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Preface

This Document

This document contains the course notes for the course General Computer Science I & II held at
Jacobs University Bremen1 in the academic years 2003-2015.

Contents: The document mixes the slides presented in class with comments of the instructor to
give students a more complete background reference.

Caveat: This document is made available for the students of this course only. It is still a draft
and will develop over the course of the current course and in coming academic years.

Licensing: This document is licensed under a Creative Commons license
that requires attribution, allows commercial use, and allows derivative works as long as these are
licensed under the same license.

Knowledge Representation Experiment:
This document is also an experiment in knowledge representation. Under the hood, it uses

the STEX package [Koh08, Koh15], a TEX/LATEX extension for semantic markup, which allows to
export the contents into the eLearning platform PantaRhei.

Comments and extensions are always welcome, please send them to the author.

Other Resources: The course notes are complemented by a selection of problems (with and without
solutions) that can be used for self-study. [Koh11a, Koh11b]

Course Concept

Aims: The course 320101/2 “General Computer Science I/II” (GenCS) is a two-semester course
that is taught as a mandatory component of the “Computer Science” and “Electrical Engineering
& Computer Science” majors (EECS) at Jacobs University. The course aims to give these students
a solid (and somewhat theoretically oriented) foundation of the basic concepts and practices of
computer science without becoming inaccessible to ambitious students of other majors.

Context: As part of the EECS curriculum GenCS is complemented with a programming lab that
teaches the basics of C and C++ from a practical perspective and a “Computer Architecture”
course in the first semester. As the programming lab is taught in three five-week blocks over the
first semester, we cannot make use of it in GenCS.

In the second year, GenCS, will be followed by a standard “Algorithms & Data structures”
course and a “Formal Languages & Logics” course, which it must prepare.

Prerequisites: The student body of Jacobs University is extremely diverse — in 2011, we have
students from 110 nations on campus. In particular, GenCS students come from both sides of
the “digital divide”: Previous CS exposure ranges “almost computer-illiterate” to “professional
Java programmer” on the practical level, and from “only calculus” to solid foundations in dis-
crete Mathematics for the theoretical foundations. An important commonality of Jacobs students
however is that they are bright, resourceful, and very motivated.

As a consequence, the GenCS course does not make any assumptions about prior knowledge,
and introduces all the necessary material, developing it from first principles. To compensate
for this, the course progresses very rapidly and leaves much of the actual learning experience to
homework problems and student-run tutorials.

Course Contents

Goal: To give students a solid foundation of the basic concepts and practices of Computer Science
we try to raise awareness for the three basic concepts of CS: “data/information”, “algorithms/pro-
grams” and “machines/computational devices” by studying various instances, exposing more and
more characteristics as we go along.

1International University Bremen until Fall 2006
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Computer Science: In accordance to the goal of teaching students to “think first” and to bring
out the Science of CS, the general style of the exposition is rather theoretical; practical aspects
are largely relegated to the homework exercises and tutorials. In particular, almost all relevant
statements are proven mathematically to expose the underlying structures.

GenCS is not a programming course: even though it covers all three major programming paradigms
(imperative, functional, and declarative programming). The course uses SML as its primary pro-
gramming language as it offers a clean conceptualization of the fundamental concepts of recursion,
and types. An added benefit is that SML is new to virtually all incoming Jacobs students and helps
equalize opportunities.

GenCS I (the first semester): is somewhat oriented towards computation and representation. In
the first half of the semester the course introduces the dual concepts of induction and recursion,
first on unary natural numbers, and then on arbitrary abstract data types, and legitimizes them
by the Peano Axioms. The introduction and of the functional core of SML contrasts and explains
this rather abstract development. To highlight the role of representation, we turn to Boolean
expressions, propositional logic, and logical calculi in the second half of the semester. This gives
the students a first glimpse at the syntax/semantics distinction at the heart of CS.

GenCS II (the second semester): is more oriented towards exposing students to the realization of
computational devices. The main part of the semester is taken up by a “building an abstract com-
puter”, starting from combinational circuits, via a register machine which can be programmed in
a simple assembler language, to a stack-based machine with a compiler for a bare-bones functional
programming language. In contrast to the “computer architecture” course in the first semester,
the GenCS exposition abstracts away from all physical and timing issues and considers circuits
as labeled graphs. This reinforces the students’ grasp of the fundamental concepts and highlights
complexity issues. The course then progresses to a brief introduction of Turing machines and
discusses the fundamental limits of computation at a rather superficial level, which completes
an introductory “tour de force” through the landscape of Computer Science. As a contrast to
these foundational issues, we then turn practical introduce the architecture of the Internet and
the World-Wide Web.

The remaining time, is spent on studying one class algorithms (search algorithms) in more detail
and introducing the notition of declarative programming that uses search and logical representation
as a model of computation.
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Recorded Syllabus for 2014/15

In this document, we record the progress of the course in the academic year 2014/2015 in the form
of a “recorded syllabus”, i.e. a syllabus that is created after the fact rather than before.

Recorded Syllabus Fall Semester 2013:

# date until slide page

1 Sep 1. through with admin 9 8
2 Sep 2. at end of motivation 29 19
3 Sep 8. proofs with Peano axioms 35 27
4 Sep 9. operators on unary natural numbers 41 31
5 Sep 15. operations on sets ?? ??
6 Sep 16. Functions 54 39
7 Sep 22. operations on functions 59 42
8 Sep 23. SML function by cases 68 48
8 Sep 29. higher-order functions 70 49
9 Sep 30. SML data types 86 58
10 Oct 6. constructor terms & substitutions 100 69
11 Oct 7. recursion/computation on ADTs 111 75
12 Oct 13. I/O and exceptions ?? ??
13 Oct 14. Codes, up to string codes 132 91

Oct 27 Midterm
14 Oct 28 UTF encodings 139 95
15 Nov 3. Truth Tables 148 102
16 Nov 4. Landau Sets 155 106
17 Nov 10. Cost Bounds for Boolean Expressions 160 109
18 Nov 11. Quine McCluskey 179 117
19 Nov 17. Intro to Propositional Logic 188 124
20 Nov 18. The miracle of logics 192 128
21 Nov 24. Properties of the Hilbert-Calculus 199 132
22 Nov 25. Natural Deduction for Mathtalk 210 138
23 Dec 1. Tableaux & Resolution 227 150
24 Dec 2. Intellectual Property, Copyright, & Information Privacy 242 162

Recorded Syllabus Spring Semester 2015:
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# date until slide page

1 Feb 2. Labeled Graphs 253 177
2 Feb 4. Balanced Binary Trees & sizes 264 183
3 Feb 9. Arithmetics for PNS 274 191
4 Feb 10. Adders 285 197
5 Feb 16. Add/Subtraction Unit 298 205
6 Feb 17. CPU Architecture 313 217
7 Feb 23. Assembler Language 318 220
8 Feb 24. Virtual machine & Implementation 332 228
9 Mar 2. Compiling SW statements 341 233
10 Mar 3. VM with Procedures (Simulation) 348 237
11 Mar 9. Compiling µML 362 251
12 Mar 10. Universal Turing Machine/Halting Problem 373 258
13 Mar 16. Internet Protocol Suite 378 264
14 Mar 17. SMTP over telnet 389 271

Mar 23. midterm
15 Mar 24. WWW Overview 396 274

Mar 30/31. spring break
16 Apr 7. CSS 404 279
17 Apr 13. WebApps & State 409 282
18 Apr 14. Web Search 419 289
19 Apr 20. public key encryption 438 299
20 Apr 21. XPath 456 308
21 Apr 27. Breadth-first search ?? ??
22 Apr 28. Semantic Web 465 313
23 May 4. A∗ search 541 346
24 May 5. local search/genetic algorithms 564 354
23 May 11. PROLOG ideas 572 360
24 May 12. PROLOG & Look Back

Here the syllabus of of the last academic year for reference, the current year should be similar; see
the course notes of last year available for reference at http://kwarc.info/teaching/GenCS2/

notes2013-14.pdf.

Recorded Syllabus Fall Semester 2013:

http://kwarc.info/teaching/GenCS2/notes2013-14.pdf
http://kwarc.info/teaching/GenCS2/notes2013-14.pdf
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# date until

1 Sep 2. through with admin
2 Sep 3. at end of motivation
3 Sep 9. recap of the first week
4 Sep 10. introduced proofs with Peano axioms
5 Sep 16. covered mathtalk & Alphabets
6 Sep 17. Relations
7 Sep 23. properties of functions
8 Sep 24. SML component selection
8 Sep 30. higher-order functions
9 Oct 1. datatypes
10 Oct 7. computation on ADTs
11 Oct 8. constructor terms & substitutions

Oct 14 Midterm
12 Oct 15. final Abstract Interpreter
13 Oct 28. recursion relation & Fibonacci
14 Oct 29. I/O and exceptions
15 Nov 4. Codes, up to Morse Code
16 Nov 5. UTF encodings
17 Nov 11. Boolean Expressions

Nov 12. Midterm 2
18 Nov 18. Boolean Functions
19 Nov 19. Elementary Complexity Theory
20 Nov 25. Quine McCluskey
21 Nov 26. Intro to Propositional Logic
22 Dec 2. The miracle of logics
23 Dec 3. Natural Deduction for Mathtalk
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Recorded Syllabus Spring Semester 2014:

# date until

1 Feb 3. Graph Paths
2 Feb 4. Balanced Binary Trees
3 Feb 10. Universality of NAND and NOR
4 Feb 11. Carry Chain adder
5 Feb 17. Two’s complement numbers
6 Feb 18. RAM
7 Feb 24. Basic Assembler
8 Feb 25. Virtual machine basics
9 Mar 3. Implementing VM arithmetics
10 Mar 4. Compiling SW into VM
11 Mar 10. Realizing Call Frames
12 Mar 11. Compiling µML
13 Mar 17. Universal Turing Machine/Halting Problem
14 Mar 18. Network Interface Controllers
15 Mar 24. SMTP over telnet
16 Mar 25. URIs, URLs, URNs
17 Mar 31. CSS
18 Apr 1. Dynamic HTML
19 Apr 7. Web Search: Queries
19 Apr 22. public key encryption
20 Apr 28. XPath
21 Apr 29. Breadth-first search
22 May 5. A∗ search
23 May 12. PROLOG ideas
24 May 13. PROLOG & Look Back
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Chapter 1

Getting Started with “General
Computer Science”

Jacobs University offers a unique CS curriculum to a special student body. Our CS curriculum
is optimized to make the students successful computer scientists in only three years (as opposed
to most US programs that have four years for this). In particular, we aim to enable students to
pass the GRE subject test in their fifth semester, so that they can use it in their graduate school
applications.

The Course 320101/2 “General Computer Science I/II” is a one-year introductory course that
provides an overview over many of the areas in Computer Science with a focus on the foundational
aspects and concepts. The intended audience for this course are students of Computer Science,
and motivated students from the Engineering and Science disciplines that want to understand
more about the “why” rather than only the “how” of Computer Science, i.e. the “science part”.

1.1 Overview over the Course

Overview: The purpose of this two-semester course is to give you an introduction to what the
Science in “Computer Science” might be. We will touch on a lot of subjects, techniques and
arguments that are of importance. Most of them, we will not be able to cover in the depth that
you will (eventually) need. That will happen in your second year, where you will see most of them
again, with much more thorough treatment.

Computer Science: We are using the term “Computer Science” in this course, because it is the
traditional anglo-saxon term for our field. It is a bit of a misnomer, as it emphasizes the computer
alone as a computational device, which is only one of the aspects of the field. Other names that are
becoming increasingly popular are “Information Science”, “Informatics” or “Computing”, which
are broader, since they concentrate on the notion of information (irrespective of the machine basis:
hardware/software/wetware/alienware/vaporware) or on computation.

Definition 1.1.1 What we mean with Computer Science here is perhaps best represented by the
following quote:

The body of knowledge of computing is frequently described as the systematic study of
algorithmic processes that describe and transform information: their theory, analysis, de-
sign, efficiency, implementation, and application. The fundamental question underlying all
of computing is, What can be (efficiently) automated? [Den00]

1
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Plot of “General Computer Science”

� Today: Motivation, Admin, and find out what you already know

� What is Computer Science?

� Information, Data, Computation, Machines

� a (very) quick walk through the topics

� Get a feeling for the math involved ( not a programming course!!! )

� learn mathematical language (so we can talk rigorously)

� inductively defined sets, functions on them

� elementary complexity analysis

� Various machine models (as models of computation)

� (primitive) recursive functions on inductive sets

� combinational circuits and computer architecture

� Programming Language: Standard ML (great equalizer/thought provoker)

� Turing machines and the limits of computability

� Fundamental Algorithms and Data structures

©: Michael Kohlhase 1

Not a Programming Course: Note “General CS” is not a programming course, but an attempt
to give you an idea about the “Science” of computation. Learning how to write correct, efficient,
and maintainable, programs is an important part of any education in Computer Science, but we
will not focus on that in this course (we have the Labs for that). As a consequence, we will not
concentrate on teaching how to program in “General CS” but introduce the SML language and
assume that you pick it up as we go along (however, the tutorials will be a great help; so go
there!).

Standard ML: We will be using Standard ML (SML), as the primary vehicle for programming in the
course. The primary reason for this is that as a functional programming language, it focuses more
on clean concepts like recursion or typing, than on coverage and libraries. This teaches students
to “think first” rather than “hack first”, which meshes better with the goal of this course. There
have been long discussions about the pros and cons of the choice in general, but it has worked well
at Jacobs University (even if students tend to complain about SML in the beginning).

A secondary motivation for SML is that with a student body as diverse as the GenCS first-years
at Jacobs1 we need a language that equalizes them. SML is quite successful in that, so far none
of the incoming students had even heard of the language (apart from tall stories by the older
students).

Algorithms, Machines, and Data: The discussion in “General CS” will go in circles around the
triangle between the three key ingredients of computation.

Algorithms are abstract representations of computation instructions

Data are representations of the objects the computations act on

Machines are representations of the devices the computations run on

1traditionally ranging from students with no prior programming experience to ones with 10 years of semi-pro
Java

http://creativecommons.org/licenses/by-sa/2.5/


1.2. ADMINISTRATIVA 3

The figure below shows that they all depend on each other; in the course of this course we will
look at various instantiations of this general picture.

Data

Machines

Algorithms

Figure 1.1: The three key ingredients of Computer Science

Representation: One of the primary focal items in “General CS” will be the notion of representa-
tion. In a nutshell the situation is as follows: we cannot compute with objects of the “real world”,
but be have to make electronic counterparts that can be manipulated in a computer, which we
will call representations. It is essential for a computer scientist to realize that objects and their
representations are different, and to be aware of their relation to each other. Otherwise it will
be difficult to predict the relevance of the results of computation (manipulating electronic objects
in the computer) for the real-world objects. But if cannot do that, computing loses much of its
utility.

Of course this may sound a bit esoteric in the beginning, but I will come back to this very
often over the course, and in the end you may see the importance as well.

1.2 Administrativa

We will now go through the ground rules for the course. This is a kind of a social contract between
the instructor and the students. Both have to keep their side of the deal to make learning and
becoming Computer Scientists as efficient and painless as possible.

1.2.1 Grades, Credits, Retaking

Now we come to a topic that is always interesting to the students: the grading scheme. The
grading scheme I am using has changed over time, but I am quite happy with it now.

Prerequisites, Requirements, Grades

� Prerequisites: Motivation, Interest, Curiosity, hard work

� You can do this course if you want!

� Grades: (plan your work involvement carefully)

Monday Quizzes 30%
Graded Assignments 20%
Mid-term Exam 20%
Final Exam 30%

Note that for the grades, the percentages of achieved points are added with the
weights above, and only then the resulting percentage is converted to a grade.

� Monday Quizzes: (Almost) every monday, we will use the first 10 minutes for
a brief quiz about the material from the week before (you have to be there)

� Rationale: I want you to work continuously (maximizes learning)
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� Requirements for Auditing: You can audit GenCS! (specify in Campus Net)

To earn an audit you have to take the quizzes and do reasonably well(I cannot
check that you took part regularly otherwise.)

©: Michael Kohlhase 2

My main motivation in this grading scheme is to entice you to study continuously. You cannot
hope to pass the course, if you only learn in the reading week. Let us look at the components
of the grade. The first is the exams: We have a mid-term exam relatively early, so that you get
feedback about your performance; the need for a final exam is obvious and tradition at Jacobs.
Together, the exams make up 50% of your grade, which seems reasonable, so that you cannot
completely mess up your grade if you fail one.

In particular, the 50% rule means that if you only come to the exams, you basically have to
get perfect scores in order to get an overall passing grade. This is intentional, it is supposed to
encourage you to spend time on the other half of the grade. The homework assignments are a
central part of the course, you will need to spend considerable time on them. Do not let the 20%
part of the grade fool you. If you do not at least attempt to solve all of the assignments, you
have practically no chance to pass the course, since you will not get the practice you need to do
well in the exams. The value of 20% is attempts to find a good trade-off between discouraging
from cheating, and giving enough incentive to do the homework assignments. Finally, the monday
quizzes try to ensure that you will show up on time on mondays, and are prepared.

The (relatively severe) rule for auditing is intended to ensure that auditors keep up with the
material covered in class. I do not have any other way of ensuring this (at a reasonable cost for
me). Many students who think they can audit GenCS find out in the course of the semester that
following the course is too much work for them. This is not a problem. An audit that was not
awarded does not make any ill effect on your transcript, so feel invited to try.

Advanced Placement

� Generally: AP let’s you drop a course, but retain credit for it(sorry no grade!)

� you register for the course, and take an AP exam

� you will need to have very good results to pass

� If you fail, you have to take the course or drop it!

� Specifically: AP exams (oral) some time next week (see me for a date)

� Be prepared to answer elementary questions about: discrete mathematics,
terms, substitution, abstract interpretation, computation, recursion, ter-
mination, elementary complexity, Standard ML, types, formal languages,
Boolean expressions (possible subjects of the exam)

� Warning: you should be very sure of yourself to try (genius in C++

insufficient)

©: Michael Kohlhase 3

Although advanced placement is possible, it will be very hard to pass the AP test. Passing an AP
does not just mean that you have to have a passing grade, but very good grades in all the topics
that we cover. This will be very hard to achieve, even if you have studied a year of Computer
Science at another university (different places teach different things in the first year). You can still
take the exam, but you should keep in mind that this means considerable work for the instrutor.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
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1.2.2 Homeworks, Submission, and Cheating

Homework assignments

� Goal: Reinforce and apply what is taught in class.

� Homeworks: will be small individual problem/programming/proof assignments
(but take time to solve) group submission if and only if explicitly permitted

� Admin: To keep things running smoothly

� Homeworks will be posted on PantaRhei

� Homeworks are handed in electronically in JGrader(plain text, Postscript,
PDF,. . . )

� go to the tutorials, discuss with your TA (they are there for you!)

� materials: sometimes posted ahead of time; then read before class, prepare
questions, bring printout to class to take notes

� Homework Discipline:

� start early! (many assignments need more than one evening’s work)

� Don’t start by sitting at a blank screen

� Humans will be trying to understand the text/code/math when grading it.

©: Michael Kohlhase 4

Homework assignments are a central part of the course, they allow you to review the concepts
covered in class, and practice using them. They are usually directly based on concepts covered in
the lecture, so reviewing the course notes often helps getting started.

Homework Submissions, Grading, Tutorials

� Submissions: We use Heinrich Stamerjohanns’ JGrader system

� submit all homework assignments electronically to https://jgrader.de.

� you can login with your Jacobs account and password. (should have one!)

� feedback/grades to your submissions

� get an overview over how you are doing! (do not leave to midterm)

� Tutorials: select a tutorial group and actually go to it regularly

� to discuss the course topics after class (lectures need pre/postparation)

� to discuss your homework after submission (to see what was the problem)

� to find a study group (probably the most determining factor of success)

©: Michael Kohlhase 5

The next topic is very important, you should take this very seriously, even if you think that this
is just a self-serving regulation made by the faculty.

All societies have their rules, written and unwritten ones, which serve as a social contract

http://creativecommons.org/licenses/by-sa/2.5/
https://jgrader.de
http://creativecommons.org/licenses/by-sa/2.5/
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among its members, protect their interestes, and optimize the functioning of the society as a
whole. This is also true for the community of scientists worldwide. This society is special, since it
balances intense cooperation on joint issues with fierce competition. Most of the rules are largely
unwritten; you are expected to follow them anyway. The code of academic integrity at Jacobs is
an attempt to put some of the aspects into writing.

It is an essential part of your academic education that you learn to behave like academics,
i.e. to function as a member of the academic community. Even if you do not want to become
a scientist in the end, you should be aware that many of the people you are dealing with have
gone through an academic education and expect that you (as a graduate of Jacobs) will behave
by these rules.

The Code of Academic Integrity

� Jacobs has a “Code of Academic Integrity”

� this is a document passed by the Jacobs community (our law of the
university)

� you have signed it during enrollment (we take this seriously)

� It mandates good behaviors from both faculty and students and penalizes bad
ones:

� honest academic behavior (we don’t cheat/falsify)

� respect and protect the intellectual property of others (no plagiarism)

� treat all Jacobs members equally (no favoritism)

� this is to protect you and build an atmosphere of mutual respect

� academic societies thrive on reputation and respect as primary currency

� The Reasonable Person Principle (one lubricant of academia)

� we treat each other as reasonable persons

� the other’s requests and needs are reasonable until proven otherwise

� but if the other violates our trust, we are deeply disappointed (severe
uncompromising consequences)

©: Michael Kohlhase 6

To understand the rules of academic societies it is central to realize that these communities are
driven by economic considerations of their members. However, in academic societies, the primary
good that is produced and consumed consists in ideas and knowledge, and the primary currency
involved is academic reputation2. Even though academic societies may seem as altruistic —
scientists share their knowledge freely, even investing time to help their peers understand the
concepts more deeply — it is useful to realize that this behavior is just one half of an economic
transaction. By publishing their ideas and results, scientists sell their goods for reputation. Of
course, this can only work if ideas and facts are attributed to their original creators (who gain
reputation by being cited). You will see that scientists can become quite fierce and downright
nasty when confronted with behavior that does not respect other’s intellectual property.

2Of course, this is a very simplistic attempt to explain academic societies, and there are many other factors at
work there. For instance, it is possible to convert reputation into money: if you are a famous scientist, you may
get a well-paying job at a good university,. . .

http://creativecommons.org/licenses/by-sa/2.5/
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The Academic Integrity Committee (AIC)

� Joint Committee by students and faculty (Not at “student honours court”)

� Mandate: to hear and decide on any major or contested allegations, in partic-
ular,

� the AIC decides based on evidence in a timely manner

� the AIC makes recommendations that are executed by academic affairs

� the AIC tries to keep allegations against faculty anonymous for the student

� we/you can appeal any academic integrity allegations to the AIC

©: Michael Kohlhase 7

One special case of academic rules that affects students is the question of cheating, which we will
cover next.

Cheating [adapted from CMU:15-211 (P. Lee, 2003)]

� There is no need to cheat in this course!! (hard work will do)

� cheating prevents you from learning (you are cutting your own flesh)

� if you are in trouble, come and talk to me (I am here to help you)

� We expect you to know what is useful collaboration and what is cheating

� you will be required to hand in your own original code/text/math for all
assignments

� you may discuss your homework assignments with others, but if doing so
impairs your ability to write truly original code/text/math, you will be cheat-
ing

� copying from peers, books or the Internet is plagiarism unless properly
attributed (even if you change most of the actual words)

� more on this as the semester goes on . . .

� There are data mining tools that monitor the originality of text/code.

� Procedure: If we catch you at cheating (correction: if we suspect cheating)

� we will confront you with the allegation (you can explain yourself)

� if you admit or are silent, we impose a grade sanction and notify registrar

� repeat infractions to go the AIC for deliberation (much more serious)

� Note: both active (copying from others) and passive cheating (allowing others
to copy) are penalized equally

©: Michael Kohlhase 8

We are fully aware that the border between cheating and useful and legitimate collaboration is
difficult to find and will depend on the special case. Therefore it is very difficult to put this into

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
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firm rules. We expect you to develop a firm intuition about behavior with integrity over the course
of stay at Jacobs.

1.2.3 Resources

Even though the lecture itself will be the main source of information in the course, there are
various resources from which to study the material.

Textbooks, Handouts and Information, Forum

� No required textbook, but course notes, posted slides

� Course notes in PDF will be posted at http://old.kwarc.info/teaching/
GenCS1

� Everything will be posted on PantaRhei (Notes+assignments+course forum)

� announcements, contact information, course schedule and calendar

� discussion among your fellow students(careful, I will occasionally check for
academic integrity!)

� http://panta.kwarc.info (use your Jacobs login)

� if there are problems send e-mail to course-gencs-tas@jacobs-university.

de

©: Michael Kohlhase 9

No Textbook: Due to the special circumstances discussed above, there is no single textbook that
covers the course. Instead we have a comprehensive set of course notes (this document). They are
provided in two forms: as a large PDF that is posted at the course web page and on the PantaRhei
system. The latter is actually the preferred method of interaction with the course materials, since
it allows to discuss the material in place, to play with notations, to give feedback, etc. The PDF

file is for printing and as a fallback, if the PantaRhei system, which is still under development,
develops problems.

But of course, there is a wealth of literature on the subject of computational logic, and the
references at the end of the lecture notes can serve as a starting point for further reading. We will
try to point out the relevant literature throughout the notes.

Software/Hardware tools

� You will need computer access for this course (come see me if you do not
have a computer of your own)

� we recommend the use of standard software tools

� the emacs and vi text editor (powerful, flexible, available, free)

� UNIX (linux, MacOSX, cygwin) (prevalent in CS)

� FireFox (just a better browser (for Math))

� learn how to touch-type NOW (reap the benefits earlier, not later)

©: Michael Kohlhase 10
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Touch-typing: You should not underestimate the amount of time you will spend typing during
your studies. Even if you consider yourself fluent in two-finger typing, touch-typing will give you
a factor two in speed. This ability will save you at least half an hour per day, once you master it.
Which can make a crucial difference in your success.

Touch-typing is very easy to learn, if you practice about an hour a day for a week, you will
re-gain your two-finger speed and from then on start saving time. There are various free typing
tutors on the network. At http://typingsoft.com/all_typing_tutors.htm you can find about
programs, most for windows, some for linux. I would probably try Ktouch or TuxType

Darko Pesikan (one of the previous TAs) recommends the TypingMaster program. You can
download a demo version from http://www.typingmaster.com/index.asp?go=tutordemo

You can find more information by googling something like ”learn to touch-type”. (goto http:

//www.google.com and type these search terms).

Next we come to a special project that is going on in parallel to teaching the course. I am using the
coures materials as a research object as well. This gives you an additional resource, but may affect
the shape of the coures materials (which now server double purpose). Of course I can use all the
help on the research project I can get, so please give me feedback, report errors and shortcomings,
and suggest improvements.

Experiment: E-Learning with OMDoc/PantaRhei

� My research area: deep representation formats for (mathematical) knowledge

� Application: E-learning systems (represent knowledge to transport it)

� Experiment: Start with this course (Drink my own medicine)

� Re-Represent the slide materials in OMDoc (Open Math Documents)

� Feed it into the PantaRhei system (http://panta.kwarc.info)

� Try it on you all (to get feedback from you)

� Tasks (Unfortunately, I cannot pay you for this; maybe later)

� help me complete the material on the slides(what is missing/would help?)

� I need to remember “what I say”, examples on the board. (take notes)

� Benefits for you (so why should you help?)

� you will be mentioned in the acknowledgements (for all that is worth)

� you will help build better course materials (think of next-year’s students)

©: Michael Kohlhase 11
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Chapter 2

Motivation and Introduction

Before we start with the course, we will have a look at what Computer Science is all about. This
will guide our intuition in the rest of the course.

Consider the following situation, Jacobs University has decided to build a maze made of high
hedges on the the campus green for the students to enjoy. Of course not any maze will do, we
want a maze, where every room is reachable (unreachable rooms would waste space) and we want
a unique solution to the maze to the maze (this makes it harder to crack).

Acknowledgement: The material in this chapter is adapted from the introduction to a course held
by Prof. Peter Lee at Carnegie Mellon university in 2002.

2.1 What is Computer Science?

What is Computer Science about?

� For instance: Software! (a hardware example would also work)

� Example 2.1.1 writing a program to generate mazes.

� We want every maze to be solvable. (should have path from entrance to exit)

� Also: We want mazes to be fun, i.e.,

� We want maze solutions to be unique

� We want every “room” to be reachable

� How should we think about this?

©: Michael Kohlhase 12

There are of course various ways to build such a a maze; one would be to ask the students from
biology to come and plant some hedges, and have them re-plant them until the maze meets our
criteria. A better way would be to make a plan first, i.e. to get a large piece of paper, and draw
a maze before we plant. A third way is obvious to most students:

An Answer:

Let’s hack

11
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©: Michael Kohlhase 13

However, the result would probably be the following:

2am in the IRC Quiet Study Area

©: Michael Kohlhase 14

If we just start hacking before we fully understand the problem, chances are very good that we
will waste time going down blind alleys, and garden paths, instead of attacking problems. So the
main motto of this course is:

no, let’s think

� “The GIGO Principle: Garbage In, Garbage Out” (– ca. 1967)

� “Applets, Not Crapletstm” (– ca. 1997)

©: Michael Kohlhase 15

2.2 Computer Science by Example

Thinking about a problem will involve thinking about the representations we want to use (after
all, we want to work on the computer), which computations these representations support, and
what constitutes a solutions to the problem.

This will also give us a foundation to talk about the problem with our peers and clients. Enabling
students to talk about CS problems like a computer scientist is another important learning goal
of this course.

We will now exemplify the process of “thinking about the problem” on our mazes example. It
shows that there is quite a lot of work involved, before we write our first line of code. Of course,
sometimes, explorative programming sometimes also helps understand the problem , but we would
consider this as part of the thinking process.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
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Thinking about the problem

� Idea: Randomly knock out walls until
we get a good maze

� Think about a grid of rooms sepa-
rated by walls.

� Each room can be given a name.

� Mathematical Formulation:

� a set of rooms: {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p}
� Pairs of adjacent rooms that have an open wall between them.

� Example 2.2.1 For example, 〈a, b〉 and 〈g, k〉 are pairs.

� Abstractly speaking, this is a mathematical structure called a graph.

©: Michael Kohlhase 16

Of course, the “thinking” process always starts with an idea of how to attack the problem. In our
case, this is the idea of starting with a grid-like structure and knocking out walls, until we have a
maze which meets our requirements.

Note that we have already used our first representation of the problem in the drawing above: we
have drawn a picture of a maze, which is of course not the maze itself.

Definition 2.2.2 A representation is the realization of real or abstract persons, objects, circum-
stances, Events, or emotions in concrete symbols or models. This can be by diverse methods, e.g.
visual, aural, or written; as three-dimensional model, or even by dance.

Representations will play a large role in the course, we should always be aware, whether we are
talking about “the real thing” or a representation of it (chances are that we are doing the latter
in computer science). Even though it is important, to be able to always able to distinguish
representations from the objects they represent, we will often be sloppy in our language, and rely
on the ability of the reader to distinguish the levels.

From the pictorial representation of a maze, the next step is to come up with a mathematical
representation; here as sets of rooms (actually room names as representations of rooms in the
maze) and room pairs.

Why math?

� Q: Why is it useful to formulate the problem so that mazes are room sets/pairs?

� A: Data structures are typically defined as mathematical structures.

� A: Mathematics can be used to reason about the correctness and efficiency of
data structures and algorithms.

� A: Mathematical structures make it easier to think — to abstract away from
unnecessary details and avoid “hacking”.

http://creativecommons.org/licenses/by-sa/2.5/
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The advantage of a mathematical representation is that it models the aspects of reality we are
interested in in isolation. Mathematical models/representations are very abstract, i.e. they have
very few properties: in the first representational step we took we abstracted from the fact that
we want to build a maze made of hedges on the campus green. We disregard properties like maze
size, which kind of bushes to take, and the fact that we need to water the hedges after we planted
them. In the abstraction step from the drawing to the set/pairs representation, we abstracted
from further (accidental) properties, e.g. that we have represented a square maze, or that the
walls are blue.

As mathematical models have very few properties (this is deliberate, so that we can understand
all of them), we can use them as models for many concrete, real-world situations.

Intuitively, there are few objects that have few properties, so we can study them in detail. In our
case, the structures we are talking about are well-known mathematical objects, called graphs.

We will study graphs in more detail in this course, and cover them at an informal, intuitive level
here to make our points.

Mazes as Graphs

� Definition 2.2.3 Informally, a graph consists of a set of nodes and a set of
edges. (a good part of CS is about graph algorithms)

� Definition 2.2.4 A maze is a graph with two special nodes.

� Interpretation: Each graph node represents a room, and an edge from node x
to node y indicates that rooms x and y are adjacent and there is no wall in
between them. The first special node is the entry, and the second one the exit
of the maze.

Can be represented as

〈
〈a, e〉, 〈e, i〉, 〈i, j〉,
〈f, j〉, 〈f, g〉, 〈g, h〉,
〈d, h〉, 〈g, k〉, 〈a, b〉
〈m,n〉, 〈n, o〉, 〈b, c〉
〈k, o〉, 〈o, p〉, 〈l, p〉

 , a, p

〉

©: Michael Kohlhase 18

So now, we have identified the mathematical object, we will use to think about our algorithm,
and indeed it is very abstract, which makes it relatively difficult for humans to work with. To get
around this difficulty, we will often draw pictures of graphs, and use them instead. But we will
always keep in mind that these are not the graphs themselves but pictures of them — arbitrarily
adding properties like color and layout that are irrelevant to the actual problem at hand but help
the human cognitive apparatus in dealing with the problems. If we do keep this in mind, we can
have both, the mathematical rigor and the intuitive ease of argumentation.

Mazes as Graphs (Visualizing Graphs via Diagrams)

� Graphs are very abstract objects, we need a good, intuitive way of thinking
about them. We use diagrams, where the nodes are visualized as dots and the
edges as lines between them.

http://creativecommons.org/licenses/by-sa/2.5/
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�

Our maze

〈
〈a, e〉, 〈e, i〉, 〈i, j〉,
〈f, j〉, 〈f, g〉, 〈g, h〉,
〈d, h〉, 〈g, k〉, 〈a, b〉
〈m,n〉, 〈n, o〉, 〈b, c〉
〈k, o〉, 〈o, p〉, 〈l, p〉

 , a, p

〉

can be visualized as

� Note that the diagram is a visualization (a representation intended for humans
to process visually) of the graph, and not the graph itself.

©: Michael Kohlhase 19

Now that we have a mathematical model for mazes, we can look at the subclass of graphs that
correspond to the mazes that we are after: unique solutions and all rooms are reachable! We will
concentrate on the first requirement now and leave the second one for later.

Unique solutions

� Q: What property must the graph have for
the maze to have a solution?

� A: A path from a to p.

� Q: What property must it have for the maze
to have a unique solution?

� A: The graph must be a tree.

©: Michael Kohlhase 20

Trees are special graphs, which we will now define.

Mazes as trees

� Definition 2.2.5 Informally, a tree is a graph:

� with a unique root node, and

� each node having a unique parent.

� Definition 2.2.6 A spanning tree is a tree that includes
all of the nodes.

Q: Why is it good to have a spanning tree?

�� A: Trees have no cycles! (needed for uniqueness)

� A: Every room is reachable from the root!

©: Michael Kohlhase 21

So, we know what we are looking for, we can think about a program that would find spanning
trees given a set of nodes in a graph. But since we are still in the process of “thinking about the
problems” we do not want to commit to a concrete program, but think about programs in the

http://creativecommons.org/licenses/by-sa/2.5/
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abstract (this gives us license to abstract away from many concrete details of the program and
concentrate on the essentials).

The computer science notion for a program in the abstract is that of an algorithm, which we
will now define.

Algorithm

� Now that we have a data structure in mind, we can think about the algorithm.

� Definition 2.2.7 An algorithm is a series of instructions to control a (com-
putation) process

� Example 2.2.8 (Kruskal’s algorithm, a graph algorithm for spanning trees) �

Randomly add a pair to the tree if it won’t create a cycle.(i.e. tear down a
wall)

� Repeat until a spanning tree has been created.

©: Michael Kohlhase 22

Definition 2.2.9 An algorithm is a collection of formalized rules that can be understood and
executed, and that lead to a particular endpoint or result.

Example 2.2.10 An example for an algorithm is a recipe for a cake, another one is a rosary
— a kind of chain of beads used by many cultures to remember the sequence of prayers. Both
the recipe and rosary represent instructions that specify what has to be done step by step. The
instructions in a recipe are usually given in natural language text and are based on elementary
forms of manipulations like “scramble an egg” or “heat the oven to 250 degrees Celsius”. In
a rosary, the instructions are represented by beads of different forms, which represent different
prayers. The physical (circular) form of the chain allows to represent a possibly infinite sequence
of prayers.

The name algorithm is derived from the word al-Khwarizmi, the last name of a famous Persian
mathematician. Abu Ja’far Mohammed ibn Musa al-Khwarizmi was born around 780 and died
around 845. One of his most influential books is “Kitab al-jabr w’al-muqabala” or “Rules of
Restoration and Reduction”. It introduced algebra, with the very word being derived from a part
of the original title, namely “al-jabr”. His works were translated into Latin in the 12th century,
introducing this new science also in the West.

The algorithm in our example sounds rather simple and easy to understand, but the high-level
formulation hides the problems, so let us look at the instructions in more detail. The crucial one
is the task to check, whether we would be creating cycles.

Of course, we could just add the edge and then check whether the graph is still a tree, but this
would be very expensive, since the tree could be very large. A better way is to maintain some
information during the execution of the algorithm that we can exploit to predict cyclicity before
altering the graph.

Creating a spanning tree

http://creativecommons.org/licenses/by-sa/2.5/
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� When adding a wall to the tree, how do we detect that it won’t create a cycle?

� When adding wall 〈x, y〉, we want to know if there is already a path from x to
y in the tree.

� In fact, there is a fast algorithm for doing exactly this, called “Union-Find”.

Definition 2.2.11 (Union Find Algorithm) �

The Union Find Algorithm successively puts
nodes into an equivalence class if there is a
path connecting them.

� Before adding an edge 〈x, y〉 to the tree, it
makes sure that x and y are not in the same
equivalence class.

Example 2.2.12 A partially con-
structed maze

©: Michael Kohlhase 23

Now that we have made some design decision for solving our maze problem. It is an important part
of “thinking about the problem” to determine whether these are good choices. We have argued
above, that we should use the Union-Find algorithm rather than a simple “generate-and-test”
approach based on the “expense”, by which we interpret temporally for the moment. So we ask
ourselves

How fast is our Algorithm?

� Is this a fast way to generate mazes?

� How much time will it take to generate a maze?

� What do we mean by “fast” anyway?

� In addition to finding the right algorithms, Computer Science is about analyzing
the performance of algorithms.

©: Michael Kohlhase 24

In order to get a feeling what we mean by “fast algorithm”, we to some preliminary computations.

Performance and Scaling

� Suppose we have three algorithms to choose from. (which one to select)

� Systematic analysis reveals performance characteristics.

� Example 2.2.13 For a problem of size n (i.e., detecting cycles out of n
nodes) we have

http://creativecommons.org/licenses/by-sa/2.5/
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performance

size linear quadratic exponential

n 100n µs 7n2 µs 2n µs

1 100 µs 7 µs 2 µs

5 .5 ms 175 µs 32 µs

10 1 ms .7 ms 1 ms

45 4.5 ms 14 ms 1.1 Y

100 . . . . . . . . .

1 000 . . . . . . . . .

10 000 . . . . . . . . .

1 000 000 . . . . . . . . .
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What?! One year?

� 210 = 1 024 (u 1024 µs, 1 ms)

� 245 = 35 184 372 088 832 (3.5× 1013 µs=3.5× 107 s∼1.1 Y )

� Example 2.2.14 we denote all times that are longer than the age of the
universe with −

performance

size linear quadratic exponential

n 100n µs 7n2 µs 2n µs

1 100 µs 7 µs 2 µs

5 .5 ms 175 µs 32 µs

10 1 ms .7 ms 1 ms

45 4.5 ms 14 ms 1.1 Y

¡ 100 100 ms 7 s 1016 Y

1 000 1 s 12 min −
10 000 10 s 20 h −

1 000 000 1.6 min 2.5 mon −
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So it does make a difference for larger problems what algorithm we choose. Considerations like
the one we have shown above are very important when judging an algorithm. These evaluations
go by the name of complexity theory.

2.3 Other Topics in Computer Science

We will now briefly preview other concerns that are important to computer science. These are
essential when developing larger software packages. We will not be able to cover them in this
course, but leave them to the second year courses, in particular “software engineering”.

The first concern in software engineering is of course whether your program does what it is supposed
to do.

Is it correct?

http://creativecommons.org/licenses/by-sa/2.5/
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� How will we know if we implemented our solution correctly?

� What do we mean by “correct”?

� Will it generate the right answers?

� Will it terminate?

� Computer Science is about techniques for proving the correctness of programs

©: Michael Kohlhase 27

Modular design

� By thinking about the problem, we have strong hints about the structure of
our program

� Grids, Graphs (with edges and nodes), Spanning trees, Union-find.

� With disciplined programming, we can write our program to reflect this struc-
ture.

� Modular designs are usually easier to get right and easier to understand.

©: Michael Kohlhase 28

Indeed, modularity is a major concern in the design of software: if we can divide the functionality
of the program in to small, self-contained “modules” that provide a well-specified functionality
(possibly building on other modules), then we can divide work, and develop and test parts of the
program separately, greatly reducing the overall complexity of the development effort.

In particular, if we can identify modules that can be used in multiple situations, these can be
published as libraries, and re-used in multiple programs, again reducing complexity.

Modern programming languages support modular design by a variety of measures and struc-
tures. The functional programming language SML presented in this course, has a very elaborate
module system, which we will not be able to cover in this course. Hover, SML data types allow to
define what object-oriented languages use “classes” for: sets of similarly-structured objects that
support the same sort of behavior (which can be the pivotal points of modules).

2.4 Summary

The science in CS: not “hacking”, but

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


20 CHAPTER 2. MOTIVATION AND INTRODUCTION

� Thinking about problems abstractly.

� Selecting good structures and obtaining correct and fast algorithms/machines.

� Implementing programs/machines that are understandable and correct.

©: Michael Kohlhase 29

In particular, the course “General Computer Science” is not a programming course, it is about
being able to think about computational problems and to learn to talk to others about these
problems.
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Chapter 3

Elementary Discrete Math

We have seen in the last section that we will use mathematical models for objects and data struc-
tures throughout Computer Science. As a consequence, we will need to learn some math before
we can proceed. But we will study mathematics for another reason: it gives us the opportunity
to study rigorous reasoning about abstract objects, which is needed to understand the “science”
part of Computer Science.

Note that the mathematics we will be studying in this course is probably different from the
mathematics you already know; calculus and linear algebra are relatively useless for modeling
computations. We will learn a branch of math. called “discrete mathematics”, it forms the
foundation of computer science, and we will introduce it with an eye towards computation.

Let’s start with the math!

Discrete Math for the moment

� Kenneth H. Rosen Discrete Mathematics and Its Applications, McGraw-Hill,
1990 [Ros90].

� Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of
Computation, Prentice Hall, 1998 [LP98].

� Paul R. Halmos, Naive Set Theory, Springer Verlag, 1974 [Hal74].

©: Michael Kohlhase 30

The roots of computer science are old, much older than one might expect. The very concept of
computation is deeply linked with what makes mankind special. We are the only animal that
manipulates abstract concepts and has come up with universal ways to form complex theories and
to apply them to our environments. As humans are social animals, we do not only form these
theories in our own minds, but we also found ways to communicate them to our fellow humans.

3.1 Mathematical Foundations: Natural Numbers

The most fundamental abstract theory that mankind shares is the use of numbers. This theory
of numbers is detached from the real world in the sense that we can apply the use of numbers to
arbitrary objects, even unknown ones. Suppose you are stranded on an lonely island where you
see a strange kind of fruit for the first time. Nevertheless, you can immediately count these fruits.
Also, nothing prevents you from doing arithmetics with some fantasy objects in your mind. The
question in the following sections will be: what are the principles that allow us to form and apply

23

http://creativecommons.org/licenses/by-sa/2.5/
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numbers in these general ways? To answer this question, we will try to find general ways to specify
and manipulate arbitrary objects. Roughly speaking, this is what computation is all about.

Something very basic:

� Numbers are symbolic representations of numeric quantities.

� There are many ways to represent numbers (more on this later)

� let’s take the simplest one (about 8,000 to 10,000 years old)

� we count by making marks on some surface.

� For instance //// stands for the number four (be it in 4 apples, or 4 worms)

� Let us look at the way we construct numbers a little more algorithmically,

� these representations are those that can be created by the following two rules.

o-rule consider ’ ’ as an empty space.

s-rule given a row of marks or an empty space, make another / mark at the
right end of the row.

� Example 3.1.1 For ////, Apply the o-rule once and then the s-rule four
times.

� Definition 3.1.2 we call these representations unary natural numbers.
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In addition to manipulating normal objects directly linked to their daily survival, humans also
invented the manipulation of place-holders or symbols. A symbol represents an object or a set
of objects in an abstract way. The earliest examples for symbols are the cave paintings showing
iconic silhouettes of animals like the famous ones of Cro-Magnon. The invention of symbols is not
only an artistic, pleasurable “waste of time” for mankind, but it had tremendous consequences.
There is archaeological evidence that in ancient times, namely at least some 8000 to 10000 years
ago, men started to use tally bones for counting. This means that the symbol “bone” was used to
represent numbers. The important aspect is that this bone is a symbol that is completely detached
from its original down to earth meaning, most likely of being a tool or a waste product from a
meal. Instead it stands for a universal concept that can be applied to arbitrary objects.
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Instead of using bones, the slash / is a more convenient symbol, but it is manipulated in the same
way as in the most ancient times of mankind. The o-rule allows us to start with a blank slate or
an empty container like a bowl. The s- or successor-rule allows to put an additional bone into
a bowl with bones, respectively, to append a slash to a sequence of slashes. For instance ////
stands for the number four — be it 4 apples, or 4 worms. This representation is constructed by
applying the o-rule once and then the s-rule four times.

So, we have a basic understanding of natural numbers now, but we will also need to be able to
talk about them in a mathematically precise way. Generally, this additional precision will involve
defining specialized vocabulary for the concepts and objects we want to talk about, making the
assumptions we have about the objects exmplicit, and the use of special modes or argumentation.

We will introduce all of these for the special case of unary natural numbers here, but we will
use the concepts and practices throughout the course and assume students will do so as well.

With the notion of a successor from Definition 3.1.3 we can formulate a set of assumptions (called
axioms) about unary natural numbers. We will want to use these assumptions (statements we
believe to be true) to derive other statements, which — as they have been obtained by generally
accepted argumentation patterns — we will also believe true. This intuition is put more formally
in Definition 3.2.4 below, which also supplies us with names for different types of statements.

A little more sophistication (math) please

� Definition 3.1.3 We call a unary natural number the successor (predecessor)
of another, if it can be constructing by adding (removing) a slash. (successors
are created by the s-rule)

� Example 3.1.4 /// is the successor of // and // the predecessor of ///.

� Definition 3.1.5 The following set of axioms are called the Peano axioms
(Giuseppe Peano ∗1858, †1932)

� Axiom 3.1.6 (P1) “ ” (aka. “zero”) is a unary natural number. “ ” (aka.
“zero”) is a unary natural number.

� Axiom 3.1.7 (P2) Every unary natural number has a successor that is a
unary natural number and that is different from it.

� Axiom 3.1.8 (P3) Zero is not a successor of any unary natural number.

� Axiom 3.1.9 (P4) Different unary natural numbers have different succes-
sors.

� Axiom 3.1.10 (P5: Induction Axiom) Every unary natural number pos-
sesses a property P , if

� zero has property P and (base condition)

� the successor of every unary natural number that has property P also pos-
sesses property P (step
condition)

Question: Why is this a better way of saying things (why so complicated?)
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Note that the Peano axioms may not be the first things that come to mind when thinking about
characteristic properties of natural numbers. Indeed they have been selected to to be minimal,
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so that we can get by with as few assumptions as possible; all other statements of properties can
be derived from them, so minimality is not a bug, but a feature: the Peano axioms form the
foundation, on which all knowledge about unary natural numbers rests.

We now come to the ways we can derive new knowledge from the Peano axioms.

3.2 Reasoning about Natural Numbers

� Reasoning about Natural Numbers

� The Peano axioms can be used to reason about natural numbers.

� Definition 3.2.1 An axiom is a statement about mathematical objects that
we assume to be true.

� Definition 3.2.2 A theorem is a statement about mathematical objects that
we know to be true.

� We reason about mathematical objects by inferring theorems from axioms or
other theorems, e.g.

� “ ” is a unary natural number (axiom P1)

� / is a unary natural number (axiom P2 and 1.)

� // is a unary natural number (axiom P2 and 2.)

� /// is a unary natural number (axiom P2 and 3.)

� Definition 3.2.3 We call a sequence of inference s a derivation or a proof
(of the last statement).
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If we want to be more precise about these (important) notions, we can define them as follows:

Definition 3.2.4 In general, a axiom or postulate is a starting point in logical reasoning with
the aim to prove a mathematical statement or conjecture. A conjecture that is proven is called a
theorem. In addition, there are two subtypes of theorems. The lemma is an intermediate theorem
that serves as part of a proof of a larger theorem. The corollary is a theorem that follows directly
from another theorem. A logical system consists of axioms and rules that allow inference, i.e. that
allow to form new formal statements out of already proven ones. So, a proof of a conjecture starts
from the axioms that are transformed via the rules of inference until the conjecture is derived.

We will now practice this reasoning on a couple of examples. Note that we also use them to
introduce the inference system (see Definition 3.2.4) of mathematics via these example proofs.

Here are some theorems you may want to prove for practice. The proofs are relatively simple.

Let’s practice derivations and proofs

� Example 3.2.5 //////////// is a unary natural number

� Theorem 3.2.6 /// is a different unary natural number than //.

� Theorem 3.2.7 ///// is a different unary natural number than //.
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� Theorem 3.2.8 There is a unary natural number of which /// is the suc-
cessor

� Theorem 3.2.9 There are at least 7 unary natural numbers.

� Theorem 3.2.10 Every unary natural number is either zero or the successor
of a unary natural number. (we will come back to this later)
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Induction for unary natural numbers

� Theorem 3.2.11 Every unary natural number is either zero or the successor
of a unary natural number.

� Proof: We make use of the induction axiom P5:

P.1 We use the property P of “being zero or a successor” and prove the state-
ment by convincing ourselves of the prerequisites of

P.2 ‘ ’ is zero, so ‘ ’ is “zero or a successor”.

P.3 Let n be a arbitrary unary natural number that “is zero or a successor”

P.4 Then its successor “is a successor”, so the successor of n is “zero or a
successor”

P.5 Since we have taken n arbitrary (nothing in our argument depends on the
choice)

we have shown that for any n, its successor has property P .

P.6 Property P holds for all unary natural numbers by P5, so we have proven
the assertion
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We have already seen in the proof above, that it helps to give names to objects: for instance, by
using the name n for the number about which we assumed the property P , we could just say that
P (n) holds. But there is more we can do.

We can give systematic names to the unary natural numbers. Note that it is often to reference
objects in a way that makes their construction overt. the unary natural numbers we can represent
as expressions that trace the applications of the o-rule and the s-rules.

This seems awfully clumsy, lets introduce some notation

� Idea: we allow ourselves to give names to unary natural numbers (we use n,
m, l, k, n1, n2, . . . as names for concrete unary natural numbers.)

� Remember the two rules we had for dealing with unary natural numbers

� Idea: represent a number by the trace of the rules we applied to construct it.
(e.g. //// is represented as s(s(s(s(o)))))

� Definition 3.2.12 We introduce some abbreviations

� we “abbreviate” o and ‘ ’ by the symbol ’0’ (called “zero”)
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� we abbreviate s(o) and / by the symbol ’1’ (called “one”)

� we abbreviate s(s(o)) and // by the symbol ’2’ (called “two”)

� . . .

� we abbreviate s(s(s(s(s(s(s(s(s(s(s(s(o)))))))))))) and //////////// by
the symbol ’12’ (called “twelve”)

� . . .

� Definition 3.2.13 We denote the set of all unary natural numbers with N1.
(either representation)
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This systematic representation of natural numbers by expressions becomes very powerful, if we
mix it with the practice of giving names to generic objects. These names are often called variables,
when used in expressions.

Theorem 3.2.11 is a very useful fact to know, it tells us something about the form of unary natural
numbers, which lets us streamline induction proofs and bring them more into the form you may
know from school: to show that some property P holds for every natural number, we analyze an
arbitrary number n by its form in two cases, either it is zero (the base case), or it is a successor of
another number (the step case). In the first case we prove the base condition and in the latter, we
prove the step condition and use the induction axiom to conclude that all natural numbers have
property P . We will show the form of this proof in the domino-induction below.

The Domino Theorem

� Theorem 3.2.14 Let S0, S1, . . . be a linear sequence of dominos, such that
for any unary natural number i we know that

� the distance between Si and Ss(i) is smaller than the height of Si,

� Si is much higher than wide, so it is unstable, and

� Si and Ss(i) have the same weight.

If S0 is pushed towards S1 so that it falls, then all dominos will fall.

• • • • • •
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The Domino Induction

� Proof: We prove the assertion by induction over i with the property P that
“Si falls in the direction of Ss(i)”.

P.1 We have to consider two cases
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P.1.1 base case: i is zero:

P.1.1.1 We have assumed that “S0 is pushed towards S1, so that it falls”

P.1.2 step case: i = s(j) for some unary natural number j:

P.1.2.1 We assume that P holds for Sj , i.e. Sj falls in the direction of Ss(j) =
Si.

P.1.2.2 But we know that Sj has the same weight as Si, which is unstable,

P.1.2.3 so Si falls into the direction opposite to Sj , i.e. towards Ss(i) (we
have a linear sequence of dominos)

P.2 We have considered all the cases, so we have proven that P holds for all
unary natural numbers i. (by induction)

P.3 Now, the assertion follows trivially, since if “Si falls in the direction of
Ss(i)”, then in particular “Si falls”.
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If we look closely at the proof above, we see another recurring pattern. To get the proof to go
through, we had to use a property P that is a little stronger than what we need for the assertion
alone. In effect, the additional clause “... in the direction ...” in property P is used to make the
step condition go through: we we can use the stronger inductive hypothesis in the proof of step
case, which is simpler.

Often the key idea in an induction proof is to find a suitable strengthening of the assertion to
get the step case to go through.

3.3 Defining Operations on Natural Numbers

The next thing we want to do is to define operations on unary natural numbers, i.e. ways to
do something with numbers. Without really committing what “operations” are, we build on the
intuition that they take (unary natural) numbers as input and return numbers. The important
thing in this is not what operations are but how we define them.

What can we do with unary natural numbers?

� So far not much (let’s introduce some operations)

� Definition 3.3.1 (the addition “function”) We “define” the addition op-
eration ⊕ procedurally (by an
algorithm)

� adding zero to a number does not change it.
written as an equation: n⊕ o = n

� adding m to the successor of n yields the successor of m⊕ n.
written as an equation: m⊕ s(n) = s(m⊕ n)

Questions: to understand this definition, we have to know

� � Is this “definition” well-formed? (does it characterize a mathematical
object?)

� May we define “functions” by algorithms? (what is a function anyways?)
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So we have defined the addition operation on unary natural numbers by way of two equations.
Incidentally these equations can be used for computing sums of numbers by replacing equals by
equals; another of the generally accepted manipulation

Definition 3.3.2 (Replacement) If we have a representation s of an object and we have an
equation l = r, then we can obtain an object by replacing an occurrence of the sub-expression l
in s by r and have s = s′.

In other words if we replace a sub-expression of s with an equal one, nothing changes. This is
exactly what we will use the two defining equations from Definition 3.3.1 for in the following
example

Example 3.3.3 (Computing the Sum Two and One) If we start with the expression s(s(o))⊕
s(o), then we can use the second equation to obtain s(s(s(o))⊕ o) (replacing equals by equals),
and – this time with the first equation s(s(s(o))).

Observe: in the computation in Example 3.3.3 at every step there was exactly one of the two
equations we could apply. This is a consequence of the fact that in the second argument of the two
equations are of the form o and s(n): by Theorem 3.2.11 these two cases cover all possible natural
numbers and by P3 (see Axiom 3.1.8), the equations are mutually exclusive. As a consequence
we do not really have a choice in the computation, so the two equations do form an “algorithm”
(to the extend we already understand them), and the operation is indeed well-defined. The
form of the arguments in the two equations in Definition 3.3.1 is the same as in the induction
axiom, therefore we will consider the first equation as the base equation and second one as the
step equation.

We can understand the process of computation as a “getting-rid” of operations in the expression.
Note that even though the step equation does not really reduce the number of occurrences of
the operator (the base equation does), but it reduces the number of constructor in the second
argument, essentially preparing the elimination of the operator via the base equation. Note that
in any case when we have eliminated the operator, we are left with an expression that is completely
made up of constructors; a representation of a unary natural number.

Now we want to see whether we can find out some properties of the addition operation. The
method for this is of course stating a conjecture and then proving it.

Addition on unary natural numbers is associative

� Theorem 3.3.4 For all unary natural numbers n, m, and l, we have n ⊕
(m⊕ l) = (n⊕m)⊕ l.

� Proof: we prove this by induction on l

P.1 The property of l is that n⊕ (m⊕ l) = (n⊕m)⊕ l holds.

P.2 We have to consider two cases

P.2.1 base case: n⊕ (m⊕ o) = n⊕m = (n⊕m)⊕ o
P.2.2 step case:

P.2.2.1 given arbitrary l, assume n ⊕ (m⊕ l) = (n⊕m) ⊕ l, show n ⊕
(m⊕ s(l)) = (n⊕m)⊕ s(l).

P.2.2.2 We have n⊕ (m⊕ s(l)) = n⊕ s(m⊕ l) = s(n⊕ (m⊕ l))
P.2.2.3 By inductive hypothesis s((n⊕m)⊕ l) = (n⊕m)⊕ s(l)
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We observe that In the proof above, the induction corresponds to the defining equations of ⊕; in
particular base equation of ⊕ was used in the base case of the induction whereas the step equation
of ⊕ was used in the step case. Indeed computation (with operations over the unary natural
numbers) and induction (over unary natural numbers) are just two sides of the same coin as we
will see.

Let us consider a couple more operations on the unary natural numbers to fortify our intutions.

More Operations on Unary Natural Numbers

� Definition 3.3.5 The unary multiplication operation can be defined by the
equations n� o = o and n� s(m) = n⊕ n�m.

� Definition 3.3.6 The unary exponentiation operation can be defined by the
equations exp(n, o) = s(o) and exp(n, s(m)) = n� exp(n,m).

� Definition 3.3.7 The unary summation operation can be defined by the

equations
⊕o

i=o ni = o and
⊕s(m)

i=o ni = ns(m) ⊕
⊕m

i=o ni.

� Definition 3.3.8 The unary product operation can be defined by the equa-

tions
⊙o

i=o ni = s(o) and
⊙s(m)

i=o ni = ns(m) �
⊙m

i=o ni.
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In Definition 3.3.5, we have used the operation ⊕ in the right-hand side of the step-equation. This
is perfectly reasonable and only means that we have eliminate more than one operator.

Note that we did not use disambiguating parentheses on the right hand side of the step equation
for �. Here n⊕n�m is a unary sum whose second summand is a product. Just as we did there,
we will use the usual arithmetic precedences to reduce the notational overload.

The remaining examples are similar in spirit, but a bit more involved, since they nest more
operators. Just like we showed associativity for ⊕ in slide 40, we could show properties for these
operations, e.g.

n⊕m⊙
i=o

ki =

n⊙
i=o

ki �
m⊙
i=o

k(i⊕n) (3.1)

by induction, with exactly the same observations about the parallelism between computation and
induction proofs as ⊕.

Definition 3.3.8 gives us the chance to elaborate on the process of definitions some more: When
we define new operations such as the product over a sequence of unary natural numbers, we do
have freedom of what to do with the corner cases, and for the “empty product” (the base case
equation) we could have chosen

1) to leave the product undefined (not nice; we need a base case), or

2) to give it another value, e.g. s(s(o)) or o.

But any value but s(o) would violate the generalized distributivity law in equation 3.1 which is
exactly what we would expect to see (and which is very useful in calculations). So if we want to
have this equation (and I claim that we do) then we have to choose the value s(o).

In summary, even though we have the freedom to define what we want, if we want to define
sensible and useful operators our freedom is limited.
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3.4 Talking (and writing) about Mathematics

Before we go on, we need to learn how to talk and write about mathematics in a succinct way.
This will ease our task of understanding a lot.

Talking about Mathematics (MathTalk)

� Definition 3.4.1 Mathematicians use a stylized language that

� uses formulae to represent mathematical objects, e.g.
∫ 1

0
x3/2dx

� uses math idiom s for special situations (e.g. iff, hence, let. . . be. . . ,
then. . . )

� classifies statements by role (e.g. Definition, Lemma, Theorem, Proof,
Example)

We call this language mathematical vernacular.

� Definition 3.4.2 Abbreviations for Mathematical statements in MathTalk

� ∧ and “∨” are common notations for “and” and “or”

� “not” is in mathematical statements often denoted with ¬
� ∀xP (∀x ∈ S P ) stands for “condition P holds for all x (in S)”

� ∃xP (∃x ∈ S P ) stands for “there exists an x (in S) such that proposition
P holds”

� 6∃xP ( 6∃x ∈ S P ) stands for “there exists no x (in S) such that proposition
P holds”

� ∃1xP (∃1x ∈ S P ) stands for “there exists one and only one x (in S) such
that proposition P holds”

� “iff” as abbreviation for “if and only if”, symbolized by “⇔”

� the symbol “⇒” is used a as shortcut for “implies”

Observation: With these abbreviations we can use formulae for statements.

�� Example 3.4.3 ∀x∃y x = y ⇔ ¬(x 6= y) reads

“For all x, there is a y, such that x = y, iff (if and only if) it is not
the case that x 6= y.”
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To fortify our intuitions, we look at a more substantial example, which also extends the usage of
the expression language for unary natural numbers.

Peano Axioms in Mathtalk

� Example 3.4.4 We can write the Peano Axioms in mathtalk: If we write
n ∈ N1 for n is a unary natural number, and P (n) for n has property P ,
then we can write

� o ∈ N1 (zero is a unary natural number)

� ∀n ∈ N1 s(n) ∈ N1 ∧ n 6= s(n) (N1closed under successors, distinct)
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� ¬(∃n ∈ N1 o = s(n)) (zero is not a successor)

� ∀n ∈ N1 ∀m ∈ N1 n 6= m⇒ s(n) 6= s(m) (different successors)

� ∀P (P (o) ∧ (∀n ∈ N1P (n)⇒ P (s(n))))⇒ (∀m ∈ N1P (m)) (induction)
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We will use mathematical vernacular throughout the remainder of the notes. The abbreviations
will mostly be used in informal communication situations. Many mathematicians consider it bad
style to use abbreviations in printed text, but approve of them as parts of formulae (see e.g.
Definition 46 for an example).

Mathematics uses a very effective technique for dealing with conceptual complexity. It usually
starts out with discussing simple, basic objects and their properties. These simple objects can be
combined to more complex, compound ones. Then it uses a definition to give a compound object
a new name, so that it can be used like a basic one. In particular, the newly defined object can be
used to form compound objects, leading to more and more complex objects that can be described
succinctly. In this way mathematics incrementally extends its vocabulary by add layers and layers
of definitions onto very simple and basic beginnings. We will now discuss four definition schemata
that will occur over and over in this course.

Definition 3.4.5 The simplest form of definition schema is the simple definition. This just intro-
duces a name (the definiendum) for a compound object (the definiens). Note that the name must
be new, i.e. may not have been used for anything else, in particular, the definiendum may not
occur in the definiens. We use the symbols := (and the inverse =:) to denote simple definitions in
formulae.

Example 3.4.6 We can give the unary natural number //// the name ϕ. In a formula we write
this as ϕ := ( ////) or //// =: ϕ.

Definition 3.4.7 A somewhat more refined form of definition is used for operators on and rela-
tions between objects. In this form, then definiendum is the operator or relation is applied to n
distinct variables v1, . . . , vn as arguments, and the definiens is an expression in these variables.
When the new operator is applied to arguments a1, . . . , an, then its value is the definiens expres-
sion where the vi are replaced by the ai. We use the symbol := for operator definitions and :⇔
for pattern definitions.1 EdN:1

Example 3.4.8 The following is a pattern definition for the set intersection operator ∩:

A ∩B := {x |x ∈ A ∧ x ∈ B}

The pattern variables are A and B, and with this definition we have e.g. ∅ ∩ ∅ = {x |x ∈ ∅ ∧ x ∈ ∅}.

Definition 3.4.9 We now come to a very powerful definition schema. An implicit definition (also
called definition by description) is a formula A, such that we can prove ∃1nA, where n is a new
name.

Example 3.4.10 ∀xx ∈ ∅ is an implicit definition for the empty set ∅. Indeed we can prove
unique existence of ∅ by just exhibiting {} and showing that any other set S with ∀xx 6∈ S we
have S ≡ ∅. IndeedS cannot have elements, so it has the same elements ad ∅, and thus S ≡ ∅.

To keep mathematical formulae readable (they are bad enough as it is), we like to express mathe-
matical objects in single letters. Moreover, we want to choose these letters to be easy to remember;
e.g. by choosing them to remind us of the name of the object or reflect the kind of object (is it a
number or a set, . . . ). Thus the 50 (upper/lowercase) letters supplied by most alphabets are not
sufficient for expressing mathematics conveniently. Thus mathematicians and computer scientists
use at least two more alphabets.

1EdNote: maybe better markup up pattern definitions as binding expressions, where the formal variables are bound.
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The Greek, Curly, and Fraktur Alphabets ; Homework

� Homework: learn to read, recognize, and write the Greek letters

α A alpha β B beta γ Γ gamma
δ ∆ delta ε E epsilon ζ Z zeta
η H eta θ, ϑ Θ theta ι I iota
κ K kappa λ Λ lambda µ M mu
ν N nu ξ Ξ Xi o O omicron
π,$ Π Pi ρ P rho σ Σ sigma
τ T tau υ Υ upsilon ϕ Φ phi
χ X chi ψ Ψ psi ω Ω omega

� we will need them, when the other alphabets give out.

� BTW, we will also use the curly Roman and “Fraktur” alphabets:
A, B, C, D, E , F , G, H, I, J , K, L, M, N , O, P, Q, R, S, T , U , V, W, X , Y, Z
A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z
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To be able to read and understand math and computer science texts profitably it is only only
important to recognize the Greek alphabet, but also to know about the correspondences with the
Roman one. For instance, ν corresponds to the n, so we often use ν as names for objects we would
otherwise use n for (but cannot).

To be able to talk about math and computerscience, we also have to be able to pronounce the
Greek letters, otherwise we embarrass ourselves by saying something like “the funny Greek letter
that looks a bit like a w”.

3.5 Naive Set Theory

We now come to a very important and foundational aspect in Mathematics: Sets. Their importance
comes from the fact that all (known) mathematics can be reduced to understanding sets. So it is
important to understand them thoroughly before we move on.

But understanding sets is not so trivial as it may seem at first glance. So we will just represent
sets by various descriptions. This is called “naive set theory”, and indeed we will see that it leads
us in trouble, when we try to talk about very large sets.

Understanding Sets

� Sets are one of the foundations of mathematics,

� and one of the most difficult concepts to get right axiomatically

� Early Definition Attempt: A set is “everything that can form a unity in the
face of God”. (Georg Cantor (∗1845, †1918))

� For this course: no definition; just intuition (naive set theory)

� To understand a set S, we need to determine, what is an element of S and
what isn’t.
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� We can represent sets by

� listing the elements within curly brackets: e.g. {a, b, c}
� describing the elements via a property: {x |x has property P}
� stating element-hood (a ∈ S) or not (b 6∈ S).

� Axiom 3.5.1 Every set we can write down actually exists! (Hidden
Assumption)

Warning: Learn to distinguish between objects and their representations!({a, b, c}
and {b, a, a, c} are different representations of the same set)
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Indeed it is very difficult to define something as foundational as a set. We want sets to be collections
of objects, and we want to be as unconstrained as possible as to what their elements can be. But
what then to say about them? Cantor’s intuition is one attempt to do this, but of course this is
not how we want to define concepts in math.

AA
a
b
b

So instead of defining sets, we will directly work with representations of sets. For that we only
have to agree on how we can write down sets. Note that with this practice, we introduce a hidden
assumption: called set comprehension, i.e. that every set we can write down actually exists. We
will see below that we cannot hold this assumption.

Now that we can represent sets, we want to compare them. We can simply define relations between
sets using the three set description operations introduced above.

� Relations between Sets

� set equality: (A ≡ B) :⇔ (∀xx ∈ A⇔ x ∈ B)

� subset: (A ⊆ B) :⇔ (∀xx ∈ A⇒ x ∈ B)

� proper subset: (A ⊂ B) :⇔ (A ⊆ B) ∧ (A 6≡ B)

� superset: (A ⊇ B) :⇔ (∀xx ∈ B ⇒ x ∈ A)

� proper superset: (A ⊃ B) :⇔ (A ⊇ B) ∧ (A 6≡ B)
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We want to have some operations on sets that let us construct new sets from existing ones. Again,
we can define them.

Operations on Sets

� union: A ∪B := {x |x ∈ A ∨ x ∈ B}

� union over a collection: Let I be a set and Si a family of sets indexed by I,
then

⋃
i∈I Si := {x | ∃i ∈ I x ∈ Si}.

� intersection: A ∩B := {x |x ∈ A ∧ x ∈ B}
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� intersection over a collection: Let I be a set and Si a family of sets indexed
by I, then

⋂
i∈I Si := {x | ∀i ∈ I x ∈ Si}.

� set difference: A\B := {x |x ∈ A ∧ x 6∈ B}

� the power set: P(A) := {S |S ⊆ A}

� the empty set: ∀xx 6∈ ∅

� Cartesian product: A×B := {〈a, b〉 | a ∈ A ∧ b ∈ B}, call 〈a, b〉 pair.

� n-fold Cartesian product: A1 × . . .×An := {〈a1, . . . , an〉 | ∀i1 ≤ i ≤ n⇒ ai ∈ Ai},
call 〈a1, . . . , an〉 an n-tuple

� n-dim Cartesian space: An := {〈a1, . . . , an〉 | 1 ≤ i ≤ n⇒ ai ∈ A},
call 〈a1, . . . , an〉 a vector

� Definition 3.5.2 We write
⋃n
i=1 Si for

⋃
i∈{i∈N | 1≤i≤n} Si and

⋂n
i=1 Si for⋂

i∈{i∈N | 1≤i≤n} Si.
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Finally, we would like to be able to talk about the number of elements in a set. Let us try to
define that.

Sizes of Sets

� We would like to talk about the size of a set. Let us try a definition

� Definition 3.5.3 The size #(A) of a set A is the number of elements in A.

� Conjecture 3.5.4 Intuitively we should have the following identities:

� #({a, b, c}) = 3

� #(N) =∞ (infinity)

� #(A ∪B) ≤ #(A) + #(B) ( cases with ∞)

� #(A ∩B) ≤ min(#(A),#(B))

� #(A×B) = #(A) ·#(B)

� But how do we prove any of them? (what does “number of elements” mean
anyways?)

� Idea: We need a notion of “counting”, associating every member of a set with
a unary natural number.

� Problem: How do we “associate elements of sets with each other”? (wait for
bijective functions)
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Once we try to prove the identifies from Conjecture 3.5.4 we get into problems. Even though the
notion of “counting the elements of a set” is intuitively clear (indeed we have been using that
since we were kids), we do not have a mathematical way of talking about associating numbers
with objects in a way that avoids double counting and skipping. We will have to postpone the
discussion of sizes until we do.
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But before we delve in to the notion of relations and functions that we need to associate set
members and counting let us now look at large sets, and see where this gets us.

Sets can be Mind-boggling

� sets seem so simple, but are really quite powerful (no restriction on the
elements)

� There are very large sets, e.g. “the set S of all sets”

� contains the ∅,
� for each object O we have {O}, {{O}}, {O, {O}}, . . . ∈ S,

� contains all unions, intersections, power sets,

� contains itself: S ∈ S (scary!)

� Let’s make S less scary
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A less scary S?

� Idea: how about the “set S ′ of all sets that do not contain themselves”

� Question: is S ′ ∈ S ′? (were we successful?)

� suppose it is, then then we must have S ′ 6∈ S ′, since we have explicitly
taken out the sets that contain themselves

� suppose it is not, then have S ′ ∈ S ′, since all other sets are elements.

In either case, we have S ′ ∈ S ′ iff S ′ 6∈ S ′, which is a contradiction! (Russell’s
Antinomy [Bertrand Russell ’03])

� Does MathTalk help?: no: S ′ := {m |m 6∈ m}

� MathTalk allows statements that lead to contradictions, but are legal wrt.
“vocabulary” and “grammar”.

� We have to be more careful when constructing sets! (axiomatic set theory)

� for now: stay away from large sets. (stay naive)
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Even though we have seen that naive set theory is inconsistent, we will use it for this course.
But we will take care to stay away from the kind of large sets that we needed to construct the
paradox.

3.6 Relations and Functions

Now we will take a closer look at two very fundamental notions in mathematics: functions
and relations. Intuitively, functions are mathematical objects that take arguments (as input) and
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return a result (as output), whereas relations are objects that take arguments and state whether
they are related.

We have already encountered functions and relations as set operations — e.g. the elementhood
relation ∈ which relates a set to its elements or the power set function that takes a set and produces
another (its power set).

Relations

� Definition 3.6.1 R ⊆ A×B is a (binary) relation between A and B.

� Definition 3.6.2 If A = B then R is called a relation on A.

� Definition 3.6.3 R ⊆ A×B is called total iff ∀x ∈ A∃y ∈ B 〈x, y〉 ∈ R.

� Definition 3.6.4 R−1 := {〈y, x〉 | 〈x, y〉 ∈ R} is the converse relation of R.

� Note: R−1 ⊆ B ×A.

� The composition of R ⊆ A×B and S ⊆ B × C is defined as S ◦R :=
{〈a, c〉 ∈ (A× C) | ∃b ∈ B 〈a, b〉 ∈ R ∧ 〈b, c〉 ∈ S}

� Example 3.6.5 relation ⊆, =, has color

� Note: we do not really need ternary, quaternary, . . . relations

� Idea: Consider A×B × C as A× (B × C) and 〈a, b, c〉 as 〈a, 〈b, c〉〉
� we can (and often will) see 〈a, b, c〉 as 〈a, 〈b, c〉〉 different representations

of the same object.
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We will need certain classes of relations in following, so we introduce the necessary abstract
properties of relations.

Properties of binary Relations

� Definition 3.6.6 (Relation Properties) A relation R ⊆ A×A is called

� reflexive on A, iff ∀a ∈ A 〈a, a〉 ∈ R
� irreflexive on A, iff ∀a ∈ A 〈a, a〉 6∈ R
� symmetric on A, iff ∀a, b ∈ A 〈a, b〉 ∈ R⇒ 〈b, a〉 ∈ R
� asymmetric on A, iff ∀a, b ∈ A 〈a, b〉 ∈ R⇒ 〈b, a〉 6∈ R
� antisymmetric on A, iff ∀a, b ∈ A (〈a, b〉 ∈ R ∧ 〈b, a〉 ∈ R)⇒ a = b

� transitive on A, iff ∀a, b, c ∈ A (〈a, b〉 ∈ R ∧ 〈b, c〉 ∈ R)⇒ 〈a, c〉 ∈ R
� equivalence relation on A, iff R is reflexive, symmetric, and transitive.

� Example 3.6.7 The equality relation is an equivalence relation on any set.

� Example 3.6.8 On sets of persons, the “mother-of” relation is an non-
symmetric, non-reflexive relation.
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These abstract properties allow us to easily define a very important class of relations, the ordering
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relations.

Strict and Non-Strict Partial Orders

� Definition 3.6.9 A relation R ⊆ A×A is called

� partial order on A, iff R is reflexive, antisymmetric, and transitive on A.

� strict partial order on A, iff it is irreflexive and transitive on A.

� In contexts, where we have to distinguish between strict and non-strict ordering
relations, we often add an adjective like “non-strict” or “weak” or “reflexive”
to the term “partial order”. We will usually write strict partial orderings with
asymmetric symbols like ≺, and non-strict ones by adding a line that reminds
of equality, e.g. �.

