
General Computer Science

320101/2 — 2008/9

Michael Kohlhase

School of Engineering & Computer Science
Jacobs University

m.kohlhase@jacobs-university.de
office: Room 62, Research 1, phone: x3140

c©: Michael Kohlhase 1

1

m.kohlhase@jacobs-university.de
http://creativecommons.org/licenses/by-sa/2.5/


1 Preface

1 EdNote(1)
This document contains the course notes for the course General Computer Science I & II held

at Jacobs University Bremen1 in the academic years 2003-2008. The document mixes the slides
presented in class with comments of the instructor to give students a more complete background
reference.

This document is made available for the students of this course only. It is still a draft, and will
develop over the course of the course. It will be developed further in coming academic years.
This document is also an experiment in knowledge representation. Under the hood, it uses

the STEX package, a TEX/LATEX extension for semantic markup. Eventually, this will enable to
export the contents into eLearning platforms like Connexions (see http://cnx.rice.edu) or
ActiveMath (see http://www.activemath.org).

Comments and extensions are always welcome, please send them to the author.

1EdNote: extend this into a real preface
1International University Bremen until Fall 2006
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2 Welcome and Administrativa

Happy new year! and Welcome Back!

B I hope you have recovered over the last 6 weeks (slept a lot)

B I hope that those of you who had problems last semester have caught up on
the material (We will need much of it this year)

B I hope that you are eager to learn more about Computer Science
(I certainly am!)

c©: Michael Kohlhase 2

Your Evaluations

B First: thanks for filling out the forms (to all 55 of you!)

Evaluations are a good tool for optimizing teaching/learning

B Second: I have read all of them, and I will take action on some of them.

B Change the instructor next year! (not your call)

B nice course. SML rulez! I really learned recursion (thanks)

B To improve this course, I would remove its “ML part” (let me explain,. . . )

B He doesnnt’ care about teaching. He simply comes unprepared to the
lectures (have you ever attended?)

B the slides tell simple things in very complicated ways (this is a problem)

B The problem is with the workload, it is too much
(I agree, but we want to give you a chance to become Computer Scientists)

B More examples should be provided, (will try to this; e.g. worked problems)

c©: Michael Kohlhase 3

3 Recap from General CS I
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Recap from GenCSI: Discrete Math and SML

B MathTalk (Rigorous communication about sets, relations,functions)

B unary natural numbers. (we have to start with something)

B Axiomatic foundation, in particular induction (Peano Axioms)

B constructors s, o, defined functions like +

B Abstract Data Types (ADT) (generalize natural numbers)

B sorts, constructors, (defined) parameters, variables, terms, substitutions

B define parameters by (sets of) recursive equations (rules)

B abstract interpretation, termination,

B Programming in SML (ADT on real machines)

B strong types, recursive functions, higher-order syntax, exceptions, . . .

B basic data types/algorithms: numbers, lists, strings,

c©: Michael Kohlhase 4

Recap from GenCSI: Formal Languages and Boolean Alge-
bra

B Formal Languages and Codes (models of “real” programming languages)

B string codes, prefix codes, uniform length codes

B formal language for unary arithmetics (onion architecture)

B syntax and semantics (. . . by mapping to something we understand)

B Boolean Algebra (special syntax, semantics, . . . )

B Boolean functions vs. expressions (syntax vs. semantics again)

B Normal forms (Boolean polynomials, clauses, CNF, DNF)

B Complexity analysis (what does it cost in the limit?)

B Landau Notations (aka. “big-O”) (function classes)

B upper/lower bounds on costs for Boolean functions (all exponential)

B Constructing Minimal Polynomials (simpler than general minimal expressions)

B Prime implicants, Quine McCluskey (you really liked that. . . )

c©: Michael Kohlhase 5
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Recap from GenCSI: Properties of Calculi

B Correctness: (provable implies valid)

B H ` B implies H |= B (equivalent: ` A implies |= B)

B Completeness: (valid implies provable)

B H |= B implies H ` B (equivalent: |= A implies ` B)

B Goal: ` A iff |= A (provability and validity coincide)

B To TRUTH through PROOF (CALCULEMUS [Leibniz ∼1680])

c©: Michael Kohlhase 6

Test Calculi: Tableaux and Model Generation

B Idea: instead of showing ∅ ` Th, show ¬Th ` trouble (use ⊥ for trouble)

Tableau Refutation (Validity) Model generation (Satisfiability)
|= P ∧Q⇒ Q ∧ P |= P ∧ (Q ∨ ¬R) ∧ ¬Q

P ∧Q⇒ Q ∧ P F

P ∧QT

Q ∧ P F

PT

QT

P F

⊥
QF

⊥

P ∧ (Q ∨ ¬R) ∧ ¬QT

P ∧ (Q ∨ ¬R)T

¬QT

QF

PT

Q ∨ ¬RT

QT

⊥
¬RT

RF

No Model Model {PT, QF, RF}

Variable Assignment: ϕ := {P 7→ T, Q 7→ F, R 7→ F}

B Algorithm: Fully expand all possible tableaux, (no rule can be applied)

B Satisfiable, iff there are open branches (correspond to models)

c©: Michael Kohlhase 7

Tableau calculi develop a formula in a tree-shaped arrangement that represents a case analysis on
when a formula can be made true (or false). Therefore the formulae are decorated with exponents
that hold the intended truth value.
On the left we have a refutation tableau that analyzes a negated formula (it is decorated with

the intended truth value F). Both branches contain an elementary contradiction ⊥.

7
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On the right we have a model generation tableau, which analyzes a positive formula (it is
decorated with the intended truth value T. This tableau uses the same rules as the refutation
tableau, but makes a case analysis of when this formula can be satisfied. In this case we have a
closed branch and an open one, which corresponds a model).

Now that we have seen the examples, we can write down the tableau rules formally.

4 Resolution for Propositional Logic

The next calculus is a test calculus based on the conjunctive normal form. In contrast to the
tableau method, it does not compute the normal form as it goes along, but has a pre-processing step
that does this and a single inference rule that maintains the normal form. The goal of this calculus
is to derive the (the empty disjunction), which is unsatisfiable.

Another Test Calculus: Resolution

B Definition 4.1: A clause is a disjunction of literals. We will use � for the empty
disjunction (no disjuncts) and call it the empty clause.

B Definition 4.2: (Resolution Calculus)

The resolution calculus operates a clause sets via a single inference rule:

PT ∨A P F ∨B

A ∨B

This rule allows to add the clause below the line to a clause set which contains
the two clauses above.

B Definition 4.3: (Resolution Refutation)

Let S be a clause set, and (D : S `R T ) aR derivation then we callD resolution
refutation, iff � ∈ T .

c©: Michael Kohlhase 8

A calculus for CNF Transformation

B Definition 4.4: (Transformation into Conjunctive Normal Form)

The CNF transformation calculus CNF consists of the following four inference
rules on clause sets.

C ∨ (A ∨B)T

C ∨AT ∨BT

C ∨ (A ∨B)F

C ∨AF; C ∨BF

C ∨ ¬AT

C ∨AF

C ∨ ¬AF

C ∨AT

B Definition 4.5: We write CNF (A) for the set of all clauses derivable from AF

via the rules above.

B Definition 4.6: (Resolution Proof)

We call a resolution refutation (P : CNF (A) `R T ) a resolution sproof for
A ∈ wff o(Vo).

c©: Michael Kohlhase 9
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Note: Note that the C-terms in the definition of the resolution calculus are necesary, since we
assumed that the assumptions of the inference rule must match full formulae. The C-terms
are used with the convention that they are optional. So that we can also simplify (A ∨B)T to
AT ∨BT.
The background behind this notation is that A and T ∨A are equivalent for any A. That allows

us to interpret the C-terms in the assumptions as T and thus leave them out.
The resolution calculus as we have formulated it here is quite frugal; we have left out rules for the

connectives ∨, ⇒, and ⇔, relying on the fact that formulae containing these connectives can be
translated into ones without before CNF transformation. The advantage of having a calculus with
few inference rules is that we can prove meta-properties like soundness and completeness with
less effort (these proofs usually require one case per inference rule). On the other hand, adding
specialized inference rules makes proofs shorter and more readable.
Fortunately, there is a way to have your cake and eat it. Derived inference rules have the property
that they are formally redundant, since they do not change the expressive power of the calculus.
Therefore we can leave them out when proving meta-properties, but include them when actually
using the calculus.

Derived Rules of Inference

B Definition 4.7: Let C be a calculus, a rule of inference
A1 . . . An

C
is called

a derived inference rule in C, iff there is a C-proof of A1, . . . ,An ` C.

B Example 4.8:

C ∨ (A⇒ B)T

C ∨ (¬A ∨B)T

C ∨ ¬AT ∨BT

C ∨AF ∨BT

7→
C ∨ (A⇒ B)T

C ∨AF ∨BT

B Others:

C ∨ (A⇒ B)T

C ∨AF ∨BT

C ∨ (A⇒ B)F

C ∨AT; C ∨BF

C ∨A ∧BT

C ∨AT; C ∨BT

C ∨A ∧BF

C ∨AF ∨BF

c©: Michael Kohlhase 10

With these derived rules, theorem proving becomes quite efficient. To get a better understanding
of the calculus, we look at an example: we prove an axiom of the Hilbert Calculus we have studied
above.
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Example: Proving Axiom S

B Example 4.9: Clause Normal Form transformation

(P ⇒ Q⇒ R)⇒ (P ⇒ Q)⇒ P ⇒ RF

P ⇒ Q⇒ RT; (P ⇒ Q)⇒ P ⇒ RF

P F ∨ (Q⇒ R)T;P ⇒ QT;P ⇒ RF

P F ∨QF ∨RT;P F ∨QT;PT;RF

CNF = {P F ∨QF ∨RT , P F ∨QT , PT , RF}

B Example 4.10: Resolution Proof 1 P F ∨QF ∨RT initial
2 P F ∨QT initial
3 PT initial
4 RF initial
5 P F ∨QF resolve 1.3 with 4.1
6 QF resolve 5.1 with 3.1
7 P F resolve 2.2 with 6.1
8 � resolve 7.1 with 3.1

c©: Michael Kohlhase 11

5 Graphs and Trees

Some more Discrete Math: Graphs and Trees

B Remember our Maze Example from the Intro? (long time ago)

〈
〈a, e〉, 〈e, i〉, 〈i, j〉,
〈f, j〉, 〈f, g〉, 〈g, h〉,
〈d, h〉, 〈g, k〉, 〈a, b〉
〈m,n〉, 〈n, o〉, 〈b, c〉
〈k, o〉, 〈o, p〉, 〈l, p〉

 , a, p

〉

B We represented the maze as a graph for clarity.

B Now, we are interested in circuits, which we will also represent as graphs.

B Let us look at the theory of graphs first (so we know what we are doing)

c©: Michael Kohlhase 12

Graphs and trees are fundamental data structures for computer science, they will pop up in many
disguises in almost all areas of CS. We have already seen various forms of trees: formula trees,
tableaux, . . . . We will now look at their mathematical treatment, so that we are equipped to talk
and think about combinatory circuits.
We will first introduce the formal definitions of graphs (trees will turn out to be special graphs),

and then fortify our intuition using some examples.

10
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B

Basic Definitions: Graphs

B Definition 5.1: An undirected graph is a pair 〈V,E〉 such that

B V is a set of so-called vertices (or nodes) (draw as circles)

B E ⊆ {{v, v′} | v, v′ ∈ V, v 6= v′} is the set of its undirected edges
(draw as lines)

B Definition 5.2: A directed graph (also called digraph) is a pair 〈V,E〉 such
that

B V is a set of vertexes

B E ⊆ V × V is the set of its directed edges

B Definition 5.3: Given a graph G = 〈V,E〉. The in-degree indeg(v) and the
out-degree outdeg(v) of a vertex v ∈ V are defined as

B indeg(v) = #{w | 〈w, v〉 ∈ E}
B outdeg(v) = #{w | 〈v, w〉 ∈ E}

Note: For an undirected graph, indeg(v) = outdeg(v) for all nodes v.

c©: Michael Kohlhase 13

We will mostly concentrate on directed graphs in the following, since they are most important for
the applications we have in mind. Many of the notions can be defined for undirected graphs with
a little imagination. For instance the definitions for indeg and outdeg are the obvious variants:
indeg(v) = #{w | {w, v} ∈ E} and outdeg(v) = #{w | {v, w} ∈ E}

In the following if we do not specify that a graph is undirected, it will be assumed to be
directed.
This is a very abstract yet elementary definition. We only need very basic concepts like sets and

ordered pairs to understand them. The main difference between directed and undirected graphs
can be visualized in the graphic representations below:

11
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Examples

B Example 5.4: An undirected graph G1 = 〈V1, E1〉, where V1 =
{A,B,C,D,E} E1 = {{A,B}, {A,C}, {A,D}, {B,D}, {B,E}}

C D

A B E

B Example 5.5: A directed graph G2 = 〈V2, E2〉, where V2 = {1, 2, 3, 4, 5}
E2 = {〈1, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 2〉, 〈2, 4〉, 〈5, 4〉}

1 2

3

4 5

c©: Michael Kohlhase 14

In a directed graph, the edges (shown as the connections between the circular nodes) have a
direction (mathematically they are ordered pairs), whereas the edges in an undirected graph do
not (mathematically, they are represented as a set of two elements, in which there is no natural
order).
Note furthermore that the two diagrams are not graphs in the strict sense: they are only pictures

of graphs. This is similar to the famous painting by René Magritte that you have surely seen
before.

The Graph Diagrams are not Graphs

They are pictures of graphs (of course!)

c©: Michael Kohlhase 15
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If we think about it for a while, we see that directed graphs are nothing new to us. We have
defined a directed graph to be a set of pairs over a base set (of nodes). These objects we have seen
in the beginning of this course and called them relations. So directed graphs are special relations.
We will now introduce some nomenclature based on this intuition.

Directed Graphs

B Idea: Directed Graphs are nothing else than relations

B Definition 5.6: Let G = 〈V,E〉 be a directed graph, then we call a node v ∈ V

B initial, iff there is no w ∈ V such that 〈w, v〉 ∈ E. (no predecessor)

B terminal, iff there is no w ∈ V such that 〈v, w〉 ∈ E. (no successor)

In a graph G, node v is also called a source (sink) of G, iff it is initial (terminal)
in G.

B Example 5.7: The node 2 is initial, and the nodes 1 and 6 are terminal in

1

2

3

4

5

6

c©: Michael Kohlhase 16

For mathematically defined objects it is always very important to know when two representations
are equal. We have already seen this for sets, where {a, b} and {b, a, b} represent the same set:
the set with the elements a and b. In the case of graphs, the condition is a little more involved:
we have to find a bijection of nodes that respects the edges.

Graph Isomorphisms

B Definition 5.8: A graph isomorphism between two graphs G = 〈V,E〉 and
G′ = 〈V ′, E′〉 is a bijective function ψ : V → V ′ with

directed graphs undirected graphs
〈a, b〉 ∈ E ⇔ 〈ψ(a), ψ(b)〉 ∈ E′ {a, b} ∈ E ⇔ {ψ(a), ψ(b)} ∈ E′

B Definition 5.9: Two graphs G and G′ are equivalent iff there is a graph-
isomorphism ψ between G and G′.

B Example 5.10: G1 and G2 are equivalent as there exists a graph isomorphism
ψ := {a 7→ 5, b 7→ 6, c 7→ 2, d 7→ 4, e 7→ 1, f 7→ 3} between them.

1

2

3

4

5

6

ec

fd

a

b

c©: Michael Kohlhase 17
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Note that we have only marked the circular nodes in the diagrams with the names of the elements
that represent the nodes for convenience, the only thing that matters for graphs is which nodes
are connected to which. Indeed that is just what the definition of graph equivalence via the
existence of an isomorphism says: two graphs are equivalent, iff they have the same number of
nodes and the same edge connection pattern. The objects that are used to represent them are
purely coincidental, they can be changed by an isomorphism at will. Furthermore, as we have
seen in the example, the shape of the diagram is purely an artifact of the presentation; It does not
matter at all.

So the following two diagrams stand for the same graph, (it is just much more difficult to state
the graph isomorphism)

Note that directed and undirected graphs are totally different mathematical objects. It is easy
to think that an undirected edge {a, b} is the same as a pair 〈a, b〉, 〈b, a〉 of directed edges in
both directions, but a priory these two have nothing to do with each other. They are certainly
not equivalent via the graph equivalent defined above; we only have graph equivalence between
directed graphs and also between undirected graphs, but not between graphs of differing classes.
Now that we understand graphs, we can add more structure. We do this by defining a labeling

function from nodes and edges.

Labeled Graphs

B Definition 5.11: A labeled graph G is a triple 〈V,E, f〉 where 〈V,E〉 is a graph
and f : V ∪ E → R is a partial function into a set R of labels.

B Notation 5.12:write labels next to their vertex or edge. If the actual name of
a vertex does not matter, its label can be written into it.

B Example 5.13: G = 〈V,E, f〉 with V = {A,B,C,D,E}, where

B E = {〈A,A〉, 〈A,B〉, 〈B,C〉, 〈C,B〉, 〈B,D〉, 〈E,D〉}
B f : V ∪ E → {+, -, ∅} × {1, . . ., 9} with

B f(A) = 5, f(B) = 3, f(C) = 7, f(D) = 4, f(E) = 8,

B f(〈A,A〉) = −0, f(〈A,B〉) = −2, f(〈B,C〉) = +4,
B f(〈C,B〉) = −4, f(〈B,D〉) = +1, f(〈E,D〉) = +4

5 3

7

4 8
-2 +1 -4

+4 -4

-0

c©: Michael Kohlhase 18

Note that in this diagram, the markings in the nodes do denote something: this time the labels
given by the labeling function f , not the objects used to construct the graph. This is somewhat
confusing, but traditional.
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Now we come to a very important concept for graphs. A path is intuitively a sequence of nodes
that can be traversed by following directed edges in the right direction or undirected edges.

Paths in Graphs

B Definition 5.14: Given a directed graph G = 〈V,E〉, then we call a vector
p = 〈v0, . . ., vn〉 ∈ V n+1 a path in G iff 〈vi−1, vi〉 ∈ E for all 1 ≤ i ≤ n,
n > 0.

B v0 is called the start of p (write start(p))

B vn is called the end of p (write end(p))

B n is called the length of p (write len(p))

Note: Not all vi-s in a path are necessarily different.

BB Notation 5.15:For a graph G = 〈V,E〉 and a path p = 〈v0, . . ., vn〉 ∈ V n+1,
write

B v ∈ p, iff v ∈ V is a vertex on the path (∃i.vi = v)

B e ∈ p, iff e = 〈v, v′〉 ∈ E is an edge on the path (∃i.vi = v ∧ vi+1 = v′)

B Notation 5.16:We write Π(G) for the set of all paths in a graph G.

c©: Michael Kohlhase 19

An important special case of a path is one that starts and ends in the same node. We call it a
cycle. The problem with cyclic graphs is that they contain paths of infinite length, even if they
have only a finite number of nodes.

Cycles in Graphs

B Definition 5.17: Given a graph G = 〈V,E〉, then

B a path p is called cyclic (or a cycle) iff start(p) = end(p).

B a cycle 〈v0, . . ., vn〉 is called simple, iff vi 6= vj for 1 ≤ i, j ≤ n with i 6= j.

B graph G is called acyclic iff there is no cyclic path in G.

B Example 5.18: 〈2, 4, 3〉 and 〈2, 5, 6, 5, 6, 5〉 are paths in

1

2

3

4

5

6

〈2, 4, 3, 1, 2〉 is not a path (no edge from vertex 1 to vertex 2)

The graph is not acyclic (〈5, 6, 5〉 is a cycle)

c©: Michael Kohlhase 20

Of course, speaking about cycles is only meaningful in directed graphs, since undirected graphs
can only be acyclic, iff they do not have edges at all. We will sometimes use the abbreviation
DAG for directed acyclic graph.

15
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Graph Depth

B Definition 5.19: Let G := 〈V,E〉 be a digraph, then the depth dp(v)
of a vertex v ∈ V is defined to be 0, if v is a source of G and
sup{len(p) | indeg(start(p)) = 0, end(p) = v} otherwise, i.e. the length of
the longest path from a source of G to v. ( can be infinite)

B Definition 5.20: Given a digraph G = 〈V,E〉. The depth (dp(G)) of G is
defined as sup{len(p) | p ∈ Π(G)}, i.e. the maximal path length in G.

B Example 5.21: The vertex 6 has depth two in the left grpahs and infine depth
in the right one.

1

2

3

4

5

6 1

2

3

4

5

6

The left graph has depth three (cf. node 1), the right one has infinite depth
(cf. nodes 5 and 6)

c©: Michael Kohlhase 21

We now come to a very important special class of graphs, called trees.

Trees

B Definition 5.22: A tree is a directed acyclic graph G = 〈V,E〉 such that

B There is exactly one initial node vr ∈ V (called the root)

B All nodes but the root have in-degree 1.

We call v the parent of w, iff 〈v, w〉 ∈ E (w is a child of v). We call a node v
a leaf of G, iff it is terminal, i.e. if it does not have children.

B Example 5.23: A tree with root A and leaves D, E, F , H, and J .

A

B

D E F

C

G

H I

J
F is a child of B and G is the parent of H and I.

B Lemma 5.24: For any node v ∈ V except the root vr, there is
exactly one path p ∈ Π(G) with start(p) = vr and end(p) = v.

(proof by induction on the number of nodes)

c©: Michael Kohlhase 22
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In Computer Science trees are traditionally drawn upside-down with their root at the top, and
the leaves at the bottom. The only reason for this is that (like in nature) trees grow from the root
upwards and if we draw a tree it is convenient to start at the top of the page downwards, since we
do not have to know the height of the picture in advance.
Let us now look at a prominent example of a tree: the parse tree of a Boolean expression.

Intuitively, this is the tree given by the brackets in a Boolean expression. Whenever we have
an expression of the form A ◦ B, then we make a tree with root ◦ and two subtrees, which are
constructed from A and B in the same manner.

This allows us to view Boolean expressions as trees and apply all the mathematics (nomencla-
ture and results) we will develop for them.

The Parse-Tree of a Boolean Expression

B Definition 5.25: The parse-tree Pe of a Boolean expression e is a labeled tree
Pe = 〈Ve, Ee, fe〉, which is recursively defined as

B if e = e′ then Ve := Ve′ ∪ {v}, Ee := Ee′ ∪ {〈v, v′r〉}, and fe := fe′ ∪ {v 7→ −},
where Pe′ = 〈Ve′ , Ee′〉 is the parse-tree of e′, v′r is the root of Pe′ , and v is an
object not in Ve′ .

B if e = e1 ◦ e2 with ◦ ∈ {∗,+} then Ve := Ve1 ∪ Ve2 ∪ {v}, Ee :=
Ee1 ∪ Ee2 ∪ {〈v, vr

1〉, 〈v, vr
2〉}, and fe := fe1 ∪ fe2 ∪ {v 7→ ◦}, where the Pei =

〈Vei , Eei〉 are the parse-trees of ei and vr
i is the root of Pei and v is an object

not in Ve1 ∪ Ve2 .

B if e ∈ V ∪ C then, Ve = {e} and Ee = ∅.

B Example 5.26: the parse tree of (((x1 ∗ x2) + x3) ∗ (x1 + x4)) is

*

+

*

x1 x2

x3

·

+

x1 x4

c©: Michael Kohlhase 23

6 Introduction to Combinatorial Circuits

We will now come to another model of computation: combinatorial circuits (also called com-
binational circuits). These are models of logic circuits (physical objects made of transistors (or
cathode tubes) and wires, parts of integrated circuits, etc), which abstract from the inner struc-
ture for the switching elements (called gates) and the geometric configuration of the connections.
Thus, combinatorial circuits allow us to concentrate on the functional properties of these circuits,
without getting bogged down with e.g. configuration- or geometric considerations. These can be
added to the models, but are not part of the discussion of this course.
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Combinatorial Circuits as Graphs

B Definition 6.1: A combinatorial circuit is a labeled acyclic graph G = 〈V,E, fg〉
with label set {OR,AND,NOT}, such that

B indeg(v) = 2 and outdeg(v) = 1 for all nodes v ∈ fg−1{AND,OR}
B indeg(v) = outdeg(v) = 1 for all nodes v ∈ fg−1{NOT}

We call the set I(G) (O(G)) of initial (terminal) nodes in G the input (output)
vertexes, and the set F (G) := (V \(I(G) ∪O(G))) the set of gates.

B Example 6.2: The following graph Gcir1 = 〈V,E〉 is a combinatorial circuit

i1

g1 AND

g2 OR

i2 i3

g3 OR

g4 NOT

o1 o2

B Definition 6.3: Add two special input nodes 0, 1 to a combinatorial circuit G
to form a combinatorial circuit with constants. (will use this from now on)

c©: Michael Kohlhase 24

So combinatorial circuits are simply a class of specialized labeled directed graphs. As such,
they inherit the nomenclature and equality conditions we introduced for graphs. The motivation
for the restrictions is simple, we want to model computing devices based on gates, i.e. simple
computational devices that behave like logical connectives: the AND gate has two input edges
and one output edge; the the output edge has value 1, iff the two input edges do too.
Since combinatorial circuits are a primary tool for understanding logic circuits, they have their

own traditional visual display format. Gates are drawn with special node shapes and edges are
traditionally drawn on a rectangular grid, using bifurcating edges instead of multiple lines with
blobs distinguishing bifurcations from edge crossings. This graph design is motivated by readability
considerations (combinatorial circuits can become rather large in practice) and the layout of early
printed circuits.
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Using Special Symbols to Draw Combinatorial Circuits

B The symbols for the logic gates AND, OR, and NOT .

