
Name: Matriculation Number:

Midterm Exam

General CS II (320201)

April 5, 2011

You have 75 minutes(sharp) for the test;
Write the solutions to the sheet.

The estimated time for solving this exam is 68 minutes, leaving you 7 minutes for
revising your exam.

You can reach 35 points if you solve all problems. You will only need 31 points for a
perfect score, i.e. 4 points are bonus points.

Different problems test different skills and knowledge, so do
not get stuck on one problem.

To be used for grading, do not write here

prob. 1.1 2.1 2.2 2.3 3.1 3.2 4.1 Sum grade
total 4 3 4 7 5 4 8 35
reached

Please consider the following rules; otherwise you may lose points:

• Always justify your statements. Unless you are explicitly allowed to, do not just
answer “yes” or “no”, but instead prove your statement or refer to an appropriate
definition or theorem from the lecture.

• If you write program code, give comments!

1



1 Graphs
4pt

8min
Problem 1.1 (Bipartite Graphs)
Let G = 〈V,E〉 be an undirected graph. Assume that we can split V to X and Y where
X ∩ Y = ∅ and every edge in E connects a node from X with a node from Y . Remember
that we call such graphs bipartite graphs. Prove that if G is a bipartite graph with partite

sets X and Y , then
∑
v∈X

deg(v) =
∑
v∈Y

deg(v).

Solution: This can be proved via induction on the number of edges. Denote the number
of elements of X as #(X). Suppose #(X) = r and #(Y ) = s for some integers r, s > 1. Note
that the case where X and Y have one vertex is trivial, as only one edge can be drawn. Take
the subgraph of G which consists of only the vertices of G. Now we begin the induction: add

one edge from any vertex in X to any vertex in Y . Then
∑
v∈X

deg(v) =
∑
v∈Y

deg(v) = 1. Now

suppose this is true for n − 1 edges and add one more edge. Since this edge adds exactly 1 to

both
∑
v∈X

deg(v) and
∑
v∈Y

deg(v), we have that this is true for all n ∈ N.

2



2 Positional Number Systems and Circuits
3pt

6min
Problem 2.1 (Positional Number Systems)
Consider the 16-bit Two’s Complement Number System.

1. Recall the definitions of overflow/underflow given in class. Give two examples when
underflow and overflow occur and explain your choice.

2. Convert the numbers 31 and −17 in the above mentioned system.

Solution:

1. By the Structure Theorem in TCN, we know that an overflow/underflow occurs when
the last two carry bits are different. Thus, any example that follows this rule is cor-
rect; take for instance, for underflow, 〈〈B(z1)〉〉2s16 = 1001010101011000 and 〈〈B(z2)〉〉2s16 =
1101100101100010. For overflow, one can consider the examples :

〈〈B(z1)〉〉2s16 = 0101010001011110 and 〈〈B(z2)〉〉2s16 = 01101100100001010

2. The solution of the problem is straightforward, if students know the Sign-Duplicate Theo-
rem:

〈〈B(31)〉〉2s16 = 0000000000011111

〈〈B(−17)〉〉2s16 = 1111111111101111

3



4pt
8min

Problem 2.2 (White Box Circuit)
You are given a circuit element that has three inputs i1, i2 and i3 and three outputs o1,
o2 and o3 known as a white-box. Such circuit elements also come with a specification table
that describes what the outputs are for all possible inputs:

i1 i2 i3 o1 o2 o3
0 0 0 1 0 1
0 0 1 0 0 0
0 1 0 1 1 0
0 1 1 0 0 0
1 0 0 0 1 1
1 0 1 0 0 0
1 1 0 1 1 1
1 1 1 0 0 0

Your task is to find out the minimum number of circuit gates (AND, OR, NOT) this
white-box contains and how they are interconnected by drawing the combinatorial circuit
in the white-box below:

Hint:

• Build the DNF for each of the outputs, minimizing the boolean polynomial through boolean
equivalences

• Look for shared monomials and build the combinatorial circuit

4



Solution: The DNF for each output gives the following:

o1 = i2 ∧ ¬i3 ∨ (¬i1 ∧ ¬i2) ∧ ¬i3
o2 = i1 ∧ ¬i3 ∨ (¬i1 ∧ i2) ∧ ¬i3
o3 = ¬i2 ∧ ¬i3 ∨ (i1 ∧ i2) ∧ ¬i3

Hence the circuit for these functions can have the following representation:

5



7pt
14min

Problem 2.3 (Reversible Counter)
Build a circuit which simulates a 2-bit reversible binary counter. Your circuit will have 2
inputs and 2 outputs. Here are the input details:

• If the 1st input is 1, your counter will behave like a normal counter, outputting 00,
01, 10, 11 and looping back. However, if the input is 0, your counter will count
backwards, i.e. 11, 10, 01, 00 and so on. Note that this value can change while
testing your reversible binary counter.

• The 2nd input will be a standard clock signal of a constant frequency. This will be
used to set the frequency of your counter.

The output will be the standard 2 bits which represent the current value of the counter.
You may use any logical setup which was taught in the slides, as long as you explain its
input and output.

Example: If the 1st input is 1 for the first two runs of the clock, and 0 after wards,
your output should be 01, 10, 01, 00, 11, 10, etc.

Hint: Use adders and subtracters to increment or decrement the counter.

