple Imperative Language

We will now build a compiler for a simple imperative language to warm up to the task of building
one for a functional one. We will write this compiler in SML, since we are most familiar with this.
The first step is to define the language we want to talk about.
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A very simple Imperative Programming Language

� Plan: Only consider the bare-bones core of a language.
(we are only interested in principles)

� We will call this language SW (Simple While Language)

� no types: all values have type int , use 0 for false all other numbers for true.

� only worry about abstract syntax (we do not want to build a parser) We will realize
this as an SML data type.
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The following slide presents the SML data types for SW programs.

Abstract Syntax of SW

� Definition 100 type id = string (∗ identifier ∗)

datatype exp = (∗ expression ∗)
Con of int (∗ constant ∗)
| Var of id (∗ variable ∗)
| Add of exp∗ exp (∗ addition ∗)
| Sub of exp ∗ exp (∗ subtraction ∗)
| Mul of exp ∗ exp (∗ multiplication ∗)
| Leq of exp ∗ exp (∗ less or equal test ∗)

datatype sta = (∗ statement ∗)
Assign of id ∗ exp (∗ assignment ∗)
| If of exp ∗ sta ∗ sta (∗ conditional ∗)
| While of exp ∗ sta (∗ while loop ∗)
| Seq of sta list (∗ sequentialization ∗)

type declaration = id ∗ exp

type program = declaration list ∗ sta ∗ exp
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A SW program (see the next slide for an example) first declares a set of variables (type declaration),
executes a statement (type sta), and finally returns an expression (type exp). Expressions of SW can
read the values of variables, but cannot change them. The statements of SW can read and change
the values of variables, but do not return values (as usual in imperative languages). Note that SW
follows common practice in imperative languages and models the conditional as a statement.

Concrete vs. Abstract Syntax of a SW Program

var n:= 12; var a:= 1;
while 2<=n do

a:= a∗n;
n:= n−1

end
return a

([ (”n”, Con 12), (”a”, Con 1) ],
While(Leq(Con 2, Var”n”),

Seq [Assign(”a”, Mul(Var”a”, Var”n”)),
Assign(”n”, Sub(Var”n”, Con 1))]

),
Var”a”)
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As expected, the program is represented as a triple: the first component is a list of declarations, the
second is a statement, and the third is an expression (in this case, the value of a single variable).
We will use this example as the guiding intuition for building a compiler.
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Before we can come to the implementation of the compiler, we will need an infrastructure for
environments.

Needed Infrastructure: Environments

� Need a structure to keep track of the values of declared identifiers.
(take shadowing into account)

� Definition 101 An environment is a finite partial function from keys (identifiers) to
values.

� We will need the following operations on environments:

� creation of an empty environment (; the empty function)

� insertion of a key/value pair 〈k, v〉 into an environment ϕ: (; ϕ, [v/k])

� lookup of the value v for a key k in ϕ (; ϕ(k))

� Realization in SML by a structure with the following signature

type ’a env (∗ a is the value type ∗)
exception Unbound of id (∗ Unbound ∗)
val empty : ’a env
val insert : id ∗ ’a ∗ ’a env −> ’a env (∗ id is the key type ∗)
val lookup : id ∗ ’a env −> ’a
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We will also need an SML type for L(VM) programs. Fortunately, this is very simple.

An SML Data Type for L(VM) Programs
type index = int
type noi = int (∗ number of instructions ∗)

datatype instruction =
con of int
| add | sub | mul (∗ addition , subtraction , multiplication ∗)
| leq (∗ less or equal test ∗)
| jp of noi (∗ unconditional jump ∗)
| cjp of noi (∗ conditional jump ∗)
| peek of index (∗ push value from stack ∗)
| poke of index (∗ update value in stack ∗)
| halt (∗ halt machine ∗)

type code = instruction list

fun wlen (xs :code) = foldl (fn (x,y) => wln(x)+y) 0 xs
fun wln(con )=2 | wln(add)=1 | wln(sub)=1 | wln(mul)=1 | wln(leq)=1
| wln(jp )=2 | wln(cjp )=2
| wln(peek )=2 | wln(poke )=2 | wln(halt)=1
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The next slide has the main SML function for compiling SW programs. Its argument is a SW

program (type program) and its result is an expression of type code, i.e. a list of L(VM) instructions.
From there, we only need to apply a simple conversion (which we omit) to numbers to obtain
L(VM) byte code.
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Compiling SW programs

� SML function from SW programs (type program) to L(VM) programs (type code).

� uses three auxiliary functions for compiling declarations (compileD), statements (compileS),
and expressions (compileE).

� these use an environment to relate variable names with their stack index.

� the initial environment is created by the declarations.
(therefore compileD has an environment as return value)

type env = index env
fun compile ((ds, s ,e) : program) : code =

let
val (cds, env) = compileD(ds, empty, ˜1)

in
cds @ compileS(s,env) @ compileE(e,env) @ [ halt ]

end
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The next slide has the function for compiling SW expressions. It is realized as a case statement
over the structure of the expression.

Compiling SW Expressions

� constants are pushed to the stack.

� variables are looked up in the stack by the index determined by the environment (and
pushed to the stack).

� arguments to arithmetic operations are pushed to the stack in reverse order.

fun compileE (e:exp, env:env) : code =
case e of

Con i => [con i]
| Var i => [peek (lookup(i,env))]
| Add(e1,e2) => compileE(e2, env) @ compileE(e1, env) @ [add]
| Sub(e1,e2) => compileE(e2, env) @ compileE(e1, env) @ [sub]
| Mul(e1,e2) => compileE(e2, env) @ compileE(e1, env) @ [mul]
| Leq(e1,e2) => compileE(e2, env) @ compileE(e1, env) @ [leq]
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Compiling SW statements is only slightly more complicated: the constituent statements and ex-
pressions are compiled first, and then the resulting code fragments are combined by L(VM) control
instructions (as the fragments already exist, the relative jump distances can just be looked up).
For a sequence of statements, we just map compileS over it using the respective environment.
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Compiling SW Statements
fun compileS (s : sta , env:env) : code =

case s of
Assign( i ,e) => compileE(e, env) @ [poke (lookup(i,env))]
| If (e,s1,s2) =>

let
val ce = compileE(e, env)
val cs1 = compileS(s1, env)
val cs2 = compileS(s2, env)

in
ce @ [cjp (wlen cs1 + 4)] @ cs1 @ [jp (wlen cs2 + 2)] @ cs2

end
| While(e, s) =>

let
val ce = compileE(e, env)
val cs = compileS(s, env)
in
ce @ [cjp (wlen cs + 4)] @ cs @ [jp (˜(wlen cs + wlen ce + 2))]
end

| Seq ss => foldr (fn (s ,c) => compileS(s,env) @ c) nil ss
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As we anticipated above, the compileD function is more complex than the other two. It gives
L(VM) program fragment and an environment as a value and takes a stack index as an additional
argument. For every declaration, it extends the environment by the key/value pair k/v, where k
is the variable name and v is the next stack index (it is incremented for every declaration). Then
the expression of the declaration is compiled and prepended to the value of the recursive call.

Compiling SW Declarations
fun compileD (ds: declaration list , env:env, sa: index ): code∗env =

case ds of
nil => (nil,env)
| ( i ,e ):: dr => let

val env’ = insert ( i , sa+1, env)
val (cdr ,env ’’) = compileD(dr, env’, sa+1)

in
(compileE(e,env) @ cdr, env ’’)

end
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This completes the compiler for SW (except for the byte code generator which is trivial and an
implementation of environments, which is available elsewhere). So, together with the virtual
machine for L(VM) we discussed above, we can run SW programs on the register machine REMA.

If we now use the REMA simulator from exercise4, then we can run SW programs on our computers EdNote(4)
outright.

One thing that distinguishes SW from real programming languages is that it does not support
procedure declarations. This does not make the language less expressive in principle, but makes
structured programming much harder. The reason we did not introduce this is that our virtual
machine does not have a good infrastructure that supports this. Therefore we will extend L(VM)
with new operations next.

Note that the compiler we have seen above produces L(VM) programs that have what is often
called “memory leaks”. Variables that we declare in our SW program are not cleaned up before the
program halts. In the current implementation we will not fix this (We would need an instruction
for our VM that will “pop” a variable without storing it anywhere or that will simply decrease
virtual stack pointer by a given value.), but we will get a better understanding for this when we
talk about the static procedures next.

4EdNote: include the exercises into the course materials and reference the right one here
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Compiling the Extended Example: A while Loop

� Example 102 Consider the following program that computes 12! and the corresponding
L(VM) program:

var n := 12; var a := 1; con 12 con 1
while 2 <= n do ( peek 0 con 2 leq cjp 18

a := a ∗ n; peek 0 peek 1 mul poke 1
n := n − 1; con 1 peek 0 sub poke 0

) jp −21
return a; peek 1 halt

� Note that variable declarations only push the values to the stack, (memory allocation)

� they are referenced by peeking the respective stack position

� they are assigned by pokeing the stack position (must remember that)
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Definition 103 In general, we need an environment and an instruction sequence to represent a
procedure, but in many cases, we can get by with an instruction sequence alone. We speak of
static procedures in this case.

Example 104 Some programming languages like C or Pascal are designed so that all procedures
can be represented as static procedures. SML and Java do not restrict themselves in this way.

We will now extend the virtual machine by four instructions that allow to represent static proce-
dures with arbitrary numbers of arguments. We will explain the meaning of these extensions via
an example: the procedure on the next slide, which computes 102.

Adding (Static) Procedures

� We have a full compiler for a very simple imperative programming language

� Problem: No support for subroutines/procedures.
(no support for structured programming)

� Extensions to the Virtual Machine
type index = int
type noi = int (∗ number of instructions ∗)
type noa = int (∗ number of arguments ∗)
type ca = int (∗ code address ∗)

datatype instruction =
· · ·
| proc of noa∗noi (∗ begin of procedure code ∗)
| arg of index (∗ push value from frame ∗)
| call of ca (∗ call procedure ∗)
| return (∗ return from procedure call ∗)

c©: Michael Kohlhase 94
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Translation of a Static Procedure
� Example 105 [proc 2 26, (∗ fun exp(x,n) = ∗)

con 0, arg 2, leq , cjp 5, (∗ if n<=0 ∗)
con 1, return , (∗ then 1 ∗)
con 1, arg 2, sub, arg 1, (∗ else x∗exp(x,n−1) ∗)
call 0, arg 1, mul,
return , (∗ in ∗)
con 2, con 10, call 0, (∗ exp(10,2) ∗)
halt ] (∗ end ∗)

proc a l contains information about the number a of arguments and the length l of the
procedure in the number of words needed to store it, together with the length of
proc a l itself (3).

arg i pushes the ith argument from the current frame to the stack.

call p pushes the current program address (opens a new frame), and jumps to the pro-
gram address p

return takes the current frame from the stack, jumps to previous program address.

c©: Michael Kohlhase 95
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Static Procedures (Simulation)

Example 106 �

proc 2 26,

[con 0, arg 2, leq , cjp 5,
con 1, return ,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

empty stack

� proc jumps over the body of the procedure declaration
(with the help of its second argument.)

�

[proc 2 26,
con 0, arg 2, leq , cjp 5,
con 1, jp 13,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return ,
con 2, con 10, call 0,

halt ]

2

10

� We push the arguments onto the stack

�

[proc 2 26,
con 0, arg 2, leq , cjp 5,
con 1, return ,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

2 -2

10 -1

32 0

� call pushes the return address (of the call statement in the L(VM) program)

� then it jumps to the first body instruction.

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,

con 1, return ,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

2 -2

10 -1

32 0

0

2

� arg i pushes the ith argument onto the stack

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,

con 1, return ,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

2 -2

10 -1

32 0

0

� Comparison turns out false, so we push 0.

�

[proc 2 26,
con 0, arg 2, leq , cjp 5,

con 1, return ,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

2 -2

10 -1

32 0

� cjp pops the truth value and jumps (on false).

�

[proc 2 26,
con 0, arg 2, leq , cjp 5,
con 1, return ,
con 1, arg 2, sub, arg 1,

call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

2 -2

10 -1

32 0

1

2

� we first push 1

� then we push the second argument (from the call frame position −2)

�

[proc 2 26,
con 0, arg 2, leq , cjp 5,
con 1, return ,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

2 -2

10 -1

32 0

1

� we subtract

�

[proc 2 26,
con 0, arg 2, leq , cjp 5,
con 1, return ,
con 1, arg 2, sub, arg 1,

call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

2 -2

10 -1

32 0

1

10

� then we push the second argument (from the call frame position −1)

�

[proc 2 26,
con 0, arg 2, leq , cjp 5,
con 1, return ,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

2

10

32

1 -2

10 -1

22 0

� call jumps to the first body instruction,

� and pushes the return address (22 this time) onto the stack.

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,

con 1, return ,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

2

10

32

1 -2

10 -1

22 0

0

1

� we augment the stack

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,

con 1, return ,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

2

10

32

1 -2

10 -1

22 0

� we compare the qtop two, and jump ahead (on false)

�

[proc 2 26,
con 0, arg 2, leq , cjp 5,
con 1, return ,
con 1, arg 2, sub, arg 1,

call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

2

10

32

1 -2

10 -1

22 0

1

1

� we augment the stack again

�

[proc 2 26,
con 0, arg 2, leq , cjp 5,
con 1, return ,
con 1, arg 2, sub, arg 1,

call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

2

10

32

1 -2

10 -1

22 0

0

10

� subtract and push the first argument

�

[proc 2 26,
con 0, arg 2, leq , cjp 5,
con 1, return ,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

2

10

32

1

10

22

0 -2

10 -1

22 0

� call pushes the return address and moves the current frame up

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,

con 1, return ,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

2

10

32

1

10

22

0 -2

10 -1

22 0

0

0

� we augment the stack again,

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,

con 1, return ,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

2

10

32

1

10

22

0 -2

10 -1

22 0

� leq compares the top two numbers, cjp pops the result and does not jump.