� Definition 3.6.10 (Linear order) A partial order is called linear on A, iff
all elements in A are comparable, i.e. if 〈x, y〉 ∈ R or 〈y, x〉 ∈ R for all
x, y ∈ A.

� Example 3.6.11 The ≤ relation is a linear order on N (all elements are
comparable)

� Example 3.6.12 The “ancestor-of” relation is a partial order that is not
linear.

� Lemma 3.6.13 Strict partial orderings are asymmetric.

� Proof Sketch: By contradiction: If 〈a, b〉 ∈ R and 〈b, a〉 ∈ R, then 〈a, a〉 ∈ R
by transitivity

� Lemma 3.6.14 If� is a (non-strict) partial order, then≺ := {〈a, b〉 | (a � b) ∧ a 6= b}
is a strict partial order. Conversely, if ≺ is a strict partial order, then � :=
{〈a, b〉 | (a ≺ b) ∨ a = b} is a non-strict partial order.
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Functions (as special relations)

� Definition 3.6.15 f ⊆ X × Y , is called a partial function, iff for all x ∈ X
there is at most one y ∈ Y with 〈x, y〉 ∈ f .

� Notation 3.6.16 f : X ⇀ Y ;x 7→ y if 〈x, y〉 ∈ f (arrow notation)

� call X the domain (write dom(f)), and Y the codomain (codom(f))
(come with f)

� Notation 3.6.17 f(x) = y instead of 〈x, y〉 ∈ f (function application)

� Definition 3.6.18 We call a partial function f : X ⇀ Y undefined at x ∈ X,
iff 〈x, y〉 6∈ f for all y ∈ Y . (write f(x) = ⊥)

� Definition 3.6.19 If f : X ⇀ Y is a total relation, we call f a total function
and write f : X → Y . (∀x ∈ X ∃1y ∈ Y 〈x, y〉 ∈ f)

� Notation 3.6.20 f : x 7→ y if 〈x, y〉 ∈ f (arrow notation)
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� Definition 3.6.21 The identity function on a set A is defined as IdA :=
{〈a, a〉 | a ∈ A}.

: this probably does not conform to your intuition about functions. Do not
worry, just think of them as two different things they will come together over
time. (In this course we will use “function” as defined here!)
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� Function Spaces

� Definition 3.6.22 Given sets A and B We will call the set A→ B (A ⇀ B)
of all (partial) functions from A to B the (partial) function space from A to
B.

� Example 3.6.23 Let B := {0, 1} be a two-element set, then

B→ B = {{〈0, 0〉, 〈1, 0〉}, {〈0, 1〉, 〈1, 1〉}, {〈0, 1〉, 〈1, 0〉}, {〈0, 0〉, 〈1, 1〉}}

B⇀ B = B→ B ∪ {∅, {〈0, 0〉}, {〈0, 1〉}, {〈1, 0〉}, {〈1, 1〉}}

� as we can see, all of these functions are finite (as relations)
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Lambda-Notation for Functions

� Problem: It is common mathematical practice to write things like fa(x) =
ax2 +3x+5, meaning e.g. that we have a collection {fa | a ∈ A} of functions.

(is a an argument or jut a “parameter”?)

� Definition 3.6.24 To make the role of arguments extremely clear, we write
functions in λ-notation. For f = {〈x,E〉 |x ∈ X}, where E is an expression,
we write λx ∈ X.E.

� Example 3.6.25 The simplest function we always try everything on is the
identity function:

λn ∈ N.n = {〈n, n〉 |n ∈ N} = IdN

= {〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈3, 3〉, . . .}

� Example 3.6.26 We can also to more complex expressions, here we take the
square function

λx ∈ N.x2 = {〈x, x2〉 |x ∈ N}
= {〈0, 0〉, 〈1, 1〉, 〈2, 4〉, 〈3, 9〉, . . .}

� Example 3.6.27 λ-notation also works for more complicated domains. In
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this case we have pairs as arguments.

λ〈x, y〉 ∈ N× N.x+ y = {〈〈x, y〉, x+ y〉 |x ∈ N ∧ y ∈ N}
= {〈〈0, 0〉, 0〉, 〈〈0, 1〉, 1〉, 〈〈1, 0〉, 1〉,

〈〈1, 1〉, 2〉, 〈〈0, 2〉, 2〉, 〈〈2, 0〉, 2〉, . . .}
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The three properties we define next give us information about whether we can invert functions.

Properties of functions, and their converses

� Definition 3.6.28 A function f : S → T is called

� injective iff ∀x, y ∈ S f(x) = f(y)⇒ x = y.

� surjective iff ∀y ∈ T ∃x ∈ S f(x) = y.

� bijective iff f is injective and surjective.

Note: If f is injective, then the converse relation f−1 is a partial function.

�� Note: If f is surjective, then the converse f−1 is a total relation.

� Definition 3.6.29 If f is bijective, call the converse relation f−1 the inverse
function.

� Note: if f is bijective, then the converse relation f−1 is a total function.

� Example 3.6.30 The function ν : N1 → N with ν(o) = 0 and ν(s(n)) =
ν(n) + 1 is a bijection between the unary natural numbers and the natural
numbers from highschool.

� Note: Sets that can be related by a bijection are often considered
equivalent, and sometimes confused. We will do so with N1 and N in the
future
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Cardinality of Sets

� Now, we can make the notion of the size of a set formal, since we can associate
members of sets by bijective functions.

� Definition 3.6.31 We say that a set A is finite and has cardinality #(A) ∈ N,
iff there is a bijective function f : A→ {n ∈ N |n < #(A)}.

� Definition 3.6.32 We say that a set A is countably infinite, iff there is a
bijective function f : A → N. A set is called countable, iff it is finite or
countably infinite.

� Theorem 3.6.33 We have the following identities for finite sets A and B

� #({a, b, c}) = 3 (e.g. choose f = {〈a, 0〉, 〈b, 1〉, 〈c, 2〉})
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� #(A ∪B) ≤ #(A) + #(B)

� #(A ∩B) ≤ min(#(A),#(B))

� #(A×B) = #(A) ·#(B)

� With the definition above, we can prove them (last three ; Homework)
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Next we turn to a higher-order function in the wild. The composition function takes two functions
as arguments and yields a function as a result.

Operations on Functions

� Definition 3.6.34 If f ∈ A→ B and g ∈ B → C are functions, then we
call

g ◦ f : A→ C;x 7→ g(f(x))

the composition of g and f (read g “after” f).

� Definition 3.6.35 Let f ∈ A→ B and C ⊆ A, then we call the function
(f |C) := {b, c | 〈c, b〉 ∈ f}c ∈ C the restriction of f to C.

� Definition 3.6.36 Let f : A→ B be a function, A′ ⊆ A and B′ ⊆ B, then
we call

� f(A′) := {b ∈ B | ∃a ∈ A′ 〈a, b〉 ∈ f} the image of A′ under f ,

� Im(f) := f(A) the image of f , and

� f−1(B′) := {a ∈ A | ∃b ∈ B′ 〈a, b〉 ∈ f} the pre-image of B′ under f
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[Computing over Inductive Sets]Computing with Functions over Inductively Defined Sets

3.7 Standard ML: Functions as First-Class Objects

Enough theory, let us start computing with functions

We will use Standard ML for now
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We will use the language SML for the course. This has four reasons

• The mathematical foundations of the computational model of SML is very simple: it
consists of functions, which we have already studied. You will be exposed to imperative
programming languages (C and C++) in the lab and later in the course.

• We call programming languages where procedures can be fully described in terms of their
input/output behavior functional.

• As a functional programming language, SML introduces two very important concepts in a
very clean way: typing and recursion.

• Finally, SML has a very useful secondary virtue for a course at Jacobs University, where stu-
dents come from very different backgrounds: it provides a (relatively) level playing ground,
since it is unfamiliar to all students.

Generally, when choosing a programming language for a computer science course, there is the
choice between languages that are used in industrial practice (C, C++, Java, FORTRAN, COBOL,. . . )
and languages that introduce the underlying concepts in a clean way. While the first category have
the advantage of conveying important practical skills to the students, we will follow the motto
“No, let’s think” for this course and choose ML for its clarity and rigor. In our experience, if the
concepts are clear, adapting the particular syntax of a industrial programming language is not
that difficult.

Historical Remark: The name ML comes from the phrase “Meta Language”: ML was developed as
the scripting language for a tactical theorem prover1 — a program that can construct mathematical
proofs automatically via “tactics” (little proof-constructing programs). The idea behind this is the
following: ML has a very powerful type system, which is expressive enough to fully describe proof
data structures. Furthermore, the ML compiler type-checks all ML programs and thus guarantees
that if an ML expression has the type A → B, then it implements a function from objects of
type A to objects of type B. In particular, the theorem prover only admitted tactics, if they were
type-checked with type P → P, where P is the type of proof data structures. Thus, using ML as
a meta-language guaranteed that theorem prover could only construct valid proofs.

The type system of ML turned out to be so convenient (it catches many programming errors
before you even run the program) that ML has long transcended its beginnings as a scripting
language for theorem provers, and has developed into a paradigmatic example for functional
programming languages.

Standard ML (SML)

� Why this programming language?

1The “Edinburgh LCF” system
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� Important programming paradigm (Functional Programming (with static
typing))

� because all of you are unfamiliar with it (level playing ground)

� clean enough to learn important concepts (e.g. typing and recursion)

� SML uses functions as a computational model (we already understand
them)

� SML has an interpreted runtime system (inspect program state)

Book: SML for the working programmer by Larry Paulson [Pau91]

�� Web resources: see the post on the course forum in PantaRhei.

� Homework: install it, and play with it at home!
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Disclaimer: We will not give a full introduction to SML in this course, only enough to make the
course self-contained. There are good books on ML and various web resources:

• A book by Bob Harper (CMU) http://www-2.cs.cmu.edu/~rwh/smlbook/

• The Moscow ML home page, one of the ML’s that you can try to install, it also has many
interesting links http://www.dina.dk/~sestoft/mosml.html

• The home page of SML-NJ (SML of New Jersey), the standard ML http://www.smlnj.org/

also has a ML interpreter and links Online Books, Tutorials, Links, FAQ, etc. And of course
you can download SML from there for Unix as well as for Windows.

• A tutorial from Cornell University. It starts with ”Hello world” and covers most of the
material we will need for the course. http://www.cs.cornell.edu/gries/CSCI4900/ML/

gimlFolder/manual.html

• and finally a page on ML by the people who originally invented ML: http://www.lfcs.
inf.ed.ac.uk/software/ML/

One thing that takes getting used to is that SML is an interpreted language. Instead of transform-
ing the program text into executable code via a process called “compilation” in one go, the SML
interpreter provides a run time environment that can execute well-formed program snippets in a
dialogue with the user. After each command, the state of the run-time systems can be inspected
to judge the effects and test the programs. In our examples we will usually exhibit the input to
the interpreter and the system response in a program block of the form

- input to the interpreter
system response

Programming in SML (Basic Language)

� Generally: start the SML interpreter, play with the program state.

� Definition 3.7.1 (Predefined objects in SML) (SML comes with a
basic inventory)

� basic type s int, real, bool, string , . . .

� basic type constructor s ->, *,
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� basic operator s numbers, true, false, +, *, -, >, ^, . . . ( overloading)

� control structure s if Φ then E1 else E2;

� comment s (*this is a comment *)
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One of the most conspicuous features of SML is the presence of types everywhere.

Definition 3.7.2 type s are program constructs that classify program objects into categories.

In SML, literally every object has a type, and the first thing the interpreter does is to determine
the type of the input and inform the user about it. If we do something simple like typing a number
(the input has to be terminated by a semicolon), then we obtain its type:

- 2;
val it = 2 : int

In other words the SML interpreter has determined that the input is a value, which has type
“integer”. At the same time it has bound the identifier it to the number 2. Generally it will
always be bound to the value of the last successful input. So we can continue the interpreter
session with

- it;
val it = 2 : int
- 4.711;
val it = 4.711 : real
- it;
val it = 4.711 : real

Programming in SML (Declarations)

� Definition 3.7.3 (Declarations) allow abbreviations for convenience

� value declaration s val pi = 3.1415;

� type declaration s type twovec = int * int;

� function declaration s fun square (x:real) = x*x; (leave out type, if
unambiguous)

� SML functions that have been declared can be applied to arguments of the
right type, e.g. square 4.0, which evaluates to 4.0 * 4.0 and thus to 16.0.

� Local declarations: allow abbreviations in their scope (delineated by in and
end)

- val test = 4;
val it = 4 : int
- let val test = 7 in test * test end;
val it = 49 :int
- test;
val it = 4 : int
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While the previous inputs to the interpreters do not change its state, declarations do: they bind
identifiers to values. In the first example, the identifier twovec to the type int * int, i.e. the
type of pairs of integers. Functions are declared by the fun keyword, which binds the identifier
behind it to a function object (which has a type; in our case the function type real -> real).
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Note that in this example we annotated the formal parameter of the function declaration with a
type. This is always possible, and in this necessary, since the multiplication operator is overloaded
(has multiple types), and we have to give the system a hint, which type of the operator is actually
intended.

Programming in SML (Component Selection)

� Component Selection: (very convenient)

- val unitvector = (1,1);
val unitvector = (1,1) : int * int
- val (x,y) = unitvector
val x = 1 : int
val y = 1 : int

� Definition 3.7.4 anonymous variables (if we are not interested in one
value)

- val (x,_) = unitvector;
val x = 1 :int

� Example 3.7.5 We can define the selector function for pairs in SML as

- fun first (p) = let val (x,_) = p in x end;
val first = fn : ’a * ’b -> ’a

Note the type: SML supports universal type s with type variables ’a, ’b,. . . .

�� first is a function that takes a pair of type ’a*’b as input and gives an
object of type ’a as output.
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Another unusual but convenient feature realized in SML is the use of pattern matching. In
pattern matching we allow to use variables (previously unused identifiers) in declarations with the
understanding that the interpreter will bind them to the (unique) values that make the declaration
true. In our example the second input contains the variables x and y. Since we have bound the
identifier unitvector to the value (1,1), the only way to stay consistent with the state of the
interpreter is to bind both x and y to the value 1.

Note that with pattern matching we do not need explicit selector function s, i.e. functions that
select components from complex structures that clutter the namespaces of other functional lan-
guages. In SML we do not need them, since we can always use pattern matching inside a let

expression. In fact this is considered better programming style in SML.

What’s next?

More SML constructs and general theory of functional programming.
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One construct that plays a central role in functional programming is the data type of lists. SML
has a built-in type constructor for lists. We will use list functions to acquaint ourselves with the
essential notion of recursion.
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Using SML lists

� SML has a built-in “list type” (actually a list type constructor)

� given a type ty, list ty is also a type.

- [1,2,3];
val it = [1,2,3] : int list

� constructors nil and :: (nil =̂ empty list, :: =̂ list constructor “cons”)

- nil;
val it = [] : ’a list
- 9::nil;
val it = [9] : int list

� A simple recursive function: creating integer intervals

- fun upto (m,n) = if m>n then nil else m::upto(m+1,n);
val upto = fn : int * int -> int list
- upto(2,5);
val it = [2,3,4,5] : int list

Question: What is happening here, we define a function by itself? (circular?)
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A constructor is an operator that “constructs” members of an SML data type.

The type of lists has two constructors: nil that “constructs” a representation of the empty list,
and the “list constructor” :: (we pronounce this as “cons”), which constructs a new list h::l

from a list l by pre-pending an element h (which becomes the new head of the list).

Note that the type of lists already displays the circular behavior we also observe in the function
definition above: A list is either empty or the cons of a list. We say that the type of lists is
inductive or inductively defined.

In fact, the phenomena of recursion and inductive types are inextricably linked, we will explore
this in more detail below.

� Defining Functions by Recursion

� SML allows to call a function already in the function definition.

fun upto (m,n) = if m>n then nil else m::upto(m+1,n);

� Evaluation in SML is “call-by-value” i.e. to whenever we encounter a function
applied to arguments, we compute the value of the arguments first.

� So we have the following evaluation sequence:

upto(2,4) ; 2::upto(3,4) ; 2::(3::upto(4,4)) ;
2::(3::(4::nil)) = [2,3,4]

� Definition 3.7.6 We call an SML function recursive, iff the function is called
in the function definition.

� Note that recursive functions need not terminate, consider the function
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fun diverges (n) = n + diverges(n+1);

which has the evaluation sequence

diverges(1) ; 1 + diverges(2) ; 1 + (2 + diverges(3)) ; . . .
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Defining Functions by cases

� Idea: Use the fact that lists are either nil or of the form X::Xs, where X is
an element and Xs is a list of elements.

� The body of an SML function can be made of several cases separated by the
operator |.

� Example 3.7.7 Flattening lists of lists (using the infix append operator @)

- fun flat [] = [] (* base case *)
| flat (l::ls) = l @ flat ls; (* step case *)

val flat = fn : ’a list list -> ’a list
- flat [["When","shall"],["we","three"],["meet","again"]];
["When","shall","we","three","meet","again"]
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Defining functions by cases and recursion is a very important programming mechanism in SML.
At the moment we have only seen it for the built-in type of lists. In the future we will see that it
can also be used for user-defined data types. We start out with another one of SMLs basic types:
strings.

We will now look at the the string type of SML and how to deal with it. But before we do, let
us recap what strings are. String s are just sequences of characters.

Therefore, SML just provides an interface to lists for manipulation.

Lists and Strings

� some programming languages provide a type for single characters (strings are
lists of characters there)

� in SML, string is an atomic type

� function explode converts from string to char list

� function implode does the reverse

- explode "GenCS 1";
val it = [#"G",#"e",#"n",#"C",#"S",#" ",#"1"] : char list
- implode it;
val it = "GenCS 1" : string

Exercise: Try to come up with a function that detects palindromes like ’otto’
or ’anna’, try also (more at [Pal])

� � ’Marge lets Norah see Sharon’s telegram’, or(up to case, punct and space)
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� ’Ein Neger mit Gazelle zagt im Regen nie’ (for German speakers)
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The next feature of SML is slightly disconcerting at first, but is an essential trait of functional
programming languages: functions are first-class objects. We have already seen that they have
types, now, we will see that they can also be passed around as argument and returned as values.
For this, we will need a special syntax for functions, not only the fun keyword that declares
functions.

Higher-Order Functions

� Idea: pass functions as arguments (functions are normal values.)

� Example 3.7.8 Mapping a function over a list

- fun f x = x + 1;
- map f [1,2,3,4];
[2,3,4,5] : int list

� Example 3.7.9 We can program the map function ourselves!

fun mymap (f, nil) = nil
| mymap (f, h::t) = (f h) :: mymap (f,t);

� Example 3.7.10 declaring functions (yes, functions are normal values.)

- val identity = fn x => x;
val identity = fn : ’a -> ’a
- identity(5);
val it = 5 : int

� Example 3.7.11 returning functions: (again, functions are normal values.)

- val constantly = fn k => (fn a => k);
- (constantly 4) 5;
val it = 4 : int
- fun constantly k a = k;
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One of the neat uses of higher-order function is that it is possible to re-interpret binary functions
as unary ones using a technique called “Currying” after the Logician Haskell Brooks Curry (∗1900,
†1982). Of course we can extend this to higher arities as well. So in theory we can consider n-ary
functions as syntactic sugar for suitable higher-order functions.

Cartesian and Cascaded Procedures

� We have not been able to treat binary, ternary,. . . procedures directly

� Workaround 1: Make use of (Cartesian) products (unary functions on tuples)

� Example 3.7.12 +: Z× Z→ Z with +(〈3, 2〉) instead of +(3, 2)

fun cartesian_plus (x:int,y:int) = x + y;
cartesian_plus : int * int -> int
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Workaround 2: Make use of functions as results

�� Example 3.7.13 +: Z→ Z→ Z withn +(3)(2) instead of +(〈3, 2〉).

fun cascaded_plus (x:int) = (fn y:int => x + y);
cascaded_plus : int -> (int -> int)

Note: cascaded_plus can be applied to only one argument: cascaded_plus 1

is the function (fn y:int => 1 + y), which increments its argument.
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SML allows both Cartesian- and cascaded functions, since we sometimes want functions to be
flexible in function arities to enable reuse, but sometimes we want rigid arities for functions as
this helps find programming errors.

� Cartesian and Cascaded Procedures (Brackets)

� Definition 3.7.14 Call a procedure Cartesian, iff the argument type is a
product type, call it cascaded, iff the result type is a function type.

� Example 3.7.15 the following function is both Cartesian and cascading

- fun both_plus (x:int,y:int) = fn (z:int) => x + y + z;
val both_plus (int * int) -> (int -> int)

Convenient: Bracket elision conventions

� � e1 e2 e3 ; (e1 e2) e3 (procedure application associates to the left)

� τ1->τ2->τ3 ; τ1 ->(τ2->τ3) (function types associate to the right)

� SML uses these elision rules

- fun both_plus (x:int,y:int) = fn (z:int) => x + y + z;
val both_plus int * int -> int -> int
cascaded_plus 4 5;

� Another simplification (related to those above)

- fun cascaded_plus x y = x + y;
val cascaded_plus : int -> int -> int
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We will now introduce two very useful higher-order functions. The folding operators iterate a
binary function over a list given a start value. The folding operators come in two varieties:
foldl (“fold left”) nests the function in the right argument, and foldr (“fold right”) in the left
argument.

Folding Procedures

� Definition 3.7.16 SML provides the left folding operator to realize a recur-
rent computation schema
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foldl : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b
foldl f s [x1,x2,x3] = f(x3,f(x2,f(x1,s)))

f

f

f

x3

x2

x1 s

We call the procedure f the iterator and s the start value

� Example 3.7.17 Folding the iterator op+ with start value 0:

foldl op+ 0 [x1,x2,x3] = x3+(x2+(x1+0))

+

+

+

x3

x2

x1 0

Thus the procedure fun plus xs = foldl op+ 0 xs adds the elements of
integer lists.
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Summing over a list is the prototypical operation that is easy to achieve. Note that a sum is just
a nested addition. So we can achieve it by simply folding addition (a binary operation) over a list
(left or right does not matter, since addition is commutative). For computing a sum we have to
choose the start value 0, since we only want to sum up the elements in the list (and 0 is the neural
element for addition).

Note that we have used the binary function op+ as the argument to the foldl operator instead
of simply + in Example 3.7.17. The reason for this is that the infix notation for x +y is syntactic
sugar for op+(x,y) and not for +(x,y) as one might think.

Note that we can use any function of suitable type as a first argument for foldl, including functions
literally defined by fn x =>B or a n-ary function applied to n− 2 arguments.

Folding Procedures (continued)

� Example 3.7.18 (Reversing Lists)

foldl op:: nil [x1,x2,x3]
= x3 :: (x2 :: (x1:: nil))

::

::

::

x3

x2

x1 nil

Thus the procedure fun rev xs = foldl op:: nil xs reverses a list
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In Example 3.7.18, we reverse a list by folding the list constructor (which duly constructs the
reversed list in the process) over the input list; here the empty list is the right start value.
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Folding Procedures (foldr)

� Definition 3.7.19 The right folding operatorfoldr is a variant of foldl

that processes the list elements in reverse order.

foldr : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b
foldr f s [x1,x2,x3] = f(x1,f(x2,f(x3,s)))

f

f

f

x1

x2

x3 s

� Example 3.7.20 (Appending Lists)

foldr op:: ys [x1,x2,x3] = x1 :: (x2 :: (x3 :: ys))

::

::

::

x1

x2

x3 ys

fun append(xs,ys) = foldr op:: ys xs
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In Example 3.7.20 we fold with the list constructor again, but as we are using foldr the list is
not reversed. To get the append operation, we use the list in the second argument as a base case
of the iteration.

Now that we know some SML

SML is a “functional Programming Language”

What does this all have to do with functions?

Back to Induction, “Peano Axioms” and functions (to keep it simple) ©: Michael Kohlhase 76

3.8 Inductively Defined Sets and Computation

Let us now go back to looking at concrete functions on the unary natural numbers. We want to
convince ourselves that addition is a (binary) function. Of course we will do this by constructing
a proof that only uses the axioms pertinent to the unary natural numbers: the Peano Axioms.

What about Addition, is that a function?

� Problem: Addition takes two arguments (binary function)

� One solution: +: N1 × N1 → N1 is unary
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� +(〈n, o〉) = n (base) and +(〈m, s(n)〉) = s(+(〈m,n〉)) (step)

� Theorem 3.8.1 + ⊆ (N1 × N1)× N1 is a total function.

� We have to show that for all 〈n,m〉 ∈ (N1 × N1) there is exactly one l ∈ N1

with 〈〈n,m〉, l〉 ∈ +.

� We will use functional notation for simplicity
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But before we can prove function-hood of the addition function, we must solve a problem: addition
is a binary function (intuitively), but we have only talked about unary functions. We could solve
this problem by taking addition to be a cascaded function, but we will take the intuition seriously
that it is a Cartesian function and make it a function from N1 × N1 to N1. With this, the proof
of functionhood is a straightforward induction over the second argument.

Addition is a total Function

� Lemma 3.8.2 For all 〈n,m〉 ∈ (N1 × N1) there is exactly one l ∈ N1 with
+(〈n,m〉) = l.

� Proof: by induction on m. (what else)

P.1 we have two cases

P.1.1 base case (m = o):

P.1.1.1 choose l := n, so we have +(〈n, o〉) = n = l.

P.1.1.2 For any l′ = +(〈n, o〉), we have l′ = n = l.

P.1.2 step case (m = s(k)):

P.1.2.1 assume that there is a unique r = +(〈n, k〉), choose l := s(r), so we
have +(〈n, s(k)〉) = s(+(〈n, k〉)) = s(r).

P.1.2.2 Again, for any l′ = +(〈n, s(k)〉) we have l′ = l.

� Corollary 3.8.3 +: N1 × N1 → N1 is a total function.
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The main thing to note in the proof above is that we only needed the Peano Axioms to prove
function-hood of addition. We used the induction axiom (P5) to be able to prove something about
“all unary natural numbers”. This axiom also gave us the two cases to look at. We have used the
distinctness axioms (P3 and P4) to see that only one of the defining equations applies, which in
the end guaranteed uniqueness of function values.

Reflection: How could we do this?

� we have two constructors for N1: the base element o ∈ N1 and the successor
function s : N1 → N1

� Observation: Defining Equations for +: +(〈n, o〉) = n (base) and +(〈m, s(n)〉) =
s(+(〈m,n〉)) (step)
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� the equations cover all cases: n is arbitrary, m = o and m = s(k)(otherwise
we could have not proven existence)

� but not more (no contradictions)

� using the induction axiom in the proof of unique existence.

� Example 3.8.4 Defining equations δ(o) = o and δ(s(n)) = s(s(δ(n)))

� Example 3.8.5 Defining equations µ(l, o) = o and µ(l, s(r)) = +(〈µ(l, r), l〉)

� Idea: Are there other sets and operations that we can do this way?

� the set should be built up by “injective” constructors and have an induction
axiom (“abstract data type”)

� the operations should be built up by case-complete equations
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The specific characteristic of the situation is that we have an inductively defined set: the unary nat-
ural numbers, and defining equations that cover all cases (this is determined by the constructors)
and that are non-contradictory. This seems to be the pre-requisites for the proof of functionality
we have looked up above.

As we have identified the necessary conditions for proving function-hood, we can now generalize
the situation, where we can obtain functions via defining equations: we need inductively defined
sets, i.e. sets with Peano-like axioms.

This observation directly leads us to a very important concept in computing.

Inductively Defined Sets

� Definition 3.8.6 An inductively defined set 〈S,C〉 is a set S together with
a finite set C := {ci | 1 ≤ i ≤ n} of ki-ary constructor s ci : S

ki → S with
ki ≥ 0, such that

� if si ∈ S for all 1 ≤ i ≤ ki, then ci(s1, . . . , ski) ∈ S (generated by
constructors)

� all constructors are injective, (no internal confusion)

� Im(ci) ∩ Im(cj) = ∅ for i 6= j, and (no confusion between constructors)

� for every s ∈ S there is a constructor c ∈ C with s ∈ Im(c). (no junk)

� Note that we also allow nullary constructors here.

� Example 3.8.7 〈N1, {s, o}〉 is an inductively defined set.

� Proof: We check the three conditions in Definition 3.8.6 using the Peano
Axioms

P.1 Generation is guaranteed by P1 and P2

P.2 Internal confusion is prevented P4

P.3 Inter-constructor confusion is averted by P3

P.4 Junk is prohibited by P5.
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This proof shows that the Peano Axioms are exactly what we need to establish that 〈N1, {s, o}〉
is an inductively defined set.

Now that we have invested so much elbow grease into specifying the concept of an inductively
defined set, it is natural to ask whether there are more examples. We will look at a particularly
important one next.

Peano Axioms for Lists L[N]

� Lists of (unary) natural numbers: [1, 2, 3], [7, 7], [], . . .

� nil-rule: start with the empty list []

� cons-rule: extend the list by adding a number n ∈ N1 at the front

� two constructors: nil ∈ L[N] and cons : N1 × L[N]→ L[N]

� Example 3.8.8 e.g. [3, 2, 1] =̂ cons(3, cons(2, cons(1, nil))) and [] =̂ nil

� Definition 3.8.9 We will call the following set of axioms are called the Peano
Axioms for L[N] in analogy to the Peano Axioms in Definition 3.1.5.

� Axiom 3.8.10 (LP1) nil ∈ L[N] (generation axiom (nil))

� Axiom 3.8.11 (LP2) cons : N1 × L[N]→ L[N] (generation axiom (cons))

� Axiom 3.8.12 (LP3) nil is not a cons-value

� Axiom 3.8.13 (LP4) cons is injective

� Axiom 3.8.14 (LP5) If the nil possesses property P and(Induction Axiom)

� for any list l with property P , and for any n ∈ N1, the list cons(n, l) has
property P

then every list l ∈ L[N] has property P .
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Note: There are actually 10 (Peano) axioms for lists of unary natural numbers: the original five
for N1 — they govern the constructors o and s, and the ones we have given for the constructors
nil and cons here.

Note furthermore: that the Pi and the LPi are very similar in structure: they say the same things
about the constructors.

The first two axioms say that the set in question is generated by applications of the constructors:
Any expression made of the constructors represents a member of N1 and L[N] respectively.

The next two axioms eliminate any way any such members can be equal. Intuitively they can
only be equal, if they are represented by the same expression. Note that we do not need any
axioms for the relation between N1 and L[N] constructors, since they are different as members of
different sets.

Finally, the induction axioms give an upper bound on the size of the generated set. Intuitively
the axiom says that any object that is not represented by a constructor expression is not a member
of N1 and L[N].

A direct consequence of this observation is that
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Corollary 3.8.15 The set 〈N1 ∪ L[N], {o, s,nil, cons}〉 is an inductively defined set in the sense
of Definition 3.8.6.

Operations on Lists: Append

� The append function @: L[N]× L[N]→ L[N] concatenates lists
Defining equations: nil@l = l and cons(n, l)@r = cons(n, l@r)

� Example 3.8.16 [3, 2, 1]@[1, 2] = [3, 2, 1, 1, 2] and []@[1, 2, 3] = [1, 2, 3] =
[1, 2, 3]@[]

� Lemma 3.8.17 For all l, r ∈ L[N], there is exactly one s ∈ L[N] with s =
l@r.

� Proof: by induction on l. (what does this mean?)

P.1 we have two cases

P.1.1 base case: l = nil: must have s = r.

P.1.2 step case: l = cons(n, k) for some list k:

P.1.2.1 Assume that here is a unique s′ with s′ = k@r,

P.1.2.2 then s = cons(n, k)@r = cons(n, k@r) = cons(n, s′).

� Corollary 3.8.18 Append is a function (see, this just worked fine!)
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You should have noticed that this proof looks exactly like the one for addition. In fact, wherever
we have used an axiom Pi there, we have used an axiom LPi here. It seems that we can do
anything we could for unary natural numbers for lists now, in particular, programming by recursive
equations.

Operations on Lists: more examples

� Definition 3.8.19 λ(nil) = o and λ(cons(n, l)) = s(λ(l))

� Definition 3.8.20 ρ(nil) = nil and ρ(cons(n, l)) = ρ(l)@cons(n, nil).
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Now, we have seen that “inductively defined sets” are a basis for computation, we will turn to the
programming language see them at work in concrete setting.

3.9 Inductively Defined Sets in SML

We are about to introduce one of the most powerful aspects of SML, its ability to let the user
define types. After all, we have claimed that types in SML are first-class objects, so we have to
have a means of constructing them.

We have seen above, that the main feature of an inductively defined set is that it has Peano
Axioms that enable us to use it for computation. Note that specifying them, we only need to
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know the constructors (and their types). Therefore the datatype constructor in SML only needs
to specify this information as well. Moreover, note that if we have a set of constructors of an
inductively defined set — e.g. zero : mynat and suc : mynat -> mynat for the set mynat, then
their codomain type is always the same: mynat. Therefore, we can condense the syntax even
further by leaving that implicit.

Data Type Declarations

� Definition 3.9.1 SML data type provide concrete syntax for inductively de-
fined sets via the keyword datatype followed by a list of constructor declaration
s.

� Example 3.9.2 We can declare a data type for unary natural numbers by
- datatype mynat = zero | suc of mynat;
datatype mynat = suc of mynat | zero

this gives us constructor functions zero : mynat and suc : mynat -> mynat.

� Observation 3.9.3 We can define functions by (complete) case analysis over
the constructors

� Example 3.9.4 (Converting types)

fun num (zero) = 0 | num (suc(n)) = num(n) + 1;
val num = fn : mynat -> int

� Example 3.9.5 (Missing Constructor Cases)

fun incomplete (zero) = 0;
stdIn:10.1-10.25 Warning: match non-exhaustive

zero => ...
val incomplete = fn : mynat -> int

� Example 3.9.6 (Inconsistency)

fun ic (zero) = 1 | ic(suc(n))=2 | ic(zero)= 3;
stdIn:1.1-2.12 Error: match redundant

zero => ...
suc n => ...
zero => ...
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So, we can re-define a type of unary natural numbers in SML, which may seem like a somewhat
pointless exercise, since we have integers already. Let us see what else we can do.

Data Types Example (Enumeration Type)

� a type for weekdays (nullary constructors)
datatype day = mon | tue | wed | thu | fri | sat | sun;

� use as basis for rule-based procedure (first clause takes precedence)
- fun weekend sat = true

| weekend sun = true
| weekend _ = false

val weekend : day -> bool

� this give us
- weekend sun
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true : bool
- map weekend [mon, wed, fri, sat, sun]
[false, false, false, true, true] : bool list

� nullary constructors describe values, enumeration types finite sets
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Somewhat surprisingly, finite enumeration types that are separate constructs in most programming
languages are a special case of datatype declarations in SML. They are modeled by sets of base
constructors, without any functional ones, so the base cases form the finite possibilities in this
type. Note that if we imagine the Peano Axioms for this set, then they become very simple; in
particular, the induction axiom does not have step cases, and just specifies that the property P
has to hold on all base cases to hold for all members of the type.

Let us now come to a real-world examples for data types in SML. Say we want to supply a library
for talking about mathematical shapes (circles, squares, and triangles for starters), then we can
represent them as a data type, where the constructors conform to the three basic shapes they are
in. So a circle of radius r would be represented as the constructor term Circle r (what else).

Data Types Example (Geometric Shapes)

� describe three kinds of geometrical forms as mathematical objects

r

Circle (r)

a

Square (a)

c
ba

Triangle (a, b, c)

Mathematically: R+ ] R+ ] ((R+ × R+ × R+))

�� In SML: approximate R+ by the built-in type real.

datatype shape =
Circle of real

| Square of real
| Triangle of real * real * real

� This gives us the constructor functions

Circle : real -> shape
Square : real -> shape
Triangle : real * real * real -> shape
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Some experiments: We try out our new data type, and indeed we can construct objects with the
new constructors.

- Circle 4.0
Circle 4.0 : shape
- Square 3.0
Square 3.0 : shape
- Triangle(4.0, 3.0, 5.0)
Triangle(4.0, 3.0, 5.0) : shape

The beauty of the representation in user-defined types is that this affords powerful abstractions
that allow to structure data (and consequently program functionality).
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Data Types Example (Areas of Shapes)

� a procedure that computes the area of a shape:

- fun area (Circle r) = Math.pi*r*r
| area (Square a) = a*a
| area (Triangle(a,b,c)) = let val s = (a+b+c)/2.0

in Math.sqrt(s*(s-a)*(s-b)*(s-c))
end

val area : shape -> real

New Construct: Standard structure Math (see [SML10])

�� some experiments

- area (Square 3.0)
9.0 : real
- area (Triangle(6.0, 6.0, Math.sqrt 72.0))
18.0 : real
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All three kinds of shapes are included in one abstract entity: the type shape, which makes programs
like the area function conceptually simple — it is just a function from type shape to type real.
The complexity — after all, we are employing three different formulae for computing the area of
the respective shapes — is hidden in the function body, but is nicely compartmentalized, since
the constructor cases in systematically correspond to the three kinds of shapes.

We see that the combination of user-definable types given by constructors, pattern matching, and
function definition by (constructor) cases give a very powerful structuring mechanism for hetero-
geneous data objects. This makes is easy to structure programs by the inherent qualities of the
data. A trait that other programming languages seek to achieve by object-oriented techniques.
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[Abstract Data Types and Term Languages]A Theory of SML: Abstract Data Types and Term
Languages

We will now develop a theory of the expressions we write down in functional programming lan-
guages and the way they are used for computation.

What’s next?

Let us now look at representations
and SML syntax
in the abstract!
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In this chapter, we will study computation in functional languages in the abstract by building
mathematical models for them.

Warning: The chapter on abstract data types we are about to start is probably the most daunting
of the whole course (to first-year students), even though the concepts are very simple2. The reason
for this seems to be that the models we create are so abstract, and that we are modeling language
constructs (SML expressions and types) with mathematical objects (terms and sorts) that look
very similar. The crucial step here for understanding is that sorts and terms are similar to, but
not equal to SML types and expressions. The former are abstract mathematical objects, whereas
the latter are concrete objects we write down for computing on a concrete machine. Indeed, the
similarity in spirit is because we use sorts and terms to model SML types and expressions, i.e.
to understand what the SML type checker and evaluators do and make predictions about their
behavior.

The idea of building representations (abstract mathematical objects or expressions) that model
other objects is a recurring theme in the GenCS course; here we get a first glimpse of it: we use
sorts and terms to model SML types and expressions and programs.

Recall the diagram of things we want to model from Section 1.0 (see Figure 3.1). For rep-
resenting data, we will use “ground constructor terms”, for algorithms we will make the idea of
“defining equations” precise by defining “abstract procedures”, and for the machines, we will build
an “abstract interpreter”. In all of these notions, we will employ abstract/mathematical methods
to model and understand the relevant concepts.

Data

Machines

Algorithms

Figure 3.1: Data, Algorithms, and Machines

We will proceed as we often do in science and modeling: we build a very simple model, and
“test-drive” it to see whether it covers the phenomena we want to understand. Following this lead
we will start out with a notion of “ground constructor terms” for the representation of data and
with a simple notion of abstract procedures that allow computation by replacement of equals. We
have chosen this first model intentionally naive, so that it fails to capture the essentials, so we get
the chance to refine it to one based on “constructor terms with variables” and finally on “terms”,
refining the relevant concepts along the way.

This iterative approach intends to raise awareness that in CS theory it is not always the first
model that eventually works, and at the same time intends to make the model easier to understand
by repetition.

2. . . in retrospect: second-year students report that they cannot imagine how they found the material so difficult
to understand once they look at it again from the perspective of having survived GenCS.
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3.10 Abstract Data Types and Ground Constructor Terms

Abstract data types are abstract objects that specify inductively defined sets by declaring a set of
constructors with their sorts (which we need to introduce first).

Abstract Data Types (ADT)

� Definition 3.10.1 Let S0 := {A1, . . . ,An} be a finite set of symbols, then
we call the set S the set of sorts over the set S0, if

� S0 ⊆ S (base sort s are sorts)

� If A,B ∈ S, then (A× B) ∈ S (product sort s are sorts)

� If A ∈ X and B ∈ S0, then (A→ B) ∈ S (function sort s are sorts)

� Definition 3.10.2 If c is a symbol and A ∈ S, then we call a pair [c : A] a
constructor declaration for c over S.

� Definition 3.10.3 Let S0 be a set of symbols and D a set of constructor
declarations over S, then we call the pair 〈S0,D〉 an abstract data type

� Example 3.10.4 〈{B}, {[T : B], [F : B]}〉 is an abstract data for truth values.

� Example 3.10.5 〈{N}, {[o : N], [s : N→ N]}〉 represents unary natural num-
bers.

� Example 3.10.6 〈{N,L(N)}, {[o : N], [s : N→ N], [nil : L(N)], [cons : N× L(N)→ L(N)]}〉
In particular, the term cons(s(o), cons(o, nil)) represents the list [1, 0]

� Example 3.10.7 〈{S0,S}, {[ι : S0 → S], [→ : S × S0 → S], [× : S × S → S]}〉
(what is this?)

©: Michael Kohlhase 89

The abstract data types in Example 3.10.4 and Example 3.10.5 are good old friends, the first
models the build-in SML type bool and the second the unary natural numbers we started the
course with.

In contrast to SML datatype declarations we allow more than one sort to be declared at one time
(see Example 3.10.6). So abstract data types correspond to a group of datatype declarations.

The last example is more enigmatic. It shows how we can represent the set of sorts defined above
as an abstract data type itself. Here, things become a bit mind-boggling, but it is useful to think
this through and pay very close attention what the symbols mean.

First it is useful to note that the abstract data type declares the base sorts S0 and S, which are
just abstract mathematical objects that model the sets of base sorts and sorts from Definition 3.10.1
– without being the same, even though the symbols look the same. The declaration [ι : S0 → S]
introduces an inclusion of the base sorts into the sorts: if a is a base sort, then ι(a) is a sort – this
is a standard trick to represent the subset relation via a constructor.

Finally the two remaining declarations [→ : S × S → S] and [× : S × S → S] introduce the
sort constructors (see where the name comes from?) in Definition 3.10.1.

With Definition 3.10.3, we now have a mathematical object for (sequences of) data type declara-
tions in SML. This is not very useful in itself, but serves as a basis for studying what expressions
we can write down at any given moment in SML. We will cast this in the notion of constructor
terms that we will develop in stages next.

http://creativecommons.org/licenses/by-sa/2.5/


3.10. ABSTRACT DATA TYPES AND GROUND CONSTRUCTOR TERMS 63

Ground Constructor Terms

� Definition 3.10.8 Let A := 〈S0,D〉 be an abstract data type, then we call
a representation t a ground constructor term of sort T, iff

� T ∈ S0 and [t : T] ∈ D, or

� T = A×B and t is of the form 〈a, b〉, where a and b are ground constructor
terms of sorts A and B, or

� t is of the form c(a), where a is a ground constructor term of sort A and
there is a constructor declaration [c : A→ T] ∈ D.

We denote the set of all ground constructor terms of sort A with T gA (A) and
use T g(A) :=

⋃
A∈S T

g
A (A).

� Definition 3.10.9 If t = c(t′) then we say that the symbol c is the head of
t (write head(t)). If t = a, then head(t) = a; head(〈t1, t2〉) is undefined.

� Notation 3.10.10 We will write c(a, b) instead of c(〈a, b〉) (cf. binary
function)
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The main purpose of ground constructor terms will be to represent data. In the data type from Ex-
ample 3.10.5 the ground constructor term s(s(o)) can be used to represent the unary natural num-
ber 2. Similarly, in the abstract data type from Example 3.10.6, the term cons(s(s(o)), cons(s(o),nil))
represents the list [2, 1].

Note: that to be a good data representation format for a set S of objects, ground constructor
terms need to

• cover S, i.e. that for every object s ∈ S there should be a ground constructor term that
represents s.

• be unambiguous, i.e. that we can decide equality by just looking at them, i.e. objects s ∈ S
and t ∈ S are equal, iff their representations are.

But this is just what our Peano Axioms are for, so abstract data types come with specialized
Peano axioms, which we can paraphrase as

Peano Axioms for Abstract Data Types

� Idea: Sorts represent (inductively defined) sets!

� Axiom 3.10.11 if t is a ground constructor term of sort T, then t ∈ T

� Axiom 3.10.12 equality on ground constructor terms is trivial

� Axiom 3.10.13 only ground constructor terms of sort T are in T (induction
axioms)
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Note that these Peano axioms are left implicit – we never write them down explicitly, but they
are there if we want to reason about or compute with expressions in the abstract data types.

Now that we have established how to represent data, we will develop a theory of programs, which
will consist of directed equations in this case. We will do this as theories often are developed;
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we start off with a very first theory will not meet the expectations, but the test will reveal how
we have to extend the theory. We will iterate this procedure of theorizing, testing, and theory
adapting as often as is needed to arrive at a successful theory.

But before we embark on this, we build up our intuition with an extended example

Towards Understanding Computation on ADTs

� Aim: We want to understand computation with data from ADTs

� Idea: Let’s look at a concrete example: abstract data type B := 〈{B}, {[T : B], [F : B]}〉
and the operations we know from mathtalk: ∧, ∨, ¬, for “and”, “or”, and
“not”.

� Idea: think of these operations as functions on B that can be defined by
“defining equations” e.g. ¬(T ) = F , which we represent as ¬(T ) ; F to
stress the direction of computation.

� Example 3.10.14 We represent the operations by declaring sort and equa-
tions.

¬: 〈¬::B→ B ; {¬(T ) ; F ,¬(F ) ; T}〉,
∧ : 〈∧::B× B→ B ; {∧(T, T ) ; T ,∧(T, F ) ; F ,∧(F, T ) ; F ,∧(F, F ) ; F}〉,
∨ : 〈∨::B× B→ B ; {∨(T, T ) ; T ,∨(T, F ) ; T ,∨(F, T ) ; T ,∨(F, F ) ; F}〉.

Idea: Computation is just replacing equals by equals

∨(T,∧(F,¬(F ))) ; ∨(T,∧(F, T )) ; ∨(T, F ) ; T

�� Next Step: Define all the necessary notions, so that we can make this work
mathematically.
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3.11 A First Abstract Interpreter

Let us now come up with a first formulation of an abstract interpreter, which we will refine later
when we understand the issues involved. Since we do not yet, the notions will be a bit vague for
the moment, but we will see how they work on the examples.

But how do we compute?

� Problem: We can define functions, but how do we compute them?

� Intuition: We direct the equations (l2r) and use them as rules.

� Definition 3.11.1 Let A be an abstract data type and s, t ∈ T gT (A) ground
constructor terms overA, then we call a pair s; t a rule for f , if head(s) = f .
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� Example 3.11.2 turn λ(nil) = o and λ(cons(n, l)) = s(λ(l))
to λ(nil) ; o and λ(cons(n, l)) ; s(λ(l))

� Definition 3.11.3 Let A := 〈S0,D〉, then call a quadruple 〈f::A→ R ; R〉
an abstract procedure, iff R is a set of rules for f . A is called the argument
sort and R is called the result sort of 〈f::A→ R ; R〉.

� Definition 3.11.4 A computation of an abstract procedure p is a sequence of
ground constructor terms t1 ; t2 ; . . . according to the rules of p.(whatever
that means)

� Definition 3.11.5 An abstract computation is a computation that we can
perform in our heads. (no real world constraints like memory size, time limits)

� Definition 3.11.6 An abstract interpreter is an imagined machine that per-
forms (abstract) computations, given abstract procedures.
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The central idea here is what we have seen above: we can define functions by equations. But of
course when we want to use equations for programming, we will have to take some freedom of
applying them, which was useful for proving properties of functions above. Therefore we restrict
them to be applied in one direction only to make computation deterministic.

Let us now see how this works in an extended example; we use the abstract data type of lists from
Example 3.10.6 (only that we abbreviate unary natural numbers).

Example: the functions ρ and @ on lists

� Example 3.11.7 Consider the abstract procedures

〈ρ::L(N)→ L(N) ; {ρ(cons(n, l)) ; @(ρ(l), cons(n, nil)), ρ(nil) ; nil}〉
〈@::L(N)× L(N)→ L(N) ; {@(cons(n, l), r) ; cons(n,@(l, r)),@(nil, l) ; l}〉

� Then we have the following abstract computation

� ρ(cons(2, cons(1, nil))) ; @(ρ(cons(1, nil)), cons(2, nil)) (ρ(cons(n, l)) ;
@(ρ(l), cons(n, nil)) with n = 2 and l = cons(1, nil))

� @(ρ(cons(1, nil)), cons(2, nil)) ; @(@(ρ(nil), cons(1, nil)), cons(2, nil)) (ρ(cons(n, l)) ;
@(ρ(l), cons(n, nil)) with n = 1 and l = nil)

� @(@(ρ(nil), cons(1, nil)), cons(2, nil)) ; @(@(nil, cons(1, nil)), cons(2, nil))
(ρ(nil) ; nil)

� @(@(nil, cons(1, nil)), cons(2, nil)) ; @(cons(1, nil), cons(2, nil)) (@(nil, l) ;
l with l = cons(1, nil))

� @(cons(1, nil), cons(2, nil)) ; cons(1,@(nil, cons(2, nil))) (@(cons(n, l), r) ;
cons(n,@(l, r)) with n = 1, l = nil, and r = cons(2, nil))

� cons(1,@(nil, cons(2, nil))) ; cons(1, cons(2, nil)) (@(nil, l) ; l with
l = cons(2, nil))

Aha: ρ terminates on the argument cons(2, cons(1, nil))
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In the example above we try to understand the mechanics of “replacing equals by equals” with
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two concrete abstract procedures; one for ρ (think “reverse”) and one for @ (think “append”).
We start with an initial term ρ(cons(2, cons(1,nil))) and realize that we can make this look equal
to the left-hand side of the first rule of the abstract procedure ρ by making n be 2 and l be
cons(1,nil). As the left hand side is equal to our expression, we can replace it with the right hand
side of the same rule, again with n = 2 and l = cons(1,nil). This gives us the first computation
step.

The second computation step goes similarly: we work on the result of the first step and again
find a left-hand-side of a rule that we can make equal. But this time we do not match the whole
expression and replace it whit the right-hand-side, but only a part. We have indicated what we
are working on by making the procedure symbol red.

The third computation step proceeds in style and eliminates the last occurrence of the pro-
cedure symbol ρ via the second rule. The last three steps proceed in kind and eliminate the
occurrences of the procedure symbol @, so that we are left with a ground constructor term – that
does not contain procedure symbols. This term is the last in the computation and thus constitutes
its result.

Now let’s get back to theory: let us see whether we can write down an abstract interpreter for
this.

� An Abstract Interpreter (preliminary version)

� Definition 3.11.8 (Idea) Replace equals by equals! (this is licensed by the
rules)

� Input: an abstract procedure 〈f::A→ R ; R〉 and an argument a ∈ T gA (A).

� Output: a result r ∈ T gR (A).

� Process:

� find a part t := f(t1, . . . tn) in a,

� find a rule (l; r) ∈ R and values for the variables in l that make t
and l equal.

� replace t with r′ in a, where r′ is obtained from r by replacing variables
by values.

� if that is possible call the result a′ and repeat the process with a′,
otherwise stop.

� Definition 3.11.9 We say that an abstract procedure 〈f::A→ R ; R〉 ter-
minates (on a ∈ T gA (A)), iff the computation (starting with f(a)) reaches a
state, where no rule applies.

� There are a lot of words here that we do not understand

� let us try to understand them better ; more theory!
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Unfortunately we do not yet have the means to write down rules: they contain variables, which
are not allowed in ground constructor rules. So we just extend the definition of the expressions
we are allowed to write down.

Constructor Terms with Variables

� Wait a minute!: what are these rules in abstract procedures?

http://creativecommons.org/licenses/by-sa/2.5/


3.11. A FIRST ABSTRACT INTERPRETER 67

� Answer: pairs of constructor terms (really constructor terms?)

� Idea: variables stand for arbitrary constructor terms (let’s make this formal)

� Definition 3.11.10 Let 〈S0,D〉 be an abstract data type. A (constructor
term) variable is a pair of a symbol and a base sort. E.g. xA, nN1

, xC3 ,. . . .

� Definition 3.11.11 We denote the current set of variables of sort A with
VA, and use V :=

⋃
A∈S0 VA for the set of all variables.

� Idea: add the following rule to the definition of constructor terms

� variables of sort A ∈ S0 are constructor terms of sort A.

� Definition 3.11.12 If t is a constructor term, then we denote the set of
variables occurring in t with free(t). If free(t) = ∅, then we say t is ground
or closed.
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To have everything at hand, we put the whole definition onto one slide.

Constr. Terms with Variables: The Complete Definition

� Definition 3.11.13 Let 〈S0,D〉 be an abstract data type and V a set of
variables, then we call a representation t a constructor term (with variables
from V) of sort T, iff

� T ∈ S0 and [t : T] ∈ D, or

� t ∈ VT is a variable of sort T ∈ S0, or

� T = A×B and t is of the form 〈a, b〉, where a and b are constructor terms
with variables of sorts A and B, or

� t is of the form c(a), where a is a constructor term with variables of sort
A and there is a constructor declaration [c : A→ T] ∈ D.

We denote the set of all constructor terms of sort A with TA(A;V) and use
T (A;V) :=

⋃
A∈S TA(A;V).

� Definition 3.11.14 We define the depth of a term t by the way it is con-
structed.

dp(t) :=

 1 if [t : T] ∈ Σ
max(dp(a), dp(b)) + 1 if t = 〈a, b〉

dp(a) + 1 if t = f(a)
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Now that we have extended our model of terms with variables, we will need to understand how to
use them in computation. The main intuition is that variables stand for arbitrary terms (of the
right sort). This intuition is modeled by the action of instantiating variables with terms, which in
turn is the operation of applying a “substitution” to a term.
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3.12 Substitutions

Substitutions are very important objects for modeling the operational meaning of variables: ap-
plying a substitution to a term instantiates all the variables with terms in it. Since a substitution
only acts on the variables, we simplify its representation, we can view it as a mapping from vari-
ables to terms that can be extended to a mapping from terms to terms. The natural way to define
substitutions would be to make them partial functions from variables to terms, but the definition
below generalizes better to later uses of substitutions, so we present the real thing.

Substitutions

� Definition 3.12.1 Let A be an abstract data type and σ ∈ V → T (A;V),
then we call σ a substitution on A, iff supp(σ) := {xA ∈ VA |σ(xA) 6= xA} is
finite and σ(xA) ∈ TA(A;V). supp(σ) is called the support of σ.

� Notation 3.12.2 We denote the substitution σ with supp(σ) = {xiAi | 1 ≤ i ≤ n}
and σ(xiAi) = ti by [t1/x

1
A1

], . . ., [tn/x
n
An ].

� Definition 3.12.3 (Substitution Extension) Let σ be a substitution, then
we denote with σ, [t/xA] the function {〈yB, t〉 ∈ σ | yB 6= xA} ∪ {〈xA, t〉}.

(σ, [t/xA] coincides with σ off xA, and gives the result t there.)

� Note: If σ is a substitution, then σ, [t/xA] is also a substitution.
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Note that substitutions are “well-sorted” since we assume that σ(xA) ∈ TA(A;V) in Defini-
tion 3.12.1. In other words, a substitution may only assign terms of the sort, the variable pre-
scribes.

The extension of a substitution is an important operation, which you will run into from time to
time. The intuition is that the values right of the comma overwrite the pairs in the substitution
on the left, which already has a value for xA, even though the representation of σ may not show
it.

Note that the use of the comma notation for substitutions defined in Notation 3.12.2 is consis-
tent with substitution extension. We can view a substitution [a/x], [f(b)/y] as the extension of
the empty substitution (the identity function on variables) by [f(b)/y] and then by [a/x]. Note
furthermore, that substitution extension is not commutative in general.

Note that since we have defined constructor terms inductively, we can write down substitution
application as a recursive function over the inductively defined set.

Substitution Application

� Definition 3.12.4 (Substitution Application) LetA be an abstract data
type, σ a substitution on A, and t ∈ T (A;V), then then we denote the result
of systematically replacing all variables xA in t by σ(xA) by σ(t). We call σ(t)
the application of σ to t.

� With this definition we extend a substitution σ from a function σ : V →
T (A;V) to a function σ : T (A;V)→ T (A;V).

� Definition 3.12.5 Let s and t be constructor terms, then we say that s
matches t, iff there is a substitution σ, such that σ(s) = t. σ is called a
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matcher that instantiates s to t. We also say that t is an instance of s.

� Example 3.12.6 [a/x], [f(b)/y], [a/z] instantiates g(x, y, h(z)) to g(a, f(b), h(a)).
(sorts elided here)

� Definition 3.12.7 We give the defining equations for substitution application

� σ(xA) = t if [t/xA] ∈ σ.

� σ(〈a, b〉) = 〈σ(a), σ(b)〉.
� σ(f(a)) = f(σ(a)).

� this definition uses the inductive structure of the terms.
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Note that even though a substitution in and of itself is a total function on variables, it can be
extended to a function on constructor terms by Definition 3.12.7. But we do not have a notation
for this function. In particular, we may not write [t/s], unless s is a variable. And that would not
make sense, since substitution application is completely determined by the behavior on variables.
For instance if we have σ(c) = t for a constant c, then the value t must be c itself by the definition
below.

We now come to a very important property of substitution application: it conserves sorts, i.e.
instances have the same sort.

Substitution Application conserves Sorts

� Theorem 3.12.8 Let A be an abstract data type, t ∈ TA(A;V), and σ a
substitution on A, then σ(t) ∈ TA(A;V).

� Proof: by induction on dp(t) using Definition 3.11.13 and Definition 3.12.4

P.1 By Definition 3.11.13 we have to consider four cases

P.1.1 [t : T] ∈ D: σ(t) = t by Definition 3.12.4, so σ(t) ∈ TA(A;V) by con-
struction.

P.1.2 t ∈ VT: We have σ(t) ∈ TA(A;V) by Definition 3.12.1,

P.1.3 t = 〈a, b〉 and T = A × B, where a ∈ TA(A;V) and b ∈ TB(A;V):
We have σ(t) = σ(〈a, b〉) = 〈σ(a), σ(b)〉. By inductive hypothesis we
have σ(a) ∈ TA(A;V) and σ(b) ∈ TB(A;V) and therefore 〈σ(a), σ(b)〉 ∈
TA×B(A;V) which gives the assertion.

P.1.4 t = c(a), where a ∈ TA(A;V) and [c : A→ T] ∈ D: We have σ(t) =
σ(c(a)) = c(σ(a)). By IH we have σ(a) ∈ TA(A;V) therefore (c(σ(a))) ∈
TT(A;V).
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Now that we understand variable instantiation, we can see what it gives us for the meaning of rules:
we get all the ground constructor terms a constructor term with variables stands for by applying
all possible substitutions to it. Thus rules represent ground constructor subterm replacement
actions in a computations, where we are allowed to replace all ground instances of the left hand
side of the rule by the corresponding ground instance of the right hand side.
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3.13 Terms in Abstract Data Types

Unfortunately, constructor terms are still not enough to write down rules, as rules also contain
the symbols from the abstract procedures. So we have to extend our notion of expressions yet
again.

Are Constructor Terms Really Enough for Rules?

� Example 3.13.1 ρ(cons(n, l)) ; @(ρ(l), cons(n, nil)). (ρ is not a
constructor)

� Idea: need to include symbols for the defined procedures. (provide
declarations)

� Definition 3.13.2 Let A := 〈S0,D〉 be an abstract data type with A ∈ S
and let f 6∈ D be a symbol, then we call a pair [f : A] a procedure declaration
for f over S.

� Definition 3.13.3 We call a finite set Σ of procedure declarations for distinct
symbols a signature over A.

� Idea: add the following rules to the definition of constructor terms

� T ∈ S0 and [p : T] ∈ Σ, or

� t is of the form f(a), where a is a term of sort A and there is a procedure
declaration [f : A→ T] ∈ Σ.
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Again, we combine all of the rules for the inductive construction of the set of terms in one slide
for convenience.

Terms: The Complete Definition

� Idea: treat procedures (from Σ) and constructors (from D) at the same time.

� Definition 3.13.4 Let 〈S0,D〉 be an abstract data type, and Σ a signature
over A, then we call a representation t a term of sort T (over A, Σ, and V), iff

� T ∈ S0 and [t : T] ∈ D or [t : T] ∈ Σ, or

� t ∈ VT and T ∈ S0, or

� T = A× B and t is of the form 〈a, b〉, where a and b are terms of sorts A
and B, or

� t is of the form c(a), where a is a term of sort A and there is a constructor
declaration [c : A→ T] ∈ D or a procedure declaration [c : A→ T] ∈ Σ.

We denote the set of terms of sort A over A, Σ, and V with TA(A,Σ;V) and
the set of all terms with T (A,Σ;V).
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Now that we have defined the concept of terms, we can ask ourselves which parts of terms are
terms themselves. This results in the subterm relation, which is surprisingly intricate to define:
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we need an intermediate relation, the immediate subterm relation. The subterm relation is the
transitive-reflexive closure of that.

Subterms

� Idea: Well-formed parts of constructor terms are constructor terms again
(maybe of a different sort)

� Definition 3.13.5 Let A be an abstract data type and s and b be terms over
A, then we say that s is an immediate subterm of t, iff t = f(s) or t = 〈s, b〉
or t = 〈b, s〉.

� Definition 3.13.6 We say that a s is a subterm of t, iff s = t or there is an
immediate subterm t′ of t, such that s is a subterm of t′.

� Example 3.13.7 f(a) is a subterm of the terms f(a) and h(g(f(a), f(b))),
and an immediate subterm of h(f(a)).
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If we look at the definition of immediate subterms in Definition 3.13.5, then we can interpret the
construction as reading the step cases in the rules for term construction (see Definition 3.13.4)
backwards: What does is take to construct a term? The subterm relation corresponds to going
back over the rules an arbitrary number of times (including zero times).

3.14 A Second Abstract Interpreter

Now that we have extended the notion of terms we can rethink the definition of abstract procedures
and define an abstract notion of programs (coherent collections of abstract procedures).

For the final definition of abstract procedures we have to solve a tricky problem, which we have
avoided in the treatment of terms above: To allow recursive procedures, we have to make sure
that the (function) symbol that is introduced in the abstract procedure can already be used in
the procedure body (the right hand side of the rules). So we have to be very careful with the
signatures we use.

Abstract Procedures, Final Version

� Definition 3.14.1 (Rules, final version) Let A := 〈S0,D〉 be an ab-
stract data type, Σ a signature over A, and f 6∈ (dom(D) ∪ dom(Σ)) a sym-
bol, then we call f(s) ; r a rule for [f : A→ B] over Σ, if s ∈ TA(A,Σ;V) has
no duplicate variables, constructors, or defined functions and r ∈ TB(A,Σ, [f : A→ B];V).

� Note: Rules are well-sorted, i.e. both sides have the same sort and recursive,
i.e. rule heads may occur on the right hand side.

� Definition 3.14.2 (Abstract Procedures, final version)

We call a quadruple P := 〈f::A→ R ; R〉 an abstract procedure over Σ, iff R
is a set of rules for [f : A→ R] ∈ Σ. We say that P induces the procedure
declaration [f : A→ R].

� Example 3.14.3 Let A be the union of the abstract data types from Exam-
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ple 3.10.6 and Example 3.10.14, then

〈µ::N× L(N)→ B ; {µ(〈xN, nil〉) ; F , µ(〈xN, cons(hN, tL(N))〉) ; ∨(x = h, µ(〈y, t〉))}〉

is an abstract procedure that induces the procedure declaration [µ : N× L(N)→
B]
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Note that we strengthened the restrictions on what we allow as rules in Definition 3.14.2, so
that matching of rule heads becomes unique (remember that we want to take the choice out of
computation in the interpreter).

But there is another namespacing problem we have to solve. The intuition here is that each
abstract procedure introduces a new procedure declaration, which can be used in subsequent
abstract procedures. We formalize this notion with the concept of an abstract program, i.e. a
sequence of abstract procedures over the underlying abstract data type that behave well with
respect to the induced signatures.

Abstract Programs

� Definition 3.14.4 (Abstract Programs) Let A := 〈S0,D〉 be an ab-
stract data type, and P := P1, . . . ,Pn a sequence of abstract procedures,
then we call P an abstract program with signature Σ over A, if the Pi induce
(the procedure declarations) in Σ and

� n = 0 and Σ = ∅ or

� P = P ′,Pn and Σ = Σ′, [f : A], where

� P ′ is an abstract program over Σ′

� and Pn is an abstract procedure over Σ′ that induces the procedure
declaration [f : A].

� Example 3.14.5 The two abstract procedures from Example 3.11.7

〈@::L(N)× L(N)→ L(N) ; {@(cons(n, l), r) ; cons(n,@(l, r)),@(nil, l) ; l}〉
〈ρ::L(N)→ L(N) ; {ρ(cons(n, l)) ; @(ρ(l), cons(n, nil)), ρ(nil) ; nil}〉

constitute an abstract program over the abstract data type from Example 3.10.6:

〈{N,L(N)}, {[o : N], [s : N→ N], [nil : L(N)], [cons : N× L(N)→ L(N)]}〉
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Now, we have all the prerequisites for the full definition of an abstract interpreter.

An Abstract Interpreter (second version)

� Definition 3.14.6 (Abstract Interpreter (second try)) Let a0 := a
repeat the following as long as possible:

� choose (l; r) ∈ R, a subterm s of ai and matcher σ, such that σ(l) = s.

� let ai+1 be the result of replacing s in a with σ(r).
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� Definition 3.14.7 We say that an abstract procedure P := 〈f::A→ R ; R〉
terminates (on a ∈ TA(A,Σ;V)), iff the computation (starting with a) reaches
a state, where no rule applies. Then an is the result of P on a

Question: Do abstract procedures always terminate?

�� Question: Is the result an always a constructor term?
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Note: that we have taken care in the definition of the concept of abstract procedures in Defini-
tion 3.14.1 that computation (replacement of equals by equals by rule application) is well-sorted.
Moreover, the fact that we always apply instances of rules yields the analogy that rules are “func-
tions” whose input/output pairs are the instances of the rules.

3.15 Evaluation Order and Termination

To answer the questions remaining from the Definition 3.14.6 we will first have to think some more
about the choice in this abstract interpreter: a fact we will use, but not prove here is we can make
matchers unique once a subterm is chosen. Therefore the choice of subterm is all that we need to
worry about. And indeed the choice of subterm does matter as we will see.

Evaluation Order in SML

� Remember in the definition of our abstract interpreter:

� choose a subterm s of ai, a rule (l; r) ∈ R, and a matcher σ, such that
σ(l) = s.

� let ai+1 be the result of replacing s in a with σ(r).

Once we have chosen s, the choice of rule and matcher become unique.

�� Example 3.15.1 sometimes there we can choose more than one s and rule.

fun problem n = problem(n)+2;
datatype mybool = true | false;
fun myif(true,a,_) = a | myif(false,_,b) = b;
myif(true,3,problem(1));

� SML is a call-by-value language (values of arguments are computed first)
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As we have seen in the example, we have to make up a policy for choosing subterms in evaluation
to fully specify the behavior of our abstract interpreter. We will make the choice that corresponds
to the one made in SML, since it was our initial goal to model this language.

An abstract call-by-value Interpreter (final)

� Definition 3.15.2 (Call-by-Value Interpreter) Given an abstract pro-
gram P and a ground constructor term a, an abstract call-by-value interpreter
creates a computation a1 ; a2 ; . . . with a = a1 by the following process:
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� Let s be the leftmost (of the) minimal subterms s of ai, such that there is
a rule l; r ∈ R and a substitution σ, such that σ(l) = s.

� let ai+1 be the result of replacing s in a with σ(r).

Note: By this paragraph, this is a deterministic process, which can be imple-
mented, once we understand matching fully (not covered in
GenCS)
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The name “call-by-value” comes from the fact that data representations as ground constructor
terms are sometimes also called “values” and the act of computing a result for an (abstract)
procedure applied to a bunch of argument is sometimes referred to as “calling an (abstract)
procedure”. So we can understand the “call-by-value” policy as restricting computation to the
case where all of the arguments are already values (i.e. fully computed to ground terms).

Other programming languages chose another evaluation policy called “call-by-reference”, which
can be characterized by always choosing the outermost subterm that matches a rule. The most
notable one is the Haskell language [Hut07, OSG08]. These programming languages are sometimes
“lazy languages”, since they delay computing the values of their arguments. They are uniquely
suited for dealing with objects that are potentially infinite in some form. “Infinite” arguments are
not a problem, since “lazy” languages only compute enough of them so that the overall computation
can proceed. In our example above, we can see the function problem as something that computes
positive infinity. A lazy programming language would not be bothered by this and return the
value 3.

� Example 3.15.3 A lazy language language can even quite comfortably compute with possibly
infinite objects, lazily driving the computation forward as far as needed. Consider for instance the
following program:

myif(problem(1) > 999,"yes","no");

In a “call-by-reference” policy we would try to compute the outermost subterm (the whole expres-
sion in this case) by matching the myif rules. But they only match if there is a true or false as
the first argument, which is not the case. The same is true with the rules for >, which we assume
to deal lazily with arithmetical simplification, so that it can find out that x+ 1000 > 999. So the
outermost subterm that matches is problem(1), which we can evaluate 500 times to obtain true.
Then and only then, the outermost subterm that matches a rule becomes the myif subterm and
we can evaluate the whole expression to true.

Even though the problem of termination is difficult in full generality, we can make some progress
on it. The main idea is to concentrate on the recursive calls in abstract procedures, i.e. the
arguments of the defined function in the right hand side of rules. We will see that the recursion
relation tells us a lot about the abstract procedure.

Analyzing Termination of Abstract Procedures

� Example 3.15.4 τ : N1 → N1, where τ(n) ; τ(3n+ 1) for n odd and
τ(n) ; τ(n/2) for n even. (does this procedure terminate?)

� Definition 3.15.5 Let 〈f::A→ R ; R〉 be an abstract procedure, then we call
a pair 〈a, b〉 a recursion step, iff there is a rule f(x) ; y, and a substitution ρ,
such that ρ(x) = a and ρ(y) contains a subterm f(b).
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� Example 3.15.6 〈4, 3〉 is a recursion step for the abstract procedure

〈σ::N1 → N1 ; {σ(o) ; o, σ(s(n)) ; n+ σ(n)}〉

� Definition 3.15.7 We call an abstract procedure P recursive, iff it has a
recursion step. We call the set of recursion steps of P the recursion relation of
P.

� Idea: analyze the recursion relation for termination.
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Note that the procedure sketched in Example 3.15.4 is not really an abstract procedure since it has
the even/odd condition, we cannot express in our setup. But even so, it shows us that termination
is difficult.

Let us now turn to the question of termination of abstract procedures in general. Termination is a
very difficult problem as Example 3.15.4 shows. In fact all cases that have been tried τ(n) diverges
into the sequence 4, 2, 1, 4, 2, 1, . . ., and even though there is a huge literature in mathematics about
this problem – the Collatz Conjecture, a proof that τ diverges on all arguments is still missing.

Another clue to the difficulty of the termination problem is (Theorem 14.5.10) that there cannot
be a a program that reliably tells of any program whether it will terminate.

Now, we will define termination for arbitrary relations and present a theorem (which we do not
really have the means to prove in GenCS) that tells us that we can reason about termination of ab-
stract procedures — complex mathematical objects at best — by reasoning about the termination
of their recursion relations — simple mathematical objects.

Termination

� Definition 3.15.8 Let R ⊆ A2 be a binary relation, an infinite chain in R is
a sequence a1, a2, . . . in A, such that 〈an, an+1〉 ∈ R for all n ∈ N.

� Definition 3.15.9 We say that R terminates (on a ∈ A), iff there is no
infinite chain in R (that begins with a).

� Definition 3.15.10 P diverges (on a ∈ A), iff it does not terminate on a.

� Theorem 3.15.11 Let P = 〈f::A→ R ; R〉 be an abstract procedure and
a ∈ TA(A,Σ;V), then P terminates on a, iff the recursion relation of P does.

� Definition 3.15.12 Let P = 〈f::A→ R ; R〉 be an abstract procedure, then
we call the function {〈a, b〉 | a ∈ TA(A,Σ;V) and P terminates for a with b} in
A⇀ B the result function of P.

� Theorem 3.15.13 Let P = 〈f::A→ B ; D〉 be a terminating abstract pro-
cedure, then its result function satisfies the equations in D.
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We should read Theorem 3.15.13 as the final clue that abstract procedures really do encode
functions (under reasonable conditions like termination). This legitimizes the whole theory we
have developed in this section.

We conclude the section with a reflection the role of abstract data, procedures, and machines vs.
concrete ones (see Figure 3.1); the result of this is that the abstract model is actually simpler than
the concrete ones, since it abstracts away from many nasty real-world restrictions.
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Abstract vs. Concrete Procedures vs. Functions

� An abstract procedure P can be realized as concrete procedure P ′ in a pro-
gramming language

� Correctness assumptions (this is the best we can hope for)

� If the P ′ terminates on a, then the P terminates and yields the same result
on a.

� If the P diverges, then the P ′ diverges or is aborted (e.g. memory exhaus-
tion or buffer overflow)

� Procedures are not mathematical functions (differing identity conditions)

� compare σ : N1 → N1 with σ(o) ; o, σ(s(n)) ; n+ σ(n)
with σ′ : N1 → N1 with σ′(o) ; 0, σ′(s(n)) ; ns(n)/2

� these have the same result function, but σ is recursive while σ′ is not!

� Two functions are equal, iff they are equal as sets, iff they give the same
results on all arguments
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Chapter 4

More SML

4.1 Recursion in the Real World

We will now look at some concrete SML functions in more detail. The problem we will consider is
that of computing the nth Fibonacci number. In the famous Fibonacci sequence, the nth element
is obtained by adding the two immediately preceding ones.

This makes the function extremely simple and straightforward to write down in SML. If we look
at the recursion relation of this procedure, then we see that it can be visualized a tree, as each
natural number has two successors (as the the function fib has two recursive calls in the step
case).

Consider the Fibonacci numbers

� Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

� generally: Fn+1 := Fn + Fn−1 plus start conditions

� easy to program in SML:

fun fib (0) = 0
| fib (1) = 1
| fib (n:int) = fib (n-1) + fib(n-2);

� Let us look at the recursion relation: {〈n, n− 1〉, 〈n, n− 2〉 |n ∈ N} (it is a
tree!)

1 0

2 1 0

2

1 0

2

1 0

2 1 0

2

3

1

3

1

3

1

4

5 4

6
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Another thing we see by looking at the recursion relation is that the value fib(k) is computed
n−k+1 times while computing fib(k). All in all the number of recursive calls will be exponential
in n, in other words, we can only compute a very limited initial portion of the Fibonacci sequence
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(the first 41 numbers) before we run out of time.
The main problem in this is that we need to know the last two Fibonacci numbers to com-

pute the next one. Since we cannot “remember” any values in functional programming we take
advantage of the fact that functions can return pairs of numbers as values: We define an auxiliary
function fob (for lack of a better name) does all the work (recursively), and define the function
fib(n) as the first element of the pair fob(n).

The function fob(n) itself is a simple recursive procedure with one! recursive call that returns
the last two values. Therefore, we use a let expression, where we place the recursive call in the
declaration part, so that we can bind the local variables a and b to the last two Fibonacci numbers.
That makes the return value very simple, it is the pair (b,a+b).

A better Fibonacci Function

� Idea: Do not re-compute the values again and again!

� keep them around so that we can re-use them. (e.g. let fib compute the
two last two numbers)

fun fob 0 = (0,1)
| fob 1 = (1,1)
| fob (n:int) =
let

val (a:int, b:int) = fob(n-1)
in

(b,a+b)
end;

fun fib (n) = let val (b:int,_) = fob(n) in b end;

� Works in linear time! (unfortunately, we cannot see it, because SML Int are
too small)
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If we run this function, we see that it is indeed much faster than the last implementation. Unfor-
tunately, we can still only compute the first 44 Fibonacci numbers, as they grow too fast, and we
reach the maximal integer in SML.

Fortunately, we are not stuck with the built-in integers in SML; we can make use of more
sophisticated implementations of integers. In this particular example, we will use the module
IntInf (infinite precision integers) from the SML standard library (a library of modules that
comes with the SML distributions). The IntInf module provides a type IntINF.int and a set of
infinite precision integer functions.