AND

OR

NOT

o1

o2

i1

i2

i3

B Junction Symbols as shorthands for several edges

a
c
b a

c
b

=

o1

o2

i1

i2

i3

c©: Michael Kohlhase 25

In particular, the diagram on the lower right is a visualization for the combinatory circuit Gcirc1
from the last slide.
To view combinatorial circuits as models of computation, we will have to make a connection

between the gate structure and their input-output behavior more explicit. We will use a tool for
this we have studied in detail before: Boolean expressions. The first thing we will do is to annotate
all the edges in a combinatorial circuit with Boolean expressions that correspond to the values on
the edges (as a function of the input values of the circuit).

Computing with Combinatorial Circuits

B Combinatorial Circuits and parse trees for Boolean expressions look similar

B Idea: Let’s annotate edges in combinatorial circuit with Boolean Expressions!

B Definition 6.4: Given a combinatorial circuit G = 〈V,E, fg〉 and an edge
e = 〈v, w〉 ∈ E, the expression label fL((e)) is defined as

fL(〈v, w〉) if
v v ∈ I(G)

fL(〈u, v〉) fg(v) = NOT
(fL〈u, v〉 ∗ fL〈u′, v〉) fg(v) = AND
(fL〈u, v〉+ fL〈u′, v〉) fg(v) = OR

o1

o2

i1

i2

i3

i1

i2

i3

(i1*i2)

(i2+i3)

((i1*i2)+i3)

(i2+i3)

c©: Michael Kohlhase 26

Armed with the expression label of edges we can now make the computational behavior of combi-
natory circuits explicit. The intuition is that a combinatorial circuit computes a certain Boolean
function, if we interpret the input vertices as obtaining as values the corresponding arguments
and passing them on to gates via the edges in the circuit. The gates then compute the result from
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their input edges and pass the result on to the next gate or an output vertex via their output
edge.

Computing with Combinatorial Circuits

B Definition 6.5: A combinatorial circuit G = 〈V,E, fg〉 with input vertices
i1, . . . , in and output vertices o1, . . . , om computes an n-ary Boolean function

f : {0, 1}n → {0, 1}m; 〈i1, . . ., in〉 7→ 〈fe1(i1, . . ., in), . . ., fem
(i1, . . ., in)〉

where ei = fL(〈v, oi〉).

B Example 6.6: The circuit example on the last slide defines the Boolean function
f : {0, 1}3 → {0, 1}2; 〈i1, i2, i3〉 7→ 〈f((i1∗i2)+i3), f(i2∗i3)〉

B Definition 6.7: The cost C(G) of a circuit G is the number of gates in G.

B Problem: For a given boolean function f , find combinational circuits of mini-
mal cost and depth that compute f .

c©: Michael Kohlhase 27

Note: The opposite problem, i.e., the conversion of a Boolean function into a combinatorial circuit,
can be solved by determining the related expressions and their parse-trees. Note that there is a
canonical graph-isomorphism between the parse-tree of an expression e and a combinatorial circuit
that has an output that computes fe.

6.1 Preparing some Theory

The main properties of combinatory circuits we are interested in studying will be the the number
of gates and the depth of a circuit. The number of gates is of practical importance, since it is
a measure of the cost that is needed for producing the circuit in the physical world. The depth
is interesting, since it is an approximation for the speed with which a combinatory circuit can
compute: while in most physical realizations, signals can travel through wires at at (almost) the
speed of light, gates have finite computation times.
Therefore we look at special configurations for combinatory circuits that have good depth and cost.
These will become important, when we build actual combinatorial circuits with given input/output
behavior.
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Balanced Binary Trees

B Definition 6.8: A binary tree is a tree where all nodes have out-degree 2 or 0.

B Definition 6.9: A binary tree G is called balanced iff the depth of all leaves
differs by at most by 1. (fully balanced, iff depth difference 0)

B Constructing a binary tree Gbbt = 〈V,E〉 with n leaves

B step 1: select a u ∈ V as root, (V1 := {u}, E1 := ∅)
B step 2: select v, w ∈ V not yet in V , (Vi = Vi−1 ∪ {v, w})
B step 3: add two edges 〈u, v〉 and 〈u,w〉 where u is the leftmost of the

shallowest nodes with outdeg(u) = 0, (Ei := Ei−1 ∪ {〈u, v〉, 〈u,w〉})
B repeat steps 2 and 3 until i = n (V = Vn, E = En)

B Example 6.10: 7 leaves

c©: Michael Kohlhase 28

We will now establish a few properties of these balanced binary trees that show that they are good
building blocks for combinatory circuits.

Size Lemma for Balanced Trees

B Lemma 6.11: Let G = 〈V,E〉 be a balanced binary tree of depth n > i, then
the set Vi := {v ∈ V | dp(v) = i} of vertexes at depth i has cardinality 2i.

B Proof: via induction over the depth i.

P.1 We have to consider two cases

P.1.1 i = 0: then Vi = {vr}, where vr is the root, so #V0 = {vr} = 1 = 20.

P.1.2 i > 0: then Vi−1 contains 2i−1 vertexes (IH)

P.1.2.2 By the definition of a binary tree, each v ∈ Vi−1 is a leaf or has two
children that are at depth i.

P.1.2.3 as G is balanced and dp(G) = n > i, Vi−1 cannot contain leaves

P.1.2.4 thus #Vi = 2 ·#Vi−1 = 2 · 2i−1 = 2i

B Corollary 6.12: A fully balanced tree of depth d has 2d+1 − 1 nodes.

B Proof:

Let G := 〈V,E〉 be a fully balanced tree, #V =
∑d
i=1 2i = 2d+1− 1.

c©: Michael Kohlhase 29

This shows that balanced binary trees grow in breadth very quickly, a consequence of this is that
they are very shallow (and this compute very fast), which is the essence of the next result.
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Depth Lemma for Balanced Trees

B Lemma 6.13: Let G = 〈V,E〉 be a balanced binary tree, then dp(G) =
blog2 (#V )c.

B Proof: by calculation

P.1 Let V ′ := (V \W ), where W is the set of nodes at level d = dp(G)

P.2 By the size lemma, #V ′ = 2d−1+1 − 1 = 2d − 1

P.3 then #V = 2d − 1 + k, where k = #W , 1 ≤ k ≤ 2d

P.4 so #V = c · 2d where c ∈ R and 1 ≤ c < 2, or 0 ≤ log2 c < 1

P.5 thus log2 #V = log2 c · 2d = log2 c+ d and

P.6 hence d = log2 #V − log2 c = blog2 (#V )c.

c©: Michael Kohlhase 30

Leaves of Binary Trees

B Lemma 6.14: Any binary tree with m leaves has 2m− 1 vertexes.

B Proof: by induction on m.

P.1 We have two cases m = 1: then V = {vr} and #V = 1 = 2 · 1− 1.

P.1.2 m > 1:

P.1.2.1 then any binary tree G with m− 1 leaves has 2m− 3 vertexes (IH)

P.1.2.2 To get m leaves, add 2 children to some leaf of G.
(add two to get one more)

P.1.2.3 Thus #V = 2m− 3 + 2 = 2m− 1.

c©: Michael Kohlhase 31

In particular, the size of a binary tree is independent of the its form if we fix the number of leaves.
So we can optimimze the depth of a binary tree by taking a balanced one without a size penalty.
This will become important for building fast combinatory circuits.
We now use the results on balanced binary trees to build generalized gates as building blocks for

combinational circuits.
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n-ary Gates as Subgraphs

B Idea: Identify (and abbreviate) frequently occurring subgraphs

B Definition 6.15: (ANDx1, . . ., xn) :=
∏n
i=1 xi and (ORx1, . . ., xn) :=∑n

i=1 xi

B Note: These can be realized as balanced binary trees Gn

B Corollary 6.16: C(Gn) = n− 1 and dp(Gn) = blog2 (n)c.

B Notation 6.17:
AND OR

c©: Michael Kohlhase 32

Using these building blocks, we can establish a worst-case result for the depth of a combinatory
circuit computing a given Boolean function.

Worst Case Depth Theorem for Combinatorial Circuits

B Theorem 6.18: The worst case depth dp(G) of a combinatorial circuit G
which realizes an k × n-dimensional boolean function is bounded by dp(G) ≤
n+ dlog2 (n)e+ 1.

B Proof: The main trick behind this bound is that AND and OR are associative
and that the according gates can be arranged in a balanced binary tree.

P.1 Function f corresponding to the output oj of the circuit G can be trans-
formed in DNF

P.2 each monomial consists of at most n literals

P.3 the possible negation of inputs for some literals can be done in depth 1

P.4 for each monomial the ANDs in the related circuit can be arranged in a
balanced binary tree of depth dlog2 (n)e

P.5 there are at most 2n monomials which can be ORed together in a balanced
binary tree of depth dlog2 (2n)e = n.

c©: Michael Kohlhase 33

Of course depth result is related to the first worst-case complexity result for Boolean expressions2; EdNote(2)
it uses the same idea: to use the disjunctive normal form of the Boolean function. However, instead
of using a Boolean expression, we become more concrete here and use a combinatorial circuit.

2EdNote: how to do assertion references?
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An example of a DNF circuit

=
if Li=Xi

if Li=Xi

X1

X2

X3

Xn

Oj

M1 M2 M3 Mk

c©: Michael Kohlhase 34

In the circuit diagram above, we have of course drawn a very particular case (as an example
for possible others.) One thing that might be confusing is that it looks as if the lower n-ary
conjunction operators look as if they have edges to all the input variables, which a DNF does not
have in general.
Of course, by now, we know how to do better in practice. Instead of the DNF, we can always

compute the minimal polynomial for a given Boolean function using the Quine-McCluskey algo-
rithm and derive a combinatorial circuit from this. While this does not give us any theoretical
mileage (there are Boolean functions where the DNF is already the minimal polynomial), but will
greatly improve the cost in practice.
Until now, we have somewhat arbitrarily concentrated on combinational circuits with AND, OR,

and NOT gates. The reason for this was that we had already developed a theory of Boolean
expressions with the connectives ∨, ∧, and ¬ that we can use. In practical circuits often other
gates are used, since they are simpler to manufacture and more uniform. In particular, it is
sufficient to use only one type of gate as we will see now.
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Other Logical Connectives and Gates

B Are the gates AND, OR, and NOT ideal?

B Idea: Combine NOT with the binary ones to NAND, NOR (enough?)

NAND

NOR

NAND 0 1
0 1 1
1 1 0

NOR 0 1
0 1 0
1 0 0

B Corresponding logical conectives are written as ↑ (NAND) and ↓ (NOR).

B We will also need .
XOR 0 1

0 0 1
1 1 0

B The gate is written as , the logical connective as ⊕.

c©: Michael Kohlhase 35

The Universality of NAND and NOR

B Theorem 6.19: NAND and NOR are universal; i.e. any Boolean function
can be expressed in terms of them.

B Proof: express AND, OR, and NOT via NAND and NOR respectively
NOT (a) NAND(a, a) NOR(a, a)
AND(a, b) NAND(NAND(a, b), NAND(a, b)) NOR(NOR(a, a), NOR(b, b))
OR(a, b) NAND(NAND(a, a), NAND(b, b)) NOR(NOR(a, b), NOR(a, b))

B here are the corresponding diagrams for the combinational circuits.

a

a

b

a

b

NOT(a)

(a OR b)

(a AND b)

a

a

b

a

b

NOT(a)

(a AND b)

(a OR b)
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Of course, a simple substitution along these lines will blow up the cost of the circuits by a factor
of up to three and double the depth, which would be prohibitive. To get around this, we would
have to develop a theory of Boolean expressions and complexity using the NAND and NOR
connectives, along with suitable replacements for the Quine-McCluskey algorithm. This would
give cost and depth results comparable to the ones developed here. This is beyond the scope of
this course.
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7 Basic Arithmetics with Combinational Circuits

We have seen that combinational circuits are good models for implementing Boolean functions:
they allow us to make predictions about properties like costs and depths (computation speed),
while abstracting from other properties like geometrical realization, etc.
We will now extend the analysis to circuits that can compute with numbers, i.e. that implement

the basic arithmetical operations (addition, multiplication, subtraction, and division on integers).
To be able to do this, we need to interpret sequences of bits as integers. So before we jump into
arithmetical circuits, we will have a look at number representations.

Positional Number Systems

B Problem: For realistic arithmetics we need better number representations than
the unary natural numbers (|nunary| ∈ Θ(n) [number of /])

B Recap: the unary number system

B build up numbers from /es (start with ’ ’ and add /)

B addition ⊕ as concatenation (�,⊕1n, exp, . . . defined from that)

Idea: build a clever code on the unary numbers

B B interpret sequences of /es as strings: ε stands for the number 0

B Definition 7.1: A positional number system N is a triple N = 〈Db, ϕb, ψb〉
with

B Db is a finite alphabet of b so-called digits.(b := #Db base or radix of N )

B ϕb : Db → {ε, /, . . ., /[b−1]} is bijective (first b unary numbers)

B ψb : Db
+ → {/}∗; 〈nk, . . ., n1〉 7→

⊕k
i=1 (ϕb(ni)� exp(/[b], /[i−1]))

(extends ϕb to string code)
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In the unary number system, it was rather simple to do arithmetics, the most important op-
eration (addition) was very simple, it was just concatenation. From this we can implement the
other operations by simple recursive procedures, e.g. in SML or as abstract procedures in abstract
data types. To make the arguments more transparent, we will use special symbols for the arith-
metic operations on unary natural numbers: ⊕ (addition), � (multiplication),

⊕n
1 () (sum over n

numbers), and
⊙n

1 () (product over n numbers).
The problem with the unary number system is that it uses enormous amounts of space, when

writing down large numbers. Using the Landau notation we introduced earlier, we see that for
writing down a number n in unary representation we need n slashes. So if |nunary| is the “cost of
representing n in unary representation”, we get |nunary| ∈ Θ(n). Of course that will never do for
practical chips. We obviously need a better encoding.
If we look at the unary number system from a greater distance (now that we know more CS,

we can interpret the representations as strings), we see that we are not using a very important
feature of strings here: position. As we only have one letter in our alphabet (/), we cannot, so we
should use a larger alphabet. The main idea behind a positional number system N = 〈Db, ϕb, ψb〉
is that we encode numbers as strings of digits (characters in the alphabet Db), such that the
position matters, and to give these encoding a meaning by mapping them into the unary natural
numbers via a mapping ψb. This is the the same process we did for the logics; we are now doing
it for number systems. However, here, we also want to ensure that the meaning mapping ψb is a
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bijection, since we want to define the arithmetics on the encodings by reference to The arithmetical
operators on the unary natural numbers.

We can look at this as a bootstrapping process, where the unary natural numbers constitute
the seed system we build up everything from.
Just like we did for string codes earlier, we build up the meaning mapping ψb on characters from
Db first. To have a chance to make ψ bijective, we insist that the “character code” ϕb is is a
bijection from Db and the first b unary natural numbers. Now we extend ϕb from a character code
to a string code, however unlike earlier, we do not use simple concatenation to induce the string
code, but a much more complicated function based on the arithmetic operations on unary natural
numbers. We will see later3 that this give us a bijection between Db

+ and the unary natural EdNote(3)
numbers.

Commonly Used Positional Number Systems

B Example 7.2: The following positional number systems are in common use.

name set base digits example

unary N1 1 / 1

binary N2 2 0,1 01010001112

octal N8 8 0,1,. . . ,7 630278

decimal N10 10 0,1,. . . ,9 16209810 or 162098
hexadecimal N16 16 0,1,. . . ,9,A,. . . ,F FF3A1216

B Notation 7.3:attach the base of N to every number from N .(default: decimal)

Trick: Group triples or quadruples of binary digits into recognizable chunks
(add leading zeros as needed)

B B 1100011010111002 = 01102| {z }
616

00112| {z }
316

01012| {z }
516

11002| {z }
C16

= 635C16

B 1100011010111002 = 1102| {z }
68

0012| {z }
18

1012| {z }
58

0112| {z }
38

1002| {z }
48

= 615348

B F3A16 = F16|{z}
11112

316|{z}
00112

A16|{z}
10102

= 1111001110102, 47218 = 48|{z}
1002

78|{z}
1112

28|{z}
0102

18|{z}
0012

=

1001110100012
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We have all seen positional number systems: our decimal system is one (for the base 10). Other
systems that important for us are the binary system (it is the smallest non-degenerate one) and
the octal- (base 8) and hexadecimal- (base 16) systems. These come from the fact that binary
numbers are very hard for humans to scan. Therefore it became customary to group three or four
digits together and introduce we (compound) digits for them. The octal system is mostly relevant
for historic reasons, the hexadecimal system is in widespread use as syntactic sugar for binary
numbers, which form the basis for circuits, since binary digits can be represented physically by
current/no current.
Now that we have defined positional number systems, we want to define the arithmetic operations
on the these number representations. We do this by using an old trick in math. If we have an
operation fT : T → T on a set T and a well-behaved mapping ψ from a set S into T , then we
can “pull-back” the operation on fT to S by defining the operation fS : S → S by fS(s) :=
ψ−1(fT (ψ(s))) according to the following diagram.

3EdNote: reference
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S

S

T

T

ψ

ψ−1

ψ
fS = ψ−1 ◦ fT ◦ ψ fT

Obviously, this construction can be done in any case, where ψ is bijective (and thus has an inverse
function). For defining the arithmetic operations on the positional number representations, we
do the same construction, but for binary functions (after we have established that ψ is indeed a
bijection).
The fact that ψb is a bijection a posteriori justifies our notation, where we have only indicated the
base of the positional number system. Indeed any two positional number systems are isomorphic:
they have bijections ψb into the unary natural numbers, and therefore there is a bijection between
them.

Arithmetics for PNS

B Lemma 7.4: Let N := 〈Db, ϕb, ψb〉 be a PNS, then ψb is bijective.

B Proof: construct ψb
−1 by successive division modulo the base of N .

Idea: use this to define arithmetics on N .

BB Definition 7.5: Let N := 〈Db, ϕb, ψb〉 be a PNS of base b, then we define a
binary function +b : Nb × Nb → Nb by (x+b y) := ψb

−1(ψb(x)⊕ ψb(y)).

B Note: The addition rules (carry chain addition) generalize from the decimal
system to general PNS

B Idea: Do the same for other arithmetic operations. (works like a charm)

B Future: Concentrate on binary arithmetics. (implement into circuits)
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The next step is now to implement the induced arithmetical operations into combinational circuits,
starting with addition. Before we can do this, we have to specify which (Boolean) function we
really want to implement. For convenience, we will use the usual decimal (base 10) representations
of numbers and their operations to argue about these circuits. So we need conversion functions
from decimal numbers to binary numbers to get back and forth. Fortunately, these are easy to
come by, since we use the bijections ψ from both systems into the unary natural numbers, which
we can compose to get the transformations.
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Arithmetic Circuits for Binary Numbers

B Idea: Use combinational circuits to do basic arithmetics.

B Definition 7.6: Given the (abstract) number a ∈ N, B(a) denotes from now
on the binary representation of a.

For the opposite case, i.e., the natural number represented by a binary string
a = 〈an−1, . . ., a0〉 ∈ Bn, the notation 〈〈a〉〉 is used, i.e.,

〈〈a〉〉 = 〈〈an−1, . . . , a0〉〉 =
n−1∑
i=0

ai · 2i

B Definition 7.7: An n-bit adder is a circuit computing the function
fn+2

: Bn × Bn → Bn+1 with

fn+2
(a; b) := B(〈〈a〉〉+ 〈〈b〉〉)
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If we look at the definition again, we see that we are again using a pull-back construction. These
will pop up all over the place, since they make life quite easy and safe.
Before we actually get a combinational circuit for an n-bit adder, we will build a very useful

circuit as a building block: the half adder (so-called, since it will take two to build a full adder).

The Half-Adder

B There are different ways to implement an adder. All of them build upon two
basic components, the half-adder and the full-adder.

B

Definition 7.8: A half adder is a circuit HA implement-
ing the function fHA in the truth table on the right.

fHA : B× B→ B2; 〈a, b〉 7→ 〈c, s〉

s is called the sum bit and c the carry bit.

a b c s
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

B Note: The carry can be computed by a simple AND, i.e., c = AND(a, b),
and the sum bit by a XOR function.

c©: Michael Kohlhase 41
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Building and Evaluating the Half-Adder

a
b

s

c

B So, the half-adder corresponds to the Boolean function fHA : B× B →
B2; 〈a, b〉 7→ 〈(a⊕ b), (a ∧ b)〉

B Note: HAa, b = B(〈〈a〉〉+ 〈〈b〉〉), i.e., it is indeed an adder.

B We count XOR as one gate, so C(HA) = 2 and dp(HA) = 1.
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Now that we have the half adder as a building block it is rather simple to arrive at a full adder
circuit.

, in the diagram for the full adder, and in the following, we will sometimes use a variant

gate symbol for the OR gate: The symbol . It has the same
outline as an AND gate, but the input lines go all the way through.

30

http://creativecommons.org/licenses/by-sa/2.5/


The Full Adder

B Definition 7.9: The 1-bit full adder is a circuit FA1

that implements the function f1
FA : B× B× B → B2

with f1
FA(a, b, c′) = B(〈〈a〉〉+ 〈〈b〉〉+ 〈〈c′〉〉)

B The result of the full-adder is also denoted with 〈c, s〉,
i.e., a carry and a sum bit. .

B the easiest way to implement a full adder is to use two
half adders and an OR gate.

B Lemma 7.10: (Cost and Depth)

C(FA1) = 2C(HA) + 1 = 5 and dp(FA1) =
2dp(HA) + 1 = 3

a b c′ c s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

HA

HA

s

c
b

a

c’

s

c

c

s
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Note: Note that in the right hand graphics, we use another notation for the OR gate.4 EdNote(4)
Of course adding single digits is a rather simple task, and hardly worth the effort, if this is all we

can do. What we are really after, are circuits that will add n-bit binary natural numbers, so that
we arrive at computer chips that can add long numbers for us.

4EdNote: Todo: introduce this earlier, or change the graphics here (or both)
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Full n-bit Adder

B Definition 7.11: An n-bit full adder (n > 1) is a circuit that corresponds to
fnFA : Bn × Bn × B→ B× Bn; 〈a, b, c′〉 = B(〈〈a〉〉+ 〈〈b〉〉+ 〈〈c′〉〉)

B Notation 7.12:We will draw the n-bit full adder with the following symbol in
circuit diagrams.

Note that we are abbreviating n-bit
input and output edges with a single
one that has a slash and the number
n next to it.

B There are various implementations of the full n-bit adder, we will look at two
of them
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This implementation follows the intuition behind elementary school addition (only for binary
numbers): we write the numbers below each other in a tabulated fashion, and from the least
significant digit, we follow the process of

• adding the two digits with carry from the previous column

• recording the sum bit as the result, and

• passing the carry bit on to the next column

until one of the numbers ends.

32

http://creativecommons.org/licenses/by-sa/2.5/


The Carry Chain Adder

B The inductively designed circuit of the carry chain adder.

B n = 1: the CCA1 consists of a full adder

B n > 1: the CCAn consists of an (n − 1)-bit carry chain adder CCAn−1

and a full adder that sums up the carry of CCAn−1, the last bit of a and
the last bit of b

B Definition 7.13: An n-bit carry chain adder CCAn is inductively defined as

B f1
CCA(a0, b0, c) = f1

FA(a0, b0, c)

B fnCCA(〈an−1, . . ., a0〉, 〈bn−1, . . ., b0〉, c′) = 〈c, sn−1, . . ., s0〉 with

B 〈c, sn−1〉 = fn−1
FA (an−1, bn−1, cn−1)

B 〈cn−1, sn−2, . . ., s0〉 = fn−1
CCA(〈an−2, . . ., a0〉, 〈bn−2, . . ., b0〉, c′)
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The Carry Chain Adder

B (Cost)

C(CCAn) = C(CCAn−1) + C(FA1) = C(CCAn−1) + 5 = 5n = O(n)

B Lemma 7.14: (Depth)

dp(CCAn) = dp(CCAn−1) + dp(FA1) = dp(CCAn−1) + 3 = 3n = O(n)

B The carry chain adder is simple, but cost and depth are high.
(depth is critical (speed))

B Question: Can we do better?

B Problem: the carry ripples up the chain
(upper parts wait for carries from lower part)

c©: Michael Kohlhase 46

A consequence of using the carry chain adder is that if we go from a 32-bit architecture to a
64-bit architecture, the speed of additions in the chips would not increase, but decrease (by 50%).
Of course, we can carry out 64-bit additions now, a task that would have needed a special routine
at the software level (these typically involve at least 4 32-bit additions so there is a speedup for
such additions), but most addition problems in practice involve small (under 32-bit) numbers, so
we will have an overall performance loss (not what we really want for all that cost).
If we want to do better in terms of depth of an n-bit adder, we have to break the dependency

on the carry, let us look at a decimal addition example to get the idea. Consider the following
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snapshot of an carry chain addition

first summand 3 4 7 9 8 3 4 7 9 2
second summand 2? 5? 1? 8? 1? 7? 81 71 20 10

partial sum ? ? ? ? ? ? ? ? 5 1 3

We have already computed the first three partial sums. Carry chain addition would simply go on
and ripple the carry information through until the left end is reached (after all what can we do?
we need the carry information to carry out left partial sums). Now, if we only knew what the
carry would be e.g. at column 5, then we could start a partial summation chain there as well.
The central idea in the so-called “conditional sum adder” we will pursue now, is to trade time

for space, and just compute both cases (with and without carry), and then later choose which
one was the correct one, and discard the other. We can visualize this in the following schema.

first summand 3 4 7 9 8 3 4 7 9 2
second summand 2? 50 11 8? 1? 7? 81 71 20 10

lower sum ? ? 5 1 3
upper sum. with carry ? ? ? 9 8 0
upper sum. no carry ? ? ? 9 7 9

Here we start at column 10 to compute the lower sum, and at column 6 to compute two upper
sums, one with carry, and one without. Once we have fully computed the lower sum, we will know
about the carry in column 6, so we can simply choose which upper sum was the correct one and
combine lower and upper sum to the result.
Obviously, if we can compute the three sums in parallel, then we are done in only five steps

not ten as above. Of course, this idea can be iterated: the upper and lower sums need not be
computed by carry chain addition, but can be computed by conditional sum adders as well.