�

[proc 2 26,
con 0, arg 2, leq , cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

2

10

32

1

10

22

0 -2

10 -1

22 0

1

� we push the result value 1

�

[proc 2 26,
con 0, arg 2, leq , cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

2

10

32

1 -2

10 -1

22 0

1

� return interprets the top of the stack as the result,

� it jumps to the return address memorized right below the top of the stack,

� deletes the current frame

� and puts the result back on top of the remaining stack.

�

[proc 2 26,
con 0, arg 2, leq , cjp 5,
con 1, return ,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

2

10

32

1 -2

10 -1

22 0

1

10

� arg pushes the first argument from the (new) current frame

�

[proc 2 26,
con 0, arg 2, leq , cjp 5,
con 1, return ,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

2

10

32

1 -2

10 -1

22 0

10

� mul multiplies, pops the arguments and pushes the result.

�

[proc 2 26,
con 0, arg 2, leq , cjp 5,
con 1, return ,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt ]

2 -2

10 -1

32 0

10

� return interprets the top of the stack as the result,

� it jumps to the return address,

� deletes the current frame

� and puts the result back on top of the remaining stack.

�

[proc 2 26,
con 0, arg 2, leq , cjp 5,
con 1, return ,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt ]

2 -2

10 -1

32 0

100

� we push argument 1 (in this case 10), multiply the top two numbers, and push the
result to the stack

�

[proc 2 26,
con 0, arg 2, leq , cjp 5,
con 1, return ,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, con 10, call 0,
halt ]

100

� return interprets the top of the stack as the result,

� it jumps to the return address (32 this time),

� deletes the current frame

� and puts the result back on top of the remaining stack (which is empty here).

�

[proc 2 26,
con 0, arg 2, leq , cjp 5,
con 1, return ,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return ,
con 2, con 10, call 0,
halt]

100

� we are finally done; the result is on the top of the stack. Note that the stack below
has not changed.

c©: Michael Kohlhase 96
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What have we seen?

� The four new VM commands allow us to model static procedures.

proc a l contains information about the number a of arguments and the length l of the
procedure

arg i pushes the ith argument from the current frame to the stack.
(Note that arguments are stored in reverse order on the stack)

call p pushes the current program address (opens a new frame), and jumps to the pro-
gram address p

return takes the current frame from the stack, jumps to previous program address.
(which is cached in the frame)

� call and return jointly have the effect of replacing the arguments by the result of the
procedure.

c©: Michael Kohlhase 97

We will now extend our implementation of the virtual machine by the new instructions.

Realizing Call Frames on the Stack

� Problem: How do we know what the current frame is? (after all, return has to pop it)

� Idea: Maintain another register: the frame pointer (FP), and cache information about
the previous frame and the number of arguments in the frame.

last argument -n

first argument -1

argument number

previous frame

return address 0
frame pointer

� Add two internal cells to the frame, that are hidden to the outside. The upper one is
called the anchor cell.

� In the anchor cell we store the stack address of the anchor cell of the previous frame.

� The frame pointer points to the anchor cell of the uppermost frame.

c©: Michael Kohlhase 98
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Realizing proc

� proc a l jumps over the procedure with the help of the length l of the procedure.

label instruction effect comment
〈proc〉 MOVE IN1 ACC ACC : = VPC

STORE 0 D(0) : = ACC cache VPC
LOADIN 1 2 ACC : = D(VPC + 2) load length
ADD 0 ACC : = ACC +D(0) compute new VPC value
MOVE ACC IN1 IN1 : = ACC update VPC
JUMP 〈jt〉 jump back

c©: Michael Kohlhase 99

Realizing arg

� arg i pushes the ith argument from the current frame to the stack.

� use the register IN3 for the frame pointer. (extend for first frame)

label instruction effect comment
〈arg〉 LOADIN 1 1 ACC : = D(VPC + 1) load i

STORE 0 D(0) : = ACC cache i
MOVE IN3 ACC
STORE 1 D(1) : = FP cache FP
SUBI 1
SUB 0 ACC : = FP− 1− i load argument position
MOVE ACC IN3 FP : = ACC move it to FP
inc IN2 SP : = SP + 1 prepare push
LOADIN 3 0 ACC : = D(FP) load arg i
STOREIN 2 0 D(SP) : = ACC push arg i
LOAD 1 ACC : = D(1) load FP
MOVE ACC IN3 FP : = ACC recover FP
MOVE IN1 ACC
ADDI 2
MOVE ACC IN1 VPC : = VPC + 2 next instruction
JUMP 〈jt〉 jump back

c©: Michael Kohlhase 100

Realizing call

� call p pushes the current program address, and jumps to the program address p
(pushes the internal cells first!)

label instruction effect comment
〈call〉 MOVE IN1 ACC

STORE 0 D(0) : = IN1 cache current VPC
inc IN2 SP : = SP + 1 prepare push for later
LOADIN 1 1 ACC : = D(VPC + 1) load argument
ADDI 224 + 3 ACC : = ACC + 224 + 3 add displacement and skip proc a l
MOVE ACC IN1 VPC : = ACC point to the first instruction
LOADIN 1 − 2 ACC : = D(VPC− 2) stealing a from proc a l
STOREIN 2 0 D(SP) : = ACC push the number of arguments
inc IN2 SP : = SP + 1 prepare push
MOVE IN3 ACC ACC : = IN3 load FP
STOREIN 2 0 D(SP) : = ACC create anchor cell
MOVE IN2 IN3 FP : = SP update FP
inc IN2 SP : = SP + 1 prepare push
LOAD 0 ACC : = D(0) load VPC
ADDI 2 ACC : = ACC + 2 point to next instruction
STOREIN 2 0 D(SP) : = ACC push the return address
JUMP 〈jt〉 jump back

c©: Michael Kohlhase 101
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Note that with these instructions we have maintained the linear quality. Thus the virtual machine
is still linear in the speed of the underlying register machine REMA.

Realizing return

� return takes the current frame from the stack, jumps to previous program address.
(which is cached in the frame)

label instruction effect comment
〈return〉 LOADIN 2 0 ACC : = D(SP) load top value

STORE 0 D(0) : = ACC cache it
LOADIN 2 − 1 ACC : = D(SP− 1) load return address
MOVE ACC IN1 IN1 : = ACC set VPC to it
LOADIN 3 − 1 ACC : = D(FP− 1) load the number n of arguments
STORE 1 D(1) : = D(FP− 1) cache it
MOVE IN3 ACC ACC : = FP ACC = FP
SUBI 1 ACC : = ACC− 1 ACC = FP− 1
SUB 1 ACC : = ACC−D(1) ACC = FP− 1− n
MOVE ACC IN2 IN2 : = ACC SP = ACC
LOADIN 3 0 ACC : = D(FP) load anchor value
MOVE ACC IN3 IN3 : = ACC point to previous frame
LOAD 0 ACC : = D(0) load cached return value
STOREIN 2 0 D(IN2) : = ACC pop return value
JUMP 〈jt〉 jump back
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Note that all the realizations of the L(VM) instructions are linear code segments in the assembler
code, so they can be executed in linear time. Thus the virtual machine language is only a constant
factor slower than the clock speed of REMA. This is a characteristic of most virtual machines.

2.2.3 Compiling Basic Functional Programs

We now have the prerequisites to model procedures calls in a programming language. Instead of
adding them to a imperative programming language, we will study them in the context of a func-
tional programming language. For this we choose a minimal core of the functional programming
language SML, which we will call µML. For this language, static procedures as we have seen them
above are enough.

µML, a very simple Functional Programming Language

� Plan: Only consider the bare-bones core of a language (we only interested in principles)

� We will call this language µML (micro ML)

� no types: all values have type int , use 0 for false all other numbers for true.

� only worry about abstract syntax (we do not want to build a parser) We will realize
this as an SML data type.

c©: Michael Kohlhase 103
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Abstract Syntax of µML
type id = string (∗ identifier ∗)

datatype exp = (∗ expression ∗)
Con of int (∗ constant ∗)
| Id of id (∗ argument ∗)
| Add of exp ∗ exp (∗ addition ∗)
| Sub of exp ∗ exp (∗ subtraction ∗)
| Mul of exp ∗ exp (∗ multiplication ∗)
| Leq of exp ∗ exp (∗ less or equal test ∗)
| App of id ∗ exp list (∗ application ∗)
| If of exp ∗ exp ∗ exp (∗ conditional ∗)

type declaration = id ∗ id list ∗ exp

type program = declaration list ∗ exp
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Concrete vs. Abstract Syntax of µML

� A µML program first declares procedures, then evaluates expression for the return value.

let ([
fun exp(x,n) = (”exp”, [”x”, ”n”],

if n<=0 If (Leq(Id”n”, Con 0),
then 1 Con 1,
else x∗exp(x,n−1) Mul(Id”x”, App(”exp”, [Id”x”, Sub(Id”n”, Con 1)]))))

in ],
exp(2,10) App(”exp”, [Con 2, Con 10])

end )
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The next step is to build a compiler for µML into programs in the extended L(VM). Just as above,
we will write this compiler in SML.

Compiling µML Expressions
exception Error of string
datatype idType = Arg of index | Proc of ca
type env = idType env

fun compileE (e:exp, env:env, tail :code) : code =
case e of

Con i => [con i] @ tail
| Id i => [arg((lookupA(i,env)))] @ tail
| Add(e1,e2) => compileEs([e1,e2], env) @ [add] @ tail
| Sub(e1,e2) => compileEs([e1,e2], env) @ [sub] @ tail
| Mul(e1,e2) => compileEs([e1,e2], env) @ [mul] @ tail
| Leq(e1,e2) => compileEs([e1,e2], env) @ [ leq ] @ tail
| If (e1,e2,e3) => let

val c1 = compileE(e1,env, nil )
val c2 = compileE(e2,env, tail )
val c3 = compileE(e3,env, tail )

in if null tail
then c1 @ [cjp (4+wlen c2)] @ c2

@ [jp (2+wlen c3)] @ c3
else c1 @ [cjp (2+wlen c2)] @ c2 @ c3

end
| App(i, es) => compileEs(es,env) @ [call (lookupP(i,env))] @ tail

c©: Michael Kohlhase 106
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Compiling µML Expressions (Continued)
and (∗ mutual recursion with compileE ∗)

fun compileEs (es : exp list , env:env) : code =
foldl (fn (e,c) => compileE(e, env, nil ) @ c) nil es

fun lookupA (i ,env) =
case lookup(i ,env) of

Arg i => i
| => raise Error(”Argument expected: ” \ˆ i)

fun lookupP (i ,env) =
case lookup(i ,env) of

Proc ca => ca
| => raise Error(”Procedure expected: ” \ˆ i)
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Compiling µML Expressions (Continued)
fun insertArgs ’ ( i , (env, ai )) = ( insert ( i ,Arg ai ,env), ai+1)

fun insertArgs ( is , env) = ( foldl insertArgs ’ (env,1) is )

fun compileD (ds: declaration list , env:env, ca:ca) : code∗env =
case ds of

nil => (nil,env)
| ( i , is ,e ):: dr =>

let
val env’ = insert ( i , Proc(ca+1), env)
val env ’’ = insertArgs( is , env’)
val ce = compileE(e, env ’’, [ return ])
val cd = [proc (length is , 3+wlen ce)] @ ce

(∗ 3+wlen ce = wlen cd ∗)
val (cdr ,env ’’) = compileD(dr, env’, ca + wlen cd)

in
(cd @ cdr, env ’’)

end
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Compiling µML
fun compile ((ds,e) : program) : code =

let
val (cds,env) = compileD(ds, empty, ˜1)

in
cds @ compileE(e,env, nil ) @ [ halt ]

end
handle
Unbound i => raise Error(”Unbound identifier: ” \ˆ i )
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Where To Go Now?

� We have completed a µML compiler, which generates L(VM) code from µML programs.

� µML is minimal, but Turing-Complete (has conditionals and procedures)

c©: Michael Kohlhase 110

2.3 A theoretical View on Computation

Now that we have seen a couple of models of computation, computing machines, programs, . . . ,
we should pause a moment and see what we have achieved.
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What have we achieved

� what have we done? We have sketched

� a concrete machine model (combinatory circuits)

� a concrete algorithm model (assembler programs)

� Evaluation: (is this good?)

� how does it compare with SML on a laptop?

� Can we compute all (string/numerical) functions in this model?

� Can we always prove that our programs do the right thing?

� Towards Theoretical Computer Science (as a tool to answer these)

� look at a much simpler (but less concrete) machine model (Turing Machine)

� show that TM can [encode/be encoded in] SML, assembler, Java,. . .

� Conjecture: [Church/Turing] (unprovable, but accepted)

All non-trivial machine models and programming languages are equivalent
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The idea we are going to pursue here is a very fundamental one for Computer Science: The Turing
Machine. The main idea here is that we want to explore what the “simplest” (whatever that
may mean) computing machine could be. The answer is quite surprising, we do not need wires,
electricity, silicon, etc; we only need a very simple machine that can write and read to a tape
following a simple set of rules.

Of course such machines can be built (and have been), but this is not the important aspect here.
Turing machines are mainly used for thought experiments, where we simulate them in our heads.

Note that the physical realization of the machine as a box with a (paper) tape is immaterial, it
is inspired by the technology at the time of its inception (in the late 1940ties; the age of ticker-tape
commuincation).
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Turing Machines

� Idea: Simulate a machine by a person executing a well-defined procedure!

� Setup: Person changes the contents of an infinite amount of ordered paper sheets that
can contain one of a finite set of symbols.