Solution: First of all, we need two data flip-flops to store the current value of the counter.
As we want our counter in sync with the input clock, we connect the clock to the enable inputs
of our data flip-flops. Now, what we want is to either increment this counter or decrement the
counter. To achieve this, we use an adder and a subtracter to compute the incremented, as well
as the decremented value and then rely on a multiplexer to chose which result we want to feed
back in the data flip-flops (depending on the 1st input).
Here is a diagram with the full circuit.

6



3 Machines
5pt

10minProblem 3.1 (Hofstadter Sequences)
A Hofstadter sequence is an integer sequence defined by non-linear recurrence relations.
The Hofstadter Male (M) and Female (F) sequences are defined as follows:

• F (0) = 1

• M(0) = 0

• F (n) = n−M(F (n− 1)), for n > 0

• M(n) = n− F (M(n− 1)), for n > 0

Create two static VM procedures for the computation of the Male and Female sequences.
Each procedure should take an argument n, and return the nth number from the respective
Hofstadter sequence.
Then implement another procedure that calculates the sum of the first n elements of the
following expression:

F (1) + M(2) + F (3) + M(4) + F (5) + ...

You may create auxiliary procedures that aid the computations if you wish.
Solution:

proc 1 26 // F (n)
con 0 arg 1 leq cjp 5
con 1 return
con 1 arg 1 sub
call 0 // F (n− 1)
call 26 // M(F (n− 1))
arg 1 sub // n−M(F (n− 1))
return

proc 1 26 // M(n)
con 0 arg 1 leq cjp 5
con 0 return
con 1 arg 1 sub
call 26 // M(n− 1)
call 0 // F (M(n− 1))
arg 1 sub // n− F (M(n− 1))
return

7



proc 1 21 // auxiliary procedure: n%2
con 1 arg 1 leq cjp 5
arg 1 return
con 2 arg 1 sub call 52
return

proc 1 40 // sum
con 1 arg 1 leq cjp 7
arg 1 call 0 return // F (1)
arg 1 call 52 cjp 8 // checking n%2
arg 1 call 0 jp 6 // if n%2 = 1: F (n)
arg 1 call 26 // if n%2 = 0: M(n)
con 1 arg 1 sub call 73 // sum(n− 1)
add
return

8



4pt
7min

Problem 3.2 (Zebra TM)
Design a Turing Machine that accepts an input of the form w ∈ {0, 1}∗. You need to test
whether the tape is an alternating sequence of 1’s and 0’s. Possible correct starting tapes
include: 01010, 1010, 101. Should this not be the case, you need to output a ∗ character at
the right of your tape. You should not use more than 6 states including the halting state,
each extra state leads to a 0.5 point deduction.

Solution: The trivial solution is to basically traverse the tape once from left to right, zig-
zag-ing between tapes if the input is correct. At the first error, one moves to another state (4 in
the sample solution) which simply moves rightwards through the tape without changing anything
except writing a ∗ when it reaches the end of the tape.

1, 1 2, 1, >
1, 0 3, 0, >
1, H,
2, 0 1, 0, >
2, 1 4, 1, >
3, 1 5, 1, >
3, 0 4, 0, >
4, 0 4, 0, >
4, 1 4, 1, >
4, H, ∗
5, 0 1, 0, >
5, 1 4, 1, >
5, H,

9



4 Search
8pt

15minProblem 4.1 (Passing a Bridge)
There exists in Bremen an one-way bridge over the Weser. You are the administrator of
this bridge and today you received a list of N bridge pass requests in form of pairs (ti, di)
(where ti is the time of arrival and di is the direction, for example 1 or 2). You know that
the bridge can be passed by any car in a time T and, as you wish to get home early today,
you want to schedule the car-passes in such a way that the last car finishes passing at a
minimum time.

For example:

N=3, T=5

Requests: (1,1), (4,1), (3,2)

That means that you have to manage two cars passing in direction 1, arriving at the
bridge at times 1 and 4, and one car passing in direction 2 arriving at time 3.

Your tasks are the following:

• Give a formal description of the problem. Give an example of a state respecting your
description. How do you define the transitions between states?

• Draw the search tree for the given example in such a way that it contains at least one
goal state. The solution does not have to be optimum / on the optimum
path.

• Pick one search strategy and clearly state why it provides / why it does not
provide an optimum solution.

Note: Needless to say, the bridge can be passed at the same time by multiple cars in the
same direction, but no two cars can pass at the same time in opposite directions.

Solution:

• The states S can be represented as 〈(l0 . . . lk), τ〉, where (l0 . . . lk) is a list of cars in the order
they pass the brdige, and τ is the total pass time. For example (considering the problem
example), we have states 〈(0), 6〉 and 〈(0, 2), 11〉. The transition is made by appending a
car index at the end of the list and updating the total pass time as follows:

τnew =

{
max(τ old, tlk+1

) + T if dlk+1
6= dlk

max(τ old, tlk+1
+ T ) if dlk+1

= dlk

The cost of the transition is τnew − τ old. There are invalid states, for example the states
that contain duplicate cars. The goal state is a valid state that contains all the cars in the
list. The optimum goal state is the one with a minimum τ .

• will be soon

• BFS will not provide optimum solution because it ignores the cost of transitions and will
supply a non-optimum goal state. On the other hand, UCS will provide an optimum
solution.

10


