1 Graphs, Circuits and Positional Number Systems

Opt
Problem 1.1 (Designing a Logic Circuit)

Given the following truth table:

= OOl O | Ol N

H OutputA \ OutputB H
1 1

] Bl) B E=) =]) Nan) -
== OO R | O O«

—|lololr|~—lolo
R ol —lol—|lo

1. Obtain and simplify (using any method) logic expressions for OutputA and OutputB.

2. Implement the corresponding logic circuit using only AND, OR, NOT gates, and
using the least number of these.

3. Implement the same circuit (same logic expression) using the least number of NAND
gates.

Note: For the last part, you do not have to prove that the number of gates you used is
minimal. However the number of gates should be smaller than in the circuit obtained just by
directly expressing each OR/AND/NOT gate with NAND gates.

Solution:

2 Machine Languages

Problem 2.1 (ASM reverse)
Write an ASM program which reverses a substring of a string of integer. D(0) will contain
the index b of the element at the begining of the substring and D(1) will contain the index
e of the last element of the substring. D(3) through D(co) will be the elements of the
string, which are encoded as integers. The indexing starts with D(3) having index 0. It is
guarantied that b and e are non-negative. Note that D(2) was left intentionatly for you to
use as temporary storage in your algorithm, should you choose to do so. After the program
finishes, the values in D(0), D(1) and D(2) can be anything you want. If b > 1. the values
from D(3) to D(b+2) should be the same as before the program was run. Also, the values
of D(e+4) through D(o0) should also be the same as before. If s < e, the values of D(b+3)
through D(e+3) should appear in reverse order.

Note that you are only allowed to use labels in jump statements. You are very much
encouraged to write comments and even a description of your approach, which cand help
the grader award partial points. Here is a list of ASM commands (only for reference).

load i | jump(=
storei | jump(>
loadii | jump(
(
(

<
addi i jump(>
subi i jump(<
add 1 sub i

move S T | jump(#) i
loadin i j | storeini j

jump i stop 0
Hint: You might want to make use of the ”storein” and ”loadin” instructions which deal
with relative addressing. After all, at the begining D(s+2) == D(D(0) + 2).
There might just be a "hidded” induction somewhere which could make life easy for
you.
Hint:
Solution:

The recursion is simple: base case: D(0) ;= D(1) =; nothing to do. step case: swap
D(D(0)+3) and D(D(1)+3), increment D(0) and decrement D(1). This is an induction by the
difference n = D(1)-D(0), where negative cases are treated as the base case.

The swapping uses the memory cell D(3) as temporary storage: D(2) = D(D(0)+3); D(D(0)+3)
= D(D(1)+3); D(D(1)+3) = D(2);

The relative referencing is done using registers IN1 and IN2: IN1 = D(0) IN2 = D(1) D(2) =
D(IN1+3); D(IN1+3) = D(IN2+3); D(IN2+3) = D(2);

Here is the code with comments

load 1
sub O
check if we are at the base case

Opt

jump(<=) 18

prepare IN1 and IN2 for relative referencing
load O

move ACC IN1

load 1

move ACC IN2

D(2) = D(IN1+3)
loadin 1 3

store 2

D(IN1+3) = D(IN2+3)
loadin 2 3

storein 1 3

D(IN2+3) = D(2)
load 2

storein 2 3

increment D(0)

load O

addi 1

store O

decrement D(1)

load 1

subi 1

store 1

continue the recursion
jump -19

stop O

Problem 2.2 (Factorial and £(VMP)) Opt
Write a VM procedure which takes an argument n and computes n!. Also, draw the VM
stack at each computation step done by the virtual machine.

Solution:

Problem 2.3 (Reverse and L£(VMP)) Opt
Suppose you enhance the VM language with two operations similar to peek and poke by
allowing indirect addressing, i.e. one can now write peeki 3, which would push on the
stack the content of S(S(3)) and pokei 3, which would move the top of the stack into
S(3).

Now, you are given a positive integer n in S(0) and n digits in the cells S(2)...S(n+1),
which represent a number in decimal representation. Your task is to find out if this number
is a palindrome or not, and write the answer in S(1). You may use the cells below S(0) to
do your computations.

A slightly more tedious (but not more difficult) excercise is to reverse the content of
the VM stack, since you also have to compute n/2. Try it out if you want.

Solution:
con 1 poke 1 // assume it is palindrome
peek O poke -1 // S(-1) will be the iterator i from n --> 0
<loop> peek -1 cjp <halt> // we reached i = 0
peek -1 con 1 add poke -2 // 8(-2) = i+l
peek -1 con 2 peek O add sub poke -3 // S(-3) = n+2-i
con 1 peek -1 sub poke -1 // i--
peeki -2 peeki -3 sub cjp <loop> // sli+1] =7 s[n+2-i]
con O poke 1 halt // stop if not

<halt> halt

Problem 2.4 (Largest Binary Number) Opt
Design a Turing Machine that finds the largest binary number in a list of unsigned positive
binary numbers/ strings, and appends it with a # to the right of the input.

