
Name: Matriculation Number:

Midterm Exam

General CS II (320201)

March 27, 2007

You have one hour(sharp) for the test;
Write the solutions to the sheet.

The estimated time for solving this exam is 60 minutes, leaving you 0 minutes for
revising your exam.

You can reach 26 points if you solve all problems. You will only need 23 points for a
perfect score, i.e. 3 points are bonus points.

Different problems test different skills and knowledge, so do
not get stuck on one problem.

To be used for grading, do not write here

prob. 1.1 1.2 2.1 2.2 3.1 3.2 Sum grade
total 2 4 4 5 5 6 26
reached

Good luck to all students who take this test

1

1 Graphs
2pt
6minProblem 1.1 (Directed Graphs)

We call a directed graph (strongly) connected, iff for any two nodes n1 6= n2 there is a path
starting at n1 and ending at n2.

Complete the unconnected directed graph below by adding directed edges such that it
becomes a strongly connected graph where each indeg(n) = outdeg(n) for all nodes n.

How many initial and terminal nodes and how many paths does your final graph have?

A

B

C

D

E

Solution: This graph has neither an initial nor a terminal node and infinitely many paths
since it is cyclic.

A

B

C

D

E

2

4pt10minProblem 1.2 (Constructing Fully Balanced Binary Trees in SML)
Write an SML function MakeTree that takes an integer n ≥ 0 and returns a fully balanced
binary tree with n nodes if one exists, and raises an exception WrongInput otherwise. The
following datatype is used to construct binary trees:

datatype btree = leaf | parent of btree*btree;

Solution: A sample solution would look like this:

datatype btree = leaf | parent of btree*btree;

exception WrongInput;

fun construct 1 = leaf |
construct n = let
val temp = construct ((n-1) div 2)
in
parent(temp,temp)

end;

fun check(1) = true |
check(n) = (n mod 2 = 0) andalso check(n div 2);

fun MakeTree 0 = raise WrongInput |
MakeTree n =
if check(n+1) then construct(n)
else raise WrongInput;

There is a simpler solution that does part of the check in every step:

fun MakeTree 1 = leaf |
MakeTree n = if (n mod 2 = 0) then raise WrongInput

else parent(MakeTree(n div 2),MakeTree(n div 2));

3

2 Combinatorial Circuits
4pt
12minProblem 2.1 (Right and Left Shift on PNS)

Consider for this problem the signed bit number system and the two’s complement number
system. Given a binary string b = an. . .a0. We define

1. the left shift function lshift that maps the n+ 1-bit number an. . .a0 to the n+ 2-bit
number an. . .a00

2. the right shift function rshift that maps the n + 1-bit number an. . .a0 to the n-bit
number an. . .a1, discarding a0.

Prove or refute the following two statements

• The lshift function has the same effect in both number systems; i.e. for any integer
z:

(〈〈lshift(B(z))〉〉−) = 〈〈lshift(B2s
n (z))〉〉2sn+1

• The rshift function has the same effect in both number systems; i.e. for any integer
z:

(〈〈rshift(B(z))〉〉−) = 〈〈rshift(B2s
n (z))〉〉2sn−1

Solution:

• (〈〈rshift(B(z))〉〉−) =

{
b z+1

2 c if z > 0
, b z2c if z < 0

.

• (〈〈lshift(B(z))〉〉−) = 2 ∗ z

• 〈〈rshift(B2s
n (z))〉〉2sn−1 = b z2c

• 〈〈lshift(B2s
n (z))〉〉2sn+1 = 2 ∗ z

Proof for the last equality:
lshift(−an ∗ 2n +

∑n−1
k=0 ak ∗ 2k) = −an ∗ 2n+1 +

∑n
k=1 ak ∗ 2k = 2 ∗ (−an ∗ 2n +

∑n−1
k=0 ak ∗ 2k)

4

5pt10minProblem 2.2 (A Binary Counter)
Implement a 3-bit binary counter that counts from 111 down to 000 in steps of 1 and again
starts from 111, doing one step with each clock pulse. You may use any combinational or
sequential logic circuit that has been introduced in the lecture. Draw the circuit of your
implementation with sufficient explanation.

Note: Assume that, initially, each storage element contains a 0.

Hint: Instead of building everything from elementary gates, first think of more complex
circuits for doing arithmetics or storing values that have been introduced.

Solution: One possible solution uses D-flipflops to store the current number. The outputs,
as well as the constant 111 = 〈〈−1〉〉2s3 , are fed into a 3-bit full adder, whose output is wired into
the D-flipflops again. The clock signal is wired into the “enable” inputs of the D-flipflops.

Another solution uses a series of three toggling D-flipflops (where the inverted output is wired
into the input); here, one could also use toggling JK-flipflops, but they have not been introduced
in our lecture.

Note that we should assume edge-triggered D-flipflops in any case.

5

3 Machine Programming
5pt
10minProblem 3.1 (Array Indexing in Assembler)

Given n ≥ 1, stored in P (0), and a1, . . . , an, stored in P (1), . . . , P (n), with 1 ≤ ai ≤ n, i =
1, . . . , n, compute the “n-th order subscript” aa...an of a and store it in P (1).

Note: With the above definition, the first-order subscript of a would be an, the second-order
subscript would be aan , and so on. An example initial setup for n = 3 could be:

i 0 1 2 3

P (i) 3 3 1 2
In this case, the program should compute aaan = aaa3 = aa2 = a1 = 3.

Solution:
P instruction comment

0 LOAD 0
1 MOVE ACC IN1 store n in IN1
2 JUMP= = 7 if n = 0 then jump to 9
3 LOADIN 1 0 load the current result
4 MOVE ACC IN1 store it to be used as index
5 LOAD 0 decrement n
6 SUBI 1
7 STORE 0
8 JUMP − 6 repeat loop
9 MOVE IN1 ACC
10 STORE 1
11 STOP 0

6

6pt12minProblem 3.2 (Static Procedure for Logarithm)
Write a L(VM) program that implements the log function for the integer logarithm defined
as blogb ac as a static procedure and calls that procedure to compute log2 3, as in the
following µML listing (given in an SML-like syntax):

let
fun log(b, a) =
...

in
log(2, 3)

end

1. Complete the function in the above µML listing, using an an SML-like syntax.

2. Write down the L(VM) program (in concrete, not abstract syntax) that results from
compiling the µML program1. You may use any L(VM) instruction except peek and
poke.

3. Draw the evolution of the stack, including all intermediate steps.

Note: Assume a built-in div instruction that performs integer division. You may confine
yourself to the cases b > 1 and a > 0.

Solution: The SML code:

let
fun log(x, 1) = 0 |

log(x, y) = 1 + log(x, div(y, x))
in
log(2, 3)

end;

The µML code in abstract syntax (not part of the assignment, just for the sake of completeness!):

(
[
("log", ["x", "y"], If(Leq("y", Con 1), Con 0,

Add(Con 1, App("log", [Id "x", App("div", [Id "y", Id "x"])])))
],
App("log", [Con 2, Con 3])

)

The L(VM) program (assuming that div is a procedure at address one; alternatively, we could
assume div as a L(VM) instruction):

proc 2 34
con 1
arg 2
leq

1You need not remember the exact definition of the compiler. Just give a L(VM) program that computes
the same function as the µML program and explain to which lines of the µML program the parts of the
L(VM) code relate.

7

cjp 5
con 0
return
con 1
arg 1
arg 2
call 1 (* div *)
add
arg 1
call 0
return
con 3
con 2
call 0
halt

8

9