A better, larger Fibonacci Function

� Idea: Use a type with more Integers (Fortunately, there is IntInf)

val zero = IntInf.fromInt 0;
val one = IntInf.fromInt 1;

fun bigfob (0) = (zero,one)
| bigfob (1) = (one,one)
| bigfob (n:int) =

let val (a, b) = bigfob(n-1)
in (b,IntInf.+(a,b))
end;

http://creativecommons.org/licenses/by-sa/2.5/


4.2. PROGRAMMING WITH EFFECTS: IMPERATIVE FEATURES IN SML 79

fun bigfib (n) = let val (a,_) = bigfob(n)
in IntInf.toString(a)
end;
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We have seen that functions are just objects as any others in SML, only that they have functional
type. If we add the ability to have more than one declaration at at time, we can combine function
declarations for mutually recursive function definitions. In a mutually recursive definition we
define n functions at the same time; as an effect we can use all of these functions in recursive calls.
In our example below, we will define the predicates even and odd in a mutual recursion.

Mutual Recursion

� generally, we can make more than one declaration at one time, e.g.

- val pi = 3.14 and e = 2.71;
val pi = 3.14
val e = 2.71

� this is useful mainly for function declarations, consider for instance:

fun even (zero) = true
| even (suc(n)) = odd (n)

and odd (zero) = false
| odd(suc(n)) = even (n)

trace: even(4), odd(3), even(2), odd(1), even(0), true.
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This mutually recursive definition is somewhat like the children’s riddle, where we define the “left
hand” as that hand where the thumb is on the right side and the “right hand” as that where the
thumb is on the right hand. This is also a perfectly good mutual recursion, only — in contrast to
the even/odd example above — the base cases are missing.

4.2 Programming with Effects: Imperative Features in SML

So far, we have been programming in the “purely functional” fragment of SML. This will change
now, indeed as we will see, purely functional programming languages are pointless, since they do
not have any effects (such as altering the state of the screen or the disk). The advantages of
functional languages like SML is that they limit effects (which pose difficulties for understanding
the behavior of programs) to very special occasions

The hallmark of purely functional languages is that programs can be executed without changing
the machine state, i.e. the values of variables. Indeed one of the first things we learnt was that
variables are bound by declarations, and re-binding only shadows previous variable bindings. In
the same way, the execution of functional programs is not affected by machine state, since the
value of a function is fully determined by it arguments.

Note that while functions may be purely functional, the already SML interpreter cannot be, since
it would be pointless otherwise: we do want it to change the state of the machine, if only to observe
the computed values as changes of the (state of the) screen, similarly, we want it to be affected by
the effects of typing with the keyboard.

But effects on the machine state can be useful in other situations, not just for input and output.
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� Programming with Effects on the Machine State

� Until now, our procedures have been characterized entirely by their values on
their arguments (as a mathematical function behaves)

� This is not enough, therefore SML also considers effects, e.g. for

� input/output: the interesting bit about a print statement is the effect

� mutation: allocation and modification of storage during evaluation

� communication: data may be sent and received over channels

� exceptions: abort evaluation by signaling an exceptional condition

� Idea: An effect is any action resulting from an evaluation that is not returning
a value (formal definition difficult)

� Documentation: should always address arguments, values, and effects!
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We will now look at the basics of input/output behavior and exception handling. They are state-
changing and state-sensitive in completely different ways.

4.2.1 Input and Output

LIke in many programming languages Input/Output are handled via “streams” in SML. Streams
are special, system-level data structures that generalize files, data sources, and periphery systems
like printers or network connections. In SML, they are supplied by module TextIO from the the
SML basic library [SML10]. Note that as SML is typed, streams have types as well.

Input and Output in SML

� Input and Output is handled via “streams” (think of possibly infinite strings)

� there are two predefined streams TextIO.stdIn and TextIO.stdOut (=̂
keyboard input and screen)

� Example 4.2.1 (Input) via TextIO.inputLine : TextIO.instream -> string

- TextIO.inputLine(TextIO.stdIn);
sdflkjsdlfkj

val it = "sdflkjsdlfkj" : string

� Example 4.2.2 (Printing to Standard Output) print "sdfsfsdf’’

TextIO.print prints its argument to the screen

The user can also create streams as files: TextIO.openIn and TextIO.openOut.

�� Streams should be closed when no longer needed: TextIO.closeIn and
TextIO.closeOut.
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Input and Output in SML

� Problem: How to handle the end of input files?

TextIO.input1 : instream -> char option

attempts to read one char from an input stream (may fail)

� The SML basis library supplies the datatype

datatype ’a option = NONE | SOME of ’a

which can be used in such cases together with lots of useful functions.
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IO Example: Copying a File – Char by Char

� Example 4.2.3 The following function copies the contents of from one text
file, infile, to another, outfile character by character:

fun copyTextFile(infile: string, outfile: string) =
let
val ins = TextIO.openIn infile
val outs = TextIO.openOut outfile
fun helper(copt: char option) =
case copt of

NONE => (TextIO.closeIn ins; TextIO.closeOut outs)
| SOME(c) => (TextIO.output1(outs,c);

helper(TextIO.input1 ins))
in
helper(TextIO.input1 ins)

end

Note the use of the char option to model the fact that reading may fail(EOF)
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4.2.2 Programming with Exceptions

The first kind of stateful functionality is a generalization of error handling: when an error occurs,
we do not want to to continue computation in the usual way, and we do not want to return regular
values of a function. Therefore SML introduces the concept of “raising an exception”. When an
exception is raised, functional computation aborts and the exception object is passed up to the
next level, until it is handled (usually) by the interpreter.

Raising Exceptions

� Idea: Exceptions are generalized error codes

� Definition 4.2.4 An exception is a special SML object. Raising an exception
e in a function aborts functional computation and returns e to the next level.
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� Example 4.2.5 predefined exceptions (exceptions have names)

- 3 div 0;
uncaught exception divide by zero
raised at: <file stdIn>
- fib(100);
uncaught exception overflow
raised at: <file stdIn>

Exceptions are first-class citizens in SML, in particular they

� � have types, and

� can be defined by the user.

� Example 4.2.6 user-defined exceptions (exceptions are first-class objects)

- exception Empty;
exception Empty
- Empty;
val it = Empty : exn

� Example 4.2.7 exception constructors (exceptions are just like any other
value)

- exception SysError of int;
exception SysError of int;
- SysError
val it = fn : int -> exn
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Let us fortify our intuition with a simple example: a factorial function. As SML does not have
a type of natural numbers, we have to give the factorial function the type int -> int; in
particular, we cannot use the SML type checker to reject arguments where the factorial function
is not defined. But we can guard the function by raising an custom exception when the argument
is negative.

Programming with Exceptions

� Example 4.2.8 A factorial function that checks for non-negative arguments
(just to be safe)

exception Factorial;
- fun safe_factorial n =

if n < 0 then raise Factorial
else if n = 0 then 1
else n * safe_factorial (n-1)

val safe_factorial = fn : int -> int
- safe_factorial(~1);
uncaught exception Factorial
raised at: stdIn:28.31-28.40

unfortunately, this program checks the argument in every recursive call
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Note that this function is inefficient, as it checks the guard on every call, even though we can see
that in the recursive calls the argument must be non-negative by construction. The solution is
to use two functions, an interface function which guards the argument with an exception and a
recursive function that does not check.
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Programming with Exceptions (next attempt)

� Idea: make use of local function definitions that do the real work as in

local
fun fact 0 = 1 | fact n = n * fact (n-1)

in
fun safe_factorial n =
if n >= 0 then fact n else raise Factorial

end

this function only checks once, and the local function makes good use of pattern
matching (; standard programming pattern)

- safe_factorial(~1);
uncaught exception Factorial
raised at: stdIn:28.31-28.40
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In the improved implementation, we see another new SML construct. local acts just like a let,
only that it also that the body (the part between in and end) contains sequence of declarations
and not an expression whose value is returned as the value of the overall expression. Here the
identifier fact is bound to the recursive function in the definition of safe_factorial but unbound
outside. This way we avoid polluting the name space with functions that are only used locally.

There is more to exceptions than just raising them to all the way the SML interpreter, which
then shows them to the user. We can extend functions by exception handler that deal with any
exceptions that are raised during their execution.

Handling Exceptions

� Definition 4.2.9 (Idea) Exceptions can be raised (through the evaluation
pattern) and handled somewhere above (throw and catch)

� Consequence: Exceptions are a general mechanism for non-local transfers of
control.

� Definition 4.2.10 (SML Construct) exception handler: exp handle rules

� Example 4.2.11 Handling the Factorial expression

fun factorial_driver () =
let val input = read_integer ()

val result = toString (safe_factorial input)
in

print result
end

handle Factorial => print "Out of range."
| NaN => print "Not a Number!"

� Example 4.2.12 the read_integer function (just to be complete)

exception NaN; (* Not a Number *)
fun read_integer () =

let
val instring = TextIO.inputLine(TextIO.stdIn);

in
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The function factorial_driver in Example 4.2.11 uses two functions that can raise exceptions:
safe_factorial defined in Example 4.2.8 and the function read_integer in Example 4.2.12.
Both are handled to give a nicer error message to the user.

Note that the exception handler returns situations of exceptional control to normal (functional)
computations. In particular, the results of exception handling have to of the same type as the
ones from the functional part of the function. In Example 4.2.11, both the body of the function
as well as the handers print the result, which makes them type-compatible and the function
factorial_driver well-typed.

The previous example showed how to make use of the fact that exceptions are objects that are
different from values. The next example shows how to take advantage of the fact that raising
exceptions alters the flow of computation.

Using Exceptions for Optimizing Computation

� Example 4.2.13 (Nonlocal Exit) If we multiply a list of integers, we can
stop when we see the first zero. So

local
exception Zero
fun p [] = 1

| p (0::_) = raise Zero
| p (h::t) = h * p t

in
fun listProdZero ns = p ns

handle Zero => 0
end

is more efficient than just

fun listProd ns = fold op* ns 1

and the more clever

fun listProd ns = if member 0 ns then 0 else fold op* ns 1
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The optimization in Example 4.2.13 works as follows: If we call listProd on a list l of length n,
then SML will carry out n+1 multiplications, even though we (as humans) know that the product
will be zero as soon as we see that the kth element of l is zero. So the last n−k+1 multiplications
are useless.

In listProdZero we use the local function p which raises the exception Zero in the head 0 case.
Raising the exception allows control to leapfrog directly over the entire rest of the computation
and directly allow the handler of listProdZero to return the correct value (zero).

For more information on SML

RTFM (=̂ “read the fine
manuals”)
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Chapter 5

Encoding Programs as Strings

With the abstract data types we looked at last, we studied term structures, i.e. complex math-
ematical objects that were built up from constructors, variables and parameters. The motivation
for this is that we wanted to understand SML programs. And indeed we have seen that there is a
close connection between SML programs on the one side and abstract data types and procedures
on the other side. However, this analysis only holds on a very high level, SML programs are not
terms per se, but sequences of characters we type to the keyboard or load from files. We only
interpret them to be terms in the analysis of programs.

To drive our understanding of programs further, we will first have to understand more about se-
quences of characters (strings) and the interpretation process that derives structured mathematical
objects (like terms) from them. Of course, not every sequence of characters will be interpretable,
so we will need a notion of (legal) well-formed sequence.

5.1 Formal Languages

We will now formally define the concept of strings and (building on that) formal languages.

The Mathematics of Strings

� Definition 5.1.1 An alphabet A is a finite set; we call each element a ∈ A
a character, and an n-tuple of s ∈ An a string (of length n over A).

� Definition 5.1.2 Note that A0 = {〈〉}, where 〈〉 is the (unique) 0-tuple.
With the definition above we consider 〈〉 as the string of length 0 and call it
the empty string and denote it with ε

� Note: Sets 6= Strings, e.g. {1, 2, 3} = {3, 2, 1}, but 〈1, 2, 3〉 6= 〈3, 2, 1〉.

� Notation 5.1.3 We will often write a string 〈c1, . . . , cn〉 as ”c1 . . . cn”, for
instance ”a, b, c” for 〈a, b, c〉

� Example 5.1.4 Take A = {h, 1, /} as an alphabet. Each of the symbols h,
1, and / is a character. The vector 〈/, /, 1, h, 1〉 is a string of length 5 over A.

� Definition 5.1.5 (String Length) Given a string s we denote its length
with |s|.

� Definition 5.1.6 The concatenation conc(s, t) of two strings s = 〈s1, ..., sn〉 ∈
An and t = 〈t1, ..., tm〉 ∈ Am is defined as 〈s1, ..., sn, t1, ..., tm〉 ∈ An+m.
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We will often write conc(s, t) as s+ t or simply st (e.g.
conc(”t, e, x, t”, ”b, o, o, k”) = ”t, e, x, t” + ”b, o, o, k” = ”t, e, x, t, b, o, o, k”)
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We have multiple notations for concatenation, since it is such a basic operation, which is used
so often that we will need very short notations for it, trusting that the reader can disambiguate
based on the context.

Now that we have defined the concept of a string as a sequence of characters, we can go on to
give ourselves a way to distinguish between good strings (e.g. programs in a given programming
language) and bad strings (e.g. such with syntax errors). The way to do this by the concept of a
formal language, which we are about to define.

Formal Languages

� Definition 5.1.7 Let A be an alphabet, then we define the sets A+ :=⋃
i∈N+ Ai of nonempty string s and A∗ := A+ ∪ {ε} of string s.

� Example 5.1.8 IfA = {a, b, c}, then A∗ = {ε, a, b, c, aa, ab, ac, ba, . . ., aaa, . . .}.

� Definition 5.1.9 A set L ⊆ A∗ is called a formal language in A.

� Definition 5.1.10 We use c[n] for the string that consists of n times c.

� Example 5.1.11 #[5] = 〈#,#,#,#,#〉

� Example 5.1.12 The set M = {ba[n] |n ∈ N} of strings that start with
character b followed by an arbitrary numbers of a’s is a formal language in
A = {a, b}.

� Definition 5.1.13 The concatenation conc(L1, L2) of two languages L1 and
L2 over the same alphabet is defined as conc(L1, L2) := {s1s2 | s1 ∈ L1 ∧ s2 ∈ L2}.
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There is a common misconception that a formal language is something that is difficult to under-
stand as a concept. This is not true, the only thing a formal language does is separate the “good”
from the bad strings. Thus we simply model a formal language as a set of stings: the “good”
strings are members, and the “bad” ones are not.

Of course this definition only shifts complexity to the way we construct specific formal languages
(where it actually belongs), and we have learned two (simple) ways of constructing them by
repetition of characters, and by concatenation of existing languages.

The next step will be to define some operations and relations on these new objects: strings. As
always, we are interested in well-formed sub-objects and ordering relations.

Substrings and Prefixes of Strings

� Definition 5.1.14 Let A be an alphabet, then we say that a string s ∈ A∗
is a substring of a string t ∈ A∗ (written s ⊆ t), iff there are strings v, w ∈ A∗,
such that t = vsw.

� Example 5.1.15 conc(/, 1, h) is a substring of conc(/, /, 1, h, 1), whereas
conc(/, 1, 1) is not.
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� Definition 5.1.16 A string p is a called a prefix of s (write p E s), iff there
is a string t, such that s = conc(p, t). p is a proper prefix of s (write p / s), iff
t 6= ε.

� Example 5.1.17 text is a prefix of textbook = conc(text, book).

� Note: A string is never a proper prefix of itself.
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We will now define an ordering relation for formal languages. The nice thing is that we can induce
an ordering on strings from an ordering on characters, so we only have to specify that (which is
simple for finite alphabets).

Lexical Order

� Definition 5.1.18 Let A be an alphabet and <A a strict partial order on A,
Then we define a relation <lex on A∗ by

(s <lex t) :⇔ s / t ∨ (∃u, v, w ∈ A∗ ∃a, b ∈ As = wau ∧ t = wbv ∧ (a <A b))

for s, t ∈ A∗. We call <lex the lexical order induced by <A on A∗.

� Theorem 5.1.19 <lex is a strict partial order on A∗. Moreover, if <A is
linear on A, then <lex is linear on A∗.

� Example 5.1.20 Roman alphabet with a<b<c· · ·<z; telephone book order
(computer <lex text, text <lex textbook)
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Even though the definition of the lexical ordering is relatively involved, we know it very well, it is
the ordering we know from the telephone books.

5.2 Elementary Codes

The next task for understanding programs as mathematical objects is to understand the process
of using strings to encode objects. The simplest encodings or “codes” are mappings from strings
to strings. We will now study their properties.

The most characterizing property for a code is that if we encode something with this code, then
we want to be able to decode it again: We model a code as a function (every character should
have a unique encoding), which has a partial inverse (so we can decode). We have seen above,
that this is is the case, iff the function is injective; so we take this as the defining characteristic of
a code.

Character Codes

� Definition 5.2.1 Let A and B be alphabets, then we call an injective function
c : A → B+ a character code. A string c(w) ∈ {c(a) | a ∈ A} is called a
codeword.

� Definition 5.2.2 A code is a called binary iff B = {0, 1}.
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� Example 5.2.3 Let A = {a, b, c} and B = {0, 1}, then c : A → B+ with
c(a) = 0011, c(b) = 1101, c(c) = 0110 c is a binary character code and the
strings 0011, 1101, and 0110 are the codewords of c.

� Definition 5.2.4 The extension of a code (on characters) c : A → B+ to a
function c′ : A∗ → B∗ is defined as c′(〈a1, . . . , an〉 = 〈c(a1), . . . , c(an)〉).

� Example 5.2.5 The extension c′ of c from the above example on the string
”b, b, a, b, c”

c′(”b, b, a, b, c”) = 1101︸︷︷︸
c(b)

, 1101︸︷︷︸
c(b)

, 0011︸︷︷︸
c(a)

, 1101︸︷︷︸
c(b)

, 0110︸︷︷︸
c(c)

� Definition 5.2.6 A (character) code c : A→ B+ is a prefix code iff none of
the codewords is a proper prefix to an other codeword, i.e.,

∀x, y ∈ Ax 6= y ⇒ (c(x) 6/ c(y) ∧ c(y) 6/ c(x))
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Character codes in and of themselves are not that interesting: we want to encode strings in another
alphabet. But they can be turned into mappings from strings to strings by extension: strings are
sequences of characters, so we can encode them by concatenating the codewords.

We will now come to a paradigmatic example of an encoding function: the Morse code, which was
used for transmitting text information as standardized sequences of short and long signals called
“dots” and “dashes”.

Morse Code

� In the early days of telecommunication the “Morse Code” was used to transmit
texts, using long and short pulses of electricity.

� Definition 5.2.7 (Morse Code) The following table gives the Morse code
for the text characters:

A .- B -... C -.-. D -.. E .

F ..-. G --. H .... I .. J .---

K -.- L .-.. M -- N -. O ---

P .--. Q --.- R .-. S ... T -

U ..- V ...- W .-- X -..- Y -.--

Z --..

1 .---- 2 ..--- 3 ...-- 4 ....- 5 .....

6 -.... 7 --... 8 ---.. 9 ----. 0 -----

Furthermore, the Morse code uses .−.−.− for full stop (sentence termination),
−−..−− for comma, and ..−−.. for question mark.

� Example 5.2.8 The Morse Code in the table above induces a character code
µ : R → {.,−}.
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Note: The Morse code is a character code, but its extension (which was actually used for trans-
mission of texts) is not an injective mapping, as e.g. µ′(AT) = µ′(W). While this is mathematically
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a problem for decoding texts encoded by Morse code, for humans (who were actually decoding it)
this ist not, since they understand the meaning of the texts and can thus eliminate nonsensical
possibilities, preferring the string “ARRIVE AT 6” over “ARRIVE W 6”.

The Morse code example already suggests the next topic of investigation: When are the extensions
of character codes injective mappings (that we can decode automatically, without taking other
information into account).

Codes on Strings

� Definition 5.2.9 A function c′ : A∗ → B∗ is called a code on strings or short
string code if c′ is an injective function.

� Theorem 5.2.10 ( ) There are character codes whose extensions are not
string codes.

� Proof: we give an example

P.1 Let A = {a, b, c}, B = {0, 1}, c(a) = 0, c(b) = 1, and c(c) = 01.

P.2 The function c is injective, hence it is a character code.

P.3 But its extension c′ is not injective as c′(ab) = 01 = c′(c).

Question: When is the extension of a character code a string code?(so we can
encode strings)
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Note that in contrast to checking for injectivity on character codes – where we have to do n2/2
comparisons for a source alphabet A of size n, we are faced with an infinite problem, since A∗ is
infinite. Therefore we look for sufficient conditions for injectivity that can be decided by a finite
process.

We will answer the question above by proving one of the central results of elementary coding
theory: prefix codes induce string codes. This plays back the infinite task of checking that a string
code is injective to a finite task (checking whether a character code is a prefix code).

� Prefix Codes induce Codes on Strings

� Theorem 5.2.11 The extension c′ : A∗ → B∗ of a prefix code c : A → B+

is a string code.

� Proof: We will prove this theorem via induction over the string length n

P.1 We show that c′ is injective (decodable) on strings of length n ∈ N.

P.1.1 n = 0 (base case): If |s| = 0 then c′(ε) = ε, hence c′ is injective.

P.1.2 n = 1 (another): If |s| = 1 then c′ = c thus injective, as c is char. code.

P.1.3 Induction step (n to n+ 1):

P.1.3.1 Let a = a0, . . ., an, And we only know c′(a) = c(a0), . . ., c(an).

P.1.3.2 It is easy to find c(a0) in c′(a): It is the prefix of c′(a) that is in c(A). This
is uniquely determined, since c is a prefix code. If there were two distinct ones,
one would have to be a prefix of the other, which contradicts our assumption
that c is a prefix code.
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P.1.3.3 If we remove c(a0) from c(a), we only have to decode c(a1), . . ., c(an), which
we can do by inductive hypothesis.

P.2 Thus we have considered all the cases, and proven the assertion.
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Even armed with Theorem 5.2.11, checking whether a code is a prefix code can be a tedious
undertaking: the naive algorithm for this needs to check all pairs of codewords. Therefore we
will look at a couple of properties of character codes that will ensure a prefix code and thus
decodeability.

Sufficient Conditions for Prefix Codes

� Theorem 5.2.12 If c is a code with |c(a)| = k for all a ∈ A for some k ∈ N,
then c is prefix code.

� Proof: by contradiction.

P.1 If c is not at prefix code, then there are a, b ∈ A with c(a) / c(b).

P.2 clearly |c(a)| < |c(b)|, which contradicts our assumption.

� Theorem 5.2.13 Let c : A→ B+ be a code and ∗ 6∈ B be a character, then
there is a prefix code c∗ : A→ (B ∪ {∗})+, such that c(a)/c∗(a), for all a ∈ A.

� Proof: Let c∗(a) := c(a) + ”∗” for all a ∈ A.

P.1 Obviously, c(a) / c∗(a).

P.2 If c∗ is not a prefix code, then there are a, b ∈ A with c∗(a) / c∗(b).

P.3 So, c∗(b) contains the character ∗ not only at the end but also somewhere
in the middle.

P.4 This contradicts our construction c∗(b) = c(b) + ”∗”, where c(b) ∈ B+

� Definition 5.2.14 The new character that makes an arbitrary code a prefix
code in the construction of Theorem 5.2.13 is often called a stop character.
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Theorem 5.2.13 allows another interpretation of the decodeability of the Morse code: it can be
made into a prefix code by adding a stop character (in Morse code a little pause). In reality, pauses
(as stop characters) were only used where needed (e.g. when transmitting otherwise meaningless
character sequences).

5.3 Character Codes in the Real World

We will now turn to a class of codes that are extremely important in information technology:
character encodings. The idea here is that for IT systems we need to encode characters from
our alphabets as bit strings (sequences of binary digits 0 and 1) for representation in computers.
Indeed the Morse code we have seen above can be seen as a very simple example of a character
encoding that is geared towards the manual transmission of natural languages over telegraph lines.
For the encoding of written texts we need more extensive codes that can e.g. distinguish upper
and lowercase letters.
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The ASCII code we will introduce here is one of the first standardized and widely used character
encodings for a complete alphabet. It is still widely used today. The code tries to strike a balance
between a being able to encode a large set of characters and the representational capabilities in
the time of punch cards (see below).

The ASCII Character Code

� Definition 5.3.1 The American Standard Code for Information Interchange
(ASCII) code assigns characters to numbers 0-127

Code ···0 ···1 ···2 ···3 ···4 ···5 ···6 ···7 ···8 ···9 ···A ···B ···C ···D ···E ···F
0··· NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1··· DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2··· ! ” # $ % & ′ ( ) ∗ + , − . /
3··· 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4··· @ A B C D E F G H I J K L M N O

5··· P Q R S T U V W X Y Z [ \ ] ˆ
6··· ‘ a b c d e f g h i j k l m n o

7··· p q r s t u v w x y z { | } ∼ DEL

The first 32 characters are control characters for ASCII devices like printers

�� Motivated by punchcards: The character 0 (binary 0000000) carries no infor-
mation NUL, (used as dividers)
Character 127 (binary 1111111) can be used for deleting (overwriting) last
value (cannot delete holes)

� The ASCII code was standardized in 1963 and is still prevalent in computers
today (but seen as US-centric)
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Punch cards were the the preferred medium for long-term storage of programs up to the late
1970s, since they could directly be produced by card punchers and automatically read by comput-
ers.

A Punchcard

� A punch card is a piece of stiff paper that contains digital information repre-
sented by the presence or absence of holes in predefined positions.

� Example 5.3.2 This punch card encoded the FORTRAN statement Z(1) = Y + W(1)
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Up to the 1970s, computers were batch machines, where the programmer delivered the program to
the operator (a person behind a counter who fed the programs to the computer) and collected the
printouts the next morning. Essentially, each punch card represented a single line (80 characters)
of program code. Direct interaction with a computer is a relatively young mode of operation.

The ASCII code as above has a variety of problems, for instance that the control characters are
mostly no longer in use, the code is lacking many characters of languages other than the English
language it was developed for, and finally, it only uses seven bits, where a byte (eight bits) is the
preferred unit in information technology. Therefore there have been a whole zoo of extensions,
which — due to the fact that there were so many of them — never quite solved the encoding
problem.

Problems with ASCII encoding

� Problem: Many of the control characters are obsolete by now (e.g. NUL,BEL,
or DEL)

� Problem: Many European characters are not represented (e.g. è,ñ,ü,ß,. . . )

� European ASCII Variants: Exchange less-used characters for national ones

� Example 5.3.3 (German ASCII) remap e.g. [ 7→ Ä, ] 7→ Ü in German
ASCII (“Apple ][” comes out as “Apple ÜÄ”)

� Definition 5.3.4 (ISO-Latin (ISO/IEC 8859)) 16 Extensions of ASCII
to 8-bit (256 characters) ISO-Latin 1 =̂ “Western European”, ISO-Latin 6 =̂ “Arabic”,ISO-

Latin 7 =̂ “Greek”. . .

� Problem: No cursive Arabic, Asian, African, Old Icelandic Runes, Math,. . .

� Idea: Do something totally different to include all the world’s scripts: For a
scalable architecture, separate

� what characters are available from the (character set)

� bit string-to-character mapping (character encoding)
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The goal of the UniCode standard is to cover all the worlds scripts (past, present, and future) and
provide efficient encodings for them. The only scripts in regular use that are currently excluded
are fictional scripts like the elvish scripts from the Lord of the Rings or Klingon scripts from the
Star Trek series.

An important idea behind UniCode is to separate concerns between standardizing the character
set — i.e. the set of encodable characters and the encoding itself.

Unicode and the Universal Character Set

� Definition 5.3.5 (Twin Standards) A scalable Architecture for represent-
ing all the worlds scripts

� The Universal Character Set defined by the ISO/IEC 10646 International
Standard, is a standard set of characters upon which many character en-
codings are based.

� The Unicode Standard defines a set of standard character encodings, rules
for normalization, decomposition, collation, rendering and bidirectional dis-
play order

� Definition 5.3.6 Each UCS character is identified by an unambiguous name
and an integer number called its code point.

� The UCS has 1.1 million code points and nearly 100 000 characters.

� Definition 5.3.7 Most (non-Chinese) characters have code points in [1, 65536]
(the basic multilingual plane).

� Notation 5.3.8 For code points in the Basic Multilingual Plane (BMP), four
digits are used, e.g. U+0058 for the character LATIN CAPITAL LETTER X;
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Note that there is indeed an issue with space-efficient encoding here. UniCode reserves space for
232 (more than a million) characters to be able to handle future scripts. But just simply using
32 bits for every UniCode character would be extremely wasteful: UniCode-encoded versions of
ASCII files would be four times as large.

Therefore UniCode allows multiple encodings. UTF-32 is a simple 32-bit code that directly uses
the code points in binary form. UTF-8 is optimized for western languages and coincides with
the ASCII where they overlap. As a consequence, ASCII encoded texts can be decoded in UTF-8
without changes — but in the UTF-8 encoding, we can also address all other UniCode characters
(using multi-byte characters).

Character Encodings in Unicode

� Definition 5.3.9 A character encoding is a mapping from bit strings to UCS
code points.

� Idea: Unicode supports multiple encodings (but not character sets) for effi-
ciency
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� Definition 5.3.10 (Unicode Transformation Format)

� UTF-8, 8-bit, variable-width encoding, which maximizes compatibility with
ASCII.

� UTF-16, 16-bit, variable-width encoding (popular in Asia)

� UTF-32, a 32-bit, fixed-width encoding (for safety)

� Definition 5.3.11 The UTF-8 encoding follows the following encoding scheme

Unicode Byte1 Byte2 Byte3 Byte4

U+000000− U+00007F 0xxxxxxx

U+000080− U+0007FF 110xxxxx 10xxxxxx

U+000800− U+00FFFF 1110xxxx 10xxxxxx 10xxxxxx

U+010000− U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

� Example 5.3.12 $ = U+0024 is encoded as 00100100 (1 byte)

¢ = U+00A2 is encoded as 11000010,10100010 (two bytes)

e = U+20AC is encoded as 11100010,10000010,10101100 (three bytes)
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Note how the fixed bit prefixes in the encoding are engineered to determine which of the four cases
apply, so that UTF-8 encoded documents can be safely decoded..

5.4 Formal Languages and Meaning

After we have studied the elementary theory of codes for strings, we will come to string represen-
tations of structured objects like terms. For these we will need more refined methods.

As we have started out the course with unary natural numbers and added the arithmetical
operations to the mix later, we will use unary arithmetics as our running example and study
object.

A formal Language for Unary Arithmetics

� Idea: Start with something very simple: Unary Arithmetics (i.e. N with
addition, multiplication, subtraction, and integer division)

� Eun is based on the alphabet Σun := Cun ∪ V ∪ F 2
un ∪B, where

� Cun := {/}∗ is a set of constant name s,

� V := {x} × {1, . . . , 9} × {0, . . . , 9}∗ is a set of variable name s,

� F 2
un := {add, sub,mul, div,mod} is a set of (binary) function name s, and

� B := {(, )} ∪ {,} is a set of structural character s. ( “,”,”(“,”)”
characters!)

� define strings in stages: Eun :=
⋃
i∈NE

i
un, where

� E1
un := Cun ∪ V

� Ei+1
un := {a, add(a,b), sub(a,b),mul(a,b), div(a,b),mod(a,b) | a, b ∈ Eiun}
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We call a string in Eun an expression of unary arithmetics.
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The first thing we notice is that the alphabet is not just a flat any more, we have characters
with different roles in the alphabet. These roles have to do with the symbols used in the complex
objects (unary arithmetic expressions) that we want to encode.

The formal language Eun is constructed in stages, making explicit use of the respective roles of
the characters in the alphabet. Constants and variables form the basic inventory in E1

un, the
respective next stage is built up using the function names and the structural characters to encode
the applicative structure of the encoded terms.

Note that with this construction Eiun ⊆ Ei+1
un .

A formal Language for Unary Arithmetics (Examples)

� Example 5.4.1 add(//////,mul(x1902,///)) ∈ Eun

� Proof: we proceed according to the definition

P.1 We have ////// ∈ Cun, and x1902 ∈ V , and /// ∈ Cun by definition

P.2 Thus ////// ∈ E1
un, and x1902 ∈ E1

un and /// ∈ E1
un,

P.3 Hence, ////// ∈ E2
un and mul(x1902,///) ∈ E2

un

P.4 Thus add(//////,mul(x1902,///)) ∈ E3
un

P.5 And finally add(//////,mul(x1902,///)) ∈ Eun

� other examples:

� div(x201,add(////,x12))

� sub(mul(///,div(x23,///)),///)

� what does it all mean? (nothing, Eun is just a set of strings!)
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To show that a string is an expression s of unary arithmetics, we have to show that it is in the
formal language Eun. As Eun is the union over all the Eiun, the string s must already be a member
of a set Ejun for some j ∈ N. So we reason by the definintion establising set membership.

Of course, computer science has better methods for defining languages than the ones used here
(context free grammars), but the simple methods used here will already suffice to make the relevant
points for this course.

Syntax and Semantics (a first glimpse)

� Definition 5.4.2 A formal language is also called a syntax, since it only
concerns the “form” of strings.

� to give meaning to these strings, we need a semantics, i.e. a way to interpret
these.

� Idea (Tarski Semantics): A semantics is a mapping from strings to objects we
already know and understand (e.g. arithmetics).
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� e.g. add(//////,mul(x1902,///)) 7→ 6 + (x1902 · 3) (but what does this
mean?)

� looks like we have to give a meaning to the variables as well, e.g. x1902 7→
3, then add(//////,mul(x1902,///)) 7→ 6 + (3 · 3) = 15
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So formal languages do not mean anything by themselves, but a meaning has to be given to them
via a mapping. We will explore that idea in more detail in the following.
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Boolean Algebra

We will now look a formal language from a different perspective. We will interpret the language
of “Boolean expressions” as formulae of a very simple “logic”: A logic is a mathematical construct
to study the association of meaning to strings and reasoning processes, i.e. to study how humans1

derive new information and knowledge from existing one.

6.1 Boolean Expressions and their Meaning

In the following we will consider the Boolean Expressions as the language of “Propositional Logic”,
in many ways the simplest of logics. This means we cannot really express very much of interest,
but we can study many things that are common to all logics.

Let us try again (Boolean Expressions)

� Definition 6.1.1 (Alphabet) Ebool is based on the alphabetA := Cbool ∪ V ∪ F 1
bool ∪ F 2

bool ∪B,
where Cbool = {0, 1}, F 1

bool = {−} and F 2
bool = {+, ∗}. (V and B as in Eun)

� Definition 6.1.2 (Formal Language) Ebool :=
⋃
i∈NE

i
bool, where E1

bool :=
Cbool ∪ V and
Ei+1

bool := {a, (−a), (a+b), (a∗b) | a, b ∈ Eibool}.

� Definition 6.1.3 Let a ∈ Ebool. The minimal i, such that a ∈ Eibool is called
the depth of a.

� e1 := ((−x1)+x3) (depth 3)

� e2 := ((−(x1∗x2))+(x3∗x4)) (depth 4)

� e3 := ((x1+x2)+((−((−x1)∗x2))+(x3∗x4))) (depth 6)
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Boolean Expressions as Structured Objects.

� Idea: As strings in in Ebool are built up via the “union-principle”, we can think

1until very recently, humans were thought to be the only systems that could come up with complex argumenta-
tions. In the last 50 years this has changed: not only do we attribute more reasoning capabilities to animals, but
also, we have developed computer systems that are increasingly capable of reasoning.

99
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of them as constructor terms with variables

� Definition 6.1.4 The abstract data type

B := 〈{B}, {[1 : B], [0 : B], [− : B→ B], [+: B× B→ B], [∗ : B× B→ B]}〉

� via the translation

� Definition 6.1.5 σ : Ebool → TB(B;V) defined by

σ(1) := 1 σ(0) := 0
σ((−A)) := (−σ(A))
σ((A∗B)) := (σ(A)∗σ(B)) σ((A+B)) := (σ(A)+σ(B))

� We will use this intuition for our treatment of Boolean expressions and treat
the strings and constructor terms synonymously. (σ is a (hidden)
isomorphism)

� Definition 6.1.6 We will write (−A) as A and (A∗B) as A∗B (and similarly
for +). Furthermore we will write variables such as x71 as x71 and elide brackets
for sums and products according to their usual precedences.

� Example 6.1.7 σ(((−(x1∗x2))+(x3∗x4))) = x1 ∗ x2 + x3 ∗ x4

� : Do not confuse + and ∗ (Boolean sum and product) with their arithmetic
counterparts. (as members of a formal language they have no meaning!)
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Now that we have defined the formal language, we turn the process of giving the strings a mean-
ing. We make explicit the idea of providing meaning by specifying a function that assigns ob-
jects that we already understand to representations (strings) that do not have a priori meaning.

The first step in assigning meaning is to fix a set of objects what we will assign as meanings: the
“universe (of discourse)”. To specify the meaning mapping, we try to get away with specifying
as little as possible. In our case here, we assign meaning only to the constants and functions and
induce the meaning of complex expressions from these. As we have seen before, we also have to
assign meaning to variables (which have a different ontological status from constants); we do this
by a special meaning function: a variable assignment.

Boolean Expressions: Semantics via Models

� Definition 6.1.8 A model 〈U , I〉 for Ebool is a set U of objects (called the
universe) together with an interpretation function I on A with I(Cbool) ⊆ U ,
I(F 1

bool) ⊆ F(U ;U), and I(F 2
bool) ⊆ F(U2;U).

� Definition 6.1.9 A function ϕ : V → U is called a variable assignment.

� Definition 6.1.10 Given a model 〈U , I〉 and a variable assignment ϕ, the
evaluation function Iϕ : Ebool → U is defined recursively: Let c ∈ Cbool, a, b ∈
Ebool, and x ∈ V , then

� Iϕ(c) = I(c), for c ∈ Cbool

� Iϕ(x) = ϕ(x), for x ∈ V

http://creativecommons.org/licenses/by-sa/2.5/


6.1. BOOLEAN EXPRESSIONS AND THEIR MEANING 101

� Iϕ(a) = I(−)(Iϕ(a))

� Iϕ(a+ b) = I(+)(Iϕ(a), Iϕ(b)) and Iϕ(a ∗ b) = I(∗)(Iϕ(a), Iϕ(b))

� U = {T,F} with 0 7→ F, 1 7→ T,+ 7→ ∨, ∗ 7→ ∧,− 7→ ¬.

� U = Eun with 0 7→ /, 1 7→ //,+ 7→ div, ∗ 7→ mod,− 7→ λx.5.

� U = {0, 1} with 0 7→ 0, 1 7→ 1,+ 7→ min, ∗ 7→ max,− 7→ λx.1− x.
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Note that all three models on the bottom of the last slide are essentially different, i.e. there is
no way to build an isomorphism between them, i.e. a mapping between the universes, so that all
Boolean expressions have corresponding values.

To get a better intuition on how the meaning function works, consider the following example.
We see that the value for a large expression is calculated by calculating the values for its sub-
expressions and then combining them via the function that is the interpretation of the constructor
at the head of the expression.

Evaluating Boolean Expressions

� Example 6.1.11 Let ϕ := [T/x1], [F/x2], [T/x3], [F/x4], and I = {0 7→ F, 1 7→ T,+ 7→ ∨, ∗ 7→ ∧,− 7→ ¬},
then

Iϕ((x1 + x2) + (x1 ∗ x2 + x3 ∗ x4))
= Iϕ(x1 + x2) ∨ Iϕ(x1 ∗ x2 + x3 ∗ x4)
= Iϕ(x1) ∨ Iϕ(x2) ∨ Iϕ(x1 ∗ x2) ∨ Iϕ(x3 ∗ x4)
= ϕ(x1) ∨ ϕ(x2) ∨ ¬(Iϕ(x1 ∗ x2)) ∨ Iϕ(x3 ∗ x4)
= (T ∨ F) ∨ (¬(Iϕ(x1) ∧ Iϕ(x2)) ∨ (Iϕ(x3) ∧ Iϕ(x4)))
= T ∨ ¬(¬(Iϕ(x1)) ∧ ϕ(x2)) ∨ (ϕ(x3) ∧ ϕ(x4))
= T ∨ ¬(¬(ϕ(x1)) ∧ F) ∨ (T ∧ F)
= T ∨ ¬(¬(T) ∧ F) ∨ F
= T ∨ ¬(F ∧ F) ∨ F
= T ∨ ¬(F) ∨ F = T ∨ T ∨ F = T

� What a mess!
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Boolean Algebra

� Definition 6.1.12 A Boolean algebra is Ebool together with the models

� 〈{T,F}, {0 7→ F, 1 7→ T,+ 7→ ∨, ∗ 7→ ∧,− 7→ ¬}〉.
� 〈{0, 1}, {0 7→ 0, 1 7→ 1,+ 7→ max, ∗ 7→ min,− 7→ λx.1− x}〉.

� BTW, the models are equivalent (0=̂F, 1=̂T)

� Definition 6.1.13 We will use B for the universe, which can be either {0, 1}
or {T,F}

� Definition 6.1.14 We call two expressions e1, e2 ∈ Ebool equivalent (write
e1 ≡ e2), iff Iϕ(e1) = Iϕ(e2) for all ϕ.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


102 CHAPTER 6. BOOLEAN ALGEBRA

� Theorem 6.1.15 e1 ≡ e2, iff Iϕ((e1 + e2) ∗ (e1 + e2)) = T for all variable
assignments ϕ.

©: Michael Kohlhase 147

As we are mainly interested in the interplay between form and meaning in Boolean Algebra, we
will often identify Boolean expressions, if they have the same values in all situations (as specified
by the variable assignments). The notion of equivalent formulae formalizes this intuition.

A better mouse-trap: Truth Tables

� Truth tables to visualize truth functions:

·
T F
F T

∗ T F
T T F
F F F

+ T F
T T T
F T F

� If we are interested in values for all assignments (e.g. of
x123 ∗ x4 + x123 ∗ x72)

assignments intermediate results full
x4 x72 x123 e1 := x123 ∗ x72 e2 := e1 e3 := x123 ∗ x4 e3 + e2
F F F F T F T
F F T F T F T
F T F F T F T
F T T T F F F
T F F F T F T
T F T F T T T
T T F F T F T
T T T T F T T
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Boolean Equivalences

� Given a, b, c ∈ Ebool, ◦ ∈ {+, ∗}, let ◦̂ :=

{
+ if ◦ = ∗
∗ else

� We have the following equivalences in Boolean Algebra:

� a ◦ b ≡ b ◦ a (commutativity)

� (a ◦ b) ◦ c ≡ a ◦ (b ◦ c) (associativity)

� a ◦ (b◦̂c) ≡ (a ◦ b)◦̂(a ◦ c) (distributivity)

� a ◦ (a◦̂b) ≡ a (covering)

� (a ◦ b)◦̂(a ◦ b) ≡ a (combining)

� (a ◦ b)◦̂((a ◦ c)◦̂(b ◦ c)) ≡ (a ◦ b)◦̂(a ◦ c) (consensus)

� a ◦ b ≡ a◦̂b (De Morgan)
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6.2 Boolean Functions

We will now turn to “semantical” counterparts of Boolean expressions: Boolean functions. These
are just n-ary functions on the Boolean values.

Boolean functions are interesting, since can be used as computational devices; we will study
this extensively in the rest of the course. In particular, we can consider a computer CPU as
collection of Boolean functions (e.g. a modern CPU with 64 inputs and outputs can be viewed as
a sequence of 64 Boolean functions of arity 64: one function per output pin).

The theory we will develop now will help us understand how to “implement” Boolean functions
(as specifications of computer chips), viewing Boolean expressions very abstract representations of
configurations of logic gates and wiring. We will study the issues of representing such configurations
in more detail in Chapter 10.

Boolean Functions

� Definition 6.2.1 A Boolean function is a function from Bn to B.

� Definition 6.2.2 Boolean functions f, g : Bn → B are called equivalent,
(write f ≡ g), iff f(c) = g(c) for all c ∈ Bn. (equal as functions)

� Idea: We can turn any Boolean expression into a Boolean function by ordering
the variables (use the lexical ordering on {X} × {1, . . . , 9}+ × {0, . . . , 9}∗)

� Definition 6.2.3 Let e ∈ Ebool and {x1, . . . , xn} the set of variables in e,
then call V L(e) := 〈x1, . . . , xn〉 the variable list of e, iff xi <lex xj where
i ≤ j.

� Definition 6.2.4 Let e ∈ Ebool with V L(e) = 〈x1, . . . , xn〉, then we call the
function

fe : Bn → B with fe : c 7→ Iϕc(e)

the Boolean function induced by e, where ϕ〈c1,...,cn〉 : xi 7→ ci. Dually, we say
that e realizes fe.

� Theorem 6.2.5 e1 ≡ e2, iff fe1 = fe2 .
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The definition above shows us that in theory every Boolean Expression induces a Boolean function.
The simplest way to compute this is to compute the truth table for the expression and then read
off the function from the table.

Boolean Functions and Truth Tables

� The truth table of a Boolean function is defined in the obvious way:

x1 x2 x3 fx1∗(x2+x3)
T T T T
T T F F
T F T T
T F F T
F T T F
F T F F
F F T F
F F F F

� compute this by assigning values and evaluating
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� Question: can we also go the other way? (from function to expression?)

� Idea: read expression of a special form from truth tables (Boolean
Polynomials)
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Computing a Boolean expression from a given Boolean function is more interesting — there are
many possible candidates to choose from; after all any two equivalent expressions induce the same
function. To simplify the problem, we will restrict the space of Boolean expressions that realize a
given Boolean function by looking only for expressions of a given form.

Boolean Polynomials

� special form Boolean Expressions

� a literal is a variable or the negation of a variable

� a monomial or product term is a literal or the product of literals

� a clause or sum term is a literal or the sum of literals

� a Boolean polynomial or sum of products is a product term or the sum of
product terms

� a clause set or product of sums is a sum term or the product of sum terms

For literals xi, write x1
i , for xi write x0

i . ( not exponentials, but intended
truth values)

� Notation 6.2.6 Write xixj instead of xi ∗ xj . (like in math)
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Armed with this normal form, we can now define an way of realizing Boolean functions.

Normal Forms of Boolean Functions

� Definition 6.2.7 Let f : Bn → B be a Boolean function and c ∈ Bn, then
Mc :=

∏n
j=1 x

cj
j and Sc :=

∑n
j=1 x

1−cj
j

� Definition 6.2.8 The disjunctive normal form (DNF) of f is
∑
c∈f−1(1)Mc

(also called the canonical sum (written as DNF(f)))

� Definition 6.2.9 The conjunctive normal form (CNF) of f is
∏
c∈f−1(0) Sc

(also called the canonical product (written as CNF(f)))

x1 x2 x3 f monomials clauses
0 0 0 1 x0

1 x
0
2 x

0
3

0 0 1 1 x0
1 x

0
2 x

1
3

0 1 0 0 x1
1 + x0

2 + x1
3

0 1 1 0 x1
1 + x0

2 + x0
3

1 0 0 1 x1
1 x

0
2 x

0
3

1 0 1 1 x1
1 x

0
2 x

1
3

1 1 0 0 x0
1 + x0

2 + x1
3

1 1 1 1 x1
1 x

1
2 x

1
3
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� DNF of f : x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3

� CNF of f : (x1 + x2 + x3) (x1 + x2 + x3) (x1 + x2 + x3)
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In the light of the argument of understanding Boolean expressions as implementations of Boolean
functions, the process becomes interesting while realizing specifications of chips. In particular it
also becomes interesting, which of the possible Boolean expressions we choose for realizing a given
Boolean function. We will analyze the choice in terms of the “cost” of a Boolean expression.

Costs of Boolean Expressions

� Idea: Complexity Analysis is about the estimation of resource needs

� if we have two expressions for a Boolean function, which one to choose?

� Idea: Let us just measure the size of the expression (after all it needs to be
written down)

� Better Idea: count the number of operators (computation elements)

� Definition 6.2.10 The cost C(e) of e ∈ Ebool is the number of operators in
e.

� Example 6.2.11 C(x1 + x3) = 2, C(x1 ∗ x2 + x3 ∗ x4) = 4, C((x1 + x2) + (x1 ∗ x2 + x3 ∗ x4)) =
7

� Definition 6.2.12 Let f : Bn → B be a Boolean function, then C(f) :=
min({C(e) | f = fe}) is the cost of f .

� Note: We can find expressions of arbitrarily high cost for a given Boolean
function. (e ≡ e ∗ 1)

� but how to find such an e with minimal cost for f?
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6.3 Complexity Analysis for Boolean Expressions

We have learned that we can always realize a Boolean function as a Boolean Expression – which
can ultimately serve as a blueprint for a realization in a circuit. But to get a full understanding
of the problem, we should be able to predict the cost/size of the realizing Boolean expressions.

In principle, knowing how to realize a Boolean function would be sufficient to start a business
as a chip manufacturer: clients come with a Boolean function, and the manufacturer computes
the Boolean expression and produces the chip. But to be able to quote a price for the chip, the
manufacturer needs to be able to predict the size of the Boolean expression before it is actually
computed. Thus the need for prediction.

Before we turn to the prediction of cost/size for Boolean expressions, we will introduce the
basic tools for this kind of analysis: A way of even expressing the results.
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6.3.1 The Mathematics of Complexity

We will now introduce some very basic concepts of computational complexity theory – the disci-
pline of classifying algorithms and the computational problems they solve into classes of inherent
difficulty. In this classification, we are interested only in properties that are inherent to the prob-
lem or algorithm, not in the specific hardware or realization. This requires a special vocabulary
which we will now introduce.

We want to classify the resource consumption of a computational process or problem in terms of
the size of the “size” of the problem description. Thus we use functions from N (the problem size)
to N (the resources consumed).

Example 6.3.1 (Mazes) We have already looked at different algorithms for constructing mazes
in Example 2.2.14. There the problem size was the number of cells in the maze and the resource
was the runtime in micro-seconds. The simple computation there shows that different growth
patterns have great effects on computation time.

Note that the actual resource consumption function of actual computations depends very much on
external factors that have nothing to do with the algorithm itself, e.g. the startup time or memory
space of the runtime environment, garbage collection cycles, memory size that forces swapping,
etc, and of course the processor speed itself. Therefore we want to abstract away from such factors
in disregarding constant factors (processor speed) and startup effects.

Finally, we are always interested in the “worst-case behavior” – i.e. the maximal resource con-
sumption over all possible inputs for the algorithm. But – as this may be difficult to predict, we
are interested in upper and lower bounds of that.

All of these considerations lead to the notion of Landau sets we introduce now

The Landau Notations (aka. “big-O” Notation)

� Definition 6.3.2 Let f, g : N→ N, we say that f is asymptotically bounded
by g, written as (f ≤a g), iff there is an n0 ∈ N, such that f(n) ≤ g(n) for all
n > n0.

� Definition 6.3.3 The three Landau set s O(g),Ω(g),Θ(g) are defined as

� O(g) = {f | ∃k > 0f ≤a k · g}
� Ω(g) = {f | ∃k > 0f ≥a k · g}
� Θ(g) = O(g) ∩ Ω(g)

Intuition: The Landau sets express the “shape of growth” of the graph of a
function.

� � If f ∈ O(g), then f grows at most as fast as g. (“f is in the order of g”)

� If f ∈ Ω(g), then f grows at least as fast as g. (“f is at least in the order
of g”)

� If f ∈ Θ(g), then f grows as fast as g. (“f is strictly in the order of g”)

� Notation 6.3.4 ( ) We often see f = O(g) as a statement of complexity;
this is a funny notation for n ∈ fO(g)!
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The practical power of Landau sets as a tool for classifying resource consumption of algorithms
and computational problems comes from the way we can calculate with them.
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Computing with Landau Sets

� Lemma 6.3.5 We have the following computation rules for Landau sets:

� If k 6= 0 and f ∈ O(g), then (kf) ∈ O(g).

� If fi ∈ O(gi), then (f1 + f2) ∈ O(g1 + g2)

� If fi ∈ O(gi), then (f1f2) ∈ O(g1g2)

� Notation 6.3.6 If e is an expression in n, we write O(e) for O(λn.e) (for
Ω/Θ too)

Idea: the fastest growth function in sum determines the O-class

�� Example 6.3.7 (λn.263748) ∈ O(1)

� Example 6.3.8 (λn.26n+ 372) ∈ O(n)

� Example 6.3.9 (λn.857n10 + 7342n7 + 26n2 + 902) ∈ O(n10)

� Example 6.3.10 (λn.3 · 2n + 72) ∈ O(2n)

� Example 6.3.11 (λn.3 · 2n + 7342n7 + 26n2 + 722) ∈ O(2n)
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Note that the “arithmetic operations” in Lemma 6.3.5 are applied to functions as “pointwise”
operations.

A useful consequence of the addition rule is the following:

Lemma 6.3.12 If fi ∈ O(g), then (f1 + f2) ∈ O(g)

The examples show that the computation rules from Lemma 6.3.5 allow us to classify complex
functions by dropping lower-growth summands and scalar factors. They also show us that we only
need to consider very simple representatives for the Landau sets.

Commonly used Landau Sets

�

Landau set class name rank Landau set class name rank
O(1) constant 1 O(n2) quadratic 4

O(log2(n)) logarithmic 2 O(nk) polynomial 5
O(n) linear 3 O(kn) exponential 6

� Theorem 6.3.13 These Ω-classes establish a ranking (increasing rank ;
increasing growth)

O(1)⊂O(log2(n))⊂O(n)⊂O(n2)⊂O(nk
′
)⊂O(kn)

where k′ > 2 and k > 1. The reverse holds for the Ω-classes

Ω(1)⊃Ω(log2(n))⊃Ω(n)⊃Ω(n2)⊃Ω(nk
′
)⊃Ω(kn)

� Idea: Use O-classes for worst-case complexity analysis and Ω-classes for best-
case.
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With the basics of complexity theory well-understood, we can now analyze the cost-complexity of
Boolean expressions that realize Boolean functions.

6.3.2 Asymptotic Bounds for Costs of Boolean Expressions

In this subsection we will derive some results on the (cost)-complexity of realizing a Boolean
function as a Boolean expression. The first result is a very naive counting argument based on the
fact that we can always realize a Boolean function via its DNF or CNF. The second result gives us
a better complexity with a more involved argument. Another difference between the proofs is that
the first one is constructive, i.e. we can read an algorithm that provides Boolean expressions of
the complexity claimed by the algorithm for a given Boolean function. The second proof gives us
no such algorithm, since it is non-constructive. Finally, we derive a lower bound of the worst-case
complexity that shows that the upper bound from the second proof is almost tight.

An Upper Bound for the Cost of BF with n variables

� Idea: Every Boolean function has a DNF and CNF, so we compute its cost.

� Example 6.3.14 Let us look at the size of the DNF or CNF for f : B3 → B.

x1 x2 x3 f monomials clauses
0 0 0 1 x0

1 x
0
2 x

0
3

0 0 1 1 x0
1 x

0
2 x

1
3

0 1 0 0 x1
1 + x0

2 + x1
3

0 1 1 0 x1
1 + x0

2 + x0
3

1 0 0 1 x1
1 x

0
2 x

0
3

1 0 1 1 x1
1 x

0
2 x

1
3

1 1 0 0 x0
1 + x0

2 + x1
3

1 1 1 1 x1
1 x

1
2 x

1
3

� Theorem 6.3.15 Any f : Bn → B is realized by an e ∈ Ebool with C(e) ∈
O(n · 2n).

Proof: by counting (constructive proof (we exhibit a witness))

� P.1 either en := CNF(f) has 2n

2 clauses or less or DNF(f) does monomials

take smaller one, multiply/sum the monomials/clauses at cost 2n−1 − 1

there are n literals per clause/monomial ei, so C(ei) ≤ 2n− 1

so C(en) ≤ 2n−1 − 1 + 2n−1 · (2n− 1) and thus C(en) ∈ O(n · 2n)
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For this proof we will introduce the concept of a “realization cost function” κ : N → N to save
space in the argumentation. The trick in this proof is to make the induction on the arity work
by splitting an n-ary Boolean function into two n− 1-ary functions and estimate their complexity
separately. This argument does not give a direct witness in the proof, since to do this we have to
decide which of these two split-parts we need to pursue at each level. This yields an algorithm for
determining a witness, but not a direct witness itself.

P.2 P.3 P.4 We can do better (if we accept complicated witness)
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� Theorem 6.3.16 Let κ(n) := max({C(f) | f : Bn → B}), then κ ∈ O(2n).

� Proof: we show that κ(n) ≤ 2n+1 by induction on n

P.1.1 base case (n = 1): We count the operators in all members: B → B =
{f1, f0, fx1 , fx1}, so κ(1) = 1 and thus κ(1) ≤ 22.

P.1.2 step case (n > 1):

P.1.2.1 given f : Bn → B, then f(a1, . . . , an) = 1, iff either

� an = 0 and f(a1, . . . , an−1, 0) = 1 or

� an = 1 and f(a1, . . . , an−1, 1) = 1

P.1.2.2 Let fi(a1, . . . , an−1) := f(a1, . . . , an−1, i) for i ∈ {0, 1},
P.1.2.3 then there are ei ∈ Ebool, such that fi = fei and C(ei) = 2n. (IH)

P.1.2.4 thus f = fe, where e := xn ∗ e0 + xn ∗ e1 and κ(n)=2 · 2n−1 + 4≤2n+1

as 2 ≤ n.
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The next proof is quite a lot of work, so we will first sketch the overall structure of the proof,
before we look into the details. The main idea is to estimate a cleverly chosen quantity from
above and below, to get an inequality between the lower and upper bounds (the quantity itself is
irrelevant except to make the proof work).

A Lower Bound for the Cost of BF with n Variables

� Theorem 6.3.17 κ ∈ Ω( 2n

log2(n) )

� Proof: Sketch (counting again!)

P.1 the cost of a function is based on the cost of expressions.

P.2 consider the set En of expressions with n variables of cost no more than
κ(n).

P.3 find an upper and lower bound for #(En): Φ(n) ≤ #(En) ≤ Ψ(κ(n))

P.4 in particular: Φ(n) ≤ Ψ(κ(n))

P.5 solving for κ(n) yields κ(n) ≥ Ξ(n) so κ ∈ Ω( 2n

log2(n) )

� We will expand P.3 and P.5 in the next slides
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A Lower Bound For κ(n)-Cost Expressions

� Definition 6.3.18 En := {e ∈ Ebool | e has n variables and C(e) ≤ κ(n)}

� Lemma 6.3.19 #(En) ≥ #(Bn → B)

� Proof:

P.1 For all fn ∈ Bn → B we have C(fn) ≤ κ(n)
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P.2 C(fn) = min({C(e) | fe = fn}) choose efn with C(efn) = C(fn)

P.3 all distinct: if eg ≡ eh, then feg = feh and thus g = h.

� Corollary 6.3.20 #(En) ≥ 22n

Proof: consider the n dimensional truth tables

� P.1 2n entries that can be either 0 or 1, so 22n possibilities

so #(Bn → B) = 22n
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P.2 An Upper Bound For κ(n)-cost Expressions

� Idea: Estimate the number of Ebool strings that can be formed at a given cost
by looking at the length and alphabet size.

� Definition 6.3.21 Given a cost c let Λ(e) be the length of e considering
variables as single characters. We define

σ(c) := max({Λ(e) | e ∈ Ebool ∧ (C(e) ≤ c)})

� Lemma 6.3.22 σ(n) ≤ 5n for n > 0.

� Proof: by induction on n

P.1.1 base case: The cost 1 expressions are of the form (v◦w) and (−v), where
v and w are variables. So the length is at most 5.

P.1.2 step case: σ(n) = Λ((e1◦e2)) = Λ(e1)+Λ(e2)+3, where C(e1) + C(e2) ≤
n− 1. so σ(n) ≤ σ(i) + σ(j) + 3 ≤ 5 · C(e1) + 5 · C(e2) + 3 ≤ 5 · n− 1 + 5 =

5n

� Corollary 6.3.23 max({Λ(e) | e ∈ En}) ≤ 5 · κ(n)
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An Upper Bound For κ(n)-cost Expressions

� Idea: e ∈ En has at most n variables by definition.

� Let An := {x1, . . ., xn, 0, 1, ∗,+,−, (, )}, then #(An) = n+ 7

� Corollary 6.3.24 En ⊆
⋃5κ(n)
i=0 An

i and #(En) ≤ (n+7)5κ(n)+1−1
n+7

� Proof Sketch: Note that the Aj are disjoint for distinct n, so

#(

5κ(n)⋃
i=0

Ani
) =

5κ(n)∑
i=0

#(Ani) =

5κ(n)∑
i=0

#(Ani) =

5κ(n)∑
i=0

(n + 7)i =
(n + 7)5κ(n)+1 − 1

n + 6
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Solving for κ(n)

� (n+7)5κ(n)+1−1
n+6 ≥ 22n

� (n+ 7)
5κ(n)+1 ≥ 22n (as (n+ 7)

5κ(n)+1 ≥ (n+7)5κ(n)+1−1
n+6 )

� 5κ(n) + 1 · log2(n+ 7) ≥ 2n (as loga(x) = logb(x) · loga(b))

� 5κ(n) + 1 ≥ 2n

log2(n+7)

� κ(n) ≥ 1/5 · 2n

log2(n+7) − 1

� κ(n) ∈ Ω( 2n

log2(n) )
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6.4 The Quine-McCluskey Algorithm

After we have studied the worst-case complexity of Boolean expressions that realize given Boolean
functions, let us return to the question of computing realizing Boolean expressions in practice. We
will again restrict ourselves to the subclass of Boolean polynomials, but this time, we make sure
that we find the optimal representatives in this class.

The first step in the endeavor of finding minimal polynomials for a given Boolean function is to
optimize monomials for this task. We have two concerns here. We are interested in monomials
that contribute to realizing a given Boolean function f (we say they imply f or are implicants),
and we are interested in the cheapest among those that do. For the latter we have to look at a way
to make monomials cheaper, and come up with the notion of a sub-monomial, i.e. a monomial
that only contains a subset of literals (and is thus cheaper.)

Constructing Minimal Polynomials: Prime Implicants

� Definition 6.4.1 We will use the following ordering on B: F ≤ T(remember
0 ≤ 1)

and say that that a monomial M ′ dominates a monomial M , iff fM (c) ≤ fM ′(c)
for all c ∈ Bn. (write M ≤M ′)

� Definition 6.4.2 A monomial M implies a Boolean function f : Bn → B (M
is an implicant of f ; write M � f), iff fM (c) ≤ f(c) for all c ∈ Bn.

� Definition 6.4.3 Let M = L1 · · ·Ln and M ′ = L′1 · · ·L′n′ be monomials,
then M ′ is called a sub-monomial of M (write M ′ ⊂M), iff M ′ = 1 or

� for all j ≤ n′, there is an i ≤ n, such that L′j = Li and

� there is an i ≤ n, such that Li 6= L′j for all j ≤ n

In other words: M is a sub-monomial of M ′, iff the literals of M are a proper
subset of the literals of M ′.
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With these definitions, we can convince ourselves that sub-monomials dominate their super-
monomials. Intuitively, a monomial is a conjunction of conditions that are needed to make the
Boolean function f true; if we have fewer of them, then f becomes “less true”. In particular, if
we have too few of them, then we cannot approximate the truth-conditions of f sufficiently. So
we will look for monomials that approximate f well enough and are shortest with this property:
the prime implicants of f .

� Constructing Minimal Polynomials: Prime Implicants

� Lemma 6.4.4 If M ′ ⊂M , then M ′ dominates M .

� Proof:

P.1 Given c ∈ Bn with fM (c) = T, we have, fLi(c) = T for all literals in M .

P.2 As M ′ is a sub-monomial of M , then fL′j (c) = T for each literal L′j of

M ′.

P.3 Therefore, fM ′(c) = T.

� Definition 6.4.5 An implicant M of f is a prime implicant of f iff no sub-
monomial of M is an implicant of f .

©: Michael Kohlhase 166

The following Theorem verifies our intuition that prime implicants are good candidates for con-
structing minimal polynomials for a given Boolean function. The proof is rather simple (if no-
tationally loaded). We just assume the contrary, i.e. that there is a minimal polynomial p that
contains a non-prime-implicant monomial Mk, then we can decrease the cost of the of p while still
inducing the given function f . So p was not minimal which shows the assertion.

Prime Implicants and Costs

� Theorem 6.4.6 Given a Boolean function f 6= λx.F and a Boolean polyno-
mial fp ≡ f with minimal cost, i.e., there is no other polynomial p′ ≡ p such
that C(p′) < C(p). Then, p solely consists of prime implicants of f .

� Proof: The theorem obviously holds for f = λx.T.

P.1 For other f , we have f ≡ fp where p :=
∑n
i=1Mi for some n ≥ 1

monomials Mi.

P.2 Now, suppose that Mi is not a prime implicant of f , i.e., M ′ � f for some
M ′ ⊂Mk with k < i.

P.3 Let us substitute Mk by M ′: p′ :=
∑k−1
i=1 Mi +M ′ +

∑n
i=k+1Mi

P.4 We have C(M ′) < C(Mk) and thus C(p′) < C(p) (def of sub-monomial)

P.5 Furthermore Mk ≤M ′ and hence that p ≤ p′ by Lemma 6.4.4.

P.6 In addition, M ′ ≤ p as M ′ � f and f = p.

P.7 similarly: Mi ≤ p for all Mi. Hence, p′ ≤ p.

P.8 So p′ ≡ p and fp ≡ f . Therefore, p is not a minimal polynomial.
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This theorem directly suggests a simple generate-and-test algorithm to construct minimal poly-
nomials. We will however improve on this using an idea by Quine and McCluskey. There are of
course better algorithms nowadays, but this one serves as a nice example of how to get from a
theoretical insight to a practical algorithm.

The Quine/McCluskey Algorithm (Idea)

� Idea: use this theorem to search for minimal-cost polynomials

� Determine all prime implicants (sub-algorithm QMC1)

� choose the minimal subset that covers f (sub-algorithm QMC2)

� Idea: To obtain prime implicants,

� start with the DNF monomials (they are implicants by construction)

� find submonomials that are still implicants of f .

� Idea: Look at polynomials of the form p := mxi +mxi (note: p ≡ m)
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Armed with the knowledge that minimal polynomials must consist entirely of prime implicants,
we can build a practical algorithm for computing minimal polynomials: In a first step we compute
the set of prime implicants of a given function, and later we see whether we actually need all of
them.

For the first step we use an important observation: for a given monomial m, the polynomials
mx+mx are equivalent, and in particular, we can obtain an equivalent polynomial by replace the
latter (the partners) by the former (the resolvent). That gives the main idea behind the first part
of the Quine-McCluskey algorithm. Given a Boolean function f , we start with a polynomial for f :
the disjunctive normal form, and then replace partners by resolvents, until that is impossible.

The algorithm QMC1, for determining Prime Implicants

� Definition 6.4.7 Let M be a set of monomials, then

� R(M) := {m | (mx) ∈M ∧ (mx) ∈M} is called the set of resolvent s of
M

� R̂(M) := {m ∈M |m has a partner in M} (nxi and nxi are partners)

� Definition 6.4.8 (Algorithm) Given f : Bn → B

� let M0 := DNF(f) and for all j > 0 compute (DNF as set of monomials)

� Mj := R(Mj−1) (resolve to get sub-monomials)

� Pj := Mj−1\R̂(Mj−1) (get rid of redundant resolution partners)

� terminate when Mj = ∅, return Pprime :=
⋃n
j=1 Pj
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We will look at a simple example to fortify our intuition.
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Example for QMC1

x1 x2 x3 f monomials

F F F T x10 x20 x30

F F T T x10 x20 x31

F T F F
F T T F

T F F T x11 x20 x30

T F T T x11 x20 x31

T T F F

T T T T x11 x21 x31

Pprime =

3⋃
j=1

Pj = {x1x3, x2}

M0 = {x1 x2 x3︸ ︷︷ ︸
=: e01

, x1 x2 x3︸ ︷︷ ︸
=: e02

, x1 x2 x3︸ ︷︷ ︸
=: e03

, x1 x2 x3︸ ︷︷ ︸
=: e04

, x1 x2 x3︸ ︷︷ ︸
=: e05

}

M1 = { x1 x2︸ ︷︷ ︸
R(e01,e

0
2)

=: e11

, x2 x3︸ ︷︷ ︸
R(e01,e

0
3)

=: e12

, x2 x3︸ ︷︷ ︸
R(e02,e

0
4)

=: e13

, x1 x2︸ ︷︷ ︸
R(e03,e

0
4)

=: e14

, x1 x3︸ ︷︷ ︸
R(e04,e

0
5)

=: e15

}

P1 = ∅

M2 = { x2︸︷︷︸
R(e11,e

1
4)

, x2︸︷︷︸
R(e12,e

1
3)

}

P2 = {x1 x3}

M3 = ∅

P3 = {x2}

� But: even though the minimal polynomial only consists of prime implicants, it
need not contain all of them
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We now verify that the algorithm really computes what we want: all prime implicants of the
Boolean function we have given it. This involves a somewhat technical proof of the assertion
below. But we are mainly interested in the direct consequences here.

Properties of QMC1

� Lemma 6.4.9 (proof by simple (mutual) induction)

1) all monomials in Mj have exactly n− j literals.

2) Mj contains the implicants of f with n− j literals.

3) Pj contains the prime implicants of f with n− j + 1 for j > 0 . literals

� Corollary 6.4.10 QMC1 terminates after at most n rounds.

� Corollary 6.4.11 Pprime is the set of all prime implicants of f .
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Note that we are not finished with our task yet. We have computed all prime implicants of a given
Boolean function, but some of them might be un-necessary in the minimal polynomial. So we
have to determine which ones are. We will first look at the simple brute force method of finding
the minimal polynomial: we just build all combinations and test whether they induce the right
Boolean function. Such algorithms are usually called generate-and-test algorithm s.

They are usually simplest, but not the best algorithms for a given computational problem. This
is also the case here, so we will present a better algorithm below.

Algorithm QMC2: Minimize Prime Implicants Polynomial

� Definition 6.4.12 (Algorithm) Generate and test!
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� enumerate Sp ⊆ Pprime, i.e., all possible combinations of prime implicants
of f ,

� form a polynomial ep as the sum over Sp and test whether fep = f and
the cost of ep is minimal

� Example 6.4.13 Pprime = {x1x3, x2}, so ep ∈ {1, x1x3, x2, x1x3 + x2}.

� Only fx1 x3+x2 ≡ f , so x1x3 + x2 is the minimal polynomial

� Complaint: The set of combinations (power set) grows exponentially
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A better Mouse-trap for QMC2: The Prime Implicant Table

� Definition 6.4.14 Let f : Bn → B be a Boolean function, then the PIT
consists of

� a left hand column with all prime implicants pi of f

� a top row with all vectors x ∈ Bn with f(x) = T

� a central matrix of all fpi(x)

� Example 6.4.15
FFF FFT TFF TFT TTT

x1x3 F F F T T
x2 T T T T F

� Definition 6.4.16 A prime implicant p is essential for f iff

� there is a c ∈ Bn such that fp(c) = T and

� fq(c) = F for all other prime implicants q.

Note: A prime implicant is essential, iff there is a column in the PIT, where it
has a T and all others have F.
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� Essential Prime Implicants and Minimal Polynomials

� Theorem 6.4.17 Let f : Bn → B be a Boolean function, p an essential prime
implicant for f , and pmin a minimal polynomial for f , then p ∈ pmin.

� Proof: by contradiction: let p /∈ pmin

P.1 We know that f = fpmin and pmin =
∑n
j=1 pj for some n ∈ N and prime

implicants pj .

P.2 so for all c ∈ Bn with f(c) = T there is a j ≤ n with fpj (c) = T.

P.3 so p cannot be essential
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Let us now apply the optimized algorithm to a slightly bigger example.
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A complex Example for QMC (Function and DNF)

x1 x2 x3 x4 f monomials
F F F F T x10 x20 x30 x40

F F F T T x10 x20 x30 x41

F F T F T x10 x20 x31 x40

F F T T F
F T F F F
F T F T T x10 x21 x30 x41

F T T F F
F T T T F
T F F F F
T F F T F
T F T F T x11 x20 x31 x40

T F T T T x11 x20 x31 x41

T T F F F
T T F T F
T T T F T x11 x21 x31 x40

T T T T T x11 x21 x31 x41
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A complex Example for QMC (QMC1)

M0 = {x10 x20 x30 x40, x10 x20 x30 x41, x10 x20 x31 x40,
x10 x21 x30 x41, x11 x20 x31 x40, x11 x20 x31 x41,
x11 x21 x31 x40, x11 x21 x31 x41}

M1 = {x10 x20 x30, x10 x20 x40, x10 x30 x41, x11 x20 x31,
x11 x21 x31, x11 x31 x41, x20 x31 x40, x11 x31 x40}

P1 = ∅

M2 = {x11 x31}
P2 = {x10 x20 x30, x10 x20 x40, x10 x30 x41, x20 x31 x40}

M3 = ∅
P3 = {x11 x31}

Pprime = {x1x2x3, x1x2x4, x1x3x4, x2x3x4, x1x3}
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A better Mouse-trap for QMC1: optimizing the data struc-
ture

� Idea: Do the calculations directly on the DNF table

x1 x2 x3 x4 monomials
F F F F x10 x20 x30 x40

F F F T x10 x20 x30 x41

F F T F x10 x20 x31 x40

F T F T x10 x21 x30 x41

T F T F x11 x20 x31 x40

T F T T x11 x20 x31 x41

T T T F x11 x21 x31 x40

T T T T x11 x21 x31 x41
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� Note: the monomials on the right hand side are only for illustration

� Idea: do the resolution directly on the left hand side

� Find rows that differ only by a single entry. (first two rows)

� resolve: replace them by one, where that entry has an X (canceled literal)

� Example 6.4.18 〈F,F,F,F〉 and 〈F,F,F,T〉 resolve to 〈F,F,F, X〉.
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A better Mouse-trap for QMC1: optimizing the data struc-
ture

� One step resolution on the table
x1 x2 x3 x4 monomials

F F F F x10 x20 x30 x40

F F F T x10 x20 x30 x41

F F T F x10 x20 x31 x40

F T F T x10 x21 x30 x41

T F T F x11 x20 x31 x40

T F T T x11 x20 x31 x41

T T T F x11 x21 x31 x40

T T T T x11 x21 x31 x41

;

x1 x2 x3 x4 monomials

F F F X x10 x20 x30

F F X F x10 x20 x40

F X F T x10 x30 x41

T F T X x11 x20 x31

T T T X x11 x21 x31

T X T T x11 x31 x41

X F T F x20 x31 x40

T X T F x11 x31 x40

� Repeat the process until no more progress can be made

x1 x2 x3 x4 monomials

F F F X x10 x20 x30

F F X F x10 x20 x40

F X F T x10 x30 x41

T X T X x11 x31

X F T F x20 x31 x40

� This table represents the prime implicants of f

©: Michael Kohlhase 178

A complex Example for QMC (QMC1)

� The PIT:

FFFF FFFT FFTF FTFT TFTF TFTT TTTF TTTT

x1 x2 x3 T T F F F F F F
x1 x2 x4 T F T F F F F F
x1 x3 x4 F T F T F F F F
x2 x3 x4 F F T F T F F F
x1 x3 F F F F T T T T

� x1x2x3 is not essential, so we are left with

FFFF FFFT FFTF FTFT TFTF TFTT TTTF TTTT

x1 x2 x4 T F T F F F F F
x1 x3 x4 F T F T F F F F
x2 x3 x4 F F T F T F F F
x1 x3 F F F F T T T T

� here x2, x3, x4 is not essential, so we are left with

FFFF FFFT FFTF FTFT TFTF TFTT TTTF TTTT

x1 x2 x4 T F T F F F F F
x1 x3 x4 F T F T F F F F
x1 x3 F F F F T T T T

� all the remaining ones (x1x2x4, x1x3x4, and x1x3) are essential
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� So, the minimal polynomial of f is x1x2x4 + x1x3x4 + x1x3.
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The following section about KV-Maps was only taught until fall 2008, it is included here
just for reference

6.5 A simpler Method for finding Minimal Polynomials

Simple Minimization: Karnaugh-Veitch Diagram

� The QMC algorithm is simple but tedious (not for the back of an envelope)

� KV-maps provide an efficient alternative for up to 6 variables

� Definition 6.5.1 A Karnaugh-Veitch map (KV-map) is a rectangular table
filled with truth values induced by a Boolean function. Minimal polynomials
can be read of KV-maps by systematically grouping equivalent table cells into
rectangular areas of size 2k.