� Memory: The person needs to remember one of a finite set of states

� Procedure: “If your state is 42 and the symbol you see is a ’0’ then replace this with a
’1’, remember the state 17, and go to the following sheet.”

c©: Michael Kohlhase 112

�

More Precisely: Turing machine

� Definition 107 A Turing Machine consists of

� An infinite tape which is divided into cells, one next to the other
(each cell contains a symbol from a finite alphabet L with #(L) ≥ 2 and 0 ∈ L)

� A head that can read/write symbols on the tape and move left/right.

� A state register that stores the state of the Turing machine.
(finite set of states, register initialized with a special start state)

� An action table (or transition function) that tells the machine what sym-
bol to write, how to move the head and what its new state will be, given
the symbol it has just read on the tape and the state it is currently in.

(If no entry applicable the machine will halt)

Note: every part of the machine is finite, but it is the potentially unlimited amount of
tape that gives it an unbounded amount of storage space.

c©: Michael Kohlhase 113
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Turing Machine

Example 108 with Alphabet {0, 1}

� Given: a series of 1s on the tape (with head initially on the leftmost)

� Computation: doubles the 1’s with a 0 in between, i.e., ”111” becomes ”1110111”.

� The set of states is {s1, s2, s3, s4, s5} (s1 start state)

� actions:

Old Read Wr. Mv. New Old Read Wr. Mv. New
s1 1 0 R s2 s4 1 1 L s4
s2 1 1 R s2 s4 0 0 L s5
s2 0 0 R s3 s5 1 1 L s5
s3 1 1 R s3 s5 0 1 R s1
s3 0 1 L s4

� state machine:

51 2 3 4

1 0 0 0

0

0,R 0,R 1,L 0,L

1,R

1,R 1,R 1,L 1,L1 1 1 1
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Example Computation

� T starts out in s1, replaces
the first 1 with a 0, then

� uses s2 to move to the right,
skipping over 1’s and the first
0 encountered.

� s3 then skips over the next
sequence of 1’s (initially there
are none) and replaces the
first 0 it finds with a 1.

� s4 moves back left, skipping
over 1’s until it finds a 0 and
switches to s5.

Step State Tape Step State Tape

1 s1 1 1 9 s2 10 0 1

2 s2 0 1 10 s3 100 1

3 s2 01 0 11 s3 1001 0

4 s3 010 0 12 s4 100 1 1

5 s4 01 0 1 13 s4 10 0 11

6 s5 0 1 01 14 s5 1 0 011

7 s5 0 101 15 s1 11 0 11

8 s1 1 1 01 — halt —

� s5 then moves to the left, skipping over 1’s until it finds the 0 that was originally written by s1.

� It replaces that 0 with a 1, moves one position to the right and enters s1 again for another round
of the loop.

� This continues until s1 finds a 0 (this is the 0 right in the middle between the two strings of 1’s)
at which time the machine halts

c©: Michael Kohlhase 115
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What can Turing Machines compute?

� Empirically: anything any other program can also compute

� Memory is not a problem (tape is infinite)

� Efficiency is not a problem (purely theoretical question)

� Data representation is not a problem (we can use binary, or whatever symbols we like)

� All attempts to characterize computation have turned out to be equivalent

� primitive recursive functions ([Gödel, Kleene])

� lambda calculus ([Church])

� Post production systems ([Post])

� Turing machines ([Turing])

� Random-access machine

� Conjecture 109 ([Church/Turing]) (unprovable, but accepted)

Anything that can be computed at all, can be computed by a Turing Machine
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Is there anything that cannot be computed by a TM

� Theorem 110 No Turing machine can infallibly tell if another Turing machine will get
stuck in an infinite loop on some given input.

�

Coded description
of some TM

Input for TM

Loop−detector
Turing Machine

"yes, it will halt"

"no, it will not halt"

� Proof:

P.1 let’s do the argument with SML instead of a TM
assume that there is a loop detector program written in SML

"yes, it will halt"

"no, it will not halt"

SML Program

Loop−detector
SML Program

Input for Program

c©: Michael Kohlhase 117
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Testing the Loop Detector Program Proof:

P.1 The general shape of the Loop detector program

fun will halt (program,data) =
... lots of complicated code ...
if ( ... more code ...) then true else false ;

will halt : ( int −> int) −> int −> bool

test programs behave exactly as we anticipated

fun halter (n) = 1;
halter : int −> int
fun looper (n) = looper(n+1);
looper : int −> int

will halt ( halter ,1);
val true : bool
will halt (looper ,1);
val false : bool

P.2 Consider the following Program

function turing (prog) = if will halt (prog,prog) then looper(1) else 1;

P.3 Yeah, so what? what happens, if we feed the turing function to itself?

c©: Michael Kohlhase 118

What happens indeed? Proof:

P.1 function turing (prog) = if will \ halt (prog,prog) then looper(1) else 1;

the turing function uses will halt to analyze the function given to it.

� If the function halts when fed itself as data, the turing function goes into an infinite loop.

� If the function goes into an infinite loop when fed itself as data, the turing function
immediately halts.

P.2 But if the function happens to be the turing function itself, then

� the turing function goes into an infinite loop if the turing function halts
(when fed itself as input)

� the turing function halts if the turing function goes into an infinite loop
(when fed itself as input)

P.3 This is a blatant logical contradiction! Thus there cannot be a will halt function

c©: Michael Kohlhase 119
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Universal Turing machines

� Note: A Turing machine computes a fixed partial string function.

� In that sense it behaves like a computer with a fixed program.

� Idea: we can encode the action table of any Turing machine in a string.

� try to construct a Turing machine that expects on its tape

� a string describing an action table followed by

� a string describing the input tape, and then

� computes the tape that the encoded Turing machine would have computed.

� Theorem 111 such a Turing machine is indeed possible(e.g. with 2 states, 18 symbols)

� Definition 112 call it a universal Turing machine. (it can simulate any TM)

� UTM accepts a coded description of a Turing machine and simulates the behavior of
the machine on the input data.

� The coded description acts as a program that the UTM executes, the UTM’s own
internal program is fixed.

� The existence of the UTM is what makes computers fundamentally different from other
machines such as telephones, CD players, VCRs, refrigerators, toaster-ovens, or cars.
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3 Problem Solving and Search

3.1 Problem Solving

In this section, we will look at a class of algorithms called search algorithms. These are algorithms
that help in quite general situations, where there is a precisely described problem, that needs to
be solved.

Before we come to the algorithms, we need to get a grip on the problems themselves, and the
problem solving process.

The first step is to classify the problem solving process by the amount of knowledge we have
available. It makes a difference, whether we know all the factors involved in the problem before
we actually are in the situation. In this case, we can solve the problem in the abstract, i.e. make
a plan before we actually enter the situation (i.e. offline), and then when the problem arises, only
execute the plan. If we do not have complete knowledge, then we can only make partial plans, and
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have to be in the situation to obtain new knowledge (e.g. by observing the effects of our actions or
the actions of others). As this is much more difficult we will restrict ourselves to offline problem
solving.

Problem solving

� Problem: Find algorithms that help solving problems in general

� Idea: If we can describe/represent problems in a standardized way, we may have a chance
to find general algorithms.

We will use the following two concepts to describe problems

States A set of possible situations in in our problem domain

Actions A set of possible actions that get us from one state to another.

Using these, we can view a sequence of actions as a solution, if it brings us into a situation,
where the problem is solved.

� Definition 113 Offline problem solving: Acting only with complete knowledge of prob-
lem and solution

� Definition 114 Online problem solving: Acting without complete knowledge

� Here: we are concerned with offline problem solving only.
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We will use the following problem as a running example. It is simple enough to fit on one slide
and complex enough to show the relevant features of the problem solving algorithms we want to
talk about.

Example: Traveling in Romania

� Scenario: On holiday in Romania; currently in Arad, Flight leaves tomorrow from
Bucharest.

� Formulate problem: States: various cities Actions: drive between cities

� Solution: Appropriate sequence of cities, e.g.: Arad, Sibiu, Fagaras, Bucharest

c©: Michael Kohlhase 122
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Problem Formulation

� The problem formulation models the situation at an appropriate level of abstraction.
(do not model things like “put on my left sock”, etc.)

� it describes the initial state (we are in Arad)

� it also limits the objectives. (excludes, e.g. to stay another couple of weeks.)

� Finding the right level of abstraction and the required (not more!) information is often
the key to success.

� Definition 115 A problem (formulation) P := 〈S,O, I,G〉 consists of a set S of states
and a set O of operators that specify how states can be accessed from each other. Certain
states in S are designated as goal states (G ⊆ S) and there is a unique initial state I.

� Definition 116 A solution for a problem P consists of a sequence of actions that bring
us from I to a goal state.
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Problem types

� Single-state problem

� observable (at least the initial state)

� deterministic (i.e. the successor of each state is determined)

� static (states do not change other than by our own actions)

� discrete (a countable number of states)

� Multiple-state problem:

� initial state not/partially observable (multiple initial states?)

� deterministic, static, discrete

� Contingency problem:

� non-deterministic (solution can branch, depending on contingencies)

� unknown state space (like a baby, agent has to learn about states and actions)
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We will explain these problem types with another example. The problem P is very simple: We
have a vacuum cleaner and two rooms. The vacuum cleaner is in one room at a time. The floor
can be dirty or clean.

The possible states are determined by the position of the vacuum cleaner and the information,
whether each room is dirty or not. Obviously, there are eight states: S = {1,2,3,4,5,6,7,8} for
simplicity.

The goal is to have both rooms clean, the vacuum cleaner can be anywhere. So the set G of
goal states is {7,8}. In the single-state version of the problem, [right, suck] shortest solution, but
[suck, right, suck] is also one. In the multiple-state version we have [right{2,4,6,8}, suck{4,8}, left{3,7}, suck{7}].
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Example: vacuum-cleaner world

Single-state Problem:

� Start in 5

� Solution: [right, suck]

Multiple-state Problem:

� Start in {1,2,3,4,5,6,7,8}
� Solution: [right, suck, left, suck] right → {2,4,6,8}

suck → {4,8}
left → {3,7}
suck → {7}
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Example: vacuum-cleaner world (continued)

Contingency Problem:

� Murphy’s Law: suck can dirty a clean carpet

� Local sensing: dirty/not dirty at location only

� Start in: {1,3}
� Solution: [suck, right, suck] suck → {5,7}

right → {6,8}
suck → {6,8}

better: [suck, right, if dirt then suck] (decide whether in 6 or 8 using local sensing)

c©: Michael Kohlhase 126
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In the contingency version of P a solution is the following: [suck{5,7}, right→ {6,8}, suck → {6,8}],
[suck{5,7}], etc. Of course, local sensing can help: narrow {6,8} to {6} or {8}, if we are in the
first, then suck.

Single-state problem formulation

� Defined by the following four items

1. Initial state: (e.g. Arad)

2. Successor function S: (e.g. S(Arad) = {〈goZer,Zerind〉, 〈goSib, Sibiu〉, . . .})
3. Goal test: (e.g. x = Bucharest (explicit test)

noDirt(x) (implicit test)
)

4. Path cost (optional): (e.g. sum of distances, number of operators executed, etc.)

� Solution: A sequence of operators leading from the initial state to a goal state
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“Path cost”: There may be more than one solution and we might want to have the “best” one in
a certain sense.

Selecting a state space

� Abstraction: Real world is absurdly complex
State space must be abstracted for problem solving

� (Abstract) state: Set of real states

� (Abstract) operator: Complex combination of real actions

� Example: Arad→ Zerind represents complex set of possible routes

� (Abstract) solution: Set of real paths that are solutions in the real world
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“State”: e.g., we don’t care about tourist attractions found in the cities along the way. But this is
problem dependent. In a different problem it may well be appropriate to include such information
in the notion of state.

“Realizability”: one could also say that the abstraction must be sound wrt. reality.
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Example: The 8-puzzle

States integer locations of tiles
Actions left, right, up, down
Goal test = goal state?
Path cost 1 per move

c©: Michael Kohlhase 129

How many states are there? N factorial, so it is not obvious that the problem is in NP. One
needs to show, for example, that polynomial length solutions do always exist. Can be done by
combinatorial arguments on state space graph (really ?).

Example: Vacuum-cleaner

States integer dirt and robot locations
Actions left, right, suck, noOp
Goal test notdirty?
Path cost 1 per operation (0 for noOp)

c©: Michael Kohlhase 130
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Example: Robotic assembly

States real-valued coordinates of
robot joint angles and parts of the object to be assembled

Actions continuous motions of robot joints
Goal test assembly complete?
Path cost time to execute

c©: Michael Kohlhase 131

3.2 Search

Tree search algorithms

� Simulated exploration of state space in a search tree by generating successors of already-
explored states (Offline Algorithm)

procedure Tree−Search (problem, strategy) : <a solution or failure>
< initialize the search tree using the initial state of problem>
loop

if <there are no candidates for expansion> <return failure> end if
<choose a leaf node for expansion according to strategy>
if <the node contains a goal state> return <the corresponding solution>
else <expand the node and add the resulting nodes to the search tree>
end if

end loop
end procedure

c©: Michael Kohlhase 132

Tree Search: Example

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad
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Tree Search: Example

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad
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Tree Search: Example

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad
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Tree Search: Example

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad
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Implementation: States vs. nodes

� A (representation of) a physical configuration

� A data structure constituting part of a search tree
(includes parent, children, depth, path cost, etc.)

c©: Michael Kohlhase 137

Implementation of search algorithms
procedure Tree Search (problem, strategy )

fringe := insert (make node( initial state (problem)))
loop
if fringe <is empty> fail end if
node := first ( fringe , stratety )
if NodeTest(State(node)) return State(node)
else fringe := insert all (expand(node,problem),strategy)
end if

end loop
end procedure

� Definition 117 The fringe is a list nodes not yet considered. It is ordered by the search
strategy (see below)

c©: Michael Kohlhase 138
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State gives the state that is represented by node
Expand = creates new nodes by applying possible actions to node
A node is a data structure representing states, will be explained in a moment.
Make-Queue creates a queue with the given elements.
fringe holds the queue of nodes not yet considered.
Remove-First returns first element of queue and as a side effect removes it from fringe.
State gives the state that is represented by node.
Expand applies all operators of the problem to the current node and yields a set of new nodes.
Insert inserts an element into the current fringe queue. This can change the behavior of the

search.
Insert-All Perform Insert on set of elements.

