
Name: Matriculation Number:

Midterm Exam

General CS II (320201)

March 20, 2012

You have 75 minutes(sharp) for the test;
Write the solutions to the sheet.
The estimated time for solving this exam is 69 minutes, leaving you 6 minutes for revising
your exam.
You can reach 109 points if you solve all problems. You will only need 100 points for a
perfect score, i.e. 9 points are bonus points.

Different problems test different skills and knowledge, so do
not get stuck on one problem.

To be used for grading, do not write here

prob. 1.1 2.1 2.2 2.3 3.1 3.2 3.3 4.1 Sum grade
total 15 10 10 10 15 17 17 15 109
reached

Please consider the following rules; otherwise you may lose points:
• Always justify your statements. Unless you are explicitly allowed to, do not just

answer “yes” or “no”, but instead prove your statement or refer to an appropriate
definition or theorem from the lecture.
• If you write program code, give comments, so that we can award you partial credits!
• You may use tags in your L(VM) program to save some (counting) time. Use <string>

for tags, where string is a string of lower-case english letters and place the tag before
the instruction one would want to jump to when calling jp or cjp. For a jump place
the tag after jp and cjp and omit writing the relative jump distance.
• Write your program clearly. Should you wish, you may write additional code in a

higher level language (HLL) as a comment to help the grader understand what you
are trying to do. HLL code without L(VM) code will not give you points.

1

1 Graphs and Trees

15pt8minProblem 1.1 (Graph Puzzles)

1. A complete graph is a graph for which every vertex is connected to all other vertices.
Find the number of edges in such a graph, and the sum of the degrees of all vertices.

2. A balanced binary tree has 70 leaves. Find the height of the tree.
Solution:

1. Since every vertex is connected to all other vertices, we get that every vertex has degree
n − 1. Thus the total sum of degrees is n · (n − 1). We know that the sum of all degrees

equals 2∗ number of edges. Then the number of edges is n·(n−1)
2 .

2. Since we have a binary tree, by Lemma 400 (vertices of binary trees) the tree has 2 ·70−1 =
139 vertices. Then since the tree is balanced, by Lemma 399 (depth of a balanced binary
tree) the depth of the tree is log2(139) = 7.

2

2 Combinatorial Circuits

10pt5minProblem 2.1 (Binary Conversions)

1. Convert the following decimal numbers into TCN and signed binary number repre-
sentations:
• 14
• −24

2. How would you multiply an unsigned binary number by 210 (102)?
3. What would be the effect of applying the above procedure directly to TCN and

sign-bit binary numbers? Demonstrate using the example numbers from part 1.
Solution:

3

10pt5minProblem 2.2 (Explaining Circuits)
Briefly explain what is the functionality/ application of the following circuit elements:
• multiplexer
• address decoder

Solution: Functionalities of the circuit elements:
1. A multiplexer is a circuit with n (in GenCS 2) input lines, a control input, and exactly one

output line. The MUXn is used to select exactly one of the input lines depending on the
control.

2. An address decoder is used, as the name suggests, to resolve addresses. It has n input lines,
where n corresponds to the number of bits in the address. There are 2n output lines, one
of which is selected, indicating the correct address.

4

10pt5minProblem 2.3 (Circuit Theory and Functional Completeness)
A functionally complete logic is a set of gates that can be used to realize all logic functions.
You have seen examples of this in the slides: NAND gates are functionally complete, as
well as NOR gates.
• Draw the circuit of a 2:4 address decoder and write the boolean equations describing

its output lines.
• Is the set of gates consisting of inverters (NOT) and 2:4 address decoders functionally

complete? Explain your reasoning.

Solution: Functionally complete logics:
• This is just the problem from the grand tutorial:

s00 = a0 ∗ a1
s10 = a0 ∗ a1
s01 = a0 ∗ a1
s11 = a0 ∗ a1

• The 2:4 address decoder already provides a NOR gate, i.e. s00. From this we can get all
other gates: either only from the NOR gates, or together with the inverters, we can get
OR gates; then from this, a simple application of De Morgan’s laws will give us an AND
gate. Therefore this set of gates is functionally complete.

5

3 Machine Programming

15pt12minProblem 3.1 (Count the Contestants)
You have just entered a new contest and got a decent score. However, you are afraid that
you might not qualify to the next stage, so you quickly write an ASM program to help you
figure how many contestants will advance.
You are given all the N scores (possibly negative), in a non-increasing order; you also know
that only contestants that have:

1. a positive score
2. the score bigger than the score of contestant on place k

will advance.
You are given k in D(1) and N > 3 values representing the scores of the participants in
D(2 . . . N + 1) (N is not given, but you may rest assured that N > K). You must output
the requested value in D(0).
Example: N = 8, K = 5 and the scores (10, 9, 8, 7, 7, 7, 5, 5). Your program should stop
with D(0) = 6.
Hint: You are allowed to overwrite any position in memory, if needed!