The Conditional Sum Adder

B Idea: pre-compute both possible upper sums (e.g. upper half) for carries 0
and 1, then choose (via MUX) the right one according to lower sum.

B the inductive definition of the circuit of a conditional sum adder (CSA).

c©: Michael Kohlhase 47
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The Conditional Sum Adder

B Definition 7.15: An n-bit conditional sum adder CSAn is recursively defined
as

B fnCSA(〈an−1, . . ., a0〉, 〈bn−1, . . ., b0〉, c′) = 〈c, sn−1, . . ., s0〉 where

B 〈cn/2, sn/2−1, . . ., s0〉 = f
n/2
CSA(〈an/2−1, . . ., a0〉, 〈bn/2−1, . . ., b0〉, c′)

B 〈c, sn−1, . . ., sn/2〉 =

{
f
n/2
CSA(〈an−1, . . ., an/2〉, 〈bn−1, . . ., bn/2〉, 0) iff cn/2 = 0
f
n/2
CSA(〈an−1, . . ., an/2〉, 〈bn−1, . . ., bn/2〉, 1) iff cn/2 = 1

B f1
CSA(a0, b0, c) = f1

FA(a0, b0, c)
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The only circuit that we still have to look at is the one that chooses the correct upper sums. Fortu-
nately, this is a rather simple design that makes use of the classical trick that “if C, then A, else B”
can be expressed as “(C andA) or (¬C andB)”.

The Multiplexer

B Definition 7.16: An n-bit multiplexer MUXn is a circuit which implements
the function fnMUX : Bn × Bn × B→ Bn with

f(an−1, . . . , a0, bn−1, . . . , b0, s) =
{
an−1, . . . , a0 if s = 0
bn−1, . . . , b0 if s = 1

B Idea: A multiplexer chooses between two n-bit input vectors A and B depend-
ing on the value of the control bit s.

s

o

a ba b

...

o 0

0 0n−1 n−1

n−1

B Cost and depth: C(MUXn) = 3n+ 1 and dp(MUXn) = 3.
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Now that we have completely implemented the conditional lookahead adder circuit, we can analyze
it for its cost and depth (to see whether we have really made things better with this design).
Analyzing the depth is rather simple, we only have to solve the recursive equation that combines
the recursive call of the adder with the multiplexer. Conveniently, the 1-bit full adder has the
same depth as the multiplexer.
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The Depth of CSA

B (Obviously)

dp(CSAn) = dp(CSAn/2) + dp(MUXn/2+1)

B solve the recursive equation:

dp(CSAn) = dp(CSAn/2) + dp(MUXn/2+1)
= dp(CSAn/2) + 3
= dp(CSAn/4) + 3 + 3
= dp(CSAn/8) + 3 + 3 + 3

. . .

= dp(CSAn2−i

) + 3i
= dp(CSA1) + 3 log2 n
= 3 log2 n+ 3

c©: Michael Kohlhase 50

The analysis for the cost is much more complex, we also have to solve a recursive equation, but a
more difficult one. Instead of just guessing the correct closed form, we will use the opportunity to
show a more general technique: using Master’s theorem for recursive equations. There are many
similar theorems which can be used in situations like these, going into them or proving Master’s
theorem would be beyond the scope of the course.

The Cost of CSA

B (Obviously)

C(CSAn) = 3C(CSAn/2) + C(MUXn/2+1).

B Problem: How to solve this recursive equation?

B Solution: Guess a closed formula, prove by induction. (if we are lucky)

B Solution2: Use a general tool for solving recursive equations.

B Theorem 7.17: (Master’s Theorem for Recursive Equations)

Given the recursively defined function f : N→ R, such that f(1) = c ∈ R and
f(bk) = af(bk−1) + g(bk) for some 1 ≤ a ∈ R, k ∈ N, and g : N → R, then

f(bk) = cak +
∑k−1
i=0 a

ig(bk−i)

B We have C(CSAn) = 3C(CSAn/2) + C(MUXn/2+1) = 3C(CSAn/2) +
3(n/2 + 1) + 1 = 3C(CSAn/2) + 3

2n+ 4

B So, C(CSAn) is a function that can be handled via Master’s theorem with
a = 3, b = 2, n = bk, g(n) = 3/2n+ 4, and c = C(f1

CSA) = C(FA1) = 5

c©: Michael Kohlhase 51
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The Cost of CSA

B thus C(CSAn) = 5 · 3log2 n +
∑log2 n−1
i=0 (3i · 3

2n · 2
−i + 4)

B Note: alog2 n = 2log2 a
log2 n = 2log2 a·log2 n = 2log2 n

log2 a = nlog2 a

C(CSAn) = 5 · 3log2 n +
Plog2 n−1

i=0 (3i · 3
2
n · 2−i + 4)

= 5nlog2 3 +
Plog2 n

i=1 n 3
2

i
n+ 4

= 5nlog2 3 + n ·
Plog2 n

i=1
3
2

i
+ 4 log2 n

= 5nlog2 3 + 2n · ( 3
2

log2 n+1 − 1) + 4 log2 n

= 5nlog2 3 + 3n · nlog2
3
2 − 2n+ 4 log2 n

= 8nlog2 3 − 2n+ 4 log2 n ∈ O(nlog2 3)
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The Cost of CSA

B Theorem 7.18: The cost and the depth of the conditional sum adder are in
the following complexity classes:

C(CSAn) ∈ O(nlog2 3) dp(CSAn) ∈ O(log2 n)

B Compare with: C(CCAn) ∈ O(n) dp(CCAn) ∈ O(n)

B So, the conditional sum adder has a smaller depth than the carry chain adder.
This smaller depth is paid with higher cost.

B There is another adder that combines the small cost of the carry chain adder
with the low depth of the conditional sum adder. This has a cost C(CLAn) ∈
O(n) and a depth of dp(CLAn) ∈ O(log2 n).
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Instead of perfecting the n-bit adder further (and there are lots of designs and optimizations out
there, since this has high commercial relevance), we will extend the range of arithmetic operations.
The next thing we come to is subtraction.

8 Arithmetics for Two’s Complement Numbers

This of course presents us with a problem directly: the n-bit binary natural numbers, we have
used for representing numbers are closed under addition, but not under subtraction: If we have
two n-bit binary numbers B(n), and B(m), then B(n+m) is an n+ 1-bit binary natural number.
If we count the most significant bit separately as the carry bit, then we have a n-bit result. For
subtraction this is not the case: B(n−m) is only a n-bit binary natural number, if m ≥ n
(whatever we do with the carry). So we have to think about representing negative binary natural
numbers first. It turns out that the solution using sign bits that immediately comes to mind is
not the best one.
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Negative Numbers and Subtraction

B Note: So far we have completely ignored the existence of negative numbers.

B Problem: Subtraction is a partial operation without them.

B Question: Can we extend the binary number systems for negative numbers?

B Simple Solution: Use a

B Definition 8.1: ((n+ 1)-bit signed binary number system)

〈〈an, an−1, . . . , a0〉〉− :=
{

〈〈an−1, . . . , a0〉〉 if an = 0
−〈〈an−1, . . . , a0〉〉 if an = 1

B Note: We need to fix string length to identify the sign bit. (leading zeroes)

B Example 8.2: In the 8-bit signed binary number system

B 10011001 represents -25 (〈〈10011001〉〉− = −(24 + 23 + 20))

B 00101100 corresponds to a positive number: 44
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Here we did the naive solution, just as in the decimal system, we just added a sign bit, which
specifies the polarity of the number representation. The first consequence of this that we have to
keep in mind is that we have to fix the width of the representation: Unlike the representation for
binary natural numbers which can be arbitrarily extended to the left, we have to know which bit
is the sign bit. This is not a big problem in the world of combinational circuits, since we have a
fixed width of input/output edges anyway.
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Problems of Sign-Bit Systems

B Generally: An n-bit signed binary number
system allows to represent the integers from
−2n−1 + 1 to +2n−1 − 1.

B 2n−1−1 positive numbers, 2n−1−1 negative
numbers, and the zero

B Thus we represent #{〈〈s〉〉− | s ∈ Bn} = 2·
(2n−1 − 1) + 1 = 2n − 1 numbers all in all

B One number must be represented twice
(But there are 2n strings of length n.)

B 10 . . . 0 and 00 . . . 0 both represent the zero
as −1 · 0 = 1 · 0.

signed binary Z
0 1 1 1 7
0 1 1 0 6
0 1 0 1 5
0 1 0 0 4
0 0 1 1 3
0 0 1 0 2
0 0 0 1 1
0 0 0 0 0
1 0 0 0 -0
1 0 0 1 -1
1 0 1 0 -2
1 0 1 1 -3
1 1 0 0 -4
1 1 0 1 -5
1 1 1 0 -6
1 1 1 1 -7

B We could build arithmetic circuits using this, but there is a more elegant way!
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All of these problems could be dealt with in principle, but together they form a nuisance, that at
least prompts us to look for something more elegant. The so-called two’s complement representa-
tion also uses a sign bit, but arranges the lower part of the table in the last slide in the opposite
order, freeing the negative representation of the zero. The technical trick here is to use the sign
bit (we still have to take into account the width n of the representation) not as a mirror, but to
translate the positive representation by subtracting 2n.

The Two’s Complement Number System
B Definition 8.3: Given the binary string
a = 〈an, . . ., a0〉 ∈ Bn+1, where n > 1. The
integer represented by a in the (n + 1)-bit
two’s complement, written as 〈〈a〉〉2sn , is de-
fined as

〈〈a〉〉2sn = −an · 2n + 〈〈a[n− 1, 0]〉〉

= −an · 2n +
n−1∑
i=0

ai · 2i

B Notation 8.4:Write B2s
n (z) for the binary

string that represents z in the two’s comple-
ment number system, i.e., 〈〈B2s

n (z)〉〉2sn = z.

2’s compl. integer
0 1 1 1 7
0 1 1 0 6
0 1 0 1 5
0 1 0 0 4
0 0 1 1 3
0 0 1 0 2
0 0 0 1 1
0 0 0 0 0
1 1 1 1 -1
1 1 1 0 -2
1 1 0 1 -3
1 1 0 0 -4
1 0 1 1 -5
1 0 1 0 -6
1 0 0 1 -7
1 0 0 0 -8
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We will see that this representation has much better properties than the naive sign-bit represen-
tation we experimented with above. The first set of properties are quite trivial, they just formalize
the intuition of moving the representation down, rather than mirroring it.

Properties of Two’s Complement Numbers (TCN) Let b =
〈bn, . . ., b0〉 be a number in the n+ 1-bit two’s complement system, then

B Positive numbers and the zero have a sign bit 0, i.e., bn = 0⇔ 〈〈b〉〉2sn ≥ 0.

B Negative numbers have a sign bit 1, i.e., bn = 1⇔ 〈〈b〉〉2sn < 0.

B For positive numbers, the two’s complement representation corresponds to the
normal binary number representation, i.e., bn = 0⇔ 〈〈b〉〉2sn = 〈〈b〉〉

B There is a unique representation of the number zero in the n-bit two’s com-
plement system, namely 0n+1 = 〈0, . . ., 0〉.

B This number system has an asymmetric range R2s
n+1 := {−2n, . . ., 2n−1}.
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The next property is so central for what we want to do, it is upgraded to a theorem. It says that
the mirroring operation (passing from a number to it’s negative sibling) can be achieved by two
very simple operations: flipping all the zeros and ones, and incrementing.

The Structure Theorem for TCN

B Theorem 8.5: Let a ∈ Bn+1 be a binary string, then −〈〈a〉〉2sn = 〈〈a〉〉2sn + 1.

B Proof: by calculation using the definitions

〈〈an, an−1, . . . , a0〉〉2sn = −an · 2n + 〈〈an−1, . . . , a0〉〉

= an · (−2n) +
n−1∑
i=0

ai · 2i

= (1− an) · (−2n) +
n−1∑
i=0

(1− ai) · 2i

= (1− an) · (−2n) +
n−1∑
i=0

2i −
n−1∑
i=0

ai · 2i

= −2n + an · 2n + 2n − 1− 〈〈an−1, . . . , a0〉〉
= (−2n + 2n) + an · 2n − 〈〈an−1, . . . , a0〉〉 − 1
= −(an · (−2n) + 〈〈an−1, . . . , a0〉〉)− 1
= −〈〈a〉〉2sn − 1
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A first simple application of the TCN structure theorem is that we can use our existing conversion
routines (for binary natural numbers) to do TCN conversion (for integers).
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Application: Converting from and to TCN?

B to convert an integer −z ∈ Z with z ∈ N into an n-bit TCN

B generate the n-bit binary number representation B(z) = 〈bn−1, . . ., b0〉
B complement it to B(z), i.e., the bitwise negation bi of B(z)

B increment (add 1) B(z), i.e. compute B(〈〈B(z)〉〉+ 1)

B to convert a negative n-bit TCN b = 〈bn−1, . . ., b0〉, into an integer

B decrement b, (compute B(〈〈b〉〉 − 1))

B complement it to B(〈〈b〉〉 − 1)

B compute the decimal representation and negate it to −〈〈B(〈〈b〉〉 − 1)〉〉
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Subtraction and Two’s Complement Numbers

B Idea: With negative numbers use our adders directly

B Definition 8.6:An n-bit subtracter is a circuit that implements the function
fnSUB : Bn × Bn × B→ B× Bn such that

fnSUB(a, b, b′) = B2s
n (〈〈a〉〉2sn − 〈〈b〉〉2sn − b′)

for all a, b ∈ Bn and b′ ∈ B. The bit b′ is the so-called input borrow bit.

B Note: We have 〈〈a〉〉2sn − 〈〈b〉〉2sn = 〈〈a〉〉2sn + (−〈〈b〉〉2sn ) = 〈〈a〉〉2sn + 〈〈b〉〉2sn + 1

B Idea: Can we implement an n-bit subtracter as fnSUB(a, b, b′) = fnFA(a, b, b′)?

B not immediately: We have to make sure that the full adder plays nice with
twos complement numbers
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In addition to the unique representation of the zero, the two’s complement system has an addi-
tional important property. It is namely possible to use the adder circuits introduced previously
without any modification to add integers in two’s complement representation.

Addition of TCN

B Idea: use the adders without modification for TCN arithmetic

B Definition 8.7: An n-bit two’s complement adder (n > 1) is a circuit
that corresponds to the function fnTCA : Bn × Bn × B → B× Bn, such that
fnTCA(a, b, c′) = B2s

n (〈〈a〉〉2sn + 〈〈b〉〉2sn + c′) for all a, b ∈ Bn and c′ ∈ B.

B Theorem 8.8: fnTCA = fnFA (first prove some Lemmas)
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It is not obvious that the same circuits can be used for the addition of binary and two’s complement
numbers. So, it has to be shown that the above function TCAcircFNn and the full adder function
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fnFA from definition?? are identical. To prove this fact, we first need the following lemma stating
that a (n + 1)-bit two’s complement number can be generated from a n-bit two’s complement
number without changing its value by duplicating the sign-bit:

TCN Sign Bit Duplication Lemma

B Idea: An (n+1)-bit TCN can be generated from a n-bit TCN without changing
its value by duplicating the sign-bit

B Lemma 8.9: Let a = 〈an, . . ., a0〉 ∈ Bn+1 be a binary string, then
〈〈an, an, an−1, . . . , a0〉〉2sn = 〈〈a〉〉2sn .

B Proof: by calculation

〈〈an, an, an−1, . . . , a0〉〉2sn = −an · 2n+1 + 〈〈an, an−1, . . . , a0〉〉
= −an · 2n+1 + an · 2n + 〈〈an−1, . . . , a0〉〉
= an · (−2n+1 + 2n) + 〈〈an−1, . . . , a0〉〉
= an · (−2 · 2n + 2n) + 〈〈an−1, . . . , a0〉〉
= −an · 2n + 〈〈an−1, . . . , a0〉〉
= 〈〈a〉〉2sn

c©: Michael Kohlhase 62

We will now come to a major structural result for two’s complement numbers. It will serve two
purposes for us:

1. It will show that the same circuits that produce the sum of binary numbers also produce
proper sums of two’s complement numbers.

2. It states concrete conditions when a valid result is produced, namely when the last two
carry-bits are identical.

The TCN Main Theorem

B Let a = 〈an−1, . . ., a0〉, b = 〈bn−1, . . ., b0〉 ∈ Bn and c ∈ B.

B Definition 8.10:We call ick(a, b, c), the k-th intermediate carry of an addition
of a and b,

〈〈ick(a, b, c), sk−1, . . . , s0〉〉 = 〈〈ak−1, . . . , a0〉〉+ 〈〈bk−1, . . . , b0〉〉+ c

for some si ∈ B.

B Theorem 8.11:

1. 〈〈a〉〉2sn + 〈〈b〉〉2sn + c ∈ R2s
n , iff icn+1(a, b, c) = icn(a, b, c).

2. If icn+1(a, b, c) = icn(a, b, c), then 〈〈a〉〉2sn + 〈〈b〉〉2sn + c = 〈〈s〉〉2sn , where
〈〈icn+1(a, b, c), sn, . . . , s0〉〉 = 〈〈a〉〉+ 〈〈b〉〉+ c.
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Proof of the TCN Main Theorem Proof: Let us consider the
sign-bits an and bn separately from the value-bits a′ = 〈an−1, . . ., a0〉 and
b′ = 〈bn−1, . . ., b0〉.

P.1 Then 〈〈a′〉〉+ 〈〈b′〉〉+ c = 〈〈an−1, . . . , a0〉〉+ 〈〈bn−1, . . . , b0〉〉+ c
= 〈〈icn(a, b, c), sn−1 . . . , s0〉〉

and an + bn + icn(a, b, c) = 〈〈icn+1(a, b, c), sn〉〉.

P.2 We have to consider three cases

P.2.1 an = bn = 0:

P.2.1.1 a and b are both positive, so icn+1(a, b, c) = 0 and furthermore

icn(a, b, c) = 0 ⇔ 〈〈a′〉〉+ 〈〈b′〉〉+ c ≤ 2n − 1
⇔ 〈〈a〉〉2sn + 〈〈b〉〉2sn + c ≤ 2n − 1

P.2.1.2 Hence, 〈〈a〉〉2sn + 〈〈b〉〉2sn + c = 〈〈a′〉〉+ 〈〈b′〉〉+ c
= 〈〈sn−1, . . . , s0〉〉
= 〈〈0, sn−1, . . . , s0〉〉 = 〈〈s〉〉2sn
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Proof of the TCN Main Theorem Proof: cont’d

P.1 Case 2:

P.1.1 an = bn = 1:

P.1.1.1 a and b are both negative, so icn+1(a, b, c) = 1 and furthermore
icn(a, b, c) = 1, iff 〈〈a′〉〉 + 〈〈b′〉〉 + c ≥ 2n, which is the case, iff 〈〈a〉〉2sn +
〈〈b〉〉2sn + c = −2n+1 + 〈〈a′〉〉+ 〈〈b′〉〉+ c ≥ −2n

P.1.1.2 Hence, 〈〈a〉〉2sn + 〈〈b〉〉2sn + c = −2n + 〈〈a′〉〉+−2n + 〈〈b′〉〉+ c
= −2n+1 + 〈〈a′〉〉+ 〈〈b′〉〉+ c
= −2n+1 + 〈〈1, sn−1, . . . , s0〉〉
= −2n + 〈〈sn−1, . . . , s0〉〉
= 〈〈s〉〉2sn

c©: Michael Kohlhase 65

43

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Proof of the TCN Main Theorem Proof: cont’d

P.1 Case 3:

P.1.1 an 6= bn:

P.1.1.1 Without loss of generality assume that an = 0 and bn = 1.
(then icn+1(a, b, c) = icn(a, b, c))

P.1.1.2 Hence, the sum of a and b is in the admissible range as

〈〈a〉〉2sn + 〈〈b〉〉2sn + c = 〈〈a′〉〉+ 〈〈b′〉〉+ c− 2n

and 0 ≤ 〈〈a′〉〉+ 〈〈b′〉〉+ c ≤ 2n+1 − 1

P.1.1.3 So we have 〈〈a〉〉2sn + 〈〈b〉〉2sn + c = −2n + 〈〈a′〉〉+ 〈〈b′〉〉+ c
= −2n + 〈〈icn(a, b, c), sn−1, . . . , s0〉〉
= −(1− icn(a, b, c)) · 2n + 〈〈sn−1, . . . , s0〉〉
= 〈〈icn(a, b, c), sn−1, . . . , s0〉〉

2s

P.1.1.4 Furthermore, we can conclude that 〈〈icn(a, b, c), sn−1, . . . , s0〉〉
2s

= 〈〈s〉〉2sn
as sn = an ⊕ bn ⊕ icn(a, b, c)⊕=1⊕ icn(a, b, c)⊕=icn(a, b, c).

P.2 Thus we have considered all the cases and completed the proof.
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The Main Theorem for TCN again

B Given two (n+1)-bit two’s complement numbers a and b. The above theorem
tells us that the result s of an (n + 1)-bit adder is the proper sum in two’s
complement representation iff the last two carries are identical.

B If not, a and b were too large or too small.
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The most important application of the main TCN theorem is that we can build a combinatorial
circuit that can add and subtract (depending on a control bit). This is actually the first instance
of a concrete programmable computation device we have seen up to date (we interpret the control
bit as a program, which changes the behavior of the device). The fact that this is so simple, it
only runs two programs should not deter us; we will come up with more complex things later.
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Building an Add/Subtract Unit

B Idea: Build a Combinational Circuit that can
add and subtract (sub = 1 subtract)

B If sub = 0, then the circuit acts like an adder
(a⊕ 0⊕=a)

B If sub = 1, let S :=
〈〈a〉〉2sn + 〈〈bn−1, . . . , b0〉〉2sn + 1

(a⊕ 0⊕=1− a)

B For S ∈ R2s
n−1 the TCN theorem guarantees

〈〈sn−1, . . . , s0〉〉2s
n

= 〈〈a〉〉2s
n + 〈〈bn−1, . . . , b0〉〉2s

n + 1

= 〈〈a〉〉2s
n − 〈〈b〉〉2s

n − 1 + 1

n

A

n+1

n

n

s

sub

a b bn−1 0

B Summary: We have built a combinational circuit that can perform 2 arithmetic
operations depending on a control bit.

B Idea: Extend this to a arithmetic logic unit (ALU) with more operations
(+, -, *, /, n-AND, n-OR,. . . )
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In fact extended variants of the very simple Add/Subtract unit are at the heart of any computer.
These are called arithmetic logic units.

9 Sequential Logic Circuits and Memory Elements

So far we have considered combinatorial logic, i.e. circuits for which the output depends only
on the inputs. In many instances it is desirable to have the next output depend on the current
output.

Sequential Logic Circuits

B In combinational circuits, outputs only depend on inputs (no state)

B We have disregarded all timing issues (except for favoring shallow circuits)

B Definition 9.1: Circuits that remember their current output or state are often
called sequential logic circuits.

B Example 9.2: A counter , where the next number to be output is determined
by the current number stored.

B Sequential logic circuits need some ability to store the current state
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Clearly, sequential logic requires the ability to store the current state. In other words, memory
is required by sequential logic circuits. We will investigate basic circuits that have the ability to
store bits of data. We will start with the simplest possible memory element, and develop more
elaborate versions from it.
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The circuit we are about to introduce is the simplest circuit that can keep a state, and thus act
as a (precursor to) a storage element. Note that we are leaving the realm of acyclic graphs here.
Indeed storage elements cannot be realized with combinational circuits as defined above.

RS Flip-Flop

B Definition 9.3: A RS-flipflop (or RS-latch)is constructed by feeding the outputs
of two NOR gates back to the other NOR gates input. The inputs R and S
are referred to as the Reset and Set inputs, respectively.

R S Q Q′ Comment

0 1 1 0 Set

1 0 0 1 Reset

0 0 Q Q′ Hold state

1 1 ? ? Avoid

B Note: the output Q’ is simply the inverse of Q. (supplied for convenience)

B Note: An RS flipflop can also be constructed from NAND gates.
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↓ 0 1
0 1 0
1 0 0

To understand the operation of the RS-flipflop we first reminde ourselves of the
truth table of the NOR gate on the right: If one of the inputs is 1, then the output
is 0, irrespective of the other. To understand the RS-flipflop, we will go through
the input combinations summarized in the table above in detail. Consider the
following scenarios:

S = 1 and R = 0 The output of the bottom NOR gate is 0, and thus Q′ = 0 irrespective of the
other input. So both inputs to the top NOR gate are 0, thus, Q = 1. Hence, the input
combination S = 1 and R = 0 leads to the flipflop being set to Q = 1.

S = 0 and R = 1 The argument for this situation is symmetric to the one above, so the outputs
become Q = 0 and Q′ = 1. We say that the flipflop is reset .

S = 0 and R = 0 Assume the flipflop is set (Q = 0 and Q′ = 1), then the output of the top
NOR gate remains at Q = 1 and the bottom NOR gate stays at Q′ = 0. Similarly, when
the flipflop is in a reset state (Q = 1 and Q′ = 0), it will remain there with this input
combination. Therefore, with inputs S = 0 and R = 0, the flipflop remains in its state.

S = 1 and R = 1 This input combination will be avoided, we have all the functionality (set , reset ,
and hold) we want from a memory element.

An RS-flipflop is rarely used in actual sequential logic. However, it is the fundamental building
block for the very useful D-flipflop.

46

http://creativecommons.org/licenses/by-sa/2.5/


The D-Flipflop: the simplest memory device

B Recap: A RS-flipflop can store a state (set Q to 1 or reset Q to 0)

B Problem: We would like to have a single data input and avoid R = S states.