Search strategies

� Strategy: Defines the order of node expansion

� Important properties of strategies:

completeness does it always find a solution if one exists?
time complexity number of nodes generated/expanded
space complexity maximum number of nodes in memory
optimality does it always find a least-cost solution?

� Time and space complexity measured in terms of:

b maximum branching factor of the search tree
d depth of a solution with minimal distance to root
m maximum depth of the state space (may be ∞)

c©: Michael Kohlhase 139

Complexity means here always worst-case complexity.
Note that there can be infinite branches, see the search tree for Romania.

3.3 Uninformed Search Strategies

Uninformed search strategies

� Definition 118 (Uninformed search) Use only the information available in the
problem definition

� Frequently used strategies:

� Breadth-first search

� Uniform-cost search

� Depth-first search

� Depth-limited search

� Iterative deepening search

c©: Michael Kohlhase 140
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The opposite of uninformed search is informed or heuristic search. In the example, one could add,
for instance, to prefer cities that lie in the general direction of the goal (here SE).

Uninformed search is important, because many problems do not allow to extract good heuris-
tics.

Breadth-first search

� Idea: Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the queue

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

� Idea: Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the queue

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

� Idea: Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the queue

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

� Idea: Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the queue

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

� Idea: Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the queue

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

� Idea: Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the queue

A

B C

D E F G

H I J K L M N O
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We will now apply the breadth-first search strategy to our running example: Traveling in Romania.
Note that we leave out the green dashed nodes that allow us a preview over what the search tree
will look like (if expanded). This gives a much

Breadth-First Search: Romania

Arad
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Breadth-First Search: Romania

Arad

Sibiu Timisoara Zerind
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Breadth-First Search: Romania

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea
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Breadth-First Search:Romania

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj
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Breadth-First Search:Romania

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad
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Breadth-first search: Properties

Complete Yes (if b is finite)
Time 1 + b+ b2 + b3 + . . .+ bd + b(bd − 1) ∈ O(bd+1)

i.e. exponential in d
Space O(bd+1) (keeps every node in memory)
Optimal Yes (if cost = 1 per step), not optimal in general

� Disadvantage: Space is the big problem(can easily generate nodes at 5MB/sec so 24hrs = 430GB)

� Optimal?: if cost varies for different steps, there might be better solutions below the
level of the first solution.

� An alternative is to generate all solutions and then pick an optimal one. This works only,
if m is finite.

c©: Michael Kohlhase 152

The next idea is to let cost drive the search. For this, we will need a non-trivial cost function: we
will take the distance between cities, since this is very natural. Alternatives would be the driving
time, train ticket cost, or the number of tourist attractions along the way.

Of course we need to update our problem formulation with the necessary information.
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Romania with Step Costs as Distances

c©: Michael Kohlhase 153

Uniform-cost search

� Idea: Expand least-cost unexpanded node

� Implementation: fringe is queue ordered by increasing path cost.

� Note: Equivalent to breadth-first search if all step costs are equal (DFS: see below)

Arad

c©: Michael Kohlhase 154

Uniform Cost Search: Romania

� Idea: Expand least-cost unexpanded node

� Implementation: fringe is queue ordered by increasing path cost.

� Note: Equivalent to breadth-first search if all step costs are equal (DFS: see below)

Arad

Sibiu

140

Timisoara

118

Zerind

75
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Uniform Cost Search: Romania

� Idea: Expand least-cost unexpanded node

� Implementation: fringe is queue ordered by increasing path cost.

� Note: Equivalent to breadth-first search if all step costs are equal (DFS: see below)

Arad

Sibiu

140

Timisoara

118

Zerind

75

Oradea

71

Arad

75
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Uniform Cost Search: Romania

� Idea: Expand least-cost unexpanded node

� Implementation: fringe is queue ordered by increasing path cost.

� Note: Equivalent to breadth-first search if all step costs are equal (DFS: see below)

Arad

Sibiu

140

Timisoara

118

Zerind

75

Arad

118

Lugoj

111

Oradea

71

Arad

75
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Uniform Cost Search: Romania

� Idea: Expand least-cost unexpanded node

� Implementation: fringe is queue ordered by increasing path cost.

� Note: Equivalent to breadth-first search if all step costs are equal (DFS: see below)

Arad

Sibiu

140

Timisoara

118

Zerind

75

Arad

140

Fagaras

99

Oradea

151

R. Vilcea

80

Arad

118

Lugoj

111

Oradea

71

Arad

75
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Note that we must sum the distances to each leaf. That is, we go back to the first level after step
3.
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Uniform-cost search: Properties

Complete Yes (if step costs ≥ ε > 0)
Time number of nodes with past-cost less than that of optimal solution
Space number of nodes with past-cost less than that of optimal solution
Optimal Yes

c©: Michael Kohlhase 159

If step cost is negative, the same situation as in breadth-first search can occur: later solutions may
be cheaper than the current one.

If step cost is 0, one can run into infinite branches. UC search then degenerates into depth-first
search, the next kind of search algorithm. Even if we have infinite branches, where the sum of
step costs converges, we can get into trouble5 EdNote(5)

Worst case is often worse than BF search, because large trees with small steps tend to be
searched first. If step costs are uniform, it degenerates to BF search.

Depth-first search

� Idea: Expand deepest unexpanded node

� Implementation: fringe is a LIFO queue (a stack), i.e. successors go in at front of queue

� Note: Depth-first search can perform infinite cyclic excursions
Need a finite, non-cyclic search space (or repeated-state checking)

c©: Michael Kohlhase 160

Depth-First Search
A

B C

D E F G

H I J K L M N O
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Depth-First Search
A

B C

D E F G

H I J K L M N O
c©: Michael Kohlhase 162

5EdNote: say how
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Depth-First Search
A

B C

D E F G

H I J K L M N O
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Depth-First Search
A

B C

D E F G

H I J K L M N O
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Depth-First Search
A

B C

D E F G

H I J K L M N O
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Depth-First Search
A

B C

D E F G

H I J K L M N O
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Depth-First Search
A

B C

D E F G

H I J K L M N O
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Depth-First Search
A

B C

D E F G

H I J K L M N O
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Depth-First Search
A

B C

D E F G

H I J K L M N O
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Depth-First Search
A

B C

D E F G

H I J K L M N O
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Depth-First Search
A

B C

D E F G

H I J K L M N O
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Depth-First Search
A

B C

D E F G

H I J K L M N O
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Depth-First Search
A

B C

D E F G

H I J K L M N O
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Depth-First Search
A

B C

D E F G

H I J K L M N O
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Depth-First Search: Romania

Arad

c©: Michael Kohlhase 175

89

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Depth-First Search: Romania

Arad

Sibiu Timisoara Zerind
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Depth-First Search: Romania

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea
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Depth-First Search: Romania

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea

Sibiu Timisoara Zerind
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Depth-first search: Properties

Complete Yes: if state space finite
No: if state contains infinite paths or loops

Time O(bm)
(we need to explore until max depth m in any case!)

Space O(b ·m) (i.e. linear space)
(need at most store m levels and at each level at most b nodes)

Optimal No (there can be many better solutions in the
unexplored part of the search tree)

� Disadvantage: Time terrible if m much larger than d.

� Advantage: Time may be much less than breadth-first search if solutions are dense.

c©: Michael Kohlhase 179
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Iterative deepening search

� Depth-limited search: Depth-first search with depth limit

� Iterative deepening search: Depth-limit search with ever increasing limits

procedure Tree Search (problem)
< initialize the search tree using the initial state of problem>
for depth = 0 to ∞

result := Depth Limited search(problem,depth)
if depth 6= cutoff return result end if

end for
end procedure

c©: Michael Kohlhase 180

Iterative Deepening Search at Limit Depth 0

A A

c©: Michael Kohlhase 181

Iterative Deepening Search at Limit Depth 1

A

B C

A

B C

A

B C

A

B C
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Iterative Deepening Search at Limit Depth 2

A

B C

D E F G

A

B C

D E F G

A
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D E F G

A

B C

D E F G

A
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A

B C

D E F G
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Iterative Deepening Search at Limit Depth 3

c©: Michael Kohlhase 184

Iterative deepening search: Properties

Complete Yes
Time (d+ 1)b0 + db1 + (d− 1)b2 + . . .+ bd ∈ O(bd+1)
Space O(bd)
Optimal Yes (if step cost = 1)

� (Depth-First) Iterative-Deepening Search often used in practice for search spaces of large,
infinite, or unknown depth.

� Comparison:

Criterion
Breadth-

first
Uniform-

cost
Depth-

first
Iterative

deepening

Complete? Yes∗ Yes∗ No Yes
Time bd+1 ≈ bd bm bd

Space bd+1 ≈ bd bm bd
Optimal? Yes∗ Yes No Yes

c©: Michael Kohlhase 185

Note: To find a solution (at depth d) we have to search the whole tree up to d. Of course since we
do not save the search state, we have to re-compute the upper part of the tree for the next level.
This seems like a great waste of resources at first, however, iterative deepening search tries to be
complete without the space penalties.

However, the space complexity is as good as depth-first search, since we are using depth-first
search along the way. Like in breadth-first search, the whole tree on level d (of optimal solution)
is explored, so optimality is inherited from there. Like breadth-first search, one can modify this
to incorporate uniform cost search.

As a consequence, variants of iterative deepening search are the method of choice if we do not
have additional information.
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Comparison

Breadth-first search Iterative deepening search

c©: Michael Kohlhase 186

3.4 Informed Search Strategies

Summary: Uninformed Search/Informed Search

� Problem formulation usually requires abstracting away real-world details to define a state
space that can feasibly be explored

� Variety of uninformed search strategies

� Iterative deepening search uses only linear space and not much more time than other
uninformed algorithms

� Next Step: Introduce additional knowledge about the problem (informed search)

� Best-first-, A∗-search (guide the search by heuristics)

� Iterative improvement algorithms

c©: Michael Kohlhase 187

Best-first search

� Idea: Use an evaluation function for each node (estimate of “desirability”) Expand
most desirable unexpanded node

� Implementation: fringe is a queue sorted in decreasing order of desirability

� Special cases: Greedy search, A∗ search

c©: Michael Kohlhase 188

This is like UCS, but with evaluation function related to problem at hand replacing the path cost
function.

If the heuristics is arbitrary, we expect incompleteness!
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Depends on how we measure “desirability”.
Concrete examples follow.

Romania with step costs in km

c©: Michael Kohlhase 189

Greedy search

� Definition 119 A heuristic is an evaluation function h on nodes that estimates of cost
from n to the nearest goal state.

Idea: Greedy search expands the node that appears to be closest to goal

� Example 120 hSLD(n) = straight-line distance from n to Bucharest

� Note: Unlike uniform-cost search the node evaluation function has nothing to do with
the nodes explored so far

internal search control → external search control
partial solution cost → goal cost estimation

c©: Michael Kohlhase 190

In greedy search we replace the objective cost to construct the current solution with a heuristic or
subjective measure from which we think it gives a good idea how far we are from a solution. Two
things have shifted:

• we went from internal (determined only by features inherent in the search space) to an
external/heuristic cost

• instead of measuring the cost to build the current partial solution, we estimate how far we
are from the desired goal

Greedy Search: Romania

Arad

366

c©: Michael Kohlhase 191
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Greedy Search: Romania

Arad

366

Sibiu

253

Timisoara

329

Zerind

374
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Greedy Search: Romania

Arad

366

Sibiu
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Timisoara

329

Zerind
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Arad
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Fagaras

176

Oradea

380

R. Vilcea

193

c©: Michael Kohlhase 193

Greedy Search: Romania

Arad

366

Sibiu

253

Timisoara

329

Zerind

374

Arad

366

Fagaras

176

Oradea

380

R. Vilcea

193

Sibiu

253

Bucharest

0
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Greedy search: Properties

Complete No: Can get stuck in loops
Complete in finite space with repeated-state checking

Time O(bm)
Space O(bm)
Optimal No

� Example 121 Greedy search can get stuck going from Iasi to Oradea:
Iasi → Neamt → Iasi → Neamt → · · ·

� Worst-case time same as depth-first search,

� Worst-case space same as breadth-first

� But a good heuristic can give dramatic improvement

c©: Michael Kohlhase 195
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Greedy Search is similar to UCS. Unlike the latter, the node evaluation function has nothing to
do with the nodes explored so far. This can prevent nodes from being enumerated systematically
as they are in UCS and BFS.

For completeness, we need repeated state checking as the example shows. This enforces complete
enumeration of state space (provided that it is finite), and thus gives us completeness.

Note that nothing prevents from all nodes nodes being searched in worst case; e.g. if the
heuristic function gives us the same (low) estimate on all nodes except where the heuristic mis-
estimates the distance to be high. So in the worst case, greedy search is even worse than BFS,
where d (depth of first solution) replaces m.

The search procedure cannot be optional, since actual cost of solution is not considered.
For both, completeness and optimality, therefore, it is necessary to take the actual cost of

partial solutions, i.e. the path cost, into account. This way, paths that are known to be expensive
are avoided.

A∗ search

� Idea: Avoid expanding paths that are already expensive (make use of actual cost)

The simplest way to combine heuristic and path cost is to simply add them.

� Definition 122 The evaluation function for A∗-search is given by f(n) = g(n) +h(n),
where g(n) is the path cost for n and h(n) is the estimated cost to goal from n.