� Example 6.5.2 (Common KV-map schemata)
2 vars 3 vars 4 vars

A A

B

B

AB AB AB AB

C

C

AB AB AB AB

CD m0 m4 m12 m8

CD m1 m5 m13 m9

CD m3 m7 m15 m11

CD m2 m6 m14 m10

square ring torus
2/4-groups 2/4/8-groups 2/4/8/16-groups

� Note: Note that the values in are ordered, so that exactly one variable flips
sign between adjacent cells (Gray Code)
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KV-maps Example: E(6, 8, 9, 10, 11, 12, 13, 14)

Example 6.5.3
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# A B C D V

0 F F F F F
1 F F F T F
2 F F T F F
3 F F T T F
4 F T F F F
5 F T F T F
6 F T T F T
7 F T T T F
8 T F F F T
9 T F F T T
10 T F T F T
11 T F T T T
12 T T F F T
13 T T F T T
14 T T T F T
15 T T T T F

� The corresponding KV-map:

AB AB AB AB

CD F F T T

CD F F T T

CD F F F T

CD F T T T

� in the red/magenta group

� A does not change, so include A

� B changes, so do not include it

� C does not change, so include C

� D changes, so do not include it

So the monomial is AC

� in the green/brown group we have AB

� in the blue group we have BC D

� The minimal polynomial for E(6, 8, 9, 10, 11, 12, 13, 14) is AB +AC +BC D
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KV-maps Caveats

� groups are always rectangular of size 2k (no crooked shapes!)

� a group of size 2k induces a monomial of size n− k (the bigger the better)

� groups can straddle vertical borders for three variables

� groups can straddle horizontal and vertical borders for four variables

� picture the the n-variable case as a n-dimensional hypercube!
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Chapter 7

Propositional Logic

7.1 Boolean Expressions and Propositional Logic

We will now look at Boolean expressions from a different angle. We use them to give us a very
simple model of a representation language for

• knowledge — in our context mathematics, since it is so simple, and

• argumentation — i.e. the process of deriving new knowledge from older knowledge

Still another Notation for Boolean Expressions

� Idea: get closer to MathTalk

� Use ∨, ∧, ¬, ⇒, and ⇔ directly (after all, we do in MathTalk)

� construct more complex names (proposition s) for variables (Use ground
terms of sort B in an ADT)

� Definition 7.1.1 Let Σ = 〈S,D〉 be an abstract data type, such that B ∈ S
and

[¬ : B→ B], [∨ : B× B→ B] ∈ D

then we call the set T gB (Σ) of ground Σ-terms of sort B a formulation of
Propositional Logic.

� We will also call this formulation Predicate Logic without Quantifiers and
denote it with PLNQ.

� Definition 7.1.2 Call terms in T gB (Σ) without ∨, ∧, ¬, ⇒, and ⇔ atom s.
(write A(Σ))

� Note: Formulae of propositional logic “are” Boolean Expressions

� replace A⇔ B by (A⇒ B) ∧ (B⇒ A) and A⇒ B by ¬A ∨B. . .

� Build print routine ·̂ with Â ∧B = Â ∗ B̂, and ¬̂A = Â and that turns
atoms into variable names. (variables and atoms are countable)
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Conventions for Brackets in Propositional Logic

� we leave out outer brackets: A⇒ B abbreviates (A⇒ B).

� implications are right associative: A1 ⇒ · · · ⇒ An ⇒ C abbreviates A1 ⇒
· · · ⇒ · · · ⇒ An ⇒ C

� a stands for a left bracket whose partner is as far right as is consistent with
existing brackets (A⇒ C ∧D = A⇒ (C ∧D))
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We will now use the distribution of values of a Boolean expression under all (variable) assignments
to characterize them semantically. The intuition here is that we want to understand theorems,
examples, counterexamples, and inconsistencies in mathematics and everyday reasoning1.

The idea is to use the formal language of Boolean expressions as a model for mathematical
language. Of course, we cannot express all of mathematics as Boolean expressions, but we can at
least study the interplay of mathematical statements (which can be true or false) with the copula
“and”, “or” and “not”.

Semantic Properties of Boolean Expressions

� Definition 7.1.3 Let M := 〈U , I〉 be our model, then we call e

� true under ϕ in M, iff Iϕ(e) = T (write M |=ϕ e)

� false under ϕ in M, iff Iϕ(e) = F (write M 6|=ϕ e)

� satisfiable in M, iff Iϕ(e) = T for some assignment ϕ

� valid in M, iff M |=ϕ e for all assignments ϕ (write M |= e)

� falsifiable in M, iff Iϕ(e) = F for some assignments ϕ

� unsatisfiable in M, iff Iϕ(e) = F for all assignments ϕ

� Example 7.1.4 x ∨ x is satisfiable and falsifiable.

� Example 7.1.5 x ∨ ¬x is valid and x ∧ ¬x is unsatisfiable.

� Notation 7.1.6 (alternative) Write [[e]]
M
ϕ for Iϕ(e), if M = 〈U , I〉. (and

[[e]]
M, if e is ground, and [[e]], if M is clear)

� Definition 7.1.7 (Entailment) (aka. logical consequence)

We say that e entails f (e |= f), iff Iϕ(f) = T for all ϕ with Iϕ(e) = T (i.e.
all assignments that make e true also make f true)
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Let us now see how these semantic properties model mathematical practice.
In mathematics we are interested in assertions that are true in all circumstances. In our model

of mathematics, we use variable assignments to stand for circumstances. So we are interested
in Boolean expressions which are true under all variable assignments; we call them valid. We
often give examples (or show situations) which make a conjectured assertion false; we call such

1Here (and elsewhere) we will use mathematics (and the language of mathematics) as a test tube for under-
standing reasoning, since mathematics has a long history of studying its own reasoning processes and assumptions.
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examples counterexamples, and such assertions “falsifiable”. We also often give examples for
certain assertions to show that they can indeed be made true (which is not the same as being
valid yet); such assertions we call “satisfiable”. Finally, if an assertion cannot be made true in any
circumstances we call it “unsatisfiable”; such assertions naturally arise in mathematical practice in
the form of refutation proofs, where we show that an assertion (usually the negation of the theorem
we want to prove) leads to an obviously unsatisfiable conclusion, showing that the negation of the
theorem is unsatisfiable, and thus the theorem valid.

Example: Propositional Logic with ADT variables

� Idea: We use propositional logic to express things about the world (PLNQ =̂
Predicate Logic without Quantifiers)

� Example 7.1.8 Abstract Data Type: 〈{B, I}, {. . ., [love : I× I→ B], [bill : I], [mary : I], . . .}〉

ground terms:

� g1 := love(bill,mary) (how nice)

� g2 := love(mary, bill) ∧ ¬love(bill,mary) (how sad)

� g3 := love(bill,mary) ∧ love(mary, john)⇒ hate(bill, john) (how natural)

� Semantics: by mapping into known stuff, (e.g. I to persons B to {T,F})

� Idea: Import semantics from Boolean Algebra (atoms “are” variables)

� only need variable assignment ϕ : A(Σ)→ {T,F}

� Example 7.1.9 Iϕ(love(bill,mary) ∧ (love(mary, john)⇒ hate(bill, john))) =
T if ϕ(love(bill,mary)) = T, ϕ(love(mary, john)) = F, and ϕ(hate(bill, john)) =
T

� Example 7.1.10 g1 ∧ g3 ∧ love(mary, john) |= hate(bill, john)
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What is Logic?

� formal languages, inference and their relation with the world

� Formal language FL: set of formulae (2 + 3/7, ∀x.x+ y = y + x)

� Formula: sequence/tree of symbols (x, y, f, g, p, 1, π,∈,¬, ∧ ∀,∃)

� Models: things we understand (e.g. number theory)

� Interpretation: maps formulae into models ([[three plus five]] = 8)

� Validity: M |= A, iff [[A]]
M

= T (five greater three is valid)

� Entailment: A |= B, iff M |= B for all M |= A. (generalize to H |= A)

� Inference: rules to transform (sets of) formulae (A,A⇒ B ` B)

� Syntax: formulae, inference (just a bunch of symbols)

� Semantics: models, interpr., validity, entailment (math. structures)
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� Important Question: relation between syntax and semantics?
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So logic is the study of formal representations of objects in the real world, and the formal state-
ments that are true about them. The insistence on a formal language for representation is actually
something that simplifies life for us. Formal languages are something that is actually easier to
understand than e.g. natural languages. For instance it is usually decidable, whether a string is
a member of a formal language. For natural language this is much more difficult: there is still
no program that can reliably say whether a sentence is a grammatical sentence of the English
language.

We have already discussed the meaning mappings (under the monicker “semantics”). Meaning
mappings can be used in two ways, they can be used to understand a formal language, when we
use a mapping into “something we already understand”, or they are the mapping that legitimize
a representation in a formal language. We understand a formula (a member of a formal language)
A to be a representation of an object O, iff [[A]] = O.

However, the game of representation only becomes really interesting, if we can do something with
the representations. For this, we give ourselves a set of syntactic rules of how to manipulate the
formulae to reach new representations or facts about the world.

Consider, for instance, the case of calculating with numbers, a task that has changed from a difficult
job for highly paid specialists in Roman times to a task that is now feasible for young children.
What is the cause of this dramatic change? Of course the formalized reasoning procedures for
arithmetic that we use nowadays. These calculi consist of a set of rules that can be followed
purely syntactically, but nevertheless manipulate arithmetic expressions in a correct and fruitful
way. An essential prerequisite for syntactic manipulation is that the objects are given in a formal
language suitable for the problem. For example, the introduction of the decimal system has been
instrumental to the simplification of arithmetic mentioned above. When the arithmetical calculi
were sufficiently well-understood and in principle a mechanical procedure, and when the art of
clock-making was mature enough to design and build mechanical devices of an appropriate kind,
the invention of calculating machines for arithmetic by Wilhelm Schickard (1623), Blaise Pascal
(1642), and Gottfried Wilhelm Leibniz (1671) was only a natural consequence.

We will see that it is not only possible to calculate with numbers, but also with representations
of statements about the world (propositions). For this, we will use an extremely simple example;
a fragment of propositional logic (we restrict ourselves to only one logical connective) and a small
calculus that gives us a set of rules how to manipulate formulae.

A simple System: Prop. Logic with Hilbert-Calculus

� Formulae: built from prop. variables: P,Q,R, . . . and implication: ⇒

� Semantics: Iϕ(P ) = ϕ(P ) and Iϕ(A⇒ B) = T, iff Iϕ(A) = F or Iϕ(B) =
T.

� K := P ⇒ Q⇒ P , S := (P ⇒ Q⇒ R)⇒ (P ⇒ Q)⇒ P ⇒ R

� A⇒ B A

B
MP

A

[B/X](A)
Subst

� Let us look at a H0 theorem (with a proof)

� C⇒ C (Tertium non datur)
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� Proof:

P.1 (C⇒ (C⇒ C)⇒ C)⇒ (C⇒ C⇒ C)⇒ C⇒ C (S with
[C/P ], [C⇒ C/Q], [C/R])

P.2 C⇒ (C⇒ C)⇒ C (K with [C/P ], [C⇒ C/Q])

P.3 (C⇒ C⇒ C)⇒ C⇒ C (MP on P.1 and P.2)

P.4 C⇒ C⇒ C (K with [C/P ], [C/Q])

P.5 C⇒ C (MP on P.3 and P.4)

P.6 We have shown that ∅ `H0 C⇒ C (i.e. C⇒ C is a theorem) (is is also
valid?)
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This is indeed a very simple logic, that with all of the parts that are necessary:

• A formal language: expressions built up from variables and implications.

• A semantics: given by the obvious interpretation function

• A calculus: given by the two axioms and the two inference rules.

The calculus gives us a set of rules with which we can derive new formulae from old ones. The
axioms are very simple rules, they allow us to derive these two formulae in any situation. The
inference rules are slightly more complicated: we read the formulae above the horizontal line as
assumptions and the (single) formula below as the conclusion. An inference rule allows us to derive
the conclusion, if we have already derived the assumptions.

Now, we can use these inference rules to perform a proof. A proof is a sequence of formulae that
can be derived from each other. The representation of the proof in the slide is slightly compactified
to fit onto the slide: We will make it more explicit here. We first start out by deriving the formula

(P ⇒ Q⇒ R)⇒ (P ⇒ Q)⇒ P ⇒ R (7.1)

which we can always do, since we have an axiom for this formula, then we apply the rule subst,
where A is this result, B is C, and X is the variable P to obtain

(C⇒ Q⇒ R)⇒ (C⇒ Q)⇒ C⇒ R (7.2)

Next we apply the rule subst to this where B is C ⇒ C and X is the variable Q this time to
obtain

(C⇒ (C⇒ C)⇒ R)⇒ (C⇒ C⇒ C)⇒ C⇒ R (7.3)

And again, we apply the rule subst this time, B is C and X is the variable R yielding the first
formula in our proof on the slide. To conserve space, we have combined these three steps into one
in the slide. The next steps are done in exactly the same way.

7.2 A digression on Names and Logics

The name MP comes from the Latin name “modus ponens” (the “mode of putting” [new facts]),
this is one of the classical syllogisms discovered by the ancient Greeks. The name Subst is just
short for substitution, since the rule allows to instantiate variables in formulae with arbitrary
other formulae.

Digression: To understand the reason for the names of K and S we have to understand much
more logic. Here is what happens in a nutshell: There is a very tight connection between types
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of functional languages and propositional logic (google Curry/Howard Isomorphism). The K and
S axioms are the types of the K and S combinators, which are functions that can make all other
functions. In SML, we have already seen the K in Example 3.7.11:

val K = fn x => (fn y => x) : ‘a -> ‘b -> ‘a

Note that the type ‘a -> ‘b -> ‘a looks like (is isomorphic under the Curry/Howard isomor-
phism) to our axiom P ⇒ Q⇒ P . Note furthermore that K a function that takes an argument n
and returns a constant function (the function that returns n on all arguments). Now the German
name for “constant function” is “Konstante Function”, so you have letter K in the name. For the
S aiom (which I do not know the naming of) you have

val S = fn x => (fn y => (fn z => x z (y z))) : (‘a -> ‘b -> ‘c) - (‘a -> ‘c) -> ‘a -> ‘c

Now, you can convince yourself that SKKx = x = Ix (i.e. the function S applied to two copies
of K is the identity combinator I). Note that

val I = x => x : ‘a -> ‘a

where the type of the identity looks like the theorem C⇒ C we proved. Moreover, under the
Curry/Howard Isomorphism, proofs correspond to functions (axioms to combinators), and SKK
is the function that corresponds to the proof we looked at in class.

We will now generalize what we have seen in the example so that we can talk about calculi and
proofs in other situations and see what was specific to the example.

7.3 Calculi for Propositional Logic

Let us now turn to the syntactical counterpart of the entailment relation: derivability in a calculus.
Again, we take care to define the concepts at the general level of logical systems.

The intuition of a calculus is that it provides a set of syntactic rules that allow to reason by
considering the form of propositions alone. Such rules are called inference rules, and they can be
strung together to derivations — which can alternatively be viewed either as sequences of formulae
where all formulae are justified by prior formulae or as trees of inference rule applications. But we
can also define a calculus in the more general setting of logical systems as an arbitrary relation on
formulae with some general properties. That allows us to abstract away from the homomorphic
setup of logics and calculi and concentrate on the basics.

Derivation Systems and Inference Rules

� Definition 7.3.1 Let S := 〈L,K, |=〉 be a logical system, then we call a
relation ` ⊆ P(L)× L a derivation relation for S, if it

� is proof-reflexive, i.e. H ` A, if A ∈ H;

� is proof-transitive, i.e. if H ` A and H′ ∪ {A} ` B, then H ∪H′ ` B;

� admits weakening, i.e. H ` A and H ⊆ H′ imply H′ ` A.

� Definition 7.3.2 We call 〈L,K, |=,`〉 a formal system, iff S := 〈L,K, |=〉 is
a logical system, and ` a derivation relation for S.

� Definition 7.3.3 Let L be a formal language, then an inference rule over L

A1 · · · An

C
N

where A1, . . . ,An and C are formula schemata for L and N is a name.
The Ai are called assumption s, and C is called conclusion.
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� Definition 7.3.4 An inference rule without assumptions is called an axiom (schema).

� Definition 7.3.5 Let S := 〈L,K, |=〉 be a logical system, then we call a set
C of inference rules over L a calculus for S.
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With formula schemata we mean representations of sets of formulae, we use boldface uppercase
letters as (meta)-variables for formulae, for instance the formula schema A ⇒ B represents the
set of formulae whose head is ⇒.

Derivations and Proofs

� Definition 7.3.6 Let S := 〈L,K, |=〉 be a logical system and C a calculus
for S, then a C-derivation of a formula C ∈ L from a set H ⊆ L of hypotheses
(write H `C C) is a sequence A1, . . . ,Am of L-formulae, such that

� Am = C, (derivation culminates in C)

� for all 1 ≤ i ≤ m, either Ai ∈ H, or (hypothesis)

� there is an inference rule
Al1 · · · Alk

Ai
in C with lj < i for all j ≤ k.(rule

application)

Observation: We can also see a derivation as a tree, where the Alj are the
children of the node Ak.

��

Example 7.3.7 In the propositional
Hilbert calculus H0 we have the deriva-
tion P `H0 Q⇒ P : the sequence is
P ⇒ Q⇒ P , P ,Q⇒ P and the corresponding
tree on the right.

K
P ⇒ Q⇒ P P

MP
Q⇒ P

� Observation 7.3.8 Let S := 〈L,K, |=〉 be a logical system and C a calcu-
lus for S, then the C-derivation relation `D defined in Definition 7.3.6 is a
derivation relation in the sense of Definition 7.3.1.2

� Definition 7.3.9 We call 〈L,K, |=, C〉 a formal system, iff S := 〈L,K, |=〉 is
a logical system, and C a calculus for S.

� Definition 7.3.10 A derivation ∅ `C A is called a proof of A and if one
exists (write `C A) then A is called a C-theorem.

� Definition 7.3.11 an inference rule I is called admissible in C, if the exten-
sion of C by I does not yield new theorems.
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bEdNote: MK: this should become a view!

Inference rules are relations on formulae represented by formula schemata (where boldface,
uppercase letters are used as meta-variables for formulae). For instance, in Example 7.3.7 the

inference rule
A⇒ B A

B
was applied in a situation, where the meta-variables A and B were

instantiated by the formulae P and Q⇒ P .

As axioms do not have assumptions, they can be added to a derivation at any time. This is just
what we did with the axioms in Example 7.3.7.
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In general formulae can be used to represent facts about the world as propositions; they have a
semantics that is a mapping of formulae into the real world (propositions are mapped to truth
values.) We have seen two relations on formulae: the entailment relation and the deduction
relation. The first one is defined purely in terms of the semantics, the second one is given by a
calculus, i.e. purely syntactically. Is there any relation between these relations?

Soundness and Completeness

� Definition 7.3.12 Let S := 〈L,K, |=〉 be a logical system, then we call a
calculus C for S

� sound (or correct), iff H |= A, whenever H `C A, and

� complete, iff H `C A, whenever H |= A.

� Goal: ` A iff |=A (provability and validity coincide)

� To TRUTH through PROOF (CALCULEMUS [Leibniz ∼1680])
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Ideally, both relations would be the same, then the calculus would allow us to infer all facts that
can be represented in the given formal language and that are true in the real world, and only
those. In other words, our representation and inference is faithful to the world.

A consequence of this is that we can rely on purely syntactical means to make predictions
about the world. Computers rely on formal representations of the world; if we want to solve a
problem on our computer, we first represent it in the computer (as data structures, which can be
seen as a formal language) and do syntactic manipulations on these structures (a form of calculus).
Now, if the provability relation induced by the calculus and the validity relation coincide (this will
be quite difficult to establish in general), then the solutions of the program will be correct, and
we will find all possible ones.

Of course, the logics we have studied so far are very simple, and not able to express interesting
facts about the world, but we will study them as a simple example of the fundamental problem of
Computer Science: How do the formal representations correlate with the real world.

Within the world of logics, one can derive new propositions (the conclusions, here: Socrates is
mortal) from given ones (the premises, here: Every human is mortal and Sokrates is human).
Such derivations are proofs.

In particular, logics can describe the internal structure of real-life facts; e.g. individual things,
actions, properties. A famous example, which is in fact as old as it appears, is illustrated in the
slide below.

The miracle of logics

� Purely formal derivations are true in the real world!
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If a logic is correct, the conclusions one can prove are true (= hold in the real world) whenever
the premises are true. This is a miraculous fact (think about it!)

7.4 Proof Theory for the Hilbert Calculus

We now show one of the meta-properties (soundness) for the Hilbert calculus H0. The statement
of the result is rather simple: it just says that the set of provable formulae is a subset of the set of
valid formulae. In other words: If a formula is provable, then it must be valid (a rather comforting
property for a calculus).

H0 is sound (first version)

� Theorem 7.4.1 ` A implies |=A for all propositions A.

� Proof: show by induction over proof length

P.1 Axioms are valid (we already know how to do this!)

P.2 inference rules preserve validity (let’s think)

P.2.1 Subst: complicated, see next slide

P.2.2 MP:

P.2.2.1 Let A⇒ B be valid, and ϕ : Vo → {T,F} arbitrary

P.2.2.2 then Iϕ(A) = F or Iϕ(B) = T (by definition of ⇒).

P.2.2.3 Since A is valid, Iϕ(A) = T 6= F, so Iϕ(B) = T.

P.2.2.4 As ϕ was arbitrary, B is valid.
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To complete the proof, we have to prove two more things. The first one is that the axioms are
valid. Fortunately, we know how to do this: we just have to show that under all assignments, the
axioms are satisfied. The simplest way to do this is just to use truth tables.
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H0 axioms are valid

� Lemma 7.4.2 The H0 axioms are valid.

� Proof: We simply check the truth tables

P.1

P Q Q⇒ P P ⇒ Q⇒ P
F F T T
F T F T
T F T T
T T T T

P.2

P Q R A := P ⇒ Q⇒ R B := P ⇒ Q C := P ⇒ R A⇒ B⇒ C
F F F T T T T
F F T T T T T
F T F T T T T
F T T T T T T
T F F T F F T
T F T T F T T
T T F F T F T
T T T T T T T
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The next result encapsulates the soundness result for the substitution rule, which we still owe. We
will prove the result by induction on the structure of the formula that is instantiated. To get the
induction to go through, we not only show that validity is preserved under instantiation, but we
make a concrete statement about the value itself.

A proof by induction on the structure of the formula is something we have not seen before. It
can be justified by a normal induction over natural numbers; we just take property of a natural
number n to be that all formulae with n symbols have the property asserted by the theorem. The
only thing we need to realize is that proper subterms have strictly less symbols than the terms
themselves.

Substitution Value Lemma and Soundness

� Lemma 7.4.3 Let A and B be formulae, then Iϕ([B/X](A)) = Iψ(A),
where ψ = ϕ, [Iϕ(B)/X]

� Proof: by induction on the depth of A (number of nested ⇒ symbols)

P.1 We have to consider two cases

P.1.1 depth=0, then A is a variable, say Y .:

P.1.1.1 We have two cases

P.1.1.1.1 X = Y : then Iϕ([B/X](A)) = Iϕ([B/X](X)) = Iϕ(B) = ψ(X) =
Iψ(X) = Iψ(A).

P.1.1.1.2 X 6= Y : then Iϕ([B/X](A)) = Iϕ([B/X](Y )) = Iϕ(Y ) = ϕ(Y ) =
ψ(Y ) = Iψ(Y ) = Iψ(A).

P.1.2 depth> 0, then A = C⇒ D:

P.1.2.1 We have Iϕ([B/X](A)) = T, iff Iϕ([B/X](C)) = F or Iϕ([B/X](D)) =
T.

P.1.2.2 This is the case, iff Iψ(C) = F or Iψ(D) = T by IH (C and D have smaller
depth than A).

P.1.2.3 In other words, Iψ(A) = Iψ(C⇒ D) = T, iff Iϕ([B/X](A)) = T by
definition.

P.2 We have considered all the cases and proven the assertion.
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Armed with the substitution value lemma, it is quite simple to establish the soundness of the
substitution rule. We state the assertion rather succinctly: “Subst preservers validity”, which
means that if the assumption of the Subst rule was valid, then the conclusion is valid as well, i.e.
the validity property is preserved.

Soundness of Substitution

� Lemma 7.4.4 Subst preserves validity.

� Proof: We have to show that [B/X](A) is valid, if A is.

P.1 Let A be valid, B a formula, ϕ : Vo → {T,F} a variable assignment, and
ψ := ϕ, [Iϕ(B)/X].

P.2 then Iϕ([B/X](A)) = Iϕ,[Iϕ(B)/X](A) = T, since A is valid.

P.3 As the argumentation did not depend on the choice of ϕ, [B/X](A) valid
and we have proven the assertion.
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The next theorem shows that the implication connective and the entailment relation are closely
related: we can move a hypothesis of the entailment relation into an implication assumption in the
conclusion of the entailment relation. Note that however close the relationship between implication
and entailment, the two should not be confused. The implication connective is a syntactic formula
constructor, whereas the entailment relation lives in the semantic realm. It is a relation between
formulae that is induced by the evaluation mapping.

The Entailment Theorem

� Theorem 7.4.5 If H,A |= B, then H |= (A⇒ B).

� Proof: We show that Iϕ(A⇒ B) = T for all assignments ϕ with Iϕ(H) = T
whenever H,A |= B

P.1 Let us assume there is an assignment ϕ, such that Iϕ(A⇒ B) = F.

P.2 Then Iϕ(A) = T and Iϕ(B) = F by definition.

P.3 But we also know that Iϕ(H) = T and thus Iϕ(B) = T, since H,A |= B.

P.4 This contradicts our assumption Iϕ(B) = T from above.

P.5 So there cannot be an assignment ϕ that Iϕ(A⇒ B) = F; in other words,
A⇒ B is valid.
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Now, we complete the theorem by proving the converse direction, which is rather simple.

The Entailment Theorem (continued)

� Corollary 7.4.6 H,A |= B, iff H |= (A⇒ B)

� Proof: In the light of the previous result, we only need to prove thatH,A |= B,
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whenever H |= (A⇒ B)

P.1 To prove that H,A |= B we assume that Iϕ(H,A) = T.

P.2 In particular, Iϕ(A⇒ B) = T since H |= (A⇒ B).

P.3 Thus we have Iϕ(A) = F or Iϕ(B) = T.

P.4 The first cannot hold, so the second does, thus H,A |= B.
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The entailment theorem has a syntactic counterpart for some calculi. This result shows a close
connection between the derivability relation and the implication connective. Again, the two should
not be confused, even though this time, both are syntactic.

The main idea in the following proof is to generalize the inductive hypothesis from proving A⇒ B
to proving A⇒ C, where C is a step in the proof of B. The assertion is a special case then, since
B is the last step in the proof of B.

The Deduction Theorem

� Theorem 7.4.7 If H,A ` B, then H ` A⇒ B

� Proof: By induction on the proof length

P.1 Let C1, . . . ,Cm be a proof of B from the hypotheses H.

P.2 We generalize the induction hypothesis: For all l 1 ≤ i ≤ m we construct
proofs H ` A⇒ Ci. (get A⇒ B for i = m)

P.3 We have to consider three cases

P.3.1 Case 1: Ci axiom or Ci ∈ H:

P.3.1.1 Then H ` Ci by construction and H ` Ci ⇒ A⇒ Ci by Subst from
Axiom 1.

P.3.1.2 So H ` A⇒ Ci by MP.

P.3.2 Case 2: Ci = A:

P.3.2.1 We have already proven ∅ ` A⇒ A, so in particular H ` A⇒ Ci.
(more hypotheses do not hurt)

P.3.3 Case 3: everything else:

P.3.3.1 Ci is inferred by MP from Cj and Ck = Cj ⇒ Ci for j, k < i

P.3.3.2 We have H ` A⇒ Cj and H ` A⇒ Cj ⇒ Ci by IH

P.3.3.3 Furthermore, (A⇒ Cj ⇒ Ci)⇒ (A⇒ Cj)⇒ A⇒ Ci by Axiom 2
and Subst

P.3.3.4 and thus H ` A⇒ Ci by MP (twice).

P.4 We have treated all cases, and thus proven H ` A⇒ Ci for 1 ≤ i ≤ m.

P.5 Note that Cm = B, so we have in particular proven H ` A⇒ B.
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In fact (you have probably already spotted this), this proof is not correct. We did not cover all
cases: there are proofs that end in an application of the Subst rule. This is a common situation,
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we think we have a very elegant and convincing proof, but upon a closer look it turns out that
there is a gap, which we still have to bridge.

This is what we attempt to do now. The first attempt to prove the subst case below seems to
work at first, until we notice that the substitution [B/X] would have to be applied to A as well,
which ruins our assertion.

The missing Subst case

� Oooops: The proof of the deduction theorem was incomplete (we did not
treat the Subst case)

� Let’s try:

� Proof: Ci is inferred by Subst from Cj for j < i with [B/X].

P.1 So Ci = [B/X](Cj); we have H ` A⇒ Cj by IH

P.2 so by Subst we have H ` [B/X](A⇒ Cj). (Oooops! 6= A⇒ Ci)
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In this situation, we have to do something drastic, like come up with a totally different proof.
Instead we just prove the theorem we have been after for a variant calculus.

Repairing the Subst case by repairing the calculus

� Idea: Apply Subst only to axioms (this was sufficient in our example)

� H1 Axiom Schemata: (infinitely many axioms)

A⇒ B⇒ A, (A⇒ B⇒ C)⇒ (A⇒ B)⇒ A⇒ C
Only one inference rule: MP.

� Definition 7.4.8 H1 introduces a (potentially) different derivability relation
than H0 we call them `H0 and `H1
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Now that we have made all the mistakes, let us write the proof in its final form.

Deduction Theorem Redone

� Theorem 7.4.9 If H,A `H1 B, then H `H1 A⇒ B

� Proof: Let C1, . . . ,Cm be a proof of B from the hypotheses H.

P.1 We construct proofs H `H1 A⇒ Ci for all 1 ≤ i ≤ n by induction on i.

P.2 We have to consider three cases

P.2.1 Ci is an axiom or hypothesis:

P.2.1.1 Then H `H1 Ci by construction and H `H1 Ci ⇒ A⇒ Ci by Ax1.

P.2.1.2 So H `H1 Ci by MP

P.2.2 Ci = A:
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P.2.2.1 We have proven ∅ `H0 A⇒ A, (check proof in H1)

We have ∅ `H1 A⇒ Ci, so in particular H `H1 A⇒ Ci

P.2.3 else:

P.2.3.1 Ci is inferred by MP from Cj and Ck = Cj ⇒ Ci for j, k < i

P.2.3.2 We have H `H1 A⇒ Cj and H `H1 A⇒ Cj ⇒ Ci by IH

P.2.3.3 Furthermore, (A⇒ Cj ⇒ Ci)⇒ (A⇒ Cj)⇒ A⇒ Ci by Axiom 2

P.2.3.4 and thus H `H1 A⇒ Ci by MP (twice). (no Subst)
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The deduction theorem and the entailment theorem together allow us to understand the claim that
the two formulations of soundness (A ` B implies A |= B and ` A implies |=B) are equivalent.
Indeed, if we have A ` B, then by the deduction theorem ` A⇒ B, and thus |=A ⇒ B by
soundness, which gives us A |= B by the entailment theorem. The other direction and the
argument for the corresponding statement about completeness are similar.

Of course this is still not the version of the proof we originally wanted, since it talks about the
Hilbert Calculus H1, but we can show that H1 and H0 are equivalent.

But as we will see, the derivability relations induced by the two caluli are the same. So we can
prove the original theorem after all.

The Deduction Theorem for H0

� Lemma 7.4.10 `H1 = `H0

� Proof:

P.1 All H1 axioms are H0 theorems. (by Subst)

P.2 For the other direction, we need a proof transformation argument:

P.3 We can replace an application of MP followed by Subst by two Subst
applications followed by one MP.

P.4 . . .A⇒ B . . .A . . .B . . . [C/X](B) . . . is replaced by

. . .A⇒ B . . . [C/X](A)⇒ [C/X](B) . . .A . . . [C/X](A) . . . [C/X](B) . . .

P.5 Thus we can push later Subst applications to the axioms, transforming a
H0 proof into a H1 proof.

� Corollary 7.4.11 H,A `H0 B, iff H `H0 A⇒ B.

� Proof Sketch: by MP and `H1 = `H0
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We can now collect all the pieces and give the full statement of the soundness theorem for H0

H0 is sound (full version)
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� Theorem 7.4.12 For all propositions A, B, we have A `H0 B implies A |=
B.

� Proof:

P.1 By deduction theorem A `H0 B, iff ` A⇒ C,

P.2 by the first soundness theorem this is the case, iff |=A⇒ B,

P.3 by the entailment theorem this holds, iff A |= C.
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Now, we can look at all the results so far in a single overview slide:

Properties of Calculi (Theoretical Logic)

� Correctness: (provable implies valid)

� H ` B implies H |= B (equivalent: ` A implies |=A)

� Completeness: (valid implies provable)

� H |= B implies H ` B (equivalent: |=A implies ` A)

� Goal: ` A iff |=A (provability and validity coincide)

� To TRUTH through PROOF (CALCULEMUS [Leibniz ∼1680])

©: Michael Kohlhase 205

7.5 A Calculus for Mathtalk

In our introduction to Section 7.0 we have positioned Boolean expressions (and proposition logic)
as a system for understanding the mathematical language “mathtalk” introduced in Section 3.3.
We have been using this language to state properties of objects and prove them all through this
course without making the rules the govern this activity fully explicit. We will rectify this now:
First we give a calculus that tries to mimic the the informal rules mathematicians use int their
proofs, and second we show how to extend this “calculus of natural deduction” to the full language
of “mathtalk”.

7.5.1 Propositional Natural Deduction Calculus

We will now introduce the “natural deduction” calculus for propositional logic. The calculus was
created in order to model the natural mode of reasoning e.g. in everyday mathematical practice.
This calculus was intended as a counter-approach to the well-known Hilbert style calculi, which
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were mainly used as theoretical devices for studying reasoning in principle, not for modeling
particular reasoning styles.

Rather than using a minimal set of inference rules, the natural deduction calculus provides
two/three inference rules for every connective and quantifier, one “introduction rule” (an inference
rule that derives a formula with that symbol at the head) and one “elimination rule” (an inference
rule that acts on a formula with this head and derives a set of subformulae).

Calculi: Natural Deduction (ND0; Gentzen [Gen35])

� Idea: ND0 tries to mimic human theorem proving behavior (non-minimal)

� Definition 7.5.1 The propositional natural deduction calculus ND0 has rules
for the introduction and elimination of connectives

Introduction Elimination Axiom

A B

A ∧B
∧I A ∧B

A
∧El

A ∧B

B
∧Er

A ∨ ¬A
TND

[A]1

B

A⇒ B
⇒I1 A⇒ B A

B
⇒E

� TND is used only in classical logic (otherwise constructive/intuitionistic)
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The most characteristic rule in the natural deduction calculus is the ⇒I rule. It corresponds to
the mathematical way of proving an implication A⇒ B: We assume that A is true and show B
from this assumption. When we can do this we discharge (get rid of) the assumption and conclude
A⇒ B. This mode of reasoning is called hypothetical reasoning. Note that the local hypothesis
is discharged by the rule ⇒I , i.e. it cannot be used in any other part of the proof. As the ⇒I
rules may be nested, we decorate both the rule and the corresponding assumption with a marker
(here the number 1).

Let us now consider an example of hypothetical reasoning in action.

Natural Deduction: Examples

� Inference with local hypotheses

[A ∧B]1

∧Er
B

[A ∧B]1

∧El
A
∧I

B ∧A
⇒I1

A ∧B⇒ B ∧A

[A]
1

[B]
2

A
⇒I2

B ⇒ A
⇒I1

A⇒ B ⇒ A
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One of the nice things about the natural deduction calculus is that the deduction theorem is
almost trivial to prove. In a sense, the triviality of the deduction theorem is the central idea of
the calculus and the feature that makes it so natural.

A Deduction Theorem for ND0

� Theorem 7.5.2 H,A `ND0 B, iff H `ND0 A⇒ B.

� Proof: We show the two directions separately

P.1 If H,A `ND0 B, then H `ND0 A⇒ B by ⇒I , and

P.2 If H `ND0 A⇒ B, then H,A `ND0 A⇒ B by weakening and H,A `ND0

B by ⇒E.
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Another characteristic of the natural deduction calculus is that it has inference rules (introduction
and elimination rules) for all connectives. So we extend the set of rules from Definition 7.5.1 for
disjunction, negation and falsity.

More Rules for Natural Deduction

� Definition 7.5.3 ND0 has the following additional rules for the remaining
connectives.

A

A ∨B
∨Il

B

A ∨B
∨Ir

A ∨B

[A]
1

...
C

[B]
1

...
C

C
∨E1

[A]
1

...
F
¬A

¬I1 ¬¬A

A
¬E

¬A A

F
FI

F

A
FE
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The next step now is to extend the language of propositional logic to include
the quantifiers ∀ and ∃. To do this, we will extend the language PLNQ with formulae of the form
∀xA and ∃xA, where x is a variable and A is a formula. This system (which ist a little more
involved than we make believe now) is called “first-order logic”.3 EdN:3

Building on the calculus ND0, we define a first-order calculus for “mathtalk” by providing
introduction and elimination rules for the quantifiers.

3EdNote: give a forward reference
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To obtain a first-order calculus, we have to extend ND0 with (introduction and elimination) rules
for the quantifiers.

First-Order Natural Deduction (ND1; Gentzen [Gen35])

� Rules for propositional connectives just as always

� Definition 7.5.4 (New Quantifier Rules) The first-order natural deduc-
tion calculus ND1 extends ND0 by the following four rules

A

∀XA
∀I∗ ∀XA

[B/X](A)
∀E

[B/X](A)

∃XA
∃I

∃XA

[[c/X](A)]
1

...
C

C
∃E1

∗ means that A does not depend on any hypothesis in which X is free.
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The intuition behind the rule ∀I is that a formula A with a (free) variable X can be generalized to
∀XA, if X stands for an arbitrary object, i.e. there are no restricting assumptions about X. The
∀E rule is just a substitution rule that allows to instantiate arbitrary terms B for X in A. The
∃I rule says if we have a witness B for X in A (i.e. a concrete term B that makes A true), then
we can existentially close A. The ∃E rule corresponds to the common mathematical practice,
where we give objects we know exist a new name c and continue the proof by reasoning about this
concrete object c. Anything we can prove from the assumption [c/X](A) we can prove outright if
∃XA is known.

The only part of MathTalk we have not treated yet is equality. This comes now.

Natural Deduction with Equality

� Definition 7.5.5 (First-Order Logic with Equality) We extend PL1 with
a new logical symbol for equality = ∈ Σp2 and fix its semantics to I(=) :=
{〈x, x〉 |x ∈ Dι}. We call the extended logic first-order logic with equality
(PL1

=)

� We now extend natural deduction as well.

� Definition 7.5.6 For the calculus of natural deduction with equality ND1
=

we add the following two equality rules to ND1 to deal with equality:

A = A
=I

A = B C [A]p
[B/p]C

=E

where C [A]p if the formula C has a subterm A at position p and [B/p]C is
the result of replacing that subterm with B.
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Again, we have two rules that follow the introduction/elimination pattern of natural deduction
calculi.
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With the ND1 calculus we have given a set of inference rules that are (empirically) complete
for all the proof we need for the General Computer Science courses. Indeed Mathematicians are
convinced that (if pressed hard enough) they could transform all (informal but rigorous) proofs
into (formal) ND1 proofs. This is however seldom done in practice because it is extremely tedious,
and mathematicians are sure that peer review of mathematical proofs will catch all relevant errors.

We will now show this on an example: the proof of the irrationality of the square root of two.

Theorem 7.5.7
√

2 is irrational

Proof: We prove the assertion by contradiction

P.1 Assume that
√

2 is rational.

P.2 Then there are numbers p and q such that
√

2 = p/q.

P.3 So we know 2s2 = r2.

P.4 But 2s2 has an odd number of prime factors while r2 an even number.

P.5 This is a contradiction (since they are equal), so we have proven the assertion

If we want to formalize this into ND1, we have to write down all the assertions in the proof steps
in MathTalk and come up with justifications for them in terms of ND1 inference rules. Figure 7.1
shows such a proof, where we write ′n is prime, use #(n) for the number of prime factors of a
number n, and write irr(r) if r is irrational. Each line in Figure 7.1 represents one “step” in
the proof. It consists of line number (for referencing), a formula for the asserted property, a
justification via a ND1 rules (and the lines this one is derived from), and finally a list of line
numbers of proof steps that are local hypotheses in effect for the current line. Lines 6 and 9 have
the pseudo-justification “local hyp” that indicates that they are local hypotheses for the proof
(they only have an implicit counterpart in the inference rules as defined above). Finally we have
abbreviated the arithmetic simplification of line 9 with the justification “arith” to avoid having to
formalize elementary arithmetic.

We observe that the ND1 proof is much more detailed, and needs quite a few Lemmata about
# to go through. Furthermore, we have added a MathTalk version of the definition of irrationality
(and treat definitional equality via the equality rules). Apart from these artefacts of formalization,
the two representations of proofs correspond to each other very directly.

In some areas however, this quality standard is not safe enough, e.g. for programs that control nu-
clear power plants. The field of “Formal Methods” which is at the intersection of mathematics and
Computer Science studies how the behavior of programs can be specified formally in special logics
and how fully formal proofs of safety properties of programs can be developed semi-automatically.
Note that given the discussion in Section 7.2 fully formal proofs (in sound calculi) can be that
can be checked by machines since their soundness only depends on the form of the formulae in
them.
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# hyp formula NDjust
1 ∀n,m¬(2n+ 1) = (2m) lemma
2 ∀n,m#(nm) = m#(n) lemma
3 ∀n, p ′p⇒ #(pn) = #(n) + 1 lemma
4 ∀x irr(x) := ¬(∃p, q x = p/q) definition

5 irr(
√

2) = ¬(∃p, q
√

2 = p/q) ∀E(4)

6 6 ¬irr(
√

2) local hyp

7 6 ¬¬(∃p, q
√

2 = p/q) =E(5, 4)

8 6 ∃p, q
√

2 = p/q ¬E(7)

9 6,9
√

2 = r/s local hyp
10 6,9 2s2 = r2 arith(9)

11 6,9 #(r2) = 2#(r) ∀E2(2)

12 6,9 ′2⇒ #(2s2) = #(s2) + 1 ∀E2(1)
13 ′2 lemma
14 6,9 #(2s2) = #(s2) + 1 ⇒E(13, 12)

15 6,9 #(s2) = 2#(s) ∀E2(2)
16 6,9 #(2s2) = 2#(s) + 1 =E(14, 15)
17 #(r2) = #(r2) =I
18 6,9 #(2s2) = #(r2) =E(17, 10)
19 6.9 2#(s) + 1 = #(r2) =E(18, 16)
20 6.9 2#(s) + 1 = 2#(r) =E(19, 11)

21 6.9 ¬(2#(s) + 1) = (2#(r)) ∀E2(1)
22 6,9 F FI(20, 21)

23 6 F ∃E6(22)

24 ¬¬irr(
√

2) ¬I6(23)

25 irr(
√

2) ¬E2(23)

Figure 7.1: A ND1 proof of the irrationality of
√

2



Chapter 8

Machine-Oriented Calculi

Now we have studied the Hilbert-style calculus in some detail, let us look at two calculi that work
via a totally different principle. Instead of deducing new formulae from axioms (and hypotheses)
and hoping to arrive at the desired theorem, we try to deduce a contradiction from the negation
of the theorem. Indeed, a formula A is valid, iff ¬A is unsatisfiable, so if we derive a contradiction
from ¬A, then we have proven A. The advantage of such “test-calculi” (also called negative
calculi) is easy to see. Instead of finding a proof that ends in A, we have to find any of a broad
class of contradictions. This makes the calculi that we will discuss now easier to control and
therefore more suited for mechanization.

8.1 Calculi for Automated Theorem Proving: Analytical
Tableaux

8.1.1 Analytical Tableaux

Before we can start, we will need to recap some nomenclature on formulae.

Recap: Atoms and Literals

� Definition 8.1.1 We call a formula atomic, or an atom, iff it does not contain
connectives. We call a formula complex, iff it is not atomic.

� Definition 8.1.2 We call a pair Aα a labeled formula, if α ∈ {T,F}. A
labeled atom is called literal.

� Definition 8.1.3 Let Φ be a set of formulae, then we use Φα := {Aα |A ∈ Φ}.
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The idea about literals is that they are atoms (the simplest formulae) that carry around their
intended truth value.

Now we will also review some propositional identities that will be useful later on. Some of
them we have already seen, and some are new. All of them can be proven by simple truth table
arguments.

Test Calculi: Tableaux and Model Generation

141
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� Idea: instead of showing ∅ ` Th, show ¬Th ` trouble (use ⊥ for trouble)

� Example 8.1.4 Tableau Calculi try to construct models.

Tableau Refutation (Validity) Model generation (Satisfiability)
|=P ∧Q⇒ Q ∧ P |=P ∧ (Q ∨ ¬R) ∧ ¬Q

P ∧Q⇒ Q ∧ P f

P ∧Qt

Q ∧ P f

P t

Qt

P f

⊥
Qf

⊥

P ∧ (Q ∨ ¬R) ∧ ¬Qt

P ∧ (Q ∨ ¬R)t

¬Qt

Qf

P t

Q ∨ ¬Rt

Qt

⊥
¬Rt

Rf

No Model Herbrand Model {P t, Qf , Rf}
ϕ := {P 7→ T, Q 7→ F, R 7→ F}

Algorithm: Fully expand all possible tableaux, (no rule can be applied)

� � Satisfiable, iff there are open branches (correspond to models)
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Tableau calculi develop a formula in a tree-shaped arrangement that represents a case analysis on
when a formula can be made true (or false). Therefore the formulae are decorated with exponents
that hold the intended truth value.

On the left we have a refutation tableau that analyzes a negated formula (it is decorated with the
intended truth value F). Both branches contain an elementary contradiction ⊥.

On the right we have a model generation tableau, which analyzes a positive formula (it is
decorated with the intended truth value T. This tableau uses the same rules as the refutation
tableau, but makes a case analysis of when this formula can be satisfied. In this case we have a
closed branch and an open one, which corresponds a model).

Now that we have seen the examples, we can write down the tableau rules formally.

Analytical Tableaux (Formal Treatment of T0)

� formula is analyzed in a tree to determine satisfiability

� branches correspond to valuations (models)

� one per connective

A ∧Bt

At

Bt

T0∧
A ∧Bf

Af

∣∣∣ Bf
T0∨

¬At

Af
T0¬T ¬Af

At
T0¬F

Aα

Aβ α 6= β

⊥ T0cut

� Use rules exhaustively as long as they contribute new material

� Definition 8.1.5 Call a tableau saturated, iff no rule applies, and a branch
closed, iff it ends in ⊥, else open. (open branches in saturated tableaux yield
models)

� Definition 8.1.6 (T0-Theorem/Derivability) A is a T0-theorem (`T0
A), iff there is a closed tableau with AF at the root.
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Φ ⊆ wff o(Vo) derives A in T0 (Φ `T0 A), iff there is a closed tableau starting
with AF and ΦT.
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These inference rules act on tableaux have to be read as follows: if the formulae over the line
appear in a tableau branch, then the branch can be extended by the formulae or branches below
the line. There are two rules for each primary connective, and a branch closing rule that adds the
special symbol ⊥ (for unsatisfiability) to a branch.

We use the tableau rules with the convention that they are only applied, if they contribute new
material to the branch. This ensures termination of the tableau procedure for propositional logic
(every rule eliminates one primary connective).

Definition 8.1.7 We will call a closed tableau with the signed formula Aα at the root a tableau
refutation for Aα.

The saturated tableau represents a full case analysis of what is necessary to give A the truth value
α; since all branches are closed (contain contradictions) this is impossible.

Definition 8.1.8 We will call a tableau refutation for Af a tableau proof for A, since it refutes
the possibility of finding a model where A evaluates to F. Thus A must evaluate to T in all
models, which is just our definition of validity.

Thus the tableau procedure can be used as a calculus for propositional logic. In contrast to the
calculus in section ?sec.hilbert? it does not prove a theorem A by deriving it from a set of axioms,
but it proves it by refuting its negation. Such calculi are called negative or test calculi. Generally
negative calculi have computational advantages over positive ones, since they have a built-in sense
of direction.

We have rules for all the necessary connectives (we restrict ourselves to ∧ and ¬, since the others
can be expressed in terms of these two via the propositional identities above. For instance, we can
write A ∨B as ¬(¬A ∧ ¬B), and A⇒ B as ¬A ∨B,. . . .)

We will now look at an example. Following our introduction of propositional logic in in Exam-
ple 7.1.9 we look at a formulation of propositional logic with fancy variable names. Note that
love(mary,bill) is just a variable name like P or X, which we have used earlier.

A Valid Real-World Example

� Example 8.1.9 If Mary loves Bill and John loves Mary, then John loves
Mary

love(mary, bill) ∧ love(john,mary)⇒ love(john,mary)
f

¬(¬¬(love(mary, bill) ∧ love(john,mary)) ∧ ¬love(john,mary))
f

¬¬(love(mary, bill) ∧ love(john,mary)) ∧ ¬love(john,mary)t

¬¬(love(mary, bill) ∧ love(john,mary))
t

¬(love(mary, bill) ∧ love(john,mary))
f

love(mary, bill) ∧ love(john,mary)t

¬love(john,mary)
t

love(mary, bill)t

love(john,mary)t

love(john,mary)f

⊥

This is a closed tableau, so the love(mary, bill) ∧ love(john,mary)⇒ love(john,mary)
is a T0-theorem.
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As we will see, T0 is sound and complete, so love(mary, bill) ∧ love(john,mary)⇒
love(john,mary) is valid.
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We could have used the entailment theorem (Corollary 7.4.6) here to show that If Mary loves Bill
and John loves Mary entails John loves Mary. But there is a better way to show entailment: we
directly use derivability in T0

Deriving Entailment in T0

� Example 8.1.10 Mary loves Bill and John loves Mary together entail that
John loves Mary

love(mary, bill)t

love(john,mary)t

love(john,mary)f

⊥

This is a closed tableau, so the {love(mary, bill), love(john,mary)} `T0 love(john,mary),
again, as T0 is sound and complete we have {love(mary, bill), love(john,mary)} |=
love(john,mary)

©: Michael Kohlhase 216

Note: that we can also use the tableau calculus to try and show entailment (and fail). The nice
thing is that the failed proof, we can see what went wrong.

A Falsifiable Real-World Example

� Example 8.1.11 *If Mary loves Bill or John loves Mary, then John loves
Mary
Try proving the implication (this fails)

(love(mary, bill) ∨ love(john,mary))⇒ love(john,mary)
f

¬(¬¬(love(mary, bill) ∨ love(john,mary)) ∧ ¬love(john,mary))
f

¬¬(love(mary, bill) ∨ love(john,mary)) ∧ ¬love(john,mary)t

¬love(john,mary)
t

love(john,mary)f

¬¬(love(mary, bill) ∨ love(john,mary))
t

¬(love(mary, bill) ∨ love(john,mary))
f

love(mary, bill) ∨ love(john,mary)t

love(mary, bill)t love(john,mary)t

⊥

Indeed we can make Iϕ(love(mary, bill)) = T but Iϕ(love(john,mary)) = F.
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Obviously, the tableau above is saturated, but not closed, so it is not a tableau proof for our initial
entailment conjecture. We have marked the literals on the open branch green, since they allow us
to read of the conditions of the situation, in which the entailment fails to hold. As we intuitively
argued above, this is the situation, where Mary loves Bill. In particular, the open branch gives us
a variable assignment (marked in green) that satisfies the initial formula. In this case, Mary loves
Bill, which is a situation, where the entailment fails.
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Again, the derivability version is much simpler

Testing for Entailment in T0

� Example 8.1.12 Does Mary loves Bill or John loves Mary entail that John
loves Mary?

love(mary, bill) ∨ love(john,mary)t

love(john,mary)f

love(mary, bill)t love(john,mary)t

⊥

This saturated tableau has an open branch that shows that the interpreta-
tion with Iϕ(love(mary, bill)) = T but Iϕ(love(john,mary)) = F falsifies the
derivability/entailment conjecture.
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8.1.2 Practical Enhancements for Tableaux

Propositional Identities

� Definition 8.1.13 Let T and F be new logical constants with I(T ) = T and
I(F ) = F for all assignments ϕ.

� We have to following identities:

Name for ∧ for ∨
Idenpotence ϕ ∧ ϕ = ϕ ϕ ∨ ϕ = ϕ
Identity ϕ ∧ T = ϕ ϕ ∨ F = ϕ
Absorption I ϕ ∧ F = F ϕ ∨ T = T
Commutativity ϕ ∧ ψ = ψ ∧ ϕ ϕ ∨ ψ = ψ ∨ ϕ
Associativity ϕ ∧ (ψ ∧ θ) = (ϕ ∧ ψ) ∧ θ ϕ ∨ (ψ ∨ θ) = (ϕ ∨ ψ) ∨ θ
Distributivity ϕ ∧ (ψ ∨ θ) = ϕ ∧ ψ ∨ ϕ ∧ θ ϕ ∨ ψ ∧ θ = (ϕ ∨ ψ) ∧ (ϕ ∨ θ)
Absorption II ϕ ∧ (ϕ ∨ θ) = ϕ ϕ ∨ ϕ ∧ θ = ϕ
De Morgan’s Laws ¬(ϕ ∧ ψ) = ¬ϕ ∨ ¬ψ ¬(ϕ ∨ ψ) = ¬ϕ ∧ ¬ψ
Double negation ¬¬ϕ = ϕ
Definitions ϕ⇒ ψ = ¬ϕ ∨ ψ ϕ⇔ ψ = (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ)
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We have seen in the examples above that while it is possible to get by with only the connectives
∨ and ¬, it is a bit unnatural and tedious, since we need to eliminate the other connectives first.
In this section, we will make the calculus less frugal by adding rules for the other connectives,
without losing the advantage of dealing with a small calculus, which is good making statements
about the calculus.

The main idea is to add the new rules as derived rules, i.e. inference rules that only abbreviate
deductions in the original calculus. Generally, adding derived inference rules does not change the
derivability relation of the calculus, and is therefore a safe thing to do. In particular, we will add
the following rules to our tableau system.

We will convince ourselves that the first rule is a derived rule, and leave the other ones as an
exercise.

Derived Rules of Inference
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� Definition 8.1.14 Let C be a calculus, a rule of inference
A1 · · · An

C
is

called a derived inference rule in C, iff there is a C-proof of A1, . . . ,An ` C.

� Definition 8.1.15 We have the following derived rules of inference

A⇒ Bt

Af
∣∣∣ Bt

A⇒ Bf

At

Bf

At

A⇒ Bt

Bt

A ∨Bt

At
∣∣∣ Bt

A ∨Bf

Af

Bf

A⇔ Bt

At

Bt

∣∣∣∣ Af

Bf

A⇔ Bf

At

Bf

∣∣∣∣ Af

Bt

At

A⇒ Bt

¬A ∨Bt

¬(¬¬A ∧ ¬B)
t

¬¬A ∧ ¬Bf

¬¬Af

¬At

Af

⊥

¬Bf

Bt
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With these derived rules, theorem proving becomes quite efficient. With these rules, the tableau
(?tab:firsttab?) would have the following simpler form:

Tableaux with derived Rules (example)

Example 8.1.16

love(mary, bill) ∧ love(john,mary)⇒ love(john,mary)
f

love(mary, bill) ∧ love(john,mary)t

love(john,mary)f

love(mary, bill)t

love(john,mary)t

⊥

©: Michael Kohlhase 221

Another thing that was awkward in (?tab:firsttab?) was that we used a proof for an implication to
prove logical consequence. Such tests are necessary for instance, if we want to check consistency
or informativity of new sentences4. Consider for instance a discourse ∆ = D1, . . . ,Dn, where nEdN:4
is large. To test whether a hypothesis H is a consequence of ∆ (∆ |= H) we need to show that
C := (D1 ∧ . . .) ∧Dn ⇒ H is valid, which is quite tedious, since C is a rather large formula, e.g.
if ∆ is a 300 page novel. Moreover, if we want to test entailment of the form (∆ |= H) often, –
for instance to test the informativity and consistency of every new sentence H, then successive
∆s will overlap quite significantly, and we will be doing the same inferences all over again; the
entailment check is not incremental.

Fortunately, it is very simple to get an incremental procedure for entailment checking in the
model-generation-based setting: To test whether ∆ |= H, where we have interpreted ∆ in a model
generation tableau T , just check whether the tableau closes, if we add ¬H to the open branches.
Indeed, if the tableau closes, then ∆ ∧ ¬H is unsatisfiable, so ¬((∆ ∧ ¬H)) is valid5, but this isEdN:5
equivalent to ∆⇒ H, which is what we wanted to show.

Example 8.1.17 Consider for instance the following entailment in natural language.

Mary loves Bill. John loves Mary |= John loves Mary

4EdNote: add reference to presupposition stuff
5EdNote: Fix precedence of negation
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6 We obtain the tableau EdN:6
love(mary,bill)t

love(john,mary)t

¬(love(john,mary))t

love(john,mary)f

⊥

which shows us that the conjectured entailment relation really holds.

8.1.3 Soundness and Termination of Tableaux

As always we need to convince ourselves that the calculus is sound, otherwise, tableau proofs do
not guarantee validity, which we are after. Since we are now in a refutation setting we cannot just
show that the inference rules preserve validity: we care about unsatisfiability (which is the dual
notion to validity), as we want to show the initial labeled formula to be unsatisfiable. Before we
can do this, we have to ask ourselves, what it means to be (un)-satisfiable for a labeled formula
or a tableau.

Soundness (Tableau)

� Idea: A test calculus is sound, iff it preserves satisfiability and the goal formulae
are unsatisfiable.

� Definition 8.1.18 A labeled formula Aα is valid under ϕ, iff Iϕ(A) = α.

� Definition 8.1.19 A tableau T is satisfiable, iff there is a satisfiable branch
P in T , i.e. if the set of formulae in P is satisfiable.

� Lemma 8.1.20 Tableau rules transform satisfiable tableaux into satisfiable
ones.

� Theorem 8.1.21 (Soundness) A set Φ of propositional formulae is valid,
if there is a closed tableau T for Φf .

� Proof: by contradiction: Suppose Φ is not valid.

P.1 then the initial tableau is satisfiable (Φf satisfiable)

P.2 so T is satisfiable, by Lemma 8.1.20.

P.3 there is a satisfiable branch (by definition)

P.4 but all branches are closed (T closed)
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Thus we only have to prove Lemma 8.1.20, this is relatively easy to do. For instance for the first
rule: if we have a tableau that contains A ∧Bt and is satisfiable, then it must have a satisfiable
branch. If A ∧Bt is not on this branch, the tableau extension will not change satisfiability, so we
can assue that it is on the satisfiable branch and thus Iϕ(A ∧B) = T for some variable assignment
ϕ. Thus Iϕ(A) = T and Iϕ(B) = T, so after the extension (which adds the formulae At and Bt

to the branch), the branch is still satisfiable. The cases for the other rules are similar.

The next result is a very important one, it shows that there is a procedure (the tableau procedure)
that will always terminate and answer the question whether a given propositional formula is valid

6EdNote: need to mark up the embedding of NL strings into Math
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or not. This is very important, since other logics (like the often-studied first-order logic) does not
enjoy this property.

Termination for Tableaux

� Lemma 8.1.22 The tableau procedure terminates, i.e. after a finite set of
rule applications, it reaches a tableau, so that applying the tableau rules will
only add labeled formulae that are already present on the branch.

� Let us call a labeled formulae Aα worked off in a tableau T , if a tableau rule
has already been applied to it.

� Proof:

P.1 It is easy to see tahat applying rules to worked off formulae will only add
formulae that are already present in its branch.

P.2 Let µ(T ) be the number of connectives in a labeled formulae in T that
are not worked off.

P.3 Then each rule application to a labeled formula in T that is not worked
off reduces µ(T ) by at least one. (inspect the rules)

P.4 at some point the tableau only contains worked off formulae and literals.

P.5 since there are only finitely many literals in T , so we can only apply the
tableau cut rule a finite number of times.
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The Tableau calculus basically computes the disjunctive normal form: every branch is a disjunct
that is a conjunct of literals. The method relies on the fact that a DNF is unsatisfiable, iff each
monomial is, i.e. iff each branch contains a contradiction in form of a pair of complementary
literals.

8.2 Resolution for Propositional Logic

The next calculus is a test calculus based on the conjunctive normal form. In contrast to
the tableau method, it does not compute the normal form as it goes along, but has a pre-
processing step that does this and a single inference rule that maintains the normal form. The
goal of this calculus is to derive the empty clause (the empty disjunction), which is unsatisfi-
able.

Another Test Calculus: Resolution

� Definition 8.2.1 A clause is a disjunction of literals. We will use 2 for the
empty disjunction (no disjuncts) and call it the empty clause.

� Definition 8.2.2 (Resolution Calculus) The resolution calculus operates
a clause sets via a single inference rule:

P t ∨A P f ∨B

A ∨B

This rule allows to add the clause below the line to a clause set which contains
the two clauses above.
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� Definition 8.2.3 (Resolution Refutation) Let S be a clause set, and
D : S `R T a R derivation then we call D resolution refutation, iff 2 ∈ T .
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A calculus for CNF Transformation

� Definition 8.2.4 (Transformation into Conjunctive Normal Form)
The CNF transformation calculus CNF consists of the following four inference
rules on clause sets.

C ∨ (A ∨B)
t

C ∨At ∨Bt

C ∨ (A ∨B)
f

C ∨Af ; C ∨Bf

C ∨ ¬At

C ∨Af

C ∨ ¬Af

C ∨At

� Definition 8.2.5 We write CNF (A) for the set of all clauses derivable from
Af via the rules above.

� Definition 8.2.6 (Resolution Proof) We call a resolution refutation P : CNF (A) `R
T a resolution sproof for A ∈ wff o(Vo).
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Note: Note that the C-terms in the definition of the resolution calculus are necessary, since we
assumed that the assumptions of the inference rule must match full formulae. The C-terms are
used with the convention that they are optional. So that we can also simplify (A ∨B)

t
to At ∨Bt.

The background behind this notation is that A and T ∨A are equivalent for any A. That
allows us to interpret the C-terms in the assumptions as T and thus leave them out.

The resolution calculus as we have formulated it here is quite frugal; we have left out rules for the
connectives ∨, ⇒, and ⇔, relying on the fact that formulae containing these connectives can be
translated into ones without before CNF transformation. The advantage of having a calculus with
few inference rules is that we can prove meta-properties like soundness and completeness with
less effort (these proofs usually require one case per inference rule). On the other hand, adding
specialized inference rules makes proofs shorter and more readable.

Fortunately, there is a way to have your cake and eat it. Derived inference rules have the property
that they are formally redundant, since they do not change the expressive power of the calculus.
Therefore we can leave them out when proving meta-properties, but include them when actually
using the calculus.

Derived Rules of Inference

� Definition 8.2.7 Let C be a calculus, a rule of inference
A1 . . . An

C
is

called a derived inference rule in C, iff there is a C-proof of A1, . . . ,An ` C.
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� Example 8.2.8

C ∨ (A⇒ B)
t

C ∨ (¬A ∨B)
t

C ∨ ¬At ∨Bt

C ∨Af ∨Bt

7→ C ∨ (A⇒ B)
t

C ∨Af ∨Bt

� Others:

C ∨ (A⇒ B)
t

C ∨Af ∨Bt

C ∨ (A⇒ B)
f

C ∨At; C ∨Bf

C ∨A ∧Bt

C ∨At; C ∨Bt

C ∨A ∧Bf

C ∨Af ∨Bf

©: Michael Kohlhase 226

With these derived rules, theorem proving becomes quite efficient. To get a better understanding
of the calculus, we look at an example: we prove an axiom of the Hilbert Calculus we have studied
above.

Example: Proving Axiom S

� Example 8.2.9 Clause Normal Form transformation

(P ⇒ Q⇒ R)⇒ (P ⇒ Q)⇒ P ⇒ Rf

P ⇒ Q⇒ Rt; (P ⇒ Q)⇒ P ⇒ Rf

P f ∨ (Q⇒ R)
t
;P ⇒ Qt;P ⇒ Rf

P f ∨Qf ∨Rt;P f ∨Qt;P t;Rf

CNF = {P f ∨Qf ∨Rt , P f ∨Qt , P t , Rf}

� Example 8.2.10 Resolution Proof

1 P f ∨Qf ∨Rt initial
2 P f ∨Qt initial
3 P t initial
4 Rf initial
5 P f ∨Qf resolve 1.3 with 4.1
6 Qf resolve 5.1 with 3.1
7 P f resolve 2.2 with 6.1
8 2 resolve 7.1 with 3.1
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Chapter 9

Legal Foundations of Information
Technology

In this chapter, we cover a topic that is a very important secondary aspect of our work as Computer
Scientists: the legal foundations that regulate how the fruits of our labor are appreciated (and
recompensated), and what we have to do to respect people’s personal data.

9.1 Intellectual Property, Copyright, and Licensing

The first complex of questions centers around the assessment of the products of work of knowl-
edge/information workers, which are largely intangible, and about questions of recompensation
for such work.

Intellectual Property: Concept

� Question: Intellectual labour creates (intangible) objects, can they be owned?

� Answer: Yes: in certain circumstances they are property like tangible objects.

� Definition 9.1.1 The concept of intellectual property motivates a set of laws
that regulate property rights on intangible objects, in particular

� Patents grant exploitation rights on original ideas.

� Copyrights grant personal and exploitation rights on expressions of ideas.

� Industrial Design Rights protect the visual design of objects beyond their
function.

� Trademarks protect the signs that identify a legal entity or its products to
establish brand recognition.

� Intent: Property-like treatment of intangibles will foster innovation by giving
individuals and organizations material incentives.
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Naturally, many of the concepts are hotly debated. Especially due to the fact that intuitions
and legal systems about property have evolved around the more tangible forms of properties
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that cannot be simply duplicated and indeed multiplied by copying them. In particular, other
intangibles like physical laws or mathematical theorems cannot be property.

Intellectual Property: Problems

� Delineation Problems: How can we distinguish the product of human work,
from “discoveries”, of e.g. algorithms, facts, genome, algorithms. (not
property)

� Philosophical Problems: The implied analogy with physical property (like land
or an automobile) fails because physical property is generally rivalrous while
intellectual works are non-rivalrous (the enjoyment of the copy does not prevent
enjoyment of the original).

� Practical Problems: There is widespread criticism of the concept of intellectual
property in general and the respective laws in particular.

� (software) patents are often used to stifle innovation in practice. (patent
trolls)

� copyright is seen to help big corporations and to hurt the innovating indi-
viduals
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We will not go into the philosophical debates around intellectual property here, but concentrate
on the legal foundations that are in force now and regulate IP issues. We will see that groups
holding alternative views of intellectual properties have learned to use current IP laws to their
advantage and have built systems and even whole sections of the software economy on this basis.

Many of the concepts we will discuss here are regulated by laws, which are (ultimately) subject
to national legislative and juridicative systems. Therefore, none of them can be discussed without
an understanding of the different jurisdictions. Of course, we cannot go into particulars here,
therefore we will make use of the classification of jurisdictions into two large legal traditions to
get an overview. For any concrete decisions, the details of the particular jurisdiction have to be
checked.

Legal Traditions

� The various legal systems of the world can be grouped into “traditions”.

� Definition 9.1.2 Legal systems in the common law tradition are usually
based on case law, they are often derived from the British system.

� Definition 9.1.3 Legal systems in the civil law tradition are usually based on
explicitly codified laws (civil codes).

� As a rule of thumb all English-speaking countries have systems in the common
law tradition, whereas the rest of the world follows a civil law tradition.
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Another prerequisite for understanding intellectual property concepts is the historical development
of the legal frameworks and the practice how intellectual property law is synchronized interna-
tionally.
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Historic/International Aspects of Intellectual Property Law

� Early History: In late antiquity and the middle ages IP matters were regulated
by royal privileges

� History of Patent Laws: First in Venice 1474, Statutes of Monopolies in Eng-
land 1624, US/France 1790/1. . .

� History of Copyright Laws: Statue of Anne 1762, France: 1793, . . .

� Problem: In an increasingly globalized world, national IP laws are not enough.

� Definition 9.1.4 The Berne convention process is a series of international
treaties that try to harmonize international IP laws. It started with the original
Berne convention 1886 and went through revision in 1896, 1908, 1914, 1928,
1948, 1967, 1971, and 1979.

� The World Intellectual Property Organization Copyright Treaty was adopted
in 1996 to address the issues raised by information technology and the Internet,
which were not addressed by the Berne Convention.

� Definition 9.1.5 The Anti-Counterfeiting Trade Agreement (ACTA) is a multi-
national treaty on international standards for intellectual property rights en-
forcement.

� With its focus on enforcement ACTA is seen my many to break fundamental
human information rights, criminalize FLOSS
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9.1.1 Copyright

In this subsection, we go into more detail about a central concept of intellectual property law:
copyright is the component most of IP law applicable to the individual computer scientist. There-
fore a basic understanding should be part of any CS education. We start with a definition of
what works can be copyrighted, and then progress to the rights this affords to the copyright
holder.

Copyrightable Works

� Definition 9.1.6 A copyrightable work is any artefact of human labor that
fits into one of the following eight categories:

� Literary work s: Any work expressed in letters, numbers, or symbols, re-
gardless of medium. (Computer source code is also considered to be a
literary work.)

� Musical works: Original musical compositions.

� Sound recording s of musical works. (different licensing)

� Dramatic works: literary works that direct a performance through written
instructions.

� Choreographic works must be fixed, either through notation or video record-
ing.
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� Pictorial, Graphic and Sculptural works (PGS work s): Any two-dimensional
or three-dimensional art work

� Audiovisual works: work that combines audio and visual components.(e.g.
films, television programs)

� Architectural works (copyright only extends to aesthetics)

� The categories are interpreted quite liberally (e.g. for computer code).

� There are various requirements to make a work copyrightable: it has to

� exhibit a certain originality (Schöpfungshöhe)

� require a certain amount of labor and diligence (“sweat of the brow”
doctrine)
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In short almost all products of intellectual work are copyrightable, but this does not mean copyright
applies to all those works. Indeed there is a large body of works that are “out of copyright”, and
can be used by everyone. Indeed it is one of the intentions of intellectual property laws to increase
the body of intellectual resources a society a draw upon to create wealth. Therefore copyright
is limited by regulations that limit the duration of copyright and exempts some classes of works
from copyright (e.g. because they have already been payed for by society).

Limitations of Copyrightabilitiy: The Public Domain

� Definition 9.1.7 A work is said to be in the public domain, if no copyright
applies, otherwise it is called copyrighted.

� Example 9.1.8 Works made by US government employees (in their work
time) are in the public domain directly (Rationale: taxpayer already payed for
them)

� Copyright expires: usually 70 years after the death of the creator

� Example 9.1.9 (US Copyright Terms) Some people claim that US copy-
right terms are extended, whenever Disney’s Mickey Mouse would become pub-
lic domain.
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Now that we have established, which works are copyrighted — i.e. to which works are intellectual
property, let us see who owns them, and how that ownership is established.

Copyright Holder

� Definition 9.1.10 The copyright holder is the legal entity that holds the
copyright to a copyrighted work.

� By default, the original creator of a copyrightable work holds the copyright.

� In most jurisdictions, no registration or declaration is necessary(but copyright
ownership may be difficult to prove)

� copyright is considered intellectual property, and can be transferred to others
(e.g. sold to a publisher or bequeathed)

� Definition 9.1.11 (Work for Hire) A work made for hire is a work cre-
ated by an employee as part of his or her job, or under the explicit guidance or
under the terms of a contract.

� In jurisdictions from the common law tradition, the copyright holder of a work
for hires the employer, in jurisdictions from the civil law tradition, the author,
unless the respective contract regulates it otherwise.
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We now turn to the rights owning a copyright entails for the copyright holder.

Rights under Copyright Law

� Definition 9.1.12 The copyright is a collection of rights on a copyrighted
work;

� personal rights: the copyright holder may

� determine whether and how the work is published (right to publish)

� determine whether and how her authorship is acknowledged. (right of
attribution)

� to object to any distortion, mutilation or other modification of the work,
which would be prejudicial to his honor or reputation (droit de respect)

� exploitation rights: the owner of a copyright has the exclusive right to do,
or authorize to do any of the following:

� to reproduce the copyrighted work in copies (or phonorecords);

� to prepare derivative works based upon the copyrighted work;

� to distribute copies of the work to the public by sale, rental, lease, or
lending;

� to perform the copyrighted work publicly;

� to display the copyrighted work publicly; and

� to perform the copyrighted work publicly by means of a digital-audio
transmission.

� Definition 9.1.13 The use of a copyrighted material, by anyone other than
the owner of the copyright, amounts to copyright infringement only when the
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use is such that it conflicts with any one or more of the exclusive rights conferred
to the owner of the copyright.

©: Michael Kohlhase 235

Again, the rights of the copyright holder are mediated by usage rights of society; recall that
intellectual property laws are originally designed to increase the intellectual resources available to
society.

Limitations of Copyright (Citation/Fair Use)

� There are limitations to the exclusivity of rights of the copyright holder(some
things cannot be forbidden)

� Citation Rights: Civil law jurisdictions allow citations of (extracts of) copy-
righted works for scientific or artistic discussions. (note that the right of
attribution still applies)

� In the civil law tradition, there are similar rights:

� Definition 9.1.14 (Fair Use/Fair Dealing Doctrines) Case law in com-
mon law jurisdictions has established a fair use doctrine, which allows e.g.

� making safety copies of software and audiovisual data

� lending of books in public libraries

� citing for scientific and educational purposes

� excerpts in search engine

Fair use is established in court on a case-by-case taking into account the purpose
(commercial/educational), the nature of the work the amount of the excerpt,
the effect on the marketability of the work.
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9.1.2 Licensing

Given that intellectual property law grants a set of exclusive rights to the owner, we will now
look at ways and mechanisms how usage rights can be bestowed on others. This process is called
licensing, and it has enormous effects on the way software is produced, marketed, and consumed.
Again, we will focus on copyright issues and how innovative license agreements have created the
open source movement and economy.

Licensing: the Transfer of Rights

� Remember: the copyright holder has exclusive rights to a copyrighted work.

� In particular: all others have only fair-use rights (but we can transfer rights)

� Definition 9.1.15 A license is an authorization (by the licensor) to use the
licensed material (by the licensee).
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� Note: a license is a regular contract (about intellectual property) that is han-
dled just like any other contract. (it can stipulate anything the licensor and
licensees agree on) in particular a license may

� involve term, territory, or renewal provisions

� require paying a fee and/or proving a capability.

� require to keep the licensor informed on a type of activity, and to give them
the opportunity to set conditions and limitations.

� Mass Licensing of Computer Software: Software vendors usually license soft-
ware under extensive end-user license agreement (EULA) entered into upon the
installation of that software on a computer. The license authorizes the user to
install the software on a limited number of computers.
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Copyright law was originally designed to give authors of literary works — e.g. novelists and
playwrights — revenue streams and regulate how publishers and theatre companies can distribute
and display them so that society can enjoy more of their work.

With the inclusion of software as “literary works” under copyright law the basic parameters of
the system changed considerably:

• modern software development is much more a collaborative and diversified effort than literary
writing,

• re-use of software components is a decisive factor in software,
• software can be distributed in compiled form to be executable which limits inspection and

re-use, and
• distribution costs for digital media are negligible compared to printing.

As a consequence, much software development has been industrialized by large enterprises, who
become copyrights the software was created as work for hire This has led to software quasi-
monopolies, which are prone to stifling innovation and thus counteract the intentions of intellectual
property laws.

The Free/Open Source Software movement attempts to use the intellectual property laws them-
selves to counteract their negative side effects on innovation and collaboration and the (perceived)
freedom of the programmer.

Free/Open Source Licenses

� Recall: Software is treated as literary works wrt. copyright law.

� But: Software is different from literary works wrt. distribution channels (and
that is what copyright law regulates)

� In particular: When literary works are distributed, you get all there is, software
is usually distributed in binary format, you cannot understand/cite/modify/fix
it.

� So: Compilation can be seen as a technical means to enforce copyright. (seen
as an impediment to freedom of fair use)

� Recall: IP laws (in particular patent law) was introduced explicitly for two
things

http://creativecommons.org/licenses/by-sa/2.5/


160 CHAPTER 9. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY

� incentivize innovation (by granting exclusive exploitation rights)

� spread innovation (by publishing ideas and processes)

Compilation breaks the second tenet (and may thus stifle innovation)

� Idea: We should create a public domain of source code

� Definition 9.1.16 Free/Libre/Open-Source Software (FLOSS) is software
that is and licensed via licenses that ensure that its source is available.