All numbers/ strings are of the same length and are separated by #’s.

Sample input: | #1001#41100401104#0011
Sample output: | #Whatever — Here#1100

Assume the head is positioned at the first #. You may use additional symbols in your
alphabet.
Describe the idea behind your algorithm and provide a transition (action) table.

Solution: Basically you compare every two consecutive numbers bit-by-bit, and if the left
one is bigger, it overwrites the right one.
Here is a decision table on what to do at the bit-by-bit comparison:

1 bit | r bit | action
0 1 skip left string, move to right
1 0 overwrite right string with left string
0 0 check next bit
1 1 check next bit

3

Internet

Problem 3.1 (Sending emails)

The GenCS TAs were very satisfied by the interest students had for their tutorials and
wanted to write a thank you email to everyone. Since the Information and Software
Architecture of the Internet and WWW topic was not that detailed when they had the
class, they are very interested to learn more from you.

1.

(briefly) describe the TCP/IP layers that their email passes as it is sent and what
transformations happen at each stage.

. what is HTML and CSS and briefly explain how they can be used to write a fancy

email (It is sufficient to just write an example email using them both).

describe how an asymmetric-key encription method would enable sending confidential
messages.

Solution:

1. The layers of the TCP/IP suite, with descriptions, are:

Opt

10min

’ Layer ‘ Description

Application Layer | high level data

Transport Layer UDP, TCP header added to the data as it gets encapsulated in a packet

Internet Layer IP header and data

Link Layer packets are divided to frames

2. HTML is a representation format for web pages and CSS is a style sheet language that

allows authors and users to attach style (e.g., fonts and spacing) to structured documents.
A basic example with HTML tags and CSS style is sufficient to show the use of them.

. In an asymmetric-key encryption method, the key needed to encrypt a message is different

from the key for decryption. Such a method is called a public-key encryption if the en-
cryption key (called the public key) is very diffcult to reconstruct from the decryption key
(the private key). To send a confidential message the sender encrypts it using the intended
recipient’s public key; to decrypt the message, the recipient uses the private key.

4 Problem Solving and Search

Opt
Problem 4.1 (Search algorithm)
Apply BFS, DFS, IDS, UCS, Greedy, and Astar to the following graph:
For the last two search strategies, experiment with some heuristic functions of choice.
Also, review the properties of each search and the properties of heuristics.
Solution:
BFS A,B,C,D,E, G, H, F, I, JK, L
DFS A,B,D,F,K,L,E, C, G, H,1I,J
IDS A, A,B,C,A,BDECGHABDFECGHTLIJA BDFKLE,C,CQC,
H1J
UCS A,B,D,E,C,F, G, K, L, H, I, J
Greedy depends on the heuristic
Astar also depends on the heuristic (to be explained in tutorial)
Properties of searches:
Name Complete Time Space Optimal
BFS Yes O(b¥1) O(b¥1) Yes/no
UcCs Yes nr explored nodes nr explored nodes Yes
DFS Yes/no o(b™) O(b-m) No
IDS Yes o(b4+1) O(b-d) Yes
Greedy | No (loops) o(b™) o(b™) No
Astar Yes exponential in error of h x length of sol same as BFS yes

8

Properties of heuristics:
1. admissibility: 0 < h(n) < h*(n) (optimal Astar)

2. dominance: hs domainates hy if ha(n) > hi(n) for any node (better Astar)

5 Programming in Prolog

Problem 5.1 (The Zip Function)

Remember the SML Grand Tutorial from last semester? You will now remember the good
old times by implementing one of those functions in Prolog: the zip function.

The zip function takes two lists with lengths that differ at most by 1, and outputs a list
of lists containg one element from the first list and the element with the same index from
the other list. Create a Prolog predicate with 3 arguments: the first two would be the two
lists you want to zip, and the third one would be the result.

For instance:

?- zip([1,2,3],[4,5,6],L).

L =[[1, 4], [2, 5], [3, 6]].

?- zip([1,2],(3,4,5],L).
L = [[1, 3], [2, 4], [5]1].

Feel free to implement any helper functions.

Solution:

zip([L], [1,[[LI]).

zip([1, (L], [[L1]).

zip([A],[B], [[A,B]]).

zip([H1|T1], [H2|T2],L) :- zip(T1,T2,T), append([[H1,H2]],T,L).

10

Opt