� Thus f(n) is the estimated total cost of path through n to goal

� Definition 123 Best-First-Search with evaluation function g+h is called astarSearch
search.

c©: Michael Kohlhase 196

This works, provided that h does not overestimate the true cost to achieve the goal. In other
words, h must be optimistic wrt. the real cost h∗. If we are too pessimistic, then non-optimal
solutions have a chance.

A∗ search: Admissibility

� Definition 124 (Admissibility of heuristic) h(n) is called admissible if 0 ≤
h(n) ≤ h∗(n) for all nodes n, where h∗(n) is the true cost from n to goal.

(In particular: h(G) = 0 for goal G)

� Example 125 Straight-line distance never overestimates the actual road distance
(triangle inequality)

Thus hSLD(n) is admissible.

c©: Michael Kohlhase 197
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A∗ Search: Admissibility

� Theorem 126 A∗ search with admissible heuristic is optimal

� Proof: We show that sub-optimal nodes are never selected by A∗

P.1 Suppose a suboptimal goal G has been generated then we are in the following situ-
ation:

start

n

O G

P.2 Let n be an unexpanded node on a path to an optimal goal O, then

f(G) = g(G) since h(G) = 0
> g(O) since G suboptimal
= g(n) + h∗(n) n on optimal path
≥ g(n) + h(n) since h is admissible
= f(n)

P.3 Thus, f(G) > f(n) and astarSearch never selects G for expansion.
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A∗ Search Example

Arad

366=0+366
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A∗ Search Example

Arad

Sibiu

393=140+253

Timisoara

447=118+329

Zerind

449=75+374
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A∗ Search Example

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras

415=239+176

Oradea

671=291+380

R. Vilcea

413=220+193

c©: Michael Kohlhase 201
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A∗ Search Example

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras

415=239+176

Oradea

671=291+380

R. Vilcea

Craiova

526=366+160

Pitesti

417=317+100

Sibiu

553=300+253
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A∗ Search Example

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras Oradea

671=291+380

R. Vilcea

Craiova

526=366+160

Pitesti

417=317+100

Sibiu

553=300+253

Sibiu

591=338+253

Bucharest

450=450+0
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A∗ Search Example

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras Oradea

671=291+380

R. Vilcea

Craiova

526=366+160

Pitesti Sibiu

553=300+253

Sibiu

591=338+253

Bucharest

450=450+0

Bucharest

418=418+0

Craiova

615=455+160

Sibiu

607=414+193
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A∗ search: f -contours

� A∗ gradually adds “f -contours” of nodes

c©: Michael Kohlhase 205

A∗ search: Properties

Complete Yes (unless there are infinitely many nodes n with f(n) ≤ f(0))
Time Exponential in [relative error in h × length of solution]
Space Same as time (variant of BFS)
Optimal Yes

� A∗ expands all (some/no) nodes with f(n) < h∗(n)

� The run-time depends on how good we approximated the real cost h∗ with h.
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Since the availability of admissible heuristics is so important for informed search (particularly for
A∗), let us see how such heuristics can be obtained in practice. We will look at an example, and
then derive a general procedure from that.
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Admissible heuristics: Example 8-puzzle

� Example 127 Let h1(n) be the number of misplaced tiles in node n (h1(S) = 6)

� Example 128 Let h2(n) be the total manhattan distance from desired location of each
tile. (h2(S) = 2 + 0 + 3 + 1 + 0 + 1 + 3 + 4 = 14)

� Observation 129 (Typical search costs) (IDS =̂ iterative deepening search)

nodes explored IDS A∗(h1) A∗(h2)

d = 14 3,473,941 539 113
d = 24 too many 39,135 1,641
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Dominance

� Definition 130 Let h1 and h2 be two admissible heuristics we say that h2 dominates
h1 if h2(n) ≥ h1(n) or all n.

� Theorem 131 If h2 dominates h1, then h2 is better for search than h1.
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Relaxed problems

� Finding good admissible heuristics is an art!

� Idea: Admissible heuristics can be derived from the exact solution cost of a relaxed
version of the problem.

� Example 132 If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then we get heuristic h1.

� Example 133 If the rules are relaxed so that a tile can move to any adjacent square,
then we get heuristic h2.

� Key point: The optimal solution cost of a relaxed problem is not greater than the optimal
solution cost of the real problem

c©: Michael Kohlhase 209

Relaxation means to remove some of the constraints or requirements of the original problem, so
that a solution becomes easy to find. Then the cost of this easy solution can be used as an
optimistic approximation of the problem.
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3.5 Local Search

Local Search Problems

� Idea: Sometimes the path to the solution is irrelevant

� Example 134 (8 Queens Problem) Place 8 queens on a chess board, so that no
two queens threaten each other.

� This problem has various solutions, e.g. the one on the right

� Definition 135 A local search algorithm is a search algorithm that operates on a single
state, the current state (rather than multiple paths). (advantage: constant space)

� Typically local search algorithms only move to successors of the current state, and do
not retain search paths.

� Applications include: integrated circuit design, factory-floor layout, job-shop scheduling,
portfolio management, fleet deployment,. . .

c©: Michael Kohlhase 210

Local Search: Iterative improvement algorithms

� Definition 136 (Traveling Salesman Problem) Find shortest trip through set of
cities such that each city is visited exactly once.

� Idea: Start with any complete tour, perform pairwise exchanges

� Definition 137 (n-queens problem) Put n queens on n×n board such that no two
queens in the same row, columns, or diagonal.

� Idea: Move a queen to reduce number of conflicts

c©: Michael Kohlhase 211
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Hill-climbing (gradient ascent/descent)

� Idea: Start anywhere and go in the direction of the steepest ascent.

� Depth-first search with heuristic and w/o memory

procedure Hill−Climbing (problem) (∗ a state that is a local minimum ∗)
local current , neighbor (∗ nodes ∗)
current := Make−Node(Initial−State[problem])
loop

neighbor := <a highest−valued successor of current>
if Value[neighbor] < Value[current]
return [ current ]
current := neighbor

end if
end loop

end procedure

� Like starting anywhere in search tree and making a heuristically guided DFS.

� Works, if solutions are dense and local maxima can be escaped.
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In order to understand the procedure on a more intuitive level, let us consider the following
scenario: We are in a dark landscape (or we are blind), and we want to find the highest hill. The
search procedure above tells us to start our search anywhere, and for every step first feel around,
and then take a step into the direction with the steepest ascent. If we reach a place, where the
next step would take us down, we are finished.

Of course, this will only get us into local maxima, and has no guarantee of getting us into
global ones (remember, we are blind). The solution to this problem is to re-start the search at
random (we do not have any information) places, and hope that one of the random jumps will get
us to a slope that leads to a global maximum.

Example Hill-Climbing with 8 Queens

� Idea: Heuristic function h is number of queens that threaten each other.

� Example 138 An 8-queens state with heuristic cost estimate h = 17 showing h-values
for moving a queen within its column

� Problem: The state space has local minima. e.g. the board on the right has h = 1 but
every successor has h > 1.

c©: Michael Kohlhase 213
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Hill-climbing

� Problem: Depending on initial state, can get stuck on local maxima/minima and plateaux

� “Hill-climbing search is like climbing Everest in thick fog with amnesia”

� Idea: Escape local maxima by allowing some “bad” or random moves.

� Example 139 local search, simulated annealing. . .

� Properties: All are incomplete, non-optimal.

� Sometimes performs well in practice (if (optimal) solutions are dense)
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Recent work on hill-climbing algorithms tries to combine complete search with randomization to
escape certain odd phenomena occurring in statistical distribution of solutions.

Simulated annealing (Idea)

� Definition 140 Ridges are ascending successions of local maxima

� Problem: They are extremely difficult to navigate for local search algorithms

� Idea: Escape local maxima by allowing some “bad” moves, but gradually decrease their
size and frequency

� Annealing is the process of heating steel and let it cool gradually to give it time to grow
an optimal cristal structure.

� Simulated Annealing is like shaking a ping-pong ball occasionally on a bumpy surface to
free it. (so it does not get stuck)

� Devised by Metropolis et al., 1953, for physical process modelling

� Widely used in VLSI layout, airline scheduling, etc.

c©: Michael Kohlhase 215
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Simulated annealing (Implementation)
procedure Simulated−Annealing (problem,schedule) (∗ a solution state ∗)

local node, next (∗ nodes∗)
local T (∗a ‘‘ temperature ’’ controlling prob.˜of downward steps ∗)
current := Make−Node(Initial−State[problem])
for t :=1 to ∞
T := schedule[t ]

if T = 0 return current end if
next := <a randomly selected successor of current>

∆(E) := Value[next]−Value[current]
if ∆(E) > 0 current := next
else

current := next <only with probability> e∆(E)/T

end if
end for

end procedure

a problem schedule is a mapping from time to “temperature”
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Properties of simulated annealing

� At fixed “temperature” T , state occupation probability reaches Boltzman distribution

p(x) = αe
E(x)
kT

T decreased slowly enough =⇒ always reach best state x∗ because e
E(x∗)
kT

e
E(x)
kT =e

E(x∗)−E(x)
kT

� 1

for small T .

� Is this necessarily an interesting guarantee?
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Local beam search

� Idea: Keep k states instead of 1; choose top k of all their successors

� Not the same as k searches run in parallel!
(Searches that find good states recruit other searches to join them)

� Problem: quite often, all k states end up on same local hill

� Idea: Choose k successors randomly, biased towards good ones.
(Observe the close analogy to natural selection!)

c©: Michael Kohlhase 218
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Genetic algorithms (very briefly)

� Idea: Use local beam search (keep a population of k) randomly modify population
(mutation) generate successors from pairs of states (sexual reproduction) optimize a

fitness function (survival of the fittest)

�

c©: Michael Kohlhase 219

Genetic algorithms (continued)

� Problem: Genetic Algorithms require states encoded as strings (GPs use programs)

� Crossover helps iff substrings are meaningful components

� Example 141 (Evolving 8 Queens)

� GAs 6= evolution: e.g., real genes encode replication machinery!
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4 Logic Programming

4.1 Programming as Search: Introduction to Logic Programming and
PROLOG

We will now learn a new programming paradigm: “logic programming” (also called “Declarative
Programming”), which is an application of the search techniques we looked at last, and the logic
techniques. We are going to study ProLog (the oldest and most widely used) as a concrete example
of the ideas behind logic programming.

Logic Programming is a programming style that differs from functional and imperative program-
ming in the basic procedural intuition. Instead of transforming the state of the memory by issuing
instructions (as in imperative programming), or comupting the value of a function on some ar-
guments, logic programming interprets the program as a body of knowledge about the respective
situation, which can be queried for consequences. This is actually a very natural intuition; after
all we only run (imperative or functional) programs if we want some question answered.
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Logic Programming

� Idea: Use logic as a programming language!

� We state what we know about a problem (the program) and then ask for results (what
the program would compute)

� Example 142
Program Leibniz is human x+ 0 = x

Sokrates is is human If x+ y = z then x+ s(y) = s(z)
Sokrates is a greek 3 is prime
Every human is fallible

Query Are there fallible greeks? is there a z with s(s(0)) + s(0) = z

Answer Yes, Sokrates! yes s(s(s(0)))

� How to achieve this?: Restrict the logic calculus sufficiently that it can be used as
computational procedure.

� Slogan: Computation = Logic + Control ([Kowalski ’73])

� We will use the programming language ProLog as an example
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ProLog is a simple logic programming language that exemplifies the ideas we want to discuss quite
nicely. We will not introduce the language formally, but in concrete examples as we explain the
theortical concepts. For a complete reference, please consult the online book by Blackburn & Bos &
Striegnitz http://www.coli.uni-sb.de/~kris/learn-prolog-now/.

Of course, this the whole point of writing down a knowledge base (a program with knowledge about
the situation), if we do not have to write down all the knowledge, but a (small) subset, from which
the rest follows. We have already seen how this can be done: with logic. For logic programming
we will use a logic called “first-order logic” which we will not formally introduce here. We have
already seen that we can formulate propositional logic using terms from an abstract data type
instead of propositional variables. For our purposes, we will just use terms with variables instead
of the ground terms used there. 6 EdNote(6)

6EdNote: reference
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Representing a Knowledge base in ProLog

� A knowledge base is represented (symbolically) by a set of facts and rules.

� Definition 143 A fact is a statement written as a term that is unconditionally true of
the domain of interest. (write with a term followed by a “.”)

� Example 144 We can state that Mia is a woman as woman(mia).

� Definition 145 A rule states information that is conditionally true in the domain.

� Example 146 Write “something is a car if it has a motor and four wheels” as
car(X) : −has motor(X), has wheels(X, 4) (variables are upper-case)

this is just an ASCII notation for (m(x) ∧ w(x, 4))⇒ car(x)

� Definition 147 The knowledge base given by a set of facts and rules is that set of facts
that can be derived from it by Modus Ponens (MP) and ∧I.

A A⇒ B
MP

B

A B
∧I

A ∧B
A

Subst
[B/X](A)
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Knowledge Base (Example)

� Example 148 car(c ). is in the knowlege base generated by

has motor(c).
has wheels(c ,4).
car(X):− has motor(X),has wheels(X,4).

m(c) w(c, 4)
∧I

m(c) ∧ w(c, 4)

(m(x) ∧ w(x, 4))⇒ car(x)
Subst

(m(c) ∧ w(c, 4))⇒ car(c)
MP

car(c)

c©: Michael Kohlhase 223
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Querying the Knowledge base

� Idea: We want to see whether a fact is in the knowledge base.

� Definition 149 A query or goal is a statement of which we want to know whether it is
in the knowledge base. (write as ?− A., if A statement)

� Problem: Knowledge bases can be big and even infinite.

� Example 150 The the knowledge base induced by the program

nat(zero ).
nat(s(X)) :− nat(X).

is the set {nat(zero), nat(s(zero)), nat(s(s(zero))), . . .}.

� Idea: interpret this as a search problem.