B Idea: Add interface logic to do just this

B Definition 9.4: A D-Flipflop is an RS-flipflop with interface logic as below.

E D R S Q Comment

1 1 0 1 1 set Q to 1
1 0 1 0 0 reset Q to 0
0 D 0 0 Q hold Q

The inputs D and E are called the data and enable inputs.

B When E = 1 the value of D determines the value of the output Q, when E
returns to 0, the most recent input D is “remembered.”
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Sequential logic circuits are constructed from memory elements and combinatorial logic gates.
The introduction of the memory elements allows these circuits to remember their state. We will
illustrate this through a simple example.

Example: On/Off Switch

B Problem: Pushing a button toggles a LED between on and off.
(first push switches the LED on, second push off,. . . )

B Idea: Use a D-flipflop (to remember whether the LED is currently on or off)
connect its Q′ ouput to its D input (next state is inverse of current state)
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In the on/off circuit, the external inputs (buttons) were connected to the E input. Definition 9.5:
Such circuits are often called asynchronous as they keep track of events that occur at arbitrary
instants of time, synchronous circuits in contrast operate on a periodic basis and the Enable input
is connected to a common clock signal.
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Random Access Memory Chips

B Random access memory (RAM) is used for storing a large number of bits.

B RAM is made up of storage elements similar to the D-flipflops we discussed.

B Principally, each storage element has a unique number or address represented
in binary form.

B When the address of the storage element is provided to the RAM chip, the
corresponding memory element can be written to or read from.

B We will consider the following questions:

B What is the physical structure of RAM chips?

B How are addresses used to select a particular storage element?

B What do individual storage elements look like?

B How is reading and writing distinguished?
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Address Decoder Logic

B Idea: Need a circuit that activates the row/column given the binary address:

B At any time, only 1 output line is “on” and all others are off.

B The line that is “on” specifies the desired column or row.

B Definition 9.6: The n-bit address decoder ADLn has a n inputs and 2n out-
puts. fmADL(a) = 〈b1, . . ., b2n〉, where bi = 1, iff i = 〈〈a〉〉.

B Example 9.7: (Address decoder logic for 2-bit addresses)
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Storage Elements

B Idea (Input): Use a D-flipflop connect its E input to the ADL output.
Connect the D-input to the common RAM data input line.

(input only if addressed)

B Idea (Output): Connect the flipflop output to common RAM output line. But
first AND with ADL output (output only if addressed)

B Problem: The read process should leave the value of the gate unchanged.

B Idea: Introduce a “write enable” signal (protect data during read) AND it
with the ADL output and connect it to the flipflop’s E input.

B Definition 9.8: A Storage Element is given by the foolowing diagram
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Remarks

B The storage elements are often simplified to reduce the number of transistors.

B For example, with care one can replace the flipflop by a capacitor.

B Also, with large memory chips it is not feasible to connect the data input and
output and write enable lines directly to all storage elements.

B Also, with care one can use the same line for data input and data output.

B Today, multi-gigabyte RAM chips are on the market.

B The capacity of RAM chips doubles approximately every year.
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Layout of Memory Chips

B To take advantage of the two-dimensional nature of the chip, storage elements
are arranged on a square grid. (columns and rows of storage elements)

B For example, a 1 Megabit RAM chip has of 1024 rows and 1024 columns.

B idenfity storage element can be identified by its row and column “coordinates”.
(AND them for addressing)

B Hence, to select a particular stor-
age location the address informa-
tion must be translated into row
and column specification.

B The address information is di-
vided into two halfs; the top half
is used to select the row and the
bottom half is used to select the
column.
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10 How to build a Computer (in Principle)

In this part of the course, we will learn how to use the very simple computational devices we
built in the last section and extend them to fully programmable devices using the so-called “von
Neumann Architecture”. For this, we need random access memory (RAM).

For our purposes, . They can be written to, (after which they store the n values at their n
input edges), and they can be queried: then their output edges have the n values that were stored
in the memory cell. Querying a memory cell does not change the value stored in it.
Our notion of time is similarly simple, in our analysis we assume a series of discrete clock ticks

that synchronize all events in the circuit. We will only observe the circuits on each clock tick and
assume that all computational devices introduced for the register machine complete computation
before the next tick. Real circuits, also have a clock that synchronizes events (the clock frequency
(currently around 3 GHz for desktop CPUs) is a common approximation measure of processor
performance), but the assumption of elementary computations taking only one click is wrong in
production systems.
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How to Build a Computer (REMA; the Register Machine)

B Take an n-bit arithmetic logic unit (ALU)

B add registers: few (named) n-bit memory cells near the ALU

B program counter (PC) (points to current command in program store)

B accumulator (ACC) (the a input and output of the ALU)

B add RAM: lots of random access memory (elsewhere)

B program store: 2n-bit memory cells (addressed by P : N→ B2n)

B data store: n-bit memory cells (words addressed by D : N→ Bn)

B add a memory management unit(MMU)
(move values between RAM and registers)

B program it in assembler language (lowest level of programming)
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We have three kinds of memory areas in the REMA register machine: The registers (our architecture
has two, which is the minimal number, real architectures have more for convenience) are just simple
n-bit memory cells.
The programstore is a sequence of up to 2n memory 2n-bit memory cells, which can be accessed

(written to and queried) randomly i.e. by referencing their position in the sequence; we do not have
to access them by some fixed regime, e.g. one after the other, in sequence (hence the name random
access memory: RAM). We address the Program store by a function P : N→ B2n. The data store
is also RAM, but a sequence or n-bit cells, which is addressed by the function D : N→ Bn.
The value of the program counter is interpreted as a binary number that addresses a 2n-bit cell

in the program store. The accumulator is the register that contains one of the inputs to the ALU
before the operation (the other is given as the argument of the program instruction); the result of
the ALU is stored in the accumulator after the instruction is carried out.

Memory Plan of a Register Machine

ACC (accumulator)

IN1 (index register 1)

IN2 (index register 2)

PC (program counter)

save

load

P
r
o
g
r
a
m

Addresses

Program Store

2n−bit Cells

Data Store
CPU

Addresses

2

3

1
0 Operation Argument

n−bit Cells

3

2

1
0
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The ALU and the MMU are control circuits, they have a set of n-bit inputs, and n-bit outputs,
and an n-bit control input. The prototypical ALU, we have already seen, applies arithmetic or
logical operator to its regular inputs according to the value of the control input. The MMU is
very similar, it moves n-bit values between the RAM and the registers according to the value at
the control input. We say that the MMU moves the (n-bit) value from a register R to a memory
cell C, iff after the move both have the same value: that of R. This is usually implemented as a
query operation on R and a write operation to C. Both the ALU and the MMU could in principle
encode 2n operators (or commands), in practice, they have fewer, since they share the command
space.

Circuit Overview over the CPU

ALU

Operation Argument

ACC

Program Store

Logic
Address

PC
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In this architecture (called the register machine architecture), programs are sequences of 2n-
bit numbers. The first n-bit part encodes the instruction, the second one the argument of the
instruction. The program counter addresses the current instruction (operation + argument).
We will now instantiate this general register machine with a concrete (hypothetical) realization,

which is sufficient for general programming, in principle. In particular, we will need to identify a
set of program operations. We will come up with 18 operations, so we need to set n ≥ 5. It is
possible to do programming with n = 4 designs, but we are interested in the general principles
more than optimization.
The main idea of programming at the circuit level is to map the operator code (an n-bit binary
number) of the current instruction to the control input of the ALU and the MMU, which will then
perform the action encoded in the operator.
Since it is very tedious to look at the binary operator codes (even it we present them as hexadecimal
numbers). Therefore it has become customary to use a mnemonic encoding of these in simple word
tokens, which are simpler to read, the so-called assembler language.
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Assembler Language

B Idea: Store program instructions as n-bit values in program store, map these
to control inputs of ALU, MMU.

B Definition 10.1:assembler language as mnemonic encoding of n-bit binary

codes.

instruction effect PC comment

LOAD i ACC : = D(i) PC : = PC + 1 load data
STORE i D(i) : = ACC PC : = PC + 1 store data
ADD i ACC : = ACC +D(i) PC : = PC + 1 add to ACC
SUB i ACC : = ACC −D(i) PC : = PC + 1 subtract from ACC

LOADI i ACC : = i PC : = PC + 1 load number
ADDI i ACC : = ACC + i PC : = PC + 1 add number
SUBI i ACC : = ACC − i PC : = PC + 1 subtract number
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Definition 10.2: The meaning of the program instructions are specified in their ability to change
the state of the memory of the register machine. So to understand them, we have to trace the
state of the memory over time (looking at a snapshot after each clock tick; this is what we do
in the comment fields in the tables on the next slide). We speak of an imperative programming
language, if this is the case.

Example 10.3: This is in contrast to the programming language SML that we have looked at
before. There we are not interested in the state of memory. In fact state is something that we
want to avoid in such functional programming languages for conceptual clarity; we relegated all
things that need state into special constructs: effects.
To be able to trace the memory state over time, we also have to think about the initial state of the
register machine (e.g. after we have turned on the power). We assume the state of the registers
and the data store to be arbitrary (who knows what the machine has dreamt). More interestingly,
we assume the state of the program store to be given externally. For the moment, we may assume
(as was the case with the first computers) that the program store is just implemented as a large
array of binary switches; one for each bit in the program store. Programming a computer at that
time was done by flipping the switches (2n) for each instructions. Nowadays, parts of the initial
program of a computer (those that run, when the power is turned on and bootstrap the operating
system) is still given in special memory (called the firmware) that keeps its state even when power
is shut off. This is conceptually very similar to a bank of switches.
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Example Programs

B Example 10.4: Exchange the values of cells 0 and 1 in the data store

P instruction comment

0 LOAD 0 ACC : = D(0) = x
1 STORE 2 D(2) : = ACC = x
2 LOAD 1 ACC : = D(1) = y
3 STORE 0 D(0) : = ACC = y
4 LOAD 2 ACC : = D(2) = x
5 STORE 1 D(1) : = ACC = x

B Example 10.5: Let D(1) = a, D(2) = b, and D(3) = c, store a+ b+ c in data
cell 4

P instruction comment

0 LOAD 1 ACC : = D(1) = a
1 ADD 2 ACC : = ACC +D(2) = a+ b
2 ADD 3 ACC : = ACC +D(3) = a+ b+ c
3 STORE 4 D(4) : = ACC = a+ b+ c

B use LOADI i, ADDI i, SUBI i to set/increment/decrement ACC
(impossible otherwise)
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So far, the problems we have been able to solve are quite simple. They had in common that we had
to know the addresses of the memory cells we wanted to operate on at programming time, which
is not very realistic. To alleviate this restriction, we will now introduce a new set of instructions,
which allow to calculate with addresses.

Index Registers

B Problem: Given D(0) = x and D(1) = y, how do we store y into cell x of the
data store? (impossible, as we have only absolute addressing)

B Idea: introduce more registers and register instructions (IN1, IN2 suffice)

instruction effect PC comment

LOADINj i ACC : = D(INj + i) PC : = PC + 1 relative load
STOREINj i D(INj + i) : = ACC PC : = PC + 1 relative store
MOVE S T T : = S PC : = PC + 1 move register S (source)

to register T (target)

B Problem Solution:

P instruction comment

0 LOAD 0 ACC : = D(0) = x
1 MOVE ACC IN1 IN1: = ACC = x
2 LOAD 1 ACC : = D(1) = y
3 STOREIN1 0 D(x) = D(IN1 + 0): = ACC = y
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Note that the LOADIN are not binary instructions, but that this is just a short notation for unary
instructions LOADIN 1 and LOADIN 2 (and similarly for MOVE S T ).
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Note furthermore, that the addition logic in LOADIN j is simply for convenience (most assembler
languages have it, since working with address offsets is commonplace). We could have always
imitated this by a simpler relative load command and an ADD instruction.
A very important ability we have to add to the language is a set of instructions that allow us

to re-use program fragments multiple times. If we look at the instructions we have seen so far,
then we see that they all increment the program counter. As a consequence, program execution is
a linear walk through the program instructions: every instruction is executed exactly once. The
set of problems we can solve with this is extremely limited. Therefore we add a new kind of
instruction. Jump instructions directly manipulate the program counter by adding the argument
to it (note that this partially invalidates the circuit overview slide above5, but we will not worry EdNote(5)
about this).
Another very important ability is to be able to change the program execution under certain
conditions. In our simple language, we will only make jump instructions conditional (this is
sufficient, since we can always jump the respective instruction sequence that we wanted to make
conditional). For convenience, we give ourselves a set of comparison relations (two would have
sufficed, e.g. = and <) that we can use to test.

Jump Instructions

B Problem: Until now, we can only write linear programs
(A program with n steps executes n instructions)

B Idea: Need instructions that manipulate the PC directly

B Let R ∈ {<,=, >,≤, 6=,≥} be a comparison relation
instruction effect PC comment

JUMP i PC : = PC + i jump forward i steps

JUMPR i PC : =


PC + i ifR(ACC, 0)
PC + 1 if else

conditional jump

B Two more:
instruction effect PC comment

NOP i PC : = PC + 1 no operation
STOP i stop computation
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The final addition to the language are the NOP (no operation) and STOP operations. Both
do not look at their argument (we have to supply one though, so we fit our instruction for-
mat). the NOP instruction is sometimes convenient, if we keep jump offsets rational, and the
STOP instruction terminates the program run (e.g. to give the user a chance to look at the
results.)

5EdNote: reference
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Example Program

B Example 10.6: Let D(0) = n, D(1) = a, and D(2) = b, copy the values of
cells a, . . . , a+ n− 1 to cells b, . . . , b+ n− 1, while a, b ≥ 3 and |a− b| ≥ n.

P instruction comment P instruction comment

0 LOAD 1 ACC : = a 10 MOVE ACC IN1 IN1: = IN1 + 1
1 MOVE ACC IN1 IN1: = a 11 MOVE IN2 ACC
2 LOAD 2 ACC : = b 12 ADDI 1
3 MOVE ACC IN2 IN2: = b 13 MOVE ACC IN2 IN2: = IN2 + 1
4 LOAD 0 ACC : = n 14 LOAD 0
5 JUMP= 13 if n = 0 then stop 15 SUBI 1
6 LOADIN1 0 ACC : = D(IN1) 16 STORE 0 D(0) : = D(0)− 1
7 STOREIN2 0 D(IN2) : = ACC 17 JUMP − 12 goto step 5
8 MOVE IN1 ACC 18 STOP 0 Stop
9 ADDI 1

B Lemma 10.7: We have D(0) = n−(i−1), IN1 = a+i−1, and IN2 = b+i−1
for all 1 ≤ i ≤ n+ 1. (the program does what we want)

B proof by induction on n.

B Definition 10.8: The induction hypotheses are called loop invariants.
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11 How to build a SML-Compiler (in Principle)

In this part of the course, we will build a compiler for a simple functional programming language.
A compiler is a program that examines a program in a high-level programming language and
transforms it into a program in a language that can be interpreted by an existing computation
engine, in our case, the register machine we discussed above.

We have seen that our register machine runs programs written in assembler, a simple machine
language expressed in two-word instructions. Machine languages should be designed such that on
the processors that can be built machine language programs can execute efficiently. On the other
hand machine languages should be built, so that programs in a variety of high-level programming
languages can be transformed automatically (i.e. compiled) into efficient machine programs. We
have seen that our assembler language ASM is a serviceable, if frugal approximation of the first goal
for very simple processors. We will now show that it also satisfies the second goal by exhibiting a
compiler for a simple SML-like language.

In the last 20 years, the machine languages for state-of-the art processors have hardly changed.
This stability was a precondition for the enormous increase of computing power we have witnessed
during this time. At the same time, high-level programming languages have developed consider-
ably, and with them, their needs for features in machine-languages. This leads to a significant
mismatch, which has been bridged by the concept of a virtual machine.

virtualmachine is a simple machine-language program that interprets a slightly higher-level
program — the “bytecode” — and simulates it on the existing processor. Byte code is still
considered a machine language, just that it is realized via software on a real computer, instead
of running directly on the machine. This allows to keep the compilers simple while only paying a
small price in efficiency.

In our compiler, we will take this approach, we will first build a simple virtual machine (an
ASM program) and then build a compiler that translates functional programs into byte code.
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Virtual Machines

B Question: How to run high-level programming languages (like SML) on REMA?

B Answer: By providing a compiler, i.e. an ASM program that reads SML pro-
grams (as data) and transforms them into ASM programs.

B But: ASM is optimized for building simple, efficient processors, not as a trans-
lation target!

B Idea: Build an ASM program VM that interprets a better translation target
language (interpret REMA+VM as a “virtual machine”)

B Definition 11.1: An ASM program VM is called a virtual machine for a language
L(VM), iff VM inputs a L(VM) program (as data) and runs it on REMA.

B Plan: Instead of building a compiler for SML to ASM, build a virtual machine VM
for REMA and a compiler from SML to L(VM). (simpler and more transparent)
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A Virtual Machine for Functional Programming

B Idea: We will build a stack-based virtual machine; this will have four compo-
nents

Command Interpreter

Stack Program Store

VPC

B The stack is a memory segment operated as a “last-in-first-out” LIFO sequence

B The program store is a memory segment interpreted as a sequence of instruc-
tions

B The command interpreter is a ASM program that interprets commands from
the program store and operates on the stack.

B The virtual program counter (VPC) is a register that acts as a the pointer to
the current instruction in the program store.

B The virtual machine starts with the empty stack and VPC at the beginning of
the program.

c©: Michael Kohlhase 87
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A Stack-Based VM language (Arithmetic Commands)

B Definition 11.2: VM Arithmetic Commands act on the stack

instruction effect V PC

con i pushes i onto stack V PC : = V PC + 2
add pop x, pop y, push x+ y V PC : = V PC + 1
sub pop x, pop y, push x− y V PC : = V PC + 1
mul pop x, pop y, push x · y V PC : = V PC + 1
leq pop x, pop y, if x ≤ y push 1, else push 0 V PC : = V PC + 1

B Example 11.3: The L(VM) program “con 4 con 7 add” pushes 7 + 4 = 11 to
the stack.

B Example 11.4: Note the order of the arguments: the program
“con 4 con 7 sub” first pushes 4, and then 7, then pops x and then y (so
x = 7 and y = 4) and finally pushes x− y = 7− 4 = 3.

B Stack-based operations work very well with the recursive structure of arith-
metic expressions: we can compute the value of the expression 4 · 3 − 7 · 2
with

con 2 con 7 mul 7 · 2
con 3 con 4 mul 4 · 3
sub 4 · 3− 7 · 2
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Note: A feature that we will see time and again is that every (syntactically well-formed) expression
leaves only the result value on the stack. In the present case, the computation never touches the
part of the stack that was present before computing the expression. This is plausible, since the
computation of the value of an expression is purely functional, it should not have an effect on the
state of the virtual machine VM (other than leaving the result of course).
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A Stack-Based VM language (Control)

B Definition 11.5: Control operators

instruction effect V PC

jp i V PC : = V PC + i
cjp i pop x if x = 0, then V PC : = V PC + i else V PC : = V PC + 2
halt —

B cjp is a “jump on false”-type expression.
(if the condition is false, we jump else we continue)

B Example 11.6: For conditional expressions we use the conditional jump expres-
sions: We can express “if 1 ≤ 2 then 4− 3 else 7 · 5” by the program

con 2 con 1 leq cjp 9 if 1 ≤ 2
con 3 con 4 sub jp 7 then 4− 3
con 5 con 7 mul else 7 · 5
halt
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In the example, we first push 2, and then 1 to the stack. Then leq pops (so x = 1), pops again
(making y = 2) and computes x ≤ y (which comes out as true), so it pushes 1, then it continues
(it would jump to the else case on false).
Note: Again, the only effect of the conditional statement is to leave the result on the stack. It
does not touch the contents of the stack at and below the original stack pointer.

A Stack-Based VM language (Imperative Variables)

B Definition 11.7: Imperative access to variables: Let S(i) be the number at
stack position i.

instruction effect V PC

peek i push S(i) V PC : = V PC + 2
poke i pop x S(i) : = x V PC : = V PC + 2

B Example 11.8: The program “con 5 con 7 peek 0 peek 1 add poke 1 mul halt”
computes 5 · (7 + 5) = 60.
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Of course the last example is somewhat contrived, this is certainly not the best way to compute
5 · (7 + 5) = 60, but it does the trick.
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Extended Example: A while Loop

B Example 11.9: Consider the following program that computes (12)! and the
corresponding L(VM) program:

var n := 12; var a := 1; con 12 con 1
while 2 <= n do ( peek 0 con 2 leq cjp 18
a := a * n; peek 0 peek 1 mul poke 1
n := n - 1; con 1 peek 0 sub poke 0

) jp −21
return a; peek 1 halt

B Note that variable declarations only push the values to the stack,
(memory allocation)

B they are referenced by peeking the respective stack position

B they are assigned by pokeing the stack position (must remember that)
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We see that again, only the result of the computation is left on the stack. In fact, the code snippet
consists of two variable declarations (which extend the stack) and one while statement, which
does not, and the return statement, which extends the stack again. In this case, we see that
even though the while statement does not extend the stack it does change the stack below by the
variable assignments (implemented as poke in L(VM)). We will use the example above as guiding
intuition for a compiler from a simple imperative language to L(VM) byte code below. But first we
build a virtual machine for L(VM).
We will now build a virtual machine for L(VM) along the specification above.

A Virtual Machine for L(VM)

B We need to build a concrete ASM program that acts as a virtual machine for
L(VM).

B Choose a concrete register machine size: e.g. 32-bit words (like in a PC)

B Choose memory layout in the data store

B the VM stack: D(8) to D(224 − 1), and (need the first 8 cells for VM data)

B the L(VM) program store: D(224) to D(232 − 1)

B We represent the virtual program counter V PC by the index register IN1
and the stack pointer by the index register IN2 (with offset 8).

B We will use D(0) as an argument store.

B choose a numerical representation for the L(VM) instructions:
(have lots of space)

halt 7→ 0, add 7→ 1, sub 7→ 2, . . .
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Recall that the virtual machine VM is a ASM program, so it will reside in the REMA program store.
This is the program executed by the register machine. So both the VM stack and the L(VM) program
have to be stored in the REMA data store (therefore we treat L(VM) programs as sequences of words
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and have to do counting acrobatics for instructions of differing length). We somewhat arbitrarily
fix a boundary in the data store of REMA at cell number 224 − 1. We will also need a little piece
of scratch-pad memory, which we locate at cells 0-7 for convenience (then we can simply address
with absolute numbers as addresses).

Memory Layout for the Virtual Machine

Scratch Area

Program

Stack

Program Store

2n−bit Cells

CPU

Operation Argument

Data Store

ACC (accumulator)

IN1 (VM prog. cnt.)

PC (program counter)

IN3 (frame pointer)

IN2 (stack pointer)

for VM
ASM Program 

n−bit Cells
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Extending REMA and ASM

B Give ourselves another register IN3 (and LOADIN 3, STOREIN 3, MOVE ∗ IN3,
MOVE IN3 ∗)

B We will use a syntactic variant of ASM for transparency

B JUMP and JUMPR with labels(compute relative jump distances automatically)

B inc R for MOVE R ACC, ADDI 1, MOVE ACC R (dec R similar)

B note that inc R and dec R overwrite the current ACC (take care of it)

B All additions can be eliminated by substitution.
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With these extensions, it is quite simple to write the ASM code that implements the virtual machine
VM. The first part is a simple jump table, a piece of code that does nothing else than distributing
the program flow according to the (numerical) instruction head. We assume that this program
segment is located at the beginning of the program store, so that the REMA program counter points
to the first instruction. This initializes the VM program counter and its stack pointer to the first
cells of their memory segments. We assume that the L(VM) program is already loaded in its proper
location, since we have not discussed input and output for REMA.
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Starting VM: the Jump Table

label instruction effect comment
LOADI 224 ACC : = 224 load VM start address
MOVE ACC IN1 V PC : = ACC set V PC
LOADI 7 ACC : = 7 load top of stack address
MOVE ACC IN2 SP : = ACC set SP

〈jt〉 LOADIN1 0 ACC : = D(IN1) load instruction
JUMP= 〈halt〉 goto 〈halt〉
SUBI 1 next instruction code
JUMP= 〈add〉 goto 〈add〉
SUBI 1 next instruction code
JUMP= 〈sub〉 goto 〈sub〉
...

...
...

〈halt〉 STOP 0 stop
...

...
...
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Now it only remains to present the ASM programs for the individual L(VM) instructions. We
will start with the arithmetical operations. The code for con is absolutely straightforward: we
increment the VM program counter to point to the argument, read it, and store it to the cell the
(suitably incremented) VM stack pointer points to. Once procedure has been executed we increment
the VM program counter again, so that it points to the next L(VM) instruction, and jump back to
the beginning of the jump table.

For the add instruction we have to use the scratch pad area, since we have to pop two values
from the stack (and we can only keep one in the accumulator). We just cache the first value in
cell 0 of the program store.

