
Name: Matriculation Number:

Midterm Exam

General CS II (320102)

April 8, 2013

You have 75 minutes(sharp) for the test;
Write the solutions to the sheet.
The estimated time for solving this exam is 0 minutes, leaving you 75 minutes for revising
your exam.
You can reach 0 points if you solve all problems. You will only need 60 points for a perfect
score, i.e. -60 points are bonus points.

Different problems test different skills and knowledge, so do
not get stuck on one problem.

To be used for grading, do not write here

prob. Sum grade
total 0
reached

Please consider the following rules; otherwise you may lose points:
• Always justify your statements. Unless you are explicitly allowed to, do not just

answer “yes” or “no”, but instead prove your statement or refer to an appropriate
definition or theorem from the lecture.
• If you write program code, give comments, so that we can award you partial credits!

• You may use tags in your L(VM) program to save some (counting) time. Use <string>

for tags, where string is a string of lower-case english letters and place the tag before
the instruction one would want to jump to when calling jp or cjp. For a jump place
the tag after jp and cjp and omit writing the relative jump distance.
• Write your program clearly. Should you wish, you may write additional code in a

higher level language (HLL) as a comment to help the grader understand what you
are trying to do. HLL code without L(VM) code will not give you points.

1



1 Graphs and Trees

Problem 1.1 (Alternative Definition of a Tree)
Prof. Simplovsky approaches Prof. Kohlhase at a conference in Saskatchewan and suggests 5pt
a different definition of trees which he claims is simpler than Prof. Kohlhase’s (in the slides)
and yet it fully captures the notion of trees too:
“A tree is a directed, connected acyclic graph with exactly one node with in-degree zero,
which we call the root node.”
Is Prof. Simplovsky right? Explain your answer and prove the equivalence of the respective
definitions or give an example that differentiates them.
Note: We call a directed graph connected, iff for any two nodes n1 and n2 there is a path in
the underlying undirected graph (that we get by disregarding all directions of the edges) starting
at n1 and ending at n2. (If this property holds for the directed graph itself, it is called strongly
connected instead.)

2



2 Positional Number Systems

Problem 2.1 (Two’s Complement Arithmetic)
6pt

1. What is the minimum number of bits which can be used to encode the following
numbers: A = 1023, B = 1024, C = −1025, D = −1024? Explain, then perform the
conversion.

2. Consider two numbers in decimal representation A = 15 and B = 13. Calculate
A + B and A · B in TCN and verify the result by converting the result back into
decimal.

Hint: The product in TCN is done similar to the one in decimal. Don’t forget to extend the
input integers (to twice as many bits).

3



3 Combinatorial Circuits

Problem 3.1 (CSA and CCA)
Draw the basic building blocks for the following circuit elements: 6pt

1. n-bit Carry Chain Adder
2. n-bit Conditional Sum Adder

Hint:
No need to draw the diagram to the gate-level depth. Only the basic structure is expected.
In the drawing, you only need to show the structure to a level where the characteristic differences
become apparent, you do not need to expand to gate level.

For both of the circuit elements given above, state their
• cost and
• depth

in Landau notation.

4



Problem 3.2 (Doubler Circuit)
We have seen examples of binary counter. Now build a similar circuit which simulates a 8pt
4-bit binary doubler (i.e. a circuit that successively doubles a binary number). This means
that given a binary number x as input, your circuit would have the double as output and
feed it into the input again. For example, if the input value is 1, then for the output: you
first get 2, then 4, then 8 (in binary), and then 0s (overflow).

5



4 Machine Programming

Problem 4.1 (Assembler Prime checking)
Write an ASM program that checks whether a given natural number n ≥ 2 is prime. You 12pt
can find the number n in D(0). You should use D(1) as the output where 0 is false and 1
is true and not alter the rest of the storage.
Hint: To simplify the program, you may use an extended set of jump instructions. jump(>)

jumps if the accumulator has a number greater than zero and jump(!=) does it it has non-zero
content.

6



This page was intentionally left blank for extra space

7



Problem 4.2 (Arithmetic mean in L(VM))
You are given a natural number n > 1 in S(0) and a sequence of n non-negative integers 12pt
stored in S(2) . . .S(n + 1). S(1) is available for intermediate calculations. Write an L(VM)

program which finds the average (in terms of arithmetic mean) of these numbers:
∑n+1

i=2 S(i)
n

.
Of course, we are again dealing with integer division here. Make sure that after the
execution, the stack contains only the result, in S(0).
Though it is mandatory, try not to stress this too much, and focus on the algorithm itself.
You can deal with cleaning up the stack once you get to the result.

8



This page was intentionally left blank for extra space

9



Problem 4.3 (Fibonacci numbers and L(VMP))
Write a L(VMP) static procedure which takes as argument a natural number n and returns 10pt
the nth Fibonacci number. Recursive definition of the Fibonacci numbers: f(0) = 0,
f(1) = 1, f(n) = f(n− 1) + f(n− 2).
To receive full points, the procedure has to run in linear time, i.e. for any input n, at most
cn operations are executed where c is some constant. Otherwise, a solution that correctly
computes the Fibonacci numbers will receive 70% of the points for this problem.
Hint: You should write a helper procedure.
A simple solution can be written which for input n does exactly n + 1 procedure calls.

10



This page was intentionally left blank for extra space

11



5 Turing Machines

Problem 5.1 (Encoding Turing Machines)
12pt

1. Design a TM that flips all the bits of an input and then doubles the result. If an
overflow occurs, increase the length of the binary number.
Hint: Remember that a TMs tape has an infinite number of # around the input word

2. Now devise an encoding of this TM so that a suitable universal TM (you do not have
to implement it) can take this encoding as an input word and use it to act like the
encoded TM. Use the alphabet {0, 1,#}.

3. Then actually encode the TM from ??.

12



This page was intentionally left blank for extra space

13



This page was intentionally left blank for extra space

14