� state = tuple of goals; goal state = empty list (of goals).

� next(〈G, R1, . . . Rl〉) := 〈σ(B1), . . ., σ(Bm), R1, . . ., Rl〉 (backchaining) if there is a
rule H : −B1, . . . Bm. and a substitution σ with σ(H) = σ(G).

?− nat(s(s(zero ))).
?− nat(s(zero )).
?− nat(zero).
Yes

� If a query contains variables, then ProLog will return an answer substitution.

has wheels(mybmw,4).
has motor(mybmw).
car(X):−has wheels(X,4),has motor(X).
?− car(Y)
?− has wheels(Y,4),has motor(Y).
Y = mybmw
?− has motor(mybmw).
Y = mybmw
Yes

� If no instance of the statement in a query can be derived from the knowledge base, then
the ProLog interpreter reports failure.

?− nat(s(s (0))).
?− nat(s(0)).
?− nat(0).
FAIL
No
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We will now discuss how to use a ProLog interpreter to get to know the language. The SWI
ProLog interpreter can be downloaded from http://www.swi-prolog.org/. To start the ProLog

interpreter with pl or prolog or swipl from the shell. The SWI manual is available at http://gollem.
science.uva.nl/SWI-Prolog/Manual/

We will introduce working with the interpreter using unary natural numbers as examples: we first
add the fact 1 to the knowledge base

unat(zero).

which asserts that the predicate unat
2 is true on the term zero. Generally, we can add a fact to the

1for “unary natural numbers”; we cannot use the predicate nat and the constructor functions here, since their
meaning is predefined in ProLog

2for “unary natural numbers”.
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knowledge base either by writing it into a file (e.g. example.pl) and then “consulting it” by writing
one of the following commands into the interpreter:

[example]
consult(’example.pl’).

or by directly typing

assert(unat(zero)).

into the ProLog interpreter. Next tell ProLog about the following rule

assert(unat(suc(X)) :− unat(X)).

which gives the ProLog runtime an initial (infinite) knowledge base, which can be queried by

?− unat(suc(suc(zero))).
Yes

Running ProLog in an emacs window is incredibly nicer than at the command line, because you
can see the whole history of what you have done. Its better for debugging too. If you’ve never
used emacs before, it still might be nicer, since its pretty easy to get used to the little bit of emacs
that you need. (Just type “emacs \&” at the UNIX command line to run it; if you are on a remote
terminal like putty, you can use “emacs −nw”.).

If you don’t already have a file in your home directory called “.emacs” (note the dot at the front),
create one and put the following lines in it. Otherwise add the following to your existing .emacs

file:

(autoload ’run-prolog "prolog" "Start a Prolog sub-process." t)

(autoload ’prolog-mode "prolog" "Major mode for editing Prolog programs." t)

(setq prolog-program-name "swipl") ; or whatever the prolog executable name is

(add-to-list ’auto-mode-alist ’("\\pl$" . prolog-mode))

The file prolog. el, which provides prolog−mode should already be installed on your machine, otherwise
download it at http://turing.ubishops.ca/home/bruda/emacs-prolog/

Now, once you’re in emacs, you will need to figure out what your “meta” key is. Usually its the
alt key. (Type “control” key together with “h” to get help on using emacs). So you’ll need a
“meta−X” command, then type “run−prolog”. In other words, type the meta key, type “x”, then
there will be a little window at the bottom of your emacs window with “M−x”, where you type
run−prolog

3. This will start up the SWI ProLog interpreter, . . . et voilà!
The best thing is you can have two windows “within” your emacs window, one where you’re

editing your program and one where you’re running ProLog. This makes debugging easier.

Depth-First Search with Backtracking

� So far, all the examples led to direct success or to failure. (simpl. KB)

� Search Procedure: top-down, left-right depth-first search

� Work on the queries in left-right order.

� match first query with the head literals of the clauses in the program in top-down
order.

� if there are no matches, fail and backtrack to the (chronologically) last point.

� otherwise backchain on the first match , keep the other matches in mind for
backtracking. (backtracking points)

c©: Michael Kohlhase 225
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Note: We have seen before7 that depth-first search has the problem that it can go into loops. EdNote(7)
And in fact this is a necessary feature and not a bug for a programming language: we need to
be able to write non-terminating programs, since the langugage would not be Turing-complete
ogtherwise. The argument can be sketched as follows: we have seen that for Turing machines the
halting problem8 is undecidable. So if all ProLog programs were terminating, then ProLog would EdNote(8)
be weaker than Turing machines and thus not Turing complete.

Backtracking by Example
has wheels( mytricycle ,3).
has wheels( myrollerblade ,3).
has wheels(mybmw,4).
has motor(mybmw).
car(X):−has wheels(X,3),has motor(X). % cars sometimes have 3 wheels
car(X):−has wheels(X,4),has motor(X).
?− car(Y).
?− has wheels(Y,3),has motor(Y). % backtrack point 1
Y = mytricycle}} % backtrack point 2
?− has motor(mytricycle).
FAIL % fails , backtrack to 2
Y = myrollerblade % backtrack point 2
?− has motor(myrollerblade).
FAIL % fails , backtrack to 1
?− has wheels(Y,4),has motor(Y).
Y = mybmw
?− has motor(mybmw).
Y=mybmw
Yes
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Can We Use This For Programming?

� Question: What about functions? E.g. the addition function?

� Question: We do not have (binary) functions, in ProLog

� Idea (back to math): use a three-place predicate.

Example 151 add(X,Y,Z) stands for X+Y=Z

� Now we can directly write the recursive equations X+0 = X (base case) and X+s(Y ) =
s(X + Y ) into the knowledge base.

add(X,zero,X).
add(X,s(Y),s(Z)) :− add(X,Y,Z).

� similarly with multiplication and exponentiation.

mult(X,o,o).
mult(X,s(Y),Z) :− mult(X,Y,W), add(X,W,Z).
expt(X,o,s(o )).
expt(X,s(Y),Z) :− expt(X,Y,W), mult(X,W,Z).
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Note: Viewed through the right glasses logic programming is very similar to functional program-
ming; the only difference is that we are using n+1-ary relations rather than n-ary functions. To see

3Type “control” key together with “h” then press “m” to get an exhaustive mode help.
7EdNote: reference
8EdNote: reference
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how this works let us consider the addition function/relation example above: instead of a binary
function + we program a ternary relation add, where relation add(X,Y, Z) means X + Y = Z.
We start with the same defining equations for addition, rewriting them to relational style.

The first equation is straight-foward via our correspondance and we get the ProLog fact
add(X, zero, X).. For the equation X + s(Y ) = s(X + Y ) we have to work harder, the straight-
forward relational translation add(X, s(Y ), s(X + Y )) is impossible, since we have only partially
replaced the function + with the relation add. Here we take refuge in a very simple trick that we
can always do in logic (and mathematics of course): we introduce a new name Z for the offending
expression X + Y (using a variable) so that we get the fact add(X, s(Y ), s(Z)). Of course this is
not universally true (remember that this fact would say that “X + s(Y ) = s(Z) for all X, Y , and
Z”), so we have to extend it to a ProLog rule add(X, s(Y), s(Z)) : −add(X, Y, Z) which relativizes to
mean “X + s(Y ) = s(Z) for all X, Y , and Z with X + Y = Z”.

Indeed the rule implements addition as a recursive predicate, we can see that the recursion
relation is terminating, since the left hand sides are have one more constructor for the successor
function. The examples for multiplication and exponentiation can be developed analogously, but
we have to use the naming trick twice.

More Examples from elementary Arithmetics

� Example 152 We can also use the add relation for subtraction without changing the
implementation. We just use variables in the “input positions” and ground terms in the
other two (possibly very inefficient since “generate-and-test approach”)

?−add(s(zero),X,s(s(s(zero )))).
X = s(s(zero))
Yes

� Example 153 Computing the the nth Fibonacci Number (0,1,1,2,3,5,8,13,. . . ; add the
last two to get the next), using the addition predicate above.

fib (zero , zero ).
fib (s(zero ), s(zero )).
fib (s(s(X)),Y):−fib(s(X),Z), fib (X,W),add(Z,W,Y).

� Example 154 using ProLog’s internal arithmetic: a goal of the form ?− D is e. where
e is a ground arithmetic expression binds D to the result of evaluating e.

fib (0,0).
fib (1,1).
fib (X,Y):− D is X − 1, E is X − 2,fib(D,Z), fib (E,W), Y is Z + W.
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Note: Note that the is relation does not allow “generate-and-test” inversion as it insists on the
right hand being ground. In our example above, this is not a problem, if we call the fib with the
first (“input”) argument a ground term. Indeed, if match the last rule with a goal ?− fib(g, Y).,
where g is a ground term, then g− 1 and g− 2 are ground and thus D and E are bound to the
(ground) result terms. This makes the input arguments in the two recursive calls ground, and
we get ground results for Z and W, which allows the last goal to succeed with a ground result for
Y. Note as well that re-ordering the body literals of the rule so that the recursive calls are called
before the computation literals will lead to failure.

4.2 Logic Programming as Resolution Theorem Proving
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�

We know all this already

� Goals, goal-sets, rules, and facts are just clauses. (so-called Horn clauses)

� Observation 155 (rule) H : −B1, . . . , Bn. corresponds to H ∨ ¬(B1) ∨ . . . ∨ ¬(Bn)
(head the only positive literal)

� Observation 156 (goal setid) ?− G1, . . . , Gn. corresponds to ¬(G1), . . . ,¬(Gn)

� Observation 157 (fact) F. corresponds to the unit clause F.

� Definition 158 A Horn clause is a clause with at most one positive literal.

Note: backchaining becomes (hyper)-resolution (special case for rule with facts)

PT ∨A P F ∨B

A ∨B

H : −B1, . . . , Bn. B1 . . . Bn

H

positive unit-resulting hyperresolution (PURR)
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PROLOG (Horn clauses)

� Logic programming by resolution theorem proving

� Question: With full predicate logic (with equality)?

� Answer: No, since

� Search spaces are immense

� Control (of proof search =̂ program) cannot be understood/affected by the program-
mer.

� problems with termination
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PROLOG (Horn clauses)

� Definition 159 Each clause contains at most one positive literal

� B1 ∨ . . . ∨Bn ∨ ¬(A) (A : −B1, . . ., Bn)

� Rule clause: fallible(X) : −human(X)

� Fact clause: human(sokrates).

� Program: set of rule and fact clauses

� Query: ?− fallible(X), greek(X).
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PROLOG (SLD Resolution)

� Strategy for Resolution: SLDNF (LUSH)

� Selected Literal Definite clauses

� Linear resolution
(Always continue work with the focussed clause)

� Select the lefmost unsolved positive literal

� Always resolve on the positive literal

� Theorem 160 (Strongly) complete on horn clauses

� Each instance of the query that is entailed by the program is subsumed by a positive
answer.
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PROLOG: Our Example

� Program:

human(sokrates).
human(leibniz ).
greek( sokrates ).
fallible (X) :− human(X).

� Example 161 (Query) ?− fallible(X), greek(X).

� Answer substitution: [sokrates/X]
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Why Only Horn Clauses?

� General clauses of the form A1,\ldots ,An :− B1,\ldots,Bn.

� e.g. greek( sokrates ), greek( perikles )

� Question: Are there fallible greeks?

� Indefinite answer: Yes, Perikles or Sokrates

� Warning: how about Sokrates and Perikles?

� e.g. greek( sokrates ), roman(sokrates):−.

� Query: Are there fallible greeks?

� Answer: Yes, Sokrates, if he is not a roman

� Is this abduction?????

c©: Michael Kohlhase 234
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Three Principal Modes of Inference

� Deduction: knowledge extension
rains⇒ wet street rains

D
wet street

� Abduction explanation
rains⇒ wet street wet street

A
rains

� Induction learning rules
wet street rains

I
rains⇒ wet street
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4.2.1 First-Order Unification

We will now look into the problem of finding a substitution σ that make two terms equal (we
say it unifies them) in more detail. The presentation of the unification algorithm we give here
“transformation-based” this has been a very influential way to treat certain algorithms in theo-
retical computer science.

A transformation-based view of algorithms: The “transformation-based” view of algorithms di-
vides two concerns in presenting and reasoning about algorithms according to Kowalski’s slogan9 EdNote(9)

computation = logic + control

The computational paradigm highlighted by this quote is that (many) algorithms can be thought
of as manipulating representations of the problem at hand and transforming them into a form
that makes it simple to read off solutions. Given this, we can simplify thinking and reasoning
about such algorithms by separating out their “logical” part, which deals with is concerned with
how the problem representations can be manipulated in principle from the “control” part, which
is concerned with questions about when to apply which transformations.

It turns out that many questions about the algorithms can already be answered on the “logic”
level, and that the “logical” analysis of the algorithm can already give strong hints as to how to
optimize control.

In fact we will only concern ourselves with the “logical” analysis of unification here.

The first step towards a theory of unification is to take a closer look at the problem itself. A first
set of examples show that we have multiple solutions to the problem of finding substitutions that
make two terms equal. But we also see that these are related in a systematic way.

9EdNote: find the reference, and see what he really said
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Unification (Definitions)

� Problem: For given terms A and B find a substitution σ, such that σ(A) = σ(B).

� term pairs A=?B e.g. f(X)=?f(g(Y ))

� Solutions: [g(a)/X], [a/Y ]
[g(g(a))/X], [g(a)/Y ]
[g(Z)/X], [Z/Y ]

� are called unifiers, U((A=?B)) := {σ | σ(A) = σ(B)}

Idea: find representatives in U((A=?B)), that generate the set of solutions

�� Definition 162 Let σ and θ be substitutions and W ⊆ Vι, we say that a σ more general
than θ (on W write σ ≤ θ[W ]), iff there is a substitution ρ, such that θ = ρ ◦ σ[W ],
where σ = ρ[W ], iff σ(X) = ρ(X) for all X ∈W .