Note: Write down your idea first! It will be more valuable than the code itself.

Solution: The following C snippet might clear up the solution:

int nr = 0; /* the number of contestants that advance, in D(0) */
int dk = D[k+1]; /* store this value in D(1) since we do not really

need k */
while (D[nr+2] >= dk && D[nr+2] > 0) /* we iterate using nr */

nr ++;
return nr;

Since there is no logical AND operation in ASM, we will use nested if constructs (plus comparisons
with 0), such as:

if (D[nr+2] - dk >= 0)
if (D[nr+2] > 0)
/* ... */

The ASM code follows:

LOAD 1

MOVE ACC IN2

LOADI 0

STORE 0

LOAD 0

MOVE ACC IN1

LOADIN 2 1

STORE 1

LOADIN 1 2

SUB 1

JUMP(<) 7

LOADIN 1 2

6

JUMP(<=) 5

LOAD 0

ADDI 1

STORE 0

JUMP -12

STOP 0

7

17pt12minProblem 3.2 (Divider in L(VM))
You are given a natural number n > 1. Write an L(VM) program which finds the largest
natural number x for which the following properties hold (simultaneously):

1. x < n
2. n mod x = 0

Since you are given n, assume your program can begin with “VMconn”. Though this is
not a valid L(VM) set of instructions, we assume the user replaces the argument “n” by the
decimal representation of the value of n before running the program through the virtual
machine.
Assuming the stack was initially empty (before pushing the value of n), make sure that
after the execution the stack only contains the result. This is a healthy precondition and
we want you to learn good practice. Though it is mandatory, try not to stress this too
much, and focus on the algorithm itself. You can deal with cleaning up the stack once you
get to the result.
Solution: For ease of understanding, we write the solution in a higher level language:

var n = n

var a = n-1

var b = 1

<while> while (b * a + 1 <= n) {

b = b+1

}

if (b*a <= n)

return a

else

a = a-1

b = 1

goto <while> /* see what I did here? */

Now, we write the L(VM) code (looks nice when put in parallel with the previous code):

con $n

con 1 peak 0 sub

con 1

<while> peak 0 con 1 peak 1 peak 2 mul add leq cjp <if>

con 1 peak 2 add poke 2

jp <while>

<if> peak 0 peak 1 peak 2 mul leq cjp <else>

poke 0 poke 0 halt

<else>

con 1 peak 1 sub poke 1

con 1 poke 2

jp <while>

8

17pt12minProblem 3.3 (Square root and L(VMP))
Design a L(VMP) procedure which takes as argument a natural number n and returns b

√
nc.

Hint: Suppose you have the following C code for b
√
nc:

int square_root(int n)
{

int i = 0;
while (i * i <= n)

i++;
return i - 1;

}

For help with writing the L(VMP) procedure, try to convert this iterative C function into a recursive
one, which doesn’t make use of local variables (remember you cannot use peek and poke in
static procedures).

Solution: Write

int square_root_help(int n, int i)

{

if (n == 0)

return 0;

else

if (i * i <= n)

return square_root_help(n, i + 1);

else

return i - 1;

}

The square root is now

square_root(n) = square_root_help(n, 0).

Write the procedures for these two functions,

proc 2 34

arg 1

cjp <nil>

arg 1

arg 2

arg 2

mul

leq

cjp <ret>

con 1

arg 2

add

arg 1

call 0

return

9

<ret> con 1

arg 2

sub

return

<nil> con 0

return

Then, square root is

proc 1 7

con 0

arg 1

call 0

return

10

4 Turing Machines

15pt10minProblem 4.1 (Turing Machine)
Design a Turing machine, which on input consisting of an arbitrary sequence of ones (1)
and zeros (0), surrounded by hashes (#) does the following:
• Step 1: XOR each input cell with the one right of it and output the result in the

same cell;
• Step 2: delete the last input cell by replacing it with a #;
• Step 3: repeat steps 1 and 2 until the whole input is deleted, then halt.

Assume the head is position at the first input symbol. Provide a transition (action) table.

Sample run:
#1101001# 7→ #011101## 7→ #10011### 7→ #1010#### 7→ #111##### 7→
#00###### 7→ #0####### 7→ #########
Solution:

state read write new state move

Si 1 1 Sc1 →
Si 0 0 Sc0 →
Sc1 1 1 Sp0 ←
Sc0 0 0 Sp0 ←
Sc1 0 0 Sp1 ←
Sc0 1 1 Sp1 ←
Sp0 0/1 0 Si →
Sp1 0/1 1 Si →

Sc1/Sc0 # # Sp# ←
Sp# 0/1 # Sret ←
Sret 0/1 0/1 Sret ←
Sret # # Si →
Si # # halt −

11