Implementing Arithmetic Operators

label instruction effect comment
〈con〉 inc IN1 V PC : = V PC + 1 point to arg

inc IN2 SP : = SP + 1 prepare push
LOADIN1 0 ACC : = D(V PC) read arg
STOREIN2 0 D(SP ) : = ACC store for push
inc IN1 V PC : = V PC + 1 point to next
JUMP 〈jt〉 jump back

〈add〉 LOADIN2 0 ACC : = D(SP ) read arg 1
STORE 0 D(0) : = ACC cache it
dec IN2 SP : = SP − 1 pop
LOADIN2 0 ACC : = D(SP ) read arg 2
ADD 0 ACC : = ACC +D(0) add cached arg 1
STOREIN2 0 D(SP ) : = ACC store it
inc IN1 V PC : = V PC + 1 point to next
JUMP 〈jt〉 jump back

B sub, mul, and leq similar to add.
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For example, mul could be implemented as follows:
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label instruction effect comment
〈mul〉 dec IN2 SP : = SP − 1

LOADI 0
STORE 1 D(1) : = 0 initialize result
LOADIN2 1 ACC : = D(SP + 1) read arg 1
STORE 0 D(0) : = ACC initialize counter to arg 1

〈loop〉 JUMP= 〈end〉 if counter=0, we are finished
LOADIN2 0 ACC : = D(SP ) read arg 2
ADD 1 ACC : = ACC +D(1) current sum increased by arg 2
STORE 1 D(1) : = ACC cache result
LOAD 0
SUBI 1
STORE 0 D(0) : = D(0)− 1 decrease counter by 1
JUMP loop repeat addition

〈end〉 LOAD 1 load result
STOREIN2 0 push it on stack
inc IN1
JUMP 〈jt〉 back to jump table

Note that mul is the only instruction whose corresponding piece of code is not of the unit
complexity. For the jump instructions, we do exactly what we would expect, we load the jump
distance, add it to the register IN1, which we use to represent the VM program counter V PC.
Incidentally, we can use the code for jp for the conditional jump cjp.

Control Instructions
label instruction effect comment
〈jp〉 MOVE IN1 ACC ACC : = V PC

STORE 0 D(0) : = ACC cache V PC
LOADIN1 1 ACC : = D(V PC + 1) load i
ADD 0 ACC : = ACC +D(0) compute new V PC value
MOVE ACC IN1 IN1: = ACC update V PC
JUMP 〈jt〉 jump back

〈cjp〉 dec IN2 SP : = SP − 1 update for pop
LOADIN2 1 ACC : = D(SP + 1) pop value to ACC
JUMP= 〈jp〉 perform jump if ACC = 0
MOVE IN1 ACC otherwise, go on
ADDI 2
MOVE ACC IN1 V PC : = V PC + 2 point to next
JUMP 〈jt〉 jump back
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Imperative Stack Operations: peek

label instruction effect comment
〈peek〉 MOVE IN1 ACC ACC : = IN1

STORE 0 D(0) : = ACC cache V PC
LOADIN1 1 ACC : = D(V PC + 1) load i
MOVE ACC IN1 IN1: = ACC
inc IN2 prepare push
LOADIN1 8 ACC : = D(IN1 + 8) load S(i)
STOREIN2 0 push S(i)
LOAD 0 ACC : = D(0) load old V PC
ADDI 2 compute new value
MOVE ACC IN1 update V PC
JUMP 〈jt〉 jump back
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Imperative Stack Operations: poke

label instruction effect comment
〈poke〉 MOVE IN1 ACC ACC : = IN1

STORE 0 D(0) : = ACC cache V PC
LOADIN1 1 ACC : = D(V PC + 1) load i
MOVE ACC IN1 IN1: = ACC
LOADIN2 0 ACC : = S(i) pop to ACC
STOREIN1 8 D(IN1 + 8): = ACC store in S(i)
dec IN2 IN2: = IN2− 1
LOAD 0 ACC : = D(0) get old V PC
ADD 2 ACC : = ACC + 2 add 2
MOVE ACC IN1 update V PC
JUMP 〈jt〉 jump back
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We will now build a compiler for a simple imperative language to warm up to the task of building
one for a functional one. We will write this compiler in SML, since we are most familiar with this.
The first step is to define the language we want to talk about.

A very simple Imperative Programming Language

B Plan: Only consider the bare-bones core of a language.
(we are only interested in principles)

B We will call this language SW (Simple While Language)

B no types: all values have type int, use 0 for false all other numbers for
true.

B only worry about abstract syntax (we do not want to build a parser) We
will realize this as an SML data type.
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The following slide presents the SML data types for SW programs.

Abstract Syntax of SW
type i d = s t r i n g (∗ i d e n t i f i e r ∗)

datatype exp = (∗ e x p r e s s i o n ∗)
Con of i n t (∗ con s t an t ∗)

| Var of i d (∗ v a r i a b l e ∗)
| Add of exp∗ exp (∗ a d d i t i o n ∗)
| Sub of exp ∗ exp (∗ s u b t r a c t i o n ∗)
| Mul of exp ∗ exp (∗ m u l t i p l i c a t i o n ∗)
| Leq of exp ∗ exp (∗ l e s s o r equa l t e s t ∗)

datatype s t a = (∗ s ta tement ∗)
A s s i g n of i d ∗ exp (∗ as s i gnment ∗)

| I f of exp ∗ s t a ∗ s t a (∗ c o n d i t i o n a l ∗)
| While of exp ∗ s t a (∗ wh i l e l oop ∗)
| Seq of s t a l i s t (∗ s e q u e n t i a l i z a t i o n ∗)

type d e c l a r a t i o n = i d ∗ exp

type program = d e c l a r a t i o n l i s t ∗ s t a ∗ exp
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A SW program (see the next slide for an example) first declares a set of variables (type declaration),
executes a statement (type sta), and finally returns an expression (type exp). Expressions of SW
can read the values of variables, but cannot change them. The statements of SW can read and
change the values of variables, but do not return values (as usual in imperative languages). Note
that SW follows common practice in imperative languages and models the conditional as a state-
ment.

Concrete vs. Abstract Syntax of a SW Program
v a r n:= 1 2 ; v a r a:= 1 ; ( [ (” n ” , Con 1 2 ) , (” a ” , Con 1 ) ] ,

w h i l e 2<=n do Whi le ( Leq ( Con 2 , Var ”n ” ) ,
a := a∗n ; Seq [ A s s i g n (” a ” , Mul ( Var ”a ” , Var ”n ” ) ) ,
n:= n−1 A s s i g n (” n ” , Sub ( Var ”n ” , Con 1 ) ) ]

end ) ,
r e t u r n a Var ”a ”)
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As expected, the program is represented as a triple: the first component is a list of declarations,
the second is a statement, and the third is an expression (in this case, the value of a single variable).
We will use this example as the guiding intuition for building a compiler.
Before we can come to the implementation of the compiler, we will need an infrastructure for

environments.

Needed Infrastructure: Environments

B Need a structure to keep track of the values of declared identifiers.
(take shadowing into account)

B Definition 11.10: An environment is a finite partial function from keys (iden-
tifiers) to values.

B We will need the following operations on environments:

B creation of an empty environment ( the empty function)

B insertion of a key/value pair 〈k, v〉 into an environment ϕ: ( ϕ, [v/k])

B lookup of the value v for a key k in ϕ ( ϕ(k))

B Realization in SML by a structure with the following signature

type ’ a env (∗ a i s the v a l u e type ∗)
except i on Unbound of i d (∗ Unbound ∗)
v a l empty : ’ a env
v a l i n s e r t : i d ∗ ’ a ∗ ’ a env −> ’ a env (∗ i d i s the key type ∗)
v a l l o o k u p : i d ∗ ’ a env −> ’ a
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We will also need an SML type for L(VM) programs. Fortunately, this is very simple.
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An SML Data Type for L(VM) Programs
type i n d e x = i n t
type n o i = i n t (∗ number o f i n s t r u c t i o n s ∗)

datatype i n s t r u c t i o n =
con of i n t

| add | sub | mul (∗ add i t i o n , s u b t r a c t i o n , m u l t i p l i c a t i o n ∗)
| l e q (∗ l e s s o r equa l t e s t ∗)
| j p of n o i (∗ u n c o n d i t i o n a l jump ∗)
| c j p of n o i (∗ c o n d i t i o n a l jump ∗)
| peek of i n d e x (∗ push v a l u e from s t a ck ∗)
| poke of i n d e x (∗ update v a l u e i n s t a c k ∗)
| h a l t (∗ h a l t machine ∗)

type code = i n s t r u c t i o n l i s t

fun wlen ( xs : code ) = f o l d l ( fn ( x , y ) => wln ( x)+y ) 0 xs
fun wln ( con )=2 | wln ( add)=1 | wln ( sub )=1 | wln ( mul)=1 | wln ( l e q )=1
| wln ( j p )=2 | wln ( c j p )=2
| wln ( peek )=2 | wln ( poke )=2 | wln ( h a l t )=1
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The next slide has the main SML function for compiling SW programs. Its argument is a SW program
(type program) and its result is an expression of type code, i.e. a list of L(VM) instructions. From
there, we only need to apply a simple conversion (which we omit) to numbers to obtain L(VM)
byte code.

Compiling SW programs

B SML function from SW programs (type program) to L(VM) programs (type
code).

B uses three auxiliary functions for compiling declarations (compileD), state-
ments (compileS), and expressions (compileE).

B these use an environment to relate variable names with their stack index.

B the initial environment is created by the declarations.
(therefore compileD has an environment as return value)

type env = i n d e x env
fun c o m p i l e ( ( ds , s , e ) : program ) : code =

l e t
v a l ( cds , env ) = compi leD ( ds , empty , ˜1)

i n
cds @ compi l eS ( s , env ) @ compi leE ( e , env ) @ [ h a l t ]

end
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The next slide has the function for compiling SW expressions. It is realized as a case statement
over the structure of the expression.
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Compiling SW Expressions

B constants are pushed to the stack.

B variables are looked up in the stack by the index determined by the environment
(and pushed to the stack).

B arguments to arithmetic operations are pushed to the stack in reverse order.

fun compi leE ( e : exp , env : env ) : code =
case e of

Con i => [ con i ]
| Var i => [ peek ( l o o k u p ( i , env ) ) ]
| Add ( e1 , e2 ) => compi leE ( e2 , env ) @ compi leE ( e1 , env ) @ [ add ]
| Sub ( e1 , e2 ) => compi leE ( e2 , env ) @ compi leE ( e1 , env ) @ [ sub ]
| Mul ( e1 , e2 ) => compi leE ( e2 , env ) @ compi leE ( e1 , env ) @ [ mul ]
| Leq ( e1 , e2 ) => compi leE ( e2 , env ) @ compi leE ( e1 , env ) @ [ l e q ]

c©: Michael Kohlhase 106

Compiling SW statements is only slightly more complicated: the constituent statements and
expressions are compiled first, and then the resulting code fragments are combined by L(VM) control
instructions (as the fragments already exist, the relative jump distances can just be looked up).
For a sequence of statements, we just map compileS over it using the respective environment.

Compiling SW Statements
fun compi l e S ( s : s ta , env : env ) : code =

case s of
A s s i g n ( i , e ) => compi leE ( e , env ) @ [ poke ( l o o k u p ( i , env ) ) ]

| I f ( e , s1 , s2 ) =>
l e t

v a l ce = compi leE ( e , env )
v a l cs1 = compi l eS ( s1 , env )
v a l cs2 = compi l eS ( s2 , env )

i n
ce @ [ c j p ( wlen cs1 + 4 ) ] @ cs1 @ [ j p ( wlen cs2 + 2 ) ] @ cs2

end
| While ( e , s ) =>

l e t
v a l ce = compi leE ( e , env )
v a l c s = compi l eS ( s , env )

i n
ce @ [ c j p ( wlen c s + 4 ) ] @ c s @ [ j p ( ˜ ( wlen c s + wlen ce + 2 ) ) ]

end
| Seq s s => f o l d r ( fn ( s , c ) => compi l eS ( s , env ) @ c ) n i l s s

c©: Michael Kohlhase 107

As we anticipated above, the compileD function is more complex than the other two. It gives
L(VM) program fragment and an environment as a value and takes a stack index as an additional
argument. For every declaration, it extends the environment by the key/value pair k/v, where k
is the variable name and v is the next stack index (it is incremented for every declaration). Then
the expression of the declaration is compiled and prepended to the value of the recursive call.
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Compiling SW Declarations
fun compi leD ( ds : d e c l a r a t i o n l i s t , env : env , sa : i n d e x ) : code∗ env =

case ds of
n i l => ( n i l , env )

| ( i , e ) : : d r => l e t
v a l env ’ = i n s e r t ( i , sa +1, env )
v a l ( cdr , env ’ ’ ) = compi leD ( dr , env ’ , sa +1)

i n
( compi leE ( e , env ) @ cdr , env ’ ’ )

end

c©: Michael Kohlhase 108

This completes the compiler for SW (except for the byte code generator which is trivial and an
implementation of environments, which is available elsewhere). So, together with the virtual
machine for L(VM) we discussed above, we can run SW programs on the register machine REMA.

If we now use the REMA simulator from exercise6, then we can run SW programs on our computers EdNote(6)
outright.
One thing that distinguishes SW from real programming languages is that it does not support
procedure declarations. This does not make the language less expressive in principle, but makes
structured programming much harder. The reason we did not introduce this is that our virtual
machine does not have a good infrastructure that supports this. Therefore we will extend L(VM)
with new operations next.
Note that the compiler we have seen above produces L(VM) programs that have what is often

called “memory leaks”. Variables that we declare in our SW program are not cleaned up before the
program halts. In the current implementation we will not fix this (We would need an instruction
for our VM that will “pop” a variable without storing it anywhere or that will simply decrease
virtual stack pointer by a given value.), but we will get a better understanding for this when we
talk about the static procedures next.

Compiling the Extended Example: A while Loop

B Example 11.11: Consider the following program that computes (12)! and the
corresponding L(VM) program:

var n := 12; var a := 1; con 12 con 1
while 2 <= n do ( peek 0 con 2 leq cjp 18
a := a * n; peek 0 peek 1 mul poke 1
n := n - 1; con 1 peek 0 sub poke 0

) jp −21
return a; peek 1 halt

B Note that variable declarations only push the values to the stack,
(memory allocation)

B they are referenced by peeking the respective stack position

B they are assigned by pokeing the stack position (must remember that)

c©: Michael Kohlhase 109

Definition 11.12: In general, we need an environment and an instruction sequence to represent
a procedure, but in many cases, we can get by with an instruction sequence alone. We speak of

6EdNote: include the exercises into the course materials and reference the right one here
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static procedures in this case.
Example 11.13: Some programming languages like C or Pascal are designed so that all proce-

dures can be represented as static procedures. SML and Java do not restrict themselves in this
way.
We will now extend the virtual machine by four instructions that allow to represent static proce-

dures with arbitrary numbers of arguments. We will explain the meaning of these extensions via
an example: the procedure on the next slide, which computes 102.

Adding (Static) Procedures

B We have a full compiler for a very simple imperative programming language

B Problem: No support for subroutines/procedures.
(no support for structured programming)

B Extensions to the Virtual Machine

type i n d e x = i n t
type n o i = i n t (∗ number o f i n s t r u c t i o n s ∗)
type noa = i n t (∗ number o f arguments ∗)
type ca = i n t (∗ code add r e s s ∗)

datatype i n s t r u c t i o n =
· · ·

| p r o c of noa∗ n o i (∗ beg in o f p roc edu r e code ∗)
| a r g of i n d e x (∗ push v a l u e from frame ∗)
| c a l l of ca (∗ c a l l p r o c edu r e ∗)
| r e t u r n (∗ r e t u r n from procedu r e c a l l ∗)

c©: Michael Kohlhase 110

Translation of a Static Procedure
[ p r o c 2 26 , (∗ fun exp ( x , n ) = ∗)

con 0 , a r g 2 , l e q , c j p 5 , (∗ i f n<=0 ∗)
con 1 , r e t u r n , (∗ then 1 ∗)
con 1 , a r g 2 , sub , a r g 1 , (∗ e l s e x∗ exp ( x , n−1) ∗)
c a l l 0 , a r g 1 , mul ,
r e t u r n , (∗ i n ∗)
con 2 , con 10 , c a l l 0 , (∗ exp ( 1 0 , 2 ) ∗)
h a l t ] (∗ end ∗)

proc a l contains information about the number a of arguments and the length l
of the procedure in the number of words needed to store it, together with
the length of proc a l itself (3).

arg i pushes the ith argument from the current frame to the stack.

call p pushes the current program address (opens a new frame), and jumps to
the program address p

return takes the current frame from the stack, jumps to previous program address.

c©: Michael Kohlhase 111
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Static Procedures (Simulation)

proc 2 26 ,

[ con 0 , a rg 2 , l e q , c j p 5 ,
con 1 , r e t u r n ,
con 1 , a r g 2 , sub , a r g 1 ,
c a l l 0 , a r g 1 , mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

empty stack

B proc jumps over the body of the procedure declaration
(with the help of its second argument.)

c©: Michael Kohlhase 112

Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , l e q , c j p 5 ,
con 1 , j p 13 ,
con 1 , a r g 2 , sub , a r g 1 ,
c a l l 0 , a r g 1 , mul ,
r e t u r n ,
con 2, con 10 , c a l l 0 ,

h a l t ]

2

10

B We push the arguments onto the stack

c©: Michael Kohlhase 113

Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , l e q , c j p 5 ,
con 1 , r e t u r n ,
con 1 , a r g 2 , sub , a r g 1 ,
c a l l 0 , a r g 1 , mul ,
r e t u r n ,
con 2 , con 10 , call 0 ,
h a l t ]

2 -2

10 -1

32 0

B call pushes the return address (of the call statement in the L(VM) program)

B then it jumps to the first body instruction.

c©: Michael Kohlhase 114
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Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0, arg 2 , l e q , c j p 5 ,

con 1 , r e t u r n ,
con 1 , a r g 2 , sub , a r g 1 ,
c a l l 0 , a r g 1 , mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

2 -2

10 -1

32 0

0

2

B arg i pushes the ith argument onto the stack

c©: Michael Kohlhase 115

Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , leq , c j p 5 ,

con 1 , r e t u r n ,
con 1 , a r g 2 , sub , a r g 1 ,
c a l l 0 , a r g 1 , mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

2 -2

10 -1

32 0

0

B Comparison turns out false, so we push 0.
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Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , l e q , cjp 5,

con 1 , r e t u r n ,
con 1 , a r g 2 , sub , a r g 1 ,
c a l l 0 , a r g 1 , mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

2 -2

10 -1

32 0

B cjp pops the truth value and jumps (on false).

c©: Michael Kohlhase 117
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Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , l e q , c j p 5 ,
con 1 , r e t u r n ,
con 1, arg 2 , sub , a r g 1 ,

c a l l 0 , a r g 1 , mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

2 -2

10 -1

32 0

1

2

B we first push 1

B then we push the second argument (from the call frame position −2)

c©: Michael Kohlhase 118

Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , l e q , c j p 5 ,
con 1 , r e t u r n ,
con 1 , a r g 2 , sub , a r g 1 ,
c a l l 0 , a r g 1 , mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

2 -2

10 -1

32 0

1

B we subtract
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Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , l e q , c j p 5 ,
con 1 , r e t u r n ,
con 1 , a r g 2 , sub , arg 1 ,

c a l l 0 , a r g 1 , mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

2 -2

10 -1

32 0

1

10

B then we push the second argument (from the call frame position −1)

c©: Michael Kohlhase 120
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Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , l e q , c j p 5 ,
con 1 , r e t u r n ,
con 1 , a r g 2 , sub , a r g 1 ,
call 0 , a r g 1 , mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

2

10

32

1 -2

10 -1

22 0

B call jumps to the first body instruction,

B and pushes the return address (22 this time) onto the stack.
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Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0, arg 2 , l e q , c j p 5 ,

con 1 , r e t u r n ,
con 1 , a r g 2 , sub , a r g 1 ,
c a l l 0 , a r g 1 , mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

2

10

32

1 -2

10 -1

22 0

0

1

B we augment the stack

c©: Michael Kohlhase 122
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Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , leq, cjp 5 ,

con 1 , r e t u r n ,
con 1 , a r g 2 , sub , a r g 1 ,
c a l l 0 , a r g 1 , mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

2

10

32

1 -2

10 -1

22 0

B we compare the top two, and jump ahead (on false)
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Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , l e q , c j p 5 ,
con 1 , r e t u r n ,
con 1, arg 2 , sub , a r g 1 ,

c a l l 0 , a r g 1 , mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

2

10

32

1 -2

10 -1

22 0

1

1

B we augment the stack again

c©: Michael Kohlhase 124
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Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , l e q , c j p 5 ,
con 1 , r e t u r n ,
con 1 , a r g 2 , sub, arg 1 ,

c a l l 0 , a r g 1 , mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

2

10

32

1 -2

10 -1

22 0

0

10

B subtract and push the first argument
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Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , l e q , c j p 5 ,
con 1 , r e t u r n ,
con 1 , a r g 2 , sub , a r g 1 ,
call 0 , a r g 1 , mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

2

10

32

1

10

22

0 -2

10 -1

22 0

B call pushes the return address and moves the current frame up

c©: Michael Kohlhase 126
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Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0, arg 2 , l e q , c j p 5 ,

con 1 , r e t u r n ,
con 1 , a r g 2 , sub , a r g 1 ,
c a l l 0 , a r g 1 , mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

2

10

32

1

10

22

0 -2

10 -1

22 0

0

0

B we augment the stack again,
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Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , leq, cjp 5 ,

con 1 , r e t u r n ,
con 1 , a r g 2 , sub , a r g 1 ,
c a l l 0 , a r g 1 , mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

2

10

32

1

10

22

0 -2

10 -1

22 0

B leq compares the top two numbers, cjp pops the result and does not jump.

c©: Michael Kohlhase 128
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Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , l e q , c j p 5 ,
con 1 , r e t u r n ,
con 1 , a r g 2 , sub , a r g 1 ,
c a l l 0 , a r g 1 , mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

2

10

32

1

10

22

0 -2

10 -1

22 0

1

B we push the result value 1
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Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , l e q , c j p 5 ,
con 1 , return ,
con 1 , a r g 2 , sub , a r g 1 ,
c a l l 0 , a r g 1 , mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

2

10

32

1 -2

10 -1

22 0

1

B return interprets the top of the stack as the result,

B it jumps to the return address memorized right below the top of the stack,

B deletes the current frame

B and puts the result back on top of the remaining stack.

c©: Michael Kohlhase 130
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Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , l e q , c j p 5 ,
con 1 , r e t u r n ,
con 1 , a r g 2 , sub , a r g 1 ,
c a l l 0 , arg 1 , mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

2

10

32

1 -2

10 -1

22 0

1

10

B arg pushes the first argument from the (new) current frame
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Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , l e q , c j p 5 ,
con 1 , r e t u r n ,
con 1 , a r g 2 , sub , a r g 1 ,
c a l l 0 , a r g 1 , mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

2

10

32

1 -2

10 -1

22 0

10

B mul multiplies, pops the arguments and pushes the result.

c©: Michael Kohlhase 132
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Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , l e q , c j p 5 ,
con 1 , r e t u r n ,
con 1 , a r g 2 , sub , a r g 1 ,
c a l l 0 , a r g 1 , mul ,
return ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

2 -2

10 -1

32 0

10

B return interprets the top of the stack as the result,

B it jumps to the return address,

B deletes the current frame

B and puts the result back on top of the remaining stack.
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Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , l e q , c j p 5 ,
con 1 , r e t u r n ,
con 1 , a r g 2 , sub , a r g 1 ,
c a l l 0 , arg 1, mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

2 -2

10 -1

32 0

100

B we push argument 1 (in this case 10), multiply the top two numbers, and push
the result to the stack
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Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , l e q , c j p 5 ,
con 1 , r e t u r n ,
con 1 , a r g 2 , sub , a r g 1 ,
c a l l 0 , a r g 1 , mul ,
return ,
con 2 , con 10 , c a l l 0 ,
h a l t ]

100

B return interprets the top of the stack as the result,

B it jumps to the return address (32 this time),

B deletes the current frame

B and puts the result back on top of the remaining stack (which is empty here).
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Static Procedures (Simulation)

[ p r o c 2 26 ,
con 0 , a r g 2 , l e q , c j p 5 ,
con 1 , r e t u r n ,
con 1 , a r g 2 , sub , a r g 1 ,
c a l l 0 , a r g 1 , mul ,
r e t u r n ,
con 2 , con 10 , c a l l 0 ,
halt ]

100

B we are finally done; the result is on the top of the stack. Note that the stack
below has not changed.
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What have we seen?

B The four new VM commands allow us to model static procedures.

proc a l contains information about the number a of arguments and the length
l of the procedure

arg i pushes the ith argument from the current frame to the stack.
(Note that arguments are stored in reverse order on the stack)

call p pushes the current program address (opens a new frame), and jumps
to the program address p

return takes the current frame from the stack, jumps to previous program
address. (which is cached in the frame)

B call and return jointly have the effect of replacing the arguments by the
result of the procedure.

c©: Michael Kohlhase 137

We will now extend our implementation of the virtual machine by the new instructions.

Realizing Call Frames on the Stack

B Problem: How do we know
what the current frame is?
(after all, return has to pop it)

B Idea: Maintain , and cache infor-
mation about the previous frame
and the number of arguments in
the frame. last argument -n

first argument -1

argument number

previous frame

return address 0
frame pointer

B Add two internal cells to the frame, that are hidden to the outside. The upper
one is called the anchor cell.

B In the anchor cell we store the stack address of the anchor cell of the previous
frame.

B The frame pointer points to the anchor cell of the uppermost frame.

c©: Michael Kohlhase 138
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Realizing proc

B proc a l jumps over the procedure with the help of the length l of the proce-
dure.

label instruction effect comment
〈proc〉 MOVE IN1 ACC ACC : = V PC

STORE 0 D(0) : = ACC cache V PC
LOADIN1 2 ACC : = D(V PC + 2) load length
ADD 0 ACC : = ACC +D(0) compute new V PC value
MOVE ACC IN1 IN1: = ACC update V PC
JUMP 〈jt〉 jump back

c©: Michael Kohlhase 139

Realizing arg

B arg i pushes the ith argument from the current frame to the stack.