� Definition 163 σ is called a most general unifier of A and B, iff it is minimal in
U((A=?B)) wrt. ≤ [free(A) ∪ free(B)].

c©: Michael Kohlhase 236

The idea behind a most general unifier is that all other unifiers can be obtained from it by (further)
instantiation. In an automated theorem proving setting, this means that using most general
unifiers is the least committed choice — any other choice of unifiers (that would be necessary for
completeness) can later be obtained by other substitutions.

Note that there is a subtlety in the definition of the ordering on substitutions: we only compare
on a subset of the variables. The reason for this is that we have defined substitutions to be total
on (the infinite set of) variables for flexibility, but in the applications (see the definition of a most
general unifiers), we are only interested in a subset of variables: the ones that occur in the initial
problem formulation. Intuitively, we do not care what the unifiers do off that set. If we did not
have the restriction to the set W of variables, the ordering relation on substitutions would become
much too fine-grained to be useful (i.e. to guarantee unique most general unifiers in our case).

Now that we have defined the problem, we can turn to the unification algorithm itself. We will
define it in a way that is very similar to logic programming: we first define a calculus that generates
“solved forms” (formulae from which we can read off the solution) and reason about control later.
In this case we will reason that control does not matter.
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Unification (Equational Systems)

� Idea: Unification is equation solving.

� Definition 164 We call a formula A1=?B1 ∧ . . . ∧An=?Bn an equational system.

� We consider equational systems as sets of equations (∧ is ACI), and equations as two-
element multisets (=? is C).

� Definition 165 We say that X1=?B1 ∧ . . . ∧Xn=?Bn is a solved form, iff the Xi are
distinct and Xi /∈ free(Bj).

� Lemma 166 If E = X1=?B1 ∧ . . . ∧Xn=?Bn is a solved form, then E has the unique
most general unifier σE := [B1/X1], . . ., [Bn/Xn].

� Proof:

P.1 Let θ ∈ U(E), then θ(Xi) = θ(Bi) = θ ◦ σE((Xi))

P.2 and thus θ = θ ◦ σE [supp(σ)].
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In principle, unification problems are sets of equations, which we write as conjunctions, since all of
them have to be solved for finding a unifier. Note that it is not a problem for the “logical view” that
the representation as conjunctions induces an order, since we know that conjunction is associative,
commutative and idempotent, i.e. that conjuncts do not have an intrinsic order or multiplicity,
if we consider two equational problems as equal, if they are equivalent as propositional formulae.
In the same way, we will abstract from the order in equations, since we know that the equality
relation is symmetric. Of course we would have to deal with this somehow in the implementation
(typically, we would implement equational problems as lists of pairs), but that belongs into the
“control” aspect of the algorithm, which we are abstracting from at the moment.

It is essential to our “logical” analysis of the unification algorithm that we arrive at equational
problems whose unifiers we can read off easily. Solved forms serve that need perfectly as the
Lemma10 shows.11 EdNote(10)

EdNote(11)Given the idea that unification problems can be expressed as formulae, we can express the algo-
rithm in three simple rules that transform unification problems into solved forms (or unsolvable
ones).

10EdNote: reference
11EdNote: say something about the occurs-in-check,...
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Unification Algorithm

� Definition 167 Inference system U

E ∧ f(A1, . . . ,An)=?f(B1, . . . ,Bn)
Udec

E ∧A1=?B1 ∧ . . . ∧An=?Bn

E ∧A=?A
Utriv

E

E ∧X=?A X /∈ free(A) X ∈ free(E)
Uelim

[A/X](E) ∧X=?A

� Lemma 168 U is correct (E `U F implies U(F) ⊆ U(E))

� Lemma 169 U is complete (E `U F implies U(E) ⊆ U(F))

� Lemma 170 U is confluent (order of derivations does not matter)

� Corollary 171 First-Order Unification is unitary (unique most general unifiers)
(U trivially branching)
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Unification Examples

Example 172 Two similar unification problems

f(g(x, x), h(a))=?f(g(a, z), h(z))
Udec

g(x, x)=?g(a, z) ∧ h(a)=?h(z)
Udec

x=?a ∧ x=?z ∧ h(a)=?h(z)
Udec

x=?a ∧ x=?z ∧ a=?z
Uelim

x=?a ∧ a=?z ∧ a=?z
Uelim

x=?a ∧ z=?a ∧ a=?a
Utriv

x=?a ∧ z=?a

f(g(x, x), h(a))=?f(g(b, z), h(z))
Udec

g(x, x)=?g(b, z) ∧ h(a)=?h(z)
Udec

x=?b ∧ x=?z ∧ h(a)=?h(z)
Udec

x=?b ∧ x=?z ∧ a=?z
Uelim

x=?b ∧ b=?z ∧ a=?z
Uelim

x=?a ∧ z=?a ∧ a=?b

MGU: [a/x],[a/z] not unifiable
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Unification (Termination)

� Definition 173 Let S and T be multisets and ≺ a partial ordering on S ∪ T . Then we
define S ≺m T , iff S = C ] {s} and T = C ] T ′, where s ≺ t for all t ∈ T ′. We call
≺m the multiset ordering induced by ≺.

� Lemma 174 If ≺ is total/terminating on S, then ≺m is total/terminating on P(S).

� Lemma 175 U is terminating (any U-derivation is finite)

� Proof:

P.1 Let µ(E) := 〈m,N , n〉, where

� m is the number of unsolved variables in E
� N is the multi-set of term depths in E
� n the number of term pairs in E

P.2 The lexicographic order ≺ on triples µ(E) is decreased by all inference rules.
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Unification (decidable)

� Definition 176 We call an equational problem E U-reducible, iff there is a U-step
E `U F from E .

� Lemma 177 If E is unifiable but not solved, then it is U-reducible

� Proof:

P.1 There is an unsolved pair A=?B in E = E ′ ∧A=?B.

P.2 we have two cases

P.2.1 A,B /∈ Vι:
P.2.1.1 then A = f(A1 . . .An) and B = f(B1 . . .Bn), and thus Udec is applicable

P.2.2 A = X ∈ (Vι ∩ free(E)):

P.2.2.1 then Uelim (if B 6= X) or Utriv (if B = X) is applicable.

� Corollary 178 Unification is decidable in PL1

� Proof Idea: U-irreducible set of equations are either solved or unsolvable
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4.3 Topics in Logic Programming
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Adding Lists to ProLog

� Lists are represented by terms of the form [a,b,c,. . .]

� first/rest representation [F|R], where R is a rest list.

� predicates for member, append and reverse of lists in default ProLog representation.

member(X,[X| ]).
member(X,[ |R]):−member(X,R).
append([],L,L).
append([X|R],L,[X|S]):−append(R,L,S).
reverse ([],[]).
reverse ([X|R],L):−reverse(R,S),append(S,[X],L).
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Relational Programming Techniques

� Parameters have no unique direction “in” or “out”

:− rev(L ,[1,2,3]).
:− rev ([1,2,3], L1).
:− rev ([1, X ],[2, Y]).

� Symbolic programming by structural induction

rev ([],[]).
rev ([X,Xs],Ys) :− ...

� Generate and test
sort (Xs,Ys) :− perm(Xs,Ys), ordered(Ys).

c©: Michael Kohlhase 243
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Use ProLog for Talking/Programming about Logics

� Idea: We will use PLNQ (prop. logic where prop. variables are ADT terms)

� represent the ADT as facts of the form

constant(mia).
pred( love ,2).
pred(run ,1).
fun( father ,1)

this licenses ProLog terms like run(mia). and love(mia, father (mia)).

� represent propositional connectives as ProLog operators, which we declare with the fol-
lowing declarations.

:− op(900,yfx,<>). % equivalence
:− op(900,yfx,>). % implication
:− op(850,yfx ,\/). % disjunction
:− op(800,yfx,\&). % conjunction
:− op(750,fx ,˜). % negation

The first argument of op is the operator precedence, the second the fixity. This licenses
ProLog terms like X > Y. and ˜(X).

� Use the ProLog built-in predicate =.. to deconstruct terms: a literal f(a,b)=..Z binds Z to
the list [ f ,a,b], i.e. the first element of the list is the function/predicate symbol, followed
by the arguments.
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Example: A complete first-order Tableau Theorem Prover
prove((E,F),A,B,C,D) :− !,prove(E,[F|A],B,C,D).
prove((E;F),A,B,C,D) :− !,prove(E,A,B,C,D),prove(F,A,B,C,D).
prove( all ( I ,J),A,B,C,D) :− !,
\+length(C,D),copy term((I,J,C),(G,F,C)),
append(A,[ all ( I ,J )], E),prove(F,E,B,[G|C],D).

prove(A, ,[ C|D], , ) :−
((A= −(B);−(A)=B) −> (unify(B,C);prove(A,[],D, , ))).

prove(A,[E|F],B,C,D) :− prove(E,F,[A|B],C,D).
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5 The Information and Software Architecture of the Inter-
net and WWW

We will now look at the information and software architecture of the Internet and the World Wide
Web (WWW) from the ground up.
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The Internet and the Web

� Definition 179 The Internet is a worldwide computer network that connects hundreds
of thousands of smaller networks. (The mother of all networks)

� Definition 180 The World Wide Web is the interconnected system of servers that
support multimedia documents, i.e. the multimedia part of the Internet.

� The Internet and WWWeb form critical infrastructure for modern society and commerce.

� The Internet/WWW is huge:

Year Web Deep Web eMail

1999 21 TB 100 TB 11TB
2003 167 TB 92 PB 447 PB
2010 ???? ????? ?????

� We want to understand how it works (services and scalability issues)

.
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Units of Information
Bit (b) binary digit
Byte (B) 8 bit
2 Bytes A Unicode character.
10 Bytes your name.
Kilobyte (KB) 1,000 bytes OR 103 bytes
2 Kilobytes A Typewritten page.
100 Kilobytes A low-resolution photograph.
Megabyte (MB) 1,000,000 bytes OR 106 bytes
1 Megabyte A small novel OR a 3.5 inch floppy disk.
2 Megabytes A high-resolution photograph.
5 Megabytes The complete works of Shakespeare.
10 Megabytes A minute of high-fidelity sound.
100 Megabytes 1 meter of shelved books.
500 Megabytes A CD-ROM.
Gigabyte (GB) 1,000,000,000 bytes or 109 bytes
1 Gigabyte a pickup truck filled with books.
20 Gigabytes A good collection of the works of Beethoven.
100 Gigabytes A library floor of academic journals.

Terabyte (TB) 1,000,000,000,000 bytes or 1012 bytes
1 Terabyte 50000 trees made into paper and printed.
2 Terabytes An academic research library.
10 Terabytes The print collections of the U.S. Library of Congress.
400 Terabytes National Climactic Data Center (NOAA) database.
Petabyte (PB) 1,000,000,000,000,000 bytes or 1015 bytes
1 Petabyte 3 years of EOS data (2001).
2 Petabytes All U.S. academic research libraries.
20 Petabytes Production of hard-disk drives in 1995.
200 Petabytes All printed material (ever).
Exabyte (EB) 1,000,000,000,000,000,000 bytes or 1018 bytes
2 Exabytes Total volume of information generated in 1999.
5 Exabytes All words ever spoken by human beings.
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A Timeline of the Internet and the Web

� Early 1960s: introduction of the network concept

� 1970: ARPANET, scholarly-aimed networks

� 62 computers in 1974

� 1975: Ethernet developed by Robert Metcalf

� 1980: TCP/IP

� 1982: The first computer virus, Elk Cloner, spread via Apple II floppy disks

� 500 computers in 1983

� 28,000 computers in 1987

� 1989: Web invented by Tim Berners-Lee

� 1990: First Web browser based on HTML developed by Berners-Lee

� Early 1990s: Andreesen developed the first graphical browser (Mosaic)

� 1993: The US White House launches its Web site

� 1993 –: commercial/public web explodes
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We will now look at the information and software architecture of the Internet and the World Wide
Web (WWW) from the ground up. We will show aspects of how the Internet can cope with this
enormous growth of numbers of computers, connections and services.

5.1 Internet Basics

The growth of the Internet rests on three design decisions taken very early on. The Internet

1. is a packet-switched network rather than a network, where computers communicate via
dedicated physical communication lines.

2. is a network, where control and administration are decentralized as much as possible.

3. is an infrastructure that only concentrates on transporting packets/datagrams between com-
puters. It does not provide special treatment to any packets, or try to control the content
of the packets.

The first design decision is a purely technical one that allows the existing communication lines to
be shared by multiple users, and thus save on hardware resources. The second decision allows the
administrative aspects of the Internet to scale up. Both of these are crucial for the scalability of
the Internet. The third decision (often called “net neutrality”) is hotly debated. The defenders
cite that net neutrality keeps the Internet an open market that fosters innovation, where as
the attackers say that some uses of the network (illegal file sharing) disprortionately consum
resources.
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Package-Switched Networks

� Definition 181 A packet-switched network divides messages into small network packets
that are transported separately and re-assembled at the target.

� Advantages:

� many users can share the same physical communication lines.

� packets can be routed via different paths. (bandwidth utilization)

� bad packets can be re-sent, while good ones are sent on. (network reliability)

� packets can contain information about their sender, destination.

� no central management instance necessary (scalability, resilience)
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These ideas are implemented in the Internet Protocol Suite, which we will present in the rest of the
section. A main idea of this set of protocols is its layered design that allows to separate concerns
and implement functionality separately.
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The Intenet Protocol Suite

� Definition 182 The Internet Protocol Suite (commonly known as TCP/IP) is the set of
communications protocols used for the Internet and other similar networks. It structured
into 4 layers.

Layer e.g.