� Almost all of the Internet infrastructure is (now) FLOSS; so are the Linux and
Android operating systems and applications like OpenOffice and The GIMP.
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The relatively complex name Free/Libre/Open Source comes from the fact that the English1 word
“free” has two meanings: free as in “freedom” and free as in “free beer”. The initial name “free
software” confused issues and thus led to problems in public perception of the movement. Indeed
Richard Stallman’s initial motivation was to ensure the freedom of the programmer to create
software, and only used cost-free software to expand the software public domain. To disambiguate
some people started using the French “libre” which only had the “freedom” reading of “free”. The
term “open source” was eventually adopted in 1998 to have a politically less loaded label.

The main tool in brining about a public domain of open-source software was the use of licenses
that are cleverly crafted to guarantee usage rights to the public and inspire programmers to license
their works as open-source systems. The most influential license here is the Gnu public license
which we cover as a paradigmatic example.

GPL/Copyleft: Creating a FLOSS Public Domain?

� Problem: How do we get people to contribute source code to the FLOSS
public domain?

� Idea: Use special licenses to:

� allow others to use/fix/modify our source code (derivative works)

� require them to release their modifications to the FLOSS public domain if
they do.

� Definition 9.1.17 A copyleft license is a license which requires that allows
derivative works, but requires that they be licensed with the same license.

� Definition 9.1.18 The General Public License (GPL) is a copyleft license for
FLOSS software originally written by Richard Stallman in 1989. It requires that
the source code of GPL-licensed software be made available.

� The GPL was the first copyleft license to see extensive use, and continues to
dominate the licensing of FLOSS software.

� FLOSS based development can reduce development and testing costs (but
community involvement must be managed)

1the movement originated in the USA

http://creativecommons.org/licenses/by-sa/2.5/


9.2. INFORMATION PRIVACY 161

� Various software companies have developed successful business models based
on FLOSS licensing models. (e.g. Red Hat, Mozilla, IBM, . . . )
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Note: that the GPL does not make any restrictions on possible uses of the software. In particular,
it does not restrict commercial use of the copyrighted software. Indeed it tries to allow commercial
use without restricting the freedom of programmers. If the unencumbered distribution of source
code makes some business models (which are considered as “extortion” by the open-source pro-
ponents) intractable, this needs to be compensated by new, innovative business models. Indeed,
such business models have been developed, and have led to an “open-source economy” which now
constitutes a non-trivial part of the software industry.

With the great success of open-source sofware, the central ideas have been adapted to other
classes of copyrightable works; again to create and enlarge a public domain of resources that allow
re-use, derived works, and distribution.

Open Content via Open Content Licenses

� Recall: FLOSS licenses have created a vibrant public domain for software.

� How about: other copyrightable works: music, video, literature, technical
documents

�

Definition 9.1.19 The Creative Commons license s
are

� a common legal vocabulary for sharing content

� to create a kind of “public domain” using licensing

� presented in three layers (human/lawyer/machine)-
readable

� Creative Commons license provisions (http://www.creativecommons.org)

� author retains copyright on each module/course

� author licenses material to the world with requirements

+/- attribuition (must reference the author)

+/- commercial use (can be restricted)

+/- derivative works (can allow modification)

+/- share alike (copyleft) (modifications must be donated back)
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9.2 Information Privacy

Information/Data Privacy

� Definition 9.2.1 The principle of information privacy comprises the idea that
humans have the right to control who can access their personal data when.

http://creativecommons.org/licenses/by-sa/2.5/
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� Information privacy concerns exist wherever personally identifiable information
is collected and stored – in digital form or otherwise. In particular in the
following contexts

� Healthcare records

� Criminal justice investigations and proceedings

� Financial institutions and transactions

� Biological traits, such as ethnicity or genetic material

� Residence and geographic records

� Information privacy is becoming a growing concern with the advent of the
Internet and search engines that make access to information easy and efficient.

� The “reasonable expectation of privacy” is regulated by special laws.

� These laws differ considerably by jurisdiction; Germany has particularly strin-
gent regulations (and you are subject to
these.)

Acquisition and storage of personal data is only legal for the purposes of the
respective transaction, must be minimized, and distribution of personal data
is generally forbidden with few exceptions. Users have to be informed about
collection of personal data.
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Organizational Measures or Information Privacy (under Ger-
man Law)

� Physical Access Control: Unauthorized persons may not be granted physical
access to data processing equipment that process personal data. (; locks,
access control systems)

� System Access Control: Unauthorized users may not use systems that process
personal data (; passwords, firewalls, . . . )

� Information Access Control: Users may only access those data they are autho-
rized to access. (; access control lists, safe boxes for storage media,
encryption)

� Data Transfer Control: Personal data may not be copied during transmission
between systems (; encryption)

� Input Control: It must be possible to review retroactively who entered, changed,
or deleted personal data. (; authentification, journaling)

� Availability Control: Personal data have to be protected against loss and ac-
cidental destruction (; physical/building safety,
backups)

� Obligation of Separation: Personal data that was acquired for separate pur-
poses has to be processed separately.

http://creativecommons.org/licenses/by-sa/2.5/


9.2. INFORMATION PRIVACY 163

©: Michael Kohlhase 242

http://creativecommons.org/licenses/by-sa/2.5/


164 CHAPTER 9. LEGAL FOUNDATIONS OF INFORMATION TECHNOLOGY



Chapter 10

Welcome Back and Administrativa

Happy new year! and Welcome Back!

� I hope you have recovered over the last 6 weeks (slept a lot)

� I hope that those of you who had problems last semester have caught up on
the material (We will need much of it this year)

� I hope that you are eager to learn more about Computer Science (I certainly
am!)
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Your Evaluations

� Thanks: for filling out the forms (to all 14/44 ≈ 1
3 of you!) Evaluations are a

good tool for optimizing teaching/learning

� What you wrote: I have read all, will take action on some (paraphrased)

� Change the instructor next year! (not your call)

� nice course. SML rulez! I really learned recursion (thanks)

� To improve this course, I would remove its “ML part” (let me explain,. . . )

� He doesnt’ care about teaching. He simply comes unprepared to the lectures
(have you ever attended?)

� the slides tell simple things in very complicated ways (this is a problem)

� The problem is with the workload, it is too much (I agree, but we want to
give you a chance to become Computer Scientists)

� The Prof. is an elitist who tries to scare off all students who do not make
this course their first priority (There is General ICT I/II)

� More examples should be provided, (will try do to this, you can help)

� give the quizzes 20% and the hw 39%, (is this consensus?)
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10.1 Recap from General CS I

Recap from GenCSI: Discrete Math and SML

� MathTalk (Rigorous communication about sets, relations,functions)

� unary natural numbers. (we have to start with something)

� Axiomatic foundation, in particular induction (Peano Axioms)

� constructors s, o, defined functions like +

� Abstract Data Types (ADT) (generalize natural numbers)

� sorts, constructors, (defined) parameters, variables, terms, substitutions

� define parameters by (sets of) recursive equations (rules)

� abstract interpretation, termination,

� Programming in SML (ADT on real machines)

� strong types, recursive functions, higher-order syntax, exceptions, . . .

� basic data types/algorithms: numbers, lists, strings,
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Recap from GenCSI: Formal Languages and Boolean Alge-
bra

� Formal Languages and Codes (models of “real” programming languages)

� string codes, prefix codes, uniform length codes

� formal language for unary arithmetics (onion architecture)

� syntax and semantics (. . . by mapping to something we understand)

� Boolean Algebra (special syntax, semantics, . . . )

� Boolean functions vs. expressions (syntax vs. semantics again)

� Normal forms (Boolean polynomials, clauses, CNF, DNF)

� Complexity analysis (what does it cost in the limit?)

� Landau Notations (aka. “big-O”) (function classes)

� upper/lower bounds on costs for Boolean functions (all exponential)

� Constructing Minimal Polynomials (simpler than general minimal expressions)

� Prime implicants, Quine McCluskey (you really liked that. . . )

� Propositional Logic and Theorem Proving (A simple Meta-Mathematics)
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� Models, Calculi (Hilbert,Tableau,Resolution,ND), Soundness, Complete-
ness
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Part III

How to build Computers and the
Internet (in principle)

169
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In this part, we will learn how to build computational devices (aka. computers) from elementary
parts (combinational, arithmetic, and sequential circuits), how to program them with low-level
programming languages, and how to interpret/compile higher-level programming languages for
these devices. Then we will understand how computers can be networked into the distributed
computation system we came to call the Internet and the information system of the world-wide
web.

In all of these investigations, we will only be interested on how the underlying devices, algo-
rithms and representations work in principle, clarifying the concepts and complexities involved,
while abstracting from much of the engineering particulars of modern microprocessors. In keep-
ing with this, we will conclude this part by an investigation into the fundamental properties and
limitations of computation.
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Chapter 11

Combinational Circuits

We will now study a new model of computation that comes quite close to the circuits that ex-
ecute computation on today’s computers. Since the course studies computation in the context
of computer science, we will abstract away from all physical issues of circuits, in particular the
construction of gats and timing issues. This allows to us to present a very mathematical view
of circuits at the level of annotated graphs and concentrate on qualitative complexity of circuits.
Some of the material in this section is inspired by [KP95].

We start out our foray into circuits by laying the mathematical foundations of graphs and trees
in Section 11.0, and then build a simple theory of combinational circuits in Section 11.1 and
study their time and space complexity in Section 11.2. We introduce combinational circuits for
computing with numbers, by introducing positional number systems and addition in Section 12.0
and covering 2s-complement numbers and subtraction in Section 12.1. A basic introduction to
sequential logic circuits and memory elements in Chapter 12 concludes our study of circuits.

11.1 Graphs and Trees

Some more Discrete Math: Graphs and Trees

� Remember our Maze Example from the Intro? (long time ago)

〈
〈a, e〉, 〈e, i〉, 〈i, j〉,
〈f, j〉, 〈f, g〉, 〈g, h〉,
〈d, h〉, 〈g, k〉, 〈a, b〉
〈m,n〉, 〈n, o〉, 〈b, c〉
〈k, o〉, 〈o, p〉, 〈l, p〉

 , a, p

〉

� We represented the maze as a graph for clarity.

� Now, we are interested in circuits, which we will also represent as graphs.

� Let us look at the theory of graphs first (so we know what we are doing)
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Graphs and trees are fundamental data structures for computer science, they will pop up in many
disguises in almost all areas of CS. We have already seen various forms of trees: formula trees,
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tableaux, . . . . We will now look at their mathematical treatment, so that we are equipped to talk
and think about combinational circuits.

We will first introduce the formal definitions of graphs (trees will turn out to be special graphs),
and then fortify our intuition using some examples.

Basic Definitions: Graphs

� Definition 11.1.1 An undirected graph is a pair 〈V,E〉 such that

� V is a set of vertices (or node s) (draw as circles)

� E ⊆ {{v, v′} | v, v′ ∈ V ∧ (v 6= v′)} is the set of its undirected edge s(draw
as lines)

� Definition 11.1.2 A directed graph (also called digraph) is a pair 〈V,E〉
such that

� V is a set of vertices

� E ⊆ V × V is the set of its directed edge s

� Definition 11.1.3 Given a graph G = 〈V,E〉. The in-degree indeg(v) and
the out-degree outdeg(v) of a vertex v ∈ V are defined as

� indeg(v) = #({w | 〈w, v〉 ∈ E})
� outdeg(v) = #({w | 〈v, w〉 ∈ E})

Note: For an undirected graph, indeg(v) = outdeg(v) for all nodes v.
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We will mostly concentrate on directed graphs in the following, since they are most important for
the applications we have in mind. Many of the notions can be defined for undirected graphs with
a little imagination. For instance the definitions for indeg and outdeg are the obvious variants:
indeg(v) = #({w | {w, v} ∈ E}) and outdeg(v) = #({w | {v, w} ∈ E})

In the following if we do not specify that a graph is undirected, it will be assumed to be
directed.

This is a very abstract yet elementary definition. We only need very basic concepts like sets and
ordered pairs to understand them. The main difference between directed and undirected graphs
can be visualized in the graphic representations below:

� Examples

� Example 11.1.4 An undirected graphG1 = 〈V1, E1〉, where V1 = {A,B,C,D,E}
and E1 = {{A,B}, {A,C}, {A,D}, {B,D}, {B,E}}

C D

A B E

� Example 11.1.5 A directed graph G2 = 〈V2, E2〉, where V2 = {1, 2, 3, 4, 5}
and E2 = {〈1, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 2〉, 〈2, 4〉, 〈5, 4〉}
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1 2

3

4 5

©: Michael Kohlhase 249

In a directed graph, the edges (shown as the connections between the circular nodes) have a
direction (mathematically they are ordered pairs), whereas the edges in an undirected graph do
not (mathematically, they are represented as a set of two elements, in which there is no natural
order).

Note furthermore that the two diagrams are not graphs in the strict sense: they are only pictures
of graphs. This is similar to the famous painting by René Magritte that you have surely seen
before.

The Graph Diagrams are not Graphs

They are pictures of graphs (of course!)
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If we think about it for a while, we see that directed graphs are nothing new to us. We have
defined a directed graph to be a set of pairs over a base set (of nodes). These objects we have seen
in the beginning of this course and called them relations. So directed graphs are special relations.
We will now introduce some nomenclature based on this intuition.

Directed Graphs

� Idea: Directed Graphs are nothing else than relations

� Definition 11.1.6 Let G = 〈V,E〉 be a directedgraph, then we call a node
v ∈ V

� initial, iff there is no w ∈ V such that 〈w, v〉 ∈ E. (no predecessor)

http://creativecommons.org/licenses/by-sa/2.5/
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� terminal, iff there is no w ∈ V such that 〈v, w〉 ∈ E. (no successor)

In a graph G, node v is also called a source (sink) of G, iff it is initial (terminal)
in G.

� Example 11.1.7 The node 2 is initial, and the nodes 1 and 6 are terminal in

1

2

3

4

5

6
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For mathematically defined objects it is always very important to know when two representations
are equal. We have already seen this for sets, where {a, b} and {b, a, b} represent the same set:
the set with the elements a and b. In the case of graphs, the condition is a little more involved:
we have to find a bijection of nodes that respects the edges.

Graph Isomorphisms

� Definition 11.1.8 A graph isomorphism between two graphs G = 〈V,E〉
and G′ = 〈V ′, E′〉 is a bijective function ψ : V → V ′ with

directed graphs undirected graphs
〈a, b〉 ∈ E ⇔ 〈ψ(a), ψ(b)〉 ∈ E′ {a, b} ∈ E ⇔ {ψ(a), ψ(b)} ∈ E′

� Definition 11.1.9 Two graphs G and G′ are equivalent iff there is a graph-
isomorphism ψ between G and G′.

� Example 11.1.10 G1 and G2 are equivalent as there exists a graph isomor-
phism ψ := {a 7→ 5, b 7→ 6, c 7→ 2, d 7→ 4, e 7→ 1, f 7→ 3} between them.

1

2

3

4

5

6

ec

fd

a

b
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Note that we have only marked the circular nodes in the diagrams with the names of the elements
that represent the nodes for convenience, the only thing that matters for graphs is which nodes
are connected to which. Indeed that is just what the definition of graph equivalence via the
existence of an isomorphism says: two graphs are equivalent, iff they have the same number of
nodes and the same edge connection pattern. The objects that are used to represent them are
purely coincidental, they can be changed by an isomorphism at will. Furthermore, as we have
seen in the example, the shape of the diagram is purely an artifact of the presentation; It does not
matter at all.

So the following two diagrams stand for the same graph, (it is just much more difficult to state
the graph isomorphism)
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Note that directed and undirected graphs are totally different mathematical objects. It is easy
to think that an undirected edge {a, b} is the same as a pair 〈a, b〉, 〈b, a〉 of directed edges in
both directions, but a priory these two have nothing to do with each other. They are certainly
not equivalent via the graph equivalent defined above; we only have graph equivalence between
directed graphs and also between undirected graphs, but not between graphs of differing classes.

Now that we understand graphs, we can add more structure. We do this by defining a labeling
function from nodes and edges.

Labeled Graphs

� Definition 11.1.11 A labeled graph G is a triple 〈V,E, f〉 where 〈V,E〉 is
a graph and f : V ∪ E → R is a partial function into a set R of label s.

� Notation 11.1.12 write labels next to their vertex or edge. If the actual
name of a vertex does not matter, its label can be written into it.

� Example 11.1.13 G = 〈V,E, f〉 with V = {A,B,C,D,E}, where

� E = {〈A,A〉, 〈A,B〉, 〈B,C〉, 〈C,B〉, 〈B,D〉, 〈E,D〉}
� f : V ∪ E → {+,−, ∅} × {1, . . . , 9} with

� f(A) = 5, f(B) = 3, f(C) = 7, f(D) = 4, f(E) = 8,

� f(〈A,A〉) = −0, f(〈A,B〉) = −2, f(〈B,C〉) = +4,

� f(〈C,B〉) = −4, f(〈B,D〉) = +1, f(〈E,D〉) = −4

5 3

7

4 8
-2 +1 -4

+4-4

-0
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Note that in this diagram, the markings in the nodes do denote something: this time the labels
given by the labeling function f , not the objects used to construct the graph. This is somewhat
confusing, but traditional.

Now we come to a very important concept for graphs. A path is intuitively a sequence of nodes
that can be traversed by following directed edges in the right direction or undirected edges.

Paths in Graphs

� Definition 11.1.14 Given a directed graph G = 〈V,E〉, then we call a vector
p = 〈v0, . . . , vn〉 ∈ V n+1 a path in G iff 〈vi−1, vi〉 ∈ E for all 1 ≤ i ≤ n, n > 0.

� v0 is called the start of p (write start(p))

� vn is called the end of p (write end(p))
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� n is called the length of p (write len(p))

Note: Not all vi-s in a path are necessarily different.

�� Notation 11.1.15 For a graph G = 〈V,E〉 and a path p = 〈v0, . . . , vn〉 ∈
V n+1, write

� v ∈ p, iff v ∈ V is a vertex on the path (∃i vi = v)

� e ∈ p, iff e = 〈v, v′〉 ∈ E is an edge on the path (∃i vi = v ∧ vi+1 = v′)

� Notation 11.1.16 We write Π(G) for the set of all paths in a graph G.

©: Michael Kohlhase 254

An important special case of a path is one that starts and ends in the same node. We call it a
cycle. The problem with cyclic graphs is that they contain paths of infinite length, even if they
have only a finite number of nodes.

Cycles in Graphs

� Definition 11.1.17 Given a graph G = 〈V,E〉, then

� a path p is called cyclic (or a cycle) iff start(p) = end(p).

� a cycle 〈v0, . . . , vn〉 is called simple, iff vi 6= vj for 1 ≤ i, j ≤ n with i 6= j.

� graph G is called acyclic iff there is no cyclic path in G.

� Example 11.1.18 〈2, 4, 3〉 and 〈2, 5, 6, 5, 6, 5〉 are paths in

1

2

3

4

5

6

〈2, 4, 3, 1, 2〉 is not a path (no edge from vertex 1 to vertex 2)

The graph is not acyclic (〈5, 6, 5〉 is a cycle)

� Definition 11.1.19 We will sometimes use the abbreviation DAG for “di-
rected acyclic graph”.
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Of course, speaking about cycles is only meaningful in directed graphs, since undirected graphs
can only be acyclic, iff they do not have edges at all.

Graph Depth

� Definition 11.1.20 Let G := 〈V,E〉 be a digraph, then the depth dp(v) of a
vertex v ∈ V is defined to be 0, if v is a source ofG and sup({len(p) | indeg(start(p)) = 0 ∧ end(p) = v})
otherwise, i.e. the length of the longest path from a source of G to v. (
can be infinite)
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� Definition 11.1.21 Given a digraph G = 〈V,E〉. The depth (dp(G)) of G
is defined as sup({len(p) | p ∈ Π(G)}), i.e. the maximal path length in G.

� Example 11.1.22 The vertex 6 has depth two in the left graph and infine
depth in the right one.

1

2

3

4

5

6 1

2

3

4

5

6

The left graph has depth three (cf. node 1), the right one has infinite depth
(cf. nodes 5 and 6)
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We now come to a very important special class of graphs, called trees.

Trees

� Definition 11.1.23 A tree is a directed acyclic graph G = 〈V,E〉 such that

� There is exactly one initial node vr ∈ V (called the root)

� All nodes but the root have in-degree 1.

We call v the parent of w, iff 〈v, w〉 ∈ E (w is a child of v). We call a node v
a leaf of G, iff it is terminal, i.e. if it does not have children.

� Example 11.1.24 A tree with root A and leaves D, E, F , H, and J .

A

B

D E F

C

G

H I

J
F is a child of B and G is the parent of H and I.

� Lemma 11.1.25 For any node v ∈ V except the root vr, there is exactly one
path p ∈ Π(G) with start(p) = vr and end(p) = v. (proof by induction on the
number of nodes)
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In Computer Science trees are traditionally drawn upside-down with their root at the top, and
the leaves at the bottom. The only reason for this is that (like in nature) trees grow from the root
upwards and if we draw a tree it is convenient to start at the top of the page downwards, since we
do not have to know the height of the picture in advance.

Let us now look at a prominent example of a tree: the parse tree of a Boolean expression. In-
tuitively, this is the tree given by the brackets in a Boolean expression. Whenever we have an
expression of the form A ◦ B, then we make a tree with root ◦ and two subtrees, which are
constructed from A and B in the same manner.
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This allows us to view Boolean expressions as trees and apply all the mathematics (nomencla-
ture and results) we will develop for them.

The Parse-Tree of a Boolean Expression

� Definition 11.1.26 The parse-tree Pe of a Boolean expression e is a labeled
tree Pe = 〈Ve, Ee, fe〉, which is recursively defined as

� if e = e′ then Ve := Ve′ ∪ {v}, Ee := Ee′ ∪ {〈v, v′r〉}, and fe := fe′ ∪ {v 7→ · },
where Pe′ = 〈Ve′ , Ee′ , fe′〉 is the parse-tree of e′, v′r is the root of Pe′ , and v is
an object not in Ve′ .

� if e = e1◦e2 with ◦ ∈ {∗,+} then Ve := Ve1 ∪ Ve2 ∪ {v}, Ee := Ee1 ∪ Ee2 ∪ {〈v, vr1〉, 〈v, vr2〉},
and fe := fe1 ∪ fe2 ∪ {v 7→ ◦}, where the Pei = 〈Vei , Eei , fei〉 are the parse-
trees of ei and vri is the root of Pei and v is an object not in Ve1 ∪ Ve2 .

� if e ∈ (V ∪ Cbool) then, Ve = {e} and Ee = ∅.

� Example 11.1.27 the parse tree of (x1 ∗ x2 + x3) ∗ x1 + x4 is

*

+

*

x1 x2

x3

·

+

x1 x4
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11.2 Introduction to Combinatorial Circuits

We will now come to another model of computation: combinational circuits. These are models
of logic circuits (physical objects made of transistors (or cathodbe tubes) and wires, parts of
integrated circuits, etc), which abstract from the inner structure for the switching elements (called
gates) and the geometric configuration of the connections. Thus, combinational circuits allow us
to concentrate on the functional properties of these circuits, without getting bogged down with
e.g. configuration- or geometric considerations. These can be added to the models, but are not
part of the discussion of this course.

Combinational Circuits as Graphs

� Definition 11.2.1 A combinational circuit is a labeled acyclic graph G =
〈V,E, fg〉 with label set {OR,AND,NOT}, such that

� indeg(v) = 2 and outdeg(v) = 1 for all nodes v ∈ f−1
g ({AND,OR})

� indeg(v) = outdeg(v) = 1 for all nodes v ∈ f−1
g ({NOT})

We call the set I(G) (O(G)) of initial (terminal) nodes in G the input (output)
vertices, and the set F (G) := V \(I(G) ∪O(G)) the set of gate s.

� Example 11.2.2 The following graph Gcir1 = 〈V,E〉 is a combinational
circuit
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i1

g1

g2

i2 i3

g3

g4

o1 o2

ORAND

OR NOT

� Definition 11.2.3 Add two special input nodes 0, 1 to a combinational cir-
cuit G to form a combinational circuit with constants. (will use this from now
on)
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So combinational circuits are simply a class of specialized labeled directed graphs. As such,
they inherit the nomenclature and equality conditions we introduced for graphs. The motivation
for the restrictions is simple, we want to model computing devices based on gates, i.e. simple
computational devices that behave like logical connectives: the AND gate has two input edges
and one output edge; the the output edge has value 1, iff the two input edges do too.

Since combinational circuits are a primary tool for understanding logic circuits, they have their
own traditional visual display format. Gates are drawn with special node shapes and edges are
traditionally drawn on a rectangular grid, using bifurcating edges instead of multiple lines with
blobs distinguishing bifurcations from edge crossings. This graph design is motivated by readability
considerations (combinational circuits can become rather large in practice) and the layout of early
printed circuits.

Using Special Symbols to Draw Combinational Circuits

� Conventional (US) Notation: The symbols for the logic gates AND, OR, and
NOT.

NOT

OR

AND

i1

i2

i3

o1

o2

� Another Visual Convention: edges with right angles (like wire wraps)
i1

i2

i3

o1

o2
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In particular, the diagram on the lower right is a visualization for the combinatoinal circuit Gcirc1
from the last slide.

To view combinational circuits as models of computation, we will have to make a connection
between the gate structure and their input-output behavior more explicit. We will use a tool for
this we have studied in detail before: Boolean expressions. The first thing we will do is to annotate
all the edges in a combinational circuit with Boolean expressions that correspond to the values on
the edges (as a function of the input values of the circuit).

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


182 CHAPTER 11. COMBINATIONAL CIRCUITS

Computing with Combinational Circuits

� Combinational Circuits and parse trees for Boolean expressions look similar

� Idea: Let’s annotate edges in combinational circuit with Boolean Expressions!

� Definition 11.2.4 Given a com-
binational circuit G = 〈V,E, fg〉
and an edge e = 〈v, w〉 ∈ E, the
expression label fL(e) is defined as

fL(〈v, w〉) if
v v ∈ I(G)

fL(〈u, v〉) fg(v) = NOT
fL(〈u, v〉) ∗ fL(〈u′, v〉) fg(v) = AND
fL(〈u, v〉) + fL(〈u′, v〉) fg(v) = OR

� Example 11.2.5

i1

i2

i3

o1

o2

i1

i2

i3

i1 ∗ i2

i2 + i3

(i1 ∗ i2) + i3

i2 + i3
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Armed with the expression label of edges we can now make the computational behavior of combi-
national circuits explicit. The intuition is that a combinational circuit computes a certain Boolean
function, if we interpret the input vertices as obtaining as values the corresponding arguments and
passing them on to gates via the edges in the circuit. The gates then compute the result from
their input edges and pass the result on to the next gate or an output vertex via their output
edge.

Computing with Combinational Circuits

� Definition 11.2.6 A combinational circuit G = 〈V,E, fg〉 with input vertices
i1, . . . , in and output vertices o1, . . . , om computes an n-ary Boolean function

f : {0, 1}n → {0, 1}m; 〈i1, . . . , in〉 7→ 〈fe1(i1, . . . , in), . . . , fem(i1, . . . , in)〉

where ei = fL(〈v, oi〉).

� Example 11.2.7 The circuit in Example 11.2.5 computes the Boolean func-
tion f : {0, 1}3 → {0, 1}2; 〈i1, i2, i3〉 7→ 〈fi1∗i2+i3 , fi2+i3

〉

� Definition 11.2.8 The cost C(G) of a circuit G is the number of gates in
G.

� Problem: For a given boolean function f , find combinational circuits of mini-
mal cost and depth that compute f .
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Note: The opposite problem, i.e., the conversion of a combinational circuit into a Boolean function,
can be solved by determining the related expressions and their parse-trees. Note that there is a
canonical graph-isomorphism between the parse-tree of an expression e and a combinational circuit
that has an output that computes fe.

11.3 Realizing Complex Gates Efficiently

The main properties of combinational circuits we are interested in studying will be the the number
of gates and the depth of a circuit. The number of gates is of practical importance, since it is
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a measure of the cost that is needed for producing the circuit in the physical world. The depth
is interesting, since it is an approximation for the speed with which a combinational circuit can
compute: while in most physical realizations, signals can travel through wires at at (almost) the
speed of light, gates have finite computation times.

Therefore we look at special configurations for combinational circuits that have good depth and
cost. These will become important, when we build actual combinational circuits with given in-
put/output behavior. We will now study the case for n-ary gates, since they are important building
blocks for combinational circuits, see e.g. the DNF circuit on slide 269.

11.3.1 Balanced Binary Trees

We study an important class of trees now: binary trees, where all internal nodes have two
children. These trees occur for instance in combinational circuits or in tree search algorithms. In
many cases, we are interested in the depth of such trees, and in particular in minimizing the depth
(e.g. for minimizing computation time). As we will see below, binary trees of minimal depth can
be described quite easily.

Balanced Binary Trees

� Definition 11.3.1 (Binary Tree) A binary tree is a tree where all nodes
have out-degree 2 or 0.

� Definition 11.3.2 A binary tree G is called balanced iff the depth of all
leaves differs by at most by 1, and fully balanced, iff the depth difference is 0.

� Constructing a binary tree Gbbt = 〈V,E〉 with n leaves

� step 1: select some u ∈ V as root, (V1 := {u}, E1 := ∅)
� step 2: select v, w ∈ V not yet in Gbbt and add them, (Vi = Vi−1 ∪ {v, w})
� step 3: add two edges 〈u, v〉 and 〈u,w〉 where u is the leftmost of the

shallowest nodes with outdeg(u) = 0, (Ei := Ei−1 ∪ {〈u, v〉, 〈u,w〉})
� repeat steps 2 and 3 until i = n (V = Vn, E = En)

� Example 11.3.3 Balanced binary trees become quite bushy as they grow:

7 leaves many more
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We will now establish a few properties of these balanced binary trees that show that they are
good building blocks for combinational circuits. In particular, we want to get at handle on the
dependencies of depth, cost, and number of leaves.

Size Lemma for Balanced Trees
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� Lemma 11.3.4 Let G = 〈V,E〉 be a balanced binary tree of depth n > i,
then the set Vi := {v ∈ V | dp(v) = i} of nodes at depth i has cardinality 2i.

� Proof: via induction over the depth i.

P.1 We have to consider two cases

P.1.1 i = 0: then Vi = {vr}, where vr is the root, so #(V0) = #({vr}) = 1 = 20.

P.1.2 i > 0: then Vi−1 contains 2i−1 vertices (IH)

P.1.2.2 By the definition of a binary tree, each v ∈ Vi−1 is a leaf or has two
children that are at depth i.

P.1.2.3 As G is balanced and dp(G) = n > i, Vi−1 cannot contain leaves.

P.1.2.4 Thus #(Vi) = 2 ·#(Vi−1) = 2 · 2i−1 = 2i.

� Corollary 11.3.5 A fully balanced tree of depth d has 2d+1 − 1 nodes.

� Proof Sketch: If G := 〈V,E〉 is a fully balanced tree, then #(V ) =
∑d
i=1 2i =

2d+1 − 1.
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Note that there is a slight subtlety in the formulation of the theorem: to get the result that the
breadth of the ith“row” of nodes is exactly 2i, we have to restrict i by excluding the deepest “row”
(which might be only partially filled in trees that are not fully balanced).

Lemma 11.3.4 shows that balanced binary trees grow in breadth very quickly, a consequence of
this is that they are very shallow (and thus compute very fast), which is the essence of the next
result. For an intuition, see the shape of the right tree in Example 11.3.3.

Depth Lemma for Balanced Trees

� Lemma 11.3.6 Let G = 〈V,E〉 be a balanced binary tree, then dp(G) =
blog2(#(V ))c.

� Proof: by calculation

P.1 Let V ′ := V \W , where W is the set of nodes at level d = dp(G)

P.2 By the size lemma, #(V ′) = 2d−1+1 − 1 = 2d − 1

P.3 then #(V ) = 2d − 1 + k, where k = #(W ) and 1 ≤ k ≤ 2d

P.4 so #(V ) = c · 2d where c ∈ R and 2≤c<2, or 0≤log2(c)<1

P.5 thus log2(#(V )) = log2(c · 2d) = log2(c) + d and

P.6 hence d = log2(#(V ))− log2(c) = blog2(#(V ))c.
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In many cases, we are interested in the ratio of leaves to nodes of balanced binary trees (e.g.
when realizing n-ary gates). This result is a simple induction away.

Leaves of Binary Trees

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


11.3. REALIZING COMPLEX GATES EFFICIENTLY 185

� Lemma 11.3.7 Any binary tree with m leaves has 2m− 1 vertices.

� Proof: by induction on m.

P.1 We have two cases m = 1: then V = {vr} and #(V ) = 1 = 2 · 1− 1.

P.1.2 m > 1:

P.1.2.1 then any binary tree G with m− 1 leaves has 2m− 3 vertices (IH)

P.1.2.2 To get m leaves, add 2 children to some leaf of G. (add two to get
one more)

P.1.2.3 Thus #(V ) = 2 ·m− 3 + 2 = 2 ·m− 1.
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In particular, the size of a binary tree is independent of the its form if we fix the number of leaves.
So we can optimimze the depth of a binary tree by taking a balanced one without a size penalty.
This will become important for building fast combinational circuits.

11.3.2 Realizing n-ary Gates

We now use the results on balanced binary trees to build generalized gates as building blocks for
combinational circuits.

n-ary Gates as Subgraphs

� Idea: Identify (and abbreviate) frequently occurring subgraphs

� Definition 11.3.8 We define the n-ary gates by Boolean equivalence.7

ANDn(x1, . . . , xn) := 1 ∗
∏n
i=1 xi and ORn(x1, . . . , xn) := 0 +

∑n
i=1 xi

� Note: These can be realized as balanced binary trees Gn

� Corollary 11.3.9 C(Gn) = n− 1 and dp(Gn) = blog2(n)c.

� Notation 11.3.10

We write the n-ary gates as
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gEdNote: MK: what is the right way to define them? Also: we should really not use regular
products here! but define special ones for boolean circuits.

Using these building blocks, we can establish a worst-case result for the depth of a combinational
circuit computing a given Boolean function.

Worst Case Depth Theorem for Combinational Circuits

� Theorem 11.3.11 The worst case depth dp(G) of a combinational circuit G
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which realizes an k × n-dimensional boolean function is bounded by dp(G) ≤
n+ blog2(n)c+ 1.

� Proof: The main trick behind this bound is that AND and OR are associative
and that the according gates can be arranged in a balanced binary tree.

P.1 Function f corresponding to the output oj of the circuit G can be trans-
formed in DNF

P.2 each monomial consists of at most n literals

P.3 the possible negation of inputs for some literals can be done in depth 1

P.4 for each monomial the ANDs in the related circuit can be arranged in a
balanced binary tree of depth blog2(n)c

P.5 there are at most 2n monomials which can be ORed together in a balanced
binary tree of depth blog2(2n)c = n.
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Of course, the depth result is related to the first worst-case complexity result for Boolean expres-
sions (Theorem 6.3.17); it uses the same idea: to use the disjunctive normal form of the Boolean
function. However, instead of using a Boolean expression, we become more concrete here and use
a combinational circuit.

An example of a DNF circuit

©: Michael Kohlhase 269

In the circuit diagram above, we have of course drawn a very particular case (as an example
for possible others.) One thing that might be confusing is that it looks as if the lower n-ary
conjunction operators look as if they have edges to all the input variables, which a DNF does not
have in general.

Of course, by now, we know how to do better in practice. Instead of the DNF, we can always com-
pute the minimal polynomial for a given Boolean function using the Quine-McCluskey algorithm
and derive a combinational circuit from this. While this does not give us any theoretical mileage
(there are Boolean functions where the DNF is already the minimal polynomial), but will greatly

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


11.3. REALIZING COMPLEX GATES EFFICIENTLY 187

improve the cost in practice.

Until now, we have somewhat arbitrarily concentrated on combinational circuits with AND, OR,
and NOT gates. The reason for this was that we had already developed a theory of Boolean
expressions with the connectives ∨, ∧, and ¬ that we can use. In practical circuits often other
gates are used, since they are simpler to manufacture and more uniform. In particular, it is
sufficient to use only one type of gate as we will see now.

Other Logical Connectives and Gates

� Are the gates AND, OR, and NOT ideal?

� Idea: Combine NOT with the binary ones to NAND, NOR (enough?)

�
NAND 1 0

1 0 1
0 1 1

and
NOR 1 0

1 0 0
0 0 1

� Corresponding logical conectives are written as ↑ (NAND) and ↓ (NOR).

� We will also need the exclusive or (XOR) connective that returns 1 iff either

of its operands is 1.
XOR 1 0

1 0 1
0 1 0

� The gate is written as , the logical connective as ⊕.
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The significance of the NAND and NOR gates is that we can build combinational circuite with
just one type of gate, which is useful practically. On a theoretical side, we can show that both
NAND and NOR are universal, i.e. they can be used to express everything we can also express
with AND, OR, and NOT respectively

The Universality of NAND and NOR

� Theorem 11.3.12 NAND and NOR are universal; i.e. any Boolean function
can be expressed in terms of them.

� Proof Sketch: Express AND, OR, and NOT via NAND and NOR respectively:

NOT(a) NAND(a, a) NOR(a, a)
AND(a, b) NAND(NAND(a, b),NAND(a, b)) NOR(NOR(a, a),NOR(b, b))
OR(a, b) NAND(NAND(a, a),NAND(b, b)) NOR(NOR(a, b),NOR(a, b))

� here are the corresponding diagrams for the combinational circuits.
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©: Michael Kohlhase 271

Of course, a simple substitution along these lines will blow up the cost of the circuits by a factor of
up to three and double the depth, which would be prohibitive. To get around this, we would have
to develop a theory of Boolean expressions and complexity using the NAND and NOR connectives,
along with suitable replacements for the Quine-McCluskey algorithm. This would give cost and
depth results comparable to the ones developed here. This is beyond the scope of this course.
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Chapter 12

Arithmetic Circuits

12.1 Basic Arithmetics with Combinational Circuits

We have seen that combinational circuits are good models for implementing Boolean functions:
they allow us to make predictions about properties like costs and depths (computation speed),
while abstracting from other properties like geometrical realization, etc.

We will now extend the analysis to circuits that can compute with numbers, i.e. that implement
the basic arithmetical operations (addition, multiplication, subtraction, and division on integers).
To be able to do this, we need to interpret sequences of bits as integers. So before we jump into
arithmetical circuits, we will have a look at number representations.

12.1.1 Positional Number Systems

Positional Number Systems

� Problem: For realistic arithmetics we need better number representations than
the unary natural numbers (|ϕn(unary)| ∈ Θ(n) [number of /])

� Recap: the unary number system

� build up numbers from /es (start with ’ ’ and add /)

� addition ⊕ as concatenation (�, exp, . . . defined from that)

Idea: build a clever code on the unary numbers

� � interpret sequences of /es as strings: ε stands for the number 0

� Definition 12.1.1 A positional number systemN is a tripleN = 〈Db, ϕb, ψb〉
with

� Db is a finite alphabet of b digit s. (b := #(Db) base or radix of N )

� ϕb : Db → {ε, /, . . . , /[b−1]} is bijective (first b unary numbers)

� ψb : Db
+ → {/}∗; 〈nk, . . . , n1〉 7→

⊕k
i=1 ϕb(ni)� exp(/[b], /[i−1]) (extends

ϕb to string code)
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In the unary number system, it was rather simple to do arithmetics, the most important oper-
ation (addition) was very simple, it was just concatenation. From this we can implement the

189
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other operations by simple recursive procedures, e.g. in SML or as abstract procedures in abstract
data types. To make the arguments more transparent, we will use special symbols for the arith-
metic operations on unary natural numbers: ⊕ (addition), � (multiplication),

⊕n
i=1 (sum over n

numbers), and
⊙n

i=1 (product over n numbers).

The problem with the unary number system is that it uses enormous amounts of space, when
writing down large numbers. Using the Landau notation we introduced earlier, we see that for
writing down a number n in unary representation we need n slashes. So if |ϕn(unary)| is the “cost
of representing n in unary representation”, we get |ϕn(unary)| ∈ Θ(n). Of course that will never
do for practical chips. We obviously need a better encoding.

If we look at the unary number system from a greater distance (now that we know more CS, we can
interpret the representations as strings), we see that we are not using a very important feature of
strings here: position. As we only have one letter in our alphabet (/), we cannot, so we should use
a larger alphabet. The main idea behind a positional number system N = 〈Db, ϕb, ψb〉 is that we
encode numbers as strings of digits (characters in the alphabet Db), such that the position matters,
and to give these encoding a meaning by mapping them into the unary natural numbers via a
mapping ψb. This is the the same process we did for the logics; we are now doing it for number
systems. However, here, we also want to ensure that the meaning mapping ψb is a bijection, since
we want to define the arithmetics on the encodings by reference to The arithmetical operators on
the unary natural numbers.

We can look at this as a bootstrapping process, where the unary natural numbers constitute
the seed system we build up everything from.

Just like we did for string codes earlier, we build up the meaning mapping ψb on characters from
Db first. To have a chance to make ψ bijective, we insist that the “character code” ϕb is is a
bijection from Db and the first b unary natural numbers. Now we extend ϕb from a character code
to a string code, however unlike earlier, we do not use simple concatenation to induce the string
code, but a much more complicated function based on the arithmetic operations on unary natural
numbers. We will see later (cf. ?id=PNS-arithm-as?) that this give us a bijection between Db

+

and the unary natural numbers.

Commonly Used Positional Number Systems

� Example 12.1.2 The following positional number systems are in common
use.

name set base digits example

unary N1 1 / /////1
binary N2 2 0,1 01010001112
octal N8 8 0,1,. . . ,7 630278
decimal N10 10 0,1,. . . ,9 16209810 or 162098
hexadecimal N16 16 0,1,. . . ,9,A,. . . ,F FF3A1216

� Notation 12.1.3 attach the base of N to every number from N . (default:
decimal)

Trick: Group triples or quadruples of binary digits into recognizable chunks(add
leading zeros as needed)

� � 1100011010111002 = 01102︸ ︷︷ ︸
616

00112︸ ︷︷ ︸
316

01012︸ ︷︷ ︸
516

11002︸ ︷︷ ︸
C16

= 635C16

� 1100011010111002 = 1102︸ ︷︷ ︸
68

0012︸ ︷︷ ︸
18

1012︸ ︷︷ ︸
58

0112︸ ︷︷ ︸
38

1002︸ ︷︷ ︸
48

= 615348

� F3A16 = F16︸︷︷︸
11112

316︸︷︷︸
00112

A16︸︷︷︸
10102

= 1111001110102, 47218 = 48︸︷︷︸
1002

78︸︷︷︸
1112

28︸︷︷︸
0102

18︸︷︷︸
0012

= 1001110100012
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We have all seen positional number systems: our decimal system is one (for the base 10). Other
systems that important for us are the binary system (it is the smallest non-degenerate one) and
the octal- (base 8) and hexadecimal- (base 16) systems. These come from the fact that binary
numbers are very hard for humans to scan. Therefore it became customary to group three or four
digits together and introduce we (compound) digits for them. The octal system is mostly relevant
for historic reasons, the hexadecimal system is in widespread use as syntactic sugar for binary
numbers, which form the basis for circuits, since binary digits can be represented physically by
current/no current.

Now that we have defined positional number systems, we want to define the arithmetic operations
on the these number representations. We do this by using an old trick in math. If we have
an operation fT : T → T on a set T and a well-behaved mapping ψ from a set S into T , then
we can “pull-back” the operation on fT to S by defining the operation fS : S → S by fS(s) :=
ψ−1(fT (ψ(s))) according to the following diagram.

S

S

T

T

ψ

ψ−1

ψ

fS = ψ−1 ◦ fT ◦ ψ fT

n Obviously, this construction can be done in any case, where ψ is bijective (and thus has an
inverse function). For defining the arithmetic operations on the positional number representations,
we do the same construction, but for binary functions (after we have established that ψ is indeed
a bijection).

The fact that ψb is a bijection a posteriori justifies our notation, where we have only indicated the
base of the positional number system. Indeed any two positional number systems are isomorphic:
they have bijections ψb into the unary natural numbers, and therefore there is a bijection between
them.

Arithmetics for PNS

� Lemma 12.1.4 Let N := 〈Db, ϕb, ψb〉 be a PNS, then ψb is bijective.

� Proof Sketch: Construct ψ−1
b by successive division modulo the base of N .

� Idea: use this to define arithmetics on N .

� Definition 12.1.5 Let N := 〈Db, ϕb, ψb〉 be a PNS of base b, then we define
a binary function +b : Nb × Nb → Nb by (x+by) := ψ−1

b (ψb(x)⊕ ψb(y)).

� Note: The addition rules (carry chain addition) generalize from the decimal
system to general PNS

� Idea: Do the same for other arithmetic operations. (works like a charm)

� Future: Concentrate on binary arithmetics. (implement into circuits)
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12.1.2 Adders

The next step is now to implement the induced arithmetical operations into combinational circuits,
starting with addition. Before we can do this, we have to specify which (Boolean) function we
really want to implement. For convenience, we will use the usual decimal (base 10) representations
of numbers and their operations to argue about these circuits. So we need conversion functions
from decimal numbers to binary numbers to get back and forth. Fortunately, these are easy to
come by, since we use the bijections ψ from both systems into the unary natural numbers, which
we can compose to get the transformations.

Arithmetic Circuits for Binary Numbers

� Idea: Use combinational circuits to do basic arithmetics.

� Definition 12.1.6 Given the (abstract) number a ∈ N, B(a) denotes from
now on the binary representation of a.

For the opposite case, i.e., the natural number represented by a binary string
a = 〈an−1, . . . , a0〉 ∈ Bn, the notation 〈〈a〉〉 is used, i.e.,

〈〈a〉〉 = 〈〈an−1, . . . , a0〉〉 =

n−1∑
i=0

ai · 2i

� Definition 12.1.7 An n-bit adder is a circuit computing the function fn+2
: Bn × Bn →

Bn+1 with
fn+2

(a; b) := B(〈〈a〉〉+ 〈〈b〉〉)
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If we look at the definition again, we see that we are again using a pull-back construction. These
will pop up all over the place, since they make life quite easy and safe.

Before we actually get a combinational circuit for an n-bit adder, we will build a very useful circuit
as a building block: the “half adder” (it will take two to build a full adder).

The Half-Adder

� There are different ways to implement an adder. All of them build upon two
basic components, the half-adder and the full-adder.

�

Definition 12.1.8 A half adder is a circuit HA im-
plementing the function fHA in the truth table on the
right.

fHA : B2 → B2 〈a, b〉 7→ 〈c, s〉

s is called the sum bit and c the carry bit.

a b c s
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

� Note: The carry can be computed by a simple AND, i.e., c = AND(a, b), and
the sum bit by a XOR function.
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As always we are interested in the cost and depth of the circuits.
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Building and Evaluating the Half-Adder

‘

� So, the half-adder corresponds to the Boolean function fHA : B2 → B2; 〈a, b〉 7→
〈a⊕ b, a ∧ b〉

� Note: fHA(a, b) = B(〈〈a〉〉+ 〈〈b〉〉), i.e., it is indeed an adder.

� We count XOR as one gate, so C(HA) = 2 and dp(HA) = 1.
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Now that we have the half adder as a building block it is rather simple to arrive at a full adder
circuit.

, in the diagram for the full adder, and in the following, we will sometimes use a variant gate

symbol for the OR gate: The symbol . It has the same outline as an AND gate, but the input
lines go all the way through.

The Full Adder

� Definition 12.1.9 The 1-bit full adder is a circuit FA1

that implements the function f1
FA : B× B× B → B2 with

FA1(a, b, c′) = B(〈〈a〉〉+ 〈〈b〉〉+ 〈〈c′〉〉)

� The result of the full-adder is also denoted with 〈c, s〉, i.e.,
a carry and a sum bit. The bit c′ is called the input carry.

� the easiest way to implement a full adder is to use two
half adders and an OR gate.

� Lemma 12.1.10 (Cost and Depth)
C(FA1) = 2C(HA) + 1 = 5 and
dp(FA1) = 2dp(HA) + 1 = 3

a b c′ c s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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Of course adding single digits is a rather simple task, and hardly worth the effort, if this is all we
can do. What we are really after, are circuits that will add n-bit binary natural numbers, so that
we arrive at computer chips that can add long numbers for us.

Full n-bit Adder
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� Definition 12.1.11 An n-bit full adder (n > 1) is a circuit that corresponds
to fnFA : Bn × Bn × B→ B× Bn; 〈a, b, c′〉 7→ B(〈〈a〉〉+ 〈〈b〉〉+ 〈〈c′〉〉)

� Notation 12.1.12 We will draw the n-bit full adder with the following sym-
bol in circuit diagrams.

Note that we are abbreviating n-bit input
and output edges with a single one that
has a slash and the number n next to it.

� There are various implementations of the full n-bit adder, we will look at two
of them
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This implementation follows the intuition behind elementary school addition (only for binary
numbers): we write the numbers below each other in a tabulated fashion, and from the least
significant digit, we follow the process of

• adding the two digits with carry from the previous column

• recording the sum bit as the result, and

• passing the carry bit on to the next column

until one of the numbers ends.

The Carry Chain Adder (Idea)

� The inductively designed circuit of the carry chain adder.

� n = 1: the CCA1 consists of a full adder

� n > 1: the CCAn consists of an (n− 1)-bit carry chain adder CCAn−1 and
a full adder that sums up the carry of CCAn−1 and the last two bits of a
and b
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The Carry Chain Adder (Definition)

� Definition 12.1.13 An n-bit carry chain adder CCAn is inductively defined
as
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� f1
CCA(a0, b0, c) = FA1(a0, b0, c)

� fnCCA(〈an−1, . . . , a0〉, 〈bn−1, . . . , b0〉, c′) = 〈c, sn−1, . . . , s0〉 with

� 〈c, sn−1〉 = FAn−1(an−1, bn−1, cn−1)

� 〈sn−1, . . . , s0〉 = fn−1
CCA (〈an−2, . . . , a0〉, 〈bn−2, . . . , b0〉, c′)

� Lemma 12.1.14 (Cost) C(CCAn) ∈ O(n)

� Proof Sketch: C(CCAn) = C(CCAn−1) + C(FA1) = C(CCAn−1) + 5 = 5n

� Lemma 12.1.15 (Depth) dp(CCAn) ∈ O(n)

� Proof Sketch: dp(CCAn) ≤ dp(CCAn−1) + dp(FA1) ≤ dp(CCAn−1) + 3 ≤ 3n

� The carry chain adder is simple, but cost and depth are high.(depth is critical
(speed))

� Question: Can we do better?

� Problem: the carry ripples up the chain (upper parts wait for carries from
lower part)
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A consequence of using the carry chain adder is that if we go from a 32-bit architecture to a 64-bit
architecture, the speed of additions in the chips would not increase, but decrease (by 50%). Of
course, we can carry out 64-bit additions now, a task that would have needed a special routine
at the software level (these typically involve at least 4 32-bit additions so there is a speedup for
such additions), but most addition problems in practice involve small (under 32-bit) numbers, so
we will have an overall performance loss (not what we really want for all that cost).

If we want to do better in terms of depth of an n-bit adder, we have to break the dependency
on the carry, let us look at a decimal addition example to get the idea. Consider the following
snapshot of an carry chain addition

first summand 3 4 7 9 8 3 4 7 9 2
second summand 2? 5? 1? 8? 1? 7? 81 71 20 10

partial sum ? ? ? ? ? ? ? ? 5 1 3

We have already computed the first three partial sums. Carry chain addition would simply go on
and ripple the carry information through until the left end is reached (after all what can we do?
we need the carry information to carry out left partial sums). Now, if we only knew what the
carry would be e.g. at column 5, then we could start a partial summation chain there as well.

The central idea in the “conditional sum adder” we will pursue now, is to trade time for space,
and just compute both cases (with and without carry), and then later choose which one was the
correct one, and discard the other. We can visualize this in the following schema.

first summand 3 4 7 9 8 3 4 7 9 2
second summand 2? 50 11 8? 1? 7? 81 71 20 10

lower sum ? ? 5 1 3
upper sum. with carry ? ? ? 9 8 0
upper sum. no carry ? ? ? 9 7 9

Here we start at column 10 to compute the lower sum, and at column 6 to compute two upper
sums, one with carry, and one without. Once we have fully computed the lower sum, we will know
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about the carry in column 6, so we can simply choose which upper sum was the correct one and
combine lower and upper sum to the result.

Obviously, if we can compute the three sums in parallel, then we are done in only five steps not ten
as above. Of course, this idea can be iterated: the upper and lower sums need not be computed
by carry chain addition, but can be computed by conditional sum adders as well.

The Conditional Sum Adder

� Idea: pre-compute both possible upper sums (e.g. upper half) for carries 0
and 1, then choose (via MUX) the right one according to lower sum.

� the inductive definition of the circuit of a conditional sum adder (CSA).

� Definition 12.1.16 An n-bit conditional sum adder CSAn is recursively de-
fined as

� fnCSA(〈an−1, . . . , a0〉, 〈bn−1, . . . , b0〉, c′) = 〈c, sn−1, . . . , s0〉 where

� 〈cn/2, sn/2−1, . . . , s0〉 = f
n/2
CSA(〈an/2−1, . . . , a0〉, 〈bn/2−1, . . . , b0〉, c′)

� 〈c, sn−1, . . . , sn/2〉 =

{
f
n/2
CSA(〈an−1, . . ., an/2〉, 〈bn−1, . . . , bn/2〉, 0) if cn/2 = 0

f
n/2
CSA(〈an−1, . . ., an/2〉, 〈bn−1, . . . , bn/2〉, 1) if cn/2 = 1

� f1
CSA(a0, b0, c) = FA1(a0, b0, c)
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The only circuit that we still have to look at is the one that chooses the correct upper sums.
Fortunately, this is a rather simple design that makes use of the classical trick that “if C, then A,
else B” can be expressed as “(C and A) or (not C and B)”.

The Multiplexer

� Definition 12.1.17 An n-bit multiplexer MUXn is a circuit which imple-
ments the function fnMUX : Bn × Bn × B→ Bn with

fnMUX(an−1, . . . , a0, bn−1, . . . , b0, s) =

{
〈an−1, . . . , a0〉 if s = 0
〈bn−1, . . . , b0〉 if s = 1

� Idea: A multiplexer chooses between two n-bit input vectors A and B depend-
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ing on the value of the control bit s.

� Cost and depth: C(MUXn) = 3n+ 1 and dp(MUXn) = 3.
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Now that we have completely implemented the conditional lookahead adder circuit, we can analyze
it for its cost and depth (to see whether we have really made things better with this design).
Analyzing the depth is rather simple, we only have to solve the recursive equation that combines
the recursive call of the adder with the multiplexer. Conveniently, the 1-bit full adder has the
same depth as the multiplexer.

The Depth of CSA

� dp(CSAn) ≤ dp(CSAn/2) + dp(MUXn/2+1)

� solve the recursive equation:

dp(CSAn) ≤ dp(CSAn/2) + dp(MUXn/2+1)

≤ dp(CSAn/2) + 3

≤ dp(CSAn/4) + 3 + 3

≤ dp(CSAn/8) + 3 + 3 + 3

. . .

≤ dp(CSAn2−i) + 3i

≤ dp(CSA1) + 3log2(n)

≤ 3log2(n) + 3
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The analysis for the cost is much more complex, we also have to solve a recursive equation, but a
more difficult one. Instead of just guessing the correct closed form, we will use the opportunity to
show a more general technique: using Master’s theorem for recursive equations. There are many
similar theorems which can be used in situations like these, going into them or proving Master’s
theorem would be beyond the scope of the course.

The Cost of CSA

� C(CSAn) = 3C(CSAn/2) + C(MUXn/2+1).

� Problem: How to solve this recursive equation?
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� Solution: Guess a closed formula, prove by induction. (if we are lucky)

� Solution2: Use a general tool for solving recursive equations.

� Theorem 12.1.18 (Master’s Theorem for Recursive Equations) Given
the recursively defined function f : N → R, such that f(1) = c ∈ R and
f(bk) = af(bk−1) + g(bk) for some a ∈ R, 1 ≤ a, k ∈ N, and g : N→ R, then

f(bk) = cak +
∑k−1
i=0 a

ig(bk−i)

� We have

C(CSAn) = 3C(CSAn/2) + C(MUXn/2+1)

= 3C(CSAn/2) + 3(n/2 + 1) + 1

= 3C(CSAn/2) +
3

2
n+ 4

� So, C(CSAn) is a function that can be handled via Master’s theorem with
a = 3, b = 2, n = bk, g(n) = 3/2n+ 4, and c = C(f1

CSA) = C(FA1) = 5

� thus C(CSAn) = 5 · 3log2(n) +
∑log2(n)−1
i=0 3i · 3

2n · 2
−i + 4

� Note: alog2(n) = 2log2(a)log2(n)
= 2log2(a)·log2(n) = 2log2(n)log2(a)

= nlog2(a)

C(CSAn) = 5 · 3log2(n) +

log2(n)−1∑
i=0

3i · 3

2
n · 2−i + 4

= 5nlog2(3) +

log2(n)∑
i=1

n
3

2

i

n+ 4

= 5nlog2(3) + n ·
log2(n)∑
i=1

3

2

i

+ 4log2(n)

= 5nlog2(3) + 2n · 3

2

log2(n)+1

− 1 + 4log2(n)

= 5nlog2(3) + 3n · nlog2(
3
2
) − 2n+ 4log2(n)

= 8nlog2(3) − 2n+ 4log2(n) ∈ O(nlog2(3))

� Compare with: C(CCAn) ∈ O(n) dp(CCAn) ∈ O(n)

� So, the conditional sum adder has a smaller depth than the carry chain adder.
This smaller depth is paid with higher cost.
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Instead of perfecting the n-bit adder further (and there are lots of designs and optimizations out
there, since this has high commercial relevance), we will extend the range of arithmetic operations.
The next thing we come to is subtraction.

http://creativecommons.org/licenses/by-sa/2.5/


12.2. ARITHMETICS FOR TWO’S COMPLEMENT NUMBERS 199

12.2 Arithmetics for Two’s Complement Numbers

This of course presents us with a problem directly: the n-bit binary natural numbers, we have
used for representing numbers are closed under addition, but not under subtraction: If we have
two n-bit binary numbers B(n), and B(m), then B(n+m) is an n+ 1-bit binary natural number.
If we count the most significant bit separately as the carry bit, then we have a n-bit result. For
subtraction this is not the case: B(n−m) is only a n-bit binary natural number, if m ≥ n
(whatever we do with the carry). So we have to think about representing negative binary natural
numbers first. It turns out that the solution using sign bits that immediately comes to mind is
not the best one.

Negative Numbers and Subtraction

� Note: So far we have completely ignored the existence of negative numbers.

� Problem: Subtraction is a partial operation without them.

� Question: Can we extend the binary number systems for negative numbers?

� Simple Solution: Use a sign bit. (additional leading bit that indicates
whether the number is positive)

� Definition 12.2.1 ((n+ 1)-bit signed binary number system)

〈〈an, . . . , a0〉〉− :=

{
〈〈an−1, . . . , a0〉〉 if an = 0
−〈〈an−1, . . . , a0〉〉 if an = 1

� Note: We need to fix string length to identify the sign bit. (leading zeroes)

� Example 12.2.2 In the 8-bit signed binary number system

� 10011001 represents -25 ((〈〈10011001〉〉−) = −(24 + 23 + 20))

� 00101100 corresponds to a positive number: 44
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Here we did the naive solution, just as in the decimal system, we just added a sign bit, which
specifies the polarity of the number representation. The first consequence of this that we have to
keep in mind is that we have to fix the width of the representation: Unlike the representation for
binary natural numbers which can be arbitrarily extended to the left, we have to know which bit
is the sign bit. This is not a big problem in the world of combinational circuits, since we have a
fixed width of input/output edges anyway.

Problems of Sign-Bit Systems
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� Generally: An n-bit signed binary number system
allows to represent the integers from −2n−1 + 1 to
+2n−1 − 1.

� 2n−1−1 positive numbers, 2n−1−1 negative num-
bers, and the zero

� Thus we represent
#({〈〈s〉〉− | s ∈ Bn}) = 2 · (2n−1)1 + 1 = 2n − 1
numbers all in all

� One number must be represented twice (But there
are 2n strings of length n.)

� 10 . . . 0 and 00 . . . 0 both represent the zero as
−1 · 0 = 1 · 0.

signed binary Z
0 1 1 1 7
0 1 1 0 6
0 1 0 1 5
0 1 0 0 4
0 0 1 1 3
0 0 1 0 2
0 0 0 1 1
0 0 0 0 0
1 0 0 0 -0
1 0 0 1 -1
1 0 1 0 -2
1 0 1 1 -3
1 1 0 0 -4
1 1 0 1 -5
1 1 1 0 -6
1 1 1 1 -7

� We could build arithmetic circuits using this, but there is a more elegant way!
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All of these problems could be dealt with in principle, but together they form a nuisance, that at
least prompts us to look for something more elegant. The two’s complement representation also
uses a sign bit, but arranges the lower part of the table in the last slide in the opposite order,
freeing the negative representation of the zero. The technical trick here is to use the sign bit (we
still have to take into account the width n of the representation) not as a mirror, but to translate
the positive representation by subtracting 2n.

The Two’s Complement Number System

� Definition 12.2.3 Given the binary string
a = 〈an, . . . , a0〉 ∈ Bn+1, where n > 1. The
integer represented by a in the (n + 1)-bit two’s
complement, written as 〈〈a〉〉2s

n , is defined as

〈〈a〉〉2s
n = −an · 2n + 〈〈an−1, . . . , a0〉〉

= −an · 2n +

n−1∑
i=0

ai · 2i

� Notation 12.2.4 Write B2s
n (z) for the binary

string that represents z in the two’s complement
number system, i.e., 〈〈B2s

n (z)〉〉2s
n = z.

2’s compl. Z
0 1 1 1 7
0 1 1 0 6
0 1 0 1 5
0 1 0 0 4
0 0 1 1 3
0 0 1 0 2
0 0 0 1 1
0 0 0 0 0
1 1 1 1 -1
1 1 1 0 -2
1 1 0 1 -3
1 1 0 0 -4
1 0 1 1 -5
1 0 1 0 -6
1 0 0 1 -7
1 0 0 0 -8
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We will see that this representation has much better properties than the naive sign-bit representa-
tion we experimented with above. The first set of properties are quite trivial, they just formalize
the intuition of moving the representation down, rather than mirroring it.

Properties of Two’s Complement Numbers (TCN)

� Let b = 〈bn, . . . , b0〉 be a number in the n + 1-bit two’s complement system,
then
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� Positive numbers and the zero have a sign bit 0, i.e., bn = 0⇔ (〈〈b〉〉2s
n ≥ 0).

� Negative numbers have a sign bit 1, i.e., bn = 1⇔ 〈〈b〉〉2s
n < 0.

� For positive numbers, the two’s complement representation corresponds to the
normal binary number representation, i.e., bn = 0⇔ 〈〈b〉〉2s

n = 〈〈b〉〉

� There is a unique representation of the number zero in the n-bit two’s com-
plement system, namely B2s

n (0) = 〈0, . . ., 0〉.

� This number system has an asymmetric range R2s
n := {−2n, . . . , 2n − 1}.
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The next property is so central for what we want to do, it is upgraded to a theorem. It says that
the mirroring operation (passing from a number to it’s negative sibling) can be achieved by two
very simple operations: flipping all the zeros and ones, and incrementing.

The Structure Theorem for TCN

� Theorem 12.2.5 Let a ∈ Bn+1 be a binary string, then −〈〈a〉〉2sn = 〈〈a〉〉2sn +1,
where a is the pointwise bit complement of a.

� Proof Sketch: By calculation using the definitions:

〈〈an, an−1, . . . , a0〉〉2s
n = −an · 2n + 〈〈an−1, . . . , a0〉〉

= an · −2n +

n−1∑
i=0

ai · 2i

= 1− an · −2n +

n−1∑
i=0

1− ai · 2i

= 1− an · −2n +

n−1∑
i=0

2i −
n−1∑
i=0

ai · 2i

= −2n + an · 2n + 2n−1 − 〈〈an−1, . . . , a0〉〉
= (−2n + 2n) + an · 2n − 〈〈an−1, . . . , a0〉〉 − 1

= −(an · −2n + 〈〈an−1, . . . , a0〉〉)− 1

= −〈〈a〉〉2s
n − 1
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A first simple application of the TCN structure theorem is that we can use our existing conversion
routines (for binary natural numbers) to do TCN conversion (for integers).

Application: Converting from and to TCN?

� to convert an integer −z ∈ Z with z ∈ N into an n-bit TCN

� generate the n-bit binary number representation B(z) = 〈bn−1, . . . , b0〉
� complement it to B(z), i.e., the bitwise negation bi of B(z)
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� increment (add 1) B(z), i.e. compute B(〈〈B(z)〉〉+ 1)

� to convert a negative n-bit TCN b = 〈bn−1, . . . , b0〉, into an integer

� decrement b, (compute B(〈〈b〉〉 − 1))

� complement it to B(〈〈b〉〉 − 1)

� compute the decimal representation and negate it to −〈〈B(〈〈b〉〉 − 1)〉〉
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Subtraction and Two’s Complement Numbers

� Idea: With negative numbers use our adders directly

� Definition 12.2.6 An n-bit subtracter is a circuit that implements the func-
tion fnSUB : Bn × Bn × B→ B× Bn such that

fnSUB(a, b, b′) = B2s
n (〈〈a〉〉2s

n − 〈〈b〉〉2s
n − b′)

for all a, b ∈ Bn and b′ ∈ B. The bit b′ is called the input borrow bit.

� Note: We have 〈〈a〉〉2s
n − 〈〈b〉〉2s

n = 〈〈a〉〉2s
n + (−〈〈b〉〉2s

n ) = 〈〈a〉〉2s
n + 〈〈b〉〉2s

n + 1

� Idea: Can we implement an n-bit subtracter as fnSUB(a, b, b′) = FAn(a, b, b′)?

� not immediately: We have to make sure that the full adder plays nice with
twos complement numbers
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In addition to the unique representation of the zero, the two’s complement system has an additional
important property. It is namely possible to use the adder circuits introduced previously without
any modification to add integers in two’s complement representation.

Addition of TCN

� Idea: use the adders without modification for TCN arithmetic

� Definition 12.2.7 An n-bit two’s complement adder (n > 1) is a circuit
that corresponds to the function fnTCA : Bn × Bn × B → B× Bn, such that
fnTCA(a, b, c′) = B2s

n (〈〈a〉〉2s
n + 〈〈b〉〉2s

n + c′) for all a, b ∈ Bn and c′ ∈ B.

� Theorem 12.2.8 fnTCA = fnFA (first prove some Lemmas)

©: Michael Kohlhase 293

It is not obvious that the same circuits can be used for the addition of binary and two’s complement
numbers. So, it has to be shown that the above function TCAcircFNn and the full adder function
fnFA from definition?? are identical. To prove this fact, we first need the following lemma stating
that a (n + 1)-bit two’s complement number can be generated from a n-bit two’s complement
number without changing its value by duplicating the sign-bit:
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TCN Sign Bit Duplication Lemma

� Idea: An n+ 1-bit TCN can be generated from a n-bit TCN without changing
its value by duplicating the sign-bit.

� Lemma 12.2.9 Let a = 〈an, . . . , a0〉 ∈ Bn+1 be a binary string, then 〈〈an, . . . , a0〉〉2sn+1 =
〈〈an−1, . . . , a0〉〉2sn .

� Proof Sketch: By calculation:

〈〈an, . . . , a0〉〉2s
n+1 = −an · 2n+1 + 〈〈an, . . . , a0〉〉

= −an · 2n+1 + an · 2n + 〈〈an−1, . . . , a0〉〉
= an · (−2n+1 + 2n) + 〈〈an−1, . . . , a0〉〉
= an · (−2 · 2n + 2n) + 〈〈an−1, . . . , a0〉〉
= −an · 2n + 〈〈an−1, . . . , a0〉〉
= 〈〈an−1, . . . , a0〉〉2s

n
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We will now come to a major structural result for two’s complement numbers. It will serve two
purposes for us:

1) It will show that the same circuits that produce the sum of binary numbers also produce
proper sums of two’s complement numbers.

2) It states concrete conditions when a valid result is produced, namely when the last two
carry-bits are identical.

The TCN Main Theorem

� Definition 12.2.10 Let a, b ∈ Bn+1 and c ∈ B with a = 〈an, . . . , a0〉 and
b = 〈bn, . . . , b0〉, then we call (ick(a, b, c)), the k-th intermediate carry of a, b,
and c, iff

〈〈ick(a, b, c), sk−1, . . . , s0〉〉 = 〈〈ak−1, . . . , a0〉〉+ 〈〈bk−1, . . . , b0〉〉+ c

for some si ∈ B.

� Theorem 12.2.11 Let a, b ∈ Bn and c ∈ B, then

1) 〈〈a〉〉2sn + 〈〈b〉〉2sn + c ∈ R2s
n, iff (icn+1(a, b, c)) = (icn(a, b, c)).

2) If (icn+1(a, b, c)) = (icn(a, b, c)), then 〈〈a〉〉2sn + 〈〈b〉〉2sn + c = 〈〈s〉〉2sn , where
〈〈icn+1(a, b, c), sn, . . . , s0〉〉 = 〈〈a〉〉+ 〈〈b〉〉+ c.
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Unfortunately, the proof of this attractive and useful theorem is quite tedious and technical

Proof of the TCN Main Theorem
Proof: Let us consider the sign-bits an and bn separately from the value-bits
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a′ = 〈an−1, . . . , a0〉 and b′ = 〈bn−1, . . . , b0〉.

P.1 Then

〈〈a′〉〉+ 〈〈b′〉〉+ c = 〈〈an−1, . . . , a0〉〉+ 〈〈bn−1, . . . , b0〉〉+ c

= 〈〈icn(a, b, c), sn−1, . . . , s0〉〉

and an + bn + (icn(a, b, c)) = 〈〈icn+1(a, b, c), sn〉〉.

P.2 We have to consider three cases

P.2.1 an = bn = 0:

P.2.1.1 〈〈a〉〉2s
n and 〈〈b〉〉2s

n are both positive, so (icn+1(a, b, c)) = 0 and furthermore

(icn(a, b, c)) = 0 ⇔ 〈〈a′〉〉+ 〈〈b′〉〉+ c ≤ 2n − 1

⇔ 〈〈a〉〉2s
n + 〈〈b〉〉2s

n + c ≤ 2n − 1

P.2.1.2 Hence,

〈〈a〉〉2s
n + 〈〈b〉〉2s

n + c = 〈〈a′〉〉+ 〈〈b′〉〉+ c

= 〈〈sn−1, . . . , s0〉〉
= 〈〈0, sn−1, . . . , s0〉〉 = 〈〈s〉〉2s

n

P.2.2 an = bn = 1:

P.2.2.1 〈〈a〉〉2s
n and 〈〈b〉〉2s

n are both negative, so (icn+1(a, b, c)) = 1 and further-
more (icn(a, b, c)) = 1, iff 〈〈a′〉〉+ 〈〈b′〉〉+ c ≥ 2n, which is the case, iff
〈〈a〉〉2s

n + 〈〈b〉〉2s
n + c = −2n+1 + 〈〈a′〉〉+ 〈〈b′〉〉+ c ≥ −2n

P.2.2.2 Hence,

〈〈a〉〉2s
n + 〈〈b〉〉2s

n + c = −2n + 〈〈a′〉〉+−2n + 〈〈b′〉〉+ c

= −2n+1 + 〈〈a′〉〉+ 〈〈b′〉〉+ c

= −2n+1 + 〈〈1, sn−1, . . . , s0〉〉
= −2n + 〈〈sn−1, . . . , s0〉〉
= 〈〈s〉〉2s

n

P.2.3 an 6= bn:

P.2.3.1 Without loss of generality assume that an = 0 and bn = 1. (then
(icn+1(a, b, c)) = (icn(a, b, c)))

P.2.3.2 Hence, the sum of 〈〈a〉〉2s
n and 〈〈b〉〉2s

n is in the admissible range R2s
n as

〈〈a〉〉2s
n + 〈〈b〉〉2s

n + c = 〈〈a′〉〉+ 〈〈b′〉〉+ c− 2n

and 0 ≤ 〈〈a′〉〉+ 〈〈b′〉〉+ c ≤ 2n+1 − 1
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P.2.3.3 So we have

〈〈a〉〉2s
n + 〈〈b〉〉2s

n + c = −2n + 〈〈a′〉〉+ 〈〈b′〉〉+ c

= −2n + 〈〈icn(a, b, c), sn−1, . . . , s0〉〉
= −(1− (icn(a, b, c))) · 2n + 〈〈sn−1, . . . , s0〉〉
= 〈〈icn(a, b, c), sn−1, . . . , s0〉〉2s

n

P.2.3.4 Furthermore, we can conclude that 〈〈icn(a, b, c), sn−1, . . . , s0〉〉2s
n = 〈〈s〉〉2s

n

as sn = an ⊕ bn ⊕ (icn(a, b, c)) = 1⊕ (icn(a, b, c)) = icn(a, b, c).

P.3 Thus we have considered all the cases and completed the proof.
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The Main Theorem for TCN again

� Given two (n+1)-bit two’s complement numbers a and b. The above theorem
tells us that the result s of an (n + 1)-bit adder is the proper sum in two’s
complement representation iff the last two carries are identical.

� If not, a and b were too large or too small. In the case that s is larger than
2n − 1, we say that an overflow occurred.In the opposite error case of s being
smaller than −2n, we say that an underflow occurred.
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12.3 Towards an Algorithmic-Logic Unit

The most important application of the main TCN theorem is that we can build a combinational
circuit that can add and subtract (depending on a control bit). This is actually the first instance
of a concrete programmable computation device we have seen up to date (we interpret the control
bit as a program, which changes the behavior of the device). The fact that this is so simple, it
only runs two programs should not deter us; we will come up with more complex things later.

Building an Add/Subtract Unit
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� Idea: Build a Combinational Circuit that can
add and subtract (sub = 1 ; subtract)

� If sub = 0, then the circuit acts like an adder
(a⊕ 0 = a)

� If sub = 1, let S :=
〈〈a〉〉2s

n + 〈〈bn−1, . . . , b0〉〉2s
n + 1 (a⊕ 0 =

1− a)

� For s ∈ R2s
n the TCN main theorem and

the TCN structure theorem together guaran-
tee

s = 〈〈a〉〉2s
n + 〈〈bn−1, . . . , b0〉〉2s

n + 1

= 〈〈a〉〉2s
n − 〈〈b〉〉2s

n − 1 + 1

� Summary: We have built a combinational circuit that can perform 2 arithmetic
operations depending on a control bit.

� Idea: Extend this to a arithmetic logic unit (ALU) with more operations(+, -,
*, /, n-AND, n-OR,. . . )

©: Michael Kohlhase 298

In fact extended variants of the very simple Add/Subtract unit are at the heart of any computer.
These are called arithmetic logic units.
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Chapter 13

Sequential Logic Circuits and
Memory Elements

So far we have only considered combinational logic, i.e. circuits for which the output depends
only on the inputs. In such circuits, the output is just a combination of the inputs, and they
can be modelde as acyclic labled graphs as we have so far. In many instances it is desirable to
have the next output depend on the current output. This allows circuits to represent state as we
will see; the price we pay for this is that we have to consider cycles in the underlying graphs. In
this chapter we will first look at sequential circuits in general and at flipflop as stateful circuits in
particular. Then go briefly discuss how to combine flipflops into random access memory banks.

13.1 Sequential Logic Circuits

Sequential Logic Circuits

� In combinational circuits, outputs only depend on inputs (no state)

� We have disregarded all timing issues (except for favoring shallow circuits)

� Definition 13.1.1 Circuits that remember their current output or state are
often called sequential logic circuit s.

� Example 13.1.2 A counter , where the next number to be output is deter-
mined by the current number stored.

� Sequential logic circuits need some ability to store the current state
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Clearly, sequential logic requires the ability to store the current state. In other words, memory
is required by sequential logic circuits. We will investigate basic circuits that have the ability to
store bits of data. We will start with the simplest possible memory element, and develop more
elaborate versions from it.

The circuit we are about to introduce is the simplest circuit that can keep a state, and thus act
as a (precursor to) a storage element. Note that we are leaving the realm of acyclic graphs here.
Indeed storage elements cannot be realized with combinational circuits as defined above.