B use the register IN3 for the frame pointer. (extend for first frame)

label instruction effect comment
〈arg〉 LOADIN1 1 ACC : = D(V PC + 1) load i

STORE 0 D(0) : = ACC cache i
MOVE IN3 ACC
STORE 1 D(1) : = FP cache FP
SUBI 1
SUB 0 ACC : = FP − 1− i load argument position
MOVE ACC IN3 FP : = ACC move it to FP
inc IN2 SP : = SP + 1 prepare push
LOADIN3 0 ACC : = D(FP ) load arg i
STOREIN2 0 D(SP ) : = ACC push arg i
LOAD 1 ACC : = D(1) load FP
MOVE ACC IN3 FP : = ACC recover FP
MOVE IN1 ACC
ADDI 2
MOVE ACC IN1 V PC : = V PC + 2 next instruction
JUMP 〈jt〉 jump back

c©: Michael Kohlhase 140
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Realizing call

B call p pushes the current program address, and jumps to the program address
p (pushes the internal cells first!)

label instruction effect comment
〈call〉 MOVE IN1 ACC

STORE 0 D(0) : = IN1 cache current V PC
inc IN2 SP : = SP + 1 prepare push for later
LOADIN1 1 ACC : = D(V PC + 1) load argument
ADDI 224 + 3 ACC : = ACC + 224 + 3 add displacement and skip proc a l
MOVE ACC IN1 V PC : = ACC point to the first instruction
LOADIN1 − 2 ACC : = D(V PC − 2) stealing a from proc a l
STOREIN2 0 D(SP ) : = ACC push the number of arguments
inc IN2 SP : = SP + 1 prepare push
MOVE IN3 ACC ACC : = IN3 load FP
STOREIN2 0 D(SP ) : = ACC create anchor cell
MOVE IN2 IN3 FP : = SP update FP
inc IN2 SP : = SP + 1 prepare push
LOAD 0 ACC : = D(0) load V PC
ADDI 2 ACC : = ACC + 2 point to next instruction
STOREIN2 0 D(SP ) : = ACC push the return address
JUMP 〈jt〉 jump back
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Note that with these instructions we have maintained the linear quality. Thus the virtual machine
is still linear in the speed of the underlying register machine REMA.

Realizing return

B return takes the current frame from the stack, jumps to previous program
address. (which is cached in the frame)

label instruction effect comment
〈return〉 LOADIN2 0 ACC : = D(SP ) load top value

STORE 0 D(0) : = ACC cache it
LOADIN2 − 1 ACC : = D(SP − 1) load return address
MOVE ACC IN1 IN1: = ACC set V PC to it
LOADIN3 − 1 ACC : = D(FP − 1) load the number n of arguments
STORE 1 D(1) : = D(FP − 1) cache it
MOVE IN3 ACC ACC : = FP ACC = FP
SUBI 1 ACC : = ACC − 1 ACC = FP − 1
SUB 1 ACC : = ACC −D(1) ACC = FP − 1− n
MOVE ACC IN2 IN2: = ACC SP = ACC
LOADIN3 0 ACC : = D(FP ) load anchor value
MOVE ACC IN3 IN3: = ACC point to previous frame
LOAD 0 ACC : = D(0) load cached return value
STOREIN2 0 D(IN2) : = ACC pop return value
JUMP 〈jt〉 jump back
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Note that all the realizations of the L(VM) instructions are linear code segments in the assembler
code, so they can be executed in linear time. Thus the virtual machine language is only a constant
factor slower than the clock speed of REMA. This is a characteristic of most virtual machines.
We now have the prerequisites to model procedures calls in a programming language. Instead

of adding them to a imperative programming language, we will study them in the context of a
functional programming language. For this we choose a minimal core of the functional program-
ming language SML, which we will call µML. For this language, static procedures as we have
seen them above are enough.
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µML, a very simple Functional Programming Language

B Plan: Only consider the bare-bones core of a language
(we only interested in principles)

B We will call this language µML (micro ML)

B no types: all values have type int, use 0 for false all other numbers for
true.

B only worry about abstract syntax (we do not want to build a parser) We
will realize this as an SML data type.
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Abstract Syntax of µML
type i d = s t r i n g (∗ i d e n t i f i e r ∗)

datatype exp = (∗ e x p r e s s i o n ∗)
Con of i n t (∗ con s t an t ∗)

| I d of i d (∗ argument ∗)
| Add of exp ∗ exp (∗ a d d i t i o n ∗)
| Sub of exp ∗ exp (∗ s u b t r a c t i o n ∗)
| Mul of exp ∗ exp (∗ m u l t i p l i c a t i o n ∗)
| Leq of exp ∗ exp (∗ l e s s o r equa l t e s t ∗)
| App of i d ∗ exp l i s t (∗ a p p l i c a t i o n ∗)
| I f of exp ∗ exp ∗ exp (∗ c o n d i t i o n a l ∗)

type d e c l a r a t i o n = i d ∗ i d l i s t ∗ exp

type program = d e c l a r a t i o n l i s t ∗ exp
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Concrete vs. Abstract Syntax of µML

B A µML program first declares procedures, then evaluates expression for the
return value.

l e t ( [
fun exp ( x , n ) = ( ” exp ” , [ ” x ” , ”n” ] ,

i f n<=0 I f ( Leq ( I d ”n” , Con 0 ) ,
then 1 Con 1 ,
e l s e x∗ exp ( x , n−1) Mul ( I d ” x ” , App ( ” exp ” , [ I d ” x ” , Sub ( I d ”n” , Con 1 ) ] ) ) ) )

i n ] ,
exp ( 2 , 1 0 ) App ( ” exp ” , [ Con 2 , Con 1 0 ] )

end )
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The next step is to build a compiler for µML into programs in the extended L(VM). Just as above,
we will write this compiler in SML.
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Compiling µML Expressions
except i on E r r o r of s t r i n g
datatype idType = Arg of i n d e x | Proc of ca
type env = idType env

fun compi leE ( e : exp , env : env , t a i l : code ) : code =
case e of

Con i => [ con i ] @ t a i l
| I d i => [ a r g ( ( lookupA ( i , env ) ) ) ] @ t a i l
| Add ( e1 , e2 ) => c o m p i l e E s ( [ e1 , e2 ] , env ) @ [ add ] @ t a i l
| Sub ( e1 , e2 ) => c o m p i l e E s ( [ e1 , e2 ] , env ) @ [ sub ] @ t a i l
| Mul ( e1 , e2 ) => c o m p i l e E s ( [ e1 , e2 ] , env ) @ [ mul ] @ t a i l
| Leq ( e1 , e2 ) => c o m p i l e E s ( [ e1 , e2 ] , env ) @ [ l e q ] @ t a i l
| I f ( e1 , e2 , e3 ) => l e t

v a l c1 = compi leE ( e1 , env , n i l )
v a l c2 = compi leE ( e2 , env , t a i l )
v a l c3 = compi leE ( e3 , env , t a i l )

i n i f n u l l t a i l
then c1 @ [ c j p (4+ wlen c2 ) ] @ c2

@ [ j p (2+ wlen c3 ) ] @ c3
e l s e c1 @ [ c j p (2+ wlen c2 ) ] @ c2 @ c3

end
| App ( i , e s ) => c o m p i l e E s ( es , env ) @ [ c a l l ( lookupP ( i , env ) ) ] @ t a i l
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Compiling µML Expressions (Continued)
and (∗ mutual r e c u r s i o n wi th compi leE ∗)

fun c o m p i l e E s ( e s : exp l i s t , env : env ) : code =
f o l d l ( fn ( e , c ) => compi leE ( e , env , n i l ) @ c ) n i l e s

fun lookupA ( i , env ) =
case l o o k u p ( i , env ) of

Arg i => i
| => r a i s e E r r o r ( ” Argument e x p e c t e d : ” \ˆ i )

fun lookupP ( i , env ) =
case l o o k u p ( i , env ) of

Proc ca => ca
| => r a i s e E r r o r ( ” P r o c e d u r e e x p e c t e d : ” \ˆ i )
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Compiling µML Expressions (Continued)
fun i n s e r t A r g s ’ ( i , ( env , a i ) ) = ( i n s e r t ( i , Arg a i , env ) , a i +1)

fun i n s e r t A r g s ( i s , env ) = ( f o l d l i n s e r t A r g s ’ ( env , 1 ) i s )

fun compi leD ( ds : d e c l a r a t i o n l i s t , env : env , ca : ca ) : code∗ env =
case ds of

n i l => ( n i l , env )
| ( i , i s , e ) : : d r =>

l e t
v a l env ’ = i n s e r t ( i , Proc ( ca +1) , env )
v a l env ’ ’ = i n s e r t A r g s ( i s , env ’ )
v a l ce = compi leE ( e , env ’ ’ , [ r e t u r n ] )
v a l cd = [ p r o c ( l e n g t h i s , 3+wlen ce ) ] @ ce

(∗ 3+wlen ce = wlen cd ∗)
v a l ( cdr , env ’ ’ ) = compi leD ( dr , env ’ , ca + wlen cd )

i n
( cd @ cdr , env ’ ’ )

end
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Compiling µML
fun c o m p i l e ( ( ds , e ) : program ) : code =

l e t
v a l ( cds , env ) = compi leD ( ds , empty , ˜1)

i n
cds @ compi leE ( e , env , n i l ) @ [ h a l t ]

end
hand le
Unbound i => r a i s e E r r o r ( ”Unbound i d e n t i f i e r : ” \ˆ i )
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Where To Go Now?

B We have completed a µML compiler, which generates L(VM) code from µML
programs.

B µML is minimal, but Turing-Complete (has conditionals and procedures)
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12 A theoretical View on Computation

Now that we have seen a couple of models of computation, computing machines, programs, . . . , we
should pause a moment and see what we have achieved.

What have we achieved

B what have we done? We have sketched

B a concrete machine model (combinatory circuits)

B a concrete algorithm model (assembler programs)

B Evaluation: (is this good?)

B how does it compare with SML on a laptop?

B Can we compute all (string/numerical) functions in this model?

B Can we always prove that our programs do the right thing?

B Towards Theoretical Computer Science (as a tool to answer these)

B look at a much simpler (but less concrete) machine model (Turing Machine)

B show that TM can [encode/be encoded in] SML, assembler, Java,. . .

B Conjecture: [Church/Turing] (unprovable, but accepted)

All non-trivial machine models and programming languages are equivalent
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The idea we are going to pursue here is a very fundamental one for Computer Science: The
Turing Machine. The main idea here is that we want to explore what the “simplest” (whatever
that may mean) computing machine could be. The answer is quite surprising, we do not need
wires, electricity, silicon, etc; we only need a very simple machine that can write and read to a
tape following a simple set of rules.

85

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Of course such machines can be built (and have been), but this is not the important aspect here.
Turing machines are mainly used for thought experiments, where we simulate them in our heads.

Note that the physical realization of the machine as a box with a (paper) tape is immaterial, it
is inspired by the technology at the time of its inception (in the late 1940ties; the age of ticker-tape
commuincation).

Turing Machines

B Idea: Simulate a machine by a person executing a well-defined procedure!

B Setup: Person changes the contents of an infinite amount of ordered paper
sheets that can contain one of a finite set of symbols.

B Memory: The person needs to remember one of a finite set of states

B Procedure: “If your state is 42 and the symbol you see is a ’0’ then replace
this with a ’1’, remember the state 17, and go to the following sheet.”
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B

More Precisely: Turing machine

B Definition 12.1: A Turing Machine consists of

B An infinite tape which is divided into cells, one next to the other
(each cell contains a symbol from a finite alphabet L with #L ≥ 2 and 0 ∈ L)

B A head that can read/write symbols on the tape and move left/right.

B A state register that stores the state of the Turing machine.
(finite set of states, register initialized with a special start state)

B An action table (or transition function) that tells the machine what symbol
to write, how to move the head and what its new state will be, given
the symbol it has just read on the tape and the state it is currently in.

(If no entry applicable the machine will halt)

Note: every part of the machine is finite, but it is the potentially unlimited
amount of tape that gives it an unbounded amount of storage space.
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Turing Machine Example 12.2: with Alphabet {0, 1}

B Given: a series of 1s on the tape (with head initially on the leftmost)

B Computation: doubles the 1’s with a 0 in between, i.e., ”111” becomes
”1110111”.

B The set of states is {s1, s2, s3, s4, s5} (s1 start state)

B actions:

Old Read Wr. Mv. New Old Read Wr. Mv. New
s1 1 0 R s2 s4 1 1 L s4

s2 1 1 R s2 s4 0 0 L s5

s2 0 0 R s3 s5 1 1 L s5

s3 1 1 R s3 s5 0 1 R s1

s3 0 1 L s4

B state machine: 51 2 3 4

1 0 0 0

0

0,R 0,R 1,L 0,L

1,R

1,R 1,R 1,L 1,L1 1 1 1
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Example Computation

B T starts out in s1, replaces
the first 1 with a 0, then

B uses s2 to move to the right,
skipping over 1’s and the first
0 encountered.

B s3 then skips over the next
sequence of 1’s (initially there
are none) and replaces the
first 0 it finds with a 1.

B s4 moves back left, skipping
over 1’s until it finds a 0 and
switches to s5.

Step State Tape Step State Tape

1 s1 1 1 9 s2 10 0 1

2 s2 0 1 10 s3 100 1

3 s2 01 0 11 s3 1001 0

4 s3 010 0 12 s4 100 1 1

5 s4 01 0 1 13 s4 10 0 11

6 s5 0 1 01 14 s5 1 0 011

7 s5 0 101 15 s1 11 0 11

8 s1 1 1 01 — halt —

B s5 then moves to the left, skipping over 1’s until it finds the 0 that was originally
written by s1.

B It replaces that 0 with a 1, moves one position to the right and enters s1 again for
another round of the loop.

B This continues until s1 finds a 0 (this is the 0 right in the middle between the two
strings of 1’s) at which time the machine halts

c©: Michael Kohlhase 155
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What can Turing Machines compute?

B Empirically: anything any other program can also compute

B Memory is not a problem (tape is infinite)

B Efficiency is not a problem (purely theoretical question)

B Data representation is not a problem
(we can use binary, or whatever symbols we like)

B All attempts to characterize computation have turned out to be equivalent

B primitive recursive functions ([Gödel, Kleene])

B lambda calculus ([Church])

B Post production systems ([Post])

B Turing machines ([Turing])

B Random-access machine

B conjecture 12.3: ([Church/Turing])

(unprovable, but accepted)

Anything that can be computed at all, can be computed by a Turing Machine
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Is there anything that cannot be computed by a TM

B Theorem 12.4: No Turing machine can infallibly tell if another Turing machine
will get stuck in an infinite loop on some given input.

Coded description
of some TM

Input for TM

Loop−detector
Turing Machine

"yes, it will halt"

"no, it will not halt"

B Proof:

P.1 let’s do the argument with SML instead of a TM
assume that there is a loop detector program written in SML

"yes, it will halt"

"no, it will not halt"

SML Program

Loop−detector
SML Program

Input for Program
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Testing the Loop Detector Program Proof:

P.1 The general shape of the Loop detector program

fun w i l l h a l t ( program , data ) =
. . . l o t s of c o m p l i c a t e d code . . .
i f ( . . . more code . . . ) then t r u e e l s e f a l s e ;

w i l l h a l t : ( i n t −> i n t ) −> i n t −> b o o l

test programs behave exactly as we anticipated

fun h a l t e r ( n ) = 1 ;
h a l t e r : i n t −> i n t
fun l o o p e r ( n ) = l o o p e r ( n +1);
l o o p e r : i n t −> i n t

w i l l h a l t ( h a l t e r , 1 ) ;
v a l t r u e : b o o l
w i l l h a l t ( l o o p e r , 1 ) ;
v a l f a l s e : b o o l

P.2 Consider the following Program

f u n c t i o n t u r i n g ( prog ) = i f w i l l h a l t ( prog , prog ) then l o o p e r ( 1 ) e l s e 1 ;

P.3 Yeah, so what? what happens, if we feed the turing function to itself?
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What happens indeed? Proof:

P.1 f u n c t i o n t u r i n g ( prog ) = i f w i l l \ h a l t ( prog , prog ) then l o o p e r ( 1 ) e l s e 1 ;

the turing function uses will halt to analyze the function given to it.

B If the function halts when fed itself as data, the turing function goes into an
infinite loop.

B If the function goes into an infinite loop when fed itself as data, the turing

function immediately halts.

P.2 But if the function happens to be the turing function itself, then

B the turing function goes into an infinite loop if the turing function halts
(when fed itself as input)

B the turing function halts if the turing function goes into an infinite loop
(when fed itself as input)

P.3 This is a blatant logical contradiction!
(Thus there cannot be a will halt function)
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Universal Turing machines

B Note: A Turing machine computes a fixed partial string function.

B In that sense it behaves like a computer with a fixed program.

B Idea: we can encode the action table of any Turing machine in a string.

B try to construct a Turing machine that expects on its tape

B a string describing an action table followed by

B a string describing the input tape, and then

B computes the tape that the encoded Turing machine would have computed.

B Theorem 12.5: such a Turing machine is indeed possible
(e.g. with 2 states, 18 symbols)

B Definition 12.6: call it a universal Turing machine. (it can simulate any TM)

B UTM accepts a coded description of a Turing machine and simulates the
behavior of the machine on the input data.

B The coded description acts as a program that the UTM executes, the
UTM’s own internal program is fixed.

B The existence of the UTM is what makes computers fundamentally differ-
ent from other machines such as telephones, CD players, VCRs, refrigerators,
toaster-ovens, or cars.
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13 Problem Solving

In this section, we will look at a class of algorithms called search algorithms. These are algorithms
that help in quite general situations, where there is a precisely described problem, that needs to
be solved.

Before we come to the algorithms, we need to get a grip on the problems themselves, and the
problem solving process.
The first step is to classify the problem solving process by the amount of knowledge we have

available. It makes a difference, whether we know all the factors involved in the problem before
we actually are in the situation. In this case, we can solve the problem in the abstract, i.e. make
a plan before we actually enter the situation (i.e. offline), and then when the problem arises, only
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execute the plan. If we do not have complete knowledge, then we can only make partial plans, and
have to be in the situation to obtain new knowledge (e.g. by observing the effects of our actions
or the actions of others). As this is much more difficult we will restrict ourselves to solving.

Problem solving

B Problem: Find algorithms that help solving problems in general

B Idea: If we can describe/represent problems in a standardized way, we may
have a chance to find general algorithms.

We will use the following two concepts to describe problems

States A set of possible situations in in our problem domain

Actions A set of possible actions that get us from one state to another.

Using these, we can view a sequence of actions as a solution, if it brings us into
a situation, where the problem is solved.

B Definition 13.1: Offline problem solving: Acting only with complete knowledge
of problem and solution

B Definition 13.2: Online problem solving: Acting without complete knowledge

B Here: we are concerned with offline problem solving only.
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We will use the following problem as a running example. It is simple enough to fit on one slide
and complex enough to show the relevant features of the problem solving algorithms we want to
talk about.

Example: Traveling in Romania

B Scenario: On holiday in Romania; currently in Arad, Flight leaves tomorrow
from Bucharest.

B Formulate problem: States: various cities Actions: drive between cities

B Solution: Appropriate sequence of cities, e.g.: Arad, Sibiu, Fagaras, Bucharest

c©: Michael Kohlhase 162
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Problem Formulation

B The problem formulation models the situation at an appropriate level of
abstraction. (do not model things like “put on my left sock”, etc.)

B it describes the initial state (we are in Arad)

B it also limits the objectives. (excludes, e.g. to stay another couple of weeks.)

B Finding the right level of abstraction and the required (not more!) information
is often the key to success.

B Definition 13.3: A problem (formulation) P := 〈S,O, I,G〉 consists of a set
S of states and a set O of operators that specify how states can be accessed
from each other. Certain states in S are designated as goal states (G ⊆ S) and
there is a unique initial state I.

B Definition 13.4: A solution for a problem P consists of a sequence of actions
that bring us from I to a goal state.
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Problem types

B Single-state problem

B observable (at least the initial state)

B deterministic (i.e. the successor of each state is determined)

B static (states do not change other than by our own actions)

B discrete (a countable number of states)

B Multiple-state problem:

B initial state not/partially observable (multiple initial states?)

B deterministic, static, discrete

B Contingency problem:

B non-deterministic (solution can branch, depending on contingencies)

B unknown state space(like a baby, agent has to learn about states and actions)
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We will explain these problem types with another example. The problem P is very simple: We
have a vacuum cleaner and two rooms. The vacuum cleaner is in one room at a time. The floor
can be dirty or clean.

The possible states are determined by the position of the vacuum cleaner and the information,
whether each room is dirty or not. Obviously, there are eight states: S = {1,2,3,4,5,6,7,8} for
simplicity.

The goal is to have both rooms clean, the vacuum cleaner can be anywhere. So the set G of
goal states is {7,8}. In the single-state version of the problem, [right, suck] shortest solution, but
[suck, right, suck] is also one. In the multiple-state version we have [right{(2,4,6,8)}, suck{(4,8)}, left{(3,7)}, suck{(7)}].

92

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Example: vacuum-cleaner world
Single-state Problem:

B Start in 5

B Solution: [right, suck]

Multiple-state Problem:

B Start in {1,2,3,4,5,6,7,8}
B Solution:

[right, suck, left, suck]
right → {2,4,6,8}
suck → {4,8}
left → {3,7}
suck → {7}

c©: Michael Kohlhase 165

Example: vacuum-cleaner world (continued)

Contingency Problem:

B Murphy’s Law: suck can dirty a
clean carpet

B Local sensing: dirty/not dirty at
location only

B Start in: {1,3}

B Solution: [suck, right, suck]
suck → {5,7}
right → {6,8}
suck → {6,8}

better: [suck, right, if dirt then suck] (decide whether in 6 or 8 using local sensing)

c©: Michael Kohlhase 166

In the contingency version of P a solution is the following: [suck{(5,7)}, right→ {(6,8)}, suck → {(6,8)}],
[suck{(5,7)}], etc. Of course, local sensing can help: narrow {6,8} to {6} or {8}, if we are in the
first, then suck.

Single-state problem formulation

B Defined by the following four items

1. Initial state: (e.g. Arad)

2. Successor function S:(e.g. S(Arad) = {〈goZer,Zerind〉, 〈goSib, Sibiu〉, . . .})
3. Goal test: (e.g. x = Bucharest (explicit test)

noDirt(x) (implicit test)
)

4. Path cost (optional):(e.g. sum of distances, number of operators executed, etc.)

B Solution: A sequence of operators leading from the initial state to a goal state

c©: Michael Kohlhase 167
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“Path cost”: There may be more than one solution and we might want to have the “best” one in
a certain sense.

Selecting a state space

B Abstraction: Real world is absurdly complex
State space must be abstracted for problem solving

B (Abstract) state: Set of real states

B (Abstract) operator: Complex combination of real actions

B Example: Arad→ Zerind represents complex set of possible routes

B (Abstract) solution: Set of real paths that are solutions in the real world

c©: Michael Kohlhase 168

“State”: e.g., we don’t care about tourist attractions found in the cities along the way. But this is
problem dependent. In a different problem it may well be appropriate to include such information
in the notion of state.

“Realizability”: one could also say that the abstraction must be sound wrt. reality.

Example: The 8-puzzle

States integer locations of tiles
Actions left, right, up, down
Goal test = goal state?
Path cost 1 per move

c©: Michael Kohlhase 169

How many states are there? N factorial, so it is not obvious that the problem is in NP. One
needs to show, for example, that polynomial length solutions do always exist. Can be done by
combinatorial arguments on state space graph (really ?).
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Example: Vacuum-cleaner

States integer dirt and robot locations
Actions left, right, suck, noOp
Goal test notdirty?
Path cost 1 per operation (0 for noOp)
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Example: Robotic assembly

States real-valued coordinates of
robot joint angles and parts of the object to be assembled

Actions continuous motions of robot joints
Goal test assembly complete?
Path cost time to execute
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14 Midterm Analysis
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Cheating

B Remember the code of academic integrity? (you’ve signed it)

B Crucial elements are

B honest academic work

B respect intellectual property of others

B Please keep this in mind!

B Copying from others is a bad idea! (and you know it)

B It violates the AI code

B You don’t learn anything by doing it (in the end you hurt yourself)
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Mid-Term Results

B Midterm: 7 Problems, 30 Points, 27 counted, 3 bonus

B This has been too long (Apologies for this)

B New score: 22 points

B Grades: Average: 14 points (=̂ 65%), grade 3.00 (“satisfactory”)

Performance exc. very good good satisfactory sufficient failing

IUB Grade 1.00 1.33 1.67 2.00 2.33 2.67 3.00 3.33 3.67 4.00 4.33 4.67 5.00 ∅
Cardinality 3 1 1 7 5 1 5 7 3 1 2 4 5 6
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Procedure, Consequences

B Procedure (So that we do not have any accusations of late edits!)

B We will give back the graded tests at April, 3, 13:00-14:00.
(as announced on the forums)

B You will check the grading, points summation, . . .

B We will answer questions, and correct mistakes.

B You will take home the test, when you leave the room the grade is final!

B Consequences

B You need more practice (and to practice more!)

B We will provide a repository of previous exams
(so you have plenty to practice with)

B You need better time management (Don’t panic!)

B Take full advantage of tutorials and TAs
(some TAs report you are not well prepared)

B We are here to help you (we don’t aim at making you fail)
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15 Search

Tree search algorithms

B Simulated exploration of state space in a search tree by generating successors
of already-explored states (Offline Algorithm)

procedure Tree-Search(problem, strategy) . a solution or failure
initialize the search tree using the initial state of problem
loop

if there are no candidates for expansion then
return failure

end if
choose a leaf node for expansion according to strategy
if the node contains a goal state then

return the corresponding solution
else

expand the node and add the resulting nodes to the search tree
end if

end loop
end procedure
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Tree Search: Example

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad
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Tree Search: Example

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad
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Tree Search: Example

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad
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Tree Search: Example

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad
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Implementation: States vs. nodes

B State: A (representation of) a physical configuration

B Node: A data structure constituting part of a search tree
(includes parent, children, depth, path cost, etc.)

c©: Michael Kohlhase 180
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Implementation of search algorithms

procedure Tree Search(problem,strategy)
fringe← insert(make node(initial state(problem)))
loop

if fringe empty then
fail

end if
node← first(fringe, strategy)
if NodeTest(State(node)) then

return State(node)
else

fringe← insert all(expand(node, problem), strategy)
end if

end loop
end procedure

B Definition 15.1: The fringe is a list nodes not yet considered. It is ordered by
the search strategy (see below)
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State gives the state that is represented by node
Expand = creates new nodes by applying possible actions to node
A node is a data structure representing states, will be explained in a moment.
Make-Queue creates a queue with the given elements.
fringe holds the queue of nodes not yet considered.
Remove-First returns first element of queue and as a side effect removes it from fringe.
State gives the state that is represented by node.
Expand applies all operators of the problem to the current node and yields a set of new nodes.
Insert inserts an element into the current fringe queue. This can change the behavior of the

search.
Insert-All Perform Insert on set of elements.