Application Layer HTTP, SSH
Transport Layer UDP,TCP
Internet Layer IPv4, IPsec
Link Layer Ethernet, DSL

� Layers in TCP/IP: TCP/IP uses encapsulation to provide abstraction of protocols and
services.
An application (the highest level of the model) uses a set of protocols
to send its data down the layers, being further encapsulated at each level.

� Example 183 (TCP/IP Scenario) Consider a situation with two Internet host
computers communicate across local network boundaries.

� network boundaries are constituted by internetworking gateways (routers).

� Definition 184 A router is a purposely customized computer used to forward data
among computer networks beyond directly connected devices.

� A router implements the link and internet layers only and has two network connections.
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We will now take a closer look at each of the layers shown above, starting with the lowest
one.

Instead of going into network topologies, protocols, and their implementation into physical signals
that make up the link layer, we only discuss the devices that deal with them. Network Interface
controllers are specialized hardware that encapsulate all aspects of link-level communication, and
we take them as black boxes for the purposes of this course.

Network Interfaces

� The nodes in the Internet are computers, the edges communication channels

� Definition 185 A network interface controller (NIC) is a hardware device that handles
an interface to a computer network and thus allows a network-capable device to access
that network.

� Definition 186 Each NIC contains a unique number, the media access control address
(MAC address), identifies the device uniquely on the network.

� MAC addresses are usually 48-bit numbers issued by the manufacturer, they are usually
displayed to humans as six groups of two hexadecimal digits, separated by hyphens (-) or
colons (:), in transmission order, e.g. 01-23-45-67-89-AB, 01:23:45:67:89:AB.

� Definition 187 A network interface is a software component in the operating system
that implements the higher levels of the network protocol (the NIC handles the lower
ones).

Layer e.g.

Application Layer HTTP, SSH
Transport Layer TCP
Internet Layer IPv4, IPsec
Link Layer Ethernet, DSL

� A computer can have more than one network interface. (e.g. a router)
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The next layer ist he Internet Layer.
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Internet Protocol and IP Addresses

� Definition 188 The Internet Protocol (IP) is a protocol used for communicating data
across a packet-switched internetwork. The Internet Protocol defines addressing methods
and structures for datagram encapsulation. The Internet Protocol also routes data packets
between networks

� Definition 189 An Internet Protocol (IP) address is a numerical label that is assigned
to devices participating in a computer network, that uses the Internet Protocol for com-
munication between its nodes.

� An IP address serves two principal functions: host or network interface identification and
location addressing.

� Definition 190 The global IP address space allocations are managed by the Internet
Assigned Numbers Authority (IANA), delegating allocate IP address blocks to five Re-
gional Internet Registries (RIRs) and further to Internet service providers (ISPs).

� Definition 191 The Internet mainly uses Internet Protocol Version 4 (IPv4) [RFC80],
which uses 32-bit numbers (IPv4 addresses) for identification of network interfaces of
Computers.

� IPv4 was standardized in 1980, it provides 4,294,967,296 (232) possible unique addresses.
With the enormous growth of the Internet, we are fast running out of IPv4 addresses

� Definition 192 Internet Protocol Version 6 (IPv6) [DH98], which uses 128-bit numbers
(IPv6 addresses) for identification.

� Although IP addresses are stored as binary numbers, they are usually displayed in human-
readable notations, such as 208.77.188.166 (for IPv4), and 2001:db8:0:1234:0:567:1:1 (for
IPv6).
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The Internet infrastructure is currently undergoing a dramatic retooling, because we are moving
from IPv4 to IPv6 to counter the depletion of IP addresses. Note that this means that all routers
and switches in the Internet have to be upgraded. At first glance, it would seem that that this
problem could have been avoided if we had only anticipated the need for more the 4 million
computers. But remember that TCP/IP was developed at a time, where the Internet did not exist
yet, and it’s precursor had about 100 computers. Also note that the IP addresses are part of every
packet, and thus reserving more space for them would have wasted bandwidth in a time when it
was scarce.
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The Transport Layer

� Definition 193 The transport layer is responsible for delivering data to the appropriate
application process on the host computers by forming data packets, and adding source
and destination port numbers in the header.

� Definition 194 The internet protocol mainly suite uses the Transmission Control Pro-
tocol (TCP) and Transmission Control Protocol (UDP) protocols at the transport layer.

� TCP is used for communication, UDP for multicasting and broadcasting.

� TCP supports virtual circuits, i.e. provide connection oriented communication over an
underlying packet oriented datagram network. (hide/reorder packets)

� TCP provides end-to-end reliable communication (error detection & automatic repeat)
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The Application Layer

� Definition 195 The application layer of the internet protocol suite contains all protocols
and methods that fall into the realm of process-to-process communications via an Internet
Protocol (IP) network using the Transport Layer protocols to establish underlying host-
to-host connections.

� Example 196 (Some Application Layer Protocols and Services)
BitTorrent Peer-to-peer Atom Syndication

DHCP Dynamic Host Configuration DNS Domain Name System

FTP File Transfer Protocol HTTP HyperText Transfer

IMAP Internet Message Access IRCP Internet Relay Chat

NFS Network File System NNTP Network News Transfer

NTP Network Time Protocol POP Post Office Protocol

RPC Remote Procedure Call SMB Server Message Block

SMTP Simple Mail Transfer SSH Secure Shell

TELNET Terminal Emulation WebDAV Write-enabled Web
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Domain Names

� Definition 197 The DNS (Domain Name System) is a distributed set of servers that
provides the mapping between (static) IP addresses and domain names.

� Example 198 e.g. www.kwarc.info stands for the IP address 212.201.49.189.

� networked computers can have more than one DNS name. (virtual servers)

� Domain names must be registered to ensure uniqueness
(registration fees vary, cybersquatting)

� Definition 199 ICANN is a non-profit organization was established to regulate human-
friendly domain names. It approves domain name registrars and delegates the actual
registration to them.
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Domain Name Top-Level Domains

� .com (.commercial) is a generic top-level domain. It was one of the original top-level
domains, and has grown to be the largest in use.

� .org (.organization) is a generic top-level domain, and is mostly associated with non-
profit organizations. It is also used in the charitable field, and used by the open-source
movement. Government sites and Political parties in the US have domain names ending
in .org

� .net (.network) is a generic top-level domain and is one of the original top-level domains.
Initially intended to be used only for network providers (such as Internet service providers).
It is still popular with network operators, it is often treated as a second .com. It is currently
the third most popular top-level domain.

� .edu (.education) is the generic top-level domain for educational institutions, primarily
those in the United States. One of the first top-level domains, .edu was originally intended
for educational institutions anywhere in the world. Only post-secondary institutions that
are accredited by an agency on the U.S. Department of Education’s list of nationally
recognized accrediting agencies are eligible to apply for a .edu domain.

� .info (.information) is a generic top-level domain intended for informative website’s, al-
though its use is not restricted. It is an unrestricted domain, meaning that anyone can
obtain a second-level domain under .info. The .info was one of many extension(s) that
was meant to take the pressure off the overcrowded .com domain.

� .gov (.government) a generic top-level domain used by government entities in the United
States. Other countries typically use a second-level domain for this purpose, e.g., .gov.uk
for the United Kingdom. Since the United States controls the .gov Top Level Domain, it
would be impossible for another country to create a domain ending in .gov.

� .biz (business) the name is a phonetic spelling of the first syllable of ”business.” A
generic top-level domain to be used by businesses. It was created due to the demand for
good domain names available in the .com top-level domain, and to provide an alternative
to businesses whose preferred .com domain name which had already been registered by
another.
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Ports

� Definition 200 To separate the services and protocols of the network application layer,
network interfaces assign them specific port, referenced by a number.

�

Port use comment

22 SSH remote shell
53 DNS Domain Name System
80 HTTP World Wide Web
443 HTTPS HTTP over SSL
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Internet Governance

� The Internet is a critical infrastructure for world society and commerce.
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5.2 Basics Concepts of the World Wide Web

�

Uniform Resource Identifier (URI), Plumbing of the Web

� Definition 201 A uniform resource identifier is a global identifiers of
network-retrievable documents (web resources). URIs adhere a uni-
form syntax (grammar) defined in RFC-3986 [BLFM05]. Rules contain:
URI :== (scheme), ′ :′, hierPart, [(′?′ query)], [(′#′ fragment)] hier − part :==

(′//′ pathAbempty | pathAbsolute | pathRootless | pathEmpty)

� Example 202 The following are two example URIs and their component parts:

h t t p : / / example . com :8042/ o v e r / t h e r e ?name=f e r r e t#nose
\ / \ /\ / \ / \ /
| | | | |

scheme a u t h o r i t y path q u e r y f ragment
| |

/ \ / \
m a i l t o :m. k o h l h a s e @ j a c o b s−u n i v e r s i t y . de

Note: URIs only identify documents, they do not have to be provide access to them (e.g.
in a browser).
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Uniform Resource Locators and relative URIs

� Definition 203 A uniform resource locator is a URI that that gives access to a web
resource via the http protocol.

� Example 204 The following URI is a URL (try it in your browser)

http: //kwarc.info/kohlhase/index.html

� Note: URI/URLs are one of the core features of the web infrastructure, they are consid-
ered to be the plumbing of the WWWeb. (direct the flow of data)

� Definition 205 URIs can be abbreviated to relative URIs; missing parts are filled in
from the context

� Example 206

relative URI abbreviates in context
#foo 〈〈current file〉〉#foo curent file
../bar.txt file : ///home/kohlhase/foo/bar.txt file system
../bar.html http : //example.org/foo/bar.html on the web
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Web Browsers

� Definition 207 A web Browser is a software application for retrieving, presenting, and
traversing information resources on the World Wide Web, enabling users to view Web
pages and to jump from one page to another.

� Practical Browser Tools:

� Status Bar: security info, page load progress

� Favorites (bookmarks)

� View Source: view the code of a Web page

� Tools/Internet Options, history, temporary Internet files, home page, auto complete,
security settings, programs, etc.

� Example 208 e.g. IE, Mozilla Firefox, Safari, etc.

� Definition 209 A web page is a document on the Web that can include multimedia
data

� Definition 210 A web site is a collection of related Web pages usually designed or
controlled by the same individual or company.

� a web site generally shares a common domain name.
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HTTP: Hypertext Transfer Protocol

� Definition 211 The Hypertext Transfer Protocol (HTTP) is an application layer pro-
tocol for distributed, collaborative, hypermedia information systems.

� June 1999: HTTP/1.1 is defined in RFC 2616 [FGM+99]

Definition 212 HTTP is used by a client (called user agent) to access web resources
(addressed by Uniform Resource Locators (URLs)) via a http request. The web server
answers by supplying the resource

� Most important HTTP requests (5 more less prominent)

GET Requests a representation of the specified resource. safe

PUT Uploads a representation of the specified resource. idempotent

DELETE Deletes the specified resource. idempotent

POST Submits data to be processed (e.g., from an HTML
form) to the identified resource.

� Definition 213 We call a HTTP request safe, iff it does not change the state in the
web server. (except for server logs, counters,. . . ; no side effects)

� Definition 214 We call a HTTP request idempotent, iff executing it twice has the
same effect as executing it once.

� HTTP is a stateless protocol (very memory-efficient for the server.)
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Overview: A http request in the browser
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Example: An http request in real life

� Connect to the web server (port 80) (so that we can see what is happening)

telnet www.kwarc.info 80

� Send off the GET request

GET /teaching/GenCS2.html http/1.1
Host: www.kwarc.info
User−Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.6; en−US; rv:1.9.2.4)

Gecko/20100413 Firefox/3.6.4

� Response from the server

HTTP/1.1 200 OK
Date: Mon, 03 May 2010 06:48:36 GMT
Server : Apache/2.2.9 (Debian) DAV/2 SVN/1.5.1 mod fastcgi/2.4.6 PHP/5.2.6−1+lenny8 with

Suhosin−Patch mod python/3.3.1 Python/2.5.2 mod ssl/2.2.9 OpenSSL/0.9.8g
Last−Modified: Sun, 02 May 2010 13:09:19 GMT
ETag: ”1c78b−db1−4859c2f221dc0”
Accept−Ranges: bytes
Content−Length: 3505
Content−Type: text/html

<!−−This file was generated by ws2html.xsl. Do NOT edit manually! −−>
<html xmlns=”http://www.w3.org/1999/xhtml”><head>...</head></html>
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HTML: Hypertext Markup Language

� Definition 215 The HyperText Markup Language (HTML), is a representation format
for web pages. Current version 4.01 is defined in [RHJ98].

� Definition 216 (Main markup tagsof HTML) HTML marks up the structure
and apearance of text with tags of the form <el> (begin) and </el> (end), where el is
one of the following

structure html,head, body metadata title, link, meta
headings h1, h2, . . . , h6 paragraphs p, br
lists ul, ol, dl, . . . , li hyperlinks a

images img tables table, th, tr, td, . . .
CSS style style, div, span old style b, u, tt, i, . . .
interaction script forms form, input, button

� Example 217 A (very simple) HTML file.

<html>
<body>
<p>Hello GenCSII!</p>

</body>
</html>

� Example 218 Forms contain input fields and explanations.

<form name=”input” action=”html form submit.asp” method=”get”>
Username: <input type=”text” name=”user” />
<input type=”submit” value=”Submit” />

</form>
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CSS: Cascading Style Sheets

� Idea: Separate structure/function from appearance.

Definition 219 The Cascading Style Sheets (CSS), is a style sheet language that allows
authors and users to attach style (e.g., fonts and spacing) to structured documents.
Current version 2.1 is defined in [BCHL09].

� Example 220 Our text file from Example 217 with embedded CSS

<html>
<head>
<style type=”text/css”>

body {background−color:#d0e4fe;}
h1 { color:orange ;

text−align:center ;}
p {font−family:”Verdana”;

font−size:20px;}
</style>
</head>
<body>
<h1>CSS example</h1>
<p>Hello GenCSII!.</p>

</body>
</html>
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