207
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RS Flip-Flop

� Definition 13.1.3 A RS-flipflop (or RS-latch)is constructed by feeding the
outputs of two NOR gates back to the other NOR gates input. The inputs R
and S are referred to as the Reset and Set inputs, respectively.

R S Q Q′ Comment

0 1 1 0 Set

1 0 0 1 Reset

0 0 Q Q′ Hold state

1 1 ? ? Avoid

� Note: the output Q’ is simply the inverse of Q. (supplied for convenience)

� Note: An RS flipflop can also be constructed from NAND gates.
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↓ T F
0 1 0
1 0 0

To understand the operation of the RS-flipflop we first remind ourselves of the
truth table of the NOR gate on the right: If one of the inputs is 1, then the output
is 0, irrespective of the other. To understand the RS-flipflop, we will go through
the input combinations summarized in the table above in detail. Consider the
following scenarios:

S = 1 and R = 0 The output of the bottom NOR gate is 0, and thus Q′ = 0 irrespective of the
other input. So both inputs to the top NOR gate are 0, thus, Q = 1. Hence, the input
combination S = 1 and R = 0 leads to the flipflop being set to Q = 1.

S = 0 and R = 1 The argument for this situation is symmetric to the one above, so the outputs
become Q = 0 and Q′ = 1. We say that the flipflop is reset .

S = 0 and R = 0 Assume the flipflop is set (Q = 1 and Q′ = 0), then the output of the top
NOR gate remains at Q = 1 and the bottom NOR gate stays at Q′ = 0. Similarly, when
the flipflop is in a reset state (Q = 0 and Q′ = 1), it will remain there with this input
combination. Therefore, with inputs S = 0 and R = 0, the flipflop remains in its state.

S = 1 and R = 1 This input combination will be avoided, we have all the functionality (set , reset ,
and hold) we want from a memory element.

An RS-flipflop is rarely used in actual sequential logic. However, it is the fundamental building
block for the very useful D-flipflop.

The D-Flipflop: the simplest memory device

� Recap: A RS-flipflop can store a state (set Q to 1 or reset Q to 0)

� Problem: We would like to have a single data input and avoid R = S states.

� Idea: Add interface logic to do just this

� Definition 13.1.4 A D-flipflop is an RS-flipflop with interface logic as below.

E D R S Q Comment

1 1 0 1 1 set Q to 1
1 0 1 0 0 reset Q to 0
0 D 0 0 Q hold Q
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The inputs D and E are called the data and enable input s.

� When E = 1 the value of D determines the value of the output Q, when E
returns to 0, the most recent input D is “remembered.”
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Sequential logic circuits are constructed from memory elements and combinational logic gates.
The introduction of the memory elements allows these circuits to remember their state. We will
illustrate this through a simple example.

Example: On/Off Switch

� Problem: Pushing a button toggles a LED between on and off. (first push
switches the LED on, second push off,. . . )

� Idea: Use a D-flipflop (to remember whether the LED is currently on or off)
connect its Q′ output to its D input (next state is inverse of current state)
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In the on/off circuit, the external inputs (buttons) were connected to the E input.

Definition 13.1.5 Such circuits are often called asynchronous as they keep track of events that
occur at arbitrary instants of time, synchronous circuits in contrast operate on a periodic basis
and the Enable input is connected to a common clock signal.

13.2 Random Access Memory

We will now discuss how single memory cells (D-flipflops) can be combined into larger structures
that can be addressed individually. The name “random access memory” highlights individual
addressability in contrast to other forms of memory, e.g. magnetic tapes that can only be read
sequentially (i.e. one memory cell after the other).

Random Access Memory Chips

� Random access memory (RAM) is used for storing a large number of bits.

� RAM is made up of storage elements similar to the D-flipflops we discussed.

� Principally, each storage element has a unique number or address represented
in binary form.

� When the address of the storage element is provided to the RAM chip, the
corresponding memory element can be written to or read from.
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� We will consider the following questions:

� What is the physical structure of RAM chips?

� How are addresses used to select a particular storage element?

� What do individual storage elements look like?

� How is reading and writing distinguished?
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So the main topic here is to understand the logic of addressing; we need a circuit that takes as
input an “address” – e.g. the number of the D-flipflop d we want to address – and data-input and
enable inputs and route them through to d.

Address Decoder Logic

� Idea: Need a circuit that activates the storage element given the binary address:

� At any time, only 1 output line is “on” and all others are off.

� The line that is “on” specifies the desired element

� Definition 13.2.1 The n-bit address decoder ADLn has a n inputs and 2n

outputs. fmADL(a) = 〈b1, . . . , b2n〉, where bi = 1, iff i = 〈〈a〉〉.

� Example 13.2.2 (Address decoder logic for 2-bit addresses)
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Now we can combine an n-bit address decoder as sketched by the example above, with n D-flipflops
to get a RAM element.

Storage Elements

� Idea (Input): Use a D-flipflop connect its E input to the ADL output.
Connect the D-input to the common RAM data input line. (input only if
addressed)

� Idea (Output): Connect the flipflop output to common RAM output line. But
first AND with ADL output (output only if addressed)

� Problem: The read process should leave the value of the gate unchanged.

� Idea: Introduce a “write enable” signal (protect data during read) AND it
with the ADL output and connect it to the flipflop’s E input.
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� Definition 13.2.3 A Storage Element is given by the following diagram
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So we have arrived at a solution for the problem how to make random access memory. In keeping
with an introductory course, this the exposition above only shows a “solution in principle”; as
RAM storage elements are crucial parts of computers that are produced by the billions, a great
deal of engineering has been invested into their design, and as a consequence our solution above
is not exactly what we actually have in our laptops nowadays.

Remarks: Actual Storage Elements

� The storage elements are often simplified to reduce the number of transistors.

� For example, with care one can replace the flipflop by a capacitor.

� Also, with large memory chips it is not feasible to connect the data input and
output and write enable lines directly to all storage elements.

� Also, with care one can use the same line for data input and data output.

� Today, multi-gigabyte RAM chips are on the market.

� The capacity of RAM chips doubles approximately every year.
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One aspect of this is particularly interesting – and user-visible in the sense that the division of
storage addresses is divided into a high- and low part of the address. So we we will briefly discuss
it here.

Layout of Memory Chips

� To take advantage of the two-dimensional nature of the chip, storage elements
are arranged on a square grid. (columns and rows of storage elements)

� For example, a 1 Megabit RAM chip has of 1024 rows and 1024 columns.

� identify storage element by its row and column “coordinates”.(AND them for
addressing)
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� Hence, to select a particular storage lo-
cation the address information must be
translated into row and column specifi-
cation.

� The address information is divided into
two halves; the top half is used to select
the row and the bottom half is used to
select the column.
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Now that we have seen how to build memory chips, we should learn how to talk about their sizes.

13.3 Units of Information

We introduce the units for information and try to get an intuition about what we can store in
memory.

Units for Information

� Observation: The smallest unit of information is knowing the state of a system
with only two states.

� Definition 13.3.1 A bit (a contraction of “binary digit”) is the basic unit of
capacity of a data storage device or communication communication channel.
The capacity of a system which can exist in only two states, is one bit (written
as 1 b)

� Note: In the ASCII encoding, one character is encoded as 8 b, so we
introduce another basic unit:

� Definition 13.3.2 The byte is a derived unit for information capacity: 1 B =
8 b.
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From the basic units of information, we can make prefixed units for prefixed units for larger
chunks of information. But note that the usual SI unit prefixes are inconvenient for application to
information measures, since powers of two are much more natural to realize (recall the discussion
on balanceds).
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Larger Units of Information via Binary Prefixes

� We will see that memory comes naturally in powers to 2, as we address memory
cells by binary numbers, therefore the derived information units are prefixed by
special prefixes that are based on powers of 2.

� Definition 13.3.3 (Binary Prefixes) The following binary unit prefix es
are used for information units because they are similar to the SI unit prefixes.

prefix symbol 2n decimal ˜SI prefix Symbol
kibi Ki 210 1024 kilo k
mebi Mi 220 1048576 mega M
gibi Gi 230 1.074× 109 giga G
tebi Ti 240 1.1× 1012 tera T
pebi Pi 250 1.125× 1015 peta P
exbi Ei 260 1.153× 1018 exa E
zebi Zi 270 1.181× 1021 zetta Z
yobi Yi 280 1.209× 1024 yotta Y

Note: The correspondence works better on the smaller prefixes; for yobi vs.
yotta there is a 20% difference in magnitude.

�� The SI unit prefixes (and their operators) are often used instead of the correct
binary ones defined here.

� Example 13.3.4 You can buy hard-disks that say that their capacity is “one
tera-byte”, but they actually have a capacity of one tebibyte.
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Let us now look at some information quantities and their real-world counterparts to get an intuition
for the information content.

How much Information?
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Bit (b) binary digit 0/1
Byte (B) 8 bit
2 Bytes A Unicode character in UTF.
10 Bytes your name.
Kilobyte (kB) 1,000 bytes OR 103 bytes
2 Kilobytes A Typewritten page.
100 Kilobytes A low-resolution photograph.
Megabyte (MB) 1,000,000 bytes OR 106 bytes
1 Megabyte A small novel or a 3.5 inch floppy disk.
2 Megabytes A high-resolution photograph.
5 Megabytes The complete works of Shakespeare.
10 Megabytes A minute of high-fidelity sound.
100 Megabytes 1 meter of shelved books.
500 Megabytes A CD-ROM.
Gigabyte (GB) 1,000,000,000 bytes or 109 bytes
1 Gigabyte a pickup truck filled with books.
20 Gigabytes A good collection of the works of Beethoven.
100 Gigabytes A library floor of academic journals.

Terabyte (TB) 1,000,000,000,000 bytes or 1012 bytes
1 Terabyte 50000 trees made into paper and printed.
2 Terabytes An academic research library.
10 Terabytes The print collections of the U.S. Library of Congress.
400 Terabytes National Climate Data Center (NOAA) database.
Petabyte (PB) 1,000,000,000,000,000 bytes or 1015 bytes
1 Petabyte 3 years of EOS data (2001).
2 Petabytes All U.S. academic research libraries.
20 Petabytes Production of hard-disk drives in 1995.
200 Petabytes All printed material (ever).
Exabyte (EB) 1,000,000,000,000,000,000 bytes or 1018 bytes
2 Exabytes Total volume of information generated in 1999.
5 Exabytes All words ever spoken by human beings ever.
300 Exabytes All data stored digitally in 2007.
Zettabyte (ZB) 1,000,000,000,000,000,000,000 bytes or 1021 bytes
2 Zettabytes Total volume digital data transmitted in 2011
100 Zettabytes Data equivalent to the human Genome in one body.
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The information in this table is compiled from various studies, most recently [HL11].

Note: Information content of real-world artifacts can be assessed differently, depending on the
view. Consider for instance a text typewritten on a single page. According to our definition, this
has ca. 2 kB, but if we fax it, the image of the page has 2 MB or more, and a recording of a
text read out loud is ca. 50 MB. Whether this is a terrible waste of bandwidth depends on the
application. On a fax, we can use the shape of the signature for identification (here we actually
care more about the shape of the ink mark than the letters it encodes) or can see the shape of a
coffee stain. In the audio recording we can hear the inflections and sentence melodies to gain an
impression on the emotions that come with text.
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Chapter 14

Computing Devices and
Programming Languages

The main focus of this chapter is a discussion of the languages
that can be used to program register machines: simple computational devices we can realize by
combining algorithmic/logic circuits with memory. We start out with a simple assembler language
which is largely given by the ALU employed and build up towards higher-level, more structured
programming languages.

We build up language expressivity in levels, first defining a simple imperative programming
language SW with arithmetic expressions, and block-structured control. One way to make this
language run on our register machine would be via a compiler that transforms SW programs into
assembler programs. As this would be very complex, we will go a different route: we first build
an intermediate, stack-based programming language L(VM) and write a L(VM)-interpreter in ASM,
which acts as a stack-based virtual machine, into which we can compile SW programs.

The next level of complexity is to add (static) procedure calls to SW, for which we have to
extend the L(VM) language and the interpreter with stack frame functionality. Armed with this,
we can build a simple functional programming language µML and a full compiler into L(VM) for
it.

We conclude this chapter by an investigation into the fundamental properties and limitations
of computation, discussing Turing machines, universal machines, and the halting problem.

Acknowledgement: Some of the material in this chapter is inspired by and adapted from Gert
Smolka excellent introduction to Computer Science based on SML [Smo11].

14.1 How to Build and Program a Computer (in Principle)

In this section, we will combine the arithmetic/logical units from Chapter 11 with the storage
elements (RAM) from Section 13.1 to a fully programmable device: the register machine. The “von
Neumann” architecture for computing we use in the register machine, is the prevalent architecture
for general-purpose computing devices, such as personal computers nowadays. This architecture
is widely attribute to the mathematician John von Neumann because of [vN45], but is already
present in Konrad Zuse’s 1936 patent application [Zus36].

REMA, a simple Register Machine

� Take an n-bit arithmetic logic unit (ALU) (We can get by with n = 4)

� add register s: few (named) n-bit memory cells near the ALU

215
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� program counter (PC) (points to current command in program store)

� accumulator (ACC) (the a input and output of the ALU)

� add RAM: lots of random access memory (elsewhere)

� program store: 2n-bit memory cells (addressed by P : N→ B2n)

� data store: n-bit memory cells (word s addressed by D : N→ Bn)

� add a memory management unit (MMU) (move values between RAM and
registers)

� program it in assembler language (lowest level of programming)
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We have three kinds of memory areas in the REMA register machine: The registers (our architecture
has two, which is the minimal number, real architectures have more for convenience) are just simple
n-bit memory cells.

The program store is a sequence of up to 2n memory 2n-bit memory cells, which can be accessed
(written to and queried) randomly i.e. by referencing their position in the sequence; we do not have
to access them by some fixed regime, e.g. one after the other, in sequence (hence the name random
access memory: RAM). We address the Program store by a function P : N→ B2n. The data store
is also RAM, but a sequence or n-bit cells, which is addressed by the function D : N→ Bn.

The value of the program counter is interpreted as a binary number that addresses a 2n-bit cell
in the program store. The accumulator is the register that contains one of the inputs to the ALU
before the operation (the other is given as the argument of the program instruction); the result of
the ALU is stored in the accumulator after the instruction is carried out.

Memory Plan of a Register Machine

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

10 10
11 11
12 12
13 13
14 14
15 15

Data Store Program Store

n-bit Cells 2n-bit Cells
Operation Arg

PC (Program Counter)

IN (Index Register)

ACC (Accumulator)

ALU (Computation)

CPU
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The ALU and the MMU are control circuits, they have a set of n-bit inputs, and n-bit outputs,
and an n-bit control input. The prototypical ALU, we have already seen, applies arithmetic or
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logical operator to its regular inputs according to the value of the control input. The MMU is
very similar, it moves n-bit values between the RAM and the registers according to the value at
the control input. We say that the MMU moves the (n-bit) value from a register R to a memory
cell C, iff after the move both have the same value: that of R. This is usually implemented as a
query operation on R and a write operation to C. Both the ALU and the MMU could in principle
encode 2n operators (or commands), in practice, they have fewer, since they share the command
space.

Circuit Overview over the CPU
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In this architecture (called the register machine architecture), programs are sequences of 2n-
bit numbers. The first n-bit part encodes the instruction, the second one the argument of the
instruction. The program counter addresses the current instruction (operation + argument).

Our notion of time is in this construction is very simplistic, in our analysis we assume a series
of discrete clock ticks that synchronize all events in the circuit. We will only observe the circuits
on each clock tick and assume that all computational devices introduced for the register machine
complete computation before the next tick. Real circuits, also have a clock that synchronizes events
(the clock frequency (currently around 3 GHz for desktop CPUs) is a common approximation
measure of processor performance), but the assumption of elementary computations taking only
one click is wrong in production systems.

We will now instantiate this general register machine with a concrete (hypothetical) realization,
which is sufficient for general programming, in principle. In particular, we will need to identify a
set of program operations. We will come up with 15 operations, so we need to set n ≥ 4. Note
that n = 4 also means that we only have 24 = 16 cells in the program and data stores. Which is a
serious restriction. Realistic 4-bit architectures therefore make the registers 2n = 8-bit wide. For
the purposes of this course, we will gloss over this.

The main idea of programming at the circuit level is to map the operator code (an n-bit binary
number) of the current instruction to the control input of the ALU and the MMU, which will then
perform the action encoded in the operator.

Since it is very tedious to look at the binary operator codes (even it we present them as hexadecimal
numbers). Therefore it has become customary to use a mnemonic encoding of these in simple word
tokens, which are simpler to read, the “assembler language”.

Assembler Language
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� Idea: Store program instructions as n-bit values in program store, map these
to control inputs of ALU, MMU.

� Definition 14.1.1 assembler language (ASM)as mnemonic encoding of n-bit
binary codes.

instruction effect PC comment

LOAD i ACC := D(i) PC := PC +1 load data
STORE i D(i) := ACC PC := PC +1 store data
ADD i ACC := ACC +D(i) PC := PC +1 add to ACC
SUB i ACC := ACC −D(i) PC := PC +1 subtract from ACC

LOADI i ACC := i PC := PC +1 load number
ADDI i ACC := ACC +i PC := PC +1 add number
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Definition 14.1.2 The meaning of the program instructions are specified in their ability to change
the state of the memory of the register machine. So to understand them, we have to trace the
state of the memory over time (looking at a snapshot after each clock tick; this is what we do
in the comment fields in the tables on the next slide). We speak of an imperative programming
language, if this is the case.

Example 14.1.3 This is in contrast to the programming language SML that we have looked at
before. There we are not interested in the state of memory. In fact state is something that we
want to avoid in such functional programming languages for conceptual clarity; we relegated all
things that need state into special constructs: effects.

To be able to trace the memory state over time, we also have to think about the initial state of the
register machine (e.g. after we have turned on the power). We assume the state of the registers
and the data store to be arbitrary (who knows what the machine has dreamt). More interestingly,
we assume the state of the program store to be given externally. For the moment, we may assume
(as was the case with the first computers) that the program store is just implemented as a large
array of binary switches; one for each bit in the program store. Programming a computer at that
time was done by flipping the switches (2n) for each instructions. Nowadays, parts of the initial
program of a computer (those that run, when the power is turned on and bootstrap the operating
system) is still given in special memory (called the firmware) that keeps its state even when power
is shut off. This is conceptually very similar to a bank of switches.

Example Programs

� Example 14.1.4 Exchange the values of cells 0 and 1 in the data store

P instruction comment

0 LOAD 0 ACC := D(0) = x
1 STORE 2 D(2) := ACC = x
2 LOAD 1 ACC := D(1) = y
3 STORE 0 D(0) := ACC = y
4 LOAD 2 ACC := D(2) = x
5 STORE 1 D(1) := ACC = x

� Example 14.1.5 Let D(1) = a, D(2) = b, and D(3) = c, store a+ b+ c in
data cell 4
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P instruction comment

0 LOAD 1 ACC := D(1) = a
1 ADD 2 ACC := ACC +D(2) = a+ b
2 ADD 3 ACC := ACC +D(3) = a+ b+ c
3 STORE 4 D(4) := ACC = a+ b+ c

� use LOADI i, ADDI i, and ADDI − i to set/increment/decrement ACC (im-
possible otherwise)
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So far, the problems we have been able to solve are quite simple. They had in common that we had
to know the addresses of the memory cells we wanted to operate on at programming time, which
is not very realistic. To alleviate this restriction, we will now introduce a new set of instructions,
which allow to calculate with addresses.

Index Registers

� Problem: Given D(0) = x and D(1) = y, how to we store y into cell x of the
data store? (impossible, as we have only absolute addressing)

� Definition 14.1.6 Introduce an index register IN and register instructions

instruction effect PC comment

RLOAD i ACC := D(IN) PC := PC +1 relative load
RSTORE i D(IN) := ACC PC := PC +1 relative store
MVAI i IN := ACC PC := PC +1 move value
MVIA i ACC := IN PC := PC +1 move value

Problem Solution:

�

P instruction comment

0 LOAD 0 ACC := D(0) = x
1 MVAI 0 IN := ACC = x
2 LOAD 1 ACC := D(1) = y
3 RSTORE 0 D(x) = D(IN) := ACC = y
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A very important ability we have to add to the language is a set of instructions that allow us to
re-use program fragments multiple times. If we look at the instructions we have seen so far, then
we see that they all increment the program counter. As a consequence, program execution is a
linear walk through the program instructions: every instruction is executed exactly once. The
set of problems we can solve with this is extremely limited. Therefore we add a new kind of
instruction. Jump instructions directly manipulate the program counter by adding the argument
to it (note that this partially invalidates the circuit overview on slide 314, but we will not worry
about this).

Another very important ability is to be able to change the program execution under certain
conditions. In our simple language, we will only make jump instructions conditional (this is
sufficient, since we can always jump the respective instruction sequence that we wanted to make
conditional). Real assembler languages give themselves a set of comparison relations (e.g. = and
<) they can use to test.
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Jump Instructions

� Problem: Until now, we can only write linear programs (A program with n
steps executes n instructions)

� Idea: Need instructions that manipulate the PC directly

� Definition 14.1.7
instruction effect PC comment

JUMP i PC := PC +i jump forward i steps

JUMP= i PC :=

{
PC +i if ACC = 0
PC +1 else

conditional jump

� Definition 14.1.8 (Two more)
instruction effect PC comment

NOP i PC := PC +1 no operation
STOP i stop computation
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The final addition to the language are the NOP (no operation) and STOP operations. Both do not
look at their argument (we have to supply one though, so we fit our instruction format). the NOP

instruction is sometimes convenient, if we keep jump offsets rational, and the STOP instruction
terminates the program run (e.g. to give the user a chance to look at the results.)

Example Program

� Now that we have completed the language, let us see what we can do.

� Example 14.1.9 Let D(0) = n, D(1) = a, and D(2) = b, copy the values
of cells a, . . . , a+n−1 to cells b, . . . , b+n−1, while a, b ≥ 4 and |a− b| ≥ n.

P instruction comment P instruction comment

0 LOAD 0 ACC := i (i = n) 9 MVAI 0 IN := b+ i
1 JUMP= 15 if i = 0 then stop 10 LOAD 4 ACC := D(a+ i)
2 LOAD 1 ACC := a 11 RSTORE 0 D(b+ i) := D(a+ i)
3 ADD 0 ACC := a+ i 12 LOAD 0 ACC := i
4 MVAI 0 IN := a+ i 13 ADDI − 1 ACC := ACC −1
5 RLOAD 0 ACC := D(a+ i) 14 STORE 0 D(0) := i− 1
6 STORE 4 D(4) := D(a+ i) 15 JUMP − 14 goto step 1
7 LOAD 2 ACC := b 16 STOP 0 Stop
8 ADD 0 ACC := b+ i

� Lemma 14.1.10 We have D(0) = n− (i− 1), IN = a+ i− 1, and IN =
b+ i− 1 for all 1 ≤ i ≤ n+ 1. (the program does what we want)

� proof by induction on n.

� Definition 14.1.11 The induction hypotheses are called loop invariants.
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14.2 A Stack-based Virtual Machine

We have seen that our register machine runs programs written in assembler, a simple machine
language expressed in two-word instructions. Machine languages should be designed such that on
the processors that can be built machine language programs can execute efficiently. On the other
hand machine languages should be built, so that programs in a variety of high-level programming
languages can be transformed automatically (i.e. compiled) into efficient machine programs. We
have seen that our assembler language ASM is a serviceable, if frugal approximation of the first
goal for very simple processors. We will (eventually) show that it also satisfies the second goal by
exhibiting a compiler for a simple SML-like language.

In the last 20 years, the machine languages for state-of-the art processors have hardly changed.
This stability was a precondition for the enormous increase of computing power we have witnessed
during this time. At the same time, high-level programming languages have developed consider-
ably, and with them, their needs for features in machine-languages. This leads to a significant
mismatch, which has been bridged by the concept of a virtual machine.

Definition 14.2.1 A virtual machine is a simple machine-language program that interprets a
slightly higher-level program — the “byte code” — and simulates it on the existing processor.

Byte code is still considered a machine language, just that it is realized via software on a real
computer, instead of running directly on the machine. This allows to keep the compilers simple
while only paying a small price in efficiency.

In our compiler, we will take this approach, we will first build a simple virtual machine (an ASM

program) and then build a compiler that translates functional programs into byte code.

Virtual Machines

� Question: How to run high-level programming languages (like SML) on REMA?

� Answer: By providing a compiler, i.e. an ASM program that reads SML pro-
grams (as data) and transforms them into ASM programs.

� But: ASM is optimized for building simple, efficient processors, not as a trans-
lation target!

� Idea: Build an ASM program VM that interprets a better translation target
language (interpret REMA+VM as a “virtual machine”)

� Definition 14.2.2 An ASM program VM is called a virtual machine for L(VM),
iff VM inputs a L(VM) program (as data) and runs it on REMA.

� Plan: Instead of building a compiler for SML to ASM, build a virtual machine
VM for REMA and a compiler from SML to L(VM). (simpler and more
transparent)
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The main difference between the register machine REMA and the virtual machine VM construct
is the way it organizes its memory. The REMA gives the assembler language full access to its
internal registers and the data store, which is convenient for direct programming, but not suitable
for a language that is mainly intended as a compilation target for higher-level languages which
have regular (tree-like) structures. The virtual machine VM builds on the realization that tree-like
structures are best supported by stack-like memory organization.
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14.2.1 A Stack-based Programming Language

Now we are in a situation, where we can introduce a programming language for VM. The main
difference to ASM is that the commands obtain their arguments by popping them from the stack
(as opposed to the accumulator or the ASM instructions) and return them by pushing them to the
stack (as opposed to just leaving them in the registers).

A Stack-Based VM language (Arithmetic Commands)

� Definition 14.2.3 VM Arithmetic Commands act on the stack

instruction effect VPC

con i pushes i onto stack VPC := VPC + 2
add pop x, pop y, push x+ y VPC := VPC + 1
sub pop x, pop y, push x− y VPC := VPC + 1
mul pop x, pop y, push x · y VPC := VPC + 1
leq pop x, pop y, if x ≤ y push 1, else push 0 VPC := VPC + 1

� Example 14.2.4 The L(VM) program “con 4 con 7 add” pushes 7 + 4 = 11
to the stack.

� Example 14.2.5 Note the order of the arguments: the program “con 4 con 7 sub”
first pushes 4, and then 7, then pops x and then y (so x = 7 and y = 4) and
finally pushes x− y = 7− 4 = 3.

Stack-based operations work very well with the recursive structure of arithmetic
expressions: we can compute the value of the expression 4 · 3− 7 · 2 with

�
con 2 con 7 mul 7 · 2
con 3 con 4 mul 4 · 3
sub 4 · 3− 7 · 2
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Note: A feature that we will see time and again is that every (syntactically well-formed) expression
leaves only the result value on the stack. In the present case, the computation never touches the
part of the stack that was present before computing the expression. This is plausible, since the
computation of the value of an expression is purely functional, it should not have an effect on the
state of the virtual machine VM (other than leaving the result of course).

A Stack-Based VM language (Control)

� Definition 14.2.6 Control operators

instruction effect VPC

jp i VPC := VPC + i
cjp i pop x if x = 0, then VPC := VPC + i else VPC := VPC + 2
halt —

� cjp is a “jump on false”-type expression. (if the condition is false, we jump
else we continue)

� Example 14.2.7 For conditional expressions we use the conditional jump
expressions: We can express “if 1 ≤ 2 then 4− 3 else 7 · 5” by the program
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con 2 con 1 leq cjp 9 if 1 ≤ 2
con 3 con 4 sub jp 7 then 4− 3
con 5 con 7 mul else 7 · 5
halt
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In the example, we first push 2, and then 1 to the stack. Then leq pops (so x = 1), pops again
(making y = 2) and computes x ≤ y (which comes out as true), so it pushes 1, then it continues
(it would jump to the else case on false).

Note: Again, the only effect of the conditional statement is to leave the result on the stack. It
does not touch the contents of the stack at and below the original stack pointer.

The next two commands break with the nice principled stack-like memory organization by giving
“random access” to lower parts of the stack. We will need this to treat variables in high-level
programming languages

A Stack-Based VM language (Imperative Variables)

� Definition 14.2.8 Imperative access to variables: Let S(i) be the number
at stack position i.

instruction effect VPC

peek i push S(i) VPC := VPC + 2
poke i pop x S(i) := x VPC := VPC + 2

� Example 14.2.9 The program “con 5 con 7 peek 0 peek 1 add poke 1 mul halt”
computes 5 · (7 + 5) = 60.
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Of course the last example is somewhat contrived, this is certainly not the best way to compute
5 · (7 + 5) = 60, but it does the trick. In the intended application of L(VM) as a compilation target,
we will only use peek and VMpoke for read and write access for variables. In fact poke will not
be needed if we are compiling purely functional programming languages.

To convince ourselves that L(VM) is indeed expressive enough to express higher-level program-
ming constructs, we will now use it to model a simple while loop in a C-like language.

Extended Example: A while Loop

� Example 14.2.10 Consider the following program that computes 12! and
the corresponding L(VM) program:

var n := 12; var a := 1; con 12 con 1
while 2 <= n do ( peek 0 con 2 leq cjp 18
a := a * n; peek 0 peek 1 mul poke 1
n := n - 1; con 1 peek 0 sub poke 0

) jp − 21
return a; peek 1 halt

� Note that variable declarations only push the values to the stack, (memory
allocation)
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� they are referenced by peeking the respective stack position

� they are assigned by pokeing the stack position (must remember that)
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We see that again, only the result of the computation is left on the stack. In fact, the code snippet
consists of two variable declarations (which extend the stack) and one while statement, which
does not, and the return statement, which extends the stack again. In this case, we see that
even though the while statement does not extend the stack it does change the stack below by the
variable assignments (implemented as poke in L(VM)). We will use the example above as guiding
intuition for a compiler from a simple imperative language to L(VM) byte code below. But first we
build a virtual machine for L(VM).

14.2.2 Building a Virtual Machine

A Virtual Machine for Functional Programming

� We will build a stack-based virtual machine; this will have four components

Command Interpreter

Stack Program Store

VPC

� The stack is a memory segment operated as a “last-in-first-out” LIFO se-
quence

� The program store is a memory segment interpreted as a sequence of in-
structions

� The command interpreter is a ASM program that interprets commands from
the program store and operates on the stack.

� The virtual program counter (VPC) is a register that acts as a the pointer
to the current instruction in the program store.

� The virtual machine starts with the empty stack and VPC at the beginning
of the program.
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We will now build a virtual machine for L(VM) along the specification above.

To make our implementation of the virtual machine more convenient, we will extend ASM with a
couple of convenience features. Note that these features do not extend the theoretical expressivity
of ASM (i.e. they do not extend the range of programs that ASM), since all new commands can be
replaced by regular language constructs.

Extending REMA and ASM

� Give ourselves two more index registers: IN1 := IN , IN2, and IN3 and
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instruction effect PC comment

LOADIN j i ACC := D(IN j +i) PC := PC +1 relative load
STOREIN j i D(IN j +i) := ACC PC := PC +1 relative store
MOVE S T T := S PC := PC +1 move value from

reg. S to reg. T

We will use a syntactic variant of ASM for transparency

� � JUMP and JUMP= with labels of the form 〈foo〉 (compute relative jump
distances automatically)

� inc R for MOVE R ACC, ADDI 1, MOVE ACC R (dec R similar)

� note that inc R and dec R overwrite the current ACC (take care of it)

� All additions can be eliminated by substitution.
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Note that the LOADIN are not binary instructions, but that this is just a short notation for unary
instructions LOADIN 1 and LOADIN 2 (and similarly for MOVE S T ).

Note furthermore that the addition logic in LOADIN j is simply for convenience (most assembler
languages have it, since working with address offsets is commonplace). We could have always
imitated this by a simpler relative load command and an ADD instruction.

A Virtual Machine for L(VM)

� We need to build a concrete ASM program that acts as a virtual machine for
L(VM).

� Choose a concrete register machine size: e.g. 32-bit words (like in a PC)

� Choose memory layout in the data store

� the VM stack: D(8) to D(224 − 1), and (need the first 8 cells for VM data)

� the L(VM) program store: D(224) to D(232 − 1)

� We represent the virtual program counter VPC by the index register IN1

and the stack pointer by the index register IN2 (with offset 8).

� We will use D(0) as an argument store.

� choose a numerical representation for the L(VM) instructions: (have lots of
space)

halt 7→ 0, add 7→ 1, sub 7→ 2, . . .
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Recall that the virtual machine VM is a ASM program, so it will reside in the REMA program store.
This is the program executed by the register machine. So both the VM stack and the L(VM) program
have to be stored in the REMA data store (therefore we treat L(VM) programs as sequences of words
and have to do counting acrobatics for instructions of differing length). We somewhat arbitrarily
fix a boundary in the data store of REMA at cell number 224 − 1. We will also need a little piece
of scratch-pad memory, which we locate at cells 0-7 for convenience (then we can simply address
with absolute numbers as addresses).
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Memory Layout for the Virtual Machine

VM Interpreter
Program

Scratch

Stack

VM
Prog.

Data Store Program Store

PC (Program Counter)

IN1 (VM prog. cnt.)

IN2 (stack pointer)

IN3 (frame pointer)

ACC (Accumulator)

ALU (Computation)
CPU
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With these extensions, it is quite simple to write the ASM code that implements the virtual machine
VM.

The first part of VM is a simple jump table, a piece of code that does nothing else than distributing
the program flow according to the (numerical) instruction head. We assume that this program
segment is located at the beginning of the program store, so that the REMA program counter points
to the first instruction. This initializes the VM program counter and its stack pointer to the first
cells of their memory segments. We assume that the L(VM) program is already loaded in its proper
location, since we have not discussed input and output for REMA.

Starting VM: the Jump Table

label instruction effect comment
LOADI 224 ACC := 224 load VM start address
MOVE ACC IN1 VPC := ACC set VPC
LOADI 7 ACC := 7 load top of stack address
MOVE ACC IN2 SP := ACC set SP

〈jt〉 LOADIN 1 0 ACC := D(IN1) load instruction
JUMP= 〈halt〉 goto 〈halt〉
ADDI − 1 next instruction code
JUMP= 〈add〉 goto 〈add〉
ADDI − 1 next instruction code
JUMP= 〈sub〉 goto 〈sub〉
...

...
...

〈halt〉 STOP 0 stop
...

...
...
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Now it only remains to present the ASM programs for the individual L(VM) instructions. We will
start with the arithmetical operations.
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The code for con is absolutely straightforward: we increment the VM program counter to point to
the argument, read it, and store it to the cell the (suitably incremented) VM stack pointer points
to. Once procedure has been executed we increment the VM program counter again, so that it
points to the next L(VM) instruction, and jump back to the beginning of the jump table.

For the add instruction we have to use the scratch pad area, since we have to pop two values
from the stack (and we can only keep one in the accumulator). We just cache the first value in
cell 0 of the program store.

Implementing Arithmetic Operators

label instruction effect comment
〈con〉 inc IN1 VPC := VPC + 1 point to arg

inc IN2 SP := SP + 1 prepare push
LOADIN 1 0 ACC := D(VPC) read arg
STOREIN 2 0 D(SP) := ACC store for push
inc IN1 VPC := VPC + 1 point to next
JUMP 〈jt〉 jump back

〈add〉 LOADIN 2 0 ACC := D(SP) read arg 1
STORE 0 D(0) := ACC cache it
dec IN2 SP := SP− 1 pop
LOADIN 2 0 ACC := D(SP) read arg 2
ADD 0 ACC := ACC +D(0) add cached arg 1
STOREIN 2 0 D(SP) := ACC store it
inc IN1 VPC := VPC + 1 point to next
JUMP 〈jt〉 jump back

� sub, similar to add.

� mul, and leq need some work.
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We will not go into detail for the other arithmetic commands, for example, mul could be imple-
mented as follows:

label instruction effect comment
〈mul〉 dec IN2 SP := SP− 1

LOADI 0
STORE 1 D(1) := 0 initialize result
LOADIN 2 1 ACC := D(SP + 1) read arg 1
STORE 0 D(0) := ACC initialize counter to arg 1

〈loop〉 JUMP= 〈end〉 if counter=0, we are finished
LOADIN 2 0 ACC := D(SP) read arg 2
ADD 1 ACC := ACC +D(1) current sum increased by arg 2
STORE 1 D(1) := ACC cache result
LOAD 0
ADDI − 1
STORE 0 D(0) := D(0)− 1 decrease counter by 1
JUMP loop repeat addition

〈end〉 LOAD 1 load result
STOREIN 2 0 push it on stack
inc IN1

JUMP 〈jt〉 back to jump table

Note that mul and leq are the only two instruction whose corresponding piece of code is not
of constant complexity (O(1)), as they contain loops.
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For the jump instructions, we do exactly what we would expect, we load the jump distance, add
it to the register IN1, which we use to represent the VM program counter VPC. Incidentally, we
can use the code for jp for the conditional jump cjp.

Control Instructions

label instruction effect comment
〈jp〉 MOVE IN1 ACC ACC := VPC

STORE 0 D(0) := ACC cache VPC
LOADIN 1 1 ACC := D(VPC + 1) load i
ADD 0 ACC := ACC +D(0) compute new VPC value
MOVE ACC IN1 IN1 := ACC update VPC
JUMP 〈jt〉 jump back

〈cjp〉 dec IN2 SP := SP− 1 update for pop
LOADIN 2 1 ACC := D(SP + 1) pop value to ACC
JUMP= 〈jp〉 perform jump if ACC = 0
MOVE IN1 ACC otherwise, go on
ADDI 2
MOVE ACC IN1 VPC := VPC + 2 point to next
JUMP 〈jt〉 jump back
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The imperative stack operations use the index register heavily. Note the use of the offset 8 in the
LOADIN , this comes from the layout of VM that uses the bottom eight cells in the data store as a
scratchpad.

Imperative Stack Operations: peek

label instruction effect comment
〈peek〉 MOVE IN1 ACC ACC := IN1

STORE 0 D(0) := ACC cache VPC
LOADIN 1 1 ACC := D(VPC + 1) load i
MOVE ACC IN1 IN1 := ACC
inc IN2 prepare push
LOADIN 1 8 ACC := D(IN1 +8) load S(i)
STOREIN 2 0 push S(i)
LOAD 0 ACC := D(0) load old VPC
ADDI 2 compute new value
MOVE ACC IN1 update VPC
JUMP 〈jt〉 jump back
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The implementation for poke is quite similar, only that we use STOREIN instead of LOADIN at the
strategic moment.

Imperative Stack Operations: poke
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label instruction effect comment
〈poke〉 MOVE IN1 ACC ACC := IN1

STORE 0 D(0) := ACC cache VPC
LOADIN 1 1 ACC := D(VPC + 1) load i
MOVE ACC IN1 IN1 := ACC
LOADIN 2 0 ACC := S(i) pop to ACC
STOREIN 1 8 D(IN1 +8) := ACC store in S(i)
dec IN2 IN2 := IN2−1
LOAD 0 ACC := D(0) get old VPC
ADD 2 ACC := ACC +2 add 2
MOVE ACC IN1 update VPC
JUMP 〈jt〉 jump back
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We have implemented the jump table for dispatch and all the L(VM) instructions, which completes
the VM virtual machine. As a consequence, we can run L(VM) programs on REMA by loading them
into program store and starting computation at the jump table start.

14.3 A Simple Imperative Language

We will now build a compiler for a simple imperative language to warm up to the task of building
one for a functional language in the next step. We will write this compiler in SML, since we are
most familiar with this1

The first step is to define the language we want to talk about.

A very simple Imperative Programming Language

� Plan: Only consider the bare-bones core of a language. (we are only
interested in principles)

� We will call this language SW (Simple While Language)

� no types: all values have type int, use 0 for false all other numbers for
true.

� Definition 14.3.1 The simple while language SW is a simple programming
languages with

� named variable s (declare with var 〈〈name〉〉:=〈〈exp〉〉, assign with 〈〈name〉〉:=〈〈exp〉〉)
� arithmetic/logic expression s with variables referenced by name

� block-structured control structures (called statement s), e.g.
while 〈〈exp〉〉 do 〈〈statement〉〉 end and
if 〈〈exp〉〉 then 〈〈statement〉〉 else 〈〈statement〉〉 end.

� output via return 〈〈exp〉〉
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To make the concepts involved concrete, we look at a concrete example.

1Note that this is a standard procedure called cross-compiling. We just assume that we already have a computer
that runs SML. Note that only if we are creating the first compiler for the first computer, we have to write it in
assembler language.
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Example: An SW Program for 12 Factorial

� Example 14.3.2 (Computing Twelve Factorial)

var n:= 12; var a:= 1; # declarations
while 2<=n do # while block

a:= a*n; # assignment
n:= n-1 # another

end # end while block
return a # output
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Note that SW is a great improvement over ASM for a variety of reasons

• it introduces the concept of named variables that can be referenced and assigned to, without
having to remember memory locations. Named variables are an important cognitive tool
that allows programmers to associate concepts with (changing) values.

• It introduces the notion of (arithmetical) expressions made up of operators, constants, and
variables. These can be written down declaratively (in fact they are very similar to the
mathematical formula language that has revolutionized manual computation in everyday
life).

• finally, SW introduces structured programming features (notably while loops) and avoids
“spagetti code” induced by jump instructions (also called goto). See Edsgar Dijkstra’s
famous letter “Goto Considered Harmful” [Dij68] for a discussion.

Recall that we want to builds a compiler for SW in SML. To simplify this task, we skip the
lexical analysis phase of a compiler that converts a SW string into an abstract syntax tree, and
start directly with an SML expression.

The following slide presents the SML data types for SW programs.

Abstract Syntax of SW

� Definition 14.3.3 type id = string (* identifier *)

datatype exp = (* expression *)
Con of int (* constant *)

| Var of id (* variable *)
| Add of exp* exp (* addition *)
| Sub of exp * exp (* subtraction *)
| Mul of exp * exp (* multiplication *)
| Leq of exp * exp (* less or equal test *)

datatype sta = (* statement *)
Assign of id * exp (* assignment *)

| If of exp * sta * sta (* conditional *)
| While of exp * sta (* while loop *)
| Seq of sta list (* sequentialization *)

type declaration = id * exp

type program = declaration list * sta * exp
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A SW program (see the next slide for an example) first declares a set of variables (type declaration),
executes a statement (type sta), and finally returns an expression (type exp). Expressions of SW
can read the values of variables, but cannot change them. The statements of SW can read and
change the values of variables, but do not return values (as usual in imperative languages). Note
that SW follows common practice in imperative languages and models the conditional as a state-
ment.

Concrete vs. Abstract Syntax of a SW Program

� Example 14.3.4 (Abstract SW Syntax) We apply the abstract syntax to
the SW program from Example 14.3.2:

var n:= 12; var a:= 1;
while 2<=n do

a:= a∗n;
n:= n−1

end
return a

([(”n”, Con 12),(”a”, Con 1)],
While(Leq(Con 2, Var”n”),

Seq [Assign(”a”, Mul(Var”a”, Var”n”)),
Assign(”n”, Sub(Var”n”, Con 1))]

),
Var”a”)
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As expected, the program is represented as a triple: the first component is a list of declarations, the
second is a statement, and the third is an expression (in this case, the value of a single variable).
We will use this example as the guiding intuition for building a compiler.

Similarly, we do not want to get into the code generation stage of a compiler that generates a
L(VM) program in concrete syntax. Instead we directly generate abstract SML expression.

We need an SML data type for L(VM) programs, and an auxiliary function wlen that counts the
numbers of instructions in a L(VM) program (a list of instructions L(VM) instructions). Fortunately,
this is very simple.

An SML Data Type for L(VM) Programs

type index = int (* index in the environment *)
type noi = int (* number of instructions *)

datatype instruction =
con of int

| add | sub | mul (* addition , subtraction , ... *)
| leq (* less or equal test *)
| jp of noi (* unconditional jump *)
| cjp of noi (* conditional jump *)
| peek of index (* push value from stack *)
| poke of index (* update value in stack *)
| halt (* halt machine *)

type code = instruction list

fun wlen (xs:code) = foldl (fn (x,y) => wln(x)+y) 0 xs
fun wln (con _)=2 | wln (add)=1 | wln (sub)=1 | wln (mul)=1 | wln(leq)=1

| wln (jp _)=2 | wln (cjp _)=2

http://creativecommons.org/licenses/by-sa/2.5/
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| wln (peek _)=2 | wln (poke _)=2 | wln (halt )=1
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We have introduced a couple of types only for documentation purposes. We want to keep apart
the integers we use as index in the environment to those we use as numbers of instructions to
jump over in the jump instructions.

Before we can come to the implementation of the compiler, we will more infrastructure. Recall
that we needed to keep track of which variable names corresponded to which stack position in
slide 339, in our SW compiler, we will have to do the same. There is a standard data structure for
this.

Needed Infrastructure: Environments

� Need a structure to keep track of the values of declared identifiers. (take
shadowing into account)

� Definition 14.3.5 An environment is a finite partial function from key s
(identifiers) to values.

� We will need the following operations on environments:

� creation of an empty environment (; the empty function)

� insertion of a key/value pair 〈k, v〉 into an environment ϕ: (; ϕ, [v/k])

� lookup of the value v for a key k in ϕ (; ϕ(k))

� Realization in SML by a structure with the following signature

type ’a env (* a is the value type *)
exception Unbound of id (* Unbound *)
val empty : ’a env
val insert : id * ’a * ’a env -> ’a env (* id is the key type *)
val lookup : id * ’a env -> ’a
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The next slide has the main SML function for compiling SW programs. Its argument is a SW program
(type program) and its result is an expression of type code, i.e. a list of L(VM) instructions. From
there, we only need to apply a simple conversion (which we omit) to numbers to obtain L(VM)
byte code.

Compiling SW programs

� SML function from SW programs (type program) to L(VM) programs (type
code).

� uses three auxiliary functions for compiling declarations (compileD), state-
ments (compileS), and expressions (compileE).

� these use an environment to relate variable names with their stack index.

� the initial environment is created by the declarations. (therefore compileD

has an environment as return value)

type env = index env
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fun compile ((ds,s,e) : program) : code =
let
val (cds, env) = compileD(ds, empty, ~1)

in
cds @ compileS(s,env) @ compileE(e,env) @ [halt]

end
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The next slide has the function for compiling SW expressions. It is realized as a case statement
over the structure of the expression.

Compiling SW Expressions

� constants are pushed to the stack.

� variables are looked up in the stack by the index determined by the environment
(and pushed to the stack).

� arguments to arithmetic operations are pushed to the stack in reverse order.

fun compileE (e:exp, env:env) : code =
case e of
Con i => [con i]

| Var i => [peek (lookup(i,env))]
| Add(e1,e2) => compileE(e2, env) @ compileE(e1, env) @ [add]
| Sub(e1,e2) => compileE(e2, env) @ compileE(e1, env) @ [sub]
| Mul(e1,e2) => compileE(e2, env) @ compileE(e1, env) @ [mul]
| Leq(e1,e2) => compileE(e2, env) @ compileE(e1, env) @ [leq]
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Compiling SW statements is only slightly more complicated: the constituent statements and ex-
pressions are compiled first, and then the resulting code fragments are combined by L(VM) control
instructions (as the fragments already exist, the relative jump distances can just be looked up).
For a sequence of statements, we just map compileS over it using the respective environment.

Compiling SW Statements

fun compileS (s:sta, env:env) : code =
case s of
Assign(i,e) => compileE(e, env) @ [poke (lookup(i,env))]

| If(e,s1,s2) =>
let
val ce = compileE(e, env)
val cs1 = compileS(s1, env)
val cs2 = compileS(s2, env)

in
ce @ [cjp (wlen cs1 + 4)] @ cs1

@ [jp (wlen cs2 + 2)] @ cs2
end

| While(e, s) =>
let
val ce = compileE(e, env)
val cs = compileS(s, env)
in
ce @ [cjp (wlen cs + 4)]

@ cs @ [jp (~(wlen cs + wlen ce + 2))]
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end
| Seq ss => foldr (fn (s,c) => compileS(s,env) @ c) nil ss
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As we anticipated above, the compileD function is more complex than the other two. It gives
L(VM) program fragment and an environment as a value and takes a stack index as an additional
argument. For every declaration, it extends the environment by the key/value pair k/v, where k
is the variable name and v is the next stack index (it is incremented for every declaration). Then
the expression of the declaration is compiled and prepended to the value of the recursive call.

Compiling SW Declarations

fun compileD (ds: declaration list, env:env, sa:index): code*env =
case ds of
nil => (nil,env)

| (i,e)::dr => let
val env’ = insert(i, sa+1, env)
val (cdr,env’’) = compileD(dr, env’, sa+1)

in
(compileE(e,env) @ cdr, env’’)

end
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This completes the compiler for SW (except for the byte code generator which is trivial and an
implementation of environments, which is available elsewhere). So, together with the virtual
machine for L(VM) we discussed above, we can run SW programs on the register machine REMA.

If we had a REMA simulator, then we could run SW programs on our computers outright.

One thing that distinguishes SW from real programming languages is that it does not support
procedure declarations. This does not make the language less expressive in principle, but makes
structured programming much harder. The reason we did not introduce this is that our virtual
machine does not have a good infrastructure that supports this. Therefore we will extend L(VM)
with new operations next.

Note that the compiler we have seen above produces L(VM) programs that have what is often
called “memory leaks”. Variables that we declare in our SW program are not cleaned up before the
program halts. In the current implementation we will not fix this (We would need an instruction
for our VM that will “pop” a variable without storing it anywhere or that will simply decrease
virtual stack pointer by a given value.), but we will get a better understanding for this when we
talk about the static procedures next.

Compiling the Extended Example: A while Loop

� Example 14.3.6 Consider the following program that computes 12! and the
corresponding L(VM) program:

var n := 12; var a := 1; con 12 con 1
while 2 <= n do ( peek 0 con 2 leq cjp 18
a := a * n; peek 0 peek 1 mul poke 1
n := n - 1; con 1 peek 0 sub poke 0

) jp − 21
return a; peek 1 halt
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� Note that variable declarations only push the values to the stack, (memory
allocation)

� they are referenced by peeking the respective stack position

� they are assigned by pokeing the stack position (must remember that)
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14.4 Basic Functional Programs

The next step in our endeavor to understand programming languages is to extend the language SW
with another structuring concept: procedures. Just like named variables allow to give (numerical)
values a name and reference them under this name, procedures allow to encapsulate parts of pro-
grams, name them and reference them in multiple places. But rather than just adding procedures
to SW, we will go one step further and directly design a functional language.

14.4.1 A Bare-Bones Language

We will now define a minimal core of the functional programming language SML, which we will
call µML. It has all the characteristics of a functional programming language: functional variables
and named functions, and lacks imperative features like variable assignment or statements.

As a bare-bone functional programming language, µML is not far off from the first incarnations
of LISP – we would only need to add lists as primary data type; which we will not to keep things
simple.

µML, a very simple Functional Programming Language

� Plan: Only consider the bare-bones core of a language (we only interested in
principles)

� We will call this language µML (micro ML)

� no types: all values have type int, use 0 for false all other numbers for
true.

� Definition 14.4.1 microML µML is a simple functional programming lan-
guages with

� functional variable s (declare and bind with val 〈〈name〉〉 = 〈〈exp〉〉)
� named function s (declare with fun 〈〈name〉〉 (〈〈args〉〉) = 〈〈exp〉〉)
� arithmetic/logic/control expression s with variables/functions referenced by

name (no statements)
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To make the concepts involved concrete, we look at a concrete example: the procedure on the
next slide computes 102.

To make the concepts involved concrete, we look at a concrete example: the procedure on the
next slide computes 102.
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Example: A µML Program for 10 Squared

� Example 14.4.2 (Computing Ten Squared)

let (* begin declarations *)
fun exp(x,n) = (* function declaration *)

if n<=0 (* if expression *)
then 1 (* then part *)
else x*exp(x,n-1) (* else part *)

val y 10 (* value declaration *)
in (* end declarations *)

exp(y,2) (* return value *)
end (* end program *)
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Note that in our example, we have declared two values: a function exp (with arguments x and n)
and y (without arguments). Both are used in the return expression.

14.4.2 A Virtual Machine with Procedures

We will now extend the virtual machine by four instructions that allow to represent procedures
with arbitrary numbers of arguments.

Adding Instructions for Procedures to L(VM)

� Definition 14.4.3 We obtain the language L(VMP) by adding the following
four commands to L(VM):

� proc a l contains information about the number a of arguments and the
length l of the procedure in the number of words needed to store it. The
command proc a l simply jumps l words ahead.

� arg i pushes the ith argument from the current frame to the stack.

� call p pushes the current program address (opens a new frame), and jumps
to the program address p.

� return takes the current frame from the stack, jumps to previous program
address.
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We will explain the meaning of these extensions by translating the µML function from Exam-
ple 14.4.2 to L(VMP). We have indicated corresponding parts of the programs by putting them on
the same line.

A µML Program and its L(VMP) Translation

� Example 14.4.4 (A µML Program and its L(VMP) Translation)
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[
proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,

con 2, call 26, call 0,
halt]

let
fun exp(x,n) =
if n<=0
then 1
else x*exp(x,n-1)

val y 10
in

exp(y,2)
end
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To see how these four commands together can simulate procedures, we simulate the program from
the last slide, keeping track of the stack.

Static Procedures (Simulation)

Example 14.4.5 We go through the L(VMP) code step by step and trace the
state of the stack.

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

empty stack

proc jumps over the body of the procedure declaration (with the help of its
second argument)

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

empty stack

again, proc jumps over the body of the procedure declaration

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, jp 13,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2

We push the argument onto the stack

http://creativecommons.org/licenses/by-sa/2.5/


238 CHAPTER 14. COMPUTING DEVICES AND PROGRAMMING LANGUAGES

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, jp 13,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2

30 0

� call pushes the return address (of the call statement in the L(VM) pro-
gram)

� then it jumps to the first body instruction.

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, jp 13,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2

30 0

10

push the arguent to the stack

��

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, jp 13,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2

10

� return interprets the top of the stack as the result,

� it jumps to the return address memorized right below the top of the stack,

� deletes the current frame

� and puts the result back on top of the remaining stack.

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2 -2

10 -1

38 0

� � call pushes the return address (of the call statement in the L(VM) pro-
gram)

� then it jumps to the first body instruction.
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[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2 -2

10 -1

38 0

0

2

arg i pushes the ith argument onto the stack

��

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2 -2

10 -1

38 0

0

Comparison turns out false, so we push 0.

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2 -2

10 -1

38 0

cjp pops the truth value and jumps (on false).

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2 -2

10 -1

38 0

1

2

we first push 1, then we push the second argument (from the call frame position
−2)

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2 -2

10 -1

38 0

1

we subtract
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�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2 -2

10 -1

38 0

1

10

then we push the second argument (from the call frame position −1)

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt] 2

10

38

1 -2

10 -1

22 0

� call jumps to the first body instruction,

� and pushes the return address (22 this time) onto the stack.

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2

10

38

1 -2

10 -1

22 0

0

1

we augment the stack

��

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt] 2

10

38

1 -2

10 -1

22 0

compare the top two, and jump ahead (on false)
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�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2

10

38

1 -2

10 -1

22 0

1

1

we augment the stack again

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2

10

38

1 -2

10 -1

22 0

0

10

subtract and push the first argument

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2

10

38

1

10

22

0 -2

10 -1

22 0

call pushes the return address and moves the current frame up

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2

10

38

1

10

22

0 -2

10 -1

22 0

0

0

we augment the stack again,
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�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2

10

38

1

10

22

0 -2

10 -1

22 0

leq compares the top two numbers, cjp pops the result and does not jump.

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2

10

38

1

10

22

0 -2

10 -1

22 0

1

we push the result value 1

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2

10

38

1 -2

10 -1

22 0

1

� return interprets the top of the stack as the result,

� it jumps to the return address memorized right below the top of the stack,

� deletes the current frame

� and puts the result back on top of the remaining stack.

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2

10

38

1 -2

10 -1

22 0

1

10

arg pushes the first argument from the (new) current frame
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��

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2

10

38

1 -2

10 -1

22 0

10

mul multiplies, pops the arguments and pushes the result.

�

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

2 -2

10 -1

38 0

10

� return interprets the top of the stack as the result,

� it jumps to the return address,

� deletes the current frame

� and puts the result back on top of the remaining stack.

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul,
return,
con 2, call 26, call 0,
halt]

2 -2

10 -1

38 0

100

we push argument 1 (in this case 10), multiply the top two numbers, and push
the result to the stack

��

[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

100

� return interprets the top of the stack as the result,

� it jumps to the return address (38 this time),

� deletes the current frame

� and puts the result back on top of the remaining stack (which is empty
here).
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[proc 2 26,
con 0, arg 2, leq, cjp 5,
con 1, return,
con 1, arg 2, sub, arg 1,
call 0, arg 1, mul, return,
proc 0 6, con 10, return,
con 2, call 26, call 0,
halt]

100

we are finally done; the result is on the top of the stack. Note that the stack
below has not changed.
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Time for a recap, to see what we have learned from the example.

� What have we seen?

� The four new L(VMP) instructions allow us to model recursive functions.

proc a l contains information about the number a of arguments and the length
l of the procedure

arg i pushes the ith argument from the current frame to the stack.(Note that
arguments are stored in reverse order on the stack)

call p pushes the current program address (opens a new frame), and jumps
to the program address p

return takes the current frame from the stack, jumps to previous program
address. (which is cached in the frame)

� call and return jointly have the effect of replacing the arguments by the
result of the procedure.

� the VMP stack is dual-purpose: it stores (very elegant design)

� intermediate results of (arithmetic) computation (as in VM)

� frames for the arguments of (static) procedures (e.g. for recursive
computation)
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We will now extend our implementation of the virtual machine by the new instructions. The
central idea is that we have to realize call frames on the stack, so that they can be used to store
the data for managing the recursion.

Realizing Call Frames on the Stack
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http://creativecommons.org/licenses/by-sa/2.5/


14.4. BASIC FUNCTIONAL PROGRAMS 245

� Problem: How do we know what the
current frame is? (after all, return
has to pop it)

� Idea: Maintain another register: the
frame pointer (FP), and cache in-
formation about the previous frame
and the number of arguments in the
frame.

last argument -n

first argument -1

argument number

previous frame

return address 0
frame pointer

� Add two internal cell s to the frame, that are hidden to the outside. The upper
one is called the anchor cell.

� In the anchor cell we store the stack address of the anchor cell of the previous
frame.

� The frame pointer points to the anchor cell of the uppermost frame.

� Definition 14.4.6 We obtain the virtual machine with procedures VMP by
extending VM by ASM implementations for the new L(VMP) instructions.(on the
next slides)
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With this memory architecture realizing the four new commands is relatively straightforward.

Realizing proc

� proc a l jumps over the procedure with the help of the length l of the proce-
dure.

label instruction effect comment
〈proc〉 MOVE IN1 ACC ACC := VPC

STORE 0 D(0) := ACC cache VPC
LOADIN 1 2 ACC := D(VPC + 2) load length
ADD 0 ACC := ACC +D(0) compute new VPC value
MOVE ACC IN1 IN1 := ACC update VPC
JUMP 〈jt〉 jump back
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Realizing arg

� arg i pushes the ith argument from the current frame to the stack.

� use the register IN3 for the frame pointer. (extend for first frame)

http://creativecommons.org/licenses/by-sa/2.5/
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label instruction effect comment
〈arg〉 LOADIN 1 1 ACC := D(VPC + 1) load i

STORE 0 D(0) := ACC cache i
MOVE IN3 ACC
STORE 1 D(1) := FP cache FP
ADDI − 1
SUB 0 ACC := FP− 1− i load argument position
MOVE ACC IN3 FP := ACC move it to FP
inc IN2 SP := SP + 1 prepare push
LOADIN 3 0 ACC := D(FP) load arg i
STOREIN 2 0 D(SP) := ACC push arg i
LOAD 1 ACC := D(1) load FP
MOVE ACC IN3 FP := ACC recover FP
MOVE IN1 ACC
ADDI 2
MOVE ACC IN1 VPC := VPC + 2 next instruction
JUMP 〈jt〉 jump back
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Realizing call

� call p pushes the current program address, and jumps to the program address
p (pushes the internal cells first!)

label instruction effect comment
〈call〉 MOVE IN1 ACC

STORE 0 D(0) := IN1 cache current VPC
inc IN2 SP := SP + 1 prepare push for later
LOADIN 1 1 ACC := D(VPC + 1) load argument
ADDI 224 + 3 ACC := ACC +224 + 3 add displacement and skip proc a l
MOVE ACC IN1 VPC := ACC point to the first instruction
LOADIN 1 − 2 ACC := D(VPC− 2) stealing a from proc a l
STOREIN 2 0 D(SP) := ACC push the number of arguments
inc IN2 SP := SP + 1 prepare push
MOVE IN3 ACC ACC := IN3 load FP
STOREIN 2 0 D(SP) := ACC create anchor cell
MOVE IN2 IN3 FP := SP update FP
inc IN2 SP := SP + 1 prepare push
LOAD 0 ACC := D(0) load VPC
ADDI 2 ACC := ACC +2 point to next instruction
STOREIN 2 0 D(SP) := ACC push the return address
JUMP 〈jt〉 jump back
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Realizing return

� return takes the current frame from the stack, jumps to previous program
address. (which is cached in the frame)
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label instruction effect comment
〈return〉 LOADIN 2 0 ACC := D(SP) load top value

STORE 0 D(0) := ACC cache it
LOADIN 2 − 1 ACC := D(SP− 1) load return address
MOVE ACC IN1 IN1 := ACC set VPC to it
LOADIN 3 − 1 ACC := D(FP− 1) load the number n of arguments
STORE 1 D(1) := D(FP− 1) cache it
MOVE IN3 ACC ACC := FP ACC = FP
ADDI − 1 ACC := ACC −1 ACC = FP− 1
SUB 1 ACC := ACC −D(1) ACC = FP− 1− n
MOVE ACC IN2 IN2 := ACC SP = ACC
LOADIN 3 0 ACC := D(FP) load anchor value
MOVE ACC IN3 IN3 := ACC point to previous frame
LOAD 0 ACC := D(0) load cached return value
STOREIN 2 0 D(IN2) := ACC pop return value
JUMP 〈jt〉 jump back
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Note that all the realizations of the L(VMP) instructions are linear code segments in the assembler
code, so they can be executed in linear time. Thus the virtual machine language is only a constant
factor slower than the clock speed of REMA. This is characteristic for virtual machines.

The next step is to build a compiler for µML into L(VMP) programs. Just as above, we will
write this compiler in SML.

14.4.3 Compiling Basic Functional Programs

For the µML compiler we will proceed as above: we first introduce SML data types for the
abstract syntax of L(VMP) and µML and then we define a SML function that converts abstract
µML programs to abstract L(VMP) programs.

Abstract Syntax of µML

type id = string (* identifier *)

datatype exp = (* expression *)
Con of int (* constant *)

| Id of id (* argument *)
| Add of exp * exp (* addition *)
| Sub of exp * exp (* subtraction *)
| Mul of exp * exp (* multiplication *)
| Leq of exp * exp (* less or equal test *)
| App of id * exp list (* application *)
| If of exp * exp * exp (* conditional *)

type declaration = id * id list * exp

type program = declaration list * exp

©: Michael Kohlhase 355

This is a very direct realization of the idea that a µML program consists of a list of (function and
value) declarations and a return expression, where a function declaration introduces new names
for the function and its (formal) arguments. The realization of expressions is just as it was in the
abstract syntax for SW, only that conditionals that were statements there are now expressions. The
only real novelty is the Id constructor that represents identifiers (function or argument names).

As always, we fortify our intution by looking at a concrete example: the µML function from
Example 14.4.2.
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Concrete vs. Abstract Syntax of µML

� A µML program first declares procedures, then evaluates expression for the
return value.

let
fun exp(x,n) =
if n<=0
then 1
else x∗exp(x,n−1)

val y 10
in

exp(y,2)
end

([
(”exp”, [”x”, ”n”],
If(Leq(Id”n”, Con 0),

Con 1,
Mul(Id”x”, App(”exp”, [Id”x”, Sub(Id”n”, Con 1)]))))

(”y”, [], Con 10)
],
App(”exp”, [Id ”y”, Con 2])

)
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We define the abstract syntax for L(VMP) as an extension of the one for L(VM). Again we introduce
type names for documentation. We want to keep apart the integers we use as numbers of arguments
and instructions for proc, and distinguish them from the code addresses used call.

Abstract Syntax for L(VMP)

� Extensions to the abstract data types for L(VM) . . .

type noa = int (* number of arguments *)
type ca = int (* code address *)

datatype instruction = · · ·
| proc of noa*noi (* begin of procedure code *)
| arg of index (* push value from frame *)
| call of ca (* call procedure *)
| return (* return from proc. call *)

type code = instruction list (* recap *)

� . . . and the auxiliary length function

fun wln · · ·
| wln (proc _ _)=3 | wln (arg _)=2
| wln (call _)=2 | wln (return )=1
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For our µML compiler, we first need to define some infrastructure needed for functional programs:
we need to use the environment for both procedure names and argument names (and we do not
assume separate namespaces for arguments and procedures). So we use different constructors for
the values of the identifiers in the environment and provide two separate lookup functions that
also do some error reporting.
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Compiling µML: Auxiliaries

exception Error of string
datatype idType = Arg of index | Proc of ca
type env = idType env

fun lookupA (i,env) =
case lookup(i,env) of

Arg i => i
| _ => raise Error("Argument expected: " \^ i)

fun lookupP (i,env) =
case lookup(i,env) of

Proc ca => ca
| _ => raise Error("Procedure expected: " \^ i)
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As µML are programs are pairs consisting of declaration lists and an expression, we have a main
function compile that first analyzes the declarations (getting a command sequence and an en-
vironment back from the declaration compiler) and then appends the command sequence, the
compiled expression and the halt command. Note that the expression is compiled with respect to
the environment computed in the compilation of the declarations.

Compiling µML

fun compile ((ds ,e) : program) : code =
let

val (cds ,env) = compileD(ds , empty , ~1)
in

cds @ compileE(e,env ,nil) @ [halt]
end
handle
Unbound i => raise Error("Unbound identifier: " \^ i)
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Next we define the µML expression compiler: a function compileE that compiles abstract µML
expressions into lists of abstract L(VMP) instructions. As expressions also appear in argument
sequences, it is convenient (and indeed necessary since we do not know the arities of functions) to
define an expression list compiler, – a function compileEs that compiles µML expression lists via
left folding. Note that the two expression compilers are very naturally mutually recursive.

Another trick we already do is that we give the expression compiler an argument tail, which can
be used to append a list of L(VMP) commands to the result; this will be useful in the declaration
compiler later to take care of the return statement needed to return from recursive functions.

Compiling µML: Expressions

fun compi leE ( e : exp , env : env , t a i l : code ) : code =
case e of

Con i => [ con i ] @ t a i l
| I d i => [ a rg ( ( lookupA ( i , env ) ) ) ] @ t a i l
| Add ( e1 , e2 ) => c o m p i l e E s ( [ e1 , e2 ] , env ) @ [ add ] @ t a i l
| Sub ( e1 , e2 ) => c o m p i l e E s ( [ e1 , e2 ] , env ) @ [ sub ] @ t a i l
| Mul ( e1 , e2 ) => c o m p i l e E s ( [ e1 , e2 ] , env ) @ [ mul ] @ t a i l
| Leq ( e1 , e2 ) => c o m p i l e E s ( [ e1 , e2 ] , env ) @ [ l e q ] @ t a i l
| I f ( e1 , e2 , e3 ) => l e t
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va l c1 = compi leE ( e1 , env , n i l )
va l c2 = compi leE ( e2 , env , t a i l )
va l c3 = compi leE ( e3 , env , t a i l )

i n i f n u l l t a i l
then c1 @ [ c j p (4+ wlen c2 ) ] @ c2

@ [ j p (2+ wlen c3 ) ] @ c3
e l s e c1 @ [ c j p (2+ wlen c2 ) ] @ c2 @ c3

end
| App ( i , e s ) => c o m p i l e E s ( es , env ) @ [ c a l l ( lookupP ( i , env ) ) ] @ t a i l
and (∗ mutual r e c u r s i o n w i t h compi leE ∗)

fun c o m p i l e E s ( e s : exp l i s t , env : env ) : code =
f o l d l ( fn ( e , c ) => compi leE ( e , env , n i l ) @ c ) n i l e s
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Observe the use of the tail argument for the If case in compileE; the declaration compiler will
use it to pass the return command to complileE. For all expressions, we can just append the
return (tail will always be return or the empty list) to the end of the generated code. The
only exception is the If expressions, where we need to return from the “then-part” and the “else-
part” separately. Moreover, we can optimize the generated code by realizing that we do not the
traditional two-jump pattern for if-then-else (on the left of the image below),

cond cjp then-part jp else-part · · · cond cjp then-part ret else-part

but only a pattern without the second jump (the pattern on the right), since the “then-part”
already returns on its own. These two patterns are realized in the If case of compileE.

Now we turn to the declarations compiler. This is considerably more complex than the one for SW
we had before due to the presence of formal arguments in the function declarations.

The declaration compiler recurses over the list of declarations, and for each declaration, it first
inserts the procedure name into the environment env, yielding a new environment env’, into which
we then insert the argument list via an auxiliary function insertArgs we have defined before. In
the resulting environment env’’ we compile the body of the function (which may contain the
formal arguments). Note that we compile the rest of the declarations in the environment env’

that contains the function name, but not the function arguments. Indeed it is an error to use
the procedure arguments outside the procedure body; using the environment env’ which does not
contain them leads to an exception if they are.

Compiling µML Declarations

fun i n s e r t A r g s ’ ( i , ( env , a i ) ) = ( i n s e r t ( i , Arg a i , env ) , a i +1)

fun i n s e r t A r g s ( i s , env ) = ( f o l d l i n s e r t A r g s ’ ( env , 1 ) i s )

fun compi leD ( ds : d e c l a r a t i o n l i s t , env : env , ca : ca ) : code ∗ env =
case ds of

n i l => ( n i l , env )
| ( i , i s , e ) : : d r =>

l e t
va l env ’ = i n s e r t ( i , Proc ( ca +1) , env )
va l env ’ ’ = i n s e r t A r g s ( i s , env ’ )
va l ce = compi leE ( e , env ’ ’ , [ r e t u r n ] )
va l cd = [ p r o c ( l e n g t h i s , 3+wlen ce ) ] @ ce

(∗ 3+wlen ce = wlen cd ∗)
va l ( cdr , env ’ ’ ) = compi leD ( dr , env ’ , ca + wlen cd )

i n
( cd @ cdr , env ’ ’ )
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end
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Note that in the L(VMP) code we generate from µML programs we do not use peek and poke

instructions. This is in keeping with the functional nature of the µML language, which does not
have variable assignment (we used poke for that in the imperative programming language SW), and
(global) variable declarations (we used peek to access them). In stead of variable declarations, we
have function and value declarations which are accessed by call in L(VMP) compiled from µML.

Note that even if we do not use them in the µML compiler, peek and poke are still available in
L(VMP) (which is defined to be a superset of L(VM)). And indeed this is a good thing, as we would
need them hem if we were to build an imperative programming language with procedures – e.g.
building on SW.

Now that we have seen a couple of models of computation, computing machines, programs, . . . ,
we should pause a moment and see what we have achieved.

Where To Go Now?

� We have completed a µML compiler, which generates L(VMP) code from µML
programs.

� µML is minimal, but Turing-Complete (has conditionals and procedures)
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14.5 Turing Machines: A theoretical View on Computation

In this section, we will present a very important notion in theoretical Computer Science: The
Turing Machine. It supplies a very simple model of a (hypothetical) computing device that can
be used to understand the limits of computation.

What have we achieved

� what have we done? We have sketched

� a concrete machine model (combinational circuits)

� a concrete algorithm model (assembler programs)

Evaluation: (is this good?)

� � how does it compare with SML on a laptop?

� Can we compute all (string/numerical) functions in this model?

� Can we always prove that our programs do the right thing?

� Towards Theoretical Computer Science (as a tool to answer these)

� look at a much simpler (but less concrete) machine model (Turing
Machine)

� show that TM can [encode/be encoded in] SML, assembler, Java,. . .
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� Conjecture 14.5.1 [Church/Turing] (unprovable, but accepted)

All non-trivial machine models and programming languages are equivalent
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We want to explore what the “simplest” (whatever that may mean) computing machine could be.
The answer is quite surprising, we do not need wires, electricity, silicon, etc; we only need a very
simple machine that can write and read to a tape following a simple set of rules.

Turing Machines: The idea

� Idea: Simulate a machine by a person executing a well-defined procedure!

� Setup: Person changes the contents of an infinite amount of ordered paper
sheets that can contain one of a finite set of symbols.

� Memory: The person needs to remember one of a finite set of states

� Procedure: “If your state is 42 and the symbol you see is a ’0’ then replace
this with a ’1’, remember the state 17, and go to the following sheet.”
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Note that the physical realization of the machine as a box with a (paper) tape is immaterial, it is
inspired by the technology at the time of its inception (in the late 1940ies; the age of ticker-tape
commuincation).

A Physical Realization of a Turing Machine
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� Note: Turing machine can be built, but that is not the important aspect

� Example 14.5.2 (A Physically Realized Turing Machine)

For more information see http://aturingmachine.com.

� Turing machines are mainly used for thought experiments, where we simulate
them in our heads. (or via programs)

©: Michael Kohlhase 365

To use (i.e. simulate) Turing machines, we have to make the notion a bit more precise.

Turing Machine: The Definition

� Definition 14.5.3 A Turing Machine consists of

� An infinite tape which is divided into cells, one next to the other(each cell
contains a symbol from a finite alphabet L with #(L) ≥ 2 and 0 ∈ L)

� A head that can read/write symbols on the tape and move left/right.

� A state register that stores the state of the Turing machine. (finite set of
states, register initialized with a special start state)

� An action table that tells the machine what symbol to write, how to move
the head and what its new state will be, given the symbol it has just read
on the tape and the state it is currently in. (If no entry applicable the
machine will halt)

� and now again, mathematically:

� Definition 14.5.4 A Turing machine specification is a quintuple 〈A,S, s0,F ,R〉,
where A is an alphabet, S is a set of state s, s0 ∈ S is the initial state, F ⊆ S
is the set of final state s, and R is a function R : S\F ×A → S ×A× {R,L}
called the transition function.

� Note: every part of the machine is finite, but it is the potentially unlimited
amount of tape that gives it an unbounded amount of storage space.
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To fortify our intuition about the way a Turing machine works, let us consider a concrete example
of a machine and look at its computation.

The only variable parts in Definition 14.5.3 are the alphabet used for data representation on the
tape, the set of states, the initial state, and the actiontable; so they are what we have to give to
specify a Turing machine.

http://aturingmachine.com
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Turing Machine

Example 14.5.5 with Alphabet {0, 1}

� Given: a series of 1s on the tape (with head initially on the leftmost)

� Computation: doubles the 1’s with a 0 in between, i.e., ”111” becomes
”1110111”.

� The set of states is {s1, s2, s3, s4, s5, f} (s1 initial, f final)

� Action Table:

Old Read Wr. Mv. New Old Read Wr. Mv. New
s1 1 0 R s2 s4 1 1 L s4
s2 1 1 R s2 s4 0 0 L s5
s2 0 0 R s3 s5 1 1 L s5
s3 1 1 R s3 s5 0 1 R s1
s3 0 1 L s4 s1 0 f

� State Machine:

1 2 3 4 5

1

0,R

0

0,R

1

1,R 0

1,L

1

1,R 0

0,L

1

1,L

0

1,R

1

1,L
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The computation of the turing machine is driven by the transition function: It starts in the initial
state, reads the character on the tape, and determines the next action, the character to write, and
the next state via the transition function.

Example Computation
� T starts out in s1, replaces the first

1 with a 0, then

� uses s2 to move to the right, skip-
ping over 1’s and the first 0 encoun-
tered.

� s3 then skips over the next sequence
of 1’s (initially there are none) and
replaces the first 0 it finds with a 1.

� s4 moves back left, skipping over
1’s until it finds a 0 and switches to
s5.

# St Tape # St Tape

1 s1 1 1 9 s2 10 0 1

2 s2 0 1 10 s3 100 1

3 s2 01 0 11 s3 1001 0

4 s3 010 0 12 s4 100 1 1

5 s4 01 0 1 13 s4 10 0 11

6 s5 0 1 01 14 s5 1 0 011

7 s5 0 101 15 s1 11 0 11

8 s1 1 1 01 — halt —

� s5 then moves to the left, skipping over 1’s until it finds the 0 that was
originally written by s1.