Search strategies

B Strategy: Defines the order of node expansion

B Important properties of strategies:

completeness does it always find a solution if one exists?
time complexity number of nodes generated/expanded
space complexity maximum number of nodes in memory
optimality does it always find a least-cost solution?

B Time and space complexity measured in terms of:

b maximum branching factor of the search tree
d depth of a solution with minimal distance to root
m maximum depth of the state space (may be ∞)

c©: Michael Kohlhase 182
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Complexity means here always worst-case complexity.
Note that there can be infinite branches, see the search tree for Romania.

16 Uninformed Search Strategies

Uninformed search strategies

B Definition 16.1: (Uninformed search)

Use only the information available in the problem definition

B Frequently used strategies:

B Breadth-first search

B Uniform-cost search

B Depth-first search

B Depth-limited search

B Iterative deepening search
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The opposite of uninformed search is informed or heuristic search. In the example, one could add,
for instance, to prefer cities that lie in the general direction of the goal (here SE).

Uninformed search is important, because many problems do not allow to extract good heuris-
tics.

Breadth-first search

B Idea: Expand shallowest unexpanded node

B Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the
queue

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

B Idea: Expand shallowest unexpanded node

B Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the
queue

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

B Idea: Expand shallowest unexpanded node

B Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the
queue

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

B Idea: Expand shallowest unexpanded node

B Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the
queue

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

B Idea: Expand shallowest unexpanded node

B Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the
queue

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

B Idea: Expand shallowest unexpanded node

B Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the
queue

A

B C

D E F G

H I J K L M N O
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We will now apply the breadth-first search strategy to our running example: Traveling in Romania.
Note that we leave out the green dashed nodes that allow us a preview over what the search tree
will look like (if expanded). This gives a much more realistic view.

Breadth-First Search: Romania

Arad
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Breadth-First Search: Romania

Arad

Sibiu Timisoara Zerind
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Breadth-First Search: Romania

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea
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Breadth-First Search:Romania

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj
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Breadth-First Search:Romania

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad
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Breadth-first search: Properties

Complete Yes (if b is finite)
Time 1 + b+ b2 + b3 + . . .+ bd + b(bd − 1) ∈ O(bd+1)

i.e. exponential in d
Space O(bd+1) (keeps every node in memory)
Optimal Yes (if cost = 1 per step), not optimal in general

B Disadvantage: Space is the big problem
(can easily generate nodes at 5MB/sec so 24hrs = 430GB)

B Optimal?: if cost varies for different steps, there might be better solutions
below the level of the first solution.

B An alternative is to generate all solutions and then pick an optimal one. This
works only, if m is finite.

c©: Michael Kohlhase 195

The next idea is to let cost drive the search. For this, we will need a non-trivial cost function: we
will take the distance between cities, since this is very natural. Alternatives would be the driving
time, train ticket cost, or the number of tourist attractions along the way.

Of course we need to update our problem formulation with the necessary information.
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Romania with Step Costs as Distances

c©: Michael Kohlhase 196

Uniform-cost search

B Idea: Expand least-cost unexpanded node

B Implementation: fringe is queue ordered by increasing path cost.

B Note: Equivalent to breadth-first search if all step costs are equal
(DFS: see below)

Arad
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Uniform Cost Search: Romania

B Idea: Expand least-cost unexpanded node

B Implementation: fringe is queue ordered by increasing path cost.

B Note: Equivalent to breadth-first search if all step costs are equal
(DFS: see below)

Arad

Sibiu

140

Timisoara

118

Zerind

75
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Uniform Cost Search: Romania

B Idea: Expand least-cost unexpanded node

B Implementation: fringe is queue ordered by increasing path cost.

B Note: Equivalent to breadth-first search if all step costs are equal
(DFS: see below)

Arad

Sibiu

140

Timisoara
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Zerind

75

Oradea

71

Arad

75
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Uniform Cost Search: Romania

B Idea: Expand least-cost unexpanded node

B Implementation: fringe is queue ordered by increasing path cost.

B Note: Equivalent to breadth-first search if all step costs are equal
(DFS: see below)

Arad

Sibiu

140

Timisoara

118

Zerind

75

Arad

118

Lugoj

111

Oradea

71

Arad

75
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Uniform Cost Search: Romania

B Idea: Expand least-cost unexpanded node

B Implementation: fringe is queue ordered by increasing path cost.

B Note: Equivalent to breadth-first search if all step costs are equal
(DFS: see below)

Arad

Sibiu

140

Timisoara

118

Zerind

75

Arad

140

Fagaras

99

Oradea

151

R. Vilcea

80

Arad

118

Lugoj

111

Oradea

71

Arad

75
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Note that we must sum the distances to each leaf. That is, we go back to the first level after step
3.

Uniform-cost search: Properties

Complete Yes (if step costs ≥ ε > 0)
Time number of nodes with past-cost less than that of optimal solution
Space number of nodes with past-cost less than that of optimal solution
Optimal Yes

c©: Michael Kohlhase 202

If step cost is negative, the same situation as in breadth-first search can occur: later solutions may
be cheaper than the current one.

If step cost is 0, one can run into infinite branches. UC search then degenerates into depth-first
search, the next kind of search algorithm. Even if we have infinite branches, where the sum of
step costs converges, we can get into trouble7 EdNote(7)

Worst case is often worse than BF search, because large trees with small steps tend to be
searched first. If step costs are uniform, it degenerates to BF search.

Depth-first search

B Idea: Expand deepest unexpanded node

B Implementation: fringe is a LIFO queue (a stack), i.e. successors go in at front
of queue

B Note: Depth-first search can perform infinite cyclic excursions
Need a finite, non-cyclic search space (or repeated-state checking)

c©: Michael Kohlhase 203

Depth-First Search
A

B C

D E F G

H I J K L M N O
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7EdNote: say how
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Depth-First Search
A

B C

D E F G

H I J K L M N O
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Depth-First Search
A

B C

D E F G

H I J K L M N O
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Depth-First Search
A

B C

D E F G

H I J K L M N O
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Depth-First Search
A

B C

D E F G

H I J K L M N O
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Depth-First Search
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c©: Michael Kohlhase 209

Depth-First Search
A
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Depth-First Search
A
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D E F G

H I J K L M N O
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Depth-First Search
A

B C

D E F G

H I J K L M N O
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Depth-First Search
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Depth-First Search
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Depth-First Search
A
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H I J K L M N O
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Depth-First Search
A
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D E F G

H I J K L M N O
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Depth-First Search
A

B C

D E F G

H I J K L M N O
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Depth-First Search: Romania

Arad
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Depth-First Search: Romania

Arad

Sibiu Timisoara Zerind
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Depth-First Search: Romania

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea
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Depth-First Search: Romania

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea

Sibiu Timisoara Zerind
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Depth-first search: Properties

Complete Yes: if state space finite
No: if state contains infinite paths or loops

Time O(bm)
(we need to explore until max depth m in any case!)

Space O(b ·m) (i.e. linear space)
(need at most store m levels and at each level at most b nodes)

Optimal No (there can be many better solutions in the
unexplored part of the search tree)

B Disadvantage: Time terrible if m much larger than d.

B Advantage: Time may be much less than breadth-first search if solutions are
dense.

c©: Michael Kohlhase 222

Iterative deepening search

B Depth-limited search: Depth-first search with depth limit

B Iterative deepening search: Depth-limit search with ever increasing limits

procedure Tree Search(problem)
initialize the search tree using the initial state of problem
for depth = 0 to ∞ do

result← Depth Limited search(problem, depth)
if depth 6= cutoff then

returnresult
end if

end for
end procedure

c©: Michael Kohlhase 223

Iterative Deepening Search at Limit Depth 0

A A
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Iterative Deepening Search at Limit Depth 1

A

B C

A

B C

A

B C

A

B C
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Iterative Deepening Search at Limit Depth 2
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Iterative Deepening Search at Limit Depth 3
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Iterative deepening search: Properties

Complete Yes
Time (d+ 1)b0 + db1 + (d− 1)b2 + . . .+ bd ∈ O(bd+1)
Space O(bd)
Optimal Yes (if step cost = 1)

B (Depth-First) Iterative-Deepening Search often used in practice for search
spaces of large, infinite, or unknown depth.

B Comparison:

Criterion
Breadth-

first
Uniform-

cost
Depth-

first
Iterative

deepening

Complete? Yes∗ Yes∗ No Yes
Time bd+1 ≈ bd bm bd

Space bd+1 ≈ bd bm bd
Optimal? Yes∗ Yes No Yes

c©: Michael Kohlhase 228

Note: To find a solution (at depth d) we have to search the whole tree up to d. Of course since we
do not save the search state, we have to re-compute the upper part of the tree for the next level.
This seems like a great waste of resources at first, however, iterative deepening search tries to be
complete without the space penalties.

However, the space complexity is as good as depth-first search, since we are using depth-first
search along the way. Like in breadth-first search, the whole tree on level d (of optimal solution)
is explored, so optimality is inherited from there. Like breadth-first search, one can modify this
to incorporate uniform cost search.

As a consequence, variants of iterative deepening search are the method of choice if we do not
have additional information.

Comparison

Breadth-first search Iterative deepening search

c©: Michael Kohlhase 229

17 Informed Search Strategies
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Summary: Uninformed Search/Informed Search

B Problem formulation usually requires abstracting away real-world details to
define a state space that can feasibly be explored

B Variety of uninformed search strategies

B Iterative deepening search uses only linear space and not much more time than
other uninformed algorithms

B Next Step: Introduce additional knowledge about the problem
(informed search)

B Best-first-, A∗-search (guide the search by heuristics)

B Iterative improvement algorithms

c©: Michael Kohlhase 230

Best-first search

B Idea: Use an evaluation function for each node (estimate of “desirability”)
Expand most desirable unexpanded node

B Implementation: fringe is a queue sorted in decreasing order of desirability

B Special cases: Greedy search, A∗ search

c©: Michael Kohlhase 231

This is like UCS, but with evaluation function related to problem at hand replacing the path cost
function.

If the heuristics is arbitrary, we expect incompleteness!
Depends on how we measure “desirability”.
Concrete examples follow.

Romania with step costs in km

c©: Michael Kohlhase 232
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Greedy search

B Definition 17.1: A heuristic is an evaluation function h on nodes that estimates
of cost from n to the nearest goal state.

Idea: Greedy search expands the node that appears to be closest to goal

B Example 17.2: hSLD(n) = straight-line distance from n to Bucharest

B Note: Unlike uniform-cost search the node evaluation function has nothing to
do with the nodes explored so far

internal search control → external search control
partial solution cost → goal cost estimation

c©: Michael Kohlhase 233

In greedy search we replace the objective cost to construct the current solution with a heuristic or
subjective measure from which we think it gives a good idea how far we are from a solution. Two
things have shifted:

• we went from internal (determined only by features inherent in the search space) to an
external/heuristic cost

• instead of measuring the cost to build the current partial solution, we estimate how far we
are from the desired goal

Greedy Search: Romania

Arad

366
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Greedy Search: Romania

Arad
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Sibiu
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Timisoara

329

Zerind

374
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Greedy Search: Romania

Arad

366

Sibiu
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Timisoara
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Zerind

374

Arad

366

Fagaras

176

Oradea

380

R. Vilcea

193
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Greedy Search: Romania

Arad
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Sibiu

253

Timisoara

329

Zerind
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Arad
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Fagaras
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Oradea
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R. Vilcea

193

Sibiu

253

Bucharest

0
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Greedy search: Properties

Complete No: Can get stuck in loops
Complete in finite space with repeated-state checking

Time O(bm)
Space O(bm)
Optimal No

B Example 17.3: Greedy search can get stuck going from Iasi to Oradea:
Iasi → Neamt → Iasi → Neamt → · · ·

B Worst-case time same as depth-first search,

B Worst-case space same as breadth-first

B But a good heuristic can give dramatic improvement

c©: Michael Kohlhase 238

Greedy Search is similar to UCS. Unlike the latter, the node evaluation function has nothing to
do with the nodes explored so far. This can prevent nodes from being enumerated systematically
as they are in UCS and BFS.
For completeness, we need repeated state checking as the example shows. This enforces complete

enumeration of state space (provided that it is finite), and thus gives us completeness.
Note that nothing prevents from all nodes being searched in worst case; e.g. if the heuristic

function gives us the same (low) estimate on all nodes except where the heuristic mis-estimates
the distance to be high. So in the worst case, greedy search is even worse than BFS, where d
(depth of first solution) replaces m.

The search procedure cannot be optimal, since actual cost of solution is not considered.
For both, completeness and optimality, therefore, it is necessary to take the actual cost of

partial solutions, i.e. the path cost, into account. This way, paths that are known to be expensive
are avoided.
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A∗ search

B Idea: Avoid expanding paths that are already expensive
(make use of actual cost)

The simplest way to combine heuristic and path cost is to simply add them.

B Definition 17.4: The evaluation function for A∗-search is given by f(n) =
g(n) + h(n), where g(n) is the path cost for n and h(n) is the estimated cost
to goal from n.

B Thus f(n) is the estimated total cost of path through n to goal

B Definition 17.5: Best-First-Search with evaluation function g + h is called
astarSearch search.

c©: Michael Kohlhase 239

This works, provided that h does not overestimate the true cost to achieve the goal. In other
words, h must be optimistic wrt. the real cost h∗. If we are too pessimistic, then non-optimal
solutions have a chance.

A∗ search: Admissibility

B Definition 17.6: (Admissibility of heuristic)

h(n) is called admissible if 0 ≤ h(n) ≤ h∗(n) for all nodes n, where h∗(n) is
the true cost from n to goal. (In particular: h(G) = 0 for goal G)

B Example 17.7: Straight-line distance never overestimates the actual road
distance (triangle inequality)

Thus hSLD(n) is admissible.

c©: Michael Kohlhase 240
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A∗ Search: Admissibility

B Theorem 17.8: A∗ search with admissible heuristic is optimal

B Proof: We show that sub-optimal nodes are never selected by A∗

P.1 Suppose a suboptimal goal G has been generated then we are in the fol-
lowing situation:

start

n

O G

P.2 Let n be an unexpanded node on a path to an optimal goal O, then

f(G) = g(G) since h(G) = 0
> g(O) since G suboptimal
= g(n) + h∗(n) n on optimal path
≥ g(n) + h(n) since h is admissible
= f(n)

P.3 Thus, f(G) > f(n) and astarSearch never selects G for expansion.
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A∗ Search Example

Arad

366=0+366
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A∗ Search Example

Arad

Sibiu

393=140+253

Timisoara

447=118+329

Zerind

449=75+374
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A∗ Search Example

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras

415=239+176

Oradea

671=291+380

R. Vilcea

413=220+193
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A∗ Search Example

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras

415=239+176

Oradea

671=291+380

R. Vilcea

Craiova

526=366+160

Pitesti

417=317+100

Sibiu

553=300+253
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A∗ Search Example

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras Oradea

671=291+380

R. Vilcea

Craiova

526=366+160

Pitesti

417=317+100

Sibiu

553=300+253

Sibiu

591=338+253

Bucharest

450=450+0
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A∗ Search Example

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras Oradea

671=291+380

R. Vilcea

Craiova

526=366+160

Pitesti Sibiu

553=300+253

Sibiu

591=338+253

Bucharest

450=450+0

Bucharest

418=418+0

Craiova

615=455+160

Sibiu

607=414+193
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A∗ search: f -contours

B A∗ gradually adds “f -contours” of nodes

c©: Michael Kohlhase 248

A∗ search: Properties

Complete Yes (unless there are infinitely many nodes n with f(n) ≤ f(0))
Time Exponential in [relative error in h × length of solution]
Space Same as time (variant of BFS)
Optimal Yes

B A∗ expands all (some/no) nodes with f(n) < h∗(n)

B The run-time depends on how good we approximated the real cost h∗ with h.
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Since the availability of admissible heuristics is so important for informed search (particularly for
A∗), let us see how such heuristics can be obtained in practice. We will look at an example, and
then derive a general procedure from that.
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Admissible heuristics: Example 8-puzzle

B Example 17.9: Let h1(n) be the number of misplaced tiles in node n
(h1(S) = 6)

B Example 17.10: Let h2(n) be the total manhattan distance from desired loca-
tion of each tile. (h2(S) = 2 + 0 + 3 + 1 + 0 + 1 + 3 + 4 = 14)

B 17.11: (Typical search costs)

(IDS =̂ iterative deepening search)

nodes explored IDS A∗(h1) A∗(h2)
d = 14 3,473,941 539 113
d = 24 too many 39,135 1,641
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Dominance

B Definition 17.12: Let h1 and h2 be two admissible heuristics we say that h2

dominates h1 if h2(n) ≥ h1(n) for all n.

B Theorem 17.13: If h2 dominates h1, then h2 is better for search than h1.
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Relaxed problems

B Finding good admissible heuristics is an art!

B Idea: Admissible heuristics can be derived from the exact solution cost of a
relaxed version of the problem.

B Example 17.14: If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then we get heuristic h1.

B Example 17.15: If the rules are relaxed so that a tile can move to any adjacent
square, then we get heuristic h2.

B Key point: The optimal solution cost of a relaxed problem is not greater than
the optimal solution cost of the real problem.
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Relaxation means to remove some of the constraints or requirements of the original problem,
so that a solution becomes easy to find. Then the cost of this easy solution can be used as an
optimistic approximation of the problem.
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18 Local Search

Local Search Problems

B Idea: Sometimes the path to the solution is irrelevant

B Example 18.1: (8 Queens Problem)

Place 8 queens on a chess board, so that no
two queens threaten each other.

B This problem has various solutions, e.g. the
one on the right

B Definition 18.2: A local search algorithm is
a search algorithm that operates on a single
state, the current state (rather than multiple
paths). (advantage: constant space)

B Typically local search algorithms only move to successors of the current state,
and do not retain search paths.

B Applications include: integrated circuit design, factory-floor layout, job-shop
scheduling, portfolio management, fleet deployment,. . .
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Local Search: Iterative improvement algorithms

B Definition 18.3: (Traveling Salesman Problem)

Find shortest trip through set of cities such that each city is visited exactly
once.

B Idea: Start with any complete tour, perform pairwise exchanges

c©: Michael Kohlhase 254
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Local Search: Iterative improvement algorithms

B Definition 18.4: (n-queens problem)

Put n queens on n×n board such that no two queens in the same row, columns,
or diagonal.

B Idea: Move a queen to reduce number of conflicts

B Increasing number of solutions with increasing n (in general)

n 1 2 3 4 5 6 7 8 9 10 . . . 15

solutions 1 0 0 2 10 4 40 92 352 724 . . . 2,279,184
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Hill-climbing (gradient ascent/descent)

B Idea: Start anywhere and go in the direction of the steepest ascent.

B Depth-first search with heuristic and w/o memory

procedure Hill-Climbing(problem) . a state that is a local minimum
local current, neighbor . nodes
current← Make Node(Initial State[problem])
loop

neighbor← a highest-valued successor of current
if Value[neighbor] < Value[current] then

return State[current]
current← neighbor

end if
end loop

end procedure

B Like starting anywhere in search tree and making a heuristically guided DFS.

B Works, if solutions are dense and local maxima can be escaped.
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In order to understand the procedure on a more intuitive level, let us consider the following
scenario: We are in a dark landscape (or we are blind), and we want to find the highest hill. The
search procedure above tells us to start our search anywhere, and for every step first feel around,
and then take a step into the direction with the steepest ascent. If we reach a place, where the
next step would take us down, we are finished.

Of course, this will only get us into local maxima, and has no guarantee of getting us into
global ones (remember, we are blind). The solution to this problem is to re-start the search at
random (we do not have any information) places, and hope that one of the random jumps will get
us to a slope that leads to a global maximum.
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Example Hill-Climbing with 8 Queens
B Idea: Heuristic function h is

number of queens that threaten
each other.

B Example 18.5: An 8-queens state
with heuristic cost estimate h =
17 showing h-values for moving a
queen within its column
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Example Hill-Climbing with 8 Queens

B Successor function: The succes-
sor function returns all possible
states generated by moving a sin-
gle queen to another square in the
same column.

B Problem: The state space has lo-
cal minima. e.g. the board on the
right has h = 1 but every succes-
sor has h > 1.
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Hill-climbing

B Hill-climbing also called greedy local search

B Often makes very rapid progress towards a solution
(just five steps to reach h = 1 solution!)

B Problem: Depending on
initial state, can get stuck
on local maxima/minima
and plateaux

B “Hill-climbing search is
like climbing Everest in
thick fog with amnesia”

c©: Michael Kohlhase 259
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Hill-climbing

B Idea: Escape local maxima by allowing some side-step, “bad” or random
moves.

random

move

side-step

B Problem: Always allowing side-steps may end in infinite-loops.
(if flat local maximum is not a shoulder)

B Solution: Restrict number of consecutive side-steps.
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Hill-climbing

B Problem: Hill-climbing is incomplete and non-optimal

B Random-restart hill climbing conducts series of hill-climbing searches from ran-
domly generated initial states. (hill-climbing is fast, so this is cheap)

B Example 18.6: Other examples: local search, simulated annealing. . .

B Properties: All are incomplete, non-optimal.

B Sometimes performs well in practice (if optimal solutions are dense)
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Recent work on hill-climbing algorithms tries to combine complete search with randomization to
escape certain odd phenomena occurring in statistical distribution of solutions.

Random-restart hill climbing is complete with probability approaching 1 because given a high
enough number of restarts at some point a goal state will be generated as initial state.
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Simulated annealing (Idea)
B Definition 18.7: Ridges are ascending

successions of local maxima

B Problem: They are extremely difficult to
navigate for local search algorithms

B Idea: Escape local maxima by allow-
ing some “bad” moves, but gradually de-
crease their size and frequency

B Annealing is the process of heating steel and let it cool gradually to give it
time to grow an optimal cristal structure.

B Simulated Annealing is like shaking a ping-pong ball occasionally on a bumpy
surface to free it. (so it does not get stuck)

B Devised by Metropolis et al., 1953, for physical process modeling; adapted to
CS in the early 80’s.

B Widely used in VLSI layout, airline scheduling, etc.
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Simulated annealing (Implementation)

procedure Simulated-Annealing(problem,schedule) . a solution state
local node, next . nodes
local T . a “temperature” controlling prob. of downward steps
current← Make Node(Initial State[problem])
for t← 1 to ∞ do

T← schedule[t]
if T = 0 then

return current
end if
next← a randomly selected successor of current
∆E ← Value[next]−Value[current]
if ∆E > 0 then

current← next
else

current← next only with probabilitye∆E/T

end if
end for

end procedure

a problem schedule is a mapping from time to “temperature”

c©: Michael Kohlhase 263
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Properties of simulated annealing

B At fixed “temperature” T , state occupation probability reaches Boltzman dis-
tribution

p(x) = αe
E(x)
kT

T decreased slowly enough =⇒ always reach best state x∗ because e
E(x∗)

kT

e
E(x)
kT

=

e
E(x∗)−E(x)

kT � 1 for small T .

B Is this necessarily an interesting guarantee?
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In fact, it turns out that while simulated annealing is guaranteed to find the global optimum given
a temperature decrease that is slow enough, often this will result in a search that takes longer
than a complete search of the solution space.

Local beam search

B Idea: Keep k states instead of 1; choose top k of all their successors

B Not the same as k searches run in parallel!
(Searches that find good states recruit other searches to join them)

B Problem: quite often, all k states end up on same local hill

B Idea: Choose k successors randomly, biased towards good ones.
(Observe the close analogy to natural selection!)

c©: Michael Kohlhase 265

Genetic algorithms (briefly)

B Idea:
Use local beam search (keep a population of k)
randomly modify population (mutation)
generate successors from pairs of states (sexual reproduction)
optimize a fitness function (survival of the fittest)

B

B GAs 6= evolution: e.g., real genes encode replication machinery!

c©: Michael Kohlhase 266
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Genetic algorithms (continued)

B Problem: Genetic Algorithms require states encoded as strings
(Genetic programming uses programs)

B Crossover helps iff substrings are meaningful components

Example 18.8: (Encoding 8 Queens)

B Encode 8 Queens states by position
in their column, from top to bottom:
47382516
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Genetic algorithms (continued)

B Basic algorithm

procedure Genetic Algorithm
local population
Generate randomly initial population
while not termination criterion reached do

Evaluate fitness of each individual in population
Randomly select pairs of individuals for reproduction . probability based on fitness value
Generate new individuals by crossover at randomly chosen point.
Mutate the two offspring with probabilty pm.
Replace current population with new population . Alternative: keep k fittest individuals

end while
returnpopulation

end procedure

c©: Michael Kohlhase 268
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Genetic algorithms (continued)

B Example 18.9: (Evolving 8 Queens)

B Generation of offspring:
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19 Programming as Search: Introduction to Logic Pro-
gramming and ProLog

We will now learn a new programming paradigm: “logic programming” (also called “Declarative
Programming”), which is an application of the search techniques we looked at last, and the logic
techniques. We are going to study ProLog (the oldest and most widely used) as a concrete
example of the ideas behind logic programming.
Logic Programming is a programming style that differs from functional and imperative program-

ming in the basic procedural intuition. Instead of transforming the state of the memory by issuing
instructions (as in imperative programming), or comupting the value of a function on some ar-
guments, logic programming interprets the program as a body of knowledge about the respective
situation, which can be queried for consequences. This is actually a very natural intuition; after
all we only run (imperative or functional) programs if we want some question answered.
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Logic Programming

B Idea: Use logic as a programming language!

B We state what we know about a problem (the program) and then ask for results
(what the program would compute)

B Example 19.1:

Program Leibniz is human x+ 0 = x
Sokrates is is human If x+ y = z then x+ s(y) = s(z)
Sokrates is a greek 3 is prime
Every human is fallible

Query Are there fallible greeks? is there a z with s(s(0)) + s(0) = z

Answer Yes, Sokrates! yes s(s(s(0)))

How to achieve this?: Restrict the logic calculus sufficiently that it can be used
as computational procedure.

BB Slogan: Computation = Logic + Control ([Kowalski ’73])

B We will use the programming language ProLog as an example
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ProLog is a simple logic programming language that exemplifies the ideas we want to discuss quite
nicely. We will not introduce the language formally, but in concrete examples as we explain the
theortical concepts. For a complete reference, please consult the online book by Blackburn & Bos &
Striegnitz http://www.coli.uni-sb.de/~kris/learn-prolog-now/.
Of course, this the whole point of writing down a knowledge base (a program with knowledge about
the situation), if we do not have to write down all the knowledge, but a (small) subset, from which
the rest follows. We have already seen how this can be done: with logic. For logic programming
we will use a logic called “first-order logic” which we will not formally introduce here. We have
already seen that we can formulate propositional logic using terms from an abstract data type
instead of propositional variables. For our purposes, we will just use terms with variables instead
of the ground terms used there. 8 EdNote(8)

8EdNote: reference
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Representing a Knowledge base in ProLog

B A knowledge base is represented (symbolically) by a set of facts and rules.

B Definition 19.2: A fact is a statement written as a term that is unconditionally
true of the domain of interest. (write with a term followed by a “.”)

B Example 19.3: We can state that Mia is a woman as woman(mia).

B Definition 19.4: A rule states information that is conditionally true in the
domain.

B Example 19.5: Write “something is a car if it has a motor and four wheels” as
(car(X) : −has motor(X), has wheels(X, 4)) (variables are upper-case)

this is just an ASCII notation for m(x) ∧ w(x, 4)⇒ car(x)

B Definition 19.6: The knowledge base given by a set of facts and rules is that
set of facts that can be derived from it by Modus Ponens (MP ) and ∧I.

A A⇒ B
MP

B

A B
∧I

A ∧B
A

Subst
[B/X]A
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Knowledge Base (Example)

B Example 19.7: car(c). is in the knowlege base generated by

has motor ( c ) .
h a s w h e e l s ( c , 4 ) .
c a r (X):− has motor (X) , h a s w h e e l s (X , 4 ) .

m(c) w(c, 4)
∧I

m(c) ∧ w(c, 4)

m(x) ∧ w(x, 4)⇒ car(x)
Subst

m(c) ∧ w(c, 4)⇒ car(c)
MP

car(c)

c©: Michael Kohlhase 272
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Querying the Knowledge base

B Idea: We want to see whether a fact is in the knowledge base.

B Definition 19.8: A query or goal is a statement of which we want to know
whether it is in the knowledge base. (write as ?− A., if A statement)

B Problem: Knowledge bases can be big and even infinite.

B Example 19.9: The the knowledge base induced by the program

nat ( z e r o ) .
nat ( s (X) ) :− nat (X ) .

is the set {nat(zero), nat(s(zero)), nat(s(s(zero))), . . .}.

B Idea: interpret this as a search problem.

B state = tuple of goals; goal state = empty list (of goals).

B next(〈G, R1, . . . Rl〉) := 〈σ(B1), . . ., σ(Bm), R1, . . ., Rl〉 (backchaining) if
there is a rule H : −B1, . . . Bm. and a substitution σ with σH = σG.

?− nat ( s ( s ( z e r o ) ) ) .
?− nat ( s ( z e r o ) ) .
?− nat ( z e r o ) .
Yes

B If a query contains variables, then ProLog will return an .

h a s w h e e l s (mybmw , 4 ) .
has motor (mybmw ) .
c a r (X):− h a s w h e e l s (X, 4 ) , has motor (X ) .
?− c a r (Y)
?− h a s w h e e l s (Y, 4 ) , has motor (Y ) .
Y = mybmw
?− has motor (mybmw ) .
Y = mybmw
Yes

B If no instance of the statement in a query can be derived from the knowledge
base, then the ProLog interpreter reports failure.

?− nat ( s ( s ( 0 ) ) ) .
?− nat ( s ( 0 ) ) .
?− nat ( 0 ) .
FAIL
No
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We will now discuss how to use a ProLog interpreter to get to know the language. The SWI
ProLog interpreter can be downloaded from http://www.swi-prolog.org/. To start the ProLog
interpreter with pl or prolog or swipl from the shell. The SWI manual is available at http:
//gollem.science.uva.nl/SWI-Prolog/Manual/

We will introduce working with the interpreter using unary natural numbers as examples: we first
add the fact 2 to the knowledge base
unat ( zero ) .

which asserts that the predicate unat3 is true on the term zero. Generally, we can add a fact to
2for “unary natural numbers”; we cannot use the predicate nat and the constructor functions here, since their

meaning is predefined in ProLog
3for “unary natural numbers”.
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the knowledge base either by writing it into a file (e.g. example.pl) and then “consulting it” by
writing one of the following commands into the interpreter:
[ example ]
consult ( ’ example . p l ’ ) .

or by directly typing
assert ( unat ( zero ) ) .

into the ProLog interpreter. Next tell ProLog about the following rule
assert ( unat ( suc (X) ) :− unat (X) ) .

which gives the ProLog runtime an initial (infinite) knowledge base, which can be queried by
?− unat ( suc ( suc ( zero ) ) ) .
\ smlout{Yes}

Running ProLog in an emacs window is incredibly nicer than at the command line, because you
can see the whole history of what you have done. Its better for debugging too. If you’ve never
used emacs before, it still might be nicer, since its pretty easy to get used to the little bit of emacs
that you need. (Just type “emacs &” at the UNIX command line to run it; if you are on a remote
terminal like putty, you can use “emacs -nw”.).
If you don’t already have a file in your home directory called “.emacs” (note the dot at the front),
create one and put the following lines in it. Otherwise add the following to your existing .emacs
file:

(autoload ’run-prolog "prolog" "Start a Prolog sub-process." t)

(autoload ’prolog-mode "prolog" "Major mode for editing Prolog programs." t)

(setq prolog-program-name "swipl") ; or whatever the prolog executable name is

(add-to-list ’auto-mode-alist ’("\\pl$" . prolog-mode))

The file prolog.el, which provides prolog-mode should already be installed on your machine,
otherwise download it at http://turing.ubishops.ca/home/bruda/emacs-prolog/
Now, once you’re in emacs, you will need to figure out what your “meta” key is. Usually its the
alt key. (Type “control” key together with “h” to get help on using emacs). So you’ll need a
“meta-X” command, then type “run-prolog”. In other words, type the meta key, type “x”, then
there will be a little window at the bottom of your emacs window with “M-x”, where you type
run-prolog4. This will start up the SWI ProLog interpreter, . . . et voilà!

The best thing is you can have two windows “within” your emacs window, one where you’re
editing your program and one where you’re running ProLog. This makes debugging easier.

Depth-First Search with Backtracking

B So far, all the examples led to direct success or to failure. (simpl. KB)

B Search Procedure: top-down, left-right depth-first search

B Work on the queries in left-right order.

B match first query with the head literals of the clauses in the program in
top-down order.

B if there are no matches, fail and backtrack to the (chronologically) last
point.

B otherwise backchain on the first match , keep the other matches in mind
for backtracking. (backtracking points)
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4Type “control” key together with “h” then press “m” to get an exhaustive mode help.
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Note: We have seen before9 that depth-first search has the problem that it can go into loops. EdNote(9)
And in fact this is a necessary feature and not a bug for a programming language: we need to
be able to write non-terminating programs, since the langugage would not be Turing-complete
ogtherwise. The argument can be sketched as follows: we have seen that for Turing machines the
halting problem10 is undecidable. So if all ProLog programs were terminating, then ProLog would EdNote(10)
be weaker than Turing machines and thus not Turing complete.

Backtracking by Example
h a s w h e e l s ( m y t r i c y c l e , 3 ) .
h a s w h e e l s ( m y r o l l e r b l a d e , 3 ) .
h a s w h e e l s (mybmw , 4 ) .
has motor (mybmw ) .
c a r (X):− h a s w h e e l s (X, 3 ) , has motor (X ) . % ca r s somet imes have 3 whee l s
c a r (X):− h a s w h e e l s (X, 4 ) , has motor (X ) .
?− c a r (Y ) .
?− h a s w h e e l s (Y, 3 ) , has motor (Y ) . % back t r a ck po i n t 1
Y = m y t r i c y c l e }} % back t r a ck po i n t 2
?− has motor ( m y t r i c y c l e ) .
FAIL % f a i l s , b a ck t r a ck to 2
Y = m y r o l l e r b l a d e % back t r a ck po i n t 2
?− has motor ( m y r o l l e r b l a d e ) .
FAIL % f a i l s , b a ck t r a ck to 1
?− h a s w h e e l s (Y, 4 ) , has motor (Y ) .
Y = mybmw
?− has motor (mybmw ) .
Y=mybmw
Yes
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Can We Use This For Programming?

B Question: What about functions? E.g. the addition function?

B Question: We do not have (binary) functions, in ProLog

B Idea (back to math): use a three-place predicate.
Example 19.10: add(X,Y,Z) stands for X+Y=Z

B Now we can directly write the recursive equations X + 0 = X (base case) and
X + s(Y ) = s(X + Y ) into the knowledge base.

add (X, zero , X ) .
add (X, s (Y) , s (Z ) ) :− add (X, Y, Z ) .

B similarly with multiplication and exponentiation.

mult (X, o , o ) .
mult (X, s (Y) , Z) :− mult (X, Y,W) , add (X,W, Z ) .
e x p t (X, o , s ( o ) ) .
e x p t (X, s (Y) , Z) :− e x p t (X, Y,W) , mult (X,W, Z ) .
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Note: Viewed through the right glasses logic programming is very similar to functional program-
ming; the only difference is that we are using n+1-ary relations rather than n-ary functions. To see
how this works let us consider the addition function/relation example above: instead of a binary
function + we program a ternary relation add, where relation add(X,Y, Z) means X + Y = Z.
We start with the same defining equations for addition, rewriting them to relational style.

9EdNote: reference
10EdNote: reference
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The first equation is straight-foward via our correspondance and we get the ProLog fact
add(X, zero, X).. For the equation X + s(Y ) = s(X + Y ) we have to work harder, the straight-
forward relational translation add(X, s(Y ), s(X + Y )) is impossible, since we have only partially
replaced the function + with the relation add. Here we take refuge in a very simple trick that we
can always do in logic (and mathematics of course): we introduce a new name Z for the offending
expression X + Y (using a variable) so that we get the fact add(X, s(Y ), s(Z)). Of course this is
not universally true (remember that this fact would say that “X + s(Y ) = s(Z) for all X, Y , and
Z”), so we have to extend it to a ProLog rule (add(X, s(Y), s(Z)) : −add(X, Y, Z)) which relativizes
to mean “X + s(Y ) = s(Z) for all X, Y , and Z with X + Y = Z”.

Indeed the rule implements addition as a recursive predicate, we can see that the recursion
relation is terminating, since the left hand sides are have one more constructor for the successor
function. The examples for multiplication and exponentiation can be developed analogously, but
we have to use the naming trick twice.

More Examples from elementary Arithmetics

B Example 19.11: We can also use the add relation for subtrac-
tion without changing the implementation. We just use vari-
ables in the “input positions” and ground terms in the other two

(possibly very inefficient since “generate-and-test approach”)

?−add ( s ( z e r o ) ,X, s ( s ( s ( z e r o ) ) ) ) .
X = s ( s ( z e r o ) )
Yes

B Example 19.12: Computing the the nth Fibonacci Number
(0,1,1,2,3,5,8,13,. . . ; add the last two to get the next), using the addi-
tion predicate above.

f i b ( zero , z e r o ) .
f i b ( s ( z e r o ) , s ( z e r o ) ) .
f i b ( s ( s (X) ) ,Y):− f i b ( s (X) , Z ) , f i b (X,W) , add (Z ,W, Y ) .

B Example 19.13: using ProLog’s internal arithmetic: a goal of the form
?− D is e. where e is a ground arithmetic expression binds D to the result
of evaluating e.

f i b ( 0 , 0 ) .
f i b ( 1 , 1 ) .
f i b (X, Y):− D i s X − 1 , E i s X − 2 , f i b (D, Z ) , f i b (E ,W) , Y i s Z + W.
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Note: Note that the is relation does not allow “generate-and-test” inversion as it insists on the
right hand being ground. In our example above, this is not a problem, if we call the fib with the
first (“input”) argument a ground term. Indeed, if match the last rule with a goal ?− fib(g, Y).,
where g is a ground term, then g− 1 and g− 2 are ground and thus D and E are bound to the
(ground) result terms. This makes the input arguments in the two recursive calls ground, and
we get ground results for Z and W, which allows the last goal to succeed with a ground result for
Y. Note as well that re-ordering the body literals of the rule so that the recursive calls are called
before the computation literals will lead to failure.

20 Logic Programming as Resolution Theorem Proving
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We know all this already

B Goals, goal-sets, rules, and facts are just clauses. (so-called Horn clauses)

B observation 20.1: (rule)

H : −B1, . . . , Bn. corresponds to H ∨ ¬B1 ∨ . . . ∨ ¬Bn
(head the only positive literal)

B observation 20.2: (goal setid)

?− G1, . . . , Gn. corresponds to ¬G1, . . . ,¬Gn
B observation 20.3: (fact)

F. corresponds to the unit clause F.

B Definition 20.4: A Horn clause is a clause with at most one positive literal.

B Note: backchaining becomes (hyper)-resolution
(special case for rule with facts)
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PROLOG (Horn clauses)

B Logic programming by resolution theorem proving

B Question: With full predicate logic (with equality)?

B Answer: No, since

B Search spaces are immense

B Control (of proof search =̂ program) cannot be understood/affected by the
programmer.

B problems with termination
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PROLOG (Horn clauses)

B Definition 20.5:Each clause contains at most one positive literal

B B1 ∨ . . . ∨Bn ∨ ¬A ((A : −B1, . . ., Bn))

B Rule clause: (fallible(X) : −human(X))

B Fact clause: human(sokrates).

B Program: set of rule and fact clauses

B Query: ?− fallible(X), greek(X).

c©: Michael Kohlhase 280
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PROLOG (SLD Resolution)

B Strategy for Resolution: SLDNF (LUSH)

B Selected Literal Definite clauses

B Linear resolution
(Always continue work with the focussed clause)

B Select the lefmost unsolved positive literal

B Always resolve on the positive literal

B Theorem 20.6: (Strongly) complete on horn clauses

B Each instance of the query that is entailed by the program is subsumed by
a positive answer.
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PROLOG: Our Example

B Program:

human ( s o k r a t e s ) .
human ( l e i b n i z ) .
g r e e k ( s o k r a t e s ) .
f a l l i b l e (X) :− human (X ) .

B Example 20.7: (Query)

?− fallible(X), greek(X).

B Answer substitution: [sokrates/X]
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Why Only Horn Clauses?

B General clauses of the form A1,...,An :- B1,...,Bn.

B e.g. greek(sokrates),greek(perikles)

B Question: Are there fallible greeks?

B Indefinite answer: Yes, Perikles or Sokrates

B Warning: how about Sokrates and Perikles?

B e.g. greek(sokrates),roman(sokrates):-.

B Query: Are there fallible greeks?

B Answer: Yes, Sokrates, if he is not a roman

B Is this abduction?????
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20.1 First-Order Unification

We will now look into the problem of finding a substitution σ that make two terms equal (we
say it unifies them) in more detail. The presentation of the unification algorithm we give here
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“transformation-based” this has been a very influential way to treat certain algorithms in theo-
retical computer science.
A transformation-based view of algorithms: The “transformation-based” view of algorithms di-
vides two concerns in presenting and reasoning about algorithms according to Kowalski’s slogan11 EdNote(11)

computation = logic + control

The computational paradigm highlighted by this quote is that (many) algorithms can be thought
of as manipulating representations of the problem at hand and transforming them into a form
that makes it simple to read off solutions. Given this, we can simplify thinking and reasoning
about such algorithms by separating out their “logical” part, which deals with is concerned with
how the problem representations can be manipulated in principle from the “control” part, which
is concerned with questions about when to apply which transformations.

It turns out that many questions about the algorithms can already be answered on the “logic”
level, and that the “logical” analysis of the algorithm can already give strong hints as to how to
optimize control.
In fact we will only concern ourselves with the “logical” analysis of unification here.
The first step towards a theory of unification is to take a closer look at the problem itself. A first
set of examples show that we have multiple solutions to the problem of finding substitutions that
make two terms equal. But we also see that these are related in a systematic way.

Unification (Definitions)

B Problem: For given terms A and B find a substitution σ, such that σA = σB.

B term pairs A=?B e.g. f(X)=?f(g(Y ))

B Solutions: [g(a)/X], [a/Y ]
[g(g(a))/X], [g(a)/Y ]
[g(Z)/X], [Z/Y ]

B are called unifiers, U(A=?B) := {σ | σA = σB}

Idea: find representatives in U(A=?B), that generate the set of solutions

BB Definition 20.8: Let σ and θ be substitutions and W ⊆ Vι, we say that a σ
more general than θ (on W write σ ≤ θ[W ]), iff there is a substitution ρ, such
that θ = ρ ◦ σ[W ], where σ = ρ[W ], iff σX = ρX for all X ∈W .

B Definition 20.9: σ is called a most general unifier of A and B, iff it is minimal
in U(A=?B) wrt. ≤ [free(A) ∪ free(B)].
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The idea behind a most general unifier is that all other unifiers can be obtained from it by (further)
instantiation. In an automated theorem proving setting, this means that using most general
unifiers is the least committed choice — any other choice of unifiers (that would be necessary for
completeness) can later be obtained by other substitutions.
Note that there is a subtlety in the definition of the ordering on substitutions: we only compare
on a subset of the variables. The reason for this is that we have defined substitutions to be total
on (the infinite set of) variables for flexibility, but in the applications (see the definition of a most
general unifiers), we are only interested in a subset of variables: the ones that occur in the initial
problem formulation. Intuitively, we do not care what the unifiers do off that set. If we did not

11EdNote: find the reference, and see what he really said
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have the restriction to the set W of variables, the ordering relation on substitutions would become
much too fine-grained to be useful (i.e. to guarantee unique most general unifiers in our case).
Now that we have defined the problem, we can turn to the unification itself.

Unification (Equational Systems)

B Idea: Unification is equation solving.

B Definition 20.10: We call a formula A1=?B1 ∧ . . . ∧An=?Bn an equational
system.

B We consider equational systems as sets of equations (∧ is ACI), and equations
as two-element multisets (=? is C).

B Definition 20.11: We say that X1=?B1 ∧ . . . ∧Xn=?Bn is a solved form, iff
the Xi are distinct and Xi 6∈ free(Bj).

B Lemma 20.12: If E = X1=?B1 ∧ . . . ∧Xn=?Bn is a solved form, then E has
the unique most general unifier σE := [B1/X1], . . ., [Bn/Xn].

B Proof:

P.1 Let θ ∈ U(E), then θXi = θBi = θ ◦ σE(Xi)

P.2 and thus θ = θ ◦ σE [supp(σ)].
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In principle, unification problems are sets of equations, which we write as conjunctions, since all of
them have to be solved for finding a unifier. Note that it is not a problem for the “logical view” that
the representation as conjunctions induces an order, since we know that conjunction is associative,
commutative and idempotent, i.e. that conjuncts do not have an intrinsic order or multiplicity,
if we consider two equational problems as equal, if they are equivalent as propositional formulae.
In the same way, we will abstract from the order in equations, since we know that the equality
relation is symmetric. Of course we would have to deal with this somehow in the implementation
(typically, we would implement equational problems as lists of pairs), but that belongs into the
“control” aspect of the algorithm, which we are abstracting from at the moment.
It is essential to our “logical” analysis of the unification algorithm that we arrive at equational

problems whose unifiers we can read off easily. Solved forms serve that need perfectly as the
Lemma12 shows.13 EdNote(12)

EdNote(13)12EdNote: reference
13EdNote: say something about the occurs-in-check,...
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Unification Algorithm

B Definition 20.13: Inference system U

E ∧ (fA1 . . .An)=?(fB1 . . .Bn)
Udec

E ∧A1=?B1 ∧ . . . ∧An=?Bn

E ∧A=?A
Utriv

E

E ∧X=?A X 6∈ free(A) X ∈ free(E)
Uelim

[A/X](E) ∧X=?A

B Lemma 20.14: U is correct (E `U F implies U(F) ⊆ U(E))

B Lemma 20.15: U is complete (E `U F implies U(E) ⊆ U(F))

B Lemma 20.16: U is confluent (order of derivations does not matter)

B Corollary 20.17: First-Order Unification is unitary (unique most general
unifiers) (U trivially branching)
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Unification (Termination)

B Lemma 20.18: U is terminating (any U-derivation is finite)

B Proof:

P.1 Let µ(E) := 〈m,N , n〉, where

B m is the number of unsolved variables in E
B N is the multi-set of term depths in E
B n the number of term pairs in E

P.2 The lexicographic order ≺ on triples µ(E) is decreased by all inference
rules.

c©: Michael Kohlhase 287
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Unification (decidable)

B Definition 20.19: We call an equational problem E U-reducible, iff there is a
U-step E `U F from E .

B Lemma 20.20: If E is unifiable but not solved, then it is U-reducible

B Proof:

P.1 There is an unsolved pair A=?B in E = E ′ ∧A=?B.

P.2 we have two cases

P.2.1 A,B ∈ Vι:
P.2.1.1 then A = f(A1 . . .An) and B = f(B1 . . .Bn), and thus Udec is

applicable

P.2.2 A = X ∈ Vι ∩ free(E):

P.2.2.1 then Uelim (if B 6= X) or Utriv (if B = X) is applicable.

B Corollary 20.21: Unification is decidable in PL1

B Proof Idea: U-irreducible set of equations are either solved or unsolvable
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21 Topics in Logic Programming

Adding Lists to ProLog

B Lists are represented by terms of the form [a,b,c,...]

B first/rest representation F|R, where R is a rest list.

B predicates for member, append and reverse of lists in default ProLog repre-
sentation.
member (X , [ X | ] ) .
member (X , [ |R]):−member (X, R ) .
append ( [ ] , L , L ) .
append ( [ X |R ] , L , [ X |S ]):− append (R , L , S ) .
r e v e r s e ( [ ] , [ ] ) .
r e v e r s e ( [ X |R ] , L):− r e v e r s e (R , S ) , append ( S , [ X ] , L ) .
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Relational Programming Techniques

B Parameters have no unique direction “in” or “out”

:− r e v ( L , [ 1 , 2 , 3 ] ) .
:− r e v ( [ 1 , 2 , 3 ] , L1 ) .
:− r e v ( [ 1 , X ] , [ 2 , Y ] ) .

B Symbolic programming by structural induction

r e v ( [ ] , [ ] ) .
r e v ( [ X, Xs ] , Ys ) :− . . .

B Generate and test
s o r t ( Xs , Ys ) :− perm ( Xs , Ys ) , o r d e r e d ( Ys ) .
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Use ProLog for Talking/Programming about Logics

B Idea: We will use PLNQ (prop. logic where prop. variables are ADT terms)

B represent the ADT as facts of the form

c o n s t a n t ( mia ) .
p red ( l o v e , 2 ) .
p red ( run , 1 ) .
fun ( f a t h e r , 1 )

this licenses ProLog terms like run(mia). and love(mia,father(mia)).

B represent propositional connectives as ProLog operators, which we declare with
the following declarations.

:− op ( 900 , y fx ,<>). % equ i v a l e n c e
:− op ( 900 , y fx ,>) . % i m p l i c a t i o n
:− op ( 850 , y fx , \ / ) . % d i s j u n c t i o n
:− op (8 00 , y fx ,\& ) . % con j u n c t i o n
:− op (7 50 , fx , ˜ ) . % nega t i on

The first argument of op is the operator precedence, the second the fixity. This
licenses ProLog terms like X > Y. and ~(X).

B Use the ProLog built-in predicate =.. to deconstruct terms: a literal
f(a,b)=..Z binds Z to the list [f,a,b], i.e. the first element of the list
is the function/predicate symbol, followed by the arguments.
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Example: A complete first-order Tableau Theorem Prover
p r o v e ( ( E , F ) ,A, B, C ,D) :− ! , p r o v e (E , [ F |A ] , B, C ,D) .
p r o v e ( ( E ; F ) ,A, B, C ,D) :− ! , p r o v e (E , A, B, C ,D) , p r o v e (F , A, B, C ,D) .
p r o v e ( a l l ( I , J ) ,A , B, C ,D) :− ! ,
\+ l eng th (C ,D) , copy te rm ( ( I , J , C ) , ( G, F , C ) ) ,
append (A , [ a l l ( I , J ) ] , E ) , p r o v e (F , E , B , [ G |C ] ,D) .

p r o v e (A, , [ C |D] , , ) :−
( (A= −(B);−(A)=B) −> ( u n i f y (B, C ) ; p r o v e (A , [ ] , D, , ) ) ) .

p r o v e (A , [ E |F ] , B, C ,D) :− p r o v e (E , F , [ A |B ] , C ,D) .

c©: Michael Kohlhase 292
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