� It replaces that 0 with a 1, moves one position to the right and enters s1 again
for another round of the loop.

� This continues until s1 finds a 0 (this is the 0 right in the middle between the
two strings of 1’s) at which time the machine halts
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We have seen that a Turing machine can perform computational tasks that we could do in
other programming languages as well. The computation in the example above could equally be
expressed in a while loop (while the input string is non-empty) in SW, and with some imagination
we could even conceive of a way of automatically building action tables for arbitrary while loops
using the ideas above.

What can Turing Machines compute?

� Empirically: anything any other program can also compute

� Memory is not a problem (tape is infinite)

� Efficiency is not a problem (purely theoretical question)

� Data representation is not a problem (we can use binary, or whatever
symbols we like)

� All attempts to characterize computation have turned out to be equivalent

� primitive recursive functions ([Gödel, Kleene])

� lambda calculus ([Church])

� Post production systems ([Post])

� Turing machines ([Turing])

� Random-access machine

� Conjecture 14.5.6 ([Church/Turing]) (unprovable, but accepted)

Anything that can be computed at all, can be computed by a Turing Machine

� Definition 14.5.7 We will call a computational system Turing complete, iff
it can compute what a Turing machine can.
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Note that the Church/Turing hypothesis is a very strong assumption, but it has been born out by
experience so far and is generally accepted among computer scientists.

The Church/Turing hypothesis is strengthened by another concept that Alan Turing introduced
in [Tur36]: the universal turing machine – a Turing machine that can simulate arbitrary Turing
machine on arbitrary input. The universal Turing machine achieves this by reading both the Turing
machine specification T as well as the I input from its tape and simulates T on I, constructing
the output that T would have given on I on the tape. The construction itself is quite tricky (and
lengthy), so we restrict ourselves to the concepts involved.

Some researchers consider the universal Turing machine idea to be the origin of von Neumann’s
architecture of a stored-program computer, which we explored in Section 14.0.

Universal Turing machines

� Note: A Turing machine computes a fixed partial string function.

� In that sense it behaves like a computer with a fixed program.

� Idea: we can encode the action table of any Turing machine in a string.
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� try to construct a Turing machine that expects on its tape

� a string describing an action table followed by

� a string describing the input tape, and then

� computes the tape that the encoded Turing machine would have computed.

� Theorem 14.5.8 Such a Turing machine is indeed possible (e.g. with 2
states, 18 symbols)

� Definition 14.5.9 Call it a universal Turing machine (UTM). (it can
simulate any TM)

Input data D Turing machine
T

Output data D′

coded descrip-
tion of a TM

input data D

Loop Detector
Turing Machine

Output data D′

� UTM accepts a coded description of a Turing machine and simulates the
behavior of the machine on the input data.

� The coded description acts as a program that the UTM executes, the
UTM’s own internal program is fixed.

The existence of the UTM is what makes computers fundamentally differ-
ent from other machines such as telephones, CD players, VCRs, refrigerators,
toaster-ovens, or cars.
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Indeed the existence of UTMs is one of the distinguishing feature of computing. Whereas other
tools are single purpose (or multi-purpose at best; e.g. in the sense of a Swiss army knife, which
integrates multiple tools), computing devices can be configured to assume any behavior simply by
supplying a program. This makes them universal tools.

Note: that there are very few disciplines that study such universal tools, this makes Computer
Science special. The only other discipline with “universal tools” that comes to mind is Biology,
where ribosomes read RNA codes and synthesize arbitrary proteins. But for all we know at the
moment, RNA codes is linear and therefore Turing completeness of the RNA code is still hotly
debated (I am skeptical).

Even in our limited experience from this course, we have seen that we can compile µML to
L(VMP) and SW to L(VM) both of which we can interpret in ASM. And we can write an SML simulator
of the REMA that closes the circle. So all these languages are equivalent and inter-simulatable. Thus,
if we can simulate any of them in Turing machines, then we can simulate any of them.

Of course, not all programming languages are inter-simulatable, for instance, if we had
forgotten the jump instructions in L(VM), then we could not compile the control structures of SW
or µML into L(VM) or L(VMP). So we should read the Church/Turing hypothesis as a statement
of equivalence of all non-trivial programming languages.

Question: So, if all non-trivial programming languages can compute the same, are there things
that none of them can compute? This is what we will have a look at next.
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� Is there anything that cannot be computed by a TM?
[Tur36]

� Theorem 14.5.10 (Halting Problem) No Turing machine can infallibly
tell if another Turing machine will get stuck in an infinite loop on some given
input.

� The problem of determining whether a Turing machine will halt on an input is
called the halting problem.

�

coded descrip-
tion of a TM

input for TM

Loop Detector
Turing Machine

“yes, it will
halt”

“no, it will not”

� Proof:

P.1 let’s do the argument with SML instead of a TM
assume that there is a loop detector program written in SML

SML Program

input for Pro-
gram

Loop Detector
SML Program

“yes, it will
halt”

“no, it will not”
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Using SML for the argument does not really make a difference for the argument, since we believe
that Turing machines are inter-simulatable with SML programs. But it makes the argument
clearer at the conceptual level. We also simplify the types involved, but taking the argument to
be a function of type string -> string and its input to be of type string, but of course, we
only have to exhibit one counter-example to prove the halting problem.

Testing the Loop Detector Program
Proof:

P.1 The general shape of the Loop detector program

fun will_halt(program,data) =
... lots of complicated code ...
if ( ... more code ...) then true else false;

will_halt : (string -> string) -> string -> bool
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test programs behave exactly as anticipated

fun halter (s) = "";
halter : string -> string
fun looper (s) = looper(s);
looper : string -> string

will_halt(halter,"");
val true : bool
will_halt(looper,"");
val false : bool

P.2 Consider the following program

fun turing (prog) =
if will_halt(eval(prog),prog) then looper("") else "";

turing : string -> string

P.3 Yeah, so what? what happens, if we feed the turing function to itself?
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Observant readers may already see what is going to happen here, we are going for a diagonalization
argument, where we apply the function turing to itself.

Note that to get the types to work out, we are assuming a function eval : string -> string -> string

that takes (program) string and compiles it into a function of type string -> string. This can
be written, since the SML compiler exports access to its internals in the SML runtime.

But given this trick, we can apply turing to itself, and get into the well-known paradoxical
situation we have already seen for the “set of all sets that do not contain themselves” in Russell’s
paradox.

What happens indeed?
Proof:

P.1 fun turing (prog) =
if will\_halt(eval(prog),prog) then looper("") else "";

the turing function uses will_halt to analyze the function given to it.

� If the function halts when fed itself as data, the turing function goes
into an infinite loop.

� If the function goes into an infinite loop when fed itself as data, the
turing function immediately halts.

P.2 But if the function happens to be the turing function itself, then

� the turing function goes into an infinite loop if the turing function
halts (when fed itself as input)

� the turing function halts if the turing function goes into an infinite
loop (when fed itself as input)

P.3 This is a blatant logical contradiction! Thus there cannot be a will_halt

function
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The halting problem is historically important, since it is one of the first problems that was shown
to be undecidable – in fact Alonzo Church’s proof of the undecidability of the λ-calculus was
published one month earlier as [Chu36].
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Just as the existence of an UTM is a defining characteristic of computing science, the existence of
undecidable problems is a (less happy) defining fact that we need to accept about the fundamental
nature of computation.

In a way, the halting problem only shows that computation is inherently non-trivial — just in
the way sets are; we can play the same diagonalization trick on them and end up in Russell’s
paradox. So the halting problems should not be seen as a reason to despair on computation, but
to rejoice that we are tackling non-trivial problems in Computer Science. Note that there are a lot
of problems that are decidable, and there are algorithms that tackle undecidable problems, and
perform well in many cases (just not in all). So there is a lot to do; let’s get to work.
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Chapter 15

The Information and Software
Architecture of the Internet and
World Wide Web

In the last chapters we have seen how to build computing devices, and how to program them
with high-level programming languages. But this is only part of the computing infrastructure we
have gotten used to in the last two decades: computers are nowadays globally networked on the
Internet, and we use computation on remote computers and information services on the World
Wide Web on a day-to-day basis.

In this chapter we will look at the information and software architecture of the Internet and the
World Wide Web (WWW) from the ground up.

15.1 Overview

We start off with a disambiguation of the concepts of Internet and World Wide Web that are
often used interchangeably (and thus imprecisely) in the popular discussion. In fact, the form
quite different pieces in the general networking infrastructure, with the World Wide Web building
on the Internet as one of many services. We will give an overview over the devices and protocols
driving the Internet in Section 15.1 and on the central concepts of the World Wide Web in
Section 15.2.

The Internet and the Web

� Definition 15.1.1 The Internet is a worldwide computer network that con-
nects hundreds of thousands of smaller networks. (The mother of all
networks)

� Definition 15.1.2 The World Wide Web (WWW) is the interconnected sys-
tem of servers that support multimedia documents, i.e. the multimedia part of
the Internet.

� The Internet and WWWeb form critical infrastructure for modern society and
commerce.

� The Internet/WWW is huge:
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Year Web Deep Web eMail

1999 21 TB 100 TB 11TB
2003 167 TB 92 PB 447 PB
2010 ???? ????? ?????

� We want to understand how it works (services and scalability issues)

.
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One of the central things to understand about the Internet and the WWWeb is that they have
been growing exponentially over the last decades in terms of traffic and available content. In
fact, we do not really know how big the Internet/WWWeb are, its distributed, and increasingly
commercial nature and global scale make that increasingly difficult to measure.

Of course, we also want to understand the units used in the measurement of the size of the Internet,
this is next.

How much Information?

Bit (b) binary digit 0/1
Byte (B) 8 bit
2 Bytes A Unicode character in UTF.
10 Bytes your name.
Kilobyte (kB) 1,000 bytes OR 103 bytes
2 Kilobytes A Typewritten page.
100 Kilobytes A low-resolution photograph.
Megabyte (MB) 1,000,000 bytes OR 106 bytes
1 Megabyte A small novel or a 3.5 inch floppy disk.
2 Megabytes A high-resolution photograph.
5 Megabytes The complete works of Shakespeare.
10 Megabytes A minute of high-fidelity sound.
100 Megabytes 1 meter of shelved books.
500 Megabytes A CD-ROM.
Gigabyte (GB) 1,000,000,000 bytes or 109 bytes
1 Gigabyte a pickup truck filled with books.
20 Gigabytes A good collection of the works of Beethoven.
100 Gigabytes A library floor of academic journals.
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Terabyte (TB) 1,000,000,000,000 bytes or 1012 bytes
1 Terabyte 50000 trees made into paper and printed.
2 Terabytes An academic research library.
10 Terabytes The print collections of the U.S. Library of Congress.
400 Terabytes National Climate Data Center (NOAA) database.
Petabyte (PB) 1,000,000,000,000,000 bytes or 1015 bytes
1 Petabyte 3 years of EOS data (2001).
2 Petabytes All U.S. academic research libraries.
20 Petabytes Production of hard-disk drives in 1995.
200 Petabytes All printed material (ever).
Exabyte (EB) 1,000,000,000,000,000,000 bytes or 1018 bytes
2 Exabytes Total volume of information generated in 1999.
5 Exabytes All words ever spoken by human beings ever.
300 Exabytes All data stored digitally in 2007.
Zettabyte (ZB) 1,000,000,000,000,000,000,000 bytes or 1021 bytes
2 Zettabytes Total volume digital data transmitted in 2011
100 Zettabytes Data equivalent to the human Genome in one body.
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The information in this table is compiled from various studies, most recently [HL11].

Note: Information content of real-world artifacts can be assessed differently, depending on the
view. Consider for instance a text typewritten on a single page. According to our definition, this
has ca. 2 kB, but if we fax it, the image of the page has 2 MB or more, and a recording of a
text read out loud is ca. 50 MB. Whether this is a terrible waste of bandwidth depends on the
application. On a fax, we can use the shape of the signature for identification (here we actually
care more about the shape of the ink mark than the letters it encodes) or can see the shape of a
coffee stain. In the audio recording we can hear the inflections and sentence melodies to gain an
impression on the emotions that come with text.

A Timeline of the Internet and the Web

� Early 1960s: introduction of the network concept

� 1970: ARPANET, scholarly-aimed networks

� 62 computers in 1974

� 1975: Ethernet developed by Robert Metcalfe

� 1980: TCP/IP

� 1982: The first computer virus, Elk Cloner, spread via Apple II floppy disks

� 500 computers in 1983

� 28,000 computers in 1987

� 1989: Web invented by Tim Berners-Lee

� 1990: First Web browser based on HTML developed by Berners-Lee

� Early 1990s: Andreessen developed the first graphical browser (Mosaic)

� 1993: The US White House launches its Web site
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� 1993 –: commercial/public web explodes
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We will now look at the information and software architecture of the Internet and the World Wide
Web (WWW) from the ground up.

15.2 Internet Basics

We will show aspects of how the Internet can cope with this enormous growth of numbers of
computers, connections and services.

The growth of the Internet rests on three design decisions taken very early on. The Internet

1) is a packet-switched network rather than a network, where computers communicate via
dedicated physical communication lines.

2) is a network, where control and administration are decentralized as much as possible.

3) is an infrastructure that only concentrates on transporting packets/datagrams between com-
puters. It does not provide special treatment to any packets, or try to control the content
of the packets.

The first design decision is a purely technical one that allows the existing communication lines to
be shared by multiple users, and thus save on hardware resources. The second decision allows the
administrative aspects of the Internet to scale up. Both of these are crucial for the scalability of
the Internet. The third decision (often called “net neutrality”) is hotly debated. The defenders
cite that net neutrality keeps the Internet an open market that fosters innovation, where as
the attackers say that some uses of the network (illegal file sharing) disproportionately consume
resources.

Package-Switched Networks

� Definition 15.2.1 A packet-switched network divides messages into small
network packets that are transported separately and re-assembled at the target.

� Advantages:

� many users can share the same physical communication lines.

� packets can be routed via different paths. (bandwidth utilization)

� bad packets can be re-sent, while good ones are sent on. (network
reliability)

� packets can contain information about their sender, destination.

� no central management instance necessary (scalability, resilience)
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These ideas are implemented in the Internet Protocol Suite, which we will present in the rest of the
section. A main idea of this set of protocols is its layered design that allows to separate concerns
and implement functionality separately.

The Intenet Protocol Suite
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�

Definition 15.2.2 The Internet Pro-
tocol Suite (commonly known as
TCP/IP) is the set of communications
protocols used for the Internet and
other similar networks. It structured
into 4 layers.

Layer e.g.

Application Layer HTTP, SSH
Transport Layer UDP,TCP
Internet Layer IPv4, IPsec
Link Layer Ethernet, DSL

�

Layers in TCP/IP: TCP/IP uses encapsu-
lation to provide abstraction of protocols
and services.
An application (the highest level of the
model) uses a set of protocols to send its
data down the layers, being further en-
capsulated at each level.
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The Internet as a Network of Networks

� Example 15.2.3 (TCP/IP Scenario)
Consider a situation with two Inter-
net host computers communicate
across local network boundaries.

� network boundaries are consti-
tuted by internetworking gateways
(routers).

� Definition 15.2.4 A router is
a purposely customized computer
used to forward data among com-
puter networks beyond directly
connected devices.

� A router implements the link and
internet layers only and has two
network connections.
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We will now take a closer look at each of the layers shown above, starting with the lowest one.

Instead of going into network topologies, protocols, and their implementation into physical signals
that make up the link layer, we only discuss the devices that deal with them. Network Interface
controllers are specialized hardware that encapsulate all aspects of link-level communication, and
we take them as black boxes for the purposes of this course.

Network Interfaces

� The nodes in the Internet are computers, the edges communication channels

� Definition 15.2.5 A network interface controller (NIC) is a hardware device
that handles an interface to a computer network and thus allows a network-
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capable device to access that network.

� Definition 15.2.6 Each NIC contains a unique number, the media access
control address (MAC address), identifies the device uniquely on the network.

� MAC addresses are usually 48-bit numbers issued by the manufacturer, they are
usually displayed to humans as six groups of two hexadecimal digits, separated
by hyphens (-) or colons (:), in transmission order, e.g. 01-23-45-67-89-AB,
01:23:45:67:89:AB.

�

Definition 15.2.7 A network inter-
face is a software component in the
operating system that implements the
higher levels of the network protocol
(the NIC handles the lower ones).

Layer e.g.

Application Layer HTTP, SSH
Transport Layer TCP
Internet Layer IPv4, IPsec
Link Layer Ethernet, DSL

� A computer can have more than one network interface. (e.g. a router)

©: Michael Kohlhase 380

The next layer ist he Internet Layer, it performs two parts: addressing and packing packets.

Internet Protocol and IP Addresses

� Definition 15.2.8 The Internet Protocol (IP) is a protocol used for com-
municating data across a packet-switched internetwork. The Internet Protocol
defines addressing methods and structures for datagram encapsulation. The
Internet Protocol also routes data packets between networks

� Definition 15.2.9 An Internet Protocol (IP) address is a numerical label
that is assigned to devices participating in a computer network, that uses the
Internet Protocol for communication between its nodes.

� An IP address serves two principal functions: host or network interface identi-
fication and location addressing.

� Definition 15.2.10 The global IP address space allocations are managed
by the Internet Assigned Numbers Authority (IANA), delegating allocate IP
address blocks to five Regional Internet Registries (RIRs) and further to Internet
service providers (ISPs).

� Definition 15.2.11 The Internet mainly uses Internet Protocol Version 4
(IPv4) [RFC80], which uses 32-bit numbers (IPv4 address es) for identification
of network interfaces of Computers.

� IPv4 was standardized in 1980, it provides 4,294,967,296 (232) possible unique
addresses. With the enormous growth of the Internet, we are fast running out
of IPv4 addresses

� Definition 15.2.12 Internet Protocol Version 6 (IPv6) [DH98], which uses
128-bit numbers (IPv6 address es) for identification.
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� Although IP addresses are stored as binary numbers, they are usually displayed
in human-readable notations, such as 208.77.188.166 (for IPv4), and 2001 :
db8 : 0 : 1234 : 0 : 567 : 1 : 1 (for IPv6).
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The Internet infrastructure is currently undergoing a dramatic retooling, because we are moving
from IPv4 to IPv6 to counter the depletion of IP addresses. Note that this means that all routers
and switches in the Internet have to be upgraded. At first glance, it would seem that that this
problem could have been avoided if we had only anticipated the need for more the 4 million
computers. But remember that TCP/IP was developed at a time, where the Internet did not exist
yet, and it’s precursor had about 100 computers. Also note that the IP addresses are part of every
packet, and thus reserving more space for them would have wasted bandwidth in a time when it
was scarce.

We will now go into the detailed structure of the IP packets as an example of how a low-level
protocol is structured. Basically, an IP packet has two parts: the “header”, whose sequence of
bytes is strictly standardized, and the “payload”, a segment of bytes about which we only know
the length, which is specified in the header.

The Structure of IP Packets

� Definition 15.2.13 IP packet s are composed of a 160b header and a pay-
load. The IPv4 packet header consists of:

b name comment

4 version IPv4 or IPv6 packet
4 Header Length in multiples 4 bytes (e.g., 5 means 20 bytes)
8 QoS Quality of Service, i.e. priority
16 length of the packet in bytes
16 fragid to help reconstruct the packet from fragments,
3 fragmented DF =̂ “Don’t fragment”/MF =̂ “More Fragments”
13 fragment offset to identify fragment position within packet
8 TTL Time to live (router hops until discarded)
8 protocol TCP, UDP, ICMP, etc.
16 Header Checksum used in error detection,
32 Source IP
32 target IP
. . . optional flags according to header length

� Note that delivery of IP packets is not guaranteed by the IP protocol.
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As the internet protocol only supports addressing, routing, and packaging of packets, we need
another layer to get services like the transporting of files between specific computers. Note that
the IP protocol does not guarantee that packets arrive in the right order or indeed arrive at all,
so the transport layer protocols have to take the necessary measures, like packet re-sending or
handshakes, . . . .
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The Transport Layer

� Definition 15.2.14 The transport layer is responsible for delivering data to
the appropriate application process on the host computers by forming data
packets, and adding source and destination port numbers in the header.

� Definition 15.2.15 The internet protocol mainly uses suite the Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP) protocols at the
transport layer.

� TCP is used for communication, UDP for multicasting and broadcasting.

� TCP supports virtual circuits, i.e. provide connection oriented communication
over an underlying packet oriented datagram network. (hide/reorder packets)

� TCP provides end-to-end reliable communication (error detection &
automatic repeat)
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We will see that there are quite a lot of services at the network application level. And indeed,
many web-connected computers run a significant subset of them at any given time, which could
lead to problems of determining which packets should be handled by which service. The answer
to this problem is a system of “ports” (think pigeon holes) that support finer-grained addressing
to the various services.

Ports

� Definition 15.2.16 To separate the services and protocols of the network
application layer, network interfaces assign them specific port, referenced by a
number.

� Example 15.2.17 We have the following ports in common use on the Inter-
net

Port use comment

22 SSH remote shell
53 DNS Domain Name System
80 HTTP World Wide Web
443 HTTPS HTTP over SSL
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On top of the transport-layer services, we can define even more specific services. From the per-
spective of the internet protocol suite this layer is unregulated, and application-specific. From a
user perspective, many useful services are just “applications” and live at the application layer.

The Application Layer
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� Definition 15.2.18 The application layer of the internet protocol suite con-
tains all protocols and methods that fall into the realm of process-to-process
communications via an Internet Protocol (IP) network using the Transport
Layer protocols to establish underlying host-to-host connections.

� Example 15.2.19 (Some Application Layer Protocols and Services)
BitTorrent Peer-to-peer Atom Syndication

DHCP Dynamic Host Configuration DNS Domain Name System

FTP File Transfer Protocol HTTP HyperText Transfer

IMAP Internet Message Access IRCP Internet Relay Chat

NFS Network File System NNTP Network News Transfer

NTP Network Time Protocol POP Post Office Protocol

RPC Remote Procedure Call SMB Server Message Block

SMTP Simple Mail Transfer SSH Secure Shell

TELNET Terminal Emulation WebDAV Write-enabled Web
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We will now go into the some of the most salient services on the network application layer.

The domain name system is a sort of telephone book of the Internet that allows us to use symbolic
names for hosts like kwarc.info instead of the IP number 212.201.49.189.

Domain Names

� Definition 15.2.20 The DNS (Domain Name System) is a distributed set of
servers that provides the mapping between (static) IP addresses and domain
names.

� Example 15.2.21 e.g. www.kwarc.info stands for the IP address 212.201.49.189.

� Definition 15.2.22 Domain names are hierarchically organized, with the
most significant part (the top-level domain TLD) last.

� networked computers can have more than one DNS name. (virtual servers)

� Domain names must be registered to ensure uniqueness(registration fees vary,
cybersquatting)

� Definition 15.2.23 ICANN is a non-profit organization was established to
regulate human-friendly domain names. It approves top-level domains, and
corresponding domain name registrars and delegates the actual registration to
them.
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Let us have a look at a selection of the top-level domains in use today.

Domain Name Top-Level Domains

� .com (“commercial”) is a generic top-level domain. It was one of the original
top-level domains, and has grown to be the largest in use.

� .org (“organization”) is a generic top-level domain, and is mostly associated
with non-profit organizations. It is also used in the charitable field, and used
by the open-source movement. Government sites and Political parties in the
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US have domain names ending in .org

� .net (“network”) is a generic top-level domain and is one of the original top-
level domains. Initially intended to be used only for network providers (such
as Internet service providers). It is still popular with network operators, it is
often treated as a second .com. It is currently the third most popular top-level
domain.

� .edu (“education”) is the generic top-level domain for educational institutions,
primarily those in the United States. One of the first top-level domains, .edu
was originally intended for educational institutions anywhere in the world. Only
post-secondary institutions that are accredited by an agency on the U.S. De-
partment of Education’s list of nationally recognized accrediting agencies are
eligible to apply for a .edu domain.

� .info (“information”) is a generic top-level domain intended for informative
website’s, although its use is not restricted. It is an unrestricted domain, mean-
ing that anyone can obtain a second-level domain under .info. The .info was one
of many extension(s) that was meant to take the pressure off the overcrowded
.com domain.

� .gov (“government”) a generic top-level domain used by government entities
in the United States. Other countries typically use a second-level domain for
this purpose, e.g., .gov.uk for the United Kingdom. Since the United States
controls the .gov Top Level Domain, it would be impossible for another country
to create a domain ending in .gov.

� .biz (“business”) the name is a phonetic spelling of the first syllable of “busi-
ness”. A generic top-level domain to be used by businesses. It was created due
to the demand for good domain names available in the .com top-level domain,
and to provide an alternative to businesses whose preferred .com domain name
which had already been registered by another.

� .xxx (“porn”) the name is a play on the verdict “X-rated” for movies. A
generic top-level domain to be used for sexually explicit material. It was created
in 2011 in the hope to move sexually explicit material from the “normal web”.
But there is no mandate for porn to be restricted to the .xxx domain, this
would be difficult due to problems of definition, different jurisdictions, and free
speech issues.

©: Michael Kohlhase 387

Note: Anybody can register a domain name from a registrar against a small yearly fee. Domain
names are given out on a first-come-first-serve basis by the domain name registrars, which usually
also offer services like domain name parking, DNS management, URL forwarding, etc.

The next application-level service is the SMTP protocol used for sending e-mail. It is based
on the telnet protocol for remote terminal emulation which we do not discuss here.

telnet is one of the oldest protocols, which uses TCP directly to send text-based messages between
a terminal client (on the local host) and a terminal server (on the remote host). The operation
of a remote terminal is the following: the terminal server on the remote host receives commands
from the terminal client on the local host, executes them on the remote host and sends back the
results to the client on the local host.

A Protocol Example: SMTP over telnet
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� We call up the telnet service on the Jacobs mail server
telnet exchange.jacobs-university.de 25

� it identifies itself (have some patience, it is very busy)
Trying 10.70.0.128...
Connected to exchange.jacobs-university.de.
Escape character is ’^]’.
220 SHUBCAS01.jacobs.jacobs-university.de
Microsoft ESMTP MAIL Service ready at Tue, 3 May 2011 13:51:23 +0200

� We introduce ourselves politely (but we lie about our identity)
helo mailhost.domain.tld

� It is really very polite.
250 SHUBCAS04.jacobs.jacobs-university.de Hello [10.222.1.5]
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SMTP over telnet: The e-mail itself

� We start addressing an e-mail (again, we lie about our identity)
mail from: user@domain.tld

� this is acknowledged
250 2.1.0 Sender OK

� We set the recipient (the real one, so that we really get the e-mail)
rcpt to: m.kohlhase@jacobs-university.de

� this is acknowledged
250 2.1.0 Recipient OK

� we tell the mail server that the mail data comes next
data

� this is acknowledged
354 Start mail input; end with <CRLF>.<CRLF>

� Now we can just type the a-mail, optionally with Subject, date,...
Subject: Test via SMTP

and now the mail body itself
.

� And a dot on a line by itself sends the e-mail off
250 2.6.0 <ed73c3f3-f876-4d03-98f2-e5ad5bbb6255@SHUBCAS04.jacobs.jacobs-university.de>
[InternalId=965770] Queued mail for delivery
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SMTP over telnet: Disconnecting

� That was almost all, but we close the connection (this is a telnet command)
quit

� our terminal server (the telnet program) tells us
221 2.0.0 Service closing transmission channel
Connection closed by foreign host.

©: Michael Kohlhase 390

Essentially, the SMTP protocol mimics a conversation of polite computers that exchange messages
by reading them out loud to each other (including the addressing information).
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We could go on for quite a while with understanding one Internet protocol after each other, but
this is beyond the scope of this course (indeed there are specific courses that do just that). Here
we only answer the question where these protocols come from, and where we can find out more
about them.

Internet Standardization

� Question: Where do all the protocols come from? (someone has to manage
that)

� Definition 15.2.24 The Internet Engineering Task Force (IETF) is an open
standards organization that develops and standardizes Internet standards, in
particular the TCP/IP and Internet protocol suite.

� All participants in the IETF are volunteers (usually paid by their employers)

� Rough Consensus and Running Code: Standards are determined by the “rough
consensus method” (consensus preferred, but not
all members need agree) IETF is interested in practical, working systems that
can be quickly implemented.

� Idea: running code leads to rough consensus or vice versa.

� Definition 15.2.25 The standards documents of the IETF are called Request
for Comments (RFC). (more than 6300 so far; see
http://www.rfc-editor.org/)

©: Michael Kohlhase 391

This concludes our very brief exposition of the Internet. The essential idea is that it consists of
a decentrally managed, packet-switched network whose function and value is defined in terms of
the Internet protocol suite.

15.3 Basic Concepts of the World Wide Web

The World Wide Web (WWWeb) is the hypertext/multimedia part of the Internet. It is imple-
mented as a service on top of the Internet (at the aplication level) based on specific protocols and
markup formats for documents.

Concepts of the World Wide Web

� Definition 15.3.1 A web page is a document on the WWWeb that can in-
clude multimedia data and hyperlinks.

� Definition 15.3.2 A web site is a collection of related Web pages usually
designed or controlled by the same individual or company.

� a web site generally shares a common domain name.

� Definition 15.3.3 A hyperlink is a reference to data that can immediately
be followed by the user or that is followed automatically by a user agent.

� Definition 15.3.4 A collection text documents with hyperlinks that point to
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text fragments within the collection is called a hypertext. The action of follow-
ing hyperlinks in a hypertext is called browsing or navigating the hypertext.

� In this sense, the WWWeb is a multimedia hypertext.
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15.3.1 Addressing on the World Wide Web

The essential idea is that the World Wide Web consists of a set of resources (documents, images,
movies, etc.) that are connected by links (like a spider-web). In the WWWeb, the the links consist
of pointers to addresses of resources. To realize them, we only need addresses of resources (much
as we have IP numbers as addresses to hosts on the Internet).

Uniform Resource Identifier (URI), Plumbing of the Web

� Definition 15.3.5 A uniform resource identifier (URI) is a global identifiers
of network-retrievable documents (web resource s). URIs adhere a uniform
syntax (grammar) defined in RFC-3986 [BLFM05]. Grammar Rules contain:
URI :== scheme, ′ :′, hierPart, [′?′ query], [′#′ fragment] hier − part :== ′//′ pathAbempty | pathAbsolute | pathRootless | pathEmpty

� Example 15.3.6 The following are two example URIs and their component
parts:

http:// example.com:8042/over/there?name=ferret#nose
\__/ \______________ /\ _________/ \_________/ \__/
| | | | |

scheme authority path query fragment
|___ __________________|__________

/ \ / \
mailto:m.kohlhase@jacobs -university.de

Note: URIs only identify documents, they do not have to be provide access to
them (e.g. in a browser).
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The definition above only specifies the structure of a URI and its functional parts. It is designed
to cover and unify a lot of existing addressing schemes, including URLs (which we cover next),
ISBN numbers (book identifiers), and mail addresses.

In many situations URIs still have to be entered by hand, so they can become quite unwieldy.
Therefore there is a way to abbreviate them.

� Relative URIs

� Definition 15.3.7 URIs can be abbreviated to relative URI s; missing parts
are filled in from the context

� Example 15.3.8 Relative URIs are more convenient to write

relative URI abbreviates in context
#foo 〈〈current-file〉〉#foo curent file
../bar.txt file:///home/kohlhase/foo/bar.txt file system
../bar.html http://example.org/foo/bar.html on the web
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Note that some forms of URIs can be used for actually locating (or accessing) the identified
resources, e.g. for retrieval, if the resource is a document or sending to, if the resource is a mailbox.
Such URIs are called “uniform resource locators”, all others “uniform resource locators”.

Uniform Resource Names and Locators

� Definition 15.3.9 A uniform resource locator (URL) is a URI that that gives
access to a web resource, by specifying an access method or location. All other
URIs are called uniform resource name s (URN).

� Idea: A URN defines the identity of a resource, a URL provides a method for
finding it.

� Example 15.3.10 The following URI is a URL (try it in your browser)

http://kwarc.info/kohlhase/index.html

� Example 15.3.11 urn:isbn:978-3-540-37897-6 only identifies [Koh06]
(it is in the library)

� Example 15.3.12 URNs can be turned into URL via a catalog service, e.g.
http://wm-urn.org/urn:isbn:978-3-540-37897-6

� Note: URI/URLs are one of the core features of the web infrastructure, they
are considered to be the plumbing of the WWWeb. (direct the flow of data)
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Historically, started out as URLs as short strings used for locating documents on the Internet.
The generalization to identifiers (and the addition of URNs) as a concept only came about when
the concepts evolved and the application layer of the Internet grew and needed more structure.

Note that there are two ways in URIs can fail to be resource locators: first, the scheme does
not support direct access (as the ISBN scheme in our example), or the scheme specifies an access
method, but address does not point to an actual resource that could be accessed. Of course, the
problem of “dangling links” occurs everywhere we have addressing (and change), and so we will
neglect it from our discussion. In practice, the URL/URN distinction is mainly driven by the
scheme part of a URI, which specifies the access/identification scheme.

15.3.2 Running the World Wide Web

The infrastructure of the WWWeb relies on a client-server architecture, where the servers (called
web servers) provide documents and the clients (usually web browsers) present the documents to
the (human) users. Clients and servers communicate via the http protocol. We give an overview
via a concrete example before we go into details.

The World Wide Web as a Client/Server System
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We will now go through and introduce the infrastructure components of the WWWeb in the order
we encounter them. We start with the user agent; in our example the web browser used by the
user to request the web page by entering its URL into the URL bar.

Web Browsers

� Definition 15.3.13 A web Browser is a software application for retrieving,
presenting, and traversing information resources on the World Wide Web, en-
abling users to view Web pages and to jump from one page to another.

� Practical Browser Tools:

� Status Bar: security info, page load progress

� Favorites (bookmarks)

� View Source: view the code of a Web page

� Tools/Internet Options, history, temporary Internet files, home page, auto
complete, security settings, programs, etc.

� Example 15.3.14 (Common Browsers) � MSInternetExplorer is pro-
vided by Microsoft for Windows (very
common)

� FireFox is an open source browser for all platforms, it is known for its
standards compliance.

� Safari is provided by Apple for MacOSX and Windows

� Chrome is a lean and mean browser provided by Google

� WebKit is a library that forms the open source basis for Safari and Chrome.
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The web browser communicates with the web server through a specialized protocol, the hypertext
transfer protocol, which we cover now.
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HTTP: Hypertext Transfer Protocol

� Definition 15.3.15 The Hypertext Transfer Protocol (HTTP) is an applica-
tion layer protocol for distributed, collaborative, hypermedia information sys-
tems.

� June 1999: HTTP/1.1 is defined in RFC 2616 [FGM+99].

Definition 15.3.16 HTTP is used by a client (called user agent) to access
web resources (addressed by Uniform Resource Locators (URLs)) via a http
request. The web server answers by supplying the resource

� Most important HTTP requests (5 more less prominent)

GET Requests a representation of the specified resource. safe

PUT Uploads a representation of the specified resource. idempotent

DELETE Deletes the specified resource. idempotent

POST Submits data to be processed (e.g., from a web
form) to the identified resource.

� Definition 15.3.17 We call a HTTP request safe, iff it does not change the
state in the web server. (except for server logs, counters,. . . ; no side effects)

� Definition 15.3.18 We call a HTTP request idempotent, iff executing it
twice has the same effect as executing it once.

� HTTP is a stateless protocol (very memory-efficient for the server.)
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Finally, we come to the last component, the web server, which is responsible for providing the web
page requested by the user.

Web Servers

� Definition 15.3.19 A web server is a network program that delivers web
pages and supplementary resources to and receives content from user agents
via the hypertext transfer protocol.

� Example 15.3.20 (Common Web Servers)

� apache is an open source web server that serves about 60% of the WWWeb.

� IIS is a proprietary server provided by Microsoft.

� nginx is a lightweight open source web server.

� Even though web servers are very complex software systems, they come prein-
stalled on most UNIX systems and can be downloaded for Windows [XAM].
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Now that we have seen all the components we fortify our intuition of what actually goes down the
net by tracing the http messages.
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Example: An http request in real life

� Connect to the web server (port 80) (so that we can see what is happening)

telnet www.kwarc.info 80

� Send off the GET request

GET /teaching/GenCS2.html http/1.1
Host: www.kwarc.info
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.6; en-US; rv:1.9.2.4)
Gecko/20100413 Firefox/3.6.4

� Response from the server

HTTP/1.1 200 OK
Date: Mon, 03 May 2010 06:48:36 GMT
Server: Apache/2.2.9 (Debian) DAV/2 SVN/1.5.1 mod_fastcgi/2.4.6 PHP/5.2.6-1+lenny8 with

Suhosin-Patch mod_python/3.3.1 Python/2.5.2 mod_ssl/2.2.9 OpenSSL/0.9.8g
Last-Modified: Sun, 02 May 2010 13:09:19 GMT
ETag: "1c78b-db1-4859c2f221dc0"
Accept-Ranges: bytes
Content-Length: 3505
Content-Type: text/html

<!--This file was generated by ws2html.xsl. Do NOT edit manually! -->
<html xmlns="http://www.w3.org/1999/xhtml"><head>...</head></html>
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15.3.3 Multimedia Documents on the World Wide Web

We have seen the client-server infrastructure of the WWWeb, which essentially specifies how
hypertext documents are retrieved. Now we look into the documents themselves.

In Section 5.2 have already discussed how texts can be encoded in files. But for the rich docments
we see on the WWWeb, we have to realize that documents are more than just sequences of
characters. This is traditionally captured in the notion of document markup.

Document Markup

� Definition 15.3.21 (Document Markup) Document markupmarkup is the
process of adding codes (special, standardized character sequences) to a docu-
ment to control the structure, formatting, or the relationship among its parts.

� Example 15.3.22 A text with markup codes (for printing)
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There are many systems for document markup ranging from informal ones as in Definition 15.3.21
that specify the intended document appearance to humans – in this case the printer – to technical
ones which can be understood by machines but serving the same purpose.

WWWeb documents have a specialized markup language that mixes markup for document struc-
ture with layout markup, hyper-references, and interaction. The HTML markup elements always
concern text fragments, they can be nested but may not otherwise overlap. This essentially turns
a text into a document tree.

HTML: Hypertext Markup Language

� Definition 15.3.23 The HyperText Markup Language (HTML), is a repre-
sentation format for web pages. Current version 4.01 is defined in [RHJ98].

� Definition 15.3.24 (Main markup elements of HTML) HTML marks
up the structure and appearance of text with tags of the form <el> (begin)
and </el> (end), where el is one of the following

structure html,head, body metadata title, link, meta
headings h1, h2, . . . , h6 paragraphs p, br
lists ul, ol, dl, . . . , li hyperlinks a

images img tables table, th, tr, td, . . .
styling style, div, span old style b, u, tt, i, . . .
interaction script forms form, input, button

� Example 15.3.25 A (very simple) HTML file with a single paragraph.

<html>
<body>
<p>Hello GenCS students!</p>

</body>
</html>
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HTML was created in 1990 and standardized in version 4 in 1997. Since then there has HTML
has been basically stable, even though the WWWeb has evolved considerably from a web of static
web pages to a Web in which highly dynamic web pages become user interfaces for web-based
applications and even mobile applets. Acknowledging the growing discrepancy, the W3C has
started the standardization of version 5 of HTML.

HTML5: The Next Generation HTML

� Definition 15.3.26 The HyperText Markup Language (HTML5), is believed
to be the next generation of HTML. It is defined by the W3C and the WhatWG.

� HTML5 includes support for

� audio/video without plugins,

� a canvas element for scriptable, 2D, bitmapped graphics

� SV G for Scalable Vector Graphics

� MathML inline and display-style mathematical formulae
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� The W3C is expected to issue a “recommendation” that standardizes HTML5
in 2014.

� Even though HTML5 is not formally standardized yet, almost all major web
browsers already implement almost all of HTML5.
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As the WWWeb evolved from a hypertext system purely aimed at human readers to an Web of
multimedia documents, where machines perform added-value services like searching or aggregating,
it became more important that machines could understand critical aspects web pages. One way
to facilitate this is to separate markup that specifies the content and functionality from markup
that specifies human-oriented layout and presentation (together called “styling”). This is what
“cascading style sheets” set out to do. Another motivation for CSS is that we often want the
styling of a web page to be customizable (e.g. for vision-impaired readers).

CSS: Cascading Style Sheets

� Idea: Separate structure/function from appearance.

Definition 15.3.27 The Cascading Style Sheets (CSS), is a style sheet lan-
guage that allows authors and users to attach style (e.g., fonts and spacing) to
structured documents. Current version 2.1 is defined in [BCHL09].

� Example 15.3.28 Our text file from Example 15.3.25 with embedded CSS

<html>
<head>a
<style type="text/css">

body {background-color:#d0e4fe;}
h1 {color:orange;

text-align:center;}
p {font-family:"Verdana";

font-size:20px;}
</style>
</head>
<body>
<h1>CSS example</h1>
<p>Hello GenCSII!.</p>

</body>
</html>
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With the technology described so far, we can basically build static web pages: hypertexts, where
interaction is limited to navigation via hyperlinks: they are highlighted in the layout, and when
we select them (usually by clicking), we navigate to the link target (to a new web page or a text
fragment in the same page). With a few additions to the technology, web pages can be made much
more interactive and versatile, up to a point, where they can function as interfaces to applications
which run on a web server.

15.4 Web Applications

In this section we show how with a few additions to the basic WWWeb infrastructure introduced
in Section 15.2, we can turn web pages into web-based applications that can be used without
having to install additional software.
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The first thing we need is a means to send information back to the web server, which can be
used as input for the web application. Fortunately, this is already forseen by the HTML format.

HTML Forms: Submitting Information to the Web Server

� Example 15.4.1 Forms contain input fields and explanations.

<form name="input" action="html_form_submit.asp" method="get">
Username: <input type="text" name="user" />
<input type="submit" value="Submit" />

</form>

The result is a form with three elements: a text, an input field, and a submit
button, that will trigger a HTTP GET request to the URL specified in the
action attribute.
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As the WWWeb is based on a client-server architecture, computation in web applications can be
executed either on the client (the web browser) or the server (the web server). For both we have
a special technology; we start with computation on the web server.

Server-Side Scripting: Programming Web Pages

� Idea: Why write HTML pages if we can also program them! (easy to do)

� Definition 15.4.2 A server-side scripting framework is a web server extension
that generates web pages upon HTTP GET requests.

� Example 15.4.3 perl is a scripting language with good string manipulation
facilities. perl CGI is an early server-side scripting framework based on this.

� Server-side scripting frameworks allow to make use of external resources (e.g.
databases or data feeds) and computational services during web page genera-
tion.

� Problem: Most web page content is static (page head, text blocks, etc.) (and
no HTML editing support in program editors)

� Idea: Embed program snippets into HTML pages. (only execute these, copy
rest)

� Definition 15.4.4 A server-side scripting language is a server side script-
ing framework where web pages are generated from HTML documents with
embedded program fragments that are executed in context during web page
generation.

� Note: No program code is left in the resulting web page after generation
(important security concern)
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To get a concrete intuition on the possibilities of server-side scripting frameworks, we will
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present PHP, a commonly used open source scripting framework. There are many other examples,
but they mainly differ on syntax and advanced features.

PHP, a Server-Side Scripting Language

� Definition 15.4.5 PHP (originally “Programmable Home Page Tools”, later
“PHP: Hypertext Processor”) is a server-side scripting language with a C-like
syntax. PHP code is embedded into HTML via special “tags” <?php and ?>

� Example 15.4.6 The following PHP program uses echo for string output

<html>
<body><?php echo ’Hello world’;?></body>

</html>

� Example 15.4.7 We can access the server clock in PHP (and manipulate it)

<?php
$tomorrow = mktime(0,0,0,date("m"),date("d")+1,date("Y"));
echo "Tomorrow is ".date("d. m. Y", $tomorrow);
?>
This fragment inserts tomorrow’s date into a web page

� Example 15.4.8 We can generate pages from a database (here MySQL)

<?php
$con = mysql_connect("localhost","peter","abc123");
if (!$con)
{
die(’Could not connect: ’ . mysql_error());
}

mysql_select_db("my_db", $con);

$result = mysql_query("SELECT * FROM Persons");

while($row = mysql_fetch_array($result))
{
echo $row[’FirstName’] . " " . $row[’LastName’];
echo "<br />";
}

mysql_close($con);
?>

� Example 15.4.9 We can even send e-mail via this e-mail form.

<html><body>
<?php
if (isset($_REQUEST[’email’]))//if "email" is filled out, send email
{//send email
$email = $_REQUEST[’email’] ;
$subject = $_REQUEST[’subject’] ;
$message = $_REQUEST[’message’] ;
mail("someone@example.com", $subject,
$message, "From:" . $email);
echo "Thank you for using our mail form";}

else //if "email" is not filled out, display the form
{echo "<form method=’post’ action=’mailform.php’>
Email: <input name=’email’ type=’text’ /><br />
Subject: <input name=’subject’ type=’text’ /><br />
Message:<br />
<textarea name=’message’ rows=’15’ cols=’40’>
</textarea><br />
<input type=’submit’ />
</form>";}

?>
</body></html>
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With server-side scripting frameworks like PHP, we can already build web applications, which we
now define.

Web Applications: Using Applications without Installing

� Definition 15.4.10 A web application is a website that serves as a user
interface for a server-based application using a web browser as the client.

� Example 15.4.11 Commonly used web applications include

� http://ebay.com; auction pages are generated from databases

� http://www.weather.com; weather information generated weather feeds

� http://slashdot.org; aggregation of news feeds/discussions

� http://github.com; source code hosting and project management

Common Traits: pages generated from databases and external feeds, content
submission via HTML forms, file upload

�� Definition 15.4.12 A web application framework is a software framework
for creating web applications.

� Example 15.4.13 The LAMP stack is a web application framework based
on linux, apache, MySQL, and PHP.

� Example 15.4.14 A variant of the LAMP stack is available for Windows as
XAMPP [XAM].
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Indeed, the first web applications were essentially built in this way. Note however, that as we
remarked above, no PHP code remains in the generated web pages, which thus “look like” static
web pages to the client, even though they were generated dynamically on the server.

There is one problem however with web applications that is difficult to solve with the technologies
so far. We want web applications to give the user a consistent user experience even though they
are made up of multiple web pages. In a regular application we we only want to login once and
expect the application to remember e.g. our username and password over the course of the various
interactions with the system. For web applications this poses a technical problem which we now
discuss.

State in Web Applications and Cookies

� Recall: Web applications contain multiple pages, HTTP is a stateless protocol.

� Problem: how do we pass state between pages? (e.g. username, password)

� Simple Solution: Pass information along in query part of page URLs.

� Example 15.4.15 (HTTP GET for Single Login) Since we are gener-
ating pages we can generated augmented links

<a href="http://example.org/more.html?user=joe,pass=hideme">... more</a>
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Problem: only works for limited amounts of information and for a single session

�� Other Solution: Store state persistently on the client hard disk

� Definition 15.4.16 A cookie is a text file stored on the client hard disk by the
web browser. Web servers can request the browser to store and send cookies.

� Note: cookies are data not programs, they do not generate pop-ups or behave
like viruses, but they can include your log-in name and browser preferences.

� Note: cookies can be convenient, but they can be used to gather information
about you and your browsing habits.

� Definition 15.4.17 third party cookies are used by advertising companies to
track users across multiple sites. (but you can turn off, and even delete
cookies)
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Note that that both solutions to the state problem are not ideal, for usernames and passwords the
URL-based solution is particularly problematic, since HTTP transmits URLs in GET requests
without encryption, and in our example passwords would be visible to anybody with a packet
sniffer. Here cookies are little better as cookies, since they can be requested by any website you
visit.

We now turn to client-side computation

One of the main advantages of moving documents from their traditional ink-on-paper form into
an electronic form is that we can interact with them more directly. But there are many more
interactions than just browsing hyperlinks we can think of: adding margin notes, looking up
definitions or translations of particular words, or copy-and-pasting mathematical formulae into
a computer algebra system. All of them (and many more) can be made, if we make documents
programmable. For that we need three ingredients: i) a machine-accessible representation of
the document structure, and ii) a program interpreter in the web browser, and iii) a way to send
programs to the browser together with the documents. We will sketch the WWWeb solution to
this in the following.

Dynamic HTML

� Observation: The nested, markup codes turn HTML documents into trees.

� Definition 15.4.18 The document object model (DOM) is a data structure
for the HTML document tree together with a standardized set of access meth-
ods.

� Note: All browsers implement the DOM and parse HTML documents into it;
only then is the DOM rendered for the user.

� Idea: generate parts of the web page dynamically by manipulating the DOM.

� Definition 15.4.19 JavaScript is an object-oriented scripting language mostly
used to enable programmatic access to the DOM in a web browser.

� JavaScript is standardized by ECMA in [ECM09].
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� Example 15.4.20 We write the some text into a HTML document object
(the document API)

<html>
<head>
<script type="text/javascript">document.write("Dynamic HTML!");</script>
</head>
<body><!-- nothing here; will be added by the script later --></body>
</html>
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Let us fortify our intuition about dynamic HTML by going into a more involved example.

Applications and useful tricks in Dynamic HTML

� Example 15.4.21 hide document parts by setting CSS style attribs to
display:none

<html>
<head>

<style type="text/css">#dropper { display: none; }</style>
<script language="JavaScript" type="text/javascript">
window.onload = function toggleDiv(element){

if(document.getElementById(element).style.display == ’none’)
{document.getElementById(element).style.display = ’block’}

else if(document.getElementById(element).style.display == ’block’)
{document.getElementById(element).style.display = ’none’}}

</script>
</head>
<body>

<button onclick="toggleDiv(’dropper’)">...more </button>
<div id="dropper"><p>Now you see it!</p></div>

</body>
</html>

Application: write “gmail” or “google docs” as JavaScript enhanced web
applications. (client-side computation for immediate reaction)

�� Current Megatrend: Computation in the “cloud”, browsers (or “apps”) as
user interfaces
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Current web applications include simple office software (word processors, online spreadsheets, and
presentation tools), but can also include more advanced applications such as project management,
computer-aided design, video editing and point-of-sale. These are only possible if we carefully
balance the effects of server-side and client-side computation. The former is needed for compu-
tational resources and data persistence (data can be stored on the server) and the latter to keep
personal information near the user and react to local context (e.g. screen size).

We have now seen the basic architecture and protocols of the World Wide Web. This covers basic
interaction with web pages via browsing of links, as has been prevalent until around 1995. But
this is not how we interact with the web nowadays; instead of browsing we use web search engines
like Google or Yahoo, we will cover next how they work.

15.5 Introduction to Web Search

In this section we will present an overview over the basic mechanisms of web search engines. They
are important to understanding the WWWeb, since they have replaced web portals as the entry
points of the WWWeb.
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Web Search Engines

� Definition 15.5.1 A web search engine is a web application designed to
search for information on the World Wide Web.

� Definition 15.5.2 (Types of Search Engines) We call a web search en-
gine

� human-organized, if documents are categorized by subject-area experts,
(e.g. Open Directory, About)

� computer-created Software spiders crawl the web for documents and cate-
gorize pages, (e.g.
Google)

� hybrid if it combines the two categories above

� metasearch if it sends direct queries to multiple search engines and aggre-
gates/clusters results, (e.g. Copernic, Vivisimo,
Mamma)
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We wil concentrate on computer-created search engines, since they are prevalent on the WWWeb
nowadays. Let us see how they work.

Functional Schema of Web Search Engines
� Web search engines usually

operate in four phases/compo-
nents

1) Data Acquisition: a web
crawler finds and re-
trieves (changed) web
pages

2) Search in Index: write an
index and search there.

3) Sort the hits: e.g. by im-
portance

4) Answer composition:
present the hits (and add
advertisement)
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We will now go through the four phases in turn and discuss specifics

Data Acquisition for Web Search Engines: Web Crawlers

� Definition 15.5.3 A web crawler or spider is a computer program that browses
the WWWeb in an automated, orderly fashion for the purpose of information
gathering.

� Web crawlers are mostly used for data acquisition of web search engines, but
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can also automate web maintenance jobs (e.g. link checking).

� The WWWeb changes: 20% daily, 30% monthly, 50% never

� A Web crawler cycles over the following actions

1) reads web page

2) reports it home

3) finds hyperlinks

4) follows them

� Note: you can exclude web crawlers from your web site by configuring robots.txt.
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Even though the image of a crawling insect suggests that, a web crawler is a program that lives
on a host and stays there, downloading selected portions of the WWWeb. Actually, the picture
we paint above is quite simplified, a web crawler has to be very careful not to download web pages
multiple times to make progress. Recall that – seen as directed graphs – hypertexts may very well
be cyclic. Additionally, much of the WWWeb content is only generated by web applications on
user request, therefore modern web crawlers will try to generate queries that generate pages they
can crawl.

The input for a web search engine is a query, i.e. a string that describes the set of documents
to be referenced in the answer set. There are various types of query languages for information
retrieval; we will only go into the most common ones here

Web Search: Queries

� Definition 15.5.4 A web search query is a string that describes a set of
document (fragments).

� Example 15.5.5 Most web search engines accept multiword queries, i.e.
multisets of strings (words).

� Example 15.5.6 Many web search engines also accept advanced query op-
erators and wildcards. (see
below)

� Definition 15.5.7 The following operators are called wildcard s.

? (e.g. science? means search for the keyword “science” but I am
not sure of the spelling)

* (wildcard, e.g. comput* searches for keywords starting with comput

combined with any word ending)

� Definition 15.5.8 The following operators are called advanced query oper-
ator s

AND (both terms must be present)
OR (at least one of the terms must be present)
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Also: Searches for various information formats & types, e.g. image search,
scholarly search (require specialized query languages)
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We now come to the central component of a web search engine: the indexing component. The
main realization here is that with the size of the current web it is impossible to search the web
linearly by comparing the query to the crawled documents one-by-one. So instead, the web search
engine extracts salient features from the documents and stores them in a special data structure
(usually tree-like) that can be queried instead of the documents themselves. In the prevalent
information retrieval algorithms, the salient feature is a word frequency vector.

� Searching for Documents Efficiently: Indexing

� Problem: We cannot search the WWWeb linearly (even with 106 computers:
≥ 1015B)

� Idea: Write an “index” and search that instead. (like the index in a book)

� Definition 15.5.9 Search engine indexing analyzes data and stores key/data
pairs in a special data structure (the search index to facilitate efficient and
accurate information retrieval.

� Idea: Use the words of a document as index (multiword index) The key for a
document is the vector of word frequencies.

term 1

term 2

term 3

D1(t1,1, t1,2, t1,3)

D2(t2,1, t2,2, t2,3)
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Note: The word frequency vectors used in the “vector space model” for information retrieval are
very high-dimensional; the dimension is the number of words in the document corpus. Millions
of dimensions are usual. However, linguistic methods like “stemming” (reducing words to word
stems) are used to bring down the number of words in practice.

Once an answer set has been determined, the results have to be sorted, so that they can be
presented to the user. As the user has a limited attention span – users will look at most at three
to eight results before refining a query, it is important to rank the results, so that the hits that
contain information relevant to the user’s information need early. This is a very difficult problem,
as it involves guessing the intentions and information context of users, to which the search engine
has no access.

Ranking Search Hits: e.g. Google’s Pagerank

� Problem: There are many hits, need to sort them by some criterion (e.g.
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importance)

� Idea: A web site is important, . . . if many other hyperlink to it.

� Refinement: . . . , if many important web pages hyperlink to it.

� Definition 15.5.10 Let A be a web page that is hyperlinked from web pages
S1, . . . , Sn, then

PR(A) = 1− d+ d

(
PR(S1)

C(S1)
+ · · · PR(Sn)

C(Sn)

)
where C(W ) is the number of links in a page W and d = 0.85.
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Getting the ranking right is a determining factor for success of a search engine. In fact, the early
of Google was based on the pagerank algorithm discussed above (and the fact that they figured
out a revenue stream using text ads to monetize searches).

The final step for a web search engine is answer composition; at least, if the answer is addressed at
a human user. The main task here is to assemble those information fragments that the user needs
to determine whether the hit described contains information relevant to the respective information
need.

Answer Composition in Search Engines

� Answers: To present the
search results we need to ad-
dress:

� Hits and their context

� format conversion

� caching

� Advertising: to finance the
service

� advertiser can buy search
terms

� ads correspond to search
interest

� advertiser pays by click.
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Due to the gigantic size of the Internet, search engines are extremely resource-hungry web appli-
cations. The precise figures about the computational resources of the large internet companies are
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well-kept trade secrets, but the following figure should give an intuition of the scales involved.

How to run

� Google Hardware: estimated
2003

� 79,112 Computers
(158,224 CPUs)

� 316,448 Ghz computation
power

� 158,224 GB RAM

� 6,180 TB Hard disk space

� 2010 Estimate: ∼ 2
MegaCPU

� Google Software: Custom
Linux Distribution
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So far we have completely neglected security issues on the Internet. They have become very
important since the commercialization of the Internet in 1993 as we on the one hand nowadays
use the internet for banking, trade, and confidential communication and on the other hand the
Internet has become infested with malware, spyware, e-mail spam, and denial-of-service attacks.
Fortunately, many of the underlying problems: authentication, authorization, and confidential
communication can be solved by a joint technology: encryption.

15.6 Security by Encryption

15.6.1 Introduction to Crypto-Systems

There are various ways to ensure security on networks: one is just to cease all traffic (not a very
attractive one), another is to make the information on the network inaccessible by physical means
(e.g. shielding the wires electrically and guarding them by a large police force). Here we want
to look into “security by encryption”, which makes the content of Internet packets unreadable by
unauthorized parties. We will start by reviewing the basics, and work our way towards a secure
network infrastructure via the mathematical foundations and special protocols.

Security by Encryption

� Problem: In open packet-switched networks like the Internet, anyone

� can inspect the packets (and see their contents via packet sniffers)

� create arbitrary packets (and forge their metadata)

� can combine both to falsify communication (man-in-the-middle attack)

In “dedicated line networks” (e.g. old telephone) you needed switch room
access.

� But there are situations where we want our communication to be confidential,
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� Internet Banking (obviously, other criminals would like access to your
account)

� Whistle-blowing (your employer should not know what you sent to
WikiLeaks)

� Login to Campus.net(wouldn’t you like to know my password to “correct”
grades?)

� The Situation: Alice wants to communicate with Bob privately, but Eve(sdropper)
can listen in

Alice Bob

Eve

� Idea: Encrypt packet content (so that only the recipients can decrypt)
an build this into the fabric of the Internet (so that users don’t have to know)
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Encryption: Terminology & Examples

� Definition 15.6.1 Encryption is the process of transforming information (re-
ferred to as plaintext) using an algorithm to make it unreadable to anyone
except those possessing special knowledge, usually referred to as a key. The
result of encryption is called ciphertext, and the reverse process that transforms
ciphertext to plaintext: decryption. We call a method for encryption/decryp-
tion a cipher.

� Definition 15.6.2 The corresponding science is called cryptology, it has two
areas of study: cryptography (encryption/decryption via ciphers) and code
breaking/cryptoanalysis: decrypting ciphertexts without a key or recovering
keys from ciphertexts.

� Example 15.6.3 (Spartan encryption (since ca. 700 BC))

The oldest (military) encryption method is a scy-
tale– a wooden stick of defined diameter, onto
which a strip of parchment with letters can be
wrapped to reveal the plaintext. Here the stick is
the key and the parchment strip the ciphertext.

� Example 15.6.4 (The Caesar Cipher)
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Shift the letters of the al-
phabet by n letters to the
right. Julius Caesar (first
mention) used 3, Augustus
1. Support by hardware.

� Example 15.6.5 (Don’t forget your Bank Card PIN)

Write the encoded PIN number to the card, here
complete each digit to 9. PIN = 5315
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Code-Breaking, e.g. by Frequency-Analysis

� Letters (bigrams, trigrams,. . . )
in English come in characteristic
frequencies. (ETAOINSHRDLU)

� Use those to to decode a cipher text:
most frequent character represents an
“E”, the second most frequent a “T”,
. . .

� this works well for simple substitution
ciphers

� Data Paradox: Deciphering longer texts is often easier than short ones.

� Lesson for Encryption: Change your cipher often (minimize data)
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The simplest form of encryption (and the way we know from spy stories) uses uses the same key
for encryption and decryption.

Symmetric Key Encryption

� Definition 15.6.6 Symmetric-key cryptosystems are a class of cryptographic
algorithms that use essentially identical keys for both decryption and encryption.

� Example 15.6.7 Permute the ASCII table by a bijective function ϕ : {0, . . . , 127} →
{0, . . . , 127} (ϕ is the shared key)

� Example 15.6.8 The AES algorithm (Advanced Encryption Standard) [AES01]
is a widely used symmetric-key algorithm that is approved by US government
organs for transmitting top-secret information. (efficient but safe)
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� AES is safe: For AES-128/192/256, recovering the key takes 2126.1/2189.7/2254.4

steps respectively. (38/57/78 digit numbers)

� Note: For trusted communication sender and recipient need access to shared
key.

� Problem: How to initiate safe communication over the internet? (far, far
apart)
Need to exchange shared key (chicken and egg problem)

� Pipe dream: Wouldn’t it be nice if I could just publish a key publicly and use
that?

� Actually: this works, just (obviously) not with symmetric-key encryption.
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15.6.2 Public Key Encryption

To get around the chicken-and-egg problem of secure communication we identified above, we
will introduce a more general way of encryption: one where we allow the keys for encryption
and decryption to be different. This liberalization allows us to enter into a whole new realm of
applications.

The following presentation is based on the one in [Con12]

Diffie/Hellmann Key Exchange 1c

� Agree on a joint base color, here

Alice

joint:

Bob

joint:

Eve

joint:
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Diffie/Hellmann Key Exchange 2c

� randomly pick a private color ( / ).
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Alice

priv:

joint:

Bob

priv:

joint:

Eve

joint:
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Diffie/Hellmann Key Exchange 3c

� mix private color into the joint base color to disguise it and send mixtures
( / ) to the partner

Alice

priv:

joint:

bob:

Bob

priv:

joint:

alice:

Eve

joint:

alice:

bob:

key: ??
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Diffie/Hellmann Key Exchange 4c

� mix your own private color to get the key

Alice

priv:

key:

joint:

bob:

Bob

priv:

key:

joint:

alice:

Eve

joint:

alice:

bob:

key: ??

Note: Eve cannot determine the shared key , since she would need one of
the private colors.

�� Two success factors to this trick!
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� mixing colors is associative and commutative (order/grouping irrelevant)

� mixing colors is much simpler than getting the original colors back from
mixture
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A numeric one-way function

� We need a one-way function for numbers to compute numeric keys.

� Idea: Take the discrete logarithm.

� Definition 15.6.9 (Recap) We say that a is congruent to b modulomodulo
m, iff an = b and 0 ≤ b < m.

� Idea: We can do arithetics modulo: 5 + 4 ≡ 2 mod 7 or 34 ≡ 1 mod 8.

� Theorem 15.6.10 (A useful Fact) If p is prime and b is a primitive root
of n, then the bx mod p distribute evenly over 0 ≤ x < p.

� Definition 15.6.11 Let p be a prime number, b a primitive root of n, and
bx ≡ ymod pthen we call x the discrete logarithm of y modulo p for the base
k.

� Observation 15.6.12 The discrete logarithm is very hard to compute: es-
sentially p times the steps as for the discrete power. (generate and
test)

� Corollary 15.6.13 The discrete logarithm is a one-way function. (for large
p)
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Diffie/Hellmann Key Exchange 1

� Agree on a modulus m and a base b, e.g. p = 17, b = 3

Alice

joint: p = 17, b = 3

Bob

joint: p = 17, b = 3

Eve

joint: p = 17, b = 3
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Diffie/Hellmann Key Exchange 2

� randomly pick a private exponent (e = 54/e = 24), the private key.

Alice

priv: 54

joint: p = 17, b = 3

Bob

priv: 24

joint: p = 17, b = 3

Eve

joint: p = 17, b = 3
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Diffie/Hellmann Key Exchange 3

� send be mod p (the public key) to the partner (354 ≡ 15 mod 17 and 324 ≡ 16 mod 17)

Alice

priv: 54

joint: p = 17, b = 3
bob: 16

Bob

priv: 24

joint: p = 17, b = 3
alice: 15

Eve

joint: p = 17, b = 3
alice: 15
bob: 16
key: ??
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Diffie/Hellmann Key Exchange 4

� raise the partner’s public key to your private key

� Alice: 1654 ≡ 32454 ≡ 354·24 ≡ 1 mod 17

� Bob: 1524 ≡ 35424 ≡ 324·54 ≡ 1 mod 17
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Alice

priv: 54
key: 1

joint: p = 17, b = 3
bob: 16

Bob

priv: 24
key: 1

joint: p = 17, b = 3
alice: 15

Eve

joint: p = 17, b = 3
alice: 15
bob: 16
key: ??

Note: Eve cannot determine the shared key 1, since she would need one of the
private keys.

�� Two success factors to this trick!

� discrete exponentiation is associative and commutative (order/grouping
irrelevant)

� discrete logarithm is a one-way function.
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Public Key Encryption

� Definition 15.6.14 In an asymmetric-key cryptosystem, the key needed to
encrypt a message is different from the key for decryption. Such a method is
called a public-key cryptosystem if the the decryption key (the private key) is
very difficult to reconstruct from encryption key (called the public key). We
speak of a (cryptographic) key pair.

� Asymmetric cryptosystems are based on trap door function s: one-way func-
tions that can (only) inverted with a suitable key.

� trap door functions are usually based on prime factorization.
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Applications of Public-Key Kryptosystems

� Preparation: Create a cryptographic key pair and publishe the public key.
(always keep the private key confidential!)

� Application: Confidential Messaging:

To send a confidential message the sender encrypts it
using the intended recipient’s public key; to decrypt the
message, the recipient uses the private key.

� Application: Digital Signatures:

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


15.6. SECURITY BY ENCRYPTION 297

A digital signature consists of a plaintext together with
its ciphertext – encoded with the sender’s private key.
A message signed with a sender’s private key can be
verified by anyone who has access to the sender’s public
key, thereby proving that the sender had access to the
private key (and therefore is likely to be the person
associated with the public key used), and the part of
the message that has not been tampered with.
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The confidential messaging is analogous to a locked mailbox with a mail slot. The mail slot is
exposed and accessible to the public; its location (the street address) is in essence the public key.
Anyone knowing the street address can go to the door and drop a written message through the
slot; however, only the person who possesses the key can open the mailbox and read the message.

An analogy for digital signatures is the sealing of an envelope with a personal wax seal. The
message can be opened by anyone, but the presence of the seal authenticates the sender.

Note: For both applications (confidential messaging and digitally signed documents) we have only
stated the basic idea. Technical realizations are more elaborate to be more efficient. One measure
for instance is not to encrypt the whole message and compare the result of decrypting it, but only
a well-chosen excerpt.

Let us now look at the mathematical foundations of encryption. It is all about the existence of
natural-number functions with specific properties. Indeed cryptography has been a big and some-
what unexpected application of mathematical methods from number theory (which was perviously
thought to be the ultimate pinnacle of “pure math”.)

Encryption by Trapdoor Functions

� Idea: Mathematically, encryption can be seen as an injective function. Use
functions for which the inverse (decryption) is difficult to compute.

� Definition 15.6.15 A one-way function is a function that is “easy” to com-
pute on every input, but “hard” to invert given the image of a random input.

� In theory: “easy” and “hard” are understood wrt. computational complexity
theory, specifically the theory of polynomial time problems. E.g. “easy” =̂
O(n) and “hard” =̂ Ω(2n)

� Remark: It is open whether one-way functions exist (≡̂ to P = NP
conjecture)

� In practice: “easy” is typically interpreted as “cheap enough for the legitimate
users” and “prohibitively expensive for any malicious agents”.

� Definition 15.6.16 A trapdoor function is a one-way function that is easy
to invert given a piece of information called the trapdoor.

� Example 15.6.17 Consider a padlock, it is easy to change from “open” to
closed, but very difficult to change from “closed” to open unless you have a
key (trapdoor).
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Of course, we need to have one-way or trapdoor functions to get public key encryption to work.
Fortunately, there are multiple candidates we can choose from. Which one eventually makes it
into the algorithms depends on various details; any of them would work in principle.

Candidates for one-way/trapdoor functions

� Multiplication and Factoring: The function f takes as inputs two prime num-
bers p and q in binary notation and returns their product. This function can
be computed in O(n2) time where n is the total length (number of digits)
of the inputs. Inverting this function requires finding the factors of a given
integer N . The best factoring algorithms known for this problem run in time

2O(log(N)
1
3 log(log(N))

2
3 ).

� Modular squaring and square roots: The function f takes two positive integers
x and N , where N is the product of two primes p and q, and outputs x2 divN .
Inverting this function requires computing square roots modulo N ; that is,
given y and N , find some x such that x2 modN = y. It can be shown that
the latter problem is computationally equivalent to factoring N (in the sense
of polynomial-time reduction) (used in RSA encryption)

� Discrete exponential and logarithm: The function f takes a prime number p
and an integer x between 0 and p− 1; and returns the 2x div p. This discrete
exponential function can be easily computed in time O(n3) where n is the
number of bits in p. Inverting this function requires computing the discrete
logarithm modulo p; namely, given a prime p and an integer y between 0 and
p− 1, find x such that 2x = y.
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To see whether these trapdoor function candidates really behave as expected, RSA laboratories,
one of the first security companies specializing in public key encryption has established a series of
prime factorization challenges to test the assumptions underlying public key cryptography.

Example: RSA-129 problem

� Definition 15.6.18 Call a number semi-prime, iff it has exactly two prime
factors.

� These are exactly the numbers involved in RSA encryption.

� RSA laboratories initiated the RSA challenge, to see whether multiplication is
indeed a “practical” trapdoor function

� Example 15.6.19 (The RSA129 Challenge) is to factor the semi-prime
number on the right
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� So far, the challenges up to ca 200 decimal digits have been factored, but all
within the expected complexity bounds.

� but: would you report an algorithm that factors numbers in low complexity?
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Note that all of these test are run on conventional hardware (von Neumann architectures); there
have been claims that other computing hardware; most notably quantum computing or DNA com-
puting might have completely different complexity theories, which might render these factorization
problems tractable. Up to now, nobody has been able to actually build alternative computation
hardware that can actually even attempt to solve such factorization problems (or they are not
telling).

Classical- and Quantum Computers for RSA-129
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This concludes our excursion into theoretical aspects of encryption, we will now turn to the task
of building these ideas into existing infrastructure of the Internet and the WWWeb. The most
obvious thing we need to do is to publish public keys in a way that it can be verified to whom
they belong.
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15.6.3 Internet Security by Encryption

Public Key Certificates

� Definition 15.6.20 A public key certificate is an electronic document which
uses a digital signature to bind a public key with an identity, e.g. the name of
a person or an organization.

� Idea: If we trust the signatory’s signature, then we can use the certificate
to verify that a public key belongs to an individual. Otherwise we verify the
signature using the signatory’s public key certificate.

� Problem: We can ascend the ladder of trust, but in the end we have to trust
someone!

� In a typical public key infrastructure scheme, the signature will be of a certifi-
cate authority, an organization chartered to verify identity and issue public key
certificates.

� In a “web of trust” scheme, the signature is of either the user (a self-signed
certificate) or other users (“endorsements”). (e.g. PGP =̂ Pretty Good
Privacy)

� on a UNIX system, you can create a certificate (and associated private key)
e.g. with (Windows similar ; Google)

openssl ca -in req.pem -out newcert.pem

©: Michael Kohlhase 439

Building on the notion of a public key certificate, we can build secure variants of the application-
level protocols. Of course, we could do this individually for every protocol, but this would duplicate
efforts. A better way is to leverage the layered infrastructure of the Internet and build a generic
secure transport-layer protocol, that can be utilized by all protocols that normally build on TCP
or UDP.

Building Security in to the WWWeb Infrastructure

� Idea: Build Encryption into the WWWeb infrastructure (make it easy to use)
; Secure variants of the application-level protocols that encrypt contents

� Definition 15.6.21 Transport layer security (TLS) is a cryptographic proto-
col that encrypts the segments of network connections at the transport layer,
using asymmetric cryptography for key exchange, symmetric encryption for pri-
vacy, and message authentication codes for message integrity.

� TLS can be used to make application-level protocols secure.
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Let us now look at bit closer into the structure of the TLS handshake, the part of the TLS protocol
that initiates encrypted communication.
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A TLS Handshake between Client and Server

� Definition 15.6.22 A TLS handshake authenticates a server and provides a
shared key for symmetric-key encryption. It has the following steps

1) Client presents a list of supported encryption methods

2) Server picks the strongest and tells client (C/S agree on method)

3) Server sends back its public key certificate (name and public key)

4) Client confirms certificate with CA (authenticates Server if successful)

5) Client picks a random number, encrypts that (with servers public key) and
sends it to server.

6) Only server can decrypt it (using its private key)

7) Now they both have a shared secret (the random number)

8) From the random number, both parties generate key material

� Definition 15.6.23 A TLS connection is a transport-layer connection se-
cured by symmetric-key encryption. Authentication and keys are established by
a TLS handshake and the connection is encrypted until it closes.
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The reason we switch from public key to symmetric encryption after communication has been
initiated and keys have been exchanged is that symmetric encryption is computationally more
efficient without being intrinsically less secure.

But there is more to the integration of encryption into the WWWeb, than just enabling secure
transport protocols. We need to extend the web servers and web browsers to implement the
secure protocols (of course), and we need to set up a system of certification agencies, whose public
keys are baked into web servers (so that they can check the signatures on public keys in server
certificates). Moreover, we need user interfaces that allow users to inspect certificates, and grant
exceptions, if needed.

Building Security in to the WWWeb Infrastructure

� Definition 15.6.24 HTTP Secure (HTTPS) is a variant of HTTP that uses
TLS for transport. HTTPS URIs start with https://

� Server Integration: All common web
servers support HTTPS on port 443
(default), but need a public key
certificate. (self-sign one or buy one
from a CA)

� Browser Integration: All common
web browsers support HTTPS and
give access to certificates
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Confidential E-Mail with Digital Signatures
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� Hey: That was a nice theoretical exercise, how can I use that in practice?

� Example 15.6.25 (Secure E-Mail)
Adding PGP (Pretty Good Privacy; an open source cryptosystem) to Thunder-
bird

� add the enigmail addon to thunderbird (tools ↘ addons ↘ get addons)

� let it install GnuPGP (the actual cryptosystem)

� let that generate a public/private key for your e-mail account (give
password)

�
Done! little sign/encrypt buttons appear on the lower right of
your composition window.

Your mail visible to strangers (here test mail to myself)

�

Note that the transport metadata on top are not encrypted

� Your mail after authentification (here test mail to myself)

Note the verified signature shown on top.
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The Web of Trust

� Recap: We can only verify a signature, if we have, if we have a PKI certificate.

� Cost Problem: PKI certificates are expensive! (and authority needs to know
you)

� Centrality Problem: What happens if a PKI authority has been compromised?

� Idea: instead of self-signed PKI certificates, mutually sign certificates in a
“Web of Trust”

� costs are minimal (we already know each other)

� no central point of failure (more resilient)
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Acknowledgement: The following presentation is adapted from [Rya]

The Web of Trust for the Three Musketeers

� D’Artagnan arrives at Paris, and has a duel with Athos, Porthos, and Aramis,
but they learn to trust each other against the guards of Cardinal Richilieu.

� To seal their friendship, they decide to exchange their public keys.

� Definition 15.6.26 A key is called valid, iff it belongs to the individual it
claims to belong to.

� To certify validity, the four friends also sign each-other’s public key.

� Example 15.6.27 d’Artagnan signs Portos’ key to say that I, d’Artagnan,
vouch that this key belongs to Porthos by adding my signature to it.

� The musketeers also trust each other to make introductions.

� The situation from d’Artagnan’s perspective

d’Artagnan
t:ultimate v:ultimate

Athos
t:full v:full

Porthos
t:full v:full

Aramis
t:full v:full
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Porthos sends over Planchet as his new valet
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� d’Artagnan can verify that Planchet is who he says he is, because his key bears
Porthos’ signature. (d’Artagnan has full trust in Porthos)

� d’Artagnan signs Planchet’s key

d’Artagnan
t:ultimate v:ultimate

Athos
t:full v:full

Porthos
t:full v:full

Aramis
t:full v:full

Planchet
t:unknown v:full
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Setting (personal) Trust for other Keys

� Validity can be computed, but trust (in validity of introduced keys) must be
set personally

� d’Artagnan sets the trust in all the valets to “marginal”

d’Artagnan
t:ultimate v:ultimate

Athos
t:full v:full

Porthos
t:full v:full

Aramis
t:full v:full

Grimaud
t:marginal v:full

Mousqueton
t:marginal v:full

Planchet
t:marginal v:full

Bazin
t:marginal v:full
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Understanding Marginal Trust

� Rule 15.6.28 No escalation of trust levels

� Planchet introduces d’Artagnan to their landlord M. Bonacieux
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d’Artagnan
t:ultimate v:ultimate

Athos
t:full v:full

Porthos
t:full v:full

Aramis
t:full v:full

Grimaud
t:marginal v:full

Mousqueton
t:marginal v:full

Planchet
t:marginal v:full

Bazin
t:marginal v:full

Bonacieux
t:unknown v:marginal
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Understanding Marginal Trust

� All other valets also vouch for M. Bonacieux by signing his key

� Rule 15.6.29 3 marginal =̂ 1 full

�
d’Artagnan

t:ultimate v:ultimate

Athos
t:full v:full

Porthos
t:full v:full

Aramis
t:full v:full

Grimaud
t:marginal v:full

Mousqueton
t:marginal v:full

Planchet
t:marginal v:full

Bazin
t:marginal v:full

Bonacieux
t:unknown v:full
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But Technical Aspects of Security are not the only ones. . .
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The next topic is an abstraction of the markup frameworks we have looked at so far. We introduce
XML, the eXtensible Markup Language, which is used as a basis of many Internet and WWWeb
technologies nowadays.

15.7 An Overview over XML Technologies

We have seen that many of the technologies that deal with marked-up documents utilize the
tree-like structure of (the DOM) of HTML documents. Indeed, it is possible to abstract from
the concrete vocabulary of HTML that the intended layout of hypertexts and the function of its
fragments, and build a generic framework for document trees. This is what we will study in this
section.

Excursion: XML (EXtensible Markup Language)

� XML is language family for the Web

� tree representation language (begin/end brackets)

� restrict instances by Doc. Type Def. (DTD) or Schema (Grammar)

� Presentation markup by style files (XSL: XML Style Language)

� XML is extensible HTML & simplified SGML

� logic annotation (markup) instead of presentation!

� many tools available: parsers, compression, data bases, . . .

� conceptually: transfer of directed graphs instead of strings.

� details at http://www.w3c.org
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The idea of XML being an “extensible” markup language may be a bit of a misnomer. It is made
“extensible” by giving language designers ways of specifying their own vocabularies. As such XML
does not have a vocabulary of its own, so we could have also it an “empty” markup language that
can be filled with a vocabulary.
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XML is Everywhere (E.g. document metadata)

� Example 15.7.1 Open a PDF file in AcrobatReader, then cklick on File↘ DocumentProperties↘ DocumentMetadata↘ V iewSource,
you get the following text: (showing only a small part)

<rdf:RDF xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
xmlns:iX=’http://ns.adobe.com/iX/1.0/’>

<rdf:Description xmlns:pdf=’http://ns.adobe.com/pdf/1.3/’>
<pdf:CreationDate>2004-09-08T16:14:07Z</pdf:CreationDate>
<pdf:ModDate>2004-09-08T16:14:07Z</pdf:ModDate>
<pdf:Producer>Acrobat Distiller 5.0 (Windows)</pdf:Producer>
<pdf:Author>Herbert Jaeger</pdf:Author>
<pdf:Creator>Acrobat PDFMaker 5.0 for Word</pdf:Creator>
<pdf:Title>Exercises for ACS 1, Fall 2003</pdf:Title>

</rdf:Description>
. . .
<rdf:Description xmlns:dc=’http://purl.org/dc/elements/1.1/’>
<dc:creator>Herbert Jaeger</dc:creator>
<dc:title>Exercises for ACS 1, Fall 2003</dc:title>

</rdf:Description>
</rdf:RDF>
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This is an excerpt from the document metadata which AcrobatDistiller saves along with each
PDF document it creates. It contains various kinds of information about the creator of the doc-
ument, its title, the software version used in creating it and much more. Document metadata is
useful for libraries, bookselling companies, all kind of text databases, book search engines, and
generally all institutions or persons or programs that wish to get an overview of some set of books,
documents, texts. The important thing about this document metadata text is that it is not written
in an arbitrary, PDF-proprietary format. Document metadata only make sense if these metadata
are independent of the specific format of the text. The metadata that MSWord saves with each
Word document should be in the same format as the metadata that Amazon saves with each of
its book records, and again the same that the British library uses, etc.

XML is Everywhere (E.g. Web Pages)

� Example 15.7.2 Open web page file in FireFox, then click on V iew ↘ PageSource,
you get the following text: (showing only a small part and reformatting)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Michael Kohlhase</title>
<meta name="generator"

content="Page generated from XML sources with the WSML package"/>
</head>
<body>. . .
<p>
<i>Professor of Computer Science</i><br/>
Jacobs University<br/><br/>
<strong>Mailing address - Jacobs (except Thursdays)</strong><br/>
<a href="http://www.jacobs-university.de/schools/ses">
School of Engineering &amp; Science
</a><br/>. . .

</p>. . .
</body>

</html>
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XML Documents as Trees

� Idea: An XML Document is a Tree

<omtext xml:id="foo"
xmlns=". . ."
xmlns:om=". . .">
<CMP xml:lang=’en’>
The number
<om:OMOBJ>
<om:OMS cd="nums1"

name="pi"/>
<om:OMOBJ>
is irrational.
</CMP>

</omtext>

omtext

CMP

xml:id; foo

xml:lang; en

The number is irrational.

om : OMOBJ

om : OMS

cd; nums1name; pi

xmlns; . . .

xmlns:om; . . .

� Definition 15.7.3 The XML document tree is made up of element node s,
attribute node s, text node s (and namespace declaration s, comments,. . . )

� Definition 15.7.4 For communication this tree is serialized into a balanced
bracketing structure, where

� an element el is represented by the brackets < el > (called the opening
tag) and < /el > (called the closing tag).

� The leaves of the tree are represented by empty element s (serialized as
< el >< /el >, which can be abbreviated as < el/ >

� and text nodes (serialized as a sequence of UniCode characters).

� An element node can be annotated by further information using attribute
node s — serialized as an attribute in its opening tag

Note: As a document is a tree, the XML specification mandates that there
must be a unique document root.
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� The Document Object Model

� Definition 15.7.5 The document object model (DOM) is a data structure
for storing documents as marked-up documents as document trees together
with a standardized set of access methods for manipulating them.
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One of the great advantages of viewing marked-up documents as trees is that we can describe
subsets of its nodes.

XPath, A Language for talking about XML Tree Fragments

� Definition 15.7.6 The XML path language (XPath) is a language framework
for specifying fragments of XML trees.

� Example 15.7.7
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omtext

CMP

xml:id; foo

xml:lang; en

The number is irrational.

om : OMOBJ

om : OMS

cd; nums1name; pi

xmlns; . . .

xmlns:om; . . .

XPath exp. fragment

/ root

omtext/CMP/* all CMP children

//@name the name at-
tribute on the
om : OMS element

//CMP/*[1] the first child of
all OMS elements

//*[@cd=’nums1’] all elements
whose cd has
value nums1
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An XPath processor is an application or library that reads an XML file into a DOM and given an
XPath expression returns (pointers to) the set of nodes in the DOM that satisfy the expression.

The final topic for our introduction to the information architecture of the Internet and the WWWeb
is an excursion into the “Semantic Web”, a set of technologies that to make the WWWeb more
machine-understandable.

15.8 The Semantic Web

The Semantic Web

� Definition 15.8.1 The semantic web is a collaborative movement led by the
W3C that promotes the inclusion of semantic content in web pages with the aim
of t converting the current web, dominated by unstructured and semi-structured
documents into a machine-understandable “web of data”.

� Idea: Move web content up the ladder, use inference to make connections.

� Example 15.8.2 We want to find information that is not explicitly repre-
sented (in one
place)

Query: Who was US president when Barak Obama was born?

Google: . . . BIRTH DATE: August 04, 1961. . .

Query: Who was US president in 1961?

Google: President: Dwight D. Eisenhower [. . . ] John F. Kennedy (starting
January 20)

Humans can read (and understand) the text and combine the information to
get the answer.
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The term “Semantic Web” was coined by Tim Berners Lee in analogy to semantic networks, only
applied to the world wide web. And as for semantic networks, where we have inference processes
that allow us the recover information that is not explicitly represented from the network (here the
world-wide-web).

To see that problems have to be solved, to arrive at the “Semantic Web”, we will now look at a
concrete example about the “semantics” in web pages. Here is one that looks typical enough.

What is the Information a User sees?

WWW2002
The eleventh International World Wide Web Conference
Sheraton Waikiki Hotel
Honolulu, Hawaii, USA
7-11 May 2002

Registered participants coming from
Australia, Canada, Chile Denmark, France, Germany, Ghana, Hong
Kong, India,
Ireland, Italy, Japan, Malta, New Zealand, The Netherlands, Nor-
way,
Singapore, Switzerland, the United Kingdom, the United States,
Vietnam, Zaire

On the 7th May Honolulu will provide the backdrop of the eleventh
International World Wide Web Conference.

Speakers confirmed
Tim Berners-Lee: Tim is the well known inventor of the Web,
Ian Foster: Ian is the pioneer of the Grid, the next generation
internet.
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But as for semantic networks, what you as a human can see (“understand” really) is deceptive, so
let us obfuscate the document to confuse your “semantic processor”. This gives an impression of
what the computer “sees”.

What the machine sees

WWW∈′′∈
T〈eeleve\t〈I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce
S〈e∇ato\Wa〉‖〉‖〉Hotel
Ho\olulu⇔Hawa〉〉⇔USA
7↖∞∞Ma†∈′′∈

Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om

Au∫t∇al〉a⇔Ca\ada⇔C〈〉leDe\ma∇‖⇔F∇a\ce⇔Ge∇ma\†⇔G〈a\a⇔Ho\}Ko\}⇔
I\d〉a⇔
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I∇ela\d⇔Ital†⇔Ja√a\⇔Malta⇔NewZeala\d⇔T〈eNet〈e∇la\d∫⇔No∇wa†⇔

S〉\}a√o∇e⇔Sw〉t‡e∇la\d⇔t〈eU\〉tedK〉\}dom⇔t〈eU\〉tedState∫⇔V〉et\am⇔Za〉∇e

O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈

I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce↙

S√ea‖e∇∫co\{〉∇med

T〉mBe∇\e∇∫↖Lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb⇔
Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\te∇\et↙

©: Michael Kohlhase 459

Obviously, there is not much the computer understands, and as a consequence, there is not a lot
the computer can support the reader with. So we have to “help” the computer by providing some
meaning. Conventional wisdom is that we add some semantic/functional markup. Here we pick
XML without loss of generality, and characterize some fragments of text e.g. as dates.

Solution: XML markup with “meaningful” Tags

<title>WWW∈′′∈
T〈eeleve\t〈I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce</title>
<place>S〈e∇ato\Wa〉‖〉‖〉HotelHo\olulu⇔Hawa〉〉⇔USA</place>
<date>7↖∞∞Ma†∈′′∈</date>
<participants>Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om

Au∫t∇al〉a⇔Ca\ada⇔C〈〉leDe\ma∇‖⇔F∇a\ce⇔Ge∇ma\†⇔G〈a\a⇔Ho\}Ko\}⇔
I\d〉a⇔
I∇ela\d⇔Ital†⇔Ja√a\⇔Malta⇔NewZeala\d⇔T〈eNet〈e∇la\d∫⇔No∇wa†⇔

S〉\}a√o∇e⇔Sw〉t‡e∇la\d⇔t〈eU\〉tedK〉\}dom⇔t〈eU\〉tedState∫⇔V〉et\am⇔Za〉∇e</participants>

</introduction>O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈

I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce↙</introduction>
<program>S√ea‖e∇∫co\{〉∇med

<speaker>T〉mBe∇\e∇∫↖Lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb</speaker>
<speaker>Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\te∇↖

\et<speaker>
</program>
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What can we do with this?

� Example 15.8.3 Consider the following fragments:

<title>WWW∈′′∈
T〈eeleve\t〈I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce</title>
<place>S〈e∇ato\Wa〉‖〉‖〉HotelHo\olulu⇔Hawa〉〉⇔USA</place>
<date>7↖∞∞Ma†∈′′∈</date>
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Given the markup above, we can

� parse 7↖∞∞Ma†∈′′∈ as the date May 7-11 2002 and add this to the user’s
calendar.

� parse S〈e∇ato\Wa〉‖〉‖〉HotelHo\olulu⇔Hawa〉〉⇔USA as a destination and find
flights.

But: do not be deceived by your ability to understand English
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We have to obfuscate the markup as well, since it does not carry any meaning to the machine
intrinsically either.

� What the machine sees of the XML

<t〉tle>WWW∈′′∈
T〈eeleve\t〈I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce</t〉tle>
<√lace>S〈e∇ato\Wa〉‖〉‖〉HotelHo\olulu⇔Hawa〉〉⇔USA</√lace>

<date> 7↖∞∞Ma†∈′′∈</date>
<√a∇t〉c〉√a\t∫>Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om

Au∫t∇al〉a⇔Ca\ada⇔C〈〉leDe\ma∇‖⇔F∇a\ce⇔Ge∇ma\†⇔G〈a\a⇔Ho\}Ko\}⇔
I\d〉a⇔
I∇ela\d⇔Ital†⇔Ja√a\⇔Malta⇔NewZeala\d⇔T〈eNet〈e∇la\d∫⇔No∇wa†⇔

S〉\}a√o∇e⇔Sw〉t‡e∇la\d⇔t〈eU\〉tedK〉\}dom⇔t〈eU\〉tedState∫⇔V〉et\am⇔Za〉∇e</√a∇t〉c〉√a\t∫>

</〉\t∇oduct〉o\>O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈

I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce↙</〉\t∇oduct〉o\>
<√∇o}∇am>S√ea‖e∇∫co\{〉∇med

<∫√ea‖e∇>T〉mBe∇\e∇∫↖Lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb</∫√ea‖e∇>

<∫√ea‖e∇>Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\te∇↖

\et<∫√ea‖e∇>

</√∇o}∇am>
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So we have not really gained much either with the markup, we really have to give meaning to the
markup as well, this is where techniques from knowledge representation come into play

To understand how we can make the web more semantic, let us first take stock of the current status
of (markup on) the web. It is well-known that world-wide-web is a hypertext, where multimedia
documents (text, images, videos, etc. and their fragments) are connected by hyperlinks. As we
have seen, all of these are largely opaque (non-understandable), so we end up with the following
situation (from the viewpoint of a machine).

The Current Web
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� Resources: identified by URI’s, un-
typed

� Links: href, src, . . . limited, non-
descriptive

� User: Exciting world - semantics of
the resource, however, gleaned from
content

� Machine: Very little information
available - significance of the links
only evident from the context around
the anchor.
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Let us now contrast this with the envisioned semantic web.

The Semantic Web

� Resources: Globally Identified by
URI’s or Locally scoped (Blank), Ex-
tensible, Relational

� Links: Identified by URI’s, Extensi-
ble, Relational

� User: Even more exciting world,
richer user experience

� Machine: More processable informa-
tion is available (Data Web)

� Computers and people: Work, learn
and exchange knowledge effectively
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Essentially, to make the web more machine-processable, we need to classify the resources by the
concepts they represent and give the links a meaning in a way, that we can do inference with
that.

The ideas presented here gave rise to a set of technologies jointly called the “semantic web”, which
we will now summarize before we return to our logical investigations of knowledge representation
techniques.

Need to add “Semantics”

� External agreement on meaning of annotations E.g., Dublin Core

� Agree on the meaning of a set of annotation tags

� Problems with this approach: Inflexible, Limited number of things can be
expressed

http://creativecommons.org/licenses/by-sa/2.5/
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� Use Ontologies to specify meaning of annotations

� Ontologies provide a vocabulary of terms

� New terms can be formed by combining existing ones

� Meaning (semantics) of such terms is formally specified

� Can also specify relationships between terms in multiple ontologies

� Inference with annotations and ontologies (get out more than you put in!)

� Standardize annotations in RDF [KC04] or RDFa [HASB13] and ontologies
on OWL [OWL09]

� Harvest RDF and RDFa in to a triplestore or OWL reasoner.

� Query that for implied knowledge (e.g. chaining multiple facts from
Wikipedia)

SPARQL: Who was US President when Barack Obama was Born?

DBPedia: John F. Kennedy (was president in August 1961)

©: Michael Kohlhase 465
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In this part, we will take a look at two particular topics in computation.
The first is a class of algorithms that are generally (and thus often as a last resort, where

other algorithms are missing) appliccable to a wide class of problems that can be represented in a
certain form.

The second applies what we have learnt to a new programming paradigm: after we have
looked at functional programming in Chapter 3 and imperative languages in Section 14.0 and
Section 14.2, we will combine the representation via logic (see Chapter 6) and backtracking search
into a new programming paradigm: “logic programming”, or more abstratcly put “declarative
programming”.

ProLog is a simple logic programming language that exemplifies the ideas we want to discuss quite
nicely. We will not introduce the language formally, but in concrete examples as we explain the
theortical concepts. For a complete reference, please consult the online book by Blackburn & Bos
& Striegnitz http://www.coli.uni-sb.de/~kris/learn-prolog-now/.

http://www.coli.uni-sb.de/~kris/learn-prolog-now/
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Chapter 16

Problem Solving and Search

In this chapter, we will look at a class of algorithms called search algorithms. These are algorithms
that help in quite general situations, where there is a precisely described problem, that needs to
be solved.

16.1 Problem Solving

Before we come to the search algorithms themselves, we need to get a grip on the types of problems
themselves and how we can represent them, and on what the variuous types entail for the problem
solving process.

The first step is to classify the problem solving process by the amount of knowledge we have
available. It makes a difference, whether we know all the factors involved in the problem before
we actually are in the situation. In this case, we can solve the problem in the abstract, i.e. make
a plan before we actually enter the situation (i.e. offline), and then when the problem arises, only
execute the plan. If we do not have complete knowledge, then we can only make partial plans, and
have to be in the situation to obtain new knowledge (e.g. by observing the effects of our actions or
the actions of others). As this is much more difficult we will restrict ourselves to offline problem
solving.

Problem solving

� Problem: Find algorithms that help solving problems in general

� Idea: If we can describe/represent problems in a standardized way, we may
have a chance to find general algorithms.

We will use the following two concepts to describe problems

States A set of possible situations in in our problem domain

Actions A set of possible actions that get us from one state to another.

Using these, we can view a sequence of actions as a solution, if it brings us into
a situation, where the problem is solved.

� Definition 16.1.1 Offline problem solving: Acting only with complete knowl-
edge of problem and solution

� Definition 16.1.2 Online problem solving: Acting without complete knowl-
edge
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� Here: we are concerned with offline problem solving only.

©: Michael Kohlhase 466

We will use the following problem as a running example. It is simple enough to fit on one slide
and complex enough to show the relevant features of the problem solving algorithms we want to
talk about.

Example: Traveling in Romania

� Scenario: On holiday in Romania; currently in Arad, Flight leaves tomorrow
from Bucharest.

� Formulate problem: States: various cities Actions: drive between cities

� Solution: Appropriate sequence of cities, e.g.: Arad, Sibiu, Fagaras, Bucharest
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Given this example to fortify our intuitions, we can now turn to the formal definition of problem
formulation and their solutions.

Problem Formulation

� The problem formulation models the situation at an appropriate level of abstraction.
(do not model things like “put on my left sock”, etc.)

� it describes the initial state (we are in Arad)

� it also limits the objectives. (excludes, e.g. to stay another couple of
weeks.)

� Finding the right level of abstraction and the required (not more!) information
is often the key to success.

� Definition 16.1.3 A problem (formulation) P := 〈S,O, I,G〉 consists of a
set S of state s and a set O of operator s that specify how states can be
accessed from each other. Certain states in S are designated as goal state s
(G ⊆ S) and there is a unique initial state I.
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� Definition 16.1.4 A solution for a problem P consists of a sequence of ac-
tions that bring us from I to a goal state.
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Note that this definition is very general, it applies to many many problems. So we will try to
characterize these by difficulty.

Problem types

� Single-state problem

� observable (at least the initial state)

� deterministic (i.e. the successor of each state is determined)

� static (states do not change other than by our own actions)

� discrete (a countable number of states)

Multiple-state problem:

� � initial state not/partially observable (multiple initial states?)

� deterministic, static, discrete

Contingency problem:

� � non-deterministic (solution can branch, depending on contingencies)

� unknown state space (like a baby, agent has to learn about states and
actions)
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We will explain these problem types with another example. The problem P is very simple: We
have a vacuum cleaner and two rooms. The vacuum cleaner is in one room at a time. The floor
can be dirty or clean.

The possible states are determined by the position of the vacuum cleaner and the information,
whether each room is dirty or not. Obviously, there are eight states: S = {1, 2, 3, 4, 5, 6, 7, 8} for
simplicity.

The goal is to have both rooms clean, the vacuum cleaner can be anywhere. So the set G of
goal states is {7,8}. In the single-state version of the problem, [right, suck] shortest solution, but
[suck, right, suck] is also one. In the multiple-state version we have [right({2, 4, 6, 8}), suck({4, 8}), left({3, 7}), suck({7})].

Example: vacuum-cleaner world

http://creativecommons.org/licenses/by-sa/2.5/
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� Single-state Problem:

� Start in 5

� Solution: [right, suck]

� Multiple-state Problem:

� Start in {1, 2, 3, 4, 5, 6, 7, 8}
� Solution:

[right, suck, left, suck]
right → {2, 4, 6, 8}
suck → {4, 8}
left → {3, 7}
suck → {7}
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Example: vacuum-cleaner world (continued)

� Contingency Problem:

� Murphy’s Law: suck can dirty a clean
carpet

� Local sensing: dirty / notdirty at lo-
cation only

� Start in: {1, 3}

� Solution: [suck, right, suck]
suck → {5, 7}
right → {6, 8}
suck → {6, 8}

� better: [suck, right, if dirt then suck] (decide whether in 6 or 8 using local
sensing)
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In the contingency version of P a solution is the following: [suck({5, 7}), right→ ({6, 8}), suck → ({6, 8})],
[suck({5, 7})], etc. Of course, local sensing can help: narrow {6, 8} to {6} or {8}, if we are in the
first, then suck.

Single-state problem formulation

� Defined by the following four items

1) Initial state: (e.g. Arad)

2) Successor function S: (e.g.
S(Arad) = {〈goZer, Zerind〉, 〈goSib, Sibiu〉, . . .})

3) Goal test: (e.g. x = Bucharest (explicit test)
noDirt(x) (implicit test)

)
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4) Path cost (optional): (e.g. sum of distances, number of operators
executed, etc.)

� Solution: A sequence of operators leading from the initial state to a goal state
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“Path cost”: There may be more than one solution and we might want to have the “best” one in
a certain sense.

Selecting a state space

� Abstraction: Real world is absurdly complex
State space must be abstracted for problem solving

� (Abstract) state: Set of real states

� (Abstract) operator: Complex combination of real actions

� Example: Arad→ Zerind represents complex set of possible routes

� (Abstract) solution: Set of real paths that are solutions in the real world
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“State”: e.g., we don’t care about tourist attractions found in the cities along the way. But this is
problem dependent. In a different problem it may well be appropriate to include such information
in the notion of state.

“Realizability”: one could also say that the abstraction must be sound wrt. reality.

Example: The 8-puzzle

States integer locations of tiles
Actions left, right, up, down
Goal test = goal state?
Path cost 1 per move
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How many states are there? N factorial, so it is not obvious that the problem is in NP. One
needs to show, for example, that polynomial length solutions do always exist. Can be done by
combinatorial arguments on state space graph (really ?).

Example: Vacuum-cleaner
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States integer dirt and robot locations
Actions left, right, suck, noOp
Goal test notdirty?
Path cost 1 per operation (0 for noOp)
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Example: Robotic assembly

States real-valued coordinates of
robot joint angles and parts of the object to be assembled

Actions continuous motions of robot joints
Goal test assembly complete?
Path cost time to execute
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16.2 Search

Tree search algorithms

� Definition 16.2.1 The tree search algorithm consists of the simulated ex-
ploration of state space in a search tree by generating successors of already-
explored states (Offline
Algorithm)

procedure Tree-Search (problem, strategy) : <a solution or failure>
<initialize the search tree using the initial state of problem>
loop

if <there are no candidates for expansion> <return failure> end if
<choose a leaf node for expansion according to strategy>
if <the node contains a goal state> return <the corresponding solution>
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else <expand the node and add the resulting nodes to the search tree>
end if

end loop
end procedure

©: Michael Kohlhase 477

Tree Search: Example

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad
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Tree Search: Example

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad
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Tree Search: Example

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad
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Tree Search: Example
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Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad
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Implementation: States vs. nodes

� A (representation of) a physical configuration

� A data structure constituting part of a search tree (includes parent, children,
depth, path cost, etc.)

©: Michael Kohlhase 482

Implementation of search algorithms

procedure Tree_Search (problem,strategy)
fringe := insert(make_node(initial_state(problem)))
loop
if fringe <is empty> fail end if
node := first(fringe,strategy)
if NodeTest(State(node)) return State(node)
else fringe := insert_all(expand(node,problem),strategy)
end if

end loop
end procedure

� Definition 16.2.2 The fringe is a list nodes not yet considered. It is ordered
by the search strategy (see below)

©: Michael Kohlhase 483

State gives the state that is represented by node
Expand = creates new nodes by applying possible actions to node
A node is a data structure representing states, will be explained in a moment.
Make-Queue creates a queue with the given elements.
fringe holds the queue of nodes not yet considered.
Remove-First returns first element of queue and as a side effect removes it from fringe.
State gives the state that is represented by node.
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Expand applies all operators of the problem to the current node and yields a set of new nodes.
Insert inserts an element into the current fringe queue. This can change the behavior of the

search.
Insert-All Perform Insert on set of elements.

Search strategies

� Strategy: Defines the order of node expansion

� Important properties of strategies:

completeness does it always find a solution if one exists?
time complexity number of nodes generated/expanded
space complexity maximum number of nodes in memory
optimality does it always find a least-cost solution?

� Time and space complexity measured in terms of:

b maximum branching factor of the search tree
d depth of a solution with minimal distance to root
m maximum depth of the state space (may be ∞)
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Complexity means here always worst-case complexity.
Note that there can be infinite branches, see the search tree for Romania.

16.3 Uninformed Search Strategies

Uninformed search strategies

� Definition 16.3.1 (Uninformed search) Use only the information avail-
able in the problem definition

� Frequently used strategies:

� Breadth-first search

� Uniform-cost search

� Depth-first search

� Depth-limited search

� Iterative deepening search
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The opposite of uninformed search is informed or heuristic search. In the example, one could add,
for instance, to prefer cities that lie in the general direction of the goal (here SE).

Uninformed search is important, because many problems do not allow to extract good heuris-
tics.
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Breadth-first search

� Idea: Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the
queue

A

B C

D E F G

H I J K L M N O

©: Michael Kohlhase 486

Breadth-First Search

� Idea: Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the
queue

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

� Idea: Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the
queue
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A

B C

D E F G

H I J K L M N O
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Breadth-First Search

� Idea: Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the
queue

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

� Idea: Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the
queue

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

� Idea: Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue, i.e. successors go in at the end of the
queue

A

B C

D E F G

H I J K L M N O
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We will now apply the breadth-first search strategy to our running example: Traveling in Romania.
Note that we leave out the green dashed nodes that allow us a preview over what the search tree
will look like (if expanded). This gives a much

Breadth-First Search: Romania

Arad
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Breadth-First Search: Romania

Arad

Sibiu Timisoara Zerind
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Breadth-First Search: Romania

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea

©: Michael Kohlhase 494
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Breadth-First Search:Romania

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj
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Breadth-First Search:Romania

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad
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Breadth-first search: Properties

Complete Yes (if b is finite)
Time 1 + b+ b2 + b3 + . . .+ bd + b(bd − 1) ∈ O(bd+1)

i.e. exponential in d
Space O(bd+1) (keeps every node in memory)
Optimal Yes (if cost = 1 per step), not optimal in general

� Disadvantage: Space is the big problem (can easily generate nodes at
5MB/sec so 24hrs = 430GB)

� Optimal?: if cost varies for different steps, there might be better solutions
below the level of the first solution.

� An alternative is to generate all solutions and then pick an optimal one. This
works only, if m is finite.
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The next idea is to let cost drive the search. For this, we will need a non-trivial cost function: we
will take the distance between cities, since this is very natural. Alternatives would be the driving
time, train ticket cost, or the number of tourist attractions along the way.

Of course we need to update our problem formulation with the necessary information.

Romania with Step Costs as Distances
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Uniform-cost search

� Idea: Expand least-cost unexpanded node

� Implementation: fringe is queue ordered by increasing path cost.

� Note: Equivalent to breadth-first search if all step costs are equal (DFS: see
below)

Arad
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Uniform Cost Search: Romania

� Idea: Expand least-cost unexpanded node

� Implementation: fringe is queue ordered by increasing path cost.

� Note: Equivalent to breadth-first search if all step costs are equal (DFS: see
below)

Arad

Sibiu

140

Timisoara

118

Zerind

75
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Uniform Cost Search: Romania

� Idea: Expand least-cost unexpanded node
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� Implementation: fringe is queue ordered by increasing path cost.

� Note: Equivalent to breadth-first search if all step costs are equal (DFS: see
below)

Arad

Sibiu

140

Timisoara

118

Zerind

75

Oradea

71

Arad

75
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Uniform Cost Search: Romania

� Idea: Expand least-cost unexpanded node

� Implementation: fringe is queue ordered by increasing path cost.

� Note: Equivalent to breadth-first search if all step costs are equal (DFS: see
below)

Arad

Sibiu

140

Timisoara

118

Zerind

75

Arad

118

Lugoj

111

Oradea

71

Arad

75
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Uniform Cost Search: Romania

� Idea: Expand least-cost unexpanded node

� Implementation: fringe is queue ordered by increasing path cost.

� Note: Equivalent to breadth-first search if all step costs are equal (DFS: see
below)

Arad

Sibiu

140

Timisoara

118

Zerind

75

Arad

140

Fagaras

99

Oradea

151

R. Vilcea

80

Arad

118

Lugoj

111

Oradea

71

Arad

75
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Note that we must sum the distances to each leaf. That is, we go back to the first level after step
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3.

Uniform-cost search: Properties

Complete Yes (if step costs ≥ ε > 0)
Time number of nodes with past-cost less than that of optimal solution
Space number of nodes with past-cost less than that of optimal solution
Optimal Yes
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If step cost is negative, the same situation as in breadth-first search can occur: later solutions may
be cheaper than the current one.

If step cost is 0, one can run into infinite branches. UC search then degenerates into depth-first
search, the next kind of search algorithm. Even if we have infinite branches, where the sum of
step costs converges, we can get into trouble8EdN:8

Worst case is often worse than BF search, because large trees with small steps tend to be
searched first. If step costs are uniform, it degenerates to BF search.

Depth-first search

� Idea: Expand deepest unexpanded node

� Definition 16.3.2 (Implementation) depth first search is tree search where
the fringe is organized as a LIFO queue (a stack), i.e. successors go in at front
of queue

� Note: Depth-first search can perform infinite cyclic excursions
Need a finite, non-cyclic search space (or repeated-state checking)
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Depth-First Search

A

B C

D E F G

H I J K L M N O
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Depth-First Search

8EdNote: say how
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A

B C

D E F G

H I J K L M N O
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Depth-First Search

A

B C

D E F G

H I J K L M N O
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Depth-First Search

A

B C

D E F G

H I J K L M N O
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search: Romania

Arad
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Depth-First Search: Romania

Arad

Sibiu Timisoara Zerind
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Depth-First Search: Romania
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Depth-First Search: Romania
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Depth-first search: Properties

Complete Yes: if state space finite
No: if state contains infinite paths or loops

Time O(bm)
(we need to explore until max depth m in any case!)

Space O(b ·m) (i.e. linear space)
(need at most store m levels and at each level at most b nodes)

Optimal No (there can be many better solutions in the
unexplored part of the search tree)

� Disadvantage: Time terrible if m much larger than d.

� Advantage: Time may be much less than breadth-first search if solutions are
dense.

©: Michael Kohlhase 524

Iterative deepening search

� Depth-limited search: Depth-first search with depth limit

� Iterative deepening search: Depth-limit search with ever increasing limits

procedure Tree_Search (problem)
<initialize the search tree using the initial state of problem>
for depth = 0 to ∞
result := Depth_Limited_search(problem,depth)
if depth 6= cutoff return result end if

end for
end procedure

©: Michael Kohlhase 525

Iterative Deepening Search at Limit Depth 0
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Iterative Deepening Search at Limit Depth 1
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Iterative Deepening Search at Limit Depth 2
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Iterative Deepening Search at Limit Depth 3
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Iterative deepening search: Properties

Complete Yes
Time (d+ 1)b0 + db1 + (d− 1)b2 + . . .+ bd ∈ O(bd+1)
Space O(bd)
Optimal Yes (if step cost = 1)
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� (Depth-First) Iterative-Deepening Search often used in practice for search
spaces of large, infinite, or unknown depth.

� Comparison:

Criterion
Breadth-

first
Uniform-

cost
Depth-

first
Iterative

deepening

Complete? Yes∗ Yes∗ No Yes
Time bd+1 ≈ bd bm bd

Space bd+1 ≈ bd bm bd
Optimal? Yes∗ Yes No Yes

©: Michael Kohlhase 530

Note: To find a solution (at depth d) we have to search the whole tree up to d. Of course since we
do not save the search state, we have to re-compute the upper part of the tree for the next level.
This seems like a great waste of resources at first, however, iterative deepening search tries to be
complete without the space penalties.

However, the space complexity is as good as depth-first search, since we are using depth-first
search along the way. Like in breadth-first search, the whole tree on level d (of optimal solution)
is explored, so optimality is inherited from there. Like breadth-first search, one can modify this
to incorporate uniform cost search.

As a consequence, variants of iterative deepening search are the method of choice if we do not
have additional information.

Comparison

Breadth-first search Iterative deepening search

©: Michael Kohlhase 531

16.4 Informed Search Strategies

Summary: Uninformed Search/Informed Search

� Problem formulation usually requires abstracting away real-world details to
define a state space that can feasibly be explored

� Variety of uninformed search strategies
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� Iterative deepening search uses only linear space and not much more time than
other uninformed algorithms

� Next Step: Introduce additional knowledge about the problem (informed
search)

� Best-first-, A∗-search (guide the search by heuristics)

� Iterative improvement algorithms

©: Michael Kohlhase 532

16.4.1 Greedy Search

Best-first search

� Idea: Use an evaluation function for each node (estimate of “desirability”)
Expand most desirable unexpanded node

� Implementation: fringe is a queue sorted in decreasing order of desirability

� Special cases: Greedy search, A∗-search

©: Michael Kohlhase 533

This is like UCS, but with evaluation function related to problem at hand replacing the path cost
function.

If the heuristics is arbitrary, we expect incompleteness!
Depends on how we measure “desirability”.
Concrete examples follow.

Greedy search

� Definition 16.4.1 A heuristic is an evaluation function h on nodes that es-
timates of cost from n to the nearest goal state.

Idea: Greedy search expands the node that appears to be closest to goal

� Example 16.4.2 straight-line distance from to Bucharest.

� Note: Unlike uniform-cost search the node evaluation function has nothing to
do with the nodes explored so far

internal search control → external search control
partial solution cost → goal cost estimation

©: Michael Kohlhase 534

In greedy search we replace the objective cost to construct the current solution with a heuristic or
subjective measure from which we think it gives a good idea how far we are from a solution. Two
things have shifted:

• we went from internal (determined only by features inherent in the search space) to an
external/heuristic cost
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• instead of measuring the cost to build the current partial solution, we estimate how far we
are from the desired goal

Romania with Straight-Line Distances

� Example 16.4.3 (Informed Travel In Romania) hSLD(n) = straight-line distance from n to Bucharest

©: Michael Kohlhase 535

Greedy Search: Romania

Arad
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Greedy Search: Romania
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Greedy Search: Romania
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Greedy Search: Romania
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Sibiu

253
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0
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Greedy search: Properties

Complete No: Can get stuck in loops
Complete in finite space with repeated-state checking

Time O(bm)
Space O(bm)
Optimal No

� Example 16.4.4 Greedy search can get stuck going from Iasi to Oradea:
Iasi → Neamt → Iasi → Neamt → · · ·

� Worst-case time same as depth-first search,

� Worst-case space same as breadth-first

� But a good heuristic can give dramatic improvement

©: Michael Kohlhase 540

Greedy Search is similar to UCS. Unlike the latter, the node evaluation function has nothing to
do with the nodes explored so far. This can prevent nodes from being enumerated systematically
as they are in UCS and BFS.

For completeness, we need repeated state checking as the example shows. This enforces complete
enumeration of state space (provided that it is finite), and thus gives us completeness.

Note that nothing prevents from all nodes nodes being searched in worst case; e.g. if the
heuristic function gives us the same (low) estimate on all nodes except where the heuristic mis-
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estimates the distance to be high. So in the worst case, greedy search is even worse than BFS,
where d (depth of first solution) replaces m.

The search procedure cannot be optional, since actual cost of solution is not considered.
For both, completeness and optimality, therefore, it is necessary to take the actual cost of

partial solutions, i.e. the path cost, into account. This way, paths that are known to be expensive
are avoided.

16.4.2 A-Star Search

A∗ search

� Idea: Avoid expanding paths that are already expensive (make use of actual
cost)

The simplest way to combine heuristic and path cost is to simply add them.

� Definition 16.4.5 The evaluation function for A∗-search is given by f(n) =
g(n) + h(n), where g(n) is the path cost for n and h(n) is the estimated cost
to goal from n.

� Thus f(n) is the estimated total cost of path through n to goal

� Definition 16.4.6 Best-First-Search with evaluation function g+ h is called
A∗ search.

©: Michael Kohlhase 541

This works, provided that h does not overestimate the true cost to achieve the goal. In other
words, h must be optimistic wrt. the real cost h∗. If we are too pessimistic, then non-optimal
solutions have a chance.

A∗ Search: Admissibility

� Definition 16.4.7 (Admissibility of heuristic) h(n) is called admissi-
ble if 0 ≤ h(n) ≤ h∗(n) for all nodes n, where h∗(n) is the true cost from n
to goal. (In particular: h(G) = 0 for goal G)

� Example 16.4.8 Straight-line distance never overestimates the actual road
distance (triangle inequality)

Thus hSLD(n) is admissible.

©: Michael Kohlhase 542

A∗ Search: Admissibility

� Theorem 16.4.9 A∗ search with admissible heuristic is optimal

� Proof: We show that sub-optimal nodes are never selected by A∗

P.1 Suppose a suboptimal goal G has been generated then we are in the fol-
lowing situation:
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start

n

O G

P.2 Let n be an unexpanded node on a path to an optimal goal O, then

f(G) = g(G) since h(G) = 0
g(G) > g(O) since G suboptimal
g(O) = g(n) + h∗(n) n on optimal path
g(n) + h∗(n) ≥ g(n) + h(n) since h is admissible
g(n) + h(n) = f(n)

P.3 Thus, f(G) > f(n) and astarSearch never selects G for expansion.

©: Michael Kohlhase 543

A∗ Search Example
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A∗ Search Example
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A∗ Search Example
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A∗ Search Example

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras

415=239+176

Oradea

671=291+380

R. Vilcea

Craiova

526=366+160

Pitesti

417=317+100

Sibiu

553=300+253

©: Michael Kohlhase 547

A∗ Search Example
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A∗ Search Example
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A∗ search: f -contours
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� A∗ gradually adds “f -contours” of nodes

©: Michael Kohlhase 550

A∗ search: Properties

Complete Yes (unless there are infinitely many nodes n with f(n) ≤ f(0))
Time Exponential in [relative error in h × length of solution]
Space Same as time (variant of BFS)
Optimal Yes

� A∗ expands all (some/no) nodes with f(n) < h∗(n)

� The run-time depends on how good we approximated the real cost h∗ with h.

©: Michael Kohlhase 551

16.4.3 Finding Good Heuristics

Since the availability of admissible heuristics is so important for informed search (particularly for
A∗), let us see how such heuristics can be obtained in practice. We will look at an example, and
then derive a general procedure from that.

Admissible heuristics: Example 8-puzzle

� Example 16.4.10 Let h1(n) be the number of misplaced tiles in node n
(h1(S) = 6)
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� Example 16.4.11 Let h2(n) be the total manhattan distance from desired
location of each tile. (h2(S) = 2 + 0 + 3 + 1 + 0 + 1 + 3 + 4 = 14)

� Observation 16.4.12 (Typical search costs) (IDS =̂ iterative
deepening search)

nodes explored IDS A∗(h1) A∗(h2)

d = 14 3,473,941 539 113
d = 24 too many 39,135 1,641

©: Michael Kohlhase 552

Dominance

� Definition 16.4.13 Let h1 and h2 be two admissible heuristics we say that
h2 dominates h1 if h2(n) ≥ h1(n) or all n.

� Theorem 16.4.14 If h2 dominates h1, then h2 is better for search than h1.

©: Michael Kohlhase 553

Relaxed problems

� Finding good admissible heuristics is an art!

� Idea: Admissible heuristics can be derived from the exact solution cost of a
relaxed version of the problem.

� Example 16.4.15 If the rules of the 8-puzzle are relaxed so that a tile can
move anywhere, then we get heuristic h1.

� Example 16.4.16 If the rules are relaxed so that a tile can move to any
adjacent square, then we get heuristic h2.

� Key point: The optimal solution cost of a relaxed problem is not greater than
the optimal solution cost of the real problem

©: Michael Kohlhase 554

Relaxation means to remove some of the constraints or requirements of the original problem, so
that a solution becomes easy to find. Then the cost of this easy solution can be used as an
optimistic approximation of the problem.

16.5 Local Search

Local Search Problems

� Idea: Sometimes the path to the solution is irrelevant
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� Example 16.5.1 (8 Queens Problem)
Place 8 queens on a chess board, so that
no two queens threaten each other.

� This problem has various solutions, e.g.
the one on the right

� Definition 16.5.2 A local search algo-
rithm is a search algorithm that operates
on a single state, the current state (rather
than multiple paths). (advantage:
constant space)

� Typically local search algorithms only move to successors of the current state,
and do not retain search paths.

� Applications include: integrated circuit design, factory-floor layout, job-shop
scheduling, portfolio management, fleet deployment,. . .

©: Michael Kohlhase 555

Local Search: Iterative improvement algorithms

� Definition 16.5.3 (Traveling Salesman Problem) Find shortest trip through
set of cities such that each city is visited exactly once.

� Idea: Start with any complete tour, perform pairwise exchanges

� Definition 16.5.4 (n-queens problem) Put n queens on n × n board
such that no two queens in the same row, columns, or diagonal.

� Idea: Move a queen to reduce number of conflicts

©: Michael Kohlhase 556

Hill-climbing (gradient ascent/descent)

� Idea: Start anywhere and go in the direction of the steepest ascent.

� Depth-first search with heuristic and w/o memory

procedure Hill-Climbing (problem) (* a state that is a local minimum *)
local current, neighbor (* nodes *)
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current := Make-Node(Initial-State[problem])
loop
neighbor := <a highest−valued successor of current>
if Value[neighbor] < Value[current]
return [current]
current := neighbor

end if
end loop

end procedure

� Like starting anywhere in search tree and making a heuristically guided DFS.

� Works, if solutions are dense and local maxima can be escaped.

©: Michael Kohlhase 557

In order to understand the procedure on a more intuitive level, let us consider the following
scenario: We are in a dark landscape (or we are blind), and we want to find the highest hill. The
search procedure above tells us to start our search anywhere, and for every step first feel around,
and then take a step into the direction with the steepest ascent. If we reach a place, where the
next step would take us down, we are finished.

Of course, this will only get us into local maxima, and has no guarantee of getting us into
global ones (remember, we are blind). The solution to this problem is to re-start the search at
random (we do not have any information) places, and hope that one of the random jumps will get
us to a slope that leads to a global maximum.

Example Hill-Climbing with 8 Queens

� Idea: Heuristic function h is number
of queens that threaten each other.

� Example 16.5.5 An 8-queens
state with heuristic cost estimate
h = 17 showing h-values for moving
a queen within its column

� Problem: The state space has local
minima. e.g. the board on the right
has h = 1 but every successor has
h > 1.

©: Michael Kohlhase 558

Hill-climbing

� Problem: Depending on initial state,
can get stuck on local maxima/min-
ima and plateaux

� “Hill-climbing search is like climbing
Everest in thick fog with amnesia”

� Idea: Escape local maxima by allowing some “bad” or random moves.
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� Example 16.5.6 local search, simulated annealing. . .

� Properties: All are incomplete, non-optimal.

� Sometimes performs well in practice (if (optimal) solutions are dense)

©: Michael Kohlhase 559

Recent work on hill-climbing algorithms tries to combine complete search with randomization to
escape certain odd phenomena occurring in statistical distribution of solutions.

Simulated annealing (Idea)

� Definition 16.5.7 Ridge s are ascending
successions of local maxima

� Problem: They are extremely difficult to
navigate for local search algorithms

� Idea: Escape local maxima by allowing some
“bad” moves, but gradually decrease their
size and frequency

� Annealing is the process of heating steel and let it cool gradually to give it
time to grow an optimal cristal structure.

� Simulated Annealing is like shaking a ping-pong ball occasionally on a bumpy
surface to free it. (so it does not get stuck)

� Devised by Metropolis et al., 1953, for physical process modelling

� Widely used in VLSI layout, airline scheduling, etc.

©: Michael Kohlhase 560

Simulated annealing (Implementation)

procedure Simulated-Annealing (problem,schedule) (* a solution state *)
local node, next (* nodes*)
local T (*a ‘‘temperature’’ controlling prob.~of downward steps *)
current := Make-Node(Initial-State[problem])
for t :=1 to ∞
T := schedule[t]
if T = 0 return current end if
next := <a randomly selected successor of current>

∆(E) := Value[next]-Value[current]
if ∆(E) > 0 current := next
else

current := next <only with probability> e∆(E)/T

end if
end for

end procedure

a problem schedule is a mapping from time to “temperature” ©: Michael Kohlhase 561
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Properties of simulated annealing

� At fixed “temperature” T , state occupation probability reaches Boltzman dis-
tribution

p(x) = αe
E(x)
kT

T decreased slowly enough =⇒ always reach best state x∗ because e
E(x∗)
kT

e
E(x)
kT =e

E(x∗)−E(x)
kT

�
1 for small T .

� Is this necessarily an interesting guarantee?

©: Michael Kohlhase 562

Local beam search

� Idea: Keep k states instead of 1; choose top k of all their successors

� Not the same as k searches run in parallel! (Searches that find good states
recruit other searches to join them)

� Problem: quite often, all k states end up on same local hill

� Idea: Choose k successors randomly, biased towards good ones. (Observe the
close analogy to natural selection!)

©: Michael Kohlhase 563

Genetic algorithms (very briefly)

� Idea: Use local beam search (keep a population of k) randomly modify
population (mutation) generate successors from pairs of states (sexual
reproduction) optimize a fitness function (survival of the fittest)

�

©: Michael Kohlhase 564

Genetic algorithms (continued)

� Problem: Genetic Algorithms require states encoded as strings (GPs use
programs)

� Crossover helps iff substrings are meaningful components
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� Example 16.5.8 (Evolving 8 Queens)

� GAs 6= evolution: e.g., real genes encode replication machinery!

©: Michael Kohlhase 565
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Chapter 17

Logic Programming

We will now learn a new programming paradigm: “logic programming” (also called “Declarative
Programming”), which is an application of the search techniques we looked at last, and the logic
techniques. We are going to study ProLog (the oldest and most widely used) as a concrete example
of the ideas behind logic programming.

17.1 Introduction to Logic Programming and PROLOG

Logic Programming is a programming style that differs from functional and imperative program-
ming in the basic procedural intuition. Instead of transforming the state of the memory by issuing
instructions (as in imperative programming), or computing the value of a function on some ar-
guments, logic programming interprets the program as a body of knowledge about the respective
situation, which can be queried for consequences. This is actually a very natural intuition; after
all we only run (imperative or functional) programs if we want some question answered.

Logic Programming

� Idea: Use logic as a programming language!

� We state what we know about a problem (the program) and then ask for
results (what the program would compute)

� Example 17.1.1
Program Leibniz is human x+ 0 = x

Sokrates is is human If x+ y = z then x+ s(y) = s(z)
Sokrates is a greek 3 is prime
Every human is fallible

Query Are there fallible greeks? is there a z with s(s(0)) + s(0) = z

Answer Yes, Sokrates! yes s(s(s(0)))

� How to achieve this?: Restrict the logic calculus sufficiently that it can be
used as computational procedure.

� Slogan: Computation = Logic + Control ([Kowalski ’73])

� We will use the programming language ProLog as an example
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Of course, this the whole point of writing down a knowledge base (a program with knowledge
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about the situation), if we do not have to write down all the knowledge, but a (small) subset,
from which the rest follows. We have already seen how this can be done: with logic. For logic
programming we will use a logic called “first-order logic” which we will not formally introduce
here. We have already seen that we can formulate propositional logic using terms from an abstract
data type instead of propositional variables – recall Definition 183. For our purposes, we will just
use terms with variables instead of the ground terms used there.

Representing a Knowledge base in ProLog

� Definition 17.1.2 Fix an abstract data type 〈{B, . . .}, {, . . .}〉, then we call
all constructor terms of sort B ProLog terms.

� A knowledge base is represented (symbolically) by a set of facts and rules.

� Definition 17.1.3 A fact is a statement written as a term that is uncondi-
tionally true of the domain of interest. (write with a term followed by a
“.”)

� Example 17.1.4 We can state that Mia is a woman as woman(mia).

� Definition 17.1.5 A rule states information that is conditionally true in the
domain.

� Definition 17.1.6 Facts and rules are collectively called clause s, a ProLog

program consists of a list of clauses.

� Example 17.1.7 Write “something is a car if it has a motor and four wheels”
as
car(X) :- has_motor(X),has_wheels(X,4). (variables are upper-case)

this is just an ASCII notation for m(x) ∧ w(x, 4)⇒ car(x)

� Definition 17.1.8 The knowledge base given by ProLog program is that
set of facts that can be derived from it by Modus Ponens (MP), ∧I and
instantiation.

A A⇒ B

B
MP

A B

A ∧B
∧ I A

[B/X](A)
Subst
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To gain an intuition for this quite abstract definition let us consider a concrete knowledge base
about cars. Instead of writing down everything we know about cars, we only write down that cars
are motor vehicles with four wheels and that a particular object c has a motor and four wheels. We
can see that the fact that c is a car can be derived from this. Given our definition of a knowledge
base as the deductive closure of the facts and rules explicitly written down, the assertion that c is
a car is in the “induced knowledge base”, which is what we are after.

Knowledge Base (Example)

� Example 17.1.9 car(c). is in the knowlege base generated by

has_motor(c).
has_wheels(c,4).
car(X):- has_motor(X),has_wheels(X,4).
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m(c) w(c, 4)
∧I

m(c) ∧ w(c, 4)

m(x) ∧ w(x, 4)⇒ car(x)
Subst

m(c) ∧ w(c, 4)⇒ car(c)
MP

car(c)
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In this very simple example car(c) is about the only fact we can derive, but in general, knowledge
bases can be infinite (we will see examples below)

As knowledge bases can be infinite, we cannot pre-compute them. Instead, logic programming
languages compute fragments of the knowledge base by need; i.e. whenever a user wants to check
membership; we call this approach querying: the user enters a query term and the system answers
yes or no. This answer is computed in a depth-first search process.

Querying the Knowledge base

� Idea: We want to see whether a term is in the knowledge base.

� Definition 17.1.10 A query is a list of ProLog terms called goals. Write as
?- A1, . . ., An., if Ai are terms.

� Problem: Knowledge bases can be big and even infinite.

� Example 17.1.11 The the knowledge base induced by the program

nat(zero).
nat(s(X)) :- nat(X).

contains the facts nat(zero), nat(s(zero)), nat(s(s(zero))), . . .

� Idea: interpret this as a search problem.

� state = tuple of goals; goal state = empty list (of goals).

� next(〈G,R1, . . . Rl〉) := 〈σ(B1), . . ., σ(Bm, R1, . . . , Rl)〉 (backchaining) if
there is a rule H:-B1,. . ., Bm. and a substitution σ with σ(H) = σ(G).

� Example 17.1.12 (Continuing Example 17.1.11) ?- nat(s(s(zero))).
?- nat(s(zero)).
?- nat(zero).
Yes

©: Michael Kohlhase 569

This search process has as action the backchaining rule, which is really just a clever combination
of the inference rules from Definition 17.1.8 applied backwards.

The backchaining rule takes the current goal G (the first one) and tries to find a substitution
σ and a head H in a program clause, such that σ(G) = σ(H). If such a clause can be found, it
replaces G with the body of the rule instantiated by σ.

Note that backchaining replaces the current query with the body of the rule suitably instantiated.
For rules with a body long this extends the list of current goals, but for facts (rules without a
body), backchaining shortens the list of current goals. Once there are no goals left, the ProLog

interpreter finishes and signals success by issuing the string Yes.
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If no rules match the current goal, then the interpreter terminates and signals failure with the
string No.

Querying the Knowledge base: Failure

� If no instance of the statement in a query can be derived from the knowledge
base, then the ProLog interpreter reports failure.

?- nat(s(s(0))).
?- nat(s(0)).
?- nat(0).
FAIL
No
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We can extend querying from simple yes/no answers to programs that return values by simply
using variables in queries. In this case, the ProLog interpreter returns a substitution.

Querying the Knowledge base: Answer Substitutions

� If a query contains variables, then ProLog will return an answer substitution.

� has_wheels(mybmw,4).
has_motor(mybmw).
car(X):-has_wheels(X,4),has_motor(X).
?- car(Y) % query
?- has_wheels(Y,4),has_motor(Y). % substitution X = Y
?- has_motor(mybmw). % substitution Y = mybmw
Y = mybmw % answer substitution
Yes
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In the Example 571 the first backchaining step binds the variable X to they query variable Y, which
gives us the two subgoals has_wheels(Y,4),has_motor(Y). which again have the query variable
Y. The next backchaining step binds this to mybmw, and the third backchaining step exhausts the
subgoals. So the query succeeds with the (overall) substitution [mybmw/Y], which is reported by
the ProLog interpreter as Y = mybmw.

With this setup, we can already do the “fallible Greeks” example from the introduction.

PROLOG: Are there Fallible Greeks?

� Program:

human(sokrates).
human(leibniz).
greek(sokrates).
fallible(X) :- human(X).

� Example 17.1.13 (Query) ?-fallible(X),greek(X).

� Answer substitution: [sokrates/X]
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The examples above mostly highlight the use of ProLog as a search-based query mechanism
for the knowledge induced by the program. We will now show that see that this mechanism can
be used as a programming language. For that we first specify the search procedure used by the
ProLog interpreter in detail.

17.2 Programming as Search

In this section, we want to really use ProLog as a programming language, so let use first get our
tools set up.

We will now discuss how to use a ProLog interpreter to get to know the language. The SWI
ProLog interpreter can be downloaded from http://www.swi-prolog.org/. To start the ProLog

interpreter with pl or prolog or swipl from the shell. The SWI manual is available at http:

//www.swi-prolog.org/pldoc/

We will introduce working with the interpreter using unary natural numbers as examples: we first
add the fact1 to the knowledge base

unat(zero).

which asserts that the predicate unat2 is true on the term zero. Generally, we can add a fact to
the knowledge base either by writing it into a file (e.g. example.pl) and then “consulting it” by
writing one of the following commands into the interpreter:

[example]
consult(’example.pl’).

or by directly typing

assert(unat(zero)).

into the ProLog interpreter. Next tell ProLog about the following rule

assert(unat(suc(X)) :- unat(X)).

which gives the ProLog runtime an initial (infinite) knowledge base, which can be queried by

?- unat(suc(suc(zero))).
Yes

Running ProLog in an emacs window is incredibly nicer than at the command line, because you
can see the whole history of what you have done. Its better for debugging too. If you’ve never
used emacs before, it still might be nicer, since its pretty easy to get used to the little bit of emacs
that you need. (Just type “emacs \&” at the UNIX command line to run it; if you are on a remote
terminal like putty, you can use “emacs -nw”.).

If you don’t already have a file in your home directory called “.emacs” (note the dot at the front),
create one and put the following lines in it. Otherwise add the following to your existing .emacs

file:

(autoload ’run-prolog "prolog" "Start a Prolog sub-process." t)

(autoload ’prolog-mode "prolog" "Major mode for editing Prolog programs." t)

(setq prolog-program-name "swipl") ; or whatever the prolog executable name is

(add-to-list ’auto-mode-alist ’("\\pl$" . prolog-mode))

1for “unary natural numbers”; we cannot use the predicate nat and the constructor functions here, since their
meaning is predefined in ProLog

2for “unary natural numbers”.
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The file prolog.el, which provides prolog-mode should already be installed on your machine,
otherwise download it at http://turing.ubishops.ca/home/bruda/emacs-prolog/

Now, once you’re in emacs, you will need to figure out what your “meta” key is. Usually its the
alt key. (Type “control” key together with “h” to get help on using emacs). So you’ll need a
“meta-X” command, then type “run-prolog”. In other words, type the meta key, type “x”, then
there will be a little window at the bottom of your emacs window with “M-x”, where you type
run-prolog3. This will start up the SWI ProLog interpreter, . . . et voilà!

The best thing is you can have two windows “within” your emacs window, one where you’re
editing your program and one where you’re running ProLog. This makes debugging easier.

Depth-First Search with Backtracking

� So far, all the examples led to direct success or to failure. (simpl. KB)

� Definition 17.2.1 (ProLog Search Procedure) top-down, left-right depth-
first (backtracking ) search, concretely

� Work on the subgoals in left-right order.

� match first query with the head literals of the clauses in the program in
top-down order.

� if there are no matches, fail and backtrack to the (chronologically) last
backtrack point.

� otherwise backchain on the first match, keep the other matches in mind for
backtracking via backtrack point s.

� We can force backtracking to get more solutions by typing ;.
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Note: We have seen Definition 16.3.2 that depth-first search has the problem that it can go into
loops. And in fact this is a necessary feature and not a bug for a programming language: we need
to be able to write non-terminating programs, since the language would not be Turing-complete
otherwise. The argument can be sketched as follows: we have seen that for Turing machines the
halting problem is undecidable. So if all ProLog programs were terminating, then ProLog would
be weaker than Turing machines and thus not Turing complete.

We will now fortify our intuition about the ProLog search procedure by an example that extends
the setup from Example 571 by a new choice of a vehicle that could be a car (if it had a motor).

Backtracking by Example

has_wheels(mytricycle,3).
has_wheels(myrollerblade,3).
has_wheels(mybmw,4).
has_motor(mybmw).
car(X):-has_wheels(X,3),has_motor(X). % cars sometimes have three wheels
car(X):-has_wheels(X,4),has_motor(X). % and sometimes four.
?- car(Y).
?- has_wheels(Y,3),has_motor(Y). % backtrack point 1
Y = mytricycle % backtrack point 2
?- has_motor(mytricycle).
FAIL % fails, backtrack to 2
Y = myrollerblade % backtrack point 2
?- has_motor(myrollerblade).
FAIL % fails, backtrack to 1
?- has_wheels(Y,4),has_motor(Y).

3Type “control” key together with “h” then press “m” to get an exhaustive mode help.
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Y = mybmw
?- has_motor(mybmw).
Y=mybmw
Yes
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In general, a ProLog rule of the form A:-B,C reads as A, if B and C. If we want to express A
if B or C, we have to express this two separate rules A:-B and A:-C and leave the choice which
one to use to the search procedure.

In Example 574 we indeed have two clauses for the predicate car/1; one each for the cases of cars
with three and four wheels. As the three-wheel case comes first in the program, it is explored first
in the search process.

Recall that at every point, where the ProLog interpreter has the choice between two clauses for
a predicate, chooses the first and leaves a backrack point. In Example 574 this happens first for
the predicate car/1, where we explore the case of three-wheeled cars. The ProLog interpreter
immediately has to choose again – between the tricycle and the rollerblade, which both have three
wheels. Again, it chooses the first and leaves a backtrack point. But as tricycles do not have
motors, the subgoal has_motor(mytricycle) fails and the interpreter backtracks to the chrono-
logically nearest backtrack point (the second one) and tries to fulfill has_motor(myrollerblade).
This fails again, and the next backtrack point is point 1 – note the stack-like organization of
backtrack points which is in keeping with the depth-first search strategy – which chooses the case
of four-wheeled cars. This ultimately succeeds as before with y=mybmw.

We now turn to a more classical programming task: computing with numbers. Here we turn to
our initial example: adding unary natural numbers. If we can do that, then we have to consider
ProLog a programming language.

Can We Use This For Programming?

� Question: What about functions? E.g. the addition function?

� Question: We do not have (binary) functions, in ProLog

� Idea (back to math): use a three-place predicate.

Example 17.2.2 add(X,Y,Z) stands for X+Y=Z

� Now we can directly write the recursive equations X + 0 = X (base case) and
X + s(Y ) = s(X + Y ) into the knowledge base.

add(X,zero,X).
add(X,s(Y),s(Z)) :- add(X,Y,Z).

� similarly with multiplication and exponentiation.

mult(X,o,o).
mult(X,s(Y),Z) :- mult(X,Y,W), add(X,W,Z).
expt(X,o,s(o)).
expt(X,s(Y),Z) :- expt(X,Y,W), mult(X,W,Z).
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Note: Viewed through the right glasses logic programming is very similar to functional program-
ming; the only difference is that we are using n+1-ary relations rather than n-ary functions. To see
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how this works let us consider the addition function/relation example above: instead of a binary
function + we program a ternary relation add, where relation add(X,Y, Z) means X + Y = Z.
We start with the same defining equations for addition, rewriting them to relational style.

The first equation is straight-forward via our correspondence and we get the ProLog fact
add(X,zero,X). For the equation X + s(Y ) = s(X + Y ) we have to work harder, the straight-
forward relational translation add(X, s(Y ), s(X + Y )) is impossible, since we have only partially
replaced the function + with the relation add. Here we take refuge in a very simple trick that we
can always do in logic (and mathematics of course): we introduce a new name Z for the offending
expression X + Y (using a variable) so that we get the fact add(X, s(Y ), s(Z)). Of course this is
not universally true (remember that this fact would say that “X + s(Y ) = s(Z) for all X, Y , and
Z”), so we have to extend it to a ProLog rule add(X,s(Y),s(Z))}{add(X,Y,Z). which relativizes
to mean “X + s(Y ) = s(Z) for all X, Y , and Z with X + Y = Z”.

Indeed the rule implements addition as a recursive predicate, we can see that the recursion
relation is terminating, since the left hand sides are have one more constructor for the successor
function. The examples for multiplication and exponentiation can be developed analogously, but
we have to use the naming trick twice.

We now apply the same principle of recursive programming with predicates to other examples to
reinforce our intuitions about the principles.

More Examples from elementary Arithmetics

� Example 17.2.3 We can also use the add relation for subtraction without
changing the implementation. We just use variables in the “input positions”
and ground terms in the other two (possibly very inefficient since
“generate-and-test approach”)

?-add(s(zero),X,s(s(s(zero)))).
X = s(s(zero))
Yes

� Example 17.2.4 Computing the the nth Fibonacci Number (0, 1, 1, 2, 3, 5,
8, 13,. . . ; add the last two to get the next), using the addition predicate above.

fib(zero,zero).
fib(s(zero),s(zero)).
fib(s(s(X)),Y):-fib(s(X),Z),fib(X,W),add(Z,W,Y).

� Example 17.2.5 using ProLog’s internal arithmetic: a goal of the form
?- D is e. where e is a ground arithmetic expression binds D to the result
of evaluating e.

fib(0,0).
fib(1,1).
fib(X,Y):- D is X - 1, E is X - 2,fib(D,Z),fib(E,W), Y is Z + W.
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Note: Note that the is relation does not allow “generate-and-test” inversion as it insists on the
right hand being ground. In our example above, this is not a problem, if we call the fib with
the first (“input”) argument a ground term. Indeed, if match the last rule with a goal ?- g,Y.,
where g is a ground term, then g-1 and g-2 are ground and thus D and E are bound to the
(ground) result terms. This makes the input arguments in the two recursive calls ground, and
we get ground results for Z and W, which allows the last goal to succeed with a ground result for
Y. Note as well that re-ordering the body literals of the rule so that the recursive calls are called
before the computation literals will lead to failure.
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We will now add the primitive data structure of lists to ProLog. They are very similar to lists
in SML, only the concrete syntax is different. Just as in SML lists are constructed by prepending
an element (the head) to an existing list (which becomes the rest list of the constructed one).

Adding Lists to ProLog

� Lists are represented by terms of the form [a,b,c,. . .]

� first/rest representation [FR]—, where R is a rest list.

� predicates for member, append and reverse of lists in default ProLog repre-
sentation.

member(X,[X|_]).
member(X,[_|R]):-member(X,R).
append([],L,L).
append([X|R],L,[X|S]):-append(R,L,S).
reverse([],[]).
reverse([X|R],L):-reverse(R,S),append(S,[X],L).
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Just as in SML, we can define list operations by recursion, only that we program with relations
instead of with functions.

Logic programming is the third large programming paradigm (together with functional program-
ming and imperative programming).

Relational Programming Techniques

� Parameters have no unique direction “in” or “out”

:- rev(L,[1,2,3]).
:- rev([1,2,3],L1).
:- rev([1,X],[2,Y]).

� Symbolic programming by structural induction

rev([],[]).
rev([X,Xs],Ys) :- ...

� Example 17.2.6 Generate and test

sort(Xs,Ys) :- perm(Xs,Ys), ordered(Ys).
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From a programming practice point of view it is probably best understood as “relational program-
ming” in analogy to functional programming, with which it shares a focus on recursion.

The major difference to functional programming is that relational programming does not have a
fixed input/output distinction, which makes the control flow in functional programs very direct
and predictable. Thanks to the underlying search procedure, we can sometime make use of the
flexibility afforded by logic programming.

If the problem solution involves search (and depth-first search is sufficient), we can just get by
with specifying the problem and letting the ProLog interpreter do the rest. In Example 17.2.6 we
just specify that list Xs can be sorted into Ys, iff Ys is a permutation of Xs and Ys is ordered.
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Given a concrete (input) list Xs, the ProLog interpreter will generate all permutations of Ys of Xs
via the predicate perm/2 and then test them whether they are ordered.

This is a paradigmatic example of logic programming. We can (sometimes) directly use the
specification of a problem as a program. This makes the argument for the correctness of the
program immediate, but may make the program execution non-optimal.

It is easy to see that the runtime of the ProLog program from Example 17.2.6 is not O(nlog2(n))
which is optimal for sorting algorithms. This is the flip-side of the flexibility in logic programming.
But ProLog has ways of dealing with that: the cut operator, which is a ProLog atom, which always
succeeds, but which cannot be backtracked over. This can be used to prune the search tree in
ProLog. We will not go into that here but refer the readers to the literature.

Now that we understand ProLog as a programming language, we will see that we already know
most of the mechanics of the ProLog interpreter and that we can understand it as an instance of
automated (resolution) theorem proving.

17.3 Logic Programming as Resolution Theorem Proving

To understand ProLog better, we can interpret the language of ProLog as resolution in PLNQ.

We know all this already

� Goals, goal-sets, rules, and facts are just clauses. (called “Horn clauses”)

� Observation 17.3.1 Rule .H:-B1,. . .,Bn. corresponds toH ∨ ¬B1 ∨ . . . ∨ ¬Bn
(head the only positive literal)

� Observation 17.3.2 (goal set) ?- G1,. . .,Gn. corresponds to ¬G1 ∨ . . . ∨ ¬Gn

� Observation 17.3.3 (fact) F. corresponds to the unit clause F .

� Definition 17.3.4 A Horn clause is a clause with at most one positive literal.

� Note: backchaining becomes (hyper)-resolution (special case for rule with

facts)
P t ∨A P f ∨B

A ∨B
positive, unit-resulting hyperresolution (PURR)
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This observation helps us understand ProLog better, and use implementation techniques from
theorem proving.

PROLOG (Horn clauses)

� Definition 17.3.5 Each clause contains at most one positive literal

� B1 ∨ . . . ∨Bn ∨ ¬A (A:-B1,. . .,Bn.)

� Rule clause: fallible(X) :- human(X).

� Fact clause: human(sokrates).

� Program: set of rule and fact clauses

� Query: ?- fallible(X),greek(X).
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PROLOG: Our Example

� Program:

human(sokrates).
human(leibniz).
greek(sokrates).
fallible(X) :- human(X).

� Example 17.3.6 (Query) ?- fallible(X),greek(X).

� Answer substitution: [sokrates/X]
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Finally, we take a small detour an look at the role of inference (drawing conclusions from knowl-
edge) to see that the deductive method is just one of three modes of inference.

Three Principal Modes of Inference

� Deduction: knowledge extension
rains⇒ wet street rains

wet street
D

� Abduction explanation
rains⇒ wet street wet street

rains
A

� Induction learning rules
wet street rains

rains⇒ wet street
I
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Part V

A look back; What have we
learned?

369





371

Let’s hack! ; 2am in the CLAMV cluster

©: Michael Kohlhase 583

no, let’s think

� GIGO: Garbage In, Garbage Out (– ca. 1967)

� Applets, Not Crapletstm (– ca. 1997)
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What have we thought about in this year? We talked about var-

ious forms of

Machines Models
Algorithms, Languages and Programs

Information/Data/Representations

and their relation to each other

(and of course Math!) ©: Michael Kohlhase 585

Machine Models
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� Abstract Interpreters (mind games)

� The SML interpreter/compiler (didn’t we love recursive programming?)

� Combinatory Circuits, the register machine (this one could in theory solder)

� A stack based virtual machine (on top of the register machine)

� depth-first search as a model of computation in a knowledge base
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Algorithms Languages and Programs

� Abstract data types (defining equations as recursive programs)

� standard ML (SML) (concrete ADTs with strong types, HO functions)

� elementary complexity analysis (Oooooh, how fast this class grows)

� Assembler language on the register machine (finally, an imperative language)

� Turing Machines, universality and the halting problem (mind games again)

� concrete algorithms: search (informed and uninformed)

� logic programming in PROLOG (a crash course in declarative programming)
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Information, Data, and Representations

� term representations and substitutions (constants,variables, function
application)

� Codes as transformations on formal languages. (programs as a special case)

� Boolean Expressions and Boolean functions (syntax and semantics)

� Hilbert, Resolution, Tableau, calculi (correct, complete)

� positional number systems (in particular binary numbers)

©: Michael Kohlhase 588

The (Discrete) Math involved

� sets, relations, functions,

� natural numbers and proof by induction (such a lot of talk about something
so simple)

� the axiomatic/deductive method in Math (play the math game by the rules)
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� formal languages and codes (are just sets of strings and injective mappings)

� Boolean algebra, axioms, deduction, prime implicants

� elementary Graph theory (and the algorithms on that)

©: Michael Kohlhase 589

Search Algorithms as a Classes of dedicated Algorithms

� uninformed search (only the information in the problem)

� informed search (additionally heuristics as a sense of direction)

� local search (when we are not interested in the solultion path)

©: Michael Kohlhase 590

The Internet and World-Wide Web

� The Internet as a packet-switched Network of networks. . .

� . . . driven by special protocols (Ethernet,TCP/IP,SMTP,. . . )

� Security by encryption.

� Five components of the WWWeb: URI, Web server, Browser, HTTP, HTML.

� XML as a general tree communication infrastructure

©: Michael Kohlhase 591
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RS-latch, 208
RTFM, 84
rule, 64, 71, 358

derived, 145



INDEX 387

inference, 126, 148
Rule clause, 366
rules

addition, 191

safe, 276
satisfiable, 122
saturated, 142
Science

Computer, 1
scripting

server-side (framework), 280
server-side (language), 280

scytale, 290
search

algorithm, 319
greedy, 343
index, 287
local, 351
strategy, 326
tree (algorithm), 324
web (engine), 285
web (query), 286

selector
function, 46

semantic
web, 309

semantics, 97
semi-prime, 298
sequence

Fibonacci, 77
sequential

logic
circuit, 207

server
web, 276

server-side
scripting

framework, 280
language, 280

set, 174
clause, 104
comprehension, 35
difference, 36
empty, 36
equality, 35
Landau, 106
power, 36

Set inputs, 208
share

alike, 161
sign

bit, 199
signature, 70

digital, 297
simple, 178

definition, 33
simple while language, 229
sink, 176
site

web, 272
size, 36
Software

Free/Libre/Open-Source, 160
solution, 321
sort

argument, 65
base, 62
function, 62
product, 62
result, 65

sorts, 62
sound, 128
Sound recording, 155
source, 176
space

function, 40
spanning

tree, 15
spider, 285
sproof

resolution, 149
stack, 224

pointer, 225
Standard

Unicode, 95
start, 177

value, 51
state, 253, 320

current, 351
final, 253
goal, 320
initial, 253, 320
machine, 79
register, 253

statement, 229
step

case, 28
condition, 25, 28, 29
equation, 30
recursion, 74

stop
character, 92

store
data, 216
program, 216

strategy
search, 326



388 INDEX

strict
partial

order, 39
String, 48
string, 87, 88

code, 91, 190
empty, 87
nonempty, 88

structural
character, 96

structure
control, 45

sub-monomial, 111
subset, 35
substitution, 68

answer, 360
substring, 88
subterm, 71

immediate, 71
subtracter, 202
successor, 25
sum

bit, 192
Boolean, 100
canonical, 104
term, 104

sum of
products, 104

summation
unary, 31

sums
product of, 104

superset, 35
support, 68
surjective, 41
symmetric, 38
Symmetric-key cryptosystems, 291
synchronous, 209
syntax, 97
system

formal, 126, 127
logical, 26

T0-theorem, 142
table

action, 253
jump, 226

tableau
proof, 143
refutation, 143

tag
closing, 308
opening, 308

tape, 253

TCP/IP, 265
tebi, 213
term, 70, 159

constructor, 67
product, 104
sum, 104

terminal, 176
terminates, 66, 73
terminates, 75
territory, 159
test calculi, 143
text

node, 308
theorem, 26, 127
theory

complexity, 18
third party

cookies, 283
TLD, 269
TLS

connection, 301
connection

TLS, 301
TLS handshake, 301
top-level domain, 269
total, 38

function, 39
transition

function, 253
transitive, 38
Transmission Control Protocol, 268
transport

layer, 268
Transport layer security, 300
trap

door
function, 296

trapdoor, 297
function, 297

tree, 179
binary, 183
search

algorithm, 324
spanning, 15

true under ϕ, 122
Turing

complete, 255
Machine, 253
machine

specification, 253
universal (machine), 256

twelve, 28
two, 28
two’s complement, 200
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two’s complement adder, 202
type, 45

basic, 44
basic (constructor), 44
data, 57
declaration, 45
universal, 46

unary
exponentiation, 31
multiplication, 31
natural

numbers, 24
product, 31
summation, 31

undefined at, 39
underflow, 205
undirected

edge, 174
graph, 174, 175

Unicode
Standard, 95

uniform
resource

identifier, 273
locator, 274
name, 274

union, 35
Union Find

Algorithm, 17
union over a collection, 35
Union-Find, 17
unit

binary (prefix), 213
universal

Turing
machine, 256

type, 46
Universal Character Set, 95
universe, 100
unsatisfiable, 122, 148
URI, 273

relative, 273
URL, 274
URN, 274
use

commercial, 161
fair (doctrine), 158

user
agent, 276

User Datagram Protocol, 268
UTM, 256

valid, 122, 303

value
declaration, 45
start, 51

variable, 67
assignment, 100
functional, 235
list, 103
name, 96
named, 229

variables
anonymous, 46

vector, 36
vernacular

mathematical, 32
vertices, 174
virtual

machine, 221
virtual program counter, 224
visualization, 15
VM Arithmetic Commands, 222
control

operator, 222
operator

control, 222
imperative access to variables, 223
VPC, 224

weakening
admits, 126

web
application, 282

framework, 282
Browser, 275
crawler, 285
page, 272
resource, 273
search

engine, 285
query, 286

semantic, 309
server, 276
site, 272

wildcard, 286
Wilhelm Schickard, 124
word, 216, 221
work

copyrightable, 155
Literary, 155
PGS, 156

work made for hire, 157
worked

off, 148
works

derivative, 161
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World Wide Web, 261
WWW, 261

XML
document

tree, 308
path

language, 308

yobi, 213

zebi, 213
zero, 25, 27
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